A PERFORNMANCE EXPERIMENT ON A UNIX SYSTEMN
by
RODERICK LANE DOWNING

Be SCe , The University of Western Ontario, 1975

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August 1979

(c) Roderick Lane Downing, 1979

91

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of ___Computer Science

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T TW5 '

Date ;¥hﬁ 37/74

DE-6 BP 75-511E

ii

ABSTRACT

A performance experiment on a PDP 11/45 running under UNIX
is described. The purpose is to discover the major influ=ences
in the system and their relationships in an attempt to analyze
the performance of the system and predict the effect on

performance of possible hardware and workload changes.

A suitable performance parameter is developed and the
workload, hardware and internal systenm parameters are
determineds. = Tools are constructed to record these parameters. .

A controlled experiment, using a synthetic workload is then

conducted. The results are analyzed wusing regression analysis
and suitable equations are obtained. Sample applications are
given. The merits of the relationships, as well as the

suitability of the tools developed and methods used, are

discussed.

iii

TABLE OF CONTENTS

ABSTRACT".‘.0.0'O...\..“.C..O...-......CO'...'.Q'. ii

LIST OF TABLES L N ...“...\‘". ‘\..... ..CC'..‘..‘\‘\'\.\Ol"\'ﬁ‘...." . v
LIST OF FIGURES® ' : . P . . vi
ACKNOWLEGEMENT 1 i

1. . Introduction.

1 2 Basic Goal, Approach & Motlvatlon P R

(ST

2. Descrlptlon of System.
2.1 The Hardware "l....‘.‘\-.'.......Q.....\.\IOQOO..C.0.0.C

N
)
)N
.
* wnad
o
H
O
Q
o
)]
0
» O
0
[
.
.
-4
v e
]
.
o
ki
¢
.-
R
o
e
[}
.
s
)
’l
1]
e
. -
]
® -
K}
8
.-
*®
)
.
.
-
[3
.
e
s
.-
.-
e
.
NN OO

3. Evaluation Methods., ‘ . 'm

3.2 Choice for thlS Experiment .,,,.,,,,,,,,,,,qe,,q,q,qeq_12

4. Description of Experiment Set-up & Procedure.

4.2 2 Description & Justlflcatlon. ‘The Performance
: Parameter ccsesssesase 16
4.2.3 Description & Justification: The Other Paraméters 16
4,2.4 Possible RelationNsShipPS seeecccncenicsescecssnscsase 21
4.3 Description of the Measurement Tools esssssssceceasses 22
Je3e.1 BAackground sweecevcemecsesceracsceane ...,,,,;‘22
4.3.2 Operating Systel Changes ecsecesccsscissccciovasane 22
4,3.3 Description of Information Collected_......._25
26
.26
.27
see 29
4,5 De51gn of the Experlment_.......,...‘._‘,1;; 30
4.6 Implementation ceseeccsccssesscsesacnssencssnesecacnecece 33

5. Description of Experiment: Results & Analysis. :

5.1 Initial ANAlySiS eeswecsbescssscssccesnsscescsasesnseneasse 30
51«1 First Set of Data;..................,36
5.1.2 An Unusual Trend cesceiscececsve ‘ ; '
5«1+.3 Second Set of Data .m.......;;...;.._....._@p..,..
5«71.4 The Quantity YPCTRMM®' cecescecscsescscscscscccsccnas
5¢ 1«5 Complexity Of the PC FACtOL cecesccecsccocescanncnss U2

"Final Model and Interpretatiol eeeccceccscesescsccecses U5

valldatlon .Q-.....I‘Q......‘....Q.'...Q............... 51

Some Reallty checks-.........‘...CQ-...-....Q..__52
Sources of Error ..._.,.w...,.....,..;.....;.........._53

[GRTLECET T
¢ o o & o
OV W N

L

6 Conclusions.,

BIBLIOGRAPHY -!9-~~0!¢29--eq31@9--qes-oq-oqsq-qee;eqqéeoeose.

APPENDIX A:
APPENDIX B:
APPENDIX C:

Swapping and Cpu P0liCieS snecssccmssomrerncoases
Selection of Reaction TilMe eeesseccscevsccmoncsee

Statistics of the Production Workload

iv

58

. 59
. . 59

61

63

66
.70

72

II

III

iv

Vi

VII

VIIT

IX

LIST OF TABLES

Description of Unique Portion oOf RecCOrdS sseecewevoccee

Factors and Levels for Original EXperiment ececeeaceccse

Results of Second EXPEeriMent ceceecscscscscccescsnsscnsascnns .

Results Of Initial Regression }ovo\.--o..;.pm -_p_\g.‘p.o\ov'v-.ooqo_

Results of Second RegreSSiON ceececacncecscscssccscnsses

Validation Using Internal ObServatioNS ececseseccccccss.

Validation Using External Observations eeeseecswesccece .

Comparison with Non-uniform RUNS ececcecessscsecccence.

Correlation Table for Internal System Parameters cseees.

|26
32
237

41

45

46

52

vi

LIST OF FIGURES

DiStribUtiOn of Compute LOOPS .Q,.{Qp.g_.«q\g\..\o_._’g‘._g‘q._\..coootg@_33
Analysis of Variance ReSUltS ceeecsecsccscescscsacccccass 36

Graph Of RT versus PS ‘.p'.'.‘.I.'.\"..4‘..'-‘.‘...._"\..\"-!.\!"..‘..‘.“'.-‘.'_50

vii

ACKNOWLEDGEMENT

First of all, I would like to thank Sam Chanson for his
ideas and guidance +throughout this work, for his careful
readings of the thesis, and for his financial support through
research assistantships. His knowledge of the: subject was a
great asset. I also greatly appreciate the efforts of Dr_: Ito
in both his suggestions and his reading of the drafts, as well
as his slightly different perspective on the work, .

This project would not have been possible if. it were not
for the generous use that was granted me of the computer
facilities at the Institute of Animal Resource Ecology. For
this I am most grateful. In particular, I wish to thank Bill
Webb, whose knowledge of UNIX is truly amazing. = He extricated
me from many a baffling predicament.

Finally I wish to mention my wife, who has always given me
the freedom to explore my goals and yet also keeps me from

taking myself too seriously.

CHAPTER 1: Introduction. 1

1« INTRODUCTION.

1.1 OVERVIEW

The evaluation of a system, product or activity is an
essential step for its sound development. Thus the emergence
over the past several years of such a discipline in the computer
field is a healthy sign.. While initially the discipline
suffered many drowing pains, in the last couple of years there
has been much evidence of its maturing and consequently of its
increasing contribution to computer science. A good synopsis of
the whole field can be found in ({FE78}. An overview of the more
linited area of measurement and evaluation, under which this
thesis falls, can bé found in [SV7/6]. As well, the reader is
referred to section 3.1 which further illuminates the current

statea

Computer performance studies usually help to give insights
in two ways. First of all, the studies simply answvwer whatever
questions were posed, such as whether one design or modification
is better than another, whether the addition of hardware or
change in software justifies the cost involved, etc. Secondly,
and probably of more importance in the long term, performance
studies require or eventually produce a model of that which is
being investigated. The process of establishing these models,
because they cause the evaluator to seek out a simple unified
picture of what often appears comnplex and disjoint, often
produces insights which have far greater implications than the

actual study itself.

CHAPTER 1: Introduction. 2

Juxtaposed with the above optimism and importance of the
area, 1s the need to relate some of the current obstacles. The
performance evaluation of computers, like many areas im computer
science, suffers because of two phenomena: the relative infancy
of the field, and the continuing explosion of new technology.
Because performance evaluation is a recently established
discipline, there has been insufficient time to explore and
uncover many underlying principles. This problem is compounded
in that part of the scope. that influences the. area involves
other almost as young areas of study. For instance, operating
systems are one of the prime considerations in investigating the
performance of a system, and yet it has only been recently that
some basic principles in design methodology have started to
emerge (for example see [HA70], [DE72], [HO70], [HA76]) . Until
that area is able to solidify its domain and functionings, the
implications of the findings in performance.évaluation will

remain limited.

The rapid technological advances contribute to the
everchanging nature of computer hardware and software and thus
to the proliferation of new configurations and systenms. This
again makes it very difficult for any insights gained in a
performance study to have very wide application. To develop any

encompassing theories, it will have to transcend this level.

It should be noted that there is a way of viewing computer

systems performance evaluation which states that the discipline

CHAPTER 1: Introduction. 3

will have matured when, for the most part; it has disappeared as
a separate field of study [FE78, p. xviiil]. This view comes
from the engineering perspective where the evaluation of
performance is an integral part of design and implementation,
not a distinct after-the-fact endeavour. Currently this is not
the case in computer systems design. The fundamental principles
of workload characterization and of the effects of hardware on
them and the relationships between them and performance just
don't exist yet. So any studies that are done on performance as
affected by the eventual workload, are conducted after the
hardware has been designed and implemented and layers of
software placed on top. This places the evaluation much too far

from the foundational layer of design and decision making(*).

This brief introduction hopefully provides enough
background on the role and current state of the discipline so
that the reader may be able to place this work in its proper

context.

1.2 BASIC GOAL, APPROACH, AND MOTIVATION.,
The basic goal of this thesis is to discover, on the PDP
11/45 running under ONIX at the Institute of Animal Resource

Ecology at the University of British Columbia, the major

- — - — - ———— — - —— — - - e =

(¥) Other related areas, such as operating sSystems [LI72},
programming languages [F078], and microprogramming [CH76, p.961]
report a similar disatisfaction with the current role of
hardware, again, probably indicating the immaturity of the whole
spectrum of computer design.

CHAPTER 1: Introduction. i}

influences in the system and their relationships, in an attempt
to analyze the performance of the system and predict the effects

of possible hardware changes. .

The approach chosen is, first of all, to determine probable
workload parameters and pertinent hardware and internal systen
parameters and to develop a suitable performance parameter;
Tools to extract this information will be constructed. Then a
controlled experiment, using a synthetic worquad, is to be
conducted varying the parameters and recording the values of the
performance indexs The results will then be analyzed to try and
establish some strong relationships among the parameters. If
this 1is successful, then the effect of changes in the workload
‘and/of system on performance can be studied. For example, one
could then determine how much the response would be degraded by
adding more processes, or how much it could be improved by
adding more main memory. As well, the relationships could be
used to help answer comparative questions such as whether the
addition of new disk hardware is more cost-effective than the

addition of more main memory. .

The motivation for this project 1is basically twofold.
First, as mentioned in the previous section, the whole field of
computer performance evaluation is very young and in much need
of research in even the most basic issues. It is hoped that the
results of this foort will contribute to the understanding of

the area. And secondly, the target system is a fairly popular

CHAPTER 1: Introduction. 5

one. Thus it is hoped that any practical insights or methods
used may be beneficial to those who find themselves in similar

circumnstancese.

Finally, a comment on the style and contents of this report
is 1in order. It contains in many places, a fairly dstailed
account of decisions and methods employed. This will hopefully
increase one's ability to judge the usefulness and
appropriateness of this work. In chapters 2 and 4 a basic
understanding of operating systems is assumed and a knowledge of
UNIX will be helpful though not essential. Chapter 5, where an
analysis of the results is conducted, requires a basic
understanding of some statistical tools, most notably of

regression techniques. .

CHAPTER 2: Description Of The System. 6

2. DESCRIPTION -OF -SYSTEM.
2.1 THE HARDWARE.

The host machine for this project is a PDP11,/45. It has
56K words (16 bits per word) of main memory, of which
approximately 24K words are used by the operating system.
On-line secondary storage consists of two RKOS5 disk cartridges.
These have small capacity (1.2 Mega words each) and slow
transfer time (about 90,000 words/sec.). They operate under the
same controller and do not currently have the capability to
overlap seeks. Because of the small on-line storage, there are
also two Dectape drives and one magtape drive, which are used to
store the bulk of the user files and data not immediately being
needed. Other peripherals include a printer, plotter, and a
card reader (which is used to submit one batch job at a time).
Access 1is gained to the system either through the card reader,
or on an interactive basis +through +the <console, eight other

terminals, and one dial-up port.

2.2 OPERATING SYSTENM.

The operating system in use is UNIX (a fairly early version
of V6). PFor a comprehensive description of UONIX, including
source code, the reader is referred to [LI77])« As well, a good
survey of its I/0 , process control, and implementation can be
found in {RI78]) and { TH78]). The following paragraphs summarize
a few of the areas which are of particular concern to this

project.

CHAPTER 2: Description Of The Systen. 7

2w2,] Processese.

The basic unit of manipuiation in UNIX is the process.
While the basic concept is easily understood, a rigorous
definition of a process in UNIX involves the system data
structures (1177, p.7-13. For the purposes of this thesis, it

is simply defined as a program in execution.

One. of the <chief features of a process in UNIX is its
ability to spawn descendants via a fork mechanism. Thus one
user may have several processes executing simultaneously. This
realization is needed later when describing the selection of
parameters for the experiment (section 4.2) and in the

discussion of the synthetic workload.

The structure of a process will also be briefly described.
A1l processes consist of three entities: program code, data, and
a stack. Generally, all three of them are placed together in
main memory, thus requiring only one pointer to keep track of
them, and making their manipulation easier. However, it is
possible to separate the program code and make it reentrant and
sharable among other users., Thus many users camn run the sane
program (such as a compiler) and only one copy of the progran
code needs to be in main memory, saving considerable space. As
well, because it is pure code and thus never changes, the text

never needs to be swapped out, which reduces the swapping load.

2.2.2 Scheduling Policies.

CHAPTER 2: Description Of The Systemn. 8

With most algorithms in UNIX, when a design choice must be
made between simplicity and power, the former was usually
favoured. This is very evident in the scheduling policies,
which will be briefly described here (see Appendix A for a more

detailed explanation of the swapping and cpu policies).

The . cpu scheduling algorithm incorporates a loose round
robin policy. There is no time quantum as such, though it will
generally be at most one sec., and will be reduced as the amount
of I/0 increases. The decision of which process to run next is
based solely on the priority of a process, which for competing
user processes, is based only on the cpu time intervals between
I/0's (exclusive of context switches and swaps), - the longer
the interval, the lower the priority. After a process sleeps
due to I/0, it's priority is reset to the highest possible user
priority. Thus for instance, a process that continually does
less than one second of c¢pu time followed by an I/0 will be
considerably favoured over a process which is totally compute
bound. Thus we begin to see possible indications that the cpu
or I/0 requirements of a process may have some effect on

response.

UNIX uses a swapping algorithm to handle loads which exceed
the amount of available main memory. To summarize the policy
used, swapping is only done when necessary, that is, only when
there is at least one process out on disk that wishes to use the

cpu. Processes are swapped into main memory as long as there is

CHAPTER 2: Description Of The Systen. 9

room or it is decided that it is time to boot someone from main
memory out to disk. The decision as to which process(es) is to
be brought in is based only on its elapsed time. out on disk.
Similarily, the decision as to which process(es) gets swapped
out is based only on its elapsed time in cores It can be seen
from this (because the policy ignores such process
characteristics as size), that especially with a slow disk and
little main memory, swapping likely contributes significantly to
poor response, to a point where thrashing is 1likely to occur
when there are a few very 1large I/0 bound processes in the

systenm.

CHAPTER 3: Evaluation Methods. 10

3. EVALUATION METHODS.

3.1 OVERVIEW

Once it has been decided that an evaluation is to be
conducted on a given system, one mnust then determine which
approach to use: measurement (where the desired information is
obtained directly from the system), or modelling (where a model
of the actual system is used to obtain the desired information).
The possible methods shall now be discussed and then the reasons

for the approach chosen in this project shall be given.

One of the chief advantages of modelling is its ability to
provide results when the target system is unavailable for direct
control. This would be the case, for instance, in a highly used
commercial installation where the system nmust alvays be
available for the customers, or in certain improvement studies
or in the design of a new system where the target system doesn't

exist yet.

Another area of strength of modelling is where the study
can be conceptualized using fairly straightforward models and
where simplifying assumptions c¢an be made about the input
parameters. This is particularly true of analytic techniques,
which could 1loosely be described as employing paper and pencil
models (for example, queueing models [GR78] or non-queueing
models {CH75)) . They often give satisfactory results with a
comparatively low cost. See [K078] for a good synopsis. One of

their main problems has been that the model did not adequately

CHAPTER 3: Evaluation Methods. 11

reflect the actual functions and interactions, usually stemming
from making simplifying assumptions that were unrealistic. This
is especially true where there are complex interactions such as
workloads and communication networks [(CH77, the foreword].
However there are currently very promising indications of
success with the increased emphasis on model validation [CH77].
As well, there has recently been developed the ‘"operation
analysis"™ approach which bases decisions on observable and
measurable quantities only, +thus requiring no simplifying
assumptions of the type needed by queueing models [DE78). For a
discussion of the state of the art for queueing models, the

reader is referred to { MU78}.

Modelling using simulation techniques offers greater
flexibililty. However it suffers too as complexity increases,
not so much from its inability to model complex events, but from
the cost usually involved. The cost can be reduced in sone
cases by using hybrid techniques, which is simply a combination
of simulation and analytic methods. There are again problems of

validation of the input parameters and the model.

The other major evaluation approach is direct measurement.
It has the important advantage of accuracy since it uses the
actual system and thus eliminates the need for a model and all
its pitfalls. Its major drawback is simply that the system to
be measured is often inaccessible for such an approach. Another

disadvantage is that similar to simulation but unlike analytic

CHAPTER 3: Evaluation Methods. 12

modelling, large volumes of data are generally collected which
often become unwieldy. Also, for measurement experiments where
the . actual production workload cannot be wused, a synthetic‘
workload must be constructed which then introduces validation
problems similar to those of input parameters in modelling. See

[FE72] for the problems of characterizing workloads.

3.2 CHOICE FOR THIS EXPERIMENT

The approach chosen for this project was measurement. The
main reason is that we have an almost ideal environment for it:
a dedicated system with access to the source code of the
operating system and thus the ability to <change it. UNIX 1is
written in a high level language which makes it easy to change
and has the advantage of being easy to understand,vwhich is
essential to ensure that the changes made are, indeed, what is
desired and causes no side effects. We were givemn a removable
disk <cartridge with a copy of the UNIX system on it and wvere
allowed to run our own altered version after midnight when no

one else was using the system._ .

This set-up 1is very appropriate for an experiment which
wishes to see the influences that various parameters have .on the
responsiveness of the systen. It allows us to conduct a
controlled experiment, that is, to develop a workload in which
Wwe <can control the desired parameters and hold constant any
undesirable influences. While. the parameters c¢ould also. be

controlled imn modelling, it is unsure whether the model itself

CHAPTER 3: Evaluation Methods. 13

would capture all the interactions which might occur among the

variables.:

CHAPTER 4: Setup and Procedure of Experiment. 14

4. DESCRIPTION OF EXPERIMENT: SETUP-AND- PROCEDURE -

4.1 OVERVIEW

In this <chapter, the exéeriment which was conducted shall
be described in detail. As yet, there is no distinct
methodology for evaluating a system, and thus it seems wise, to
include the procedure that was involved here, 1in hopes that
eventually a common methodology will emerge._ Things are
presented basically in the same.order as they occured in the

development of this project. .

Having decided to do a measurement experiment, the first
step is to decide what performance measure to use and then to
identify the major parameters which influence it: 1Included in
that section is.a discussion of the hoped-for relationships
between them. The next step was to develop tools to extract the
desired information from the systen. An explanation of the
exact type of information obtained from these tools is included. .
Following this, it was necessary to develop a synthetic workload
which would allow for a controlled experiment. And finally came
the experiment, of which +the design and implementation are

discussed.

4,2 PARAMETERS. .
4.2.1 Identifications
The initial step is to determine which type:of performance

indicator to use. The three basic categories are those

CHAPTER 4: Setup and Procedure of Experiment. 15

concerned with the responsiveness of the system, those concerned
with throughput, and those concerned with utilization. The only
major concern at the host site is the responsiveness of the
systen. . See. the next section for the choice made and

description.

The identification of the major influences in a system is
as yet a largely subjective and intuitive process._ It is aided
by previous attempts on other similar systems, and more
importantly by the evaluator's knowledge of the system at the
user and system levels and from insights gained by the other
users of the system. It is often an iterative process.
Fortunately, in thisﬁ case, the systen is small (and
comprehensible) and the problems stood out fairly clearly. As
well, the operating system is well written in a high 1level
language, making its comprehension much easier. From the
details of chapter 2 and the swapping algorithm. of appendix A,
and also from observing the lights on the disk drive, it becanme
fairly obvious that the disk was the major béttleneck and that

the likely culprit was swapping.

With this in mind, and yet remaining open to other
considerations, we chose those parameters which were felt to be
possible- candidates in- affecting the response .of the system.
These parameters, which will be described after the section on
the performance parameter, are divided into those stemming from

the workload, those originating from the system hardware, and

CHAPTER 4: Setup and Procedure of Experiment. 16
those indicated internally by the system software. .

4,2.2 Description & Justification: The Performance Parameter, .
There are several responsiveness indices which have been
used (see (SV771).. PFrom an interactive. user's viewpoint,
response .time is usually the quantity which one is most directly
aware of and interested in. Hovwever in this experiment such a
quantity is inappropriate since.the experiment is controlled and
there is no terminal input (see workload construction, section

4.4).

It was eventually decided to use a type of reaction time
which we 1labelled "priority based reaction time", but for
brevity will simply refer to as reaction time (see appendix B
for the basis for this choice). The event which is timed is the
period from when a process wakes up until it is selected as the
next process to run. A process sleeps or is suspended in UNIX
when for instance it must wait for some I/0 to finish. The
reaction time is not measured for all processes however, but
only for those with low priority. Specifically, it is done. for
processes Wwhose priority is that of terminal input or lovwer

(which includes terminal output)..

4.,2.3 Description and Justification: The Other Parameters.
a) workload parameters.
1) the number of processes - This is a fairly obvious

candidate since. it 1is the basic unit of manipulation in

CHAPTER 4: Setup and Procedure of Experiment. 17

UNIX.

2) process size - It is clear that this is likely an
important parameter as well. The illustration of thrashing
in section 2.2.2 serves as an indication of the influence
that the size of a process may have 1in an extreme case
(though it should be recognized that the situation in 2.2.2
is also a function of the system hardware and the number of
processes) .

3) file sytem requirements of a process - Disk I/0 1is
considered the major bottleneck. While it is felt that
this is mainly due to swapping, there 1is probably a
contribution brought about by processes trying to access
the file system. As well, it was indicated that in the cpu
scheduling algorithm, the priority of a process is strongly
influenced by the amount of I/O it does. .

4) cpu requirements of a process - As indicated 1in
section 2.2.2, it appears that the length of a process's

cpu request may affect its responsiveness.

Parameters 2, 3, and 4 are on a per process basis (as
opposed to a per workload basis). In doing so, this keeps the
parameters all within the context of +the basic unit of
manipulation within UNIX and enhances modularity in the. deisgn
of our workload.

b) system hardware parameters. .
1) main memory capacity - The addition of more primary

memory intuitively appears to be the most promising remedy

CHAPTER 4: Setup and Procedure of Experiment, 18

to the disk bottleneck. With more main memory, the systen
could fit more processes in at a time and thus the swapping
should be reduced if not eliminated. So the choice of this
quantity as a parameter is very appealing. .

Fortunately within UNIX, one of the routines used to
help boot itself up checks the actual amount of main memory
available. And so by slightly altering that routine,
systems can be created which would be: "tricked" into
working with 1less main memory than what is physically
present.

2) disk configuration - The: disk is also a probable
hardware parameter, since a faster disk would reduce the
backlog that currently occurs. Simulation could be used to
study the effects that would occur with a a faster disk or
multiple disks: However, to keep the experiment within
reasonable bounds, this parameter will remain constant. It
should be noted that the effect of a faster disk can be
roughly estimated if an egquation for the reaction time in
terms of the internal system parameters (specifically the
disk waits and queue 1lengths) <can be obtained. This
estimate would then be possible since the hardware
manufacturers usually include information such as the
average transfer time, etc., which could be wused to
estimate the shorter disk waits.

C) internal system parameters,
This is the term used to describe those quantities derived

from the internal structure of the operating system (e<g. queue

CHAPTER 4: Setup and Procedure of Experiment. 19

lengths). While the quantities chosen will likely be valuable
to observe, the procedure to select them was again arbitrary..

These parameters are included for the possible insights
they may give in interpreting the results of the experiment, for
possible use in determining the influence of the disk, and for
possible future research. There are basically two views that
can be taken towards these quantities. One <can view them as
indicators of how well the system is handling the workload, that
is, as a reaction of the system to the workload. In this
context, if ome was interested, they could be candidates for
performance parameters. However in this project our main
concern 1is with the responsiveness of the system and not
directly with the internal efficiency of the systen.

In this thesis the internal system parameters are viewed as
variables that can be related to the performance parameter., The
following are those that have been selected. .

1) swap rate - This together with swap size is the prime

suspect for the cause of the disk congestion and so its

inclusion is obvious.

2) swap wait - This includes the waiting time in the

queue as well as the actual I/0 time. It is included along

with the swap rate since the swap rate does not
differentiate between the size of swaps, which for a slow
disk, -could have a substantial effect on responsiveness.

The swap wait does capture this effect.

3) disk queue length - This will help indicate the number

of file. system accesses that are being made to the

CHAPTER U4: Setup and Procedure of Experiment. . 20

disk, - the 1longer the queue, the greater the number of
accesses. This is not entirely true since the swapper I/0
gets queued onto the same disk queue (and it gets queued
according to the same:algorithm, that is, swap I/0 gets no
special priority). The . swapper influence is not very
significant on the queue length however, since the number
of swaps 1is at least an order of magnitude: less than the
nunber of file system accesses.

4) disk waits - As with queue 1lengths, this quantity
helps indicate the number of file system accesses.
However, it is much more heavily influenced by the swap
I/0. This is because all file system I/0 consists of a
block of 256 words, whereas the size of swap I/0 blocks
often is several kwords. Again, for a slow disk, this
difference could be significant and will be worth noting.
5) cpu intervals - +this interval is the time between
context switches (not to be confused with the time between
I/0's, which is the quantity used by the cpu scheduling
algorithnm). This quantity is included ¢to give us a
detailed view of c¢cpu usage._ See section 6.2 for hindsight

comments.

There are several quantities which are excluded in this
experiment., For instance, I/0 to other peripherals is not
considered as a prelimenary experiment was performed which

indicated that the disk I/0 was by far the dominant quantity.

CHAPTER 4: Setup and Procedure of Experiment. . 21

The exclusion of some of the other quantities 1is more
difficult to justify except again on the basis that the
experiment would become too large .and the overhead too high.
These variables would include for instance the cpu and swap

quene lengths.

4.2.3 Possible Relationships.

From the rTesults of the experiment we hope to be able to
derive an equation for the performance parameter in terms of the
workload parameters and system hardware parameters. This is
very desirable for it would give us the ability to predict the
expected responsiveness given the characteristics of the
workload (in terms of the above parameters) or given a desired
change in the hardware. It must be realized though, that the
results cannot be assumed to be applicable +to arbitrary
workloads. It is not within the scope of this thesis to prove
the .the synthetic workload is equivalent to the production
workload (see section 4.4 for the procedure that was employed).
However it is hoped that the.relationship will be quite similar

and thus of significant practical value.

Other possible relationships of interest, though of less
practiéal value, may be found in deriving the internal systenm
parameters in terms of the workload parameters or the
performance parameter in terms of the internal systen
parameters. This may be of interest to the person who wishes to

change the operating system and wants to see where, internally,

CHAPTER U4: Setup and Procedure of Experiment. 22
are the main influences.

4.3 DESCRIPTION OF THE MEASUREMENT TOOLS
4,3.1 Background

From the previous section, it was decided to collect d4disk,
swap, cpu and reaction time information. The first three
quantities are very high volume and so we need a data collection
method which can obtain this information without interfering too
much with the system: There are three basic types of monitors
that can be used to collect data: hardware, firmware and
software (see [FE78] for the general merits of each). For this
study a hardware monitor would have been ideal but was
unavailable, The host computer is not microprogrammable and so
firmaware tools were not applicable. This left us with the task
of developing software tools which could gather high volume data

without disturbing the system too much.

Prior to this project, there was developed on the host
computer a software tool for low volume data. This tool was
modified for our purposes and will be described now. The
changes are explained in some detail as it is hoped that in an
area where no clear methodologies have emerged, the sharing of

such information might be an aid in discovering commonalities.

4.3.2 Operating System Changes
The following are the routines and data structures that

were implanted in our modified version of UNIX.

CHAPTER 4: Setup and Procedure of Experiment. 23

a) a new clock. = The regular clock on our version of UONIX is
accurate to the nearest 1/60 sec. 1In some .preliminary tests,
this resolution was thought to be just barely adequate for our
purposes and was inadequate for any type of detailed disk timing
‘analysis._ As well, by using the same <clock that the whole
system uses, there is the possibility of becoming unavoidably
synchronized with other events in the system and thus producing
distorted results. .

Fortunately a faster clock was discovered in a DUP-11
synchronous line interface. The clock in this piece of hardware
is used for internal maintenance and has a resolution of Jjust
over one millisecond, By writing some code to drive the clock,
we solved the above problems , though at the expense of slightly

greater overhead.

b) timing routines. Two routineé together with a table acted
as a stopwatch mechanism. When we wished +to start +timing an
event, a call would be made to the routine START_TIMING. This
routine would be passed a unique value to identify the event and
would store the value and the current time in the table. As is
the case in ONIX, an address 1is the value wused to uniquely
identify an event. Each time 1is stored in a 16 bit word,
allowing us to time events up to just over one. minute (65536
milliseconds). This was more than adequate for any of the
quantities we:wished to measure. In tests, we found reaction
times never exceeded 15 seconds, and the uninterrupted cpu

intervals, even on an idle system, never exceed 30 sec. due to

CHAPTER 4: Setup and Procedure of Experiment. 24

a background task that awakens twice per minute.

When we wished to stop the timing of an evént, a call wquld
be made to the routine STOP_TIMING. The identifying value of
the event would be passed to it, amd the routine would then
calculate and return the elapsed time since the timing was

started.

c) routine to output the statistics. When this routine
(STAPUT) is called, it 1is passed a variable 1length array
containing the information to be output from the. operating
system. STATPUT places this information plus the elapsed time
since it was last called in one of the specially created output
buffers. When the buffer is full, it prods the existing magtape
device handler to write the buffer directly onto magtape.. Fron
testing it was found that three 512-byte buffers proved to be
sufficient in preventing a buffer from being overwritten before

the magtape handler was finished with it.

d) controlling the output. It is desirable to have the ability
to turn on or off the output of the data. To accomplish this,
we modified the mechanism that was previously implemented in the
low volume measurement tool. .

Basically a new device, <called a "stat" device, was
created. That. is, open, close and read routines were vwritten
for it in the operating system, and a nbde was made in the file
system:for it. The open routine simply makes sure it 1is not

already open, and then sets the status to "OPEN". The status is

CHAPTER 4: Setup and Procedure of Experiment. . 25

checked by STATPUT, which simply returns if the device 1is not
open. The close routine sets the status to "CLOSE". The read
routine is not used for our modifications.

Thus when a user program issues an open system call on the
"stat device" (*) the collection information starts to be written
onto the magtape. Usually the user process will then sleep
until it is desired to stop the output of this information, at
which time the user process must then wake up and close the

"stat devicet',

e) imbedded code.. Calls to the three routines START_TIMING,
STOP_TIMING, and PUTSTAT, were placed in the existing code of
the operating system at the points ﬁe.wished to. observe. = These
areas included the disk handler, just before a request is queued
and just after the I/0 has conpleted; the place where the
decision to swap is made; the routine that handles context
switches; and for reaction times, the place where a process is

put to sleep.

4.3.3 Description of Information Collected

The following describes the four basic types of information
(or records) that were collected. The records contain the
needed information to observe the internal system parameters and

the performance parameter that were defined in section 4.2.2.
(*) This is slightly simplified. Actually +the nechanism uses
the minor device. number to create 5 f"stat devices":
stat0,ee.eestatd. STATPUT must then also be passed the nminor
device number and then must check that the corresponding "stat
device" is open. This allows greater comntrol over exactly which
information is outputs

CHAPTER 4: Setup and Procedure of Experiment. 26

The first two values of each record are respectively, the
elapsed time since the previous record was output and a value
identifying the type of record it is. See Table I for the

contents of the remainder of each record.

Table I
Description of Unique Portion of Records.:
Record Type Unique Contents
disk - disk location

- size of transfer

- queue length

- total wait time for transfer

- flags & minor device number
swap - disk location

- size of transfer

- wait time in swap queue
cpu - cpu interval

Tt - reaction time

4.4 WORKLOAD USED FOR THE EXPERIMENT
4.4.1 Possibilities and Choice.

When one wishes to nmeasure the performance of a systen,
either the natural (production) workload can be used or an
artificial workload can be developed to drive the systems The
production workload (or a segment of it such as the peak 1load)
has the obvious advantage of being most representative, though
this can be affected by the choice of when and how the system is
measured. Artificial workloads offer better reproducability,
are more flexible and pétentially more compact, though they are
more expensive to construct, less representative and often

contain a certain annoyance factor in that they require a

CHAPTER 4: Setup and Procedure of Experiment. 27

dedicated systemn.

In our situation the production workload was not avaiable
for monitoring and so we had to use a synthetic workload. For
the purposes of this thesis, this is the most desirable choice
anyway since we need a controlled environment to establish the
relationships of section 4.2.,3. There are.various types of
artificial workloads, - from instruction mixes (see [GI70] and
{ FL741)) to standardized synthetic benchmarks (see [FE78, p253])..
For this experiment a prototype process was constructed which

became the basis for our synthetic workload. .

4.4.2 Construction of the Synthetic Workload
The composition of the prototype process (or program) is an

~infinite loop consisting of the following:

a) compute. 1loop. A series of statements are looped through a

variable number of times according to a distribution.

b) disk I/0 operationsi: Following the compute loop, a routine
is called to create some disk I/0 by reading, writing, opening
or closing a file on the disk._. In UNIX, however, one must be

aware that simple reads or Wwrites don't necessarily do I/O to

the disk, or at least not immediately. An internal pool of
buffers is resident in memory. Reads or writes place
information into these buffers and, very loosely, the

information will stay there until +the file is closed or the

CHAPTER 4: Setup and Procedure of Experiment. 28

buffer is needed for other purposes, at which +time +the actual

disk file will be updated accordingly. .

c) sleep. There 1is a system call in UONIX which allows a
process to suspend itself for the number of seconds passed as a
parameter., While in this experiment a call to 'sleep' helps to
simulate think time, its main use is to increase the number of
reaction times that are. produced by the process. These are
reaction times of priority 100 or greater, which should be very
sensitive to the responsiveness of the system. The decision to
sleep or not after each execution of the. compute 1loop, is

distribution driven.

d) terminal 1I/0. The natural workload, consisting largely of
interactive users, involves a great deal of terminal input. It
was felt that +this could not be simulated in our synthetic
workload, since this would require either extra hardware to feed
commands into the system, or some people sitting at terminals
and typing in a set of commands at a given rate into the system. .
Neither the hardware nor the manpower were available. As well,
it was felt that the latter technique would open the experiment
to too much potential human error.

To compensate for the reaction times 1lost due to the
omission of processes waiting for terminal input, it was decided
to approximate this by writing a string of characters to the
terminal via the file system. What this does is that it

sufficiently fills the terminal output buffer mechanism and

CHAPTER 4: Setup and Procedure of Experiment. . 29

causes the process to be suspended (at a priority only slightly
lower than the input priority) until the characters have been
sent to the terminal. The number of character strings

(consisting of 25 characters) is determined by a distribution.

e) process size. There is a dummy array in the prototype
process which <can be statically varied to give us the desired

size.

To create the synthetic workload, this prototype process
can then be duplicated (on a non-sharable basis) to give the

desired number of processes. .

4.4.3 Justification

In the creation of the: workload there:was a continual
struggle to maintain the balance between minimizing any
undesirable influences on the one hand and making it complex
enough to be representative on the other hand. £ If there were
influences which we were not measuring and we did not try to
minimize them (usually by keeping them constant), then there
would be a 1large error in our relationship between the
performance index and the workload and hardware parameters,
rendering it of little value. Yet if we exert too much control
so that the workload is very simplistic in nature, then the
relationship will be very strong but the results will be next to
useless because it pertains to a workload that 1is grotesquely

distorted from realitye.

CHAPTER 4: Setup and Procedure of Experiment. 30

The creation of a workload in which processes are simply
clones of a prototype is simplistic yet necessary if we want to
isolate the effects of the workload and hardware parameters. To
help create some richness in the workload, a certain amount of
variablilty was introduced. The number of consecutive times
that the <compute 1loop 1is performed, the decision of when to
sleep, the amount of terminal output, and the type of file
system operation were all distribution driven. This adds
variablity while keeping their averages constant. As well, the
seed for the random number generator and the file which is
accessed wWwere both program parameters and thus were made
different for each process. Finally, by exchanging hunks of
code, though maintaining the same order of execution, some of
the processes were started in different places (i.e. some

started with the compute loop, others started by doing I/0).

From this, it is hoped a healthy balance will be achieved

between complexity and controllablilty.

4.5 DESIGN OF THE EXPERIMENT

The purpose of thi§ project is to help establish a
relationship between the performance parameter and the workload
and hardware parameters. In cases, such as this one, where
there may be interactions among the parameters it is necessary
to use a factorial design for the experiment. 1In a factorial

design all values of each parameter must be varied with all

CHAPTER 4: Setup and Procedure of Experiment. 31
values of the other parameters.

In section 4,2 we identified the quantities which were felt
to influence the responsiveness of the system. From among these
quantities, a subset was selected which became the factors of
our experiment. By "factors" we mean those quantities in the
experiment which we explicitly vary. The different values of a
factor that are used are called the "levels" of a factor. The
influences that we are not interested in and thus must hold
constant are called secondary factors. ¥#We now wish to indicate

the factors and levels that were selected.

in determining which factors to wuse, it had to be
recognized that for a factorial design, each additional factor
adds considerably to the size of the experiment. And so we
started with those parameters deemed (intuitively) to have the
greatest influence: the number of processes, procéss size, and
size of main memorye. As well, the mean cpu requirements
inbetween consecutive disk I/0's of a process(PC) were included.
Since the mean rate of disk I/0 calls per unit time is inversely
proportional in the prototype process to PC, the factor PC
indicates both the cpu and disk requirements. See Table II for

a summary of the factors and their levels.

In determining the levels of the factors, a program was run
on the production system which calculated the average number of

processes and the average size over a given length of time. It

CHAPTER 4: Setup and Procedure of Experiment. 32

was found that usually on a busy system, there were about two
READY processes énd about 12 -~ 14 BLOCKed processes in the
system. Usually more than 30% of +the processes have sizes
between 100 - 200 blks (3k - 6k words), and up to 5% are over
500 blks (16k words) in size. The 50% which are .under 100 blks

are usuwally fairly idle system processes.

Table II ,
Factors & Levels for Original Experiment.
Factors levels
of procs (PN) 2, 4, 6
size of a proc (PS) 157 blks (5Kw)

314 blks (10Kw) -
470 blks (15Kw)

cpu req'ts of a proc(PC) 12, 186, 354 (msec)
size of main memory (MN) 650 blks (20.7Kw)

800 blks (25Kw)
955 blks (30Kw)

The levels for the cpu requirements were less clear to
determine. Fortunately a 150 minute glimpse of the production
workload was obtained. See. Appendix C for the information
extracted from it. The distribution of the compute loop of the
synthetic workload was manipulated until the resultant
uninterrupted cpu intervals closely corresponded to those of the
production workload. This formed one of the 1levels, with an
average cpu interval of 12 milliseconds. Since the production
workload on which it was based was highly interactive with a lot
of editing and compiling, the other two levels were chosen with

larger cpu requests to hopefully correspond to a more. highly

CHAPTER 4: Setup and Procedure of Experiment. 33

compute-bound environment. See Figure 4.1 for the distributions

of the compute loops for the three levels.

Figure 4.1
Distribution of Compute Loops.
(% of occurences)

PC | # of times through loop
| 5 20 200 5000
- ~,| e e e e e e e e e~
12 | 3 47 49 1
186 | 1 1 48 50
354 | 1 1 1 97

The maximum level for main memory is based on the maximum
amount that was available on the system. The lower level is
based on providing just enough memory so that the largest éize
of a process for this experiment could fit (plus a little extra

for some system stuff).

It should be ﬂoted that the internal system parameters
cannot be factors since we have no direct control of their
values, - they are all observable quantites only. Thus while no
analysis of variance can be done on them, they are still

candidates for regression techniques.

4.6 IMPLEMENTATION

The implementation of this experiment initially involved
the acquisition of a disk cartridge with a version of UNIX on
it, changing the operating system so that it contains the tools

described in section 4.3, and running this version on a

CHAPTER U4: Setup and Procedure of Experiment. 34

dedicated basis.

Before running the experiment, the length of a session had
to be determined. It is assumed that the series of reaction
times are ergodic, that is, the accuracy of +the mean reaction
time increases as the number of observations in the series are
increased. On this basis a sample workload was run several
times increasing the time lengths until the variation over
several runs of the same time length was acceptably small. Aan
alternative method for discovering this length is discussed in
[FE78, ppse. 75-77]. This point was found to be 20 minutes with
differences of 5% or 1less in the values of the performance

parameter,

Since the original experiment was factorial in nature, it
required 54 rums. As will be seen in chapter 5, this proved

insufficient and so an additional 29 runs were included.

To minimize possible variations in the start-up procedure
and to reduce possible error, each run was initiated via a file
of commands. UONIX has a mechanism which allows a command to be
processed asynchronously. And so the basic start-up sequence is
to asynchronously: open the magtape for writing; execute another
command file which simply starts up the desired number and type
of prototype processes for the particular synthetic workload;
sleep for 15 seconds while the workload stabilizes and then open

the "stat device" which will enable the. writing of the

CHAPTER 4: Setup and Procedure of Experiment. 35

information onto the magtape. After a little over 20 minutes
the "stat device" is closed, stopping the information flow. An
end-of-file is then written on the magtape and the synthetic

workload is terminated.

CHAPTER 5: Results Of Experiment. 36

5. DESCRIPTION OF EXPERIMENT: . RESULTS & -ANALYSIS-

5.1 INITIAL ANALYSIS.
5«1.1 Pirst Set of Data.

The values of the performance parameter for the 54 runs are
given in Table III. Since it was a factorial experiment; an
analysis of variance was performed to help indicate the
significant interactions among the factors. Those: contributions

to the total sum of squares are illustrated in Figure 5. 1.

Figure 5.1
Analysis of Variance Results

PS
39.4%

OTHERS
14,47

It should be recognized that the design of the experiment 1is
such that there is only one observation for each combination of
levels: That does not allow us to uncover the exact amount of

error within a combination. As noted in section 4.6, this error

Table III 37
Results of Initial Experiment.

cpu memory # of size reaction time
(msec.) (64b blks) procs (64b blks) (nsec.)
12 955 2 157 5. 84
12 955 2 314 5.97
12 955 2 470 432.86
12 955 4 157 13.66
12 955 4 314 1175. 43
12 955 4 470 2250.61
12 955 6 157 514.19
12 955 6 314 1683.09
12 955 6 470 3539.72
12 800 2 157 8.07
12 800 2 314 85.06
12 800 2 470 1728.63
12 800 4 157 83.85
12 800 4 314 1742.33
12 800 4 470 4380.06
12 800 6 157 1011.09
12 800 6 314 2617.82
12 800 6 470 7469.52
12 650 2 157 5.70
12 650 2 314 293.62
12 650 2 470 1706.85
12 650 4 157 403.68
12 650 4 314 2059.48
12 650 4 470 4341.80
12 650 6 157 1295.64
12 650 6 314 3057.06
12 650 6 470 7112.48
186 955 2 157 6.65
186 955 2 314 7.85
186 955 2 470 642,81
186 955 4 157 9.70
186 955 4 314 1303. 29
186 955 4 470 1529.06
186 955 6 157 533.62
186 955 6 314 1375.00
186 955 6 470 2002. 51
186 800 2 157 6.77
186 800 2 314 146.92
186 800 2 470 1182.53
186 800 4 157 128. 21
186 800 4 314 1254, 18
186 800 4 470 2381.16
186 800 6 157 1093.32
186 800 6 314 1717.93
186 800 6 470 3995. 25
186 650 2 157 : 7.35
186 650 2 314 562.55
186 650 2 470 1130.04
186 650 4 157 497.56
186 650 4 314 1672.34
186 650 4 470 2215.37
186 650 6 157 1392. 39
186 650 6 314 2237.34
186 650 6 470 3638.75

CHAPTER 5: Results Of Experiment. 38

is thought to be in the neighbourhood of 5%.

Within the <context of this experiment, the number of
processes(PN), the size of a process(PS) and their combination
account for almost two-thirds of the total sum of squares in the
reaction time values. This is not unexpected. The size of main
memory (MM) directly accounts for 6% of the variation. It must
be realized though that this much smaller contribution is
largely due to the smaller variation of the 1levels of main
memory as opposed to that of PN and PS. To determine the exact
relationships among the four factors, we turn to regression

analysis.

Techniques have been developed to select the best
independent variables for a regression equation from a 1list of
possible candidates, given the dependent variable (see [DR66]) .
The candidates must of course be independent. Both the forward
algorithm (also called stepwise regression) and the backward
algorithm were used in our selection process. Via the

statistical package called MIDAS { F076]}«

The search for the best set of independent variables to
form the regression equation was a lengthy one: The measure
used to roughly determine whether or not one equation was
superior to another was r**2, the square of the correlation
coefficient and which is sometimes referred to as the

coefficient of determination (WA72, P.321].. This value

CHAPTER 5: Results 0f Experiment. 39

indicates the proportion of the variation in the independent

variable that can be explained by the regression equation.

We tried numerous equations, almost to the point of an
exhaustive search, without producing any stunning results (that
is, we failed to get a value of r**%2 > «9). Because of an
inability to represent the cpu requirements of a process (PC) in
any equation, it appeared that its two levels were insufficient,
and so we conducted a second experiment of 18 runs with a
different value for PC. As well, we chose different values for
PN and PS to help increase the number of points for those

quantitiess,

512 An Unusual Trengd.

An examination of the data had generated another concerne.
Some of the runs had produced results which seemed
counter-intuitive, Generally this <can either 1lead to a new
understanding of the data or to a source of error. The runs in
question are the six pairs vwhich go from MM=800;to MM=650 with
PS=470 and PN and PS held constant. One example(*) is the pair
(12,800,6,470) with RT=7469.52 and (12,650,6,470) with
RT=7112.48. It is unexpected that, with everything else held
constant, a decrease in the size of main memory would produce a
quicker reaction time. ~Since there is no apparent insight which

this trend uncovers, it leaves two possibilities: (a) one of the

— - — - —— ——— —— >

(*) Unless otherwise explicitly stated, data shall be referred
to by its 1levels for the four factors and shall be of the
following form: (PC, MM, PN, PS).

CHAPTER 5: Results Of Experiment. 40

pairs of the points is being strongly influenced by another
quantity which was overlooked in the design of the experiment,
or (b) the trend is simply due to error. A re-examination of
the results and the workloads did not uncover any recording or
human errors, but recalling the rough experimental error bounds
suggested in section 4.6, the difference in the values of the
pairs in all but one case becomes insignificant. = However the
trend remains somewhat disconcerting in that it is felt there
should be a significant trend in the opposite direction. While
such a thought does not Jjustify 1labelling these points as

erroneous, a further examination needs to be made. .

5« 1.3 Second Set of Data.

The results of the second set of runs are given in Table
IV. The table also includes 11 extra runs, nine of which were
randomly chosen to help‘ strengthen the model. The other two
were run to check out the trend mentioned above and suggests
that the trend is due to error, since the values of RT dropped
13% for (12,800,6,470) and 21% for (186,800,6,470) from the

original runs. . This shall be used later. .

5« 1.4 The Quantity 'PCTRMM'.

Regression analysis was then applied to the combined 83
runs. There was sufficient change to indicate that the previous
model was inadequate. Various combinations of the independent
variables were +tried and one quantity stood out as being very

strongly correlated to reaction time. I refer to this quantity

CHAPTER 5: Results 0f Experiment. 41

Table IV
Results of Second Experiment.

cpu memory # of size reaction time
(msec.) (64b blks) procs (64b blks) (msec.)
354 955 3 220 12.00
354 955 4 220 498.67
354 955 5 220 823.36
354 955 3 576 828.35
354 955 4 576 1504. 70
354 955 5 576 1918.93
354 800 3 220 196.91
354 800 4 220 797.08
354 800 5 220 787.76
354 800 3 576 728440
354 800 4 576 1316.00
354 800 5 576 2252427
354 650 3 220 673.61
354 650 4 220 657.31
354 650 5 220 867.20
354 650 3 576 1200. 13
354 650 4 576 1470, 14
354 650 5 576 2046.52
12 955 6 314 1755.37
12 800 4 314 1748.97
12 800 6 470 6530. 28
12 650 2 314 303.92
12 650 5 576 6374.74
186 955 2 157 6.63
186 800 6 470 3187.56
186 650 4 314 1581.95
186 650 5 576 3249.,73
354 650 5 314 1560. 86
354 650 5 470 1940.98

CHAPTER 5: Results Of Experiment. 42

as the percentage of remaining main memory (denoted hereafter
by PCTRMM) and is defined by the following equation:
MM -, PN * PS

PCTRMMN = — - -- % 100 (5. 1)
MM

This quantity, which can be either ©positive or negative
depending on whether all the processes can fit in main memory or
not, can account for a large amount of the variation in reaction
time (RT). However, we failed to £find other combinations of
independent variables +to account for the remainder of the

variation. The reason for this is discussed next. .

5.1.5 Complexity of the PC Factor.

The nature of +the PC factor appears to be quite
complicated. As inferred in section 4.5, as the cpu
requirements of a process are adjusted, it also affects the
number of file system accesses._ Specifically, as the cpu
requirements, are increased, the rate of file system accesses in
the prototype workload process are decreased.. On an independent
basis, an increase 1in the cpu requirements would tend to
increase reaction time since, as in this experiment, for all cpu
requests under one sec,, the cpu will not do a context switch.
Thus any other process competing for the cpu will have to wait
longer. With the file system access rate however, things are
not so simple and can't even be considered independent of the
cpu requests in the context of this experiment. For in the

prototype process, the only way to increase the rate of file

system accesses is to decrease the c¢pu requirements between

CHAPTER 5: Results Of Experiment. 43
accesses.

Generally when a file system access occurs a context switch
will be made while that process.waits for its I/0 to complete.
Thus any processes Wwaiting for the cpu will have a greater
chance of getting its request serviced and thus the reaction
time will generally be less. This trend would start to reverse
however if most of the processes were doing a large amount of
disk I/0, since disk congestion would start to take its toll by
increasing the time to complete any individual request.. As
well, there are other things to consider. If user processes are
trying to access the disk then they will be interfering with the
swapping . if there is any.. This will +tend to increase the
reaction time. Futhermore, processes which have just completed
doing a file system access retain for a short period in this
UNIX version, the priority of a disk request (which is nmuch
higher than a normal user priority). In this case then, as the
number of file system accesses increases, there is an increasing
chance of such processes getting the cpu before a process, which
because it is at a 1lower priority and thus will produce a
reaction time, will obtain the cpu. This would tend to increase
reaction time values. Regardless,‘there will generally be a
longer wait, since the cpu must attend to disk I/0 first, which

will add slightly to overhead. .

Finally,the swapping algorithm needs to be examined for its

indirect contribution in this matter. It should be noted that

CHAPTER 5: Results Of Experiment. 44

when swapping must occur, the . swapper initially 1looks for
blocked processes to swap out, Hence whenever a process does
I/0, it is quite 1likely that it will get swapped out before the
I/0 is completed. This probability increases with the number of
processes and with shorter cpu requests._ The result is that as
the PC factor decreases, less and less work is getting done by a
process before being swapped outi This will be reflected 1in
significantly larger reaction times and is due to the simplistic

nature of the swapping algorithm.

In summary, it is sufficient to say that a change in the
value of the PC factor may have a significant and complex effect
on the reaction time. Examining the data, it appears that the
overriding effect is that as the ©PC value is increased, RT
drops, indicating the file system access rate has the dominant
influence. This holds true for most, but not all, of the cases
in this experiment. The complexity of the issue, though, helps

explain the difficulty in developing a good regression equation. .

A4 hypothesis can be made that in the general case the PC
factor affects the size of the cpu and disk gqueues. For small
PC values it is felt that the length of the disk queue on the
average will be longer than that of the cpu queue but that this
will reverse as PC increases. When the: disk queue is
substantially longer, the :file access rate will increase the
value of RT. As PC increases, however, this influence will drop

and eventually when the cpu queue becomes substantially larger

CHAPTER 5: Results Of Experiment. 45

than the disk queue, RT will again be increased except that this
time it will be due to the longer cpu requests. Clearly if this
is the case, then it would be desirable to firnd the tramnsition

point, where neither influence has much effect..

5.2 FINAL MODEL AND INTERPRETATION. .

The final model was derived by partitioning the 83 runs
into three categories according to their PC value and doing a
regression analysis separately for each category. This allowed
us to ignore the influence due to changes in the PC level, which
as indicated in the:previous section was too complex a quantity
to adequately incorporate into an equation. The results are
given in Table V. We refer to this model as model Ml. It is
noted that the PC=12 level was constructed to closely correspond

with the general characteristics of the production workload.

Table V
Results of Initial Regression.

PC level <r*%2 value Equations (forming M1)

12 «92 RT = 642 - 19.0 * PCTRMM
186 «92 RT = 625 - 9.5 * PCTRMM
354 <91 RT = =241 - 4.5 * PCTRMM + 204%*PN

The 1r*%*2 values indicate that either there is a high
experimental error (see .section 5.5 for possible sources) or

there is some other small, stiil hidden influence.

An examination of the duplicate runs in Tables III and IV

CHAPTER 5: Results O0f Experiment, 46

of (12,800,6,470) and (186,800,6,470) indicate higher than usual
errors. These two runs were members of the trend mentioned in
section 5. 1.2 and thus tend to indicate that the +trend is
largely due +to some form of error rather than an undiscovered
factor. Thus we removed the observations which made wup the
trend and again applied regression techniques. The resulting
model shall be called model M2 and is contained in Table VI.
The higher values of r**2 are encouraging. Both sets of results

shall be kept for validation.

Table VI
Results of Second Regression. .

PC level Tt*%2 value Equations (forming M2)

12 96 RT = 588 - 16.9 * PCTRMHM
186 96 RT = 595 - 8.9 * PCTRMM
354 <91 RT = =241 -~ 4.5 * PCTRMM + 204%PN

From either Table V or VI, we see that PCTRMM is strongly
cqrrelated with RT« For PC=354, PN is also found to ©positively
influence RT. This could be due to the interference on swapping
caused by fiie accesses, but is unlikely since it should then
also appear for PC=12 and 186. A more reasonable explanation
seems to be that it is due to the longer cpu requests of this
set, which, as the number of processes are increased, would tend
to produce 1longer reaction times. This explanation also
supports the hypothesis 1in section 5. 1.5 that the longer cpu

requests are increasing the length of the cpu queue and values

CHAPTER 5: Results Of Experiment, 47

of RT are becoming more affected by it and less affected by the

file access rate.

Using model M2 a graph was plotted of RT versus PCTRMN
(figure 5.2). The solid lines indicate the regression lines.
The data follows the lines well, but with substantial residuals.
It is interesting to note that as the values of PC are
increased, the RT decreases.. This confirms the earlier
indication (section 5.1.5) that generally in the context of this
experiment, the PC factor is dominated by the file systen
influence rather than by the cpu requirements. The dotted line
for PC=12 indicates that for large negative values of PCTRMM, RT
is probably becoming non~linear, and if contihued, would result

in total thrashing.

As the value of PCTRMM increases, the three sets of data
eventually converge and then drop in unison to very low values
of RT. This occurs for positive values of PCTRNMM, that is, runs
where all the processes can fit into main memory. This explains
why the three lines drop together, since swapping no 1longer
takes place. This drop occurs at slightly positive values of
PCTRMM rather than whgn it exactly equals zero because it nmust
be remembered that there are a few background system tasks which
occasionally occupy a small amount of main memory but which

aren't considered when calculating PCTRMM.

Since PCTRMM is a composite quantity, graphs were produced

Figure 5.2
Graph of RT versus PCTRMM

48

PCTRMM

|‘- .
7000 i
L
[}
A
N\
6000 '
\
\
\
\
Y
v \
A\
\
5000 f ‘\ PC=12
-\
\
\
LY []
. \
\
~ 4000 } \
TS P \
@ P
2 RC=186 \
\
>) \
e \\ \
3000 F (A
A
LT
Y\
A
AN
) \
’ 2 S Y
o N\ \\e
2000 & x v ,? g \\
PC=354 C® -)
. (PN=4) x . * O\ \ > ¢
A b% - O .
s oW o
1000} 4
x
x
A I (1 N B
-400 =300 =200 =100 100

CHAPTER 5: Results Of Experiments. 49

to help develop a sense of the individual effects of the four
factors, These are found in figqure 5.3 for PC=12 and 186 and
MM=955 and 800. Because there are so few points, the lines are
given merely as reasonable trends, not as exact relationships.
As expected, when going from MM=955 to 650, the. slope of the
lines increase. When going from PC=12 to 186, the effects are
lessened which again indicates the dominance of the file access
rate on the PC factor. In figures 5.3(a), (c), and (d) the
lines for high values of PN become non-linear, illustrating the
increasing overhead due to swapping, which of course will
eventually cause almost total thrashing. = For PN=2 the lines
start out horizontal and then make a fairly abrupt rise. This
rise occurs when the processes can no longer all fit into main

memory and thus swapping is initiated.

The next step in checking the results was to take a brief
look at the residuals, which are thé difference between the
observed and predicted values. The purpose for doing this was
to see if it would uncover any outliers or aberrant
observatiops~ A simple scatter plot of the residuals against
the predicted and observed values revealed no such oddities..
For a more formal analysis of residuls, the reader is referred

to fAN63].

Finally, a brief description shall be given of the equation
that resulted by trying to include the PC factor. It is given

here mainly for interest, though for situations which do not

: Figure 5.3
GrapH of RT versus PS

(a) PC=12 MM=955

4000

3000

RT (msec.)

20001

~ 1000s

100 200

(c) PC=12 MM=650

100

P

200

300 400 500
S (64b blks)

300 400 500
PS (64b blks)

50

LEGEND
e PN=2
O PN=4
X PN=6
soop, (b) PC=186 Mu=055
~3000 1
|4 B
Q
13}
=]
~5000 1
&
1000 1

100 200 300 400 500
PS (64b blks)

(d) PC=186 MM=650

LI 1 R

100 = 200 300 400 500
PS (64b blks)

CHAPTER 5: Results Of Experiment. 51

conform well to the discrete PC levels of models K1 and M2, the
equation may be of help. It must be remembered that its ©r**2

value was only around 0.9. The equation that resulted was:

RT = 703 -« 15 * PCTRMM + 2.3 * PC - .004 * PC*PN*PS

This seems to support the idea of the dual nature of the PC
factor, with the positive contribution of the PC term and the
negative contirbution of the PC*PN*PS term. The:latter quantity
will have a more influential contribution when PN or PS is

large, specifically when PN*PS > 575. .

5.3 VALIDATION

The validation of a model 1is essential before nuch
confidence can be placed in it. We know that there is a fairly
large error in our models, and so validation simply consisted of
three extra runs not used to calculate the regression equation,
plus an examination of five observations from within the set of
data. The five internal checks are derived from the five runs
which were duplicated (the aberrant duplicate discovered in
section 5.2 is omitted). The duplicates are used as they give
us an indication of their experimental error, which in all cases
is within the expected bounds. We use the means of the
duplicates in each case to calculate the error. The results of
the validation are given in Tables VII and VIII for both models

M1 and M2.

CHAPTER 5: Results Of Experiment. 52

Model M2 appears to be the more favourable one as there is
less variation in the error. 1In all the external observations
the predicted values form an upper bounds on the observed

values, which is desirable.

Table VII
Validation Using Internal Observations. .
Run observed mean model M1 model M2
RT (2) pred. RT erri pred. RT err
(12,955,6,314) 1755 1719 2491 +45% 2236 +30%
1683
(12,800,4,314) 1742 1746 1725 -1% 1553 -11%
: 1749
(12,650,2,314) 294 299 577 +90% 530 +75%
304
(186,955,2,157) 6.65 6.60L -10 - -4.0 -
6.63 -
(186,650,4,314) 1672 1627 1507 -7% 1426 -12%
1582
Table VIII
Validation Using External Observations.
" Run observed model M1 model M2
RT preds RT erre pred. RT erTe.
(12,650,6,314) 3037 4249 +40% 3803 +25%
(186,800,6,220) 1080 1240 +15% 1174 +9%
(12,800,6,220) 1019 1877 +84% 1689 +66%

5.4 SOME REALITY CHECKS.

It was decided to try and establish some indication of how
well the model approximated the case where not all active
processes are of the .same size. And so two runs were performed,
corresponding to (12,800,5,220) and (186,800,5,220), where
insteadbof five processes of size 220 blks (7k words), two
processes of size 314 blks (10k words) and three processes of

size 157 blks (5k words) were used.

CHAPTER 5: Results Of Experiment. 53

Table IX
Comparison with Non-uniform Runs.
Run Uniform Run Non-unif. Run Difference
(RT) (RT) (%)
(12,800,5,314) 1019 1212 15. 9
(186,800,5,314) 1080 1207 10.5

See Table IX for the results,. which are quite encouraging.
Within the 5% experimental bounds placed around them, the
differences between the PC=186 runs almost disappears, and for
PC=12, it is lessened substantially. It should be noted though,
that this close correspondence would be expected to drop if
drastic differences in size were used. As well, a similar test
needs to be conducted with PN being varied, and also for PN and

PS combined.

5«5 SOURCES OF ERROR.

It was previously mentioned that a given workload with the
20 minute duration length could give around a 5% error in the RT
value. As well, there. was also an effect due to the
everchanging nature of the system. During the entire stretch of
the experimental runs, development of the workloads, validation,
etc., certain system changes took places Some, such as the
addition of hardware, had no direct effect on the experiment but
did require either the altering of the operating system or of
the analysis routines. This increases the possibility of

programming error. DMNore likely error sources, however, were in

CHAPTER 5: Results Of Experiment. 54

two other events. One was a change in the hardware interrupt
priority of our pseudo-millisecond clock part way through the
sets of runs. An after-the-fact attempt was made to measure any
effect and while the influence seemed to be negligible, it is
hard to be certain that this was true., The other effect came
from the magtape which sometimes gave write errors during some
of the intial runs but which was later cleared up.. These were
detected by the analysis routines and while the discontinuities
were smoothed over as‘much as possible, there may have remained

a very small though non-negligible error.

5.6 THE INTERNAL SYSTEM PARAMETERS.

A brief attempt was made to relate +the internal systenm
parameters to reaction time. It was found that a higher r¥*2
value could be obtained by using the natural log of RT (LRT) as
the dependent variable. However such an equation still failed
to produce an r**2 > _,85, which is much too low for the equation
to be of any value. So simple correlations of RT and LRT with
the internal systenm pafameters are given in Table X.

TABLE X
STATISTICS OF INTERNAL SYSTEM PARAMETERS.

VARIABLE CORRELATIONS MIN. MAX. = MEAN STD DEV
RT LRT

SWP RATE «58 -85 0.0 138 69. 2 42.9

SWP WAIT «38 «62 0.0 611 303 127

DSK Q - 17 -+09 0.4 5.1 1. 4 +96

DSK WAIT .27 <47 95. 4 342 196 61.8

CPU INT. -« 30 - 17 13.0 157 54. 2 33.8

CHAPTER 5: Results Of Experiment. 55

The table also includes the means, etc., of the parameters to

give a better feel for the nature of the variables.

From the table it can be.séen that the swap rate has the
strongest influence on both RT and LRT. As well, both swap and
disk waits have a positive influence on the dependent variables.
It should be noted that the correlation values for the disk
queue are not strong enough to be significant. Finally, it is
interesting to see that while the uninterrupted cpu levels have
a significant influence on RT, the gquantity is not correlated
with LRT. The fact that it negatively correlates with RT again
supports the notion of the dominance in most of the runs in this

experiment of the file access rate in the PC Factor.

5.7 SAMPLE APPLICATIONS. .

The following hypothetical situations are given to help
indicate areas where the information of this thesis may £ind
application. In these exanmples it shall be assumed that the
workload 1is moderately uniform and consists mainly of a short
interaction type environment, such as editing, compiling, and
executing of short or highly interactive programs. Thus the
regression equation of model M2 with PC factor equal to 12 shall

be used.

Suppose there was a UNIX installation which had 700 blocks
of main memory available for users and that they were concerned

about their heavy demand periods when there are an average of

CHAPTER 5: Results Of Experiment. 56

eight user processes with an average size of 200 blocks each..
To find their current reaction time we substitute into equation
5.1:

(700 - 6%*200)

RT = 588 - 16.9 * __ ... _--...- % 100
700

This gives a reaction time(*) of around 2.8 seconds which is,
indeed a sluggish systen. .

(1) One situation might be that they had the option of buying 8K
words (256 blocks) of main memory but were unsure of the effect
it would have. Using equation 5.1, it could easily be
determined that it would reduce reaction time to a little over
1.7 seci While it's a definite improvement, the responsivenss
is still not that good.

(2) Suppose instead that they wanted to know how much more main
menory they would need to reduce the reaction time to 1 sec. To
find this, let X represent the amount of additional memory
needed, then it becomes a simple matter of solving the following
equation:

((700+X) - 1600)
1000 = 588 - 1690 * . : L

(700 + X)
This yields a value for X of 587 blocks or a 1little over 18K

vords.

(*) It must be remembered that the reaction time values
calculated from the model are simply rough estimates. As well,
they will generally form upper bounds since the synthetic
workload did not take advantage of the UNIX concept of 'text!?
which would reduce the swapping load somewhat in real systenms
And from validation it was seen that the mnodel tends to
overestimate the actual values.

CHAPTER 5: Results Of Experiment. 57

(3) Let us assume that the installation was able to purchase the
extra 587 blocks of memory and thus reduce their reaction tinme
to under one second. According to the natural laws of increased
capacity, let ué presume that soon after the purchase,
management wished to add more terminal lines into the system and
wanted to know what effect it would have. If the computing
centre staff could estimate on average how many extra processes
it would introduce into the system, say for example three with
the same average size of 200 blocks, then it can easily be

calculated that the reaction time would increase to 1.8 sec.

The results of this thesis could also be used in system
software development. For example, if an installation wanted to
guarantee its wusers a certain response level, then a valuable
and easy step would be to change the routine which 1logs users
onto the system ("/etc/init") such that it first examines the
current responsiveness of the system. If it exceeds a given
threshold, then the user would be denied access. The
responsiveness of the system should be calculated over a
sufficiently 1long period of time probably from within the
operating system as part of one of its numerous process table

look-ups. Currently UNIX has no load control mechanism.

CHAPTER 6: Conclusionss 58

6. CONCLUSIONS.

6.1 THE BASIC GOAL & RESULTANT MODEL.

The goal of identifying the major influences of the systenm
was met. The number of processes, size of a process, and size
of main memory were, as intuitively felt, recognized as the most
influential in affecting the responsiveness of the system. The
strongest statement of their influence 1is expressed in the
quantity pctrmm, the percentage of remaining main mnemory

(equation 5.1).

The exact effect of the cpu requirements of a process and
the file system access rate (to the disk) were not studied as
they are related quantities and cannot be varied individually in
the context of this experimental set-up. This is partly due to
the design of the experiment which, to keep the size of the
experiment reasonable, had fixed the ratio of the tvwo
quantities. Generally it is felt that for small PC values (€eq.
Those less than the mean disk I/O time), the file access rate

was the dominant influence over the cpu requirements.

Through regression analysis, a model for the data was
developeds It follows the data well but requires sizeable error
bounds, which was confirmed through some elementary validation.
Thus its use lies mainly in the trends it demonstrates and the
rough approximations it gives to predictions, rather than in an
ability to give exact results, Some sample applications vwere

described. An important characteristic of the model is that the

CHAPTER 6: Conclusions. 59

responsiveness of the system can be easily determined on any
UNIX installation. Since the size of main memory is constant,
it is only necessary to go through one system table to calculate
the average number of processes and the average size .of a

pProcess. .

6?2 THE TOOLS AND METHOD. .

. The . data extraction tools for this experiment proved very
satisfactory for the high volume nature of the information being
collecteds The constantly changing nature of the system , and
probably of most systems, underscores the need to keep the
measurement experiments concise so that the implementation does
not span any major system changes. This may have contributed
slightly to the error in our results. With this in mind, the
internal system parameters should have been left for a separate

experiment. .

The factorial design of the experiment, while allowing us
to see clearly the relationships of three of the factors, proved
inadequate for the pc factor. Keeping in mind the above
recommendation to keep the. size of experiments small, the
solution seems to lie in making a separate study to uncover the
influences of cpu requirements and file system requirements of a

processe. .

6.3 DOMAIN OF APPLICABILITY.

It is the purpose of this section to indicate the domain of

CHAPTER 6: Conclusions., 60

this work by summarizing the relevant points., Probably the most
obvious constraint was the use of identical' processes in the
synthetic workload. While. this does not reflect reality, an
experiment where the sizes were . non-uniform gave. results which
corresponded quite closely to the model which used processes of
- uniform size. More work needs to be done on this, but it is
felt thét except for situations where there is a wide variance.
in either the sizes or number of processes, the results of this
work <can be used successfully to estimate responsiveness. 1In
doing so, it must be remembered that this project did not - take
advantage of +the UNIX concept of 'text! or pure code, which
tends to reduce the swapping load. Thus the model derived fron
this work is 1likely to give an upper bounds on responsiveness

when used on natural workloads.

Further with regards to workload, the domain is oriented to
highly interactive environments where cpu requests are all
generally under one second, that is, where the workload consists
mainly of editing, various sizes of compilations, and execution
of programs which are either short or interact with the
terminal. As well, the results are geared to systems where
swapping occurs and will be of little value in cases where all
processes fit into main memory. In such a situation, the size
of a process and the size of main memory have no effect on
responsiveness, and PCTRMM tells us 1Iittle of the expected
reaction time. This is not considered a serious restriction

since those. most interested in improving the performance of

CHAPTER 6: Conclusions. 61
their system will almost always be suffering from swapping. _

Another departure from reality is that there is no terminal
input, This was not considered too crucial as a good
approximation using terminal output was developed. However it
did require the creation of a slighlty altered versiomn of
reaction time which was quite sensitive to the changes in
performance., This must be kept in mind when making a comparison
with other evaluation results which have been conducted

elsewhere.

6.4 FURTHER RESEARCH.

This study could be used as a springboard for the following
endeavours:
(a) an experiment to see the exact influences of cpu and file
system access requirements,
(b) a study to determine the divergence <from +the model that
would be caused by varying the number and sizes of processes in
a workload,
(c) an attempt could be made to alter the existing swapping and
cpu scheduling algorithms such that +they use. the easily
determined value of PCTRMM to adapt to changing workloads,
(d) a study to see the relationship between our priority based
reaction time and response time,
(e) to imvestigate the relationship between this and a paging
systen,

(f) to determine the improvement on performance that a faster

CHAPTER 6: Conclusions. ' 62

disk configuration would have, This could include a

cost-benefit analysis with main memory.

Bibliography. ' 63

1AN63]

[BO76]

[BUT6]

[CHT5]

[CH76]
[CHT7]

{DE72]]

{DE78]

[DR66]

{FE72]

{ FE78]
{ FO76 }
[FO78]

[GR78]

BIBLIOGRAPHY

Anscombe, F.J. & Tukey, T.W., The Examination §&
Analysis of Residuals, Technometrics, 5,2, 1963..

Boi, MMeL., et al, A Performance Evaluation of the
LII SIRIS 8 Operating System: Methodology, Tools,
& First Results, Modelling and Performance
Evaluation of Computer Systems, North Holland Publ.A
Co., 1976.

Buzen, J.P., Fundamental Laws of Computer Systenm
Performance, Proceedings of International Symposium
on Computer Performance Modelling, Measurement &
Evaluation, 1976.

Chanson, S.T. & Ferrari, D., A Deterministic Analytic
Model of a Multiprogrammed Interactive Systen,
National Computer Conference, 1975. .

Chu, Y., Guest Editor, IEEE Transactions on Computers,

VOl. C—25’ NOe 10, Oct. 19761.

Chandy, Ke.M. & Reiser, M., Editors, Computer
Performance, North-Holland Publ. Co., New York, 1977.

Denning, P., The developing Theory of Operating
Systems, Infotech Report #14 (Operating Systems),
1972.

Denning, P. & Buzen, J., The Operational Analysis of
Queueing Network Models, Computing Surveys,

Draper, N.R. & Smith, H., Applied Regression Analysis,
Wiley & Sons Inc., New York, 1966. .

Ferrari, D., Workload Characterization & Selection
in Computer Performance Heasurement, Computer,
July/August 1972.

Ferrari, D., Computer System Performance Evaluation,
Prentice-Hall Inc., New Jersey, 1978.

Fox, D.J. & Guire, K.E., Documentation For MIDAS,

Statistical Research Lab., U. of Michigan, 1976.

Fox, M.C., Machine Architecture & the Programming
Language BCPL, Master's Thesis, U.B.C., 1978.

Graham, G.S., Guest Editor, Computing Surveys,
Sept. 1978.

Bibliographye. 4 64

{ HA70]
[HA76]
{ HO74]

LKI77)
1K078]
{LE71]

[LI72]

[LI77]

{ MU7 8]
{ RI78]

{ SH72]
[SM66]

[SR74]
[SV76]

[TH78]

Hansen, P.B., The Nucleus of a a Multiprogranmming
System, C.ld.C.lMe, Aprs 1970..

Haberman, A.N., et al, Modularization & Hierarchy in a
Family of Operating Systems, C.A.C.M., May 1976.

Hoare, C.A., Monitors: An Operating Sytem Structuring
COncept, C. A{.C- M., OCt. i 197“’0 .

Kienzle, M.G., Measurenents of Computer Systems for
Queueing Network Models, Technical Report CSRG-86,
U of T, Octe. 1977

Kobayashi, J., Modeling and Analysis: An Introduction
to System Performance Evaluation Methodology,
Addison-Wesley, 1978.

Lewis, P«A. & Yue, P., Statistical Analysis of Series
of Events in Computer Systems, Proceedings of
Conference on Statistical Methods for Evaluation of
Computer System Performance, 1971.

Liskov, B.H«., The Design of the Venus Operating Systen,
C\; A‘i C\. M‘. ' Hal’.‘. . 1972.

Lions, J., A Commentary of the UNIX Operating Systen,
U. of New South Wales, 1977.

'Maydéli, U., Computer Peformance Studies & Statistics,

U. of Albertae.:

Muntz, R.R., Queueing Networks: A Critique of the
State of the Art & Directions for the Future,
Computing Surveys, Sept.. 1978. .

Ritchie, D.M. & Thompson, K., The UNIX Time-sharing
System, Bell System Technical Jourmal, Part 2,
July/August 1978.

Shemer, J.E. & Robertson, J.B., Instrumentation of
Time Shared Systems, Computer, July/August, 1972.

Smillie, K.W., Introduction to Regression &
Correlation, Ryerson Press, Toronto, 1966.

Sreenivasan, K., & Kleiman, A.J., On the Construction

of a Representative Synthetic Workload, C.A. C Me,
Mar. 1974.

Svobodova, L., Computer Performance & Evaluation
Methods: Analysis & Applicationms,
Am. Elsevier Publ. Co., 1976.

Thompson, K., UNIX Implementation, Bell Systen

Bibliography.

Technical Journal, Part 2, July/August 1978.

1TS72]) Tsao, R.F. & Margolin, BusH., A Multi-factor Paging
Experiment: II., Statistical Methodology,
Statistical Computer Performance Evaluation,
Academic Press, 1972.

[WA72] Walpole, R«Es & Myers, R.H., Probability & Statistics
for Engineers & Scientists, MacMillan Co.,
New York, 1972. :

APPENDIX A. Swapping and CPU Policies. 66
APPENDIX A. Swapping and CPU Policies.
A. SWAPPING.

1. Routine and variables used:

sched - routine called to swap in all processes that it can
from dsk.

runout - a global flag which is set and slept onl by sched
when there are no more READY processes out on disk.
Thus other routines can test runout and if appropriate,
wake-up the scheduler.

runin - a global flag which is set and slept on by sched
when it was unable to svwap in all the READY processesS.
As well as being accessible to other routines, runin is

tested every second by the clock routines

2. Swapping-in policy.

"i)when: sched is only called when a READY process is out on
disk, and thus wants into main memory. This can occur
due to two situations:

1.In the previous execution of sched, it was unable
to load all the READY processes into main memory. Thus
it set and slept on runin. In this case, sched will be
awakened every sec. by the clock routine until there.

are no more READY processes left on disk.

2.In the previous execution of sched, it did load

APPENDIX A. Swapping and CPU Policies. 67

all the READY processes into core (and thus set § slept
on runout). . Latér, a process (which was not READY,
€.gde. sleeping due to I/0 wait) out on disk becanme
READY (i.ee. was awakened). In this case, Sched will
be executed:whenever such a situation arises.
ii)who: The policy is based solely on the length of time a
process has been out on diske Sched starts with the
READY process out the longest and tries to load‘all of
them into core. If it fills all of main memory and there
are still READY processes on disk, it will still try and
load them in as long as (1) there are processes in core
which are not READY (e« g sleeping on low
priority), - they will be successively swapped out to
make room; or failing that, (2) the READY process(es)on
disk has been there > 2 sec. And there is an in-core
process (which 1is READY or sleeping on high priority)

which has been in core > 1 sec.

3. Swapping out policy.

i)when: only vwhen necessary as determined by the swap-in
algorithm, i.e._ not all the READY's out on disk will fit
into core, etcs.

ii)who: any process sleeping on 1low priority or being
traced, and failing that, if the process on disk has been
out there > 2 sec., then any process (READY or sleeping
on high priority) that has been in-core > 1 sec.

(starting with the one who's been in the 1longest, i.e..

APPENDIX A. Swapping and CPU Policies. ‘68

based solely on elapsed time in core). .

B. CPU SCHFEDULING.
1« Prioritites for processes: -values vary from -127 to 127

(the higher the numeric value the lower the priority).

~-there are set priorities for waiting for various

events, e.g.. =100 for swapping I/0 waits.

-for user processes, values vary from 100 to 127, - it's
based solely on the amount of CPU time (system & user)
since its 1last sleep. This is regardless of context
switches and swaps. .

Specifically, when a process runs, it's priority gets

lowered by 1 for each of the 1st 5 sec, and every 15

sec. thereafter.

2eMethod.

The routine 'swtch' is responsible for doing context
switches. When called, it simply goes through the process
table and selects the highest priority READY process.

There are 2 ways of invoking ‘'swtch'. One is simply
by doing a sleep. The other method is by using the flag

‘runrunt, This flag is incremented whenever it had been

APPENDIX A. Swapping and CPU Policies. 69

determined that there is a READY process with a higher
priority than the current process (e.g.. when a wakeup
occurs, the newly re-activated process may have a higher
priority). Runrun 1is tested (in the assembly code:of
UNIX) whenever a trap or interrupt occurs (which, due to
the clock, is at least every 1/60 sec.). If it has been
set, then after the interrupt has been proceesed, a call

is made to swtchs

Summary of CPU policy.

-based solely on CPU time intervals(i.e. Intervals
between its I/0's), exclusive of context switches ¢§&
sWaps.

-appears to be basically a loose, round-robin policy. .
~-there is mno time quantum as such, though by the
priority calculation, it will generally be at most 1
second (where it & the other processes are compute
bound) and will be reduced as the amount of I/0
increases (since the priority of a process after doing

I1/0, is reset to its highest possible value).

APPENDIX B: Selection of Reaction Tinme. 70

APPENDIX B: Selection of Reaction Time.

This appendix discusses the suitability of three slightly
different definitions of reaction time. While: a wuniversal
definition of reaction time doesn't seem to exist, it is usually
defined as the time from the input of a command (usually via a
carriage return) until the cpu starts to act on that command.
This definition is inappropriate for our purposes since there is
no terminal input: And so, we set up an experiment whereby we
tested the sensitivity of the following +three definitions of
reaction time:

a) The above, usual definition is used. This will be called
the "tty" method.

B) Record the times for all processes from when they wake-up
(they are put to sleep whenever they must wait for an event
such as I/0) until they are selected as the process to run
next, This shall be refered to as the "all" method.

C) The same definition as in (b) except only for a select

number of processes. This method shall be called “pri".

Several artificial workloads vwere constructed. While
their make-up was based on commonly used programs such as
compiling, editing, and system commands there was no formal
attenpt to make these workloads representative since we were
only interested in the relative sensitivity of the three

methods to workload changes. For the editing portion of the

APPENDIX B: Selection of Reaction Times 71

workloads, a fixed sequence of commands were .typed in at the
terminal. These commands were present in each run since the

“tty" method only picks up such reaction times.

Basically, the experiment consisted of running the edit
commands with and without each workload for each of the
reaction time nmethods. This gave a good indication of the
sensitivity of the methods to changing workloads.

After running the experiment, some defiﬁite statements
could be made about the three selection methods. The "all"
method 1is simply too insensitive. The "tty" method is much
better ,but suffers from the following: it requires someone at
the console +to feed in conmands, it filters out the lower
priority processes which tend to fluctuate most with changing
environments, and it has slightly higher overhead. It does
have the advantage of conforming to the original definitiomn of
reaction time. = The "pri" method is the most sensitive to
workload changes. |

On these findings, we <chose +the "pri" method for our
performance parameter, To avoid confusion with the generally
accepted definition of reaction time, we shall label this as

the "priority based reaction timen,

APPENDIX C: Statistics of the Production Workload.

APPENDIX C: Statistics of the Production Workload.

Statistics gathered on the UNIX systenm.
Length of observation: 151.8 minutes.
Default unit of time: millisec.

A. DSK INFORMATION.
of async. requests: 27227 (32.5 % of the total)
of seek overlaps: 10417 (12.4 % of the total)

dsk wait times (incl. transfer):

% NSeC.e

0.0 ¢ -
6.5 ! 0 %%k %
17.5 ! 25 ek e ok ek ik
9.7 ' 50 ke ek
9.7 ¢ 75 %% k%
9.2 ¢ 100 dk ok
6.2 ! 125 %k %
5.6 ! 150 %%
4,7 ' 175 %%k
b,2 1t 200 *%
4:8 ¢ 225 %%
3.3 ¢t 250 *
3.2 ! 275 *
2.9 ! 300 *
2.1 ! 325 *
1.9 ¢ 350
1:6 ¢ 375 3
3.2 1 400 %
0.7 ! 475
0.6 ! 500
0.4 ' 525
0.5 t 550
0.3 t 575
1.2 ! 600

total: 83848

MEAN: 161.38 STD DEVa: 134. 68

APPENDIX C: Statistics of the Production Workload.

histo. of gqlengths for dsk:

%
31.5
27.6
19.6
11.7

.
0

e & 8 &
[P RUE y FE Ve Iy 1)

cooooNnm

total:

MEAN:

#
' - e ok kol okok Rokok Kok
11 ek sk el o ok dokok
1 2 Aok ok ek
' 3 Aok Ak ok
L) %k
15 *
16
1 7
! 8
!9
! 10
83848
1. 47 STD DEV:: 1. 48

B. SWAPPER INFORMATION. .
swap rate: 77.1 swaps/min. (1.28 swaps/sec.)

size of

%
0.0
28.

size in
MEAN:

swaps:

words

0 e % o 34 3 R e e e ook ok o
2048 %ok deolok sk ok sk ok o ok o s sl s o ke ok ok ok

4096 wkx
6144 *
8192 *x
10240 *
12288
14336
16384
18432
20480

a8 tab 4up 0% e S8 Sap Gan SeE 0 0um e

11699
3198. 22 STD DEVe.: 3900.82

512-byte blocks:
14.31 STD DEV.: 13.32

73

APPENDIX C

wait times (in

%
48.6
4747

0.2

¥

1
. 0
.0
5
1:

WO OO

tota

MEAN:

wait times (dsk

& 3R

[}
ENOVNE=OWOOEFEUNNEDOMWNORNaNO

-6

NO=Ouu WL EMUNLNENODDENNSO

total:

MEAN:

msec.
1
2
4
8
16
32

S gup a8 0en ¢us W s

11699

29.42

mnsecC.s

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350
375
400
475
500
525
550
575
600

Gat a8 4ue s Su0 0en Jeh ¢an G0 fup SmO VUM Gun Sup o8 Qus 058 s Ou0 gud dup Gum O Say

15810

231.55

Statistics of the Production Workload.

swap Q only) for SWAPPER

ek e ok s ek e ook ok ok o e ok e e ek ok ok ke
e s % 3 e e o o e ek e e e okl ek ok ok ok

wait) for SWAPPER

% 3 %k
&k ¥k
3%k ¥k
%% %k
%ok 3k
Kk
%%
%k
%33
&%k
%%
3k
%%k

*% %k

STD DEV.: 147.24

74

APPENDIX C:

Statistics of the Production Workload.

C. CPU INFORMATION.

uninterrupted CPU intervals

2]

-
-8 8 & 8- 8

- N

COCaPNUWNEWNWONWOEIOENOLNO
N
DONO m OAERANEONOOENO VOO WSO

totél:

MEAN:

San tam Sus sug Gup $aU VTS Gun S Gew S0 jey Au bas f0 San SuR Sem Sew fad Qus Sam S uy

nsecCs

VWONOUNEWN 2O

90

120
150
180
240

122685

19.33

*
3 3 3 3k ok ek ok Xk

e qe e e d e ok ki
A3 ok % Ak ok k

¥k %k
%%

*
*

ST DEV.: 37.21

75

APPENDIX C: Statistics of the Production

D. REACTION TIME INFORMATION.

reaction times:

% msecs

0.3 ¢t -
20.0 ! 1
0.0 ! 2
199 ! 3
3 1 4
0.0 ¢ 5
751! 6
3.0 ' 8
7.1 ! 10
2.4 ' 15
0.8 ! 25
1.5 ! 50
3.9 ' 100
6.0 ! 200
7.5 ' 400
2.4 t 800
6.9 ! 1000
3.0 ' 2000
1.3 ' 3000
0.9 ! 4000
0.4 ! 6000
total: 8198

MEAN: 376.20

e 3k 3 3 3ok Xk e kok

3 % Je 3 ok Ak Ok
Kk

ek X

e 3 Xk

* %k %
%k

33 ik

STD DEV.: 864.09

Workload.

76

