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ABSTRACT 

In t h i s thesis we study a number of geometric problems i n an integer 
g r i d domain. The worst case time complexity of many of the algorithms that 
solve geometric problems i n the real plane i s O(nlogn). This lower time 
bound i s often proved by comparing the problems to Ti (nlogn) time 
comparison sorting. In the gr i d domain i t i s possible to sort coordinates, 
distances and angles i n l i n e a r time. By taking advantage of li n e a r integer 
grid sorting c a p a b i l i t i e s we are able to present l i n e a r time algorithms for 
the following geometric problems which have 0(nlogn) time algorithms when 
set i n the real plane: finding the convex h u l l of n points, finding a simple 
closed polygonal path through n points, finding the diameter of a set of n 
points, deciding the sep a r a b i l i t y question for two point sets, finding the 
smallest enclosing c i r c l e for a set of points, finding a triangulation of a 
set of n points and finding the Voronoi polygon of one of a set of n points. 
We extend van Emde Boas' O(nloglogn) integer set manipulation tree structure 
so i t w i l l work on the O(n^) size integer g r i d . Using t h i s extended 
structure we are able to present O(loglogn) search time algorithms for the 
problems of searching for a test point i n a set of rectangles, i n a 
r e c t i l i n e a r planar subdivision and i n a re s t r i c t e d angle subdivision. We 
are also able to use the extended van Emde Boas tree to present O(nloglogn) 
time algorithms for the following intersection problems on the g r i d : 
detecting whether any two of n rectangles intersect, detecting whether any 
two of n r e c t i l i n e a r polygons intersect and detecting whether any two of n 
res t r i c t e d angle polygons intersect. 
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Computational Geometry on an Integer Grid 

Computational Geometry 

Computational geometry i s the study of geometric problems i n a 

computational setting. This involves analyzing the computational complexity 

of geometric problems and determining e f f i c i e n t algorithms for solving them. 

In many cases the algorithms becomes e f f i c i e n t because the geometric 

properties of the problem are exploited. Shamos was the f i r s t to explore a 

number of problems i n computational geometry [ Shamos 75a ] [ Shamos 75b ] 

[ Shamos 76 ]. There have been a number of areas of pa r t i c u l a r interest i n 

computational geometry. 

One area of pa r t i c u l a r interest has been the study of the problem of 

finding the convex h u l l of a set of plane points and the study of related 

problems. The convex h u l l of a set of n points on the plane i s the smallest 

convex polygon whose corners l i e at points of the set that encloses the set. 

Many algorithms for finding convex h u l l s and solving related problems have 

been proposed [ Graham 72] [ Anderson 78 ]. Shamos [Shamos 75a] 

considers such related problems as determining the sep a r a b i l i t y of two plane 

point sets , determining the diameter of a set of n points i n the plane and 

finding the intersection of two n-gons. 

There has been interest i n studying nearest neighbour problems such as 

finding the closest pair of a set of plane points. The Voronoi diagram i s a 

powerful structure often used to solve nearest neighbour problems. The 

Voronoi polygon associated with each point p of a set of planar points i s a 

region of the plane consisting of a l l points at least a's near to p as to any 



2 

other point i n the set. The Voronoi diagram of the set consists of the 

points i n the plane which l i e i n two or more Voronoi polygons [ Shamos 75a ] 

[ Shamos 75b ] [ Shamos 78 ]. Shamos and Hoey [Shamos 75b] study a 

number of problems involving the proximity of n points i n the plane such as 

finding a Euclidean minimum spanning tree, the smallest c i r c l e enclosing the 

set, k nearest and farthest neighbours, the Voronoi diagram of the set, the 

two closest points and a proper s t r a i g h t - l i n e triangulation. 

Many intersection problems, such as detecting intersections among 

planar polygonal figures, have been studied [ Bentley 79a ] [ Bentley 79b ] 

[ Brown 78 ] [ vaishnavi 79a ] [ Vaishnavi 79b ]. Shamos and Hoey [Shamos 

76] study intersection problems such as detecting intersection among l i n e 

segments, determining whether two simple plane n-gons intersect and 

determining whether any two of n c i r c l e s i n the plane intersect. 

There has been interest i n problems involving searching i n the plane. 

A planar subdivision i s a p a r t i t i o n of the plane into polygonal regions. 

The problem of locating a point i n a planar subdivision has been studied 

under various t i t l e s by Dobkin and Lipton [Dobkin 76], Lee and Preparata 

[ Lee 77], Lipton and Tar j an [ Lipton 77], Shamos [ Shamos 78], Shamos and 

Bentley [ Shamos 77 ] and Kirkpatrick [ Kirkpatrick 79]. There are also 

many other geometric problems being studied under a computational l i g h t . 

Computational geometry has been studied primarily i n the real plane or 

i n higher diminsional real spaces. In these domains lower bounds on the 

worst case performance of many algorithms are proved by comparing the 

algorithm with the fl (nlogn) worst case time for comparison based sorting. 

For example, Shamos [ Shamos 75a] proves that i l (nlogn) worst case time i s a 

lower bound on the worst case time for finding the convex h u l l of a set of n 

points i n the real plane by showing that any convex h u l l algorithm can be 



3 

used to sort. To prove the A (nlogn) lower bound on the worst case time for 

finding the convex h u l l of a set of n points i n the real plane one can also 

reduce the problem of finding the maxima of a set of vectors to the problem 

of finding the convex h u l l . The J l (nlogn) lower bound applies not only to 

convex h u l l algorithms that provide an ordered convex h u l l but also to 

algorithms which simply i d e n t i f y the h u l l points. Let A be a set of n 

vectors with real components. I f the vectors are ordered so that u > v i f 

xj(u) >= xj(v) for i = 1,2 then a p a r t i a l ordering has been applied to A. 

The maximal elements of t h i s p a r t i a l l y ordered set are c a l l e d the maxima of 

A. 

Lemma 1.0: There i s an (nlogn) lower bound on the time to find the 

maxima of a set of vectors. 

Proof: [ Kung 75 ]. 

Lemma 1.1: JT (nlogn) i s a lower bound on the time required to find 

the convex h u l l of n real plane points. 

Proof: Let A be a set of real plane points such that the convex h u l l of 

A i s a l l of A. There are four points i n A a t,a D,a r and a± such that *-2(at) 

= maxj X2(ai) , X2(a D) 1 minj X2(aj) , x i ( a r ) = maxi x i ( a j ) , xi ( a j ) = min^ 

x i ( a j ) . These four points divide the h u l l points into four sets one of 

which w i l l contain 0(n) points. A l l of these are maxima vectors therefore 

by Lemma 1.0 the convex h u l l requires JT (nlogn) time [ Preparata 77 ]. 

The best worst case algorithms for many problems such as finding the 

Voronoi diagram of a set of n real plane points, finding a triangulation of 

a set of n real plane points and determining whether any two of n l i n e 

segments i n the real plane intersect have an 0(nlogn) time bound. 
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Restricted Domains 

Many problems naturally l i e i n r e s t r i c t e d domains where comparison 

sorting i s not necessary. To steer clear of the lower bounds imposed by 

comparison based sorting we look to these r e s t r i c t e d domains. An example of 

such a domain would be an integer g r i d . On an integer g r i d a l l points have 

cartesian coordinates (x,y) where x and y are r e s t r i c t e d to be integer. 

Another example would be a hexagonal or triangular g r i d where each point has 

s i x neighbours . Later we s h a l l see that r e s t r i c t i n g l i n e s on the g r i d to 

orientate at a fixed number of slopes can be exploited. For example, we may 

allow only horizontal l i n e s , v e r t i c a l l i n e s and l i n e s that l i e at 45° to the 

axes. 

j 

Applications 

Many geometric problems are of p r a c t i c a l as well as theoretical 

interest. Geographic data processing i s one area where g r i d based 

computational geometry can be applied [ Nagy 79a] [ Nagy 79b]. In many cases 

the points on maps are g r i d based. I t i s often necessary to solve geometric 

problems on maps. For example to locate a point on a map treat the map as a 

planar subdivision. 

Printed c i r c u i t design i s another application area for g r i d based 

computational geometry. The problem of detecting whether any two of n 

rectangles intersect has an important application i n the area of very large 

scale integrated c i r c u i t artwork analysis [ Baird 78] [ Lauther 78]. 

Solving the rectangle intersection problem can i d e n t i f y locations where 
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c i r c u i t function i s threatened by loss of edge acuity. 

There are also applications of g r i d based computational geometry i n 

computer graphics, pattern recognition, operations research, numerical 

analysis, l i n e a r programming and data base design [ Preparata 77] 

[ Freeman 79] [ Sibson 78] [ Vaishnavi 79a] [ Shamos 75a] [ Shamos 75b]. 

Shamos [ Shamos 75b] mentions applications involving wire layout, 

f a c i l i t i e s location and cutting stock. The construction of interpolating 

functions i n two dimensions involves triangulating a set of points. 

Models of Computation 

The model of computation we s h a l l use i s a random-access machine (RAM) 

with the c a p a b i l i t y of performing rational number arithmetic. An equivalent 

RAM has the c a p a b i l i t y of performing integer arithmetic with m u l t i p l i c a t i o n . 

In the algorithms i n Chapter 2 we also require that the machine w i l l have 

the a b i l i t y to calculate the fl o o r function|_ J . Fortune and Hopcroft [ 

Fortune 78 ] point out that the floor function can add substantially to the 

power of a machine. A l l the analyses which follow w i l l use the uniform cost 

c r i t e r i o n with the RAM. [ Aho 74] The uniform cost c r i t e r i a with the RAM i s 

the model of computation used when proving A (nlogn) worst case time i s a 

lower bound for comparison based sorting. Each comparison takes one unit of 

time regardless of the size of the numbers. 

We have already mentioned some possible g r i d d e f i n i t i o n s . For the 

purposes of t h i s thesis a g r i d i s defined to be a regular bounded 

rectangular integer g r i d of size m. A point on the g r i d has the cartesian 

coordinates (x,y) where x and y are integers i n the range 0 to m. "m" can 
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be a polynomial function of n. n i s the size of the problem. For example n 

could be the number of points i n a set or the number of edges i n a set of 

polygons... Although most of the results apply for ar b i t r a r y m we w i l l 

r e s t r i c t our attention to the case where m i s 0(nk) for some fixed k. 

Integer Sorting and I n i t i a l i z a t i o n Method 

We are able to avoid using comparison based sorting because the domain 

i s of a fixed range integer type. When dealing with s u f f i c i e n t l y r e s t r i c t e d 

sets of integers sorting can be performed i n li n e a r time. By using an 

extended radix sort we w i l l be able to sort i n the g r i d domain i n l i n e a r 

« time. 

On several occasions we w i l l use the technique of using a data 

structure without i n i t i a l i z i n g more of i t than i s s t r i c t l y necessary. 

Lemma 1.2: I t i s possible to perform inserts, deletes and membership 

tests i n a data structure that can contain subsets of a universe set 

consisting of a bounded subset of the natural numbers i n time proportional 

to the number of operations being performed. This allows us to buil d data 

structures whose space requirements exceed t h e i r preprocessing requirements. 

Proof: [ Aho 74 ] p. 71. 

Chapter Summarys 

In chapter 2 we show how to sort coordinates, distances and angles i n 

the g r i d domain i n l i n e a r time. 0(n) time algorithms are given for the 

following problems i n the g r i d case: Finding the convex h u l l of n points, 

finding a simple closed polygonal path through n points, finding the 
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diameter of a set of n points, deciding the sep a r a b i l i t y question for two 

point sets, finding the smallest enclosing c i r c l e for a set of points, 

finding a triangulation of a set of n points and finding the Voronoi polygon 

of one of a set of n points. 

In chapter 3 we review an O(nloglogn) i n i t i a l i z a t i o n time, O(loglogn) 

search time set manipulation structure due to van Emde Boas. [ van Emde 

Boas 77] The structure i s extended so that i t w i l l work on anQn^) g r i d set 

without having an increased asymptotic time bound. We also extend the 

structure to handle integers ranging from 1 to n^ selected from a set of 

siz e 0(n) in only O(n^) space. 

In chapter 4 we exploit the dense extended van Emde Boas structure to 

give O(loglogn) time algorithms for searching i n a set of rectangles, i n a 

r e c t i l i n e a r subdivision and i n a res t r i c t e d angle subdivision. 

In chapter 5 we exploit the dense extended van Emde Boas structure to 

give O(nloglogn) time algorithms for detecting intersections among 

rectangles, among r e c t i l i n e a r polygons and among re s t r i c t e d angle polygons. 

Chapter 6 presents our conclusions. 
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Chapter 2 Grids and Sorting 

Sorting Methods 

The g r i d domain we have defined has points (x,y) where x and y are 

integers which f a l l into the range 0 to m. A comparison based sort i s not 

needed because the points are integers. The radix sort i s a fast integer 

sort that works on a f i n i t e range [ Aho 74 ]. 

Lemma 2.1: A sequence of n g r i d points can be sorted by x or y 

coordinates or lexicographically i n 0(n + m) time using the radix bucket 

sort. 

Proof: t Aho 74 ]. 

Lemma 2.2: A sequence of n g r i d points can be sorted by x or y 

coordinates or lexicographically i n O(nlognm) time which i s 0(kn) time i f m 

i s 0 ( n k ) . 

Proof: by expressing the g r i d points i n n-ary notation, a multipass n 

bucket sort could be used on a sequence of n g r i d points. Each g r i d point 

i n n-ary notation would have at most k d i g i t s when m = n k [ Aho 74], On the 

f i r s t pass the least s i g n i f i c a n t d i g i t would be sorted using an n bucket 

sort i n 0(n) time. On the next pass the next most s i g n i f i c a n t d i g i t would 

be sorted. There w i l l be at most k of these passes. The multipass sort 

w i l l require O(nlognm) which i s 0(kn) time i f m = n k. I f k i s a fixed 

constant the k pass sort requires only 0(n) time. 

I f n i s a power of two d i v i s i o n i s not needed to do the sort. S h i f t i n g 

w i l l do to express m in n-ary notation. 

A set of intergridpoint distances may have to be sorted quickly. 

Lemma 2.3: We can sort a set of n distances on the g r i d i n O(nlognm) 
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time. 

Proof: The distance d between two gr i d points i n the Euclidean metric 

i s ( x 2 - X i ) 2 + (y 2 - y i ) 2 . d 2 = (x 2 - x j ) 2 - (y 2 - y i ) 2 i s an 

integer. A sequence of points sorted by d 2 from a given point w i l l be i n 

the same order as i f they were sorted by d from the given point. Fast 

integer sorting techniques can be used on d 2 because d 2 i s an integer 

quantity. On the g r i d d w i l l range from 0 to m and therefore d 2 w i l l range 

from 0 to m2. I f d 2 i s expressed i n n-ary notation there w i l l be at most 

21ognm d i g i t s . A sequence of n g r i d points can be sorted with respect to d 2 

and thus also to d from a given point i n O(nlognm) time using a 21ognm pass 

bucket sort.. 

Corollary to 2.3: We can sort a set of n distances on a O(r^) size g r i d 

i n 0(n) time. 

Proof: The 0(nlog nm) time sort takes 0(kn) time on t h i s g r i d . Since k 

i s a constant the distances can be sorted i n 0(n) time. 

In some algorithms i t i s necessary to sort points by the angle they 

form with respect to a given o r i g i n and axis. 

Lemma 2.4: A set of angles determined by n sets of three g r i d points 

can be sorted i n Ofnlognm) time. 

Proof: One gr i d point i s selected to be the o r i g i n and the points are 

to be sorted with respect to the angle they form with the x-axis. This 

angle can be determined from the quadrant and the slope within the quadrant. 

The quadrant can e a s i l y be determined by the signs on the coordinates. 

Given the points i n one quadrant the slope i s s u f f i c i e n t to determine the 

angle. The slope i s of the form y/x where x and y are integers i n the range 

0 to m. These slopes are not integer. I f the li n e a r integer sorting 

techniques are to be used on the slopes they have to be transformed to 
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integers i n such a way as to preserve the order between the slopes. 

The difference between two slopes i s Y\M\ - V2A2 = (yi*2 - v 2 x l ) / x l x 2 

. The smallest difference between two slopes i s I/X1X2. A n Y transform used 

must separate slopes that are separated by l / x j ^ . Slopes that are 

separated by I/X1X2 must be mapped to d i f f e r e n t integers . Since 1 < xj < m 

i s the required then 1 < m 2/xiX2. The expression | m2 • Slope 

transform. By multiplying the slopes by m2 and rounding down slopes are 

mapped to integers with order preserved. These integers w i l l range from 0 

to m3 and can be expressed i n 31ognm diget n-ary notation. Using a multiple 

pass bucket sorting technique these integers which correspond to the slopes 

can be sorted i n Ofnlogprn) time. Since angles with respect the o r i g i n are 

determined by the slope i n each quadrant, these angles can be sorted i n 

O(nlognm) time. 

Corollary to 2.4: A set of angles determined by n sets of three grid 

points on an 0 ^ ) size g r i d can be sorted i n l i n e a r time. 

Proof: From Lemma 2.2 the angles can be sorted i n 0(nlog nm) time 

which on t h i s g r i d i s O(kn) time. Angles can be sorted i n l i n e a r time on an 

0(n k) size g r i d . 

The 0(n) time algorithms found i n the rest of the chapter which depend 

on integer g r i d sorting c a p a b i l i t i e s a l l assume an 0(n k) size g r i d . These 

algorithms w i l l work on a general size m g r i d i n 0(nlog nm) time. 

Convex Hull and Related Algorithms 

The convex h u l l of a set of n real plane points can be found i n 

O(nlogn) time using Graham's algorithm [ Graham 72]. In Graham's algorithm 

the f i r s t step i s to find a point i n t e r i o r to the convex h u l l . Then a l l 
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points are sorted by angle around t h i s point. I n i t i a l l y a l l points p^ are 

considered to be part of the convex h u l l . A series of three point tests are 

made beginning with the point with the smallest angle which test whether to 

remove the middle point from the convex h u l l . I f the angle P1P2P3 i s 

greater than 180 degrees than p 2 i s on the convex h u l l so continue by 

testing p2P3P4« I f angle PiP 2P3 i s less than 180 degrees than eliminate p 2 

from the convex h u l l and continue by testing PiP2P4« These tests continue 

u n t i l a l l the points have been examined. None of the points need to be 

examined more than a constant number of times. Graham showed that the 

complexity of the algorithm can be decomposed into two parts: one for 

sorting the points by angle which takes 0(nlogn) time and the other for 

testing which points belong on the h u l l which takes 0(n) time. 

Theorem 2.5: By taking advantage of g r i d integer sorting c a p a b i l i t i e s 

the convex h u l l of n g r i d points can be found i n 0(n) time. 

Proof: Anderson [ Anderson 78] noticed that i t i s not necessary to 

s t a r t the convex h u l l algorithm with a point i n t e r i o r to the h u l l . Instead 

select the leftmost bottom g r i d point XQ. This point can be found i n l i n e a r 

time. Next order the points X J by the angle XQ . — xj forms with the 

horizontal l i n e passing through XQ. We perform the angle sort for g r i d 

points i n l i n e a r time. I f more than one point l i e s at the same angle 

eliminate the one closer to XQ. F i n i s h the algorithm by performing the 

three point tests as before. The entire algorithm i s of time complexity 

0(n) in the g r i d domain. Shamos suggested a d i f f e r e n t technique for a 

l i n e a r convex h u l l algorithm on a size n l a t t i c e i n an early draft of his 

thesis. The coordinate sorting based algorithm of Andrew [ Andrew 79 ] 

could also be adapted to an 0(n) algorithm on the g r i d . 

A number of results follow from the l i n e a r convex h u l l algorithm. 
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Theorem 2.6: (a) The diameter of n gr i d points can be found i n 0(n) 

time. 

(b) the sep a r a b i l i t y question for two gr i d point sets 

can be decided i n 0(n) time. 

(c) the smallest c i r c l e enclosing a set of n g r i d 

points can be found i n 0(n) time i n the worst case. 

Proof 

(a) The diameter of n real plane points can be found i n 0 (nlogn) time 

[ Shamos 75a ]. This i s done by f i r s t finding the convex h u l l of the set 

and then finding the diameter of the convex h u l l . Finding the convex h u l l 

takes 0(nlogn) time. Finding the diameter of the convex h u l l requires 0(n) 

time. 

In the g r i d domain the diameter of n points can be found i n 0(n) time. 

Both finding the convex h u l l and finding the diameter of the h u l l are l i n e a r 

operations i n the gr i d domain. 

(b) Two f i n i t e plane point sets are said to be separable i f and only i f 

there ex i s t s a straight l i n e 1 with the property that every point of one set 

l i e s on one side of 1 and every point of the second set l i e s on the opposite 

side of 1. Shamos [ Shamos 75a ] notes that two plane sets are separable 

i f f t h e i r convex h u l l s are d i s j o i n t . In the real plane the sepa r a b i l i t y 

question f o r two point sets can be decided i n 0 (nlogn) time. 0(nlogn) time 

i s s u f f i c e n t to find the convex h u l l of each set and 0(n) time i s sufficent 

to determine whether these h u l l s intersect. 

The s e p a r a b i l i t y question for two g r i d point sets can be decided i n 

0(n) time. Finding the convex h u l l s which was the bottleneck can now be 

done i n l i n e a r time. 

(c) Shamos and Hoey [ Shamos 75b ] show that the smallest c i r c l e 
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enclosing a set of n real plane points can be found i n 0(nlogn) time. The 

diameter of the required c i r c l e i s the same as the diameter of the point 

set. 

In the g r i d domain finding the diameter of a set of n points takes 0(n) 

time. Therefore the smallest c i r c l e enclosing a set a n g r i d points can be 

found i n 0(n) time i n the worst case. 

Simple Closed Polygonal Path Algorithm 

Shamos [ Shamos 75a] shows that i n the real plane finding a simple 

closed polygonal path through n points must t a k e i l (nlogn) time i n the worst 

case. I f a simple closed polygonal path i n the real plane could be found 

faster than i n 0 (nlogn) time then the convex h u l l of n real plane points 

could also be found faster than 0(nlogn) time. 

A simple closed polygonal path through n gr i d points can be found i n 

0(n) time i n the worst case. Start by sorting the points by angle from the 

v e r t i c a l about the leftmost extreme point. On the g r i d t h i s takes 0(n) 

time. Join the points i n increasing order of angle. I f several points l i e 

at the same angle j o i n them in increasing order of distance except i f they 

l i e at the maximum angle then j o i n them in decreasing order of distance. 

None of these steps requires more than a li n e a r amount of time. 

Triangulations 

Given n points i n the plane a triangulation i s formed by joining them 

by non-intersecting straight l i n e segments so that every region i n t e r i o r to 

the convex h u l l i s a tri a n g l e . [ Shamos 75b ] Triangulation i s important i n 
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numerical interpolation. I t i s necessary to construct a triangular g r i d to 

base the interpolation. There are various kinds of triangulations that have 

special properties. The minimum weight triangulation minimizes the sum of 

the edge lengths. The minimum weight triangulation has good numerical 

properties [ Shamos 75b]. The Delaunay triangulation i s the dual of the 

Voronoi diagram. Whenever the Voronoi polygons of two points share a common 

edge these two points are joined i n the Delaunay triangulation. 

On the real plane JL (nlogn) i s a lower bound on the time required to 

f i n d any triangulation .of n points. Shamos and Hoey [ Shamos 75b ] prove 

t h i s by reducing comparison based sorting to triangulating. 

The following algorithm which takes advantage of gr i d sorting 

c a p a b i l i t i e s enables one to triangulate n g r i d points i n l i n e a r time. 

Figure 1 shows the algorithm in progress. 

1. Find the point with the minimum x coordinate. C a l l i t XQ. 

2. Sort the points X j by the angle XQ — xj makes with the v e r t i c a l 

l i n e passing through XQ. 

3. Find the point x^ with the minimum angle and add the edge XQ — x^ 

to the triangulation. I n i t i a l i z e a stack c a l l e d BACK by pushing x^ onto i t . 

Set i to 1. 

4. While i < n Do 

- include edge xg — xj+i and X J — i n the triangulation. 

- While (stack has two elements and (outer angle Xi+i,top(BACK), 

second(BACK) < 180 degrees)) 

Do a) Include edge xj+i — 2nd(BACK) in the triangulation. 

b) Pop stack 



P a r t i a l l y Completed Triangulation 

- edges are labelled i n the order that they were inserted i n the 

triangulation 

- at t h i s point the stack 'BACK' contains X3 X 2 Xj where X3 i s at the 

top of the stack 

- algorithm i s i n inner while loop about to test the angle X5 - X3 

- X 2 where X3 i s top (BACK) and X 2 i s 2nd (BACK). 
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End inner while 

- Push onto stack 

- i <- i + 1 

END 

Lemma 2.7: The above algorithm y i e l d s a triangulation of n g r i d 

points i n 0(n) time i n the worst case. 

Proof: In the triangulation algorithm steps 1 and 2 require 0(n) time 

in the worst case. Step 3 takes a constant amount of time. In step 4 the 

outer while loop takes 0(n) time. The inner while loop eliminates a point 

each time i t i s entered. I t therefore can be entered at most n times. Step 

4 and thus the entire algorithm run i n 0(n) time. 

The triangulation found by the above algorithm was not created to have 

any p a r t i c u l a r properties. Lawson [ Lawson 72 ] described an algorithm for 

forming the Delaunay triangulation from an a r b i t r a r y triangulation. A 

triangulation i s a Delaunay triangulation i f and only i f i n every s t r i c t l y 

convex quadrilateral the replacement of the diagonal by the alternative 

diagonal does not increase the minimum of the s i x angles i n the two 

triangles making up the quadrilateral [ Sibson 78 ]. Lawson would s t a r t 

with an a r b i t r a r y triangulation and make exchanges of the diagonal i n convex 

quadrilaterals u n t i l the Delaunay triangulation was formed. The complexity 

of t h i s algorithm has not been determined. 

Voronoi Polygon Algorithm 

Shamos and Hoey [ Shamos 75b ] show that JT_ (nlogn) time i s required i n 
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the worst case to construct the Voronoi polygon of a given real plane point 

with respect to n - 1 other real plane points. This i s done by showing that 

a Voronoi polygon finding algorithm can sort. 

One application of a Voronoi polygon finding algorithm i s i n the 

incremental formation of Voronoi diagrams. I f the Voronoi diagram of a set 

of n points i s given and another point i s then added to the set, the Voronoi 

polygon of the new point with respect to the old ones must be found as part 

of the process to create the Voronoi diagram on the complete set of n + 1 

points. 

The Voronoi polygon about X J with respect to a set of n - 1 points has 

the property that a l l plane points within the polygon are closer to x j than 

to any X J ( i ? j) within the given set. The Voronoi polygon about x j i s the 

mutual intersection of a l l half planes containing x j defined by the 

perpendicular bisector of x j and X j for a l l j ^ i i n the given set. The 

Voronoi polygon i s a convex polygon having at most n - 1 sides. Using 

Brown's [ Brown 78 ] method of intersecting h a l f planes and g r i d integer 

sorting c a p a b i l i t i e s a single Voronoi polygon can be constructed i n 0(n) 

time i n the worst case. 

To form the Voronoi polygon about a point P s t a r t by forming the l i n e s 

that bisect the segments joining P with the other n - 1 g r i d points. These 

l i n e s divide the plane into half planes which can be intersected using 

Brown's algorithm. 

The half planes are divided into three sets: upper, lower, and 

v e r t i c a l . A half plane i s i n the set upper i f the l i n e at i t s boundary i s 

above the rest of the ha l f plane. Lower and v e r t i c a l are defined s i m i l a r l y . 

Brown's method divides the intersection problem into four parts: (1) the 

intersection of the upper half planes. (2) the intersection of the lower 
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half planes, (3) the intersection of the results of (1) and (2) , and (4) 

the handling of the v e r t i c a l half planes. 

Part (3) i s accomplished i n 0(n) time even i n the more general real 

plane case using Brown's ALGORITHM INTERSECTCHAINS. 

To solve part (4) intersect the result of part (3) with the rightmost 

right v e r t i c a l half plane and the leftmost l e f t v e r t i c a l half plane. Shamos 

[ Shamos 75a ] shows that the intersection of two convex n-gons takes 0(n) 

time. This i s done twice i n t h i s step. Part (4) i s accomplished using 0(n) 

time i n the worst case. 

Parts (1) and (2) ̂ remain. Consider part (1) the intersection of the 

upper half planes, part (2) can be done s i m i l a r l y . Some of the l i n e s that 

define the hal f planes do not bound the f i n a l intersection . These are 

redundant l i n e s . Brown's algorithm finds a l l such l i n e s and throws them 

away. Then the remaining l i n e s are sorted so that the top part of the f i n a l 

intersection i s created. 

The f i r s t step i s to find the redundant l i n e s . To do t h i s Brown uses a 

transform that transforms points to l i n e s and l i n e s to points by the 

following formulas. 

Y = slope • X + intercept -> (slope , intercept) 

(x , y) -> intecept = -x • Slope + y 

Brown transforms the l i n e s which define the upper ha l f planes to points. He 

then finds the lower convex h u l l of the resulting points. Those l i n e s which 

do not correspond to points on the lower convex h u l l of of transformed 

points are redundant. 

In the g r i d case s t a r t by expressing the l i n e s defining the upper half 

planes i n slope intercept form. In order to take advantage of the fast 

convex h u l l algorithm the slope and intercept of the bisectors between point 
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P and the other n - 1 points have to be converted to integer points on a 

gr i d f i n e r than the o r i g i n a l . The slope and the intecept have to be 

converted to integers preserving order. 

This has already been done for the slopes i n the discussion on g r i d 

angle sorting, n 2 k • Slope | w i l l convert the slopes to integers 

preserving order. The intercept also needs to be converted. 

As shown i n f i g 2 the bisector between point P (a,b) and point Q (c,d) 

has intercept 

B = -x • Slope + y = ((c + a)/2) • Slope + ((b + d)/2) 

The difference between two such intercepts i s 

B - B' = ((c + a)/2) • ((a - c)/(d - b)) + ((b + d)/2) 

- U(c' + a')/2) • ((a 1 - c , ) / ( d ' - b')) + 

((*>• + d')/2)) 

B - B 1 = ((c + a) (a - c) (d* - b') - (c' + a') (a - c)) / 

2(d - b)(d« - b') + (b + d) / 2 - (b 1 + d') / 2 

where 1 < a,b,c,d < n k. The smallest separation between two intercepts -.is 

then 

1 / 2(d - b)(d' - b') > 1 / 2 n 2 k 

Any transform used must separate intecepts that are separated by l / 2 n 2 k . 

Intecepts that are separated by l / 2 n 2 k must be mapped to d i f f e r e n t integers. 

2 n 2 k Intercept they become If the intercepts are converted by 

integers and order i s preserved. 

Once the slopes and intercepts have been converted onto the f i n e r g r i d 

the lower convex h u l l of the points i s found i n 0(n) time. The f i n e r grid 

i s at most 2 n 2 k times as fine as the o r i g i n a l g r i d . The size of the fine r 

g r i d i s s t i l l a polynomial function of n. "m" = n 2 k . These points on the 

lower convex b u l l correspond to the bisectors i n the o r i g i n a l problem that 
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form part of the Voronoi polygon. 

These bisectors are sorted i n 0(n) time using the gr i d angle sort. 

Part (1) has thus been completed i n li n e a r time. 

Lemma 2.8: The gr i d Voronoi polygon algorithm runs i n 0(n) time i n 

the worst case. 

A l l four parts of the algorithm are done i n li n e a r time and thus the 0(n) 

worst case time Voronoi polygon algorithm for g r i d points i s complete. 

Brown's method can also be used to find the intersection of n half 

planes i n 0(n) time i f the l i n e s defining the half planes are defined by two 

gri d points. Brown's method can also be used to find the kernel of a 

polygon on the g r i d i n 0(n) time. Lee and Preparata [ Lee 79 ] have an 0(n) 

time kernel algorithm for the real plane. I t i s open whether the complete 

Voronoi diagram of n g r i d points can be found i n li n e a r time. 
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Chapter 3 Van Emde Boas Structure 

When designing e f f i c i e n t algorithms for the manipulation of sets of 

points on the plane one encounters the problem of handling incompatible 

operations. Instructions for inserting or deleting points i n sets requires 

a random access data structure. However instructions for finding the 

minimum element or the nearest neighbour of an element require an ordered 

representation. One example of a data, structure which allows both random 

and ordered access i s a p r i o r i t y queue which supports the instructions 

i n s e r t , delete and find minimum. Another example i s a mergeable heap which 

supports the instructions insert,delete,form union and find minimum.[Van 

Emde Boas 77] 

Algorithms which depend on both random and ordered access which work 

with real numbers and depend on comparisons to order numbers have so far 

shown a worst case processing time of 0(nlogn) per instruction for a series 

of 0(n) instructions on a n element universe. Aho, Hopcroft and Ullman 

[ Aho 74 ] use 2-3 trees to implement p r i o r i t y queues and mergeable heaps so 

that n instructions can be processed i n 0 (nlogn) time. Of course any 

sequence of n instructions which w i l l sort n real numbers w i l l require 

_Q (nlogn) time. I f the domain i s res t r i c t e d to a bounded integer range 

t h i s lower bound no longer applies. Van Emde Boas [ 77a ] [van Emde Boas 

77b] presents a data structure which manipulates on-line a p r i o r i t y queue on 

the domain of integers from 1 to n with a worst case time of O(loglogn) per 

instr u c t i o n . This data structure requires O(nloglogn) preprocessing time to 

create and 0(n) space to store. 

Van Emde Boas structure can act u a l l y support more instructions than a 

simple p r i o r i t y queue. On a universe consisting of integers i n the range 1 
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to n van Emde Boas tree supports the instructions find minimum, find 

maximum, insert,delete, test for membership, find predecessor and find 

successor. Moreover, each of these instructions can be completed i n 

O(loglogn) time i n the worst case. 

The structure of the van Emde Boas tree i s quite complex. Some of t h i s 

structure i s s t a t i c not depending on the set being represented. Assume that 

n = 2h. The skeleton of the van Emde Boas structure w i l l be a binary tree 

of height h. The n leaves of t h i s tree w i l l represent the numbers 1 to n i n 

order from l e f t to rig h t . The leaves represent the potential members of the 

set. Each node of the tree also contains a number of labels and s t a t i c 

pointers. The l e v e l of a node i s the length of the path from the leaves to 

the node. Each node contains a series of father pointers which point 

upwards i n the tree. These are used to perform a binary search on the 

le v e l s of the tree. For example, a leaf w i l l contain father pointers 

pointing to the h a l f , quarter, eighth and so on positions on the path from 

the leaf to the root of the tree. A node at a l e v e l 1/4 of the way from the 

leaves to the root w i l l have father pointers pointing to the nodes at the 

3/8, 5/16 and so on le v e l s on the path from a leaf to the root passing 

through that node. Each node w i l l have O(loglogn) of these father pointers. 

These s t a t i c pointers e x i s t for every node and do not depend on the set 

being represented i n the data structure. 

There i s also dynamic information stored i n the tree that indicates 

which integers are members of the set and indicates the ordering between 

these members. At the leaves the dynamic information consists of the 

pointers successor and predecessor and the fla g present. The pointers are 

part of a doubly linked l i s t that includes the members of the set. The 

present f l a g i s set i f the leaf i s a member of the set. Dynamic information 
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i s stored at internal nodes only i f s t r i c t l y necessary to represent the 

relationships between members of the set. I f dynamic information i s stored 

at an internal node then the node i s said to be active. For example, i f a 

new element i s to be inserted into the set various nodes w i l l have to be 

marked present. F i r s t the lea f w i l l be marked present. The root i s then 

tested to see i f i t i s present. I f i t i s not present then t h i s element must 

be the f i r s t element i n the set. The root i s marked present and a dynamic 

pointer i s set to point to the only present l e a f . I f the root i s present 

then a father pointer i s followed from the leaf to a node half way up the 

tree. I f t h i s node i s not present we have reduced the problem to inserting 

t h i s node i n the top half of the tree. I f the node i s present we have 

reduced the problem to inserting the leaf i n the bottom hal f of the tree and 

a father pointer i s followed to a point one quarter of the way up the tree. 

This process continues so that the presence of a leaf i s indicated as high 

as possible i n the tree. 

To insert an integer into the tree f i r s t mark the leaf corresponding to 

that integer present. Then follow father pointers up to the nearest present 

node marking a l l active internal nodes present. This i s a branchpoint. At 

the branchpoint one side w i l l contain the newly inserted integer and the 

other w i l l contain either the successor or predecessor of the new integer. 

Given t h i s neighbour the doubly linked successor predecessor l i s t at the 

leaf l e v e l can be updated to include the newly inserted integer. Using the 

binary search on the l e v e l s strategy that was used to mark the active nodes 

the branchpoint i s found and thus an insert i s performed i n O(loglogn) time. 

Using a s i m i l a r process a delete can be performed i n O(loglogn) time. 

Testing for membership, finding the successor or the predecessor can be done 

i n a constant amount of time. 
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To i n i t i a l i z e the structure i t i s necessary to create the s t a t i c 

structure . This consists of the binary tree skeleton, the l e v e l and other 

labels and the father pointers. There are 0(n) nodes i n t h i s tree. Each 

node contains O(loglogn) father pointers and a constant number of labels . 

I t follows that O(nloglogn) space and preprocessing time are required to 

i n i t i a l i z e the tree. Later van Emde Boas cuts down on the number of 

pointers to achieve an 0(n) worst case space structure [ van Emde Boas 77b]. 

Van Emde Boas tree manipulates subsets of the set of integers ranging 

from 1 to n. On the gr i d integers can range from 1 to n k. We would l i k e to 

extend van Emde Boas tree structure so that i t could function on the larger 

universe. 

Extended van Emde Boas Tree 

The. following extension of van Emde Boas structure allows the 

processing of n instructions, when the universe i s re s t r i c t e d to the domain 

of integers i n the range 1 to n k, i n O(kloglogn) time per instruction i n the 

worst case. The extended structure requires 0(n k) space and O(knloglogn) 

preprocessing time. 

0(n 2) Extended van Emde Boas Tree 

F i r s t consider the case where k = 2. The sets to be manipulated are 

subsets of the integers ranging from 1 to n 2. We can express any such 

integer i n two d i g i t n-ary notation ( i , j ) where i and j range from 0 to n -

1. A p r i o r i t y queue on the domain of integers ranging from 1 to n 2 can be 

represented by n p r i o r i t y queues on the domain of integers ranging from 1 to 
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n. We use one van Emde Boas structure hereafter c a l l e d the i-tree to select 

the i coordinate . Then we use the j coordinate i n one of some other van 

Emde Boas trees (j-trees) to f i n a l l y locate the desired integer. The i 

coordinate selects which tree to look at and the j coordinate positions you 

within that tree. In order to make t h i s extended structure e f f i c i e n t we 

separate the s t a t i c and dynamic information i n the nodes. In the n j-trees 

the s t a t i c information i s stored only once while each tree must have 

separate dynamic information. Each node of the complex j-tree w i l l consist 

of an array N where N(i) represents that node i n the i t h tree. The s t a t i c 

father pointers, l e v e l labels and other s t a t i c information are stored only 

once i n each node of the complex tree. This complex tree consists of n 

superimposed simple trees. 

To handle the f i r s t coordinate _i a separate simple van Emde Boas tree 

i s b u i l t . The leaves of t h i s tree act as a multiset containing counters 

indicating the number of points i n the ove r a l l structure with the given i 

coordinate. 

Lemma 3.1: This structure requires O(loglogn) time to process an 

instruction i n the worst case. 

Proof: O(loglogn) time i s required to handle the i coordinate i n the 

simple i tree. A constant amount of time i s used to select the appropriate 

j-tree i n the complex j-tree and O(loglogn) time i s required to process an 

instruction i n the j - t r e e . 

Lemma 3.2: This structure requires 0(n 2) space. 

Proof: There are 0(n) nodes i n the complex j-tree and each node 

requires 0(n) space for the dynamic information. The simple i-tree requires 

only 0(n) space. 

Lemma 3.3: I n i t i a l i z i n g the structure requires only O(nloglogn) time 
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in the worst case. 

Proof: We use t h i s time to set up the s t a t i c information i n the i-tree 

and the complex j-tree . None of the dynamic information need be i n i t i a l i z e d 

before use. We use 0(n 2) space without i n t i a l i z i n g i t by Lemma 1.2. 

The extended van Emde Boas structure supports the operations i n s e r t , 

delete, test for membership, find predecessor and find successor. We insert 

an integer into the structure by f i r s t expressing i t i n n-ary notation with 

the coordinates i and j . We then test the i - t h leaf i n the i- t r e e . I f the 

counter there registers zero we do a regular insert into the i- t r e e . I f the 

counter registers non-zero then we merely increment the counter. The i t h 

tree i n the complex j-tree i s selected. We insert the j coordinate of the 

number into t h i s tree. Deletion i s analogous to insertion. Membership 

testing can be done i n constant time. 

We w i l l want to find the successor of an integer expressed i n n-ary 

noatation with the coordinates ( i , j ) . We begin the search by finding the 

successor of j in the i t h tree of the complex j-tree . I f one exi s t s the 

successor of ( i , j ) i s ( i , s u c c ( j ) ) . I f no successor of j exi s t s i t means 

that j i s the maximum element of the i t h part of the complex j-tree . In 

t h i s case we find the successor of i i n the simple i - t r e e . Next we find the 

minimum element i n the succ(i) part of the complex j-tree . The successor of 

( i , j ) i s then (succ(i),min(j)). Finding the predecessor of an integer i s 

analogous to finding the successor. 

0(n k) Extended van Emde Boas Tree 

We can extend van Emde Boas tree structure so that i t can handle 

subsets of the set of integers i n the range from 1 to n k. We can express 
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any integer i n t h i s range i n k d i g i t n-ary notation ( i i , i 2 , . . . i k - l f j ) 

where i i , i 2 • • • i k - l ' i a r e integers ranging from 0 to n - 1. We use 

one simple van Emde Boas tree to handle i ^ just l i k e the i-tree i n the n 2 

case. This reduces the problem to creating a data structure to handle the 

n k - l case. The process of creating i-trees can be continued u n t i l the n 2 

case i s reached. The n 2 case uses an i-tree and a complex j-tree as before. 

In the n k structure the i i coordinate selects the coordinate i n the i j 

dimension. The complex j-tree w i l l have k - 1 dimensional hypercubes at 

each node compared to the l i n e a r array i n the n 2 case. As i n the n 2 case we 

separate the s t a t i c and dynamic information i n the complex j - t r e e . The 

dynamic information i s stored i n the k - 1 dimensional hypercubes and the 

s t a t i c information i s stored separately at only the top l e v e l . The complex 

j-tree i s r e a l l y n k - l superimposed simple van Emde Boas trees. 

Lemma 3.4: This structure requires O(kloglogn) time to process an 

instr u c t i o n i n the worst case. 

Proof: O(loglogn) time i s required i n each i - t r e e . There are k - 1 i 

trees so that the t o t a l time i s 0((k - l)logl o g n ) . Also O(loglogn) time i s 

required i n the chosen part of the complex j-tree. Altogether O(kloglogn) 

time i s required. 

Lemma 3.5: This structure uses 0(n k) space. 

Proof: Each i-tree uses 0(n) space for a t o t a l of 0((k - l ) n ) . Each of 

the 0(n) nodes of the complex j-tree contains a k -1 dimensional hypercube 

of size n. The complex j-tree therefore uses 0(n k) space. 

Lemma 3.6: I n i t i a l i z i n g the structure requires only O(nloglogn) time 

in the worst case. 

Proof: Now that the space requirement i s up to 0(n k) the i n i t i a l i z a t i o n 

t r i c k used i n the n 2 case becomes v i t a l to preprocessing time. We use t h i s 
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time to set up the s t a t i c information i n the i-trees and the complex 

j-trees. As before, none of the dynamic information need be i n i t i a l i z e d . 

The n k extended van Emde Boas tree supports a l l the instructions that 

the simple tree does. To insert an integer into the structure we insert the 

i ^ coordinate into the multiset storage of the i j i-tree i n the same way as 

we did i n the i-tree of the n 2 case. Next insert the i j coordinate into the 

multiset storage of the i j i - t r e e . We then insert j into the appropiate 

part of the complex j-tree. Again deletion i s analogous to insertion. 

Membership testing i s a constant operation. 

Finding the successor or predeccessor of an integer i n the n k structure 

i s an obvious extension of doing the same i n the n 2 structure. 

Dense Extended van Emde Boas Structure 

I f we only wish to represent a set of g r i d points with 0(n) members i n 

the n k van Emde Boas structure there i s much space that i s not used. I f we 

know that the integers we w i l l place i n the van Emde Boas tree are selected 

from a known subset of size 0(n) of the integers ranging from 1 to n k we can 

decrease the space required. We are able to further modify van Emde Boas 

structure so that we can process n instructions, when the universe i s a 

known subset S of size 0(n) of the integers i n the range 1 to n k, using only 

o(n 2) space and O(kloglogn) time per instruction . This dense extended 

structure requires O(knloglogn) preprocessing time. 

0(n->) Dense Extended van Emde Boas Structure 



32 

F i r s t consider the case where k = 3. The sets to be manipulated are 

subsets of a known set S of si z e 0(n) whose members are integers ranging 

from 1 to n^. We can express any such integer i n three d i g i t n-ary notation 

( i , j , k ) where i , j , and k range from 0 to n - 1. We w i l l use three l e v e l s of 

simple s i z e n van Emde Boas trees to store these integers. At the top l e v e l 

there i s one i-tree which we use to store the i coordinate of the integers. 

Descendant from some of the leaves of the i-tree are j-trees which we use to 

store the j coordinate of some of the integers. Descendant from some of the 

leaves of the j-trees are k-trees which we use to store the k coordinates of 

some of the integers. In order to be able to use t h i s structure on members 

of subsets of set S we f i r s t must create and i n i t i a l i z e the structure by 

inserting a l l of the universe set S into the structure and then deleting the 

members of S. We begin i n the i - t r e e . A l l members of S are inserted into 

the i-tree by t h e i r i coordinates. I f only one member of the set has a 

given i coordinate there i s no need to store anything below that le a f . The 

number i s stored at the leaf and a f l a g i s set to show that there i s nothing 

stored below. I f more than one member of the set has the same i coordinate 

i i we grow a j-tree below. At the i j t h leaf we set a counter to the number 

of elements with i coordinate equal to i j . Also we i n i t i a l i z e a pointer to 

point to a simple van Emde Boas tree which we w i l l use as a j-t r e e . We 

insert the j coordinate of the elements with i coordinate i j into the 

j-t r e e . This i s done for a l l j-trees created. The process of inserting 

numbers into j-trees i s analogous to inserting numbers into the i - t r e e . I f 

two numbers i n the same j-tree have the same j coordinate a k-tree i s grown. 

For each k-tree grown there w i l l be a set of two or more numbers with the 

same i and j coordinates. This set i s inserted into the k-tree. There w i l l 

not be any two numbers with the same k coordinate i n the same k-tree. When 
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a l l the elements of the set S have been inserted we delete them a l l . 

After t h i s process i s complete we are l e f t with a structure consisting 

of an i-tree having descendant j-trees at some of i t s leaves. A j-tree may 

have descendant k-trees at some of i t s leaves. In the various trees some 

leaves w i l l not have been touched and w i l l be empty, some leaves w i l l 

contain a counter and a pointer to a descendant tree and some leaves w i l l 

contain a number and a f l a g indicating there i s no structure below. 

This dense extended van Emde Boas structure supports the operations 

i n s e r t , delete, test for membership, find predeccessor and find successor. 

We insert an integer into the structure by f i r s t expressing the integer i n 

n-ary notation with coordinates i , j and k. We s t a r t i n the i - t r e e . I f the 

i t h leaf has no structure below i t we do a regular insert of i into the 

i-tree and we are done. Otherwise we test the counter at the i t h le a f . I f 

the counter there registers non-zero then we merely increment the counter. 

I f the counter there registers zero we do a regular insert of i into the 

i- t r e e . We now insert the j coordinate into the descendant j- t r e e . I f the 

j t h l e a f has a k-tree below i t we also insert k i n the descendant k-tree. 

Membership testing and deletion are analogous to insertion. 

We w i l l want to find the successor of an integer N expressed i n n-ary 

notation with coordinates ( i , j , k ) . We begin by finding the leaf that 

represents the integer N. This leaf may be i n the i-tree i f N i s the only 

integer i n the universe set with i coordinate i or the leaf may be i n a 

j-tree or a k-tree. In the most general case the leaf representing N was i n 

a k-tree. The successor of N i s then the successor of N i n the k-tree 

( i , j , s u c c ( k ) ) . I f N i s the maximum element i n the k-tree i t i s necessary to 

look i n the j-t r e e . The successor of N i s the successor of j i n the j-tree 

with the minimum k coordinate (i,succ(j) ,min(k)). I f N was the maximum 
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element i n the j-tree the successor of N i s the successor of N i n the i-tree 

with the minimum j and k coordinates (succ(i),min(j),min(k)). Finding the 

predecessor of an integer i s analogous to finding the successor. 

Let us now consider the complexity of t h i s structure. 

Lemma: 3.7 Only 0(n) of the various i , j and k trees are necessary. 

Proof: There w i l l always be one i-tree used. Descendant j-trees are 

formed only i f two or more elements of the set S have the same i coordinate. 

There can be at most n/2 j-trees. Regardless of how many j-trees there are 

a k-tree i s formed only i f two or more elements of the set S have the same j 

coordinate i n the same j- t r e e . This can happen at most n/2 times. There 

are at most n/2 k-trees and therefore there are at most 0(n) simple van Emde 

Boas trees i n the structure. 

0(n k) Dense van Emde Boas Structure 

This dense extended van Emde Boas structure can also handle integers 

that are selected from a known set S of size 0(n) whose members are integers 

ranging from 1 to n k. We can express any such integer i n k d i g i t n-ary 

notation (i]_,i2 . . . ik) where i i , i 2 • • • *k a r e integers ranging 

from 0 to n - 1. We w i l l use k l e v e l s of simple size n van Emde Boas trees 

to store these integers. At the top l e v e l we use one i ^ tree to store the 

il coordinate of the integers. Descendant from some of the leaves of the i? 

tree are i 2 trees which we use to store the i 2 coordinate of the integers 

and so on. As i n the case where k = 3 we create and i n i t i a l i z e the 

structure by inserting a l l members of S into the structure. Handling the 

instructions i n s e r t i o n , deletion, membership t e s t i n g , finding successor and 

finding predecessor i n the n k case i s a simple generalization of handling 
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the instructions i n the case where k = 3. 

Lemma 3.8: Only 0(kn) of the various i i , i 2 • • • ik trees are 

necessary. 

Proof: There w i l l be one i ^ tree. Descendant i j trees are formed only 

i f two or more elements of S have the same i j coordinate i n the same i j - i 

tree. There can be at most n/2 i j - t r e e s . Therefore there can be at most 1 

+ (k - l)n/2 or 0(kn) trees altogether. 

In the sparse extended van Emde Boas tree structure we stored the 

s t a t i c pointers of a number of simple van Emde Boas trees only once i n the 

complex j- t r e e . We can do the same i n the dense structure. We can begin 

with 0(kn) superimposed simple size n van Emde Boas trees. The s t a t i c 

pointers are stored only once. Each node of the complex tree w i l l consist 

of an array N where N(i) represents the node i n the i t h tree. 

Lemma 3.9: The dense extended van Emde Boas structure requires 

O(kloglogn) time to process an instruction i n the worst case. 

Proof: O(loglogn) time i s required i n each i j - t r e e . At most 0(k) of 

the i j ^ trees have to be considered so that the t o t a l time i s O(kloglogn). 

Lemma 3.10: The dense extended van Emde Boas structure requires 0(n 2) 

space i n the worst case. 

Proof: The i ^ tree uses 0(n) space. Each of the other trees uses 0(n) 

space because they use the s t a t i c pointers of the i j tree. By lemma 3.8 

there are at most O(kn) of the simple van Emde Boas trees. 0(kn 2) space i s 

required i n the worst case. 

Lemma 3.11: The dense extended van Emde Boas structure to hold 

integers ranging from 1 to n k that are selected from a known set S of size 

0(n) requires O(knloglogn) time to set up i n the worst case. 

Proof: None of the dynamic information i n any of the simple trees need 
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be i n i t i a l i z e d . The s t a t i c pointers require O(nloglogn) time to set up. To 

create the structure each of the 0(n) elements of S i s inserted. Each 

insertion requires O(kloglogn) time i n the worst case. The 0(n) insertions 

w i l l require O(knloglogn) time i n the worst case. This dominates the 

preprocessing time. 

We use of the c a p a b i l i t i e s of the dense extended van Emde Boas tree i n 

chapter 4 when locating a point i n a planar subdivision. We can also use 

the dense extended van Emde Boas tree to detect intersections among polygons 

i n chapter 5. 
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Searching i n Planar Subdivisions 

Rectangles 

We present three algorithms for searching i n a res t r i c t e d planar 

subdivision. We work i n the 0(n k) size g r i d domain. Working on the g r i d 

enables us to employ the dense extended van Emde Boas tree and get better 

search times then are possible i n the real plane. However the preprocessing 

time and space requirement are s l i g h t l y worse than i n the real plane case. 

Nonoverlapping rectangles i s the f i r s t type of planar subdivision we w i l l 

consider. Given n nonoverlapping rectangles whose corners l i e on g r i d 

points, i n which ( i f any) of the rectangles does a new test point l i e ? 

Shamos and Bentley [ Shamos 77 ] have given an 0(nlogn) preprocessing 

time and space and O(logn) test time algorithm for the problem in the real 

plane. The test time can be cut to O(loglogn) on the g r i d using a dense 

extended van Emde Boas structure. However the preprocessing time goes up to 

0(n 2) and the space required i s 0 ( n 2 ) . 

We begin by taking a l l the sides of the rectangles and extending them 

to l i n e s . Now the plane i s divided into 0(n 2) rectangular regions 

determined by at most 2n v e r t i c a l l i n e s and at most 2n horizontal l i n e s . 

The v e r t i c a l l i n e s are the v e r t i c a l l i n e s that pass through corners of 

rectangles. These are numbered from l e f t to ri g h t . The horizontal l i n e s 

are the horizontal l i n e s that pass through corners of rectangles. These are 

numbered from bottom to top. A 2n x 2n matrix i s used to indicate which 

o r i g i n a l rectangle ( i f any) a given newly created region i s i n . For each 

o r i g i n a l rectangle we determine the small regions determined by the l i n e s 

that i t covers. These smaller regions are labeled by two coordinates. The 
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Fig 6 Locating a Test Point among Rectangles 
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f i r s t i s the number of the v e r t i c a l l i n e which bounds i t on the rig h t . The 

second i s the number of the horizontal l i n e that bounds i t on top. I f a 

region ( i , j ) i s covered by rectangle "B" then "B" i s the label placed at 

position a-jj of the matrix. See figure 5. In t h i s way we i n i t i a l i z e the 

matrix to contain the information about which small regions are covered by 

which o r i g i n a l rectangles. 

The next step i s to set up a dense extended van Emde Boas tree to hold 

the 0(n) x coordinates of the corners of the rectangles. Insert the x 

coordinate of the corners of the rectangles i n the tree. Label these 

coordinates with the number of the v e r t i c a l l i n e that passes through them as 

determined above. This tree w i l l serve to locate a test point with respect 

to the v e r t i c a l l i n e s passing through the corners of the rectangles. This 

tree w i l l give the f i r s t coordinate of the position i n the matrix where the 

answer i s stored. Set up a second dense van Emde Boas tree for the y 

coordinates. Insert the y coordinate of the corners of the rectangles i n 

the tree. Label these coordinates with the number of the horizontal l i n e 

that passes through them. This tree w i l l serve to locate a test point with 

respect to the horizontal l i n e s . 

Given a test point i t i s s u f f i c i e n t to determine which region ( i , j ) 

determined by the extended l i n e s i t i s i n . Once the coordinates of the 

region are known we merely look at position a j j of the matrix set up i n the 

preprocessing to determine i n which o r i g i n a l rectangle ( i f any) the test 

point l i e s . We can determine between which two v e r t i c a l l i n e s the test 

point l i e s i n O(loglogn) time with the predecessor and successor 

instructions on the dense extended van Emde Boas tree. This gives the f i r s t 

coordinate i of the region. The same process works i n the second dense 

extended van Emde Boas tree to determine the second coordinate j of the 
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region. 

Lemma 4.1: 0(n 2) time i s required for preprocessing i n t h i s 

algorithm. 

Proof: There are 0(n 2) regions determined by the l i n e s . I t w i l l 

therefore take 0(n 2) time to set up the answers corresponding to these 

regions i n the matrix. The two dense van Emde Boas trees w i l l take 

O(nloglogn) time to i n i t i a l i z e . The t o t a l preprocessing time for t h i s 

algorithm w i l l be 0 ( n 2 ) . 

Lemma 4.2: The test time i s only O(loglogn) once the preprocessing i s 

complete. 

Proof: I t takes O(loglogn) time to use the dense extended van Emde 

Boas tree to determine each coordinate of a region. 

Lemma 4.3: The algorithm requires 0(n 2) space. 

Proof: The matrix takes 0(n 2) space. Each extended van Emde Boas 

tree requires 0(n 2) space. The t o t a l space-requirement i s 0 ( n 2 ) . 

Rectilinear Planar Subdivisions 

A s l i g h t l y more general problem i s that of searching i n a r e c t i l i n e a r 

planar subdivision. A r e c t i l i n e a r planar subdivision i s a subdivision of 

the plane where a l l d i v i s i o n s between regions are v e r t i c a l and horizontal 

l i n e segments. We assume that no two l i n e segments intersect except at 

th e i r endpoints. We w i l l again be working i n the g r i d domain. This means 

that a l l the endpoints of these segments w i l l be gr i d points. There are n 

of these endpoints or corners i n the subdivision. In which region of a 0(n) 

size g r i d base r e c t i l i n e a r subdivision does a new test point l i e ? 

The algorithm and analysis of t h i s problem are very s i m i l a r to that of 
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the non-overlapping rectangle problem. We extend a l l v e r t i c a l and 

horizontal l i n e segments to l i n e s . These l i n e s are numbered as before. 

I n i t i a l i z i n g the matrix w i l l be s l i g h t l y more complicated. One way to do 

t h i s would be to divide each o r i g i n a l r e c t i l i n e a r area into rectangles and 

proceed as i n the rectangle case. Although more care must be taken the 

preprocessing time remains 0 ( n 2 ) . The preprocessing can be performed using 

a special case of the method described i n the following section. The space 

required i s again 0(n 2) and the test time O(loglogn). 

Searching i n a Restricted Angle Subdivision 

Generalizing the problem s t i l l further we l e t the l i n e segments 

separating regions i n the subdivision l i e at a fixed r e s t r i c t e d number of 

angles. Again we assume that no two of these l i n e segments intersect except 

at t h e i r endpoints. The subdivsion i s made up of n l i n e segments. No 

segment i s unnecessary i n so much as i t s removal w i l l not a l t e r the regions. 

The l i n e segments are r e s t r i c t e d to l i e at z d i f f e r e n t angles. We need not 

use the rectangular g r i d i n the following algorithm. We could use a g r i d 

created by overlaying z d i f f e r e n t series of evenly spaced l i n e s . Each 

series would l i e at one of z possible angles. 

A r e s t r i c t e d angle g r i d based planar subdivision i s exactly the kind of 

subdivision that must be produced by most p l o t t e r s . Nearly a l l d i g i t a l 

p l o t t i n g i s based on the use of a Cartesian coordinate system i n which 

successive data points are constrained to l i e on nodes of a square g r i d 

[ Freeman 79 ]. The square g r i d i s popular because of the wide use of the 

Cartesian coordinate system for data representation and the s i m p l i c i t y of 

the hardware which i s able to use independent systems for the two coordinate 
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positioning mechanisms. These devices are re s t r i c t e d to pl o t t i n g l i n e s that 

are p a r a l l e l to the coordinate axes or at an angle of 45 degrees to them. 

Occasionally other systems are used so that multiples of 30 or 60 degrees 

are allowed. 

The question i s therefore: i n which region of an 0(n) size g r i d based 

subdivision where the angles of the l i n e segments are re s t r i c t e d to z values 

does a new test point l i e ? Again the algorithm and analysis of the problem 

are s i m i l a r to the non-overlapping rectangle problem. We extend each of the 

n l i n e segments to l i n e s . We number the l i n e s of each orientation 

separately. There could be as many as 0(n) l i n e s at any given orientation. 

There are z d i f f e r e n t possible orientations. A z dimensional matrix of size 

n i s required to allow for a l l possible regions created by the l i n e s defined 

by the segments i n the subdivision. However i n any given subdivision there 

w i l l only be 0(n 2) regions defined by the 0(n) l i n e s because of planarity. 

I t i s only i n these 0(n 2) regions that we want to record the answer i n the 

matrix. 

I f the o r i g i n a l subdivision i s given as a basic l i s t of adjacencies as 

chosen by Lee and Preparata [ Lee 77 ], i t can be converted to Kirkpatrick's 

edge-ordered representation [ Kirkpatrick 79 ] i n li n e a r time by taking 

advantage of gr i d sorting c a p a b i l i t i e s . Each o r i g i n a l region has associated 

with i t a l i s t i n clockwise order of the edges bounding that region. From 

t h i s representation o r i g i n a l regions can be considered one by one. 

At each angle "a" l i n e s orientated at angle "a" are placed i n an 

extended van Emde Boas tree for "a" orientation. These l i n e s are labeled 

with the numbers they would have i f counted l e f t to ri g h t . 

Consider one o r i g i n a l region, say region A, of the re s t r i c t e d angle 

subdivision. Region A w i l l contain as many as 0(n 2) fine regions defined by 



Fig 7 Touring a Region of a Restricted Angle Subdivision 

d i r e c t i o n of 



Fig 8 Locating a Point i n a Restricted Angle Subdivision 
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segments of the l i n e s extended from the o r i g i n a l segments of region A. We 

need to store i n the matrix the fact that each of these fine regions i s i n 

region A. The coordinates of a fine region i n the matrix are the 

coordinates of a point i n the region with respect to the l i n e s that are 

stored i n the dense extended van Emde Boas trees. For the purposes of 

i n i t i a l i z i n g the matrix we also store the l i n e segments i n t h i s matrix. A 

l i n e segment i s stored below region ( i , j , k ) in the matrix i f the segment 

separates ( i , j , k ) from ( i , j , k + 1). Associated with each l i n e segment 

stored i n the matrix are two flags which indicate whether the l i n e segment 

has been traveled on i n the up di r e c t i o n and the down di r e c t i o n . Associated 

with each orientation i s an up d i r e c t i o n and a down d i r e c t i o n . 

I n i t i a l l y a l l the l i n e segments that make up the boundary of region A 

are marked i n clockwise order. One of the di r e c t i o n flags i s set for each 

segment on the boundary of region A. A corner point on the boundary i s 

selected to begin a touring and shrinking process during which fine regions 

are marked "A" in the matrix and the size of the unmarked portion of region 

A decreases. See figure 7. From the star t i n g point a segment i s followed 

to a junction. This segment i s marked i n the opposite d i r e c t i o n to that on 

which i t was tr a v e l l e d . A right turn i s made and another segment followed 

and marked i n the reverse d i r e c t i o n . This process continues u n t i l the 

sta r t i n g point i s reached. The fine region encircled i s marked with an "A". 

This process i s repeated u n t i l there are no untravelled l i n e segments 

leaving the star t i n g point. Next a segment that has been travelled i n both 

directions i s followed to advance the star t i n g point to a new location. 

This process continues u n t i l a l l l i n e segments i n region A have been marked 

i n both directions and a l l corner points have been used as st a r t i n g points. 

At t h i s time a l l fine regions within region A w i l l have been marked. The 
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process i s repeated for a l l o r i g i n a l regions i n the subdivision as shown i n 

figure 8. 

I n i t i a l i z i n g the matrix takes 0(n 2) time since there are 0(n 2) fine 

regions and each region i s examined a constant number of times. The matrix 

however takes 0(n z) space. Most of the space i s never accessed and 

therefore need not be i n i t i a l i z e d by lemma 1.2. 

A dense extended van Emde Boas tree i s set up for each orientation. 

Given a test point we find one coordinate from each of the van Emde Boas 

trees. These z coordinates locate the position i n the n z matrix where the 

answer i s stored. 

Lemma 4.4: The t o t a l preprocessing time for t h i s algorithm w i l l be 

0( n 2 ) . 

Proof: i n i t i a l i z i n g the matrix requires 0(n 2) time. I n i t i a l i z i n g each 

of the z van Emde Boas trees requires O(nloglogn) time. 

Lemma 4.5: O(zloglogn) time i s required for each test. 

Proof: O(loglogn) time i s required to find each of the z coordinates 

of a test point. 

Lemma 4.6: The space requirement for the algorithm i s 0 ( n z ) . 

Proof: The matrix requires 0(n z) space. Each dense extended van Emde 

Boas tree requires 0(n 2) space. 
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Intersection Problems 

Shamos and Hoey [ Shamos 76 ] studied a number of geometric 

intersection problems. They present an 0(nlogn) time algorithm for 

detecting whether any two of n l i n e segments intersect. Bentley and Ottman 

[ Bentley 79b ] present an 0(nlogn + clogn) algorithm for reporting and 

counting a l l intersections among n l i n e segments where c i s the number of 

intersections. 

Rectangle intersection problems have recently been investigated by a 

number of people [ Bentley 79a ] [ Vaishnavi 79a ] [ Vaishnavi- 79b ] 

[ Vaishnavi 79c ] [. Bentley 79b ] [ Shamos 77 ]. There are several related 

problems to consider. Shamos and Bentley [ Shamos 77 ] present an 0(nlogn) 

algorithm for detecting whether any two of n rectangles edge intersect. 

Bentley and Ottman present an 0(nlogn + c) algorithm for reporting and 

counting a l l edge intersections among n rectangles. Bentley, Vaishnavi and 

Wood [ Bentley 79a ] [ Vaishnavi 79a ] [ Vaishnavi 79c ] have given 0 (nlogn 

+ c) algorithms for reporting each time one rectangle encloses another. 

Intersection of Rectangles 

The problem we w i l l consider i s to detect whether any two of n 

rectangles whose corners are g r i d points intersect. The rectangles have 

sides that are p a r a l l e l to the coordinate axis. By intersect we mean both 

edge intersection and enclosure. The following algorithm accomplished t h i s 

i n O(nloglogn) time using an extended van Emde Boas structure. However the 

space requirement i s 0 ( n 2 ) . 



49 

F i r s t we sort the l e f t and right sides of the rectangles by x 

coordinate. We begin a l e f t to right sweep of the sides s t a r t i n g with the 

side with minimum x coordinate. I f we encounter a l e f t side we insert the 

top l e f t and bottom l e f t y coordinates into an 0(n k) size dense extended van 

Emde Boas tree structure. Mark the corners i n the tree so that we can t e l l 

whether they are tops or bottoms. I f we encounter a right side during the 

sweep we delete the top and bottom y coordinates from the tree. 

Each time we make an insertion we perform some tests to detect 

intersections. An intersection has occured i f either the successor or 

predecessor of a top i s a top; also i f either the successor or predecessor 

of a bottom i s a bottom.' With these successor and predecessor tests we can 

detect both edge intersection and enclosure among rectangles. 

Clearly i f the top of one rectangle i s between the top and the bottom 

of another rectangle the two rectangles intersect. I f there are a number of 

intersections among a set of rectangles the top two rectangles that 

intersect w i l l have the property that t h e i r tops are consecutive and the 

botoom two rectangles that intersect w i l l hav e the property that the i r 

bottoms ar consecutive. 

Lemma 5.1: The algorithm requires 0(n 2) space. 

Proof: The extended van Emde Boas tree requires 0(n 2) space. This i s 

the dominant space requirement of the algorithm. 

Lemma 5.2: The algorithm requires O(nloglogn) time i n the worst 

case. 

Proof: The i n i t i a l sort of the sides of the rectangles requires 0(n) 

time i n the g r i d domain. O(nloglogn) time i s required to i n i t i a l i z e the van 

Emde Boas tree. Each ins e r t i o n , deletion, find successor or find 

predecessor requires O(loglogn) time. There can be 0(n) of these 
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operations. The t o t a l time requirement for the algorithm i s O(nloglogn). 

Intersection of Rectilinear Polygons 

We can generalize t h i s algorithm so that i t w i l l work with r e c t i l i n e a r 

polygons with sides p a r a l l e l to the coordinate axes. We w i l l detect whether 

any two of a set of r e c t i l i n e a r polygons which have n corners which l i e on 

gr i d points intersect. The time and space requirements are the same as i n 

the rectangle intersection algorithm. 

We begin the algorithm by marking each v e r t i c a l l i n e segment as either 

l e f t or ri g h t . A l i n e segment i s marked l e f t i f the space to i t s right i s 

occupied by the i n t e r i o r of a polygon. Also mark each v e r t i c a l l i n e segment 

with the number of the polygon that i t i s a part of. Next sort the v e r t i c a l 

l i n e segments by x coordinate. 

We begin a l e f t to right sweep of the v e r t i c a l l i n e segments by 

st a r t i n g with the segment with the minimum x coordinate. I f we encounter a 

l e f t side we insert the y coordinate of the top and bottom endpoints of the 

segment into the extended van Emde Boas tree. We mark these points either 

top or bottom and we also mark them with the number of the polygon that they 

are a part of. We then perform the successor and predecessor tests as i n 

the rectangle case to check for intersection. 

If we encounter a right side the procedure i s more complex. Consider 

the top endpoint of the right side. I f the top of a l e f t side from the same 

polygon has the same y coordinate then delete the top of the l e f t side from 

the tree. Otherwise insert the y coordinate of the top endpoint of the 

right side into the tree. Label i t bottom. Find i t s successor i n the tree. 

I t w i l l be the top of a l e f t side of the same polygon. Perform analogous 
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operations with the bottom endpoint of the right side. A l l of t h i s i s the 

same as deleting the segment Bj - T]_ and inserting the two segments T r -

and Bi -B r i f necessary. See figure 9. 

.Lemma 5.3: The algorithm requires 0(n 2) space for the van Emde Boas 

tree. Again there are 0(n) tree operations each of which requires 

O(loglogn) time. The algorithm requires O(nloglogn) time. 

Proof: as i n the rectangle case. 

Intersection of Restricted Angle Polygons 

We can detect intersection among s t i l l more general polygons. These 

polygons have sides that are re s t r i c t e d to l i e at a fixed number of slopes. 

The set of polygons we w i l l consider has n corners which l i e at gr i d points. 

The problem i s to detect whether any two of a set of polygons whose sides 

are r e s t r i c t e d to l i e at one of z possible angles intersect. We solve t h i s 

problem by f i r s t presenting an algorithm which w i l l detect any edge 

intersections among the polygons and then presenting an algorithm which w i l l 

f i n d any cases of one polygon enclosing another. 

This algorithm for detecting edge intersections among re s t r i c t e d angle 

polygons requires 0 (z^nloglogn) time and 0(zn 2) space. We begin by dividing 

the sides into z d i f f e r e n t classes according to slope. This can be done i n 

lin e a r time. Select one slope I and sort the corners of the polygons 

according to an axis with a slope of angle I. We w i l l perform a minimum to 

maximum sweep i n the angle I d i r e c t i o n . There are z - 1 extended van Emde 

Boas trees to hold polygon sides. One to hold each orientation of side 

except for angle I . During the sweep i f we encounter the f i r s t endpoint of 

a segment that l i e s at an angle other than angle I the segment i s inserted 
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Fig 10 Edge Intersections among Restricted Angle Polygons 

- 'P' in a tree represents a present segment at the given position of the 

sweep. 'T1 represents the temporary insertion of the two c i r c l e d 

endpoints. A 'P' between the 'T's i n any tree means an intersection has 

been found. 

di r e c t i o n of sweep testing for 

intersections with horizontal segments. 
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into The van Emde Boas tree for that angle. There i s a g r i d size numbering 

of the possible segments of each orientation. A segment of a given non-I 

orientation i s entered into the tree for i t s orientation simply by making 

the leaf corresponding to i t s number present. I f we encounter the second 

endpoint of a segment that l i e s at an angle other than I the segment i s 

deleted from i t s van Emde Boas tree. I f we encounter an angle I segment (we 

w i l l encounter both endpoints at the same time) we test for intersection by 

looking for a possible intersection i n each of the z - 1 trees. We test for 

intersection between an angle I segment and segments of other orientations 

by temporarily inserting the two endpoints of the angle I segment into each 

of the z - 1 van Emde Boas trees. I f the successor of the l e f t endpoint of 

the angle I segment i s not the right endpoint of the angle I segment an 

intersection has been found. This sweep w i l l find intersections of angle I 

segments with any other segment. We empty a l l the van Emde Boas trees and 

repeat the algorithm l e t t i n g each angle be angle I. 

Lemma 5.4: The t o t a l space requirement for the algorithm i s 0(z n 2 ) . 

Proof: Each of the z extended van Emde Boas trees w i l l require 0(n 2) 

space. 

Lemma 5.5: The algorithm requires 0(z 2nloglogn) time i n the worst 

case. 

Proof: O(nloglogn) time i s required to i n i t i a l i z e each of the z 

extended van Emde Boas trees. O(znloglogn) time i s required.to perform each 

of the sweeps. Each of the n segments may require z intersection tests. 

The t o t a l time requirement for the algorithm i s O(z 2nloglogn). 

The following algorithm w i l l detect enclosures among gr i d based 

r e s t r i c t e d angle polygons. 
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We begin by labeling each non-vertical segment as either top or bottom. 

We sort the endpoints lexicographically f i r s t by x coordinates and second by 

y coordinates. We w i l l perform a l e f t to right sweep. In the case of t i e s 

the sweep w i l l move from top to bottom. 

When the leftmost endpoint of a segment i s reached we determine i f i t 

i s a top. I f i t i s a top we find the closest segment above i t i n various 

angle van Emde Boas trees that are each holding the segments of one 

orientation. I f the closest segment i s also a top then the top of one 

polygon i s between the top and bottom of another so either an enclosure or 

possibly an edge intersection has been detected. Otherwise we insert the 

segment into the extended van Emde Boas tree for i t s orientation. When the 

right endpoint of a segment i s reached the segment i s deleted from i t s tree. 

Lemma 5.6: 0(zn 2) space i s required for the algorithm in the worst 

case. 

Proof: 0(zn 2) space i s required to store the z extended van Emde Boas 

trees. 

Lemma 5.7: O(znloglogn) time i n t o t a l i s required for the 

algorithm. 

Proof: Each time a top i s inserted O(zloglogn) time i s required to 

perform tests. There are 0(n) tops. 



An enclosure has been found i n the horizontal tree. There i s 

a top d i r e c t l y above the test point. 
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Conclusions 

In t h i s thesis we have studied a number of geometric problems i n the 

integer g r i d setting. By taking advantage of integer g r i d sorting 

c a p a b i l i t i e s we have been able to describe l i n e a r time algorithms for a 

number of g r i d based geometric problems. These include finding the convex 

h u l l of a set of g r i d points and solving related problems. These also 

include finding the diameter and finding a triangulation of a set of g r i d 

points. I t i s open whether or not the Delaunay triangulation or another 

triangulation with special properties for a set of n g r i d points can be 

found i n l i n e a r time. 

We have described an algorithm that w i l l find the Voronoi polygon about 

one of n g r i d points i n li n e a r time. We have not determined whether or not 

the complete Voronoi diagram of a set of n g r i d points or even of the points 

of a g r i d based convex polygon can be found i n less than 0(nlogn) worst case 

time. 

By extending van Emde Boas tree we have retained the fast searching and 

preprocessing times at the expense of space requirements. We have used the 

dense extended van Emde Boas tree to obtain fast algorithms for some 

searching i n subdivision and detection of intersection problems. O(loglogn) 

search time algorithms are presented for searching i n a set of rectangles, 

in a r e c t i l i n e a r planar subdivision and i n a re s t r i c t e d angle planar 

subdivision. We have been able to detect intersections among rectangles, 

r e c t i l i n e a r polygons and re s t r i c t e d angle polygons i n O(nloglogn) time. 

The speed of a l l the algorithms we have described depends on the 

integer g r i d domain. Whether or not algorithms are p r a c t i c a l depends on 
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whether or not the integer g r i d domain i s a r e a l i s t i c domain for an 

application. I f an integer g r i d i s a r e a l i s t i c domain one can take 

advantage of the algorithms described i n t h i s thesis, otherwise more general 

algorithms must be used. 

The Euclidean L2 norm was used as a metric i n t h i s thesis. Some of the 

r e s u l t s , such as the Voronoi polygon algorithm, w i l l carry over when other 

norms such as the I4 andl^norms are used. 

We could use some of the integer algorithms presented i n t h i s thesis to 

find fast expected time algorithms for real problems i f the points are 

selected from appropriate d i s t r i b u t i o n s . The real points would f i r s t be 

rounded to integers. The real points need be selected from a d i s t r i b u t i o n 

with the property that not more than a constant number of the real points 

would round to the same integer. The problem would then be solved i n the 

integer domain and the solution mapped back to the real domain perhaps after 

some corrections. This process could be used to produce fast expected time 

triangulation or convex h u l l algorithms for real plane point sets. 

Many integer structures and algorithms use only the e a s i l y sortable 

property of integers. I f we are presented with a bounded set that has 

already been sorted many integer methods can be used even i f the numbers are 

r e a l . In many of the geometric problems we considered sorting was the most 

time consuming step i n the solution. Sorting can i n many cases reduce real 

problems to integer problems. 
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