COMPUTATIONAL GEOMETRY ON AN INTEGER GRID
by
J. MARK KEIL

B.Sc. (Hons) THE UNIVERSITY OF BRITISH COLUMBIA 1978

N .
>

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE- OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1980

(© J. MARK KEIL, 1980



In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my 6epartment or
by his repfesentat{ves.‘ It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

" Co t Sci
Department of . —oP" er Science

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

April 2t 1980
Date ADp s 9

DE-6 BP 75-511E



ii

ABSTRACT

In this thesis we study a number of geometric problems in an integer
grid domain. The worst case time complexity of many of the algorithms that
solve geometric problems in the real plane is O(nlogn). This lower time
bound is often proved by comparing the problems to [l (nlogn) time
comparison sorting. In the grid domain it is possible to sort coordinates,
distances and angles in linear time. By taking advantage of linear integer
grid sorting capabilities we are able to present linear time algorithms for
the following geometric problems which have O(nlogn) time algorithms when
set in the real plane: finding the convex hull of n points, finding a simple
closed polygonal path through n points, finding the diameter of a set of n
points, deciding the separability question for two point sets, finding the
smallest enclosing circle for a set of points, finding a triangulation of a
set of n points and finding the Voronoi polygon of one of a set of n points.
We extend van Emde Boas' O(nlo%;ogn) integer set manipulation tree structure
so it will work on the O(nX) size integer grid. Using this extended
structure we are able to present O(loglogn) search time algorithms for the
problems of searching for a test point in a set of rectangles, in a
rectilinear planar subdivision and in a restricted angle subdivision. We
are also able to use the extended van Emde Boas tree to present O(nloglogn)
time algorithms for the following intersection problems on the grid:
detecting whether any two of n rectangles intersect, detecting whether any
two of n rectilinear polygons intersect and detecting whether any two of n
restricted angle polygons intersect.
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Computational Geometry on an Integer Grid

Computational Geometry

Computational geometry is the study of geometric problems in a
computational setting. This involves analyzing the computational complexity
of geometric problems and determining efficient algorithms for solving them.
In many cases the algorithms becomes efficient because the geometric
properties of the problem are exploited. Shamos was the first to explore a
number of problems in computational geometry [ Shamos 75a ] [ Shamos 75b ]
[ Shamos 76 ]. There have been a number of areas of particular interest in
computational geometry.

One area of particular interest has been the study of the problem of
finding the convex hull of a set of plane points and the study of related
problems. The convex hull of a set of n points on the plane is the smallest
convex polygon whose corners lie at points of the set that encloses the set.
Many algorithms for finding convex hulls and solving related problems have
been proposed [ Graham 72] [ Anderson 78 ]. Shamos [Shamos 75a]‘
considers such related problems as determining the separability of two plane
point sets , determining the diameter of a set of n points in the plane and
- finding the intersection of two n—gons.

There has been interest in studying nearest neighbour problems such as
finding the closest pair of a set of plane points. The Voronoi diagram is a
power ful structure often used to solve nearest neighbour problems.‘ The
Voronoi polygon associated with each point p of a set of planar points is a

region of the plane consisting of all points at least &s near to p as to any



other point in the set. The Voronoi diagram of the set consists of the
points in the plane which lie in two or more Voronoi polygons [ Shamos 75a ]
[ Shamos 75b ] [ Shamos 78 ]. Shamos and Hoey [Shamos 75b] study a
number of problems involving the proximity of n points in the plane such as
finding a Euclidean minimum spanning tree, the smallest circle enclosing the
set, k nearest and farthest neighbours, the Voronoi diagram of the set, the
two closest points and a proper straightLIine triangulation.

Many intersection problems, such as detecting intersections among
planar polygonal figures, have been studied [ Bentley 79a ] [ Bentley 79b ]
[ Brown 78 ] [ vaishnavi 79a ] [ Vaishnavi 79b ]. Shamos and Hoey [Shamos
76] study intersection problems such as detecting intersection among line
segments, determining whether two simple plane n-gons intersect and
determining whether any two of n circles in the plane intersect.

There has been interest in problems involving searching in the plane.
A planar subdivision is a partition of the plane into polygonal regions.
The problem of locating a point in a planar subdivision has been studied
under various titles by Dobkin and Lipton [Dobkin 76], Lee and Preparata
[ Lee 77], Lipton and Tarjan [ Lipton 77], Shamos [ Shamos 78], Shamos and
Bentley [ Shamos 77 ]wand Kirkpatrick [ Kirkpatriqk 79]. There are also
many other geometric problems being studied under a computational light.

Computational geometry haé been studied primarily in the real plane or
in higher diminsional real spaces. In these domains lower bounds on the
worst case performance of many algorithms are proved by comparing the
algorithm with the n (nlogn) worst case time for comparison based sorting.
For example, Shamos [ Shamos 75a] proves that fl(nlogn) worst case time is a
lower bound on the worst case time for finding the convex hull of a set of n

points in the real plane by showing that any convex hull algorithm can be



uséd to sort. To prove the f\(nlogn) lower bound on the worst case time for
finding the convex hull of a set of n points in the real plane one can also
reduce the problem of finding the maxima of a set of vectors to the problem
of finding the convex hull. The fl (nlogn) lower bound applies not only to
convex hull algorithms that provide an ordered convex hull but also to
algorithms which simply identify the hull points. Let A be a set of n
vectors with real components. If the vectors are ordered so that u > v if
xi(q) >= xy(v) for i = 1,2 then a partial ordering has been applied to A.
The maximal elements of this partially ordered set are called the maxima of
A,

Lemma 1.0: There is an j\_(nlogn) lower bound on the time to find the
maxima of a set of vectors.

Proof: [ Kung 75 1.

Leima 1.1: () (nlogn) is a lower bound on the time required to find
the convex hull of n real plane points.

Proof: Let A be a set of real plane points such that the convex hull of
A is all of A. There are four points in A atraps2y and ay such that x5(ag)
= maxj Xp(aj) , xp(ap) 1 minj x5(aj) , X3(ay) = maxjy xj(aj) , x1(ay) = minj
xl(ai). These four points divide the hull points into four sets one of
which will contain O(n) points. All of these.are maxima vectors therefore
by Lemma 1.0 the convex hull requires 11.(nlogn) time [ Preparata 77 ].

The best worst case algorithms for many problems such as finding the
Voronoi diagram of a set of n real plane points, finding a triangulation of
a set of n real plane points and determining whether any two of n line

segments in the real plane intersect have an O(nlogn) time bound.



Restricted Domains

Many problems naturally lie in restricted domains where comparison
sorting is not necessary. To steer clear of the lower bounds imposed by
comparison based sorting we look to these restricted domains. An example of
such a domain would be an integer grid. On an integer grid all points have
cartesian coordinates (x,y) where x and y are restricted to be integer.
Another example would be a hexégonal or triangular grid where each point has
six neighbours . Later we shall see that restricting lines on the grid to
orientate at a fixed number of slopes can be exploited. For example, we may
allow only horizontal lines, vertical lines and lines that lie at 45° to the

axes.

Applications

Many geometric problems are of practical as well as theoretical
interest. Geographic data processing is one area where grid based
computational geometry can be applied [ Nagy 79a] [ Nagy 79b]. In many cases
the points on maps are grid based. It is often necessary to solve geometric
problems on maps. For example to locate a point on a map treat the map as a
planar subdivision.

Printed circuit design is another application area for grid based
computational geometry. The problem of detecting whether any two of n
rectangles intersect has an important application in the area of very large
scale integrated circuit artwork analysis [ Baird 78] [ Lauther 78].

Solving the rectangle intersection problem can identify locations where



circuit function is threatened by loss of edge acuity.

There are also applications of grid based computational geometry in
computer gfaphics, pattern recognition, operations research, numerical
analysis, linear programming and data base design [ Preparata 77]
[ Freeman 79] [ Sibson 78] [ Vaishnavi 79a] [ Shamos 75a] [ Shamos 75b].

Shamos [ Shamos 75b] mentions applications involving wire layout,
facilities location and cutting stock. The construction of interpolating

functions in two dimensions involves triangulating a set of points.

Models of Computation

The model of computation we shall use is a random-access machine (RAM)
with the capability of performing rational number arithmetic. An equivalent
RAM has the capability of performing integer arithmetic with multiplication.
In the algorithms in Chapter 2 we also require that the machine will have
the ability to calculate the floor function[_ J . Fortune and Hopcroft [
Fortune 78 ] point out that the floor function can add substantially to the
power of a machine. All the analyses which follow will use the uniform cost
criterion with the RAM. [ Aho 74] The uniform cost criteria with the RAM is
the model of computation used when proving fl(nlogn) worst case time is a
lower bound for comparison based sorting. Each comparison takes one unit of
time regardless of the size of the numbers.

We have already mentioned some possible grid definitions. For the
purposes of this thesis a grid is defined to be a regular bounded
rectangular integer grid of size m. A point on the grid has the cartesian

coordinates (x,y) where x and y are integers in the range 0 to m. "m" can



be a polynomial function of n. n is the size of the problem. For example n
could be the number of points in a set or the number of edges in a set of
polygons.._ Althdugh most of the results apply for arbitrary m we will

restrict our attention to the case where m is O(nk) for some fixed k.
Integer Sorting and Initialization Method

We are able to avoid using comparison based sorting because the domain
is of a fixed range integer type. When dealing with sufficiently restricted
sets of integers sorting can be performed in linear time. By using an
extended radix sort we will be able to sort in the grid domain in linear

¢ time.

On several occasions we will use the technique of using a data
structure without initializing more of it than is strictly necéssary.

Lemma 1.2: It is possible to perform inserts, deletes and membership
tests in a data structure that can contain subsets of a universe set
consisting of a bounded subset of the natural numbers in time proportional
to the number of operations being performed. Thi; allows us to build data

structures whose space requirements exceed their preprocessing requirements.

Proof: [ Aho 74 ] p. 71.
Chapter Summarys

In chapter 2 we show how to sort coordinates, distances and angles in
the grid domain in linear time. O(n) time algorithms are given for the
following problems in the grid case: Finding the convex hull of n points,

finding a simple closed polygonal path through n points, finding the



diameter of a set of n points, deciding the separability question for two
point sets, finding the smallest enclosing circle for a set of points,
finding a triangulation of a set of n points and finding the Voronoi polygon
of one of a set of n points.

In chapter 3 we review an O(nioglogn) initialization time, O(loglogn)
search time set manipulation structure due to van Emde Boas. [ van Emde
Boas 77] The structure is extended so that it will work on an((nK) grid set
without having an increased asymptotic time bound. We also extend the
structure to handle integers ranging from 1 to nK selected from a set of
size O(n) in only O(n2) space.

In chapter 4 we exploit the dense extended van Emde Boas structure to
give O(loglogn) time algorithms for searching in a set of rectangles, in a
rectilinear subdivision and in a restricted angle subdivision.

In chapter 5 we exploit the dense extended van Emde Boas structure to
give O(nloglogn) time algorithms for detecting intersections amohg
’rectangles, among rectilinear polygons and among restricted angle polygons.

Chapter 6 presents our conclusions.



Chapter 2 Grids and Sorting
Sorting Methods

The grid domain we have defined has points (x,y) where x and y are
integers which fall into the range 0 to m. A comparison based sort is not
needed because the points are integers. The radix sort is a fast integer
sort that works on a finite range [ Aho 74 ].

Lemma 2.1: A sequence of n grid points can be sorted by x or y
coordinates or lexicographically in O(n + m) time using the radix bucket
sort.

Proof: [ Aho 74 ].

Lemma 2.2: A sequence of n grid points can be sorted by x or y
coordinates or lexicographically in O(nlogym) time which is O(kn) time if m
is o(nK).

Proof: by expressing the grid points in n-ary notation, a multipass n
bucket sort could be used on a sequence of n grid points. Each grid point
in n-ary notation would have at most k digits when m = nK [ Aho 74]. On the
first pass the 1eést significant digit would be sorted using an n bucket
sort in O(n) time. On the next pass the next most significant digit would
be sorted. There will be at most k of these passes. The multipass sort
will require O(nlogym) which is O(kn) time if m = nk., If k is a fixed
constant the k pass sort requires only O(n) time.

If n is a power of two division is not needed to do the sort. Shifting
will do to express m in n-ary notation.

A set of intergridpoint distances may have to be sorted quickly.

Lemma 2.3: We can sort a set of n distances on the grid in O(nlogpm)



time.

Proof: The distance d between two grid points in the Euclidean metric
is (xp - xl)2 + (y2 - Y1)2 . 42 = (xo - xl)2 - (y2 - y1)? is an
integer. A sequence of points sorted by d2 from a given point will be in
the same order as if they were sorted by d from the given point. Fast
integer sorting techniques can be used on d2 because d2 is an integer
quantity. On the grid d will range from 0 to m and therefore d2 will range
from 0 to m2, If d2 is expressed in n-ary notation there will be at most
210§nm digits. A sequence of n grid points can be sorted with respect to d2
and thus also to d from a given point in O(nlogym) time using a 2log,m pass
bucket sort..

Corollary to 2.3: We can sort a set of n distances on a O(nk) size grid
in O(n) time.

Proof: The O(nlogym) time sort takes O(kn) time on this grid. Since k
is a constant the distances can be sorted in O(n) time.

In some algorithms it is necessary to sort points by the angle they
form with respect to a given origin and axis.

Lemma 2.4: A set of angles determined by n sets of three grid points
can be sorted in O(nlogpm) time.

Proof: One grid point is selected to be the origin and the points are
to be sorted with respect to the angle they form with the x-axis. This
angle can be determined from the quadrant and the slope within the quadrant.
The quadrant can easily be determined by the signs on the coordinates.
Given the points in one quadrant the slope is sufficient to determine the
angle. The slope is of the form y/x where x and y are integers in the range
0 to m. These slopes are not integer. If the linear integer sorting

techniques are to be used on the slopes they have to be transformed to
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integers in such a way as to preserve the order between the slopes.

The différence between two slopes is yj1/X] — ya/Xy = (y1Xp —Y2X1)/X1X)
. The smallest difference between two slopes is 1/x)3X5. Any transform used
must separate slopes that are separated by 1/x3x5. Slopes that are
separated by 1/x1X, must be mapped to different integers . Since 1 £ xj <'m
then 1 £ m2/x1x2. The expression [13? + Slope| is the required
transform.:By multiplying the slopes by mZ2 and rounding down slopes are
mapped to integers with order preserved. These integers will range from 0
to m3 and can be expressed in 3logpm diget n-ary notation. Using a multiple
pass bucket sorting technique these integers which correspond to the slopes
can be sorted in O(nlogym) time. Since angles with respect the origin are
determined by the slope in each quadrant, these angles can be sorted in
O(nlogym) time.

Corollary to 2.4: A set of angles determined by n sets of three grid
points on an O(nk) size grid'can be sorted in linear time.

Proof: From Lemma 2.2 the angles can be sorted in O(nlogym) time
which on this grid is O(kn) time. Angles can be sorted in linear time on an
O(nk) size grid.

The O(n) time algorithms found in the rest of the chapter which depend
on integer grid sorting capabilities all assume an 0(nK) size grid. These
algorithms will work on a general size m grid in O(nlogym) time.

Convex Hull and Related Algorithms
The convex hull of a set of n real plane points can be found in

O(nlogn) time using Graham's algorithm [ Graham 72]. In Graham's algorithm

the first step is to find a point interior to the convex hull. Then all
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points are sorted by angle around this point. Initially all points p; are
considered to be part of the convex hull. A series of three point tests are
made beginning with the point with the smallest angle which test whether to
remove the middle point from the convex hull. If the angle pjpop3 is
greater than 180 degrees than py is on the convex hull so continue by
testing pop3p4. If angle pjpyp3 is less than 180 degrees than eliminate pj
from the convex hull and continue by testing pjpopg. These tests continue
until all the points have been examined. None of the points need to be
examined more than a constant number of times. Graham showed that the
complexity of the algorithm can be decomposed into two parts: one for
sorting the points by angle which takes O(nlogn) time and the other for
testing which points belong on the hull which takes O(n) time.

Theorem 2.5: By taking advantage of grid integer sorting capabilities
the convex hull of n grid points can be found in O(n) time.

Proof: Anderson [ Anderson 78] noticed that it is not necessary to
start the convex hull algorithm with a point interior to the hull. Instead
select the leftmost bottom grid point xp. This point can be found in linear
time. Next order the points xj by the angle xp.-- x; forms with the
horizontal line passing through xp. We perform the angle sort for grid
points in linear time. If more than one point lies at the same angle
eliminate the one closer to xg. Finish the algorithm by performing the
three point tests as before. The entire algorithm is of time complexity
O(n) in the grid domain. Shamos suggested a different technique for a
linear convex hull algorithm on a size n lattice in an early draft of his
thesis. The coordinate sorting based algo;ithn of Andrew [ Andrew 79 ]
could also be adapted to an O(n) algorithm on the grid.

A number of results follow from the linear convex hull algorithm.
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Theorem 2.6: (a) The diameter of n grid points can be found in O(n)
time.
(b) the separability question for two grid point sets
can be decided in O(n) time.
(c) the smallest circle enclosing a set of n grid
points can be found in O(n) time in the worst case.

Proof

(a) The diameter of n real plane points can be found in O(nlogn) time
[ Shamos 75a ]. This is done by first finding the convex hull of the set
and then finding the diameter of the convex hull. Finding the convex hull
takes O(nlogn) time. Finding the diameter of the convex hull requires 0O(n)
time.

In the grid domain the diameter of n points can be found in O(n) time.
Both finding the con§ex hull and finding the diameter of the hull are linear
operations in the grid domain.

(b) Two finite plane point sets are said to be separable if and only if
there exists a straight line 1 with the property that every point of one set
lies on one side of 1 and every point of the second set lies on the opposite
side of 1. Shamos t Shamos 75a ] notes that two plane sets are separable
iff their convex hulls are disjoint. In the real plane the separability
question for two point sets can be decided in O(nlogn) time. O(nlogn) time
is sufficent to find the convex hull of each set and O(n) time is sufficent
to determine whether these hulls intersect.

The separability question for two grid point sets can be decided in
O(n) time. Finding the convex hulls which was the bottleneck can now be
done in linear time.

(c) Shamos and Hoey [ Shamos 75b ] show that the smallest circle
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enclosing a set of n real plane points can be found in O(nlogn) time. The
diameter of the required circle is the same as.the diameter of the point
set.

In the grid domain finding the diameter of a set of n points takes 0O(n)
time. Therefore the smallest circle enclosing a set a n grid points can be

found in O(n) time in the worst case.
Simple Closed Polygonal Path Algorithm

Shamos [ Shamos 75a] shows that in the real plane finding a simple
closed polygonal path through n points must take.[l(nlogn) time in the worst
case. If a simple closed polygonal path in the real plane could be found
faster than in O(nlogn) time then the convex hull of n real plane points
could also be found faster than O(nlogn) time.

A simple closed polygonal path through n grid points can be found in
O(n) time in the worst case. Start by sorting the points by angle from the
vertical about the leftmost extreme point. On the grid this takes 0O(n)
time. Join the points in increasing order of angle. If several points lie
at the same angle join them in increasing order of distance except if they
lie at the maximum angle then join them in decreasing order of distance.

None of these steps requires more than a linear amount of time.
Tfiangulations
Given n points in the plane a triangulation is formed by Jjoining them

by non-intersecting straight line segments so that every region interior to

the convex hull is a triangle.[ Shamos 75b ] Triangulation is important in
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numerical interpolation. It is necessary to construct a triangular grid to
base the interpolation. There are various kinds of triangulations that have
special properties. The minimum weight trianqgulation minimizes the sum of
the edge lengths. The minimum weight triangulation has good numerical
properties [ Shamos 75b]. The Delaunay triangulation is the dual of the
Voronoi diagram. Whenever the Voronoi polygons of two points share a common
edge these two points are joined in the Delaunay triangulation.

On the real plane fl(nlogn) is a lower bound on the time required to
find any triangulation -of n points. Shamos and Hoey [ Shamos ZSb 1 prove
this by reducing comparison based sorting to triangulating.

The following algorithm which takes advantage of grid sorting
capabilities enables one to triangulate n grid points in linear time.

Figure 1 shows the algorithm in progress.

1. Find the point with the minimum x coordinate. Call it xq.

2. Sort the points xj by the angle xp —-- xj makes with the vertical
line passing through xg.

3. Find the point xj with the minimum angle and add the edge xg —— X3
to the triangulation. Initialize a stack called BACK by pushing xj onto it.
Set i to 1.

4, While i < n Do

- include edge xg —- xj4] and Xj —— Xj4+] in the triangulation.
~ While (stack has two elements and (outer angle xj+],top(BACK),
second (BACK) < 180 degrees))
Do a) Include edge xj4] —— 2nd(BACK) in the triangulation.

b) Pop stack
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Partially Cbmpleted Triangulation

- edges are labelled in the order that they were inserted in the
triangulation

- at this point the stack 'BACK' contains x3 x5 x] where x3 is at the
top of the stack

- algorithm is in inner while loop about to test the angle x5 - x3

- Xy where x3 is top(BACK) and x5 is 2nd(BACK).

X1
3
X2
5
1 2 X3
4 7 10
Xy
——9
6 Xg
8
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End inner while
- Push xj4] onto stack

-i<-i+1

Lemma 2.7: The above algorithm yields a triangulation of n grid
points in O(n) time in the worst case.

Proof: Ig the triangulation algorithm steps 1 and 2 require O(n) time
in the worst case. Step 3 takes a constant amount of time. In step 4 the
outer while loop takes O(n) time. The inner while loop eliminates a point
each time it is entered. It therefore can be entered at most n times. Step
- 4 and thus the entire algorithm run in O(n) time.

The triangulation found by the above algorithm was not created to have
any particular properties. Lawson [ Lawson 72 ] descriped an algorithm for
forming the Delaunay triangulation from an arbitrary triangulation. A
triangulation is a Delaunay triangulation if and only if in every strictly
convex quadrilateral the replacement of the diagonal by the alternative
diagonal does not increase the minimum of the six angles in the two
triangles making up the quadrilateral [ Sibson' 78 ]. Lawson would start
with an arbitrary triangulation and make exchanges of the diagonal in convex
quadrilaterals until the Delaunay triangulation was formed. The complexity

of this algorithm has not been determined.
Voronoi Polygon Algorithm

Shamos and Hoey [ Shamos 75b ] show that Jl.(nlogn) time is required in
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the worst case to construct the Voronoi polygon of a given real pléne point
with respect to n — 1 other real plane points. This is done by showing that
a Voronoi polygon finding algorithm can sort.

One application of a Voronoi polygon finding algorithm is in the
incremental formation of Voronoi diagrams. If the Voronoi diagram of a set
of n points is given and another point is then added to the set, the Vbronoi
polygon of the new point with respect to the old ones must be found as part
of the process to create the Voronoi diagram on the complete set of n + 1
points.

The Voronoi polygon about xj with respect to a set of n ~ 1 points has
the property that all plane points within the polygon are closer to xj than
to any x4 (i # j) within the given set. The Voronoi polygon about xi is the
mutual intersection of all half planes containing xj defined by the
perpendicular bisector of x; and X for all j # i in the given set. The
Voronoi polygon is a convex polygon having at most n - 1 sides. Using
Brown's [ Brown 78 ] nmthéd of intersecting half planes and grid integer
sorting capabilities a single Voronoi polygon can be constructed in O(n)
time in the worst case.

To form the Voronoi polygon about a point P start by forming the lines
that bisect the segments joining P with the other n - 1 grid points. These
lines divide the plane into half planes which can be intersected using
Brown's algorithm.

The half planes are divided into three sets: upper, lower, and
vertical. A half plane is in the set ﬁpper if. the line at its boundary is
above the rest of the half plane. Lower and vertical are defined similarly.
Brown's method divides the intersection problem into four pérts: (1) the

intersection of the upper half planes. (2) the intersection of the lower
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half planes, (3) the intersection of the results of (1) and (2) , and (4)
the handling of the vertical half planes.

Part (3) is accomplished in O(n) time even in the more general real
plane case using Brown's ALGORITHM INTERSECTCHAINS.

To solve part (4) intersect the result of part (3) with the rightmost
right vertical half plane and the leftmost left vertical half plane. Shamos
[ Shamos 75a ] shows that the intersection of two convex n—gons takes O(n)
time. This is done twice in this step. Part (4) is accomplished using O(n)
time in the worst case.

Parts (1) and (2) .remain. Consider part (1) the intersection of the
upper half planes, part (2) can be done similarly. Some of the lines that
define the half planes do not bound the final intersection . These are
redundant lines . Brown's algorithm finds all such lines and throws them
away. Then the remaining lines are sorted so that the top part of the final
intersection is created.

The first step is to find the redundant lines. To do this Brown uses a
transform that transforms points to lines and lines to points by the
following formulas.

Y = slope * X + intercept -> (slope , intercept)

(x , vy) —-> intecept = -x =+ Slope + vy

Brown transforms the lines which define the upper half planes to points. He
then finds the lower convex hull of the resulting points. Those lines which
do not correspond to points on the lower coﬂvex hull of of transformed
points are redundant.

In the grid case start by expressing the lines defining the upper half
planes in slope intercept form. In order to take édvantage of the fast

convex hull algorithm the slope and intercept of the bisectors between point
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Fig 2 Brown's Transform
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P and the other n - 1 points have to be csnverted to integer points on a
grid finer than the original. The slope and the intecept have to be
converted to integers preserving order.

This has already been done for the slopes in the discussion on grid
angle sorting. Lzzk . SlogsJ will convert the slopes to integers
preserving order. The intercept also needs to be converted.

As shown iﬁ fig 2 the bisector between point P (a,b) and point Q (c,d)
has intercept
B = -x + Slope + y = ({(c + a)/2) + Slope + ((b + d)/2)

The difference between two such intercepts is
B -B' = ((¢c +a)2) - ((a - c)/(@ - b)) + (b + d)/2)

- (((c" +a')/2) - ((a' - c")/(@" - b")) +

((b' +d")/2))
B -B'= ((c+a)(a-c)(d -b") - (c'" +aa-20c) /
2(d - b)(d" -b"Yy + b+d /2~ (b'"+4d") /2

where 1 < a,b,c,d < nK. The smallest separation between two intercepts .is
| then
1/2(@-Db)(@ -b") 21/ 2n2k
Any transform used must separate intecepts that are separated by 1/2n2K,
Intecepts that are separated by 1/2n%kK must be mapped to different integers.

If the intercepts are converted by 2n2k . Interceptl they become

integers and order is preserved.

Once the slopes and intercepts have been converted onto the finer grid
the lower convex hull of the points is found in O(n) time. The finer grid
is at most 2n2K times as fine as the original grid. The size of the finer
grid is still a pblynomial function of n. "m" = n2K, These points on the

lower convex hull correspond to the bisectors in the original problem that
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form part of the Voronoi polygon.

These bisectors are sorted in O(n) time using the grid angle sort.
Part (1) has thus been completed in linear time.

Lemma 2.8: The grid Voronoi polygon algorithm runs in O(n) time in
the worst case.
‘All four parts of the algorithm are done in linear time and thus the 0(n)
worst case time Voronoi polygon algorithm for grid points is complete. :

Brown's method can also be used to find the intersection of n half
planes in 0O(n) timg if the lines defining the half planes are defined by two
grid points. Brown's method can also be used to find the kernel of a
polygon on the grid in O(n) time. Lee and Preparata [ Lee 79 ] have an O(n)
time kernel algorithm for the real plane. It is open whether the complete

Voronoi diagram of n grid points can be found in linear time.
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Chapter 3 Van Emde Boas Structure

’

When designing efficient algorithms for the manipulation of sets of
points on the plane one encounters the problem of handling incompatible
operations. Instructions for inserting or deleting points in sets requires
a random access data structure. However instructions for finding the
minimum element or the nearest neighbour of an element require an ordered
representation. One example of a data structure which allows both random
and ordered access is a priority queue which supports the instructibns
insert, delete and find minimum. Another example is a mergeable heap which
supports the instructions insert,delete,form union and find minimum.[Van
Emde Boas 77] |

Algorithms which depend on both random and ordered access which work
with real numbers and depend on comparisons to order numbers have so far
shown a worst case processing time of O(nlogn) per instruction for a series
of O(n) instructions on a n element universe. Aho, Hopcroft and Ullman
[ 2Aho 74 ] use 2-3 trees to ithplement priority queues and mergeable heaps so
that n instructions can be processed in O(nlogn) time. Of course any
sequence of n instructions which will sort n real numbers will require
) (nlogn) fime. If the domain is restricted to a bounded integer range
this lower bound no longer applies. Van Emde Boas [ 77a ][van Emde Boas
77b] presents a data structure which manipulates on-line a priority queue on
the domain of integers from 1 to n with a worst case time of O(loglogn) per
instruction. This data structure requires O(nloglogn) preprocessing time to
create and 0(n) space to store.

Van Emde Boas structure can actually support more instructions than a

simple priority queue. On a universe consisting of integers in the range 1
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to n van Emde Boas tree supports the instructions find minimum, £ind
maximum, insert,delete, test for membership, find predecessor and find
successor. Moreover, each of ‘these instructions can be completed in
0O(loglogn) time in the worst case.

The structure of the van Emde Boas tree is quite complex. Some of this
structure is static not depending on the set beihg represented. Assume that
n = 2h, The skeleton of the van Emde Boas structure will be a binary tree
of height h. The n leaves of this tree will represent the numbers 1 to n in
order from left to right. The leaves represent the potential members of the
set. Each node of the tree also contains a number of labels and static
pointers. The level of a node is the length of the path from the leaves to
the node. Each node contains a series of father pointers which point
upwards in the tree. These are used to perform a binary search on the
levels of the tree. For example, a leaf will contain father pointers
pointing to the half, quarter, eighth and so on positions on the path from
the leaf to the root of the tree. A node at a level 1/4 of the way from the
leaves to the root will‘have father pointers pointing to the nodes at the
3/8, 5/16 and so on levels on the path from a leaf to the root passing
through that node. Each node will have O(loglogn) of these father pointers.
These static pointers exist for every node and do not depend on the set
being represented in the data structure.

There is also dynamic information stored in the tree that indicates
which integers are members of the set and indicates the ordering between
these members. At the leaves the dynamic information consists of the
pointers successor and predecessor and the flag present. The pointers are
part of a doubly linked list that incllides the members of the set. The

present flag is set if the leaf is a member of the set. Dynamic information
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Fig 3 Van Emde Boas Tree
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is stored at internal nodes only if strictly necessary to represent the
relationships between members of the set. If dynamic information is stored
at an internal node then the node is said to be active. For example, if a
new element is to be inserted into the set various nodes will have to be
marked present. First the leaf will be marked present. The root is then
tested to see if it is present. If it is not present then this element must
be the first element in the set. The root is marked present and a dynamic
pointer is set to point to the only present leaf. If the root is present
then a father pointer is followed from the leaf to a node half way up the
tree. If this node is not present we have reduced the problem to inserting
this node in the top half of the tree. If the node is present we have
reduced the problem to inserting the leaf in the bottom half of the tree and
a father pointer is followed to a point one quarter of the way up the tree.
This process continues so that the presence of a leaf is indicated as high
as possible in the tree.

To insert an integer into the tree first mark the leaf corresponding to
that integer present. Then follow father pointers up to the nearest present
node marking all active internal nodes present. This is a branchpoint. At
the branchpoint one side will contain the newly inserted integer and the
other will contain either the successor or predecessor of the new integer.
Given this neighbour the doubly linked successor predecessor list at the
leaf level can be updated to include the newly inserted integer. Using the
binary search on the levels strategy that was used to mark the active nodes
the branchpoint is found and thus an insert is performed in O(loglogn) time.
Using a similar process a delete can be performed in 0O(loglogn) time.
Testing for membership, finding the successor or the predecessor can be done

in a constant amount of time.
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To initialize the structure it is necessary to create the static
structure . This consists of the binary tree skeleton, the level and other
labels and the father pointers. There ar% O(n) nodes in this tree. Each
node contains O(loglogn) father pointers and a constant number of labels.
It follows that O(nloglogn) space and preprocessing time are required to
initialize the tree. Later van Emde Boas cuts down on the number of
pointers to achieve an O(n) worst case space structure [ van Emde Boas 77bj.

Van Emde Boas tree manipulates subsets of the set of integers ranging
from 1 to n. On the grid integers can range from 1 to nK. We would like to
extend van Eﬁde Boas tree structure so that it could function on the larger

universe.
Extended van Emde Boas Tree

The. following extension of van Emde Boas structure allows the
processing of n instructions, when the universe is restricted to the domain
of integers in the range 1 to nk, in O(kloglogn) time per instruction in the
worst case. The extended structure requires O(nk) space and O{(knloglogn)

preprocessing time.
O(n2) Extended van Emde Boas Tree

First consider the case where k = 2. The sets to be menipulated are
subsets of the integers ranging from 1 to} n2. We can express any such
integer in two digit n-ary notation (i,j) where i and j range from 0 to n -
1. A priority queue on the domain of integers ranging from 1 to n2 can be

represented by n priority queues on the domain of integers ranging from 1 to
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n. We use one van Emde Boas structure hereafter called the i-tree to select
the i coordinate . Then we use the j coordinate in one of some other van
Emde Boas trees (j-trees) to finally locate the desired integer. The i
coordinate selects which tree to look at and the j coordinate positions you
within that tree. In order to make this extended structure efficient we
separate the static and dynamic information in the nodes. In the n j-trees
the static information is stored only once while each tree must have
separate dynamic information. Each node of the complex j-tree will consist
of an array N where N(i) represents that node in the ith tree. The static
father pointers, level labels and other static information are stored only
once in each node of the complex tree. This complex tree consists of n
superimposed simple trees.

To handle the first coordinate i a separate simple van Emde Boas tree
is built. The leaves of this tree act as a multiset containing counters
indicating the number of points in the overall structure with the given i
coordiﬁate.

Lemma 3.1: This structure requires O(loglogn) time to process an
instruction in the worst case.

Proof: O(loglogn) time is required to handle the i coordinate in the
simple i tree. A constant amount of time‘is used to select the appropriate
j-tree in the complex j-tree and O(loglogn) time is required to process an
instruction in the j-tree.

Lemma 3.2: This structure requirés 0(n2) space.

Proof: There are O(n) nodes in the complex j-tree and each node
requires O(n) space for the dynamic information. The simple i-tree requireé
only O(n) space.

Lemma 3.3: Initializing the structure requires only 0O(nloglogn) time
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in the worst case.

Proof: We use this time to set up the static information in the i-tree
and the complex j-tree. None of the dynamic information need be initialized
before use. We use 0(n?) space without intializing it by Lemma 1.2.

The extended van Emde Boas structure supports the operations insert,
delete, test for membership, find predecessor and find successor. We insert
an integer into the structure by first expressing it in n-ary notation with
the coordinates i and j. We then test the i-th leaf in the i-tree. If the
counter there registers zero we do a regular insert into the i-tree. If the
counter registers non-zero then we merely increment the counter. The ith
tree in the complex j-tree is selected. We insert the j coordinate of the
number into this tree. Deletion is analogous to insertion. Membership
testing can be done in constant time.

We will want to find the successor of an integer expressed in n-ary
noatation with the coordinates (i,j). We begin the search by finding the
successor of j in the ith tree of the complex j-tree. If one exists the
successor of (i,j) is (i,succ(j)). If no successor of j exists it means
that j is the maximum element of the ith part of the complex j-tree. In
this case we find the successor of i in the simple i-tree. Next we find éhe
minimum element in the succ(i) part of the complex j-tree. The successor of
(i,j) is then (succ(i),min(j)). Finding the predecessor of an integer is

analogous to fihding the successor.
O(nk) Extended van Emde Boas Tree

We can extend van Emde Boas tree structure so that it can handle

subsets of the set of integers in the range from 1 to nK. We can express
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any integer in this range in k digit n-ary notation (ij,ij,. . . ix—_3,3)
where iy,ip . . . ig-1,] are integers ranging from 0 to n - 1. We use
one simpie van Emde Boas tree to handle iy just like the i-tree in the n?
case. This reduces the problem to creating a data structure to handle the
nk=1 case. The process of creating i-trees can be continued until the n2
case is reached. The n2 case uses an i-tree and a complex j-tree as before.
In the nkK structure the 1] coordinate selects the coordinate in the ij
dimension. The complex j-tree will have k - 1 dimensional hypercubes at
each node compared to the linear array in the n? case. As in the n2 case we
separate the static and dynamic information in the complex j-tree. The
dynamic information is stored in the k - 1 dimensional hypercubes and the
static information is stored separately at only the top level. The complex
j-tree is really nk-1 superimposed simple van Emde Boas trees.

Lemma 3.4: This structure requires O(kloglogn) time to process an
instruction in the worst case.

Proof: O(loglogn) time is required in each i~tree. There are k - 1 i
trees so that the total time is O((k - 1)loglogn). Also O(loglogn) time is
required in the chosen part of the complex j-tree. Altogether O(kloglogn)
time is required.

Lemma 3.5: This structure uses O(nK) space.

Proof: Each i-tree uses O(n) space for a total of O((k - 1)n). Each of
the O(n) nodes of the complex j-tree contains a k -1 dimensional hypercube
of size n. The complex j-tree therefore uses O(nk) space.

Lemma 3.6: Initializing the structure requires only O(nloglogn) time
in the worst case.

Proof: Now that the space requirement is up to O(nK) the initialization

trick used in the n? case becomes vital to preprocessing time. We use this
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time to set up the static information in the i-trees and the complex
j-trees. As before, none of the dynamic information need be initialized.

The nK extended van Emde Boas tree supports all the instructions that
the simple tree does. To insert an integer into the structure we insert the
iy coordinate into the multiset storage of the ij i-tree in the same way as
we did in the i-tree of the n? case. Next insert the ij coordinate into the
multiset storage éf the ij i-tree. We fhen insert j into the appropiate
part of the complex Jj-tree. Again deletion is analogous to insertion.
Membership testing is a constant operation.

Finding the successor or predeccessor of an integer in the nK structure

is an obvious extension of doing the same in the n2 structure.

Dense Extended van Emde Boas Structure

If we only wish to represent a set of grid points with O(n) members in
the nK van Emde Boas structure there is much space that is not used. If we
know that the integers we will place in the van Emde Boas tree are selected
from a known subset of size O(n) of the integers ranging from 1 to nK we can
decrease the space required. We are able to further modify van Emde Boas
structure so that we can process n instructions, when the universe is a
known subset S of size O(n) of the integers in the.range 1 to nK, using only
o (n?) space and O{(kloglogn) -;ime per instruction . This dense extended

structure requires O(knloglogn) preprocessing time.

0(n3) Dense Extended van Emde Boas Structure
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Firstléonsider the case where k = 3. The sets to be manipulated afe
subsets of a known set S of size 0O(n) whose members are integers ranging
from 1 to n3. We can express any such integer in three digit n-ary notation‘
(i,j,k) where i1,j, and k range from 0 to n - 1. We will use three levels of
simple size n van Emde Boas trees to store these integers. At the top level
there is one i-tree which we use to store the i coordinate of the integers.
Descendant from some of the leaves of the i-tree are j-trees which we use to
store the j coordinate of some of the integers. Descendant from some of the
leaves of the j-trees are k-trees which we use to store the k coordinates of
some of the integers. In order to be able to use this structure on members
of subsets of set S we first must create and initialize the structure by
inserting all of the universe set S into the structure and then deleting the
members of S. We begin in the i-tree. All members of S are inserted into
the i-tree by their i coordinates. If only one member of the set has a
given i coordinate there is no need to store anything below that leaf. The
number is stored at the leaf and a flag is set to show that there is nothing
stored below. If more than one member of the set has the same i coordinate
ij we grow a j-tree below. At the ijth leaf we set a counter to the number
of elements with i coordinate equal to ij. Also we initialize a pointer to
point to a simple van Emde Boas tree which we will use as a Jj-tree. We
insert the j coordinate of the elements with i coordinate ij into the
j-tree. This is done for all j-trees created. The process of inserting
numbers into j-trees is analogous to inserting numbers into the i-tree. If
two numbers in the same j-tree have the same j coordinate a k-tree is grown.
For each k-tree grown there will be a set of two or more numbers with the
same i and j coorQinates. This set is inserted into the k-tree. There will

not be any two numbers with the same k coordinate in the same k-tree. When



33

Fig 5 Dense O(n3) Extended van Emde Boas Structure
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all the elements of the set S have been inserted we delete them all.

After this process is complete we are left with a structure consisting
of an i-tree having descendant j—treeé at some of its leaves. A j-tree may
have descendant k-trees at some of its leaves. In the various trees some
leaves will not have been touched and will be empty, some leaves will
contain a counter and a pointer to a descendant tree and some leaves will
contain a number and a flag indicating there is'no structure below.

This dense extended van Emde Boas structure supports the operations
insert, delete, test for membership, find predeccessor and find successor.
We insert an integer into the structure by first expressing the integer in
n-ary notation with coordinates i,j and k. We start in the i-tree. If the
ith leaf has no structure below it we do a regular insert of i into the
i-tree and we are done. Otherwise we test the counter at the ith leaf. If
the counter there registers non-zero then we merely increment the counter.
If the counter there registers zero we do a regular insert of i into the
i-tree. We now insert the j coordinate into the descendant j-tree. If the
jth leaf has a k-tree below it we also insert k in the descendant k-tree.
Membership testing and deletion are analogous to insertion. .

We will want to find the successor of an integer N expressed in n-ary
notation with coordinates (i,j,k). We begin by finding the 1leaf that
represents the integer N. This leaf may be in the i-tree if N is the only
integer in the universe set with i coordinate i or the leaf may be in a
j-tree or a k-tree. In the most general case the leaf representing N was in
a k-tree. The successor of N is then the successor of N in the k-tree
(i,j,succ(k)). If N is the maximum element in the k-tree it is necessary to
loék in the j-tree. The successor of N is the successor of j in the j-tree

with the minimum k coordinate (i,succ(j),min(k)). If N was the maximum
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element in the j-tree the successor of N is the successor of N in the i-tree
with the minimum j and k coordinates (succ(i),min(j),min(k)). Finding the
predecessor of an integer is analogous to finding the successor.

Let us now consider the complexity of this structure.

Lemma: 3.7 Only O(n) of the various i,j and k trees are necessary.

Proof: There will always be one i-tree used. Descendant j-trees are
formed only if two or more elements of the set S have the same i coordinate.
There can be at most n/2 j-trees. Regardless of how many j-trees there are
a k-tree is formed only if two or more elements of the set S have the same j
coordinate in the same j-tree. This can happen at most n/2 times. There
are at most n/2 k-trees and therefore there are at most O(n) simple van Emde

Boas trees in the structure.
O(nk) Dense van Emde Boas Structure

This dense extended van Emde Boas structure can also handle integers
that are selected from a known set S of size O(n) whose members are integers
ranging from 1 to nk. We can express any such integer in k digit n-ary
notation (ij,ip . . . ix) where i;,ip . . . ix are integers ranging
from 0 to n - 1. We will use k levels of simple size n van Emde Boas trees
to store these integers. At the top level we use one ij tree to store the
i) coordinate of the integers. Descendant from some of the leaves of the ij
tree are ip trees which we use to store the i coordinate of the integers
and so :on. As 1in the case where k = 3 we create and initiélize the
structure by inserting all members of S into the structure. Handling the
instructions insertion, deletion, membership testing, finding successor and

finding predecessor in the nK case is a simple generalization of handling
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the instructions in the case where k = 3.

Lemma 3.8: Only O(kn) of the various 1ij,ip . . . ig trees are
necessary.

Proof: There will be one i tree. Descendant ij trees are formed only
if two or more elements of S have the same ij coordinate in the same ij_j
tree. There can be at most n/2 ij-trees. Therefore there can be at most 1
+ (k - 1)n/2 or O(kn) trees altogether.

In the sparse extended van Emde ’Boas tree structure we stored the
static pointers of a number of simple van Emde Boas trees only once in the
complex j-tree. We can do the same in the dense structure. We can begin
with O(kn) superimposed simple size n van Emde Boas trees. The static
pointers are stored only once. Each node of the complex tree will consist
of an array N where N(i) represents the node in the ith tree.

Lemma 3.9: The dense extended van Emde Boas structure requires
O(kloglogn) time to process an instruction in the worst case.

Proof: O(loglogn) time is required in each ij-tree. At most O(k) of
the ij trees have to be considered so that the total time is O(kloglogn).

Lemma 3.10: The dense extended van Emde Boas structure requires O(n2)
space in the worst.case.

Proof: The ij tree uses O(n) space. Each of the other trees uses 0(n)
space because they use the static pointers of the i; tree. By lemma 3.8
there are at most O(kn) of the simple van Emde Boas trees. O(kn2) space is
required in the worst case.

Lemma 3.11: The dense extended van Emde Boas structure to hold
integers ranging from 1 to nK that are selected from a known set S of size
0(n) requires O(knloglogn) time to set up in the worst case.

Proof: None of the dynamic information in any of the simple trees need
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be initialized. The static pointers require O(nloglogn) time to set up. To
create the structure each of the 0O(n) elements of § is inserted. Each
insertion requires O(kloglogn) time in the worst case. The 0(n) insertions
will require O(knloglogn) time in the worst case. This dominates the
preprocessing time.

weluse of the capabilities of the dense extended van Emde Boas tree in
chapter 4 when locating a point in a planar subdivision. We can also use
the dense extended van Emde Boas tree to detect intersections among polygons

in chapter 5.
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Searching in Planar Subdivisions

Rectangles

We present three algorithms for searching in a restricted planar
subdivision. We work in the O(nK) size grid domain. Working on the grid
enables us to employ the dense extended van Emde Boas tree and get better
search times then are possible in the real plane.'However the preprocessing
time and space requirement are slightly worse than in the real plane case.
Nonoverlapping rectangles is the first type of planar subdivision we will
consider. Given n nonoverlapping rectangles whose corners 1lie on grid
points, in which (if any) of the rectangles does a new test point lie?

Shamos and Bentley [ Shamos 77 ] have given an O(nlogn) preprocessing
time and space and O(logn) test time algorithm for the problem in the real
plane. The test time can be cut to O(loglogn) on the grid using a dense
extended van Emde Boas structure. However the preprocessing time goes up to
O(n2) and the space required is O(ﬁz).

We begin by taking all the sides of the rectangles and extending them
to lines. Now the plane is divided into O(nz) rectangular regions
determined by at most 2n vertical lines and at most 2n horizontal lines.

The vertical lines are the vertical lines that pass through corners éf
.rectangles. These are numbered frém left to right. The horizontal lines
are the horizontal lines that pass through corners of rectangles. These are
numbered from bottom to top. A 2n x 2n matrix is used to indicate which
original rectangle (if any) a givgn,newly created region is in. For each
original rectangle we detérmine the small regions determined by the lines

that it covers. These smaller regions are labeled by two coordinates. The
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Fig 6 Locating a Test Point among Rectangles
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first is the number of the vertical line which bounds it on the right. The
second is the number of the horizontal line that bounds it on top. If a
region (i,j) is covered by rectangle "B" then "B" is the label placed at
position ajj of the matrix. See figure 5. In this way we initialize the
matrix to contain the information about which small regions are covered by
which original rectangles.

The next step is to set up a dense extended van Emde Boas tree to hold
the 0O(n) x coordinates of the corners of the rectangles. Insert the x
coordinate of the corners of the rectangles in the tree. Label these
coordinates with the number of the vertical line that passes through them as
determined abové. This tree will serve to locate a test point with respect
to the vertical lines passing through the corners of the rectangles. This
tree will give the first coordinaté of the position in the matrix where the
answer is stored. Set up a second dense van Emde Boas tree for the vy
coordinates. Insert the y coordinate of the corners of the rectangles in
the tree. Label these coordinates with the number of the horizor;tal line
that passes through them. This tree will serve to locate a test point with
respect to the ho:izontal lines.

Given a test point it is sufficient to determine which region (i,j)
determined by the extended lines it is in. Once the coordinates of the
region are known we merely look at position ajj of the matrix set up in the
preprocessing to determine in which original rectangle (if any) the test
point lies. We can determine between which two vertical lines the test
point lies in O(loglogn) time with the predecessor and successor
instructions on the dense extended van Emde Boas tree. This gives the fifst
coordiﬁate i of the region. The same process works in the second dense

extended van Emde Boas tree to determine the second coordinate j of the
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region.

Letma 4.1: 0O(n2) time is required for preprocessing in this
algorithm.

Proof: There are O(n?) regions determined by the lines. It will
therefore take 0(n2) time to set up the answers corresponding to these
regions in the matrix. The two dense van Emde Boas trees will take
O(nloglogn) time to initialize. The total preprocessing time for this
algorithm will be 0(n2).

Lemma 4.2: The test time is only O(loglogn) once the preprocessing is
complete.

Proof: It takes O(loglogn) time to use the dense extended van Emde
Boas tree to determine each coordinate of a region.

Lemma 4.3: The algorithm requires 0(n2) space.

Proof: The matrix takes O(n?) space., Each extended van Emde Boas

tree requires 0(n?) space. The total space- requirement is 0(n2).
Rectilinear Planar Subdivisions

A slightly more general problem is that of searching in a rectilinear
planar subdivision. A rectilinear planar subdivision is a subdivision of
the plane where all divisions between regions are vertical and horizontal
line segments. We assume that no two line segments intersect except at
their endpoints. We will again be working in the grid domain. This means
that all the endpoints of these segments will be grid points. There are n
of these endpoints or corhers in the subdivision. In which region of a O(n)
size grid base rectilinear subdivision does a new test point lie?

The algorithm and analysis of this problem are very similar to that of
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the non-overlapping rectangle problem. We extend all vertical and
horizontal line segments to lines. These lines are numbered as before.
Initializing the matrix will be slightly more complicated. One way to do
this would be to divide each original rectilinear area intb rectangles and
proceed as in the rectangle case. Although more care must be taken the
preprocessing time remains O(nz). The preprocessing can be performed using
a special case of the method described in the following section. The space

required is again 0(n?) and the test time O(loglogn).
Searching in a Restricted Angle Subdivision

Generalizing the problem still further we let the 1line segments
separating regions in the subdivision lie at a fixed restricted number of
angles. Again we assume that no two of these line segments’intersect except
at their endpoints. The subdivsion is made up of n line segments. No
segment is unnecessary in so much as its removal will not alter the regions.
The line segments are restricted to lie at z different angles. We nheed not
use the rectangular grid in the following algorithm. We could use a grid
created by overlaying =z different series of evenly spaced lines. Each
series would lie at one of z possible’angles.

A restricted ang%e grid based planar subdivision is exactly the kind of
subdivision that must be produced by most plotters. Nearly all digital
plotting is based on the use of a Cartesian coofdinate system in which
successive data points are constrained to lie on nodes of a square grid
[ Freeman 79 ]. The square grid is popular because of the wide use of the
Cartesian coordinate system for data representation and the simplicity of

the hardware which is able to use independent systems for the two coordinate
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positioning mechanisms. These devices are restricted to plotting lines that
are parallel to the coordinate axes or at an angle of 45 degrees to themf
Occasionally other systems are used so that multiples of 30 or 60 degrees
are allowed. '

The question is therefore: in which region of an O(n) size grid based
subdivision where the angles of the line segments are restricted to z values
does a new test point lie? Again the algorithm and analysis of the problem
are similar to the non-overlapping rectangle problem. We extend each of the
n line segments to lines. We number the 1lines of each orientation
separately. There could be as many as O(n) lines at any given orientation.
There are z different possible orientations. A z dimensional matrix of size
n is required to allow for all possible regions created by the lines defined
by the segments in the subdivision. However in any given subdivision there
will only be 0(n?) regions Qefined by the O(n) lines because of planarity.
It is only in these 0(n2) regions that we want to record the answer in the
matrix.

If the original subdivision is gi§en as a basic list of adjacencies as
chosen by Lee and Preparata [ Lee 77 ], it can be converted to Kirkpatrick's
edge-ordered representation [ Kirkpatrick 79 ] in linear time by taking
advantage of grid sorting capabilities. Each original region has associated
with it a list in clockwise order of the edges bounding that region. From
this representation original regions can be considered one by one.

At each angle "a" lines orientated at angle "a" are placed in an
extended van Emde Boas tree for "a" orientation. These lines are labeled
with the numbers they would have if counted left to right.

Consider one original region, say region A, of the restricted angle

subdivision. Region A will contain as many as O(n2) fine regions defined by



Fig 7 Touring a Region of a Restricted Angle Subdivision
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Fig 8 Locating a Point in a Restricted Angle Subdivision
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segments of the lines extended from the original segments of region A. We
need to store in the matrix the fact that each of these fine regions is in
region A, The coordinates of a fine region in the matrix are the
coordinates of a point in the region with respect to the lines that are
stored in the dense extended van Emde Boas trees. For the purposes of
initializing the matrix we also store the line segments in this matrix. A
line segment is stored below region (i,j,k) in the matrix if the segment
separates (i,j,k) from (i,j,k + 1). Associated with each line segment
stored in the matrix are two flags which indicate whether the line segment
has been traveled on in the up direction and the down direction. Associated
with each orientation is an up direction and a down direction.

Initially all the line segments that make up the boundary of region A
are marked in clockwise order. One of the direction flags is set for each
segment on the boundary of region A. A corner point on the boundary is
selected to begin a touring and shrinking process during which fine regions
are marked "A" in the matrix and the size of the unmarked portion of region
A decreases. See figure 7. From the starting point a segment is followed
to a junction. This segment is marked in the opposite direction to that on
which it was.travelled. A right turn is made and another segment followed
and marked in the reverse direction. This process continues until the
starting point is reached. The fine region encircled is marked with an "A".
This process is repeated until there are no untravelled line segments
leaving the starting point. Next a segment that has been travelled in both
directions is followed to advance the starting point to a new location.
This process continues until all line segments in region A have been marked
in both directions and all corner points have been used as starting points.

At this time all fine regions within region A will have been marked. The
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~ process is repeated for all original regions in the subdivision as shown in
figure 8.

Initializing the matrix takes O(n2) time since there are O(nz) fine
regions and each region is examined a constant number of times. The matrix
however takes 0(nZ?) space. Most of the space is never accessed and
therefore need not be initialized by lemma 1.2.

A dense extended van Emde Boas tree is set up for each orientation.
Given a test point we find one coordinate from each of the van Emde Boas
trees. These z coordinates locate the position in the nZ matrix where the
answer is stored. |

Lemma 4.4: The total preprocessing time for this algorithm will be
0(n2?). |

Proof: initializing the matrix requires O(nz) time. Initializing each
of the z van Emde Boas trees requires O(nloglogn) time.

Lemma 4.5: O(zloglogn) time is required for each test.

Proof: O(loglogn) time is required to find each of the z coordinates
of a test point. |

Lemma 4.6: The space requirement for the algorithm is 0(n2%).

Proof: The matrix requires 0(nZ) space. Each densé extended van Emde

Boas tree requires O(n2) space.
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Intersection Problems

Shamos and Hoey [ Shamos 76 ] studied a number of geometric
intersection problems. They present an O(nlogn) time algorithm for
detecting whether any two of n line segments intersect. Bentiey and Ottman
[ Bentley 79b ] present an O(nlogn + clogn) algorithm for reporting and
counting all intersections among n line segments where c¢ is the number of
intersections.

Rectangle intersection problems have recently been investigated by a
number of people [ Bentley 79a ] [ Vaishnavi 79a ] [ Vaishnavi. 79b 1
[ Vaishnavi 79c ] [ Bentley 79b ] [ Shamos 77 ]. There are several related
problems to consider. Shamos and Bentley [ Shamos 77 ] present an O(nlogn)
algorithm for detecting whether any two of n rectangles edge intersect.
Bentley and Ottman present an O(nlogn + c) algorithm for reporting and
counting all edge intersections among n rectangles. Bentley, Vaishnavi and
Wood [ Bentley 79a ] [ Vaishnavi 79a 1 [ Vaishnavi 79c ] have given O(nlogn

+ c¢) algorithms for reporting each time one rectangle encloses another.

Intersection of Rectangles

The problem we will consider is to detect whether any two of n
rectangles whose corners are grid points intersect. The rectangles have
sides that are parallel to the coordinate axis. By intersect we mean both
edge intersection and enclosure.‘The following algorithm accomplished this
in O(nloglogn) time using an extended van Emde Boas structure. However the

space requirement is 0(n2).
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First we sort the left and right sides of the rectangles by x
coordinate. We begin a left to right sweep of the sides starting with the
side with minimum x coordinate. If we encounter a left side we insert the
top left and bottom left y coordinates into an 0(nK) size dense extended van
Emde Boas tree structure. Mark the corners in the tree so that we can tell
whether they are tops or bottoms. If we encounter a right side during the
sweep we delete the top and bottom y coordinates from the tree.

Fach time we make an insertion we perform some tests to detect
intersections. An intersection has occured if either the successor or
predecessor of a top is a top; also if either the successor or predecessor
of a bottom is a bottoh.'with these successor and predecessor tests we can
detect both edge intersection and enclosure among rectangles.

Clearly if the top of one rectangle, is between the top and the bottom
of another rectangle the two rectangles intersect. If there are a number of
intersections among a set of rectangles the top two rectangles that
intersect will have the property that their tops are consecutive and the
botoom two rectangles that intersect will hav e the property that their
bottoms ar consecutive.

Lemma 5.1: The algorithm requires O(n2) space.

Proof: The extended van Emde Boas tree requires 0(n?) space. This is
the dominant space requirement of the algorithm.

Lemma 5.2: The algorithm requires O(nloglogn) time in the worst
case.

Proof: The initial sort of the sides of the rectangles requires 0(n)
time in the grid domain. O(nloglogn) time is required to initialize the van
Fmde Boas tree. Each insertion, deletion, find successor or find

predecessor requires O(loglogn) time. There can be O0(n) of these
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operations. The total time requirement for the algorithm is O(nloglogn).
Intersection of Rectilinear Polygons

We can generalize this algorithm so that it will work with rectilinear
polygons with sides parallel to the coordinate axes. We will detect whether
any two of é set of rectilinear polygons which have n corners which lie on
grid points intersect. The time and space requirements are the same as in
the rectangle intersection algorithm.

We begin the algorithm by marking each vertical line segment as either
left or right. A line segment is marked left if the spacé to its right is
occupied by the interior of a polygon. Also mark each vertical line segment
‘with the number of the polygon that it is a part of. Next sort the vertical
line segments by x coordinate.

We begin a left to right sweep of the vertical line segmenfs by
starting with the segment with the minimum x coordinate. If we encounter a
left side we insert the y coordinate of the top and bottom endpoints of the
segment into the extended van Emde Boas tree. We mark these points either
top or bottom and we also mark them with the number of the polygon that they
are a part of., We then perform the successor and predecessor tests as in
the rectangle case to check for intersection.

If we encounter a right side the procedure is more complex. Consider
the top endpoint of the right side. If the top of a left side from the same
polygon has the same y coordinate then delete the top of the left side from
the tree. Otherwise insert the y coordinate of the top endpoint of the
right side into the tree. Label it bottom. Find its successor in the tree.

It will be the top of a left side of the same polygon. Perform analogous



Fig 9 Detecting Intersections among Rectilinear Polygons
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operations with the bottom endpoint of the right side. All of this is the
same as deleting the segment B} — T and inserting the two segments T, - Tj
and By -B, if necessary. See figure 9.

.Lemma 5.3: The algorithm fequires 0(n2) space for the van Emde Boas
tree. Again there are O0(n) tree operations each of which requires
O(loglogn) time. The algorithm requires O(nloglogn) time.

Proof: as in the rectangle case.
Intersection of Restricted Angle Polygons

We can detect intersection among still more general polygons. These
polygons have sides that are restricted to lie at a fixed number of slopes.
The set of polygons we will consider has n corners which lie at grid points.
The problem is to detect whether any two of a set of polygons whose sides
are restricted to lie at one of z possible angles intersect. We solve this
problem by first presenting an algorithm which will detect any edge
intersections among the polygons and then presenting an algorithm which will
find any cases of one polygon enclosing another.

This algorithm for detecting edge intersections among restricted angle
polygons requires O(zznloglogn) time and 0(zn2) space. We begin by dividing
the sides into z different classes according to slope. This can be done in
Alinear time. Select one slope I and sort the corners of the polygons
according to an axis with a slope of angle I. We will perform a minimum to
maximum sweep in the angle I direction. There are z - 1 extended van Emde
Boas trees to hold polygon sides. One to hold each orientation of side
except for angle I. During the sweep if we encounter the first endpoint of

a segment that lies at an angle other than angle I the segment is inserted
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Fig 10 Edge Intersections among Restricted Angle Polygons
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into The van Emde Boas tree for that angle. There is a grid size numbering
of the possible segments of each orienﬁation. A segment of a given non-I
orientation is entered into the tree for its orientation simply by making
the leaf corresponding to its number present. If we encounter the second
endpoint of a segment that lies at an angle other than I the segment is
deleted from its van Emde Boas tree. If we encounter an angle I segment (we
will encounter both endpoints at the same time) we test for intersection by
looking for a possible intersection in each of the z - 1 trees. We test for
intersection between an angle I segment and segments of other orientations
by temporarily inserting the two endpoints of the angle I segment into each
of the z - 1 van Emde Boas trees. If the successor of the left endpoint of
the angle I segment is not the right endpoint of the angle I segment an
intersection has been found. This sweep will find intersections of angle I
segments with any other segment. We empty all the van Emde Boas trees and
repeat the algorithm letting each angle be angle I.

Lemma 5.4: The total space requirement for the algorithm is 0(zn2).

Proof: Each of the z extended van Emde Boas trees will require O(n2)
space.

Lemma 5.5: The algorithm requires O(zznloglogn) time in the worst
case.

Proof: O(nloglogn) time 1is required to initialize each of the 2z
extended van Emde Boas trees. O(zﬁloglogn) time is required. to perform each
of the sweeps. Each of the n segments may require z intersection tests.

The total time requirement for the algorithm is O(zznloglogn).

The following algorithm will detect enclosures among grid based

restricted angle polygons.
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We begin by labeling each non-vertical segment as either top or bottom.
We sort the endpoints lexicographically first by x coordinates and second by
y coordinates. We will perform a left to right sweep. In the case of ties
the sweep will move from top to bottom.

When the leftmost endpoint of a segment is reached we determine if it
is a top. If it is a top we find the closest segment above it in various
angle van Emde Boas trees that are each holding the segments of one
orientation. If the closest segment is also a top then the top of one
polygon is between the top and bottom of another so either an enclosure or
possibly an edge intersection has been detected. Otherwise we insert the
segment into the extended van Emde Boas tree for its orientation. When the
right endpoint of a segment is reached the segment is deleted from its tree.

Lemma 5.6: O(zn2) space is required for the algorithm in the worst
case.

Proof: 0(zn2) space is required to store the z extended van Emde Boas
trees.

Lemma 5.7

X3

O(znloglogn) time in total 1is required for the
algorithm.
Proof: Each time a top is inserted 0O{zloglogn) time is required to

perform tests. There are O(n) tops.
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Fig 11 Enclosure Detection among Restricted Angle Polygons
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Conclusions

In this thesis we have studied a number of geometric problems in the
integer grid setting. By taking advantage of integer grid sorting
capabilities we have been able to describe linear time algorithms for a
number of grid based geometric problems. These include finding the convex
hull éf a set of grid points and solving related problems. These also
include finding the diameter and finding a triangulation of a set of grid
points. It is open whether or not the Delaunay triangulation or another
friangulation with special properties for a set of n grid points can be
found in linear time.

We have described an algorithm that will find the Voronoi polygon about
one of n grid points in linear time. We have not determined whether or not
the complete Voronoi diagram of a set of n grid points or even of the points
of a grid based convex polygon can be found in less than O(nlogn) worst case
time.

By extending van Emde Boas tree we have retained the fast searching and
preprocessing times at the expense of space requirements. We have used the
dense extended van Emde Boas tree to obtain fast algorithms for some
searching in subdivision and detection of intersection problems. 0(loglogn)
search time algorithms are presented for searching in a set of rectangles,
in a rectilinear planar subdivision and in a restricted angle planar
sﬁbdivision. We have been able to detect intersections among rectangles,
rectilinear polygons and restricted angle polygons in O(nloglogn) time.

The spe?d of all the algorithms we have described depends on the

integer grid domain. Whether or not algorithms are practical depends on
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whether or not the integer grid domain is a realistic domain for an
application. If an integer grid 1is a realistic domain one can take
advantage of the algorithms described in this thesis, otherwise more general
algorithms must be used.

The Euclidean Ly norm was used as a metric in this thesis. Some of the
results, such as the Voronoi polygon algorithm, will carry over when other
norms such as the leandgnnorms are used.

We could use some of the integer algorithms presented in this thesis to
find fast expected time algorithms for real problems if the points are
selected from appropriate distributions. The real points would first be
rounded to integers. The real points need be selected from a distribution
with the property that not more than a constant number of the real points
would round to the same integer. The problem would then be solved in the
integer domain and the solution mapped back to the real domain perhaps after
some corrections. This process could be used to produce fast expected time
triangulation or convex hull algorithms for real plane point sets.

Many integer structures and algorithms use only the easily sortable
property of integers. If we are presented with a bounded set that has
already been sorted many integer methods can be used even if the numbers are
real. In many of the geometric problems we considered sorting was the most
time consuming step in the solution. Sorting can in many cases reduce real

problems to integer problems.
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