
NUMERICAL PARAMETER ESTIMATION IN DIFFERENTIAL EQUATIONS

MAURICE W. BENSON

B.Sc, Lakehead University 1971
M.Sc, Lakehead University 1973

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science and The Institute for Appli
Mathematics and S t a t i s t i c s)

We accept this thesis as conforming
to the required standard.

THE UNIVERSITY OF

December

(c) Maurice W.

BRITISH COLUMBIA

, 1977

Benson, 1977

In presenting th is thes is in pa r t i a l fu l f i lment of the requirements for

an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that

the L ibrary shal l make it f ree ly ava i lab le for reference and study.

I fur ther agree that permission for extensive copying of th is thesis

for scholar ly purposes may be granted by the Head of my Department or

by h is representat ives. It is understood that copying or pub l i ca t ion

of th is thes is for f inanc ia l gain sha l l not be allowed without my

wri t ten permission.

Department of
7 "

The Univers i ty of B r i t i s h Columbia
2075 Wesbrook P l a c e
Vancouver, Canada
V6T 1W5

Date ^J2*Q/rJL, ,/f77

i i

ABSTRACT

The problem of numerical least squares parameter estimation

in d i f f e r e n t i a l equations i s considered. Several new algorithms

that pay pa r t i c u l a r attention to the d i f f e r e n t i a l equation

aspect of the problem are presented. These reduce some of the

d i f f i c u l t i e s encountered when the problem i s treated solely as a

question of nonlinear optimization. The extremely powerful

int e r a c t i v e approach i s considered and an interactive package

incorporating standard techniques using s e n s i t i v i t y equations

along with a selection of our special algorithms i s presented.

We consider methods involving the f i t t i n g of integrals and

derivatives using piecewise polynomial approximations to the

observations. Continuation methods with a quasi multiple

shooting technique to bridge the gap between these coarse but

well behaved methods and the f u l l least squares problem are

explored.

Special methods are developed for the important case of two

state variables with observations available on only one of them.

In p a r t i c u l a r we consider algorithms which use an i n i t i a l guess

at the behavior of the unobserved state variable and then

i t e r a t i v e l y improve th i s guess.

The need for e f f e c t i v e algorithms for f i t t i n g population

growth models in ecology i s one motivation for this thesis. We

devote a chapter to an important predator-prey model of

population dynamics and extensive experiments are presented

i i i

which demonstrate some of the t y p i c a l d i f f i c u l t i e s which can

arise and which i l l u s t r a t e the a b i l i t y of our algorithms to

overcome some of these d i f f i c u l t i e s .

Some special problems involving jumps from one equilibrium

to another (loosely referred to as catastrophes) are examined.

This type of model has important applications in ecology.

Models involving s t i f f d i f f e r e n t i a l equations are also

considered.

A short chapter i s devoted to the use of sequential

reestimation techniques. Experiments indicate that such methods

can be useful for improving a crude i n i t i a l guess at the

parameters and this improvement can be c r u c i a l for the

successful solution of the problem.

F i n a l l y a chapter i s devoted to a selection of "real world"

problems. It i s on such problems that the true value of an

algorithm i s determined.

i v

CONTENTS

INTRODUCTION 1

CHAPTER 1-NOTATION AND BACKGROUND 4
1.1 INTRODUCTION AND BASIC NOTATION 4
1.2 MOTIVATION 8
1.3 MORE BACKGROUND 10

CHAPTER 2-OPTIMIZATION AND INTEGRATION 21
2.1 NONLINEAR LEAST SQUARES 21
2.2 INTEGRATION OF MODEL AND SENSITIVITY EQUATIONS 26
2.3 WHEN TO INTEGRATE THE SENSITIVITY EQUATIONS 31
2.4 AN EXAMPLE WITH KNOWN DIAGONAL COVARIANCE MATRIX 38

CHAPTER 3-SPECIAL METHODS FOR THE INTERACTIVE APPROACH 42
3.1 THE INTERACTIVE APPROACH 4 2
3.2 DERIVATIVE FITTING (DFIT) 46
3.3 INTEGRAL FITTING (IFIT) 57
3.4 ITERATED INTEGRAL AND DERIVATIVE FITTING 62
3.5 CONTINUATION AND QUASI MULTIPLE SHOOTING 74
3.6 IMPLEMENTATION OF AN INTERACTIVE PACKAGE 83

CHAPTER 4-PARAMETER FITTING IN A PREDATOR-PREY DYNAMIC MODEL .95
4.1 INTRODUCTION 95
4.2 A PREDATOR-PREY DYNAMIC MODEL 95
4.3 IMPROVING STARTING PARAMETERS 102
4.4 GUESSED OBSERVATIONS AND ITERATED METHODS 106
4.5 THE PRESENCE OF NOISE 115

CHAPTER 5-SEQUENTIAL TECHNIQUES 123
5.1 INTRODUCTION 123
5.2 A SEQUENTIAL ALGORITHM 124
5.3 EXPERIMENTAL RESULTS 128

CHAPTER 6-REAL WORLD PROBLEMS 132
6.1 INTRODUCTION 132
6.2 A DYNAMIC MODEL FOR AGGRESSIVE AND DOCILE MICE 133
6.3 A MODEL INVOLVING A CHANGE IN EQUILIBRIUM 147
6.4 A REINDEER POPULATION GROWTH MODEL 155
6.5 AN OCEAN PLANKTON MODEL 163

CHAPTER 7-CONCLUSIONS AND FUTURE WORK 167
7.1 CONCLUSIONS 167
7.2 SUGGESTIONS FOR FUTURE WORK 169

BIBLIOGRAPHY 170

APPENDIX A 176

V

APPENDIX B 205

v i

FIGURES

2.2.1 D i s c r e t i z a t i o n of s e n s i t i v i t y equations 30
3.2.1 Equilibrium change—no error in observations 55
3.2.2 Equilibrium change—error in observations (<r=l) 56
3.2.3 Equilibrium change—error in observations (<r=2) 57
3.3.1 Equilibrium change—no error in observations 61
3.3.2 Equilibrium change—error («r=l) 61
3.3.3 Equilibrium change—error (<r=2) 62
3.4.1 Simulation results and spline approximation 70
3.4.2 Iterations on the guessed observations 71
3.4.3 Observations and successive integrations of y, 71
3.4.4 Iterations on guessed observations 73
3.4.5 Integrations at successive parameter estimates 73
3.5.1 Data and smoothing for continuation tests 78
3.5.2 Results using break points with Tf = .2 80
3.5.3 Results at optimal parameters 80
3.6.1 Overall strategy 88
3.6.2 Refined parameter f i t t i n g 89
3.6.3 Interactive optimization 90
3.6.4 Derivative and integral f i t t i n g 91
3.6.5 Guessed observations and i t e r a t i v e improvement 92
3.6.6 Continuation and quasi multiple shooting 93
3.6.7 Sequential reestimation (not implemented in PARFIT) ... 94
4.2.1 Phase plot for case (1) 98
4.2.2 Phase plot for case (2) 98
4.2.3 Phase plot for case (3) 99
4.2.4 Observations for Problem 4.2.1 100
4.2.5 Observations for Problem 4.2.2 101
4.2.6 Observations for Problem 4.2.3 101
4.3.1 A l o c a l minimum for Problem 4.2.1 103
4.3.2 A l o c a l minimum for problem 4.2.2 104
4.3.3 A l o c a l minimum for Problem 4.2.3 106
4.4.1 Guessed observations for problem 4.4.1 108
4.4.2 FIT on Problem 4.4.1 109
4.4.3 DFIT+FIT on Problem 4.4.1 using guess (b) 110
4.4.4 Iterated DFIT results 112
4.4.5 Iterated DFIT guessed observation i t e r a t i o n s 113
4.4.6 Iterated IFIT results 114
4.4.7 Iterated IFIT guessed observations 114
4.5.1 Results for Problem 4.5.1 117
4.5.2 Results for Problem 4.5.2 118
4.5.3 DFIT results 120
4.5.4 IFIT results (using subsystem integrations) 120
4.5.5 IFIT results (using (3.4.1)) 121
4.5.6 FIT results (p^. scaled) st a r t i n g from IFIT results — 122
6.2.1 Observations and spline approximation 135
6.2.2 Iterations on guessed observations 137
6.2.3 Integrations at successive parameter approximations .. 138
6.2.4 Optimum star t i n g from iterated IFIT results 139
6.2.5 Integration at parameters found i n t e r a c t i v e l y 141

v i i

6.2.6 Optimum sta r t i n g from parameters found i n t e r a c t i v e l y . 142
6.2.7 Optimum with logarithmic scaling on p̂ . and p 7 146
6.3.1 Phytoplankton observations and smoothing function 148
6.3.2 Zooplankton densities 150
6.3.3 Integration at IFIT results 151
6.3.4 Integration results at IFIT+FIT results 151
6.3.5 Integration at i n t e r a c t i v e l y obtained optimum 153
6.3.6 Integration near i n t e r a c t i v e l y obtained optimum 154
6.4.1 Observations and integration results at p t o > 157
6.4.2 Integration results for Experiment 1 158
6.4.3 Integration at results of Experiment 3 160
6.4.4 Integration results at optimum of Experiment 4 ,.. 161
6.5.1 Observations and best f i t for y7 165
6.5.2 Observations and best f i t for y a 166
6.5.3 Observations and best f i t for yg 166
A. l A t y p i c a l model d e f i n i t i o n procedure 183

v i i i

TABLES

2.3.1 Work rati o s W,/Wa 33
2.3.2 Some work rati o s for a predictor-corrector method 36
2.3.3 Work ra t i o s for a s t i f f method (<*=.3) 38
2.3.4 Work rati o s for a s t i f f method (oi = .6) 38
2.4.1 Observations 39
2.4.2 Optimization results 40
3.2.1 Observations for s t i f f problem 52
3.5.1 A continuation experiment 81
4.3.1 FIT compared with DFIT+FIT and IFIT+FIT 102
5.3.1 Results with sequential approach 130
6.3.1 Roots of (6.3.2) corresponding to Figure 6.3.4 152
6.3.2 Roots of (6.3.2) corresponding to Figure 6.3.5 154

ix

ACKNOWLEDGEMENTS

I would l i k e to thank my supervisor, Professor J . M.
Varah, for his advice and encouragement during the preparation
of t h i s thesis. I would also l i k e to thank Dr. C. J. Walters
for keeping me aware of the "real world" aspect of the problem.

F i n a l l y , I would l i k e to express my appreciation for
National Research Council of Canada Scholarship support and
Killam Pre-Doctoral Fellowship support during the preparation of
this thesis.

1

INTRODUCTION

Parameter f i t t i n g in dynamic models occurs in a wide

variety of f i e l d s (see for example Section 1 . 2) . In many cases,

standard procedures (employing the s e n s i t i v i t y equations as

outlined in Chapter 2) s u f f i c e . However, in a substantial

number of cases, this approach i s extremely sensitive to poor

i n i t i a l guesses at the optimal parameters (see for example

Chapter 4) . The main purpose of this thesis i s to develop

algorithms and strategies designed to overcome poor or absent

i n i t i a l approximations to the optimal parameters. Our basic

philosophy for attaining this goal i s to avoid the f u l l

nonlinear optimization problem as much as possible during the

early stages of parameter estimation. The interactive approach

i s ideal for addressing this problem and the algorithms

developed in thi s thesis are designed with user intervention in

mind. Indeed there are cases, such as the one in Section 6.3,

where an interactive approach appears to be the only way to

obtain certain solutions.

Chapters 1 and 2 establish our notation and provide a

background for the numerical integration and optimization

procedures employed throughout the thesis. In Chapter 3, we

begin our development of special procedures.

We st a r t Chapter 3 with the standard approaches of

derivative and integral f i t t i n g and then we expand on these

techniques later in the chapter. These techniques, which

INTRODUCTION

2

involve the use of smoothed approximations to the observations

on the state variables, are obvious candidates for an

int e r a c t i v e approach. These methods are compared on a s t i f f

problem and on a problem involving a change in equilibrium. In

Section 3.4, we develop techniques (which employ guessed

observations and i t e r a t i v e improvement of guessed observations)

for extending the methods of Sections 3.2 and 3.3 to the

important case when observations are not available on a l l state

variables. As i l l u s t r a t e d in Sections 4.4 and 4.5, these

iterated methods provide a powerful tool (especially in an

interactive environment) for handling the case where some state

variables are unobserved. Again, our basic philosophy, of

avoiding the f u l l nonlinearity that arises with the d i r e c t

approach, l i e s behind the success of these methods.

In Section 3.5, we present systematic approaches using

break points and continuation parameters for bridging the gap

between the r e l a t i v e l y coarse integral f i t t i n g technique and the

f u l l nonlinear problem. These methods are highly interactive by

nature, and again, they attempt to ease the approach to the f u l l

nonlinear problem. As shown in Section 3.5, these methods can

be useful for overcoming i n s t a b i l i t i e s .

We end Chapter 3 with a discussion on how the various

methods developed should be incorporated into an interactive

package. A discussion of e f f e c t i v e strategies employing our

special technigues in an interactive environment i s also

presented at the end of Chapter 3.

INTRODUCTION

3

Chapter 4 gives extensive experiments comparing the

techniques of Chapters 2 and 3 on a s p e c i f i c problem.

In Chapter 5, we continue our search for methods which

reduce the e f f e c t of the nonlinearity associated with a d i r e c t

approach. In p a r t i c u l a r a sequential approach i s shown to be

e f f e c t i v e in several cases where a d i r e c t method encountered

d i f f i c u l t i e s .

When solving a parameter f i t t i n g problem involving a

dynamic model, the p a r t i c u l a r strategy employed can be as

important as the choice of algorithms. This i s e s p e c i a l l y the

case when an interactive approach i s used. In Chapter 6 we

present d e t a i l s of successful strategies on four "real world"

problems where the observations were obtained from physical

experiments and not computer simulations. (A condensation of

our experience with parameter f i t t i n g in dynamic models is

contained in the flow charts at the end of Chapter 3.) The

d e t a i l s of such strategies of course vary from problem to

problem; however, as experience with such problems grows,

certain strategies emerge as being more e f f e c t i v e than others.

One such strategy that has proved highly e f f e c t i v e involves the

temporary freezing of parameters.

INTRODUCTION

4

CHAPTER 1

NOTATION AND BACKGROUND

1.1 INTRODUCTION AND BASIC NOTATION

We are interested in the problem of f i t t i n g dynamic models

to observations and wish to pay special attention to the

d i f f e r e n t i a l equation aspect of the problem. Our dynamic models

are of the form

y'=g(t,y,p)
(1.1.1)

Y(t 0)=y o(p)

where y i s an n-vector of state variables, p i s an m vector of

parameters, t i s the independent variable which we c a l l time for

convenience, and * denotes d i f f e r e n t i a t i o n with respect to time.

Along with the above i n i t i a l value problem we have a set of

observations v; ,...,v^ taken at d i s t i n c t times t , . . .

respectively where _>tfl , 1 = 1,..., k. Each v^ i s an r-vector

where r<n. That i s , not a l l components of y need be observed.

Define the weighted residual vector f of length kr by

for s=l,...,r; 1=1,...,k; where v i s component s of v̂ and

y ., . (t.) i s the corresponding element of the vector y (t .) .
41. A) X A

Wl[£ i)+A '""S 3 weighting factor. The weighted least squares
problem i s to find p to minimize

F(p)=f T(p)f (p) . (1.1.3)

CHAPTER 1

5

The use of weights in the above function allows us to handle

some maximum l i k e l i h o o d problems (see Section 2.4). Adapting

the notation in Bard[5], l e t

V p , - (f * u - . > * i W T ' (1 - 1 - 4)

k
M(P)= X. e Ap)e^(p) . (1.1.5)

1 = 1 *

where, for the moment, we are taking a l l weights equal to one.

Further l e t the^v,"^ have normally distributed measurement errors

with zero mean and covariance matrix V. When there are no

errors in the t^ , the maximum l i k e l i h o o d estimate of p i s found

by minimizing

.5Tr(V _M(p)) (1.1.6)

where Tr denotes the trace operator. (We are assuming the

errors in the observations taken at d i f f e r e n t times are

uncorrelated.) When V i s a diagonal matrix, (1.1.6) reduces to

the form of the function in (1.1.3). It i s this special case we

consider in Section 2.4. For a l i s t of some other objective

functions we refer the reader to Bard[5].

The dynamic model considered above i s a special case of the

standard dynamic model described by Bard[6,p221]. He considers

problems where g and y of (1.1.1) are functions of a vector, x,

of independent variables in addition to the above arguments and

where the observations available are on variables which are

given functions of t, y, p, and x. One of our aims in this

CHAPTER 1

6

thesis i s to investigate special methods which handle some of

the d i f f i c u l t i e s associated with f i t t i n g parameters in a

d i f f e r e n t i a l equation, and, to avoid unnecessary complications,

we confine our attention to models of the form (1.1.1) with

observations taken d i r e c t l y on the state variables.

The problem of finding p to minimize (1.1.3) can be nasty.

Bard[6,p231] gives a concise description of some of the

d i f f i c u l t i e s that can occur. Generally, the problem i s

d i f f i c u l t because of the vast range of solutions that (1.1.1)

can have as a function of p. This can result in a l l sorts of

l o c a l minima for (1.1.3). S t a b i l i t y problems with the

d i f f e r e n t i a l equation can also a r i s e . In some cases the

solution to the i n i t i a l value problem (1.1.1) i s a discontinuous

function of p and thi s can create d i f f i c u l t i e s . Also, many

dynamic models are attempts to describe phenomena operating on

d i f f e r e n t time scales and thus s t i f f i n i t i a l value problems can

be expected to arise in practice.

Parameter f i t t i n g in the predator-prey dynamic model

y/ =p, Y, - P a y , vA / U+p^y,) - P , y,a

S ' (1.1.7)
y^-p^+p^y, y a/(i+p sy, >

is a t y p i c a l example of the type of problem considered in thi s

thesis. For more d e t a i l s concerning this dynamic system, we

refer the reader to Bazykin[7] and to Chapter 4 of thi s thesis.

As shown in Chapter 4 (which i s devoted exclusively to this

model) a poor i n i t i a l approximation to the optimal parameters

CHAPTER 1

7

can often lead to a l o c a l minimum in parameter space at which

the solution to the above i n i t i a l value problem i s q u a l i t a t i v e l y

quite d i f f e r e n t from the observations. Several methods are

presented in Chapter 3 which are designed to overcome poor

i n i t i a l parameter estimates. Special methods are also developed

in Chapter 3 for the important (and often d i f f i c u l t) case when

observations are not available on a l l state variables. We also

consider methods designed to overcome i n s t a b i l i t i e s in the

i n i t i a l value problem by the use of continuation parameters and

break points. In Chapter 4 we present extensive experiments

with many of the techniques developed in Chapter 3 applied to

the above dynamic model. In Chapter 5 we present a promising

technique for improving poor parameter estimates using a

sequential reestimation approach. Experiments with this

technique applied to problems involving the above dynamic model

are also given in Chapter 5.

Experience indicates that the successful resolution of a

"real world" parameter f i t t i n g problem involving a dynamic model

usually requires many optimization runs. Strategies such as

freezing or rescaling parameters are also often useful.

Frequently the model evolves as attempts are made to f i t i t to

the data. It i s thus desirable to rapidly acquire experience

with a given model. We conclude that an int e r a c t i v e approach

can be valuable for resolving, in a reasonable time, a parameter

f i t t i n g problem involving a dynamic model. This i s inherently

expensive; however, as computer technology advances, the cost

CHAPTER 1

8

factor becomes less important. It i s our view that the f i r s t

point to consider when designing a good interactive package i s

the set of numerical algorithms to be employed. The

user-program interface should then be constructed to make

optimal use of these algorithms. Of course the process works

the other way too: interactive algorithms should be designed

with a user-program interface in mind. One goal of t h i s thesis

i s to develop dynamic model parameter f i t t i n g algorithms that

exploit user in t e r a c t i o n . Another goal i s to organize a

selection of these algorithms into an interactive package so

that the various approaches developed complement one another.

The end res u l t of t h i s work i s the interactive package PARFIT

documented in Appendix A.

1.2 MOTIVATION

Dynamic models occur extensively in practice. To be

meaningful, such models must be related to physical observations

and this often involves adjusting some parameters in the models.

In t h i s section we b r i e f l y describe some areas where parameter

f i t t i n g in dynamic models i s important.

Chemistry i s one f i e l d where parameter f i t t i n g in dynamic

models occurs that i s frequently mentioned in the l i t e r a t u r e

(see for example, Rosenbrock and Storey[61,p.189,p.204],

Bard[6,p.222], van Domselaar and Hemker[71], and Bellman et

a l [9]) . T y p i c a l l y a dynamic model i s set up to describe a

chemical reaction. The unknown parameters are reaction rates

and the state variables represent concentrations of various

CHAPTER 1

9

reactants. Since reaction rates can vary greatly, s t i f f dynamic

models are important in chemistry. An example of such a model

is considered in Section 3.2. The study of parameters in

dynamic models with a large number of state variables i s also of

interest to chemists (see for example Farrow and Edelson[22]).

Many dynamic models occur in the f i e l d s of medicine and

biology. Some of these models involve organic chemistry, while

others are more d i r e c t l y related to b i o l o g i c a l processes. There

are models describing enzyme a c t i v i t y in the blood (van

Domselaar[70], van Domselaar and Hemker[71]). Models describing

blood c e l l population dynamics are currently of interest

(Mackey[42]). Parameter estimation in a model involving the

e l e c t r i c a l a c t i v i t y of the heart has been studied by Bellman et

a l [l l] . B i o l o g i c a l processes frequently operate on d i f f e r e n t

time scales and thus s t i f f dynamic models are important here.

At present, there i s a strong interest in dynamic models

describing ecological processes. Several such models are

considered in th i s thesis. Often ecological data i s sparse and

has a large random error and thi s makes parameter f i t t i n g

d i f f i c u l t . Models describing predator-prey interactions occur

extensively in ecology. In Chapters 4 and 6, we give several

examples with such models using both simulated observations and

observations obtained from physical experiments. For more

background concerning parameter f i t t i n g in dynamic models in

ecology, see for example Swartz and Bremermann[66],

Vandermeer[69], Martin et al[44], Parker[53], Long[40].

CHAPTER 1

10

1.3 MORE BACKGROUND

Following the observations of Bard[6,p220], we elect to use

methods of the form
ptS +' J

 = p U > R 7 F (p t / >) (1.3.1)

to minimize F(p) in (1.1.3) where VF represents the gradient of

F, i s a scalar, and R^ i s a matrix (usually p o s i t i v e

d e f i n i t e) . The Gauss-Newton (see for example [50,p.267]) and

Levenberg-Marguardt[39],[43] methods are part i c u l a r examples of

such technigues. To apply these methods v F must be found.

There are b a s i c a l l y two ways this can be done. One way i s to

calculate v F through f i n i t e differences- Since the

determination of F(p) involves the integration of an i n i t i a l

value problem, we expect the use of f i n i t e differences to

approximate VF to be an expensive undertaking. More inportant,

however, i s the fact that with a dynamic model, the accurate

ca l c u l a t i o n of VF by f i n i t e differences can be a t r i c k y task.

In p a r t i c u l a r l e t 3F(p)/3p. be approximated by the difference

F(p+Ap. e.)-F(p)
" (1.3.2)

A P -

where e- i s the unit vector with a 1 in position i . As pointed

out by Bard[6,p226], several factors a f f e c t how well t h i s

difference approximates dF/dp^ . For a good approximation, A P ;

must be small; however, i f i t i s too small, rounding-error

dominates and a poor approximation to the derivative i s

obtained. More important, however, i s the fact that F(p) i s

CHAPTER 1

11

obtained by integrating an i n i t i a l value problem and thus i t s

accuracy depends on the d i s c r e t i z a t i o n used and on the order of

the method used to numerically solve the d i f f e r e n t i a l equation.

Thus for example i f F(p+Ap^.e^.) and F(p) are determined

independently (each with i t s own discrete set of time values),

they must be found with s u f f i c i e n t accuracy so that the

difference approximation to ~dF/dp; i s v a l i d . This i s an

expensive undertaking and i s not the proper way to proceed. It

is more productive to think of F in terms of the discrete method

used to find i t . Thus at a given point p in parameter space,

"VF(p) i s approximated by integrating (1.1.1) m+1 times using the

same discrete set of time values. This avoids for example the

p o s s i b i l i t y of getting d i s c o n t i n u i t i e s in F(p) due to varying

sets of discrete steps at neighboring points in parameter space.

Of course such a discontinuity would play havoc with the f i n i t e

difference approximation to the gradient. Thus to calculate

F(p) and approximate vF(p) requires m+1 integrations of (1.1.1),

only one of which involves error co n t r o l . However, (1.1.1) i s

often a nonlinear i n i t i a l value problem.

The second alternative for c a l c u l a t i n g VF, which we s h a l l

use, employs the s e n s i t i v i t y equations. These are a set of

linear i n i t i a l value problems coupled in only one d i r e c t i o n to

the given i n i t i a l value problem (1.1.1). In our notation they

are

r* 3 J J (1.3.3)
y, (0)Oy(0 f P) / a p .

CHAPTER 1

12

for j=l,...,m where the subscript p^ denotes p a r t i a l

d i f f e r e n t i a t i o n with respect to p., and where g i s the Jacobian

matrix (ag/ay). These equations may be obtained by

d i f f e r e n t i a t i n g (1.1.1) with respect to p. To use the

s e n s i t i v i t y equations, g and g must be found; however, for a

wide selection of important dynamic models this i s not too

d i f f i c u l t a task. For more d e t a i l s on s e n s i t i v i t y equations see

Tomovic[67], Tomovic and Vukobratovic[68]. In Chapter 2,

further d e t a i l s are given on the integration of the s e n s i t i v i t y

equations. We observe that for models of the form (1.1.1), the

solution to the s e n s i t i v i t y equations immediately gives V F(p).

Following the notation used in (1.1.2), denote by J the kr x m

Jacobian matrix of f with respect to p. The elements of J are

given by
J„,„ * (P)=w 3Yj(«j (t.) (1.3.4)

4 (8 - 0 + 4 J (j ^ A_ke.-iUA.-UA

s=l,...,r; 1=1,...,k; j=l,...,m,

and the gradient of F(p) is

VF(p)=2J(p) Tf (p) . (1.3.5)

We note that in the process of finding VF, we have found part of

the Hessian matrix of F(p). (The Hessian matrix i s

T kr
2(J J+XZ f-G.)

2=1 * *

where G_ is the matrix of second p a r t i a l s of f with respect to
o D

P-)
CHAPTER 1

http://A_ke.-iUA.-UA

13

Beale[8] distinguishes three basic problems in nonlinear

parameter estimation. F i r s t there i s the problem of determining

the optimal parameter vector p. This i s primarily a matter of

numerical analysis and i t i s the problem we concentrate on.

Second there i s the problem of defining a t h e o r e t i c a l l y

s a t i s f a c t o r y confidence region or an approximate confidence

region for p. Third, Beale i d e n t i f i e s the problem of describing

this confidence region so that i t can be e a s i l y interpreted.

Beale deals extensively in [8] with the second problem.

Although we are primarily concerned with the f i r s t problem

in t h i s thesis, some attention to the second and thi r d problems

i s mandatory since a measure of the r e l i a b i l i t y of parameters

greatly enhances their value to the model builder. Also, as

seen in Chapter 4, a study of some of the s t a t i s t i c a l aspects of

the problem can be useful for detecting linear relationships

among parameters in a model. Following Bard[6,p.187], we make

the

DEFINITION 1.3.1:

The Y - j o i n t confidence region i s a bounded closed subset

S(W) in parameter space depending on the data sample W such that

Pr [p*6S (W)] = V (1.3.6)

for a l l possible data samples W where p* i s the exact (and

unattainable) value for the parameter vector, and Pr denotes

p r o b a b i l i t y .

S p e c i f i c a l l y , we use for S(W) an m dimensional e l l i p s o i d

CHAPTER 1

14

centred at the estimate p" of p*. Following Bard[6,pl89], we

approximate f(p) defined in (1.1.2) by a linear function in a

neighborhood of p:

f (p)atf (p)+J(p) (p-p) . (1.3.7)

We assume the errors in the observations are normally

dis t r i b u t e d with zero mean. Form the theory of multiple linear

regression with V representing the kr x kr covariance matrix for

the observations, the variable

^ = (p-p) T(J T(p)V- lJ(p)) (p-p) (1.3.8)

has a ~\ a d i s t r i b u t i o n with m degrees of freedom. (We are
T -I

considering the general objective function f V f.) Unless

stated otherwise, J i s evaluated at p" in the following

discussion. Also,

J=f (p) T V _ , f (p) (1.3.9)

has a 'X d i s t r i b u t i o n independent of <J with kr-m degrees of

freedom. Thus

(kr-m)&

m J

has an F m ^ ̂ / l_ / > n d i s t r ibution (m degrees of freedom in the

numerator, kr-m degrees of freedom in the denominator). In

par t i c u l a r when the covariance matrix V i s of the form o-*I,

(that i s , when a l l observations are independent) then

CHAPTER 1

15

_ T T
(kr-m)J (kr-m)(p-p) J J(p-p)

mj mf(p) Tf(p)
- T T

(kr-m)(p-p) J J(p-p)
= (1.3.10) mF(p)

Thus the"B-joint confidence region i s
_ T T _

. (kr-m) (p-p) J J (p-p) -»
— < 1 - 3 - 1 1 '

which i s an m dimensional e l l i p s o i d in parameter space.

Following van Domselaar and Hemker[71], we can use the singular

value decomposition of J (p") to extract further information on

this e l l i p s o i d . Let

J(P)=Q(P)X(P)R"r(P) (1.3.12)

where Q and R are orthogonal matrices of size kr x m and m x m

and X i s the mxm diagonal matrix [diag(s , . . . , s^)] of singular

values arranged in descending order of magnitude. Let

kr-m
_ (1.3.13)

&q=R T(p)(p-p).

Our e l l i p s o i d may thus be written

| S q : Sq " V Sq< 6^ • (1.3.14)

Thus the p r i n c i p a l axes of the confidence region have lengths

yi/s- , j=l,...,m. For our confidence intervals on p., j=l,...,m
J

we take the projections of the above e l l i p s o i d onto the
CHAPTER 1

16

coordinate axes in p-space with the o r i g i n translated to the

estimate p. Thus the confidence i n t e r v a l for p. i s
_ j

[p. - Vvf (J T (P)J(P))V; / P. +Vf(j"r(p)J(P)r']. (i.3.i5)

This i s the confidence i n t e r v a l we use in our program PARFIT

described in Appendix A. To find (JTT)~* we use
(J Tjf'=R 2~V. (1.3.16)

The expected value of p-p i s zero and in the special case

considered above when V=«-al, the covariance matrix for p-p* is

E((P - P *) (p-p*)~^)=<>-a(JTJ)", (1.3.17)

where E(.) denotes expectation (see for example van Domselaar

and Hemker[71], Bard[6,p.59]). This matrix can be found using

(1.3.16). The matrix of corr e l a t i o n c o e f f i c i e n t s has elements

(J T J) : ' .
- J (1.3.18)

*. T -I

where fSA- = (J J)^. . Thus using the singular value decomposition,

y0.j=cps(S/. , SJ) (1.3.19)

where S. , S. are the i 1 th and j 1 th row vectors of S=R2"!

F i n a l l y we note that the above confidence intervals were

derived under the assumption that f(p) could be well

approximated by a linear function near p. This i s often not the

case. Bard[6,pl91] gives a simple empirical way of checking

t h i s . We want the l i n e a r i t y approximation to hold over the

confidence region that has been found. That i s F(p) should be

CHAPTER 1

17

near
F(p)+.5(p-p) (J TJ) (p-p)

in the confidence region. This can e a s i l y be checked at the

boundary of the confidence region. We also note that when F(p)

is large (and f i s only moderately nonlinear), then J T J i s a

poor approximation to the Hessian matrix of F(p) and the

quadratic approximation to F(p) stated above cannot be very

good. Thus the confidence region stated above loses v a l i d i t y as

the residuals increase. This can also be seen by observing that

£ in (1.3.13) varies d i r e c t l y as F(p), and thus as F(p)

increases, the confidence intervals can quickly become larger

than the parameters themselves. For further comments on thi s

case see Rosenbrock and Storey[61,p202].

We end this chapter with a b r i e f discussion on

conditioning. There i s a close connection between nonlinear and

linear least squares problems. For example, the Gauss-Newton

i t e r a t i v e method for solving a nonlinear least squares problem

can be viewed in terms of a sequence of linear least squares

problems. That i s given an estimate p W for the parameter

vector which minimizes (1.1.3), we seek a new estimate p ^ + ,)

for t h i s minimizing parameter vector such that

| |f (p W) + J (p W) I |* (1.3.20)

is minimized where
_p<«> . (1.3.21)

CHAPTER 1

18

(In practice a robust least squares optimization procedure must

do more. For example, i t should guarantee a reduction in the

sum of the squares of the residuals after each iteration.) For

s i m p l i c i t y of notation in the following discussion, we neglect

superscripts and we l e t -$+'^=x. Also, we assume J i s of f u l l

rank.; The condition number of the matrix J i s defined to be

T((J) = I I J| l a l |J*I I a where J*= (J TJ)"' J T is the pseudo-inverse of J.

F i r s t we consider the e f f e c t of small errors in f. The

vector *x which minimizes

||f-Jx||* (1.3.22)

is given by x =J f. When J i s of f u l l rank x i s unique. Let f

be an approximation to f and l e t f and f be projections of f

and "f* onto the range space of J. Provided f^40, i t follows (see

for example Stewartf65,p.221])

M j V j ^ t l l , \(J) | I f . - f l I L
* < (1.3.23)

I U T f | l A H f r l l a

Thus when J i s i l l - c o n d i t i o n e d (^f(J) i s large) or when the

projection of f onto the range space of J i s small, r e l a t i v e l y

small errors in f can have a strong influence on the accuracy

with which we can determine ~x .

The effects of errors in J are much more complicated. The

following theorem (see for example Stewart[65,p.223]) addresses

thi s s i t u a t i o n .

THEOREM 1.3.1:

Let J be of f u l l rank and l e t f be defined as above. Let E

CHAPTER 1

19

be a matrix of the same dimensions as J and l e t E^, fp and E^,

be projections of E and f onto the range space of J and the

orthogonal complement of the range space of J respectively.

(The projection of a matrix onto a subspace i s defined to be the

matrix whose i 1 t h column i s the projection of the i 1 t h column of

the given matrix onto the subspace.) If

I U 1"! I A I I E , | lA<.5

then J+E i s of f u l l rank and

i i x - i r i L IIEJL j i E j i A i i f j i
<2 'X 5 + 4 ^ — 1 C.J^+s^—L-J- (1.3.24)

l l x l l , . i u i i A I IJI 1^1 I f ^ l IA " J u t
where x=(J+E)Tf and x =JTf.

As noted by Stewart[65,p.224], i f f i s almost in the range

space of J then "X i s the condition number of the least squares

problem, while i f I I f ̂ 1 \gL/1 I f^ I 1̂ i s large then 7f i s the

e f f e c t i v e condition number of the least squares problem. Thus

depending on the orientation of f with respect to the range

space of J, the least squares problem can be extremely sensitive

to the condition number of J.

The condition number of J can be influenced by certain

transformations in parameter space. At times, such

transformations can d r a s t i c a l l y reduce the condition number;

however, on other occasions they can worsen the conditioning of

a problem. For example consider the logarithmic transformation

of Pj where we transform to "p. =ln (py) . We consider the e f f e c t

of t h i s transformation on the conditioning of the s t i f f problem

CHAPTER 1

20

y'=-(1-y)y +p y
' ' (1.3.25)

y^=p, (d - y x) y , - (P * + P s) y a >

with i n i t i a l condition

y(0) = (l , 0) T

at the point

(1000, .99, .01) T

in parameter space. Without any scaling, the condition number

was approximately 59600. The matrix J was evaluated using the

observation times given in Section 3.2 where this i n i t i a l value

problem i s given further consideration. The trapezoidal

integration scheme available in the package PARFIT described in

the appendices was used to approximate J. For this problem, a

logarithmic scaling of the parameters reduced the condition

number to approximately 4.4. There are cases, however, where

thi s scaling increases the condition number (this occurs for

example, in certain cases with exponential f i t t i n g problems),

and thus i t must be used with caution.

CHAPTER 1

21

CHAPTER 2

OPTIMIZATION AND INTEGRATION

2.1 NONLINEAR LEAST SQUARES

Our goal i s to concentrate on the d i f f e r e n t i a l equation

aspect of parameter f i t t i n g in dynamic models and not to compare

the fine points of various optimization algorithms. However,

the nonlinear least squares problem occurs repeatedly in th i s

thesis and thus a b r i e f discussion of this problem i s in order.

When choosing a method, i t i s important to keep in mind that the

e f f i c i e n c y and r e l i a b i l i t y of an optimization program depend on

both the p a r t i c u l a r algorithm and the d e t a i l s of i t s

implementation.

We must choose between methods designed s p e c i f i c a l l y for

least squares problems, and more general methods designed for

nonlinear optimization. For our par t i c u l a r problem the

cal c u l a t i o n of f i r s t derivatives i s often expensive (through the

s e n s i t i v i t y equations for example) and the calc u l a t i o n of second

derivatives i s even worse. Thus we elect to use only f i r s t

d erivative methods and we must s e t t l e for approximations to the

Hessian matrix. Some comparisons between least squares methods

and more general optimization methods applied to least squares

problems (Bard[5], Bus et al[14]) indicate special least squares

methods are to be preferred. We recognize, however, that there

are cases when a more general method can be superior (see Ramsin

and Wedin[57], McKeown[46]). The results of Bus et al favor the

CHAPTER 2

22

Levenberg-Marquardt method ([3 9] , [4 3]) over more general

optimization methods and over the Gauss-Newton method, (we

include under the name Gauss-Newton, modified Gauss-Newton

algorithms employing step length adjustment) while Bard finds

his implementation of the Levenberg-Marquardt method to be as

r e l i a b l e but s l i g h t l y less e f f i c i e n t than his implementation of

the Gauss-Newton method. Bard, however, employs some special

techniques in his implementation of the Gauss-Newton algorithm

that are absent in the experiments of Bus et a l . This further

points out the s e n s i t i v i t y of test results to pa r t i c u l a r d e t a i l s

of implementation. Of course a l l results are also problem

dependent. The Levenberg-Marquardt method appears to be a good

algorithm for the nonlinear least squares problem and we employ

i t extensively in this thesis. S p e c i f i c a l l y we iterate

according to

p f r " ; =p(f> - (j T (p (^)j(p(P , + X i) - ' j T (P ^) f (P V)
(2.1.1)

where J, f, p were defined in Section 1.1 and X i s a posit i v e

parameter chosen so that the sum of the squares of the residuals

i s reduced by the above i t e r a t i o n .
-r

In the case when J J i s pos i t i v e d e f i n i t e (that i s , when J

is of f u l l rank), we have the following important facts about

th i s technique (see Marquardt[43]).
(1) Let ^ = p < * " > _p(*> _ T h a f c . s

(J T J + X l) S = - J T f (2.1.2)

CHAPTER 2

23

where we have d r o p p e d t h e s u p e r s c r i p t s . I t f o l l o w s t h a t

$ =- (J T J + X l) " l J T f (2.1.3)

m i n i m i z e s

o v e r

MJi + f l l * (2.1.4)

: MSI 1^=1 IS.II^. (2.1.5)

(2) For S> s a t i s i f y i n g (2.1.2) , | | % (X) | £ i s a c o n t i n u o u s

monotone d e c r e a s i n g f u n c t i o n o f X and

l i m | IS (A) I |*=0. (2.1.6)

(3) The q u a n t i t y

^ = c o s - ' (£ . S) (2.1.7)

where %^=-JTf. i s a c o n t i n u o u s monotone d e c r e a s i n g f u n c t i o n o f X

and

l i m * = 0 . (2.1.8)

Thus as X-*-« , t h e d e s c e n t d i r e c t i o n S g i v e n by (2.1.2)
-r

a p p r o a c h e s t h e s t e e p e s t d e s c e n t d i r e c t i o n , g i v e n by - J f , and

i t s m a g n i t u d e a p p r o a c h e s z e r o . T h i s c an c r e a t e p r o b l e m s i f t h i s

a l g o r i t h m i s n o t c a r e f u l l y i m p l e m e n t e d . T h a t i s , we do n o t want

X t o become so l a r g e t h a t we a r e t a k i n g v e r y s m a l l s t e p s i n a

d i r e c t i o n t h a t i s e s s e n t i a l l y t h e s t e e p e s t d e s c e n t d i r e c t i o n .
CHAPTER 2

24

To overcome th i s possible drawback, a check i s made to see i f %

is within 45° of the steepest descent d i r e c t i o n . If i t i s , A i s

not increased but instead a search in the d i r e c t i o n of the

current £ i s carried out to obtain a better parameter vector.

Marquardt[43] outlines the necessity of using this strategy.

The following theorem (see Dennis[19]) gives conditions for

the l o c a l convergence of the Levenberg-Marquardt method.

THEOREM 2.1.1:

l e t "p be a l o c a l minimum of F(p) and l e t ^ / be the smallest

eigenvalue of J (p) T J (p) . Let 5(be a scalar such that for a l l p

in a neighborhood of p~,

I | (J(p)-J(p)) T f (P) | | <*||p-p|L (2.1.9)
a — «*•

If Y<yi/then for any bounded sequence A (^ ^ of real numbers,

there exists a neighborhood of p such that i f p i s in this

neighborhood, the Levenberg-Marquardt i t e r a t i o n s defined by

and \ A ^ j converge to p.

For further reading concerning the convergence of the

Levenberg-Marquardt algorithm see Osborne[51],[52].

There i s a l o t of choice available in a par t i c u l a r

implementation of the Levenberg-Marquardt method. Much of thi s

centres around the strategy for adjusting X- For a summary of

some of the strategies we refer the reader to Van Loan[72].

Marquardt[43] suggests that we rescale parameter space at

each i t e r a t i o n in such a way that J J in the scaled parameters

has diagonal elements equal to one. The rationale for this

CHAPTER 2

25

scaling i s that the Levenberg-Marquardt method i s biasing the

descent d i r e c t i o n towards the steepest descent d i r e c t i o n and the

steepest descent d i r e c t i o n i s scale dependent. Our

implementation of the Levenberg-Marquardt technique has th i s

scaling available as an option. Experimental results indicate

that at times this scaling can be quite e f f e c t i v e . A l i s t i n g of

our implementation i s given in Appendix B.

Next, we mention a couple of recent developments in

nonlinear least squares problems which, when they become more

f u l l y understood, may be very useful for our problem where

function and gradient evaluations are expensive.

Steen and Byrne[64] propose an interesting nonlinear least

squares algorithm which adjusts the descent d i r e c t i o n between

the steepest descent and Gauss-Newton directions in a

complicated, but (experimentally) apparantly more e f f i c i e n t way

than that of the Levenberg-Marquardt method. Also, their

algorithm does not suffer from the stepsize going to zero as the

steepest descent d i r e c t i o n i s approached. This algorithm i s of

pa r t i c u l a r interest to us because i t requires a subs t a n t i a l l y

fewer number of function evaluations than does the

Levenberg-Marquardt method on a f a i r l y wide range of test

problems considered in [64]. On most of the test problems

considered, this method i s superior to the similar SPIRAL method

proposed by Jones[34].

The second recent development of p a r t i c u l a r interest

involves work on the large residual least squares problem. In

CHAPTER 2

26

th i s case J J i s no longer a good approximation to the Hessian

matrix, and the Gauss-Newton and Levenberg-Marquardt methods are

slowed down. This s i t u a t i o n can arise when we have a l o t of

noise in the observations, when we have a poor model, or when

our least squares algorithm i s converging to a l o c a l minimum

with a large re s i d u a l . (As the experiments of Chapter 4

indicate, numerous l o c a l minima can occur when we try to

estimate parameters in dynamic models.) Recently, there has

been some interesting work done on special algorithms which

approximate the second derivatives in the Hessian of a least

squares problem by techniques modelled after the quasi-Newton

methods. (See for example Dennis[18,p.171,177], Dennis et

al[20].) When the r e l i a b i l i t y of such methods increases, their

application to parameter f i t t i n g problems in dynamic models

seems worthwhile. If a reduction i s achieved in the number of

numerical integrations required, the extra work invested to

approximate the Hessian matrices should be well worth i t . For a

good discussion of recent work in nonlinear least squares, we

refer the reader to Dennis[19].

2.2 INTEGRATION OF MODEL AND SENSITIVITY EQUATIONS

In the course of f i t t i n g parameters in a dynamic model,

several d i f f e r e n t i n i t i a l value problems must be solved. That

i s , every time the parameter vector changes, a new i n i t i a l value

problem must be solved. Moreover, the solutions to these

problems can vary d r a s t i c a l l y . Consider, for example, the algae

growth model of Section 6.3 where small changes in the parameter

CHAPTER 2

27

values can produce huge changes in the solution to the i n i t i a l

value problem. To handle such problems, a parameter f i t t i n g

algorithm requires a good general purpose numerical package for

solving i n i t i a l value problems. The a b i l i t y to handle parameter

estimation problems involving s t i f f dynamic models i s also

important in practi c e . For several examples with such problems

we refer the reader to van Domselaar and Hemker[71]. In th i s

thesis, we employ the automatic integration package developed by

Gear[25], [26], [27]. In addition to the standard predictor

corrector methods, th i s package has available a set of s t i f f l y

stable multistep methods of varying order. In our package,

PARFIT, the user can e a s i l y switch between a regular multistep

method and a s t i f f l y stable method.

When f i t t i n g parameters in a dynamic model, the need for a

general integration program i s clear; however, often a much

simpler integration procedure i s adequate. Of course to

mimimize the error introduced into the parameter estimates by

the d i s c r e t i z a t i o n of the i n i t i a l value problem, an integration

scheme with error control should be used. In the interests of

economy, i t i s advisable to sta r t with a simple integration

scheme not employing stepsize control i f this i s possible. In

par t i c u l a r we make use of the trapezoidal method without error

co n t r o l . In PARFIT, the discrete times used by the trapezoidal

method are the "sample times" which by default are the

observation times; however, the sample times can be

i n t e r a c t i v e l y modified. Use of the trapezoidal method allows us

CHAPTER 2

28

to handle s t i f f problems. F i n a l l y we note that other

integration schemes can e a s i l y be added to PARFIT.

In addition to integrating the given i n i t i a l value problem,

the s e n s i t i v i t y equations defined in Section 1.3 must also

frequently be integrated. The way the s e n s i t i v i t y equations

(which are coupled in only one d i r e c t i o n to the given i n i t i a l

value problem) are integrated can be c r u c i a l to the success of a

parameter f i t t i n g algorithm. For example, as observed by

Bard[6,p.231], the integration of the s e n s i t i v i t y equations at a

point p in parameter space should not have any influence on the

discrete steps used in the integration of (1.1.1) at p. That

i s , F(p) should be independent of whether or not gradient

information i s extracted at p. The s e n s i t i v i t y equations in

theory provide a means of determining how the continuous

solution y(t) to the given i n i t i a l value problem varies as a

function of the parameter vector p. However, i n practice the

given i n i t i a l value problem can only be solved approximately

according to some discrete model (for example the trapezoidal

method). For the purposes of numerical optimization, i t i s the

solution to thi s discrete analog of the continuous problem that

i s being f i t to the observations, and when finding the gradients

of the objective function we r e a l l y want to know how the

solution to the discrete approximation to the i n i t i a l value

problem varies as a function of p at the observation times.

Thus for the purposes of numerical optimization, the way the

s e n s i t i v i t y equations are integrated should be related to the

CHAPTER 2

29

solution method of the o r i g i n a l i n i t i a l value problem. This i s

e s p e c i a l l y important i f a coarse approximation to the given

i n i t i a l value problem i s used.

There i s an analog to the above considerations in optimal

control problems where the discrete approximation to the adjoint

equations should be t a i l o r e d to the pa r t i c u l a r d i s c r e t i z a t i o n of

the state equations. This can be a tedious undertaking in

control problems as demonstrated by Kelly and Denham[35].

However, the main d i f f i c u l t y with control problems arises

because the state equations are integrated forward in time and

the adjoint equations are integrated backward in time.

Fortunately for our purposes since we are integrating in only

one d i r e c t i o n in time, the r e l a t i o n of the discrete s e n s i t i v i t y

equations to the discrete state equations i s much simpler. In

pa r t i c u l a r a l l we must do i s to ensure that the same method with

the same discrete set of time values i s used on the s e n s i t i v i t y

equations as i s used on the state equations. To be more

s p e c i f i c , the diagram in Figure 2.2.1 must commute where S c

represents the operator which produces s e n s i t i v i t y equations

from an i n i t i a l value problem, D4- represents a d i s c r e t i z a t i o n

operator, and S Q represents the operator which produces discrete

s e n s i t i v i t y equations from discrete state equations. In our

numerical integration procedures we take advantage of the one

way coupling between the s e n s i t i v i t y equations and the state

equations. S p e c i f i c a l l y , we integrate the state equations from

time t to time t+h (under error control i f applicable). Then

CHAPTER 2

30

continuous
state eqns

D.

discrete
state eqns

continuous
s e n s i t i v i t y eqns

D.

discrete
s e n s i t i v i t y eqns

Figure 2.2.1
Di s c r e t i z a t i o n of s e n s i t i v i t y equations

assuming there are m parameters and n state equations, we

integrate each of the m s e n s i t i v i t y i n i t i a l value problems, each

having n equations, from time t to time t+h using exactly the

same d i s c r e t i z a t i o n that was used to integrate the state

equations. This i s consistent with the comments by

Bard[6,p.231] mentioned e a r l i e r in th i s section. We note that

the s e n s i t i v i t y equations are linear i n i t i a l value problems.

When Gear's program i s used, the above technique involves

extracting information on the current stepsize and order from

the integration package, and then integrating the s e n s i t i v i t y

equations over the same step with the same order method. Gear's

program employs the Nordsieck[49] formulation of a multistep

method where approximations to higher derivatives are stored

CHAPTER 2

31

instead of previous values. This makes changing the stepsize

very easy. Our integration of the s e n s i t i v i t y equations employs

exactly the same technique in phase with Gear's package. For

more d e t a i l s see Appendix B. No error control i s used when

integrating the s e n s i t i v i t y equations. As observed by van

Domselaar and Hemker[71], an integration scheme has the same

s t a b i l i t y properties on the s e n s i t i v i t y systems as i t has on the

system of state equations.

2.3 WHEN TO INTEGRATE THE SENSITIVITY EQUATIONS

We must decide when to integrate the s e n s i t i v i t y equations.

Two strategies are considered. These extra linear equations may

be integrated every time (1.1.1) i s integrated (strategy one),

or they may be integrated only when the Jacobian matrix and the

gradient are required (strategy two). We expect the choice of

strategy to depend in part on the implementation d e t a i l s of the

optimization algorithm employed. For example, i f several

objective function evaluations are required at each i t e r a t i o n ,

then the f i r s t strategy would c l e a r l y be i n e f f i c i e n t . On the

other hand, i f only one objective function evaluation i s

required per i t e r a t i o n (this i s generally not the case, although

at times several i t e r a t i o n s follow this pattern), then strategy

one would hold the advantage. To further complicate matters,

the integration of the s e n s i t i v i t y equations i s generally easier

than the integration of (1.1.1) which i s usually nonlinear and

at times even s t i f f . Also, the step size adjustments are made

when integrating (1.1.1) and not when integrating the

CHAPTER 2

32

s e n s i t i v i t y equations.

To aid in a more detailed analysis of the two alte r n a t i v e s ,

we make the following d e f i n i t i o n s .

(a) Let W denote the basic unit of work for a pa r t i c u l a r problem

defined as the work required to integrate (1.1.1).

(b) Let w denote the fr a c t i o n of the work W required to

integrate one s e n s i t i v i t y equation.

(c) Let m be the number of s e n s i t i v i t y equation systems. This

is just the number of parameters.

(d) Let I be the number of it e r a t i o n s in the optimization run.

(e) Let J be the number of objective function evaluations where

no gradient i s required. These are the evaluations in the

searches during the i t e r a t i o n s .

Under the f i r s t strategy, the number of times the i n i t i a l

value problem (1.1.1) i s solved i s

I+J-(1-1)=J+1 (2.3.1)

and t h i s i s also the number of times the s e n s i t i v i t y equations

are solved. Therefore the t o t a l function evaluation work done

in solving for the optimal parameters i s

W, =(J+l)W+m(J+l)wW. (2.3.2)

Under the second strategy, the number of times the i n i t i a l value

problem i s solved i s I+J, and the number of times the

s e n s i t i v i t y equations are solved i s I. Therefore the t o t a l

function evaluation work done in solving for the optimal

parameters i s

CHAPTER 2

33

Wa= (I+J)W+mIwW. (3.3.3)

Thus

W /W =(J+1)(mw+1)/(I+J+mlw)
' *• (2.3.4)

=(J/I+1/I)(mw+l)/(l+J/I+mw).

We neglect 1/1 compared to J / I . This i s equivalent to ignoring

the s t a r t i n g function evaluation in the f i r s t strategy and thus

in most cases, t h i s approximation i s not too s i g n i f i c a n t . Thus

Wy /W XJ/I (mw+1)/(J/I+(mw+1)) (2.3.5)

Table 2.3.1 contains some values for W,/Wa as a function of J/I

and mw. Entries less than 1 correspond to cases where i t i s

v mw

J/K .5 1 2 4 8

i 0 .6 0 .667 0 .75 0 .833 0 .9
1.2 0 .667 0 .75 0 .857 0 .968 1 .06
1.5 0 .75 0 .857 1 .0 1 .15 1 .29
2 0 .857 1 .0 1 .2 1 .43 1 .64

Table 2.3.1
Work rati o s W /W„ — \i-—a.

more e f f i c i e n t to integrate the s e n s i t i v i t y equations each time

the i n i t i a l value problem i s integrated.

To carry t h i s analysis further, we need some t y p i c a l values

for w. Consider Euler's method with no stepsize adjustment.

Assume there are n state variables and l e t the work required to

evaluate one component of a vector function or one element of a

Jacobian matrix be Wc. The i n i t i a l value problem (1.1.1) i s

CHAPTER 2

34

y'=g(t,y,p)

and the s e n s i t i v i t y equations are of the form

y.' =g u(t,y,p)y. +g_ ,j=i,...,m.

We do not make any special allowances for parameters that occur

only in the i n i t i a l conditions (thus making g =0) in the

following analysis. Also, additions and mul t i p l i c a t i o n s

associated with taking an Euler step are neglected. The work

required to advance one time step in the solution of (1.1.1) i s

nWc, and the work required to advance one step in the solution

of one s e n s i t i v i t y equation system i s (na/m+n)Wc. Thus

mw=(na+mn)/n=n+m. (2.3.6)

In the case of Euler's method without error control, i t seems

advisable to solve the s e n s i t i v i t y equations only when required.

The same conclusion applies to e x p l i c i t multistep methods

without error control since to advance one step in time requires

only one evaluation of the vector function on the right hand

side of (1.1.1) (see for example Gear[25,p.104]).

The s i t u a t i o n i s , however, d i f f e r e n t with i m p l i c i t

multistep methods. Here a generally nonlinear system of

algebraic equations must be solved for each advance of one time

step when integrating (1.1.1). If a predictor-corrector method

i s used to solve the these nonlinear systems of equations then

t y p i c a l l y two or three corrections are required at each time

step (Gear[25,p.114]). Assume the predictor - corrector method

CHAPTER 2

35

ends with an evaluation of y' at the new time value. To be

concrete, assume four evaluations of g are required per time

step. To solve the i m p l i c i t equations associated with the

integration of the s e n s i t i v i t y equations, no extra function

evaluations beyond those required for an e x p l i c i t multistep

method are needed. However, m linear systems of equations each

involving the same nxn matrix must be solved. This takes on the

order of n /3+mn mul t i p l i c a t i o n s (see for example

Stewart[65,p.136]). The number of mul t i p l i c a t i o n s required to

evaluate a component of g can vary greatly between problems. To

describe t h i s v a r i a t i o n , l e t Wc require 1 m u l t i p l i c a t i o n s . We

w i l l vary 1 in the following analysis. The work required to

advance one time step , without error control, in the solution

of (1.1.1) i s

4nWc=4nl mul t i p l i c a t i o n s (2.3.7)

and the number of mu l t i p l i c a t i o n s required to advance one step

in the solution of a s e n s i t i v i t y equation i s

(na/m+n) l+n 3/(3m)+2n i. (2.3.8)

The m u l t i p l i c a t i o n s required to form g y have been included in

the above estimate. Thus

mw=((n+m)l+na/3+2nm)/(41). (2.3.9)

Some values for mw and for W^W^ are given in Table 2.3.2. The

ordered pair (m,n) i s given below the mw values. From Table

2.3.2, we see there are cases when i t i s advantageous to

CHAPTER 2

36

1 = 5 1 = 25
\mw

1.92 3.92 3.27 6.17 1.38 2.38 2.25 3.43
J / I \ (3,2) (3,5) (6,2) (6,5) (3,2) (3,5) (6,2) (6,5)

1.0 0.745 0.831 0.810 0.878 0.704 0.772 0.765 0.816
1.2 0.850 0.965 0.937 1.03 0.798 0.886 0.877 0.944
1.5 0.991 1.15 1.11 1.24 0.921 1.04 1.03 1.12
2.0 1.19 1.42 1.36 1.56 1.09 1.26 1.24 1.38

Table 2.3.2
Some work r a t i o s f o r a p r e d i c t o r - c o r r e c t o r method

i n t e g r a t e the s e n s i t i v i t y equations every time the n o n l i n e a r

i n i t i a l value problem i s i n t e g r a t e d . T h i s s t r a t e g y would be

even more d e s i r a b l e i f an e r r o r c o n t r o l were used on the

n o n l i n e a r i n i t i a l value problem.

The case when the i n i t i a l value problem i s s t i f f r e q u i r e s

s p e c i a l a t t e n t i o n . In t h i s case i t i s d e s i r a b l e f o r s t a b i l i t y

reasons to use an i m p l i c i t i n t e g r a t i o n scheme; however, a

p r e d i c t o r - c o r r e c t o r method can r e q u i r e very small step s i z e s to

converge and thus a Newton-like method i s i n d i c a t e d

(Gear[25,p.216]). T h i s r e q u i r e s i n f o r m a t i o n on g ; however, the

exact g i s not r e q u i r e d and the usual s t r a t e g y i s to update g^

only when necessary (see Gear[25,p.217]). To be co n c r e t e , we

assume oL e v a l u a t i o n s of g are r e q u i r e d per time step i n the

s o l u t i o n of the giv e n i n i t i a l value problem (u s u a l l y << <1.).

There i s a f u r t h e r c o m p l i c a t i o n i n f i n d i n g work estimates i n the

s t i f f case. I f the s e n s i t i v i t y equations are to be i n t e g r a t e d

then we must f i n d g and the f a c t o r s of the a s s o c i a t e d l i n e a r
J

CHAPTER 2

37

system matrix at each time step. Thus this information i s

f r e e l y available when we are integrating the given dynamic

system. In the following estimates we assume no advantage i s

taken of th i s free information. We have

mw=((n+m) l+na/3+2nm) / (4 (n+1) +<* (nl+n A/3)) . (2.3.9)

In Tables 2.3.3 and 2.3.4, results analogous to those in Table

2.3.2 are given for the cases <<=.3 and <<=.6 respectively.

We conclude that for i m p l i c i t methods, i t can be

advantageous to follow strategy one, e s p e c i a l l y when the problem

is s t i f f . Of course the optimal strategy i s strongly dependent

on the optimization method used and for strategy one to be best,

exact searches at each i t e r a t i o n should not be made. F i n a l l y we

note that from the results on ten test problems considered in

[5], J/I^1.2 for the Levenberg-Marquardt method.

CHAPTER 2

38

1 = 5 1 = 25

\ 1.22 1.57 2.08 2.47 1.12 1.49 1.83 2.15
J / I \ (3,2) (3,5) (6,2) (6,5) (3,2) (3,5) (6,2) (6,5)

1.0 0.690 0.720 0.755 0.776 0.680 0.713 0.739 0.759
1.2 0.779 0.818 0.864 0.891 0.766 0.810 0.842 0.869
1.5 0.895 0.947 1.01 1.05 0.879 0.936 0.980 1.02
2.0 . 1.05 1.12 1.21 1.27 1.03 1.11 1.17 1.22

Table 2.3.3
Work ratios for a s t i f f method (a(=.3)

1 = 5

1.31
(3,5)

1.88
(6,2)

2.06
(6,5)

1 = 25

0.997 1.19 1.62 1.72
(3,2) (3,5) (6,2) (6,5)

1.0
1.2
1.5
2.0

0.678 0.697
0.764 0.789
0.875 0.909
1.02 1.07

0.742 0.753
0.847 0.862
0.986 1.01
1.18 1.21

0.666 0.687
0.750 0.775
0.857 0.891
0.999 1.05

0.724 0.731
0.823 0.832
0.954 0.966
1.13 1.15

Table 2.3.4
Work rati o s for a s t i f f method (<<=.6)

2.4 AN EXAMPLE WITH KNOWN DIAGONAL COVARIANCE MATRIX

Consider the i n i t i a l value problem

Y ; = - P , Y ^ + P ^

y » - P / Y , Y * + p * y 3 - p * y * Y s + P * Y 5 - - P < Y ^ Y *

y j =P, y, y a - P Z Y 3 - P , Y ^ - ^ Y ^ (2.4. I)

y ^ y * y « - p 5 - V P * y a y *

with the i n i t i a l condition

CHAPTER 2

39

y(0) = (l , 1, 0, 0, 0) T . (2.4.2)

This problem i s considered by Bard[5]. Observations used by

Bard on a l l f i v e state variables are given in Table 2.4.1. The

Time Observations
10y3 lOOOy^ 10 00y^.

12. 5 .945757 .961201 .494861 154976 .111485
25 .926486 .928762 .690492 314501 .236263
37. 5 .917668 .915966 .751806 „ 709300 .311747
50 .928987 .917542 .771559 1 .19224 .333096
62. 5 .927782 .920075 .780903 1 .68815 .340324
75 .925304 .912330 .790539 2 .19539 .356787
87. 5 .925083 .917684 .783933 2 .74211 .358283
100 .917277 .907529 .779259 3 .20025 .361969

Table 2.4.1
Observations

problem we consider, designated problem 3dl by Bard[5], assumes

a known diagonal covariance matrix for the error in the

observations on the state variables of

V=diag(25E-6, 25E-6, 25E-8, 25E-10, 25E-12). (2.4.3)

The objective function i s

.5Tr (V_/M(p)) (2.4.4)

where M(p) i s defined in'Section 1.1. This i s just a maximum

lik e l i h o o d estimate with the observation times known exactly.

Since V i s a diagonal matrix, t h i s problem can be handled by our

weighted least squares formulation. For convenience we ignore

the .5 and minimize Tr (v'M(p)). Now

CHAPTER 2

40

V =diag(4E4, 4E4, 4E6, 4E8, 4E10)

and thus we weight the residuals associated with state variables

1, 2, 3, 4, and 5 by 200, 200, 2000, 20000, and 200000

respectively. Bard's starting approximation for p was

(.01, .01, .001, .001, .02, .001)T

Our implementation of the Levenberg-Marquardt method using

Gear's predictor-corrector implementation to integrate the

i n i t i a l value problem gave the results in Table 2.4.2. Our

Component of p Our estimate Estimate in [5]

1 .6358233E-2 .6358106E-2
2 .6774440E-1 .6774396E-1
3 .5920433E-4 .5916273E-4
4 .4943161E-3 .4943798E-3
5 .1018610 .1018756
6 .4204069E-3 .4202537E-3

Table 2.4.2
Optimization results

minimum for the expression in (2.4.4) was 21.38429 and Bard's

minimum was 21.37944. Considering the complexity of the

programs and the fact that we used Hermite interpolation to get

integration results at the observation times, these results seem

to be in good agreement. We note that no constraints were

required to get the above optimum. Bard uses penalty functions

to impose the constraint p->0, j=l,...,6 on this problem. They

appear unnecessary for us; however, Bard[5,pl85] does require

CHAPTER 2

41

the imposition of constraints to successfully resolve some

parameter f i t t i n g problems involving the above dynamic system.

CHAPTER 2

42

CHAPTER 3

SPECIAL METHODS FOR THE INTERACTIVE APPROACH

3.1 THE INTERACTIVE APPROACH

Interactive techniques provide a powerful tool for

nonlinear parameter estimation in general and they are

es p e c i a l l y valuable for d i f f i c u l t problems such as those

involving dynamic models. Indeed, even the resolution of simple

nonlinear parameter estimation problems often requires several

runs to adjust such things as termination c r i t e r i a , and star t i n g

approximations to the parameters. With dynamic models, the

problems of i n s t a b i l i t i e s , o v e r s t a b i l i t i e s , and at times

numerous l o c a l minima in the optimization problem can make

parameter estimation a tedious task. An interactive approach

using algorithms designed with user intervention in mind can

reduce many of the d i f f i c u l t i e s associated with parameter

estimation in dynamic models. However, for the optimum use of

any parameter estimation package there i s no substitute for a

good understanding of the model under consideration. The design

of a good interactive package i s an involved task. For a

detailed introduction to interactive applications in numerical

analysis see Smith[63]. The work by Aaro[l],[2] on a software

system for interactive computing seems to hold promise for

producing good transportable interactive packages with good user

interfaces. We l i s t below some of the major considerations

involved in producing a good interactive parameter estimation

CHAPTER 3

43

package.

(1) Special algorithms that exploit user judgement and

intervention should play a large role in the interactive

package. The development of such algorithms for the f i t t i n g

of parameters in dynamic models i s one goal of thi s thesis.

(2) An extensive set of commands should be available; however, a

ty p i c a l user should not be forced to learn a detailed

command language in order to use the program. One way to

att a i n t h i s goal i s for the inte r a c t i v e program to display

l i s t s of options (such as output options for example) and to

prompt the user for the necessary d e t a i l s to complete a

command. There i s , however, a tradeoff here and for certain

highly r e p e t i t i v e commands (such as those involved with

stepping through a nonlinear optimization intera c t i v e l y)

prompting should be kept to a minimum. F i n a l l y , the program

should be r e l a t i v e l y "user proof". That i s , internal

checking should be done so that regardless of what the user

enters, the program should not end with a terminal error.

Making a package user proof i s large l y a matter of detailed

programming, and in the interests of e f f i c i e n t program

development, i t should be l e f t u n t i l near the end. Another

goal of t h i s thesis i s to develop a set of simple commands

that are useful for interactive parameter f i t t i n g in dynamic

models.

(3) Careful consideration must be given to what information the

interactive program displays. Graphical information seems

CHAPTER 3

44

to be the most useful. In the case of parameter f i t t i n g in

dynamic models, integration r e s u l t s , observations, and in

the two state variable case, phase plane plots are obvious

candidates for graphical display.

A decision must be made on how the user should describe the

parameter f i t t i n g problem to the interactive package. There

are b a s i c a l l y two choices. F i r s t , the dynamic model can be

defined through a user written subroutine, which i s

separately compiled and then loaded with the interactive

package. This subroutine can also contain other necessary

a n a l y t i c a l information (such as Jacobian matrices) required

by the integration and parameter f i t t i n g algorithms.

A l t e r n a t i v e l y , the model can be entered and modified

i n t e r a c t i v e l y (and of course saved on f i l e for later use so

that i t need not be re-entered each time an interactive

session begins). This i s a more v e r s a t i l e approach, but i t

requires extensive programming. Its main advantage i s that

the user can i n t e r a c t i v e l y modify as well as f i t a model.

Starting with a simple model and gradually working up to a

more complex model i s one way of getting starting

approximations to parameters (see Bard[6,p.123]). However,

the consequences of adding a new term to a dynamic model can

be dramatic and interactive modification of dynamic models

demands a l o t from the user. In the interests of

e f f i c i e n c y , i nteractive model entry and modification require

that any p a r t i a l derivatives needed by the numerical

CHAPTER 3

45

algorithms should be found symbolically. This i s fe a s i b l e ,

but i t adds to the complexity of the ove r a l l program. The

second option described above i s a good long range goal;

however, i t i s e s s e n t i a l l y a matter of programming and not

numerical analysis and i t should wait u n t i l the numerical

aspects of the interactive package have been settled upon.

This second option can be added later to a working package

using the f i r s t option.

(5) A good interactive package should be well structured so that

new commands can e a s i l y be added, and so that existing

commands can be e a s i l y modified and extended. Also

attention should be paid to the d e s i r a b i l i t y of eventually

producing a transportable program. Transportability i s

es p e c i a l l y sensitive to the way the package uses graphics

software. Thus i t is desirable to is o l a t e the interface

between the interactive program and pa r t i c u l a r graphics

procedures. Of course, the interactive program should only

use generally available graphics operations.

It i s our view that the f i r s t goal (to develop good

interactive algorithms for the parameter f i t t i n g problem) i s the

most important in that decisions made here influence the d e t a i l s

concerning the way the other goals are attained, and even more

importantly, the algorithms employed play a major role in

determining how effective, the ov e r a l l package i s . Of course

good algorithms can be degraded i f the user-machine interface i s

neglected.

CHAPTER 3

46

An e f f i c i e n t way to proceed seems to be to develop an

experimental interactive package concentrating on the f i r s t

goal, but also paying strong attention to the second t h i r d and

f i f t h goals. This i s the strategy we have employed in

developing our interactive package PARFIT described in d e t a i l in

Appendix A.

In this chapter, we consider several special techniques for

f i t t i n g parameters in d i f f e r e n t i a l equations. Our goal i s the

development of techniques which lend themselves well to an

int e r a c t i v e approach, and which are less sensitive to the

i n i t i a l parameter guess than the d i r e c t approach using the

s e n s i t i v i t y equations. However, there i s a tradeoff and coarse

but well behaved methods should only be expected to give

approximate values to the optimal parameters and should not for

example be expected to distinguish between neighboring l o c a l

minima in the f u l l least squares problem. The f i r s t special

method we consider i s the derivative f i t t i n g approach. This i s

one of the most straightforward of the coarser methods. For

experimental results with another implementation of this

technique, we refer the reader to Swartz and Bremermann[66].

3.2 DERIVATIVE FITTING (DFIT)

Assume observations are given d i r e c t l y on a set of state

variables in the dynamic model under consideration. Thus,

t h e o r e t i c a l l y , the desired derivatives of these state variables

can be approximated as follows: (For the moment, we assume

observations are available on a l l n components of the state

CHAPTER 3

47

vector y(t).) Each component y^-vt) of y(t) i s approximated by a

function ŝ . (t) f i t t i n g the data at the observation points which

i s at least continuously d i f f e r e n t i a b l e . This can i d e a l l y be

done i n t e r a c t i v e l y . The problem of finding p to minimize F(p)

in (1.3.1) can now be approximated by the problem of finding p

to minimize

I Is'(t)-g(t,s(t),p) I |* (3.2.1)

T

where s(t) = (s ; (t) ,...,s„ (t)) .

Since s(t) generally approximates noisy data, a careful

determination of p to minimize the above expression in the L a

sense cannot be j u s t i f i e d . Thus for computational purposes, we

minimize the semi-norm on c' [t0 ,t^] defined by
(S I I Is' (t t) - g (t / ,s{tx) ,p) | |* (3.2.2)

where £t^ : l<l<k^ i s the set of observation times introduced in

Section 1.1. Our parameter f i t t i n g problem has thus become a

problem in nonlinear functional approximation which i s much

cheaper and usually much easier than the o r i g i n a l problem.

Indeed, i f g i s linear in p, a l l we have i s an ordinary linear

least squares problem.

The above observations make the derivative f i t t i n g approach

very a t t r a c t i v e ; however, as noted by Bard[6p.128], i t has some

severe • flaws. These occur in part because i t requires

approximations to y(t) and y'(t) and good approximations to

these functions are often hard to obtain. This i s the case for

CHAPTER 3

48

example when the observations have large separations in time or

when the data i s noisy. Bard further notes that an error

analysis for the parameter estimates i s d i f f i c u l t with this

approach. This l a t t e r drawback i s not too important from our

point of view since we propose this method only as an

intermediate technique and for the f i n a l determination of

parameters and confidence i n t e r v a l s , we recommend the use of the

s e n s i t i v i t y equations. A more severe drawback of this method i s

that with a poor approximation to y or y 1 , parameters may be

produced at which the solution to the i n i t i a l value problem

deviates greatly from the observations or even blows up. This

can be remedied at times by the technique of the next section

where there i s no need for an approximation to y ' (t) . The

errors in the approximations to y and y' are not the only

factors a f f e c t i n g the r e l i a b i l i t y of this technique. Other

c h a r a c t e r i s t i c s of the least squares problem of minimizing

(3.2.2) must also be considered. In p a r t i c u l a r the results

concerning conditioning mentioned at the end of Chapter 1 are

important. For example, in view of (1.3.23), i t i s possible for

r e l a t i v e l y small errors in our approximation to y' to have a

large influence on the parameters estimated by the DFIT method.

This i s e s p e c i a l l y important to keep in mind since the

d i f f e r e n t i a t i o n of data tends to be error prone. The integral

f i t t i n g method of the next section avoids this dependence on

approximated derivatives.

To implement the derivative f i t t i n g approach, a technigue

CHAPTER 3

49

f o r using the o b s e r v a t i o n s to approximate y (t) and y ' (t) i s

r e q u i r e d . I f there are f a i r l y l a r g e e r r o r s i n the data, i t i s

not reasonable to use a d i f f e r e n c i n g technique to approximate

y', and some smoothing method i s c a l l e d f o r . In our package

PARFIT, we use l e a s t squares piecewise c u b i c s p l i n e

approximations and l e a s t squares piecewise c u b i c Hermite

approximations to the da t a . Approximations are made

i n d i v i d u a l l y on each observed s t a t e v a r i a b l e and the p o s i t i o n i n g

of the j o i n t s f o r each piecewise polynomial i s l e f t to the user.

T h i s should i d e a l l y be done i n t e r a c t i v e l y .

Cubic s p l i n e approximations are adequate f o r many cases;

however, they run i n t o d i f f i c u l t i e s when sharp bends occur i n

the f u n c t i o n being approximated. T h i s causes problems, f o r

example, when the dynamic model under c o n s i d e r a t i o n i s s t i f f .

Piecewise c u b i c Hermite approximations which are C ' as opposed

to the C 3 c u b i c s p l i n e approximations do not have as gre a t a

problem with sharp bends and are thus more s u i t e d f o r handl i n g

the sharp turns that occur i n s t i f f problems.

A couple of l i m i t a t i o n s with the d e r i v a t i v e f i t t i n g

technique immediately come to mind. In the problem formulated

i n S e c t i o n 1.1, i t was p o s s i b l e to have parameters a r i s i n g o n l y

through the i n i t i a l c o n d i t i o n s . A d e r i v a t i v e f i t t i n g a l g o r i t h m

cannot g i v e us any i n f o r m a t i o n on these parameters. Another

d i f f i c u l t y a r i s e s with d e r i v a t i v e f i t t i n g when o b s e r v a t i o n s are

not a v a i l a b l e on a l l the s t a t e v a r i a b l e s , but there i s a way

around t h i s problem i n some of the cases where no parameters

CHAPTER 3

50

occur exclusively in the subset of state equations corresponding

to unobserved state variables. S p e c i f i c a l l y , we do a derivative

f i t on the subset of state equations corresponding to observed

state variables. At each least squares function evaluation at a

point in parameter space during the i t e r a t i v e solution of this

reduced derivative f i t t i n g problem, we integrate the subset of

state equations corresponding to unobserved state variables.

Thus, up to date information i s always available on the

unobserved state variables in the reduced derivative f i t t i n g

problem. However, th i s method has severe l i m i t a t i o n s . The

obvious l i m i t a t i o n i s that i t only applies to a r e s t r i c t e d set

of problems. Another l i m i t a t i o n involves s t a b i l i t y problems

which can arise when a subset of a system of d i f f e r e n t i a l

equations i s integrated. Nevertheless, t h i s technique has

experimentally proven successful in some cases and for th i s

reason we mention i t here. Next we give an example of the kind

of s t a b i l i t y problem that can occur.

Consider the problem

y'=Gy (3.2.6)

where y i s of length 2 and

"-30 -22'

28 20
G = (3.2.7)

The eigenvalues of G are -8 and -2 and the solution to (3.2.6)

decays exponentially; however, i f we f i x y =sf (t) and integrate

CHAPTER 3

51

y;J = 2 8 s / (t) + 2 0 y 4 , (3.2.8)

depending on s ; (t) of course, the s o l u t i o n can grow

e x p o n e n t i a l l y . The s t a b i l i t y problems that can a r i s e with the

above m o d i f i e d d e r i v a t i v e f i t t i n g technique a l s o have an impact

on the d e s i g n of s t a b l e i t e r a t e d i n t e g r a l and d e r i v a t i v e f i t t i n g

a l g o r i t h m s i n S e c t i o n 3.4. To i l l u s t r a t e the d e r i v a t i v e f i t t i n g

technique, c o n s i d e r the f o l l o w i n g problem i n v o l v i n g a set of

coupled chemical r e a c t i o n s (see van Domselaar and Hemker[71]).

The s t a t e equations are

y>=_(l_y)y +p y
' * * (3.2.9)

y'=p ((1 - y) y - (p +p)y)
a. I A. ' A 3 3

and the i n i t i a l c o n d i t i o n i s

y(0) = (l , 0) r . (3.2.10)

Th i s r e p r e s e n t s a model of a chemical r e a c t i o n and a l l

parameters should remain p o s i t i v e . Observations were generated

by i n t e g r a t i n g the above i n i t i a l value problem at

(1000, 0.99, 0.01)T

A l l simulated o b s e r v a t i o n s i n t h i s t h e s i s were found by

i n t e g r a t i o n under e r r o r c o n t r o l . In the i n t e r e s t s of economy,

a l l parameter f i t t i n g i n t e g r a t i o n s were done without s t e p s i z e

adjustment unless otherwise i n d i c a t e d . For t h i s s t i f f problem,

we used o b s e r v a t i o n s on both s t a t e v a r i a b l e s at the same

o b s e r v a t i o n times that were used i n [71] . These o b s e r v a t i o n s

(to four f i g u r e s) are l i s t e d i n Table 3.2.1. The o b s e r v a t i o n s

CHAPTER 3

52

Time y a Time y,

0 . 0 0 0 2 0 .9998 0. 1 6 4 8 0.06 0 .9991 0. 4 9 9 8
0 . 0 0 0 4 0 .9997 0. 2 7 5 3 0.08 0 .9 9 8 9 0. 4 9 9 7
0 . 0 0 0 6 0 .9 9 9 6 0. 3 4 9 3 0.1 0 . 9 9 8 9 0. 4 9 9 7
0 . 0 0 0 8 0 .9 9 9 6 0. 3 9 9 0 1.0 0 . 9 9 4 5 0. 4 9 8 6
0.001 0 .9996 0. 4 3 2 2 2.0 0 . 9 8 9 5 0. 4 9 7 4
0 . 0 0 1 2 0 .9 9 9 5 0. 4 5 4 5 5.0 0 .9747 0. 4 9 3 6
0 . 0 0 1 4 0 . 9 9 9 5 0. 4 6 9 5 1 0 . 0 0 .9502 0. 4 8 7 2
0 . 0 0 1 6 0 .9 9 9 5 0. 4 7 9 5 1 5 . 0 0 .9260 0. 4 8 0 8
0 . 0 0 1 8 0 .9 9 9 5 0. 4 8 6 2 2 0 . 0 0 .9021 0. 4 7 4 3
0.002 0 .9 9 9 5 0. 4 9 0 7 2 5 . 0 0 .8 7 8 6 0. 4 6 7 7
0.02 0 .99 9 3 0. 4 9 9 8 3 0 . 0 0 .85 5 3 0. 4 6 1 0
0.04 0 .99 9 3 0. 4 9 9 8

Table 3.2.1
Observations for s t i f f problem

on y were approximated with a least squares piecewise cubic

Hermite polynomial with one j o i n t at t=10, and the observations

on y were approximated with a least squares piecewise cubic

Hermite polynomial with j o i n t s at t=.0007, .0014, .0016, 15.

Our star t i n g guess at the parameters was

p('J =(50, 5, . 5) r .

The DFIT method found the point

(969.6, 1.113, -.1080) T

in parameter space. Unfortunately, p^ i s negative. This

suggests we try a square root transformation of p3 and estimate

'p̂ = fp~3. With th i s transformation, the DFIT method found the

point (unsealed)

(969.6, 1.005, 9.33E-7)7"

CHAPTER 3

53

in parameter space. We note that the DFIT method was quite

capable of finding a good approximation to p ;. This should be

compared with the results in the next section where the IFIT

method was applied, to thi s problem.

The d i r e c t method using the s e n s i t i v i t y equations also

succeeded when i t was started from p given above; however, i t

was slow to begin modifying p ; upward from 50.

Before we give our next set of test problems, some

conventions must be established concerning the presentation of

graphical information. In p a r t i c u l a r , we use the following

conventions:

Observation points on y

Observation points on y A

Integration results on y

Integration results on y^

Smoothing of data for y

Smoothing of data for y a

Guessed behavior for y

Guessed behavior for y

X

a.

Phase plane t r a j e c t o r i e s are s o l i d l i n e s .

The above conventions are s u f f i c i e n t for most of our plot s .

Other conventions are introduced as they become necessary. We

use the method developed by McConalogue[45] to produce smooth

curves for our p l o t s .

In t h i s section and Section 3.3, we make some comparisons

between derivative f i t t i n g and integral f i t t i n g on a problem
CHAPTER 3

54

involving a change in equilibrium. The ef f e c t of noisy data on

these two parameter estimation techniques i s investigated for

the test problem,

y'=p yi+pay,a+pl y, -y.
' ' ' 51 1 * ' * (3 . 2 . 1 1)

y' =p y

with the i n i t i a l condition

y (0) = (1 . 5 , 1.0) T (3 . 2 . 1 2)

Our f i r s t set of observations was obtained by integrating

the above problem at the parameter vector

(-.1, - 1 , 2 . 4 , .1)T
These generated observations, at times .5 (. 5) 2 0 , are shown in

Figure 3 . 2 . 1 . For c l a r i t y we present graphical results only on

y . State variable y does not go through any rapid jumps.

Observations are used on both state variables. A piecewise

cubic Hermite approximation to the observations on y using

j o i n t s at t=2, 4, 6, 7, 8, 9, 1 0 , 1 2 , 1 4 , 18 i s also shown in

Figure 3 . 2 . 1 . The j o i n t s for the corresponding approximation to

the observations on y were at t=3, 8, 1 5 . Using these

approximations to the observations, the DFIT method produced the

parameters

(- . 0 7 7 4 0 , - . 7 9 9 5 , 1 . 7 2 5 , .09948)T

No starting approximation to the parameters was required since

the DFIT method involved solving a linear least squares problem

CHAPTER 3

55

I
UJ
(— cr
t— mg

oi -
t

0 . 0 0 4.00 8.00
TIME

I
J2.00 ~1

1B.0D

Figure 3.2.1
Eguilibrium change—no error in observations

20.00

in this case. Integration results for y ; at the above

parameters are also shown in Figure 3.2.1. A l l integrations of

(3.2.11) were done using stepsize adjustment. These results

should be compared with those in Figure 3.3.1 where results

obtained with the IFIT method applied to this problem are shown.

Next a normally distributed random error with mean 0 and

standard deviation <r =1 was introduced into the above

observations. The resulting observations on y and • their

piecewise cubic Hermite approximation using j o i n t s at t=6,7,9,14

are shown in Figure 3.2.2. Joints at t=6,12 were used for the

smoothing of the observations on y . Using this smoothing, the

DFIT method produced the parameters
T (-.03942, -.4047, 1.168, .1007).

CHAPTER 3

56

"1 : 1 1 1 —')
O.CD 4.00 8.0(1 12.00 16.00 20J10

TIME
Figure 3.2.2

Equilibrium change—error in observations (tr=l)

Integration results for y at these parameters are also shown in

Figure 3.2.2. These results should be compared with those in

Figure 3.3.2 where results with the IFIT method are presented

for this problem.

Our next experiment involved an increase in the noise;

however, the change in equilibrium i s s t i l l v i s u a l l y

discernable. A normally di s t r i b u t e d random error with mean 0

and standard deviation o-=2 was introduced into the observations.

The resulting observations along with a piecewise cubic Hermite

smoothing function are shown in Figure 3.2.3. The jo i n t s for

the smoothing functions were the same as for the case<r=l. With

this smoothing , the DFIT method produced the parameters

(-.02113, -.2394, .6449, .1023)T

CHAPTER 3

57

o

s_| , , , , ,
O.DD 4.00 8.00 J2.00 16.00 20.00

TINE

F i g u r e 3.2.3
E q u i l i b r i u m c h a n g e — e r r o r i n o b s e r v a t i o n s (<r=2)

I n t e g r a t i o n r e s u l t s f o r y at these parameters are shown i n

Fi g u r e 3 . 2 . 3 . By comparison with F i g u r e 3 . 3 . 3 , we see that the

IFIT method produced much b e t t e r r e s u l t s i n t h i s case.

3.3 INTEGRAL FITTING (IFIT)

The d e r i v a t i v e f i t t i n g approach works w e l l i n many cases;

however, i t has the drawback that i t r e q u i r e s the numerical

d i f f e r e n t i a t i o n of (at times) n o i s y data. Thus i t i s reasonable

to t r y to f i t i n t e g r a l s i n s t e a d of d e r i v a t i v e s . For some

a d d i t i o n a l background to i n t e g r a l f i t t i n g we r e f e r the reader to

B a r d [6 , p . 2 1 9] . As i n the p r e v i o u s s e c t i o n , we assume an

approximation to the d e s i r e d s o l u t i o n to our i n i t i a l value

problem i s a v a i l a b l e i n the n-vector s (t) = (s, (t) , . . . , s ^ (t)) T

which i s obtained by some smoothing technique. The i n t e g r a l

CHAPTER 3

58

f i t t i n g problem i s to find the vector p to minimize

f r (p) f (p)

where
f*ci-OW = (Y * W - (P > + j g , (t , s (t) f P) d t) - s . (t^) (3.3.1)

where 1=1,...,k; i=l,...,n; y (p) i s the i 1 t h component of the

vector of star t i n g values for the i n i t i a l value problem

y'=g(t,y,p), and g^.(t,s,p) i s the i 1 th component of g(t,s,p).

The Jacobian matrices for the linear least square problems that

arise when p i s found i t e r a t i v e l y have elements

J»i = 2 1 * (3 = 1 ' ' k n ; J = 1 ' ' m (3.3.2)

which are found by evaluating the integrals

±y_oi(p)+ j 3g,(t,s,p)dt (3.3.3)

for 1=1,...,k; i=l,...,n; j=l,...,m.

Note that we are not solving our i n i t i a l value problem with

these i n t e g r a l s . We are just integrating functions of time

since s(t) i s known. Thus in terms of the number of evaluations

of the function g, th i s method i s equivalent to the derivative

f i t t i n g algorithm when a simple integration method such as the

trapezoidal method using the times t

Q , t i , . . . , t ^ i s employed.

Furthermore, t h i s method has the same degree of l i n e a r i t y as

does the derivative f i t t i n g method. In par t i c u l a r the above

least squares problem for p i s linear in p when g and Y c(p) are

CHAPTER 3

59

linear in p. Also, the integral f i t t i n g method can provide

information on parameters which occur only in the i n i t i a l

conditions, and thi s can be very useful. As demonstrated in

Chapter 4, access to the i n i t i a l conditions can also be very

important when no parameters occur in the i n i t i a l conditions.

One might expect the IFIT problem to be better conditioned

than the DFIT problem; however, i t i s possible for the integral

f i t t i n g problem to be singular even when the derivative f i t t i n g

problem i s well conditioned, but this does not appear to be a

serious drawback in practi c e . To see how thi s s i n g u l a r i t y can

ari s e , consider the case when there are 2 parameters, 1 state

variable, and three observation times, t , t A , and t 3 with equal

spacing h. Let the i n i t i a l condition (at t) be independent of

the parameters and l e t the derivative f i t t i n g Jacobian be

0 1
1 0

-1 0

Using the trapezoidal integration method, the integral f i t t i n g

Jacobian i s the rank one 2x2 matrix

f h / 2 h/2l
|_h/2 h/2j

formed by multiplying the derivative f i t t i n g Jacobian by

fh/ 2 h/2 0 "I
|_ h/2 h h/2

We note again that this was a s p e c i a l l y contrived si t u a t i o n and

such a d i f f i c u l t y does not appear to arise in practice.

CHAPTER 3

60

Our f i r s t experiment with the IFIT method i s on the s t i f f

problem (3.2.9). Using the same smoothing and p v as were used

in the previous section, the IFIT method found the point

(607.3, .9901, .009281)7"

in parameter space. The parameter p was not as well

approximated as i t was with the DFIT method; however, no

parameters have gone negative and good approximations have been

obtained for p and p .

Next we give some experiments with the i n i t i a l value

problem (3.2.11) involving a change in equilibrium. Using the

observations and smoothing of the previous section for the case

<r=0 (no e r r o r) , the IFIT method gave the parameters

(-.1006, -.9913, 2.569, .1004)T

Integration results for y at this parameter vector are shown in

Figure 3.3.1. Using the observations and smoothing of the

previous section for the case<?-=l, the IFIT method gave the

parameter vector

(-.00354, -.5883, 2.223, .09735)T

Integration results for ŷ at the above parameters are shown in

Figure 3.3.2. These results should be compared with those in

Figure 3.2.2. F i n a l l y using the observations and smoothing

functions of the previous section for the casee>-=2, the IFIT

method gave the parameters

(-.03277, -.2655, 1.813, .09433)'.

CHAPTER 3

61

•h + + H>-

0.00 4.DO 8.CO
TIME

I
32.03 15. QO

—I
20. OD

Figure 3.3.1
Equilibrium change—no error in observations

— i
16.00 20.00 0.00 4.00 8.00 12.00

TIME
Figure 3.3.2

Equilibrium change—error {*'=!)

CHAPTER 3

62

integration results for y at the above parameters are shown in

Figure 3.3.3. We observe that there was a substantial
a
••'•3

DO
TIME

Figure 3.3.3
Equilibrium change—error (<r = 2)

improvement over the corresponding results for the DFIT method

shown in Figure 3.2.3.

3.4 ITERATED INTEGRAL AND DERIVATIVE FITTING

In t h i s section, the important special case when

observations are not available on a l l state variables i s

considered. This s i t u a t i o n was mentioned b r i e f l y in Section

3.2; however, the technique presented there was highly

r e s t r i c t i v e in the class of problems i t could handle and i t was

prone to i n s t a b i l i t i e s .

At times the model builder knows approximately how

unobserved state variables should behave to be consistent with

CHAPTER 3

63

the observed state variables. Thus an i n t e l l i g e n t guess can be

made and f i c t i t i o u s observations on the unobserved state

variables can be created. With these created observations along

with the physical observations, the DFIT and IFIT methods can be

applied. Our interactive package PARFIT contains f a c i l i t i e s for

setting up guessed observations on unobserved state variables in

the important special case when only two state variables are

present. PARFIT could e a s i l y be modified to handle cases where

more than two state variables are present; however, as the

number of unobserved state variables increases, the p r a c t i c a l i t y

of t h i s method diminishes. The use of created observations can

be a great help in determining the proper parameters, but, as

one would expect, the success of this method depends on how well

the proper behavior of the unobserved state variables can be

anticipated. This i s again a good place for an interactive

approach. The model builder can i n t e r a c t i v e l y modify the

guessed observations, apply the DFIT or IFIT methods, observe

the integration results at the parameters obtained (i f

integration i s possible), and then readjust the created

observations. There are also automatic ways of improving the

guessed observations and we concentrate on such methods for the

remainder of this section.

One stable way to i t e r a t i v e l y improve guessed observations

and reestimate parameters i s with a nonlinear block Gauss-Seidel

technigue. (For a discussion of nonlinear Gauss-Seidel

techniques, see for example Ortega and Rheinboldt[50,p.224].)

CHAPTER 3

64

For s i m p l i c i t y of notation, we look at the two state variable

case with observations available on only one state variable.

The extension to n state variables with observations available

on r state variables (r<n) i s immediate. Note, however, that

generally the parameter estimation problem becomes more

d i f f i c u l t as the number of unobserved state variables increases.

Indeed, removing observations on a state variable can change a

well defined parameter estimation problem into a singular

problem. An example of this i s given in the next chapter.

Without loss of generality for our two state variable

discussion, we assume that observations are missing on the

second state variable. For the discrete set of time values t^,

1=1,,,,N l e t s =s(t e) (where we are using a superscript to avoid

confusion with the case when s(t) i s a vector) be the smoothed

approximation to the observations on state variable y at time

t^ , and l e t s ^ ^ s ' t t ^) be the corresponding approximation to the

derivative of the observations at time t j . Let Cj be the

approximation to the unobserved state variable y at time tp -

Usually, the points tj , 1=1,...,N are the observation times

defined in Section 1.1. We seek p and

c=(c 0,... ,cN)r

to minimize

N Jt -r a N ,
F = 2 T (g, (t , (s \ c)',p)-s*') +21 (d,(c)) (3.4.1)

1=0 ' * * 1=1 *

where d (c) represents a d i s c r e t i z a t i o n of the second state

CHAPTER 3

65

equation. That i s we want the c to approximately s a t i s f y the

second state equation at the minimum of the above expression.

For example i f the trapezoidal method i s used to d i s c r e t i z e the

second state equation then

d (c)=.5(g (t ,(s*-' ,c)^p)+ga (t , (s* ,c)T,p))
A A x * (3.4.2)

c -c.
JL_ SL-I

Define
r

v"p F= (£F, . . . ,3F)
*P, 5P~

T (3.4.3)
^F= (*F, . . . , 3F) .

Thus the gradient of F i s

VF=(9 fF T, v;F T) T.

A necessary condition for

(p r,cV=(p T,c rr

to minimize F i s that

V F ((p r , c ' V) = 0 . (3.4.4)

One way to solve (3.4.4) i s to use the nonlinear block

Gauss-Seidel method starting with an i n i t i a l guess (p1"' T , c t 0 , T) T

for (p . T / C T) T . There are of course other ways to solve for
— T — T T

(p ,c) . For example, we could minimize (3.4.1) by a standard

nonlinear least squares technique such as the

Levenberg-Marquardt method. To be e f f i c i e n t , however, such
CHAPTER 3

66

methods should take advantage of the p a r t i c u l a r sparsity

structure of the Jacobian matrix associated with (3.4.1). The

use of a block Gauss-Seidel technique on the other hand requires

only a standard nonlinear least squares technique such as the

Levenberg-Marquardt procedure, along with a least squares

technique designed for cases where the approximations to the

Hessian matrices are banded matrices. A description of our

algorithm for minimizing (3.4.1) and an outline of a l o c a l

convergence proof for t h i s method follows. Assume a sta r t i n g

approximation (p^ 0) r ,c1*' r) T to (p T,c* T) T i s given. F i r s t hold c

fixed at c and determine p (l* to minimize (3.4.1). This is

just a standard nonlinear least squares problem and we solve i t

using the Levenberg-Marquardt method. Next with p fixed at p

determine c °̂ to minimize (3.4.1). This i s a sparse nonlinear

least squares problem and we solve i t by the Gauss-Newton method

using the normal equations and a standard l i b r a r y procedure for

solving banded posit i v e d e f i n i t e linear systems by a Cholesky

decomposition. Strategy (a) in Bard[5,pl75] was employed for

step length adjustment in our sparse Gauss-Newton procedure. In

practice f a i r l y rapid convergence was obtained with this part of

the algorithm; however, we expect this to vary depending on the

nonlinearity in y^ of the given i n i t i a l value problem. The

o v e r a l l algorithm proceeds by successively reestimating p ^ and

c ^ where on each estimation, the most recent information on p

and c i s employed. Usually only a few f u l l i t e r a t i o n s were

required for the algorithm to s e t t l e down to a value for

CHAPTER 3

67

(P f C) .

The above algorithm i s just a special case with w=l of a

block nonlinear successive over relaxation process (see for

example Ortega and Rheinboldt[50,p.325, p.332]). Thus a l o c a l

convergence proof i s standard and we confine ourselves to just a

b r i e f outline of convergence-

Let x=(p r,c r) T, "x = (p r,c" r) T and assume x i s a l o c a l minimum

of F- That i s

*F(x)=0.

Assume further that F i s twice continuously d i f f e r e n t i a b l e and

that the Hessian matrix H of F i s posi t i v e d e f i n i t e in the open

neighborhood S a of x . S p l i t the Hessian into

H(x)=D(x)-L(x)-L T(x)

where D(x) i s a block diagonal matrix, and L(x) i s a block lower

triangular matrix and where the entries in L corresponding to

the blocks in D are zero. Since H(x) i s symmetric and posi t i v e

d e f i n i t e D(x) i s i s symmetric and positive d e f i n i t e . Also D-«L

is nonsingular for any oo and in pa r t i c u l a r for 0<cu<2. Thus (see

Varga [73 ,p. 77]) , for 0<«K2

It follows (Ortega and Rheinboldt[50,p.326]) that there

exists an open b a l l S centred at "x and contained in S0 such

where p (.) denotes spectral radius.

that there i s a unique sequence in S s a t i s i f y i n g our

CHAPTER 3

68

n o n l i n e a r block Gauss-Seidel a l g o r i t h m (d>=l) and

1irn (x) =x.

There are other ways to estimate p i n c o n j u n c t i o n with

i t e r a t i o n s on guessed o b s e r v a t i o n s . For example i n s t e a d of

e s t i m a t i n g p to minimize (3.4.1) for a f i x e d c, we could

estimate p using the DFIT or IFIT methods. Use of the DFIT

method to estimate p i s e q u i v a l e n t to minimizing (3.4.1) with

6X (c) = g a . (t J - ' (S < , C *) T 'P)~°jt

where cJ approximates the time d e r i v a t i v e of c at . The

d e t a i l e d form of d^ depends on how cJ i s approximated.

A l t e r n a t i v e l y , we could r e p l a c e the DFIT p o r t i o n of the

above i t e r a t i v e a l g o r i t h m by an a p p l i c a t i o n of the IFIT method.

T h i s has been found to work w e l l . We comment that the r e s u l t i n g

a l g o r i t h m i s not e q u i v a l e n t to minimizing F ((p 7 " , c r) T) i n (3.4.1)

with the f i r s t summation r e p l a c e d by i t s i n t e g r a l f i t t i n g

c o u n t e r p a r t :

N Cfj r * XL (y , (0) + g (t , (s (t) , c (t)) , p) d t - s (t)) .
1=0 ' «i ' J

I f the above term i s put i n p l a c e of the f i r s t sum i n (3.4.1)

then the l e a s t squares problem for updating c l o s e s the s p a r s i t y

s t r u c t u r e t h a t was present with d e r i v a t i v e f i t t i n g . Thus we do

not c o n s i d e r f u l l i t e r a t e d i n t e g r a l f i t t i n g methods, but o n l y

i t e r a t e d i n t e g r a l f i t t i n g methods where p i s updated using the

CHAPTER 3

69

IFIT method and c i s updated using a sparse technique.

There i s another way c can be updated besides using the

f u n c t i o n (3.4.1) and e x p e r i m e n t a l l y t h i s method has proven

e f f e c t i v e ; however, i t s u f f e r s from p o t e n t i a l i n s t a b i l i t i e s and

must be used with c a u t i o n . T h i s method simply i n v o l v e s the

g e n e r a t i o n of c at the new parameter vector p by i n t e g r a t i n g the

second s t a t e equation h o l d i n g y f i x e d at s (t) . (We are s t i l l

assuming y ^ i s unobserved.) As i n d i c a t e d i n the d e r i v a t i v e

f i t t i n g s e c t i o n of t h i s chapter, t h i s subsystem can be very

unstable at a p a r t i c u l a r p o i n t p i n parameter space even when

the system y'=g(t,y,p) has no s t a b i l i t y problems. An example

where t h i s method works very w e l l i s given i n the next chapter.

F i n a l l y we observe that no d i f f e r e n t i a l equation s t a b i l i t y

problems occur when we update c to minimize (3.4.1).

A couple of examples using i n t e g r a l f i t t i n g and our sparse

Gauss-Newton method to improve guessed o b s e r v a t i o n s f o l l o w .

Consider the L o t k a - V o l t e r r a p r e d a t o r - p r e y model[41].

y'=p y -p y y / / / a. ' a
y'=-p y +p y y.

Here y^ r e p r e s e n t s the prey and y & r e p r e s e n t s the predator and

P »P f P 3 fP^ are a H p o s i t i v e . T h i s model i s a s p e c i a l case of

the model co n s i d e r e d by Bazykin[7] which we look at i n Chapter

4. For our f i r s t example, we generated o b s e r v a t i o n s by

i n t e g r a t i n g the above system s t a r t i n g at y =12, y^=2 and using

p=(.15, .03, .8, . 1) T .

CHAPTER 3

70

The observation times were 1(1)20 and observations were made

available only on y . The generated observations on y and

integration results for y^ at the above simulation parameters

are shown in Figure 3.4.1. The function s (t) , defined by the

TIME IS.DO 20.00

Figure 3.4.1
Simulation results and spline approximation

least squares cubic spline approximation to the observations

using j o i n t s at t=2, 3, 5, 9, 16, is also shown in Figure 3.4.1.

The i n i t i a l guess at the observations i s shown in Figure 3.4.2.

Successive improvements in the guessed observations are also

shown in Figure 3.4.2. Integration results at successive

parameter estimates are shown for y in Figure 3.4.3.

Observations on y are also shown in Figure 3.4.3. Observe that

the integral f i t t i n g problem i s linear and thus an i n i t i a l guess

at the parameter values was not required. The least squares

CHAPTER 3

CHAPTER 3

72

problem for updating the guessed observations i s also linear in

th i s example. Convergence was not too sensitive to the height

of the i n i t i a l approximation to y , but i t was sensitive to the

position of the peak. This, however, i s quite e a s i l y adjusted

i n t e r a c t i v e l y . Thus an iterated approach to this problem

reduces a p o t e n t i a l l y nasty nonlinear problem (especially i f

there are no good guesses at the values of p̂ ,...,p). to a

simple i n t e r a c t i v e procedure of adjusting one quantity (the

position of the peak) over a well defined i n t e r v a l . Of course

some i n t u i t i v e idea about the "proper" behavior of y^ i s

required; however, we would expect t h i s information to often be

more readi l y available than a good approximation to the optimal

parameter vector.

Our second example i s the same as the above example except

for the new observation times ,5(.5)12.5. Also our i n i t i a l

guess at the behavior of y^ was much less informed than i t was

for the previous example. The j o i n t s for the smoothing spline

were at t=1.25, 2.5, 5, 9. Figure 3.4.4 shows the successive

improvements in the guessed observations and Figure 3.4.5

compares integration results with observations for y at the

successive parameter estimates. We observe that the i t e r a t i o n s

on the guessed observations did not attain the maximum that y

does in Figure 3.4.1; however, th i s does not seem c r i t i c a l in

view of the results in Figure 3.4.5.

CHAPTER 3

73

CHAPTER 3

74

3.5 CONTINUATION AND QUASI MULTIPLE SHOOTING

The methods presented i n t h i s s e c t i o n are designed to

br i d g e the gap between the coarse but w e l l behaved technigues of

the p r e v i o u s s e c t i o n s and the f u l l n o n l i n e a r l e a s t squares

problem. These coarse methods are good to s t a r t out with i f a

good i n i t i a l approximation to the optimal parameter vector i s

u n a v a i l a b l e . However, the parameters produced by these methods

can be inadequate. For example the s o l u t i o n to the giv e n

i n i t i a l value problem may blow up at the parameters found by a

coarse method. The problem of i n s t a b i l i t i e s at the s t a r t i n g

parameter values i s a common d i f f i c u l t y encountered when f i t t i n g

parameters i n i n i t i a l value problems. V a r i o u s s t r a t e g i e s have

been suggested (see f o r example Bard[6,p.233]); however, there

does not appear to be any p r e f e r r e d technique. The methods

suggested i n t h i s s e c t i o n lend themselves w e l l to an i n t e r a c t i v e

a t t a ck on the problem.

F i r s t we consid e r a c o n t i n u a t i o n method between the

i n t e g r a l f i t t i n g (IFIT) technique and the f u l l l e a s t squares

problem. Assume, f o r now, that o b s e r v a t i o n s are a v a i l a b l e on

a l l s t a t e v a r i a b l e s . These o b s e r v a t i o n s p r o v i d e us with

approximations s - (t) , i = l , . . . , n to the d e s i r e d behavior of the

s t a t e v a r i a b l e s y - (t) , i = l , . . . , n . Consider the problem of

f i n d i n g p to f i t the s o l u t i o n of

u'=g(t, (l-*)s(t)+jru,p)
(3.5.1)

u (t 0) = y 0 (p)

CHAPTER 3

75

to s(t) in the least squares sense at the observation times

where CKy<l. When y=0, thi s i s just the integral f i t t i n g

technique and when 2f =1 i t i s the f u l l least squares problem (on

the smoothed data). The eigenvalues of g u determine the

s t a b i l i t y of the above i n i t i a l value problem. Now

for y= (l- ' j f) s+jfu. Thus for small* , i t should be possible to

integrate (3.5.1) even when i t i s unstable for a =1. Put another

way, as y increases, more and more of the " d i f f e r e n t i a l equation

nature" of the problem i s taken into account.

There are two basic ways a continuation problem can be

approached. One way i s to treat i t as an i n i t i a l value problem

in the continuation parameter. This i s the Davidenko approach

(for a good summary of Davidenko's work see Rail[56]). The

second way i s to treat i t as a sequence of nonlinear problems

each associated with a larger value of . This i s the Lahaye

approach (see Rheinboldt[58],[59], Rail[56], Ficken[23]).

For our purposes the Davidenko approach appears to involve

an excessive amount of c a l c u l a t i o n . The Lahaye approach on the

other hand lends i t s e l f well to an interactive attack on the

problem. That i s we st a r t withy=0 (IFIT) and then successively

f i t the solution to (3.5.1) to s(t) with progressively larger

values for y If y i s increased too much and the integration

of (3.5.1) becomes impossible, then Y can be i n t e r a c t i v e l y

reduced u n t i l (3.5.1) can be integrated. Our limited experience

CHAPTER 3

76

seems to indicate that t h i s approach by i t s e l f i s not very

e f f e c t i v e (for a f u l l evaluation more experiments on a wide

selection of problems are required); however, combined with the

use of break points as described later in this section, the

continuation approach seems to be a viable way to escape from an

unstable region in parameter space. One of the main drawbacks

with such technigues i s of course the expense involved. This

however i s becoming less important with the increasing

a v a i l a b i l i t y of powerful computers.

Experimental results indicate that the use of break points

in a quasi-multiple shooting technique along with a continuation

method can be an e f f e c t i v e combination for handling the

s t a b i l i t y problem. S p e c i f i c a l l y consider break points at

T7<Ta<...<T8

corresponding to observation times

t.
i

Further l e t denote a continuation parameter vector for the

break points. The vector «< i s of length n where n i s the number

of state variables and 0<.<*- <1 > i=l,...,n. If break points alone

are used (that is,2f=l) then observations need not be available

on a l l state variables. The components of << corresponding to

unobserved state variables should be equal to 1. Let u -(T <-)

denote the solution to (3.5.1) arrived at by integrating up to

break point T ; (which for i>l involves passing through i-1

previous break points). In the process of integrating (3.5.1),

CHAPTER 3

77

we reset u at the break points according to

u"t'(T;) =Au~ (TV) +(I-A) s (T;)

where A=[diag(^ (, . . . , * ^)] , and (V) acts as the new i n i t i a l

condition at T. . Of course the appropriate modification to the

solution of the s e n s i t i v i t y equations must also be made at the

break points. For purposes of least squares approximation, the

value u~ (Tj) is used at T,-. Thus we can also weight the

residuals at the break points with weights ŵ ,ŵ ,...,ŵ . To

summarize we have at our command

(a) a continuation parameter Y

(b) a set of break points T ,...,T

(c) a continuation parameter vector << for the break points

(d) a set of weights w ,...,w_ for the break points.

This gives the user a powerful set of options to play with and

for their optimal use, an interactive approach i s indicated.

Extensive experiments over a wide range of problems are required

before a proper evaluation can be made of the interactive

f a c i l i t i e s suggested above. For the purposes of this thesis;

however, we l i m i t ourselves to a few examples in this section

which indicate the potential power of the above f a c i l i t i e s in an

interactive environment. For d e t a i l s on another approach

employing break points to aid in the f i t t i n g of parameters in

dynamic models, we refer the reader to van Domselaar and

Hemker[71]. For more background on shooting methods in general

see for example Roberts and Shipman[60].

CHAPTER 3

78

Consider again the Lotka-Volterra predator - prey model

described in the previous section. We w i l l try to f i t t h i s

model to the data shown in Figure 3.5.1. This data i s contrived

in

2.CO 4.30
—I 1
c.oo a.oo

TIME
10.00 12.00

Figure 3.5.1
Data and smoothing for continuation tests

14.00

and there i s no reason to expect a good f i t with this model.

Piecewise cubic Hermite least squares approximations to the data

were used to define s (t) . The j o i n t s for s ; (t) were at t=l, 3,

6 and the j o i n t for s (t) was at t=5. The components of s(t)

are shown in Figure 3.5.1. The observations were generated so

that the IFIT method produced parameters where the solution to

the Lotka-Volterra equations with i n i t i a l conditions at
T

y=(12, 2) blew up. It is worthy of note that a f a i r amount of

experimentation was required before such observations could be

contrived. That i s for this problem, the IFIT method did not

CHAPTER 3

79

seem l i k e l y to produce parameters corresponding to an

i n s t a b i l i t y . The IFIT technigue (jf=0) produced the parameters

(-.7273, -.06719, 1.525, .3295) T

at which the given i n i t i a l value problem was unstable. Since

the observations have no physical meaning, there i s no reason to

require the paramerters to be p o s i t i v e . We are just looking for

a set of parameters to minimize a sum of squares.

Using break points at

.6, 1.6, 4.5, 9.5

and using = . 2, c< f (0 , 0) and with weights of 1 at the break

points, the following parameters were found:

(.07608, .02078, 1.032, .2150)T

The i n i t i a l value problem was stable here and integration

results at these parameters along with the observations are

shown in Figure 3.5.2. The Levenberg-Marquardt technique had no

problem converging from the above parameters to the optimum

(-.6820, -.05733, .8184, .1941)T

Integration results at the above paramters are shown in Figure

3.5.3. The sum of the squares of the residuals was

approximately 196.

We comment that i t i s not necessarily advantageous to

proceed with the continuation process once s t a b i l i t y has been

attained. Parameters giving r i s e to an i n s t a b i l i t y may be

produced and even with the use of break points, the careful

CHAPTER 3

80

s i

I UJ
r—

. CL

X * >\ X X X X
/ v X X X. + + + + + • v. • X y

0.00 2.00 4.03 I 1
6.00 8.00
• TIME

10.00 12.00

F i g u r e 3.5.2
R e s u l t s using break p o i n t s with V=.2

— i
14.00

4.00
TIME

10.00 12.00

F i g u r e 3.5.3
R e s u l t s at optimal parameters

14.00

CHAPTER 3

81

increasing of continuation parameters can prove to be a tedious

and expensive undertaking. Again interactive monitoring and

control of the o v e r a l l process i s desirable and i f the process

appears to get stuck a good strategy i s to return to a smaller

continuation parameter and modify the break points.

The use of the continuation parameter without break

points did not appear productive on th i s problem. For example

consider the sequence of H's in Table 3.5.1. The process worked

f a i r l y well u n t i l V got near .75. It then became d i f f i c u l t to

Continuation f i t re s u l t S t a b i l i t y
P_*_ ?! \

0 -.7273 -.06719 1.525 .3295 u
.3 -.5877 -.04820 1.524 .3341 u
.6 u n s t a b 1 e
.5 u n s t a b 1 e
.4 -.5766 -.04640 1.397 .3092 u
.5 -.5622 -.04465 1.242 .2783 u
.6 u n s t a b 1 e
.55 -.5697 -.04491 1.184 .2667 u
.6 -.5759 -.04541 1.130 .2559 u
.7 u n s t a b 1 e
.65 u n s t a b 1 e
.63 -.5723 -.04492 1.081 .2463 u
.65 -.5704 -.04462 1.057 .2402 u
.68 -.5741 -.04497 1.021 .2343 u
.7 -.5809 -.04576 1.010 .2320 u
.73 u n s t a b 1 e
.72 -.5843 -.04610 .9881 .2279 u
.74 -.5936 -.04724 .9853 .2270 u
.76 -.9258 -.08865 1.043 .2637 u

very d i f f i c u l t to continue

Table 3.5.1
A continuation experiment

increase Tf and d i f f i c u l t to do the optimizations.

The use of break points alone (with2f=l) was e f f e c t i v e on

CHAPTER 3

82

thi s problem; however, i n s t a b i l i t i e s arose very e a s i l y i f too

few break points were used. Here again we have a s i t u a t i o n

where the interactive approach can provide a powerful t o o l .

Starting at the parameters determined by the IFIT algorithm,

with T f = l , «< = (0,0) an i n s t a b i l i t y arose in the integration of

(3.5.1) when break points were used at

1.8, 4, 7.5.

With break points at

.6, 1, 1.8, 4, 4.5, 6, 7.5, 10

the integration of (3.5.1) blew up just after t=5. With break

points at a l l the observation times, (3.5.1) could be integrated

and the optimal parameters obtained were

(-.4166, -.02940, .6279, .1280) T.

The Volterra equations were stable at these parameters and

star t i n g from th i s point in parameter space, the

Levenberg-Marquardt method produced the optimum i l l u s t r a t e d in

Figure 3.5.3.

We conclude that for th i s problem the use of break points

alone i s e f f e c t i v e , but t r i c k y , while the use of break points

along with a continuation parameter in the d i f f e r e n t i a l equation

can be very e f f e c t i v e .

The techniques of this section demand a degree of judgement

from the user; however, they provide a framework in which to

tackle the i n s t a b i l i t y problem and in th i s sense they are to be

CHAPTER 3

83

preferred over blind probing in parameter space.

3.6 IMPLEMENTATION OF AN INTERACTIVE PACKAGE

The development of a good interactive package i s an

evolutionary process. Our package, PARFIT, represents the f i r s t

stage in such a process. We outline below some of the

sp e c i f i c a t i o n s that should be kept in mind as the package

evolves. We also describe with the aid of flow charts how the

various f a c i l i t i e s of PARFIT can be used to complement one

another. In view of the increasing power of mini-computers and

the inherent expense of using a program such as PARFIT, the

f e a s i b i l i t y of implementing a version of PARFIT on a

mini-computer appears to be a worthy topic of study. The work

of A a r o f l] , [2] should provide a very valuable tool for

developing such an implementation.

One goal when developing an interactive package for

parameter f i t t i n g in d i f f e r e n t i a l equations should be to make

special parameter f i t t i n g algorithms such as those of this

chapter e a s i l y accessible and complementary. The package should

also allow for the testing and addition of new algorithms. It

is advantageous to be able to e a s i l y switch between techniques

in an interactive manner since the success of a par t i c u l a r

technique i s often c l o s e l y related to the problem on which i t i s

employed. To f a c i l i t a t e the easy switching from one algorithm

to another the interactive package must be c a r e f u l l y designed.

For example piecewise polynomial smoothing of data i s used by

several algorithms. Thus there should be a single data

CHAPTER 3

84

structure for smoothing functions and i t should be accessible

(and perhaps modifiable) by a l l the procedures using smoothed

data. This i s just common sense; the general philosophy should

be to define data structures at the most general l e v e l

p r acticable. The various algorithms then function in an

environment established by these data structures. It i s useful

for t h i s environment to contain much more than just the set of

data structures used by the numerical procedures, and i t i s

convenient to think of i t as a data structure i t s e l f containing

information on how the package i s to communicate with the user,

on various c o n t r o l l i n g parameters such as the integration error

c r i t e r i a and integration method, and on many other aspects of

the operation of the package. We l i s t below some of the items

which can be thought of as being part of the environment.

(1) Communication mode:

This governs the amount of program guidance and descriptive

information provided during an interactive session. The way

information i s entered (for example using a keyboard, or a l i g h t

pen) i s also indicated here.

(2) Echo f l a g s :

These indicate what information produced during an

interactive session i s to be retained for later hard copy

output.

(3) Graphics display c o n t r o l :

This indicates what information i s to be displayed on the

graphics device. For example the most recently generated data

CHAPTER 3

85

(such as smoothing or integration results) may be displayed as

the default. The user should be able to modify the display to

include for example only selected state variables. The default

display should be i n t e l l i g e n t enough to display appropriate

plots during an interactive session. For example when smoothing

i s being done, the data and approximating function for the given

state variable should be displayed. When iterated integral

f i t t i n g i s being done, the display of successive i t e r a t i o n s on

the guessed observations would be valuable. It should of course

be possible to override the graphics display control and request

that s p e c i f i c data be plotted.

(4) Numerical data structures:

These contain, among other things, smoothing information

and integration r e s u l t s .

(5) Numerical control parameters:

These include integration error c r i t e r i a and stepsize

constraints as well as parameters used in the optimization

procedures.

(6) Problem and algorithm selection data structures:

These indicate what integration and optimization procedures

are being used. The use of various scalings (such as the square

root or logarithmic scalings available in PARFIT) i s indicated

here and an indication of any frozen parameters i s given here.

In more sophisticated packages, constraints on parameters can be

indicated here and a pa r t i c u l a r choice from a selection of

various objective functions to optimize (from s t a t i s t i c a l

CHAPTER 3

86

considerations) can be indicated here.

(7) Notations accumulated during an interactive session:

As a user experiments with a par t i c u l a r problem, he should

have the f a c i l i t i e s to make notes. Thus a l i s t of notes

containing for example "promising parameter values" can be

created. The environment thus becomes t a i l o r e d to a pa r t i c u l a r

problem. Of course i t should be possible to save the notes from

run to run.

There are two fundamental modes in which an interactive

program can operate. One mode employs extensive control by the

interactive program and the other r e l i e s on the user to i n i t i a t e

the appropriate seguence of actions to solve a problem. A good

approach when developing an interactive package of the f i r s t

type i s to f i r s t build a package of the second type. Strategies

for the solution to the problems under consideration are then

developed through extensive use of this package and these

strategies can eventually be incorporated into a package

employing extensive program control over the solution strategy.

PARFIT i s a package designed for user i n i t i a t e d and conducted

strategies. Thus i t s e f f e c t i v e use requires a detailed

knowledge of a l l i t s f a c i l i t i e s and how these can be used to

complement one another in an e f f e c t i v e manner. In this section

we give a description by way of flow charts of how the various

approaches to the parameter estimation problem can be used

together in an integrated package. The strategies outlined in

these flow charts form the skeleton for a version of PARFIT that

CHAPTER 3

87

would attempt to guide the user to the various f a c i l i t i e s

required for the solution to a problem. The implementation of

such a program i s a n o n t r i v i a l endeavor, and to j u s t i f y i t ,

there should be a good demand for such a package. Indeed, the

sophistication required of the model builder to develop good

dynamic models argues against the need for detailed computer

control of the interactive process. When the user i s required

to pick an appropriate strategy without program guidance, the

strategies outlined in the following flow charts should be kept

in mind.

CHAPTER 3

88

ARE
ALL STATES
OBSERVED?^

NO

YES

TRY GUESSED
OBSERVATIONS AND
ITERATED IFIT OR
DFIT—5

YES TRY IFIT OR DFIT-4
OR SEQUENTIAL
METHOD—7

NO TRY SEQUENTIAL-7
OR
INTERACTIVE METHOD-3

Figure 3.6.1
Overall strategy

CHAPTER 3

89

1

i
DO NONLINEAR
OPTIMIZATION
(AUTOMATIC OR
INTERACTIVE)

RETHINK MODEL

Figure 3.6.2
Refined parameter f i t t i n g

CHAPTER 3

90

Figure 3.6.3
Interactive optimization

CHAPTER 3

91

4

t
SMOOTH OBSERVATIONS

IF NOT DONE

1
ESTIMATE PARAMETERS

USING LINEARITY
IF PRESENT

SUCCESS?

YES NO
\

TRY
COARSE METHOD-2
OR INTERACTVE
PROBING-•3

TRY
NEW SMOOTHING— -4
CONT. WITH B.P. -6
INTERACTIVE -3

Figure 3.6.4
Derivative and integral f i t t i n g

CHAPTER 3

92

i
SMOOTH

OBSERVATIONS
IF NOT DONE

GUESS UNOBSERVED
STATE IF NOT

DONE
11

i

ESTIMATE PARAMETERS
RESTART IF REQUIRED
EXPLOIT LINEARITY

12

fESUL1]
SATISFACTORY?

YES
1

NO

ITERATIVE
[MPR0VEMENT2-

YES ITERATIVELY IMPROVE
GUESSED OBSERVATIONS

DISPLAY RESULT.

TRY
NEW GUESSED OBS 11
NEW COARSE METHOD—2
INTERACTIVE 3
NEW SMOOTHING 5

Fi g u r e 3.6.5
Guessed o b s e r v a t i o n s and i t e r a t i v e improvement

CHAPTER 3

93

6
1

SMOOTH OBSERVATIONS
AND SET STARTING p

IF NOT DONE.

!
SET A SELECTION OF
BREAK POINTS (B.P.)
WEIGHTS ON B.P.
B.P. CONT. PAR.
I.V.P. CONT. PAR

i —

ESTIMATE PARAMETERS.

1

Figure 3.6.6
Continuation and quasi multiple shooting

CHAPTER 3

94

7

4
GUESS

STARTING PARAMETERS

1

Figure 3.6.7
Sequential reestimation (not implemented in PARFIT)

CHAPTER 3

95

CHAPTER 4

PARAMETER FITTING IN A PREDATOR-PREY DYNAMIC MODEL

4.1 INTRODUCTION

We consider in d e t a i l the problem of f i t t i n g parameters in

a predator-prey dynamic model studied by Bazykin[7]. This model

has several aspects which are at t r a c t i v e to ecologists modelling

population dynamics. Depending on the parameter values, there

are several possible phase plane configurations for the model,

some of which contain l i m i t cycles. Certain l i m i t s to

population growth are also inherent in the model and this i s

phys i c a l l y appealing. Unfortunately, the varied behavior of the

model which makes i t r i c h from an ecological point of view ,

complicates the parameter f i t t i n g problem. For example, with a

poor guess at the optimal parameters, we may find ourselves with

a phase plane configuration quite d i f f e r e n t from the one

indicated by the observations. The a b i l i t y of some of the

methods of Chapter 3 to handle this problem i s explored in thi s

chapter. Only one parameter in the model considered by Bazykin

occurs nonlinearly in the d i f f e r e n t i a l equations, and thus we

expect some of the more global methods of Chapter 3 to be well

suited to thi s model.

4.2 A PREDATOR-PREY DYNAMIC MODEL

The dynamic model considered in [7] has the form:

CHAPTER 4

96

y; =P y -P,y, y x / (i +p j ry ;)-P, Y?

£ = _ p 3 Y * + p v y/ Y* 7 (1 + P * - Y / } _ p,y a*

We confine ourselves to a very b r i e f interpretation of this

model. For more d e t a i l s see [7]. State variable y represents

the prey population, and state variable y a represents the

predator population. The above equations evolved from the

Lotka-Volterra model introduced in Section 3.4. Equations

(4.2.1) reduce to the Lotka-Volterra model equations when

P = P T F
= P 7

= 0 - T n e term- 1/{l+p^y/) in the above equations

represents the s a t i a t i o n of the predators. That i s , as the

number of prey increases, the a b i l i t y of the predators to

consume prey i s limit e d , and when the number of prey i s large,

the growth rate of the predators becomes independent of the prey

population. The terms y (
z and P^y* represent competition among

the prey and among the predators respectively. As the prey

population y increases, i t becomes limited by such things as

t e r r i t o r y . Similar l i m i t a t i o n s apply to the predator

population.

We consider one of the special cases studied by Bazykin.

In this case, P 7=0 and there are two equilibrium points A and B

in the phase plane (see Bazykin[7]). Point A i s at

(P3 /(P^"P5.P3) ') (P, (Pv"P,- P3 > - P , P 3)/(P^~P i rP 3

and point B i s at

(P /\9. 0) .
/ 6

CHAPTER 4

97

Since a l l the parameters are p o s i t i v e , for A to have physical

meaning, we require p <p (p -p p)/p . Bazykin further shows

that i f point A i s stable then p >p p a /(1+p a) A where A has

coordinates (a^ , a a) , and i f A has b i o l o g i c a l significance and

i s unstable, i t i s necessary that a l i m i t cycle occur. We

consider three s i t u a t i o n s :

(1) A has b i o l o g i c a l significance and i s stable;

(2) A has b i o l o g i c a l significance and i s unstable; and

(3) A has no b i o l o g i c a l s i g n i f i c a n c e .

Case (1) arises for example at the parameter values

(1, .1, 3, 1, .1, .15)17

In t h i s case A i s at (4.29, 5.10) and B i s at (6.67, 0) .

Case (2) arises at the point

(.5, .1, 5, 1, .15, .01) '

in parameter space. In this case A i s at (20.0, 12.0) and i s

unstable and B i s at (50.0, 0). Case (3) arises at the point

(1, .1, 3, 1, .2, . 1 5) T

in parameter space. In t h i s case A has no b i o l o g i c a l

significance and B i s at (6.67, 0). Phase plane plots

corresponding to the above three parameter vectors are shown in

Figures 4.2.1, 4.2.2, and 4.2.3. We use integration results at

the , above three points in parameter space to simulate

observations for our test problems.

In p a r t i c u l a r , we make use of the following three test

CHAPTER 4

98

CHAPTER 4

99

d i 1 1 1 1 1 ^ 1 i i
2 00 3 00 4.00 5.00 6.00 7.00 8.00 3.00]0.00

Yl
Figure 4.2.3

Phase plot for case (3)

problems:

PROBLEM 4.2.1:

Observations are generated using the parameters of Figure
r

4.2.1 and the i n i t i a l condition y(0)=(2, 8) .

PROBLEM 4.2.2:

Observations are generated using the parameters of Figure
f

4.2.2 and the i n i t i a l condition y(0)=(24, 8) .

PROBLEM 4.2.3:

Observations are generated using the parameters of Figure

4.2.3 and the i n i t i a l condition y(0)=(10, 10)'.

In a l l of the above problems simulation runs were made using

Gear's program [27], No random error was introduced into the

generated observations, and observations were generated for both CHAPTER 4

100

state variables at times „5(.5)12.5 in a l l cases. The

observations for Problems 4.2.1, 4.2.2, and 4.2.3 are displayed

in Figures 4.2.4, 4.2.5, and 4.2.6 respectively. We also show
o

o

: 1 1 1 1 1 1 1
0.00 2.00 4.DD 6.00 8.00 10.00 12.00 14.00

TIME

Figure 4.2.4
Observations for Problem 4.^.]L

the cubic spline least squares approximations to the

observations that are used throughout this chapter. In Figure

4.2.4, the j o i n t s for the spline approximating the observations

on y are at t=4,8. The jo i n t s for the cubic spline

approximating the y a observations are at t=7,10.5. In Figure

4.2.5, the joint s for the spline approximating the y

observations are at t=6.5,11.25, and the jo i n t s for the spline

approximating the y^ observations are at t=2,3.75,8.75. In

Figure 4.2.6, the j o i n t s for the spline approximating the

observations on y^ are at t=2.5,7.5, and the j o i n t for the

CHAPTER 4

101

.00

Figure 4.2.5
Observations for Problem 4.2.2

0.00 2.00 4.00 6.00 8.00 10.00 12.00 24.00
TIME

Figure 4.2.6
Observations for Problem 4.2.3

CHAPTER 4

102

spline approximating the observations on i s at t=5.

4.3 IMPROVING STARTING PARAMETERS

In Table 4.3.1 we present results using the

Levenberg-Marquardt method and employing the s e n s i t i v i t y

equations (for convenience we c a l l this the FIT technique) along

with results using the derivative f i t t i n g (DFIT) method followed

by the FIT method to refine the parameter values, and results

using the integral f i t t i n g (IFIT) method followed by the FIT

method to refine parameter values. The derivative and integral

f i t t i n g methods are used as i n i t i a l techniques to improve our

approximations to the optimal parameter values. From Table

Problem Starting p Results with indicated method

()-a figure, C-convergence, L-l o c a l minimum
FIT DFIT+FIT IFIT+FIT

4 . 2 . 1 (4 . 2 . 2) L (4 . 3 . 1) C C
(4 . 2 . 3) C C C

4 . 2 . 2 (4 . 2 . 1) C C C
(4 . 2 . 3) M 4 . 3 . 2) C C

4 . 2 . 3 (4 . 2 . 1) C M 4 . 3 . 3) C
(4 . 2 . 2) C L (4 . 3 . 3) C

Table 4.3.1
FIT compared with DFIT+FIT and IFIT+FIT

4.3.1, we see that both the DFIT and IFIT methods work well for

improving the approximations to the optimal parameters. This i s

not too- unexpected since the d i f f e r e n t i a l equations are linear

in a l l but one parameter. We observe that a d i r e c t method using

CHAPTER 4

103

the s e n s i t i v i t y equations can lead to d i f f i c u l t i e s . This

r e f l e c t s the increased nonlinearity that arises when we employ

d i r e c t integration of the i n i t i a l value problem. The s i t u a t i o n

that arose when the Levenberg-Marquardt technique was applied to

Problem 4.2.1 starting with the parameters of Figure 4.2.2 i s

t y p i c a l of the sort of thing that can happen. In this case a

l o c a l minimum at

(3.211, -.4441, -3.405, 3.159, -1.182, .6314)"^"

was found. Integration results at these parameters are shown in

Figure 4.3.1. At this l o c a l minimum the peaks and troughs in
CD O

d-\ 1 1 1 1 1 :—I 1
0.00 2.00 4.00 6.00 8.00 - 10.00 12.00 14.00

TIME
Figure 4.3.1

A l o c a l minimum for Problem _4 ._2. 1̂

the observations are being balanced against one another.

The FIT approach worked for Problem 4.2.2 sta r t i n g at the

parameters of Figure 4.2.1, but d i f f i c u l t i e s were encountered.

CHAPTER 4

104

S p e c i f i c a l l y , the parameter }\ in the Levenberg-Marquardt

procedure had to be adjusted to avoid certain points in

parameter space where the integration blows up. The use of

constraints might also be useful here; however, i t i s noteworthy

that no such d i f f i c u l t i e s arose with the DFIT+FIT and IFIT+FIT

methods on th i s problem.

The FIT approach to Problem 4.2.2 starting at the

parameters of Figure 4.2.3 produced a l o c a l minimum at

(3.087, .6111, 3.086, .7745, .2007, .08077)T

Integration results at these parameters are shown in Figure

4.3.2. No d i f f i c u l t i e s arose in this case with the DFIT+FIT and

(f..Tl , , , , , j - |
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

TIME
Figure 4.3.2

A l o c a l minimum for problem 4_'2.2

IFIT+FIT methods.

Problem 4.2.3 requires further discussion. At f i r s t

CHAPTER 4

105

glance, i t appears to be the simplest of the three problems

since the observations seem to exhibit no special features.

However, there i s a l o c a l minimum in parameter space

corresponding to a solution to the d i f f e r e n t i a l equation which

comes very close to the given observations. This appears to

res u l t from the small peak in y ^ near t=0.5, and from the

contrived nature of the problem with no random error in the

observations. The observations st a r t at t=0.5 and i f we do not

look at the i n i t i a l conditions, the small peak near t=0.5 i s

i n v i s i b l e . Thus the DFIT method found a point in parameter

space where th i s peak was absent. Consequently the DFIT+FIT.

combination found a l o c a l minimum at the parameters

(1.028, .2255, 1.290, .7186, .5493, .1517)T

The sum of the squares of the residuals at th i s point in

parameter space was approximately 10. Integration results at

the above parameters are shown in Figure 4.3.3. If there were

some random error in the observations, the solution shown in

Figure 4.3.3 might appear quite adequate. However, in this

contrived case there exists a more optimal solution with the

objective function equal to zero. Our implementation of the

IFIT method which has access to the i n i t i a l values had no

d i f f i c u l t y with t h i s problem. The FIT approach to this problem

managed to extract the global optimum, but not without some

d i f f i c u l t i e s . Starting with the parameters corresponding to

Figure 4.2.1, no problems arose; however, star t i n g with the

CHAPTER 4

106

X

d i 1 1 1 1 1 I 1

0.03 2.CO 4.00 - 5.00 8.00 10.00 12.00 14.00
TIME

Figure 4.3.3
A l o c a l minimum for Problem _4._2._3

parameters of Figure 4.2.2, d i f f i c u l t i e s were encountered and X

in the Levenberg-Marquardt procedure had to be increased to

avoid certain regions in parameter space.

4.4 GUESSED OBSERVATIONS AND ITERATED METHODS

In this section we present some experiments with the

techniques introduced in Section 3.4. These technigues are

designed for the important case when observations are not

available on a l l state variables. F i r s t we experiment with the

use of guessed observations for unobserved state variables. To

f a c i l i t a t e the guessing of state variable behavior, an

interpolating cubic spline i s passed through a set of guessed

observation points. This eliminates the need to enter long

l i s t s of guessed observations. Experiments are conducted on

CHAPTER 4

http://_4._2._3

107

PROBLEM 4.4.1:

This problem i s the same as Problem 4.2.1 except

observations are only available on state variable y and

Y a(0)=8.

I n i t i a l l y we looked at Problem 4.4.1 with Y A(0) an unknown

parameter. However, t h i s problem was singular due to a linear

r e a l t i o n s h i p between p a and the i n i t i a l condition on y^. The

columns corresponding to these two parameters in the least

squares Jacobian matrices are multiples of one another and the

cor r e l a t i o n c o e f f i c i e n t between these two parameters i s 1. This

occurs because the state equation involving y^ i s homogeneous in

y . Thus y can be replaced by cy and the second state

equation i s not altered, except for the i n i t i a l condition on y a

which i s divided by c. However, in the f i r s t state equation, p^

is replaced by cp . Thus a r e l a t i o n exists between p and the

i n i t i a l condition on y .
a.

To apply the derivative f i t t i n g method to Problem 4.4.1, we

approximate the observations on y with the least squares cubic

spline used for experiments with Problem 4.2.1 presented in

Table 4.3.1. In Figure 4.4.1, some guesses at possible

observations on y are shown. Referring to this figure, curve

(a) is an interpolating cubic spline for the points

(0, 8), (2.5, 1.5), (7, 6.5), (10, 4.5), (12.5, 5),

curve (b) i s an interpolating cubic spline for the points

(0, 8) , (2.5, 3) , (8.75, 5) , (12.5, 4) .

CHAPTER 4

108

\\ \

1 1 1 1 ; 1 : 1 I
0.00 2.00 4.00 6.CO B.00 10.00 12.00 U . C O TIME

Figure 4.4.1
Guessed observations for problem 4.4.1

and curve (c) i s an interpolating cubic spline for the points

(0, 8), (5, 3), (8.75, 5), (12.5, 4) ,

(that i s , one point was moved). The guessed observations shown

in curve (a) are f a i r l y close to the observations on y a in

Problem 4.2.1, while the guessed observations in curve (c) are

substantially d i f f e r e n t from those of Problem 4.2.1. The

guessed observations in curve (b) are intermediate to those in

curves (a) and (c). End conditions for the interpolations are

described under the CREOBS command in Appendix A.

Figure 4.4.2 shows the integration results at the parameter

vector

(.2354, -.1977, 4.983, 1.049, .01350, .05878) '

CHAPTER 4

109

obtained with the FIT approach (with error controlled

integrations) to problem 4.4.1 using the starting parameters of

TIME

Figure 4.4.2
FIT on Problem 4.4.1

10.OD 14.00

Figure 4.2.2. A l o c a l minimum has been obtained.

Using points on curve (a) in Figure 4.4.1 for guessed

observations, the DFIT+FIT, and IFIT+FIT combinations both

produced the correct parameters. The starting parameter values

were those corresponding to Figure 4.2.2. Using guessed

observations from curve (b) in Figure 4.4.1, the DFIT+FIT

combination found a l o c a l minimum at

(.2507, -.3758, 1.676, 2.729, 1.698, .07026).

Integration results at these parameters are shown in Figure

4.4^3. The IFIT+FIT combination with these guessed observations

produced the correct minimum. When guessed observations from

CHAPTER 4

110

CD

d i 1 1 1 i r 1 1
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

TIME
"Figure 4.4.3

DFIT+FIT on Problem ._4. 1̂ using guess (b)

curve (c) in Figure 4.4.1 were used, both the DFIT and IFIT

methods produced parameters from which the FIT method was

unsuccessful due to i n s t a b i l i t i e s . The change of the position

of one data point from t=2.5 to t=5 in the guessed observations

of curves (b) and (c) of Figure 4.4.1, meant the difference

between disaster and the agui s i t i o n of a minimum. The above

experiments indicate that some interactive experimentation with

guessed observations and with pa r t i c u l a r methods can be

pr o f i t a b l e .

Next some experiments using the i t e r a t i v e techniques of

Section 3.4 for improving guessed observations are presented.

These techniques can reduce the dependence on a good set of

guessed observations.

CHAPTER 4

I l l

Three methods are considered. F i r s t we consider iterated

derivative f i t t i n g where the function (3.4.1) with d^(c) defined

by (3.4.2) i s minimized. Second, we consider iterated integral

f i t t i n g where our parameter estimates are updated by the

integral f i t t i n g technigue and the guessed observations are

updated to minimize the function (3.4.1). F i n a l l y , we consider

an i t e r a t i v e scheme where the parameters are updated using the

inte g r a l f i t t i n g technigue, and the guessed observations are

updated by integrating a subsystem of the given system of

d i f f e r e n t i a l equations. Experiments are conducted on Problem

4.4.1. The case when there i s a random error in the

observations i s considered in the next section. In a l l

experiments, the i n i t i a l condition for the unobserved state

variable remains fixed at 8. We observe that the least squares

problem for updating the guessed observations with p held fixed

i s linear in th i s example. Starting with the guessed

observations of curve (b) in Figure 4.4.1 and the parameters

corresponding to Figure 4.2.2, a l l three methods converged to a

parameter vector from which the FIT method converged to the

desired solution. In a l l cases, the observations on y were

approximated with the spline shown in Figure 4.2.4. The

iterated derivative and iterated integral f i t t i n g methods

employing (3.4.1) produced similar results and we present

graphical results only for the iterated derivative f i t t i n g case.

In Figure 4.4.4, the observations on y and integration results

for y at successive parameter estimates obtained with the

CHAPTER 4

112

iterated derivative f i t t i n g method are shown. In Figure 4.4.5,

0.00 2.00 4.00 B.0O
TIME

6.00 10.00 12.00
J'4.00

Figure 4.4.4
Iterated DFIT results

the i t e r a t i o n s on the guessed observations corresponding to the

results presented in Figure 4.4.4 are shown. We note that the

derivative f i t t i n g method using guessed observations from curve

(b) in Figure 4.4.1, did not produce parameters from which the

FIT method could find the global minimum, but the iterated

derivative f i t t i n g method did produce parameters from which the

FIT method was successful. In th i s case the it e r a t i o n s were

c r u c i a l to obtaining the desired solution.

Next we consider i t e r a t i v e l y improving the guessed

observations by integrating the unobserved state variable with

the observed state variable held fixed at the smoothed

approximation to the observations. In Figures 4.4.6 and 4.4.7

CHAPTER 4

113

UJ
I—
c r

w
\

\\\

4?

/
to) ^ /

/

0.00 2.00 4.00 5.00
TIME 8.00 10.00 12.00 14.00

Figure 4.4.5
Iterated DFIT guessed observation i t e r a t i o n s

we give results with this technique applied to Problem 4.4.1

start i n g with the guessed observations of curve (b) in Figure

4.4.1. Figure 4.4.6 shows the observations on y and

integration results on y at successive parameter estimates.

With th i s technique, the difference between i t e r a t i o n (0) and

i t e r a t i o n (1) was substantial, while i t e r a t i o n s (1) and (2) were

e s s e n t i a l l y i d e n t i c a l . The it e r a t i o n s shown in Figure 4.4.7

correspond well to the simulation results in Figure 4.2.4. The

FIT approach had no trouble converging to the global minimum

start i n g at the parameters provided by this i t e r a t i v e process.

CHAPTER 4

CHAPTER 4

115

4.5 THE PRESENCE OF NOISE

In this section we consider a selection of the previous

problems with a random error introduced into the observations.

The problems considered are:

PROBLEM 4.5.1

This problem i s the same as Problem 4.2.1 except a normally

di s t r i b u t e d random error with zero mean has been introduced into

the observations. The standard deviation for the error in y i s

.5 and the standard deviation for the error in y i s 1.

PROBLEM 4.5.2

This problem i s the same as Problem 4.2.2 except a normally

d i s t r i b u t e d random error with zero mean and standard deviation 2

has been introduced into the observations.

PROBLEM 4.5.3

This problem i s the same as Problem 4.5.1 except the

observations on y a have been removed. The i n i t i a l condition for

y i s fixed at 8.

We smooth the observations for Problems 4.5.1, 4.5.2, and

4.5.3 using least squares piecewise cubic splines with the same

jo i n t s as were used for the smoothings in Problems 4.2.1, 4.2.2,

and 4.4.1 respectively.

F i r s t we consider Problem 4.5.1. Starting at the

parameters correspomding to Figure 4.2.2, a d i r e c t approach (FIT

method) found the point

(.3668, -.08827, 4.874, 1.237, -.4058, .07037) 7"

CHAPTER 4

116

in parameter space. Integration results at this point were

q u a l i t a t i v e l y quite d i f f e r e n t from the observations. The sum of

the squares of the residuals at the above point in parameter

space was approximately 515. The IFIT+FIT and DFIT+FIT methods

both found a minimum at
r

(.8865, .04991, 2.983, .6827, -.009550, .1483).

In both cases, the star t i n g parameters were those corresponding

to Figure 4.2.2. The sum of the sguares of the residuals at the

above point in parameter space was approximately 15.5. The FIT

method also found the above minimum when i t was started from the

parameters corresponding to Figure 4.2.3. Unfortunately, p̂ _ i s

negative. This suggests we try a square root scaling of p6_ to

constrain i t to be p o s i t i v e . With this scaling and starting at

the parameters of Figure 4.2.2, the IFIT+FIT combination

produced the parameters (unsealed)
r

(.8962, .05327, 3.076, .7405, .001897, .1498).

The sum of the squares of the residuals at the above parameters

was approximately 15.5. Integration results at the above

parameters are shown in Figure 4.5.1. F i n a l l y , with this

s c a l i n g , the FIT method also produced the above parameters when

started from the parameters of Figure 4.2.2.

Next we consider Problem 4.5.2. Starting at the parameters

corresponding to Figure 4.2.3, the FIT method drew us to the

point

CHAPTER 4

117

(5.544, .7024, 2.647, -0.6093, -.07095, 1.021)

in parameter space at which the integration results and the

observations were q u a l i t a t i v e l y quite d i f f e r e n t . (The

integration results on y contained a rapid and damped

o s c i l l a t i o n .) The sum of the squares of the residuals at the

above parameters was approximately 1000.

Both the DFIT+FIT, and the IFIT+FIT methods found an

optimum at
r

(.4018, .03851, 1.254, .07606, .01059, .001893)

The sum of the squares of the residuals at the above parameters

was approximately 147. Integration results at the above point

CHAPTER 4

118

in parameter space are shown in Figure 4.5.2. The FIT method,

14.00

Figure 4.5.2
Results for Problem 4.5.2

using a square root scaling of p and p and starting at the

parameters of Figure 4.2.3, also found the above point in

parameter space.

F i n a l l y , we consider Problem 4.5.3. The random error in

the observations combined with the missing observations on y^

make thi s a rather nasty problem. The noise i s f a i r l y large in

this example, but this much noise i s not uncommon in problems

involving population counts. Starting with the parameters

corresponding to Figure 4.2.2, the FIT approach found an optimum

at
7"

(.5945, .0005587, 5.760, .7368, -.1121, .1073)

The sum of the squares of the residuals was approximately 5.4 at

CHAPTER 4

119

the above parameters. Graphically, integration results at the

above parameters look very good. However, p i s negative, and

the integration results for y^ at the above parameters are very

d i f f e r e n t from the simulation results shown in Figure 4.2.4.

(the integration results for y^ have a spike which extends to

around ya=400 at t~7.5.) Using the guessed observations from

curve (b) in Figure 4.4.1, and sta r t i n g at the parameters

corresponding to Figure 4.2.2, three i t e r a t i o n s of the iterated

derivative f i t t i n g method produced the parameters

(1.522, .3921, 3.186, 1.709, .3031, .1829)T

The observations and integration results at the above parameters

are presented in Figure 4.5.3.

Using the same star t i n g conditions as for the previous

experiment, three i t e r a t i o n s of the iterated integral f i t t i n g

method (using subsystem integrations) gave the parameters

(1.402, .2126, 3.584, 2.497, .4548, .2249)T

Integration results at the above parameters are presented in
Figure 4.5.4.

Using the same star t i n g conditions as in the previous

experiment, three i t e r a t i o n s of the iterated integral f i t t i n g

method (using (3.4.1) to update the guessed observations)

produced the parameters

(1.388, .2153, 4.652, 2.493, .2981, .2275).

Integration results at the above parameters are presented in

CHAPTER 4

120

o
03

J4.DD
TIME

Figure 4.5.4
IFIT results (using subsystem integrations)

CHAPTER 4

121

Figure 4.5.5.

From each of the above parameter vectors, the FIT method

found the same minimum that was found when the FIT method alone

was used. Since results with the iterated methods appear f a i r l y

TIME
8 . D O 10.00 12.00

Figure 4.5.5
IFIT results (using (3.4.1))

14.00

good graphically, and the parameters generated by the iterated

methods are po s i t i v e , i t appears worthwhile to try a square root

scaling on p starting from the results of an iterated method.

Starting from the results of the iterated integral f i t t i n g

method (using (3.4.1)) and using this scaling, we found an

optimum at (unsealed)
T

(.6859, .03515, 6.092, 1.481, .2708E-5, .1213).

The sum of the squares of the residuals at the above point in

parameter space was approximately 5.8. Integration results at

CHAPTER 4

122

the above parameters are shown in Figure 4.5.6.

If we return to the d i r e c t FIT approach starting with the

-) i 1 1 ,—
4 -0C 6.00 8.00 10.00 12.00

TIME
Figure 4.5.6

FIT results (p^scaled) st a r t i n g from IFIT results

parameters corresponding to Figure 4.2.2 and with p scaled with

a square root transformation, problems occur. The parameter p,

becomes negative. The scaling of both p^ and p ^ d i d not prove

very p r o f i t a b l e either. With th i s scaling and star t i n g at the

parameters corresponding to Figure 4.2.2, we were drawn to a

point in parameter space where a l l the parameters were p o s i t i v e ,

but where the integration results on y^ rapidly went to zero,

and the results on y went to an equilibrium. Thus the iterated

approach was extremely valuable for getting a solution to this

problem. The use of guessed observations may be thought of as a

means of guiding us to a preferred solution.

CHAPTER 4

123

CHAPTER 5

SEQUENTIAL TECHNIQUES

5.1 INTRODUCTION

The d i r e c t approach, using the s e n s i t i v i t y equations, for

f i t t i n g parameters in dynamic models involves the choice of an

i n i t i a l approximation to the optimal parameter vector,

integrating at this point in parameter space, and then, with the

aid of information from the solution to the s e n s i t i v i t y

equations, finding a more optimal set of parameters. Often the

i n i t i a l integration deviates greatly from the observations, and

i t may even blow up. In these cases, the f i r s t few data points

contain valuable information that can be used to improve the

parameter estimates. It i s i n t u i t i v e l y appealing to use this

information to improve some parameter values before we commit

ourselves to a f u l l integration over the whole time i n t e r v a l

under consideration. To carry this idea a l i t t l e further, an

algorithm where we sequentially update parameter estimates each

time taking into account a few more data points seems worthy of

consideration. In a sense, such an algorithm i s using the

observations to guide us along the correct path in state space.

Sequential reestimation has received a great deal of

attention. Much of this attention has been from a s t a t i s t i c a l

point of view. For a concise introduction, we refer the reader

to Young[76]. Problems involving the analysis of a large

quantity of continuously a r r i v i n g data and requiring a "real

CHAPTER 5

124

time" solution have been one of the main motivations for the

development of sequential estimation techniques. A t y p i c a l

example of such a s i t u a t i o n occurs in the estimation of missile

t r a j e c t o r i e s from, say, radar data. Frequently, sequential

techniques are used to estimate the state of a dynamic system;

however, they can also be used to estimate parameters in a

dynamic system. For a good discussion of sequential estimation

techniques applied to dynamic systems, we refer the reader to

Gelb[28].

As mentioned above, our motivation for considering

sequential techniques does not come from the need to rapidly

process a large quantity of data, but instead from the need to

overcome poor i n i t i a l parameter estimates. Our goal i s to use

the observations in a manner that addresses i t s e l f to the

b a s i c a l l y sequential nature of an i n i t i a l value problem.

5.2 A SEQUENTIAL ALGORITHM

There are many ways to approach the development of a

sequential algorithm. At one extreme there i s the approach of

solving a sequence of parameter f i t t i n g problems, each using

progressively more data points. Since we are dealing with a

dynamic model, such an approach would be expensive. At the

other extreme, we have the stochastic approximation techniques

where parameters are updated by less refined but very fast

reestimation algorithms ([6,p.251], [3], [33]). The method

explored in t h i s chapter f a l l s between these two extremes.

We assume the data points are processed in batches ending

CHAPTER 5

125

at the observation times

t. i • •« , t« (5.2.1)

Batch s i s the set of observations taken at the observation

times

fcJk t i ' t * -+2.
A - I n-i

/ • • • f t . (5.2.3)

where t f c + | i s the f i r s t observation time. Define f (p)

according to (1.1.2) for the observation times

(5.2.3)

and l e t

(P)=f(„, (P)f, r t (P) (o) (5.2.4)

To s t a r t the sequential process we estimate p as well as

possible to minimize (5.2.4). Note that k must be large enough

that t h i s least squares problem makes sense. That i s , we do not

want fewer data points than parameters. We expect this problem

to often be singular since i t i s unreasonable to expect that an

estimate of a l l the parameters can be obtained with just a few

data points.

Denote by p the optimal parameter vector obtained by

minimizing (5.2.4), and denote the Jacobian matrix for f

defined by (1.3.4), by J ^ (p). Next we include the batch of

data points at the observation times

Define f (p) according to (1.1.2) for the above observation

CHAPTER 5

126

times. There i s some ambiguity to be resolved concerning

f () i (p) . The elements in f (|) (p) depend on the solution y(t) to

(1.1.1) at the above observation times. We would, however, l i k e

to integrate from time t ^ and not from time t f l in order to

define f ^ (p). Thus i n i t i a l conditions are required at time

t« for this integration. Consistent with the l i n e a r i z a t i o n

employed below, we define the i n i t i a l condition on y . at time

t*. by

Y E > . (t ^)=y; (P (-)) + (P"P(0,) T(>Y;,...»%) (5.2.5)

for i=l,...,n. Thus the i n i t i a l conditions for the integration

between times t . and tA are functions of the parameters, and

this must be considered when the s e n s i t i v i t y equations are

integrated.

Define the Jacobian matrix J ^ (p) corresponding to f (|) (p)

according to (1.3.4). This matrix i s found by integrating the

s e n s i t i v i t y equations from time t_^ to time t ^ . Let

(AP) (E J =P-P(OJ (5.2.6)

and define f (p) by

f l l)(p) = ((f (f t) (P (e J)+J (o J <P(„) U p > (#)) T , f ^ (P) ^ (5.2.7)

Our new parameter estimate, which we denote by p ̂ , minimizes

f (P)f (P)- (5.2.8)

The Jacobian matrices for f (p) are

CHAPTER 5

127

J (p) =
(O J - . (p)

(5.2.9)

We have just approximated f^0)(p) by the f i r s t term in i t s Taylor

expansion at the point p . The success of a sequential

technique i s clos e l y related to the size of the region in which

t h i s approximation i s accurate. We continue in the above manner

reestimating p for each new batch of data points. Thus when

batch s i s under consideration, we are finding the estimate p ^ j

using

f (P) =
(P{.>) + J

 (.) (P l 6)) (AP),

f w (p)

(5.2.10)

and

J (p) =

J (*> (P (,) >

Jfr> (P)

The new parameter estimate, p, , minimizes

f w _ r (P) f U) (P) .

(5.2.11)

(5.2.12)

Note that only J (p) is changing in J

determination of p
(p) during the

} . This fact can be used to advantage when

implementing a sequential algorithm. For example, i f we are

using the singular value decomposition of J then information

CHAPTER 5

128

obtained when producing the decomposition of J (p ^ ̂) can

be used to e f f i c i e n t l y obtain the decomposition of J (p).

5.3 EXPERIMENTAL RESULTS

We experiment with Problems 4.2.1, 4.2.2, 4.5.1, and 4.5.2.

The l a s t two of these test problems have noise in the

observations. The star t i n g parameters for our experiments with

Problems 4.2.1 and 4.5.1 are those corresponding to Figure

4.2.2, and the star t i n g parameters for our experiments with

Problems 4.2.2 and 4.5.2 are those corresponding to Figure

4.2.3. We comment that with these parameters a d i r e c t approach

(FIT) was unsuccessful on a l l four problems. Our experiments

with Problems 4.2.1 and 4.2.2 star t with an i n i t i a l batch of

observations corresponding to the f i r s t f i v e observation times.

We then proceed through the remaining observation times in

increments of f i v e observation times. For Problems 4.5.1 and

4.5.2 the use of f i v e observation times proved to be

i n s u f f i c i e n t to get started (the i n i t i a l parameter estimates

were too inaccurate). For these two problems we star t with ten

observation times and then proceed in increments of f i v e

observation times. An interactive approach could be valuable

here.

For Problem 4.2.1, the parameter estimates after the f i r s t

and l a s t batches were respectively
T

(.9743, .1281, 3.873, 2.101, .3153, .1473)

and

CHAPTER 5

1 2 9

(1 . 0 1 4 , . 1 1 7 8 , 3 . 5 4 8 , 1 . 4 0 6 , . 1 6 3 2 , ,1539)T

For Problem 4 . 2 . 2 , the parameter estimates after the f i r s t and

l a s t batches were respectively
T

(.5550, . 0 9 2 7 7 , 3 . 2 5 6 , . 6 3 0 4 , . 1 3 9 0 , . 0 1 2 3 1)

and
r

(. 4 6 8 7 , . 0 6 5 4 8 , 3 . 3 8 3 7 , . 4 2 2 6 , . 0 7 8 8 6 , . 0 0 8 3 6 4) .

For Problem 4 . 5 . 1 , the parameter estimates after the f i r s t and

l a s t batches were respectively

(. 6 6 8 9 , . 0 2 4 9 3 , 4 . 0 8 5 , 1 . 3 0 9 , . 0 6 2 3 2 , . 1 1 5 4) 7 "

and

(. 7 6 9 0 , . 0 4 5 4 0 , 3 . 2 3 8 , . 8 0 0 6 , . 0 1 4 2 1 , .1286)7^

For Problem 4 . 5 . 2 , the parameter estimates after the f i r s t and

l a s t batches were respectively

(7 . 2 2 7 , 1 . 3 0 3 , 3 . 3 3 7 , 1 . 3 3 3 , . 3 3 3 4 , . 2 2 6 6) " ^

and
T

(.6987, . 2 8 2 9 , 6 . 9 1 7 , 2 . 7 0 3 , . 3 3 8 9 , . 0 1 3 7 7) .

A d i r e c t approach (FIT method) converged to the desired

solution for Problems 4 . 2 . 1 , 4 . 2 . 2 , and 4.5.1 starting at the

f i r s t and l a s t estimates given above. A square root

transformation of p^. was required in the case of Problem 4.5.1

to prevent p̂ _ from becoming negative. The d i r e c t approach on

CHAPTER 5

130

Problem 4.5.2, star t i n g from the parameters obtained using only

the f i r s t batch of observations, found a l o c a l minimum at

(3.624, .8877, 4.064, 1.277, .2642, .1002) r

where the sum to the squares of the residuals was approximately

840. However, convergence of the d i r e c t method to the desired

solution was obtained when we started from the f i n a l r e s u l t of

the sequential pass on Problem 4.5.2. Thus the sequential

updating was essential in th i s case. We summarize the above

results in Table 5.3.1. We conclude that i t can be advantageous

Problem FIT FIT FIT
(f i r s t batch) (last batch)

4.4.1 L C C
4.4.2 L C C
4.5.1 L C C
4.5.2 L L C

(L-local minimum, C-desired minimum)

Table 5.3.1
Results with sequential approach

to consider the observations sequentially to obtain an improved

approximation to the optimal parameters before we commit

ourselves to a f u l l optimization attempt over the whole time

i n t e r v a l . Indeed, in three of the above four cases a s u f f i c i e n t

improvement to allow the FIT method to converge to the desired

solution was obtained using only the f i r s t few observation

points.

A great deal of work remains to be done to f u l l y evaluate

CHAPTER 5

131

the use of sequential methods for improving starting parameters;

however, we have attained our limited goal of demonstrating the

f e a s i b i l i t y of using a sequential strategy.

CHAPTER 5

132

CHAPTER 6

REAL WORLD PROBLEMS

6.1 INTRODUCTION

A l l the parameter f i t t i n g problems in thi s chapter involve

physical observations as opposed to observations generated by a

simulation. Such problems are a good deal more d i f f i c u l t than

those using generated data. This d i f f i c u l t y occurs partly

because the dynamic model under consideration often cannot, for

any parameter values, give an adeguate description of the

process being modelled. Also, experience indicates that the

least squares surface for parameter f i t t i n g in dynamic models i s

often plagued with numerous l o c a l minima. Starting with one of

the more global methods of Chapter 3, i t i s f a i r l y easy to find

one of these l o c a l minima. (See for example the experiments

with Bazykin's model in Chapter 4.) The problem for the model

builder i s to decide i f there i s a more optimal set of

parameters somewhere else in parameter space or i f the

qu a l i t a t i v e difference between the model and the data at the

current minimum i s just the resu l t of a poor or incomplete

model. This i s usually a d i f f i c u l t decision to make.

Situations such as this arise frequently in nonlinear problems

and a standard strategy i s to start optimizing from d i f f e r e n t

points in parameter space. If the same minimum i s determined

starting from several d i f f e r e n t points, then we can be more

confident that the minimum i s a global minimum. An interactive

CHAPTER 6

133

approach i s ideal for experimentally checking on a minimum;

however, a good understanding of the model and the physical

meaning of the parameters i s also very valuable. This l a t t e r

understanding can be augmented through an interactive analysis

of the effects of various parameter changes.

An interactive parameter f i t t i n g package can be very useful

in the design of models as well as in the f i t t i n g of individual

models. For example, the model builder may start with a simple

but incomplete model and find in the course of f i t t i n g i t that

i t cannot account for some of the q u a l i t a t i v e behavior of the

observations. This would be indicated for example i f the best

f i t t i n g parameters produced a model which smoothed out a c r u c i a l

peak in the data. With luck, in the course of f i t t i n g this

model, some of i t s de f i c i e n c i e s may be determined and some

insight into improvements may be gained. For this type of

application, i t would be helpful to allow the dynamic

r e d e f i n i t i o n of the model.

We stress that the above process i s very tenuous and puts a

large emphasis on the i n t u i t i o n and judgement of the model

builder. It i s in such situations, however, where an

interactive approach can be extremely advantageous.

6.2 A DYNAMIC MODEL FOR AGGRESSIVE AND DOCILE MICE

The model considered in this section proposes a population

consisting of two interacting types of mice to account for

observations on the t o t a l mouse population. For an introduction

to this problem, we refer the reader to Myers and Krebs[48] and

CHAPTER 6

134

Krebs et al[37]. Let u be the population density of docile

mice, and v the population density of aggressive mice. Let p^

be the basic b i r t h rate, p^ the basic death rate, and l e t p̂ .

describe the s e n s i t i v i t y of docile mice to crowding. Let c< be

the proportion of aggressive mice in the o f f s p r i n g . Further

assume the aggressive mice reproduce poorly (almost s t e r i l e) and

that this can be described by multiplying the basic b i r t h rate

by u/(u+v). Under the effects of crowding, the docile mice are

assumed to either emigrate or die, and this i s described by the

term -p^ufu+v) in the equation for u'. The dynamic model i s

thus

u'=p, (l - O u*/(u+v) -p u-p u(u+v)
3 H (6.2.1)

v ' =p3p<. u a / (u+v) -pH v.

Questionable assumptions such as those given above are t y p i c a l

of dynamic models in ecology, and with such assumptions we

should not be too disappointed i f the model cannot describe the

observations very well. Mouse population measurements are

available only on the t o t a l population u+v. A more general

formulation of the parameter f i t t i n g problem in dynamic models

(see Bard[6,p.221]) could handle this d i r e c t l y ; however, the

problem can be transformed to conform to our formulation. In so

doing, we arrive at a problem with observations on only one

state variable and some of the techniques of Chapter 3 can be

used to produce starting approximations to the parameters. If

we define y =u, y =u+v, and p =p (l-«0 then the above dynamic

CHAPTER 6

135

model may be written as

y/=P6 y,a/y -p y y y
' 6 1 * f ' ^ (6.2.2)
y'=p y a/y -p y -p y y .

For our i n i t i a l conditions we take

y (0)=p /(l+exp.(-pa))
' (6.2.3)

Y (0)=p, i

where we have ensured that y (0)<y (0). Observe that a l l
/ a.

parameters in this model, with the possible exception of p^,

should be po s i t i v e .

The 44 observations on y^ are shown graphically in Figure

6.2.1. We comment that i t i s with reference to the scale of

Figure 6.2.1
Observations and spline approximation

Figure 6.2.1 that the parameter estimates should be interpreted,

CHAPTER 6

136

(The basic unit of time i s two weeks and the basic population

density unit i s ten animals per acre.) A cubic spline

approximation to the observations using j o i n t s at

t=5,10,20,25,28,35 i s also shown in Figure 6.2.1.

This problem i s r e l a t i v e l y d i f f i c u l t . In the following

discussion, we outline a p a r t i c u l a r sequence of experiments

which leads to a model which f i t s the observations quite well

numerically. Such experiments, of necessity, involve a good

deal of t r i a l and error, and thus an interactive approach i s

i d e a l . In what follows, we try to give an indication of this

i n teractive process.

Since observations are available on only one state

variable, the i t e r a t i v e methods of Section 3.4 may be useful for

getting i n i t i a l approximations to the parameters. Furthermore,

we observe that with the exception of p a , a l l the parameters

occur l i n e a r l y in the residual functions of the IFIT and DFIT

algorithms when guessed observations are used on y . However,

to apply one of the i t e r a t i v e algorithms of Section 3.4, a

sta r t i n g guess at the behavior of the unobserved state variable

i s required. It must be less than y , and we expect i t to mimic

in some sense the behavior of ya • A reasonable guess i s curve

(0) in Figure 6.2.2. Note that one of the most prominent

features of y / with respect to y^ i s the position of the

proposed maximum of ŷ . As indicated by the experiments in

Chapter 4, the position of such a maximum can be c r i t i c a l . An

interactive approach can be very valuable here. To get st a r t i n g
CHAPTER 6

137

T I M E

Figure 6.2.2
Iterations on guessed observations

approximations to the parameters, we used the iterated integral

f i t t i n g method (using (3.4.1)) taking advantage of the l i n e a r i t y

of the parameters in (6.2.2). We froze p̂ and p^ at 2.9 and 2

respectively and iterated on the remaining four parameters.

Figure 6.2.2 shows successive improvements in the guessed

observations on y . In Figure 6.2.3, the solution y^ (t)

obtained from integrating (6.2.2) at the successive

approximations to p are shown. The observations on y^ are also

shown in Figure 6.2.3. The trapezoidal d i s c r e t i z a t i o n was used

throughout this section. Curve (i) in Figure 6.2.3 corresponds

to curve (i) in Figure 6.2.2. The parameters corresponding to

curve (2) in Figure 6.2.3 were

(2.9, 2.0, 1.234, .2445, .003339, .6114).

CHAPTER 6

138

8

o

UJ o
y-°.
I— ~*

i n

XX
x x

X X x x
X

x><

x
.X

x x * (a)

X
X/ ̂ ^ = = = = = - — J L

X x x x x x x X x

, r 1 1 1 1 r i i
0.00 5.00 10.00 IS.00 20.00 2S.00 30.00 3S.00 40.00 45.00

T I M E

Figure 6.2.3
Integrations at successive parameter approximations

Graphically, there appears to be substantial room for

improvement in the parameter values; however, the iterated

integral f i t t i n g method has e f f i c i e n t l y provided starting

approximations to the l a s t four parameters.

Now that we have star t i n g approximations to the parameters

at which the i n i t i a l value problem can be integrated to produce

reasonable r e s u l t s , i t i s worthwhile to try to refine the

parameters values using a d i r e c t approach employing the

s e n s i t i v i t y equations. The Levenberg-Marquardt method gave the

parameters
T

(2.828, 1.963, 1.142, .06483, .008582, .5279)

Integeration results corresponding to th i s parameter vector are

shown in Figure 6.2.4. The sum of the squares of the residuals

CHAPTER 6

139

at the above point in parameter space was approximately 1350.

Clearly, an improvement has been made. However, the peak in the
o
C3

m

XX
°J XX

X X
x x

' i I ! I 1 1 r
5.00 10.00]5.C0 20.00 25.00 30.00 35 00 40 00 TJME

Figure 6.2.4
Optimum star t i n g from iterated IFIT results

observations i s not being approximated well. Considering the

way the model was derived, there i s no reason to expect that the

peak in the observations can be well approximated. If we want

to try to f i t the peak in the data, we can experiment at other

points in parameter space and try other algorithms such as those

presented in Section 3.5. An interactive package can be very

valuable for such probing and experimenting. Extensive

experiments and the use of special methods such as the

quasi-multiple shooting technigue of Chapter 3 did not produce

parameter values which described the peak well. A logarithmic

transformation of p which works well on the following two

CHAPTER 6

140

models did not work here either. It i s impossible to say no

such parameters exist ; however, in view of the better f i t

obtained later in t h i s section when more f l e x i b i l i t y was put

into the model, we are led to the conclusion that the model

cannot adequately describe the observations. Such a conclusion

i s a matter of judgement and a l l a good numerical package can do

i s to provide information to make that judgement more informed.

It i s f a i r l y easy using an interactive approach to produce

parameters that give integration results which peak in the same

v i c i n i t y as do the observations. For example, the following

parameters were obtained i n t e r a c t i v e l y :

(1.4, 1.24, .8272718, .07, .006, .5037043)T

The interactive procedure employed involved freezing parameters,

optimizing on subspaces, and the experimental resetting of

parameters. Integration results at these parameters are shown

in Figure 6.2.5. The d i f f i c u l t y seems to be that the sudden

drop in the observations cannot be imitated. Thus when we t r i e d

a f u l l least squares optimization starting at the above

parameters, we obtained a possibly l o c a l minimum at

(1.292, 1.171, .9662, .06040, .01371, .6242)T

Integration results at the above parameters are shown in Figure

6.2.6. The sum of the squares of the residuals was

approximately 1150 at the above parameters. Observe that the

results are s l i g h t l y d i f f e r e n t than those of Figure 6.2.4, but

the peak in the data i s s t i l l not being imitated. Indeed, even

CHAPTER 6

141

C 3

di i 1 1 1 1 1 1 1 1
o.oo 5.oo lo.oo :s.oo 20.00 25.00 30.0c 35.00 40.00 4S.00 TIME

Figure 6.2.5
Integration at parameters found i n t e r a c t i v e l y

the i nteractive optimization on subspaces continually drew the

integration results down to balance off the peak and the trough

in the observations. Of course we could weight some of the data

points in the least squares problem to emphasize the peak, but

this i s a r t i f i c i a l and experiments indicate that while a good

approximation up to the peak can ea s i l y be obtained, the rapid

drop in the observations cannot be imitated.

Next we experimented with a model with more f l e x i b i l i t y in

the form of another parameter. S p e c i f i c a l l y , we l e t the death

rates for the docile and aggressive mice be d i f f e r e n t . Denote

by p^ the death rate for docile mice and l e t p^ denote the death

rate for aggressive mice. Our dynamic model now i s

CHAPTER 6

142

XX

; i 1
 ! 1 1 1 i : i 1 1

0.00 S.CD 10.00 35.00 30.00 25.00 30.CD 35.00 40.00 45.00
T I M E

.. FYgure" "6T2V6"~
Optimum star t i n g from parameters found i n t e r a c t i v e l y

y'=p yVy -p y -p y y,
' 6 ' * H ' (6 . 2 . 4)
y'=p yVy.-py -p (y -y) - P y y

Using this model and starting at the parameters obtained

i n t e r a c t i v e l y with p^=p^ , a l o c a l minimum to the f u l l unweighted

least squares problem was found at

(1 . 4 0 2 , 1 . 2 4 1 , . 8 3 6 5 , . 1 8 7 5 , . 0 1 1 7 4 , . 6 7 4 8 , . 0 0 5 7 6 3 ^

The sum of the squares of the residuals at the above parameters

was appproximately 9 6 0 . Although p and p d i f f e r , integration

results at the above parameters do not d i f f e r s ubstantially from

those shown in Figure 6 . 2 . 6 .

CHAPTER 6

143

This i s in r e a l i t y a l o c a l minimum. Later in t h i s section,

we return to t h i s model and achieve a much smaller but s t i l l

perhaps l o c a l minimum. The s p e c i f i c strategy used to obtain

th i s new minimum grew out of experiments with the following

model.

Experimentally, the following model f i t s the observations

well. It i s the same as the . previous model except for a

modification in the growth term for the aggressive mice. As in

Equation (6.2.1), l e t u be the population density of docile

mice, and l e t v be the population density of aggressive mice.

Our proposed dynamic model is

u'=p u"V(u+v)-p u-p u(u+v)
v'=p3uv/(u+v) -p^v

(6.2.5)

which with y =u, and y„=u+v becomes

y' = (p -P)y a/y +(P +P -P)Y -P_ y - P Y , Y „

(6.2.6)
7 s- i a.

The i n i t i a l conditions are given in (6.2.2). Our starting

approximation to the optimal parameters was
T

(2.9, 2.5, .8, .07, .006, 1, .5),

and the optimal parameters obtained were
T

(2.958, 2.630, .6503, .8892, -.007497, 1.108, .3108).

The sum of the squares of the residuals at the above parameters

was approximately 250. Graphically, the integration results at

the above parameters are almost the same as those in Figure

CHAPTER 6

144

6.2.7 except y a gets close to zero around t=36. Unfortunately,

p^_ i s negative. We note that p^_ i s much smaller than the other

six parameters and this suggests we try the logarithmic

tr ansf ormation ^ =ln (p) and e s t i m a t e d instead of p . It i s

important to be sel e c t i v e when choosing a logarithmic

transformation. For example, the rescaling of p to p^ by

logarithmic transformations did not lead to the success

described below when p alone was rescaled. Thus again we have

a place for interactive experimentation. As mentioned at the

end of Chapter 1, the use of logarithmic transformations also

affects the conditioning of the problem. For example the

condition number of the Jacobian matrix in the least sguares

problem at the above parameters i s 1.1E5. If p i s scaled as

suggested then the condition number becomes 1.3E4 and i f

p ,...,p^ are a l l scaled by logarithmic transformations, the

condition number becomes 2.6E4. With the transformed rj_ , we

started the Levenberg-Marquardt procedure at the l a s t set of

parameters preceding the f i r s t occurance of a negative value for

p in the previous run, namely

(2.88, 2.57, .728, .437, -5.17, .687, .465) T

where we have renamed "p^ to be p̂ _. The optimal parameter values

found were

(5.335, 3.011, .08038, 3.966, -6.895, 4.266, -.01545) 7"

where now p^ has taken on a negative value. (The transformed

values of scaled parameters are given in this discussion.) The

CHAPTER 6

145

sum of the squares of the residuals was approximately 56 at the

above parameters. Graphically, the integration results at the

above parameters are very similar to those in Figure 6.2.7

except y curves up s l i g h t l y for t > 3 0 . The best parameters

before p went negative were
' T (4 . 3 6 2 , 2 . 9 8 9 , . 1 3 0 7 , 2 . 6 4 4 , - 6 . 2 3 2 , 2 . 9 0 9 , . 0 1 3 0 3) .

It appears that a logarithmic, transformation of p^ may be

p r o f i t a b l e . With this transformation and starting at the above

point in parameter space, we found the minimum

(5 . 4 0 3 , 2 . 6 9 1 , . 1 0 4 2 , 3 . 5 0 7 , - 6 . 8 0 7 , 3 . 8 4 8 , -4.688)"T

The sum of the squares of the residuals at these parameters was

approximately 6 2 . Integration results at the above parameter

values are shown in Figure 6 . 2 . 7 .

From a numerical point of view, the f i t in Figure 6.2.7

appears excellent; however, from a b i o l o g i c a l point of view i t

has a flaw. The f i r s t state variable gets caught at zero and y A

goes to an equilibrium. B i o l o g i c a l l y , we would l i k e the

solution to the i n i t i a l value problem to o s c i l l a t e in time.

Numerically, i t appears that more data points should be

available i f we want to look for o s c i l l a t o r y behavior.

The remarkable improvement achieved when a logarithmic

transformation was used on p̂ _ suggests that we go back to the

f i r s t two models and try this strategy. Starting with the

' parameters obtained i n t e r a c t i v e l y , t h i s strategy did not change

the results with the f i r s t model; however, starting at the

CHAPTER 6

146

UJ o
CZ 10.

CO

Vf
X \ V , y x x x x

\ ^ x ~ x ^ - x 2 1 - - — "
\ x x x x x * x x

T 1 1 : 1 r-° - D 0 5 - C 0 lO.GE jS.DO 20.00 25.00 30.00 3S.no 40 00 ~ 4 5 00
TIME

F i g u r e 6 . 2 . 7 "
Optimum with l o g a r i t h m i c s c a l i n g on p^. and p_

parameters obtanied i n t e r a c t i v e l y and with p =p , t h i s s t r a t e g y

worked very w e l l on the second model where two death r a t e s were

used. As with the t h i r d model, p^ became negative and small and

a l o g a r i t m i c t r a n s f o r m a t i o n of p was a l s o used. The f i n a l
?

parameters obtained were

(5.416, 2.350, 3.832, 3.394, -7.037, 3.822, -5.062)1"

and the sum of the squares of the r e s i d u a l s and i n t e g r a t i o n

r e s u l t s at the above parameters were e s s e n t i a l l y the same as

those of Figure 6.2.7. I t i s i n t e r e s t i n g to note that f o r the

parameter vector

(4.205, 2.586, 2.905, 2.562, -6.636, 2.896, -5.298)T"

the sum of the squares of the r e s i d u a l s was approximately 54000.

CHAPTER 6

http://3S.no

147

This sort of behavior i s t y p i c a l of i n i t i a l value problems and

i s one reason why so many d i f f i c u l t i e s are encountered when

f i t t i n g parameters in dynamic models. F i n a l l y , we comment that

our investigation has been confined to numerical parameter

f i t t i n g and no attempt has been made to interpret the parameter

values in a physical sense. Before any parameters can be

accepted, they must of course be p h y s i c a l l y reasonable.

6.3 A MODEL INVOLVING A CHANGE IN EQUILIBRIUM

The model considered in t h i s section represents an early

attempt to describe data collected from Lake Pl a c i d , B r i t i s h

Columbia [75]. The observations are on phytoplankton in the

lake. Throughout much of the summer, their t o t a l mass remains

f a i r l y constant at a r e l a t i v e l y low l e v e l . Then, within the

space of a few days, i t jumps to a much higher l e v e l . The next

few observations contain a l o t of noise, but i t appears that the

l e v e l of phytoplankton remains high u n t i l near the end of the

year when i t drops back to a low l e v e l . The observations on the

phytoplankton are shown in Figure 6.3.1. The units for the time

axis are in days.and time t=0 corresponds to the beginning of

May. One unit along the state variable axis in Figure 6.3.1

corresponds to 1/75 milligram of phytoplankton per l i t r e of

water. It i s postulated that the sudden jump in the

observations can be described by a dynamic model which loses a

lower equilibrium and moves to a higher equilibrium. In

p a r t i c u l a r we consider the dynamic model (proposed by Dr. C.J.

Walters, Ins t i t u t e of Animal Resource Ecology, University of

CHAPTER 6

148

F i g u r e 6.3.1
P h y t o p l a n k t o n o b s e r v a t i o n s and smoothing f u n c t i o n

B r i t i s h Columbia)

y' =p r (t) y (l - y / 2 5) -p z (t) y 2 / (p/+y a)
(6.3.1)

y(0)=3.2.

I n t h i s model, y r e p r e s e n t s the d e n s i t y o f p h y t o p l a n k t o n , and

z (t) r e p r e s e n t s the d e n s i t y o f the p r e d a t o r z o o p l a n k t o n . The

f u n c t i o n r (t) r e p r e s e n t s the e f f e c t o f s u n l i g h t on the growth

r a t e o f the p h y t o p l a n k t o n . The term r (t) p ; (l - y / 2 5) d e s c r i b e s

the growth o f the p h y t o p l a n k t o n , and the term - z (t) p y^/fp^+y 3)

d e s c r i b e s the f e e d i n g e f f e c t o f the z o o p l a n k t o n .

To determine the e q u i l i b r i a of the above dynamic model, we

s e t y'=0, and s o l v e f o r y. Thus f o r y^O, the e q u i l i b r i a occur

a t the r o o t s o f

CHAPTER 6

149

P / r (t) (l-y/25) (p*+ya) -p 3 z (t) y=0 (6.3.2)

Depending on p , p , p , r (t) , and z (t) , the above algebraic

equation in y can have one, two, or three real roots. Thus i t

is t h e o r e t i c a l l y possible to gain or lose an equilibrium when

(6.3.1) i s integrated.

For r(t) we take the function

r(t)=exp(-((t-110)/55) a). (6.3.3)

The function z(t) was obtained from physical observations. To

produce a continuous approximation to z (t) , we used a least

squares piecewise cubic Hermite approximation to the

observations. The j o i n t s used in t h i s approximation were at

t=60, 120, 180. The data points and the continuous

approximation to z(t) are shown in Figure 6.3.2. The

observations have been scaled so that the maximum ordinate i s 1.

We take

P C * =d, i , . s r

for our i n i t i a l parameter estimate. The success in Section 3.3

of the integral f i t t i n g technique for this type of problem

suggests we st a r t with this method. F i r s t we smoothed the

observations with a least squares piecewise cubic Hermite

polynomial with j o i n t s at t=110, 115, 140, 180. This smoothing

function i s shown along with the observations in Figure 6.3.1.

With this smoothing, the IFIT method produced the parameters

(.1433, 5.509, .7300)7"

CHAPTER 6

150

\
X

O.OQ 80.00 160.00 200.00 2+3.00

Figure 6.3.2
Zooplankton densities

Integration results at the above parameter vector are shown in

Figure 6.3.3. Next we refined these parameters using the

Levenberg-Marquardt technique and the s e n s i t i v i t y equations.

This approach found the optimum

(.1562, 3.336, .8963)'R

where the sum of the squares of the residuals was approximately

556. Integration results at the above parameters are shown in

Figure 6.3.4. A di r e c t approach using the s e n s i t i v i t y equations

and s t a r t i n g at p ̂ defined above also produced this r e s u l t .

In Table 6.3.1, we l i s t some roots of (6.3.2) as a function
of time at the above parameters. The results in thi s table

indicate that at the star t of the time in t e r v a l under

consideration there i s one r e l a t i v e l y low equilibrium. Later on

CHAPTER 6

151

d ! 0 -
r— -* t o

I
O.00

+

+ + +
+

+

+

—I
80. CO

+
+

+ +
0.00 120.00

TIME

-1
160.00

Figure 6.3.3
Integration at IFIT results

— i
200.00

-1
240.00

r = a .
O l i o - |

+ + + + + + + + + t
- 1
O.00

-1
80.00 —1

160.00

+ +
0.00 120.00

TIME
2B0.00

Figure 6.3.4
Integration results at IFIT+FIT results

i
240.00

CHAPTER 6

152

Time Number of real roots Real roots

1 1
1
3
3
1
1
3
3
1
1

0.07464
84
85
89
90
151
152
156
157
226

2.093
2.216
3.130

16.95
17.14
3.260
2.134
1.994
0.1436

5.142
10.83

9.331
5.395

13.45
16.47

16.60
12.03

Table 6.3.1
Roots of J_6_.3_-.2_L corresponding to Figure 6.3.4

we have three e q u i l i b r i a , and s t i l l later we have only one

r e l a t i v e l y high equilibrium. S t i l l later in the time i n t e r v a l ,

we again acquire three e q u l i l i b r i a . At the end of the time

i n t e r v a l , we are back to only one lower equilibrium. However,

no rapid jumps to new e q u i l i b r i a are evident in Figure 6.3.4.

In the results which follow, a more pronounced jump to a higher

equilibrium was obtained.

The above parameter vector corresponding to Figure 6.3.4 i s

not the only point in parameter space where the solution to

(6.3.1) f i t s the observations well. Starting at p defined

above, and following an interactive strategy of freezing

parameters, optimizing on subspaces, and resetting parameters,

we arrived at the point

(.9900, .7284, 2.796) r

in parameter space. The sum of the squares of the residuals at

the above l o c a l minimum was approximately 662. Integration

CHAPTER 6

http://J_6_.3_-.2_L

153

results at the above parameters are shown in Figure 6.3.5,

Figure 6.3.5
Integration at i n t e r a c t i v e l y obtained optimum

(Integrations under error control were employed near the above

point in parameter space.) This point was d i f f i c u l t to find and

i t i s unlikely that an automatic approach would have much luck

in finding i t . The d i f f i c u l t y seems to stem from the nature of

the least squares surface near the above point in parameter

space. For example i f we change p_̂ to .7 then the integration

results become e s s e n t i a l l y zero for the f u l l time i n t e r v a l under

consideration, and the sum of the squares of the residuals

becomes 3085. Integration results corresponding to this sum of

squares are shown in Figure 6.3.6. Starting from the parameters

of Figure 6.3.6, the FIT approach again produced the optimum

i l l u s t r a t e d in Figure 6.3.4.

CHAPTER 6

154

In Table 6 . 3 . 2 , we l i s t some of the roots of (6 . 3 . 2) as a

function of time at the parameters of Figure 6 . 3 . 5 . At the

U J =
r -
CLIO-
t— -«
CO

+

+
, + +

+ +
+

+

+ + + + +
t + + + + + + + + + + + + + + +

1 11 i11 " 1 -==-=5 1 ,
0.00 45.00 eo.00 120.00 160.00 200.00 240.00

TIME
Figure 6.3.6

Integration near i n t e r a c t i v e l y obtained optimum

Time Number of real roots Real roots

1 1 0 . 0 0 7 2 4 4
42 1 0 . 0 8 4 4 3
43 3 0 . 0 8 7 3 0 1 0 . 6 6 1 4 . 2 5
112 3 0 . 6 5 1 1 0 . 8 6 7 6 2 3 . 4 8
113 1 2 3 . 5 2
12 9 1 2 3 . 5 1
130 3 0. 6 3 1 6 0.8947 2 3 . 4 7
176 3 0 . 0 8 5 4 8 1 2 . 3 4 1 2 . 5 7
177 1 0 . 0 8 3 6 7
226 1 0 . 0 1 3 9 6

Table 6.3.2
Roots of J(j6.3_.2)_ corresponding to Figure 6.3.5

CHAPTER 6

155

sta r t of the time i n t e r v a l , we have only a r e l a t i v e l y low

equilibrium. Around t=43, we acquire three e q u i l i b r i a , and

around t=113, the lower two of these three e q u i l i b r i a vanish and

we are l e f t with only a r e l a t i v e l y high equilibrium. Later, we

again acquire three e q u i l i b r i a , and around t=177, the higher two

of these three vanish and we are l e f t with a r e l a t i v e l y low

equilibrium which remains u n t i l the end of the time i n t e r v a l .

The disappearance of the lower two e q u i l i b r i a around t=113

corresponds to the rapid increase in the solution to (6.3.1)

shown in Figure 6.3.5.

The large error in the observations makes i t d i f f i c u l t to

choose between the two solutions obtained for this problem;

however, q u a l i t a t i v e l y the l a t t e r solution i s more pleasing. In

conclusion, the inte r a c t i v e approach has provided us with a

solution which q u a l i t a t i v e l y behaves in the desired fashion. It

is now the task of the model builder to interpret and perhaps

build on these r e s u l t s . When interpreting the parameters

corresponding to to Figure 6.3.5, the model builder must of

course take into account the dr a s t i c change possible in the sum

of the squares of the residuals due to a r e l a t i v e l y small change

in parameter space.

6.4 A REINDEER POPULATION GROWTH MODEL

The model presented below represents an attempt to describe

the reindeer population in Alaska from the year 1891 to the year

1963 [2]. The Bazykin predator-prey model discussed in Chapter

4 i s employed. The reindeer correspond to the predators and the

CHAPTER 6

156

forage corresponds to the prey. Let y^ represent forage in

units of 100 tons per square mile, and l e t y^ represent the

reindeer population density in units of animals per square mile.

We consider the dynamic model (proposed by Dr. C.J. Walters,

Institute of Animal Resource Ecology, University of B r i t i s h

Columbia)

y'=p y (1-cy)-(r/100)y y /(p +y,)
' ' ' ' 4 .* ' (6.4.1)
K=pzry, Y*/ipz+Y<)_P«Y*

where p^ represents the growth rate of the forage for small ŷ

in the absence of grazing, 1/c represents the equilibrium for

the forage in the absence of grazing, r represents the reindeer

feeding rate, p and p are measures of the reindeer feeding

e f f i c i e n c y , and p^ represents the reindeer death rate. Of

course a l l parameters should be p o s i t i v e . Our i n i t i a l

conditions are

yf (0)=10, y a(0)=.001

where t=0 corresponds to the year 1891. The i n i t i a l condition

on y represents 1000 tons of forage per square mile. We take

the constant c=.l. That i s , the equilibrium for the forage in

the absence of grazing is 1000 tons per square mile, the i n i t i a l

condition on y^ . The reindeer population density observations

are derived from population counts over an area of approximately

20000 square miles. Thus the i n i t i a l condition on y represents

very few (approximately 16) reindeer in this area. We f i x r at

2 (in units of tons per year) for the reindeer in this area.

CHAPTER 6

157

Our i n i t i a l approximation to the parameters was

p (0) =(.3, 1, .1, .06)T

In Figure 6.4.1, the observations on y are shown along with

integration results at the above parameter vector. There are no

TC.
UJ
c—
cr
k g

1X5 .

X
x X
X
X

XX

XX
x x

X
X
X
X

X
X

X**

X
X

; w w o t f < < w ^ , , J ^ f ^
-I 1 1 1

0.00 8.00 16.00 24.00 32.00 40.00 48.00 55.00 64.00 72.00
TIME

Figure 6.4.1 .
Observations and integration results at p

observations on the forage, and the i n i t i a l condition on y

represents a rough guess.

In the following discussion, we demonstrate through a set

of experiments, the power of an interactive approach on this

f a i r l y d i f f i c u l t problem.

EXPERIMENT 1

It seems worthwhile to begin with a di r e c t attack on the

problem. If this strategy succeeds, then we are finished, and

CHAPTER 6

158

i f i t does not , we can try a more sophisticated strategy. Even

i f this d i r e c t attempt does not work, i t may suggest further

experiments. Starting at the above p ^ , the FIT approach

produced the optimal parameters

(-.2691, 24.82, .8093, .1763)!"

The sum of the squares of the residuals at this mimimum was

approximately 494. Integration results at these parameters are

shown in Figure 6.4.2. The results look excellent graphically,

T I M E

Figure 6.4.2
Integration results for Experiment .1

but p^ i s negative and p ^ i s much too large. The 95% confidence

intervals , as defined in Chapter 1, were

(+4.041, +3788, +83.11, +.1385)T"

The parameter p^ has strayed into a region where the least

CHAPTER 6

159

squares surface i s very insens i t i v e to i t . The negative sign of

p^ suggests we constrain i t to be pos i t i v e ; however, this

strategy st a r t i n g at p (0 > did not prove e f f e c t i v e . (The

parameter p/ became small, but the integration results remained

e s s e n t i a l l y the same as those in Figure 6.4.1.) Freezing p/ at
to)

.3 and star t i n g at p did not help either; however, the next

experiment was successful.

EXPERIMENT 2

In this experiment, p^ was frozen at 1 and the optimization
(#)

was started at p defined above. This strategy found an
optimum at

-r
(-.2667, 1., .2250, .1366) .

The sum of the squares of the residuals at these parameters was

approximately 757. Graphically, the solution appears to model

the observations quite well; however, p^ i s negative. Our next

experiment produced q u a l i t a t i v e l y promising behavior with a l l

parameters p o s i t i v e .

EXPERIMENT 3

In th i s experiment, p̂ and p^ were frozen at .3 and 1

respectively, and we l e t p and p. star t at the values obtained
3 *

in the previous experiment. Optimizing on the resulting two

dimensional subspace of parameter space produced the parameters

(.3, 1, .9704, 1.488)T

CHAPTER 6

160

The sum of the squares of the residuals at the above parameters

was approximately 20,000. Integration results at the above

parameters are shown in Figure 6.4.3. In spite of the large sum
o

o

)

a

.00

Figure 6.4.3
Integration at results of Experiment 3

of squares, the results look promising. The model equations

suggest that by reducing p and p , a much better result should

be possible; however, interactive experiments along these l i n e s

produced i n s t a b i l i t i e s very e a s i l y . We improve on the above

results in the next experiment.

EXPERIMENT 4

Starting at the parameters obtained in the previous

experiment, and not employing any freezing, we found an optimum

at the point

CHAPTER 6

161

r
(.04046, 14.61, 3.635, 2.669)

in parameter space. The sum of the squares of the residuals at

this point was approximately 490. Integration results at these

parameters are shown in Figure 6.4.4. The parameters are now

X^

x x x ^ x ^ ^ ^ X
1 1 1 1 1 1

0.00 3.00 16.00 24.00 32.00 40.00 46.00 56.00 64.00 72.00
T I M E

Figure 6.4.4
Integration results at optimum of Experiment __

a l l positive and the integration results at these parameters f i t

the data quite well. However, p^ i s again much too large, as

are p_ and p^, and Y, does not appear to be as active as i t

should be. It appears that the absence of observations on y
j

leaves too much f l e x i b i l i t y in the model.

EXPERIMENT 5

Our l a s t experiment in this section i s with guessed

observations and iterated integral f i t t i n g methods. The

CHAPTER 6

162

smoothing of the o b s e r v a t i o n s was a c c o m p l i s h e d w i t h a l e a s t

s q u ares c u b i c s p l i n e u s i n g j o i n t s a t t=5, 10, 21, 23, 42, 57,

59. The i n i t i a l guessed o b s e r v a t i o n s f o r the f o r a g e were p o i n t s

on the c u b i c s p l i n e t h a t i n t e r p o l a t e s

(0,10), (10,10), (20,9), (30,6), (50,3), (60,2), (72,1).

The end c o n d i t i o n s f o r t h i s i n t e r p o l a t i o n a re d e s c r i b e d under

the CREOBS command i n the PARFIT documentation i n Appendix A.

The i t e r a t e d i n t e g r a l f i t t i n g approach (employing subsystem

i n t e g r a t i o n s) worked w e l l ; however, i t drew us t o the parameters

found i n Experiment 1. F r e e z i n g p a and u s i n g the above guessed

o b s e r v a t i o n s produced a n e g a t i v e p / on the f i r s t i t e r a t i o n , and

f u r t h e r i t e r a t i o n s d i d not c o r r e c t t h i s s i t u a t i o n . Next, p^ and

p^ were f r o z e n a t .3 and 1 r e s p e c t i v e l y . The i t e r a t e d i n t e g r a l

f i t t i n g approach (u s i n g (3.4.1)) produced the parameters

c o r r e s p o n d i n g t o F i g u r e 6.4.3.

W h i l e the methods employed i n t h i s experiment d i d not

p r o v i d e any new parameter e s t i m a t e s , they a t l e a s t demonstrated

the s t r o n g p r e f e r e n c e t h a t e x i s t s i n the model f o r the e s t i m a t e s

o b t a i n e d i n the p r e v i o u s e x p e r i m e n t s .

The above e x p e r i m e n t s are a d i s t i l l a t i o n o f a few f a i r l y

s h o r t i n t e r a c t i v e s e s s i o n s . To g a i n comparable r e s u l t s w i t h a

n o n i n t e r a c t i v e approach would take a good d e a l l o n g e r and would

demand a l o t o f p a t i e n c e and d e t e r m i n a t i o n on the p a r t of the

user .

Much more c o u l d be done w i t h t h i s problem. For example, we

CHAPTER 6

163

could search for other l o c a l minima. We could also t r y more

parameters or d i f f e r e n t combinations of parameters. (For

example, we could f i x one of the above parameters and l e t r be a

parameter.) Our main goal, however, i s to gain experience with

PARFIT on a variety of problems. Thus we turn to our next

example, a problem involving an ocean plankton model.

6.5 AN OCEAN PLANKTON MODEL

Our f i n a l example in this chapter involves a model of the

stages in the l i f e cycle of certain ocean zooplankton. We

consider a s i m p l i f i e d model where only three stages in the l i f e

cycle are represented by state variables. Let y , y , and y

represent the population densities of these three stages in

units of population per cubic metre of sea water. The adult

population density i s represented by Y3 - Physically, there are

death rates p , p , and p„ associated with y , y , and y

respectively, and there i s a transfer rate p^ from y to y^, and

a transfer rate p̂ _ from y^ to y^ . We drive the system with a

function x(t) which represents the population density of the

stage in the l i f e cycle before that represented by ŷ . Let p^

represent the transfer rate from x(t) to ŷ . Our dynamic model

is thus ([54])

y'=-(p +p)y +p x(t)

y'=pv y, -(P^ +P f f-)y a (6.5.D

y'=p y -p y
3 fT A. 3 3

We note that this model i s l i n e a r . Observations on a l l state

CHAPTER 6

164

variables and on x(t) were taken using large p l a s t i c bags

(suspended from the ocean surface) which were designed to

is o l a t e samples of ocean water[16]. The observations are shown

in Figures 6.5.1, 6.5.2, and 6.5.3. For these three graphs,

time i s measures in days, observations on y are symbolized by

, and integration results for y^ are represented by an

unbroken l i n e .

The function x(t) was approximated by

22.15+8.036t -.309.91? +.003156t5 . (6.5.2)

The i n i t i a l conditions were

y(l)=(.407, .271, .291)T

and our s t a r t i n g parameter vector was

p (o) =(.03, .02, .01, .1, .2, .06)T

A l l parameters should remain between Q and 1. A d i r e c t approach

(FIT method) found the point

(.1256, -.1121 , .1626, .06709, .2219, .07167)7"

in parameter space. The sum of the squares of the residuals at

the above parameters was approximately 1690. Unfortunately p_
a.

i s negative. We note that no parameters have exceeded 1 and

this i s encouraging. Next we constrained p_ with a square root

s c a l i n g . With this transformation, the FIT method found an

optimum at (unsealed)
r

(.09615, 1.160E-6, .1087, .09013, .1523, .06958)

CHAPTER 6

165

when i t was started from p *" defined above. The sum of the

squares of the residuals at the above parameters was

approximately 1710. A l l the parameters are now between 0 and 1.

Integration results at the above parameters are shown along with

the observations in Figures 6.5.1, 6.5.2, and 6.5.3.

Numerically this was a rather easy problem compared with

the other three examples considered in this chapter. V i s u a l l y ,

there appear to be peaks in the observations which could be

approximated better, and this i s a subject for further study.
o o

+
+

; H— , , , , , 1 !
OJJD 6.00 16.00 24.00 32.00 40.00 48.00 56.00 64.00

T I M E

Figure 6.5.1
Observations and best f i t for y

CHAPTER 6

166

t - °
(X l O -
r — —
C D

X

X

o.oo 8.DO 16.00 21.00 32.00 TIME . I
40.00 48.00 55.00 64.00

Figure 6.5.2
Observations and best f i t for y_t

CHAPTER 6

167

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

Our goal was to develop techniques designed to overcome

poor i n i t i a l approximations to the optimal parameters. The

necessity for such technigues became evident with experiments

(such as those of Section 4.2) using the d i r e c t approach

employing the s e n s i t i v i t y equations. The basic conclusion from

such experiments was that the d i r e c t approach often produced a

highly nonlinear problem where the ef f e c t of small parameter

changes could be dramatic. Thus we turned to such methods as

derivative and integral f i t t i n g . As shown in Section 4.2, these

approaches are very useful. It also became evident that to

resolve a problem often required several runs employing

d i f f e r e n t complementary procedures. Thus an interactive

approach appeared to be a good way to proceed.

The case when observations are not available on a l l state

variables arises often in practice, and experiments indicated

that this s i t u a t i o n can be very d i f f i c u l t i f approached d i r e c t l y

with poor i n i t i a l parameter estimates. Thus we sought an

extension of the derivative and integral f i t t i n g techniques that

could handle th i s problem. As a result we developed the

e f f e c t i v e approach of guessing the desired behavior of the

unobserved states and then i t e r a t i v e l y improving this guess. As

shown in Section 4.5, this approach can be very e f f e c t i v e when

CHAPTER 7

168

the d i r e c t approach presents a l l sorts of d i f f i c u l t i e s .

In keeping with our goal of developing tools for overcoming

(at least in part) the d i f f i c u l t i e s associated with a d i r e c t

approach, we investigated b r i e f l y in Chapter 5 the value of

sequentially processing the observations. We conclude that this

strategy can be superior to a d i r e c t attack on the problem.

The main trouble with a coarse method i s that i t can

produce parameters from which the dire c t approach i s s t i l l

incapable of succeeding. For example the i n i t i a l value problem

may be unstable at the parameters produced by the coarse method.

In Section 3.5, we proposed methods employing continuation

parameters and break points to bridge the gap between the coarse

approach and the f u l l nonlinear problem. We conclude from the

example of Section 3.5 that this approach can be e f f e c t i v e on

problems involving an i n s t a b i l i t y . Our approach to the use of

break points d i f f e r s from that of van Domselaar and Hemker[71],

and we are unaware of any work connected with parameter

estimation in dynamic models that involves the use of break

points along with continuation parameters.

We conclude from our experience on real world problems that

with an in t e r a c t i v e approach i t i s possible, in a r e l a t i v e l y

short time, to make substantial progress on these f a i r l y

d i f f i c u l t problems. However, to be e f f e c t i v e such an

interactive package must be well organized and have a f a i r l y

wide range of options available. The implementation of such a

package i s an evolutionary process. Our package PARFIT

CHAPTER 7

169

represents the i n i t i a l stage in this process.

7.2 SUGGESTIONS FOR FUTURE WORK

The iterated integral and derivative f i t t i n g methods

developed in Chapter 3 appear to be worthy of further study.

For example in the experiments presented in Section 4.4, the

iterated integral f i t t i n g method using subsystem integrations

worked much better than the iterated integral and derivative

f i t t i n g methods employing (3.4.1). The reason behind this seems

worthy of further study. Hopefully, such a study may lead to

other e f f e c t i v e ways of updating the guessed observations.

Other promising avenues of further research involve the use

of continuation parameters and break points, and the use of

sequential techniques for improving sta r t i n g parameters.

F i n a l l y there i s the development of new and improved versions of

a package such as PARFIT. The value of good software when

approaching the sort of problems considered in this thesis

cannot be over emphasized.

CHAPTER 7

170

BIBLIOGRAPHY

[1] Aaro, I., Design and implementation of a tool for
interactive communication between user and program, Dept.
of Info. P r o c , Roy. Inst. of Tech., Stockholm, Sweden,
TRITA-NA-7705 (1977)

[2] Aaro, I., Design and implementation of a software system
for i n t e r a c t i v e s c i e n t i f i c computing, Dept. of Info.
P r o c , Roy. Inst. of Tech., Stockholm, Sweden,
TRITA-NA-7707 (1977)

[3] Albert, A.E. and Gardner, L.A., Stochastic Approximation
and Nonlinear Regression, M.I.T. Press, Cambridge, Mass.
(1967).

[4] A v i l a , J . , Continuation methods for nonlinear equations,
SLAM J . Numer. Anal., 11 (1974) 102-122.

[5] Bard, Y., Comparison of gradient methods for the solution
of nonlinear parameter estimation problems, SIAM J.
Numer. Anal. 7 (1970) 157-186.

[6] Bard, Y., Nonlinear Parameter Estimation, Academic Press,
New York (1974).

[7] Bazykin, A.D., Volterra's system and the Michaelis-Menton
equation in Problems in Mathematical Genetics, Ed. by
V.A. Ratner, U.S.S.R. Acad. S c i . , Novosibrisk (1974)
103-142. (Available in English as Structural and dynamic
s t a b i l i t y of model predator-prey systems (1975), Institute
of Resource Ecology, University of B r i t i s h Columbia,
Vancouver, B.C., Report R-3-R.)

[8] Beale, E.M.L., Confidence regions in nonlinear estimation,
J. Rjoy. Stat. S o c 22 (1960) 41-88.

[9] Bellman, R., Jacquez, J . , Kalba, R., and Schwimmer, S.,
Quasilinearization and the estimation of chemical rate
constants from raw kinetic data, Math. B i o s c i . 1 (1967)
71-76.

[10] Bellman, R., Kagiwada, H., Kalaba, R., and Vasudevan, R.,
Quasi l i n e a r i z a t i o n and the estimation of d i f f e r e n t i a l
operators from eigenvalues, Comm. ACM 11 (1968) 255-256.

[11] Bellman, R., Kashef, B., and Vasudevan, R., The inverse
problem of estimating heart parameters from cardiograms,
Math. B i o s c i . 19 (1974) 221-230.

B I B L I O G R A P H Y

171

[12] Berman, M., Weiss, M.F. and Shahn, E. , Some formal
approaches to the analysis of kinetic data in terms of
linear compartmental systems, Biophys. J. 2 (1962)
289-316.

[13] Boggs, P.T. and Dennis, J.E. J r . , A s t a b i l i t y analysis
for perturbed nonlinear i t e r a t i v e methods, Math. of Comp.
30 (1976) 199-215.

[14] Bus, J.C.P., van Domselaar, B., and Kok, J . , Nonlinear
least squares estimation, Math. Cent. Amsterdam, NW
17/75 (1975).

[15] Byrne, G.D. and H a l l , CA. (Ed.) Njjmerical Solution of
Systems of Nonlinear Algebraic Equations, Academic
New York (1973) .

Press,

[16] CEPEX-Controlled Ecosystem Po l l u t i o n Experiment, P a t r i c i a
Bay, Sannich, B r i t i s h Columbia, Canada, unpublished
working paper (1976).

[17] C u r t i s , A.R., and Edsberg, L. , Some investigations into
data requirements for rate constant estimation, A.E.R.E.,
Harwell, HL. 73/3744 (1973).

[18] Dennis, J.E. J r . , Some computational techniques for the
nonlinear least squares problem, in Numerical Solution of
Systems of Nonlinear Algebraic Equations Ed. by G.D.
Byrne and CA. H a l l , Academic Press, New York (1973)
157-183.

[19]

[20]

[21]

[22]

Dennis, J.E. J r . , Nonlinear least squares and equations,
A.E.R.E. Harwell, Oxfordshire, CSS 32 (1976).

Dennis, J.E. J r . , Gay, D.M., and Welsch, R.E., An
adaptive nonlinear least squares algorithm, National
Bureau of Economic Research, Cambridge, Mass. prelim,
rep. (1977) .

Edsberg, L., KEMPEX-II, A program package for interactive
simulation of some chemical reactors. Dept. of Info.
P r o c , Roy. Inst. of Tech., Stockholm, Sweden,
TRITA-NA-7504 (1975) .

Farrow, L. and
approximation: fact
VI (1974) 787-800.

Edelson, D., The
or f i c t i o n , Int. J.

steady-state
of Chem. Kin.

[23] Ficken, F.A., The continuation methods for functional
equations, Comm. Pure Appl. Math. 4 (1951) 435-456,
Math. Rev. 13 (1952) 562-563.

BIBLIOGRAPHY

172

[24] Fletcher, R., Generalized inverse methods for the least
squares solution of systems of nonlinear equations, The
Comput. J . , 10 (1968) 392-399.

[25] Gear, C.W., Numerical I n i t i a l Value Problems in Ordinary
D i f f e r e n t i a l Equations, Prentice-Hall, Inc., Englewood
C l i f f s , N.J. (1971).

[26] Gear, C.W., The automatic integration of ordinary
d i f f e r e n t i a l equations, Comm. ACM 14 (1971) 176-179.

[27] Gear, C.W., DIFSUB for solution of ordinary d i f f e r e n t i a l
equations, Algorithm 407, Comm. ACM 14 (1971) 185-190.

[28] Gelb, A. (Ed.), Applied Optimal Estimation, The M.I.T.
Press, Cambridge, Mass. (1974).

[29] G i l l , P.E., Golub, G.H., Murray, W. and Saunders, M.A.,
Methods for modifying matrix f a c t o r i z a t i o n s , Comp. S c i .
Dept., Stanford, U., STAN-CS-72-322 (1972).

[30] G i l l , P.E. and Murray, W., (Ed.) Numerical Methods for
Constrained Optimization, Academic Press (1974).

[31] Goldstein, A.A. and Price, J.F., An ef f e c t i v e algorithm
for minimization, Numer. Math. 10 (1967) 184-189.

[32] Golub, G.H., and Reinsch, C , Singular value decomposition
and least squares solutions - Handbook series in linear
algebra, Numer. Math. 14 (1970) 403-420.

[33] Ho, Yu Chi, On the stochastic approximation method and
optimal f i l t e r i n g theory, J. Math. Anal. and Appl. 6
(1962) 152-154.

[34] Jones, A., SPIRAL-a new algorithm for non-linear parameter
estimation using least squares. The Comput. J. 13
(1970) 301-308.

[35] Kelley, H.J. and Denham, W.F., Modeling and adjoints for
continuous systems, JOTA 3 (1969) 174-183.

[36] Kowalik, J. and Osborne, M.R., Methods for Unconstrained
Optimization Problems, American Else v i e r , New York (1968).

[37] Krebs, C.J., Gainer, M.S., Kel l e r , B.L., Myers, J.H. and
Tamarin, R.H., Population cycles in small rodents, Science
179 (1973) 35-41.

BIBLIOGRAPHY

173

[38] Lawson, C.L. and Hanson, R.T., Solving Least Squares
Problems, Prentice-Hall, Inc., Englewood C l i f f s , N.J.
(1974) .

[39] Levenberg, K. , A method for the solution of certain
non-linear problems in least squares, Quart. Appl. Math.
2 (1944) 164-168.

[40] Long, C.E., Model s t a b i l i t y , r e s i l i e n c e , and management of
an aquatic community, Oecologia (Berl.) 17 (1974) 65-85.

[41] Lotka, A., Elements of Mathematical Biology, Dover, Pub.
Inc., New York (1956), republication of Elements of
Physical Biology, Wilkins Co. Inc. (1924).

[42] Mackey, M., O s c i l l a t i o n and chaos in physiological control
systems, to appear in Science.

[43] Marquardt, D.W., An algorithm for least squares estimation
of nonlinear parameters, SIAM J. 11 (1963) 431-441.

[44] Marten, G.G., Kleiber, P.M., and Reid, J.A.K., A computer
program for f i t t i n g tracer k i n e t i c and other d i f f e r e n t i a l
equations to data, Ecology 56 (1975) 752-754.

[45] McConalogue, D.J., A q u a s i - i n t r i n s i c scheme for passing a
smooth curve through a discrete set of points, The Comput.
J. 13 (1970) 392-396.

[46] McKeown, J.J., Specialised versus general-purpose
algorithms for minimising functions that are sums of
squared terms, Math. Prog. 9 (1975) 57-68.

[47] Murray, W. (Ed.), Numerical Methods for Unconstrained
Optimization, Academic Press, London (1972).

[48] Myers, J.H. and Krebs, C.J., Population cycles in
rodents, S c i e n t i f i c American, June (1974) 38-46.

[49] Nordsieck, A., On the numerical integration of ordinary
d i f f e r e n t i a l equations, Math. Comp. 16 (1962) 22-49.

[50] Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press,
New York (1970).

[51] Osborne, M.R., Some aspects of non-linear least squares
ca l c u l a t i o n s , in Numer i c a l Methods for Non-linear
Optimization, Ed. by F.A. Lootsma, Academic Press,
London (1972) 171-189.

BIBLIOGRAPHY

174

[52] Osborne, M.R., A class of methods for minimising a sum of
squares, The Aust. Comp. J . 4 (1972) 164-169.

[53] Parker, R.A., The influence of environmental driving
variables on the dynamics of an aquatic ecosystem model,
Verh. Internat. Verein. Limnol. 19 (1975) 47-55.

[54] Parslow, J . and Sonntag, N. , Parameter estimation of the
natural population, Institute of Oceanography, University
of B r i t i s h Columbia, Vancouver, B.C., (in preparation).

[55] Pearson, J.B., On nonlinear least squares f i l t e r i n g ,
Automatica, 4 (1967) 97-105.

[56] R a i l , L.B., Davidenko's method for the solution of
nonlinear operator equations, The Univ. of Wisconsin,
Math. Res. Cent., MRC Tech. Summary Rep. 948 (1968).

[57] Ramsin, H. and Wedin, P.-A*., A comparison of some
algorithms for the nonlinear least squares problem, BIT
17(1977) 72-90.

[58] Rheinboldt, W.C., On the solution of some nonlinear
equations a r i s i n g in the application of f i n i t e element
methods, U. of Maryland Tech. Rep. TR-362 (1975).

[59] Rheinboldt, W.C., Numerical continuation methods for
f i n i t e element applications, U. of Maryland Tech. Rep.
TR-454 (1976), to appear in Formulation and Computational
Algor ithms in F i n i t e Element Analysis, Proc. of
U.S.-German Symp., MIT Press (1976)

[60] Roberts, S.M. and Shipman, J.S., Two Point Boundary Value
Problems: Shooting Methods, American Els e v i e r , New York
(1972) .

[61] Rosenbrock, H.H. and Storey, C , Computaional Techniques
for Chemical Engineers, Pergamon Press, Oxford (1966)
189-208.

[62] Skoog, R.O., Ecology of the Caribou (rangifer tarandus
granti) in Alaska, Ph.D. Thesis, Univ. of C a l i f o r n i a ,
Berkely (1968).

[63] Smith, L.B., The use of man-machine interaction in data
f i t t i n g problems, Stanford U. , Comp. S c i . Dept. Rep.
CS 131 (1969).

[64] Steen, N.M. and Byrne, G.D., The problem of minimizing
nonlinear functionals-I. Least squares, in Numer i c a l
Solution of Systems of Nonlinear Algebraic Equations Ed.

BIBLIOGRAPHY

175

by G.D. Byrne and C.A. H a l l , Academic Press, New York,
(1973) 185-239.

[65] Stewart, G.W., Introduction to Matr ix Computations,
Academic Press, New York (1973).

[66] Swartz, J. and Bremermann, H., Discussion of parameter
estimation in b i o l o g i c a l modelling: algorithms for
estimation and evaluation of the estimates, J. Math.
Bio. 1 (1975) 241-257.

[67] Tomovic", R. , S e n s i t i v i t y Analysis of Dynamic Systems,
McGraw-Hill, New York, Trans. by D. Tornguist. (1963).

[68] Tomovi£, R. and Vukobratovie", M., General S e n s i t i v i t y
Theory, American Els e v i e r , Inc., New York (1972).

[69] Vandermeer, J.H., The competitive structure of
communities: an experimental approach with protozoa,
Ecology 50 (1969) 362-371.

[70] van Domselaar, B., A mathematical analysis of the
hea r t - i n f a r c t (Dutch), Math. Cent., Amsterdam NN 4/74
(1974).

[71] van Domselaar, B. and Hemker, P.W., Nonlinear parameter
estimation in i n i t i a l value problems, Math. Cent.,
Amsterdam NW 18/75 (1975).

[72] Van Loan, C , Lectures in least squares, Dept of Comp.
S c i . , Cornell U., Ithaca, N.Y. TR 76-279 (1976).

[73] Varga, R.S., Matrix Iterative Analysis, Prentice-Hall,
Inc., Englewood C l i f f s , N.J. (1962).

[74] Walters, C.J., and Hilborn, R., Adaptive control of
f i s h i n g systems, J. Fish. Res. Board Can., 33 (1976)
145-159.

[75] Walters, C.J., Institute of Animal Resource Ecology,
University of B r i t i s h Columbia, Vancouver, B.C., personal
communication.

[76] Young, P., Recursive approaches to time series analysis,
Inst. Math. Appl. 10 (1974) 209-224.

BIBLIOGRAPHY

176

APPENDIX A

PARFIT DOCUMENTATION

Our int e r a c t i v e parameter f i t t i n g program, PARFIT, serves

several purposes. It establishes an environment in which new

algorithms can be tested. It i s an experimental tool for

investigating the u t i l i t y of various commands for interactive

parameter f i t t i n g in dynamic models. It i s also a device for

studying the organization of an interactive program of this

nature. F i n a l l y , i t i s a p r a c t i c a l tool for f i t t i n g parameters

in dynamic models.

PARFIT i s structured so that the various numerical

algorithms can e a s i l y be extracted into individual procedures

(see Chapter 3 for flow charts ou t l i n i n g the f a c i l i t i e s of

PARFIT). As mentioned in Chapter 3, the development of an

inter a c t i v e package such as PARFIT i s an evolutionary process.

The documentation in this appendix describes the f i r s t stage in

this process.

APPENDIX A

177

PARFIT

INTERACTIVE PARAMETER FITTING IN DYNAMIC MODELS

CONTENTS

1. Introduction and notation

2. Information reguired by PARFIT

3. Temporary f i l e s used by PARFIT

4. The batch mode of PARFIT

5. Commands in PARFIT

APPENDIX A

178

1. INTRODUCTION AND NOTATION

The program PARFIT i s designed to allow a user to
in t e r a c t i v e l y f i t parameters in an i n i t i a l value problem when
observations are available on the solution to the problem. Its
use does not require the learning of any complex set of
commands. The program i s written in ALGOL W; however, a
knowledge of FORTRAN i s s u f f i c i e n t for i t s use. S p e c i f i c a l l y
the program handles i n i t i a l value problems of the form

y'=g(t,y,p)

y(t 0)=y 0(p)

where y i s an n-vector of state variables, p i s an m-vector of
parameters, t i s the independent variable which we w i l l c a l l
time for convenience, and 1 indicates d i f f e r e n t i a t i o n with
respect to time. Along with the i n i t i a l value problem, we have
a set of observations v,,...,v^ taken at d i s t i n c t times
t ,...,t^ respectively where tf may or may not equal t 0 and
where t^ >t , 1 = 1,2,...,k. Each v̂ i s an r-vector where r<n.
That i s , not a l l components of y need be observed. Each ,
however, contains observations on the same components of y.

The central part of PARFIT i s a command reader. This
nucleus of the program t i e s together the various f a c i l i t i e s such
as integration, optimization and p l o t t i n g . After PARFIT has
executed a par t i c u l a r command, control returns to the command
reader and PARFIT i s ready for the next command. This continues
u n t i l a QUIT command i s issued. Once a command i s issued,
PARFIT usually e l i c i t s from the user a l l the information
required to execute the command. This p r i n c i p l e i s , in the
interests of e f f i c i e n c y , violated s l i g h t l y in the interactive
option of the FIT command.

It i s useful to view the operation of PARFIT in terms of an
environment and a set of commands which operate in and on this
environment. The environment consists of such things as echo
fl a g s , parameter scaling and freezing indicators, sample times,
output options, and algorithm selection indicators.

PARFIT i s modular in nature and i s designed to make the
addition of new commands very easy. Existing commands are also
easy to modify. For example at present the Levenberg-Marquardt
technique i s used to solve nonlinear least squares problems, but
other optimization methods can e a s i l y be added. New integration
schemes can also e a s i l y be added.

APPENDIX A

179

We summarize here some of the f a c i l i t i e s of PARFIT. For
more d e t a i l s consult the command descriptions. There are
extensive output f a c i l i t i e s for printing a variety of things
such as Jacobian matrices, integration r e s u l t s , optimization
d e t a i l s and smoothing r e s u l t s . Parameters can be frozen and
scaled. There are f a c i l i t i e s for determining the optimal
parameters in a least squares sense by automatic and by
interactive techniques. There are f a c i l i t i e s for obtaining
i n i t i a l approximations to the optimal parameters using such
technigues as derivative and integral f i t t i n g , guessed
observations and i t e r a t i v e improvement of guessed observations
for unobserved state variables, and methods employing
continuation parameters and break points. A subsection of
PARFIT can be used in batch mode. Certain s t a t i s t i c a l
information on the optimal parameters can be calculated and
various control parameters governing the way PARFIT runs can be
reset by the user.

PARFIT functions with two sets of discrete time values.
F i r s t we have the observation times where the observations
v, ,...,v^ were taken and second we have the sample times. The
sample times are the times at which plot points for the state
variables and smoothed observations are taken and the times at
which information on the continuous solution of the s e n s i t i v i t y
equations (see below) can be extracted. For further d e t a i l s see
the SAMPLE command and item 7 of the REPORT command.

Before continuing our description of PARFIT, we must
establish more notation. Define the weighted residual vector f
by

for s=l,...,r, 1=1,...k where r i s the length of vs , 1=1....k,
v.iA i s component s of v 4 and y_ t x l) (t^) i s the corresponding
element of the vector y(t«). w/t(je-•)+/L 1 S a weighting factor.
We note that f has length kr. We seek p to minimize

F(p)=f T(p)f (p) .

The gradient of F(p) i s

VF(p)=2J T(p) f (p)

where J(p) i s the kr x m matrix defined by

J.. =3J; i=l,...,kr; j=l,...,m.

The elements in J are found by integrating the s e n s i t i v i t y

APPENDIX A

180

equations:

Yj =g t a(t,y,p)y + g (t fy,p)

Yi> ' P J - f y .) , , - <P>
A

for j=l,...,m derived from the o r i g i n a l i n i t i a l value problem.
In our notation yf. and g,.. are n-vectors of p a r t i a l derivatives
of the components Jof y and' g with respect to p. , and g i s the
Jacobian matrix of g with respect to the vector y. Our
integration program i s s p e c i a l l y designed to take advantage of
the fact that our s e n s i t i v i t y equations are linear and coupled
in only one d i r e c t i o n to the o r i g i n a l nonlinear i n i t i a l value
problem. A l l the step size and order adjustments are done on
the nonlinear i n i t i a l value problem and the linear problems are
e f f i c i e n t l y solved along with the nonlinear problem. This i s
the same strategy as that adopted by van Domselaar and
Hemker [71] .

The Levenberg-Marquardt technique for finding the optimal
parameter vector p uses the i t e r a t i o n

pl%«> =p<*> - (J T (p frJ)J(p' f J)+>!)-' J T (P C ? J) f (p (' J)
where 0_<A<«o. As in [71] we employ the singular value
decomposition in our implementation of this algorithm. This
avoids the forming of J T J with i t s associated squaring of the
condition number. A scaling option i s also available in our
implementation of the Levenberg-Marquardt method. F i n a l l y in
our notation a steepest descent i t e r a t i o n to get the optimal p
i s

P"**3 = Pfr J - S J T
(P

(y J) f (P < ")

where S i s the step length referred to in the interactive option
of the FIT command.

To run PARFIT the information detailed in Section 2 must
f i r s t be supplied. The pa r t i c u l a r run command for PARFIT
depends on what f a c i l i t i e s of PARFIT the user desires. The
basic run command i s

$RUN PFIT:PAR1+PFIT:L1+CP+*PRPL0T 4=DP T=t

thi s provides a l l aspects of PARFIT except the SMOOTH, DFIT,
IFIT, CONTIN and CREATE commands, and l i m i t s the integration
method to the trapezoidal method. The f i l e CP contains the
object code for the procedure G_FUN described in the next
section, and DP i s the data f i l e described in the next section.

APPENDIX A

181

If CP i s the object code for the FORTRAN subroutine (named GF)
version of G_FUN, then the MTS run command i s

$RUN PFIT:PAR1+PFIT:L1+PFIT:LF+CP+*PRPL0T 4=DP T=t

To run PARFIT with Gear's program and the CREATE command
available, but without the DFIT, IFIT, CONTIN and SMOOTH
commands, the MTS run command i s

$RUN PFIT:PARl+PFIT:PAR2+PFIT:L12+CP+*PRPLOT 4=DP T=t

If CP is a compiled FORTRAN subroutine, then as in the previous
command, PFIT:LF must be used. To run PARFIT with everything
but Gear's program and the CREATE command, the MTS run command
is

$RUN PFIT:PARl+PFIT:PAR3+PFIT:L13+CP+*PRPLOT+*NUMLIB 4=DP T=t

(with the previous modification i f CP comes from a FORTRAN
program). F i n a l l y , to run the complete PARFIT, the run command
is

$RUN PFIT:PAR1+PFIT:PAR2+PFIT:PAR3+CP+*PRPL0T+*NUMLIB 4=DP T=t

(with the appropriate change for a FORTRAN CP). It i s suggested
that a time l i m i t be put on a l l runs to avoid the p o s s i b i l i t y of
unnecessary expense. A good strategy i s to start with the
simple version of PARFIT and to use the more powerful f a c i l i t i e s
when they become necessary.

2. INFORMATION REQUIRED BY PARFIT

To run PARFIT, the user must supply a procedure which
defines g(t,y,p) as well as the Jacobian functions g^ and qp and
which provides i n i t i a l i z a t i o n information. Since PARFIT i s
written in ALGOL W, i t i s natural that this program should also
be in ALGOL W, but as indicated in the run commands of the
previous section, a FORTRAN subroutine can be used. If a
FORTRAN subroutine i s used, i t should be named GF and a l l i t s
real arguments should be double precision. If an ALGOL W
procedure i s used, i t should be called G_FUN and i t should have
the following header: (The pa r t i c u l a r parameter names are of
course not important and may be changed by the user.)

PROCEDURE G_FUN(LONG REAL VALUE T; LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*); INTEGER VALUE OPTION;
LONG REAL ARRAY G(*); LONG REAL ARRAY DGY(*,*);
LONG REAL ARRAY DGP(*,*); LONG REAL ARRAY ISEN(*,*));

APPENDIX A

182

where

T i s the independent variable time,

Y i s the vector of state variables y(t) of length n,

P is the vector of parameters of length m,

OPTION indicates which of various tasks G_FUN i s to perform:

1 to return g(t,y,p) and g (t,y,p)
-1 to return just g(t,y,p)
2 to return g /.(t,y,p)
3 to return i n i t i a l y in Y and i n i t i a l values for y ,
j=l,...,m in ISEN, J

-3 to return just the i n i t i a l y in Y.

G returns the n-vector g(t,y,p) when reguired,

DGY returns the n x n matrix g^(t,y,p) when required,

DGP returns the n x m matrix g (t,y,p) when reguired,
ISEN returns the nxm matrix of i n i t i a l values for the
s e n s i t i v i t y eguations.

An example of an ALGOL W procedure G_FUN for the problem
y/=-(l-y_Jy. +p i Y ; i

y'=p ((1-y)y -(p +p)y)

y (0) = l , y (0)=0

is given in Figure A . l . (This dynamic model i s considered by
van Domselaar and Hemker[71].)

Besides providing the procedure G_FUN, the user must
provide a data f i l e containing the information outlined below.
This data i s read under free format with blanks acting as
deli m i t e r s .

The f i r s t data card contains the model name associated with
the p a r t i c u l a r set of d i f f e r e n t i a l equations. It consists of at
most 30 characters with no embedded blanks. And i t cannot be
the word CREATE (see the CREATE command).

APPENDIX A

183

PROCEDURE G_FUN(LONG REAL
LONG REAL ARRAY Y(*);LONG
INTEGER VALUE OPTION;LONG
LONG REAL ARRAY G(*);LONG

VALUE T;
REAL ARRAY
REAL ARRAY
REAL ARRAY

P(*) ;
G(*) ;
DGY(*,)

DGP(*,*) LONG REAL ARRAY ISEN(*,*))

A MODEL DEFINITION PROCEDURE;

LONG REAL ARRAY
BEGIN
COMMENT EXAMPLE OF
CASE ABS OPTION OF

BEGIN
BEGIN
G (1) :=- (1. L-Y (2)) *Y (1) +P (2) *Y (2) ;
G(2) :=P(1)*((l.L-Y(2))*Y(1)-(P(2)+P(3))*Y (2))

THEN IF OPTION>0
BEGIN
DGY(1,1)
DGY(1,2)
DGY(2,1)
DGY(2,2)
END;

END;
BEGIN
DGP(1,1)
DGP(1,2)
DGP(1,3)
DGP(2,1)
DGP(2,2)
DGP(2,3)
END;
BEGIN
Y(l) :=1.L;
Y(2) :=0.L;
IF OPTION>0

BEGIN
FOR I:=l
FOR J:=l
ISEN(I,J):=0.L;
END;

END
END;

END G FUN.

:=-(l.L-Y(2));
:=Y(1)+P(2) ;
:=P(1)*(1.L-Y(2));
:=-P(l) *(Y(1)+P(2)+P(3))

= 0.L;
=Y(2) ;
= 0.L;
= (1.L-Y(2))*Y(1)-(P(2)+P(3))*Y(2)
=-P(l) *Y(2) ;
=-P(l)*Y(2);

THEN

UNTIL
UNTIL

DO
DO

Figure A . l
A t y p i c a l model d e f i n i t i o n procedure

APPENDIX A

184

The second data card contains the i n i t i a l time.

The next data card contains 5 integers separated by blanks.
These integers are

(1) number of state variables
(2) number of components of p
(3) number of components of v
(4) number of observation times
(5) maximum number of sample times

The maximum number of sample times must be greater than the
number of observation times by at least one when there are no
observations at the i n i t i a l time. When there are observations
at the i n i t i a l time, the maximum number of sample times can be
greater than or equal to the number of observation times.

The next set of data cards contains the observations.
Several observations can be put on each card. The observations
are ordered f i r s t by state variable and then by time. For
example i f n=5 and state variables 2 and 5 are observed then a l l
the observations on state variable 2 are entered and following
this set of numbers, a l l the observations on state variable 5
are entered. It i s suggested, but not mandatory that
observations on a new state variable s t a r t on a new card.

The next set of data cards contains the observation times.
These entries need not star t on a new card, but for c l a r i t y i t
is suggested that they do.

The next set of data i s a set of integers indicating which
state variables have been observed.

Next, an i n i t i a l guess at the optimal parameter values
should be entered in the data f i l e .

F i n a l l y , a set of weights corresponding to the observations
may be entered by the user. This i s optional and i f no weights
are entered, PARFIT by default sets a l l weights to one. If
weights are to be entered, there should be an entry for each
observation, these entries should be in the same order as the
corresponding observations, and they must sta r t on a new card.

The use of free format should make the data entry f a i r l y

APPENDIX A

185

simple. For example real numbers are entered as -.1, -3.2,
.005, 2, 5 etc. and integers are entered as 1, -5, 2 etc.
Numbers in exponential notation follow FORTRAN conventions.

3. FILES USED BY PARFIT

PARFIT uses a number of MTS temporary f i l e s when i t i s
running. Normally the user need not be concerned with these
f i l e s . However, i f PARFIT terminates with an error, the
information in these f i l e s may be of value to the user. The
temporary f i l e s used are:

-SCI This f i l e takes output from the integeration and
optimization procedures. It is always emptied before i t i s
reused.

-SC2 When required, this f i l e accumulates the information in
-SCI for later output. ,

-GRAPH This f i l e takes the output from the pl o t t i n g procedures.

-GRAPHSTORE This f i l e accumulates graphical data for later hard
copy output.

-REPRT This f i l e takes output from the report command. It also
takes certain messages such as those indicating when a permanent
copy of a graph has been requested.

-AECHO This f i l e contains an echo of the sessions with the
interactive option of the f i t command.

-ECHO This f i l e contains echo information as requested through
the ECHO command. It never contains any of the information that
i s sent to -AECHO.

APPENDIX A

186

4. THE BATCH MODE OF PARFIT

PARFIT i s designed as an interactive program. However,
there are cases when, for reasons of economy say, a user would
be advised to run sections of PARFIT in batch mode. For
example, th i s might be the case in the f i n a l stages of parameter
estimation when good approximations to the optimal parameter
values are available and where these values are being further
refined through the automatic option of the FIT command. The
MTS RUN commands for a batch run are the same as for an
interactive run. The PARFIT commands should follow d i r e c t l y
after the RUN command. A l t e r n a t i v e l y , the user may specify
SCARDS=filename in the RUN command, in which case the PARFIT
commands are read form the f i l e attached to SCARDS. When in
batch mode, PARFIT prin t s the command designators on *SINK*.
When in batch mode, -SCI and -SC2 are not used. A l l output that
goes to -SCI in an interactive run goes d i r e c t l y to *SINK* when
PARFIT i s runnumg in BATCH mode.

5. COMMANDS IN PARFIT

The following are the commands currently available in
PARFIT.

(1) ECHO (2) OPTION (3) FREEZE (4) SCALE
(5) SAMPLE (6) WEIGHT (7) PLOT (8) REPORT
(9) SET (10) INTEG (11) PROBE (12) FIT

(13) STATS (14) QUIT (15) SUSP (16) CREATE
(17) SMOOTH (18) CREOBS (19) LINEAR (20) DFIT
(21) IFIT (22) CONTIN

With each of the above commands, we describe what action the
command i n i t a i t e s and what interaction with PARFIT the user can
expect after issuing the command.
(1) ECHO

The ECHO command allows the user to control the
accumulation of a hard copy echo of an interactive session.
When t h i s command i s issued, PARFIT requests an entry of 0 or 1.
An entry of 0 turns off the echo and an entry of 1 turns the
echo on. This command does not affect the echo associated with
option 2 of the FIT command. At the start of an interactive
session PARFIT turns the echo o f f .

APPENDIX A

187

(2) OPTION

This command allows the user to set certain control
parameters in PARFIT that govern the way various procedures
function. These control parameters are automatically given
default values by PARFIT at the st a r t of a run. After issuing
the OPTION command, PARFIT returns with the following message
indicating what control parameters the user can change

DESIGNATE CONTROL PARAMETER AND NEW VALUE (0 TO END)
OUTPUT 1
INT. OUTPUT IN OPT. 0-YES,1-NO 2
JACOBIAN 0-FULL 1-LEAST SQUARES 3
GEAR'S METHOD 0-ADAMS , 1-STIFF 4
EPS FOR INTEGRATION 5
HMIN FOR INTEGRATION 6
HMAX FOR INTEGRATION 7
INTEGRATION PROCEDURE, 1-GEAR, 2-TRAPEZOIDAL 8

The convention of using a 0 to end a seguence of input data
of indeterminate length i s used in several places in PARFIT.

Control parameter 1 governs the dumping of information
during an integration. This option i s useful during the
debugging stages with a new model when the integration program
encounters d i f f i c u l t i e s . This may happen for example i f G_FUN
is returning undefined values to the integration procedures.
The default value of this control parameter i s 0 in which case
no output occurs. If this control parameter i s set to the
integer n, then after every n integration steps, the time and
state variables are printed on -SCI.

Control parameter 2 indicates whether or not any output
requested by a nonzero control parameter 1 i s required when the
integration procedure has been called by an optimization
procedure. This control parameter i s 0 i f output i s desired
during an optimization and 1 otherwise. Its default value i s 1.
Control parameter 2 acts as a safety on control parameter 1 in
that the user must s p e c i f i c a l l y request integration output in an
optimization run thus guarding against the chance of getting a
large quantity of output by accident.

Control parameter 3 selects the information to be printed
when output of the Jacobian matrix i s requested. If this
control parameter i s 0 then the f u l l Jacobian on a l l the state
variables and at a l l the sample times i s printed. If this

APPENDIX A

188

control parameter i s 1 then only the entries of the f u l l
Jacobian that relate to observations on the state variables are
printed. (That i s the Jacobian J i s printed.) The default
value of control parameter 3 i s 0. The f u l l Jacobian i s of
value to the model builder because i t can t e l l him (perhaps
after further analysis) i f and where he should take further
observations to better determine his parameters. This i s the
case because the f u l l Jacobian matrix i s determined by solving
the s e n s i t i v i t y equations and i s thus independent of the
observations.

Control parameter 4 indicates what option in Gear's
integration procedure i s to be employed. If this control
parameter i s 0 then integration of the i n i t i a l value problem i s
done by Gear's implementation of an Adams' predictor corrector
method[27]. If thi s control parameter i s 1 then the integration
i s done by Gear's implementation of a multi-step method suitable
for s t i f f problems[27]. The Adams' predictor-corrector method
can be faster when s t a b i l i t y i s not a problem. The default
value of control parameter 4 i s 1.

Control parameter 5 contains the error c r i t e r i o n EPS to be
used in gear's integration procedure. Its default value i s .01.
As this value i s decreased, the user can expect his integrations
to become more expensive. Among other things, the observation
error should be considered when picking this control parameter.
We comment that .01 i s a very weak error c r i t e r i o n .

Control parameter 6 contains the minimum step size that
integration procedures with stepsize control are allowed to use.
Its default value i s .00001.

Control parameter 7 contains the maximum step size that
integration procedures with stepsize control are allowed to use.
Its default value i s 5.

Control parameter 8 indicates what integration procedure i s
to be employed. If i t i s 1, Gear's program i s used. If i t i s
2, a trapezoidal method without error control i s employed. The
default value of control parameter 8 i s 2.

APPENDIX A

189

(3) FREEZE

The FREEZE command allows the user to freeze selected
parameters. These parameters then remain fixed u n t i l freezing
i s removed. There must be at least two active parameters for
the optimization procedures to function properly. The freezing
in the int e r a c t i v e option of the FIT command i s at a higher
l e v e l than the freezing indicated by the FREEZE command. When
this command i s issued, PARFIT asks the user to enter a l i s t of
subscripts of parameters to be frozen (0 to end). An entry of 0
removes a l l freezing.

(4) SCALE

The SCALE command allows the user to transform selected
parameters. Currently logarithmic scaling and square root
scaling are a v a i l a b l e . With logarithmic scaling for p̂ , pj i s
transformed according to 'p\=ln(Pj), and with square root
scaling, Pj i s transformed according to 'pj. =Vp"j - Thus with
logarithmic s c a l i n g , p- i s repalced by exp(p_) in the model and
with square root scaling p_j i s repalced by "p̂ . When t h i s
command i s issued, PARFIT asks the user to enter pairs of
integers indicating subscripts of parameters to be scaled and
the scaling to be used. The integer 1 indicates logarithmic
scaling and 2 indictes square root scaling. A 0 subscript
terminates the entry of scaling instructions. An entry of 0
alone removes a l l scaling. When a parameter i s scaled, or
descaled, i t s current numerical value i s automatically
transformed.

(5) SAMPLE

This command allows the user to alter the set of sample
times. As mentioned in the introduction, these are the times at
which information i s extracted from the continuous problem. The
default sample times are the i n i t i a l time and the observation
times. When the user issues the SAMPLE command, a choice of
three options i s presented. The f i r s t option restores the
sample times to their default values. The second option allows
the user to specify a uniform mesh of sample times sta r t i n g at
the i n i t i a l time by entering the number of sample times (not
counting the i n i t i a l time) and the sample time spacing. Of
course an error results i f more sample times than are allowed
(as indicated in the data f i l e) are requested. With this
option, no connection to the observation times i s maintained,
and thus care must be used when thi s option i s in e f f e c t . For
example, the FIT command cannot be used when thi s option i s in
ef f e c t . The thi r d option i s for the interactive insertion of

APPENDIX A

190

sample times between existing sample times. The user i s f i r s t
asked i f a l i s t i n g of the existing sample times i s desired. If
i t is desired, the user enters the subscript range (in the
existing vector of sample times) where the l i s t i n g is desired.
To insert sample times between existing sample times, the user
l i s t s in sequence the upper index (in the vector of sample
times) of the i n t e r v a l where the new times are to be inserted,
and the number of points to i n s e r t . The points are inserted
uniformly in the i n t e r v a l . The user can request insertion of
times in several i n t e r v a l s . A 0 for an interval's upper index
ends the input. This interactive insertion option can be of
value when the sample times straddle a time i n t e r v a l where the
d i f f e r e n t i a l equation solution warrants further investigation
(for example, i t might be taking a sudden jump.)

(6) WEIGHT

The WEIGHT command allows the user to i n t e r a c t i v e l y enter
the weights for the observations. There are two options.
F i r s t , the weights can a l l be set to their default value of one.
Second, weights can be specified on selected observations on
selected state variables which have been observed. Under the
second option, the user i s given the chance to take a permanent
copy of the weights in the scratch f i l e -WEIGHT.

(7) PLOT

The PLOT command allows the user to select various items to
p l o t . When the command i s issued, the following instructions
appear

SEQUENCE OF ITEMS TO PLOT (END WITH 0)
STATE VARIABLES 1
OBSERVATIONS 2
SMOOTHED OBSERVATIONS 3
GUESSED OBSERVATIONS 4
PHASE PLOT 5

Of course before item 1 can be selected, an integration must
have been performed, and before item 3 can be selected, the
SMOOTH command must have been used, and before item 4 can be
selected, the CREOBS command must have been used. Item 5
applies only to 2 state variable problems. Before i t can be
used an integration must have been performed. After the desired
items are selected, the user i s given further choice. For
example i f items 1 and 2 are selected, the user i s asked which
state variables and which observations (i . e . on which state
variables) he wants plotted. This f l e x i b i l i t y allows the user

APPENDIX A

191

to i s o l a t e various aspects of the problem.

After the user has described the desired plo t , a
mini-print-plot appears at his terminal. The abscissae for the
plotted points are the sample times.

After the plot i s completed, the user i s asked i f a
permanent record i s required. If the answer i s y for yes, a
large scale version of the print plot i s accumulated in the f i l e
-GRAPHSTORE for later output. A plot number (starting at 1) i s
associated with each graph accumulated and when a plot i s
accumulated, a message indication the current parameter values
and the current plot number i s written on the f i l e -REPRT. The
interface to the p l o t t i n g programs i s confined to one procedure
in PARFIT and thus i t i s easy to modify the p l o t t i n g f a c i l i t i e s
of PARFIT and the p l o t t i n g hardware employed can e a s i l y be
altered.

(8) REPORT

This command controls a set of output procedures with which
PARFIT can display various information to the user. When this
command i s issued, PARFIT returns with the following message
indicating what items the user can have printed.

ENTER LIST OF ITEMS TO PRINT
(END WITH 0)
GENERAL DATA 1
OBS 2
PAR 3
CREATION 4
PTS AND STATE VARS—5
SMOOTHING DATA 6
JACOBIAN 7
INTEG./OPT. DETAILS-8
STATISTICAL DATA 9
OPTION SETTINGS 10
WEIGHTS 11
GUESSED OBS 12

new items can e a s i l y be added to this l i s t . The requested
information i s displayed at the terminal and also put in the
f i l e -REPRT so that a permanent record can be taken at the end

APPENDIX A

192

of a run with PARFIT.

When item 1 i s selected, PARFIT displays the following
basic information on the pa r t i c u l a r problem under consideration

(a) the number of parameters
(b) the number of state variables
(c) the number of state variables observed
(d) a l i s t of state variables observed
(e) the number of observation times

Selection of item 2 causes a l i s t of observations along
with observation times to be printed.

Selection of item 3 causes the starting parameter values to
be printed (that i s the values read from the data f i l e) along
with the current parameter values and the freezing and scaling
status of each parameter.

Report item 4 prints information for the special s i t u a t i o n
when test observations have been created by a simulation run.
The parameter values for the simulation run are printed along
with the standard deviation of the random error introduced into
the generated observations.

Report item 5 pri n t s the parameter values used in the l a s t
integration of the i n i t i a l value problem along with the sample
times and integration results at these sample times.

Report item 6 pri n t s smoothing information generated by the
SMOOTH command. F i r s t the type of smoothing used—either least
squares cubic spline or least squares cubic Hermite i s
indicated. Next the j o i n t s used for the piecewise polynomial
smoothing function are displayed and f i n a l l y the smoothed
observations and the smoothed derivatives at the sample times
are l i s t e d .

Report item 7 pri n t s the parameter values used in the l a s t
integration along with the jacobian matrix. Whether or not a
f u l l Jacobian matrix i s printed depends on control parameter 3
which can be altered in the option conmmand.

APPENDIX A

193

Report item 8 prints optimization and or integration data.
When an automatic optimization run i s made, detailed information
on the run (eg. sums of squares of residuals, parameter values
etc.) i s written on the scratch f i l e -SCI. Depending on the
settings of control parameters 1 and 2 (see the option command),
integration information may be written on -SCI. When the user
selects item 8 and when PARFIT i s running i n t e r a c t i v e l y , the
contents of -SCI are displayed at the terminal. Since a l o t of
r e l a t i v e l y useless output may be present in -SCI, the user i s
asked i f the contents of -SCI are to be accumulated for later
output. If a later hard copy i s desired, the contents of -SCI
are accumulated in -SC2. The f i l e -SCI i s emptied before i t is
next reguired to accept output from PARFIT. An output reference
number i s attached to each use of -SCI. When an accumulation i s
made to -SC2, a message to this e f f e c t along with the current
output reference number i s written on -REPRT and the output
reference number i s incremented by 1. This allows a coordinated
interpretation of the output from PARFIT.

Report item 9 prin t s s t a t i s t i c a l data resulting from the
STATS command. The F d i s t r i b u t i o n value used in determining
confidence intervals on the parameters i s displayed along with
i t s corresponding percentile value and number of degrees of
freedom in the numerator and number of degrees of freedom in the
denominator. The sum of the squares of the residuals is printed
and the parameter values along with their confidence intervals
are printed. F i n a l l y , the corr e l a t i o n and covariance matrices
are printed.

Report item 10 prints the current control parameter
settings along with the default values for the control
parameters.

Report item 11 print s the weights given to the
observations.

Report item 12 prints the guessed observations and
corresponding derivatives generated by the CREOBS command.

(9) SET

This command allows the user to redefine an element of the
parameter vactor p by entering the integer subscript of the
element and the new value of the element. This can be repeated
for as many elements as desired. Entry of a 0 for a subscript
terminates the command. For example to set the f i r s t and fourth

APPENDIX A

194

parameters to 3. and 6.2 respectively, the user would enter

1 3. 4 6.2 0

(The above set of numbers need not a l l be on one line.)
Parameter subscripts refer to the f u l l parameter vector and no
allowance for frozen parameters i s required. Scaling i s ignored
by the SET command.

(10) INTEG

This command requests that the i n i t i a l value problem be
numerically integrated using the current parameter values. The
integration technique used i s determined by control parameter's
4 and 8 which can be reset by the OPTION command. The
integration results at the sample times are stored in an array
for later use. For example these values may be plotted at some
lat e r time in an interactive session. When this command i s
issued, the user i s asked i f the Jacobian i s desired, and i f i t
is the s e n s i t i v i t y eguations are integrated along with the given
model equations and the f u l l Jacobian i s stored for later
analysis. (for example by the PROBE command). If the
integration procedure runs into d i f f i c u l t y , an error message i s
printed and the user i s returned to the command section of
PARFIT. A t y p i c a l d i f f i c u l t y with the integration procedure i s
that i t cannot meet the error c r i t e r i o n with the current minimum
step s i z e .

(11) PROBE

This command allows the user to investigate, among other
things, the condition at the current point p in parameter space
of the Jacobian matrix associated with the least squares
problem. The user i s asked i f an integration i s required to
determine the Jacobian at the current parameter values. (i t may
not be i f for example INTEG with a Jacobian option has just been
executed.) A singular value decomposition i s done on the
Jacobian for the least squares problem. The user is given the
option of taking a permanent record of the PROBE results in the
f i l e -REPRT. Furthermore, i f control parameter 1 i s set to
request output in an integration, the user i s given the chance
to view the output and accumulate i t in -SC2. Since the
singular value decomposition i s available when the PROBE command
has been executed, the potential exists for adding a procedure
here to further analyse the problem at the current point in
parameter space.

APPENDIX A

i

195

(12) FIT

The FIT command puts the user in control of optimization
procedures which apply d i r e c t l y to the least squares
minimization problem mentioned in the introduction (as opposed
to the DFIT command for example). Currently the user has two
main choices with the FIT command. The f i r s t option uses the
Levenberg-Marquardt algorithm. From a starting guess, this
algorithm attempts to determine the optimum parameters
automatically without user intervention. For e f f e c t i v e use of
this procedure, the i n i t i a l guess at the optimal parameter
vector should be f a i r l y good. The user i s asked to supply a
start i n g value for the parameter A used in the
Levenberg-Marquardt algorithm as well as error tolerances for
termination of the automatic optimization run. A negative value
for X t e l l s PARFIT to pick i t s own star t i n g value for X. At
times X must be adjusted upward i n t e r a c t i v e l y to avoid points in
parameter space where the d i f f e r e n t i a l equation cannot be
integrated. The termination c r i t e r i o n take the form of a
r e a l t i v e (e,) and an absolute (e a) error tolerence. Termination
of the optimization run occurs when either

where F f i s the sum of the squares of the residuals on the q'th
i t e r a t i o n . Of course computation costs increase as e, and e a

are decreased and for fine tolerences a batch run of PARFIT i s
probably advisable. Choice of e, and e a should of course depend
on the accuracy of the observations and on the error c r i t e r i o n
chosen for the numerical integration technique.

Our implementation of the Levenberg-Marquardt algorithm has
a provision for automatic scaling so that the diagonal elements
of J J are a l l 1. To request scaling, e, and e A should both be
negative. PARFIT uses their absolute values for the termination
c r i t e r i a when scaling i s requested. The use of scaling can
dramatically speed up convergence.

The second option under the FIT command provides an
inter a c t i v e optimization approach where the user has extensive
control over PARFIT through a set of optimization commands.
Among other thing ys, the user can reset parameters, freeze
selected parameters, and plot graphs. Since i t i s anticipated
that these commands w i l l be used very frequently, the
descriptive messages from PARFIT are kept to a minimum and the
command designators are very short. A description of the

APPENDIX A

196

currently implemented optimization commands follows.

(a) T

This i s the technique command where the user can
choose either the Levenberg-Marquardt or the steepest
descent optimization method. To request the steepest
descent technique the user should enter

T SD

and then h i t the return. One or more blanks must separate
the T and the SD. To request the Levenberg-Marquardt
technique, the user should enter

T MARQ

The default i s the Levenberg-Marguardt technigue.
(b) M

By entering

M r

where r i s a real number, the current value of X for the
Levenberg-Marquardt technique or step length for the
steepest descent technique i s multiplied by r and this
product replaces the current X or step length. A new
i t e r a t i o n of the current optimization technique i s then
attempted. PARFIT then reports on the success of this
attempt and the user i s asked to enter a new optimization
command. The default value of X i s .01. There i s no
default value for the step length for the steepest descent
method. The user should pick a starting value for the step
length after observing the gradient.

(c) N

By entering

N r

where r i s a real number, the current value of X or step
length (depending on the technique) i s replaced by r.

APPENDIX A

197

(d) V

This i s the view command. It does not take any
arguments. It requests a display of the current
parameters, and current gradient components. Frozen
parameters are indicated—see command (e). The current
technique i s also displayed along with basic information
associated with this technique. F i n a l l y , the current sum
of squares i s displayed.

(e) F

This i s the freeze command. This command acts at a
higher l e v e l than the main FREEZE command. It allows the
user to s e l e c t i v e l y freeze various parameters at their
current values and to continue the optimization on a
subspace of parameter space. A 0 i s used to terminate the
l i s t of parameters to be frozen. For example, to freeze
the f i r s t and thi r d parameters, the user would enter

F 1 3 0

Currently, no special programming i s implemented to take
advantage of the fewer s e n s i t i v i t y equations present when
we are working on a subspace.

(f) DF

This i s the defreeze command. It removes a l l or some
of the parameters from the l i s t of frozen parameters. This
command does not influence freezing set by the FREEZE
command. To remove a l l parameters from the l i s t of frozen
parameters enter

DF 0

To remove freezing on say the third and fourth parameters
enter

DF 3 4 0

(g) SET

This i s the SET command and i t i s i d e n t i c a l , except
for the pri n t i n g of guiding instructions, to the main SET

APPENDIX A

198

command.

(h) PLOT

This command is i d e n t i c a l to the main PLOT command.
The state variables plotted are those from the l a s t
integration. Thus i f a plot i s requested after an
unsuccessful Marquardt i t e r a t i o n attempt, the state
variables plotted are those at the l a s t set of t r i a l
parameters.

(i) Q

This i s the quit command for the interactive
optimization subsection. It returns control to the main
command section of PARFIT.

A detailed record of a l l commands and a l l command results
(including mini-print-plots) that occur in an interactive
optimization session i s kept in the f i l e -AECHO. The user has
the option of taking a hard copy of thi s f i l e at the end of a
run with PARFIT.

(13) STATS

This command reguests PARFIT to produce certain s t a t i s t i c a l
information on the parameters after they have been optimized by
the FIT command. An assumption of l i n e a r i t y in the parameters
near the optimum i s made. The user i s requested to enter the
percentile for the confidence i n t e r v a l s . The program then finds
the reqired value of the F d i s t r i b u t i o n with the appropriate
degrees of freedom. The confidence inte r v a l s on the parameters
and the co r r e l a t i o n and covariance matrices are calculated when
the STATS command i s issued.

(14) QUIT

This command terminates a run with PARFIT. Before
execution i s terminated, the user i s given the chance to take a
permanent copy of some or a l l of the information accumulated

APPENDIX A

199

during the interactive session. In batch mode a permanent copy
of the accumulated plots i s automatically taken.

(15) SUSP

This command suspends execution of PARFIT and returns the
user to MTS. The MTS command $RESTART causes the execution of
PARFIT to be resumed. One use of this might be to examine
various scratch f i l e s PARFIT has created.

(16) CREATE

This command allows the user to make a simulation run with
his model and to generate a data f i l e from this simulation run.
A primary purpose of this f a c i l i t y i s in the debugging of new
procedures in PARFIT. The user i s asked for the parameter
values for the simulation run, the observation times, the state
variables observed, and the error tolerence, maximum step siz e ,
and minimum step size for Gear's integration program. (If the
integration run does not succeed, i t s constraints can be reset
and a new run can be made.) The user i s further asked for the
standard deviation of the random error in the generated
observations and the vector of starting values for the
parameters. F i n a l l y the user can have the generated data put in
the f i l e -DATA. When the create command i s to be used, the data
f i l e should have a model name of CREATE in i t and of course only
the f i r s t three data cards described in section 2 are required
when the CREATE command i s to be used.

(17) SMOOTH

The SMOOTH command allows the user to f i t a least squares
piecewise polynomial to the observations on each state variable
observed. This i s normally used in preparation for the DFIT
IFIT and CONTIN commands. The user has the choice of using
either a piecewise cubic spline or a piecewise cubic Hermite
polynomial—the l a t t e r should be used i f the observations take
any sudden violent jumps. In either case, PARFIT sequentially
goes through the state variables on which observations have been
taken. On each state variable, the user i s asked to enter the
number of j o i n t s and j o i n t positions for the indicated set of
observations. A maximum of 15 jo i n t s for each piecewise
polynomial i s allowed.

It should be very easy to make this curve f i t t i n g aspect of
PARFIT more in t e r a c t i v e , however for the present, the user must
issue SMOOTH snd PLOT commands a l t e r n a t i v e l y when doing

APPENDIX A

200

interactive curve f i t t i n g .

(18) CREOBS

This command allows the user to guess observations on the
unobserved state variable in the two state variable case. This
i s in preparation for options 2 and 3 of the DFIT command and
options 2, 3, and 4 of the IFIT command. The user is asked to
enter the number of abscissae and the abscissae for an
interpolating cubic spline to approximate the guessed
observations. The f i r s t and l a s t sample times must begin and
end the l i s t of abscissae. Next the user i s asked to enter the
corresponding ordinates. At each end, the interpolating cubic
spline matches the slope of the l i n e joining the two points of
interpolation closest to the given end.

(19) LINEAR

The LINEAR command allows the user to specify that the DFIT
and IFIT least squares problems are linear and thus starting
parameters are not required since no it e r a t i o n s are required to
obtain the optimal parameters. Currently this f a c i l i t y i s
implemented in options 2 and 3 of the DFIT command and in
options 2 3 and 4 of the IFIT command.

(20) DFIT

This command has three options. The f i r s t option uses the
results of the SMOOTH command to estimate optimal parameters by
a rather coarse, but at times inexpensive technigue.
Furthermore, th i s procedure can be useful when our i n i t i a l
parameter values correspond to an unstable i n i t i a l value
problem. There are however some r e s t r i c t i o n s on the class of
problems the DFIT command can handle. It cannot handle problems
where some parameters occur only in the i n i t i a l conditions, and
for this version of the DFIT command, a l l parameters must occur
in the subset of the d i f f e r e n t i a l eguations defining the i n i t i a l
value problem that correspond to state variables on which
observations have been taken. This program works by applying an
automatic Levenberg-Marquardt procedure to the nonlinear curve
f i t t i n g problem

s'=g(t,s,p)

where ŝ,- (t) , the i ' th component of the vector s (t) , i s a
piecewise polynomial approximation to the observations on y..
The nonlinear curve f i t t i n g i s done in a least squares sense at
the sample times. No weighting i s employed at present. If not

APPENDIX A

201

a l l the state variables are observed, then at each i t e r a t i o n of
the Levenberg-Marquardt procedure, a subset of the set of
equations in our i n i t i a l value problem i s integrated (using
s (t) , the current parameter vector and the integration technique
indicated by control parameter's 2 and 8). Thus this technique
can become expensive too. Also i n s t a b i l i t i e s at the star t i n g
parameter values may arize in the subsystem i n i t i a l value
problem. Furthermore, esp e c i a l l y i f the observations are far
apart and have large errors, the parameters determined by t h i s
technique are not very r e l i a b l e . However, they can serve as
start i n g values for the FIT command. As in the automatic option
of FIT command, the user i s asked to enter a star t i n g X along
with a r e l a t i v e and an absloute error tolerence for the
Levenberg-Marquardt procedure.

The second option under the DFIT command currently applies
only to the important special case when only two state variables
are present and observations are available on only one of them.
This option assumes the behavior of the unobserved state
variable has been approximated using the CREOBS command. The
observations on the other state variable must be smoothed with
the SMOOTH command prior to using this option. This option of
the DFIT command then f i t s derivatives using the smoothed and
guessed observations. Only the nonfrozen parameters enter into
the optimization. If a parameter occurs only in an i n i t i a l
condition, i t must be frozen prior to the use of this command.
If the least squares problem i s l i n e a r , (as indicated by the
LINEAR command), then a linear least squares technique using the
singular value decomposition i s employed. If the problem i s
nonlinear, then the Levenberg-Marquardt algorithm i s employed
and a st a r t i n g lambda and r e l a t i v e and absolute error tolerances
must be supplied.

The t h i r d option under the DFIT command provides a means of
i t e r a t i v e l y improving the guessed observations with the aid of a
sparse Gauss-Newton procedure. This option currently applies
only to the two state variable case. Starting with guessed
observations on the unobserved state variable, PARFIT attempts
to find an optimal parameter vector p and corresponding guessed
observations c= (c,, , .. . , C y) r , where c^ i s the guessed observation
at time t^ , to minimize

ST (g (t , (s*,c) T , p) - s * ') a + Z. (d. (c))*

where for notational convenience we have assumed y_ i s
unobserved, where s =s(t x) (a superscript i s used to avoid
confusion with our notation when s(t) i s a vector), and where
d_^(c) represents a d i s c r e t i z a t i o n of the state equation
corresponding to the unobserved state variable. Currently

APPENDIX A

\

202

PARFIT uses the trapezoidal d i s c r e t i z a t i o n for (c). That i s

d^(c)=.5(g (t , (5 * " , C j l_) r,p)+g (t , (s*,c) T,p))

c. -c

PARFIT employs a nonlinear block Gauss-Seidel technique to find
the optimal p and c. That i s PARFIT starts by f i x i n g c and
finding the optimal parameter vector to minimize the above sum
of sguares. Then with p fixed at this optimum, an optimal c i s
determined to munimize the above sum of squares. This l a t t e r
optimization i s accomplished through a Gauss-Newton procedure
which takes advantage of the pa r t i c u l a r sparsity structure of
the problem. The user i s requested to enter a tolerance e to
define the stopping c r i t e r i o n for the i t e r a t i v e determination of
c. The i t e r a t i o n terminates when two successive iterates c (t>
and c1*"* s a t i s i f y

l c ^ + ,) -c*' K e d c f * I+.001)
for 1=0,...,N. There i s an option to f i x the i n i t i a l conditions
of the guessed observations. PARFIT has f a c i l i t i e s for handling
the case when the estimation of p for a fixed c i s a linear
problem. When this problem i s not l i n e a r , the user i s reguested
to enter a st a r t i n g lambda and r e l a t i v e and absolute error
tolerances for the determination of the optimal p by the
Levenberg-Marquardt technique. After an optimal c i s found, the
user i s given the chance to further refine this vector by
decreasing the tolerance e. F i n a l l y , after an i t e r a t i o n (the
determination of a new p and a new c) the user i s given the
option of doing another i t e r a t i o n or terminating the i t e r a t i v e
process. If the process i s terminated, i t may be restarted by
issuing the same DFIT command that i n i t i a t e d the i t e r a t i v e
process.

(21) IFIT

This command i s similar to the DFIT command except here
integrals are used instead of derivatives. Currently there are
four options available under this command. The f i r s t option
requires observations on a l l state variables and i t determines
parameters which minimize

f "^pjf (P)
where

APPENDIX A

203

*t

f * U -.>•,• = y o „ (P) + K (t , S (t) , p) d t - S . (t)
where 1=1,...,k; i=l,...,n; y a > . i s the i 1 t h component of the
i n i t i a l condition vector and g y i s the i 1 t h component of
g(t,s,p), and s(t) i s the smoothing function determined by the
SMOOTH command. Currently there is no provision for the linear
case and the Levenberg-Marquardt method i s used to obtain the
optimal parameters.

The second option under the IFIT command corresponds to the
second option of the DFIT command. This option f i t s integrals
to the smoothed observations and to the guessed observations.
There are special f a c i l i t i e s for handling the linear case.
Currently this option of the IFIT command applies only to the
two state variable case.

The t h i r d option under the IFIT command attempts to
i t e r a t i v e l y improve the guessed observations by an
experimentally e f f e c t i v e , but, occasionally, unstable technique.
The i t e r a t i o n proceeds by f i r s t applying the method used in
option two of the IFIT command to estimate the parameters, and
then, holding the observed state variable equal to s (t) , a new
set of guessed observations i s generated by integrating the
state equation corresponding to the unobserved state variable.
Currently t h i s option applies only to the two state variable
case. As with the third option of the DFIT command, after an
i t e r a t i o n i s complete, the user i s given the chance to terminate
the i t e r a t i v e process.

The fourth option under the IFIT command is very similar to
the t h i r d option under the DFIT command. The only difference i s
that the parameter vector i s updated using the procedure
employed in the second option of the IFIT command. Provisions
are available for linear parameter estimation problems.

(22) CONTIN

The CONTIN command provides the user with a technigue
employing continuation methods and break points which i s
designed to bridge the gap between the coarse integral f i t t i n g
method and the f u l l least squares problem. A di r e c t
continuation method i s available where the user can f i t the
solution of

u'=g(t, ((l-*)s(t)+»u,p)

u(t o)=y 0(p)

APPENDIX A

204

to s(t) in the least squares sense at the observation times
where 0<X<1 and where s(t) represents a smoothing of the
observations. The user can experiment with various values for
the continuation parameter y . When **=0, we have the f i r s t
option of the IFIT command, and when 2f=l, we have the f u l l least
squares problem (on the smoothed observations). Observations
must be available on a l l state variables to use this strategy in
the CONTIN command. Another f a c i l i t y available under this
command involves the use of break points. The user can specify
break points at times

T <T <...<T_

corresponding to observation times

The user can also specify a continuation parameter vector ^ for
the break points. As we integrate the i n i t i a l value problem
through the break point at time T_. , u i s reset according to

u(T.)=Au"(T-) + (I-A)s(T-)

where A=diag («<v ,.. . , , and u"(T,-) i s the result obtained by
integrating up to time T,- . The user also has the chance to
weight the break points with weights w,,...,w.. F i n a l l y , when
break points alone are employed (_=1), observations need not be
available on a l l state variables. The components of e<
corresponding to unobserved state variables should be set equal
to 1. This command has no implementation r e s t r i c t i o n s on the
number of state variables.

APPENDIX A

205

APPENDIX B

SELECTED PROGRAM LISTINGS

In this appendix we give selected l i s t i n g s from the code that

defines PARFIT. PARFIT i s coded in ALGOL W, and thus the

l i s t i n g s given below should be f a i r l y easy to read. In the

interests of brevity and c l a r i t y , we have replaced a l l

input/output statements with descriptive pseudo-statements

indicated by %INPUT and %OUTPUT. In these statements, actual

variables in the ALGOL W code are enclosed in brackets. PARFIT

performs a major portion of i t s input and output using FORTRAN

subroutines. This was done mainly to take advantage of the good

"user proof" set of FORTRAN c a l l a b l e free format input

procedures available at the University of B r i t i s h Columbia.

External procedures are indicated by %EXTERNAL in the following

l i s t i n g s . The l a s t few pages of l i s t i n g s are devoted to the

declaration statements for the external procedures not

previously l i s t e d . B rief descriptions of the functions of these

procedures are also included. Occasionally, PARFIT performs

operations on MTS (Michigan Terminal System) f i l e s . These

operations are indicated with %FILE in the following l i s t i n g s .

i

APPENDIX B

206

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Main driving program for PARFIT

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

BEGIN
COMMENT MAIN DRIVING PROGRAM FOR PARFIT
START BY SETTING UP SIZE INFORMATION;
INTEGER N_STATE , N_PAR , N_STATE_OBS , N__OBS , MAX__PTS ;
STRING(31) MODEL;
STRING(1) ANS;
LOGICAL BATCH;
LONG REAL INITIAL_TIME;
COMMENT %EXTERNAL CMD_AL, CHECK__BATCH;
COMMENT %EXTERNAL GEAR, TRAP, SVD_AL,
MARQUARDT, PARFIT;
COMMENT EXECUTION BEGINS HERE

###;
COMMENT ASSIGN UNIT NUMBERS FOR OUTPUT;
COMMENT EMPTY TEMPORARY FILES;
COMMENT DETERMINE IF IN BATCH MODE;
CHECK_BATCH(BATCH);
COMMENT IF IN BATCH OPTIMIZATION/INTEGRATION
INFORMATION IS WRITTEN OUT DIRECTLY
BY ASSIGNING SAME UNIT NUMBER FOR -SCI AND OUTPUT TO USER;
COMMENT %INPUT FROM DATA FILE
(MODEL),(INITIAL_TIME),(N_STATE),(N_PAR),(N_STATE_OBS),
(N_OBS),(MAX_PTS);
PARFIT (N_STATE , N_PAR,N_STATE_OBS ,N__OBS ,MAX_PTS ,MODEL ,
INITIAL_TIME,BATCH,CHECK_BATCH,GEAR,TRAP,SVD_AL,
MARQUARDT,CMD__AL) ;
IF BATCH=TRUE THEN
COMMENT %FILE TAKE COPY OF -GRAPHSTORE;
ELSE
BEGIN
COMMENT %OUTPUT TO USER
IS A LISTING OF FULL ECHO DESIRED? Y OR N;
COMMENT %INPUT (ANS);
IF ANS="Y" THEN
COMMENT %FILE TAKE COPY OF -ECHO;
COMMENT %OUTPUT TO USER
IS A COPY OF FULL PLOTS AND REPORTS DESIRED? Y OR N;
COMMENT %INPUT (ANS);
IF ANS="Y" THEN
COMMENT %FILE TAKE COPY OF -REPRT, -GRAPHSTORE;
COMMENT %OUTPUT TO USER
IS A COPY OF INTEG./OPT. AND INTERACTIVE FIT
DESIRED Y OR N;
COMMENT %INPUT (ANS);

APPENDIX B

207

IF ANS="Y" THEN
COMMENT %FILE TAKE COPY OF -SC2, -AECHO;
END;

END.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Major procedure defining PARFIT

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE PARFIT(INTEGER VALUE N_STATE,FN_PAR,
N_STATE_OBS,N_OBS,MAX_PTS;
STRING(31) VALUE MODEL;
LONG REAL VALUE INITIAL_TIME;
LOGICAL VALUE BATCH;
PROCEDURE
CHECK_BATCH, GEAR, TRAP, SVD_AL, MARQUARDT, CMD_AL);
BEGIN
COMMENT MAJOR PROCEDURE IN PARFIT

PROCEDURE EG_FUN(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G (*) ;
LONG REAL ARRAY DGY(*,*);
LONG REAL ARRAY DGP(*,*);
LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT INTERFACE TO USER DEFINED G_FUN TO ALLOW
USE OF ENVIRONMENT FOR
SCALING AND FREEZING OF PARAMETERS;
COMMENT %EXTERNAL G_FUN;
INTEGER KK;
LONG REAL ARRAY PS(1::FN_PAR);
LONG REAL ARRAY TDGP,TISEN(1::N_STATE,1::FN_PAR);
IF PFRZ =TRUE THEN
BEGIN
COMMENT COPY NONFROZEN PARAMETERS AND
FROZEN PARAMETERS TO PS;
KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
PS(I):=P(KK);
END

ELSE
PS(I):=FPAR(I);

APPENDIX B

208

END
ELSE
FOR I:=l UNTIL FN_PAR DO PS(I):=P(I);
IF PSCL=TRUE THEN
COMMENT SCALING PRESENT;
FOR I:=l UNTIL FN_PAR DO
IF SCL(I)=1 THEN
PS(I):=LONGEXP(PS(I))
ELSE
IF SCL(I)=2 THEN
PS(I):=PS(I)**2;
G_FUN(T,Y,PS,OPTION,G,DGY,TDGP,TISEN);
CASE ABS OPTION OF

BEGIN
BEGIN
END;
BEGIN
IF PSCL=TRUE OR PFRZ=TRUE THEN
BEGIN
COMMENT HANDLE FREEZING AND SCALING;
KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
IF SCL(I)=1 THEN
BEGIN
FOR J:=l UNTIL N_STATE DO
DGP(J,KK) :=TDGP(J,I)*PS (I) ;
END

ELSE
IF SCL(I)=2 THEN
BEGIN
FOR J:=l UNTIL N_STATE DO
DGP(J,KK):=TDGP(J,I)*2.L*P(KK)
END

ELSE
FOR J:=l UNTIL N_STATE DO
DGP(J,KK):=TDGP(J,I);
END;

END
ELSE
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL FN_PAR DO
DGP(I,J):=TDGP(I,J);
END;
BEGIN
IF OPTION>0 THEN
IF PSCL=TRUE OR PFRZ=TRUE THEN
BEGIN
COMMENT HANDLE FREEZING AND SCALING;

APPENDIX B

209

KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
IF SCL(I)=1 THEN
BEGIN
FOR J:=l UNTIL N_STATE DO
ISEN(J,KK):=TISEN(J,I)*PS(I);
END

ELSE
IF SCL(I)=2 THEN
BEGIN
FOR J:=l UNTIL N_STATE DO
ISEN(J,KK):=TISEN(J,I)*2.L*P(KK);
END

ELSE
FOR J:=l UNTIL N_STATE DO
ISEN(J,KK):=TISEN(J,I);
END;

END
ELSE
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL FN_PAR DO
ISEN (I, J) :=TISEN(I,J) ;
END

END;
END EG_FUN;

COMMENT

PROCEDURE EXTRACT__JACOBIAN (LONG REAL ARRAY JAC (*,*)) ;
BEGIN
COMMENT FROM A COMPLETE JACOBIAN AT ALL POINTS HIT AND ON
ALL STATE VARIABLES, EXTRACT INTO JAC THE JACOBIAN
DIRECTLY ASSOCIATED WITH THE OBSERVATIONS TAKEN,
AND INCORPORATING THE WEIGHTS ON THE OBSERVATIONS;
INTEGER M;
COMMENT SET UP WEIGHTING SCALING OF LEAST SQUARES JAC;
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_OBS DO
WT_VEC ((1-1) *N_STATE__OBS+J) :=WT(I ,J) ;
FOR K:=l UNTIL N_PAR DO
BEGIN
M:=0;
FOR I:=l UNTIL N_PTS__HIT DO
IF OBS_STATUS(I)~=0 THEN
FOR J:=l UNTIL N_STATE_OBS DO
BEGIN
M:=M+1;
JAC (M,K) :=JACOBIAN ((I-1) *N__STATE+STATES_OBS (J) ,K)
*WT_VEC(M);

APPENDIX B

210

END;
END;

END EXTRACT_JACOBIAN;
COMMENT

PROCEDURE STANDARD_HIT(LONG REAL VALUE INITIAL_TIME;
INTEGER ARRAY OBS_STATUS(*);
LONG REAL ARRAY OBS_PLACE(*);
INTEGER VALUE N_OBS;
LONG REAL ARRAY PTS_TO_HIT(*);
INTEGER RESULT N_PTS_HIT);
BEGIN
COMMENT SET SAMPLE TIMES AS INITIAL TIME AND
OBSERVATION TIMES;
I:=l;
PTS_TO_HIT(l):=INITIAL_TIME;
OBS_STATUS(1):=0;
IF ABS(OBS_PLACE(1)-INITIAL_TIME)<1.1-5 THEN
BEGIN
OBS_STATUS(1):=1;
I: =0;
END;

FOR J:=2-I UNTIL N_OBS DO
BEGIN
PTS_TO_HIT(J+I):=OBS_PLACE(J);
OBS_STATUS(J+I):=J;
END;

N_PTS_HIT:=N_OBS+I;
END STANDARD_HIT;

COMMENT

PROCEDURE COPY_TRANS(LONG REAL ARRAY A(*,*);
LONG REAL ARRAY B (* , *) ;
LONG REAL ARRAY JA(*,*);
LONG REAL ARRAY JB(*,*);
INTEGER VALUE M,N,JM,JN,AUX_INT);
BEGIN
COMMENT TO REDUCE PAGING, INTEGRATION
PROCEDURES INSERT DATA BY
COLUMNS IN NXM ARRAY B,THEN B(TRANSPOSE) IS COPIED TO A
TO ACCESS A BY COLUMNS FOR PLOTTING ETC.;
FOR J:=l UNTIL N DO
FOR I:=l UNTIL M DO
A(I,J):=B(J,I);
IF AUX_INT=1 THEN
FOR J:=l UNTIL JN DO
FOR I:=l UNTIL JM DO
JA(I,J):=JB(J,I);
END COPY_TRANS;

COMMENT

APPENDIX B

211

COMMENT %EXTERNAL SPLINT_AL, SPLN_AL, DSPLN_AL,
HERMIT_AL, HERM, DHERM, ECHOl;
PROCEDURE READ_CMD_DATA(INTEGER ARRAY CMD_DATA(*));

BEGIN
COMMENT READ A STRING OF INTEGERS SEPARATED
BY BLANKS UNTIL A
ZERO IS ENCOUNTERED, STORE THE INTEGERS INCLUDING THE ZERO
IN THE VECTOR CMD_DATA;
INTEGER I;
I: =1;
COMMENT %INPUT (CMD_DATA(I));
WHILE CMD_DATA(I)~ = 0 DO

BEGIN
I: =1+1;
COMMENT %INPUT (CMD_DATA(I));
END;

END READ_CMD_DATA;
COMMENT

COMMENT %EXTERNAL PLOT_COMMAND;
COMMENT VARIABLE DECLARATIONS FOLLOW

INTEGER ARRAY SCL,FRZ(1::FN_PAR);
LONG REAL ARRAY CREOBS_JOINTS(1::15);
LONG REAL ARRAY CREOBS_VAL(1::15);
LONG REAL ARRAY CREOBS(1::MAX_PTS);
LONG REAL ARRAY DCREOBS(1::MAX_PTS);
LONG REAL ARRAY FPAR,START_PAR,SIM_PAR,
INT_PAR,GRADIENT,PAR(1::FN_PAR);
LONG REAL ARRAY OBS_PLACE , RESIDUAL__VECTOR (1: :N_OBS) ;
LONG REAL ARRAY PTS_TO_HIT(1::MAX_PTS);
INTEGER ARRAY STATES_OBS(1::N_STATE_OBS);
LONG REAL ARRAY OBS(1::N_OBS,1::N_STATE_OBS);
LONG REAL ARRAY WT (1: :N__OBS , 1: : N_STATE__OBS) ;
REAL ARRAY WT_VEC(1::N_OBS*N_STATE_OBS);
LONG REAL ARRAY OBS_SMOOTH (1: :MAX_PTS , 1: :N_STATE__OBS) ;
LONG REAL ARRAY JOINTS(1::17,1::N_STATE_OBS);
LONG REAL ARRAY SPLN_COEF(1::30,1::N_STATE_OBS);
LONG REAL ARRAY HERM_COEF(1::16,1::4,1::N_STATE_OBS);
INTEGER ARRAY NJOINTS,N_SPLN_PAR(1::N_STATE_OBS);
LONG REAL ARRAY STATE(1::MAX_PTS,1::N_STATE);
LONG REAL ARRAY JACOBIAN(1::MAX_PTS*N_STATE,1::FN_PAR);
INTEGER DFIT_LIN,NO_CREOBS_JOINTS,CMD_NO,I,N_PTS_HIT;
INTEGER ARRAY OBS_STATUS(1::MAX_PTS);
LONG REAL ARRAY CON(1::FN_PAR);
LONG REAL ARRAY COR,COV(1::FN_PAR,1::FN_PAR);
LONG REAL STD_DEV;
STRING(6) ARRAY COMMANDS(1::30);
STRING(6) CMD;STRING(6) UNIT;
LONG REAL FPROB;INTEGER SMF,WT_FLG;
LONG REAL EPS,HMIN,HMAX;

APPENDIX B

212

INTEGER PLOT_NUMBER,PERCENTILE,AUX_INT,OUTPUT,
KFLAG,METHOD_FLAG,OUTPUTJSUP,OUT_SEG,JAC_OPTION,
INT_PROC,N_PAR,JJ;
STRING(1) ANS;
LOGICAL PFRZ,PSCL,ECHO;
LONG REAL SUM_SQ_RES;
COMMENT

#################INITIALIZATION##################
###;
ECHO:=FALSE;
OUTPUT:=0;
DFIT_LIN:=0;
INT_PROC:=2;
PLOT_NUMBER:=0;
EPS:=.01;
HMIN:=.00001;
HMAX:=5;
METHOD_FLAG:=1;
OUTPUTJSUP: =1;
OUT_SEG:=0;
JAC_OPTION:=0;
PFRZ:=FALSE;PSCL:=FALSE;
FOR I:=l UNTIL FN__PAR DO
FRZ(I):=SCL(I):=0;
N_PAR:=FN_PAR;
COMMENT
DEFINE VECTOR OF COMMAND DESIGNATORS;
COMMANDS (1) : = _ II PLOT "
COMMANDS (2) : = _ II SET ?
COMMANDS (3) : = _ II INTEG " ;
COMMANDS (4) : = _ II FIT " ;
COMMANDS (5) : = QUIT " ;
COMMANDS (6) : = = " REPORT" ;
COMMANDS (7) : = _ II CREATE" ;
COMMANDS (8) : = = 1 1 SAMPLE" ;
COMMANDS (9) : = _ II SMOOTH" /

COMMANDS (10) : = "DFIT
COMMANDS (11) : = "SUSP •I

COMMANDS (12) : = "OPTION •I
COMMANDS (13) : = "STATS
COMMANDS (14) • = "PROBE n
COMMANDS (15) = "WEIGHT II
COMMANDS (16) = "CONTIN •I
COMMANDS (17) = "CREOBS
COMMANDS (18) • = "IFIT •I

COMMANDS (19) • = "FREEZE •I
COMMANDS (20) : = "SCALE II

COMMANDS (21) : = "ECHO •I

COMMANDS (22) : = "LINEAR II
COMMANDS (23) : = "END •I

APPENDIX B

213

COMMENT

COMMENT %OUTPUT TO USER -REPRT (MODEL);
IF MODEL(0|6) ~= "CREATE" THEN
BEGIN
COMMENT READ IN DATA;
COMMENT %INPUT FROM DATA FILE
(OBS) , (OBS_PLACE) , (START__PAR) , (STATES_OBS) , (WT) ,
(WT_FLAG)—0 IF NO WEIGHTS IN DATA FILE;
COMMENT SET ALL WEIGHTS TO 1 IF NOT PRESENT IN DATA FILE;
IF WT_FLG=0 THEN
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_OBS DO
WT(I,J):=1;
COMMENT INITIALIZE PAR TO START_PAR;
FOR I:=l UNTIL FN_PAR DO PAR(I):=FPAR(I):=START_PAR(I);
END;

COMMENT
r

COMMENT READ COMMAND DESIGNATOR AND IDENTIFY COMMAND;
READ_CMD:
COMMENT %OUTPUT TO USER
ENTER COMMAND;
COMMENT %INPUT (CMD);
I:=l;
WHILE COMMANDS(I)~="END " DO

BEGIN
IF COMMANDS(I)=CMD THEN BEGIN CMD_NO:=I;GO TO OUT; END;
I:=1+1;
END;

COMMENT %OUTPUT TO USER
COMMAND IN ERROR, RESPECIFY;
GO TO READ_CMD;
COMMENT

OUT:IF ECHO=TRUE THEN ECH01(2);
CASE CMD_NO OF
BEGIN

BEGIN
COMMENT ### PLOT COMMAND ###;
INTEGER KK;
KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR(I):=PAR(KK);
END;

PLOT_COMMAND(OBS_PLACE,
PTS_TO_HIT, STATE, OBS, OBS_SMOOTH,FPAR,
N_OBS ,N__PTS_HIT,N_STATE_OBS ,N_STATE ,FN_PAR,

APPENDIX B

214

STATES_OBS,PLOT_NUMBER,
READ_CMD_DATA,CMD_AL,CREOBS) ;
END;

COMMENT

BEGIN
COMMENT ### SET COMMAND ###;
INTEGER I;
COMMENT %OUTPUT
GIVE LIST OF PARAMETERS AND VALUES (END WITH 0)
SUBSCRIPTS CORRESPOND TO UNFROZEN PARAMETER VECTOR
% INPUT (IK-
WHILE I~=0 DO

BEGIN
COMMENT %INPUT (FPAR(I)),(I);
END;

I: =0;
FOR J:=l UNTIL FN_PAR DO
IF FRZ(J)=0 THEN
BEGIN
I:=1+1;
PAR(I):=FPAR(J);
END;

END;
COMMENT

BEGIN
COMMENT ### INTEGRATE COMMAND ###;
LONG REAL ARRAY INITY(1::1);
LONG REAL ARRAY INITYP(1::1,1::1);
AUX_INT:=0;
COMMENT %OUTPUT TO USER
IS THE JACOBIAN DESIRED? Y OR N;
COMMENT %INPUT (ANS);
IF ANS="Y" THEN AUX_INT:=1;
BEGIN
LONG REAL ARRAY B (1 : : N__STATE , 1: : N_PTS_HIT) ;
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE);
CASE INT_PROC OF

BEGIN
COMMENT %OUTPUT TO USER
INTEGRATION METHOD AND PERTINENT CONTROL PARAMETERS;
END;

IF OUTPUT~=0 THEN
BEGIN
COMMENT %FILE EMPTY -SCI;
COMMENT %OUTPUT TO -REPRT
OUTPUT REFERENCE NUMBER (OUT_SEG);
CASE INT_PROC OF

BEGIN
COMMENT %OUTPUT TO -REPRT

APPENDIX B

215

INDICATE INTEGRATION METHOD AND
PERTINENT PARAMETERS;
END;

END;
CASE INT_PROC OF

BEGIN
GEAR(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT,
EPS,HMIN,HMAX,N_PAR,AUX_INT,EG_FUN,
KFLAG,OUTPUT,METHOD_FLAG,0,INITY,INITYP);
TRAP(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT,
N_PAR,AUX_INT,EG_FUN,KFLAG,OUTPUT)
END;

AUX_INT:=1;
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE,
N_PTS_HIT*N_STATE,N_PAR,AUX_INT);
END;

JJ:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT_PAR(I):=PAR(JJ);
END

ELSE
INT_PAR(I):=FPAR(I);
END;

COMMENT

BEGIN
COMMENT ### FIT COMMAND ###;
INTEGER I;
LONG REAL ARRAY INITY(1::1);
LONG REAL ARRAY INITYP(1::1,1:: 1) ;
PROCEDURE FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT JACOBIAN GRADIENT AND RESIDUAL INFORMATION;
INTEGER M,N_RES,OUTl;
LONG REAL SUM;
COMMENT INTEGRATE;
IF OUTPUT_SUP=l THEN OUTl:=0 ELSE OUT1:=OUTPUT;
EFLAG:=0;

BEGIN
LONG REAL ARRAY B(1::N_STATE,1::N_PTS_HIT);
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE);
CASE INT_PROC OF

BEGIN

APPENDIX B

216

BEGIN
GEAR(P,PTS_TO_HIT,B,JB,N_STATE,
N_PTS_HIT,EPS,HMIN,HMAX,N_PAR,1,
EG_FUN,KFLAG,0UT1,
METHOD_FLAG,0,INITY,INITYP);
IF KFLAG~=1 THEN BEGIN EFLAG:=1; GO TO OUT; END;
END;
BEGIN
TRAP(P,PTS_TO_HIT, B,JB,N_STATE,
N_PTS_HIT,N_PAR,AUX_INT,EG_FUN,EFLAG,OUTl);
IF EFLAG=1 THEN GO TO OUT;
END

END;
AUX_INT:=1;
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE,
N_PTS__HIT*N_STATE,N_PAR,AUX_INT) ;
END;

EXTRACT_JACOBIAN(JAC);
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_PTS_HIT DO
IF OBS_STATUS(I)~=0 THEN
BEGIN
INTEGER INDEX;
INDEX:=(OBS_STATUS(I)-1)*N_STATE_OBS+J;
RES(INDEX):=(STATE(I,STATES_OBS(J))-
OBS(OBS_STATUS(I), J))*WT_VEC(INDEX);
END;

N_RES:=N_STATE_OBS*N_OBS;
F:=0;
FOR I:=l UNTIL N_RES DO F:=F+RES(I)**2;
SUM_SQ_RES:=F;
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PAR DO
BEGIN
SUM:=0. ;
FOR J:=l UNTIL N_RES DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

OUT:
END FUNC;

COMMENT %OUTPUT
CHOOSE METHOD
MARQUARDT 1
INTERACTIVE 2;
COMMENT %INPUT (I) ;
CASE I OF

BEGIN
BEGIN
COMMENT FIT USING MARQUARDT1S TECHNIQUE ;
LONG REAL LAM,EPS_R,EPS_A;

APPENDIX B

217

COMMENT %OUTPUT TO USER
ENTER STARTING LAMBDA, RELATIVE TOLERENCE,
AND ABSOLUTE TOLERENCE MARQUARDT;
COMMENT %INPUT (LAM),(EPS_R),(EPS_A);
COMMENT %FILE EMPTY -SCI;
COMMENT %OUTPUT
CURRENT OUTPUT REFERENCE NUMBER IS (OUT_SEG)
MARQUARDT USED IN FIT COMMAND (LAM),(EPS_R),(EPS_A);
MARQUARDT (EPS_R, EPS_A, N_OBS*N_STATE__OBS , N_PAR,
FUNC,PAR,LAM,SVD_AL);
END;
BEGIN
COMMENT %EXTERNAL INTERACTIVE_OPT;
IF ECHO=TRUE THEN ECH01(3);
INTERACTIVE_OPT(N_OBS*N_STATE_OBS,N_PAR,FUNC,
PAR,SVD_AL,OBS_PLACE(*), PTS_TO_HIT(*), STATE(*,*),
OBS(*,*), OBS_SMOOTH(*,*), CREOBS(*),
N_OBS,N_PTS_HIT,N_STATE_OBS,
N_STATE, STATES_OBS(*), PLOT_NUMBER,
READ_CMD_DATA, CMD_AL, PLOT_COMMAND);
IF ECHO=TRUE THEN ECHOl(l);
END

END;
JJ:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT_PAR(I) :=PAR(JJ) ;
END

ELSE
INT_PAR(I):=FPAR(I);
END;

COMMENT

BEGIN
COMMENT ### QUIT COMMAND ###;
GO TO FINISHED;
END;

COMMENT

BEGIN
COMMENT ### REPORT COMMAND ###;
INTEGER ARRAY CMD_DATA(1::15);
INTEGER II,UNI;
COMMENT %OUTPUT TO USER
ENTER LIST OF ITEMS TO PRINT (END WITH 0)
GENERAL DATA 1
OBS 2
PAR 3
CREATION 4

APPENDIX B

2

PTS AND STATE V A R S — 5
SMOOTHING DATA 6
JACOBIAN 7
INTEG./OPT. DETAILS-8
S T A T I S T I C A L DATA 9
OPTION SETTINGS 10
WEIGHTS 11
GUESSED OBS 12;
READ_CMD_DATA(CMD_DATA);
FOR IREP:=1 UNTIL 2 DO

BEGIN
COMMENT % F I L E I F IREP=1 OUTPUT TO USER,
I F IREP=2 OUTPUT TO -REPRT;
II:=1;
WHILE CMD_DATA(II)~=0 DO

BEGIN
CASE CMD_DATA(II) OF

BEGIN
BEGIN
COMMENT OPTION 1, GENERAL S I Z E DATA;
COMMENT %OUTPUT (FN_PAR),(N_STATE),(N_STATE_OBS)
(N__OBS) , (STATES_OBS) ;
END;
BEGIN
COMMENT OPTION 2, OBSERVATIONS;
COMMENT %OUTPUT (O B S) , (O B S _ P L A C E) ;
END;
BEGIN
COMMENT OPTION 3, PARAMETER VALUES;
INTEGER KK;
KK:=0;
FOR I : = l UNTIL FN_PAR DO
I F FRZ(I)=0 THEN

BEGIN
KK:=KK+1;
F P A R (I) : = P A R (K K) ;
END;

COMMENT %OUTPUT (START_PAR),(FPAR)
(F R Z) , (S C L) ;
END;
BEGIN
COMMENT OPTION 4, DATA ON MODEL CREATION;
COMMENT %OUTPUT RAMDOM ERROR USED,
SIMULATION PARAMETERS
(S T D _ D E V) , (S I M _ P A R) ;
END;
BEGIN
COMMENT OPTION 5, TIMES, AND STATE VARIABLES;
COMMENT %OUTPUT INTEGRATION PARAMETERS (INT_PAR)
SAMPLE TIMES (P T S _ T O _ H I T) ,
INTEGRATION PROCEDURE (INT_PROC)

APPENDIX

219

INTEGRATION RESULTS (STATE);
END;
BEGIN
COMMENT OPTION 6, SMOOTHING INFORMATION;
CASE SMF OF

BEGIN
BEGIN
COMMENT SPLINE SMOOTHING CASE;
COMMENT %OUTPUT
SPLINE SMOOTHING JOINTS,
SMOOTHED OBSERVATIONS,
SMOOTHED DERIVATIVES ON OBSERVED
STATE VARIABLES;
END;
BEGIN
COMMENT HERMITE CASE;
COMMENT %OUTPUT
HERMITE SMOOTHING JOINTS,
SMOOTHED OBSERVATIONS,
SMOOTHED DERIVATIVES ON OBSERVED
STATE VARIABLES;
END

END;
END;
BEGIN
COMMENT OPTION 7, JACOBIAN OUTPUT;
COMMENT %OUTPUT
INTEGRATION PARAMETERS (INT_PAR);
IF JAC_OPTION=0 THEN
COMMENT %OUTPUT
FULL JACOBIAN ON ALL STATES AT ALL SAMPLE TIMES;
ELSE
COMMENT %OUTPUT
LEAST SQUARES JACOBIAN;
END;
BEGIN
COMMENT OPTION 8, OPTIMIZATION
AND/OR INTEGRATION DATA;
IF BATCH=FALSE THEN
BEGIN
COMMENT %FILE DISPLAY -SCI
TO USER IF (UNIT) SPECIFIES
OUTPUT TO USER;
IF UNIT="-REPRT" THEN
BEGIN
STRING(1) ANS;
COMMENT %OUTPUT TO USER
IS INTEGRATION/OPTIMIZATION DATA TO BE
ACCUMULATED FOR LATER OUTPUT Y OR N
%INPUT (ANS);
IF ANS="Y" THEN

APPENDIX B

220

BEGIN
COMMENT %OUTPUT TO -REPRT
DATA ACCUMULATED IN -SC2 OUTPUT REFERENCE
NUMBER IS (OUT_SEG)
%FILE ACCUMULATE -SCI AT END OF -SC2;
OUT_SEG:=OUT_SEG+l;
END;

END;
END;

END;
BEGIN
COMMENT OPTION 9, STATISTICAL DATA;
INTEGER NI;
Nl:=N_OBS-N_PAR;
COMMENT %OUTPUT
F DISTRIBUTION VALUE AT (PERCENTILE) PERCENT WITH
(N_PAR) DEGREES OF FREEDOM IN NUMERATOR AND
(NI) DEGREES OF FREEDON IN DENOMINATOR
IS (FPROB),
SUM OF SQUARES OF RESIDUALS (SUM_SQ_RES),
CRRRELATION MATRIX(COR), COVARIANCE MATRIX (COV),
PARAMETERS (PAR), CONFIDENCE INTERVALS (CON);
END;
BEGIN
COMMENT OPTION 10 REPORT ON OPTION SETTINGS;
COMMENT %OUTPUT
OPTION SETTINGS:
OUTPUT FLAG (OUTPUT),
OUTPUT SUPPRESSION FLAG (OUTPUT_SUP),
JACOBIAN OUTPUT MODE (JAC_OPTION),
GEAR PROGRAM (METHOD_FLAG),
GEAR PROGRAM EPS (EPS),
GEAR PROGRAM MINIMUM AND
MAXIMUM STEP (HMIN), (HMAX),
INTEGRATION METHOD (INT_PROC);
END;
BEGIN
COMMENT OPTION 11 REPORT ON WEIGHTS;
COMMENT %OUTPUT
OBSERVATION TIMES (OBS_PLACE),
STATES OBSERVED (STATES_OBS),
WEIGHTING FACTORS (WT);
END;
BEGIN
COMMENT OPTION 12 CREATED OBSERVTIONS DATA;
COMMENT %OUTPUT
JOINTS OF INTERPOLATING SPLINE (CREOBS_JOINTS)
ORDINATES FOR INTERPOLATING SPLINE (CREOBS_VAL)
CREATED OBSERVATIONS (CREOBS)
AND DERIVATIVES (DCREOBS)
AT SAMPLE TIMES (PTS_TO_HIT);

APPENDIX B

221

END
END;

II:=II+1;
END;

END;
END;

COMMENT

BEGIN
COMMENT ### CREATE COMMAND ###;
INTEGER ARRAY INTDATA(1::7);
COMMENT %EXTERNAL CREATE_DATA;
INTDATA(1):=N_STATE;
INTDATA(3):=N_OBS;
INTDATA(4):=FN_PAR;
INTDATA(5):=N_STATE_OBS;
INTDATA(6):=MAX_PTS;
INTDATA(7):=METHOD_FLAG;
CREATE_DATA(SIM_PAR,
START_PAR, FPAR, OBS_PLACE, PTS__TO_HIT, OBS,
STATE, JACOBIAN, OBS_STATUS, STATES_OBS, INTDATA,
MODEL, EG_FUN, GEAR, STANDARD_HIT,STD_DEV,
I N I T I A L J T I M E , KFLAG,OUTPUT);
N_PTS_HIT:=INTDATA(2);
FOR I:=l UNTIL FN_PAR DO
INT_PAR(I) :.=SIM_PAR(I) ;
N_PAR:=FN_PAR;
END;

COMMENT
BEGIN
COMMENT ### SAMPLE COMMAND ###;
COMMENT %EXTERNAL HITPTS;
HITPTS(STANDARD_HIT,
READ_CMD_DATA,
PTS_TO_HIT,
N_PTS_HIT,MAX_PTS,
OBS_STATUS,
OBS_PLACE,
N_OBS,
INITIAL_TIME);
END;

COMMENT

BEGIN
COMMENT ### SMOOTH COMMAND ###;
INTEGER MET;
COMMENT %OUTPUT
SELECT METHOD
CUBIC SPLINE 1
CUBIC HERMITE 2

APPENDIX B

222

%INPUT (MET);
CASE MET OF

BEGIN
BEGIN
COMMENT SPLINE CASE;
INTEGER NJ,DEC-
LONG REAL ARRAY W(l::N_OBS);
FOR I:=l UNTIL N_OBS DO W(I):=1.;
FOR ST:=1 UNTIL N_STATE_OBS DO
BEGIN
COMMENT %OUTPUT
ENTER NUMBER OF JOINTS (MAX 15),
AND JOINT POSITIONS FOR
STATE VARIABLE (STATES_OBS(ST))
%INPUT (NJ);
NJOINTS(ST):=NJ;
FOR I:=l UNTIL NJ DO
COMMENT %INPUT (JOINTS(I,ST));
DEG:=3;
SPLINT_AL(OBS_PLACE,OBS(*,ST),W,N_OBS,
SPLN_COEF(*,ST),
DEG,JOINTS(*,ST)tNJOINTS(ST));
N_SPLN_PAR(ST):=DEG;
COMMENT INSERT VALUES INTO OBS_SMOOTH;
FOR I:=l UNTIL N_PTS_HIT DO
OBS_SMOOTH (I ,ST) : =SPLN_AL (PTS__TO_HIT (I) ,
SPLN_COEF(*,ST),JOINTS(*,ST),
NJOINTS(ST),N_SPLN_PAR(ST));
END;

SMF:=1;
END;
BEGIN
COMMENT HERMITE CASE;
INTEGER NJ;
LONG REAL ARRAY COEF(1::40,1::4);
FOR ST:=1 UNTIL N_STATE_OBS DO

BEGIN
INTEGER FLAG;
REDO:
COMMENT %OUTPUT
ENTER NUMBER OF JOINTS (MAX 15),
AND JOINT POSITIONS FOR
STATE VARIABLE (STATES_OBS(ST))
DO NOT INCLUDE FIRST OR LAST OBSERVATION
%INPUT (NJ);
NJOINTS(ST):=NJ;
JOINTS(1,ST):=OBS_PLACE(1);
FOR I:=l UNTIL NJ DO
COMMENT %INPUT (JOINTS(1+1,ST));
JOINTS(NJ+2,ST):=OBS_PLACE(N_OBS);
IF N_OBS<(2*NJ+4) THEN

APPENDIX B

223

BEGIN
COMMENT %OUTPUT TO USER
EXCESS OF ((2*NJ+4-N_OBS)/2) JOINTS;
GO TO REDO;
END;

HERMIT_AL(OBS_PLACE,OBS(*,ST),JOINTS(*,ST),
N_OBSfNJ,COEF,40,FLAG);
IF FLAG=1 THEN
BEGIN
COMMENT %OUTPUT
SINGULAR PROBLEM—REDISTRIBUTE
JOINTS OR REMOVE SOME JOINTS;
GO TO REDO;
END;

FOR J:=l UNTIL 4 DO
FOR I:=l UNTIL NJ+1 DO
HERM_COEF(I,J,ST):=COEF(I,J);
COMMENT INSERT VALUES INTO OBS SMOOTH;
FOR I:=l UNTIL N_PTS_HIT DO
OBS_SMOOTH (I ,ST) : =HERM (PTS__TO_HIT (I) ,
HERM_COEF(*,*,ST),
JOINTS(*,ST),NJOINTS(ST));
END;

SMF:=2;
END

END;
END;

COMMENT

BEGIN
COMMENT ### DFIT COMMAND ###;
INTEGER ARRAY INTDATA(1::14);
INTEGER METHOD;
COMMENT %EXTERNAL DATAFT_COMMAND, DFIT_CRE,
DFITITER,SPRGN;
INTDATA(1):=N_PTS_HIT;
INTDATA(2):=N_STATE_OBS;
INTDATA(3):=N_STATE;
INTDATA(4):=N_PAR;
INTDATA(5):=SMF;
INTDATA(6):=OUTPUT;
INTDATA (7) : =METHOD__FLAG;
INTDATA(9):=OUTPUT_SUP;
INTDATA(10):=OUT_SEG;
INTDATA(11):=INT_PROC;
INTDATA(12):=DFIT_LIN;
COMMENT %OUTPUT
ENTER METHOD
REGULAR 1
USING GUESSED OBS 2
ITERATED USING SPARSE GN 3;

APPENDIX B

224

CASE METHOD OF
BEGIN
DATAFT_COMMAND(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM, DHERM, INITIAL_TIME,EPS,HMIN,HMAX);
DFIT_CRE(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM__COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,CREOBS,DCREOBS);
SPRGN(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,CREOBS,DCREOBS,DFITITER)
END;

END;
COMMENT

BEGIN
COMMENT ### SUSPEND COMMAND ###;
COMMENT SUSPEND EXECUTION AND RETURN TO OPERATING SYSTEM;
END;

COMMENT

BEGIN
COMMENT ### OPTION COMMAND ###;
INTEGER I;
COMMENT %OUTPUT
DESIGNATE CONTROL PAR. AND NEW VALUE (0 TO END)"
OUTPUT 1
INT. OUTPUT IN OPT. 0-YES, 1-NO 2
JACOBIAN 0-FULL 1-LEAST SQUARES 3
GEAR METHOD 0-ADAMS , 1-STIFF 4
EPS FOR INTEGRATION 5
HMIN FOR INTEGRATION 6
HMAX FOR INTEGRATION 7
INTEGRATION PROCEDURE 1-GEAR, 2-QUICK 8;
WHILE I~=0 DO

BEGIN
CASE I OF

BEGIN
COMMENT %INPUT DEPENDING ON (I)
(OUTPUT),(OUTPUT_SUP),(JAC_OPTION),(METHOD_FLAG),
(EPS),(HMIN),(HMAX),(INT_PROC);
END;

COMMENT %INPUT (I) ;
END;

END;

APPENDIX B

225

COMMENT

BEGIN
COMMENT ### STATS COMMAND ###
THIS COMMAND ASSUMES
THE JACOBIAN AND THE SUM OF THE
SQUARES OF THE RESIDUAL ARE AVAILABLE AT THE
OPTIMUM PARAMETERS OBTAINED;
LONG REAL ARRAY INV,VD(1::N_PAR,1::N_PAR);
LONG REAL ARRAY UD,JAC(1::N_STATE_OBS*N_OBS,1::N_PAR);
LONG REAL ARRAY S(1::N_PAR);
INTEGER M;
LONG REAL SUM,SUMI,SUMJ,SIG_SQ,E;
COMMENT %EXTERNAL FVALUE_AL;
M:=N_STATE_OBS*N_OBS;
COMMENT %OUTPUT
ENTER (INTEGER) PERCENTILE FOR F DISTRIBUTION
COMMENT %INPUT (PERCENTILE);
FPROB:=FVALUE_AL(1.-PERCENTILE/100.,N_PAR,
N_OBS*N_STATE_OBS-N_PAR);
COMMENT %OUTPUT (FPROB);
EXTRACT_JACOBIAN(JAC);
SVD_AL(JAC,S,UD,VD,M,N_PAR,M,N_PAR,0,N_PAR,N_PAR);
FOR J:=l UNTIL N_PAR DO
FOR I:=l UNTIL N_PAR DO
VD(I,J):=VD(I,J)/S(J);
COMMENT FORM INVERSE OF (JACOBIAN TRANSPOSE
TIMES JACOBIAN);
FOR I:=l UNTIL N_PAR DO
FOR J:=l UNTIL N_PAR DO
BEGIN
SUM:=0.;
FOR K:=l UNTIL N_PAR DO
SUM:=SUM+VD(I,K)*VD(J,K);
INV(I,J):=SUM;
END;

SIG_SQ:=SUM_SQ_RES/(M-N_PAR);
E:=N_PAR*FPROB*SIG_SQ;
COMMENT CALCULATE CONFIDENCE INTERVALS;
FOR I:=l UNTIL N_PAR DO
CON(I):=SQRT(E*INV(I,I));
COMMENT CALCULATE COVARIANCE MATRIX;
FOR I:=l UNTIL N_PAR DO
FOR J:=l UNTIL N_PAR DO
COV(I,J):=SIG_SQ*INV(I,J);
COMMENT CALCULATE CORRELATION MATRIX;
FOR I:=2 UNTIL N_PAR DO
FOR J:=l UNTIL 1-1 DO

BEGIN
SUMI:=0;SUMJ:=0;SUM:=0;
FOR K:=l UNTIL N PAR DO

APPENDIX B

226

BEGIN
SUM:=SUM+VD(I , K)*VD(J,K);
SUMI:=SUMI+VD(I ,K)**2;
SUMJ:=SUMJ+VD(J,K)**2;
END;

COR(I,J):=SUM/SQRT(SUMI*SUMJ);
COR(J,I):=COR(I,J);
END;

FOR I:=l UNTIL N_PAR DO COR(I,I):=1.;
END;

COMMENT

BEGIN
COMMENT ### PROBE COMMAND ###;
STRING(1) ANS;
INTEGER M;
LONG REAL ARRAY INITY(1::1);
LONG REAL ARRAY INITYP(1::1,1::1);
LONG REAL ARRAY UD,JAC(1::N_STATE_OBS*N_OBS,1::N_PAR)
LONG REAL ARRAY VD(1::N_PAR,1::N_PAR);
LONG REAL ARRAY S(1::N_PAR);
COMMENT %OUTPUT
IS AN INTEGRATION REQUIRED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
IF OUTPUT~=0 THEN
BEGIN
COMMENT %FILE EMPTY -SCI
%OUTPUT TO -REPRT INTEGRATION IN PROBE
OUTPUT REFERENCE NUMBER IS (OUT_SEG);
CASE INT_PROC OF

BEGIN
COMMENT %OUTPUT TO -REPRT
INTEGRATION CONTROL PARAMETRERS;
END;

END;
BEGIN
LONG REAL ARRAY B(1::N_STATE,1::N_PTS_HIT);
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE)
AUX_INT:=1;
CASE INT_PROC OF

BEGIN
BEGIN
GEAR(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT,
EPS,HMIN,HMAX,N_PAR,1,EG_FUN,KFLAG,OUTPUT,
METHOD__FLAG,
0,INITY,INITYP);
IF KFLAG~=1 THEN GO TO OUT;
END;
BEGIN

APPENDIX B

227

TRAP(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT,
N_PAR,1,
EG_FUN,KFLAG,OUTPUT);
IF KFLAG=1 THEN GO TO OUT;
END

END;
AUX_INT:=1;
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE,
N_PTS_HIT*N_STATE,N_PAR,AUX_INT);
END;

JJ:=0
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT_PAR(I):=PAR(JJ);
END

ELSE
INT_PAR(I):=PAR(I);
END;

M:=N_STATE_OBS*N_OBS;
EXTRACT_JACOBIAN(JAC);
SVD_AL(JAC,S,UD,VD,M,N_PAR,M,N_PAR,0,N_PAR,N_PAR);
COMMENT %OUTPUT TO USER
PARAMETERS (PAR) SINGULAR VALUES (S)
IS A REPORT OF PROBE REQUIRED?, Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT TO -REPRT
###PROBE COMMAND###
PARAMETERS (PAR) SINGULAR VALUES (S);
IF OUTPUT~=0 THEN
BEGIN
COMMENT %OUTPUT
IS INTEG OUTPUT TO BE DISPLAYED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT %FILE DISPLAY -SCI TO USER
%OUTPUT
IS INTEG OUTPUT TO BE ACCUMULATED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT TO -REPRT
INTEGRATION DATA ACCUMULATED IN PROBE
OUTPUT REFERENCE NUMBER IS (OUT_SEG)
%FILE ACCUMULATE -SCI AT END OF -SC2;
OUT_SEG:=OUT_SEG+l;
END;

APPENDIX B

228

END;
END;

END;
OUT:END;

COMMENT

BEGIN
COMMENT ### WEIGHTING COMMAND ###;
INTEGER CAS;INTEGER ARRAY ST_WT(1::N_STATE_OBS+l);
INTEGER ST,SUB,SUB1;
COMMENT %OUTPUT
INDICATE OPTION
SET ALL WEIGHTS TO 1 1
INDIVIDUAL ENTRY OF WEIGHTS 2
%INPUT (CAS);
CASE CAS OF

BEGIN
BEGIN
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_OBS DO
WT(I,J):=1;
END;
BEGIN
COMMENT %OUTPUT
ENTER LIST OF STATE VARIABLES WHOSE
OBSERVATIONS ARE TO BE WEIGHTED. 0 TO END;
READ_CMD_DATA(ST_WT);
ST:=1;
WHILE ST_WT(ST)~=0 DO

BEGIN
FOR I:=l UNTIL N_STATE_OBS DO
IF STATES_OBS(I)=ST_WT(ST) THEN SUB1:=I;
COMMENT %OUTPUT
ENTER SEQUENCE OF OBSERVATION TIME SUBSCRIPTS
AND NEW WEIGHTS FOR STATE VARIABLE
(ST_WT(ST))
ENTER A ZERO SUBSCRIPT TO END INPUT
%INPUT (SUB);
WHILE SUB~=0 DO

BEGIN
COMMENT %INPUT (WT(SUB,SUBl)),(SUB);
END;

ST:=ST+1;
END;

COMMENT %OUTPUT
DO YOU WANT THE WEIGHTS STORED
IN THE FILE -WEIGHT? Y,N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT TO -WEIGHT (WT);

APPENDIX B

229

END;
END

END;
END;

COMMENT

BEGIN
COMMENT ### CONTINUATION COMMAND ###;
INTEGER ARRAY INTDATA(1::15);
COMMENT %EXTERNAL CONTI;
INTDATA(1):=N_PTS_HIT;
INTDATA(2):=N_STATE_OBS;
INTDATA (.3) : =N_STATE ;
INTDATA(4):=N_PAR;
INTDATA(5):=SMF;
INTDATA(6):=OUTPUT;
INTDATA(7):=METHOD_FLAG;
INTDATA(9):=OUTPUT_SUP;
INTDATA(10):=OUT_SEG;
INTDATA(11):=INT_PROC;
INTDATA(12):=DFIT_LIN;
CONTI(EG_FUN,
PAR,0,INTDATA,OBS_SMOOTH,STATES_OBS,
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,EPS,HMIN,HMAX);
END;

COMMENT

BEGIN
COMMENT ### CREOBS COMMAND ###
THIS COMMAND ALLOWS THE USER
TO CREATE OBSERVATIONS FOR AN
UNOBSERVED STATE VARIABLE
COMMENT %OUTPUT
ENTER NO. OF JOINTS AND JOINT POSITIONS
FOR STATE VARIABLE (3-STATES_OBS(1))
INCLUDE FIRST AND LAST SAMPLE TIMES
% INPUT (NO_CREOBS__JOINTS) ;
FOR I:=l UNTIL NO_CREOBS_JOINTS DO
COMMENT %INPUT (CREOBS_JOINTS(I));
COMMENT %OUTPUT
ENTER CORRESPONDING ORDINATES FOR CREATED OBS;
FOR I:=l UNTIL NO_CREOBS_JOINTS DO
COMMENT %INPUT (CREOBS_VAL(I));

BEGIN
REAL ARRAY X,Y(1::NO_CREOBS_JOINTS);
REAL ARRAY P (1: : 7 *NO__CREOBS_JOINTS) ;
REAL ARRAY SI(1::2);
REAL ARRAY T,S,SI,S2(1::N_PTS_HIT);
COMMENT %EXTERNAL SMT;

APPENDIX B

230

FOR I:=l UNTIL NO_CREOBS_JOINTS-l DO P(I):=0;
FOR I:=l UNTIL NO_CREOBS_JOINTS DO

BEGIN
X(I):=CREOBS_JOINTS(I);
Y(I):=CREOBS_VAL(I);
END;

SI (1) : = (Y(2)-Y(1))/(X(2)-X(l)) ;
SI(2):=(Y(NO_CREOBS_JOINTS)-Y(NO_CREOBS_JOINTS-l))/
(X(NO_CREOBS_JOINTS)-X(NO_CREOBS_JOINTS-l));
FOR I:=l UNTIL N_PTS_HIT DO
T(I):=PTS_TO_HIT(I);
SMT(X,Y,P,SI,T,S,SI,S2,NO_CREOBS_JOINTS,
1,N_PTS_HIT);'
FOR I:=l UNTIL N_PTS_HIT DO

BEGIN
CREOBS(I):=S(I);
DCREOBS(I) :=S1 (I) ;
END;

END;
END;

COMMENT

BEGIN
COMMENT ### IFIT COMMAND ###;
INTEGER ARRAY INTDATA(1::14);
INTEGER METHOD;
COMMENT % EXTERNAL CONT, IFIT__CRE , IFITI, SPRGN;
INTDATA(1):=N_PTS_HIT;
INTDATA(2):=N_STATE_OBS;
INTDATA(3):=N_STATE;
INTDATA(4):=N_PAR;
INTDATA(5):=SMF;
INTDATA(6):=OUTPUT;
INTDATA(7):=METHOD_FLAG;
INTDATA(9):=OUTPUT_SUP;
INTDATA(10):=OUT_SEG;
INTDATA(11):=INT_PROC;
INTDATA(12):=DFIT_LIN;
COMMENT %OUTPUT
ENTER METHOD
REGULAR 1
USING GUESSED OBS 2
ITERATED INTEG. SUBSYSTEMS 3
ITERATED USING SPARSE GN 4
%INPUT (METHOD);
CASE METHOD OF

BEGIN
CONTI(EG_FUN,
PAR,1,INTDATA,OBS_SMOOTH,STATES_OBS,
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,

APPENDIX B

231

HERM,DHERM,EPS,HMIN,HMAX);
IFIT_CRE(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,CREOBS,DCREOBS);
IFITI(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF,
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,CREOBS,DCREOBS,IFIT_CRE);
SPRGN(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF,
NJOINTS, <N_SPLN_PAR,SPLN_AL,DSPLN_AL,
HERM,DHERM,CREOBS,DCREOBS,IFIT_CRE)
END;

END;
COMMENT
r

BEGIN
COMMENT ### FREEZE COMMAND ###;
INTEGER SUB,KK;
KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR(I):=PAR(KK);
END;

COMMENT %OUTPUT
ENTER LIST OF SUBSCRIPTS FOR FROZEN PARAMETERS (0 TO END)
(AN ENTRY OF 0 REMOVES ALL FREEZING)
%INPUT (SUB);
IF SUB=0 THEN
BEGIN
PFRZ:=FALSE;
FOR I:=l UNTIL FN_PAR DO FRZ(I):=0;
FOR I:=l UNTIL FN_PAR DO PAR(I):=FPAR(I);
N_PAR:=FN_PAR;
END

ELSE
BEGIN
PFRZ:=TRUE;
WHILE SUB~=0 DO

BEGIN
FRZ(SUB):=1;
COMMENT %INPUT (SUB);
END;

END;
KK:=0;

APPENDIX B

232

FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
PAR(KK):=FPAR(I);
END;

N_PAR:=KK;
END;

COMMENT

BEGIN
COMMENT ### SCALE COMMAND ###;
INTEGER SUB,KK;
COMMENT UPDATE FPAR FOR RESCALING;
KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR(I):=PAR(KK);
END;

COMMENT DESCALE FPAR IN PREPARATION FOR RESCALING;
FOR I:=l UNTIL FN_PAR DO
IF SCL(I)=1 THEN FPAR(I):=LONGEXP(FPAR(I))
ELSE
IF SCL(I)=2 THEN FPAR(I):=FPAR(I)**2;
COMMENT %OUTPUT
ENTER LIST OF PARAMETER SUBSCRIPTS AND
SCALING INDICATORS (0 SUBSCRIPT TO END)
INDICATOR OF 1 GIVES LOG SCALING
INDICATOR OF 2 GIVES SQUARE ROOT SCALING
%INPUT (SUB);
IF SUB=0 THEN
BEGIN
PSCL:=FALSE;
FOR I:=l UNTIL FN_PAR DO SCL(I):=0;
END

ELSE
BEGIN
PSCL:=TRUE;
WHILE SUB~=0 DO

BEGIN
COMMENT %INPUT (SCL(SUB)),(SUB);
END;

END;
COMMENT RESCALE PARAMETER VALUES;
FOR I:=l UNTIL FN_PAR DO
IF SCL(I)=1 THEN FPAR(I):=LONGLN(FPAR(I))
ELSE
IF SCL(I)=2 THEN FPAR(I):=LONGSQRT(FPAR(I));
COMMENT UPDATE PAR;

APPENDIX B

233

KK:=0;
FOR I:=l UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
PAR(KK):=FPAR(I);
END;

END;
COMMENT

BEGIN
COMMENT ### ECHO COMMAND ###;
INTEGER INT;
COMMENT %OUTPUT
ENTER 1 TO BEGIN ECHO, 0 TO END ECHO
%INPUT (INT);
IF INT=1 THEN ECHO:=TRUE ELSE ECHO:=FALSE;
IF INT=1 THEN ECHOl(l)
ELSE ECHOl(3);
END;

COMMENT
BEGIN
COMMENT ### LINEAR COMMAND ###
TO INDICATE LINEARITY IN IFIT, DFIT;
COMMENT %OUTPUT
ENTER 1 IF IFIT, DFIT GIVE LINEAR PROBLEMS
ENTER 0 TO REMOVE LINEARITY SETTING
%INPUT (DFIT_LIN);
END

END;
GO TO READ_CMD;
FINISHED: IF ECHO=TRUE THEN ECHOl(3);
END PARFIT.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Procedure to modify sample times

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE HITPTS (PROCEDURE S T AND A RD__H IT, READ_CMD_DATA;
LONG REAL ARRAY PTS_TO_HIT(*);
INTEGER VALUE RESULT N_PTS_HIT;
INTEGER VALUE MAX_PTS;
INTEGER ARRAY OBS_STATUS(*);
LONG REAL ARRAY OBS_PLACE(*);
INTEGER VALUE N_OBS;
LONG REAL VALUE INITIAL_TIME);
BEGIN

APPENDIX B

234

COMMENT MODIFICATION OF SAMPLE TIMES
(DEFAULT, UNIFORM MESH, OR INSERTION);
INTEGER HIT_OPTION;
COMMENT %OUTPUT TO USER
PICK OPTION
OBS PTS+INITIAL TIME--1
UNIFORM MESH 2
INTERACTIVE INSERTION-3
%INPUT SELECTION IN (HIT_OPTION);
CASE HIT_OPTION OF

BEGIN '
BEGIN
COMMENT STANDARD SCHEME—OBSERVATION POINTS PLUS INITIAL
TIME;
STANDARD_HIT(INITIAL_TIME,OBS_STATUS,OBS_PLACE,N_OBS,
PTS_TO_HIT,N_PTS_HIT);
END;
BEGIN
COMMENT A UNIFORM MESH STARTING WITH INITIAL_TIME;
INTEGER N;LONG REAL DEL;
COMMENT %OUTPUT TO USER
ENTER NUMBER OF POINTS AND POINT SPACING
%INPUT (N),(DEL);
PTS_TO_HIT(l):=INITIAL_TIME;
FOR I:=l UNTIL N DO
PTS_TO_HIT(1+1):=INITIAL_TIME+I*DEL;
N_PTS_HIT:=N+1;
END;
BEGIN
COMMENT INTERACTIVE INSERTION OF POINTS BETWEEN EXISTING
POINTS;
INTEGER L1,L2,K,J;
LONG REAL ARRAY NEW_PTS_TO_HIT(1::MAX_PTS);
INTEGER ARRAY NEW_OBS_STATUS(1::MAX_PTS);
INTEGER ARRAY CMD_DATA(1::21);
COMMENT %OUTPUT TO USER
IS A LISTING OF SAMPLE TIMES REQUIRED?
IF NOT ENTER 0, IF YES ENTER SUBSCRIPT LIMITS
%INPUT (LI);
IF L1~=0 THEN
BEGIN
COMMENT %INPUT (L2)
%OUTPUT TO USER
LIST OF SAMPLE TIMES BETWEEN SUBSCRIPTS L l AND L2;
END;

COMMENT %OUTPUT TO USER
ENTER SEQUENCE OF UPPER INDICIES AND NUMBER OF
TIMES TO INSERT BETWEEN INDICATED TIME AND
PREVIOUS TIME (END WITH 0).;
READ_CMD_DATA(CMD_DATA);
K:=l;

APPENDIX B

235

J:=0;
FOR I:=l UNTIL N_PTS_HIT DO
IF CMD_DATA(K)=I THEN
BEGIN
COMMENT INSERTION OF POINTS;
LONG REAL DEL;
INTEGER N_INS;
N_INS:=CMD_DATA(K+l);
DEL: = (PTS_TO__HIT(I) -PTS_TO_HIT (I-1))/(N_INS+l) ;
FOR R:=l UNTIL N_INS DO
BEGIN
J:=J+1;
NEW_PTS_TO_HIT(J):=PTS_TO_HIT(1-1)+R*DEL;
NEW_OBS_STATUS(J):=0;
END;

J:=J+1;
NEW_PTS_TO_HIT(J):=PTS_TO_HIT(I);
NEW_OBS_STATUS(J):=OBS_STATUS(I);
K:=K+2;
END

ELSE
BEGIN
COMMENT COPYING OF OLD POINT;
J:=J+1;
NEW_PTS__TO_HIT (J):=PTS_TO_HIT(I);
NEW_OBS_STATUS(J):=OBS_STATUS(I);
END;

N_PTS_HIT:=J;
COMMENT COPY NEW ARRAYS;
FOR I:=l UNTIL N_PTS_HIT DO
BEGIN
OBS_STATUS(I):=NEW_OBS_STATUS(I);
PTS_TO_HIT(I):=NEW_PTS TO HIT(I);
END;

END
END;

END HITPTS.

% !

Trapezoidal integration procedure

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%!

PROCEDURE TRAP(LONG REAL ARRAY PAR(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY STATE(*,*);
LONG REAL ARRAY JACOBIAN(*,*);
INTEGER VALUE N_STATE,N_PTS_HIT,N_PAR,AUX_INT;
PROCEDURE FUN;

APPENDIX B

236

INTEGER RESULT EFLAG;
INTEGER VALUE OUTPUT);
BEGIN
LONG REAL ARRAY PREV_G,G,PREV_Y,Y(1::N_STATE);
LONG REAL ARRAY PREV_DGP,DGP,PREV_SENSE,
SENSE(1::N_STATE,1::N_PAR);
LONG REAL ARRAY PREV_DGY,DGY(1::N_STATE,1::N_STATE);
LONG REAL T,PREV_T;
INTEGER OUT_COUNT,M;
LONG REAL CRIT;
PROCEDURE INT_STEP;
BEGIN
COMMENT INTEGRATE WITH TRAP. RULE FROM PREV_T TO T;
COMMENT IF AUX_INT IS NOT 0, INTEGRATE SENSITIVITY EQNS;
LONG REAL ARRAY RES(1::N_STATE);
LONG REAL ARRAY X,DGY_DYP, B (1::N_STATE,1::N_PAR);
LONG REAL ARRAY TMP,A(1::N_STATE,1::N_STATE);
INTEGER ARRAY IPERM(1::2*N_STATE);
LONG REAL H,SUM,SSQD,SSQ;
INTEGER MAXIT;
COMMENT %EXTERNAL FSLE_AL;
MAXIT:=12;
H:=T-PREV_T;
COMMENT NEWTON METHOD ON NONLINEAR SYSTEM FOR TIME STEP;
FOR I:=l UNTIL N_STATE DO Y(I):=PREV_Y(I);
FOR I:=l UNTIL MAXIT DO
BEGIN
FUN(T, Y,PAR,1,G,DGY,DGP,SENSE);
COMMENT FORM JACOBIAN FOR NONLINEAR SYSTEM;
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL N_STATE DO
A(I,J):=-DGY(I,J)*H/2.;
FOR I:=l UNTIL N_STATE DO A(I,I):=1.+A(I,I);
FOR I:=l UNTIL N_STATE DO
B (1,1):=-Y(I)+PREV_Y(I)+H/2.*(G(I)+PREV_G(I));
FSLE_AL(N_STATE,N_STATE,A,1,N_STATE,
B, X,IPERM,N_STATE,TMP);
COMMENT UPDATE AND GET SUP NORM;
SSQD:=0.;
SSQ:=0.;
FOR I:=l UNTIL N_STATE DO
BEGIN
SSQD:=SSQD+X(1,1)**2;
Y(I) :=X(I,1)+Y(I) ;
SSQ:=SSQ+Y(I)**2;
END;

IF SSQ<1.'-3L THEN SSQ:=1.'-3L;
IF (SSQD/SSQ)<(CRIT**2) THEN GO TO OUT;
END;

COMMENT %OUTPUT TO USER
ABNORMAL EXIT IN NEWTON IN INTEGRATION STEP;

APPENDIX B

237

EFLAG:=1;
GO TO STOP;
OUT:IF AUX_INT~=0 THEN

BEGIN
COMMENT THIS BLOCK SOLVES AUXILIARY LINEAR PROBLEMS;
FUN(T,Y,PAR,2,G,DGY,DGP,SENSE);
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL N_PAR DO
BEGIN
SUM:=0.;
FOR K:=l UNTIL N_STATE DO
SUM:=SUM+PREV_DGY(I,K)*PREV_SENSE(K,J);
DGY_DYP(I,J):=SUM;
END;

COMMENT SET UP RIGHT HAND SIDES FOR DISCRETE LINEAR PROB;
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL N_PAR DO
B(I,J):=PREV_SENSE(I,J)+H/2.*(PREV_DGP(I,J)
+DGY_DYP(I,J)+DGP(I,J));
COMMENT SOLVE SYSTEMS;
FSLE_AL(N_STATE,N_STATE,A,N_PAR,N_STATE,B,SENSE,IPERM,
N_STATE,TMP);
END;

END INT_STEP;
COMMENT MAIN PROGRAM STARTS HERE;
CRIT:=1-'-5L;
EFLAG:=0;
OUT_COUNT:=0;
M:=0;
COMMENT SET UP INITIAL CONDITIONS;
PREV_T:=PTS_TO_HIT(1);
FUN(PREV_T,PREV_Y,PAR,3,G,DGY,DGP,PREV_SENSE);
FOR I:=l UNTIL N_STATE DO STATE(I,1):=PREV_Y(I);
FUN(PREV_T,PREV_Y,PAR,1,PREV_G,
PREV_DGY,DGP,SENSE);
IF AUX_INT~=0 THEN
BEGIN
FUN(PREV_T,PREV_Y,PAR,2,PREV_G,
PREV_DGY,PREV_DGP,SENSE);
FOR J:=l UNTIL N__STATE DO
BEGIN
M:=M+1;
FOR L:=l UNTIL N_PAR DO
JACOBIAN (L,M) : =PREV__SENSE (J , L) ;
END;

END;
FOR I:=2 UNTIL N_PTS_HIT DO
BEGIN
T:=PTS_TO__HIT (I) ;
INT_STEP;
COMMENT OUTPUT OPTION;

APPENDIX B

238

I F OUTPUT~=0 THEN
BEGIN
OUT__COUNT: =0UT_C0UNT+1;
I F OUT_COUNT=OUTPUT THEN

BEGIN
COMMENT OUTPUT TO -SCI
TIME AND STATE VARIABLES;
OUT_COUNT:=0;
END;

END;
COMMENT INSERT DATA INTO STATE AND UPDATE;
FOR J : = l UNTIL N_STATE DO

BEGIN
S T A T E (J , I) : = P R E V _ Y (J) : = Y (J) ;
P R E V _ G (J) : = G (J) ;
PREV_T:=T;
FOR K : = l UNTIL N_STATE DO P R E V _ D G Y (J , K) : = D G Y (J , K) ;
END;

COMMENT INSERT DATA INTO JACOBIAN I F REQUIRED;
I F AUX_INT~=0 THEN

BEGIN
FOR J : = l UNTIL N_STATE DO
FOR K : = l UNTIL N_PAR DO

BEGIN
P R E V _ S E N S E (J , K) : = S E N S E (J , K) ;
P R E V _ D G P (J , K) : = D G P (J , K) ;
END;

FOR J : = l UNTIL N_STATE DO
BEGIN
M:=M+1;
FOR L : = l UNTIL N_PAR DO
J A C O B I A N (L , M) : = S E N S E (J , L) ;
END;

END;
END;

STOP:END TRAP.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

S e n s i t i v i t y e q u a t i o n s o l u t i o n and i n t e r f a c e t o G e a r ' s c o d e

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE GEAR(LONG REAL ARRAY P (*) ;
LONG REAL ARRAY P T S (*) ;
LONG REAL ARRAY Y _ P T S (* , *) ;
LONG REAL ARRAY J A C (* , *) ;
INTEGER VALUE N,N_PTS;
LONG REAL VALUE EPS,HMIN,HMAX;
INTEGER VALUE N_PAR,AUX_INT;

APPENDIX B

239

PROCEDURE FUN;
INTEGER RESULT KFLAG;
INTEGER VALUE OUTPUT;
INTEGER VALUE METHOD_FLAG;
INTEGER VALUE INIT;
LONG REAL ARRAY INITY(*);
LONG REAL ARRAY INITYP(*,*));
BEGIN
REAL ARRAY PW(1::N*N);
LONG REAL ARRAY LY(1::8,1::N);
LONG REAL ARRAY LSAVE(1::10,1::N+3);
COMMENT ASSUMING N IS AT MOST 15 IN DECLARATION OF SAVE;
LONG REAL ARRAY LYMAX,LERROR(1::N);
LONG REAL LT,LH,LHMIN,LHMAX,LEPS,LNEXT_PT,HPl,HP2,LTS;
INTEGER JSTART,MAXDER,MAX_STEP,STEP_COUNT,PT;
INTEGER OUT_COUNT;
LONG REAL ARRAY G(1::N);
LONG REAL ARRAY DGY(1::N,1::N);
LONG REAL ARRAY DGP,SENSE(1::N,1::N_PAR);
LONG REAL ARRAY Z(1::N);
COMMENT DECLARATIONS FOR HERMITE INTERPOLATION;
LONG REAL ARRAY HERM_SAVE(1::2,1::N,1::1+N_PAR);
LONG REAL ARRAY INTERP(1::4,1::N,1::1+N_PAR);
COMMENT DECLARATIONS FOR AUXILIARY INTEGRATIONS;
LONG REAL ARRAY STORE_DER(1::8,1::N,1::N_PAR);
LONG REAL ARRAY AA(1::8);
INTEGER PASS,ORDER;
INTEGER MJAC;
COMMENT %EXTERNAL DIFF;
LONG REAL PROCEDURE POLYVAL(LONG REAL VALUE X;
LONG REAL ARRAY COEF(*);
INTEGER VALUE N_COEF);
BEGIN
LONG REAL Y;
Y:=0.;
FOR I:=N_COEF STEP -1 UNTIL 2 DO
Y:=X*(COEF(I)+Y);
Y+COEF(1)
END POLYVAL;

PROCEDURE INTERPOLATE_COEF;
BEGIN
LONG REAL ARRAY COEF(1::4);
LONG REAL ARRAY DATA(1::6);
PROCEDURE HERMITE(LONG REAL ARRAY DATA(*);
LONG REAL ARRAY COEF(*));

BEGIN
COMMENT CUBIC HERMITE INTERPOLATION. DATA
CONTAINS ABSCISSAE, ORDINATES, AND
SLOPES IN PAIRS. COEF CONTAINS THE
COEFFICIENTS STARTING WITH THE CONSTANT
TERM IN THE CUBIC;

APPENDIX B

240

COEF (4) : = (DATA(5)+DATA(6)) / (DATA (2) -DATA (1')) **2
-2.0L*(DATA(4) -
DATA(3))/(DATA(2)-DATA (1))**3;
COEF(3):=(DATA(6)-DATA(5))/(2.0L*(DATA(2)-DATA(1)))
-1.5L*(DATA(2)+DATA(1))*COEF(4);
COEF(2):=DATA(5)-3.0L*DATA(1)**2*COEF(4)
-2.0L*DATA(1)*COEF(3);
COEF(l):=DATA(3)-DATA(1)**3*COEF(4)-DATA(1)**2*COEF(3)
-DATA(1)*COEF(2);
END HERMITE;

DATA(1):=LT-HPl;
DATA(2):=LT;
FOR I:=l UNTIL N DO
BEGIN
DATA(3):=HERM_SAVE(1,1,1);
DATA(4):=LY(1,1);
DATA(5):=HERM_SAVE(2,1,1);
DATA(6):=LY(2,I)/HP1;
HERMITE(DATA,INTERP(*,1,1)) ;
IF AUX_INT~=0 THEN
FOR K:=l UNTIL N_PAR DO
BEGIN
COMMENT INTERPOLATION ON AUXILIARY PROBLEMS;
DATA(3):=HERM_SAVE(1,1,K+l);
DATA(4):=STORE_DER(l,I,K);
DATA(5):=HERM_SAVE(2,1,K+l);
DATA(6):=STORE_DER(2,I,K)/HPl;
HERMITE(DATA,INTERP(*,I,K+l));
END;

END;
END INTERPOLATE_COEF;

COMMENT
MANAGEMENT PROGRAM STARTS HERE;
OUT_COUNT:=0; PASS:=1; MJAC:=0;
MAX_STEP:=200;
COMMENT ONLY USE UP TO FOURTH ORDER METHOD
CONSISTENT WITH INTERPOLATION;
MAXDER:=4; LHMAX:=HMAX; LHMIN:=HMIN;
LEPS:=EPS; PT:=2;
LH:=(PTS(2)-PTS(1))/3;
COMMENT MAKE SURE STARTING H IS LESS THAN .1;
IF LH>.1 THEN LH:=.l;
COMMENT FOR USE WHEN AUX_INT~=0;
HP2:=LH;
COMMENT INITIALIZE;
IF INIT=1 THEN
BEGIN
FOR I:=l UNTIL N DO Z(I):=INITY(I);
END

ELSE
FUN(PTS(1),Z,P,-3,G,DGY,DGP,SENSE);

APPENDIX B

241

FOR I:=l UNTIL N DO
BEGIN
LY(1,I):=Z(I);
Y_PTS(1,1):=Z (I) ;
LYMAX(I):=1.;
END;

COMMENT INITIALIZE NON JACOBIAN PART OF HERM_SAVE;
FOR I:=l UNTIL N DO HERM_SAVE(1,I,1):=Z(I);
FUN(PTS(1),Z,P,-1,G,DGY,DGP,SENSE);
FOR I:=l UNTIL N DO HERM_SAVE(2,1,1):=G(I);
LT:=PTS (1) ;
STEP_COUNT:=0;
LNEXT_PT:=PTS(PT);
JSTART:=0;
COMMENT USE MULTISTEP METHOD SUITABLE FOR STIFF PROBLEMS;
WHILE PT<=N_PTS DO

BEGIN
STEP_COUNT:=STEP_COUNT+l;
IF STEP_COUNT>MAX_STEP THEN
BEGIN
COMMENT IOUTPUT TO USER
OVER (MAX_STEP) STEPS USED IN GEAR—GAVE UP;
GO TO STOP;
END;

COMMENT FOR USE WITH AUX_INT~=0;
LTS:=LT;
DIFF(N,LT,LY,LSAVE,LH,LHMIN,LHMAX,LEPS,METHOD_FLAG,LYMAX,
LERROR,KFLAG,JSTART,MAXDER,AA,ORDER,FUN,P,PW);
COMMENT PROCESS COMPLETION CODE;
IF KFLAG<0 THEN
BEGIN
CASE ABS KFLAG OF

BEGIN
COMMENT %OUTPUT
PRINT TO USER LINE INDEXED BY KFLAG
H=HMIN USED, ERROR NOT ATTAINED
MAX ORDER SPECIFIED IS TOO LARGE
NO CORRECTOR COMVERGENCE FOR H>HMIN
REQUESTED ERROR TOO SMALL FOR PROB.;
END;

IF OUTPUT~=0 THEN
CASE ABS KFLAG OF
BEGIN
COMMENT %OUTPUT TO -SCI THE SAME MESSAGE
AS SENT TO USER IN LAST OUTPUT STATEMENT;
END;

GO TO STOP;
END;

HPl:=LT-LTS;
LTS:=LT;
IF AUX INT~=0 THEN

APPENDIX B

242

BEGIN
INTEGER ARRAY IPERM(1::2*N);
LONG REAL ARRAY TMPR,U(1::N,1::N);
LONG REAL ARRAY B,F_PRED(1::N,1::N_PAR);
COMMENT %EXTERNAL FSLE_AL;
COMMENT AUXILIARY SYSTEMS BEING INTEGRATED;
IF PASS=1 THEN
BEGIN
COMMENT FIRST PASS INITIALIZE VARIABLES;
IF INIT=1 THEN
BEGIN
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
SENSE(J,K):=INITYP(J,K);
END

ELSE
FUN(PTS(1),Y_PTS(1,*),P,3,G,DGY,DGP,SENSE);
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
STORE_DER(1,J,K):=SENSE(J,K);
FOR J:=l UNTIL N DO
BEGIN
MJAC:=MJAC+1;
FOR L:=l UNTIL N_PAR DO
JAC(L,MJAC):=STORE_DER(l,J,L);
END;

COMMENT INITIALIZE FIRST DERIVATIVE PART OF STORE_DER;
FUN(PTS(1),Y_PTS(1,*),P,1,G,DGY,DGP,SENSE);
FUN(PTS(1),Y_PTS(1,*),P,2,G,DGY,DGP,SENSE);
FOR K:=l UNTIL N_PAR DO
FOR I:=l UNTIL N DO
BEGIN
LONG REAL SUM;
SUM:=0.;
FOR J:=l UNTIL N DO
SUM:=SUM+DGY(I,J)*STORE_DER(1,J,K);
STORE_DER(2,I,K):=HP2*(SUM+DGP(I,K));
END;

COMMENT INITIALIZE PART OF HERM_SAVE FOR JACOBIAN;
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
BEGIN
HERM_SAVE(1,J,K+l):=STORE_DER(1,J,K);
HERM_SAVE(2,J,K+l):=STORE_DER(2,J,K)/HP2;
END;

PASS:=2;
END;

IF HP1~=HP2 THEN
BEGIN
COMMENT STEP HAS CHANGED AND STORED DERIVATIVES
NEED RESCALING;

APPENDIX B

243

LONG REAL RATIO,FACTOR;
FACTOR:=1.L;
RATIO:=HP1/HP2;
FOR I:=2 UNTIL ORDER+1 DO

BEGIN
FACTOR:=FACTOR*RATIO;
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
STORE_DER(I,J,K):=STORE_DER(I,J,K)*FACTOR;
END;

END;
COMMENT UPDATE HP2;
HP2:=HP1;
COMMENT FIND PREDICTED VALUE BY MULTIPLYING STORE_DER BY
PASCAL TRIANGLE MATRIX;
FOR K:=l UNTIL N_PAR DO
FOR J:=2 UNTIL ORDER+1 DO
FOR J1:=J UNTIL ORDER+1 DO

BEGIN
INTEGER J2;
J2:=ORDER-Jl+J;
FOR I:=l UNTIL N DO
STORE_DER(J2,I,K):=STORE_DER(32,I,K)
+STORE_DER(J2+l,I,K);
END;

COMMENT SAVE HPl TIMES PREDICTED
R.H.S. TO DE'S IN F_PRED;
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
F_PRED(J,K):=STORE_DER(2,J,K);
COMMENT SET UP R.H. SIDES FOR ALGEBRAIC LINEAR SYSTEMS;
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
B(J,K):=STORE_DER(l,J,K)-AA(l)*STORE_DER(2,J,K);
COMMENT ADD IN INHOMOGENEOUS TERMS;
FOR I:=l UNTIL N DO Z(I):=LY(1,1);
FUN(LT,Z,P,2,G,DGY,DGP,SENSE);
FOR K:=l UNTIL N_PAR DO
FOR J:=l UNTIL N DO
B(J,K):=B(J,K)+HP1*AA(1)*DGP(J,K);
COMMENT SET UP MATRIX FOR LINEAR PROBLEMS;
FOR I:=l UNTIL N DO Z(I):=LY(1,1);
FUN(LT,Z,P,1,G,DGY,DGP,SENSE);
FOR I:=l UNTIL N DO
FOR J:=l UNTIL N DO
U(I,J):=-HPl*AA(1)*DGY(I,J);
FOR I:=l UNTIL N DO U(I,I):=U(I,I)+1.;
COMMENT SOLVE LINEAR SYSTEMS;
FSLE_AL(N,N,U,N_PAR,N,B,SENSE,IPERM,N,TMPR);
COMMENT STORE SOLUTION AT NEW TIME IN STORE_DER;
FOR J:=l UNTIL N DO

APPENDIX B

244

FOR K:=l UNTIL N_PAR DO
STORE_DER(1, J , K):=SENSE(J,K);
COMMENT FIND R.H.S. OF DE 1S AT NEW POINT;
FOR K:=l UNTIL N_PAR DO
FOR I:=l UNTIL N DO

BEGIN
LONG REAL SUM;
SUM:=0.;
FOR J:=l UNTIL N DO
SUM:=SUM+DGY(I,J)*STORE_DER(1,J,K);
STORE_DER(2,I,K):=HP1*(SUM+DGP(I,K));
END;

COMMENT CORRECT HIGHER DERIVATIVES;
IF ORDER>1 THEN
FOR I:=3 UNTIL ORDER+1 DO
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
STORE_DER(I,J,K):=STORE_DER(I,J,K)+AA(I)
*(STORE_DER(2,J,K)-F_PRED(J,K));
COMMENT IF REQUIRED INSERT NEXT HIGHER DERIVATIVES
IN STORE_DER;
IF JSTART>ORDER THEN
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
STORE_DER(ORDER+2,J,K):=AA(ORDER+1)*(STORE_DER(2,J,K)
-F_PRED(J,K))/(ORDER+1);
END;

COMMENT OUTPUT OPTION;
IF OUTPUT~=0 THEN

BEGIN
OUT_COUNT:=OUT_COUNT+l;
IF OUT_COUNT=OUTPUT THEN

BEGIN
LONG REAL ARRAY V(1::N);
LONG REAL TIME;
FOR I:=l UNTIL N DO V (I) :=LY(1,1) ;
TIME:=LT;
COMMENT %OUTPUT TO -SCI
TIME AND STATE VARIABLES;
OUT_COUNT:=0;
END;

END;
COMMENT CHECK IF PASSED A POINT;
IF LT> =LNEXT_PT THEN

BEGIN
LONG REAL E;
INTERPOLATE_COEF;
WHILE LT>=LNEXT_PT DO

BEGIN
E : = (PTS(PT)-LT)/HP1;
COMMENT INSERT DATA INTO Y_PTS;

APPENDIX B

245

FOR I:=l UNTIL N DO
Y_PTS(I,PT):=POLYVAL(PTS(PT),INTERP(*,I,1),4);
COMMENT INSERT DATA INTO JACOBIAN IF REQUIRED;
IF AUX_INT~=0 THEN
FOR J:=l UNTIL N DO
BEGIN
MJAC:=MJAC+1;
FOR L:=l UNTIL N_PAR DO
JAC(L,MJAC):=POLYVAL(PTS(PT),INTERP(*,J,L+l),4);
END;

PT:=PT+1;
IF PT>N_PTS THEN GO TO STOP;
LNEXT_PT:=PTS(PT);
END;

STEP_COUNT:=0;
END;

COMMENT UPDATE HERM_SAVE;
FOR J:=l UNTIL N DO
BEGIN
HERM_SAVE(1,J,1):=LY(1,J);
HERM_SAVE(2,J,1):=LY(2 , J)/HPl;
END;

IF AUX_INT~=0 THEN
FOR J:=l UNTIL N DO
FOR K:=l UNTIL N_PAR DO
BEGIN
HERM_SAVE(1,J,K+1):=STORE_DER(1 , J , K);
HERM_SAVE(2 , J , K+l) :=STORE_DER(2,J,K)/HPl;
END;

COMMENT RESET JSTART;
JSTART:=1;
END;

STOP:END GEAR.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Marguardt procedure

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE MARQUARDT(LONG REAL VALUE EPS_R,EPS_A;
INTEGER VALUE M,N; PROCEDURE FUNC;
LONG REAL ARRAY P(*); LONG REAL VALUE LAM;
PROCEDURE SVD_AL);

BEGIN
COMMENT MARQUARDT-LEVENBERG TECHNIQUE—AN ADAPTATION OF
THE VERSION USED BY BARD (1970), SIAM J . NUMER. ANAL. 7,
157-186—OPTIONAL SCALING OF PROBLEM IF EPS_R, EPS_A ARE
BOTH NEGATIVE;
LONG REAL ARRAY UD,JAC(1::M,1::N);

APPENDIX B

246

LONG REAL ARRAY RES,RES1(1::M);
LONG REAL ARRAY Pi,S,GRAD,GRADl,AUX_VEC,Z,DELTA,C(1::N);
LONG REAL ARRAY VD(1::N,1::N);
INTEGER ERROR_COUNT,MAXIT,MAXINT,MAXERR,EFLAG,DECLAM;
LONG REAL F,Fl,SUM; LOGICAL CONV,SCALE;
LONG REAL PROCEDURE COSINE(LONG REAL ARRAY V l (*) ;
LONG REAL ARRAY V2(*));
BEGIN
COMMENT FIND COSINE OF ANGLE BETWEEN VI AND V2;
LONG REAL S1,S2,S3;
S1:=0.L; S2:=0.L; S3:=0.L;
FOR I:=l UNTIL N DO
BEGIN
S1:=S1-V1(I)*V2(I);
S2:=S2+V1(I)**2;
S3:=S3+V2(I)**2;
END;

Sl/LONGSQRT(S2*S3)
END COSINE;

COMMENT INITIALIZE AND SET BOUNDS ON EFFORT IN OPTIMIZATION
ATTEMPT;
MAXIT:=25; MAXINT:=4; MAXERR:=3; CONV:=FALSE;
ERROR_COUNT:=0;
DECLAM:=0;
IF EPS_R<0 AND EPS_A<0 THEN
BEGIN
SCALE:=TRUE;
EPS_R:=-EPS_R;EPS_A:=-EPS_A;
COMMENT %OUTPUT TO USER, -SCI
SCALING USED IN MARQUARDT;
END

ELSE
BEGIN
SCALE:=FALSE;
FOR I:=l UNTIL N DO C(I):=1.L;
END;

COMMENT INITIAL LEAST SQUARES FUNCTION EVALUATION;
FUNC(P,F,RES,JAC,GRAD,EFLAG);
IF EFLAG=1 THEN
BEGIN
COMMENT HANDLE ERROR RETURN
%OUTPUT TO USER, -SCI
ERROR IN FIRST FUNCTION CALL IN MARQUARDT;
WRITE("ERROR IN FIRST FUNC CALL IN MARQUARDT");
GO TO STOP;
END;

COMMENT
%OUTPUT TO USER, -SCI
INITIAL SUM OF SQUARES (F);
COMMENT %OUTPUT TO USER
INITIAL SUM OF SQUARES IS (F);

APPENDIX B

247

FOR ITER:=1 UNTIL MAXIT DO
BEGIN
IF SCALE=TRUE THEN
BEGIN
LONG REAL SUM;
FOR J:=l UNTIL N DO
BEGIN
SUM:=0.L;
FOR I:=l UNTIL M DO
SUM:=SUM+JAC(I,J)**2;
C(J):=LONGSQRT(SUM);
END;
FOR J:=l UNTIL N DO
FOR I:=l UNTIL M DO
JAC(I,J):=JAC(I,J)/C(J);
FOR I:=l UNTIL N DO
GRAD(I):=GRAD(I)/C(I);
END;

COMMENT FIND SINGULAR VALUE DECOMPOSITION OF JAC;
SVD_AL(JAC,S,UD,VD,M,N,M,N,0,N,N) ;
IF ITER=1 THEN
BEGIN
COMMENT INITIALIZE LAM;
LAM: = (IF LAM<0 THEN .OIL ELSE LAM);
END;

COMMENT PREPARE FOR AN ITERATION;
FOR I:=l UNTIL N DO

BEGIN
SUM:=0.L;
FOR J:=l UNTIL M DO SUM:=SUM+UD(J,I)*RES(J);
AUX_VEC(I):=SUM*S(I);
END;

COMMENT DETERMINE LAM;
REDO:FOR I:=l UNTIL N DO
Z(I):=AUX_VEC(I)/(S(I)**2+LAM);
FOR I:=l UNTIL N DO

BEGIN
SUM:=0.L;
FOR J:=l UNTIL N DO SUM:=SUM+VD(I,J)*Z(J);
DELTA(I):=-SUM;
END;

FOR I:=l UNTIL N DO Pi (I) :=P(I)+DELTA(I)/C(I) ;
COMMENT
%OUTPUT TO -SCI
TRIAL LAMBDA (LAM), TRIAL PARAMETER VECTOR (PI);
COMMENT FIND LEAST SQUARES FUNCTION AT TRIAL PARAMETERS;
FUNC(Pi,F1,RES1,JAC,GRADl,EFLAG);
IF EFLAG=1 THEN
BEGIN
COMMENT HANDLE ERROR RETURN;
ERROR_COUNT:=ERROR_COUNT+l;

APPENDIX B

248

IF ERROR_COUNT=MAXERR THEN
BEGIN
COMMENT
%OUTPUT TO USER, -SCI
(MAXERR) FUNCTION ERRORS;
GO TO STOP;
END

ELSE
BEGIN
LAM:=LAM*10.L;
DECLAM:=0;
GO TO REDO;
END;

END;
ERROR_COUNT:=0;
COMMENT
%OUTPUT TO -SCI
TRIAL SUM OF SQUARES (F l) ;
IF F K F THEN
COMMENT DECREASE LAM AFTER TWO SUCCESSFUL
FUNCTION REDUCTIONS;

BEGIN
DECLAM:=DECLAM+1;
IF DECLAM=2 THEN
BEGIN
LAM:=(IF (.1L*LAM>1.'-10L) THEN .1L*LAM ELSE l . ' - l O L) ;
DECLAM:=0;
END;

COMMENT CHECK FOR CONVERGENCE;
IF (F-FKEPS_R*F1+EPS_A) OR (Fl<EPS_A) THEN CONV:=TRUE;
GO TO UPDATE;
END

ELSE
BEGIN
IF (COSINE(DELTA,GRAD))<.707 THEN
BEGIN
COMMENT INCREASE LAM;
LAM:=10.L*LAM;
DECLAM:=0;
GO TO REDO;
END

ELSE
BEGIN
COMMENT DIRECTION TOO CLOSE TO STEEPEST DESCENT,
THEREFORE DO NOT INCREASE LAM, BUT INTERPOLATE;
LONG REAL GA,R0,Rl,Wl;
COMMENT
%OUTPUT TO USER, -SCI
INTERPOLATING;
GA:=0.L;
R0:=1.L;

APPENDIX B

249

FOR I:=l UNTIL N DO
GA:=GA+DELTA(I)*GRAD(I);
FOR INTERP:=1 UNTIL MAXINT DO

BEGIN
R1:=GA*R0**2/(2.L*(GA*R0+F-F1));
W1:=(IF (.75L*R0<R1) THEN .75L*R0 ELSE R l) ;
R0:=(IF (.25L*R0>W1) THEN .25L*R0 ELSE Wl);
REPEAT:FOR I:=l UNTIL N DO
PI(I):=P(I)+RO*DELTA(I)/C(I);
COMMENT
%OUTPUT TO -SCI
TRIAL PARAMETER VECTOR (P i) ;
COMMENT FUNCTION EVALUATION AT TRIAL PARAMETERS;
FUNC(PI,Fl,RES1,JAC,GRADl,EFLAG);
IF EFLAG=1 THEN

BEGIN
COMMENT HANDLE ERROR RETURN;
ERROR_COUNT:=ERROR_COUNT+l;
IF ERROR_COUNT=MAXERR THEN

BEGIN
COMMENT
%OUTPUT TO USER, -SCI
(MAXERR) FUNCTION ERRORS IN INTERPOLATION PART;
GO TO STOP;
END

ELSE
BEGIN
R0:=R0*.5L;
GO TO REPEAT;
END;

END;
ERROR_COUNT:=0;
COMMENT
%OUTPUT TO USER, -SCI
TRIAL SUM OF SQUARES (Fl) ;
IF F K F THEN

BEGIN
IF (F-FKEPS_R*F1+EPS_A)
OR (FKEPS_A) THEN CONV:=TRUE;
GO TO UPDATE;
END;

END INTERP;
COMMENT
%OUTPUT TO USER, -SCI
(MAXINT) INTERPOLATIONS TRIED, NO REDUCTION
IN SUM OF SQUARES;
GO TO STOP;
END;

END;
UPDATE:
FOR I:=l UNTIL N DO

A P P E N D I X B

250

BEGIN
P(I) :=P1(I) ;
GRAD(I):=GRADl(I);
END;

F:=F1;
COMMENT %OUTPUT TO USER
NEW SUM OF SQUARES IS (F);
FOR I:=l UNTIL M DO RES(I):=RES1(I);
IF CONV=TRUE THEN GO TO FINISHED;
END ITER;

COMMENT
%OUTPUT TO USER, -SCI
OVER (MAXIT) ITERATIONS REQUIRED; GO TO STOP;
FINISHED:
COMMENT
%OUTPUT TO USER, -SCI
FINAL PARAMETERS (P), FINAL GRADIENT (GRAD),
FINAL SUM OF SQUARES (F);
STOP:END MARQUARDT.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Interactive optimization

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE INTERACTIVE_OPT(INTEGER VALUE M,N;
PROCEDURE FUNC;
LONG REAL ARRAY P(*);
PROCEDURE SVD_AL;
LONG REAL ARRAY OBS_PLACE(*);
LONG REAL ARRAY PTS__TO_HIT (*) ;
LONG REAL ARRAY STATE(*,*);
LONG REAL ARRAY OBS(*,*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
LONG REAL ARRAY CREOBS(*);
INTEGER VALUE N_OBS,N_PTS_HIT,N_STATE_OBS
,N_STATE;
INTEGER ARRAY STATES_OBS(*);
INTEGER VALUE RESULT PLOT_NUMBER;
PROCEDURE READ_CMD_DATA;
PROCEDURE CMD_AL;
PROCEDURE PLOT_COMMAND);

BEGIN
STRING(6) ARRAY COMMANDS(1::20);
STRING(6) CMD;
INTEGER CMD_CTR,CMD_NO,TECH,NP,EFLAG,ECT;
LONG REAL LAMDA,DEL,F,TRIAL_F,SUM;
LONG REAL ARRAY AUX_VEC,S,SP,TRIAL_SP,
TRIAL__P , GRAD, TRIAL_GRAD (1: :N) ;

APPENDIX B

251

INTEGER ARRAY FREEZE(1::N);
LOGICAL NUM,INIT,SUCCESS;
LONG REAL ARRAY RES,TRIAL_RES(1::M);
LONG REAL ARRAY TRIAL_JAC,JAC,AJAC,UD(1::M,1::N);
LONG REAL ARRAY VD(1::N,1::N);
COMMENT %EXTERNAL ECHO;
PROCEDURE ECHO_CHECK;
BEGIN
COMMENT ECHO 3270 CONVERSATION BUFFER;
IF ECT>80 THEN
BEGIN
ECHO(2);
END;

ECT:=0;
END ECHO_CHECK;

PROCEDURE MARQ_PREP;
BEGIN
COMMENT EXTRACT JACOBIAN AND PARAMETERS
ON NONFROZEN COMPONENTS;
INTEGER J J ;
LONG REAL SUM;
JJ:=0;
FOR J:=l UNTIL N DO
IF FREEZE(J)=0 THEN
BEGIN
JJ:=JJ+1;
FOR I:=l UNTIL M DO AJAC(I,JJ):=JAC(I,J);
SP(JJ) :=P(J) ;
END;

NP:=JJ;
SVD_AL(AJAC, S , UD, VD, M , N, M , NP , 0 , NP , NP) ;
FOR I:=l UNTIL NP DO

BEGIN
SUM:=0;
FOR J:=l UNTIL M DO
SUM:=SUM+UD(J,I)*RES(J);
AUX_VEC(I):=SUM;
END;

FOR I:=l UNTIL NP DO
AUX_VEC(I):=AUX_VEC(I)*S(I);
END MARQ_PREP;

PROCEDURE INITIALIZE;
BEGIN
COMMENT INITIALIZE;
FUNC(P,F,RES,JAC,GRAD,EFLAG);
IF EFLAG=1 THEN
BEGIN
INIT:=FALSE;
NUM:=FALSE;
GO TO READ_CMD;
END;

APPENDIX B

252

CASE TECH OF
BEGIN

BEGIN
COMMENT STEEPEST DESCENT CASE;
COMMENT I N I T I A L I Z A T I O N AUTOMATIC;
END;
BEGIN
COMMENT MARQUARDT;
MARQ_PREP;
END

END;
INI T : = F A L S E ;
END I N I T I A L I Z E ;

PROCEDURE UPDATE;
BEGIN
CASE TECH OF

BEGIN
BEGIN
COMMENT UPDATE FOR STEEPEST DESCENT;
FOR I : = l UNTIL N DO

BEGIN
P (I) : = T R I A L _ P (I) ;
G R A D (I) : = T R I A L _ G R A D (I) ;
END;

F:=TRIAL_F;
END;
BEGIN
COMMENT UPDATE FOR MARQUARDT;
F:=TRIAL_F;
FOR I : = l UNTIL N DO

BEGIN
P (I) : = T R I A L _ P (I) ;
G R A D (I) : = T R I A L _ G R A D (I) ;
END;

FOR I : = l UNTIL M DO
RES (I) : = T RIAL_RES(I) ;
FOR J : = l UNTIL N DO
FOR I : = l UNTIL M DO
J A C (I , J) : = T R I A L _ J A C (I , J) ;
MARQ_PREP;
END

END;
SUCCESS:=FALSE;
END UPDATE;

COMMENT I N I T I A L I Z E ;
ECT:=0;
ECHO(l);
COMMENT %OUTPUT TO USER -REPRT
######INTERACTIVE OPTIMIZATION ATTEMPT*#####;
INIT:=TRUE;
LAMDA:=.01;

APPENDIX B

253

TECH:=2;
SUCCESS:=FALSE;
NUM:=FALSE;
FOR I:=l UNTIL N DO FREEZE (I) :=0;
COMMENT SET UP COMMAND DESIGNATORS;
COMMANDS(1):="T ";
COMMANDS(2):="M
COMMANDS(3):="N ";
COMMANDS(4):="V ";
COMMANDS(5):="F ";
COMMANDS(6):="DF
COMMANDS(7):="SET ";
COMMANDS(8):="Q ";
COMMANDS(9):="PLOT ";
COMMANDS(10):="END ";
COMMENT READ COMMAND DESIGNATOR AND IDENTIFY;
READ__CMD:
COMMENT %OUTPUT TO USER
****ENTER OPTIMIZATION COMMAND****;
ECHO_CHECK;
COMMENT %INPUT (CMD);
CMD_CTR:=1;
WHILE COMMANDS(CMD_CTR)~="END " DO

BEGIN
IF COMMANDS(CMD_CTR)=CMD THEN
BEGIN CMD_NO:=CMD_CTR;
GO TO OUT;
END;

CMD_CTR:=CMD_CTR+1;
END;

COMMENT %OUTPUT TO USER
COMMAND IN ERROR RESPECIFY;
GO TO READ_CMD;
OUT:CASE CMD_NO OF

BEGIN
BEGIN
COMMENT CHOICE OF TECHNIQUE COMMAND;
STRING(6) MET;
INTEGER TECH1;
ECT:=ECT+1;
TECH1:=TECH;
COMMENT %INPUT (MET);
IF MET="SD " THEN TECH:=1
ELSE
IF MET="MARQ " THEN TECH:=2
ELSE

BEGIN
COMMENT %OUTPUT TO USER
ERROR IN TECHNIQUE SPECIFICATION;
GO TO READ_CMD;
END;

APPENDIX B

254

I F TECH~=TECH1 THEN INIT:=TRUE;
END;
BEGIN
COMMENT MULTIPLY OPTIMIZATION PARAMETER BY A FACTOR;
LONG REAL FACTOR;
ECT:=ECT+3;
COMMENT %INPUT (FACTOR);
CASE TECH OF

BEGIN
DEL:=DEL*FACTOR;
LAMDA:=LAMDA*FACTOR
END;

NUM:=TRUE;
END;
BEGIN
COMMENT NEW OPTIMIZATION PARAMETER;
ECT:=ECT+3;
CASE TECH OF

BEGIN
BEGIN
COMMENT %INPUT (D E L) ;
END;
BEGIN
COMMENT %INPUT (D E L) ;
END

END;
NUM:=TRUE;
END;
BEGIN
COMMENT VIEW COMMAND;
STRING(6) UNIT;
ECT:=ECT+10;
I F INIT=TRUE THEN I N I T I A L I Z E
ELSE I F SUCCESS=TRUE THEN UPDATE;

BEGIN
COMMENT %OUTPUT TO USER
PARAMETERS, GRADIENT, FREEZING;
CASE TECH OF

BEGIN
BEGIN
COMMENT STEEPEST DESCENT;
COMMENT %OUTPUT TO USER
STEEPEST DESCENT CURRENT STEP (D E L) ;
END;
BEGIN
COMMENT MARQUARDT DATA;
COMMENT %OUTPUT TO USER
MARQUARDT, (LAMDA), (S) ;
END

END;
COMMENT %OUTPUT TO USER

APPENDIX B

I

255

CURRENT SUM OF SQUARES (F) ;
END;

END;
BEGIN
COMMENT FREEZE COMMAND;
INTEGER CMP;
I F SUCCESS=TRUE THEN UPDATE;
COMMENT %INPUT (CMP);
WHILE CMP~=0 DO

BEGIN
ECT:=ECT+1;
FREEZE(CMP):=1;
COMMENT %INPUT (CMP);
END ;

INIT:=TRUE;
END;
BEGIN
COMMENT DEFREEZE COMMAND;
INTEGER CMP;
I F SUCCESS=TRUE THEN UPDATE;
COMMENT %INPUT (CMP);
I F CMP=0 THEN

BEGIN
COMMENT REMOVE A L L FREEZING;
FOR I : = l UNTIL N DO F R E E Z E (I) : = 0 ;
END

ELSE
WHILE CMP~=0 DO

BEGIN
ECT:=ECT+1;
FREEZE(CMP):=0;
COMMENT %INPUT (CMP);
END;

INIT:=TRUE;
END;
BEGIN
COMMENT SET COMMAND;
INTEGER CMP;
I F SUCCESS=TRUE THEN UPDATE;
COMMENT %INPUT (CMP);
WHILE CMP~=0 DO

BEGIN
COMMENT %INPUT (P (C M P)) , (CMP);
ECT:=ECT+1;
END;

INIT:=TRUE;
END;
BEGIN
COMMENT QUIT COMMAND;
I F SUCCESS=TRUE THEN UPDATE;
ECHO(3) ;

APPENDIX B

256

GO TO STOP;
END;
BEGIN
COMMENT PLOT COMMAND;
PLOT_COMMAND(OBS_PLACE,
PTS_TO_HIT,STATE,OBS,OBS_SMOOTH,P,
N_OBS,N_PTS_HIT,N_STATE_OBS,N_STATE,N,
STATES_OBS,PLOT_NUMBER,
READ_CMD_DATA,
CMD_AL,CREOBS);
ECT:=ECT+25;
END

END;
COMMENT CARRY OUT NUMERICAL WORK I F REQUIRED;
I F NUM=TRUE THEN

BEGIN
I F INIT=TRUE THEN
I N I T I A L I Z E
ELSE I F SUCCESS=TRUE THEN
UPDATE;
CASE TECH OF

BEGIN
BEGIN
COMMENT STEEPEST DESCENT ITERATION ATTEMPT;
FOR I : = l UNTIL N DO
I F F R E E Z E (I) = 0 THEN
T R I A L _ P (I) : = P (I) - D E L * G R A D (I)
ELSE
T R I A L _ P (I) : = P (I) ;
ECT:=ECT+3;
COMMENT %OUTPUT
TRI A L PARAMETERS (T R I A L _ P) ;
F U N C (T R I A L _ P , T R I A L _ F , T R I A L _ R E S , T R I A L _ J A C
,TRIAL_GRAD,EFLAG);
I F EFLAG=1 THEN

BEGIN
NUM:=FALSE;
GO TO READ_CMD;
END;
BEGIN
I F TRIAL_F<F THEN

BEGIN
COMMENT REDUCED R E S I D U A L — T E L L USER;
ECT:=ECT+3;
COMMENT %OUTPUT TO USER
STEEPEST DESCENT STEP SUCCESSFUL
NEW SUM OF SQUARES (T R I A L _ F) ,
CHANGE I N SUM OF SQUARES (F - T R I A L _ F) ;
SUCCESS:=TRUE;
END

ELSE

APPENDIX B

BEGIN
COMMENT STEP UNSUCCESSFUL;
ECT:=ECT+3;
COMMENT %OUTPUT TO USER
STEEPEST DESCENT DID NOT REDUCE RESIDUAL
NEW SUM OF SQUARES (T R I A L _ F) ;
END;

COMMENT %OUTPUT TO USER
STEP WAS (D E L) ;
END;

END;
BEGIN
COMMENT MARQUARDT ITERATION ATTEMPT;
LONG REAL ARRAY Z(1::N);
INTEGER J J ;
FOR I : = l UNTIL NP DO
Z (I) : = A U X _ V E C (I) / (S (I) * * 2 + L A M D A) ;
FOR I : = l UNTIL NP DO

BEGIN
SUM:=0;
FOR J : = l UNTIL NP DO SUM:=SUM+VD(I,J)*Z(J)
T R I A L _ S P (I) : = S P (I) - S U M ;
END;

JJ:=0
FOR I : = l UNTIL N DO

BEGIN
I F F REEZE(I)=0 THEN

BEGIN
J J : = J J + 1 ;
T R I A L _ P (I) : = T R I A L _ S P (J J)
END

ELSE T R I A L _ P (I) : = P (I) ;
END;
BEGIN
COMMENT %OUTPUT TO USER
TR I A L PARAMETERS (T R I A L _ P) ;
ECT:=ECT+3;
END;

F U N C (T R I A L _ P , T R I A L _ F , T R I A L _ R E S ,
TRIAL__JAC , TRIAL_GRAD , EFLAG) ;
I F EFLAG=1 THEN

BEGIN
NUM:=FALSE;
GO TO READ_CMD;
END;
BEGIN
I F TRIAL_F<F THEN

BEGIN
COMMENT REDUCED R E S I D U A L — T E L L USER;
ECT:=ECT+3;
COMMENT %OUTPUT TO USER

258

MARQUARDT STEP SUCCESSFUL
NEW SUM OF SQUARES (TRIAL_F)
CHANGE IN SUM OF SQUARES (T-TRIAL_F);
SUCCESS:=TRUE;
END

ELSE
BEGIN
ECT:=ECT+3;
COMMENT %OUTPUT TO USER
MARQUARDT DID NOT REDUCE RESIDUAL
NEW SUM OF SQUARES (TRIAL_F);
END;

COMMENT %OUTPUT TO USER
LAMBDA IS (LAMDA);
ECT:=ECT+1;
END;

END
END;

NUM:=FALSE;
END;

GO TO READ_CMD;
STOP:END INTERACTIVE OPT.

; %

P l o t t i n g procedure
%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE PLOT_COMMAND(LONG REAL ARRAY LOBS_PLACE(*)
LONG REAL ARRAY LPTS_TO_HIT(*);

LSTATE(*,*);
LOBS(*,*);
LOBS_SMOOTH(*,*);
PAR(*);
OBS,N_PTS_HIT,N STATE

LONG
LONG
LONG
LONG

ARRAY
ARRAY
ARRAY
ARRAY

REAL
REAL
REAL
REAL

INTEGER VALUE N
,N_STATE,N_PAR;
INTEGER ARRAY STATES_OBS(*);
INTEGER VALUE RESULT PLOT_NUMBER;
PROCEDURE READ_CMD_DATA;

CMD_AL;
ARRAY LCREOBS(*)) ;

OBS

PROCEDURE
LONG REAL
BEGIN
COMMENT PLOT COMMAND FOR STATE VARIABLES, OBSERVATIONS,
SMOOTHING, GUESSED OBSERVATIONS, AND PHASE PLOTS;
INTEGER ARRAY STATE_PLOT(1::N_STATE+1);

OBS_PLOT,SMOOTH_PLOT,SCRATCH(1::N_STATE_OBS+l)
PLOT_ITEMS(l::5);
CRE PLOT,PH PLOT(1::2);

INTEGER ARRAY
INTEGER ARRAY
INTEGER ARRAY
STRING(1) ANS

APPENDIX B

259

INTEGER I ;
LONG REAL X S I Z E , Y S I Z E ;
STRING(10) LABELX,LABELY;
COMMENT DECLARE SINGLE PRECISION ARRAYS TO PASS DATA
TO GRAPHICS PROCEDURES;
REAL ARRAY OBS_PLACE(1::N_OBS);
REAL ARRAY PTS_TO_HIT(1::N_PTS_HIT);
REAL ARRAY STATE(1::N_PTS_HIT,1::N_STATE);
REAL ARRAY OBS(1::N_OBS,1::N_STATE_OBS);
REAL ARRAY OBS_SMOOTH(1::N_PTS_HIT,1::N_STATE_OBS);
REAL ARRAY CREOBS(1::N_PTS_HIT,1::1);
PROCEDURE MAX_MIN(REAL ARRAY X (*) ; I N T E G E R VALUE N;
REAL RESULT MAX,MIN);

BEGIN
COMMENT FIND MAXIMUM AND MINIMUM OF X;
MAX:=X(1);MIN:=X(1);
FOR I : = l UNTIL N DO

BEGIN
I F X(I)>MAX THEN M A X : = X (I) ;
I F X (I) < M I N THEN M I N : = X (I) ;
END;

END MAX_MIN;
PROCEDURE PLOT;

BEGIN
COMMENT THIS PROCEDURE CONTAINS THE INTERFACE TO ALL
GRAPHICS PROCEDURES;
REAL MAX_X,MAX_Y,MAX_XT,MAX_YT,
MI N_X , MI N_Y , MI N_X T , MI N_Y T ;
INTEGER I,NEW;
COMMENT %EXTERNAL ALGRAF_AL, PLOT_AL
ALSIZE__AL, ALSCAL_AL, A L A X I S _ A L ;
PROCEDURE MAX_MIN_MTX(INTEGER ARRAY P O S (*) ;
REAL ARRAY X (* , *) ;
INTEGER VALUE N) ;

BEGIN
INTEGER J ;
J : = l ;
WHILE POS(J)~=0 DO

BEGIN
MAX_MIN(X(*,POS(J)),N,MAX_YT,MIN_YT);
I F MAX_YT>MAX_Y THEN MAX__Y : =MAX_YT;
I F MIN_YT<MIN_Y THEN MIN_Y:=MIN_YT;
J:=J+1;
END;

END MAX_MIN_MTX;
PROCEDURE PLOT_HELP(INTEGER ARRAY P O S (*) ; R E A L ARRAY X (*) ;
REAL ARRAY Y (* , *) ;
INTEGER VALUE N,NS);

BEGIN
INTEGER J ;
J : = l ;

APPENDIX B

260

WHILE POS(J)~=0 DO
BEGIN
ALGRAF_AL(X,Y(*,POS(J)),NEW*N,-5*NS-POS(J));
IF NEW>0 THEN NEW:=-1;
J:=J+1;
END;

END PLOT_HELP;
COMMENT DETERMINE BOUNDS FOR SCALING;
MAX_X:=-1.'50;MIN_X:=1.'50;
IF PLOT_ITEMS(1)=5 THEN
MAX_MIN(STATE(*,1),N_PTS_HIT,MAX_X,MIN_X)
ELSE

BEGIN
FOR I:=l UNTIL 5 DO
IF PLOT_ITEMS(I)=2 THEN
MAX_MIN(OBS_PLACE,N_OBS,MAX_X,MIN_X);
MAX_MIN(PTS_TO_HIT,N_PTS_HIT,MAX_XT,MIN_XT);
IF MAX_XT>MAX_X THEN MAX_X:=MAX_XT;
IF MIN_XT<MIN_X THEN MIN_X:=MIN_XT;
END;

MAX_Y:=-1.'50;MIN_Y:=1.'50;
I: =1;
WHILE PLOT_ITEMS(I)~=0 DO

BEGIN
CASE PLOT_ITEMS(I) OF

BEGIN
MAX_MIN_MTX(STATE_PLOT,STATE,N_PTS_HIT);
MAX_MIN_MTX(OBS_PLOT,OBS,N_OBS);
MAX_MIN_MTX(SMOOTH_PLOT,OBS_SMOOTH,N_PTS_HIT);
MAX_MIN_MTX(CRE_PLOT,CREOBS,N_PTS_HIT);
MAX_MIN(STATE(*,2),N_PTS_HIT,MAX_Y,MIN_Y)
END;

I:=1+1;
END;

COMMENT DO THE PLOTTING;
ALSIZE_AL(XSIZE-1.'-5,YSIZE-1.'-5);
ALSCAL_AL(MIN_X,MAX_X,MIN_Y,MAX_Y);
ALAXIS_AL(LABELX,50,LABELY, 50);
NEW:=1;
I : =1;
WHILE PLOT_ITEMS(I)~=0 DO

BEGIN
CASE PLOT_ITEMS(I) OF

BEGIN
PLOT_HELP(STATE_PLOT,PTS_TO_HIT,STATE,N_PTS_HIT,0);
PLOT_HELP(OBS_PLOT,OBS_PLACE,OBS,N_OBS,l);
PLOT_HELP(SMOOTH_PLOT,PTS_TO_HIT,OBS_SMOOTH,
N_PTS_HIT,2);
PLOT_HELP (CRE_PLOT, PTS_TO_HIT , CREOBS , N_PTS__HIT, 3) ;
PLOT_HELP(PH_PLOT,STATE(*,1),STATE,N_PTS_HIT,4)
END;

APPENDIX B

261

I:=I+1;
END;

COMMENT PREPARE FOR NEXT PLOT;
PLOT_AL(12.0,0,-3);
END PLOT;

COMMENT EXECUTION BEGINS HERE
FIRST COPY ARRAYS TO SINGLE PRECISION COUNTERPARTS;
FOR I:=l UNTIL N_OBS DO
OBS_PLACE(I):=LOBS_PLACE(I);
FOR I:=l UNTIL N_PTS_HIT DO
PTS_TO_HIT(I):=LPTS_TO_HIT(I);
FOR J:=l UNTIL N_STATE DO
FOR I:=l UNTIL N_PTS_HIT DO
STATE(I,J):=LSTATE(I,J);
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_OBS DO
OBS(I,J):=LOBS(I,J);
FOR J:=l UNTIL N_STATE_OBS DO
FOR I:=l UNTIL N_PTS_HIT DO
OBS_SMOOTH(I,J):=LOBS_SMOOTH(I,J);
FOR I:=l UNTIL N_PTS_HIT DO
CREOBS(1,1):=LCREOBS(I);
XSIZE:=5.;
YSIZE:=3.;
COMMENT %OUTPUT TO USER
SEQUENCE OF ITEMS TO PLOT(END WITH 0)
STATE VARIABLES 1
OBSERVATIONS 2
SMOOTHED OBSERVATIONS 3
GUESSED OBSERVATIONS 4
PHASE PLOT • 5;
READ__CMD_DATA (PLOT_I TEMS) ;
LABELX:="TIME";LABELY:="STATE";
I: =1;
WHILE PLOT_ITEMS(I)~=0 DO

BEGIN
CASE PLOT_ITEMS(I) OF

BEGIN
BEGIN
COMMENT %OUTPUT TO USER
STATE VARIABLES(END WITH 0);
READ_CMD__DATA (STATE_PLOT) ;
END;
BEGIN
INTEGER II;
COMMENT %OUTPUT TO USER
OBSERVED VARIABLES TO PLOT (END WITH 0);
READ_CMD_DATA(SCRATCH);
II:=1;
WHILE SCRATCH(II)~=0 DO

BEGIN

APPENDIX B

262

FOR J:=l UNTIL N_STATE_OBS DO
IF SCRATCH(II)=STATES_OBS(J) THEN OBS_PLOT(II)
:=J;
II:=II+1;
END;

OBS_PLOT(II):=0;
END;
BEGIN
INTEGER II;
COMMENT %OUTPUT
SMOOTHED OBSERVATIONS TO PLOT (END WITH 0);
READ_CMD_DATA(SCRATCH);
II:=1;
WHILE SCRATCH(II)~=0 DO

BEGIN
FOR J:=l UNTIL N_STATE_OBS DO
IF SCRATCH(II)=STATES_OBS(J) THEN SMOOTH_PLOT(II)
:=J;
II:=II+1;
END;

SMOOTH_PLOT(II):=0;
END;
BEGIN
COMMENT GUESSED OBSERVATIONS CASE;
CRE_PLOT(1):=1;CREJPLOT(2):=0;
END;
BEGIN
COMMENT PHASE PLOT CASE;
PH_PLOT(l):=2;PH_PLOT(2):=0;
LABELX:="Yl";LABELY:="Y2";
END

END;
I:=I+1;
END;

COMMENT %FILE EMPTY FILE -GRAPH;
PLOT;
COMMENT %FILE DISPLAY -GRAPH TO USER
%OUTPUT TO USER
IS A PERMANENT PLOT REQUIRED ANS. Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
XSIZE:=10;
YSIZE:=10;
COMMENT %FILE EMPTY -GRAPH;
PLOT;
COMMENT %FILE ACCUMULATE -GRAPH IN -GRAPHSTORE;
PLOT_NUMBER:=PLOT_NUMBER+l;
COMMENT %OUTPUT TO USER, -REPRT
CURRENT PLOT_NUMBER (PLOT_NUMBER)

APPENDIX B

263

CURRENT PARAMETERS (PAR)
DESCRIPTION OF PLOT CONTENTS;
END;

END PLOT COMMAND.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Sparse Gauss-Newton for iterated methods

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE SPRGN(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*) ;
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
INTEGER ARRAY STATES_OBS(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*) ;
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS(*);
LONG REAL ARRAY DCREOBS(*);
PROCEDURE ITER_PAR);

BEGIN
COMMENT ITERATED IFIT AND DFIT IN THE TWO STATE VARIABLE CASE
USING A SPARSE GAUSS-NEWTON METHOD TO IMPROVE
GUESSED OBSERVATIONS
(2 OPTIONS, FIXED INITIAL CONDITIONS ON GUESSED OBSERVATIONS,
AND VARIABLE INITIAL CONDITIONS FOR GUESSED OBSERVATIONS;
PROCEDURE ITER_FUNC(LONG REAL ARRAY C(*);
LONG REAL RESULT F;
LONG REAL ARRAY AHES(*);
LONG REAL ARRAY GRAD(*);
INTEGER VALUE FULL);
BEGIN
COMMENT LEAST SQUARES FUNCTION FOR
ITERATIVELY IMPROVING THE
GUESSED OBSERVATIONS USING A SPARSE GAUSS NEWTON METHOD;
LONG REAL ARRAY A,JA(1::N_PTS_HIT);
LONG REAL ARRAY B (1: :N_PTS__HIT-1) ;
LONG REAL ARRAY JB (1: :N__PTS__HIT-1 ,1: : 2) ;
LONG REAL ARRAY DGY,PREV_DGY(1::2,1::2);
LONG REAL ARRAY DGP,SENSE(1::1,1::1);
LONG REAL ARRAY G,PREV_G,Y(1::2);
LONG REAL HI;
Y(SM_Y):=OBS_SMOOTH(1,1);
Y(CR_Y):=C(1);

APPENDIX B

264

G_FUN(PTS_T0_HIT(1),Y,PAR,1,PREV_G,PREV_DGY,DGP,SENSE);
A(l):=PREV_G(SM_Y)
-(CASE SMF 0F(DSPLN_AL(PTS_T0_HIT(1),
SPLN_C0EF(*,1),JOINTS(*,1),
NJOINTS(1),N_SPLN_PAR(1)),
DHERM(PTS_TO_HIT(l),HERM_COEF(* , * , 1),JOINTS(*,D,
NJOINTS(1))));
JA(1):=PREV_DGY(SM_Y,CR_Y);
FOR I:= 2 UNTIL N_PTS_HIT DO
BEGIN
Y(SM_Y):=OBS_SMOOTH(I,1);
Y(CR_Y):=C (I) ;
G_FUN(PTS_TO_HIT(I),Y,PAR,1,G,DGY,DGP,SENSE);
A(I):=G(SM_Y)
-(CASE SMF OF(DSPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,1),JOINTS(*,1),
NJOINTS(1),N_SPLN_PAR(1)),
DHERM(PTS_TO_HIT(I),HERM_COEF(*,*,1), JOINTS (*,D,
NJOINTS(1))));
JA(I):=DGY(SM_Y,CR_Y);
HI:=PTS_TO_HIT(I)-PTS_TO_HIT(1-1);
B(I-l):=.5L*(G(CR_Y)+PREV_G(CR_Y))-(C(I)-C(1-1))/HI;
JB(1-1,1) : = .5 L * P REV_DGY(CR_Y,CR_Y)+1.L/HI;
JB(1-1,2):=.5L*DGY(CR_Y,CR_Y)-l.L/HI;
FOR J:=l UNTIL 2 DO
PREV_G(J):=G(J);
FOR J:=l UNTIL 2 DO
FOR K:=l UNTIL 2 DO
PREV_DGY(J,K):=DGY(J,K);
END;

IF FULL=1 THEN
BEGIN
COMMENT FORM AHES TO CONFORM TO DFBAND;
AHES(l):=JB(1,1)**2+JA(l)**2;
FOR I:=2 UNTIL N_PTS_HIT-1 DO
AHES (2* (I-D+l) :=JA(I) **2+JB (1-1,2) **2+JB(I ,1) **2;
AHES(2*(N_PTS_HIT-1)+1):=JA(N_PTS_HIT)**2
+JB(N_PTS_HIT-1,2)**2;
FOR I:=l UNTIL N_PTS_HIT-1 DO
AHES(2*1):=JB(I,1)*JB(I,2);
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PTS_HIT DO
BEGIN
GRAD(I):=JA(I)*A(I);
IF 1=1 THEN GRAD(I):=GRAD(I)+JB(1,1)*B(1)
ELSE
IF I=N_PTS_HIT THEN GRAD(I):=GRAD(I)+
JB(N_PTS_HIT-1,2)*B(N_PTS_HIT-1)
ELSE
GRAD(I):=GRAD(I)+JB(I-1,2)*B(I-1)+JB(I,1)*B(I);
END ;

APPENDIX B

265

END;
COMMENT FORM F;
F:=0.L;
FOR I:=l UNTIL N_PTS_HIT DO
F:=F+A(I)**2;
FOR I:=l UNTIL N_PTS_HIT-1 DO
F:=F+B(I)**2;
END ITR_FUNC;

COMMENT

PROCEDURE ITER_FUNC_FIXIC(LONG REAL ARRAY C(*);
LONG REAL RESULT F;
LONG REAL ARRAY AHES(*);
LONG REAL ARRAY GRAD(*);
INTEGER VALUE FULL);
BEGIN
COMMENT LEAST SQUARES FUNCTION FOR
ITERATIVELY IMPROVING THE
GUESSED OBS FIXED IC ON GUESSED OBS;
LONG REAL ARRAY A, JA (1: :N_PTS__HIT-1) ;
LONG REAL ARRAY B(1::N_PTS_HIT-1);
LONG REAL ARRAY JB(1::N_PTS_HIT-1,1::2);
LONG REAL ARRAY DGY,PREV_DGY(1::2,1::2);
LONG REAL ARRAY DGP,SENSE(1::1,1::1);
LONG REAL ARRAY G,PREV_G, Y (1 : : 2);
LONG REAL HI;
G_FUN(PTS_TO_HIT(1),Y,PAR,-3,G,DGY,DGP,SENSE);
Y(CR_Y):=CREOBS(1);
G__FUN (PTS__TO_HIT (1) , Y, PAR, 1, PREV_G , PREV_DGY, DGP , SENSE) ;
FOR I:=2 UNTIL N_PTS_HIT DO

BEGIN
Y(SM_Y):=OBS_SMOOTH(1,1);
Y(CR_Y):=C(1-1);
G_FUN(PTS_TO_HIT(I),Y,PAR,1,G,DGY,DGP,SENSE);
A(I-l):=G(SM_Y)
-(CASE SMF OF(DSPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,l),JOINTS(*,1),
NJOINTS(l),N_SPLN_PAR(1)),
DHERM(PTS_TO_HIT(I),HERM_COEF(*,*,1),JOINTS(*,l),
NJOINTS(1))));
JA(1-1):=DGY(SM_Y,CR_Y);
HI:=PTS_TO_HIT(I) -PTS__TO_HIT (1-1) ;
B(I-l):=.5L*(G(CR_Y)+PREV_G(CR_Y))-(C(I-l)
-(IF I>2 THEN C(I-2) ELSE CREOBS(1)))/HI;
JB(1-1,1):=.5L*PREV_DGY(CR_Y,CR_Y)+1.L/HI;
JB(1-1,2):=.5L*DGY(CR_Y,CR_Y)-1.L/HI;
FOR J:=l UNTIL 2 DO
PREV_G(J):=G(J);
FOR J:=l UNTIL 2 DO
FOR K:=l UNTIL 2 DO
PREV_DGY(J,K):=DGY(J,K);

APPENDIX B

266

END;
IF FULL=1 THEN
BEGIN
COMMENT FORM AHES TO CONFORM TO DFBAND;
FOR I:=l UNTIL N_PTS_HIT-2 DO
AHES(2*(1-1)+1):=JA(I)**2+JB(I,2)**2+JB(1+1 f1)**2;
AHES(2*(N_PTS_HIT-2)+1):=JA(N_PTS_HIT-1)**2
+JB(N_PTS_HIT-1,2)**2;
FOR I:=l UNTIL N_PTS_HIT-2 DO
AHES(2*1):=JB(1+1,1)*JB(1+1,2);
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PTS_HIT-1 DO
BEGIN
GRAD(I):=JA(I)*A(I);
IF 1=(N_PTS_HIT-1) THEN GRAD(I):=GRAD(I)+
JB(N_PTS_HIT-1,2)*B(N_PTS_HIT-1)
ELSE
GRAD(I):=GRAD(I)+JB(I,2)*B(I)+JB(1+1,1)*B(1+1);
END;

END;
COMMENT FORM F;
F:=0.L;
FOR I:=l UNTIL N_PTS_HIT-1 DO
F:=F+A(I)**2+B(I)**2;
END ITER_FUNC_FIXIC;

COMMENT

PROCEDURE SPARSE_GN(LONG REAL ARRAY C(*);
INTEGER VALUE NC;
PROCEDURE ITER_FUNC);
BEGIN
COMMENT ITERATIVE UPDATING OF GUESSED OBSERVATIONS
USING A SPARSE GAUSS NEWTON METHOD;
LONG REAL F,Fl,RATIO,DET,GA,RO,Rl,Wl;
LONG REAL ARRAY AHES(1::2*NC);
LONG REAL ARRAY CI,GRAD,DELTA(1::NC);
INTEGER JEXP,JAY;
LOGICAL CONV;
COMMENT %EXTERNAL DFBAND;
CONV:=FALSE;
FOR ITER:=1 UNTIL 25 DO

BEGIN
ITER_FUNC(C,F,AHES,GRAD,1);
IF ITER=1 THEN
COMMENT %OUTPUT TO USER
STARTING SUM OF SQUARES IN SPARSE GAUSS NEWTON IS (F);
IF ITER=1 THEN JAY:=0;
JAY:=JAY DIV 2;
R0:=l.L/2**(JAY);
COMMENT SOLVE FOR DELTA;
FOR I:=l UNTIL NC DO DELTA(I):=-GRAD(I);

APPENDIX B

267

RATIO:=1.'-7L;
DFBAND(AHES,DELTA,NC,2,1,RATIO,DET,JEXP, 0) ;
COMMENT FIND STEP LENGTH;
FOR I:=l UNTIL NC DO
CI (I) :=C(I)+RO*DELTA(I) ;
COMMENT CHECK FOR CONVERGENCE;
FOR I:=l UNTIL NC DO
IF (ABS(C(I)-C1(I))>(TOL*ABS(CI(I))+.0 01L))
THEN GO TO CON;
CONV:=TRUE;
GO TO UPDATE;
CON: ITER__FUNC (CI,Fl,AHES,GRAD,0) ;
IF F1>F THEN
BEGIN
COMMENT INTERPOLATE;
GA:=0.L;
FOR I:=l UNTIL NC DO
GA:=GA+DELTA(I)*GRAD(I);
FOR INTERP:=1 UNTIL 5 DO
BEGIN
JAY:=JAY+1;
R1:=GA*R0**2/(2.L*(GA*R0+F-F1)) ;
W1:=(IF (.75L*R0<R1) THEN .75L*R0 ELSE Rl);
R0:=(IF (.25L*R0>W1) THEN .25L*R0 ELSE WI);
FOR I:=l UNTIL NC DO
CI(I):=C(I)+R0*DELTA(I);
COMMENT CHECK FOR CONVERGENCE;
FOR I:=l UNTIL NC DO
IF (ABS(C(I)-CI(I))>(TOL*ABS(CI(I))+.001L))
THEN GO TO CONT;
CONV:=TRUE;
GO TO UPDATE;
CONT:ITER_FUNC(CI,Fl,AHES,GRAD,0);
IF F K F THEN GO TO UPDATE;
END INTERP;

COMMENT %OUTPUT TO USER
TERMINATING—OVER 5 INTERPOLATIONS REQUIRED;
GO TO FINISHED;
END;

UPDATE:FOR I:=l UNTIL NC DO
C(I) :=C1 (I) ;
COMMENT %OUTPUT TO USER
SUM OF SQUARES IS (F l) ;
IF CONV=TRUE THEN GO TO FINISHED;
END ITER;

COMMENT %OUTPUT TO USER
TERMINATING—SPARSE GAUSS NEWTON NEEDS
MORE THAN 25 ITERATIONS TO MEET ERROR CRITERION;
FINISHED: END SPARSE_GN;

INTEGER N_PTS_HIT,N_PAR,SMF,OUTPUT,METHOD_FLAG,OUTPUT_SUP,
OUT_SEG , INT_PROC , SM_Y , CR_Y, NO__ITER, EFLAG ;

APPENDIX B

268

LONG REAL ARRAY B(1::1,1::INTDATA(1));
LONG REAL ARRAY BJAC(1::1,1: : 1) ;
COMMENT COMMAND PROPER FOLLOWS;
STRING(1) ANS,ANSI;
LONG REAL TOL;
N_PTS_HIT:=INTDATA(1) ;
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUTPUT:=INTDATA(6);
METHOD__FLAG : =INTDATA (7) ;
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA(10);
INT_PROC:=INTDATA(ll);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM_Y;
COMMENT %OUTPUT TO USER
IS INITIAL VALUE OF GUESSED OBSERVATIONS FIXED? Y OR N
%INPUT (ANSI)
%OUTPUT
ENTER RELATIVE TOLERANCE ON CHANGE IN ITERATES FOR
TERMINATION OF SPARSE GAUSS NEWTON
%INPUT (TOL);
REPT:ITER_PAR(G_FUN,PAR,INTDATA,OBS_SMOOTH,STATES_OBS,
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,NJOINTS,N_SPLN_PAR,
SPLN_AL,DSPLN_AL,HERM,DHERM,
CREOBS,DCREOBS);
COMMENT SET UP AND OPTIMIZE SPARSE PROB;
REDO:IF ANS1~="Y" THEN
SPARSE_GN(CR.EOBS,N_PTS_HIT,ITER_FUNC)
ELSE

BEGIN
LONG REAL ARRAY C(1::N_PTS_HIT-1);
FOR I:=l UNTIL N__PTS_HIT-1 DO C (I) : =CREOBS (1 + 1) ;
SPARSE_GN(C,N_PTS_HIT-1,ITER_FUNC_FIXIC);
FOR I:=l UNTIL N_PTS_HIT-1 DO CREOBS(1+1):=C(I);
END;

COMMENT %OUTPUT
IS A FURTHER REFINEMENT OF THE GUESSED OBSERVATIONS
DESIRED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT
ENTER NEW TOLERANCE FOR SPARSE PROBLEM
%INPUT (TOL);
GO TO REDO;
END;

COMMENT %OUTPUT

APPENDIX B

269

IS ANOTHER ITERATION DESIRED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN GO TO REPT;
OUT:END SPRGN.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Derivative f i t t i n g procedure

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE DATAFT_COMMAND(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*) ;
INTEGER ARRAY STATES_OBS(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*);
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,
DSPLN_AL,HERM,DHERM;
LONG REAL VALUE INITIAL_TIME,EPS,HMIN,HMAX);
BEGIN
COMMENT DATAFIT COMMAND;
INTEGER. N_PTS_HIT, N_STATE__OBS , N_STATE , N_PAR, SMF, OUTPUT ;
INTEGER OUTPUT_SUP,OUT_SEG;
INTEGER METHOD_FLAG,INT_PROC;
LONG REAL LAM,EPS_R,EPS_A;
LONG REAL ARRAY DJAC(1::1,1::1);
INTEGER KFLAG;
LONG REAL ARRAY STATE_DATA(1::INTDATA(1),1::INTDATA(3));
COMMENT %EXTERNAL GEAR, TRAP, SVD_AL, MARQUARDT, CMD_AL;
PROCEDURE DATA_FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES THE
PERTINENT INFORMATION TO A NONLINEAR
LEAST SQUARES ALGORITHM USED WITH THE DFIT METHOD;
INTEGER K,M,OUTl;
LONG REAL SUM;
LONG REAL ARRAY INITY(1::1);
LONG REAL ARRAY INITYP(1::1,1::1);
LONG REAL ARRAY G(1::N_STATE);

APPENDIX B

270

LONG REAL ARRAY DGY(1::N_STATE,1::N_STATE);
LONG REAL ARRAY DGP,SENSE(1::N_STATE,1::N_PAR);
K:=0;
IF N_STATE_OBS~=N_STATE THEN
BEGIN
COMMENT NOT ALL STATE VARIABLES ARE OBSERVED;
INTEGER ARRAY SCRATCH(1::N_STATE);
INTEGER ARRAY STATES_NOT_OBS(1::N_STATE-N_STATE_OBS);
LONG REAL ARRAY STATE_INTEG(1::N_PTS_HIT,
1::N_STATE-N_STATE_OBS);
INTEGER L,N_STATE_NOT_OBS;
PROCEDURE G_DATA(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*) ;
INTEGER VALUE OPTION;
LONG REAL ARRAY G(*);
LONG REAL ARRAY DGY(*,*);
LONG REAL ARRAY D2(*,*);
LONG REAL ARRAY D3(*,*));
BEGIN
COMMENT INTERFACE TO G_FUN FOR DE SOLVER WHEN A
SUBSET OF THE STATE VARIABLES ARE BEING INTEGRATED;
LONG REAL ARRAY Y_A,DY_A(1::N_STATE);
LONG REAL ARRAY DGY_A(1::N_STATE,1::N_STATE);
LONG REAL ARRAY D2,D3(1: : 1,1 : : 1) ;
FOR I:=l UNTIL N_STATE_NOT_OBS DO
Y_A(STATES_NOT_OBS(I)):=Y(I);
FOR I:=l UNTIL N_STATE_OBS DO
CASE SMF OF

BEGIN
Y_A(STATES_OBS(I)):=
SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I)
,NJOINTS(I),N_SPLN_PAR(I));
Y_A(STATES_OBS(I)):=
HERM(T,HERM_COEF(* , * , I),JOINTS(*,I)
,NJOINTS(I))
END;

G_FUN(T,Y_A,P,OPTION,DY_A,DGY_A,D2,D3);
IF OPTION=l THEN
COMMENT CONSTRUCT SUB JACOBIAN;
FOR I:=l UNTIL N_STATE_NOT_OBS DO
FOR J:=l UNTIL N_STATE_NOT_OBS DO
DGY(I,J):=DGY_A(STATES_NOT_OBS(I),STATES_NOT_OBS(J));
FOR I:=l UNTIL N_STATE_NOT_OBS DO
G(I):=DY_A(STATES_NOT_OBS(I));
IF OPTION=-3 THEN
FOR I:=l UNTIL N_STATE_NOT_OBS DO
Y(I):=Y_A(STATES_NOT_OBS(I));
END G_DATA;

COMMENT FORM VECTOR OF STATES NOT OBSERVED;
FOR I:=l UNTIL N_STATE DO SCRATCH(I):=1;

APPENDIX B

271

FOR I:=l UNTIL N_STATE_OBS DO
SCRATCH(STATES_OBS(I)):=0;
N_STATE_NOT_OBS:=N_S TATE-N_STATE_OB S;
L:=0;
FOR I:=l UNTIL N_STATE DO
IF SCRATCH(I)~=0 THEN
BEGIN
L:=L+1;
STATES_NOT_OBS(L):=SCRATCH(I);
END;

EFLAG:=0;
COMMENT INTEGRATION;
IF OUTPUT_SUP=l THEN OUTl:=0
ELSE OUTl:=OUTPUT;
BEGIN
LONG REAL ARRAY B(1::N_STATE_NOT_OBS,1::N_PTS_HIT);
CASE INT_PROC OF

BEGIN
BEGIN
GEAR(P,PTS_TO_HIT,B,DJAC,N_STATE_NOT_OBS,
N_PTS_HIT,EPS,HMIN,HMAX,
N_PAR,0,G_DATA,KFLAG,OUTl,METHOD_FLAG,
0,INITY,INITYP);
IF KFLAG~=1 THEN
BEGIN
EFLAG:=1;
GO TO OUT;
END;

END;
BEGIN
TRAP(P,PTS_TO_HIT,B,DJAC,N_STATE_NOT_OBS,
N_PTS_HIT,N_PAR,0,G_DATA,EFLAG,OUTl);
IF EFLAG=1 THEN GO TO OUT;
END

END;
FOR J:=l UNTIL N_STATE_NOT_OBS DO
FOR I:=l UNTIL N_PTS_HIT DO
STATE_INTEG(I,J):=B(J,I);
END;

COMMENT COPY INTEGRATION DATA INTO STATE DATA;
FOR I:=l UNTIL N_PTS_HIT DO
FOR J:=l UNTIL N_STATE_NOT_OBS DO
STATE_DATA (I, STATES_NOT_OBS (J)) : =STATE__INTEG (I , J) ;
END;

FOR I:=l UNTIL N_PTS__HIT DO
BEGIN
G_FUN(PTS__TO_HIT(I) , STATE_DATA (I, *) , P , 1, G, DGY, DGP , SENSE) ;
G_FUN(PTS_TO_HIT(I),STATE_DATA(I,*),P,2,G,DGY,DGP,
SENSE);
FOR J:=l UNTIL N_STATE_OBS DO
BEGIN

APPENDIX B

272

K:=K+1;
CASE SMF OF

BEGIN
RES (K) :=G(STATES_OBS(J))-DSPLN_AL(PTS_TO_HIT(I) ,
SPLN_COEF(*,J),
JOINTS(*,J),NJOINTS(J),N_SPLN_PAR(J));
RES(K):=G(STATES_OBS(J))-DHERM(PTS_TO_HIT(I),
HERM_COEF(*,*,J),
JOINTS(*,J),NJOINTS(J));
END;

FOR L:=l UNTIL N_PAR DO
JAC(K,L):=DGP(STATES_OBS(J),L);
END;

END;
COMMENT FORM SUM OF SQUARES OF RESIDUAL;
SUM:=0.;
M: =K ;
FOR I:=l UNTIL M DO SUM:=SUM+RES(I)**2;
F:=SUM;
COMMENT FORM GRADIENT IF REQUIRED;

BEGIN
FOR I:=l UNTIL N_PAR DO

BEGIN
SUM:=0.;
FOR J:=l UNTIL N_PTS_HIT*N_STATE_OBS DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

END;
END DATA_FUNC;

COMMENT
COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_STATE_OBS:=INTDATA(2);
N_STATE:=INTDATA(3);
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUTPUT:=INTDATA(6);
METHOD_FLAG:=INTDATA(7);
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA(10);
INT_PROC:=INTDATA(ll);
FOR I:=l UNTIL N_PTS_HIT DO
FOR J:=l UNTIL N_STATE_OBS DO
STATE_DATA(I,STATES_OBS(J)):=OBS_SMOOTH(I,J);
COMMENT %OUTPUT
ENTER STARTING LAMBDA RELATIVE
AND ABSSOLUTE ERROR TOLERENCES FOR
MARQUARDT PROCEDURE
%INPUT (LAM),(EPS_R),(EPS_A)
%FILE EMPTY TEMPORARY FILE -SCI

APPENDIX B

273

%OUTPUT TO -REPRT
MARQUARDT USED IN DFIT COMMAND—OPTION 1
LAMBDA, RELATIVE, AND ABSOLUTE
ERROR TOLERENCES ARE (LAM),(EPS_R),(EPS_A);
MARQUARDT(EPS_R,EPS_A,N_PTS_HIT*N_STATE_OBS,N_PAR,DATA_FUNC,
PAR,LAM,SVD_AL);
OUT:END.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Derivative f i t t i n g with guessed observations

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE DFIT_CRE(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*) ;
INTEGER ARRAY STATES_OBS(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*) ;
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,
DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS(*);
LONG REAL ARRAY DCREOBS(*));

BEGIN
COMMENT DFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS ON
ONE HAVE
BEEN GUESSED AT. SPECIAL HANDLING OF LINEAR PROBLEM;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK;
LONG REAL LAM,EPS_R,EPS_A;
INTEGER SM_Y,CR_Y,M,OUT_SEG;
COMMENT %EXTERNAL SVD_AL, MARQUARDT, CMD_AL;
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(1::1,1::1);
LONG REAL ARRAY Y,G(1::2);
LONG REAL ARRAY DGP(1::2,1::N_PAR);
INTEGER K,KK;

APPENDIX B

274

LONG REAL SUM;
EFLAG:=0;
K:=0;
FOR I:=l UNTIL N_PTS_HIT DO
BEGIN
Y(SM_Y):=OBS_SMOOTH(1,1);
Y(CR_Y):=CREOBS(I);
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE);
FOR J:=l UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
RES(K):=G (J)-DSPLN_AL (PTS_TO__HIT (I),
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1),
N_SPLN_PAR(1));
RES(K):=G(J)-DHERM(PTS_TO_HIT(I),
HERM_COEF(*,*,l),JOINTS(*,1),NJOINTS(1))
END;

END
ELSE RES(K):=G(J)-DCREOBS(I);
FOR L:=l UNTIL N_PAR DO
JAC(K,L):=DGP(J,L);
END;

END;
COMMENT FORM F;
F:=0;
FOR I:=l UNTIL M DO F:=F+RES(I)**2 ;
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PAR DO

BEGIN
SUM:=0;
FOR J:=l UNTIL M DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUT_SEG:=INTDATA(10);
DFIT_LIN:=INTDATA(12);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM_Y;
M:=2*N_PTS_HIT;
COMMENT %FILE EMPTY TEMPORARY FILE -SCl;
IF DFIT LIN~=1 THEN

APPENDIX B

275

BEGIN
COMMENT %OUTPUT
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES FOR
THE MARQUARDT PROCEDURE
%INPUT (LAM),(EPS_R),(EPS_A)
%OUTPUT TO -SCI
MARQUARDT CALLED IN DFIT OPTION 2
OUTPUT REFERENCE NUMBER IS (OUT_SEG)
LAMBDA, RELATIVE, AND ABSOLUTE ERROR TOLERENCES ARE
(LAM),(EPS_R),(EPS_A);
MARQUARDT(EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD_AL);
END

ELSE
BEGIN
COMMENT LINEAR LEAST SQUARES USING SVD;
LONG REAL SING_CUTOFF;
LONG REAL ARRAY JAC(1::M,1::N_PAR);
LONG REAL ARRAY RES(1::M);
LONG REAL ARRAY SP,S,GRAD(1::N_PAR);
LONG REAL ARRAY V(1::N_PAR,1::N_PAR);
LONG REAL ARRAY A(1::M,1::N_PAR+1);
LONG REAL SUM,F;
INTEGER K;
LONG REAL ARRAY U(1::M,1::N_PAR);
INTEGER EFLAG;
SING_CUTOFF:=.00001L;
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
FOR J:=l UNTIL N_PAR DO
FOR I:=l UNTIL M DO
A(I,J):=JAC(I,J);
K:=0;
FOR I:=l UNTIL N_PTS_HIT DO
BEGIN
FOR J:=l UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
A(K,N_PAR+1):=DSPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,1),JOINTS(*,1),NJOINTS(l),
N_SPLN_PAR(1));
A(K,N_PAR+1):=DHERM(PTS_TO_HIT(I),
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(l))
END;

END
ELSE A(K,N_PAR+1):=DCREOBS(I);
END;

END;
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N_PAR);

APPENDIX B

276

FOR I:=l UNTIL N_PAR DO
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I)
ELSE SP(I):=0. ;
FOR I:=l UNTIL N_PAR DO
BEGIN
SUM:=0. ;
FOR J:=l UNTIL N_PAR DO
SUM:=SUM+V(I,J)*SP(J);
PAR(I):=SUM;
END;

COMMENT %OUTPUT TO USER
LINEAR DFIT-OPTION 2 SINGULAR VALUE REJECTION LEVEL IS
(SING_CUTOFF);
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
COMMENT %OUTPUT TO USER
IN LINEAR PART SUM OF SQUARES OF RESIDUALS IS (F);
END;

END DFIT CRE.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Iterated derivative f i t t i n g procedure

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE DFITITER(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
INTEGER ARRAY STATES_OBS(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*); •
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS(*);
LONG REAL ARRAY DCREOBS(*));

BEGIN
COMMENT DFIT ON 2 STATE VARIABLES TO GO WITH
SPARSE GAUSS NEWTON TO IMPROVE GUESSED STATE;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK;
LONG REAL LAM,EPS_R,EPS_A;
INTEGER SM_Y,CR_Y,M,OUT_SEG;
LONG REAL ARRAY V0(l::2);
COMMENT %EXTERNAL SVD_AL,MARQUARDT,CMD_AL;
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);

APPENDIX B

277

LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(1::1,1::1) ;
LONG REAL ARRAY Y,G,INT_G,PREV_G(1::2);
LONG REAL ARRAY DGP,INT_DGP,PREV_DGP(1::2,1::N_PAR);
INTEGER K,KK;
LONG REAL SUM,DEL;
EFLAG:=0;
K:=0;
Y(SM_Y):=OBS_SMOOTH(l,l);
Y(CR_Y):=CREOBS(1);
G__FUN(PTS_TO_HIT(l) , Y,P ,-1,PREV_G ,DGY ,DGP , SENSE) ;
G_FUN(PTS_TO_HIT(l),Y,P,2,G,DGY,PREV_DGP,SENSE);
FOR I:=2 UNTIL N_PTS_HIT DO

BEGIN
Y(SM_Y):=OBS_SMOOTH(1,1);
Y(CR_Y):=CREOBS(I);
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE);
DEL: = (PTS_TO_HIT(I)-PTS_TO__HIT(I-l)) ;
FOR J:=l UNTIL 2 DO

BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
RES (K) :=G(J)-DSPLN_AL(PTS_TO__HIT(I) ,
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1),
N_SPLN_PAR(1));
RES(K) :=G(J)-DHERM(PTS_TO__HIT(I) ,
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(1))
END;

END
ELSE RES(K):=.5L*(G(J)+PREV_G(J))-
(CREOBS(I)-CREOBS(I-l))/DEL;
KK:=0;
FOR L:=l UNTIL N_PAR DO
BEGIN
KK:=KK+1;
IF SM_Y=J THEN
JAC(K,KK):=DGP(J,L)
ELSE
JAC(K,KK):=.5L*(DGP(J,L)+PREV_DGP(J,L));
END;

END;
COMMENT UPDATE PREV_G,PREV_DGP;

APPENDIX B

278

FOR I:=l UNTIL 2 DO PREV_G(I):=G(I);
FOR I:=l UNTIL 2 DO
FOR J:=l UNTIL N_PAR DO
PREV_DGP(I,J):=DGP(I,J);
END;

COMMENT FORM F;
F:=0;
FOR I:=l UNTIL M DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PAR DO
BEGIN
SUM:=0;
FOR J:=l UNTIL M DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUT_SEG:=INTDATA(10);
DFIT_LIN:=INTDATA(12);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM_Y;
M:=2*(N_PTS_HIT-1);
COMMENT %FILE EMPTY TRMPORARY FILE -SCI;
IF DFIT_LIN~=1 THEN
BEGIN
COMMENT %OUTPUT
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES
FOR MARQUARDT
%INPUT (LAM),(EPS_R),(EPS_A)
%OUTPUT TO USER IF IN BATCH, TO -SCI IF NOT,
MARQUARDT USED IN DFIT FOR SPARSE GAUSS NEWTON
OUTPUT REFERENCE NUMBER IS (OUT_SEG), LAMBDA,
RELATIVE AND ABSOLUTE TOLERENCES ARE
(LAM),(EPS_R),(EPS_A);
MARQUARDT(EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD_AL)
END

ELSE
BEGIN
COMMENT LINEAR LEAST SQUARES USING SVD;
LONG REAL SING_CUTOFF;
LONG REAL ARRAY JAC(1::M,1::N_PAR);
LONG REAL ARRAY RES(1::M);
LONG REAL ARRAY SP,S,GRAD(1::N_PAR);
LONG REAL ARRAY V(1::N_PAR,1::N_PAR);
LONG REAL ARRAY A(1::M,1::N_PAR+1);
LONG REAL SUM,F;
INTEGER K;

APPENDIX B

279

LONG REAL ARRAY U(1::M,1::N_PAR);
INTEGER EFLAG;
SING_CUTOFF:=.000OIL;
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
FOR J:=l UNTIL N_PAR DO
FOR I:=l UNTIL M DO
A(I,J):=JAC(I,J);
K:=0;
FOR I:=2 UNTIL N_PTS_HIT DO
BEGIN
FOR J:=l UNTIL 2 DO

BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
A(K,N_PAR+1):=DSPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1),
N_SPLN_PAR(1))-VO(J);
A(K,N_PAR+1):=DHERM(PTS_TO_HIT(I),
HERM_COEF(*,*,l),JOINTS(*,1),NJOINTS(l))-V0(J)
END;

END
ELSE
A(K,N_PAR+1):=(CREOBS(I)-CREOBS(1-1))/
(PTS_TO_HIT(I)-PTS_TO_HIT(I-l));
END;

END;
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N,_PAR);
FOR I:=l UNTIL N_PAR DO
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I)
ELSE SP(I) :=0.;
FOR I:=l UNTIL N_PAR DO

BEGIN
SUM:=0.;
FOR J:=l UNTIL N_PAR DO
SUM:=SUM+V(I,J)*SP(J);
PAR(I):=SUM;
END;

COMMENT %OUTPUT TO USER
SOLUTION IN LINEAR DFIT FOR SPARSE GAUSS NEWTON IS (PAR)
SINGULAR VALUES ARE (S)
SINGULAR VALUE REJECTION RATIO IS (SING_CUTOFF);
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
COMMENT %OUTPUT TO USER
SUM OF SQUARES OF RESIDUALS IS (F);
END;

END DFITITER.

APPENDIX B

280

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Integral f i t t i n g using created observations

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE IFIT_CRE(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*) ;
INTEGER ARRAY STATES__OBS (*) ;
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*) ;
LONG REAL ARRAY HERM_COEF(*,*,*);
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*) ;
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS(*);
LONG REAL ARRAY DCREOBS(*));
BEGIN
COMMENT IFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS
ON ONE HAVE
BEEN GUESSED AT—LINEAR OPTION AVAILABLE;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK;
LONG REAL LAM,EPS_R,EPS_A;
INTEGER SM_Y,CR_Y,M,OUT_SEG;
LONG REAL ARRAY V0(l::2);
COMMENT %EXTERNAL SVD_AL,MARQUARDT,CMD_AL;
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(1::1,1:: 1) ;
LONG REAL ARRAY Y, G,INT_G,PREV_G(1::2);
LONG REAL ARRAY DGP,INT_DGP,PREV_DGP(1::2,1::N_PAR);
INTEGER K,KK;
LONG REAL SUM,DEL2;
EFLAG:=0;
K:=0;
Y(SM_Y):=OBS_SMOOTH(1,1);
Y(CR_Y):=CREOBS(1);
G_FUN(PTS_TO_HIT(l),Y,P,-1,PREV_G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(1),Y,P,2,G,DGY,PREV_DGP,SENSE);
G_FUN(PTS_TO_HIT(1),INT_G,P,3,G,DGY,DGP,INT_DGP);
FOR I:=l UNTIL 2 DO VO (I) : =INT__G (I) ;

APPENDIX B

2

FOR I:=2 UNTIL N_PTS_HIT DO
BEGIN
Y(SM_Y):=OBS_SMOOTH(I,1);
Y(CR_Y):=CREOBS(I);
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE);
DEL2:=(PTS_TO_HIT(I)-PTS_TO_HIT(1-1))/2.L;
FOR I:=l UNTIL 2 DO
INT_G(I):=INT_G(I)+DEL2*(G(I)+PREV_G(I));
FOR I:=l UNTIL 2 DO
FOR J:=l UNTIL N_PAR DO
INT_DGP(I,J):=INT_DGP(I,J)+DEL2*(DGP(I,J)+PREV_DGP(I,J))
FOR J:=l UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
RES(K):=INT_G(J)-SPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(* f1),JOINTS(*,1),NJOINTS(l),
N_SPLN_PAR(1));
RES(K):=INT_G(J)-HERM(PTS_TO_HIT(I),
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(1))
END;

END
ELSE RES(K):=INT_G(J)-CREOBS(I);
FOR L:=l UNTIL N_PAR DO
JAC(K,L):=INT_DGP(J,L);
END;

COMMENT UPDATE PREV_G,PREV_DGP;
FOR I:=l UNTIL 2 DO PREV_G(I):=G(I);
FOR I:=l UNTIL 2 DO
FOR J:=l UNTIL N_PAR DO
PREV_DGP(I,J):=DGP(I,J);
END;

COMMENT FORM F;
F:=0;
FOR I:=l UNTIL M DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PAR DO

BEGIN
SUM:=0;
FOR J:=l UNTIL M DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA(4);

APPENDIX

282

SMF:=INTDATA(5) ;
OUT_SEG:=INTDATA(10) ;
DFIT_LIN:=INTDATA(12);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM_Y;
M:=2*(N_PTS_HIT-1);
COMMENT %FILE E,PTY TEMPORARY FILE -SCI;
IF DFIT_LIN~=1 THEN
BEGIN
COMMENT %OUTPUT TO USER
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES
FOR MARQUARDT PROCEDURE
%INPUT (LAM),(EPS_R),(EPS_A)
%OUTPUT TO -SCI
MARQUARDT USED IN IFIT OPTION 2
LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES ARE
(LAM),(EPS_R),(EPS_A);
MARQUARDT (EPS_R, EPS_A , M , N__PAR, CRE_FUNC , PAR, LAM , SVD_AL) ;
END

ELSE
BEGIN
COMMENT LINEAR LEAST SQUARES USING SVD;
LONG REAL SING_CUTOFF;
LONG REAL ARRAY JAC (1 : :M , 1: : N__PAR) ;
LONG REAL ARRAY RES(1::M);
LONG REAL ARRAY SP,S,GRAD(1::N_PAR);
LONG REAL ARRAY V(1::N_PAR,1::N_PAR);
LONG REAL ARRAY A(1::M,1::N_PAR+1);
LONG REAL SUM,F;
INTEGER K;
LONG REAL ARRAY U(1::M,1::N_PAR);
INTEGER EFLAG;
SING_CUTOFF:=.0 0001L;
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
FOR J:=l UNTIL N_PAR DO
FOR I:=l UNTIL M DO
A(I,J):=JAC(I,J);
K:=0;
FOR I:=2 UNTIL N_PTS_HIT DO
BEGIN
FOR J:=l UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF

BEGIN
A(K,N_PAR+1):=SPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,1),JOINTS(*,1),NJOINTS(1),
N_SPLN_PAR(1))-VO(J);
A(K,N_PAR+1):=HERM(PTS_TO_HIT(I),

APPENDIX B

283

HERM_C0EF(*,*,1),JOINTS(*,1),NJOINTS(1))-V0(J)
END;

END
ELSE A(K,N_PAR+1):=CREOBS(I)-VO(J);
END;

END;
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N_PAR);
FOR I:=l UNTIL N_PAR DO
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I)
ELSE SP (I) :=0.;
FOR I:=l UNTIL N_PAR DO
BEGIN
SUM:=0.;
FOR J:=l UNTIL N_PAR DO
SUM:=SUM+V(I,J)*SP(J);
PAR(I):=SUM;
END;

COMMENT %OUTPUT TO USER
LINEAR OPTION IN IFIT OPTION 2 PARAMETERS FOUND ARE
(PAR), SINGULAR VALUES ARE (S), SINGULAR VALUE
REJECTION LEVEL IS (SING_CUTOFF);
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG);
COMMENT %OUTPUT TO USER
SUM OF SQUARES OF RESIDUALS IS (F);
END;

END IFIT CRE.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Iterated integral f i t t i n g (subsystem integration)

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE IFITI(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
INTEGER ARRAY STATES__OBS (*) ;
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*);
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,
DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS(*);
LONG REAL ARRAY DCREOBS(*);
PROCEDURE IFIT_CRE);

BEGIN

APPENDIX B

i

284

COMMENT ITERATED IFIT ON 2 STATE VARIABLES
INTEGRATION OF SUBSYSTEMS TO UPDATE GUESSED OBSERVATIONS;
COMMENT %EXTERNAL TRAP;
PROCEDURE G(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G(*);
LONG REAL ARRAY DGY(*,*);
LONG REAL ARRAY DGP(*,*);
LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT INTERFACE TO G_FUN WHEN ONLY 1 STATE VAR
IS INTEGRATED.;
LONG REAL ARRAY Y1,G1(1::2);
LONG REAL ARRAY DGP1,ISENl(1::2,1::N_PAR);
LONG REAL ARRAY DGYl(1::2,1::2);
Yl(CR_Y):=Y(1);
Yl(SM_Y):=CASE SMF OF
(SPLN_AL(T,SPLN_COEF(*,l),JOINTS(*,l),NJOINTS(l),
N_SPLN_PAR(1)),
HERM(T,HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(l)));
G_FUN(T,Y1,P,OPTION,GI,DGYl,DGP1,ISENl);
IF (OPTION=l) OR (OPTION=-l) THEN G(1):=Gl(CR_Y);
IF OPTION=l THEN DGY (1,1) : =DGYl (CR_Y , CR__Y) ;
IF OPTION=3 THEN Y(1):=Yl(CR_Y);
END G;

INTEGER N_PTS_HIT, N_PAR, SMF , OUTPUT , METHOD__FLAG, OUTPUT_SUP ,
OUT_SEG,INT_PROC,SM_Y,CR_Y,NO_ITER,EFLAG,OUTl;
STRING(1) ANS;
LONG REAL ARRAY B(1::1,1::INTDATA(1));
LONG REAL ARRAY BJAC(1::1,1::1);
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUTPUT:=INTDATA(6);
METHOD_FLAG:=INTDATA(7);
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA(10);
INT_PROC:=INTDATA(ll);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM_Y;
REPT:IFIT_CRE(G_FUN,PAR,INTDATA,OBS_SMOOTH,STATES_OBS,
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,NJOINTS,N_SPLN_PAR,
SPLN_AL,DSPLN_AL,HERM,DHERM,
CREOBS,DCREOBS);
COMMENT INTEGRATION OF SUBSYSTEM (TRAPEZOIDAL RULE
IMPLEMENTED);
IF OUTPUT_SUP=l THEN OUTl:=0 ELSE OUTl:OUTPUT;
TRAP (PAR, PTS_TO_HIT , B , B JAC , 1, N_PTS__HIT, N_PAR , 0 , G , EFLAG , 0) ;

APPENDIX B

285

IF EFLAG=1 THEN GO TO OUT;
FOR I:=l UNTIL N_PTS_HIT DO
CREOBS(I):=B(1,I);
COMMENT %OUTPUT
IS ANOTHER ITERATION DESIRED? Y OR N
%INPUT (ANS);
IF ANS="Y" THEN GO TO REPT;
OUT:END IFITI.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%'•

Continuation and quasi-multiple shooting

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%!

PROCEDURE CONTI(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER VALUE MODE;
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
INTEGER ARRAY STATES_OBS(*);
LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF(*,*);
LONG REAL ARRAY HERM_COEF(*,*,*);
INTEGER ARRAY NJOINTS(*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,
DSPLN_AL,HERM,DHERM;
LONG REAL VALUE EPS,HMIN,HMAX);
BEGIN
COMMENT CONTINUATION FORM IFIT WITH BREAK POINTS
AND WEIGHTING AT BREAK POINTS;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK;
LONG REAL LAM,EPS_R,EPS_A;
LONG REAL ARRAY INITY(1::1);
LONG REAL ARRAY INITYP(1::1,1::1);
INTEGER KFLAG;
INTEGER NP,SM_Y,CR_Y,M,OUT_SEC-
LONG REAL ARRAY V0(l::2);
COMMENT %EXTERNAL TRAP, GEAR, SVD_AL, MARQUARDT,
CMD_AL;
PROCEDURE C_FUNC(LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT OPTIMIZATION FUNCTION FOR CONTINUATION METHOD;

APPENDIX B

286

INTEGER M,N_RES,OUTl;
LONG REAL SUM;
INTEGER I_BREAK;
PROCEDURE CG_FUN(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G (*) ;
LONG REAL ARRAY DGY(*,*);
LONG REAL ARRAY DGP(*,*);
LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT G_FUN INTERFACE FOR CONTINUATION METHOD USING
QUASI MULTIPLE SHOOTING;
LONG REAL ARRAY CY(1::N_STATE);
IF (ABS OPTION)~=3 THEN
BEGIN
FOR I:=l UNTIL N_STATE DO CY(I):=Y (I)*GA(I);
FOR I:=l UNTIL N_STATE_OBS DO
CY(STATES_OBS(I)):=(CASE SMF OF
(SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I),NJOINTS(I),
N_SPLN_PAR(I)),
HERM(T,HERM_COEF(*,*,I),JOINTS(*,I),NJOINTS(I))))
*(1.L-GA(STATES_OBS(I)))+CY(STATES_OBS(I));
END;

CASE ABS OPTION OF
BEGIN

BEGIN
G_FUN(T,CY,P,OPTION,G,DGY,DGP,ISEN);
IF OPTION>0 THEN
BEGIN
FOR J:=l UNTIL N_STATE DO
FOR K:=l UNTIL N_STATE DO
DGY(J,K):=DGY(J,K)*GA(K);
END;

END;
BEGIN
G_FUN(T,CY,P,OPTION,G,DGY,DGP,ISEN);
END;
BEGIN
IF I_BREAK=1 THEN
G_FUN(T,Y,P,OPTION,G,DGY,DGP,ISEN)
ELSE
BEGIN
INTEGER INDX;
INDX:=BREAK(I_BREAK-1);
FOR I:=l UNTIL
N_STATE DO Y(I):=STATE(INDX,I)*GA1(I);
FOR I:=l UNTIL N_STATE_OBS DO
Y(STATES_OBS(I)):=(CASE SMF OF (
SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I),

APPENDIX B

287

NJOINTS(I),N_SPLN_PAR(I)) ,
HERM(T,HERM_COEF(*,*,I),JOINTS(*,I),NJOINTS(I))))*
(1.L-GA1(STATES_OBS(I)))+Y(STATES_OBS(I));
IF OPTION>0 THEN
FOR I:=l UNTIL N_STATE DO
FOR J:=l UNTIL N_PAR DO
ISEN(I, J):=GA1(I)*JACOBIAN((INDX-1)*N_STATE+I,J);
END;

END
END;

END CG_FUN;
FOR I:=l UNTIL N_BREAK DO
BEGIN
COMMENT INTEG TO BREAK(I);
LONG REAL ARRAY SAMPLE(1::BREAK(I)-BREAK(I-1)+1);
INTEGER N_PTS;
LONG REAL ARRAY B(1::N_STATE,1::BREAK(I)-BREAK(1-1)+1);
LONG REAL ARRAY
JB(1::N_PAR,1::(BREAK(I)-BREAK(1-1)+1)*N_STATE);
INTEGER INDX,JI;
I_BREAK:=I;
N_PTS:=BREAK(I)-BREAK(1-1)+1;
FOR J:=l UNTIL N_PTS DO
SAMPLE(J):=PTS_TO_HIT(BREAK(I)-N_PTS+J);
COMMENT INTEGRATE;
IF OUTPUT_SUP=l THEN OUT1:=0 ELSE OUTl:=OUTPUT;
EFLAG:=0;
CASE INT_PROC OF

BEGIN
BEGIN
GEAR(P,SAMPLE,B,JB,N_STATE,N_PTS,EPS,HMIN,HMAX,
N_PAR,1,CG_FUN,KFLAG,OUTl,METHOD_FLAG,0,
INITY,INITYP);
IF KFLAG~=1 THEN BEGIN EFLAG:=1;GO TO OUT;END;
END;
BEGIN
TRAP(P,SAMPLE,B,JB,N_STATE,N_PTS,N_PAR,
1,CG_FUN,EFLAG,OUTl);
IF EFLAG=1 THEN GO TO OUT;
END

END;
JI:=1;
INDX:=BREAK(I_BREAK-1);
IF INDX~=1 THEN JI:=2;
FOR J:=JI UNTIL N_PTS DO
FOR K:=l UNTIL N_STATE DO
BEGIN
STATE(INDX-1+J,K):=B(K,J);
FOR L:=l UNTIL N_PAR DO
JACOBIAN((INDX-2+J)*N_STATE+K,L):=
JB(L,(J-1)*N_STATE+K);

APPENDIX B

288

END ;
END I;

COMMENT EXTRACT NON WEIGHTED JACOBIAN
AND FORM RESIDUAL;
FOR K:=l UNTIL N_PAR DO
BEGIN
M:=0;
FOR I:=l UNTIL N_PTS_HIT DO
FOR J:=l UNTIL N_STATE_OBS DO

BEGIN
M:=M+1;
JAC(M,K):=JACOBIAN((1-1)*N_STATE+STATES_OBS(J),K);
RES(M):=STATE(I,STATES_OBS(J))-
(CASE SMF OF(
SPLN_AL(PTS_TO_HIT(I),SPLN_COEF(*,J),JOINTS(*,J)
,NJOINTS(J),
N_SPLN_PAR(J)),
HERM(PTS_TO_HIT(I),HERM_COEF(*,*,J),JOINTS(*,J),
NJOINTS(J))))
END;

END;
N_RES:=M;
COMMENT SPECIAL WEIGTING OF BREAK POINTS;
FOR I:=l UNTIL N__BREAK DO

BEGIN
INTEGER INDX;
INDX:=(BREAK(I)-1)*N_STATE_OBS;
FOR J:=l UNTIL N_STATE_OBS DO
RES(INDX+J):=RES(INDX+J)*W(I);
FOR J:=l UNTIL N_STATE_OBS DO
FOR K:=l UNTIL N_PAR DO
JAC(INDX+J,K):=JAC(INDX+J,K)*W(I);
END;

F:=0.L;
FOR I:=l UNTIL N_RES DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT;
FOR I:=l UNTIL N_PAR DO
BEGIN
SUM:=0.L;
FOR J:=l UNTIL N_RES DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I):=SUM;
END;

OUT:END C_FUNC;
INTEGER N_STATE , N_STATE_OBS , OUTPUT__SUP , OUTPUT, INT_PROC , METHOD
, METHOD__FLAG;
LONG REAL ARRAY STATE(1::INTDATA(1),1::INTDATA(3));
LONG REAL ARRAY JACOBIAN(1::INTDATA(1)
*INTDATA(3),1::INTDATA(4));
INTEGER N_BREAK;
INTEGER ARRAY BREAK(0::50);

APPENDIX B

289

LONG REAL ARRAY W(0::50);
LONG REAL ARRAY GA,GA1(1::INTDATA(3));
N_PTS_HIT:=INTDATA(1);
N_STATE_OBS:=INTDATA(2);
N_STATE:=INTDATA(3);
N_PAR:=INTDATA(4);
SMF:=INTDATA(5);
OUTPUT:=INTDATA(6);
METHOD_FLAG:=INTDATA(7) ;
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA(10);
INT_PROC:=INTDATA(ll);
IF MODE=0 THEN
BEGIN
INTEGER N__BRK; LONG REAL GAM;
COMMENT %OUTPUT TO USER
ENTER NUMBER OF BREAK POINTS
ENTER 0 FOR NO BREAK POINTS
%INPUT (N_BRK);
IF N_BRK~=0 THEN
BEGIN
COMMENT %OUTPUT TO USER
ENTER SAMPLE TIME SUBSCRIPTS FOR BREAK POINTS
DO NOT INCLUDE FIRST OR LAST SAMPLE TIME;
FOR I:=l UNTIL N_BRK DO
COMMENT %INPUT BREAK(I);
BREAK(0):=1;BREAK(N_BRK+1):=N_PTS_HIT;
N_BREAK:=N_BRK+1;
END

ELSE
BEGIN
BREAK(0):=1;
BREAK(1):=N_PTS_HIT;
N_BREAK:=1;
END;

COMMENT %OUTPUT
ENTER CONTINUATION PARAMETER
FOR INITIAL VALUE PROBLEM
%INPUT (GAM);
FOR I:=l UNTIL N_STATE DO GA(I):=GAM;
IF N_BRK~=0 THEN
BEGIN
COMMENT %OUTPUT
ENTER CONTINUATION PARAMETER
FOR BREAK POINTS. EACH COMPONENT
CORRESPONDS TO THE STATE VARIABLE
WITH THE SAME SUBSCRIPT;
FOR I:=l UNTIL N_STATE DO
COMMENT %INPUT (GAl(I))
%OUTPUT
ENTER WEIGHTS AT BREAK POINTS

APPENDIX B

290

ONE ENTRY FOR EACH BREAK POINT;
FOR I:=l UNTIL N_BRK DO
COMMENT %INPUT (W(I));
W(0):=1.L;
W(N_BREAK):=1.L;
END

ELSE
W(l):=1.L;
END

ELSE
BEGIN
COMMENT MODE NOT 0. IFIT OPTION;
N_BREAK:=1;
BREAK(0):=1; BREAK(1):=N_PTS_HIT;
FOR I:=l UNTIL N_STATE DO GA(I):=0.L;
W(l):=1.L;
END;

COMMENT %FILE EMPTY TEMPORARY FILE -SCI
%OUTPUT
ENTER STARTING LAMBDA, REL AND ABS TOL FOR MARQUARDT
%INPUT (LAM),(EPS_R),(EPS_A);
COMMENT %OUTPUT TO USER IF IN BATCH, TO -SCI IF NOT,
MARQUARDT USED IN CONTINUATION PROCEDURE
OUTPUT REFERENCE NUMBER (OUT_SEG),
LAMBDA (LAM), RELATIVE ERROR TOLERENCE (EPS_R),
ABSOLUTE ERROR TOLERENCE (EPS_A);
MARQUARDT(EPS_R,EPS_A,N_PTS_HIT*N_STATE_OBS,
N_PAR,C_FUNC,PAR,LAM,SVD_AL);
END CONTI.

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

Description of externally defined procedures

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

PROCEDURE CMD_AL(STRING(80) VALUE CMD;
INTEGER VALUE N);
BEGIN
COMMENT EXECUTE AN MTS COMMAND;
END.

PROCEDURE CHECK_BATCH(LOGICAL RESULT BATCH);
BEGIN
COMMENT CHECK IF IN BATCH MODE;
END.

PROCEDURE SVD_AL(LONG REAL ARRAY AD(*,*);
LONG REAL ARRAY S(*);
LONG REAL ARRAY UD(*,*);
LONG REAL ARRAY VD(*,*);
INTEGER VALUE MDIM,NDIM,M,N,NRHS,NU,NV);

APPENDIX B

291

BEGIN
COMMENT SINGULAR VALUE DECOMPOSITION
USES U.B.C. FORTRAN VERSION OF
PROCEDURE BY G. GOLUB AND C. REINSCH,
NUMER. MATH. 14 (1970) 403-420;
END.

PROCEDURE G_FUN(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);LONG REAL ARRAY P(*);
INTEGER VALUE OPTION;LONG REAL ARRAY G(*);
LONG REAL ARRAY DGY(*,*);LONG REAL ARRAY DGP(*,*);
LONG REAL ARRAY PREV_SENSE(*,*));

BEGIN
COMMENT MODEL DEFINITION ;
END.

PROCEDURE ECHOl(INTEGER VALUE CAS);
BEGIN
COMMENT ECHO IBM 3270 CONVERSATION BUFFER
(AS USED BY MTS AT U.B.C.) AND RESET POINTERS SO
NO OVERLAP OCCURS;
END.

PROCEDURE SPLINT_AL(LONG REAL ARRAY X(*);
LONG REAL ARRAY Y(*);LONG REAL ARRAY W(*);
INTEGER VALUE N;LONG REAL ARRAY P(*);
INTEGER VALUE RESULT M;LONG REAL ARRAY XJOINTS(*);
INTEGER VALUE NJOINT);
BEGIN
COMMENT LEAST SQUARES SPLINE APPROXIMATION;
END.

LONG REAL PROCEDURE SPLN_AL(LONG REAL VALUE X;
LONG REAL ARRAY P(*);LONG REAL ARRAY XJOINT(*);
INTEGER VALUE NJOINT,M);
BEGIN
COMMENT CALCULATE SPLINE APPROXIMATION USING
SPLINT_AL RESULTS;
END.

LONG REAL PROCEDURE DSPLN_AL(LONG REAL VALUE X;
LONG REAL ARRAY P(*);LONG REAL ARRAY XJOINT(*);
INTEGER VALUE NJOINT,M);
BEGIN
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING
SPLINT_AL RESULTS;
END.

PROCEDURE HERMIT_AL(LONG REAL ARRAY X(*);
LONG REAL ARRAY Y(*);LONG REAL ARRAY KNOTS(*);
INTEGER VALUE N,NKNOTS;LONG REAL ARRAY COEF(*,*);
INTEGER VALUE NCI;INTEGER RESULT FLAG);
BEGIN

' COMMENT LEAST SQUARES PIECEWISE CUBIC HERMITE
APPROXIMATION;
END.

LONG REAL PROCEDURE HERM(LONG REAL VALUE X;

APPENDIX B

292

LONG REAL ARRAY COEF(*,*);LONG REAL ARRAY JOINTS(*);
INTEGER VALUE NJOINTS);
BEGIN
COMMENT CALCULATE HERMITE APPROXIMATION USING
RESULTS OF HERMIT_AL;
END.

LONG REAL PROCEDURE DHERM(LONG REAL VALUE X;
LONG REAL ARRAY COEF(*,*)?LONG REAL ARRAY JOINTS(*);
INTEGER VALUE NJOINTS);
BEGIN
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING
RESULTS OF HERMIT_AL;
END.

PROCEDURE CREATE_DATA(LONG REAL ARRAY SIM_PAR(*);
LONG REAL ARRAY START_PAR(*);LONG REAL ARRAY PAR(*);
LONG REAL ARRAY OBS_PLACE(*);LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY OBS(*,*);LONG REAL ARRAY STATE(*,*);
LONG REAL ARRAY JACOBIAN(*,*);INTEGER ARRAY OBS_STATUS(*);
INTEGER ARRAY STATES_OBS(*);INTEGER ARRAY INTDATA(*);
STRING(31) VALUE MODEL;PROCEDURE EG_FUN,GEAR,STANDARD_HIT;
LONG REAL RESULT STD_DEV;LONG REAL VALUE INITIAL_TIME;
INTEGER VALUE KFLAG,OUTPUT);
BEGIN
COMMENT SIMULATE OBSERVATIONS;
END.

LONG REAL PROCEDURE FVALUE_AL(LONG REAL VALUE P;
INTEGER VALUE N1,N2);
BEGIN
COMMENT STATISTICAL F DISTRIBUTION;
END.

PROCEDURE SMT(REAL ARRAY X(*);
REAL ARRAY Y(*);REAL ARRAY P(*);
REAL ARRAY SI(*);REAL ARRAY T(*);
REAL ARRAY S(*);REAL ARRAY S l (*) ;
REAL ARRAY S2(*);INTEGER VALUE N,IFF,M);
BEGIN
CUBIC SPLINE INTERPOLATION;
END.

PROCEDURE FSLE_AL(INTEGER VALUE N,NDIMA;
LONG REAL ARRAY A(*,*);INTEGER VALUE NSOL,NDIMBX;
LONG REAL ARRAY B (*,*) ;LONG REAL ARRAY X(*,*);
INTEGER ARRAY IPERM(*);INTEGER VALUE NDIMT;
LONG REAL ARRAY TMP(*,*));

BEGIN
COMMENT SOLVE A LINEAR SYSTEM OF EQUATIONS;
END.

PROCEDURE DIFF(INTEGER VALUE N;
LONG REAL VALUE RESULT LT;LONG REAL ARRAY LY(*,*);
LONG REAL ARRAY LSAVE(*,*);LONG REAL VALUE RESULT LH;
LONG REAL VALUE LHMIN,LHMAX,LEPS;INTEGER VALUE METHOD_FLAG;
LONG REAL ARRAY LYMAX(*);LONG REAL ARRAY LERROR(*);

APPENDIX B

INTEGER VALUE RESULT KFLAG;
INTEGER VALUE RESULT JSTART;
INTEGER VALUE MAXDER;LONG REAL ARRAY A A (*) ;
INTEGER RESULT ORDER;PROCEDURE FUN;
LONG REAL ARRAY P (*) ; R E A L ARRAY PW(*));

BEGIN
COMMENT ALGOL FORTRAN INTERFACE TO GEAR'S CODE;
END.

PROCEDURE ECHO(INTEGER VALUE C A S) ;
BEGIN
COMMENT SIM I L A R TO E C H O l — U S E D I N INTERACTIVE F I T ;
END.

PROCEDURE ALGRAF_AL(REAL ARRAY X (*) ;
REAL ARRAY Y (*) ;
INTEGER VALUE N,NS);

BEGIN
COMMENT PLOT A SET OF DATA POINTS;
END.

PROCEDURE PLOT_AL(REAL VALUE X,Y;INTEGER VALUE IPEN)
BEGIN
COMMENT MOVE PLOTTING PEN TO (X , Y) , CAN BE UP OR
DOWN DEPENDING ON I P E N ;
END.

PROCEDURE A L S I Z E _ A L (R E A L VALUE X S I Z E , Y S I Z E) ;
BEGIN
COMMENT SET S I Z E OF PLOT;
END.

PROCEDURE A L S C A L _ A L (R E A L VALUE XMIN,XMAX,YMIN,YMAX);
BEGIN
COMMENT SCALE DATA TO F I T PLOT;
END.

PROCEDURE A L A X I S _ A L (S T R I N G (5 0) VALUE LABELX;
INTEGER VALUE NX;STRING(50) VALUE LABELY;
INTEGER VALUE N Y) ;

BEGIN
COMMENT DRAW AXES;
END.

PROCEDURE DFBAND(LONG REAL ARRAY D A (*) ;
LONG REAL ARRAY DB(*);INTEGER VALUE N,LHB,NRHS;
LONG REAL VALUE RESULT RATIO;LONG REAL RESULT DET;
INTEGER RESULT JEXP;INTEGER VALUE NS C A L E) ;

BEGIN
COMMENT SOLVE A BANDED SYSTEM OF LINEAR EQUATIONS
WITH A P O S I T I V E D E F I N I T E MATRIX USING
A CHOLESKY DECOMPOSITION;
END.

