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ABSTRACT

The problem of numerical least squares parameter estimation
in differential equations is considered. Several new algorithms
that pay particular attention to the differential equation
aspect of the problem are presented. These reduce somev of the
difficulties encountered when the problem is treated solely as a
guestion of nonlinear optimization. The extremely powerful
interactive approach 1is considered and an interactive package
incorporating standard techniques using sensitivity equations
along with a selection of our special algorithms is presented.
We cénsider methods involving the fitting of integrals and
derivatives using piecewise ©polynomial approximations to the
observations. Continuation methods with a quasi multiple
shooting technique to bridge the gap between these coarse but
well behaved methods and the full least squares problem are
explored.

Special methods are developed for the important case of two
state variables with observations available on only one of them.
In particular we consider algorithms which use an initial guess
at the behavior of the unobserved state variable and then
iteratively improve this guess.

The need for effective algorithms for fitting population
growth models in ecology is one motivation for this thesis. We
devote a chapter to an important predator-prey model of

population dynamics and extensive experiments are presented
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which demonstrate some of the typical difficulties which can
arise and which illustrate the ability of our algorithms to
overcome some of these difficulties.

Some special problems involving jumps from one equilibrium
to another (loosely referred to as catastrophes) are examined.
This type of model has important applications 1in ecology.
Models involving stiff differential equations are also
considered.

A short chapter 1is devoted to the use of seqguential
reestimation techniques. Experiments indicate that such methods
can be useful for improving a crude initial guess at the
parameters and this improvement can be crucial for the
successful solution of the problem.

Finally a chapter is devoted to a selection of "real world"
problems. It 1s on such problems that the true value of an

algorithm is determined.
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INTRODUCTION

Parameter fitting in dynamic models occurs in a wide
.variety of fields (see for example Section 1.2). In many cases,
standard procedures (employing the sensitivity equations as
outlined in Chapter 2) suffice. However, 1in a substantial
number of <cases, this approach is extremely sensitive to pobr
initial guesses at the optimal parameters (see for example
Chapter 4). The main purpose of this thesis is to develop
algorithms and strategies designed to overcome poor or absent
initial approximations to the optimal parameters. Our basic
philosophy for attaining this goal 1is to avoid the full
nonlinear optimization problem as much as possible during the
early stages of parameter estimation. The interactive approach
is ideal for addressing this problem and the algorithms
developed in this thesis are designed with user intervention in
mind. Indeed there are cases, such as the one in Section 6.3,
where an interactive approach appears to be the only way to
obtain certain solutions.

Chapters 1 and 2 establish our notation and provide a
background for the numerical integration and optimization
procedures employed throughout the thesis. In Chapter 3, we
begin our development of special procedures.

We start Chapter 3 with the standard approaches of
derivative and integral fitting and then we expand on these
techniques 1later in the chapter. These techniques, which
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involve the use of smoothed approximations to the observations
on the state variables, are obvious candidates for an
interactive approach. These methods are compared on a stiff
problem and on a problem involving a change in equilibrium. In
Section 3.4, we develop techniques (which employ guessed
observations and iterative improvement of guessed observations)
for extending the methods of Sections 3.2 and 3.3 to the
important case when observations are not available on all state
variables. As illustrated 1in Sections 4.4 and 4.5, these
iterated methods provide a powerful tool (especially in an_
interactive environment) for handling the case where some state
variables are unobserved. Again, our basic philosophy, of
avoiding the full nonlinearity that arises with the direct
approach, lies behind the success of these methods.

In Section 3.5, we present systematic approaches using
break points and continuation parameters for bridging the gap
between the relatively coarse integral fitting technique and the
full nonlinear problem. These methods are highly interactive by
nature, and again, they attempt to ease the approach to the full
nonlinear problem. As shown in Section 3.5, these methods can
be useful for overcoming instabilities.

We end Chapter 3 with a discussion on how the wvarious
methods developed should be incorporated into an interactive
package. A discussion of ‘effective strategies employing our
special techniques in an interactive environment is also
presented at the end of Chapter 3.
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Chapter 4 gives extensive experiments comparing the
techniques of Chapters 2 and 3 on a specific problem.

In Chapter 5, .we continue our search for methods which
reduce the effect of the nonlinearity associated with a direct
approach. In particular a sequential approach is shown to be
effective in several cases where a direct method encountered
difficulties.

When solving a parametef fitting problem involving a
~dynamic model, the particular sfrategy employed can be as
important as the choice of algorithms. This is especially the
cése when an interactive approach is used. In Chapter 6 we
present details of successful strategies on four "real world"
problems where the observations were obtained from physical
experiments and not computer simulations. (A condensation of
our experience with parameter fitting in dynamic models is
contained in the flow charts at the end of Chapter 3.) The
details of such strategies of course vary from problem to
problem; however, as experience with such problems grows,
certain strategies emerge as being more effective than ofhers.
One such strategy that has proved highly effective involves the

temporary freezing of parameters.
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CHAPTER 1

NOTATION AND BACKGROUND

1.1 INTRODUCTION AND BASIC NOTATION

We are inferested in the problem of fitting dynamic models
to observations and wish to pay special attention to the
differential equation aspect of the problem. Our dynamic models

are of the form

y'=g(t,y,p)
(1.1.1)

y(ty) =y, (p)

where y is an n-vector of state variables, p is an m vector of
parameters, t is the independent variable which we call time for
convenience, and ' denotes differentiation with respect to time.
Along with the above initial value problem we have a set of
observations V) reengVy taken at distinct times tl,...,t&

respectively where FzZto/ 1=1,...,k. Each v is an r-vector

£

where r<n. That is, not all components of y need be observed.
Define the weighted residual vector f of length kr by

t

2 )V

2 (1.1.2)

fru-ns 2 “Vnie-naa (Y ;o ¢

for s=1,...,r; 1=1,...,k; where Voo is component s of Y, and

yj(A)(tl) is the corresponding element of the vector y(;x).
.WQ(lﬁ)+A, 1s a weighting factor. The weighted least squares
problem is to find p to minimize

F(p)=f (p) £ (p). | (1.1.3)
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The wuse of weights in the above function allows us to handle
some maximum likelihood problems (see Section 2.4). Adapting

the notation in Bard[5], let

_ T

ex(p)_(fﬂ(k‘l)-ﬁl r-'--rf/lz)r (1.1.4)
k - .

M(p)=lz e, (Pleg(p). (1.1.5)
=1

where, for the moment, we are taking all weights equal to one.
Further let the{wl have normally distributed measurement errors
with =zero mean and covariance matrix V. When there are no
errors in the ty s the maximum likelihood estimate of p is found

by minimizing

-1

L5Tr (V M(p)) (1.1.6)

where Tr denotes the trace operator. (We are assuming the
errors in the observations taken at different times are

uncorrelated.) When V is a diagonal matrix, (1.1.6) reduces to
the form of the function in (1.1.3). It is this special case we
consider in Section 2.4. For a list of‘ some other objective
fﬁnctions we refer the reader to Bard[5].

The dynamic model considered above is a special case of the
standard dynamic model described by Bard[6,p221]. He considers
problems where g and y of (1.1.1) are functions of a vector, x,
of independent variables in addition to the above arguments and
where the observations available are on variables which are

given functions of t, vy, p, and x. One of our aims in this
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thesis is to investigate special methods which handle some of
the difficulties associated with fitting parameters in a
differential equation, and, to avoid unnecessary complications,
we confine our attention to models of the form (1.1.1) with
observations taken directly on the state variables.

The problem of finding p to minimize (1.1.3) can be nasty.
Bard[6,p231] gives a concise description of some of the
difficulties that can occur. Generally, the problem is
difficult because of the vast range of solutions that (1.1.1)
can have as a function of p. This can result in all sorts of
local minima for (1.1.3). Stability problems with the
differential equation can also arise. In some cases the
solution to the initial value problem (1.1.1) is a discontinuous
function of p and this can create difficulties. Also, many
dynamic models are attempts to describe phenomena operating on
different time scales and thus stiff initial value problems can
be expected to arise in practice.

Parameter fitting in the predator-prey dynamic model

v'=p vy -P,Y,Vv,/(1+p_y, ) -p, v?
/ { ! a“l-‘a &+ & ~*1! (1.1.7)

I
Y, ="P, Y, *P,Y, Y, / (1+p ¥, )

is a typical example of the type of problem considered in this
thesis. For more details concerning this dynamic system, we
refer the reader to Bazykin[7] and to Chapter 4 of this thesis.
As shown in Chapter 4 (which is devoted exclusively to this

model) a poor initial approximation to the optimal parameters
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can often 1lead to a local minimum in parameter space at which
the solution to the above initial value problem is qualitatively
quite different from the observations. Several methods are
presented in Chapter 3 which are designed to overcome poor
initial parameter estimates. Special methods are also developed
in Chapter 3 for the important (and often difficult) case when
observations are not available on all state variables. We also
consider methods designed to overcome instabilities in the
initial value problem by the use of continuation parameters and
break points. 1In Chapter 4 we present extensive experiments
with many of the technigues developed in Chapter 3 applied to
the above dynamic model. In Chapter 5 we present a promising
technique for improving poor parameter estimates using a .
seguential reestimation approach. Experiments with this
technique applied to problems involving the above dynamic model
are also given in Chapter 5.

Experience indicates that the successful resolution of a
"real world" parameter fitting problem involving a dynamic model
usually reguires many optimization runs. Strategies such as
freezing or rescaling parameters are also often useful.
Frequently the model evolves as attempts are made to fit it to
the data. It is thus desirable to rapidly acgquire experience
with a given model. We conclude that an interactive approach
can be valuablevfor resolving, in a reasonable time, a parameter
fitting problem involving a dynémic model. This is inherently
expensive; however, as computer technology advances, the cost

CHAPTER 1



factor becomes less important. It is our view that the first
point to consider when designing a good interactive package is
the set of numerical algorithms to be employed. The
user-program interface should then be constructed to make
optimal use of these algorithms. Of course the process works
the other way too: interactive algorithms should be designed
with a user-program interface in mind. One goal of this thesis
is to develop dynamic model parameter fitting algofithms that
exploit user interaction. Another goal 1is to organize a
selection of these algorithms into an interactive package so
that the wvarious approaches developed complement one another.
The end result of this work is the interactive package PARFIT
documented in Appendix A.

1.2 MOTIVATION

Dynamic models occur extensively in practice. To be
meaningful, such models must be related to physical observations
and this often involves adjusting some parameters in the models.
In this section we briefly describe somé areas where parameter
fitting in dynamic models is important.

Chemistry 1is one field where parameter fitting‘in dynamic
models occurs that is frecuently mentioned 1in the literature
(see for example, Rosenbrock and Storeyl[61,p.189,p.204],
Bard[6,p.222], van Domselaar and Hemker[71], and Bellman et
al[9]).v Typically a dynamic model 1is set up to describe a
chemical reaction. The unknown parameters are réaction rates
‘and the state variables represent concentrations of various
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reactants. Since reaction rates can vary greatly, stiff dynamic
models are important in chemistry. An example of such a model
is considered in Section 3.2. The study of parameters in
dynamic models with a large number of state variables is also of
interest to chemists (see for example Farrow and Edelson[22]).

Many dynamic models occur in the fields of medicine and
biology. Some of these models involve organic chemistry, while
others are more directly related to biological processes. There
are models describing enzyme activity in the blood (van
Domselaar [70], van Domselaar and Hemker[71]). Models describing
blood cell population dynamics are currently of interest
(Mackey({42]). Parameter estimation in a model involving the
electrical activity of the heart has been studied by Bellman et
al[ll]. Biological processes frequently operate on different
time scales and thus stiff dynamic models are important here.

At present, there 1is a strong interest in dynamic models
describing ecological processes. Several such models are
considered 1in this thesis. Often ecological data is sparse and
has a large random error and this makes parameter fitting
difficult. Models describing predator-prey interactions occur
extensively in ecology. 1In Chapters 4 and 6, we give several
examples with such models using both simulated observations and
observations obtained from physical experiments. For more
background concerning parameter fitting in dynamic models in
ecology, see for example Swértz and Bremermann{66],
Vandermeer [69], Martin et al[44], Parker[53}, Long[40].
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1.3 MORE BACKGROUND
Following the observations of Bard[6,p220], we elect to use
methods of the form

p#*) -8 -y RgvF (05 ) (1.3.1)

to minimize F(p) in (1.1.3) where VF represents the gradient of
F, f& is a scalar, and RZ is a matrix (usually positive
definite). The Gauss-Newton (see for example [50,p.267]) and
Levenberg-Marguardt[39],[43] methods are particular examples of
such techniques. To apply these methods ¥F must be found.
There are basically two ways this can be done. One way 1is to
calculate vF through finite differences. Since the
determination of F(p) involves the integration of an initial
value problem, we expect the use of finite differences to
approximate VF to be an expensive undertaking. More inportant,
however, is the fact that with a dynamic model, the accurate
calculation of VF by finite differences can be a tricky task.
In particular let aF(p)/Dp; be approximated by the difference

F(p+ap, e; ) -F(p)
_______________ (1.3.2)

where e; is the unit vector with a 1 in position i. As pointed
out by Bard[6,p226], several factors affect how well this
difference approximates aF/apl. For a good approximation, AD;
must be small; however, if it is too small, rounding-error
dominates and a poor approximation to the derivative is
obtained. More important, however, is the fact that F(p) is
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obtained by integrating an initial value problem and thus 1its
accuracy depends on the discretization used and on the order of
the method used to numerically solve the differential equation.
Thus for example if F(p+Apjei) and F(p) are determined
independently (each with its own discrete set of time values),
they must be found with sufficient accuracy so that thé
difference approximation to 23F/ap, is wvalid. This 1is an
expensive undertaking and is not the proper way to proceed. It
is more productive to think of F in terms of the discrete method
used to find it. Thus at a given point p in parameter space,
vF (p) is approximated by integrating (1.1.1) m+l times using the
 same discrete set of time values. This avoids for example the
possibility of getting discontinuities in F(p) due to varying
sets of discrete steps at neighboring points in parameter space.
Of course such a discontinuity would play havoc with the finite
difference approximation to the gradient. Thus to calculate
F(p) and approximate yF(p) requires m+l integrations of (1.1.1),
only one of which involves error control. However, (1.1.1) is
often a nonlinear initial value problem.

The second alternative for calculating vF, which we shall
use, employs the sensitivity equations. These are a set of

linear initial wvalue problems coupled in only one direction to

the given initial value problem (1.1.1). In our notation they
are
] - +
Ve, T99%; "9 (1.3.3)
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for j=1,...,m where the subscript p_i denotes partial
differentiation with respect to Rj' and where gx is the Jacobian
matrix (32g9/2Vy). These equations may be obtained by
differentiating (1.1.1) with respect to p. To use the

sensitivity egquations, g, and gr must be fodnd; however, for a

3
wide selection of important dynamic models this is not too
difficult a task. For more details on sensitivity equations see
Tomovi&[67], Tomovié and Vukobratovi&([68]. In Chapter 2,
further details are given on the integration of the sensitivity
eguations. We observe that for models of the form (1.1.1), the
solution to the sensitivity equations immediately gives V¥ F(p).
Following the notation used in (1.1.2), denote by J the kr x m
Jacobian matrix of f with respect to p. The elements of J are

given by

J (p)=w Y, (ty) (1.3.4)
RLL-Deo ALR-1D1a (4 TR
Py

s=1,...,r; 1=1,...,k; j=1,...,m,

and the gradient of F(p) 1is

VF (p)=2J (p) " £(p) . (1.3.5)

We note that in the process of finding ¥F, we have found part of
the Hessian matrix of F(p). (The Hessian matrix is

kr

2(J13+:E: £,G,)
51 3¢

where G, is the matrix of second partials of f

B

with respect to

8
P-)
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Beale[8] distinguishes three basic problems in nonlinear
parameter estimation. First there is the problem of determining
the optimal parameter vector p. This is primarily a matter of
numerical analysis and it 1is the problem we concentrate on.
Second there is the problem of defining a théoretically
satisfactory confidence region or an approximate confidence
region for p. Third, Beale identifies the problem of describing
this confidence region so that it can be easily interpreted.
Beale deals extensively in [8] with the second problem.

Although we are primarily concerned with the first problem
in this thesis, some attention to the second and third problems
isv mandatory since a measure of the reliability of parameters
greatly enhances their value to the model builder. Also, as
seen in Chapter 4, a study of some of the statistical aspects of
the problem can be useful for detecting linear relationships
among ’parameters in a model. Following Bard([(6,p.187], we make
the
DEFINITION 1.3.1:

The ¥-joint confidence region is a bounded closed subset
S(W) in parameter space depending on the.data sample W such that

Prip*esS(w)]1=7% (1.3.6)

for all possible data samples W where p* is the exact (and
unattainable) wvalue for the parameter vector, and Pr denotes
probability.

Specifically, we use for S(W) an m dimensional ellipsoid
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centred at the estimate P of p*. Following Bard[6,pl89], we
approximate f(p) defined in (1.1.2) by a linear function in a

neighborhood of p:

f(p)2£f (D) +JI (D) (p-P) - _ _ (1.3.7)

We assume the errors 1in the observations are normally
distributed with zero mean. Form the theory of multiple 1linear
regression with V representing the kr x kr covariance matrix for

the observations, the variable

d=(p-8)" 3BV I®)) (p-7) (1.3.8)

has a 5&1 distribution with m degrees of freedom. (We are
. . . . . T -1
considering the general objective function £f V f.) Unless

stated otherwise, J 1is evaluated at 7P in the following

discussion. Also,

=£() v ' £(p) (1.3.9)

has a ”&a distribution independent of d with kr-m degrees of

freedom. Thus

has an F , g,.mdistribution ( m degrees of freedom in the
~numerator, kr-m degrees of freedom in the denominator). In
particular when the covariance matrix V is of the form 31,

(that is, when all observations are independent) then
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(ke-m)y  (kr-m) (p-B)' J '3 (p-P)

e (1.3.10)
mF (D)
Thus the ¥-joint confidence region is
- T_7T -
(kr-m) (p-p) J J(p-P)
{p: -------------------- SEm,Ju-m“”} (1.3.11)

which is an m dimensional ellipsoid in parameter space.
Following van Domselaar and Hemker([71], we can use the singular
value decomposition of J(P) to extract further information on
this ellipsoid. Let

J(p) =0 (P)=(P)R ' (P) (1.3.12)

where Q and R are orthogonal matrices of size kr x m and m X m
and ¥ is the mxm diagonal matrix [diag(s,,...,sm)] of singular
values arranged in descending order of magnitude. Let

ME g g (¥) F (D)

_________________ = £ ,
kr-m
T (1.3.13)
§g=R (D) (p-P) -
Our ellipsoid may thus be written
iSq : $q'z2Sa< 675 . (1.3.14)

Thus the principal axes of the confidence region have lengths
WVsj, j=1,...,m. For our confidence intervals on Rj’ j=1,...,m
we take the projections of the above ellipsoid onto the
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coordinate axes in p-space with the origin translated to the

estimate P. Thus the confidence interval for 53 is

- Vew mam, . v Vew mam} 1. (1.3.15)

This is the confidence interval we use in our program PARFIT
described in Appendix A. To find (JTh)q we use

(I =R 2R, (1.3.16)

The expected value of §—p’ is zero and in the special case
considered above when y=¢’I, the covariance matrix for 5—p”is

E((5-p%) (B-p*) ) =73 (1.3.17)

where E(.) denotes expectation (see for example van Domselaar
and Hemker[71], Bard[6,p.59]). This matrix can be found using

(1.3.16). The matrix of correlation coefficients has elements

——___4J |
faj'— (1.3.18)

where g° = (J'J).. . Thus using the singular value decomposition,
A i

/DIJ=COS(S/' Sj) (1.3.19)

where S, s Sj are the i'th and j'th row vectors of S=R2f£

Finally we note that the above confidence intervals were
derived under the assumption that f(p) could be well
approximated by a linear function near Pp. This is often not the
case. Bard[6,pl91] gives a simple empirical way of checking
this. We want the 1linearity approximation to hold over the

confidence region that has been found. That is F(p) should be

CHAPTER 1



17

near

F(B)+.5 (p-B) (J'J) (p-P)

in the confidence region. This can easily be checked at the
boundary of the confidence region. We also note that when F(D)
is large (and f is only moderately nonlinear), then J'J is a
poor approximation to the Hessian matrix of F(P) and the
guadratic approximation to F(p) stated above cannot be very
good. Thus the confidence region stated above loses validity as
the residuals increase. This can also be seen by observing that
£ in (1.3.13) wvaries directly as F(P), and thus as F(D)
increases, the confidence intervals can gquickly become larger
than the parameters themselves. For further comments on this
case see Rosenbrock and Storey[61,p202].

We end this chapter with a brief discussion on
conditioning. There is a close connection between nonlinear and
linear 1least squares problems. For example, the Gauss-Newton
iterative method for solving a nonlinear least squares problem
can be viewed 1in terms of a sequence of linear least squares

(g

problems. That is given an estimate p for the parameter

vector which minimizes (1.1.3), we seek a new estimate p(s“)
for this minimizing parameter vector such that

HEE® y+a(p® ) B+ |7 (1.3.20)

is minimized where

s(gu):p(g-n) _p(g) (1.3.21)
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(In practice a robust least squares optimization procedure must
do more. For example, it should guarantee a reduction in the
sum of the sguares of the residuals after each iteration.) For
éimplicity of notation in the following discussion, we neglect
superscripts and we let -Su+o=x. Also, we assume J is of full
rank. The condition number of the matrix J is defined to be
XXJ)=|IJIIaIIJTIIQ Qhére J.1'=(JT.J)"J-r is the pseudo-inverse of J.

First we consider the effect of small errors in f. The
vector ¥ which minimizes

K
| 1£-3x115 (1.3.22)

1,

— - — 12 i A
is given by X =J 'f. When J is of full rank x is unique. Let f

be an approximation to £ and let f_, and f; be projections of £

P
and'? onto the range space of J. Provided f'#O, it follows (see
for example Stewart{65,p.221])

P
nate-a¥1, xo1ig -5,
————— E it < ==mmm—————— (1.3.23)

Thus when J is ill-conditioned (X(J) 1is large) or when the
projection of f onto the range space of J is small, relatively
small errors in f can have a strong influence on the accuracy
with which we can determine X .

The effects of errors in J are much more complicated. The
following theorem (see for example Stewart{65,p.223]) addresses
this situation.

THEOREM 1.3.1:
Let J be of full rank and let f be defined as above. Let E
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be a matrix of the’same dimensions as J and let Er, ff' and ﬁ;,
‘?} be projections of E and f onto the range space of J and the
orthogonal complement of the range space of J respectively.
(Thé projection of a matrix onto a subspace is defined to be the
matrix whose i'th column is the projection of the i'th column of
the given matrix onto the subspace.) 1If

.'r
3T, 1HE, 1.5

then J+E 1is of full rank and

X
1T <% LIE ol | HIEL L TIE I HE, |
————-—--%<2% AR U'E % S i Y x’———f-_{‘ (1.3.24)
U 11311, NEIR NN a3y

where QE(J+E)Tf and X =J*f.

As noted by Stewart[65,p.224], if f is almost in the range
space of J then X is the condition number of the least squares
problem, while if Il?:'\,,lla/HfPIIa is large then X% is the
effective <condition number of the least squares problem. Thus
depending on the orientation of £ with respect to the range
space of J, the least squares problem can be extremely sensitive
to the condition number of J.

The condition number of J can be influenced by certain
transformations in parameter space. At times, such
transformations <can drastically reduce the condition number;
however, on other occasions they can worsen the conditioning of
a problem. For example consider the logarithmic transformation
of p.i where we transform to‘@ =1n(pj). We consider the effect

of this transformation on the conditioning of the stiff problem
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y'=—-(1-y, )y, +p, V.
/ 270 rana (1.3.25)

Y, =P, ((1-y,)y, — (P, +P4) ¥, )

with initial condition

y(0)=(1,0) "

at the point

(1006, .99, .Olfr

in parameter space. Without any scaling, the condition number
was approximately 59600. The matrix J was evaluated using the
observation times given in Section 3.2 where this initial value
problem is given further consideration. The trapezoidal
integration scheﬁe available in the package PARFIT described in
the appendices was used to approximate J. For this problem, a
logarithmic scaling of the parameters reduced the condition
number to approximately 4.4. There are cases, however, where
this scaling increases the condition number (this occurs for
example, in certain cases with exponential fitting problems),

and thus it must be used with caution.
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CHAPTER.Z

OPTIMIZATION AND INTEGRATION

2.1 NONLINEAR LEAST SQUARES

Our goal is to concentrate on the differential equation
aspect of parameter fitting in dynamic models and not to compare
the fine ©points of various optimization algorithms. However,
the nonlinear least squares problem occurs repeatedly in this
thesis and thus a brief discussion of this problem is in order.
When choosing a method, it is important to keep in mind that the
efficiency and reliability of an optimization program depend on
both the particular algorithm and the details of its
implementation.

We must choose between methods designed specifically for
least squares problems, and more general methods designed for
nonlinear optimization. For our particular problem the
calculation of first derivatives is often expensive (through the
sensitivity eguations for example) and the calculation of second
defivatives is even worse. Thus we elect to use only first
derivative methods and we must settle for approximations to the
Hessian matrix. Some comparisons between least squares methods
and more general optimization methods applied to 1least squares
problems (Bard[5], Bus et al[l4]) indicate special least squares
methods are to be preferred. We recognize, however, that there
are cases when a more general method can be superior (see Ramsin
and Wedin[57], McKeown[46]). The results of Bus et al favor the
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Levenberg-Marquardt method ([39], '[43]) over more general
optimization methods and over the Gauss-Newton method, (we
include under the name Gauss-Newton, modified Gauss-Newton
algorithms employing step length adjustment) while Bard finds
his implementation of the Levenberg-Marquardt method to be as
reliable but slightly less efficient than his implementation of
the Gauss-Newton method. Bard, however, employs some special
techniques in his implementation of the Gauss-Newton algorithm
that are absent in the experiments of Bus et al. This further
points‘out the sensitivity of test results to particular details
of implementation. Of <course all results are also problem
dependent. The Levenberg-Marquardt method appears to be a good
algorithm for the nonlinear least squares problem and we employ
it extensively in this thesis. Specifically we iterate

according to
p P —@ T P @ ) mnT TTE® HEE® )
(2.1.1)
where J, f, p were defined in Section 1.1 and X is a positive
parameter chosen so that the sum of the squares of the residuals
is reduced by the above iteration.

In the case when JTJ is positive definite (that is, when J
is of full rank), we have the following important facts about
this technique (see Marquardt[43]). _

(1) Let §&+u =p(5+” —p“’. That is

(3TT+N)$ =37 (2.1.2)
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where we have dropped the superscripts. It follows that

S,=- (373+x1) 3T | (2.1.3)
minimizes
|135+E1 15 (2.1.4)
over
{81t =01s,11,1. (2.1.5)
(2) For § satisifying (2.1.2), |1 $ (X)II: is a continuous

monotone decreasing function of A and

lim [1§(N) 115 =0. (2.1.6)
A>eo

(3) The guantity

X=cos"($-$,) (2.1.7)

where $3=—JTf, is a continuous monotone decreasing function of A
and

lim¥ =0. (2.1.8)
A~> oo

Thus as A—>-=, the descent direction $ given by (2.1.2)
approaches the steepest descent direction, given by —J7f; and
its magnitude approaches zero. This can create problems if this
algorithm is not carefully implemented. That is, we do not want
A to become so large that we are taking ver§ small steps in a
direction that is essentially the steépest descent direction.
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To overcome this possible drawback, a check is made to see if $
is within 45° of the steepest descent direction. If it is, A is
not increased but instead a search in the direction of the
current § is carried out to-obtain a better parameter vector.
Marquardt[43] outlines the necessity of using this strategy.

The following theorem (see Dennis[19]) gives conditions for
the local convergence of the Levenberg-Marquardt method.
THEOREM 2.1.1:

let D be a local minimum of F(p) and let o be the smallest
eigenvalue of J(ﬁ)TJ(ﬁ). Let ¥ be a scalar such £hat for all p
in a neighborhood of P,

113 -3 () £(B) || <#l1p-Bl 1, (2.1.9)

If 8<//then for any bounded sequence { A“)g of real numbers,

(o) is in this

o)

there exists a neighborhood of P such that if p
neighborhood, the Levenberg-Marquardt iterations defined by p‘
and ik(g)} converge to p.

For further reading concerning the convergence of the
Levenberg-Marqguardt algorithm see Osborne[51},[52].

There 1is a 1lot of <choice available in a particular
implementation of the Levenberg-Marquardt method. Much of this
centres around the strategy for adjusting A\. For a summary of
some of the strategies we refer the reader to Van Loan[72].

Marquardt(43] suggests that we rescale parameter space at
each iteration in such a way that JTb in the scaled parameters

has diagonal elements equal to one. The rationale for this
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scaling is that the Levenberg-Marquardt method is biasing the
descent direction towards the steepest descent direction and the
steepest descent direction is scale dependent. Our
implementation of the Levenberg-Marquardt technique has this
scaling available as an option. Experimental results indicate
that at times this scaling can be gquite effective. A listing of
our implementation is given in Appendix B.

Next, we mention a couple of recent developments in
nonlinear 1least squares problems which, when they become more
fully understood, may be very useful for our problem where
function and gradient evaluations are expensive.

Steen and Byrne[64] propose an interesting nonlinear least
squares algorithm which adjusts the descent direction between
the steepest descent and Gauss-Newton directions in a
complicated, but (experimentally) apparantly more efficient way
than that of the Levenberg-Marquardt method. Alsc, their
algorithm does not suffer from the stepsize going to zero as the
steepest descent direction is approached. This algorithm is of
particular interest to wus because it requires a substantially
fewer number of function evaluations than does the
Levenberg-Marquardt method on a fairly wide range of test
problems considered in [64]. On most of the test problems
.considered, this method is superior to the similar SPIRAL method
proposed by Jones[34].

" The second recent development of particular interest
involves work on the large residual least squares problem. In
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this case 373 is no longer a good approximation to the Hessian
matrix, and the Gauss-Newton and Levenberg-Marquardt methods are
slowed down. This situation can arise when we have a lot of
noise in the observations, when we have a poor model, or when
our least squares algorithm is converging to a local minimum
with a large residual. (As the experiments of Chapter 4
indicate, numerous local minima can occur when we try to
estimate parameters in dynamic models.) Recently, there has
been some interesting work done on special algorithms which
approximate the second derivatives in the Hessian of a least
sguares problem by techniques modelled after the quasi-Newton
methods. (See for example Dennis[l18,p.171,177], Dennis et
alf20].) When the reliability of such methods increases, their
application to parameter fitting problems in dynamic models
seems worthwhile. If a reduction is achieved in the number of
numerical integrations required, the extra work invested to
approximate the Hessian matrices should be well worth it. For a
good discussion of recent work in nonlinear least sguares, we
refer the reader to Dennis[19].
2.2 INTEGRATION OF MODEL AND SENSITIVITY EQUATIONS

In the course of fitting parameters in a dynamic model,
several different initial value problems must be solved. That
is, every time the parameter vector changes, a new initial value
problem 'musf be solved. Moreover, the solutions to these
problems can vary drastically. Consider, for example, the algae
growth model of Section 6.3 where small changes in the parameter
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values can produce huge changes in the solution to the initial
value problem. To handle such problems, a parameter fitting
algorithm requires a good general purpose numerical package for
solving initial value problems. The ability to handle parameter
estimation problems involving stiff dynamic models is also
important 1in practice. For several examples with such problems
we refer the reader to van Domselaar and Hemker[71]. In this
thesis, we employ the automatic integration package developed by
Gear [25], [26], [27]. 1In addition to the 'étandard predictor
corrector methods, this package has available a set of stiffly
stable multistep methods of varying order. In our package,
PARFIT, the wuser can easily switch between a regular multistep
method and a stiffly stable method.

When fitting parameters in a dynamic model, the need for a
general integration program is clear; however, often a much
simpler infegration procedure is adequate. Of coursé to
mimimize the error introduced into the parameter estimates by
the discretization of the initial value problem, an integration
scheme with error control should be used. 1In the interests of
economy, 1t 1s advisable to start with a simple integration
scheme not employing stepsize control if this is possible. In
particular we make use of the trapezoidal method without error
control. In PARFIT, the discrete times used by the trapezoidal
method are the "sample times" which by default are the
observation times; however, the sample times can be
interactively modified. Use of the trapezoidal method allows us
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to handle stiff problems. Finally we note that other
integration schemes can easily be added to PARFIT.

In addition to integrating the given initial value problem,
the sensitivity equations defined in Section 1.3 must also
frequently be integrated. The way the sensitivity equations
(which are coupled in only one direction to the given initial
value problem) are integrated can be crucial to the success of a
parameter fitting algorithm. For example, as observed by
Bard{6,p.231], the integratibn of the sensitivity equations at a
point p in parameter space should not have any influence on the
discrete steps used in the integration of (1.1.1) at p. That
is, F(p) should be independent of whether or not gradient
information is extracted at p. The sensitivity equations in
theory provide a means of determining how the continuous
solution y(t) to the given initial value problem varies as a
function of the parameter vector p. However, in practice the
given initial value problem can only be solved approximately
according to some discrete model (for example the trapezoidal
method). For the purposes of numerical optimization, it is the
solution to this discrete analog of the continuous problem that
is being fit to the observations, and when finding the gradients
of the objective function we really want to know how the
solution to the discrete approximation to the initial wvalue
problem varies as a function of p‘at the observation times.
Thué for the purposes of numerical optimization, the way the
sensitivity equations are integrated should be related to the
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solution method of the'original initial value problem. This is
especially important if a coarse approximation to the given
initial value problem is used.

There 1is an analog to the above considerations in optimal
control problems where the discrete approximation to the adjoint
equations should be tailored to the particular discretization of
the state equations. This can be a tedious undertaking in
control problems as demonstrated by Kelly and Denham[35].
However, the main difficulty with control problems arises
because the state equations are integrated forward in time and
the adjoint equations are integrated backward in time.
Fortunately for our purposes since we are integrating in only
one direction in time, the relation of the discrete sensitivity
equations to the discrete state equations is much simpler. In
particular all we must do is to ensure that the same method with
the same discrete set of time values is used on the sensitivity
equations as is used on the state eguations. To be more
specific, the diagram in Figure 2.2.1 must commute where S,
represents the operator which produces sensitivity equations
from an initial value problem, D, represents a discretization
operator, and S, represents the operator which produces discrete
sensitivity equations from discrete state egquations. In our
numerical integration procedures we take advantage of the one
way coupling between the sensitivity equations and the state
equations. Specifically, we integrate the state equations from
time t to time t+h (under error control if applicable). Then
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continuous continuous
state egns Se sensitivity egns
____________________ ‘__..————________.___—_,

I I
| |
I I
| I
D ! | D,
I I
| I
I |
I I

Y ¥

discrete S discrete
state egns sensitivity egns

Figure 2.2.1
Discretization of sensitivity equations

assuming there are m ‘pafameters and n state eguations, we
integrate each of the m sensitivity initial value problems, each
having n equations, from time t to time t+h using exactly the
same discretization that was wused to integrate the state
equations. This is consistent with the comments by
Bard[6,p.231] mentioned earlier in this section. We note that
the sensitivity equations are 1linear initial value problems.
When Gear's program 1is used, the above technique involves
extracting information on the current stepsize and order from
the integration package, and then integrating the sensitivity
equations over the same step with the same order method. Gear's
program employs the Nordsieck[49] formulation of a multistep

method where approximations to higher derivatives are stored

CHAPTER 2



31

instead of previous values. This makes <changing the stepsize
very easy. Our integration of the sensitivity equations employs
exactly the same technique in phase with Gear's package. For
more details see Appendix B. No error control is used when
integrating the sensitivity equations. As observed by van
Domselaar and Hemker[71], an integration scheme has the same
stability properties on the sensitivity systems as it has on the
system of state equations.
2.3 WHEN TO INTEGRATE THE SENSITIVITY EQUATIONS

We must decide when to integrate the sensitivity equations.
Two strategies are considered. These extra linear equations may
be integrated every time (1.1.1) is integrated (strategy one),
or they may be integrated only when the Jacobian matrix and the
gradient are required (strategy two). We expect the choice of
strategy to depend in part on the implementation details of the
optimization algorithm employed. For example, if several
objective function evaluations are required at each iteration,
then the first strategy would clearly be inefficient. On the
other hand, if only one objective function evaluation is
reguired per iteration (this is generally not the case, although
at times several iterations follow this pattern), then strategy
one would hold the advantage. To further complicate matters,
the integration of the sensitivity equations is generally easier
than the integration of (1.1.1) which is usually nonlinear and
at times even stiff. Also, the step size adjustments are made
when integrating (l.1.1) and not when integrating the
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sensitivity equations.
To aid in a more detailed analysis of the two alternatives,
we make the following definitions.
(a) Let W denote the basic unit of work for a particular problem
defined as the work required to integrate (1.1.1).
(b) Let w denote the fraction of the work W required to
integrate one sensitivity equation.
(c) Let m be the number of sensitivity equation systems. This
is just the number of parameters.
(d) Let I be the number of iterations in the optimization run.
(e) Let J be the number of objective function evaluations where
no gradient is required. These are the evaluations in the
searches during the iterations.
Under the first strategy, the number of times the initial
value problem (1.1.1) is solved is

I+J-(I-1)=J+1 (2.3.1)

and this is also the number of times the sensitivity egquations
are solved. Therefore the total function evaluation work done
in solving for the optimal parameters is

WI=(J+1)W+m(J+l)wW. (2.3.2)

Under the second strategy, the number of times the initial value
problem is solved is I+J, and the number of times the
sensitivity equations are solved is 1I. Therefore the total
function evaluation work done in solving for the optimal
parameters is
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W I+J)W+mIwW. (3.3.3)

a~ |
Thus
W//W1=(J+l)(mw+1)/(I+J+me)
(2.3.4)
=(J/I+1/1) (mw+1)/(1+J/I+mw) .

We neglect 1/I compared to J/I. This is equivalent to ignoring
the starting function evaluation in the first strategy and thus
in most cases, this approximation is not too significant. Thus

W,/W;ZJ/I(mw+l)/(J/I+(mw+l)) (2.3.5)

Table 2.3.1 contains some values for Wl/Wa as a function of J/I

and mw. Entries less than 1 correspond to cases where it 1is

.5 1 2 4 8

0.6 0.667 0.75 0.833 0.9

0.667 0.75 0.857 0.968 1.06
0.75 0.857 1.0 1.15 1.29
0.857 1.0 1.2 1.43 1.64

Table 2.3.1
Work ratios W /W,

more efficient to integrate the sensitivity equations each time
the initial value problem is integrated.

“To carry this analysis further, we need some typical values
for w. Consider Euler's method with no stepsize adjustment.
Assume there are n state variables and let the work reguired to
evaluate one component of a vector function or one element of a
Jacobian matrix be W, The initial value problem (1.1.1) is
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y'=g(t,y,p)

and the sensitivity equations are of the form

. yJ=1,...,m.

y, =9,(t,y,ply, +9
P ﬁ 3

,J

We do not make any special allowances for parameters that occur

only in the initial conditions (thus making 9, =0) in the
. J

following analysis. Also, additions and multiplications

associated with taking an Euler step are neglected. The work

required to advance one time step in the solution of (1.1.1) is
nW,., and the work required to advance one step in the solution
of one sensitivity equation system is (rla/mun)wg. Thus

mw= (n®+mn) /n=n+m. (2.3.6)

In the case of Euler's method without error control, it seems
advisable to solve the sensitivity equations only when required.
The same conclusion applies to explicit multistep methods
without error control since to advance one step in time requires
only one evaluation of the vector function on the right hand
side of (1.1.1) (see for example Gear[25,p.104]).

The situation 1s, however, different with implicit
multistep methods. Here a generally nonlinear system of
algebraic eguations must be solved for each advance of one time
step when integrating (1.1.1). 1If a predictor-corrector method
is used to solve the these nonlinear systems of equations then
typically two or three corrections are required at each time

step (Gear[25,p.114]). Assume the predictor —corrector method
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ends with an evaluation of y' at the new time value. To be
concrete, assume four evaluations of g are regquired per time
step. To solve the implicit equations associated with the
integration of the sensitivity equations, no extra function
evaluations beyond those required for an explicit multistep
method are needed. However, m linear systems of equations each
involving the same nxn matrix must be solved. This takes on the
order of n3/3+mn"z multiplications (see for example
Stewart[65,p.136]). The number of multiplications required to
evaluate a component of g can vary greatly between problems. To
describe this wvariation, let W, require 1 multiplications. We
will vary 1 in the following analysis. The work required to
advance one time step , without error control, in the solution
of (1.1.1) is

4nW_=4nl multiplications (2.3.7)

and the number of multiplications required to advance one step
in the solution of a sensitivity egquation is

(n%/m+n) 1+n3/(3m) +2n?. (2.3.8)

The multiplications required to form giy}. have been included in
Jd
the above estimate. Thus

mw= ((n+m) 14+n%/3+2nm) / (41) . (2.3.9)

Some values for mw and for WI/W1 are given in Table 2.3.2. The
ordered pair (m,n) is given below the mw values. From Table

2.3.2, we see there are cases when it is advantageous to
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1.92
(3,2)

0.745
0.850
0.991
1.19

Some work ratios for a predictor-corrector

3.92
(3,5)

0.831
0.965
1.15
1.42

3.27
(6,2)

0.810
0.937
1.11
1.36

6.17
(6,5)

0.878
1.03
1.24
1.56

Table 2.3.2

36

1.03 1.12
1.24 1.38
method
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even more

the

sensitivity

desirable

if

equat

error

nonlinear initial value problem.

The

special attention.

reasons to

predictor-corrector method can require very small step sizes

converge

(Gear [25,p.216]).

exact g

case

use

and

ions

This

control

were

every time the nonlinear

strategy would be

used on the

when the initial value problem is stiff requires

an

thus

In

this case it is desirable

implicit

a

integration

Newton-like

only when necessary (see Gear[25,p.217]).

assume g

solution of the given
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There is a further complication in finding work estimates in the
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then we
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find g
J

If the sensitivity equations are to

be integrated

and the factors of the associated linear
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system matrix at each time step. Thus this information 1is
freely available when we are integrating the given dynamic
system. In the following estimates we assume no advantage is
taken of this free information. We have

mw=((n+m)1+na/3+2nm)/(4(n+l)+d(nl+na/3)). (2.3.9)

In Tables 2.3.3 and 2.3.4, results analogous to those 1in Table
2.3.2 are given for the cases A=.3 and &=.6 respectively.

We conclude that for implicit methods, it can be
advantageous to follow strategy one, especially when the problem
is stiff. Of course the optimal strategy is strongly dependent
on the optimization method used and for strategy one to be best,
exact searches at each iteration should not be made. Finally we
note that from the fesults on ten test problems considered in

[5]1, J/I~1.2 for the Levenberg-Marguardt method.
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1=5 1=25

1.22 1.57 2.08 2.47 1.12 1.49 1.83 2.15
(3,2) (3,5) (6,2) (6,5)| (3,2) (3,5) (6,2) (6,5)
0.690 0.720 0.755 0.776] 0.680 0.713 0.739 0.759
0.779 0.818 0.864 0.891}| 0.766 0.810 0.842 0.869
0.895 0.947 1.01 1.05 0.879 0.936 0.980 1.02
1.05 1.12 1.21 1.27 1.03 1.11 1.17 1.22

Table 2.3.3
Work ratios for a stiff method (X=.3)
1=5 1=25

1.10 1.31 1.88 2.06 0.997 1.19 1.62 1.72
(3,2) (3,5) (6,2) (6,5) [(3,2) (3,5) (6,2) (6,5)
0.678 0.697 0.742 0.753) 0.666 0.687 0.724 0.731
0.764 0.789 0.847 0.862] 0.750 0.775 0.823 0.832
0.875 0.909 0.986 1.01 0.857 0.891 0.954 0.966
1.02 1.07 1.18 1.21 0.999 1.05 1.13 1.15

Table 2.3.4
Work ratios for a stiff method («=.6)
2.4 AN EXAMPLE WITH KNOWN DIAGONAL COVARIANCE MATRIX
Consider the initial value problem

Y, ="P,Y,¥,tP, Y,

Yo,="P,Y, ¥, *P, ¥, TP, Y, Y; *B. Y P, Y,V
V= - - -

Y3=P, Y, Y, P, ¥Y; TP ¥ P,'Y_Iya (2.4.1)
| . -

Y, F§Y§+R;xs B, Y, ¥,
| g - +

Y.TPB Y, Y, Q;Xs EZYiyq

with the initial condition
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T
y(0)=¢(1, 1, 0, 0, 0) . (2.4.2)
This problem is considered by Bard[5]. Observations used by
Bard on all five state variables are given in Table 2.4.1. The
Time Observations
__________ Yy o Va1 1000v,  100%Ys
12.5 .945757 .961201 .494861 .154976 .111485
25 .926486 .928762 .690492 .314501 .236263
37.5 .917668 .915966 .751806 .709300 .311747
50 .928987 .917542 .771559 1.19224 .333096
62.5 .927782 .920075 .780903 1.68815 .340324
75 .925304 .912330 .790539 2.19539 .356787
87.5 .925083 .917684 .783933 2.74211 .358283
100 .917277 .907529 .779259 3.20025 .361969
Table 2.4.1
Observations
problem we consider, designated problem 3dl by Bard[5], assumes
~a known diagonal covariance matrix for the error in the
observations on the state variables of
v=diag (25E-6, 25E-6, 25E-8, 25E-10, 25E-12). (2.4.3)
The objective function is
5Tt (VM (p)) (2.4.4)
where M(p) is defined in Section 1.1. This is Jjust a maximum
likelihood estimate with the observation times known exactly.

Since V is a diagonal matrix, this problem can be handled by our

weighted

the .5 and minimize Tr(V-h(p)).

least

squares formulation.

Now

For convenience we ignore
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V =diag(4E4, 4E4, 4E6, 4E8, 4E10)

and thus we weight the residuals associated with state variables
i, 2, 3, 4, and 5 by 200, 200, 2000, 20000, and 200000
respectively. Bard's starting approximation for p was

(.01, .01, .001, .001, .02, .001)%

Our implementation of the Levenberg-Marquardt method using
Gear's predictor-corrector implementation to integrate the

initial wvalue problem gave the results in Table 2.4.2. Our

Component of p Our estimate Estimate in [5]
1 .6358233E-2 .6358106E~2
2 .6774440E-1 .6774396E-1
3 .5920433E-4 .5916273E-4
4 .4943161E-3 .4943798E-3
5 .1018610 .1018756
6 .4204069E-3 .4202537E-3

Table 2.4.2
Optimization results

minimum for the expressioh in (2.4.4) was 21.38429 and Bard's
minimum was 21.37944. Considering the complexity of the
programs and the fact that we used Hermite interpolation to get
integration results at the observation times, these results seem
to be 1in good agreement. We . note that no constraints were
required to get the above optimum. Bard uses penalty functions
to 1impose the constraint pj>0, j=1,...,6 on this problem. They

appear unnecessary for us; however, Bard[5,pl85] does requife
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the imposition of constraints to successfully resolve some

parameter fitting problems involving the above dynamic system.
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CHAPTER 3

SPECIAL METHODS FOR THE INTERACTIVE APPROACH

3.1 THE INTERACTIVE APPROACH

Interactive techniques provide a power ful tool for
nonlinear parameter estimation in general and they are
especially valuable for difficult problems such as those
involving dynamic models. Indeed, even the resolution of simple
nonlinear parameter estimation problems often requires several
runs to adjust such things as termination criteria, and starting
approximations to the parameters. With dynamic models, the
problems of instabilities, overstabilities, and at times
numerous local minima in the optimization problem can make
parameter estimation a tedious task. An interactive approach
using algorithms designed with user intervention in mind can
reduce many of the difficulties associated with parameter
estimation in dynamic models. However, for the optimum use of
any parameter estimation package there is no substitute for a
good understanding of the model under consideration. The design
of a good interactive package is an involved task; For a
detailed introduction to interactive applications in numerical
analysis see Smith[63]. The work by Aaro[l],[2] on a software
system for interactive computing' seems to hold promise for
producing good transportable interactive packages with good user
interfaces. We list ‘below some of the major considerations
involved in producing a good interactive parameter estimation
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package.

(1)

(2)

(3)

Special algorithms that exploit user judgement and
intervention should play a large role in the interactive
package. The development of such algorithms for the fitting
of parameters in dynamic models is one goal of this thesis.
An extensive set of commands should be available; however, a
typical user should not be forced to learn a detailed
command 1language 1in order to use the program. One way to
attain this goal is for the interactive program to display
lists of options (such as output options for example) and to
prompt the user for the necessary details to complete a
command. There is, however, a tradeoff here and for certain
highly repetitive commands (such és those involved with
stepping through a nonlinear optimization interactively)
prompting should be kept to a minimum. Finally, the program
should be relatively “user proof". That 1is, 1internal
checking should be done so that regardless of what the wuser
enters, the program should not end with a terminal error.
Making a package user proof is largely a matter of detailed
programming, and in the interests of efficient program
development, it should be left until near the end. Another
goal of this thesis is to develop a set of simple commahds
that are useful for interactive parameter fitting in dynamic
models. “

Careful consideration must be given to what information the
interactive program displays. Graphical information seems
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to be the most useful. 1In the case of parameter fitting in
dynamic models, integration results, observations, and in
the two state variable case, phase plane plots are obvious
candidates for graphical display.

A decision must be made on how the user should describe the
parameter fitting problem to the interactive package. There
are basically two choices. First, the dynamic model can be
defined through a user written subroutine, which is
separately compiled and then 1loaded with the interactive
package. This subroutine can also contain other necessary
analytical information (such as Jacobian matrices) required
by the integration and parameter fitting algorithms.
Alternatively, the model can be entered and modified
interactively (and of course saved on file for later use so
that it need not be re-entered each time an interactive
session begins). This is a more versatile approach, but it
requires extensive programming. Its main advantage is that
the user can interactively modify as well as fit a model.
Starting with a simple model and gradually working up to a
more complex model is one way of getting starting
approximations to parameters (see Bard[6,p.123]). However,
the consequences of adding a new term to a dynamic model can
be dramatic and interactive modification of dynamic models
demands a lot from the user. In the interests of
efficiency, interactive model entry and modification require
that any partial derivatives needed by the numerical
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algorithms should be found symbolically. This is feasible,
but it adds to the complexity of the overall program. The
second option described above is a good 1long range goal;
however, it is essentially a matter of programming and not
numerical analysis and it should wait wuntil the numerical
aspects of the interactive package have been settled upon.

This second option can be added later to a working package

using the first option.

(5) A good interactive package should be well structured so that
new commands can easily be added, and so that existing
commands can be easily modified and extended. Also
attention should be paid to the desirability of eventually
producing a transportable program. Transportability 1is
especially senéitive to the way the package uses graphics
software. Thus it is desirable to isolate the interface
between the interactive program and particular graphics
procedures. Of course, the interactive program should only
use generally available graphics operations.

It is our view that the first goal (to develop good
interactive algorithms for the parameter fitting problem) is the
most important in that decisions made here influenée the details
concerning the way the other goals-are attained, and even more
importantly, the algorithms employed play a major role in
determining how effective the overall package is. Of course
good algorithms can be degraded if the user-machine interface is
neglected.
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An efficient way to proceed seems to be to develop an
experimental interactive package concentrating on the first
goal, but also paying strong attention to the second third and
fifth goals. This 1is the strategy we have employed 1in
developing our interactive package PARFIT described in detail in
Appendix A.

In this chapter, we consider several special techniques for
fitting parameters in differential equations. Our goal is the
development of techniques which 1lend themselves well to an
interactive approach, and which are less sensitive to the -
initial parameter guess than the direct approach wusing the
sensitivity equations. However, there is a tradeoff and coarse
but well behaved methods should only be expected to give
approximate values to the optimal parameters and should not for
example be expected to distinguish between neighboring 1local
minima in the full 1least squares problem. The first special
method we considér is the derivative fitting approach. This- is
one of the most straightforward of the coarser methods. For
experimental results with another implementation of this
technique, we refer the reader to Swartz and Bremermann|[66].

3.2 DERIVATIVE FITTING (DFIT)

Assume observations are given directly on a set of state
variables in the dynamic model under consideration. Thus,
theoretically, the desired derivatives of these state wvariables
.can be approximated as follows: (For the moment, we assume
observations are available on all n components of the state
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vector y(t).) Each component yx(t) of y(t) is approximated by a
function s, (t) fitting the data at the observation points which
is at 1least continuously differentiable. This can ideally be
done interactively. The problem of finding p to minimize F(p)
in (1.3.1) can now be approximated by the problem of finding p
to minimize

I1s' (t) =g (t,s(t),p) 1] (3.2.1)

where s(£)=(S, (£) ennrSn(t)) .

Since s(t) generally approximates noisy data, a careful
determination of p to minimize the above expression in the L,
sense cannot be justified. Thus for computational purposes, we

minimize the semi-norm on C'[t,,t*] defined by

!
2 )2 (3.2.2)

k
(= 1ls'(t)-g(t, ,s(t,),p)I|
1=1

where {tl: lglgk} is the set of observation times introduced in
Section 1.1. Our parameter fitting problem has thus become a
problem in nonlinear functional approximation which is much
cheaper and usually much easier than the original problem.
Indeed, if g is linear in p, all we have is an ordinary linear
least squares problem.

The above observations make the derivative fitting approach
very attractive; however, as noted by Bard(6p.128], it has some
severe . flaws. These occur 1in part because it reguires
approximations to y(t) and y'(t) and good approximations to
these functions are often hard to obtain. This is the case for
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example when the observations have large separations in time or
when the data is noisy. Bard further notes that an error
analysis for the ©parameter estimates is difficult with this
approach. This latter drawback is not too important from our
point of view since we propose this method only as an
intermediate technique and for  the final determination of
parameters and confidence intervals, we recommend the use of the
sensitivity equations. A more severe drawback of this method is
that with a poor approximation to y or y', parameters may be
produced at which the solution to the 1initial value problem
deviates greatly from the observations or even blows up. This
can be remedied at times by the technique of the next section
where there is no need for an approximation to y'(t). The
errors in the approximations to y and y' are not the only
factors affecting the reliability of this technigue. Other
characteristics of the least squares problem of minimizing
(3.2.2) must also be considered. In particular the results
concerning conditioning mentioned at the end of Chapter 1 are
important. For example, in view of (1.3.23), it is possible for
relatively small errors in our approximation to y' to have a
large influence on the parameters estimated by the DFIT method.
This 1is especially important to keep in mind since the
differentiation of data tends to be error prone. The integral
fitting method of the next section avoids this dependence on
approximated derivatives.

To implement the derivative fitting approach, a technique
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for using the observations to approximate y(t) and y'(t) is
required. 1If there are fairly large errors in the data, it 1is
not reasonable to use a differencing technique to approximate
y', and some smoothing method is called for. In our package
PARFIT, we use least sguares piecewise cubic spline
approximations and 1least squares piecewise cubic Hermite
approximations to the data. Approximations are made
individually on each observed state variable and the positioning
of the joints for each piecewise polynomial is left to the user.
This should ideally be done interactively.

Cubic spline approximations are adequate for many cases;
however, they run into difficulties when sharp bends occur in
the function being approximated. This causes problems, for
example, when the dynamic model under consideration is stiff.
Piecewise cubic Hermite approximations which are c! as opposed
to the C‘;l cubic spline approximations do not have as dgreat a
problem with sharp bends and are thus more suited for handling
the sharp turns that occur in stiff problems.

A couple of 1limitations with the derivative fitting
technique immediately come to mind. 1In the problem formulated
in Section 1.1, it was possible to have parameters arising only
through the initial conditions. A derivative fitting algorithm
cannot give wus any information on these parameters. Another
difficulty arises with derivative fitting when observations are
not available on all the state variables, but there is a way
around this problem in some of the cases where no parameters
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occur exclusively in the subset of state equations corresponding
to unobserved state variables. Specifically, we do a defivative
fit on the subset of state equations corresponding to observed
state variables. At each least squares function evaluation at a
point in parameter space during the iterative solution of this
reduced derivative fitting problem, we integrate the subset of
state equations corresponding to unobserved state variables.
Thus, up to date information 1is always available on the
unobserved state variables in the reduced derivative fitting
problem. However, this method has severe limitations. The
obvious limitation is that it only applies to a restricted set
of problems. Another 1limitation involves stability problems
which can arise when a subset of a system of differential
eguations 1is 1integrated. Nevertheless, this technique has
experimentally proven successful in some cases and for this
reason we mention it here. Next we give an example of the kind
of stability problem that can occur. |
Consider the problem

' =Gy (3.2.6)

where y is of length 2 and
-30 -22 _
G= ' (3.2.7)
28 20

The eigenvalues of G are -8 and -2 and the solution to A(3.2.6)

decays exponentially; however, if we fix yl=s/(t) and integrate
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y,=28s (t)+20y, (3.2.8)

depending on sl(t) of course, the solution can grow
exponentially. The stability problems that can arise with the
above modified derivative fitting technique also have an impact
on the design of stable iterated integral and derivativé fitting
algorithms in Section 3.4. To illustrate the derivative fitting
technique, consider the following problem involving a set of
coupled chemical reactions (see van Domselaar and Hemker[71]) .

The state equations are

1= —_
y == (l-y )y, +P, ¥,

(3.2.9)
| I - -
y,=p ((1-y, )y —(p +P, )Y, )
and the initial condition is
-T
y(0)=(1, 0} . (3.2.10)
This ‘represents a model of a chemical reaction and all

parameters should remain positive. Observations were denerated
by integrating the above initial value problem at

(1000, 0.99, 0.01)%

All simulated observations in this thesis were found by
integration under error control. In the interests of economy,
all parameter fitting integrations were done without stepsize
adjustment unless otherwise indicated. For this stiff problem,
we used observations on both state variables at the same
observation times that were used in [71]. These observations
(to four figures) are listed in Table 3.2.1. The observations
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e o Ya_ __ | __ e Y Ya__
0.0002 0.9998 0.1648 0.06 0.9991 0.4998
0.0004 0.9997 0.2753 0.08 0.9989 0.4997
0.0006 0.9996 0.3493 0.1 0.9989 0.4997
0.0008 0.9996 0.3990 1.0 0.9945 0.4986
0.001 0.9996 0.4322 2.0 0.9895 0.4974
0.0012 0.9995 0.4545 5.0 0.9747 0.4936
0.0014 0.9995 0.4695 10.0 0.9502 0.4872
0.0016 6.9995 0.4795 15.0 0.9260 0.4808
0.0018 0.9995 0.4862 20.0 0.9021 0.4743
0.002 0.9995 0.4907 25.0 0.8786 0.4677
0.02 0.9993 0.4998 30.0 0.8553 0.4610
0.04 0.9993 0.4998
Table 3.2.1

Observations for stiff problem

on y, were approximated with a least squares pieéewise cubic
Hermite ©polynomial with one joint at t=10, and the observations
on y, were approximated with a 1least squares piecewise cubic
Hermite polynomial with joints at t=.0007, .0014, .0016, 15.
Our starting guess at the parameters was

o =(50, 5, .5)7.

The DFIT method found the point

(969.6, 1.113, —.1080)T

in parameter space. Unfortunately, p3 is negative. This
suggests we try a square root transformation of < and estimate
f&=v5}. With this transformation, the DFIT method found the
point (unscaled)

(969.6, 1.005, 9.33E<7)
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in parameter space. We note that the DFIT methbd was gquite
capable of finding a good approximation to p,- This should be
compared with the results in the next section where the IFIT
method was applied to this problem.

The direct method wusing the sensitivity equations also
succeeded when it was started from p (o given above; however, it
was slow to begin modifying p, upward from 50.

Before we give .our next set of test problems, some
conventions must be established concerning the presentation of
graphical information. In particular, we use the following
conventions:

Observation points on y, : -+
Y

Observation points on y_: X

Integration results on

Integration results on

y
Yy

Smoothing of data for y.: — —_ _ p——
Smoothing of data for y
y

Guessed behavior for

Guessed behavior for Yo — —_

Phase plane trajectories are solid lines.

The above conventions are sufficient for most of our plots.
Other conventions are introduced as they become neceséary. We
use the method developed by McConalogue[45] to produce smooth
curves for our plots.

In this section and Section 3.3, we make some comparisons
between derivative fitting and integral fitting on a problem
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involving a change in equilibrium. The effect of noisy data on
these two parameter estimation techniques 1is investigated for

the test problem,

top o3 2 _
Y'=P Y 4P, ¥,°+p, ¥, -V,

(3.2.11)
'=
Y, PVY,
with the initial condition
y(0)=(1.5, 1.0 )7 (3.2.12)

Our first set of observations was obtained by integrating
the above problem at the parameter vector

T
(_nly _1, 2.4, -1)-

These generated observations, at times .5(.5)20, are shown in
Figure 3.2.1. For clarity we present graphical results only on
y/. State variable Yo does not go through any rapid Jjumps.
Observations are wused on both state variables. A piecewise
cubic Hermite approximation to the observations on Y, using
joints at t=2, 4, 6, 7,.8, 9, 10, 12, 14, 18 is also shown in
Figure 3.2.1. The joints for the corresponding approximation to
the observations on y2 were at t=3, 8, 15. ‘ Using these
approximations to the observations, the DFIT method produced the

parameters

-
(-.07740, -.7995, 1.725, .09948).

No starting approximation to the parameters was required since
the DFIT method involved solving a linear least squares problem
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Figure 3.2.1
Equilibrium change--no error in observations
in this case. Integration results for y, at the above

parameters are also shown in Figqure 3.2.1. All integrations of
(3.2.11) were done using stepsize adjustment. These results
should be compared with those in Figure 3.3.1 where results
~ obtained with the IFIT method applied to this problem are shown.

Next a normally distributed random error with mean 0 and
standard deviation o =1 was introduced into the above
observations. The resulting observations on y, and . their
piecewise cubic Hermite approximation using joints at t=6,7,9,14
are shown in Figure 3.2.2. Joints at t=6,12 were used for the
smoothing of the observations on Y, - Using this smoothing,.the
DFIT method produced the parameters

(-.03942, -.4047, 1.168, .1007{?
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Figure 3.2.2
Equilibrium change--error in observations(e=1)

Integration results for y, at these parameters are also shown in
Figure 3.2.2. These results should be compared with those in
Figure 3.3.2 where results with the IFIT method are presented
for this problem.

Our next experiment involved an increase in the noise;
however, the change in equilibrium is still visuélly
.discernable. A normally distributed random error with mean 0
and standard deviation ¢-=2 was introduced into the observations.
The resulting observations along with a piecewise cubic Hermite
smoothing function are shown in Figure 3.2.3. The joints for
the smoothing functions were the same as for the caseo’=1. With
this smoothing , the DFIT method produced the parameters

(-.02113, -.2394, .6449, .1023).
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Figure 3.2.3
Equilibrium change--error in observations (¢=2)

Integration results for Y, at these parameters are shown in
Figure 3.2.3. By comparison with Figure 3.3.3, we see that the
IFIT method produced much better results in this case.

3.3 INTEGRAL FITTING (IFIT)

The derivative fitting approach works well in many cases;
however, it has the drawback that it requires the numerical
differentiation of (at times) noisy data. Thus it is reasonable
to try to fit integrals instead of derivatives. For some
additional background to integral fitting we refer the reader to
Bard[6,p.219]. As 1in the ©previous section, we assume an
approximation to the desired solution to our initial value
problem 1is available in the n-vector s(t)=(s,(t),...,sﬂ(t))T

which is obtained by some smoothing technique. The integral
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fitting problem is to find the vector p to minimize

-
£ (p)f(p)

where

1:!
Erigones = (Vo (PIH Lgi(trs(t) P)dt)-s, (t)) (3.3.1)

o

where 1=1,...,k; 1i=1,...,n; yoLi(p) is the i'th component of the
vector of starting values for the initial wvalue problem
y'=g(t,y,p), and gj(t,s,p) is the i'th component of g(t,s,p).
The Jacobian matrices for the linear least sgquare problems that

arise when p is found iteratively have elements

J,. =2f4 q=1,...,kn; j=1,...,m (3.3.2)

$i
api

which are found by evaluating the integrals

%
_gz,)i(p)+ Jg_g,(t,s,p)dt (3.3.3)
ob. 2P

3 + J

°
for 1=1,...,k; i=1l,...,n; j=1,...,m.

Note that we are not solving our initial value problem with
these integrals. We are Jjust integrating functions of time
since s(t) is known. Thus in terms of the number of evaluations
of the function g, this method is equivalent to the derivative
fitting algorithm when a simple integration method such as the
trapezoidal method using the times tort, ranaity is employed.
Furthermore, this method has the same degree of linearity as
does the derivative fitting method. In particular the above

least sqguares problem for p is linear in p when g and yo(p) are
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linear in p. Also, the integral fitting method <can provide
information on parameters which occur only in the initial
conditions, and this can be very useful. As demonstrated in
Chapter 4, access to the initial conditions can also be very
important when no parameters occur in the initial conditions.
One might expect the IFIT problem to be better conditioned
than the DFIT problem; however, it is possible for the integral
fitting problem to be singular even when the derivative fitting
problem is well conditioned, but this does not appear to be a
serious drawback 1in practice. To see how this singularity can
arise, consider the case when there are 2 parameters, 1 state
t

variable, and three observation times, t and t,; with equal

,l 2’
spacing h. Let the initial condition (at t ) be independent of
the parameters and let the derivative fitting Jacobian be

0 1
1 0
1 0

Using the trapezoidal integration method, the integral fitting

Jacobian is the rank one 2x2 matrix
h/2 h/2
h/2 h/2
formed by multiplying the derivative fitting Jacobian by
h/2 h/2 0
h/2 h h/2
We note again that this was a specially contrived situation and

such a difficulty does not appear to arise in practice.
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Our first experiment with the IFIT method is on the stiff

o)
( as were used

problem (3.2.9). Using the same smoothing and p
in the previous section, the IFIT method found the point

(607.3, .9901, .009281).r

in parameter space. The parameter p, was not as well
approximated as it was with the DFIT method; however, no
parameters have gone negative and good approximations have been
obtained for P, and pé.

Next we give some experiments with the initial wvalue
problem (3.2.11) involving a change in equilibrium. Using the
observations and smoothing of the previous section for the case
=0 (no error), the IFIT method gave the parameters

-
(-.1006, -.9913, 2.569, .1004).

Integration results for y, at this parameter vector are shown in
Figure 3.3.1. Using the observations and smoothing of the
previous section for the casee =1, the IFIT method gave the
parameter vector

(-.00354, -.5883, 2.223, .09735)T

Integration results for yl at the above parameters are shown in
Figure 3.3.2. These results should be compared with those in
Figure 3.2.2. Finally using the observations and smoothing
functions of the previous section for the caseo =2, the IFIT
method gave the parameters

(-.03277, -.2655, 1.813, .09433)"

CHAPTER 3



STRTE

STATE

61

y
. .
2
-—-,—-f—-q:—;:— _
o] +
34
! +
8
g TR R o e
=4 R LA an ey
" |
n T T T T 1
0.00 4.00 8.C0 32.00 16.00 20.00
TIME .
Figure 3.3.1
Equilibrium change--no error in observations
o
+
¥ +
o] + ++++
=]
S + 1
1 t
o
i
+
e ++ +
N + ________1F___;t,—~ R
+ ++ o+ + + -
+ 4
E
[ |3 ¥ 1 i 1
0.00 4.00 8.00 12.00 16.00 20.00
TIME

Figure 3.3.2
Equilibrium change--error (e=1)

CHAPTER 3



62

integration results for Y, at the above parameters are shown in

Figure 3.3.3. We observe that there was a substantial
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Figure 3.3.3
Equilibrium change--error (r=2)

improvement over the corresponding results for the DFIT method
shown in Figure 3.2.3.
3.4 ITERATED INTEGRAL AND DERIVATIVE FITTING

In this section, the important special case when
observations are not available on all state variables is
considered. This situation was mentioned briefly in Section
3.2; however, the technique presented there was highly
restrictive in the class of problems it could handle and it was
prone to instabilities.

At times the model builder knows approximately how

unobserved state variables should behave to be consistent with

CHAPTER 3



63

the observed state variables. Thus an intelligent guess can be
made and fictitious observations on the unobserved étate
variables can be created. With these created observations along
with the physical observations, the DFIT and IFIT methods can be
applied. Our interactive package PARFIT contains facilities for
setting up guessed observations on unobéerved state variables in
the important special case when only two state variables are
present. PARFIT could easily be modified to handle cases where
more than two state variables are present; however, as the
number of unobserved state variables increases, the practicality
of this method diminishes. The use of created observations can
be a great help in determining the proper parameters, but, as
one would expect, the success of this method depends on how well
the proper behavior of the unobserved state variables can be
anticipated. This 1is again a good place for an interactive
approach. The model builder can interactively modify the
guessed observations, apply the DFIT or IFIT methods, observe
the integration results at the parameters obtainedl (if
integration 1is possible), and then readjust the created
observations. There are also automatic ways of improving the
guessed observations and we concentrate on such methods for the
remainder of this section.

'One stable way to iteratively improve guessed observations
and reestimate parameters is with a nonlinear block Gauss-Seidel
technique. (For a discussion of nonlinear Gauss-Seidel
techniques, .see for example Ortega and Rheinboldt[50,p.224].)
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For simplicity of notatién, we look at the two state variable
case with observations available on only one state variable.
The extension to n state variables with observations available
on r state variables (r<n) is immediate. Note, however, that
generally the parameter estimation problem becomes more
difficult as the number of unobserved state variables increases.
Indeed, removing observations on a state variable can change a
well defined parameter estimation problem into a singular
problem. An example of this 1is given in the next chapter.
Without ﬂ loss of generality for our two state variable
discussion, we assume that observations are missing on the
second state variable. For the discrete set of time values t!’
1=1,,,,N let sl=s(§l) (where we are using a superscript to avoid
confusion with the case when s(t) is a vector) be the smoothed
approximation to the observations on state variable Y, at time
El’ and let s"=s'(§2) be the corresponding approximation to the

derivative of the observations at time Ef' Let be the

N4
approximation to the unobserved state variable Yo at time 9 .
Usually, the points Ez' 1=1,...,N are the observation times
defined in Section 1.1. We seek p and

T
c=(co,...,cN)

to minimize

N ' N
F=3 (g, (t, (%, ) ip)-s2 )+ Z (4, (o)) (3.4.1)
1=0 =1 |

where qk(c) represents a discretization of the second state
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equation. That is we want the Cp to approximately satisfy the

second state equation at the minimum of the above expression.
For example if the trapezoidal method is used to discretize the

second state equation then

R~

_ T £ T
d,e(c)“5(9;(tx-« r (S 1Cy_y ),p)+gz(t1 1 (8 4cy)ypP))

(3.4.2)

Define

T
VPF=(—3__F_I"'I?_£‘)
3P 9B,
- (3.4.3)
Y F=(3F,...,3F) .
. 2¢C, acK

Thus the gradient of F is

= T T
VF=(9,F', V,F ).

A necessary condition for
U =T =TT
(pT, e =",

to minimize F is that

VF((PT,eN7)=0. (3.4.4)

One way to solve (3.4.4) 1is to wuse the nonlinear block

. . , C T
Gauss-Seidel method starting with an initial guess (p“) ,c“rT)T

—-T _
for (p_,ch.. There are of course other ways to solve for

®,eNhT.

For example, we could minimize (3.4.1) by a standard
nonlinear least squares technique such as the

Levenberg-Marquardt method. To be efficient, however, such
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methods should take advantage of the particular sparsity
structure of the Jacobian matrix associated with (3.4.1). The
use of a block Gauss-Seidel technique on the other hand requires
only a standard nonlinear least squares technique such as the
Levenberg-Margquardt procedure, 'along with a 1least sguares

technique designed for cases where the approximations to the
Hessian matrices are banded matrices. A description of our
algorithm for minimizing (3.4.1) and an outline of a local
convergence proof for this method follows. Assume a starting
approximation (p”’r,c“’T)T to (ﬁT,ETYr is given. First hold c¢
fixed at ¢ © and determine p!® to minimize (3.4.1). This is
just a standard nonlinear least squares problem and we solve it
using the Levenberg-Marquardt method. Next with p fixed at p(”

determine c(”

to minimize (3.4.1). This is a sparse nonlinear
least squares problem and we solve it by the Gauss-Newton method
using the normal equations and a standard library procedure for
solving banded positive definite linear systems by a Cholesky
decomposition. Strategy (a) in Bard[5,pl75] was employed for
step length adjustment in our sparse Gauss-Newton procedure. In
practice fairly rapid convergence was obtained with this part of
the algorithm; however, we expect this to vary depending on the
nonlinearity in y_ of the given initial value problem. The

2
overall algofithm proceeds by successively reestimating p"}

(i) , . . .
c where on each estimation, the most recent information on p

and

and ¢ is employed. Usually only a few full iterations were
required for the algorithm to settle down to a value for
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The above algorithm is just a special case with w=1 of a
block nonlinear successive overrelaxation process (see for
example Ortega and Rheinboldt[50,p.325, p.332]). Thus a local
convergence proof is standard and we confine ourselves to just a
brief outline of convergence.

Let x=(pT}cT)t X =(§T}€Tf'and assume X is a local minimum
of F. That is |

V F(X)=0.

Assume further that F is twice continuously differentiable and
that the Hessian matrix H of F is positive definite in the open
neighborhood S, of X . Split the Hessian into

H(x)=D (%) -L (x)-L' (x)

where D(x) is a block‘diagonal matrix, and L(x) is a block lower
triangular matrix and where the entries in L corresponding to
the blocks in D are zero. Since H(X) is symmetric and positive
definite D(X) is is symmetric and positive definite. Also D-dlL
is nonsingular for any w and in particular for 0<w<2. Thus (see
Vargal[73,p.77]), for 0<w<2

p (D (%) -uL (%)) ((1-w)D (%) +wL (X)))<1

where P(') denotes spectral radius.
It follows (Ortega and Rheinboldt[50,p.326]) that there
exists an open ball S centred at x and contained in S, such

that there is a unigque seguence { xU)E in S satisifying our
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nonlinear block Gauss-Seidel algorithm (w=1) and

7))

lim (x ) =X.

A=y ©

There are other ways to estimate p in conjunction with
iterations on guessed observations. For example instead of
estimating p to minimize (3.4.1) for a fixed ¢, we could
estimate p using the DFIT or IFIT methods. Use of the DFIT
method to estimate p is equivalent to minimizing (3.4.1) with

_ e
qz(C)—gl(ﬁl,(s ’

T
C,) ,p)—g;

where €; approximates the time derivative of ¢ at The

& .
detailedAform of qx depends on how g; is approximated.
Alternatively, we could replace the DFIT portion of the
above iterative algorithm by an application of the IFIT method.
This has been found to work well. We comment that the resulting
algorithm is not equivalent to minimizing F((p71cT)T) in (3.4.1)

with the first summation replaced by its integral fitting

counterpart:

N % T 2
> (yl(0)+ j-gl(t,(S(t),C(t)) ,p)dt—S(E )) .

1=0 o
If the above term is put in place of the first sum in (3.4.1)
then the least squares problem for updating c loses the sparsity
structure that was present with derivative fitting. Thus we do
not consider full iterated integral fitting methods, but only

iterated integral fitting methods where p is updated wusing the
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IFIT method and ¢ is updated using a sparse technique.

There is another way c can be updated besides using the
function (3.4.1) and experimentally this method has proven
effective; however, it suffers from potential instabilities and
must be used with caution. This method simply involves the
generation of ¢ at the new parameter vector p by integrating the
second state equation holding Y, fixed at s(t). (We are still
assuming Y, is unobserved.) As indicated in the derivative
fitting section of this chapter, this subsystem can be very
unstable at a particular point p in parameter space even when
the system y'=g(t,y,p) has no stability problems. An example
where this method works very well is given in the next chapter.
Finally we observe that no differéntial equation stability
problems occur when we update ¢ to minimize (3.4.1).

A couple of examples using integral fitting and our sparse
Gauss-Newton method to improve guessed observations follow.
Consider the Lotka-Volterra predator-prey model{41].

Y'=P Y "B Y Y,

2
y'=-py tp Y ¥
2 3 2 4+ 2

Here y' represents the prey and Y, represents the predator and
P, ’pm’ps'Rv are all positive. This model is a special case of
the model considered by Bazykin[7] which we look at in Chapter
4, For our first example, we dgenerated observations by
integrating the above system starting at y =12, yi=2 and using

p=(.15, .03, .8, .1)'.
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The observation times were 1(1)20 and observations were made
available only on y, - The generated observations on Y, and
integration results for Y, at the above simulation parameters

are shown in Figure 3.4.1. The function s(t), defined by the

[=}
[=]
[~}

0.00

1 1 i
0.00 4.00 8.00 12.00 16.00 20.00
TIME

Figure 3.4.1
Simulation results and spline approximation

least squares cubic spline approximation to the observations
using joints at t=2, 3, 5, 9, 16, is also shown in Figure 3.4.1.
The initial guess at the observations is shown in Figure 3.4.2.
Successive improvements in the guessed observations are also
shown in Figure 3.4.2. Integration results at successive
parameter estimates are shown for Y, in Figure 3.4.3.
Observations on yl are also shown in Figure 3.4.3. Observe that

the integral fitting problem is linear and thus an initial guess

at the parameter values was not required. The least squares
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problem for updating the guessed observations is also linear in
this example. \Convergence was not too sensitive to the height
of the initial approximation to Yy but it was sensifive to the
position of the peak. This, however, is quite easily adjusted
interactively. Thus an 1iterated approach to this problem
reduces a potentially nasty nonlinear . problem (especially if
thére are no good guesses at the values of p/,...,;b)_to a
simple interactive procedure of adjusting one quantity (the
position of the peak) over a well defined interval. Of course
some intuitive idea about the "proper" behavior of .yz is
required; however, we would expect this information to often be
more readily available than a good approximation to the optimal
parameter vector.

Our second example is the same as the above example except
for the new observation times . .5(.5)12.5. Also our initial
guess at the behavior of y2 was much less informed than it was
for the previous example. The joints for the smoothing spline
were at t=1.25, 2.5, 5, 9. Figure 3.4.4 shows the successive
improvements 1in the guessed observations and Figure 3.4.5
compares integration results with observations for yl at the
successive parameter estimates. We observe that the iterations
on the guessed observations did not attain the maximum that Ya

does in Figqure 3.4.1; however, this does not seem critical in

view of the results in Figure 3.4.5.
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3.5 CONTINUATION AND QUASI MULTIPLE SHOOTING

The methods presented in this section are designed to
bridge the gap between the coarse but well behaved techniques of
the previous sections and the full nonlinear least sqguares
problem. These coarse methods are good to start out with if a
good initial approiimation to tﬁe optimal parameter vector is
unavailable. However, the parameters produced by these methods
can be inadequate. For example the solution to the given
initial value problem may blow up at the parameters found by a
coarse method. The problem of instabilities at the starting
parameter values is a common difficulty encountered when fitting
parameters in initial value problems. Various strategies have
been suggested (see for example Bard[6,p.233]); however, there
does not appear to be any preferred technique. The methods
suggested in this section lend themselves well to an interactive
attack on the problem.

First we consider a continuation method between the
integral fitting (IFIT) technigue and the full least squares
problem. Assume, for now, that observations are available on
all state wvariables. These observations provide us with
approximations s (t), i=l,...,n to the desired behavior of the
state variables y;(t), i=l,...,n. Consider the 'problem of
finding p to fit the solution of

u'=g(t, (1-¥)s(t)+yu,p)

(3.5.1)
u(t,)=y,(p)
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to s(t) in the least sguares sense at the observation times
where 0<¥<1. When ¥ =0, this is Jjust the integral fitting
technique and when ¥=1 it is the full least squares prbblem (on
the smoothed data). The eigenvalues of g, determine the

stability of the above initial value problem. Now

T =¥y

for y=(1-¥)s+yu. Thus for smallx , it should be possible to
integrate (3.5.1) even when it is unstable for ¥y =1. Put another
way, as ¥ increases, more and more of the "differential equation
nature" of the problem is taken into account.

There are two basic ways a.continuation problem can be
approached. One way is to treat it as an initial value problem
in the continuation parameter. This is the Davidenko approach
(for a good summary of Davidenko's work see Rall[56]). - The
second way 1is to treat it as a sequence of nonlinear problems
each associated with a larger value of ¥. This 1is the Lahaye
approach (see Rheinboldt{58],([59], Rall[56], Ficken[23]).

For our purposes the Davidenko approach appears to involve
an excessive amount of calculation. The Lahaye approach on the
other hand lends itself well to an interactive attack on the
problem. That is we start with ¥=0 (IFIT) and then successively
fit the solution to (3.5.1) to s(t) with progressively larger
values for ¥ . If ¥ is increased too much and the integration
of (3.5.1) becomes impossible, then ¥ can be interactively

reduced until (3.5.1) can be integrated. Our limited experience
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seems to indicate that this approach by itself is not very
effective (for a full evaluation more experiments on a wide
selection of problems are required); however, combined with the’
use of break points as described later in this section, the
continuation approach seems to be a viable way to escape from an
unstable region in parameter space. One of the main drawbacks
with such techniques is of course the expense involved. This
however is becoming less important with the increasing
availability of powerful computers.

Experimental results indicate that the use of break points
in a quasi-multiple shooting technique along with a continuation
method can be an effective combination for handling the
stability problem. Specifically consider break points at

'I',<Ta<...<T8

corresponding to observation times

t- ’---,t- "
s, Is

Further 1let denote a continuation parameter vector for the
break points. The vector « is of length n where n is the number
of state variables and 0<- <1, i=l,...,n. If break points alone
are used (that is, ¥ =1) then observations need not be available
on all state variables. The components of « corresponding‘ to
.uhobserved state variables should be equal to 1. Let u—(Ti)
denote the solution to (3.5.1) arrived at by integrating up to
break point T (which for i>1 involves passing through i-1

previous break points). 1In the process of integrating (3.5.1),
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we reset u at the break points according to

u-r(T‘. )=Au” (T, )+ (I-B)s (T;)

where A=[diag(X, ,...,% )], and u*(g ) acts as the new initial
condition at g . Of course the appropriate modification to the
solution of the sensitivity equations must also be made at the
break points. For purposes of least squares approximation, the

value u'(T}) is used at T;

e Thus we can also weight the

residuals at the break points with weights W Wy pann W To

g°
summarize we have at our command

(a) a continuation parameter ¥

(b) a set of break points q ,...,T8
(c) a continuation parameter vector « for the break points

(d) a set of weights Wogeaa W for the break points.

7
This gives the user a powerful set of options to play with and
for their optimal use, an interactive approach is indicated.
Extensive experiments over a wide range of problems are required
before a proper evaluation can be made of the interactive
facilities suggested above. For the purposes of this thesis;
however, we limit ourselves to a few examples 1in this section
which indicate the potential power of the above facilities in an
interactive environment. For details on another approach
employing break points to aid in the fitting of parameters in
dynamic models, we refer the reader to van Domseléar and

Hemker [71]. For more background on shooting methods in general

see for example Roberts and Shipman{60].
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Consider again the Lotka-Volterra predator —prey model
described in the previous section. We will try to fit this

model to the data shown in Figure 3.5.1. This data is contrived

16.00

a7 X

v

T TN

x\xfx ¥

[~
(=]
= T T T T T T }
¢.00 2.60 4.05 - 6.00 B.00 16.00 12.00 14.80

TIME
Figure 3.5.1
Data and smoothing for continuation tests

and there 1is no reason to expect a good fit with this model.
Piecewise cubic Hermite least squares approximations to the data
were used to define s(t). The joints for s,(t) were at t=1, 3,
6 and the joint for s;(t) was at t=5. The components of s(t)
are shown in Figure 3.5.1. The observations were generated so
that the IFIT method produced parameters where the solution to
the Lotka-Volterra equations with initial conditions at
y=(12, 2fr blew up. It is worthy of note that a fair amount of
experimentation was required before such observations could be

contrived. That is for this problem, the IFIT method did not
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seem likely to produce parameters corresponding to an
instability. The IFIT technique (x=0) produced the parameters

(-.7273, -.06719, 1.525, .3295)7—

at which the given initiél value problem was unstable. Since
the observations have no physical meaning, there is no reason to
require the paramerters to be positive. We are just looking for
a set of parameters to minimize a sum of squares.

Using break points at

.6, 1.6, 4.5, 9.5

and using ¥=.2,«K=(0,0) and with weights of 1 at the break
points, the following parameters were found:

(.07608, .02078, 1.032, .2150)%

The initial value problem was stable here and integration
results at these parameters along with the observations are
shown in Figure 3.5.2. The Levenberg-Marquardt technique had no
problem converging from the above parameters to the optimum

(-.6820, -.05733, .8184, .1941)T

Integration results at the above paramters are shown in Figure
3.5.3. The sum of the squares of the residuals was
approximately 196.

We comment that it 1is not necessarily advantageous to
proceed with the continuation process once stability has been
attained. Parameters giving rise to an instability may be
produced and even with the use of break points, the careful
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increasing of continuation parameters can prove to be a tedious
and expensive undertaking. ‘ Again interactive monitoring and
control of the overall process is desirable and if the process
appears to get stuck a good strategy is to return to a smaller
conﬁinuation parameter and modify the break points.

The use of the continuation parameter ¥ without break
points did not appear productive on this'problem. For example
consider the sequence of ¥'s in Table 3.5.1. The process worked

fairly well until ¥ got near .75. It then became difficult to

¥ Continuation fit result Stability
_____________ Py Pa Py B

0 -.7273 -.06719 1.525 .3295 u
.3 -.5877 -.04820 1.524 .3341 u
.6 unstable

.5 uns¢table

.4 -.5766 -.04640 1.397 .3092 u
.5 -.5622 -.04465 1.242 .2783 u
.6 unstable

.55 -.5697 -.04491 1.184 .2667 u
.6 -.5759 -.04541 1.130 .2559 u
.7 uns¢table

.65 unstable

.63 -.5723 -.04492 1.081 .2463 u

.65 ~-.5704 -.04462 1.057 .2402 u
.68 -.5741 -.04497 1.021 .2343 u
.7 -.5809 -.04576 1.010 .2320 u
.73 unstable

.72 -.5843 -.04610 .9881 .2279 u
.74 -.5936 -.04724 .9853 .2270 u
.76 -.9258 -.08865 1.043 .2637 u

very difficult to continue

Table 3.5.1
A continuation experiment

increase ¥ and difficult to do the optimizations.
The use of break points alone (with2 =1) was effective on
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this problem; however, instabilities arose very easily if too
few break points were used. Here again we have a situation
where the interactive approach can provide a powerful tool.
Starting at the parameters determined by the IFIT algorithm,
with ¥ =1, =(0,0) an instability arose in the integration of

(3.5.1) when break points were used at

the integration of (3.5.1) blew up just after t=5. With break
points at all the Qbservation times, (3.5.1) could be integrated
and the optimal parameters obtained were

(-.4166, -.02940, .6279, .1280{r.

The Volterra egquations were stable at these parameters and
starting from this point in parameter space, the
Levenberg-Marquardt method produced the optimum illustrated in
Figure.3.5.3.

We conclude that for this problem the use of break points
alone is effective, but tricky, while the use of break points
along with a continuation parameter in the differential equation
can be'very effective.

The techniques of this section demand a degree of judgement
from the user; however, they provide a framework in which to

tackle the ihstability problem and in this sense they are to be
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preferred over blind probing in parameter space.
3.6 IMPLEMENTATION OF AN INTERACTIVE PACKAGE

The development of a good interactive package is an
evolutionary process. Our package, PARFIT, represents the first
stage 1in such a process. We outline below some of the
specifications that should be kept in mind as the package
evolves. We also describe with the aid of flow charts how the
various facilities of PARFIT can be used to complement one
another. In view of the increasing power of mini-computers and
the inherent expense of using a program such as PARFIT, the
feasibility of implementing a version of ~PARFIT on a
mini-computer appears to be a worthy topic of study. The work
of Aarof[l], {2] should provide a very valuable tool for
developing such an implementation.

One goal when developing an interactive package for
parameter fitting in differential equations should be to make
speéial parameter fitting algorithms such as those of this
chapter easily accessible and complementary. The package should
also allow for the testing and addition of new algorithms. It
is advantageous to be able to easily switch between techniques
in an 1interactive manner since the success of a particular
technique is often closely related to the problem on which it is
employed. To facilitate the easy switching from one algorithm
to another the interactive package muét be carefully designed.
For example piecewise polynomial smoothing of data is used by
several algorithms. Thus there should be a single data
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structure for smoothing functions and it should be accessible
(and perhaps modifiable) by all the procedures using smoothed
data. This is just common sense; the general philosophy should
be to define data structures at the most general level
practicable. The various algorithms then function in an
environment established by these data structures. It is wuseful
for this environment to contain much more than just the set of
data structures used by the numerical procedures, and it 1is
convenient to think of it as a data structure itself containing
information on how the package is to communicate with the user,
on various controlling parameters such as the integration error
criteria and integration method, and on many other aspects of
the operation of the package. We list below some of the items
which can be thought of as being part of the environment.

(1) Communication mode:

This governs the amount of program guidance and descriptive
information provided during an interactive session. The way
information is entered (for example using a keyboard, or a light
pen) is also indicated here.

(2) Echo flags:

These indicate what information produced during .an
interactive session is to be retained for later hard copy
output.

(3) Graphics display control:

This indicates what information is to be displayed on the

graphics device. For example the most recently generated data
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(such as smoothing or integration results) may be displayed as
the default. The user should be able to modify the display to
include for example only selected state variables. The default
display should be intelligent enough to display appropriate
plots during an interactive session. For example when smoothing
is being done, the data and approximating function for the given
state variable should be displayed. When iterated integral
fitting is being done, the display of successive iterations on
the guessed observations would be valuable. It should of course
be possible to override the graphics display control and reguest
that specific data be plotted.

(4) Numerical data structures:

These contain, among other things, smoothing information
and integrétion results.

(5) Numerical control parameters:

These 1include integration error «criteria and stepsize
constraints as well as parameters used in the optimization
procedures.

(6) Problem and algorithm selection data structures:

These indicate what integration and optimization procedures
are being used. The use of various scalings (such as the square
root or logarithmic scalings available in PARFIT) is indicated
here and an indication of any frozen parameters is given here.
In more sophisticated packages, constraints on parameters can be
indicated here and a particular choice from a selection of
various objective functions to optimize (from statistical
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considerations) can be indicated here.
(7) Notations accumulated during an interactive session:

As a user experiments with a particular problem, he should
have the facilities to make notes. Thus a 1list of notes
containing for example ‘"promising parameter values" can be
created. The environment thus becomes tailored to a particular
problem. Of course it should be possible to save the notes from
run to run.

There are two fundamental modes in which an interactive
program can operate. One mode employs extensive control by the
interactive program and the other relies on the user to initiate
the appropriate seqguence of actions to solve a problem. A good
approach when developing an interactive package of the first
type is to first build a package of the second type. Strategies
for the solution to the problems under consideration are then
developed through extensive use of this package and these
strategies can eventually be. incorporated into a package
employing extensive program control over the solution strategy.
PARFIT is a package designed for user initiated and conducted
strategies. Thus 1its effective use requires a detailed
knowledge of all its facilities and how these can be used to
complement one another in an effective manner. In this section
we give a description by way of flow charts of how the various
approaches to the parameter estimation problem can be used
together in an integrated package. The strategies outlined in
these flow charts form the skelepon for a version of PARFIT that
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would attempt to gquide the wuser to the various facilities
required for the solution to a problem. The implementation of
such a program is a nontrivial endeavor, and to justify it,
there should be a éood demand for such a package. Indeed, the
sophistication required of the model builder to develop good
dynamic models argues against the need for detailed computer
control of the interactive process. When the user is required
to pick an appropriate strategy without program guidance, the
strategies outlined in the following flow charts should be kept

in mind.
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CHAPTER 4

PARAMETER FITTING IN A PREDATOR~-PREY DYNAMIC MODEL

4.1 INTRODUCTION

We consider in detail the problem of fitting parameters in
a predator-prey dynamic model studied by Bazykin[7]. This model
has several aspects which are attractive to ecologists modelling
population dynamics. Depending on the parameter values,  there
are several possible phase plane configurations for the model,
some of which contain 1limit cycles. Certain limits to
population growth are also inherent in the model and this is
physically appealing. Unfortunately, the varied behavior of the
model which makes it rich from an ecological point of view ,
complicates the parameter fitting problem. For example, with a
poor guess at the optimal parameters, we may find ourselves with
a phase plane configuration quite different from the one
indicated by the observations. The ability of some of the
methods of Chapter 3 to handle this problem is explored in this
chapter. Only one parameter in the model considered by Bazykin
occurs nonlinearly in the differential equations, and thus we
expect some of the more global methods of Chapter 3 to be well

suited to this model.

4.2 A PREDATOR-PREY DYNAMIC MODEL

The dynamic model considered in [7] has the form:
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Y,=P, Y B Y, ¥,/ (1+p Y )-B, ¥} 4.2.1)

—— - 3
Y =B, Y, +R, Y, ¥,/ (1+P_y )PV,

We confine ourselves to a very brief interpretation of this
model. For more details see [7]. State variable Yy, Trepresents
the prey population, and state variable vy, represents the
predator population. The above equations evolved from the
Lotka-Volterra model introduced in Section 3.4. Equations
(4.2.1) reduce to the Lotka-Volterra model equations when
pf;gg=pq=0. The term- 1/(l+p;y/) in the above equations
represents the satiation of the predators. That is, as the
number of ©prey increases, the ability of the predators to
éonsume prey is limited, and when the number of prey is large,
the growth rate of the predators becomes independent of the prey
population. The terms Q;Zz'and pqu represent competition among
the prey and among the predators respectively. As the prey
population Y, increases, it becomes limited by such things as
territory. Similar limitations apply to the predator
population.

We consider one of the special cases studied by Bazykin.
In this case, p7=0 and there are two equilibrium points A and B

in the phase plane (see Bazykin[7]). Point A is at

2
(g, /(p,~B_B, )., (P /B,) (P, (P,~B_P)-P, P, )/(P,~P_B)")

and point B is at

(% /Pér 0).
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Since all the parameters are positive, for A to have physical

meaning, we reqguire p5<pl(3¥—gggg)/@§. Bazykin further shows

that if point A is stable then p >p p a_/(l+p_a )'1 where A has
6 25 s 1

coordinates (a, , a,), and if A has biological significance and

is unstable, it 1is necessary that a limit cycle occur. We

consider three situations:

(1) A has biological significance and is stable;

(2) A has biological significance and is unstable; and

(3) A has no biological significance.

Case (1) arises for example at the parameter values

(r, .1, 3,1, .1, .15).

In this case A is at (4.29, 5.10) and B is at (6.67, 0).
Case (2) arises at the point

(.5, .1, 5, 1, .15, .01) '
in parameter space. In this case A is at (20.0, 12.0) and 1is

unstable and B is at (50.0, 0). Case (3) arises at the point

(1, .1, 3, 1, .2, .15) "

in parameter space. In this case A has no biological
significance and B 1is at (6.67, 0). Phase plane plots
corresponding to the above three parameter vectors are shown in
Figures 4.2.1, 4.2.2, and 4.2.3. We use integration results at
the . above three points in parameter space to simulate
observations for our test problems.

In particular, we make use of the following three test
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Phase plot for case (2)
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Phase plot for case (3)

problems:
PROBLEM 4.2.1:

Observations are generated using the parameters of Figure
4.2.1 and the initial condition y(0)=(2, 8) . |
PROBLEM 4.2.2: |

Observations are generated using the parameters of Figure
4.2.2 and the initial condition y(0)=(24, 8)7:

PROBLEM 4.2.3:

Observations are generated using the parameters of Figure
4.2.3 and the initial condition y(0)=(10, 10)71
In all of the above problems simulation runs were made using

Gear's program [27]. No random error was introduced into the

generated observations, and observations were generated for both
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state variables at times .5(,5)12.5 in all cases. The
observations for Problems 4.2.1, 4.2.2, and 4.2.3 are displayed

in Figures 4.2.4, 4.2.5, and 4.2.6 respectively. We also show

8.00

5.00
i
X
X}?
/

0.40

N 1 1 i
0.00 2.00 4.00 6.00 8.00 16.00 12.00 14.00
TIME

Figure 4.2.4
Observations for Problem 4.2.1

the cubic spline least sguares approximations to the
observations that are used throughout this chapter. In Figure
4.2.4, the joints for the spline approximating the observations
on y, are at t=4,8. The Jjoints for the cubic spline
approximating the Yg observations are at t=7,10.5. 1In Figure
4.2.5, the joints for the spline approximating the Y,
obserQations are at t=6.5,11.25, and the joints for the spline
approximating the Y, observations are at t=2,3.75,8.75. In

Figure 4.2.6, the joints for the spline approximating the

observations on y’ are at t=2.5,7.5, and the Jjoint for the
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spline approximating the observations on Yq is at t=5.
4.3 IMPROVING STARTING PARAMETERS

In Table 4.3.1 we present results using the
Levenberg—Marquardt method and' employing the sensitivity
eguations (for convenience we call this the FIT technique) along
with resuits using the derivative fitting (DFIT) method followed
by the FIT method to refine the parameter values, and results
using the integral fitting (IFIT) method foilowed vby the FIT
method to refine parameter values. The derivative and integral
fitting methods are used as initial techniques to improve our

approximations to the optimal parameter values. From Table

Problem|Starting p Results with indicated method
( )-a figure, C-convergence, L-local minimum
FIT DFIT+FIT IFIT+FIT

4.2.1 | (4.2.2) L(4.3.1) C c
' (4.2.3) C C C
4,2,2 | (4.2.1) C C C
(4.2.3) L(4.3.2) C C
4.2.3 (4.2.1) C _ L(4.3.3) C
. (4.2.2) C L(4.3.3) C

Table 4.3.1
FIT compared with DFIT+FIT and IFIT+FIT

4.3.1, we see that both the DFIT and IFIT methods work well for
improving the approximations to the optimal parameters. This.is
not too. unexpected since the differential equations are linear
in all but one parameter. We observe that a direct method using
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the sensitivity. equations. can lead to difficulties. This
reflects the increased nonlinearity that arises when we employ
direct integration of the initial value problem. The situation
that arose when the Levenberg-Marquardt technique was applied to
Problem 4.2.1 starting with the parameters of ~Figure 4.2.2 is
typical of the sort of thing that can happen. 1In this case a
local minimum at

(3.211, -.4441, -3.405, 3.159, -1.182, .6314)7~

was found. Integration results at these parameters are shown in

Figure 4.3.1. At this local minimum the peaks and troughs in

3
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!
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Figure 4.3.1
A local minimum for Problem 4.2.1

the observations are being balanced against one another.
The FIT approach worked for Problem 4.2.2 starting at the
parametérs of Figure 4.2.1, but difficulties were encountered.
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Specifically, the paraﬁeter A in the Levenberg-Marguardt
procedure had to be édjusted to avoid «certdin points in
parameter space where the integration blows up. The use of
constraints might also be useful here; however, it isfnoﬁewdrthy
that no such difficulties arose with the DFIT+EIT and IFIT+FIT
methods on this éroblem.

The FIT approach "to Problem 4.2.2 stérting at the
parameters of Figure 4.2.3 produced a local minimum at

(3.087, .6111, 3.086, .7745, .2007, .08077{?

Integration results at these parameters are shown in Figure

4.3.2. No difficulties arose in this case with the DFIT+FIT and
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Figure 4.3.2
A local minimum for problem 4.2.2

IFIT+FIT methods.
Problem 4.2.3 requires further discussion. At first
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glance, it appears to be the simplest of the three problems
since the observations seem to exhibit no special features.
However, there is a 1local minimum in parameter space
corresponding to a solution to the differential equation thch
comes very close to the given observations. This appears to

result from the small peak 1in near t=0.5, and from the

Ya
contrived nature of the problem with no randdm error in the
observations. The observations start at t=0.5 and if-we do not
look at the initial conditions, the small peak near t=0.5 1is
invisible. Thus the DFIT method fouhd a point in parametér
space where this peak was absent. Conseguently the DFIT+FIT

combination found a local minimum at the.parameters

' T
(1.028, .2255, 1.290, .7186, .5493, .1517).

The sum of the sqdares of the residuals at this point in
parameter space was approximately 10. Integration results at
the above parameters are showq in Figure 4.3.3. IfA there were
some random error in the.observations, the solution shown in
Fiéure 4.3.3 might appear quite adeqguate. However, 1in this
contrived case there exists a more optimal solution with the
objective function equal to zero. Our implementation of the
IFIT method which has access to the initial values had no
difficulty with this problem. The FIT approach to this problem
managed to extract the global optimum, but not without some
difficulties. Starting with the parameters corresponding to

Figure 4.2.1, no problems arose; however, starting with the
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Figure 4.3.3
A local minimum for Problem 4.2.3

parameters of Figure 4.2.2, difficulties were encountered and A\
in the Levenberg-Marquardt procedure had to be increased to
avoid certain regions in parameter space.
4,4 GUESSED OBSERVATIONS AND ITERATED METHODS

In this section we present some experiments with the
techniques introduced in Section 3.4. These techniques are
designed for the important case when observations are not
available on all state variables. First we experiment with the
use of guessed observations for unobserved state variables. To
facilitate the guessing of state variable behavior, an
interpolating cubic spline is passed through a set of guessed
observation points. This eliminates the need to enter long

lists of guessed observations. Experiments are conducted on
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PROBLEM 4.4.1:

This problem is the same as Problem 4.2.1 except
observations are 'only available on &state .wvariable Y, and
y 5(0)=8.

Initially we looked at Problem 4.4.1 with yl(O) an unknown
parameter. However, this problem was singular due to a 'linear
realtionship between p, iand the initial condition on Y, - The
columns corresponding to these two parameters 1in the least
squares Jacobian matrices are multiples of one another and the
correlation coefficient between these two parameters is. 1. This

occurs because the state equation involving yi is homogeneous in

b4

s " Thus Yy, can ‘be replaced by cy, and the second state

equation 1is not altered, except for the initial condition on y,
which is divided by c¢. However, in the first state equation, p
is replaced by CP, - Thus a relation exists between P, and the
initial condition on Y, -

To apply the derivative fitting method to Problem 4.4.1, we
approximate the observations on Y, withvthe least squares cubic
spline used for experiments with Problem 4.2.1 presented in
Table 4.3.1. In Figure 4.4.1, some guesses at possible
observations on y, are shown. Referring to this figure, curve
(a) is an interpolating cubic spline for the points

(0, 8, (2.5, 1.5), (7, 6.5), (10, 4.5), (12.5, 5),

curve (b) is an interpolating cubic spline for the points

(0, 8), (2.5, 3), (8.75, 5), (12.5, 4).
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Figure 4.4.1
Guessed observations for problem 4.4.1

and curve (c) is an interpolating cubic spline for the points

(0, 8), (5, 3), (8.75, 5), (12.5, 4),

(that is, one point was moved). The guessed observations shown
in‘curve-(a) are fairly close to the observations on Ya in
Problem 4.2.1, while the guessed observations in curve (c) are
substantially different from those of Problem 4.2.1. The
guessed observations in curve (b) are intermediate to those in
curves (a) and (c¢). End conditions for the interpolations are
described under the CREOBS command in Appendix A. |

Figure 4.4.2 shows the integration results at the parameter

vector

e

/
(.2354, -.1977, 4.983, 1.049, .01350, .05878)
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obtained with the FIT approach (with error controlled

integrations) to problem 4.4.1 using the starting parameters of
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Figure 4.4.2
FIT on Problem 4.4.1

Figure 4.2.2. A local minimum has been obtained.

Using points on curve (a) in Figure 4.4.1 for guessed
observations, the DFIT+FIT, and IFIT+FIT combinations both
produced the correct parameters. The starting parameter values
were those corresponding to Figure 4.2.2. Using guessed
observations from curve (b) in‘ Figure 4.4.1, the DFIT+FIT
combination found a local minimum at

(.2507, -.3758, 1.676, 2.729, 1.698, .07026).

Integration results at these parameters are shown in Figure
4.4:;3. The IFIT+FIT combination with these guessed observations
produced the correct minimum. When guessed observations from
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" Figure 4.4.3
DFIT+FIT on Problem 4.4.1 using guess (b)

curve (c) in Figure 4.4.]1 were used, both the DFIT and IFIT
methods produced parémeters from which the FIT method was
unsuccessful due to instabilities. The chéngé of the position
of one data point from t=2.5 to t=5 in the guessed observations
of curves (b) and (c¢) of Figqgure 4.4.1, meant the difference
between disaster and the aquisition of a minimum. The above
experiments indicate that some interactive experimentation with
guessed observations and with particular methods can be
profitable.

Next some' experiments using the iterative techniques of
Section 3.4 for improving guessed observations are presented.
These techniques <can reduce the dependence on a good set of

guessed observations.
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Three methodé are considered. First we consider iferated
'derivative fitting where the function (3.4.1) with dx(c) defined
by (3.4.2) is minimized. Second, we consider iterated integral
fitting where our parameter estimates are updated by the
integral fitting technique and the guessed observations are
updated to minimize the function (3.4.1). Finally, we consider
an iterative scheme where the parameters are‘updated using the
integral fittiﬁg technigue, and the guessed observations are
updated by integrating a subsystem of the given system of
differential equations. Experiments are conducted on Problem
4.4.1. The case when there is a random error in the
observations 1is considered in the next section. In all
experiments, the initial condition for the unébserved state
variable remains fixed at 8. We observe that the least sguares
problem for updating the guessed observations with p held fixed
is 1linear in this example. Starting with the guessed
observations of curve (b) in Figure 4.4.1 and the parameters
corresponding to Figure 4.2.2, all three methods converged to a
paramefer vector‘ from which the FIT method converged to the
desired solution. ‘In all cases, the observations on Y, were
approximated with the vspline shown in Figure 4.2.4. The
iterated' derivative and iterated integral fitting methods
empioyihg (3.4.1) produced similar results and we present
graphical results only for the iterated derivative fitting.case.
In Figure 4.4.4, the observations on y/ and integration results
for Y/ at successive parameter estimates obtained with the
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iterated derivative fitting method are shown. 1In Figure 4.4.5,

STRTE

2.80

1,60

i { L
0.00 2.80 4.00 5.00 8.00 10.00 12.00 14.00
TIME :

Figure 4.4.4
Iterated DFIT results

the iterations on the guessed observations corresponding to the
results presented in Figure 4.4.4 are.shown. We note that 'the
derivative fitting method using guessed observations from curve
(b) in Figure 4.4.1, did not produce parameters from which the
FIT method could find the global minimum, but the iterated
derivative fitting method did produce parameters from which the

FIT method was successful. In this case the iterations were

crucial to obtaining the desired solution.

Next we  consider iteratively improving the guessed
observations by integrating the unobserved state variable with
fhe observed state variable held fixed at the smoothed

approximation to the observations. 1In Figures 4.4.6 and 4.4.7
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Figufe 4.4.5
Iterated DFIT guessed observation ‘iterations

we give results with this technique applied to Problem 4.4.1
starting with the guessed observations of curve (b) in Figure
4.4.1. Figure 4.4.6 shows the observations on Y, and
integration results on y, at successive parameter estimates.
-With this technidue, the difference between iteration (0) and
iteration (1) was substantial, while iterations (1) and (2) were
essentially identical. The iterations shown in Figure 4.4.7
correspond well to the simulation results in Figure 4.2.4. The
FIT approach had no trouble converging to the global minimum

starting at the parameters provided by this iterative process.
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4.5 THE PRESENCE OF NOISE

In this section we consider a selection of the previous
problems with a random error introduced into the observations.
The problems considered are:
PROBLEM 4;5.1

This problem is the same as Problem 4.2.1 except a normally
distributed random error with zero mean has been introduced into
£he observations. The standard deviation for the error in y, is
.5 and the standard deviation for the error in Yo is 1.
PROBLEM 4.5.2

This problem is the same as Problem 4.2.2 except a normally
distributed random error with zero mean and standard deviation 2
has been introduced into the observations.
PROBLEM 4.5.3

This .problem is the same as Problem 4.5.1 except the
6bservations on y, have been removed. The initial condition for
Ya is fixed at 8.
| We smooth the observations for Problems 4.5.1, 4.5.2, and
4.5.3 using least squares piecewise cubic splines with the same
joints as were used for the smoothings in Problems 4.2.1, 4.2.2,
and 4.4.1 respectively.

First. we consider Problem 4.5.1. Starting at the
parameters correspomding to Figure 4.2.2, a direct approach (FIT
method) found the point

(.3668, -.08827, 4.874, 1.237, -.4058, .07037)7/
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in parameter space. Integration results at this point were
gualitatively quite different from the observations. The sum of
the squares of the residuals at the above point in parameter
space was approximately 515. The IFIT+FIT and DFIT+FIT methods
both found a minimum at

T
(.8865, .04991, 2.983, .6827, -.009550, .1483).

In both cases, the starting paraméters were those corresponding
to Figure 4.2.2. The sum of the sguares of the residuals at the
above point in parameter space was approximately 15.5. The FIT
method also found the above minimum when it was started from the
parameters corresponding to Figure 4.2.3. Unfortunately, P is
negative. This suggests we try a square root scaling of p;.to
constrain it to be positive. With this scaling and starting at
the parameters of Figure 4.2.2, the IFIT+FIT combination

produced the parameters (unscaled)

7~
(.8962, .05327, 3.076, .7405, .001897, .1498).

The sum of the squares of the residuals at the above parameters
was approximately 15.5. Integration results at the above
parameteré are shown in Figure 4.5.1. Finally, with this
scaliné, the FIT method also produced the above parameters when
started from the parameters of Figure 4.2.2.

Next we consider Problem 4.5.2. Starting at the parameters
corresponding to Figure 4.2.3, the FIT method drew us to the

point
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Results for Problem 4.5.1

(5.544, .7024, 2.647, -0.6093, -.07095, 1.021)

in parameter space at which the integration results and the
observations were gualitatively guite different. (The
integration results on Y, contained a rapid and damped
oscillation.) The sum of the squares of the residuals at the
above parameters was approximately 1000.

Both the DFIT+FIT, and the IFIT+FIT methods found an
optimum at

(.4018, .03851, 1.254, .07606, .01059, .001893)7‘

The sum of the squares of the residuals at the above parameters

was approximately 147. 1Integration results at the above point
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in parameter space are shown in Figure 4.5.2. The FIT method,
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Results for Problem 4.5.2

using a square root scaling of P, and P and starting at the
parameters of Figure 4.2.3, also found the " above point in
parameter space.

Finally, we consider Problem 4.5.3. The random error in
the observations combined with the missing observations on Yo
make this a rather nasty problem. The noise is fairly large in
this example, but this much noise is not uncommon in problems
involving population counts. Starting with the parameters
corresponding to Figure 4.2.2, the FIT approach found an optimum
at |

(.5945, .0005587, 5.760, .7368, -.1121, .1073)7’

The sum of the squares of the residuals was approximately 5.4 at
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the above parameters. Graphically, integration results at the
above parameters look very good. However, ps_is negative, and
the integration results for Y, at the above parameters are very
different from the simulation results shown in Figure 4.2.4.
(the ihtegration results for Y, have a spike which extends te
around: y5=400 at t=~7.5.) Using the guessed observations from
curve (b) in Figure 4.4.1, and starting at the parameters
corresponding to Figure 4.2.2, three iterations of the iterated
derivative fitting method produced the parameters

(1.522, .3%921, 3.186, 1.709, .3031, .1829)T

The observations and integration results at the above parameters
are presented in Fiqure 4.5.3.

Using the same starting conditions as for the previous
experiment, three iterations of the iterated inﬁegral fitting
method (using subsystem integrations) gave the parameters

(1.402, .2126, 3.584, 2.497, .4548, .2249)1’

Integration results at the above parameters are presented. in
Figure 4.5.4.

Using the same starting conditions as in the previous
experiment, three iterations of the iterated integral fitting
method (using (3.4.1) to update the guessed observations)
produced the parameters

f
(1.388, .2153, 4.652, 2.493, .2981, .2275).
Integration results at the above parameters are presented in
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Figure 4.5.5.
From each of the above parameter vectors, the FIT method
found the same minimum that was found when the FIT method alone

was used. Since results with the iterated methods appear fairly

o
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Figure 4.5.5
IFIT results (using (3.4.1))

0.00

good graphically, and the parameters generated by the iterated
methods are positive, it appears worthwhile to try a square root

scaling on starting from the results of an iterated method.

Ps
Starting from the results of the iterated integral fitting
method (using (3.4.1)) and using this scaling, we found an

optimum at (unscaled)

7
(.6859, .03515, 6.092, 1.481, .2708E-5, .1213).

The sum of the squares of the residuals at the above point in
parameter space was approximately 5.8. Integration results at
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the above parameters are shown in Fiqure 4.5.6.

If we return to the direct FIT approach starting with the
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Figure 4.5.6
FIT results (pscaled) starting from IFIT results

pérameters corresponding to Figure 4.2.2 and with g; scaled With
a square root transformation, problems occur. The parameter P,
becomes negative. The scaling of both P, and ps_did not prove
very profitable either. With this scaiing and starting at the
parameters corresponding to Figure 4.2.2, we were drawn to a
point in parameter space where all the parameters were positive,

bﬁt where the integration results on Y, rapidly went to zero,
and the results on Yy, went to an equilibrium. Thus the iterated
approach was extremely valuable for getting a solution to this
problem. The use of guessed observations may be thought of as a

means of guiding us to a preferred solution.
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CHAPTER 5

SEQUENTIAL TECHNIQUES

5.1 INTRODUCTION

The direct approach, using the sensitivity equations, for
fitting parameters in dynamic models involves the choice of an
initial approximation to the optimal parameter vector,
inteérating at this point in parameter space, and then, with the
aid 6f information from the solution to the sensitivity
equations, finding a more optimal set of parameters. Often the
initial integration deviates greatly from the observations, and
it may even blow up. In these cases, the first few data points
cohtain valuable information that can be used to improve the
parameter estimates. It is intuitively appealing to use this
information to improve some parameter values before we commit
ourselves to a full integration over the whole time interval
under consideration. To carry this idea a little further, an
algorithm where we sequentially update parameter estimates each
time taking into account a few more data points seems worthy of
consideration. 1In a sense, such an algorithm is wusing the
observations to guide us along the correct path in state space.

Sequential reestimation has received a great deal of
attention. Much of this attention has been from a statistical
point of view. For a concise introduction, we refer the reader
to Young[76]. Problems involving the analysis of a large
quantity of continuously arriving data and requiring a "real
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time" solution have been one of the main motivations for the
development of seguential estimation techniques. A typical
example of sﬁch a situation occurs in the estimation of missile
trajectories from, say, radar data. Frequently, sequential
techniques are hsed to estimate the state of a dynamic system;
however, they cah also be used tb estimate parameters in a
dynamié' system; Fﬁrva good discussion of sequential estimation
techniques appliedAto dyhamic_systems, we refer the reader to
Gelb[28].

As mentioned. above, our motivation for considering
sequential techniques does not come from the need to fapidly
process a large guantity of data, but instead from the need to
overcome poor initial parameter estimates. Our goal is to use
the observations in a manner that addresses itself to the
basically sequential nature of an initial value problem.

5.2 A SEQUENTIAL ALGORITHM

There are many ways to approach the development of a
seguential algorithm. At one extreme there is the épproach of
solving a sequence of parameter fitting problems, each using
progressively more data points. Since we are dealing with a
dynamic model, such an approach would be expensive. At the
other extreme, we have the stochastié approximation techniques
where parameters are updated by less refined but very fast
reestimation algorithms ([6,p.251], [31, [33]). The method
explored in this chapter falls between these two extremes.

We assume the data boints are processed in batches ending
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at the observation times

ty, reertay (5.2.1)

Batch s is the set of observations taken at the observation

times

t t raeey (5.2.3)
Ak HoTR 42 &,

where ta 4 is the first observation time. Define f(» (p)
-' N
according to (1.1.2) for the observation times

t[’...'t-k (5-2-3)

L+

and let

S
Fl, (P)=F, (P)VE (P). (5.2.4)

To start the sequential process we estimate p as well as
possible to minimize (5.2.4). Note that k must be large enough
that this least squares problem makes sense. That is, we do not
want fewer data points than parameters. We expect this problem
to-often be singular since it is unreasonable to expect that an
estimate of all the parameters can be obtained with just a few
data points.

Denote by p(m the optimal parameter vector obtained by
minimizing (5.2.4), and denote the Jacobian matrix for f(m ’
defined by (1.3.4), by J(m (p) . Next we include the batch of

data points at the observation times

tﬁ°+|""’t&|'
Define f ({p) according to (1.1.2) for the above observation

m
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times. There is some ambiguity to be resolved concerning
f(n(p). The elements in fu)(p) depend on the solution y(t) to
(1.1.1) at the above observation times. We would, however, like
to integrate from time t*. and not from time t, in order to
define f(o (p) . Thus initial conditions are required at time
tao for this integration. Consistent with the linearization
employed below, we define the initial condition on y, at time
t&‘ by

Y, . (ty )=y, (@, )+ (p-p, ) (

24

eeer ) (5.2.5)

2Yi
2P, B

for i=1,...,n. Thus the initial conditions for the integration
between times t*o and tk‘ are functions of the parameters, and
this must be considered when the sensitivity equations are
integrated.

Define the Jacobian matrix J(n (p) corresponding to f(” (p)

according to (l1.3.4). This matrix is found by integrating the

sensitivity equations from time t to time ty - Let
[}

[
(Apha, =P-Pp, (5.2.6)
- (3
and dgflne f (p) by

(w T T T

£ =0 5 (B )+ (B, ) @R, ) By (B ) . (5.2.7)

Our new parameter estimate, which we denote by'p(O , Minimizes

wmT (n
f (p) £ (p) - (5.2.8)

n
The Jacobian matrices for £ (p) are
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Jw (P )
s p= T, (5.2.9)

We have just approximated fpgp) by the first term in its Taylor

expansion at the point p . The success of a sequential

Q)
technique 1is closely related to the size of the region in which
this approximation is accurate. We continue in the above manner

reestimating p for each new batch of data points. Thus when

batch s is under consideration, we are finding the estimate P 0)

using
f(o) (p(-) ) +J (o) (p(o) )(Ap)(o)
(e) .
£ (p)= . (5.2.10)
Famy Pray Mgy Ppy V6P,
i £ (P)
and
(o) (p (o) )
3 ® (= . (5.2.11)
Ta-o Pray )
J@, (p)
The new parameter estimate, Py minimizes
T
97T 2™ (p). (5.2.12)

Note that only qu (p) is changing in JLM (p) during the

determination of Pay - This fact can be used to advantage when
implementing a sequential algorithm. For example, if we are

)

using the singular value decomposition of J then information
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-1 (

obtained when producing the decomposition of J ) can

P la-u
be used to efficiently obtain the decomposition of J h)(p).
5.3 EXPERIMENTAL RESULTS
We experiment with Problems 4.2.1, 4.2.2, 4.5.1, and 4.5.2.

The last two of these test problems have noise in the
observations. The starting parameters for our experiments with
Problems 4.2.1 and 4.5.1 are those corresponding to Figure
4.2.2, and the starting parameters for our experiments with
Problems 4.2.2 and 4.5.2 are those <corresponding to Figure
4.2.3. We comment that with these parameters a direct apprbach
(FIT) was unsuccessful on all four problems. Our experiments
with Problems 4.2.1 and 4.2.2 start with an initial batch of
observations corresponding to the first five observation times.
We then proceed through the remaining observation times in
increments of five observation times. For Problems 4.5.1 and
4.5.2 the wuse of five observation times proved to be
insufficient to get started (the initial parameter estimates
were too inaccurate). For these two problems we start with ten
observation times and then proceed in increments of five
observation times. An interactive approach <could be valuable
here.

| For Problem 4.2.1, the parameter estimates after the first

and last batches were respectively

T
(.9743, .1281, 3.873, 2.101, .3153, .1473)

and
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-
(1.014, .1178, 3.548, 1.406, .1632, .1539).

For Problem 4.2.2, the parameter estimates after the first and
last batches were respectively

—7—‘
(.5550, .09277, 3.256, .6304, .1390, .01231)

and

T
(.4087, .06548, 3.3837, .4226, .07886, .008364).

For Problem 4.5.1, the parameter estimates after the first and
last batches were respectively

: T
(.6689, .02493, 4.085, 1.309, .06232, .1154)

and

(.7690, .04540, 3.238, .8006, .01421, .1286)T

For'Problem 4.5.2, the parameter estimates after the first and
last batches ‘'were respectively

(7.227, 1.303, 3.337, 1.333, .3334, .2266{T

and

: T
(.6987, .2829, 6.917, 2.703, .3389, .01377).

A direct approach (FIT method) converged to the desired
solution for Problems 4.2.1, 4.2.2, and 4.5.1 starting at the
first and 1last estimates given above. A sqguare root
transformation of p;.was reqgquired in the case of Problem 4.5.1

to prevent g{ from becoming negative. The direct approach on
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Problem 4.5.2, starting from the parameters obtained using only
the first batch of observations, found a local minimum at

(3.624, .8877, 4.064, 1.277, .2642, .1002)1

where the sum to the squares of the residuals was approximately
840. However, convergence of the direct method to the desired
solution was obtained when we started from the final result of
the sequential pass on Problem 4.5.2. Thus the sequential
updating was essential in this case. We summarize the above

results in Table 5.3.1. We conclude that it can be advantageous

Problem FIT FIT FIT
(first batch) (last batch)

L
U O b
~ NN
o e
IO NONS]

C
C
C
C
m

L-local minimum, C-desired minimu

)

Table 5.3.1
Results with sequential approach

to consider the observations sequentially to obtain an improved
approximation to the optimal parameters before we commit
ourselves to a full optimization attempt over the Qhole time
interval. 1Indeed, in three of the above four cases a sufficient
improvement to allow the FIT method to ébnverge to the desired
solution was obtained wusing only the first few observation
points.

A great deal of work remains to be done to fully evaluate
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the use of sequential methods for improving starting parameters;

however, we have attained our limited goal of demonstrating the

feasibility of using a sequential strategy.
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CHAPTER 6

REAL WORLD PROBLEMS

6.1 INTRODUCTION

All the parameter fitting problems in this chapter involve
physical observations as opposed to observations generated by a
simulation. Such problems are a good deal more difficult than
those wusing generated data. This difficulty occurs partly
because the dynamic model under consideration often cannot, for
any parameter values, give an adequate description of the
process being modelled. Also, experience indicates that the
least squares surface for parameter fitting in dynamic models is
often plagued with numerous local minima. Starting with one of
the more global methods of Chapter 3, it is fairly easy to find
one of these local minima. (See for example the experiments
with Bazykin's model in Chapter 4.) The problem for the model
builder is to decide if there is a more optimél set of
parameters somewhere else 1in parameter space or if the
gualitative difference between the model and the data at the
current minimum is Jjust the result of a poor or incomplete
model. This 1is usually a difficult decision to make.
Situations such as this arise frequently in nonlinear problems
and a standard strategy is to start optimizing from different
points in parameter space. If the same minimum is determined
starting from several different points, then we <can be more
confident that the minimum is a global minimum. An interactive
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approach is ideal for experimentally checking on a minimum;
however, a good understanding of the model and the physical
meaning of the parameters is also very valuable. This latter
understanding can be augmented through an interactive analysis
of the effects of various parameter changes.

An interactive parameter fitting package can be very useful
in the design of models as well as in the fitting of individual
models. For example, the model builder may start with a simple
but incomplete model and find in the course of fitting it that
it cannot account for some of the qualitative behavior of the
observations. This would be indicated for example if the best
fitting parameters produced a model which smoothed out a crucial
peak in the data. With luck, in the <course of fitting this
model, some of its deficiencies may be determined and some
insight into improvements may be gained. For this type of
application, it would be helpful to allow the dynamic
redefinition of the model.

We stress that the above process is very tenuous and puts a
large emphasis on the intuition and judgement of the model
builder. It is in such situations, however, where an
interactive approach can be extremely advantageous.

6.2 A DYNAMIC MODEL FOR AGGRESSIVE AND DOCILE MICE

The model considered in this section proposes a population
consisting of two interacting types of mice to account for
observations on the total mouse population. For an introduction
to this problem, we refer the reader to Myers and Krebs[48] and
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Krebs et al{37]. Let u be the population density of docile
mice, and v the population density of aggressive mice. Let P,
be the basic birth rate, pq the basic death rate, and let P,
describe the sensitivity of docile mice to crowding. Let & be
the proportion of aggressive mice in the offspring. Further
assume the aggressive mice reproduce poorly (almost sterile) and
that this can be described by multiplying the basic birth rate
by u/(u+v). Under the effects of crowding, the docile mice are
assumed to either emigrate or die, and this is described by the

term u(u+v) in the equation for u'. The dynamic model 1is

P,
thus
u'=p3(l:§)u"/(u+v)—p‘/ u-p_u(u+v) 6.2.1)
v'=pu”/(utv)-p,v.
Questionable assumptions such as those given above are typical
of dynamic models in ecology, and with such assumptions we
should not be too disappointed if the model cannot describe the
observations very well. Mouse population measurements are
available only on the total population u+tv. A more general
formulation of the parameter fitting problem in dynamic models
(see Bard{6,p.221]) could handle this directly; however, the
problem can be transformed to conform to our formulation. In so
doing, we arrive at a problem with observations on only one
state variable and some of the technigues of Chapter 3 can be

used to produce starting approximations to the parameters. If

we define % =u, Xl=u+v, and p2=p3(l—x) then the above dynamic
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model may be written as

'= 2 -— -
Y,'=B, ¥ /¥, "P, Y "R Y, ¥,

, d (6.2.2)
"= - -
X:L p3¥ /y.z B¢¥z p.s—yl y:L'
For our initial conditions we take
y (0)=p,/(1ltexp(-p,))
! (6.2.3)
&WPQ

where we have ensured that yl(0)<y2(0). Observe that all
parameters in this model, with the possible exception of Py
should be positive.

The 44 observations on y, are shown graphically in Figure

6.2.1. We comment that it is with reference to the scale of

24.00 .00
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) " Figure 6.2.1
Observations and spline approximation

Figure 6.2.1 that the parameter estimates should be interpreted.
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(The baéic unit of time is two weeks and the basic population
density unit is ten animals per acre.) A cubic spline
approximation to the observations using joints at -
t=5,10,20,25,28,35 is»also shown in Figure 6.2.1.

This problem is reiatively difficult. 1In the following
discussion, we outline a particular sequehce of experiments
which 1leads to a model which fits the observations quite well
numerically. Such experiments, of necessity, invoive a good
deal of trial and error, and thus an interactive approach is
ideal. 1In what follows, we try to give an indication of this
interactiﬁe process.

Since observations are available on only one state
variable, the iterative methods of Section 3.4 may be useful for
getting initial approximations to the parameters. Furthefmore,
we observe that with the exception of P, all the patameters
occur linearly in the residual functions of the IFIT and DFIT
algorithms when guessed observations are used on y, - However,
to apply one of the iterative algorithms of Section 3.4, a
starting guess at the behavior of the unobserved state variable
is required. It must be less than Y, and we expect it to mimic
in some sense the behavior of Y- A reasonable guess is curve
(0) in Figure 6.2.2. Note that one of the most prominent
features of. Y, with respect to Y, is the position of the
proposed maximum of % . As indicated by the experiments in
Chapter 4, the position of such a maximum can be critical. An
interactive appfoach can be very valuable here. To get starting

CHAPTER 6



137

g
5
= ' .
il il
Q(z)
w)\\
Wl 4 (N
-5 N
= /////, RN \\ \
4¢%% ©
g ‘V
=
=2
[=
= T L T T T T T T ]
3.06 | 5.00 10.00 1$.09 zo.u%lrﬁE 25.00 30.00 35.00 40.00 45.00

Figure 6.2.2
Iterations on guessed observations

approximations to the parameters, we used the iterated integral
fitting method (using (3.4.1)) taking advantage of the linearity
of the parameters in (6.2.2). We froze pl and p'2 at 2.9 and 2
respectively and iterated on the remaining four parameters.
Figure 6.2.2 shows successive improvements in the guessed
observations on yl. In Figure 6.2.3, the solution Zz(t)
obtained from integrating (6.2.2) at the successive
approximétions to p are shoWn. The observations on Y, are also
shown in Figure 6.2.3. The trapezoidal discretization was used
throughout this section. Curve (i) in Figure 6.2.3 corresponds
to curve (i) in Figurev6.2.2. The parameters corresponding to

curﬁe.(Z) in Figure 6.2.3 were

’r
(2.9, 2.0, 1.234, .2445, .003339, .6114).
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Figure 6.2.3
Integrations at successive parameter approximations

Graphically, there appears to be sdbstantial room for
improvement in the parameter values; however, the iterated
integral fitting method has efficiently provided starting
approximations to the last four parameters.

Now that we have starting approximations to the parameters
at which the initial value problem can be infegrated to produce
reaéonable results, it is worthwhile to try to refine the
parameters values using a direct approach employing the
sensitivity equations. The Levenberg-Marguardt method gave the
parameters |

-
(2.828, 1.963, 1.142, .06483, .008582, .5279)

Integeration results corresponding to this parameter vector are
shown in Figure 6.2.4. The sum of the squares of the residuals
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at the above point in parameter space was approximately 1350.

Clearly, an improvement has been made. However, the peak in the
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Figure 6.2.4
Optimum starting from iterated IFIT results

observations 1is not being approximated well. Considering the
way the model was derived, there is no reason to expect that the
peak in the observations can bé well approximated. If we want
to try to fit the peak in the data, we can experiment at other
points in parameter space and try other algorithms such as those
presented in Section 3.5. An interactive package can be very
valuable for such probing and experimenting. Extensive
experiments' and the wuse of special methods such as the
guasi-multiple shooting technique of Chapter 3 did not produce
parameter values which described the peak well. A logarithmic

transformation of pg_ which works well on the following two
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models did not work here eithef. It is impossible to say no
such parameters exist; however, in view of thé better fit
obtained later in this section when more flexibility ~was- put
into the model, we are 1led to the conclusion that the model
cannot adequately describe the observations. Such a conclusion
is a matter of judgement and all a good numerical package can do
is to provide information to make that judgement more informed.v

It is fairly easy using an interactive approach to produce
paraﬁeters that give integration results which peak in the same
vicinity as do the observations. For example, the following
parameters were obtained interactively:

(1.4, 1.24, .8272718, .07, .006, .5037043)T

The interactive procedure employed involved freezing parameters,
optimizing on subspaces, and the experimenfal resetting of
parameters. Integration results at these parameters are shown
in Figure 6.2.5. The difficulty seems to be that the sudden
drop in the observations cannot be imitated. Thus when we tried
‘a full 1least séuares optimization starting at the above
parameters, we obtained a possibly local minimum at

(1.292, 1.171, .9662, .06040, .01371, .6242{(

Integration results at the above parameters are shown in Figure
6;2.6. The sum of the squares of the residuals was
approximately 1150 at the above parameters. Observe that the
results are slightly different than those of Figure 6.2.4, but
the peak in the data is still not being imitated. Indeed, even
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Integration at parameters found interactively

the interactive optimization on subspaces continually drew the
integration results down to balance off the peak and the trough-
in the observations. Of course we could weight some of the data
points in the least squares problem to emphasize the peak, but
this is artificial and experiments indicate that while a good
approximation up to the peak can easily be obtained, the rapid
drop in the observations cannot be imitated.

Next we experimented with a model with more flexibility in
the form of another parameter. Specifically, we let the death
rates for the docile and aggressive mice be different. Denote
by Py the death rate for docile mice and let Pp denote the death

rate for aggressive mice. Our dynamic model now is
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y'=p
! [
y'=p
i 3

P Yy
&5

Y,

(6.2.4)

Using this model and starting at the parameters obtained

interactively with p7=pq, a local minimum to the full unweighted

least squares problem was found at

(1.402, 1.241, .8365, .1875, .01174, .6748, .005763)?_

The sum of the squares of the residuals at the above parameters

was appproximately 960. Although P, and Py differ, integration

results at the above parameters do not differ substantially from

those shown in Figure 6.2.6.
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This is in feality a local minimum. Later in this section,
we return to this model and. achieve a much smaller but still
perhaps local minimum. The specific strategy used to obtain
this new minimum grew out of experiments with the following
model.

Ekperimentally, the following hodel fits the observations
well. It is the same as the previous model except for a
modification in the growth term for the aggressive mice. As in
Equation (6.2.1), 1let u be the pdpulation density of docile
mice, and let v be the population density of aggressive mice.
Our proposed dynamic model is

— a — —
u'—p‘u / (u+v) pu psu(u+v)

\ (6.2.5)
\% =p3uv/(u+v)—p7v
which with Y, =u, and yé=u+v becomes
v'=p v /Yy, -P Y-P_Y ¥
/ A 2 :t/ 5% “a (6.2.6)
‘= - + +p - - - .
v =(p, "B )y‘./g (P,*p, "B )Y, "B ¥, "P Y ¥,
The initial conditions are given in (6.2.2). Our starting

approximation to the optimal parameters was

(2.9, 2.5, .8, .07, .006, 1, .5),

and the optimal parameters obtained were

-
(2.958, 2.630, .6503, .8892, -.007497, 1.108, .3108).

The sum of the squares of the residuals at the above parameters
was approximately 250. Graphically, the integration results at
the above parameters are almost the same as those in Figure
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6.2.7 except Ya gets close to zero around t=36. Unfortunately,

p5’
Six parameters and this suggests we try the 1logarithmic

is negative. We note that ps,is much smaller than.the other

transformation‘§;=ln(p’) and estimate‘ﬁ; instead of R;' It is
important fo be selective when choosing. a logarithmic
transformation. For example, the rescaling of p3 to pq by
logarithmic transformations did not 1lead to the success
described_below when p{ alone was rescaled. Thus again we have
a place for interactive experimentation. As mentioned at the
end of Chapter 1, the use of 1logarithmic transformations also
affects the conditioning of the problem. For example the
condition number of the Jacobian matrix in the least squares
problem at the above parameters is 1.1E5. If P, is scaled as
suggested then the <condition number becomes 1.3E4 and if
;5,...,p7 'are all scaled by logarithmic transformations, the
condition number becomes 2.6E4. With the transformed %_, we
started the Levenberg-Marquardt procedure at the last set of
pérameters preceding the first occurance of a negative value for

R; in the previous run, namely

(2.88, 2.57, .728, .437, -5.17, .687, .465) '

where we have renamed'ﬁr to be %r' The optimal parameter values
found were

(5.335, 3.011, .08038, 3.966, —6.895, 4.266, —.01545)7—

where now p has taken on a negative value. (The transformed
values of scaled parameters are given.in this discussion.) The
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sum of the squares of the residuals was approximately 56 at the
above parameters. Graphically, the integration results at the
above parameters are very similar to those in Figure 6.2.7
except Yo, Curves up slightly for t>30. The best parameters
before p7 went negative were

‘T
(4.362, 2.989, .1307, 2.644, -6.232, 2.909, .01303).

It appears that a logarithmic. transformation of p7 may be
profitable. With this transformation and starting at the above
point in parameter space, we found the minimum

(5.403, 2.691, .1042, 3.507, -6.807, 3.848, —4.688)?—

The sum of the squares of the residuals at these parameters was
approximately 62. Integration results at the above parameter
values are shown in Figure 6.2.7.

From a numerical point of view, the fit in Figure 6.2.7
appears excellent; however, from a biological point of view it
has a flaw. The first state variable gets caught at zerovand Y,
goes to an equilibrium. Biologically, we would 1like the
solution to the 1initial value problem to oscillate in time.
Numerically, it appears that more data points should be
available if we want to look for oscillatory behavior.

The remarkabie improvement achieved when a 1logarithmic
transformation was used on ps_suggests that we go back to the
first two models and try this strategy. Starting with the
parameters obtained interactively, this strategy did not change
the results with the first model; however, starting at the
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Figure 6.2.7
Optimum with logarithmic scaling on Es,and Bq

parameters obtanied interactively and with p?=pq, this strategy
worked very well on the second model where two death rates were
used. As with the third model, p7 became negative and small and
a Jlogaritmic transformation of p? was also used. The final

parameters obtained were

(5.416, 2.350, 3.832, 3.394, -7.037, 3.822, —5.062{?

and the sum of the squares of the residuals and integration

results at the above parameters were essentially the same as

those of Figure 6.2.7. It is interesting to note that for the

parameter vector

(4.205, 2.586, 2.905, 2.562, -6.636, 2.896, —5.298)7—
the sum of the squares of the residuals was approximately 54000.
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This sort of behavidr is typical of initial value problems and
is one reason why so many'difficultiesAare encountered when
fifting parameters in dynamic models. Finally, we comment that
our investigation has been confined to numerical parameter
fitting and no attempt has been made to interpret the parameter
values 1in a physical sense. Before any parameters can be
accepted, they must of course be physically reasonable.
6.3 A MODEL INVOLVING A CHANGE IN EQUILIBRIUM

The model considered 1in this section represents an early
attempt to describe data collected from Lake Placid, British
Columbia [75]. The observations are on phytoplankton in the
lake. Throughout much of the summér, their total mass remains
fairly constant at a relatively low level. Then, within the
space of a few days, it jumps to a much higher level. The next
few observations contain a lot of noise, but it appears that the
level of phytoplankton remains high until near the end of the
year when it drops back to a low level. The observations on the
phytoplankton are shown in Figure 6.3.1. The units for the time
axis are 1in days . and time.t=0 corresponds - to the beginning of
May. One unit along the state variable axis in Figure 6.3.1
corresponds to 1/75 milligram of phytoplankton per litre of
water. It 1s postulated that the sudden jump in the
observations caﬁ be described by a dynamic model which loses a
lower equilibrium and moves to a higher equilibrium. In
particular we consider the dynamic model (proposed by Dr. C.J.
Walters, Institute of Animal Resource Ecology, University of
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Phytoplankton observations and smoothing function

British Columbia)
Y'=p, r (t)y(1-y/25)-p, z (t)y?/ (p}+y?)
y(0)=3.2.

(6.3.1)

in this model, vy represents the density of phytoplankton, and
z(t) represents the density of the predator zooplankton. The
function r(t) represents the effect of sunlight on the growth
rate of the phytoplankton. The term r(t)p, (1-y/25) describes
the growth of the phytpplankton, and the term —z(t)gaya/(gj+y2)
describes the feeding effect of the zooplankton..

To determine the equilibria of the above dynamic model, we
set y'=0, and solve for y. Thus for y#0, the equilibria occur

at the roots of
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p,r(t) (1-y/25) (p)+y*) -p, z (t) y=0 (6.3.2)

Depending on P, s Pyr Py r(t), and z(t), the above algebraic
equation in y can have one, two, or three real roots. Thus it
is theoretically possible to gain or lose an equilibrium when
(6.3.1) is integrated.

For r(t) we take the function

r(t)=exp(—((t—110)/55)2). (6.3.3)

The function z(t) was obtained from physical observations. To
produce a continuous approximation to z(t), we used a least
squares piecewise cubic Hermite approximation to. the
observations. The joints used in this approximation were at
t=60, 120, 180. The data points and the continuous
approximation to z(t) are shown in Figure 6.3.2. The
observations have been scaled so that the maximum ordinate is 1.

We take

for our initial parameter estimate. The success in Section 3.3
of the integral fitting technique for this type of problem
suggests we starf with this method. First we smoothed the.
observations with a least sguares piecewise cubic Hermite
polynomial with joints at t=110, 115, 140, 180. This smoothing
function is shown along with the observations in Figure 6.3.1.
With this smoothing, the IFIT method produced the parameters

(.1433, 5.509, .7300)7r

CHAPTER 6



150

0.80
i
o
////

G.40

G.00

i j 1 ] ) T 1 .
0.00 4.00 80.00 20.00 160.00 200.00 248.00

Figure 6.3.2
Zooplankton densities

Integration results at the above parameter vector are shown in
Figure 6.3.3. Next we refined thesé parameters using the
Levenberg-Marquardt technique and the sensitivity equations.
This approach found the optimum

(.1562, 3.336, .8963)7’

where the sum of the squares of the residuals was approximately
556. Integration results at the above parameters are shown in
Figure 6.3.4. A direct approach using the sensitivity equations
and starting at p(d defined above also produced this result.

In Table 6.3.1, we list some roots of (6.3.2) as a function
of time at the above parameters. The results in this table
indicate that at the start of the time interval under
consideration there is one relatively low equilibrium. Later on
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Time Number of real roots Real roots

1 1 0.07464

84 1 2.093

85 3 2.216  9.331 13.45
89 3 3.130 5.395 16.47
90 1 16.95

151 1 17.14

152 3 3.260 5.142 16.60
156 3 2.134 10.83 12.03
157 1 1.994

226 1 0.1436

Table 6.3.1
Roots of (6.3.2) corresponding to Figure 6.3.4

we have three equilibria, and still later we have only one
relatively high equilibrium. Still later in the time interval,
we again acquire three equlilibria. At the end of the time
interval, wé are back to only one lower equilibrium. However,
no rapid jumps to new equilibria are evident in Figure 6.3.4.
"In the results which follow, a more pronounced jump to a higher
. equilibrium was obtained.

The above parameter vector corresponding to Figure 6.3.4 is
not the only point in parameter space where .the solution to

(03 defined

(6.3.1) fits the observations well. Starting at p
above, and following an interactive strategy of freezing
parameters, optimizing on subspaces, and resetting parameters,
we arrived at the point

(.9900, .7284, 2.796)74

in parameter space. The sum of the squares of the residuals at
the above local minimum was approximately 662. Integration
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results at the above parameters are shown in Fiqure 6.3.5.
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Integration at interactively obtained optimum

(Integrations under error control were employed near the above
point in parameter space.) This point was difficult to find and
it 1is unlikely that an automatic approach would have much luck
in finding it. The difficulty seems to stem from the nature of
the 1least squares surface near the above point in parameter
space. For example if we change P, to .7 then the integration
results become essentially zero for the full time interval under
consideration, and the sum of the squares of the residuals
becomes 3085. Integration results corresponding to this sum of
squares are shown in Figure 6.3.6. Starting from the parameters
of Figure 6.3.6, the FIT approach again produced the optimum

illustrated in Figure 6.3.4.
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In Table 6.3.2, we list some of the roots of (6.3.2) as a

function of time at the parameters of Fiqure 6.3.5. At the
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Integration near interactively obtained optimum
Time Number of real roots Real roots
1 1 0.007244
42 1 0.08443 _
43 3 - 0.08730 10.66 14.25
112 3 0.6511 0.8676 23.48
113 1 23.52
129 1 23.51
130 3 0.6316 0.8947 23.47
176 3 0.08548 12.34 12.57
177 1 0.08367
226 1 0.01396

Table 6.3.2
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start of the time interval, we have only a relatively low
equilibriﬁm. Around t=43, we acquire three equilibria, and
around t=113, the lower two of these three equilibria vanish and
we are left with only a relatively high equilibrium. Later, we
again acquire three equilibria, and around t=177, the higher two
of these three vanish and we are left with a relatively low
equilibrium which remains until the end of the time interval.
The disappearance of the 1lower two equilibria around t=113
corresponds to the rapid increase in the solution to (6.3.1)
shown in Figure 6.3.5.

The large error in the observations makes it difficult to
choose between the two solutions obtained for this problem;
~however, qualitatively the latter solution is more pleasing. 1In
conclusion, the interactive approach has provided us with a
sqlution which qualitatively behaves in the desired fashion. It
is now the task of the model builder to interpret and perhaps
build on thesé results. When interpreting the parameters
correspohding to to Fiqure 6.3.5, the model builder must of
course take into account the drastic change possible in the sum
of.the sguares of the residuals due to a relatively small change
in parameter space.

6.4 A REINDEER POPULATION GROWTH MODEL

The model presented below represents an attempt to deScribe
the reindeer population in Alaska from the year 1891 to the year
1963 [2]. The Bazykin predator-prey model discussed in Chapter
4 is employed. The reindeer correspond to the predators and the
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forage <corresponds to the prey. Let Y, represent forage in
units of 100 tons per square mile, and let Y, represent the
reindeer population‘density in units of animals per square mile.
We consider the dynamic model (proposed by Dr. C.Jd. Walters,
Institute of Animal Resource Ecology, University of British

Columbia)
y'=p y (l-cy, )-(r/100)y y /(p, +y, )
P ! 172t (6.4.1)
Y, =R ry v,/ (P, *Y, ) =B, Y,
where p, represents the growth rate of the forage for small Y,
in the absence of grazing, 1/c represents the equilibrium for
the forage in the absence of grazing, r represents the reindeer
feeding rate, P, and %3 are measures of the reindeer feeding
.efficiency, and P, represents the reindeer death rate. Of
course all parameters should be positive. Our initial

conditions are

y, (0)=10, y_(0)=.001

where t=0 corresponds to the year 1891. The initial <condition
on Yy, represents 1000 ﬁons of forage per square mile. We take
the constant c=.1. That is, the equilibrium for the forage in
the absence of grazing is 1000 tons per square mile, the initial
condition on y, - The reindeer population density observations
are derived from population counts over an area of approximately
20000 sguare miles. Thus the initial condition on Y, represents
very few (approximately 16) reindeer in this area. We fix r at
2 (in units of tons per year) for the reindeer in this area.
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Our initial approximation to the parameters was

p® =(.3, 1, .1, .06)

In Figure 6.4.1, the observations on y, are shown along with

.inpegrgpion results at the above parameter vector. There are no
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Figure 6.4.1

Observations and integration results at E(”

observations on the forage, and the initial condition on Y,
represents a rough guess.

In the following discussion, we demonstrate through a set
of experiments, the power of an interactive approach on this

fairly difficult problem.

EXPERIMENT 1
It seems worthwhile to begin with a direct attack on the
problem. If this strategy succeeds, then we are finished, and
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if it does not , we can try a more sophisticated strategy. Even
~if this direct attempt does not work, it may suggest further
experiments. Starting at the above ;)@) + the FIT approach
produced the optimal parameters

(-.2691, 24.82, .8093, .1763)"

The sum of the squares of the residuals at this mimimum was
approximately 494. 1Integration results at these parameters are

shown in Figure 6.4.2. The results look excellent graphically,
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Figure 6.4.2
Integration results for Experiment 1

L)

but P, is negative and pzhis much too large. The 95% confidence
intervals , as defined in Chapter 1, were

-
(+4.041, +3788, +83.11, +.1385).
The parameter P, has strayed into a region where the least
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squares surface is very insensitive to it. The negative sign of

P, suggests we constrain it to be positive; however, this

strategy starting at p® did not prove effective. (The

parameter b, became small, but the integration results remained
essentially the same as those in Figqure 6.4.1.) Freezing p, at
.3 and starting at pp) did not help either; however, the next

experiment was successful.

EXPERIMENT 2
In this experiment, p, was frozen at 1 and the optimization
) . .
was started at p“ defined above. This strategy found an

optimum at

- .
(-.2667, 1., .2250, .1366).

The sum of the squares of the residuéls at these parameters was
approximately 757.. Graphically, the solution appears to model
the observations quité well; however, p/ is negative. Our next
experiment produced quaiitatively promising behavior with all

parameters positive.

EXPERIMENT 3

In this experiment, P, and p, were frozen at .3 and 1
respectively, and we let p3 and p,, start at the values obtained
in the previous experiment. OptimiZing on the resulting two
dimensional subspace of parameter space produced the parameters

T
(.3, 1, .9704, 1.488).
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The sum of the squares of the residuals at the above parameters
was approximately 20,000. Integration results at the above

parameters are shown in Figure 6.4.3. 1In spite of the large sum
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Integration at results of Experiment 3

of squares, the results 1look promising. The model equations
suggest that by reducing p3 and %,, a much better result should
be possible; however, interactive experiments along these lines
produced instabilities very easily. We improve on the above

results in the next experiment.

EXPERIMENT 4
Starting at the parameters obtained in the previous
experiment, and not employing any freezing, we found an optimum

at the point
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- 7

(.04046, 14.61, 3.635, 2.669)

in parameter space. The sum of the squares of the residuals at
this point was approximately 490. 1Integration results at these

parameters are shown in Figqure 6.4.4. The parameters are now
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Figure 6.4.4
Integration results at optimum of Experiment 4

all positive and the integration results at these parameters fit
the data quite well. However, P, is again much too large, as
are p3 and pq, and,yl does not appear to bev as active as it
should be. It appears that the absence of observations on y

_ 2
leaves too much flexibility in the model.

EXPERIMENT 5
Our 1last experiment in this section is with guessed
observations and iterated integral fitting methods. The
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smoothing of the observations was accomplished with a least
squares cubic spline using joints at t=5, 10, 21, 23, 42, 57,
59. The initial guessed observations for the forage were points
on the cubic spliné that interpolates

(0,10), (10,10), (20,9), (30,6), (50,3), (60,2), (72,1).

The end conditions for this‘interpolation are described under
the CREOBS command-in the PARFIT documentation in Appendix A.
The iterated integral fitting approach (employing subsystem
integrations) worked well; however, it drew us to the parameters
found in.Exéeriment 1. Freezing P, and using the above guessed
observations produced a negative p, on the first iteration, and
further iterations did not correct this situation. Next, p/ and
p, were frozen at .3 and 1 respectivély._ The iterated integral
fitting approach (using (3.4.1)) produced the parameters
corresponding to Figufe 6.4.3.

While the methods employed in this experiment did not
provide any new parameter estimates, they at least demonstrated
the strong preference that exists in the model for the estimates
obtained in the previous experiments.

The above experiments are a distillation of a few fairly
short interactive sessions. To gain comparable results with a
noninteractive approach would take a good deal longer and would
demand a lot of patience and determination on the part of the
user. |

Much more could be done with this problem. For example, we
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could search for other 1local minima. We could also try more
parameters or different combinations of parameters. (For
example, we could fix one of the above parameters and let r be a
parameter.) Our main goal, however, is to gain experience with‘
PARFIT on a variety of problems. Thus we turn to our next
example, a problem involving an ocean plankton model.
6.5 AN OCEAN PLANKTON MODEL

Our final example in this chapter involves a model of the
stages in the life cycle of certain ocean zooplankton. We
consider a simplified model where only three stages in the life

cycle are represented by state variables. Let yl, V%

2 and vy

2
represent the population densities of these three stages in
units of population per cubic metre of sea water. The adult
population density is represented by Y, - Physically, there are

2 2
respectively, and there is a transfer rate p? from yl to A and

death rates 8 v Py and Py associated with % y Y., and vy

a transfer rate p$ from zz.to v, - We drive the system with a
function x(t) which represents the population density of the
stage in the lifé cycle before that represented by A Let P,

represent the transfer rate from x(t) to y, - Our dynamic model

is thus ([54])

- -
Y'=p ¥ —(P, +p_)y, (6.5.1)

We note that this model is linear. Observations on all state
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variables and on x(t) were taken wusing large plastic bags
(suspended from the ocean surface) which were designed to
isolate samples of ocean water[16]. The observations are shown
in Figures 6.5.1, 6.5.2, and 6.5.3. For these three graphs,
time is measures in days, observations on y, are symbolized by
OX and integration results for y, are represented by an
unbréken line.

The function x(t) was approximated by

22.15+8.036t -.3099¢ +.003156¢> . (6.5.2)

The initial conditions were

y(l)=(.407, .271, .291{?

and our starting parameter vector was

p'? =(.03, .02, .01, .1, .2, .06)7

All parameters should remain between 0 and 1. A direct approach
(FIT method) found the point

(.1256, -.1121, .1626, .06709, .2219, .07167)“r

in parameter space. The sum of the squares of the residuals at
the above parameters was approximately 1690. Unfortunately Py
is negative. We note that no parameters have exceeded 1 aﬁd
this 1is ‘encouraging. Nex£ we constrained p, with a square root
scaling. With this transformation, the FIT method found an
optimum at (unscaled) .

(.09615, 1.160E-6, .1087, .09013, .1523, .06958)7_
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when it was started from p o

defined above. The sum of the
squares of the residuals at the above parameters was
approximately 1710. All the parameters are now between 0 and 1.
Integration results at the above parameters are shown along with
the observations in Figures 6.5.1, 6.5.2, and 6.5.3.

Numerically this was a rather easy problem coﬁpared with
the other three examples considered in this chapter. Visually,

there appear to be ©peaks in the observations which could be

approximated better, and this is a subject for further study.

\
/

0.00
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T i 4 i T L
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Figure 6.5.1
Observations and best fit for y
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

Our goal was to develop techniques designed to overcome
poor initial approximations to the optimal parameters. The
hecessity for such téchniques became evident with experiments
(such "as those of Section 4.2) wusing the direct approach
employing the sensitivity equatioﬂs. The basic conclusion from
such experiments was that the direct approach often produced a
highly nonlinear problem where the effect of small parameter
changes could be dramatic. Thus we turned to such methods as
derivative and integfal fitting. As shown in Section 4.2, these
approaches are very useful. It also became evident that to
resolve &a problem often regquired several runs employing
different complementary procedures. Thus an interactive
approach appeared to be a good way to proceed.

The caée when observations are not available on all state
variables arises often in practice, and experiments .indicéted
that this situation can be very difficult if approached directly
with poor initial parameter estimates. Thus we sought an
extension of the derivative and integral fitting techniques that
could handle this problem. As a result we developed the
effectiVe approach of guessing the desired behavior of the
unobserved states and then iteratively improving this guess.. As
shown in Section 4.5, this approach can be very effective when
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‘the direct approach presents all sorts of difficulties.

In keeping with our goal of developing tools for overcoming
(at least in part) the difficulties associated with a direct
approach, we investigated briefly in Chapter 5 the value of
sequentially processing the observations. We conclude that this
strategy can be superior to a direct attack on the problem.

The main trouble with a coarse method is that it can
produce parameters from which the direct approach is still
incapable of succeeding, For example the initial value problem
may be unstable at the parameters produced by the coarse method. .
In Section 3.5, we proposed methods employing continuation
parameters and break points to bridge the gap between the coarse
approach and the full nonlinear problem. We conclude from the
example of Section 3.5 that this approach can be effective on
problems involving an instability. Our approach to the use of
break points differs from that of van Domselaar and Hemker[71],
and we are unaware of any work connected with parameter
estimation in dynamic models that involves the use of break
points along with continuation parameters.

We conclude from our experience on real world problems that
with an interactive approach it is possible, in a relatively
short time, to make substantial progress on these fairly
difficult problems. However, to be effective such an
interactive package must be well organized and have a fairly
wide range of options available. The implementation of such a
package is an evolutionary process. Our package PARFIT
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represents the initial stage in this process.
7.2 SUGGESTIONS FOR FUTURE WORK

The iterated integral and derivative fitting methods
developed in Chapter 3 appear to be worthy of further study.
For example in the experiments presented in Section 4.4, the
iterated integral fitting method using subsystem integrations
worked much better than the iterated integral and derivative
fitting methods employing (3.4.1). The reason behind this seems
worthy of further study. Hopefully, such a study may lead to
other effective ways of updating the guessed observations.

Other promising avenues of further research involve the use
of continuation parameters and break points, and the use of
sequential techniques for improving starting parameters.
Finally there is the development of new and improved versions of
a package such as PARFIT. The value of good software when
approaching the sort of problems considered in this thesis

cannot be over emphasized.
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APPENDIX A
PARFIT DOCUMENTATION

Our interactive parameter fitting program, PARFIT, serves
several purposes. It establishes an environment in which new
algdrithms can be tested. It 1is an experimental tool for
investigating the utility of various commands for interactive
parameter fitting in dynamic models. It is also a device for
studying the organization of an interactive program of this
nature. Finally, it is a practical tool for fitting parameters
in dynamic models.

PARFIT is structured so that the wvarious numerical
algorithms can easily be extracted into individual procedures
(see Chapter 3 for flow charts outlining the facilities of
PARFIT). As mentioned in Chapter 3, the development of an
interactive package such as PARFIT is an evolutionary process.
The documéntation in this appendix describes the first stagé in

this process.
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PARFIT

INTERACTIVE PARAMETER FITTING IN DYNAMIC MODELS

CONTENTS

1. Introduction and notation
2. Information required by PARFIT
3. Temporary files used by PARFIT
4. The batch mode of PARFIT

5. Commands in PARFIT
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1. INTRODUCTION AND NOTATION

The program PARFIT 1is designed to allow a user to
interactively fit parameters in an initial value ©problem when
observations are available on the solution to the problem. 1Its
use does not require the 1learning of any complex set of
commands. The program is written in ALGOL W; however, a
knowledge of FORTRAN is sufficient for its use. Specifically
the program handles initial value problems of the form

y'=g(t,y,p)
y(ty) =y, (P)

where y 1is an n-vector of state variables, p is an m-vector of
parameters, t is the independent variable which we will call
time for convenience, and ' 1indicates differentiation with
respect to time. Along with the initial value problem, we have
a set of observations V), reeerVy taken at distinct times
t oty respectively where t, may or may not equal t, and
where ¢t,>t , 1=1,2,...,k. Each v, is an r-vector where r<n.
That is, not all components of y need be observed. Each v, ,
however, contains observations on the same components of y.

The central part of PARFIT is a command reader. This
nucleus of the program ties together the various facilities such
as integration, optimization and plotting. After PARFIT has
executed a particular command, control returns to the command
reader and PARFIT is ready for the next command. This continues

until a QUIT command is issued. Once a command is issued,
PARFIT wusually elicits from the wuser all the information
required to execute the command. This principle is, in the

interests of efficiency, violated slightly in the interactive
option of the FIT command.

It is useful to view the operation of PARFIT in terms of an
environment and a set of commands which operate in and on this
environment. The environment consists of such things as echo
flags, parameter scaling and freezing indicators, sample times,
output options, and algorithm selection indicators.

PARFIT is modular in nature and is designed to make the
addition of new commands very easy. Existing commands are also
easy to modify. For example at present the Levenberg-Marquardt
technique is used to solve nonlinear least squares problems, but
other optimization methods can easily be added. New integration
schemes can also easily be added. '
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We summarize here some of the facilities of PARFIT. For
more details consult the command descriptions. There are
extensive output facilities for printing a variety of things
such as Jacobian matrices, integration results, optimization
details and smoothing results. Parameters can be frozen and
scaled. There are facilities for determining the optimal
parameters in a least squares sense by automatic and by
interactive techniques. There are facilities for obtaining
initial approximations to the optimal parameters using such
techniques as derivative and integreal fitting, guessed
observations and iterative improvement of guessed observations
for unobserved state variables, and methods employing
continuation parameters and break ©points. A subsection of
PARFIT can be wused in batch mode. Certain statistical
information on the optimal parameters can be calculated and
various control parameters governing the way PARFIT runs can be
reset by the user. :

PARFIT functions with two sets of discrete time values.
First we have the observation times where the observations
V, 1.V, were taken and second we have the sample times. The
sample times are the times at which plot points for the state
variables and smoothed observations are taken and the times at
which information on the continuous solution of the sensitivity
equations (see below) can be extracted. For further details see
the SAMPLE command and item 7 of the REPORT command.

Before <continuing our description of PARFIT, we must
establish more notation. Define the weighted residual vector f

by

)

ffz(g-.)m =wn(2-.)+4 (yua) (t,e _VM-)

for s=1,...,r, 1=1,...k where r is the length of v, , 1=1....k,
Vesn 1s component s of v, and y, (& ) is the corresponding

element of the vector y(tg). Wa(g.)+a 1S @ weighting factor.
We note that f has length kr. We seek p to minimize

F(p)=£" (p) £(p) -
The gradient of F(p) is
VF(p)=23"(p) £ (p)
where J(p) is the kr x m matrix defined by
J..=3f, i=1l,...,kr; Jj=1,...,m.
The elements in J are found by integrating the sensitivity
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equations:

P

Y, (£ R)=(¥,) (P)

for j=1,...,m derived from the original initial value problem.
In our notation y, and gs, are n-vectors of partlal derivatives
of the components ’of y and g with respect to D, and g is the
Jacobian matrix of g with respect to the vecto? y. Our
integration program is specially designed to take advantage of
the fact that our sensitivity equations are linear and coupled
in only one direction to the original nonlinear initial wvalue
problem. All the step size and order adjustments are done on
the nonlinear initial value problem and the linear problems are
efficiently solved along with the nonlinear problem. This is
the same strategy as that adopted by van Domselaar and
Hemker [71].

' =
yf_,' g (trer)YfJ_"' gri(try’p)

The Levenberg-Marquardt technique for finding the optimal
parameter vector p uses the iteration

{ -
p™ p® _TEp @) sp? )n ITE® ) EE® )

where 05A<ao. As in [71] we employ the singular value
decomposition in our implementation of this algorithm. This
avoids the forming of JTJ with its associated squaring of the
condition number. A scaling option is also available in our
implementation of the Levenberg-Marquardt method. Finally in
our notation a steepest descent iteration to get the optimal p
is

p8* % g T W e

where $ is the step length referred to in the interactive option
of the FIT command.

To run PARFIT the information detailed in Section 2 must
first be supplied. The particular run command for PARFIT
depends on what facilities of PARFIT the user desires. The
basic run command is

SRUN PFIT:PAR1+PFIT:L1+CP+*PRPLOT 4=DP T=t

this provides all aspects of PARFIT except the SMOOTH, DFIT,
IFIT, CONTIN and CREATE commands, and limits the integration
method to the trapezoidal method. The file CP contains the
object code for the procedure G _FUN described in the next
section, and DP is the data file described in the next section.
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If CP 1is the object code for the FORTRAN subroutine (named GF)
version of G FUN, then the MTS run command is

SRUN PFIT:PAR1+PFIT:L1+PFIT:LF+CP+*PRPLOT 4=DP T=t

To run PARFIT with Gear's program and the CREATE command
available, but without the DFIT, 1IFIT, CONTIN and SMOOTH
commands, the MTS run command is

SRUN PFIT:PAR1+PFIT:PAR2+PFIT:L12+CP+*PRPLOT 4=DP T=t

If CP is a compiled FORTRAN subroutine, then as in the previous
command, PFIT:LF must be used. To run PARFIT with everything
but . Gear's program and the CREATE command, the MTS run command
is

SRUN PFIT:PAR1+PFIT:PAR3+PFIT:L13+CP+*PRPLOT+*NUMLIB 4=DP T=t

(with the previous modification if CP comes from a FORTRAN
program). Finally, to run the complete PARFIT, the run command
is

SRUN PFIT:PAR1+PFIT:PAR2+PFIT:PAR3+CP+*PRPLOT+*NUMLIB 4=DP T=t

(with the appropriate change for a FORTRAN CP). It is suggested
that a time limit be put on all runs to avoid the possibility of
unnecessary expense. A good strategy is to start with the
simple version of PARFIT and to use the more powerful facilities
when they become necessary.

2. INFORMATION REQUIRED BY PARFIT

To run PARFIT, the user must supply a procedure which
defines g(t,y,p) as well as the Jacobian functions g, and g, and
which provides initialization information. Since PARFIT is
written in ALGOL W, it is natural that this program should also
be in ALGOL W, but as indicated in the run commands of the

previous section, a FORTRAN subroutine can be used. If a
FORTRAN subroutine 1is used, it should be named GF and all its
real arguments should be double precision. If an ALGOL W

procedure is used, it should be called G_FUN and it should have
the following header: (The particular parameter names are of
course not important and may be changed by the user.)

PROCEDURE G_FUN(LONG REAL VALUE T; LONG REAL ARRAY Y (*);
LONG REAL ARRAY P(*); INTEGER VALUE OPTION;

LONG REAL ARRAY G(*); LONG REAL ARRAY DGY (*,*);

LONG REAL ARRAY DGP(*,*); LONG REAL ARRAY ISEN(*,*));
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where
T is the independent variable time,
Y is the vector of state variables y(t) of length n,
P is the vector of parameters of length m,
OPTION indicates which of various tasks G _FUN is to perform:
1 to return g(t,y,p) and g,(t,y,p)
-1 to return just g(t,y,p)
2 to return g,(t,y,p)
3 to return initial y in Y and initial values for Yp
j=1,...,m in ISEN, J
-3 to return just the initial y in Y.
G returns the n-vector g(t,y,p) when required,
DGY returns the n x n matrix gu(t,y,p) when required,
DGP returns the n x m matrix gf(t,y,p) when required,
ISEN returns the nxm matrix of initial values for the

sensitivity equations.

An example of an ALGOL W procedure G_FUN for the problem
V= —
y'==(1-y )y +p, v,
L= —- - +
Y,=p, ((1-y )y (Ea p,)Y,)
y,(0)=1, y,(0)=0

is given in Fiqgure A.l. (This dynamic model is considered by
van Domselaar and Hemker[71].)

Besides providing the procedure G_FUN, the wuser must
provide a data file containing the information outlined below.
This data is read under free format with blanks acting as
delimiters.

The first data card contains the model name associated with
the particular set of differential equations. It consists of at
most 30 characters with no embedded blanks. And it cannot be
the word CREATE (see the CREATE command) .
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PROCEDURE G_FUN(LONG REAL VALUE T;
LONG REAL ARRAY Y (*);LONG REAL ARRAY P(*);
INTEGER VALUE OPTION;LONG REAL ARRAY G(¥*);
LONG REAL ARRAY G(*);LONG REAL ARRAY DGY (*,*);
LONG REAL ARRAY DGP(*,*);LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT EXAMPLE OF A MODEL DEFINITION PROCEDURE;
CASE ABS OPTION OF
BEGIN
BEGIN
G(l):=—(1.L-Y(2))*Y(1)+P(2)*Y(2);
G(2):=P(1)*((1.L-Y(2))*Y(1)-(P(2)+P(3))*Y(2));
IF OPTION>QO THEN
BEGIN
DGY(1,1):==(1.L-Y(2));
DGY(1,2):=Y(1)+P(2);
DGY(2,1):=P(1)*(1.L-Y(2));
DGY(2,2):==-P(l)*(Y(1)+P(2)+P(3));
END;
END;
BEGIN
DGP(1,1):=0.L;
DGP(1,2):=Y(2);
DGP(1,3):=0.L;
DGP(2,1):=(1.L-Y(2))
DGP (2,2) :==P (1) *Y(2)
DGP(2,3) :==P (1) *Y (2)
END;
BEGIN
Y(1):=1.L;
Y(2):=0.L;
IF OPTION>0 THEN
BEGIN
FOR I:=1 UNTIL 2 DO
FOR J:=1 UNTIL 3 DO
ISEN(I,J):=0.L;
END;
END
END:;
END G_FUN.

*Y (1) =(P(2)+P(3)) *Y(2);

.
’
.
1

Figure A.1l
A typical model definition procedure
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The second data card contains the initial time.

The next data card contains 5 integers separated by blanks.
These integers are

number of state variables
number of components of p
number of components of v
number of observation times
maximum number of sample times

—~ o~
Dl N+
— e e e

The maximum number of sample times must be greater than the
number of observation times by at least one when there are no
observations at the initial time. When there are observations
at the initial time, the maximum number of sample times can be
greater than or equal to the number of observation times.

The next set of data cards contains the observations.
Several observations can be put on each card. The observations
are ordered first by state variable and then by time. For
example if n=5 and state variables 2 and 5 are observed then all
the observations on state variable 2 are entered and following
this set of numbers, all the observations on state variable 5
are entered. It © is suggested, but not mandatory that
observations on a new state variable start on a new card. '

The next set of data cards contains the observation times.
These entries need not start on a new card, but for clarity it
is suggested that they do.

The next set of data is a set of integers indicating which
state variables have been observed.

Next, an initial guess at the optimal parameter values
should be entered in the data file.

Finally, a set of weights corresponding to the observations
may be entered by the user. This is optional and if no weights
are entered, PARFIT by default sets all weights to one. If
weights are to be entered, there should be an entry for each
observation, these entries should be in the same order as the
corresponding observations, and they must start on a new card.

The use of free format should make the data entry fairly
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simple. For example real numbers are entered as -.1, -3.2,
.005, 2, 5 etc. and integers are entered as l, -5, 2 etc.
Numbers in exponential notation follow FORTRAN conventions.

3. FILES USED BY PARFIT

PARFIT wuses a number of MTS temporary files when it is
running. Normally the user need not be concerned with these
files. However, if PARFIT terminates with an error, the
information in these files may be of value to the user. The
temporary files used are:

-SCl1 This file takes output from the integeration and
optimization procedures. It 1is always emptied before it is
reused.

-SC2 When required, this file accumulates the information in
-SCl for later output..

-GRAPH This file takes the output from the prlotting procedures.

-GRAPHSTORE This file accumulates graphical data for later hard
copy output.

-REPRT This file takes output from the report command. It also
takes certain messages such as those indicating when  a permanent
copy of a graph has been requested.

-AECHO This file contains an echo of the sessions with the
interactive option of the fit command.

-ECHO This file contains echo information as requested through
the ECHO command. It never contains any of the information that
is sent to -AECHO.
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4. THE BATCH MODE OF PARFIT

PARFIT is designed as an interactive program. However,
there are cases when, for reasons of economy say, a user would
be advised to run sections of PARFIT in batch mode. For
example, this might be the case in the final stages of parameter
estimation when good approximations to the optimal parameter
values are available and where these values are being further
refined through the automatic option of the FIT command. The
MTS RUN commands for a batch run are the same as for an
interactive run. The PARFIT commands should follow directly
after the RUN command. Alternatively, the wuser may specify
SCARDS=filename in the RUN command, in which case the PARFIT
commands are read form the file attached to SCARDS. When in
batch mode, PARFIT prints the command designators on *SINK*.
When in batch mode, -SCl and -SC2 are not used. All output that
goes to -SCl in an interactive run goes directly to *SINK* when
PARFIT is runnumg in BATCH mode.

5. COMMANDS IN PARFIT

The following are the commands currently available in
PARFIT.

(1) ECHO (2) OPTION (3) FREEZE (4) SCALE
(5) SAMPLE (6) WEIGHT (7) PLOT (8) REPORT
(9) SET (10) INTEG (11) PROBE (12) FIT
(13) STATS (14) QUIT (15) susp (16) CREATE
(17) SMOOTH (18) CREOBS (19) LINEAR (20) DFIT
(21) IFIT (22) CONTIN

With each of the above commands, we describe what action the
command initaites and what interaction with PARFIT the user can
expect after issuing the command.

(1) ECHO

The ECHO command allows the user to control the
accumulation of a hard copy echo of an interactive session.
When this command is issued, PARFIT requests an entry of 0 or 1.
An entry of 0 turns off the echo and an entry of 1 turns the
echo on. This command does not affect the echo associated with
option 2 of the FIT command. At the start of an interactive
session PARFIT turns the echo off.
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(2) OPTION

This command allows the wuser to set «certain control
parameters in PARFIT that govern the way various procedures
function. These control parameters are automatically given
default values by PARFIT at the start of a run. After issuing
the OPTION command, PARFIT returns with the following message
indicating what control parameters the user can change

DESIGNATE CONTROL PARAMETER AND NEW VALUE (0 TO END)

OUT PU T == == mm e e o e e 1
INT. OUTPUT IN OPT. 0-YES,1-NO-==—=-—cmmmmmmmeoe 2
JACOBIAN 0-FULL 1-LEAST SQUARES——=————————mm 3
GEAR'S METHOD 0-ADAMS,]l1-STIFPF-—-———— e 4
EPS FOR INTEGRATION== === = oo e 5
HMIN FOR INTEGRATION====m= = o mmm e 6
HMAX FOR INTEGRATION-— === m o 7
INTEGRATION PROCEDURE, 1-GEAR, 2-TRAPEZOIDAL----- 8

The convention of using a 0 to end a sequence of input data
of indeterminate length is used in several places in PARFIT.

Control parameter 1 governs the dumping of information
during an integration. This option 1is wuseful during the
debugging stages with a new model when the integration program
encounters difficulties. This may happen for example if G _FUN
is returning undefined values to the integration procedures.
The default value of this control parameter is 0 in which case
no output occurs. If this control parameter is set to the
integer n, then after every n integration steps, the time and
state variables are printed on -SC1l.

Control parameter 2 indicates whether or not any output
reguested by a nonzero control parameter 1 is required when the
integration procedure has been <called by an optimization
procedure. This control parameter is 0 if output is desired
during an optimization and 1 otherwise. 1Its default value is 1.
Control parameter 2 acts as a safety on control parameter 1 in
that the user must specifically request integration output in an
optimization run thus guarding against the chance of getting a
large guantity of output by accident.

Control parameter 3 selects the information to be printed
when output of the Jacobian matrix 1is requested. 1If this
control parameter is 0 then the full Jacobian on all the state
variables and at all the sample times is printed. If this
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control parameter is 1 then only the entries of the full
Jacobian that relate to observations on the state variables are
printed. (That is the Jacobian J is printed.) The default
value of control parameter 3 is 0. The full Jacobian is of
value to the model builder because it can tell him (perhaps
after further analysis) if and where he should take further
observations to better determine his parameters. This is the
case because the full Jacobian matrix is determined by solving
the sensitivity equations and 1is thus independent of the
observations. '

Control parameter 4 indicates what option in Gear's
integration procedure is to be employed. If this control
parameter is 0 then integration of the initial value problem is
done by Gear's implementation of an Adams' predictor corrector
method[27]. If this control parameter is 1 then the integration
is done by Gear's implementation of a multi-step method suitable
for stiff problems[27]. The Adams' predictor-corrector method
can be faster when stability is not a problem. The default
value of control parameter 4 is 1.

Control parameter 5 contains the error criterion EPS to be
used in gear's integration procedure. Its default value is .01.
As this value is decreased, the user can expect his integrations
to become more expensive. Among other things, the observation
error should be considered when picking this control parameter.
We comment that .01 is a very weak error criterion.

Control parameter 6 contains the minimum step size that
integration procedures with stepsize control are allowed to use.
Its default value is .00001.

Control parameter 7 contains the maximum step size that
integration procedures with stepsize control are allowed to use.
Its default value is 5.

Control parameter 8 indicates what integration procedure is
to be employed. 1If it is 1, Gear's program is used. If it is
2, a trapezoidal method without error control is employed. The
default value of control parameter 8 is 2.
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(3) FREEZE

The FREEZE command allows the wuser to freeze selected
parameters. These parameters then remain fixed until freezing
is removed. There must be at least two active parameters for
the optimization procedures to function properly. The freezing
in the interactive option of the FIT command is at a higher
level than the freezing indicated by the FREEZE command. When
this command is issued, PARFIT asks the user to enter a list of
subscripts of parameters to be frozen (0 to end). An entry of O
removes all freezing.

(4) SCALE

The SCALE command allows the user to transform selected
parameters. Currently logarithmic scaling and square root
scaling are available. With logarithmic scaling for P, » P; is
transformed according to f%=1n(pj), and with square root
scaling, p; is transformed™ according to P; =¥P, - Thus with
logarithmic scaling, p; is repalced by exp(p; ) in the model and
with square root scaling p; is repalced by ﬁf. When this
command is issued, PARFIT asks the user to enter pairs of
integers indicating subscripts of parameters to be scaled and
the scaling to be used. The integer 1 indicates 1logarithmic
scaling and 2 indictes square root scaling. A 0 subscript

terminates the entry of scaling instructions. An entry of 0
alone removes all scaling. When a parameter is scaled, or
descaled, 1its current numerical value is automatically

transformed.

(5) SAMPLE

This command allows the user to alter the set of sample
times. As mentioned in the introduction, these are the times at
which information is extracted from the continuous problem. The
default sample times are the initial time and the observation
times. When the user issues the SAMPLE command, a choice of
three - options is presented. The first option restores the
sample times to their default values. The second option allows
the wuser to specify a uniform mesh of sample times starting at
the initial time by entering the number of sample times (not
counting the initial time) and the sample time spacing. Of
course an error results if more sample times than are allowed
(as indicated in the data file) are requested. With this
option, no connection to the observation times is maintained,
and thus care must be used when this option is in effect. For
example, the FIT command cannot be used when this option is in
effect. The third option is for the interactive insertion of
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sample times between existing sample times. The user is first
asked if a listing of the existing sample times is desired. If
it is desired, the user enters the subscript range (in the
existing vector of sample times) where the listing is desired.
To insert sample times between existing sample times, the user
lists in sequence the upper index (in the vector of sample
times) of the interval where the new times are to be inserted,
and the number of points to insert. The points are inserted
uniformly in the interval. The user can regquest insertion of
times in several intervals. A 0 for an interval's upper index
ends the input. This interactive insertion option can be of
value when the sample times straddle a time interval where the
differential equation solution warrants further investigation
(for example, it might be taking a sudden jump.)

(6) WEIGHT

The WEIGHT command allows the user to interactively enter
the weights for the observations. There are two options.
First, the weights can all be set to their default value of one.
Second, weights can be specified on selected observations on
selected state variables which have been observed. Under the
second option, the user is given the chance to take a permanent
copy of the weights in the scratch file -WEIGHT.

(7) PLOT
The PLOT command allows the user to select various items to
plot. When the command is issued, the following instructions

appear

SEQUENCE OF ITEMS TO PLOT (END WITH 0)

STATE VARIABLES————====—==—c—o———— 1
OBSERVATIONS=——=== == m oo 2
SMOOTHED OBSERVATIONS=—==-—===——o——- 3
GUESSED OBSERVATIONS—===—=—-—m———x 4
PHASE PLOT-—-~=—==—— = __ 5

Of course before item 1 can be selected, an integration must

have been performed, and before item 3 can be selected, the
SMOOTH command must have been used, and before item 4 can be
selected, the CREOBS command must have been used. Item 5

applies only to 2 state variable problems. Before it can be
used an integration must have been performed. After the desired
items are selected, the wuser 1is given further choice. For
example if items 1 and 2 are selected, the user is asked which
state variables and which observations (i.e. on which state
variables) he wants plotted. This flexibility allows the user
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to isolate various aspects of the problem.

After the user has described the desired plot, a
mini-print-plot appears at his terminal. The abscissae for the
plotted points are the sample times.

After the plot 1is completed, the wuser is asked if a
permanent record is required. If the answer is y for vyes, a
large scale version of the print plot is accumulated in the file
-GRAPHSTORE for later output. A plot number (starting at 1) is
associated with each graph accumulated and when a plot is
accumulated, a message indication the current parameter values
and the current plot number is written on the file -REPRT. The
interface to the plotting programs is confined to one procedure
in PARFIT and thus it is easy to modify the plotting facilities
of PARFIT and the plotting hardware employed can easily be
altered.

(8) REPORT

This command controls a set of output procedures with which
PARFIT can display various information to the user. When this
command is issued, PARFIT returns with the following message
indicating what items the user can have printed.

ENTER LIST OF ITEMS TO PRINT
(END WITH 0)

GENERAL DATA -————=- 1
OBS———=—==———— 2
PAR--———=———————— 3
CREATION-—=-—=-—==~——~ 4
PTS AND STATE VARS--5
SMOOTHING DATA-———--- 6
JACOBIAN-==~==m=——m—— 7
INTEG./OPT. DETAILS-8
STATISTICAL DATA----9
OPTION SETTINGS----10
WEIGHTS-—=~——=—=——- 11
GUESSED OBS~=-————-—- 12

new items can easily be added to this list. The requested
information is displayed at the terminal and also put in the
file -REPRT so that a permanent record can be taken at the end

APPENDIX A



192

of a run with PARFIT.

When item 1 is selected, PARFIT displays the following
basic information on the particular problem under consideration

(a) the number of parameters

(b) the number of state variables

(¢c) the number of state variables observed
(d) a list of state variables observed

(e) the number of observation times

Selection of item 2 causes a 1list of observations along
with observation times to be printed.

Selection of item 3 causes the starting parameter values to
be printed (that is the values read from the data file) along
with the current parameter values and the freezing and scaling
status of each parameter.

Report item 4 prints information for the special situation
when test observations have been created by a simulation run.
The parameter values for the simulation run are printed along
with the standard deviation of the random error introduced into
the generated observations.

Report item 5 prints the parameter values used in the last
integration of the initial value problem along with the sample
times and integration results at these sample times.

Report item 6 prints smoothing information generated by the
SMOOTH command. First the type of smoothing used--either least
squares cubic spline or least squares cubic Hermite is
indicated. Next the Jjoints used for the piecewise polynomial
smoothing function are displayed and finally the smoothed
observations and the smoothed derivatives at the sample times
are listed.

Report item 7 prints the parameter values used in the last
integration along with the jacobian matrix. Whether or not a
full Jacobian matrix is printed depends on control parameter 3
which can be altered in the option conmmand.
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Report item 8 prints optimization and or integration data.
When an automatic optimization run is made, detailed information
on the run (eg. sums of sqguares of residuals, parameter values
etc.) 1is written on the scratch file -SCl. Depending on the
settings of control parameters 1 and 2 (see the option command),
integration information may be written on -SCl. When the user
selects item 8 and when PARFIT is running interactively, the
contents of -SCl are displayed at the terminal. Since a lot of
relatively wuseless output may be present in -SCl, the user is
asked if the contents of -SCl are to be accumulated for later
output. If a later hard copy is desired, the contents of -SCl
are accumulated in -SC2. The file -SCl is emptied before it is
next reguired to accept output from PARFIT. An output reference
number is attached to each use of -SCl. When an accumulation is
made to -5C2, a message to this effect along with the current
output reference number is written on ~REPRT and the output
reference number is incremented by 1. This allows a coordinated
interpretation of the output from PARFIT.

Report item 9 prints statistical data resulting from the
STATS command. The F distribution value used in determining
confidence intervals on the parameters is displayed along with
its corresponding percentile value and number of degrees of
freedom in the numerator and number of degrees of freedom in the
denominator. The sum of the squares of the residuals is printed
and the parameter values along with their confidence intervals
are printed. Finally, the correlation and covariance matrices
are printed.

Report item 10 prints the current control parameter
settings along with the default values for the control
parameters.

Report item 11 prints the weights given to the
observations.

Report item 12 prints the guessed observations and
corresponding derivatives generated by the CREOBS command.

(9) SET

This command allows the user to redefine an element of the
parameter vactor p by entering the integer subscript of the
element and the new value of the element. This can be repeated
for as many elements as desired. Entry of a 0 for a subscript
terminates the command. For example to set the first and fourth
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parameters to 3. and 6.2 respectively, the user would enter
1 3. 46.20

(The above set of numbers need not all be on one line.)
Parameter subscripts refer to the full parameter vector and no
allowance for frozen parameters is required. Scaling is ignored
by the SET command.

(10) INTEG

This command requests that the initial value problem be
numerically integrated using the current parameter values. The
integration technigque used is determined by control parameter's
4 and 8 which can be reset by the OPTION command. The
integration results at the sample times are stored in an array
for later use. For example these values may be plotted at some
later time in an interactive session. When this command is
issued, the user is asked if the Jacobian is desired, and if it
is the sensitivity egquations are integrated along with the given
model equations and the full Jacobian is stored for later
analysis. (for example by the PROBE command). Tf the
integration procedure runs into difficulty, an error message is
printed and the user is returned to the command section of
PARFIT. A typical difficulty with the integration procedure is
that it cannot meet the error criterion with the current minimum
step size. '

(11) PROBE

This command allows the user to investigate, among other
things, the condition at the current point p in parameter space
of the Jacobian matrix associated with the 1least squares
problem. The wuser is asked if an integration is required to
determine the Jacobian at the current parameter values. (it may
not be if for example INTEG with a Jacobian option has just been
executed.) A singular value decomposition is done on the
Jacobian for the least squares problem. The user is given the
option of taking a permanent record of the PROBE results in the
file -REPRT. Furthermore, if control parameter 1 is set to
request output in an integration, the user is given the chance
to view the output and accumulate it in -SC2. Since the
singular value decomposition is available when the PROBE command
has been executed, the potential exists for adding a procedure
here to further analyse the problem at the current point in
parameter space.
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(12) FIT

The FIT command puts the user in control of optimization
procedures which apply directly to the 1least squares
minimization problem mentioned in the introduction (as opposed
to the DFIT command for example). Currently the user has two
main choices with the FIT command. The first option uses the
Levenberg-Marquardt algorithm. From a starting gquess, this
algorithm attempts to determine the optimum parameters
automatically without wuser intervention. For effective use of
this procedure, the initial guess at the optimal parameter
vector should be fairly good. The user is asked to supply a
starting value for the parameter A used in the
Levenberg-Marquardt algorithm as well as error tolerances for
termination of the automatic optimization run. A negative value
for X tells PARFIT to pick its own starting value for A. At
times X\ must be adjusted upward interactively to avoid points in
parameter space where the differential equation cannot be
integrated. The termination «criterion take the form of a
realtive (e,) and an absolute (e 2) error tolerence. Termination
of the optlmlzatlon run occurs when either

Fy -Fgn <€, Fryte, or

F‘+'<e

where F, is the sum of the squares of the residuals on the g'th
iteration. Of course computation costs increase as e, and ey
are decreased and for fine tolerences a batch run of PARFIT is
probably advisable. Choice of e, and e, should of course depend
on the accuracy of the observations and on the error criterion
chosen for the numerical integration technique.

Our implementation of the Levenberg-Marquardt algorithm has
a prov151on for automatic scaling so that the diagonal elements
of J7J are all 1. To request scaling, e, amd e, should both be
negative. PARFIT uses their absolute values for the termination
criteria when scaling is requested. The wuse of scaling can
dramatically speed up convergence.

The second option wunder the FIT command provides an
interactive optimization approach where the user has extensive
control over PARFIT through a set of: optimization commands.
Among other things, the user can reset parameters, freeze
selected parameters, and plot graphs. Since it is anticipated
that these commands will be wused very frequently, the
descriptive messages from PARFIT are kept to a minimum and the
command designators are very short. A description of the
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currently implemented optimization commands follows.

(a) T

This is the technique command where the user can
choose either the Levenberg-Marquardt or the steepest
descent optimization method. To request the steepest
descent technique the user should enter

T SD

and then hit the return. One or more blanks must separate
the T and the SD. To request the Levenberg-Marquardt
technique, the user should enter

T MARQ

The default is the Levenberg-Marquardt technique.

(b) M

By entering
Mr

where r is a real number, the current value of A for the
Levenberg-Marquardt technique or step 1length for the
steepest descent technique is multiplied by r and this
product replaces the current X or step length. A new
iteration of the current optimization technigue is then
attempted. PARFIT then reports on the success of this
attempt and the user is asked to enter a new optimization
command. The default value of X is .0l. There is no
default value for the step length for the steepest descent
method. The user should pick a starting value for the step
length after observing the gradient.

(c) N

By entering
Nr

where r 1is a real number, the current value of X\ or step
length (depending on the technique) is replaced by r.
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(@) v

This is the view command. It does not take any
arguments. It requests a display of the current
parameters, and current gradient components. Frozen

parameters are indicated--see command (e). The current
technigue is also displayed along with basic information
associated with this technique. Finally, the current sum
of squares is displayed.

(e) F

This is the freeze command. This command acts at a
higher level than the main FREEZE command. It allows the
user to selectively freeze various parameters at their
current values and to continue the optimization on a
subspace of parameter space. A 0 is used to terminate the
list of parameters to be frozen. For example, to freeze
the first and third parameters, the user would enter

F130

Currently, no special programming is implemented to take
advantage of the fewer sensitivity equations present when
we are working on a subspace. '

(f) DF

This is the defreeze command. It removes all or some
of the parameters from the list of frozen parameters. This
command does not influence freezing set by the FREEZE
command. To remove all parameters from the list of frozen
parameters enter

DF O

To remove freezing on say the third and fourth parameters
enter :

DF 3 4 0

(g) SET

This is the SET command and it is identical, except
for the printing of guiding instructions, to the main SET
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command.

(h) PLOT

This command is identical to the main PLOT command.
The state variables plotted are those from the last
integration. Thus if a plot is requested after an
unsuccessful Marquardt iteration attempt, the state
variables plotted are those at the 1last set of trial
parameters.

(1) Q

This 1is the quit command for the interactive
optimization subsection. It returns control to the main
command section of PARFIT.

A detailed record of all commands and all command results
(including mini-print-plots) that occur in an interactive
optimization session is kept in the file -AECHO. The user has
the option of taking a hard copy of this file at the end of a
run with PARFIT.

(13) STATS

This command requests PARFIT to produce certain statistical
information on the parameters after they have been optimized by
the FIT command. An assumption of linearity in the parameters
near the optimum is made. The user is requested to enter the
percentile for the confidence intervals. The program then finds
the regired value of the F distribution with the appropriate
degrees of freedom. The confidence intervals on the parameters
and the correlation and covariance matrices are calculated when
the STATS command is issued.

(14) QUIT

This command terminates a run with PARFIT. Before
execution is terminated, the user is given the chance to take a
permanent copy of some or all of the information accumulated
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during the interactive session. In batch mode a permanent copy
of the accumulated plots is automatically taken.

(15) Susp

This command suspends execution of PARFIT and returns the
user to MTS. The MTS command SRESTART causes the execution of
PARFIT to be resumed. One wuse of this might be to examine
various scratch files PARFIT has created.

(16) CREATE

This command allows the user to make a simulation run with
his model and to generate a data file from this simulation run.
A primary purpose of this facility is in the debugging of new
procedures in PARFIT. The wuser is asked for the parameter
values for the simulation run, the observation times, the state
variables observed, and the error tolerence, maximum step size,
and minimum step size for Gear's integration program. (If the
integration run does not succeed, its constraints can be reset
and a new run can be made.) The user is further asked for the
standard deviation of the random error in the generated
observations and the vector of starting values for the
parameters. Finally the user can have the generated data put in
the file -DATA. When the create command is to be used, the data
file should have a model name of CREATE in it and of course only
the first three data cards described in section 2 are required
when the CREATE command is to be used.

(17) SMOOTH

The SMOOTH command allows the user to fit a least squares
piecewise polynomial to the observations on each state variable
observed. This 1is normally used in preparation for the DFIT
IFIT and CONTIN commands. The user has the choice of using
either a piecewise cubic spline or a piecewise cubic Hermite
polynomial--the latter should be used if the observations take
any sudden violent jumps. In either case, PARFIT sequentially
goes through the state variables on which observations have been
taken. On each state variable, the user is asked to enter the
number of joints and joint positions for the indicated set of
observations. A maximum of 15 Jjoints for each piecewise
polynomial is allowed.

It should be very easy to make this curve fitting aspect of
PARFIT more interactive, however for the present, the user must
issue SMOOTH snd PLOT commands alternatively when doing
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interactive curve fitting.

(18) CREORS

This command allows the user to guess observations on the
unobserved state variable in the two state variable case. This
is in preparation for options 2 and 3 of the DFIT command and
options 2, 3, and 4 of the IFIT command. The user is asked to
enter the number of abscissae and the abscissae for an
interpolating cubic spline to approximate the guessed

observations. The first and last sample times must begin and
end the list of abscissae. Next the user is asked to enter the
corresponding ordinates. At each end, the interpolating cubic

spline matches the slope of the line joining the two points of
interpolation closest to the given end.

(19) LINEAR

The LINEAR command allows the user to specify that the DFIT
and IFIT least squares problems are linear and thus starting
parameters are not required since no iterations are required to
obtain the optimal parameters. Currently this facility is
implemented in options 2 and 3 of the DFIT command and in
options 2 3 and 4 of the IFIT command.

(20) DFIT

This command has three options. The first option uses the
results of the SMOOTH command to estimate optimal parameters by
a rather coarse, but at times inexpensive technique.
Furthermore, this procedure can be useful when our initial
parameter values correspond to an unstable initial value
problem. There are however some restrictions on the class of
problems the DFIT command can handle. It cannot handle problems
where some parameters occur only in the initial conditions, and
for this version of the DFIT command, all parameters must occur
in the subset of the differential equations defining the initial
value problem that correspond to state variables on which
observations have been taken. This program works by applyving an
automatic Levenberg-Marquardt procedure to the nonlinear curve
fitting problem

s'=g(t,s,p)
where s, (t), the i'th component of the vector s(t), is a
piecewise polynomial approximation to the observations on Voo
The nonlinear curve fitting is done in a least squares sense at
the sample times. No weighting is employed at present. If not
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all the state variables are observed, then at each iteration of
the Levenberg-Marquardt procedure, a subset of the set of
equations in our initial value problem is integrated (using
s(t), the current parameter vector and the integration technique
indicated by control parameter's 2 and 8). Thus this techniqgue
can become expensive too. Also instabilities at the starting
parameter values may arize in the subsystem initial value
problem. Furthermore, especially if the observations are far
apart and have large errors, the parameters determined by this.
technique are not very reliable. However, they can serve as
starting values for the FIT command. As in the automatic option
of FIT command, the user is asked to enter a starting X along
with a relative and an absloute error tolerence for the
Levenberg-Marquardt procedure.

The second option under the DFIT command currently applies
only to the important special case when only two state variables
are present and observations are available on only one of them.
This option assumes the behavior of the unobserved state
variable has been approximated using the CREOBS command. The
observations on the other state variable must be smoothed with
the SMOOTH command prior to using this option. This option of
the DFIT command then fits derivatives using the smoothed and
guessed observations. Only the nonfrozen parameters enter into
the optimization. If a parameter occurs only in an initial
condition, it must be frozen prior to the use of this command.
If the least squares problem is linear, (as indicated by the
LINEAR command), then a linear least squares technique using the
singular value decomposition is employed. If the problem is
nonlinear, then the Levenberg-Marquardt algorithm is employed
and a starting lambda and relative and absolute error tolerances
must be supplied.

The third option under the DFIT command provides a means of
iteratively improving the guessed observations with the aid of a
sparse Gauss-Newton procedure. This option currently applies
only to the two state variable case. Starting with guessed
observations on the unobserved state variable, PARFIT attempts
to find an optimal parameter vector p and corresponding guessed
observations c=(c,,...,c”)T, where C, is the guessed observation
at time t,, to minimize

S (g (t ,(s%,e )T p)-st ' + 2 (d, (0))

= g, 2 1C,) 4P = (9 c
where for notational convenience we have assumed Y, 1is
unobserved, where s”=s(t, ) (a superscript is used to avoid

confusion with our notation when s(t) is a vector), and where
dy(c) represents a discretization of the state equation
corresponding to the unobserved state variable. Currently
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PARFIT uses the trapezoidal discretization for ql(c). That is

d,(e)=25(g,(t, ,(s*,c, )T p)+g, (t,, (s%c,)T,p))

- Sﬁ:gki_
En_tzq

PARFIT employs a nonlinear block Gauss-Seidel technique to find
the optimal p and c. That is PARFIT starts by fixing c and
finding the optimal parameter vector to minimize the above sum
of squares. Then with p fixed at this optimum, an optimal c is
determined to munimize the above sum of squares. This 1latter
optimization is accomplished through a Gauss-Newton procedure
which takes advantage of the particular sparsity structure of
the problem. The user is requested to enter a tolerance e to
define the stopping criterion for the iterative determination of
C. The iteration terminates when two successive iterates c ¢’
and c'¥*  satisify

+1) @ #)
lcj(f -C, ]<e(lcg [+.001)
for 1=0,...,N. There is an option to fix the initial conditions
of the guessed observations. PARFIT has facilities for handling
the case when the estimation of p for a fixed ¢ is a linear
problem. When this problem is not linear, the user is requested
to enter a starting 1lambda and relative and absolute error
tolerances for the determination of the optimal p by the
Levenberg-Marquardt technigue. After an optimal ¢ is found, the
user is given the chance to further refine this vector by
decreasing the tolerance e. Finally, after an iteration (the
determination of a new p and a new c) the user is given the
option of doing another iteration or terminating the iterative
process. If the process is terminated, it may be restarted by
issuing the same DFIT command that initiated the iterative
process.

(21) IFIT

This command is similar to the DFIT command except here’
integrals are used instead of derivatives. Currently there are
four options available under this command. The first option
requires observations on all state variables and it determines
parameters which minimize

—
£ (p)f(p)

where
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*e
@+ § g (t,s(0) ,prat-s; (t)
%o
where 1=1,...,k; i=1,...,n; Yo, is the i'th component of the
initial condition vector and g, is the i'th component of
g(t,s,p), and s(t) is the smoothing function determined by the
SMOOTH command. Currently there is no provision for the linear
case and the Levenberg-Marquardt method is used to obtain the
optimal parameters.

L nti Yo

The second option under the IFIT command corresponds to the
second option of the DFIT command. This option fits integrals
to the smoothed observations and to the guessed observations.
There are special facilities for handling the linear case.
Currently this option of the IFIT command applies only to the
two state variable case.

The third option wunder the IFIT command attempts ‘to
iteratively improve the guessed observations by an
experimentally effective, but, occasionally, unstable technique.
The iteration proceeds by first applying the method used in
option two of the IFIT command to estimate the parameters, and
then, holding the observed state variable equal to s(t), a new
set of guessed observations is generated by integrating the
state equation <corresponding to the unobserved state variable.
Currently this option applies only to the two state variable
case. As with the third option of the DFIT command, after an
iteration is complete, the user is given the chance to terminate
the iterative process.

The fourth option under the IFIT command is very similar to
the third option under the DFIT command. The only difference is
that the parameter vector 1is updated using the procedure
employed in the second option of the IFIT command. Provisions
are available for linear parameter estimation problems.

(22) CONTIN

The CONTIN command provides the user with a technigque

employing continuation methods and break points which is
designed to bridge the gap between the coarse integral fitting
method and the full least squares problem. A direct

continuation method is available where the user can fit the
solution of

u':g(t, ( (l—b’)S(t)+75U:P)
u(ty) =y, (p)
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to s(t) in the least sqguares sense at the observation times
where 0<¥<1 and where =s(t) represents a smoothing of the
observations. The wuser can experiment with various values for
the continuation parameter ¥ . When ¥=0, we have the first
option of the IFIT command, and when ¥=1, we have the full least
squares problem (on the smoothed observations). Observations
must be available on all state variables to use this strategy in
the CONTIN command. Another facility available wunder this
command involves the use of break points. The user can specify
break points at times

T}<T2<...<Tg

corresponding to observation times

t ot e 't
The user can also specify a continuation parameter vector &£ for
the break points. As we integrate the initial value problem
through the break point at time T., u is reset according to

u(g )=Au'(T;)+(I—A)s(T;)

where A=diag(«,,...,%,), and u“(@-) is the result obtained by
integrating up to time T, . The user also has the chance to
weight the break points with weights W, 7eee Wgn Finally, when
break points alone are employed (¥=1), obserVations need not be
available on all state variables. The components of «
corresponding to unobserved state variables should be set equal
to 1. This command has no implementation restrictions on the
number of state variables.
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APPENDIX B
SELECTED PROGRAM LISTINGS
In this appendix we give selected listings from the code that
defines PARFIT. PARFIT is <coded in ALGOL W, and thus the
listings given below should be fairly easy to read. In the
interests of brevity and clarity, we have replaced all
input/output statements with descriptive pseudo-statements
indicated by $INPUT and %OUTPUT. In these statements, actual
variables in the ALGOL W code are enclosed in brackets. PARFIT
performs a major portion of its input and output using FORTRAN
subroutines. This was done mainly to take advantage of the good
"user proof" set of FORTRAN callable free format input
procedures available at the University of British Columbia.
External procedures are indicated by %EXTERNAL in the following
listings. The last few pages of listings are devoted to the
declaration statements for the external procedures not
previously listed. Brief descriptions of the functions of these
procedures are also included. Occasionally, PARFIT performs
operations on MTS (Michigan Terminal System) files. These

operations are indicated with %FILE in the following listings.
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TEID T TTIY LY TLIL BLY BYBY LBYY 2TTY 3B %%%%
Main driving program for PARFIT
BT3T FIIT T TR BLYT TBBL BIBL BILY BYY 233 %99

BEGIN
COMMENT MAIN DRIVING PROGRAM FOR PARFIT
START BY SETTING UP SIZE INFORMATION;
INTEGER N_STATE,N_PAR,N_STATE_OBS,N_OBS,MAX PTS;
STRING (31) MODEL;
STRING (1) ANS;
LOGICAL BATCH;
LONG REAL INITIAL TIME;
COMMENT %EXTERNAL CMD_AL, CHECK_ BATCH;
COMMENT $%EXTERNAL GEAR, TRAP, SVD AL,
MARQUARDT, PARFIT;
COMMENT EXECUTION BEGINS HERE
#########################################
iSdddddAidAAA AR AR AR 2R
COMMENT ASSIGN UNIT NUMBERS FOR OUTPUT;
COMMENT EMPTY TEMPORARY FILES;
COMMENT DETERMINE IF IN BATCH MODE;
CHECK_BATCH (BATCH) ;
COMMENT IF IN BATCH OPTIMIZATION/INTEGRATION
INFORMATION IS WRITTEN OUT DIRECTLY
BY ASSIGNING SAME UNIT NUMBER FOR -SCl AND OUTPUT TO USER;
COMMENT $INPUT FROM DATA FILE
(MODEL) , (INITIAL_TIME), (N_STATE), (N_PAR), (N_STATE_OBS),
(N_OBS), (MAX_PTS);
PARFIT(N_STATE,N_PAR,N_STATE OBS,N OBS,MAX PTS,MODEL,
INITIAL TIME,BATCH,CHECK_BATCH,GEAR,TRAP,SVD AL,
MARQUARDT,CMD_AL) ;
IF BATCH=TRUE THEN
COMMENT %FILE TAKE COPY OF -GRAPHSTORE;
ELSE
BEGIN
COMMENT $%OUTPUT TO USER
IS A LISTING OF FULL ECHO DESIRED? Y OR N;
COMMENT $INPUT (ANS);
IF ANS="Y" THEN
COMMENT $FILE TAKE COPY OF -ECHO;
COMMENT %OUTPUT TO USER
IS A COPY OF FULL PLOTS AND REPORTS DESIRED? Y OR N;
COMMENT $INPUT (ANS);
IF ANS="Y" THEN
COMMENT 3FILE TAKE COPY OF -REPRT, -GRAPHSTORE;
COMMENT %$OUTPUT TO USER
IS A COPY OF INTEG./OPT. AND INTERACTIVE FIT
DESIRED Y OR N;
COMMENT $INPUT (ANS);

206

APPENDIX B



IF ANS="Y" THEN
COMMENT %FILE TAKE COPY OF -SC2, -AECHO;
END;

END.

FTTT TITY TITYL TIYVY TTLY BBIL BBLY %Y 3% 2999
Major procedure defining PARFIT
3XIY BTYY TILY BLY BB 2%TT TTIT TT3B %3%L 23%%

PROCEDURE PARFIT(INTEGER VALUE N_STATE,FN_PAR,
N_STATE_OBS,N_OBS,MAX PTS;
STRING(31) VALUE MODEL;
LONG REAL VALUE INITIAL TIME;
LOGICAL VALUE BATCH;:
PROCEDURE
CHECK_BATCH, GEAR, TRAP, SVD_AL, MARQUARDT, CMD_AL);
BEGIN
COMMENT MAJOR PROCEDURE IN PARFIT
PROCEDURE EG_FUN (LONG REAL VALUE T;
LONG REAL ARRAY Y (*);
LONG REAL ARRAY P (*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G(*);
LONG REAL ARRAY DGY (*,*)
LONG REAL ARRAY DGP (*,*)
LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT INTERFACE TO USER DEFINED G_FUN TO ALLOW
USE OF ENVIRONMENT FOR
SCALING AND FREEZING OF PARAMETERS;
COMMENT SEXTERNAL G_FUN;
INTEGER KK:
LONG REAL ARRAY PS(l::FN_PAR);
LONG REAL ARRAY TDGP,TISEN(l::N_STATE,l::FN_PAR);
IF PFRZ=TRUE THEN
BEGIN
COMMENT COPY NONFROZEN PARAMETERS AND
FROZEN PARAMETERS TO PS;
KK:=0;
FOR I:=1 UNTIL FN PAR DO

IF FRZ(I)=0 THEN

)

BEGIN

KK:=KK+1;

PS(I) :=P (KK);

END "
ELSE

PS(I) :=FPAR(I);
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END
ELSE
FOR I:=1 UNTIL FN_PAR DO PS(I):=P(I);
IF PSCL=TRUE THEN
COMMENT SCALING PRESENT;
FOR I:=1 UNTIL FN PAR DO
IF SCL(I)=1 THEN
PS(I) :=LONGEXP (PS (1))
ELSE
IF SCL(I)=2 THEN
PS(I) :=PS(I)**2;
G_FUN(T,Y,PS,OPTION,G,DGY,TDGP,TISEN) ;
CASE ABS OPTION OF
BEGIN
BEGIN
END;
BEGIN
IF PSCL=TRUE OR PFRZ=TRUE THEN
BEGIN
COMMENT HANDLE FREEZING AND SCALING;
KK:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1: .
IF SCL(I)=1 THEN
BEGIN
FOR J:=1 UNTIL N_STATE DO
DGP (J,KK) :=TDGP (J,I)*PS(I1);
END
ELSE
IF SCL(I)=2 THEN
BEGIN
FOR J:=1 UNTIL N_STATE DO
DGP (J ,KK) :=TDGP (J,TI) *2.L*P (KK)
END
ELSE
FOR J:=1 UNTIL N_STATE DO
DGP (J,KK) :=TDGP (J,I);
END;
END
ELSE
FOR I:=1 UNTIL N_STATE DO
FOR J:=1 UNTIL FN_PAR DO
DGP(I,J) :=TDGP(I1,J):;
END;
BEGIN
IF OPTION>0 THEN
IF PSCL=TRUE OR PFRZ=TRUE THEN
BEGIN
COMMENT HANDLE FREEZING AND SCALING:
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KK:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
IF SCL(I)=1 THEN
BEGIN
FOR J:=1 UNTIL N _STATE DO
ISEN(J,KK) :=TISEN(J,I)*PS(I):
END
ELSE
IF SCL(I)=2 THEN
BEGIN
FOR J:=1 UNTIL N_STATE DO
ISEN(J,KK) :=TISEN(J,I)*2.L*P (KK):
END
ELSE
FOR J:=1 UNTIL N _STATE DO
ISEN(J,KK) :=TISEN(J,I);
END:;
END
ELSE
FOR I:=1 UNTIL N_STATE DO
FOR J:=1 UNTIL FN_PAR DO
ISEN(I,J):=TISEN(I,J):
END
END:;
END EG_FUN;
COMMENT
PROCEDURE EXTRACT_JACOBIAN(LONG REAL ARRAY JAC(*,*));
BEGIN
COMMENT FROM A COMPLETE JACOBIAN AT ALL POINTS HIT AND ON
ALL, STATE VARIABLES, EXTRACT INTO JAC THE JACOBIAN
DIRECTLY ASSOCIATED WITH THE OBSERVATIONS TAKEN,
AND INCORPORATING THE WEIGHTS ON THE OBSERVATIONS;
INTEGER M;
COMMENT SET UP WEIGHTING SCALING OF LEAST SQUARES JAC;
FOR J:=1 UNTIL N_STATE_OBS DO
FOR I:=1 UNTIL N_OBS DO
WT_VEC ((I-1)*N_STATE_OBS+J) :=WT(I,J);
FOR K:=1 UNTIL N_PAR DO
BEGIN
M:=0;
FOR I:=1 UNTIL N PTS HIT DO
IF OBS_STATUS(I)~=0 THEN
FOR J:=1 UNTIL N STATE OBS DO
BEGIN - -
M:=M+1;
JAC(M,K):=JACOBIAN((I—l)*N_STATE+STATES_OBS(J),K)
*WT_VEC (M) ;
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END;
END;
END EXTRACT JACOBIAN;
COMMENT
PROCEDURE STANDARD HIT( LONG REAL VALUE INITIAL _TIME;
INTEGER ARRAY OBS STATUS(*),
LONG REAL ARRAY OBS_PLACE(*),
INTEGER VALUE N OBS;
LONG REAL ARRAY PTS_TO_HIT(*);
INTEGER RESULT N_PTS HIT);
BEGIN
COMMENT SET SAMPLE TIMES AS INITIAL TIME AND
OBSERVATION TIMES;
I:=1;
PTS TO_HIT(1l): INITIAL _TIME;
OBS STATUS(l)
IF ABS(OBS_PLACE(l)—INITIAL_TIME)<l.'—5 THEN
BEGIN
OBS_STATUS (1) :=
I:=0;
END;
FOR J:=2-1 UNTIL N _OBS DO
BEGIN
PTS _TO_HIT(J+I): —OBS _PLACE (J) ;
OBS STATUS(J+I)
END;
N PTS HIT:=N OBS+I;
END STANDARD HIT;
COMMENT

PROCEDURE COPY_TRANS (LONG REAL ARRAY A(*,*);
LONG REAL ARRAY B(*,*);
LONG REAL ARRAY JA(*,*);
LONG REAL ARRAY JB(*,*);
INTEGER VALUE M,N,JM, JN,AUX_INT);
BEGIN
COMMENT TO REDUCE PAGING, INTEGRATION
PROCEDURES INSERT DATA BY
COLUMNS IN NXM ARRAY B,THEN B (TRANSPOSE) IS COPIED TO A
TO ACCESS A BY COLUMNS FOR PLOTTING ETC.;
FOR J:=1 UNTIL N DO
FOR I:=1 UNTIL M DO
A(I,J):=B(J,I);
IF AUX_INT=1 THEN
FOR J:=1 UNTIL JN DO
FOR I:=1 UNTIL JM DO
JA(I,J):=dB(J,I);
END COPY_TRANS;
COMMENT

.
’
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COMMENT %EXTERNAL SPLINT AL, SPLN_AL, DSPLN AL,
HERMIT AL, HERM, DHERM, ECHOl;
PROCEDURE READ CMD DATA(INTEGER ARRAY CMD DATA(*));
BEGIN
COMMENT READ A STRING OF INTEGERS SEPARATED
BY BLANKS UNTIL A
ZERO IS ENCOUNTERED, STORE THE INTEGERS INCLUDING THE ZERO
IN THE VECTOR CMD_DATA;
INTEGER I;
I:=1;
COMMENT %INPUT (CMD DATA(I));
WHILE CMD DATA(I) =0 DO
BEGIN
I:=1+1;
COMMENT $INPUT (CMD DATA(I));
END;
END READ CMD DATA;
COMMENT

COMMENT 3%EXTERNAL PLOT COMMAND;
COMMENT VARIABLE DECLARATIONS FOLLOW

INTEGER ARRAY SCL,FRZ(1::FN_PAR);

LONG REAL ARRAY CREOBS JOINTS(1::15);

LONG REAL ARRAY CREOBS VAL(1l::15);

LONG REAL ARRAY CREOBS(1::MAX PTS);

LONG REAL ARRAY DCREOBS (1::MAX PTS);

LONG REAL ARRAY FPAR,START PAR,SIM _PAR,

INT PAR,GRADIENT,PAR(1::FN PAR),

LONG REAL ARRAY OBS _PLACE, RESIDUAL _VECTOR(1::N_OBS) ;
LONG REAL ARRAY PTS TO HIT(l :MAX PTS),

- INTEGER ARRAY STATES OBS(l' N STATE _0BS);

LONG REAL ARRAY OBS(I:: N_OBS, l..N STATE _OBS);

LONG REAL ARRAY WT(l::N_OBS,1l::N STATE OBS),

REAL ARRAY WT_VEC(1l::N OBS*N STATE OBS)

LONG REAL ARRAY OBS SMOOTH(l::MAX PTS,1::N STATE _OBS);
LONG REAL ARRAY JOINTS(1::17,1: N STATE OBS),

LONG REAL ARRAY SPLN_COEF(l::BO 17 :N_ STATE _OBS) ;

LONG REAL ARRAY HERM COEF(1::16,1::4, ,1::N STATE _0OBS) ;
INTEGER ARRAY NJOINTS,N SPLN PAR(l"N STATE OBS)

LONG REAL ARRAY STATE(l‘*MAX PTS,1::N STATE),

LONG REAL ARRAY JACOBIAN (1::MAX PTS*N STATE,1::FN_PAR);
INTEGER DFIT LIN,NO CREOBS JOINTS,CMD _NO,I,N PTS HIT;
INTEGER ARRAY OBS STATUS(l"MAX PTS),

LONG REAL ARRAY CON(1l::FN _PAR) ;

LONG REAL ARRAY COR, COV(l::FN“PAR,l::FN_PAR);

LONG REAL STD DEV;

STRING(6) ARRAY COMMANDS (1::30);

STRING (6) CMD;STRING(6) UNIT;

LONG REAL FPROB; INTEGER SMF, WT_FLG;

LONG REAL EPS,HMIN, HMAX;
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INTEGER PLOT_NUMBER,PERCENTILE,AUX_INT,OUTPUT,
KFLAG,METHOD_FLAG,OUTPUT_SUP,OUT_SEG,JAC_OPTION,
INT_PROC,N PAR,JJ;

STRING (1) ANS;

LOGICAL PFRZ,PSCL,ECHO;

LONG REAL SUM_SQ RES;

COMMENT

X TSI RS TR ESEEEETE
4444444444 S S FFINITIALIZATION#$#4H# 44444444445 4%
EA XTSRRI TSI LS EE N
ECHO:=FALSE;

OUTPUT:=0;

DFIT LIN:=0;

INT _PROC:=2;

PLOT NUMBER:=0;

EPS::.Ol;
HMIN:=.00001;
HMAX :=5;

METHOD_ FLAG:=1;
OUTPUT_SUP:=1;
OUT_SEG:=0;
JAC_OPTION:=0;

PFRZ : =FALSE ; PSCL :=FALSE;
FOR T:=1 UNTIL FN_PAR DO
FRZ (I) :=SCL(I) :=0;
N_PAR:=FN_PAR;

COMMENT
DEFINE VECTOR OF COMMAND DESIGNATORS;
COMMANDS (1) :="PLOT ":

’
COMMANDS (2) :="SET "
COMMANDS (3) :="INTEG ";
COMMANDS (4) :="FIT "

COMMANDS (5) :="QUIT "

COMMANDS (6) : ="REPORT";

COMMANDS (7) : ="CREATE";

COMMANDS (8) :="SAMPLE";

COMMANDS (9) :="SMOOTH";

COMMANDS (10) :="DFIT ";
COMMANDS (11) :="Susp ";
COMMANDS (12) :="OPTION";
COMMANDS (13) :="STATS ";
COMMANDS (14) :="PROBE ";
COMMANDS (15) :="WEIGHT";
COMMANDS (16) :="CONTIN";
COMMANDS (17) :="CREOBS";
COMMANDS (18) :="IFIT ";
COMMANDS (19) :="FREEZE";
COMMANDS (20) :="SCALE ";
COMMANDS (21) :="ECHO ";
COMMANDS (22) :="LINEAR";

COMMANDS (23) :="END "
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COMMENT
COMMENT %OUTPUT TO USER -REPRT (MODEL);
IF MODEL(0|6) ~= "CREATE" THEN

BEGIN

COMMENT READ IN DATA;
COMMENT $INPUT FROM DATA FILE
(OBS) , (OBS_PLACE) , (START_PAR) , (STATES_OBS) , (WT),
(WT_FLAG)--0 IF NO WEIGHTS IN DATA FILE;
COMMENT SET ALL WEIGHTS TO 1 IF NOT PRESENT IN DATA FILE;
IF WT_FLG=0 THEN
FOR J:=1 UNTIL N _STATE_OBS DO
FOR I:=1 UNTIL N _OBS DO
WT(I,J):=1;
COMMENT INITIALIZE PAR TO START PAR;
FOR I:=1 UNTIL FN_PAR DO PAR(I):=FPAR(I):=START PAR(I);
END;
COMMENT
COMMENT READ COMMAND DESIGNATOR AND IDENTIFY COMMAND;
READ_CMD:
COMMENT 2OUTPUT TO USER
ENTER COMMAND;
COMMENT $INPUT (CMD);
I:=1;
WHILE COMMANDS(I)~="END " DO
BEGIN .
IF COMMANDS (I)=CMD THEN BEGIN CMD NO:=I;GO TO OUT; END;
I:=1I+1;
END;
COMMENT $OUTPUT TO USER
COMMAND IN ERROR, RESPECIFY;
GO TO READ_ CMD;
COMMENT
OUT:IF ECHO=TRUE THEN ECHO1(2);
CASE CMD_NO OF
BEGIN
BEGIN
COMMENT ### PLOT COMMAND ###;
INTEGER KK;
KK:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR(I) :=PAR(KK) ;
END;
PLOT_COMMAND( OBS_PLACE,
PTS_TO_HIT, STATE, OBS, OBS_SMOOTH,FPAR,
N_OBS,N_PTS_HIT,N_STATE_OBS,N_STATE,FN PAR,
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STATES_OBS,PLOT NUMBER,
READ_CMD_DATA,CMD_AL,CREOBS) ;
END;
COMMENT
BEGIN
COMMENT ### SET COMMAND ###;
INTEGER I;
- COMMENT $OUTPUT
GIVE LIST OF PARAMETERS AND VALUES (END WITH 0)
SUBSCRIPTS CORRESPOND TO UNFROZEN PARAMETER VECTOR
$INPUT (I);
WHILE I~=0 DO
BEGIN
COMMENT $INPUT (FPAR(I)), (I);
END;
I:=0;
FOR J:=1 UNTIL FN_PAR DO
IF FRZ(J)=0 THEN
BEGIN
I:=I+1;
PAR(I) :=FPAR(J) ;
END;
END;
COMMENT

3
’

BEGIN
COMMENT ### INTEGRATE COMMAND ###;
LONG REAL ARRAY INITY(l::1);
LONG REAL ARRAY INITYP(1l::1,1::1);
AUX INT:=0;
COMMENT %OUTPUT TO USER
IS THE JACOBIAN DESIRED? Y OR N;
COMMENT $INPUT (ANS);
IF ANS="Y" THEN AUX INT:=1;
BEGIN
LONG REAL ARRAY B(l::N_STATE,l::N PTS HIT);
LONG REAL ARRAY JB(1::N_PAR,1l::N PTS HIT*N STATE);
CASE INT_PROC OF - -
BEGIN
COMMENT $OUTPUT TO USER
INTEGRATION METHOD AND PERTINENT CONTROL PARAMETERS;
END;
IF OUTPUT~=0 THEN
BEGIN
COMMENT $FILE EMPTY -SCl;
COMMENT %OUTPUT TO -REPRT
OUTPUT REFERENCE NUMBER (OUT_ SEG);
CASE INT_PROC OF
BEGIN
COMMENT %OUTPUT TO -REPRT
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INDICATE INTEGRATION METHOD AND
PERTINENT PARAMETERS:
END;
END;
CASE- INT_PROC OF
BEGIN
GEAR (PAR,PTS TO HIT,B,JB, N_STATE,N_PTS HIT,
EPS,HMIN, HMAX N PAR,AUX INT EG FUN,
KFLAG,OUTPUT, METHOD FLAG 0, INITY INITYP):
TRAP (PAR,PTS TO HIT B,JB,N_STATE,N PTS HIT,
N_PAR,AUX INT, EG FUN, KFLAG OUTPUT)
END;
AUX INT:=1;
COPY _TRANS (STATE,B,JACOBIAN,JB N_PTS HIT,N STATE,
N _ PTS HIT*N STATE,N_PAR,AUX INT);
END-
_0.
FOR I:=1 UNTIL FN _PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT PAR(I):=PAR(JJ);
END
ELSE
INT PAR(I) :=FPAR(I);
END:;
COMMENT

.
[

BEGIN
COMMENT ### FIT COMMAND ###:
INTEGER I;
LONG REAIL, ARRAY INITY(l::1);
LONG REAL ARRAY INITYP(1l::1,1::1);
PROCEDURE FUNC (LONG REAL ARRAY P (*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT JACOBIAN GRADIENT AND RESIDUAL INFORMATION;
INTEGER M,N_RES,OUT1;
LONG REAL SUM;
COMMENT INTEGRATE;
IF OUTPUT_SUP=1 THEN OUT1:=0 ELSE OUTI1:=0OUTPUT;
EFLAG:=0;
BEGIN
LONG REAL ARRAY B(l::N_STATE,l::N PTS HIT);
LONG REAL ARRAY JB(1l::N_PAR,1::N PTS HIT*N STATE);
CASE INT PROC OF - B
BEGIN
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BEGIN
GEAR(P,PTS_TO_HIT,B,JB,N STATE,
N_PTS_HIT, EPS,HMIN, HMAX N_PAR 1
EG FUN,KFLAG, OuT1,
METHOD FLAG,O, INITY,INITYP);
IF KFLAG™=1 THEN BEGIN EFLAG:=1; GO TO OUT; END;
END;
BEGIN
TRAP (P,PTS TO HIT,B,JB,N STATE,
N _PTS HIT, N PAR,AUX INT, EG FUN,EFLAG,0UT1) ;
IF EFLAG= l THEN GO TO OUT;
END
END;
AUX INT:=1;
COPY _TRANS (STATE,B,JACOBIAN,JB,N _PTS_HIT,N STATE,
N_ PTS _HIT*N STATE,N PAR,AUX INT),
END;

EXTRACT_JACOBIAN (JAC) ;

FOR J:=1 UNTIL N_STATE_OBS DO
FOR I:=1 UNTIL N _PTS HIT DO
IF OBS_STATUS (I)~=0 THEN

BEGIN

INTEGER INDEX;

INDEX:=(OBS_STATUS (I)-1)*N_STATE _OBS+J;

RES (INDEX) : = (STATE (I,STATES OBS(J))—
OBS (OBS_STATUS(I), J))*WT_VEC(INDEX),
END;

N_RES:=N_STATE_OBS*N_OBS;

F:=0;

FOR I:=1 UNTIL N_RES DO F:=F+RES(I)**2;
SUM_SQ RES:=F;

COMMENT FORM GRADIENT;

FOR I:=1 UNTIL N_PAR DO

BEGIN

SUM:=0.;

FOR J:=1 UNTIL N_RES DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I) :=5UM;

END;

OUT:
END FUNC;

COMMENT $OUTPUT

CHOOSE METHOD
MARQUARDT--=-=—=———=m-—— 1
INTERACTIVE --=—===—= 2;
COMMENT S%INPUT (I);
CASE 1 OF

BEGIN

BEGIN
COMMENT FIT USING MARQUARDT'S TECHNIQUE ;
LONG REAL LAM,EPS_R,EPS A;
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COMMENT $%OUTPUT TO USER
ENTER STARTING LAMBDA, RELATIVE TOLERENCE,
AND ABSOLUTE TOLERENCE MARQUARDT;
COMMENT $INPUT (LAM), (EPS_R), (EPS A);
COMMENT $FILE EMPTY -SCl:
COMMENT $%OUTPUT ,
CURRENT OUTPUT REFERENCE NUMBER IS (OUT SEG)
MARQUARDT USED IN FIT COMMAND (LAM), (EPS_R),(EPS_A);
MARQUARDT (EPS_R,EPS_A,N _OBS*N_STATE_OBS,N_PAR,
FUNC,PAR,LAM,SVD_AL);
END;
BEGIN
COMMENT $EXTERNAL INTERACTIVE OPT;
IF ECHO=TRUE THEN ECHO1 (3);
INTERACTIVE_OPT (N_OBS*N_STATE OBS,N PAR,FUNC,
PAR,SVD_AL,OBS_PLACE(*), PTS_ TO HIT(*), STATE (*,*),
OBS(*,*), OBS SMOOTH(*,*), CREOBS(*),
N_OBS,N_PTS_HIT,N STATE OBS,
N_ STATE STATES_OBS (*) ,” PLOT NUMBER,
READ CMD DATA, CMD AL, PLOT _COMMAND) ;
IF ECHO=TRUE THEN ECHO1 (1);
END
END;
J:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT PAR(I) =PAR (JJ) ;
END
ELSE
INT PAR(I) :=FPAR(I);
END;
COMMENT

.
7

BEGIN
COMMENT ### QUIT COMMAND ###;
GO TO FINISHED;
END;
COMMENT

.
’

BEGIN - .

COMMENT ### REPORT COMMAND ###;

INTEGER ARRAY CMD DATA(l::15);

INTEGER II,UNI;

COMMENT $%OUTPUT TO USER

ENTER LIST OF ITEMS TO PRINT (END WITH 0)

GENERAL DATA ---——-- 1
OBS—=—==———mm e 2
PAR-—~~=——=—m—m 3
CREATION-—-====m—m—m 4
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PTS AND STATE VARS--5

SMOOTHING DATA-—-=—=~- 6
JACOBIAN-=—==—-—=———- 7
INTEG./OPT. DETAILS-8
STATISTICAL DATA----9
OPTION SETTINGS----10
WEIGHTS---—==~=—==—-—- 11
GUESSED OBS--=———-—- 12;

READ_CMD_DATA (CMD_DATA) ;
FOR IREP:=1 UNTIL 2 DO

BEGIN
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COMMENT %FILE IF IREP=1 OUTPUT TO USER,
IF IREP=2 OUTPUT TO -REPRT;

ITI:=1;
WHILE CMD DATA(II)~=0 DO
BEGIN
CASE CMD DATA(II) OF
BEGIN
BEGIN

COMMENT OPTION 1,

GENERAL SIZE DATA;

COMMENT $OUTPUT (FN_PAR),(N_STATE),(N_STATE~OBS),
(N_OBS), (STATES_OBS) ;

END;
BEGIN

COMMENT OPTION 2,

OBSERVATIONS;

COMMENT %OUTPUT (OBS), (OBS_PLACE) ;

END;
BEGIN

COMMENT OPTION 3,

INTEGER KK;
KK:=0;

PARAMETER VALUES;

FOR I:=1 UNTIL FN PAR DO

IF FRZ(I)=0 THEN

BEGIN
KK:=KK+1;

FPAR(I) :=PAR(KK) ;

END;

COMMENT 3OUTPUT (START_PAR), (FPAR)

(FRZ) , (SCL) ;
END;
BEGIN

COMMENT OPTION 4,

DATA ON MODEL CREATION;

COMMENT $OUTPUT RAMDOM ERROR USED,
SIMULATION PARAMETERS
(STD_DEV) , (SIM_PAR) ;

END;
BEGIN

COMMENT OPTION 5, TIMES, AND STATE VARIABLES;
COMMENT $OUTPUT INTEGRATION PARAMETERS (INT_ PAR),
SAMPLE TIMES (PTS_TO HIT),

INTEGRATION PROCEDURE (INT_PROC)
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INTEGRATION RESULTS (STATE);
END;
BEGIN
COMMENT OPTION 6, SMOOTHING INFORMATION;
CASE SMF OF
BEGIN
BEGIN
COMMENT SPLINE SMOOTHING CASE;
COMMENT %0OUTPUT
SPLINE SMOOTHING JOINTS,
SMOOTHED OBSERVATIONS,
SMOOTHED DERIVATIVES ON OBSERVED
STATE VARIABLES:
END;
BEGIN
COMMENT HERMITE CASE;
COMMENT 3%OUTPUT
HERMITE SMOOTHING JOINTS,
SMOOTHED OBSERVATIONS,
SMOOTHED DERIVATIVES ON OBSERVED
STATE VARIABLES;
END
END;
END;
BEGIN
COMMENT OPTION 7, JACOBIAN OUTPUT:
COMMENT 30OUTPUT
INTEGRATION PARAMETERS (INT_PAR);
IF JAC_OPTION=0 THEN
COMMENT $%OUTPUT
FULL JACOBIAN ON ALL STATES AT ALL SAMPLE TIMES;
ELSE
COMMENT %OUTPUT
LEAST SQUARES JACOBIAN;
END;
BEGIN
COMMENT OPTION 8, OPTIMIZATION
AND/OR INTEGRATION DATA;
IF BATCH=FALSE THEN
BEGIN
COMMENT S$FILE DISPLAY -SC1
TO USER IF (UNIT) SPECIFIES
OUTPUT TO USER;
IF UNIT="-REPRT" THEN
BEGIN
STRING (1) ANS;
COMMENT $%OUTPUT TO USER
IS INTEGRATION/OPTIMIZATION DATA TO BE
ACCUMULATED FOR LATER OUTPUT Y OR N
$INPUT (ANS);
IF ANS="Y" THEN

APPENDIX B



220

BEGIN
COMMENT $OUTPUT TO -REPRT
DATA ACCUMULATED IN -SC2 OUTPUT REFERENCE
NUMBER IS (OUT_SEG)
$FILE ACCUMULATE -SCl AT END OF -SC2;
OUT_SEG:=0UT_SEG+1;
END;
END;
END;
END;
BEGIN
COMMENT OPTION 9, STATISTICAL DATA;
INTEGER N1;
N1:=N_OBS-N_PAR;
COMMENT $OUTPUT
F DISTRIBUTION VALUE AT (PERCENTILE) PERCENT WITH
(N_PAR) DEGREES OF FREEDOM IN NUMERATOR AND
(N1) DEGREES OF FREEDON IN DENOMINATOR
IS (FPROB),
SUM OF SQUARES OF RESIDUALS (SUM_SQ RES),
CRRRELATION MATRIX(COR), COVARIANCE MATRIX (COV),
PARAMETERS (PAR), CONFIDENCE INTERVALS (CON);
END;
BEGIN
COMMENT OPTION 10 REPORT ON OPTION SETTINGS;
COMMENT $OUTPUT
OPTION SETTINGS:
OUTPUT FLAG (OUTPUT),
OUTPUT SUPPRESSION FLAG (OUTPUT_SUP),
JACOBIAN OUTPUT MODE (JAC_OPTION),
GEAR PROGRAM (METHOD FLAG),
GEAR PROGRAM EPS (EPS),
GEAR PROGRAM MINIMUM AND
MAXIMUM STEP (HMIN), (HMAX),
INTEGRATION METHOD (INT PROC);
END;
BEGIN
COMMENT OPTION 11 REPORT ON WEIGHTS;
COMMENT $%OUTPUT
OBSERVATION TIMES (OBS PLACE),
STATES OBSERVED (STATES OBS),
WEIGHTING FACTORS (WT);
END;
BEGIN
COMMENT OPTION 12 CREATED OBSERVTIONS DATA;
COMMENT $%OUTPUT
JOINTS OF INTERPOLATING SPLINE (CREOBS_JOINTS)
ORDINATES FOR INTERPOLATING SPLINE (CREOBS VAL)
CREATED OBSERVATIONS (CREOBS)
AND DERIVATIVES (DCREOBS)
AT SAMPLE TIMES (PTS_TO HIT);
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END;
IT:=I1I+1;
END;
END;
END;

COMMENT

.
r

BEGIN

COMMENT ### CREATE COMMAND ###%;

INTEGER ARRAY INTDATA(l::7);

COMMENT 3EXTERNAL CREATE_DATA;
INTDATA (1) :=N_STATE;

INTDATA(3) :=N_OBS;

INTDATA (4) :=FN_PAR;

INTDATA (5) :=N_STATE_OBS;
INTDATA(6) : =MAX PTS;

INTDATA(7) : =METHOD_FLAG;

CREATE_DATA (SIM_ PAR,

START PAR, FPAR, OBS _PLACE, PTS_TO_HIT, OBS,
STATE, JACOBIAN, OBS _STATUS, STATES_OBS, INTDATA,
MODEL, EG_FUN, GEAR, STANDARD HIT, STD DEV,
INITIAL TIME, KFLAG,OUTPUT) ;

N _PTS HIT:=INTDATA(2);

FOR I:=1 UNTIL FN_PAR DO

INT PAR(I) :=SIM PAR(I),

N PAR: =FN_PAR;

END;

COMMENT

14

BEGIN

COMMENT ### SAMPLE COMMAND ###;
COMMENT SEXTERNAL HITPTS;
HITPTS (STANDARD_ HIT,

READ CMD DATA,

PTS TO HIT,
N_PTS_HIT,MAX PTS,
OBS STATUS,
OBS_PLACE,
N _OBS,
INITIAL TIME);
END; -

COMMENT
BEGIN

COMMENT ### SMOOTH COMMAND ###;
INTEGER MET;

COMMENT $%OUTPUT

SELECT METHOD

CUBIC SPLINE-——=———- 1

CUBIC HERMITE--———-—- 2
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$INPUT (MET);
CASE MET OF
BEGIN

BEGIN

COMMENT SPLINE CASE;

INTEGER NJ,DEG;

LONG REAL ARRAY W(l::N OBS);

FOR I:=1 UNTIL N OBS DO W(I):=l.;

FOR ST:=1 UNTIL N_STATE OBS DO
BEGIN
COMMENT %OUTPUT
ENTER NUMBER OF JOINTS (MAX 15),
AND JOINT POSITIONS FOR
STATE VARIABLE (STATES_OBS (ST))
$INPUT (NJ);
NJOINTS (ST) : =NJ;
FOR I:=1 UNTIL NJ DO
COMMENT $INPUT (JOINTS(I,ST));
DEG:=3;
SPLINT AL (OBS_PLACE,OBS(*,ST),W,N_OBS,
SPLN_COEF (*,ST) ,
DEG,JOINTS (*,ST) ,NJOINTS (ST) ) ;
N_SPLN_PAR(ST) : =DEG;
COMMENT INSERT VALUES INTO OBS_SMOOTH;
FOR I:=1 UNTIL N_PTS HIT DO
OBS_SMOOTH (I, ST) :=SPLN_AL(PTS_TO HIT(I),
SPLN_COEF (*,ST) ,JOINTS (*,ST),
NJOINTS (ST) ,N_SPLN_PAR(ST)) ;
END;

SMF:=1;

END;

BEGIN

COMMENT HERMITE CASE;

INTEGER NJ;

LONG REAL ARRAY COEF(1::40,1::4);

FOR ST:=1 UNTIL N_STATE OBS DO
BEGIN
INTEGER FLAG;
REDO:
COMMENT %OUTPUT
ENTER NUMBER OF JOINTS (MAX 15),
AND JOINT POSITIONS FOR
STATE VARIABLE (STATES_OBS (ST))
DO NOT INCLUDE FIRST OR LAST OBSERVATION
$INPUT (NJ);
NJOINTS (ST) : =NJ;
JOINTS (1,ST) :=OBS_PLACE (1) ;
FOR I:=1 UNTIL NJ DO
COMMENT $INPUT (JOINTS (I+1,ST));
JOINTS (NJ+2,ST) : =OBS_PLACE (N_OBS) ;
IF N_OBS<(2*NJ+4) THEN
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COMMENT %OUTPUT TO USER
EXCESS OF ((2*NJ+4-N OBS)/2) JOINTS;

GO TO REDO;
END;
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HERMIT_ AL (OBS_PLACE,OBS (*,ST) ,JOINTS (*,ST),
N_OBS,NJ,COEF, 40,FLAG) ;

IF FLAG=1 THEN
BEGIN
COMMENT $OUTPUT

SINGULAR PROBLEM--REDISTRIBUTE
JOINTS OR REMOVE SOME JOINTS;

GO TO REDO;

END;
FOR J:=1 UNTIL 4 D
FOR I:=1 UNTIL NJ+

HERM_COEF (I,J,ST) :=COEF(I,J);

COMMENT INSERT VALUES INTO OBS SMOOTH;
FOR I:=1 UNTIL N_PTS_HIT DO

OBS_SMOOTH (I,ST) t=HERM (PTS_TO HIT(I),

HERM COEF (*,*,ST),

JOINTS (*,ST) ,NJOINTS (ST) ) ;

END;
SMF:=2;
END
END;
END;

COMMENT

.
[

BEGIN

COMMENT ### DFIT COMMAND
INTEGER ARRAY INTDATA(l:
INTEGER METHOD;

COMMENT 3EXTERNAL DATAFT COMMAND, DFIT CRE,

DFITITER, SPRGN;
INTDATA (1) :=N_PTS_HIT;
INTDATA (2) :=N_STATE_OBS;
INTDATA (3) :=N_STATE;
INTDATA (4) :=N_PAR;
INTDATA (5) : =SMF;
INTDATA (6) : =OUTPUT;
INTDATA (7) :=METHOD FLAG;
INTDATA (9) : =OUTPUT_SUP;
INTDATA (10) : =OUT_SEG;
INTDATA (11) :=INT_ PROC;
INTDATA(12) :=DFIT LIN;
COMMENT $OUTPUT

ENTER METHOD
REGULAR-==~——————— e
USING GUESSED OBS-------
ITERATED USING SPARSE GN

0
1 DO

#44;
:14);
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CASE METHOD OF
BEGIN
DATAFT_COMMAND (EG_FUN,
PAR, INTDATA, OBS SMOOTH, STATES_OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM _COEF,
NJOINTS, N SPLN PAR,SPLN . _AL,DSPLN AL,
HERM, DHERM, INITIAL TIME,EPS,HMIN,HMAX);
DFIT_CRE(EG_FUN,
PAR, INTDATA, OBS_SMOOTH, STATES OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM COEF,
NJOINTS, N_SPLN PAR,SPLN AL,DSPLN _AL,
HERM, DHERM, CREOBS,DCREOBS) ;
SPRGN (EG FUN,
PAR, INTBATA, OBS_SMOOTH, STATES OBS,
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM COEF,
NJOINTS, N_SPLN PAR,SPLN AL,DSPLN AL,
HERM ,DHERM, CREOBS,DCREOBS, DFITITER)
END;

END;

COMMENT

BEGIN

COMMENT ### SUSPEND COMMAND ###;

COMMENT SUSPEND EXECUTION AND RETURN TO OPERATING SYSTEM;

END;

COMMENT

BEGIN

COMMENT ### OPTION COMMAND $h4;

INTEGER I;

COMMENT $%OUTPUT

DESIGNATE CONTROL PAR. AND NEW VALUE (0 TO END)"

OUT PUT == === == e~ 1
INT. OUTPUT IN OPT. 0-YES, 1-NO-—-———————mmmmme 2
JACOBIAN 0-FULL 1-LEAST SQUARES——=-—=————ceoeo—o—_ 3
GEAR METHOD 0-ADAMS,1-STIFF-=—==—m—————ommmm o 4
EPS FOR INTEGRATION=-—=—=—mmm oo 5
HMIN FOR INTEGRATION—=—==m— e 6
HMAX FOR INTEGRATION=-——=—=mmm— oo 7
INTEGRATION PROCEDURE 1-GEAR, 2-QUICK-—-~=—=~———= 8;
WHILE I~=0 DO

BEGIN

CASE I OF

BEGIN

COMMENT $INPUT DEPENDING ON (I)
(OUTPUT) , (OUTPUT_SUP) , (JAC _OPTION), (METHOD FLAG),
(EPS), (HMIN),(HMAX),(INT PROC) ;
END;
COMMENT S%INPUT (I);
END;
END;
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COMMENT

.
1

BEGIN
COMMENT ### STATS COMMAND ###
THIS COMMAND ASSUMES
THE JACOBIAN AND THE SUM OF THE
SQUARES OF THE RESIDUAL ARE AVAILABLE AT THE
OPTIMUM PARAMETERS OBTAINED;
LONG REAL ARRAY INV,VD(l::N_PAR,1::N PAR);
LONG REAL ARRAY UD,JAC(1l::N_STATE OBS*N OBS,1::N PAR);
LONG REAL ARRAY S(l::N PAR);
INTEGER M;
LONG REAL SUM,SUMI,SUMJ,SIG_SQ,E;
COMMENT %EXTERNAL FVALUE_AL;
M:=N STATE OBS*N OBS;
COMMENT $OUTPUT
ENTER (INTEGER) PERCENTILE FOR F DISTRIBUTION
COMMENT $%INPUT (PERCENTILE) ;
FPROB:=FVALUE AL (1. —PERCENTILE/lOO.,N PAR,
N OBS*N STATE OBS-N_PAR);
COMMENT %OUTPUT (FPROB);
EXTRACT JACOBIAN(JAC) ;
SvD_AL(JAC,S,UD,VD,M,N PAR,M,N PAR,0,N PAR,N PAR);
FOR J:=1 UNTIL N _PAR DO
FOR I:=1 UNTIL N _PAR DO
VD(I,J):=VD(I,J)/S(J);
COMMENT FORM INVERSE OF (JACOBIAN TRANSPOSE
TIMES JACOBIAN) ;
FOR I:=1 UNTIL N_PAR DO
FOR J:=1 UNTIL N_PAR DO
BEGIN
SUM:=0.:;
FOR K:=1 UNTIL N PAR DO
SUM:=SUM+VD (I,K)*VD(J,K);
INV(I,J) :=SUM;
END;
SIG_SQ:=SUM_SQ RES/(M-N_PAR);
E:=N_PAR*FPROB*SIG_SQ;
COMMENT CALCULATE CONFIDENCE INTERVALS;
FOR I:=1 UNTIL N_PAR DO
CON(I) :=SQRT(E*INV(I,I));
COMMENT CALCULATE COVARIANCE MATRIX:
FOR I:=1 UNTIL N_PAR DO
FOR J:=1 UNTIL N _PAR DO
COV(I,J):=SIG_SQ*INV(I,J);
COMMENT CALCULATE CORRELATION MATRIX;:
FOR I:=2 UNTIL N_PAR DO
FOR J:=1 UNTIL I-1 DO
BEGIN
SUMI:=0;SUMJ:=0;SUM:=0;
FOR K:=1 UNTIL N _PAR DO
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BEGIN
SUM:=SUM+VD (I,K)*VD(J,K);
SUMI :=SUMI+VD (I ,K)**2;
SUMJ:=SUMJ+VD (J ,K) **2;
END;
COR(I,J) :=SUM/SQRT (SUMI*SUMJ) ;
COR(J,I):=COR(I,J);
END;
FOR I:=1 UNTIL N_PAR DO COR(I,I):
END;
COMMENT

.
’

BEGIN
COMMENT ### PROBE COMMAND ###;
STRING (1) ANS;
INTEGER M;
LONG REAL ARRAY INITY(l::1);
LONG REAL ARRAY INITYP(l::1,1::1);
LONG REAL ARRAY UD,JAC(1l::N_STATE_OBS*N_OBS,1::N_PAR);
LONG REAL ARRAY VD(1::N_PAR,1::N_PAR);
LONG REAL ARRAY S(1::N PAR);
COMMENT $OUTPUT
IS AN INTEGRATION REQUIRED? Y OR N
$INPUT (ANS);
IF ANS="Y" THEN
BEGIN
IF OUTPUT =0 THEN
BEGIN
COMMENT $FILE EMPTY -SC1
ROUTPUT TO -REPRT INTEGRATION IN PROBE
OUTPUT REFERENCE NUMBER IS (OUT_SEG);
CASE INT PROC OF
BEGIN
COMMENT $OUTPUT TO -REPRT
INTEGRATION CONTROL PARAMETRERS;
END;
END;
BEGIN
LONG REAL ARRAY B(l::N_STATE,l::N PTS HIT);
LONG REAL ARRAY JB(1l::N_PAR,1::N PTS HIT*N STATE);
AUX INT:=1: - .
CASE INT PROC OF
BEGIN
BEGIN
GEAR (PAR,PTS_TO_HIT,B,JB,N_STATE,N PTS HIT,
EPS,HMIN,HMAX,N PAR,1,EG_FUN, KFLAG OUTPUT,
METHOD_FLAG,
0,INITY,INITYP);
IF KFLAG™=1 THEN GO TO OUT;
END;
BEGIN
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TRAP(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT,
N PAR,1,
EG_FUN,KFLAG,OUTPUT) ;
IF KFLAG=1 THEN GO TO OUT;
END
END;
AUX INT:=1;
COPY _TRANS (STATE,B,JACOBIAN,JB,N PTS HIT,N __STATE,
N PTS _HIT*N STATE, N _PAR,AUX INT),
END-
JJd:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
JJ:=JJ+1;
INT PAR(I) :=PAR(JJ);
END
ELSE
INT PAR(I):=PAR(I);
END;
M:=N_STATE_OBS*N_OBS;
EXTRACT_JACOBIAN (JAC);
SVD AL(JAC s,up,vb,M,N_PAR,M,N_PAR,0,N PAR,N _PAR);
COMMENT %OUTPUT TO USER
PARAMETERS (PAR) SINGULAR VALUES (S)
IS A REPORT OF PROBE REQUIRED?, Y OR N
$INPUT (ANS);:
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT TO -REPRT
###PROBE COMMAND###
PARAMETERS (PAR) SINGULAR VALUES (S);
IF OUTPUT"=0 THEN
BEGIN
COMMENT %0UTPUT
IS INTEG OUTPUT TO BE DISPLAYED? Y OR N
$INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT 3FILE DISPLAY -SCl1 TO USER
$OUTPUT
IS INTEG OUTPUT TO BE ACCUMULATED? Y OR N
$INPUT (ANS):
IF ANS="Y" THEN
BEGIN
COMMENT %OUTPUT TO -REPRT
INTEGRATION DATA ACCUMULATED IN PROBE
OUTPUT REFERENCE NUMBER IS (OUT_SEG)
$FILE ACCUMULATE -SCl1 AT END OF -SC2;
OUT_SEG:=0UT_SEG+1; :
END;
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END;
END;
END; -
OUT:END;

COMMENT

14

BEGIN
COMMENT ### WEIGHTING COMMAND ###;
INTEGER CAS;INTEGER ARRAY ST _WT(1l::N_STATE OBS+l);
INTEGER ST,SUB,SUB1;
COMMENT $OUTPUT
INDICATE OPTION
SET ALL WEIGHTS TO l--==————aee——o 1
INDIVIDUAL ENTRY OF WEIGHTS--——--— 2
$INPUT (CAS):
CASE CAS OF
BEGIN
BEGIN
FOR J:=1 UNTIL N_STATE_OBS DO
FOR I:=1 UNTIL N _OBS DO
WT(I,J):=1;
END;
BEGIN
COMMENT %OUTPUT
ENTER LIST OF STATE VARIABLES WHOSE
OBSERVATIONS ARE TO BE WEIGHTED. 0 TO END;
READ_CMD_DATA (ST_WT) ;
ST:=1:
WHILE ST WT(ST) =0 DO
BEGIN
FOR I:=1 UNTIL N_STATE OBS DO
IF STATES OBS(I)=ST WT(ST) THEN SUBl:=I;
COMMENT $%OUTPUT
ENTER SEQUENCE OF OBSERVATION TIME SUBSCRIPTS
AND NEW WEIGHTS FOR STATE VARIABLE
(ST _WT(ST))
ENTER A ZERO SUBSCRIPT TO END INPUT
$INPUT (SUB);
WHILE SUB~=0 DO
BEGIN
COMMENT $£INPUT (WT(SUB,SUBLl)), (SUB):
END;
ST:=ST+1;
END;
COMMENT $OUTPUT
DO YOU WANT THE WEIGHTS STORED
IN THE FILE -WEIGHT? Y,N
$INPUT (ANS);
IF ANS="Y" THEN
BEGIN :
COMMENT $OUTPUT TO ~WEIGHT (WT);
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END;
END
END;
END;

COMMENT

-
[4

BEGIN
COMMENT ### CONTINUATION COMMAND ###;
INTEGER ARRAY INTDATA(l::15);

COMMENT $%EXTERNAL CONTI;
INTDATA (1) :=N_PTS_HIT;
INTDATA (2) :=N_STATE_OBS;
INTDATA (3) :=N_STATE;
INTDATA (4) :=N_PAR;

INTDATA (5) : =SMF;

INTDATA(6) :=OUTPUT;
INTDATA (7) :=METHOD FLAG;
INTDATA (9) : =OUTPUT SUP;
INTDATA (10) :=OUT_SEG;

INTDATA(11) :=INT_PROC;

INTDATA(12) :=DFIT LIN;

CONTI (EG_FUN,

PAR, O, INTDATA OBS_SMCOTH, STATES_OBS,
PTS TO HIT, JOINTS SPLN_COEF ,HERM COEF,
NJOINTS, N_ SPLN_PAR,SPLN AL,DSPLN AL,
HERM, DHERM EPS,HMIN, HMAX) ;

END;

COMMENT

.
1

BEGIN
COMMENT ### CREOBS COMMAND ###

THIS COMMAND ALLOWS THE USER

TO CREATE OBSERVATIONS FOR AN
UNOBSERVED STATE VARIABLE

COMMENT $OUTPUT

ENTER NO. OF JOINTS AND JOINT POSITIONS
FOR STATE VARIABLE (3-STATES_OBS (1))
INCLUDE FIRST AND LAST SAMPLE TIMES
$INPUT (NO_CREOBS_ JOINTS) ;

FOR I:=1 UNTIL NO CREOBS _JOINTS DO
COMMENT %INPUT (CREOBS JOINTS(I));
COMMENT %OUTPUT -

ENTER CORRESPONDING ORDINATES FOR CREATED OBS;

FOR I:=1 UNTIL NO_CREOBS_JOINTS DO
COMMENT $INPUT (CREOBS VAL (I));
BEGIN -
REAL ARRAY X,Y(1::NO_CREOBS_JOINTS);
REAL ARRAY P(1::7*NO_CREOBS_JOINTS) ;
REAL ARRAY SI(l::2);
REAL ARRAY T,S,S51,S2(1::N_PTS HIT);
COMMENT $EXTERNAL SMT;
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FOR I:=1 UNTIL NO_CREOBS JOINTS-1 DO P(I):=0;
FOR I:=1 UNTIL NO_CREOBS_JOINTS DO
BEGIN
X (I):=CREOBS_JOINTS (I);
Y(I):=CREOBS VAL (I);
END;
SI(1):=(Y(2)-Y(1))/(X(2)-X(1));
SI(2):=(Y(NO_CREOBS_JOINTS)-Y(NO_CREOBS_JOINTS-1))/
(X (NO_CREOBS_JOINTS) -X (NO_CREOBS “JOINTS=1));
FOR I:=1 UNTIL N PTS _HIT DO
T(I):=PTS_TO HIT(I);
SMT(X,Y,P,SI,T,S,S1,S2,NO_CREOBS _JOINTS,
1,N PTS HIT),
FOR I:=1 UNTIL N_PTS _HIT DO
BEGIN
CREOBS (I):=S(I);
DCREOBS(I) :=S1(I):
END;
END;
END;
COMMENT
BEGIN
COMMENT ### IFIT COMMAND ###; .
INTEGER ARRAY INTDATA(l::14);
INTEGER METHOD;
COMMENT S$EXTERNAL CONT,IFIT CRE, IFITI SPRGN;
INTDATA(1l) :=N_PTS HIT;
INTDATA (2) :=N_STATE OBS;
INTDATA(3) :=N STATE;
INTDATA (4) :=N_PAR;
INTDATA (5) : =SMF;
INTDATA(6) : =OUTPUT;
INTDATA (7) :=METHOD FLAG;
INTDATA (9) : =OUTPUT_SUP;
INTDATA (10) : =OUT_SEG;
INTDATA(11) :=INT_PROC;
INTDATA(12) :=DFIT LIN;
COMMENT $OUTPUT
ENTER METHOD

REGULAR-~—=—=—=—=mm—mmo— 1
USING GUESSED OBS——=--—————-— 2
ITERATED INTEG. SUBSYSTEMS---3
ITERATED USING SPARSE GN----- 4

RINPUT (METHOD) ;

CASE METHOD OF
BEGIN
CONTI (EG_FUN,
PAR,1,INTDATA,OBS SMOOTH,STATES _OBS,
PTS TO HIT,JOINTS,SPLN COEF,HERM _COEF,
NJOINTS, N_SPLN_ PAR, SPLN AL, DSPLN _AL,
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HERM,DHERM,EPS,HMIN, HMAX) ;
IFIT CRE(EG FUN,
PAR, INTDATA, OBS SMOOTH, STATES _OBS,
PTS TO HIT, JOINTS, SPLN _COEF, HERM COEF
NJOINTS, N SPLN PAR,SPLN AL,DSPLN AL
HERM, DHERM CREOBS,DCREOBS) ;
IFITI(EG FUN,
PAR, INTDATA, OBS SMOOTH, STATES_OBS,
PTS TO HIT, JOINTS, SPLN_COEF, HERM _COEF,
NJOINTS, N_SPLN PAR,SPLN AL,DSPLN AL,
HERM, DHERM CREOBS,DCREOBS, IFIT CRE),
SPRGN (EG_FUN,
PAR, INTDATA, OBS SMOOTH, STATES OBS,
PTS TO HIT, JOINTS, SPLN _COEF, HERM COEF,
NJOINTS, 'N_SPLN_PAR,SPLN . _AL,DSPLN AL
HERM, DHERM CREOBS,DCREOBS, IFIT CRE)
END;

END;

COMMENT

.
’

BEGIN
COMMENT ### FREEZE COMMAND ###;
INTEGER SUB,KK;
:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR (I) :=PAR (KK) ;
END;
COMMENT $OUTPUT
ENTER LIST OF SUBSCRIPTS FOR FROZEN PARAMETERS (0 TO END)
(AN ENTRY OF 0 REMOVES ALL FREEZING)
$INPUT (SUB):;
IF SUB=0 THEN
BEGIN
PFRZ :=FALSE;
FOR I:=1 UNTIL FN_PAR DO FRZ(I):=0;
FOR I:=1 UNTIL FN PAR DO PAR(I):=FPAR(I);
N_PAR:=FN_PAR;
END
ELSE
BEGIN
PFRZ :=TRUE;
WHILE SUB~=0 DO
BEGIN
FRZ (SUB) :
COMMENT $INPUT (SUB);
END;
END;
KK:=0;
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FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
PAR(KK) :=FPAR(1);
END;
N_PAR:=KK;
END;
COMMENT
BEGIN
COMMENT ### SCALE COMMAND ###;
INTEGER SUB,KK;
COMMENT UPDATE FPAR FOR RESCALING;
KK:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK:=KK+1;
FPAR(I) :=PAR(KK) ;
END;
COMMENT DESCALE FPAR IN PREPARATION FOR RESCALING;
FOR I:=1 UNTIL FN_PAR DO
IF SCL(I)=1 THEN FPAR(I) :=LONGEXP (FPAR(I))
ELSE
IF SCL(I)=2 THEN FPAR(I) :=FPAR(I)**2;
COMMENT %0OUTPUT
"ENTER LIST OF PARAMETER SUBSCRIPTS AND
SCALING INDICATORS (0 SUBSCRIPT TO END)
INDICATOR OF 1 GIVES LOG SCALING
INDICATOR OF 2 GIVES SQUARE ROOT SCALING
$INPUT (SUB):;
IF SUB=0 THEN
BEGIN
PSCL:=FALSE;
FOR I:=1 UNTIL FN_PAR DO SCL(I):=0;
END
ELSE
BEGIN
PSCL:=TRUE;
WHILE SUB™=0 DO
BEGIN
COMMENT $INPUT (SCL(SUB)), (SUB);:
END;
END;
COMMENT RESCALE PARAMETER VALUES;
FOR I:=1 UNTIL FN_PAR DO
IF SCL(I)=1 THEN FPAR(I) :=LONGLN (FPAR(I))
ELSE
IF SCL(I)=2 THEN FPAR(I) :=LONGSQRT (FPAR(I));
COMMENT UPDATE PAR;
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KK:=0;
FOR I:=1 UNTIL FN_PAR DO
IF FRZ(I)=0 THEN
BEGIN
KK :=KK+1;
PAR (KK) :=FPAR(1I);
END;
END:
COMMENT

.
7

BEGIN
COMMENT ### ECHO COMMAND ###;
INTEGER INT;
COMMENT $OUTPUT
ENTER 1 TO BEGIN ECHO, 0 TO END ECHO
$INPUT (INT);
IF INT=1 THEN ECHO:=TRUE ELSE ECHO:=FALSE;
IF INT=1 THEN ECHOIl (1)
ELSE ECHO1 (3);
END;

COMMENT

.
r

BEGIN
COMMENT ### LINEAR COMMAND ###
TO INDICATE LINEARITY IN IFIT, DFIT:
COMMENT $%OUTPUT
ENTER 1 IF IFIT, DFIT GIVE LINEAR PROBLEMS
ENTER 0 TO REMOVE LINEARITY SETTING
$INPUT (DFIT LIN);
END
END;
GO TO READ CMD;
FINISHED: IF ECHO=TRUE THEN ECHO1l(3);
END PARFIT.

BEXT 3T TTBY TBBL TTLT TIIY TLTT 222D LB 2% 2%%%
Procedure to modify sample times

T3T 2T TBTY TUDLT 2B TLBI 292 2I%L 32T %2 2%

PROCEDURE HITPTS (PROCEDURE STANDARD_HIT, READ_CMD DATA;
LONG REAL ARRAY PTS_TO HIT (*);

INTEGER VALUE RESULT N PTS HIT;

INTEGER VALUE MAX PTS;

INTEGER ARRAY OBS STATUS (*)

LONG REAL ARRAY OBS PLACE (*);

INTEGER VALUE N OBS;

LONG REAL VALUE_INITIAL_TIME);
BEGIN
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COMMENT MODIFICATION OF SAMPLE TIMES
(DEFAULT, UNIFORM MESH, OR INSERTION);
INTEGER HIT OPTION;
COMMENT $%OUTPUT TO USER
PICK OPTION
OBS PTS+INITIAL TIME--1
UNIFORM MESH--=—-—————- 2
INTERACTIVE INSERTION-3
$INPUT SELECTION IN (HIT OPTION);
CASE HIT OPTION OF

BEGIN

BEGIN

234

COMMENT STANDARD SCHEME--OBSERVATION POINTS PLUS INITIAL

TIME;

STANDARD_HIT (INITIAL TIME,OBS _STATUS,0BS_PLACE,N_OBS,
PTS TO HIT N_PTS HIT)

END;

BEGIN

COMMENT A UNIFORM MESH STARTING WITH INITIAL _TIME;
INTEGER N; LONG REAL DEL;

COMMENT %OUTPUT TO USER

ENTER NUMBER OF POINTS AND POINT SPACING

¥ INPUT (N), (DEL);

PTS_TO_HIT(1l) :=INITIAL TIME;

FOR I:=1 UNTIL N DO

PTS_TO_HIT(I+1) :=INITIAL TIME+I*DEL;

N PTS HIT'—N+1‘

END;

BEGIN

COMMENT INTERACTIVE INSERTION OF POINTS BETWEEN EXISTING

POINTS;

INTEGER L1,L2,K,J;

LONG REAL ARRAY NEW_PTS_TO_HIT(1l::MAX PTS);
INTEGER ARRAY NEW_ OBS STATUS(l"MAX PTS),
INTEGER ARRAY CMD DATA(l"Zl),

COMMENT %O0UTPUT TO USER

IS A LISTING OF SAMPLE TIMES REQUIRED?

IF NOT ENTER 0, IF YES ENTER SUBSCRIPT LIMITS

FINPUT (L1);
IF L17=0 THEN
BEGIN

COMMENT %INPUT (L2)
%30UTPUT TO USER
LIST OF SAMPLE TIMES BETWEEN SUBSCRIPTS L1 AND L2;
END;
COMMENT %OUTPUT TO USER
ENTER SEQUENCE OF UPPER INDICIES AND NUMBER OF
TIMES TO INSERT BETWEEN INDICATED TIME AND
PREVIOUS TIME (END WITH 0).;
READ_CMD_DATA (CMD_DATA) ;
K:=1;
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J:=0;
FOR I:=1 UNTIL N _PTS HIT DO
IF CMD _DATA (K)=I THEN

BEGIN
COMMENT INSERTION OF POINTS:
LONG REAL DEL;
INTEGER N INS;
N INS:=CMD DATA(K+1),
DEL‘“(PTS TO HIT(I) -PTS TO HIT(I l))/(N INS+1);
FOR R:=1 UNTIL N INS DO
BEGIN
:=J+1;
NEW PTS TO HIT(J) ‘PTS TO HIT(I 1)+R*DEL;
NEW OBS STATUS(J)
END'
J:=J+1;
NEW PTS TO HIT(J)"PTS TO HIT(I)
NEW OBS STATUS(J) =OBS STATUS(I)
K:=K+2; -
END

.
14
.
’

ELSE

N

BEGIN

COMMENT COPYING OF OLD POINT;
J:=J+1;

NEW_PTS_TO_HIT(J) :=PTS_TO _HIT(I);
NEW OBS STATUS(J) “OBS_STATUS(I),
END;

PTS HIT:=J;

COMMENT COPY NEW ARRAYS:
FOR I:=1 UNTIL N_PTS HIT DO

BEGIN
OBS_STATUS (I) :=NEW_OBS_STATUS (I)
PTS TO_HIT(I): -NEW PTS TO _HIT(I)

-
r
.
[

END;
END
END;
END HITPTS.
TIFT TTIT ITIY LT 2BYT TTBY UL LYY 2B 2233 %39
Trapezoidal integration procedure
T3TT TITT TBIY TLBY UL LYY 23T 2L 23T 93T 2223
PROCEDURE TRAP (LONG REAL ARRAY PAR(*):
LONG REAL ARRAY PTS_TO HIT(*);
LONG REAL ARRAY STATE(*,*);
LONG REAL ARRAY JACOBIAN(*,*);

INTEGER VALUE N_STATE,N PTS _HIT,N_PAR,AUX INT;

PROCEDURE

FUN;
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INTEGER RESULT EFLAG;
INTEGER VALUE OUTPUT) ;

BEGIN

LONG REAL ARRAY PREV_G,G,PREV_Y,Y(l::N_STATE);

LONG REAL ARRAY PREV_DGP DGP,PREV_SENSE,

SENSE (1::N_STATE,l::N_PAR);

LONG REAL ARRAY PREV_DGY,DGY(1l::N_STATE,l::N STATE);

LONG REAL T,PREV T;

INTEGER OUT_COUNT,M;

LONG REAL CRIT;

PROCEDURE INT STEP;

BEGIN B
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COMMENT INTEGRATE WITH TRAP. RULE FROM PREV T TO T;
COMMENT IF AUX_INT IS NOT 0, INTEGRATE SENSTITIVITY EQNS;

LONG REAL ARRAY RES(1l::N _STATE) ;

LONG REAL ARRAY X,DGY DYP,B(l::N STATE,1::N_PAR);
LONG REAL ARRAY TMP A(l"N STATE,1::N STATE),
INTEGER ARRAY IPERM(1: 2*N_STATE),

LONG REAL H,SUM,SSQD,SSQ;

INTEGER MAXIT'

COMMENT SEXTERNAL FSLE _AL;

MAXIT:=12;

H:=T-PREV_T;

COMMENT NEWTON METHOD ON NONLINEAR SYSTEM FOR TIME STEP;

FOR I:=1 UNTIL N _STATE DO Y(I): =PREV_Y (I);
FOR I:=1 UNTIL MAXIT DO
BEGIN
FUN(T,Y,PAR,l,G,DGY,DGP,SENSE);
COMMENT FORM JACOBIAN FOR NONLINEAR SYSTEM;
FOR I:=1 UNTIL N_STATE DO
FOR J:=1 UNTIL N_STATE DO
A(I,J):=-DGY(I,J)*H/2.;
FOR I:=1 UNTIL N STATE DO A(I,I):=1.4A(I,1);
FOR I:=1 UNTIL N STATE DO
B(I,1): ~—Y(I)+PREV Y(I)+H/2 *(G(I)+PREV G(I)),
FSLE AL(N STATE, N _STATE,A,1, N_ STATE,
B,X, IPERM N STATE TMP),
COMMENT UPDATE AND GET SUP NORM:
SSQD:=0.
SSQ:=0.:;
FOR I:=1 UNTIL N STATE DO
BEGIN -
SSQD:=SSQD+X (I,1)**2;
Y(I):=X(I,1)+Y(I);
SSQ:=SSQ+Y (I)**2;
END;
IF SSQ<1.'-3L THEN SSQ:=1.'-3L;
IF (SSQD/SSQ)<(CRIT**2) THEN GO TO OouT:
END;
COMMENT %OUTPUT TO USER
ABNORMAL EXIT IN NEWTON IN INTEGRATION STEP:
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EFLAG:=1;
GO TO STOP;
OUT:IF AUX_INT =0 THEN
BEGIN
COMMENT THIS BLOCK SOLVES AUXILIARY LINEAR PROBLEMS;:
FUN(T,Y,PAR,2,G,DGY,DGP,SENSE) ;
FOR I:=1 UNTIL N STATE DO
FOR J:=1 UNTIL N_PAR DO
BEGIN
SUM:=0.;
FOR K:=1 UNTIL N STATE DO
SUM:=SUM+PREV DGY(I K) *PREV_SENSE (K, J) ;
DGY DYP(I,J): =SUM;
END;
COMMENT SET UP RIGHT HAND SIDES FOR DISCRETE LINEAR PROB;
FOR I:=1 UNTIL N STATE DO
FOR J:=1 UNTIL N PAR DO
B(I,J) :=PREV SENSE(I J)+H/2. * (PREV_DGP (I,J)
+DGY_DYP (I, J)+DGP (I,J));
COMMENT SOLVE SYSTEMS;
FSLE_AL(N_STATE,N_STATE,A,N_PAR,N STATE,B,SENSE,IPERM,
N _ STATE, TMP) ;
END;
END INT_STEP;
COMMENT MAIN PROGRAM STARTS HERE;
CRIT:=1."'-5L;

EFLAG:=0;
OUT_COUNT:=0;
M:=0;

COMMENT SET UP INITIAL CONDITIONS:
PREV_T:=PTS_TO_HIT(1);
FUN(PREV T, PREV Y,PAR,3,G,DGY,DGP,PREV _SENSE) ;
FOR I:=1 UNTIL N STATE DO STATE(I,1): —PREV_Y(I);
FUN(PREV_T, PREV__ Y,PAR,1,PREV G,
PREV_DGY,DGP, SENSE) ;
IF AUX_INT —0 THEN
BEGIN
FUN(PREV_T,PREV_Y,PAR, 2, PREV_G,
PREV DGY, PREV__ DGP SENSE) ;
FOR J:=1 UNTIL N STATE DO
BEGIN -
M:=M+1;
FOR L:=1 UNTIL N_PAR DO
JACOBIAN(L,M):=PREV_SENSE(J,L);
END;
END;
FOR I:=2 UNTIL N _PTS HIT DO
BEGIN -
T:=PTS_TO_HIT(I);
INT STEP;
COMMENT OUTPUT OPTION;
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IF OUTPUT =0 THEN
BEGIN
OUT_COUNT:=0OUT_COUNT+1;
IF OUT_COUNT=OUTPUT THEN
BEGIN
COMMENT OUTPUT TO -SC1
TIME AND STATE VARIABLES;
OUT_COUNT:=0;
END;
END;
COMMENT INSERT DATA INTO STATE AND UPDATE;
FOR J:=1 UNTIL N_STATE DO
BEGIN
STATE(J,I):=PREV_Y(J):=Y(J);
PREV_G(J) :=G(J);
PREV T:=T;
FOR K:=1 UNTIL N_STATE DO PREV_DGY(J,K):=DGY(J,K);'
END;
COMMENT INSERT DATA INTO JACOBIAN IF REQUIRED;
IF AUX_INT"=0 THEN
BEGIN
FOR J:=1 UNTIL N_STATE DO
FOR K:=1 UNTIL N PAR DO
BEGIN -
PREV_SENSE (J,K) :=SENSE (J,K) ;
PREV_DGP(J,K):=DGP(J,K);
END;
FOR J:=1 UNTIL N_STATE DO
BEGIN
M:=M+1;
FOR L:=1 UNTIL N_PAR DO
JACOBIAN(L,M) :=SENSE (J,L) ;
END;
END:
END;
STOP:END TRAP.

3TIT TITT TTIT TITY BT 2TLY 2UET 2T%T LIBY 23R 2%3%%
Sensitivity equation solution and interface to Gear's code
TTIT TTIT TIYT TIBY 2TLY BT TIT LYY 29T 2T%L 23%%

PROCEDURE GEAR(LONG REAL ARRAY P (*);
LONG REAL ARRAY PTS(*);

LONG REAL ARRAY Y PTS(*,*);

LONG REAL ARRAY JAC(*,*);

INTEGER VALUE N,N PTS;

LONG REAL VALUE EPS,HMIN, HMAX;
INTEGER VALUE N_PAR,AUX INT;
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PROCEDURE FUN;
INTEGER RESULT KFLAG;
INTEGER VALUE OUTPUT;
INTEGER VALUE METHOD FLAG;
INTEGER VALUE INIT;
LONG REAL ARRAY INITY(*);
LONG REAL ARRAY INITYP(*,*));
BEGIN
REAL ARRAY PW(1l::N*N):
LONG REAL ARRAY LY(1::8,1::N);
LONG REAL ARRAY LSAVE(1::10,1::N+3);
COMMENT ASSUMING N IS AT MOST 15 IN DECLARATION OF SAVE:
LONG REAL ARRAY LYMAX,LERROR(1l::N);
LONG REAL LT,LH,LHMIN,LHMAX,LEPS,LNEXT PT,HP1,HP2,LTS;
INTEGER JSTART,MAXDER,MAX_STEP,STEP_COUNT,PT;
INTEGER OUT_COUNT;
LONG REAL ARRAY G(l::N);
LONG REAL ARRAY DGY(1l::N,1:
LONG REAL ARRAY DGP,SENSE (1
LONG REAL ARRAY Z(1::N);
COMMENT DECLARATIONS FOR HERMITE INTERPOLATION;
LONG REAL ARRAY HERM_SAVE(l::Z,l::N,l::1+N_PAR);
LONG REAL ARRAY INTERP(1::4,1::N,1::1+N_PAR);
COMMENT DECLARATIONS FOR AUXILIARY INTEGRATIONS;
LONG REAL ARRAY STORE_DER(l::8,1::N,l::N_PAR);
LONG REAL ARRAY AA(l::8);
INTEGER PASS,ORDER;
INTEGER MJAC;
COMMENT %EXTERNAL DIFF;
LONG REAL PROCEDURE POLYVAL (LONG REAL VALUE X;
LONG REAL ARRAY COEF (*);
INTEGER VALUE N_COEF) ;
BEGIN
LONG REAL Y;
Y:=0.;
FOR I:=N_COEF STEP -1 UNTIL 2 DO
Y:=X*(COEF(I)+Y);
Y+COEF (1)
END POLYVAL;
PROCEDURE INTERPOLATE_ COEF;
BEGIN
LONG REAL ARRAY COEF(l::4);
LONG REAL ARRAY DATA(1l::6);
PROCEDURE HERMITE (LONG REAL ARRAY DATA(*);
LONG REAL ARRAY COEF (*));
BEGIN
COMMENT CUBIC HERMITE INTERPOLATION. DATA
CONTAINS ABSCISSAE, ORDINATES, AND
SLOPES IN PAIRS. COEF CONTAINS THE
COEFFICIENTS STARTING WITH THE CONSTANT
TERM IN THE CUBIC;

:N);
::N,

1::N PAR);
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COEF (4) :=(DATA(5)+DATA (6) )/ (DATA(2)~DATA (1)) **2
-2.0L* (DATA (4) -
DATA(3))/(DATA(2)-DATA (1)) **3;
COEF (3) :=(DATA(6) ~-DATA(5))/(2.0L* (DATA (2) ~-DATA(1)))
—1.5L*(DATA(2)+DATA(1))*COEF(4);
COEF (2) :=DATA(5)-3.0L*DATA (1) **2*COEF (4)
-2.0L*DATA (1) *COEF (3) ;
COEF(l):=DATA(3)—DATA(1)**3*COEF(4)—DATA(1)**2*COEF(3)
-DATA (1) *COEF (2) ;
END HERMITE;
DATA (1) :=LT-HP1;
DATA(2) :=LT;
FOR I:=1 UNTIL N DO
BEGIN
DATA(3):=HERM_SAVE(1,I,1);
DATA(4) :=LY(1,1);
DATA (5) :=HERM_SAVE(2,1I,1);
DATA(6) :=LY(2,I)/HP];
HERMITE (DATA, INTERP (*,1,1));
IF AUX_INT™=0 THEN
FOR K:=1 UNTIL N _PAR DO
BEGIN
COMMENT INTERPOLATION ON AUXILIARY PROBLEMS;
DATA(3) :=HERM_SAVE (1,1,K+1);
DATA(4):=STORE_DER(1,I,K);
DATA(S):=HERM_SAVE(2,I,K+1);
DATA(6) :=STORE_DER(2,I,K)/HP1;
HERMITE(DATA,INTERP(*,I,K+1));
END;
END;
END INTERPOLATE_COEF;
COMMENT
MANAGEMENT PROGRAM STARTS HERE;
OUT_COUNT:=0; PASS:=1; MJAC:=0;
MAX STEP:=200;
COMMENT ONLY USE UP TO FOURTH ORDER METHOD
CONSISTENT WITH INTERPOLATION;
MAXDER:=4; LHMAX:=HMAX; LHMIN:=HMIN;
LEPS:=EPS; PT:=2;
LH:=(PTS (2)-PTS(1))/3;
COMMENT MAKE SURE STARTING H IS LESS THAN .13
IF LH>.1 THEN LH:=.1;
COMMENT FOR USE WHEN AUX _INT™=0;
HP2:=LH;
COMMENT INITIALIZE;
IF INIT=1 THEN
BEGIN
FOR I:=1 UNTIL N DO Z(I):=INITY(I);
END v
ELSE
FUN(PTS(1),Z2,P,-3,G,DGY,DGP,SENSE) ;
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FOR I:=1 UNTIL N DO
BEGIN
LY(1,1I):=2(1
Y PTS(I,1):=
LYMAX (I):=1.
END;

COMMENT INITIALIZE NON JACOBIAN PART OF HERM_ SAVE;

FOR I:=1 UNTIL N DO HERM _SAVE(1,I,1):=Z(I);

FUN(PTS(1),%2,P,-1,G,DGY,DGP, SENSE),

FOR I:=1 UNTIL N DO HERM_SAVE(2,I,1):=G(I);

LT:=PTS (1) ;

STEP_COUNT:=0;

LNEXT_PT:=PTS (PT) ;

JSTART:=0;

COMMENT USE MULTISTEP METHOD SUITABLE FOR STIFF PROBLEMS;

WHILE PT<=N_PTS DO
BEGIN
STEP_COUNT:=STEP_COUNT+1;

IF STEP COUNT>MAX STEP THEN
BEGIN
COMMENT 3OUTPUT TO USER
OVER (MAX STEP) STEPS USED IN GEAR--GAVE UP;
GO TO STOP;
END;
COMMENT FOR USE WITH AUX INT™=0;
LTS:=LT;
DIFF(N,LT,LY,LSAVE,LH,LHMIN,LHMAX,LEPS,METHOD FLAG, LYMAX,
LERROR,KFLAG,JSTART,MAXDER,AA, ORDER FUN,P,PW);
COMMENT PROCESS COMPLETION CODE;
IF KFLAG<0 THEN
BEGIN
CASE ABS KFLAG OF
BEGIN
COMMENT $%0OUTPUT
PRINT TO USER LINE INDEXED BY KFLAG
H=HMIN USED, ERROR NOT ATTAINED
MAX ORDER SPECIFIED IS TOO LARGE
NO CORRECTOR COMVERGENCE FOR H>HMIN
REQUESTED ERROR TOO SMALL FOR PROB.;
END;
IF OUTPUT =0 THEN
CASE ABS KFLAG OF
BEGIN
COMMENT $OUTPUT TO ~SCl1 THE SAME MESSAGE
AS SENT TO USER IN LAST OUTPUT STATEMENT;
END;
GO TO STOP:;
END;
HP1 :=LT-LTS;
LTS:=LT;
IF AUX _INT"=0 THEN

);
Z(I);
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BEGIN
INTEGER ARRAY IPERM(1l::2*N);
LONG REAL ARRAY TMPR,U(1::N,1::N);
LONG REAL ARRAY B,F_PRED(l::N,l::N_PAR);
COMMENT $EXTERNAL FSLE_AL;
COMMENT AUXILIARY SYSTEMS BEING INTEGRATED;
IF PASS=]1 THEN
BEGIN
COMMENT FIRST PASS---INITIALIZE VARIABLES:
IF INIT=1 THEN
BEGIN
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N_PAR DO
SENSE (J ,K) :=INITYP (J,K);
END
ELSE
FUN(PTS(1),Y PTS(1,*),P,3,G,DGY,DGP,SENSE);
FOR J:=1 UNTIL N DO
FOR K:=]1 UNTIL N_PAR DO
STORE_DER(1,J,K) :=SENSE (J,K) ;
FOR J:=1 UNTIL N DO
BEGIN
MJAC : =MJAC+1;
FOR L:=1 UNTIL N_PAR DO
JAC(L,MJAC):=STORE_DER(1,J,L);
END;
COMMENT INITIALIZE FIRST DERIVATIVE PART OF STORE _DER;
FUN(PTS(1),Y PTS(l *),p,1,G,DGY,DGP, SENSE) ;
FUN(PTS(1),Y PTS(l *),P,2,G,DGY,DGP,SENSE) ;
FOR K:=1 UNTIL N_PAR DO
FOR I:=1 UNTIL N DO
BEGIN
LONG REAL SUM;
SUM:=0.;
FOR J:=1 UNTIL N DO
SUM:=SUM+DGY(I,J)*STORE_DER(l,J,K);
STORE_DER(2,I,K) :=HP2* (SUM+DGP (I,K));
‘ END;
COMMENT INITIALIZE PART OF HERM _SAVE FOR JACOBIAN;
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N PAR DO
BEGIN -
HERM_SAVE(l,J,K+1):=STORE_DER(1,J,K);
HERM_SAVE(Z,J,K+1):=STORE_DER(2,J,K)/HP2;
END:
PASS:=2;
END;
IF HP1"=HP2 THEN
BEGIN
COMMENT STEP HAS CHANGED AND STORED DERIVATIVES
NEED RESCALING:;
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LONG REAL RATIO,FACTOR;
FACTOR:=1.L;
RATIO:=HP1/HP2;
FOR I:=2 UNTIL ORDER+1 DO
BEGIN
FACTOR:=FACTOR*RATIO;
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N_PAR DO
STORE_DER(I,J,K):=STORE“DER(I,J,K)*FACTOR;
END;
END;
COMMENT UPDATE HP2;
HPZ2:=HP1;
COMMENT FIND PREDICTED VALUE BY MULTIPLYING STORE_DER BY
PASCAL TRIANGLE MATRIX;
FOR K:=1 UNTIL N_PAR DO
FOR J:=2 UNTIL ORDER+1 DO
FOR Jl1:=J UNTIL ORDER+1l DO
BEGIN
INTEGER J2;
J2:=0ORDER-J1+J;
FOR I:=1 UNTIL N DO
STORE_DER(J2,I,K) :=STORE_DER(J2,I,K)
+STORE_DER (J2+1,1,K) ;
END;
COMMENT SAVE HP1 TIMES PREDICTED
R.H.S. TO DE'S 1IN F_PRED;
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N_PAR DO
F_PRED(J,K):=STORE DER(2,J,K);
COMMENT SET UP R.H. SIDES FOR ALGEBRAIC LINEAR SYSTEMS:;
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N_PAR DO
B(J,K):=STORE_DER(1,J,K)—AA(1)*STORE_DER(Z,J,K);
COMMENT ADD IN INHOMOGENEOUS TERMS;:
FOR I:=1 UNTIL N DO Z(I):=LY(1,I):
FUN(LT,Z,P,2,G,DGY,DGP,SENSE) ;
FOR K:=1 UNTIL N_PAR DO
FOR J:=1 UNTIL N DO
B(J,K):=B(J,K)+HP1*AA (1) *DGP (J,K) ;
COMMENT SET UP MATRIX FOR LINEAR PROBLEMS;
FOR I:=1 UNTIL N DO Z(I):=LY(1,I);
FOUN(LT,Z,P,1,G,DGY,DGP,SENSE);
FOR I:=1 UNTIL N DO
FOR J:=1 UNTIL N DO
U(I,J):=-HP1*AA(1)*DGY(I,J):
FOR I:=1 UNTIL N DO U(I,I):=U(I,I)+1l.;
COMMENT SOLVE LINEAR SYSTEMS;
FSLE_AL(N,N,U,N_PAR,N,B,SENSE,IPERM,N,TMPR);
COMMENT STORE SOLUTION AT NEW TIME IN STORE_DER;
FOR J:=1 UNTIL N DO

APPENDIX B



244

FOR K:=1 UNTIL N_PAR DO
STORE_DER(1,J,K) :=SENSE (J,K) ;
COMMENT FIND R.H.S. OF DE'S AT NEW POINT;
FOR K:=1 UNTIL N PAR DO
FOR I:=1 UNTIL N DO
BEGIN
LONG REAL SUM;
SUM:=0.;
FOR J:=1 UNTIL N DO
SUM:=SUM+DGY(I,J)*STORE_DER(l,J,K);
STORE_DER(2,I,K) :=HP1* (SUM+DGP(I,K));
END; '
COMMENT CORRECT HIGHER DERIVATIVES;
IF ORDER>1 THEN
FOR I:=3 UNTIL ORDER+1 DO
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N_PAR DO
STORE_DER(I,J,K):=STORE_DER(I,J,K)+AA(I)
*(STORE_DER(Z,J,K)—F_PRED(J,K));
COMMENT IF REQUIRED INSERT NEXT HIGHER DERIVATIVES
IN STORE_DER;
IF JSTART>ORDER THEN
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N PAR DO
STORE_DER(ORDER+7,J,K):=AA(ORDER+1)*(STORE_DER(Z,J,K)
~-F_PRED(J,K))/(ORDER+1) ;
END;
COMMENT OUTPUT OPTION;
IF OUTPUT =0 THEN
BEGIN
OUT_COUNT:=0UT_COUNT+1;
IF OUT_COUNT=OUTPUT THEN
BEGIN
LONG REAL ARRAY V(1::N);
LONG REAL TIME;
FOR I:=1 UNTIL N DO V(I):=LY(1l,I);
TIME:=LT;
COMMENT %OUTPUT TO -SC1
TIME AND STATE VARIABLES;
OUT_COUNT:=0;
END;
END; :
COMMENT CHECK IF PASSED A POINT;
IF LT>=LNEXT_PT THEN
BEGIN
LONG REAL E;
INTERPOLATE_COEF;
WHILE LT>=LNEXT PT DO
BEGIN
E:=(PTS (PT)-LT) /HP1;
COMMENT INSERT DATA INTO Y PTS;
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FOR I:=1 UNTIL N DO
Y _PTS(I,PT):=POLYVAL(PTS(PT),INTERP(*,I,1),4);
COMMENT INSERT DATA INTO JACOBIAN IF REQUIRED;
IF AUX_INT"=0 THEN
FOR J:=1 UNTIL N DO
BEGIN
MJAC : =MJAC+1;
FOR L:=1 UNTIL N _PAR DO
JAC (L ,MJAC) :=POLYVAL (PTS (PT) , INTERP (*,J,L+1) ,4);
END;
PT:=PT+1;
IF PT>N_PTS THEN GO TO STOP;
LNEXT_PT:=PTS (PT) ;
END:;
STEP_COUNT:=0;
END;
COMMENT UPDATE HERM SAVE-
FOR J:=1 UNTIL N DO
BEGIN
HERM_SAVE (1,J,1)
HERM_SAVE (2,J,1)
END;
IF AUX_INT"=0 THEN
FOR J:=1 UNTIL N DO
FOR K:=1 UNTIL N _PAR DO
BEGIN
HERM_SAVE (1,J,K+1) :=STORE_DER(1,J,K) ;
HERM_SAVE (2,J,K+1) : =STORE_DER(2,J,K) /HP1;

LY(1,J);
LY(2,J)/HP]1;

END;
COMMENT RESET JSTART;
JSTART:=1;
END;

STOP:END GEAR.

FITT TTIT TILY TLLL LILY TTLY TILY BITY 2%%L 2%%% 2249
Marguardt procedure
FIIT TITL TTBY TTTY LYY BBBY TBBY TTLY 2% %L 23%%

PROCEDURE MARQUARDT (LONG REAL VALUE EPS_R,EPS _A;

INTEGER VALUE M,N; PROCEDURE FUNC;:

LONG REAL ARRAY P(*); LONG REAL VALUE LAM;

PROCEDURE SVD_AL) ;
BEGIN
COMMENT MARQUARDT-LEVENBERG TECHNIQUE--AN ADAPTATION OF
THE VERSION USED BY BARD (1970), SIAM J. NUMER. ANAL. 7,
157-186--OPTIONAL SCALING OF PROBLEM IF EPS _R, EPS A ARE
BOTH NEGATIVE;
LONG REAL ARRAY UD,JAC(1l::M,1::N);
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LONG REAL ARRAY RES,RES1(1::M);
LONG REAL ARRAY Pl,S,GRAD,GRADl,AUX_VEC,Z,DELTA,C(I::N);
LONG REAL ARRAY VD(1l::N,1::N);
INTEGER ERROR_COUNT,MAXIT,MAXINT,MAXERR,EFLAG,DECLAM;
LONG REAL F,Fl,SUM; LOGICAL CONV,SCALE;
LONG REAL PROCEDURE COSINE (LONG REAL ARRAY V1 (*);
LONG REAL ARRAY V2(*)):
BEGIN
COMMENT FIND COSINE OF ANGLE BETWEEN V1 AND V2;
LONG REAL S1,S2,S3:;
S1l:=0.L; S2:=0.L; S3:=0.L;
FOR I:=1 UNTIL N DO
BEGIN
S1:=81-V1(I)*V2(I);
S2:=82+V1(I)**2;
S3:=83+V2(I)**2;
END:
S1/LONGSQRT (S2*S3)
END COSINE;
COMMENT INITIALIZE AND SET BOUNDS ON EFFORT IN OPTIMIZATION
ATTEMPT;
MAXIT:=25; MAXINT:=4; MAXERR:=3; CONV:=FALSE;
ERROR COUNT:=0;

DECLAM:=0;
IF EPS_R<0 AND EPS A<0 THEN
BEGIN

SCALE : =TRUE;
EPS_R:=-EPS_R;EPS A:=-EPS A;
COMMENT &OUTPUT TO USER, -SCl1
SCALING USED IN MARQUARDT;
END
ELSE
BEGIN
SCALE : =FALSE;
FOR I:=1 UNTIL N DO C(I):=1.L;
END;
COMMENT INITIAL LEAST SQUARES FUNCTION EVALUATION;
FUNC (P,F,RES,JAC,GRAD,EFLAG) ;
IF EFLAG=1 THEN
BEGIN
COMMENT HANDLE ERROR RETURN
$OUTPUT TO USER, -SCl1
ERROR IN FIRST FUNCTION CALL IN MARQUARDT;
WRITE ("ERROR IN FIRST FUNC CALL IN MARQUARDT"):;
GO TO STOP; '
END;
COMMENT
$OUTPUT TO USER, -SC1
INITIAL SUM OF SQUARES (F):
COMMENT %OUTPUT TO USER
INITIAL SUM OF SQUARES IS (F);:
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FOR ITER:=1 UNTIL MAXIT DO
BEGIN
IF SCALE=TRUE THEN
BEGIN
LONG REAL SUM;
FOR J:=1 UNTIL N DO
BEGIN
SUM:=0.L;
FOR I:=1 UNTIL M DO
SUM:=SUM+JAC(I,J)**2;
C(J) :=LONGSQRT (SUM) ;
END;
FOR J:=1 UNTIL N DO
FOR I:=1 UNTIL M DO
JAC(I,J):=JAC(I1I,J)/C(J);
FOR I:=1 UNTIL N DO
GRAD (I) :=GRAD(I)/C(I);
END;
COMMENT FIND SINGULAR VALUE DECOMPOSITION OF JAC:
SvDh_AL(JaC,s,up,VD,M,N,M,N,0,N,N);
IF ITER=1 THEN
BEGIN
COMMENT INITIALIZE LAM;
LAM:=(IF LAM<KO THEN .0lL ELSE LAM);
END;
COMMENT PREPARE FOR AN ITERATION;
FOR I:=1 UNTIL N DO
BEGIN
SUM:=0.L;
FOR J:=1 UNTIL M DO SUM:=SUM+UD(J,I)*RES (J);
AUX_VEC (I) :=SUM*S(I);
END;
COMMENT DETERMINE LAM;
REDO:FOR I:=1 UNTIL N DO
Z (I):=AUX_VEC(I)/(S(I)**2+LAM);
FOR I:=1 UNTIL N DO

BEGIN

SUM:=0.L;

FOR J:=1 UNTIL N DO SUM:=SUM+VD(I,J)*Z(J);
DELTA(I) :=-SUM;

END;

FOR I:=1 UNTIL N DO P1(I):=P(I)+DELTA(I)/C(I);
COMMENT
$OUTPUT TO -SC1
TRIAL LAMBDA (LAM), TRIAL PARAMETER VECTOR (P1l);
COMMENT FIND LEAST SQUARES FUNCTION AT TRIAL PARAMETERS;
FUNC (P1,F1,RES1,JAC,GRAD],EFLAG) ;
IF EFLAG=1 THEN
BEGIN : ,
COMMENT HANDLE ERROR RETURN;
ERROR_COUNT:=ERROR_COUNT+1;
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IF ERROR_COUNT=MAXERR THEN
BEGIN
COMMENT
30UTPUT TO USER, -SCl
(MAXERR) FUNCTION ERRORS;

GO TO STOP;
END
ELSE
BEGIN
LAM:=LAM*10.L;
DECLAM:=0;
GO TO REDO;
END;
END:;
ERROR_COUNT:=0;
COMMENT

$0OUTPUT TO -SCl1
TRIAL SUM OF SQUARES (Fl);
IF F1<F THEN
COMMENT DECREASE LAM AFTER TWO SUCCESSFUL
FUNCTION REDUCTIONS;
BEGIN
DECLAM:=DECLAM+1;
IF DECLAM=2 THEN

BEGIN

LAM:=(IF (.1L*LAM>1.'-10L) THEN .1L*LAM ELSE 1.'-10L);
DECLAM:=0;

END;

COMMENT CHECK FOR CONVERGENCE;
IF (F-F1<EPS_R*F1+EPS A) OR (F1<EPS_A) THEN CONV:=TRUE;
GO TO UPDATE;
END
ELSE
BEGIN
IF (COSINE (DELTA,GRAD))<.707 THEN
BEGIN "
COMMENT INCREASE LAM;
LAM:=10.L*LAM;

DECLAM:=0;
GO TO REDO;
END

ELSE
BEGIN

COMMENT DIRECTION TOO CLOSE TO STEEPEST DESCENT,
THEREFORE DO NOT INCREASE LAM, BUT INTERPOLATE;
LONG REAL GA,RO0,R1,Wl;

COMMENT

%OUTPUT TO USER, -SC1

INTERPOLATING;

GA:=0.L;

RO:=1.L;

APPENDIX B



FOR I:=1 UNTIL N DO
GA:=GA+DELTA (I) *GRAD(I);
FOR INTERP:=1 UNTIL MAXINT DO

BEGIN
R1:=GA*RO**2/(2.L* (GA*RO+F-F1)); .
Wl:=(IF (.75L*RO<R1) THEN .75L*R0O ELSE R1l);:
RO:=(IF (.25L*RO>W1) THEN .25L*R0O ELSE Wl);
REPEAT:FOR I:=1 UNTIL N DO
P1(I):=P(I)+RO*DELTA(I)/C(I);
COMMENT
$0OUTPUT TO -SC1
TRIAL PARAMETER VECTOR (P1):
COMMENT FUNCTION EVALUATION AT TRIAL PARAMETERS:
FUNC (P1,F1,RES]1,JAC,GRAD],EFLAG);
IF EFLAG=1 THEN
BEGIN
COMMENT HANDLE ERROR RETURN;
ERROR_COUNT:=ERROR COUNT+1;
IF ERROR_COUNT=MAXERR THEN
BEGIN
COMMENT
$OUTPUT TO USER, -SCl
(MAXERR) FUNCTION ERRORS IN INTERPOLATION PART;
GO TO STOP;
END
ELSE
BEGIN
RO:=R0*,5L;
GO TO REPEAT;
END;
END;
ERROR_COUNT:=0;
COMMENT
%$OUTPUT TO USER, -SC1
TRIAL SUM OF SQUARES (F1l):;
IF F1<F THEN
BEGIN
IF (F-F1<EPS_R*F1+EPS A)
OR (F1<EPS_A) THEN CONV:=TRUE;
GO TO UPDATE;
END;
END INTERP;

COMMENT

30UTPUT TO USER, -SCl1

(MAXINT) INTERPOLATIONS TRIED, NO REDUCTION
IN SUM OF SQUARES;

GO TO STOP;
END;
END;
UPDATE:
FOR I:=1 UNTIL N DO
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BEGIN

P(I):=P1(1);
GRAD(I) :=GRADI1(1I1):
END;

:=F1;

COMMENT %OUTPUT TO USER
NEW SUM OF SQUARES IS (F);
FOR I:=]1 UNTIL M DO RES(I):=RES1(I);
IF CONV=TRUE THEN GO TO FINISHED;
END ITER;
COMMENT
30UTPUT TO USER, -SCl1
OVER (MAXIT) ITERATIONS REQUIRED; GO TO STOP;
FINISHED:
COMMENT
3OUTPUT TO USER, -SCl1
FINAL PARAMETERS (P), FINAL GRADIENT (GRAD),
FINAL SUM OF SQUARES (F);
STOP:END MARQUARDT.

TEFT TTTY TTLY TTLY BB YT LULL LY 222L L2 %33
Interactive optimization
TT3T TITT BT LTLY BT LBBY TLLT BT LPLL 22%% 2%3%%

PROCEDURE INTERACTIVE OPT (INTEGER VALUE M,N;
PROCEDURE FUNC;
LONG REAL ARRAY P (*);
PROCEDURE SVD_AL;
LONG REAL ARRAY OBS_PLACE (*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY STATE (¥,*);
LONG REAL ARRAY OBS(*,*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
LONG REAL ARRAY CREOBS (*);
INTEGER VALUE N_OBS,N_PTS_HIT,N_STATE_OBS
+N_STATE;
INTEGER ARRAY STATES_OBS (*);
INTEGER VALUE RESULT PLOT NUMBER;
PROCEDURE READ CMD DATA;
PROCEDURE CMD_AL;
PROCEDURE PLOT COMMAND) ;
BEGIN
STRING (6) ARRAY COMMANDS (1::20);
STRING (6) CMD;
INTEGER CMD_CTR,CMD_NO, TECH,NP,EFLAG,ECT;
LONG REAL LAMDA,DEL,F,TRIAL F,SUM;
LONG REAL ARRAY AUX_VEC,S,SP,TRIAL SP,
TRIAL_P,GRAD, TRIAL GRAD (1::N);
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INTEGER ARRAY FREEZE (l::N):
LOGICAL NUM, INIT,SUCCESS:
LONG REAL ARRAY RES,TRIAL RES(1l::M);
LONG REAL ARRAY TRIAL JAC,JAC,AJAC,UD(1::M,1l::N);
LONG REAL ARRAY VD(1l::N,l::N);
COMMENT S$EXTERNAL ECHO;
PROCEDURE ECHO_CHECK;
BEGIN
COMMENT ECHO 3270 CONVERSATION BUFFER;
IF ECT>80 THEN
BEGIN
ECHO (2):
END;
ECT:=0;
END ECHO_CHECK;
PROCEDURE MARQ PREP;
BEGIN
COMMENT EXTRACT JACOBIAN AND PARAMETERS
ON NONFROZEN COMPONENTS;
INTEGER JJ;
LONG REAL SUM;
JJ:=0;
FOR J:=1 UNTIL N DO
IF FREEZE (J)=0 THEN
BEGIN
JJ:=3J+1;
FOR I:=1 UNTIL M DO AJAC(I,JJ) :=JAC(I,J):
SP(JJ) :=P(J);
END;
NP:=JJ;
SVvD_AL(AJAC,S,UD,VD,M,N,M,NP,0,NP,NP);
FOR I:=1 UNTIL NP DO
BEGIN
SUM:=0;
FOR J:=1 UNTIL M DO
SUM:=SUM+UD (J,I) *RES (J) ;
AUX_VEC(I) :=SUM;
END;
FOR I:=1 UNTIL NP DO
AUX_VEC(I) :=AUX VEC(I)*S(I);
END MARQ PREP;
PROCEDURE INITIALIZE;
BEGIN
COMMENT INITIALIZE;
FUNC (P,F,RES,JAC,GRAD,EFLAG) ;
IF EFLAG=1 THEN
BEGIN
INIT:=FALSE;
NUM:=FALSE;
GO TO READ CMD;
END;
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CASE TECH OF
BEGIN
BEGIN
COMMENT STEEPEST DESCENT CASE;
COMMENT INITIALIZATION AUTOMATIC;
END;
BEGIN
COMMENT MARQUARDT;
MARQ PREP;
END
END;
INIT:=FALSE;
END INITIALIZE;
PROCEDURE UPDATE;
BEGIN
CASE TECH OF
BEGIN
BEGIN
COMMENT UPDATE FOR STEEPEST DESCENT;
FOR I:=1 UNTIL N DO
BEGIN
P(I):=TRIAL P(I);
GRAD(I) : =TRIAL GRAD(I);
END;
F:=TRIAL_F;
END;
BEGIN
COMMENT UPDATE FOR MARQUARDT;
F:=TRIAL_F;
FOR I:=1 UNTIL N DO
BEGIN
P(I) :=TRIAL_P(I);
GRAD (I) :=TRIAL GRAD(I);
END; -
FOR I:=1 UNTIL M DO
RES(I) :=TRIAL RES(I);
FOR J:=1 UNTIL N DO
FOR I:=1 UNTIL M DO
JAC(I,J) :=TRIAL JAC(I,J);

MARQ PREP;
END
END;
SUCCESS :=FALSE;
END UPDATE;
COMMENT INITIALIZE;
ECT:=0;
ECHO(1);

COMMENT $%OUTPUT TO USER -REPRT
####4#INTERACTIVE OPTIMIZATION ATTEMPTH####44%;
INIT:=TRUE;

LAMDA:=.01;
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TECH:=2;

SUCCESS:=FALSE;

NUM:=FALSE;

FOR I:=1 UNTIL N DO FREEZE(I):=0;
COMMENT SET UP COMMAND DESIGNATORS;
COMMANDS (1) :="T "

COMMANDS (2) :="M "

COMMANDS (3) :="N "

COMMANDS (4) : ="V "
COMMANDS (5) : ="F "
COMMANDS (6) :="DF "

COMMANDS (7) :="SET ";
COMMANDS (8) : ="Q "
COMMANDS (9) : ="PLOT ";
COMMANDS (10) :="END  ";
COMMENT READ COMMAND DESIGNATOR AND IDENTIFY;
READ_ CMD:
COMMENT %OUTPUT TO USER
****ENTER OPTIMIZATION COMMAND***%;
ECHO CHECK;
COMMENT $INPUT (CMD) ;
CMD CTR:=1;
WHILE COMMANDS (CMD CTR)~="END " DO
BEGIN
IF COMMANDS (CMD_CTR)=CMD THEN
BEGIN CMD_NO:=CMD_CTR;

GO TO OUT;

END;
CMD_CTR:=CMD_CTR+1;
END;

COMMENT $OUTPUT TO USER
COMMAND IN ERROR RESPECIFY;
GO TO READ CMD;
OUT:CASE CMD NO OF
BEGIN -

BEGIN

COMMENT CHOICE OF TECHNIQUE COMMAND;

STRING(6) MET:;

INTEGER TECH];

ECT:=ECT+1;

TECH1 :=TECH;

COMMENT $INPUT (MET);

IF MET="SD " THEN TECH:=1
ELSE
IF MET="MARQ " THEN TECH:=2
ELSE

BEGIN

COMMENT %OUTPUT TO USER

ERROR IN TECHNIQUE SPECIFICATION;
GO TO READ_CMD;

END;
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IF TECH™=TECH1 THEN INIT:=TRUE;
END;
BEGIN
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COMMENT MULTIPLY OPTIMIZATION PARAMETER BY A FACTOR;

LONG REAL FACTOR;
ECT:=ECT+3;
COMMENT $INPUT (FACTOR);
CASE TECH OF
BEGIN
DEL:=DEL*FACTOR;
LAMDA :=LAMDA*FACTOR
END;
NUM:=TRUE;
END;
BEGIN
COMMENT NEW OPTIMIZATION PARAMETER:;
ECT:=ECT+3;
CASE TECH OF
BEGIN
BEGIN
COMMENT %INPUT (DEL):
END:
BEGIN
COMMENT $%INPUT (DEL);
END
END;
NUM:=TRUE;
END;
BEGIN
COMMENT VIEW COMMAND;
STRING(6) UNIT;
ECT:=ECT+10;
IF INIT=TRUE THEN INITIALIZE
ELSE IF SUCCESS=TRUE THEN UPDATE;
BEGIN
COMMENT %OUTPUT TO USER
PARAMETERS, GRADIENT, FREEZING;
CASE TECH OF
BEGIN
BEGIN
COMMENT STEEPEST DESCENT;
COMMENT %OUTPUT TO USER
STEEPEST DESCENT CURRENT STEP
END;
BEGIN
COMMENT MARQUARDT DATA;
COMMENT $%OUTPUT TO USER
MARQUARDT, (LAMDA), (S);
END
END:
COMMENT %OUTPUT TO USER

(DEL) ;
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CURRENT SUM OF SQUARES (F);
END;
END;
BEGIN
COMMENT FREEZE COMMAND;
INTEGER CMP;
IF SUCCESS=TRUE THEN UPDATE:
COMMENT %INPUT (CMP);
WHILE CMP~=0 DO
BEGIN
ECT:=ECT+1;
FREEZE (CMP) :=1;
COMMENT $INPUT (CMP):
END;
INIT:=TRUE;
END;
BEGIN
COMMENT DEFREEZE COMMAND;
INTEGER CMP;
IF SUCCESS=TRUE THEN UPDATE;
COMMENT %INPUT (CMP):
IF CMP=0 THEN
BEGIN
COMMENT REMOVE ALL FREEZING;

FOR I:=1 UNTIL N DO FREEZE(I):=0;

END
ELSE
WHILE CMP™=0 DO
BEGIN
ECT:=ECT+1;
FREEZE (CMP) :=0;
COMMENT %INPUT (CMP):
END;
INIT:=TRUE;
END;
BEGIN
COMMENT SET COMMAND;
INTEGER CMP;
IF SUCCESS=TRUE THEN UPDATE;
COMMENT $INPUT (CMP);
WHILE CMP™=0 DO
BEGIN

COMMENT %INPUT (P(CMP)), (CMP);

ECT:=ECT+1;
END;
INIT:=TRUE;
END;
BEGIN
COMMENT QUIT COMMAND:
IF SUCCESS=TRUE THEN UPDATE;
ECHO (3);
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GO TO STOP;
END;
BEGIN
COMMENT PLOT COMMAND;
PLOT_COMMAND( OBS PLACE,
PTS TO HIT,STATE, OBS OBS SMOOTH,P,
N OBS,N _PTS HIT, N STATE OBS N_STATE,N,
STATES OBS PLOT_NUMBER,
READ_CMD_DATA
CMD_AL,CREOBS) ;
ECT:=ECT+25;
END
END;
COMMENT CARRY OUT NUMERICAL WORK IF REQUIRED;
IF NUM=TRUE THEN
BEGIN
IF INIT=TRUE THEN
INITIALIZE
ELSE IF SUCCESS=TRUE THEN
UPDATE;
CASE TECH OF
BEGIN
BEGIN
COMMENT STEEPEST DESCENT ITERATION ATTEMPT;
FOR I:=1 UNTIL N DO
IF FREEZE(I)=0 THEN
TRIAL P(I):=P(I)-DEL*GRAD(I)

ELSE
TRIAL P(I):=P(I);
ECT:=ECT+3;

COMMENT $%OUTPUT
TRIAL PARAMETERS (TRIAL P);
FUNC (TRIAL_P,TRIAL_F,TRIAL_RES,TRIAL JAC
» TRIAL GRAD, EFLAG),
IF EFLAG=1 THEN
BEGIN
NUM:=FALSE;
GO TO READ CMD;
END; -
BEGIN
IF TRIAL F<F THEN
BEGIN
COMMENT REDUCED RESIDUAL--TELL USER;
ECT:=ECT+3;
COMMENT $OUTPUT TO USER
STEEPEST DESCENT STEP SUCCESSFUL
NEW SUM OF SQUARES (TRIAL F),
CHANGE IN SUM OF SQUARES (F-TRIAL F);
SUCCESS :=TRUE;
END
ELSE
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BEGIN
COMMENT STEP UNSUCCESSFUL:;
ECT:=ECT+3;
COMMENT $%OUTPUT TO USER
STEEPEST DESCENT DID NOT REDUCE RESIDUAL
NEW SUM OF SQUARES (TRIAL F);
END;
COMMENT $OUTPUT TO USER
STEP WAS (DEL):
END;
END;
BEGIN
COMMENT MARQUARDT ITERATION ATTEMPT;
LONG REAL ARRAY Z(1l::N);
INTEGER JJ;
FOR I:=1 UNTIL NP DO
Z(I):=AUX_VEC(I)/(S(I)**2+LAMDA);
FOR I:=1 UNTIL NP DO
BEGIN
SUM:=0;
FOR J:=1 UNTIL NP DO SUM:=SUM+VD(I,J)*Z(J);
TRIAL SP(I):=SP(I)-SUM;
END;
JJ:=0;
FOR I:=1 UNTIL N DO
BEGIN
IF FREEZE(I)=0 THEN
BEGIN
JJ:=JJ+1;
TRIAL_P(I):=TRIAL_SP(JJ)
END
ELSE TRIAL P(I):=P(I);
END;
BEGIN
COMMENT $OUTPUT TO USER
TRIAL PARAMETERS (TRIAL P);
ECT:=ECT+3;
END;
FUNC (TRIAL_P,TRIAL F,TRIAL RES,
TRIAL JAC,TRIAL GRAD,EFLAG);
IF EFLAG=1 THEN
BEGIN
NUM:=FALSE;
GO TO READ CMD;
END;
BEGIN
IF TRIAL F<F THEN
BEGIN
COMMENT REDUCED RESIDUAL--TELL USER;
ECT:=ECT+3;
COMMENT $OUTPUT TO USER
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MARQUARDT STEP SUCCESSFUL
NEW SUM OF SQUARES (TRIAL_F)
CHANGE IN SUM OF SQUARES (T-TRIAL _F);
SUCCESS:=TRUE;
END

ELSE
BEGIN
ECT:=ECT+3;
COMMENT %0OUTPUT TO USER
MARQUARDT DID NOT REDUCE RESIDUAL
NEW SUM OF SQUARES (TRIAL_F);
END;

COMMENT %OUTPUT TO USER

LAMBDA IS (LAMDA);:;

ECT:=ECT+1;

END;

END

END;
=FALSE;

NUM:
END;

GO TO READ CMD;

STOP:EN

2%%%

3333

PROCEDURE
LONG REAL
LONG REAL
LONG REAL
LONG REAL
LONG REAL

D INTERACTIVE OPT.

FTBT TBIIT TLLY ST LYY YT TTLL HBL OTULVY $%%%
Plotting procedure
FTTIT TTTL TTLY TIBY BTLY TBLY TIYY IBL 23T ¥%%%

PLOT_COMMAND (LONG REAL ARRAY LOBS_ PLACE (*);
ARRAY LPTS TO HIT(*);

ARRAY LSTATE (¥,*);

ARRAY LOBS (*,*);

ARRAY LOBS_SMOOTH (*,*) ;

ARRAY PAR(¥);

INTEGER VALUE N_OBS,N PTS HIT,N_STATE_ OBS
+N_STATE,N PAR; -7

INTEGER ARRAY STATES OBS (*);

INTEGER VALUE RESULT PLOT NUMBER;

PROCEDURE

PROCEDURE

LONG REAL
BEGIN
COMMENT

READ CMD DATA;
CMD_AL;
ARRAY LCREOBS(*));

PLOT COMMAND FOR STATE VARIABLES, OBSERVATIONS,

SMOOTHING, GUESSED OBSERVATIONS, AND PHASE PLOTS;

INTEGER

ARRAY STATE_PLOT(l::N_STATE+1);
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INTEGER ARRAY OBS PLOT,SMOOTH PLOT,SCRATCH(1:: N_STATE OBS+1);

INTEGER
INTEGER
STRING (

ARRAY PLOT " ITEMS(1: :5);
ARRAY CRE PLOT PH PLOT(l..2),
1) ANS;
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INTEGER I;
LONG REAL XSIZE,YSIZE;
STRING (10) LABELX,LABELY;
COMMENT DECLARE SINGLE PRECISION ARRAYS TO PASS DATA
TO GRAPHICS PROCEDURES;
REAL ARRAY OBS PLACE(l::N OBS);
REAL ARRAY PTS_TO HIT(l::N PTS HIT);
REAL ARRAY STATE(I::N PTS HIT,I::N STATE);
REAL ARRAY OBS(l::N_OBS,1::N STATE OBS);
REAL ARRAY OBS SMOOTH(l--N PTS HIT,1l::N_STATE OBS);
REAL ARRAY CREOBS(1::N PTS HIT,1::1);
PROCEDURE MAX MIN(REAL ARRAY X (*);INTEGER VALUE N;
REAL RESULT MAX,MIN);
BEGIN
COMMENT FIND MAXIMUM AND MINIMUM OF X;
MAX:=X (1) ;MIN:=X(1);
FOR I:=1 UNTIL N DO
BEGIN
IF X(I)>MAX THEN MAX:=X(I);
LF X (I)<MIN THEN MIN:=X(I);
END;
END MAX MIN;
PROCEDURE PLOT;
BEGIN
COMMENT THIS PROCEDURE CONTAINS THE INTERFACE TO ALL
GRAPHICS PROCEDURES;
REAL MAX X,MAX Y,MAX XT,MAX YT,
MIN_X,MIN_Y,MIN XT,MIN YT;
INTEGER I, NEW;
COMMENT 3EXTERNAL ALGRAF_AL, PLOT AL
ALSIZE_AL, ALSCAL AL, ALAXIS AL;
PROCEDURE MAX_ MIN MTX (INTEGER ARRAY POS (*);
REAL ARRAY X (¥,%*)3
INTEGER VALUE N);
BEGIN
INTEGER J;
:=1:
WHILE POS(J)~=0 DO
BEGIN
MAX_ MIN (X (*,POS(J)),N,MAX YT,MIN YT);
IF MAX_YT>MAX_Y THEN MAX Y:=MAX YT;
IF MIN_YT<MIN_Y THEN MIN_Y:=MIN_YT;
=J+17
END-
END MAX MIN MTX;
PROCEDURE PLOT_HELP (INTEGER ARRAY POS (*);REAL ARRAY X (*);
REAL ARRAY Y (*,%);
INTEGER VALUE N,NS);
BEGIN
INTEGER J;
:=1;

APPENDIX B



260

WHILE POS(J) =0 DO
BEGIN
ALGRAF_AL(X,Y(*,POS(J)) ,NEW*N,-5*NS-POS(J));
IF NEW>0 THEN NEW:=-1;
:=J+1;
END;
END PLOT HELP;
COMMENT DETERMINE BOUNDS FOR SCALING:
MAX X:=-1."'50;MIN X:=1.'50;
IF PLOT ITEMS(1)=5 THEN
MAX_MIN (STATE(*,1) ,N_PTS_HIT,MAX X,MIN X)
ELSE
BEGIN
FOR I:=1 UNTIL 5 DO
IF PLOT ITEMS(I)—2 THEN
MAX MIN(OBS PLACE,N OBS MAX X,MIN X),
MAX MIN(PTS “TO HIT, N _PTS HIT MAX XT MIN XT),
IF MAX XT>MAX X THEN MAX X: —MAX_XT'
IF MIN XT<MIN X THEN MIN X:=MIN XT;

END;
MAX Y:=-1.'50;MIN Y:=1.'50;
I:=1;
WHILE PLOT_ITEMS(I)~=0 DO
BEGIN
CASE PLOT_ITEMS(I) OF
BEGIN

MAX_MIN_MTX(STATE_PLOT,STATE,N_PTS HIT);
MAX __MIN MTX(OBS PLOT,OBS,N OBS),
MAX __MIN MTX(SMOOTH PLOT, OBS SMOOTH,N_PTS_ HIT);
MAX MIN . _MTX (CRE__ PLOT,CREOBS, N _PTS HIT),
MAX MIN(STATE(* ,2), N_PTS__ HIT MAX +MIN_Y)
END;
=I+1;
END;

COMMENT DO THE PLOTTING;

ALSIZE AL (XSIZE-1.'-5,YSIZE-1."'~5);

ALSCAL AL(MIN X,MAX X,MIN_Y,MAX Y);

ALAXIS AL(LABELX 50, LABELY,50) ;

NEW:=13
I:=1;
WHILE PLOT ITEMS(I)~=0 DO
BEGIN -
CASE PLOT ITEMS(I) OF
BEGIN

PLOT_HELP (STATE_PLOT,PTS_TO_HIT,STATE,N_PTS HIT,O0);
PLOT _HELP (OBS__ PLOT, OBS PLACE,OBS,N OBS 1);

PLOT HELP(SMOOTH PLOT PTS _TO_HIT, OBS _SMOOTH,

N PTS HIT,2);

PLOT HELP(CRE PLOT,PTS_TO_HIT,CREOBS,N PTS HIT,3);
PLOT _HELP (PH_ PLOT, STATE(* 1) ,STATE,N PTS HIT 4)
END;

APPENDIX B



261

I:=1I+1;
END;

COMMENT PREPARE FOR NEXT PLOT;

PLOT AL(12.0,0,-3);

END PLOT;
COMMENT EXECUTION BEGINS HERE
FIRST COPY ARRAYS TO SINGLE PRECISION COUNTERPARTS;
FOR I:=1 UNTIL N _OBS DO
OBS_PLACE (I) :=LOBS_PLACE (I);
FOR I:=1 UNTIL N_PTS HIT DO
PTS_TO_HIT(I):=LPTS TO HIT(I);
FOR J:=1 UNTIL N_STATE DO
FOR I:=1 UNTIL N _PTS HIT DO
STATE (I,J) :=LSTATE (I,J);
FOR J:=1 UNTIL N_STATE OBS DO
FOR I:=1 UNTIL N OBS DO
OBS(I,J) :=LOBS(I,J);
FOR J:=1 UNTIL N_STATE OBS DO
FOR I:=1 UNTIL N _PTS HIT DO
OBS_SMOOTH (I,J) :=LOBS_SMOOTH(I,J);
FOR I:=1 UNTIL N PTS HIT DO
CREOBS(I,1) :=LCREOBS(I);
XSIZE:=5.;
YSIZE:=3.;
COMMENT %OUTPUT TO USER
SEQUENCE OF ITEMS TO PLOT (END WITH 0)

STATE VARIABLES—=======m————— oo 1
OBSERVATIONS=—=== === mmmmmm e 2
SMOOTHED OBSERVATIONS——=====—m——=mee 3
GUESSED OBSERVATIONS=—====——=—m—m——e— 4
PHASE PLOT-========—mm—mm e 5;

READ_CMD_DATA (PLOT ITEMS);
LABELX:="TIME"; LABELY:="STATE";

I:=1;
WHILE PLOT_ITEMS(I)~=0 DO
BEGIN
CASE PLOT_ITEMS(I) OF
BEGIN
BEGIN

COMMENT %0OUTPUT TO USER
STATE VARIABLES (END WITH 0);
READ_CMD_DATA (STATE_PLOT) ;
END;
BEGIN <
INTEGER II;
COMMENT %OUTPUT TO USER
OBSERVED VARIABLES TO PLOT (END WITH 0);
READ_CMD_DATA(SCRATCH);
II:=1;
WHILE SCRATCH(II) =0 DO
BEGIN
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FOR J:=1 UNTIL N STATE OBS DO

IF SCRATCH(II)=STATES_OBS(J) THEN OBS_PLOT(II)

:=J;
I1:=I1I+1;
: END;
OBS PLOT(II):=0;
END;
BEGIN
INTEGER II;
COMMENT $%$OUTPUT
SMOOTHED OBSERVATIONS TO PLOT (END WITH 0);
READ_CMD_DATA (SCRATCH) ;
IT:=1;
WHILE SCRATCH(II) =0 DO
BEGIN
FOR J:=1 UNTIL N STATE OBS DO

IF SCRATCH(II)=STATES_OBS(J) THEN SMOOTH PLOT(II)

:=J;
II:=1I1+1;
END;
SMOOTH_PLOT (II):=0;
END;
BEGIN
COMMENT GUESSED OBSERVATIONS CASE;:
CRE_PLOT(1) :=1;CRE_PLOT(2) :=0;
END;
BEGIN
COMMENT PHASE PLOT CASE;
PH_PLOT (1) :=2;PH _PLOT(2) :=0;
LABELX:="Y1";LABELY:="Y2";
END
END;
I:=1I+1;
END;
COMMENT S$FILE EMPTY FILE -GRAPH;
PLOT;
COMMENT $%FILE DISPLAY -GRAPH TO USER
20OUTPUT TO USER
IS A PERMANENT PLOT REQUIRED ANS. Y OR N
2INPUT (ANS);
IF ANS="Y" THEN

BEGIN

XSIZE:=10;

YSIZE:=10;

COMMENT %FILE EMPTY -GRAPH;
PLOT;

COMMENT %FILE ACCUMULATE ~-GRAPH IN -GRAPHSTORE;
PLOT_NUMBER:=PLOT_NUMBER+1;

COMMENT %OUTPUT TO USER, -REPRT

CURRENT PLOT_NUMBER (PLOT_ NUMBER)
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CURRENT PARAMETERS (PAR)
DESCRIPTION OF PLOT CONTENTS;
END;

END PLOT_ COMMAND.

FTIT TITY TTBY TILY TTTY 2TBL TR T TTTD 22D %%%%
Sparse Gauss-Newton for iterated methods
33TT 3BT 3TIT LTS TLIL TBL BUTL BBLL B3I 2%%% £%%%

PROCEDURE SPRGN (PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA (*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS (*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY JOINTS(*,*):
LONG REAL ARRAY SPLN COEF (*,*);
LONG REAL ARRAY HERM COEF (*,%,*);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N SPLN PAR(*);
LONG REAL PROCEDURE SPLN AL,DSPLN AL,HERM,DHERM;
LONG REAL ARRAY CREOBS (*); -
LONG REAL ARRAY DCREOBS (*);
PROCEDURE ITER_PAR);
BEGIN
COMMENT ITERATED IFIT AND DFIT IN THE TWO STATE VARIABLE CASE
USING A SPARSE GAUSS-NEWTON METHOD TO IMPROVE
GUESSED OBSERVATIONS
(2 OPTIONS, FIXED INITIAL CONDITIONS ON GUESSED OBSERVATIONS,
AND VARIABLE INITIAL CONDITIONS FOR GUESSED OBSERVATIONS;
PROCEDURE ITER FUNC (LONG REAL ARRAY C(*);
LONG REAL RESULT F;
LONG REAL ARRAY AHES(*):
LONG REAL ARRAY GRAD (*);
INTEGER VALUE FULL);
BEGIN
COMMENT LEAST SQUARES FUNCTION FOR
ITERATIVELY IMPROVING THE
GUESSED OBSERVATIONS USING A SPARSE GAUSS NEWTON METHOD;
LONG REAL ARRAY A,JA(l::N PTS HIT);
LONG REAL ARRAY B(l::N PTS HIT-1);
LONG REAL ARRAY JB(l::N PTS HIT-1,1::2);
LONG REAL ARRAY DGY,PREV DGY(l::2,1::2);
LONG REAL ARRAY DGP,SENSE(l::1,1::1);
LONG REAL ARRAY G,PREV G,Y(l::2);
LONG REAL HI;
Y (SM_Y) :=0OBS_SMOOTH (1,1);
Y(CR_Y):=C(1);
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G_FUN(PTS_TO_HIT(1),Y,PAR,1,PREV_G,PREV DGY,DGP,SENSE);
A(l) :=PREV_G(SM_Y)
- (CASE SMF OF (DSPLN_AL (PTS_TO HIT (1),
SPLN_COEF (*,1) ,JOINTS (*,1), -
NJOINTS (1) ,N_SPLN PAR(1)),
DHERM (PTS_TO_HIT(I) ,HERM_COEF (*,*,1) ,JOINTS (*,1),
NJOINTS (17)));
JA (1) :=PREV_DGY (SM_Y,CR_Y);
FOR I:=2 UNTIL N_PTS HIT DO
BEGIN
Y (SM_Y) : =OBS_SMOOTH (I,1);
Y (CR_Y) :=C(I);
G_FUN(PTS_TO HIT(I),Y,PAR,1,G,DGY,DGP,SENSE);
A(I):=G(SM_Y)
- (CASE SMF OF (DSPLN_AL(PTS_TO HIT(I),
SPLN_COEF (*,1) ,JOINTS (*,1)
NJOINTS (1) ,N_SPLN PAR(1)),
DHERM (PTS_TO_HIT(I) ,HERM_COEF (*,*,1) ,JOINTS (*,1),
NJOINTS (17))7;
JA(I):=DGY (SM_Y,CR Y);
HI:=PTS_TO_HIT(I)-PTS_TO_HIT(I-1);

B(I-1):=.5L*(G(CR Y)+PREV _G(CR_Y))-(C(I)-C(I-1))/HI;
JB(I-1, l) =.5L*PREV DGY(CR Y,CR _Y)+1.L/HI;
JB(I—1,2) .5L*DGY(CR Y,CR Y) -1.L/HI;

FOR J:=1 UNTIL 2 DO
PREV_G(J) :=G(J) ;
FOR J:=1 UNTIL 2 DO
FOR K:=1 UNTIL 2 DO
PREV_DGY (J,K) :=DGY (J,K) ;
END;
IF FULL=1 THEN
BEGIN
COMMENT FORM AHES TO CONFORM TO DFBAND;
AHES (1) :=JB(1,1)**24+4JA (1) **2;
FOR I:=2 UNTIL N_PTS HIT-1 DO
AHES (2* (I-1)+1) :=JA(I)**24+JB(I-1,2)**2+JB(I,1)**2;
AHES (2*(N_PTS_HIT- -1)+1) :=JA(N_ PTS _HIT)**2
+JB (N_PTS HIT-1,2)**2;
FOR I:=1 UNTIL N_PTS_HIT—l DO
AHES (2*1):=JB(I,1)*JB(I,2);
COMMENT FORM GRADIENT;
FOR I:=1 UNTIL N_PTS HIT DO
BEGIN
GRAD (I) :=JA(I)*A(I1);
IF I=1 THEN GRAD(I):=GRAD(I)+JB(1,1)*B(1)
ELSE
IF I=N PTS HIT THEN GRAD(I) :=GRAD(I)+
JB(N_ PTS HIT-1, 2)*B(N_PTS_HIT-1)
ELSE
GRAD(I) :=GRAD(I)+JB(I-1,2)*B(I-1)+JB(I,1)*B(I);
END; '
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END;
COMMENT FORM F;

F:=0.
FOR 1I:

L;

=1 UNTIL N_PTS HIT DO

F:=F+A(I)**2;
FOR I:=1 UNTIL N_PTS HIT-1 DO
F:=F+B(I)**2;
END ITR_FUNC;

COMMENT

PROCEDURE ITER_FUNC_FIXIC(LONG REAL ARRAY C(*);
LONG REAL RESULT F;

LONG REAL ARRAY AHES (*)
LONG REAL ARRAY GRAD(*)

.
r
-
14

INTEGER VALUE FULL);

BEGIN

COMMENT LEAST SQUARES FUNCTION FOR
ITERATIVELY IMPROVING THE
GUESSED OBS FIXED IC ON GUESSED OBS;

LONG
LONG
LONG
LONG
LONG
LONG
LONG

REAL
REAL
REAL
REAL
REAL
REAL
REAL

G_FUN(PTS_'

Y (CR

ARRAY A,JA(l::N PTS HIT-1);

ARRAY B(l::N PTS HIT-1);

ARRAY JB(1::N_PTS HIT- 1 1 2);
ARRAY DGY,PREV DGY (1::2 2);
ARRAY DGP,SENSE(l::l,l:-l),

ARRAY G,PREV G,Y(l::2);

HI;
TO_HIT(1l),Y,PAR,-3,G,DGY,DGP,SENSE) ;

_Y): =CREOBS (1) ;
G FUN(PTS TO_HIT(1l),Y,PAR,1,PREV_G,PREV_DGY,DGP,SENSE) ;
FOR I:=2 UNTIL N _PTS HIT DO

BEGIN

Y(SM_Y) :=0BS_SMOOTH (I,1);

Y(CR_Y):=C(I-1);

G FUN(PTS TO_HIT(I),Y,PAR,1,G,DGY,DGP,SENSE);
A(1I-1): -G(SM Y)

- (CASE SMF OF (DSPLN _AL(PTS_TO_HIT(I),

SPLN_COEF (*,1), JOINTS (*,1),

NJOINTS (1), N_SPLN PAR(1)),

DHERM (PTS__ TO HIT(I) HERM_COEF (*,*,1) ,JOINTS(*,1),
NJOINTS (1))));

JA(I-1):
HI:=PTS
B(I-1):=

=DGY (SM_Y,CR_Y);
_TO HIT(I)—PTS TO_HIT(I-1);
.5L*(G(CR Y)+PREV G(CR _Y))-(C(I-1)

-(IF I>2 THEN C(I-2) ELSE CREOBS(1l)))/HI;
JB(I-1,1):=.5L*PREV_DGY (CR_Y,CR Y)+1.L/HI;
JB(I-1,2): —.5L*DGY(CR Y, CR Y)-1.L/HI;

FOR J:

=1 UNTIL 2 DO

PREV_G(J) :=G (J) ;
FOR J:=1 UNTIL 2 DO

FOR K:

=1 UNTIL 2 DO

PREV_DGY (J,K) :=DGY (J,K) ;
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END;
IF FULL=1 THEN
BEGIN
COMMENT FORM AHES TO CONFORM TO DFBAND;
FOR I:=1 UNTIL N _PTS HIT-2 DO
AHES (2* (I-1)+1) :=JA(I)**2+JB(1,2) **2+JB(I+1,1)**2;
AHES(Z*(N_PTS_HIT—2)+1):=JA(N_PTS_HIT-1)**2
+JB(N_PTS HIT-1,2)**2;
FOR I:=1 UNTIL N _PTS HIT-2 DO
AHES (2*I) :=JB(I+1,1)*JB(I+1,2);
COMMENT FORM GRADIENT;
FOR I:=1 UNTIL N_PTS HIT-1 DO
BEGIN
GRAD (I):=JA(1)*A(I);
IF I=(N_PTS HIT-1) THEN GRAD(I):=GRAD(I)+
JB(N_PTS_HIT—l,Z)*B(N_PTS_HIT—l)
ELSE
GRAD(I) :=GRAD(I)+JB(I,2)*B(I)+JB(I+1,1)*B(I+1);
END; '
END;
COMMENT FORM F;
F:=0.L;
FOR I:=1 UNTIL N_PTS_HIT-1 DO
F:=F+A (1) **2+B (I)**2;
END ITER_FUNC_FIXIC;
COMMENT

PROCEDURE SPARSE GN(LONG REAL ARRAY C(*);
INTEGER VALUE NC;
PROCEDURE ITER_FUNC);
BEGIN
COMMENT ITERATIVE UPDATING OF GUESSED OBSERVATIONS
USING A SPARSE GAUSS NEWTON METHOD;
LONG REAL F,F1,RATIO,DET,GA,RO,R1,W1l;
LONG REAL ARRAY AHES(1l::2*NC):
LONG REAL ARRAY C1l,GRAD,DELTA(1l::NC);
INTEGER JEXP,JAY; '
LOGICAL CONV;
COMMENT SEXTERNAL DFBAND;
CONV:=FALSE;
FOR ITER:=1 UNTIL 25 DO
BEGIN
ITER_FUNC(C,F,AHES,GRAD,1);
IF ITER=1 THEN
COMMENT &%OUTPUT TO USER
STARTING SUM OF SQUARES IN SPARSE GAUSS NEWTON IS (F);
IF ITER=1 THEN JAY:=0;
JAY:=JAY DIV 2;
RO:=1.L/2** (JAY) ;
COMMENT SOLVE FOR DELTA;
FOR I:=1 UNTIL NC DO DELTA(I) :=-GRAD(I);
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RATIO:=1.'~-7L;
DFBAND (AHES ,DELTA,NC,2,1,RATIO,DET,JEXP,0);
COMMENT FIND STEP LENGTH;
FOR I:=1 UNTIL NC DO
Cl(I):=C(I)+RO*DELTA(I);
COMMENT CHECK FOR CONVERGENCE;
FOR I:=1 UNTIL NC DO
IF (ABS(C(I)-C1l(I))>(TOL*ABS(C1l(I))+.001L))
THEN GO TO CON:;
CONV:=TRUE:;
GO TO UPDATE;
CON:ITER_FUNC(Cl,Fl,AHES,GRAD,O);
IF F1>F THEN
BEGIN
COMMENT INTERPOLATE;
+=0.L;
FOR I:=1 UNTIL NC DO
GA:=GA+DELTA(I)*GRAD(I) ;
FOR INTERP:=1 UNTIL 5 DO
BEGIN
JAY:=JAY+];
R1:=GA*RO**2/(2.L* (GA*RO+F-F1));

Wl:=(IF (.75L*RO<R1) THEN .75L*R0 ELSE R1l);
RO:=(IF (.25L*RO>W1) THEN .25L*R0O ELSE W1);

FOR I:=1 UNTIL NC DO
Cl(I):=C(I)+RO*DELTA(I);
COMMENT CHECK FOR CONVERGENCE;
FOR I:=1 UNTIL NC DO

IF (ABS(C(I)-C1l(I))>(TOL*ABS(C1l(I))+.001L))

THEN GO TO CONT;
CONV:=TRUE;
GO TO UPDATE;
CONT:ITER_FUNC(C1l,F1l,AHES,GRAD,O0);
IF F1<F THEN GO TO UPDATE;
END INTERP;

COMMENT 3%OUTPUT TO USER

TERMINATING--OVER 5 INTERPOLATIONS REQUIRED;

GO TO FINISHED;

END;
UPDATE:FOR I:=1 UNTIL NC DO
C(I):=C1l(1);

COMMENT 2OUTPUT TO USER
SUM OF SQUARES IS (F1);
IF CONV=TRUE THEN GO TO FINISHED;
END ITER;
COMMENT %OUTPUT TO USER
TERMINATING--SPARSE GAUSS NEWTON NEEDS

MORE THAN 25 ITERATIONS TO MEET ERROR CRITERION;

FINISHED: END SPARSE GN;
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INTEGER N_PTS HIT,N PAR,SMF,OUTPUT,METHOD _FLAG,OUTPUT_SUP,

OUT_SEG, INT PROC SM Y CR_Y,NO_ITER,EFLAG;
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LONG REAL ARRAY B(1l::1,1::INTDATA(1l));
LONG REAL ARRAY BJAC(l::1,1::1);
COMMENT COMMAND PROPER FOLLOWS;
STRING (1) ANS,ANS1;:
LONG REAL TOL;
N _PTS HIT:=INTDATA(1l);
N_PAR:=INTDATA(4);
SMF : =INTDATA(5) ;
OUTPUT:=INTDATA(6) ;
METHOD FLAG:=INTDATA(7);
OUTPUT_SUP:=INTDATA(9) ;
OUT_SEG:=INTDATA (10) ;
INT PROC:=INTDATA(11);
SM_Y:=STATES_OBS (1) ;
CR_Y:=3-5M_Y;
COMMENT %OUTPUT TO USER
IS INITIAL VALUE OF GUESSED OBSERVATIONS FIXED? Y OR N
$INPUT (ANS1)
$0UTPUT
ENTER RELATIVE TOLERANCE ON CHANGE IN ITERATES FOR
TERMINATION OF SPARSE GAUSS NEWTON
2INPUT (TOL):
REPT:ITER PAR(G_FUN,PAR, INTDATA,OBS SMOOTH,STATES _OBS,
PTS TO HIT,JOINTS, SPLN_COEF,HERM COEF NJOINTS N_ SPLN PAR,
SPLN AL,DSPLN AL, HERM,DHERM,
CREOBS, DCREOBS),
COMMENT SET UP AND OPTIMIZE SPARSE PROB;
REDO:IF ANS1~="Y" THEN
SPARSE_GN(CREOBS,N_PTS_HIT,ITER_FUNC)
ELSE
BEGIN
LONG REAL ARRAY C(1l::N_PTS HIT-1);
FOR I:=1 UNTIL N PTS HIT-1 DO C(I):=CREOBS(I+1l);
SPARSE_GN(C,N_ PTS HIT-1,ITER FUNC _FIXIC);
FOR I:=1 UNTIL N PTS HIT 1 DO CREOBS(I+1): =C(I);
END;
COMMENT $%OUTPUT
IS A FURTHER REFINEMENT OF THE GUESSED OBSERVATIONS
DESIRED? Y OR N
$INPUT (ANS);
IF ANS="Y" THEN
BEGIN
COMMENT $0OUTPUT
ENTER NEW TOLERANCE FOR SPARSE PROBLEM
$INPUT (TOL);
GO TO REDO;
END;
COMMENT $%OUTPUT
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IS ANOTHER ITERATION DESIRED? Y OR N
SINPUT (ANS);

IF ANS="Y" THEN GO TO REPT;

OUT:END SPRGN.

FT3T YT TBIT TTLY TLBT LBLY LUTT 2LTY 22%% $%eL 2%%%
Derivative fitting procedure
FEIT BT LB TTLY TITY BLLT BB LTIT L99% £9%% 2333

PROCEDURE DATAFT_COMMAND (PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA (*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS (*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY JOINTST(*,*);
LONG REAL ARRAY SPLN COEF (*,*);
LONG REAL ARRAY HERM COEF (*,*,*);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN AL,
DSPLN_AL, HERM, DHERM;
LONG REAL VALUE INITIAL TIME,EPS,HMIN,HMAX);
BEGIN
COMMENT DATAFIT COMMAND;
INTEGER. N_PTS_HIT,N_STATE_OBS,N_STATE,N_PAR,SMF,OUTPUT;
INTEGER OUTPUT SUP,OUT SEG;
INTEGER METHOD FLAG,INT PROC;
LONG REAL LAM,EPS_R,EPS A;
LONG REAL ARRAY DJAC(l:71,1::1);
INTEGER KFLAG;
LONG REAL ARRAY STATE_DATA (1::INTDATA(1),1::INTDATA(3));
COMMENT $EXTERNAL GEAR, TRAP, SVD_AL, MARQUARDT, CMD AL;
PROCEDURE DATA FUNC (LONG REAL ARRAY P (%)
LONG REAL RESULT F;
LONG REAL ARRAY RES (*);
LONG REAL ARRAY JAC (*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES THE
PERTINENT INFORMATION TO A NONLINEAR
LEAST SQUARES ALGORITHM USED WITH THE DFIT METHOD;
INTEGER K,M,OUT1;
LONG REAL SUM;
LONG REAL ARRAY INITY(l::1);
LONG REAL ARRAY INITYP(l::1,1::1);
LONG REAL ARRAY G(l::N STATE);
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LONG REAL ARRAY DGY(l::N_STATE,l::N_STATE);
LONG REAL ARRAY DGP,SENSE(l::N_STATE,l::N_PAR);
K:=0;
IF N_STATE_OBS~=N_STATE THEN
BEGIN
COMMENT NOT ALL STATE VARIABLES ARE OBSERVED;
INTEGER ARRAY SCRATCH(l::N_STATE),
INTEGER ARRAY STATES_NOT_OBS(l' N_STATE-N_STATE OBS),
LONG REAL ARRAY STATE INTEG(l :N PTS HIT,
1::N STATE-N STATE OBS),
INTEGER L,N_ STATE NOT OBS;
PROCEDURE G DATA(LONG REAL VALUE T;
LONG REAL ARRAY Y(*);
LONG REAL ARRAY P(*):
INTEGER VALUE OPTION;
LONG REAL ARRAY G(*):
LONG REAL ARRAY DGY (*,*)
LONG REAL ARRAY D2(*,*);
LONG REAL ARRAY D3 (*,*))
BEGIN
COMMENT INTERFACE TO G_FUN FOR DE SOLVER WHEN A
SUBSET OF THE STATE VARIABLES ARE BEING INTEGRATED;
LONG REAL ARRAY Y_A,DY_A(l"N STATE) ;
LONG REAL ARRAY DGY A(l :N STATE,1::N STATE),

LONG REAL ARRAY D2,D3(l::1,1: -1),
FOR I:=1 UNTIL N_STATE_NOT_OBS DO
Y A(STATES NOT OBS(I)):=Y(I);

FOR I:=1 UNTIL N_STATE OBS DO
CASE SMF OF
BEGIN
Y A(STATES OBS(I)):=
SPLN_AL(T,SPLN _COEF(*,I),JOINTS(*,I)
+NJOINTS (I) ,N _SPLN PAR(I));
Y A(STATES OBS(I)):=
HERM (T,HERM_COEF (*,*,I) ,JOINTS(*,I)
,NJOINTS (I))
END;
G_FUN(T,Y_A,P,OPTION,DY A,DGY A,D2,D3);
IF OPTION=1 THEN
COMMENT CONSTRUCT SUB JACOBIAN;
FOR I:=1 UNTIL N STATE NOT OBS DO
FOR J:=1 UNTIL N_STATE_NOT OBS DO
DGY (I,J) :=DGY_A (STATES_NOT_OBS (I),STATES_NOT OBS(J));
FOR I:=1 UNTIL N STATE NOT OBS DO
G(I):=DY_A(STATES_ NOT OBS(I));
IF OPTION=-3 THEN
FOR I:=1 UNTIL N_STATE NOT OBS DO
Y(I):=Y A(STATES_NOT OBS(I));
END G DATA;
COMMENT FORM VECTOR OF STATES NOT OBSERVED;
FOR I:=1 UNTIL N_STATE DO SCRATCH(I):=
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FOR I:=1 UNTIL N_STATE_OBS DO
SCRATCH (STATES_OBS (I)):
N_STATE NOT OBS--N STATE N STATE_OBS;
L:=0;
FOR I:=1 UNTIL N STATE DO
IF SCRATCH(I) =0 THEN
BEGIN
L:=L+1;
STATES_NOT_OBS (L) :=SCRATCH(I);
END;
EFLAG:=0;
COMMENT INTEGRATION;:
IF OUTPUT_SUP=1 THEN OUT1:=0
ELSE OUT1:=0UTPUT;
BEGIN
LONG REAL ARRAY B(l::N_STATE_NOT_OBS,l::N_PTS_HIT);
CASE INT_PROC OF
BEGIN
BEGIN
GEAR(P,PTS_TO_HIT,B,DJAC,N_STATE_NOT OBS,
N PTS HIT EPS HMIN, HMAX,
N PAR,0,G DATA,KFLAG,OUT1,METHOD _FLAG,
0, INITY, INITYP),
IF KFLAG =1 THEN
BEGIN
EFLAG:=1;
GO TO OUT;
. END;
END;
BEGIN
TRAP (P,PTS_TO_HIT,B,DJAC,N STATE NOT OBS,
N_PTS_HIT,N_PAR,0,G _DATA,EFLAG,OUT1) ;
IF EFLAG=1 THEN GO TO OUT;
END
END;
FOR J:=1 UNTIL N_STATE_NOT.OBS DO
FOR I:=1 UNTIL N_PTS_HIT DO
STATE_INTEG(I,J):=B(J,I);
END;
COMMENT COPY INTEGRATION DATA INTO STATE DATA;
FOR I:=1 UNTIL N PTS HIT DO
FOR J:=1 UNTIL N STATE NOT _OBS DO
STATE_DATA(I, STATES NOT OBS(J))°-STATE _INTEG(I,J);
END;
FOR I:=1 UNTIL N_PTS_HIT DO
BEGIN
G_FUN(PTS_TO_HIT(I),STATE DATA(I,*),P,1,G,DGY,DGP,SENSE);
G FUN(PTS TO _HIT(I),STATE DATA(I *),p,2,G,DGY, DGP,
SENSE) ;
FOR J:=1 UNTIL N_STATE_OBS DO
BEGIN
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K:=K+1;
CASE SMF OF
BEGIN
RES (K) : =G (STATES_OBS (J) ) -DSPLN_AL (PTS_TO_HIT(I),
SPLN_COEF (*,J),
JOINTS (*,J) ,NJOINTS (J) ,N_SPLN PAR(J));
RES (K) :=G (STATES_OBS (J) ) -DHERM (PTS_TO HIT(I),
HERM_COEF (*,*,J)7,
JOINTS (*,J) ,NJOINTS (J) ) ;
END;
FOR L:=1 UNTIL N_PAR DO
JAC (K, L) :=DGP (STATES OBS (J),L);

END;
END:;
COMMENT FORM SUM OF SQUARES OF RESIDUAL;
SUM:=0.;
M:=K;
FOR I:=1 UNTIL M DO SUM:=SUM+RES(I)**2;
F:=SUM;
COMMENT FORM GRADIENT IF REQUIRED:
BEGIN
FOR I:=1 UNTIL N PAR DO
BEGIN -
SUM:=0.;

FOR J:=1 UNTIL N_PTS_HIT*N_STATE OBS DO
SUM:=SUM+JAC (J,I) *RES (J) ;
GRAD (I) :=SUM;
END;
END;
END DATA FUNC;
COMMENT
COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_STATE_OBS:=INTDATA (2) ;
N_STATE:=INTDATA(3);
N_PAR:=INTDATA (4);
SMF : =INTDATA (5) ;
OUTPUT: =INTDATA (6) ;
METHOD FLAG:=INTDATA(7);
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA(10) ;
INT_PROC:=INTDATA(11);
FOR I:=1 UNTIL N_PTS HIT DO
FOR J:=1 UNTIL N _STATE OBS DO
STATE_DATA (I,STATES_OBS (J)) : =OBS_SMOOTH (I,J) ;
COMMENT %0UTPUT
ENTER STARTING LAMBDA RELATIVE
AND ABSSOLUTE ERROR TOLERENCES FOR
MARQUARDT PROCEDURE
$INPUT (LAM), (EPS_R), (EPS_A)
$FILE EMPTY TEMPORARY FILE -SCl
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3OUTPUT TO -REPRT

MARQUARDT USED IN DFIT COMMAND--OPTION 1

LAMBDA, RELATIVE, AND ABSOLUTE

ERROR TOLERENCES ARE (LAM), (EPS_R), (EPS_A);

MARQUARDT (EPS_R,EPS_A,N_PTS HIT*N STATE OBS N _PAR,DATA FUNC,
PAR,LAM, SVD AL),

OUT:END.

TITT TITT TTIY BT YT THLY LT TBLT BBBL BB 3%%%
Derivative fitting with guessed observations
FITT 2TTT TTLY TIYTY YT LY TTTY TLTY 22BL L% 2%%%

PROCEDURE DFIT_ CRE (PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA (*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS (*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY JOINTST(*,*);
LONG REAL ARRAY SPLN_COEF (*,*);
LONG REAL ARRAY HERM COEF (*,*,*);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN PAR(*);
LONG REAL PROCEDURE SPLN AL,
DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS (*);
LONG REAL ARRAY DCREOBS (*));
BEGIN
COMMENT DFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS ON
ONE HAVE
BEEN GUESSED AT. SPECIAL HANDLING OF LINEAR PROBLEM;
INTEGER N_PTS_HIT,N PAR,SMF,DFIT LIN,KK;
LONG REAL LAM,EPS_R,EPS A;
INTEGER SM_Y,CR_Y,M,OUT SEG;
COMMENT $EXTERNAL SVD_ AL, MARQUARDT, CMD AL;
PROCEDURE CRE_FUNC (LONG REAL ARRAY P (*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC (*,*);
LONG REAL ARRAY GRAD (*);
INTEGER RESULT EFLAG);
BEGIN
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(1l::1,1::1);
LONG REAL ARRAY Y,G(l::2);
LONG REAL ARRAY DGP(l::2,1::N PAR);
INTEGER K,KK;
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LONG REAL SUM;

EFLAG:=0;

K:=0;

FOR I:=1 UNTIL N_PTS_HIT DO
BEGIN

Y(SM_Y) :=OBS_SMOOTH(I,1);
Y(CR_Y) :=CREOBS(I);
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE);
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
RES(K):=G(J)—DSPLN_AL(PTS_TO_HIT(I),
SPLN_COEF(*,1) ,JOINTS(*,1) ,NJOINTS (1),
N_SPLN PAR(1));
RES(K):=G(J)—DHERM(PTS_TO_HIT(I),
HERM COEF(*,*,1) ,JOINTS(*,1) ,NJOINTS (1))
END;
END .
ELSE RES(K) :=G(J) -DCREOBS(1I);
FOR L:=1 UNTIL N_PAR DO
JAC(K,L) :=DGP(J,L);
END;
END;
COMMENT FORM F;
F:=0;
FOR I:=1 UNTIL M DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT:
FOR I:=1 UNTIL N_PAR DO
BEGIN
SUM:=0;
FOR J:=1 UNTIL M DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I) :=SUM;
END;
END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA(4);
SMF :=INTDATA (5) ;
OUT_SEG:=INTDATA(10);
DFIT LIN:=INTDATA(12);
SM_Y:=STATES_OBS(1);
CR_Y:=3-SM Y;
M:=2*N_PTS_HIT;
COMMENT $FILE EMPTY TEMPORARY FILE -SCl;
IF DFIT LINT=1 THEN
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BEGIN

COMMENT $OUTPUT

ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES FOR

THE MARQUARDT PROCEDURE

RINPUT (LAM), (EPS_R), (EPS_A)

$OUTPUT TO -SC1

MARQUARDT CALLED IN DFIT OPTION 2

OUTPUT REFERENCE NUMBER IS (OUT_SEG)

LAMBDA, RELATIVE, AND ABSOLUTE ERROR TOLERENCES ARE

(LAM) , (EPS_R), (EPS_A);

MARQUARDT (EPS R,EPS A,M,N PAR,CRE FUNC,PAR,LAM,SVD AL);

END - - - - -
ELSE

BEGIN

COMMENT LINEAR LEAST SQUARES USING SVD;

LONG REAL SING_CUTOFF;

LONG REAL ARRAY JAC(l::M,1l::N PAR);

LONG REAL ARRAY RES(1l::M):

LONG REAL ARRAY SP,S,GRAD(1l::N_PAR);

LONG REAL ARRAY V(l::N_PAR,1::N _PAR);

LONG REAL ARRAY A(l::M,l::N PAR+1);

LONG REAL SUM,F; -

INTEGER K;

LONG REAL ARRAY U(l::M,1l::N_PAR);

INTEGER EFLAG;

SING _CUTOFF:=.00001L;

CRE_FUNC (PAR,F,RES,JAC,GRAD,EFLAG) ;

FOR J:=1 UNTIL N PAR DO

FOR I:=1 UNTIL M DO

A(I,J):=JAC(I,J);

K:=0;
FOR I:=1 UNTIL N_PTS_HIT DO
BEGIN
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
A(K,N_PAR+1) :=DSPLN_AL (PTS_TO HIT(I),
SPLN_COEF (*,1) ,JOINTS (*,1) ,NJOINTS (1),
N_SPLN_PAR(1l));
A(K,N_PAR+1) : =DHERM (PTS_TO HIT(I),
HERM_COEF (*,*,1) ,JOINTS(*,1) ,NJOINTS (1))
END;
END
ELSE A(K,N PAR+1) :=DCREOBS(I);
END; -
END;

SvD_AL(A,S,U,V,M,N_PAR,M,N PAR,1,0,N PAR);
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FOR I:=1 UNTIL N_PAR DO
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N PAR+1)/S(I)
ELSE SP(I):=0.;
FOR I:=1 UNTIL N PAR DO
BEGIN -
SUM:=0.:
FOR J:=1 UNTIL N _PAR DO
SUM:=SUM+V (I,J) *SP(J);
PAR(I) :=SUM;
END;
COMMENT %OUTPUT TO USER _
LINEAR DFIT-OPTION 2 SINGULAR VALUE REJECTION LEVEL IS
(SING_CUTOFF) ;
CRE FUNC (PAR,F,RES,JAC,GRAD,EFLAG);
COMMENT $%OUTPUT TO USER
IN LINEAR PART SUM OF SQUARES OF RESIDUALS IS (F);
END;
END DFIT CRE.

2922 $9%% $33% 3339 233 323 2233 3333 2333 %333 32%%
Iterated derivative fitting procedure
BT TITT TTLY LY TITY BBLL BBUY LYY BT BT %33

PROCEDURE DFITITER(PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS (*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF (*,*);
LONG REAL ARRAY HERM COEF (*,*,*); )
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN PAR(*);
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS (*);
LONG REAL ARRAY DCREOBS (*));
BEGIN
COMMENT DFIT ON 2 STATE VARIABLES TO GO WITH
SPARSE GAUSS NEWTON TO IMPROVE GUESSED STATE;
INTEGER N_PTS_HIT,N_ PAR,SMF,DFIT LIN,KK;
LONG REAL LAM,EPS_R,EPS A;
INTEGER SM_Y, CR_Y M,OUT_SEG;
LONG REAL ARRAY VO (1l::2);
COMMENT $EXTERNAL SVD_AL,MARQUARDT,CMD AL;
PROCEDURE CRE_FUNC (LONG REAL ARRAY P (*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
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LONG REAL ARRAY JAC(*,*):
LONG REAL ARRAY GRAD(%*);
INTEGER RESULT EFLAG):
BEGIN
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(l::l,l::l);
LONG REAL ARRAY Y,G,INT G,PREV G(1::2)
LONG REAL ARRAY DGP, INT DGP PREV DGP(l
INTEGER K,KK:
LONG REAL SUM,DEL;
EFLAG:=0;
K:=0;
Y (SM_Y) :=OBS_SMOOTH(1,1) ;
Y(CR Y) :=CREOBS (1) ;
G FUN(PTS TO_HIT(1),Y,P,-1,PREV _G,DGY,DGP,SENSE) ;
G _FUN(PTS_ “TO _HIT(1),Y,P,2, G DGY, PREV_DGP,SENSE) ;
FOR I:=2 UNTIL N_PTS HIT DO
BEGIN
Y(SM_Y) :=0BS_SMOOTH(I,1);
Y(CR_Y) :=CREOBS (I);
G FUN(PTS TO_ HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G _FUN(PTS | TTO | _HIT(I),Y,P,2,G,DGY,DGP,SENSE);
DEL'*(PTS “TO _HIT(I)-PTS TO HIT(I- 1)),
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
RES (K) : =G (J) -DSPLN_AL(PTS_TO _HIT(I),
SPLN_COEF(*,1), JOINTS (*,1) ,NJOINTS (1),
N SPLN PAR(l)),
RES(K) =G (J) DHERM(PTS TO HIT(I),
HERM_COEF (*,*,1), JOINTS (*, 1), NJOINTS (1))
END;
END
. ELSE RES(K) :=.5L*(G(J)+PREV_G(J)) -
(CREOBS (I)-CREOBS(I-1))/DEL;
:=0;
FOR L:=1 UNTIL N_PAR DO
BEGIN
KK :=KK+1;
IF SM_Y=J THEN
JAC (K,KK) :=DGP (J, L)
ELSE
JAC(K,KK):=.5L*(DGP(J,L)+PREV_DGP(J,L));
END;
END;
COMMENT UPDATE PREV_G,PREV_DGP;

e we

2,1::N_PAR);
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FOR I:=1 UNTIL 2 DO PREV _G(I):=G(I);

FOR I:=1 UNTIL 2 DO
FOR J:=1 UNTIL N_PAR DO
PREV_DGP(I,J) :=DGP(I,J);

END

.
’

COMMENT FORM F;

F:=0;

FOR I:=1 UNTIL M DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT;
FOR I:=1 UNTIL N PAR DO

BEG
SUM

IN
:=0;

FOR J:=1 UNTIL M DO
SUM:=SUM+JAC(J,I)*RES (J);
GRAD (I) :=SUM;

END

.
7

END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA (4) ;
SMF : =INTDATA (5) ;

OUT_SEG:=INTDATA (1
DFIT LIN:=INTDATA (
SM_Y:=STATES OBS (1

CR_Y:=3-SM_Y;
M:=2*(N_PTS HIT-1);

COMMENT $FILE EMPTY TRMPORARY FILE -SC1;

0):
12);
) ;

IF DFIT LINT=1 THEN

BEGIN

COMMENT $OUTPUT

ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES

FOR MARQUARDT
$INPUT (LAM), (EPS R), (EPS A)

$OUTPUT TO USER IF IN BATCH, TO -SCl IF NOT,
MARQUARDT USED IN DFIT FOR SPARSE GAUSS NEWTON
OUTPUT REFERENCE NUMBER IS (OUT SEG), LAMBDA,

RELATIVE AND ABSOLUTE TOLERENCES ARE
(LAM) , (EPS R), (EPS A);

MARQUARDT (EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD_AL)

END
ELSE
BEGIN

COMMENT LINEAR LEAST SQUARES USING SVD;

LONG
LONG
LONG
LONG
LONG
LONG
LONG

INTEGER K;

REAL
REAL
REAL
REAL
REAL
REAL
REAL

SING_CUTOFF;

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
SUM, F;

JAC(1l::M,1::N _PAR);
RES(1::M);
SP,S,GRAD(1::N_PAR);
V(l::N_PAR,l::N_PAR);
A(l::M,l::N_PAR+1);
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LONG REAL ARRAY U(l::M,1::N_PAR);
INTEGER EFLAG;
SING_CUTOFF:=.00001L;

CRE FUNC(PAR F,RES,JAC,GRAD,EFLAG) ;
FOR J:=1 UNTIL N PAR DO

FOR I:=1 UNTIL M DO
A(I,J):=dAC(I,J);

K:=0;
FOR I:=2 UNTIL N_PTS_HIT DO
BEGIN
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
A(K,N PAR+1) =DSPLN AL(PTS TO HIT(I),
SPLN COEF(* 1), JOINTS(* 1), NJOINTS(l),
N SPLN PAR(l))—VO(J),
'A(K N PAR+1)"DHERM(PTS TO HIT(I),
HERM COEF(* *,1), JOINTS(* l) (NJOINTS (1)) -VO0(J)
END;
END
ELSE

A(K,N_PAR+1) :=(CREOBS(I) CREOBS(I 1))/
(PTS_ TO _HIT(I)-PTS_TO HIT(I-1));
END;
END;
svb_AL(A,S,U,V,M,N_PAR,M,N PAR,1,0,N, , PAR) ;
FOR I:=1 UNTIL N PAR DO
IF (S(I)/S(l))SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I)
ELSE SP(I):=0.:
FOR I:=1 UNTIL N PAR DO
BEGIN -
SUM:=0.;
FOR J:=1 UNTIL N_PAR DO
SUM:=SUM+V (I,J)*SP(J);
PAR(I) :=SUM;
END;
COMMENT 3%OUTPUT TO USER
SOLUTION IN LINEAR DFIT FOR SPARSE GAUSS NEWTON IS (PAR)
SINGULAR VALUES ARE (S)
SINGULAR VALUE REJECTION RATIO IS (SING _CUTOFF) ;
CRE_FUNC (PAR,F,RES,JAC,GRAD,EFLAG) ;
COMMENT %OUTPUT TO USER
SUM OF SQUARES OF RESIDUALS IS (F);
END:;
END DFITITER.
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BTTL BT TTBYL TTTL TBBL TBBY TIRT TIYL BT 2%%E 2993
Integral fitting using created observations
TE3Y TIT TTIY LULL THYLY TLTY TLYY LITY TIBT %% 2938

PROCEDURE IFIT_ CRE (PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*);
INTEGER ARRAY INTDATA (*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS(*);
LONG REAL ARRAY PTS TO HIT(*);
LONG REAL ARRAY JOINTST*,*);
LONG REAL ARRAY SPLN_COEF (*,*);
LONG REAL ARRAY HERM COEF (*,*, *);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN PAR(*);
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS (*);
LONG REAL ARRAY DCREOBS (*));
BEGIN
COMMENT IFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS
ON ONE HAVE
BEEN GUESSED AT--LINEAR OPTION AVAILABLE;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT LIN,KK;
LONG REAL LAM,EPS R,EPS A;
INTEGER SM_Y,CR_Y,M,OUT_SEG;
LONG REAL ARRAY VO (1l::2);
COMMENT $EXTERNAL SVD_AL,MARQUARDT,CMD AL;
PROCEDURE CRE_FUNC (LONG REAL ARRAY P (*);
LONG REAL RESULT F;
LONG REAL ARRAY RES (*);
LONG REAL ARRAY JAC (*,*);
LONG REAL ARRAY GRAD (*);
INTEGER RESULT EFLAG) ;
BEGIN

COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST

SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED;
LONG REAL ARRAY SENSE,DGY(l::1,1::1);

LONG REAL ARRAY Y,G,INT G,PREV G(1l::2);

LONG REAL ARRAY DGP,INT DGP,PREV DGP(l::2,1::N PAR);
INTEGER K,KK; - - -
LONG REAL SUM,DEL2;

EFLAG:=0;

K:=0;

Y (SM_Y) :=0BS. SMOOTH(1,1);

Y (CR_Y) :=CREOBS (1) ;
G_FUN(PTS_TO_HIT(1),Y,P,-1,PREV_G,DGY,DGP,SENSE);
G_FUN(PTS_TO_HIT(1),Y,P,2,G,DGY,PREV_DGP,SENSE);
G_FUN (PTS_TO_ HIT(l),INT G,P,3,G,DGY,DGP, INT DGP) ;
FOR I:=1 UNTIL 2 DO VO(I)'-INT G(I),
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FOR I:=2 UNTIL N_PTS HIT DO
BEGIN
Y(SM_Y) :=OBS_SMOOTH (I,1);
Y (CR_Y) :=CREOBS (I);
G_FUN (PTS_TO _HIT(I),Y,P,-1,G,DGY,DGP,SENSE);
G_FUN(PTS_TO HIT(I),Y,P,2, G DGY, DGP SENSE) ;
DEL2:=(PTS_TO _HIT(I)~PTS_TO HIT(I- 1))/2 L;
FOR I:=1 UNTIL 2 DO
INT_G(I):=INT_G(I)+DEL2*(G(I)+PREV G(I));
FOR I:=1 UNTIL 2 DO
FOR J:=1 UNTIL N PAR DO
INT_DGP(I,J) :=INT DGP(I,J)+DEL2* (DGP(I,J)+PREV DGP(I,J));
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
RES (K) :=INT_G(J)-SPLN_AL(PTS_TO HIT(I),
SPLN_COEF (*,1) ,JOINTS(*,1) ,NJOINTS (1),
N_SPLN_PAR(1));
RES (K) :=INT G (J) -HERM (PTS_TO_HIT(I),
HERM_COEF (*,* 1) JOINTS (*,1),NJOINTS (1))
END;
END
. ELSE RES(K) :=INT_G(J)~-CREOBS (I);
FOR L:=1 UNTIL N PAR DO
JAC (K,L) :=INT DGP(J,L);
END;
COMMENT UPDATE PREV_G,PREV_DGP;
FOR I:=1 UNTIL 2 DO PREV G(I):=G(I);
FOR I:=1 UNTIL 2 DO -
FOR J:=1 UNTIL N _PAR DO
PREV_DGP(I,J) :=DGP(I,J);
END;
COMMENT FORM F;
:=0;
FOR I:=1 UNTIL M DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT;
FOR I:=1 UNTIL N PAR DO
BEGIN -
SUM:=0;
FOR J:=1 UNTIL M DO
SUM:=SUM+JAC (J,I)*RES(J);
GRAD (I) :=SUM;
END;
END CRE_FUNC;
COMMENT COMMAND PROPER FOLLOWS;
N PTS HIT:=INTDATA(1);
N PAR:=INTDATA (4);
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SMF :=INTDATA (5) ;
OUT_SEG:=INTDATA(10);
DFIT LIN:=INTDATA(12);
SM_Y:=STATES_OBS(1);
CR Y:=3-SM Y;
M:=2* (N _PTS HIT-1);
COMMENT %FILE E,PTY TEMPORARY FILE -SCl:
IF DFIT LIN"=1 THEN
BEGIN
COMMENT $OUTPUT TO USER
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES
FOR MARQUARDT PROCEDURE
$INPUT (LAM), (EPS_R), (EPS_A)
$OUTPUT TO -SC1
MARQUARDT USED IN IFIT OPTION 2
LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES ARE
(LAM) , (EPS_R), (EPS_A);
MARQUARDT (EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD AL);
END -
ELSE
BEGIN
COMMENT LINEAR LEAST SQUARES USING SVD;
LONG REAL SING_CUTOFF;
LONG REAL ARRAY JAC(1l::M,1::N PAR);
LONG REAL ARRAY RES(1l::M);
LONG REAL ARRAY SP,S,GRAD(1::N_PAR);
LONG REAL ARRAY V(1l::N_PAR,1::N _PAR);
LONG REAL ARRAY A(l::M,1l::N PAR+1);
LONG REAL SUM,F;
INTEGER K;
LONG REAL ARRAY U(l::M,l::N _PAR);
INTEGER EFLAG:;
SING_CUTOFF:=.00001L;
CRE_FUNC (PAR,F,RES,JAC,GRAD,EFLAG) ;
FOR J:=1 UNTIL N _PAR DO
FOR I:=1 UNTIL M DO
A(I,J):=JAC(I,J);
K:=0;
FOR I:=2 UNTIL N_PTS HIT DO
BEGIN
FOR J:=1 UNTIL 2 DO
BEGIN
K:=K+1;
IF SM_Y=J THEN
BEGIN
CASE SMF OF
BEGIN
A(K,N_PAR+1) :=SPLN_AL(PTS_TO HIT(I),
SPLN_COEF(*,1) ,JOINTS (*,1) ,NJOINTS (1),
N_SPLN PAR(1))-vO0(J);
A(K,N_PAR+1) :=HERM(PTS_TO HIT(I),
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HERM_ COEF(*,*,1) ,JOINTS(*,1) ,NJOINTS(1))-VO (J)
END;
END
ELSE A(K,N_PAR+1) :=CREOBS(I)-V0(J);
END;

END;
SvD_AL(A,S,U,V,M, N_PAR,M,N_PAR,1,0,N _PAR) ;
FOR I:=1 UNTIL N PAR DO
IF (S(I)/S(1)>SING _CUTOFF) THEN SP(I):=A(I,N PAR+1) /S(I)
ELSE SP(I):=0.;
FOR I:=1 UNTIL N_PAR DO

BEGIN

SUM:=0.;

FOR J:=1 UNTIL N_PAR DO

SUM:=SUM+V (I,J) *SP(J);

PAR(I) :=SUM;

END;
COMMENT %OUTPUT TO USER
LINEAR OPTION IN IFIT OPTION 2 PARAMETERS FOUND ARE
(PAR) , SINGULAR VALUES ARE (S), SINGULAR VALUE
REJECTION LEVEL IS (SING __CUTOFF) ;
CRE_FUNC (PAR,F,RES,JAC, GRAD, EFLAG) ;
COMMENT $OUTPUT TO USER
SUM OF SQUARES OF RESIDUALS IS (F);
END;

END IFIT CRE.

TEBY BTITY TITY TILT BT 23T ILLY 29T 222 22%% 2333
Iterated integral fitting (subsystem integration)
TI2% LT TTIY TILRY TITY 2TLY TBYL 22UL LI B2 2333

PROCEDURE IFITI (PROCEDURE G_FUN;
LONG REAL ARRAY PAR(*); °
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH (*,*);
INTEGER ARRAY STATES OBS(*);
LONG REAL ARRAY PTS_TO HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF (*,*);
LONG REAL ARRAY HERM COEF (*,*,%);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN AL,
DSPLN_AL,HERM,DHERM;
LONG REAL ARRAY CREOBS (*);
LONG REAL ARRAY DCREOBS (*);
PROCEDURE IFIT CRE);

BEGIN
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COMMENT ITERATED IFIT ON 2 STATE VARIABLES
INTEGRATION OF SUBSYSTEMS TO UPDATE GUESSED OBSERVATIONS;
COMMENT $EXTERNAL TRAP;
PROCEDURE G (LONG REAL VALUE T;
LONG REAL ARRAY Y (*);
LONG REAL ARRAY P (*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G (*);
LONG REAL ARRAY DGY (*,*);
LONG REAL ARRAY DGP(*,*);
LONG REAL ARRAY ISEN(*,*));
BEGIN
COMMENT INTERFACE TO G_FUN WHEN ONLY 1 STATE VAR
IS INTEGRATED.;
LONG REAL ARRAY Y1,Gl(1::2);
LONG REAL ARRAY DGP1, ISENl(l' 2,1::N_PAR);
LONG REAL ARRAY DGYI (1: 2);
YI(CR_Y):=Y(1);
Y1(SM_Y) :=CASE SMF OF
(SPLN_AL(T,SPLN_COEF (*,1) ,JOINTS (*,1) ,NJOINTS (1),
N_SPLN PAR(1)),
HERM (T, HERM_COEF (*,*,1) ,JOINTS (*,1) ,NJOINTS (1)) ) ;
G_FUN(T,Y1,P,OPTION, G1,DGY1,DGP1, ISENL) ;
IF (OPTION=1) OR (OPTION=-1) THEN G(1):=Gl(CR Y);
IF OPTION=1 THEN DGY(1,1):=DGY1(CR Y,CR Y);
IF OPTION=3 THEN Y(1):=Y1(CR Y);
END G;
INTEGER N_PTS_HIT,N_PAR,SMF,OUTPUT,METHOD_ FLAG,OUTPUT SUP,
OUT_SEG, INT_PROC,SM_Y,CR_Y,NO ITER,EFLAG,OUTI;
STRING (1) ARS;
LONG REAL ARRAY B(l::1,1::INTDATA(l));
LONG REAL ARRAY BJAC(l::1,1::1);
COMMENT COMMAND PROPER FOLLOWS;
N_PTS_HIT:=INTDATA(1);
N_PAR:=INTDATA (4);
SMF : =INTDATA (5) ;
OUTPUT :=INTDATA (6) ;
METHOD_FLAG:=INTDATA(7) ;
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA (10) ;
INT_PROC:=INTDATA(11);
SM_Y:=STATES OBS(1);
CR_Y:=3-SM_Y;
REPT:IFIT CRE(G_FUN,PAR, INTDATA,OBS SMOOTH,STATES OBS,
PTS_TO_HIT,JOINTS, SPLN COEF,HERM_COEF, NJOINTS, N_SPLN_PAR,
SPLN_AL,DSPLN_AL, HERM,DHERM,
CREOBS,DCREOBS) ;
COMMENT INTEGRATION OF SUBSYSTEM (TRAPEZOIDAL RULE
IMPLEMENTED) ;
IF OUTPUT_SUP=1 THEN OUT1:=0 ELSE OUT1:=0UTPUT;
TRAP (PAR,PTS_TO_HIT,B,BJAC,1,N_PTS HIT,N PAR,0,G,EFLAG,0);
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IF EFLAG=1 THEN GO TO OUT;

FOR I:=1 UNTIL N_PTS_HIT DO

CREOBS (I):=B(1,I);

COMMENT $OUTPUT

IS ANOTHER ITERATION DESIRED? Y OR N
¥ INPUT (ANS);

IF ANS="Y" THEN GO TO REPT;

OUT:END IFITI.

T VDT TTLET FTLBT FTLTY BB THYY LIETY %% 2L O%%%%
Continuation and quasi-multiple shooting
BT BT TTLY TBBY VTR TULTT TLLYT TTLD LYY %% %%%%

PROCEDURE CONTI (PROCEDURE G_FUN;
" LONG REAL ARRAY PAR(*);
INTEGER VALUE MODE;
INTEGER ARRAY INTDATA(*);
LONG REAL ARRAY OBS_SMOOTH(*,*);
INTEGER ARRAY STATES_OBS (*);
LONG REAL ARRAY PTS_TO_ HIT(*);
LONG REAL ARRAY JOINTS(*,*);
LONG REAL ARRAY SPLN_COEF (*,*);
LONG REAL ARRAY HERM_COEF (*,*,*);
INTEGER ARRAY NJOINTS (*);
INTEGER ARRAY N_SPLN_PAR(*);
LONG REAL PROCEDURE SPLN_AL,
DSPLN_AL,HERM,DHERM;
LONG REAL VALUE EPS,HMIN,HMAX) ;
BEGIN
COMMENT CONTINUATION FORM IFIT WITH BREAK POINTS
AND WEIGHTING AT BREAK POINTS;
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT LIN,KK;
LONG REAL LAM,EPS_R,EPS_A;
LONG REAL ARRAY INITY(l::1);
LONG REAL ARRAY INITYP(l::1,1::1);
INTEGER KFLAG;
INTEGER NP,SM_Y,CR_Y,M,OUT_SEG;
LONG REAL ARRAY VO(l::2);
COMMENT REXTERNAL TRAP, GEAR, SVD_AL, MARQUARDT,
CMD_AL; -
PROCEDURE C_FUNC (LONG REAL ARRAY P(*);
LONG REAL RESULT F;
LONG REAL ARRAY RES(*);
LONG REAL ARRAY JAC(*,*);
LONG REAL ARRAY GRAD(*);
INTEGER RESULT EFLAG) ;
BEGIN
COMMENT OPTIMIZATION FUNCTION FOR CONTINUATION METHOD;
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INTEGER M,N_RES,OUT1;
LONG REAL SUM;
INTEGER I_BREAK; :
PROCEDURE CG_FUN (LONG REAL VALUE T;
LONG REAL ARRAY Y (*):
LONG REAL ARRAY P (*);
INTEGER VALUE OPTION;
LONG REAL ARRAY G (*);
LONG REAL ARRAY DGY (*,*
LONG REAL ARRAY DGP (*,
LONG REAL ARRAY ISEN(%*,
BEGIN
COMMENT G_FUN INTERFACE FOR CONTINUATION METHOD USING
QUASI MULTIPLE SHOOTING;
LONG REAL ARRAY CY(1l::N_STATE);
IF (ABS OPTION) ~“=3 THEN
BEGIN
FOR I:=1 UNTIL N_STATE DO CY(I):=Y(I)*GA(I);
FOR I:=1 UNTIL N_STATE OBS DO
CY (STATES OBS(I)) :=(CASE SMF OF
(SPLN_AL(T,SPLN COEF(*,I),JOINTS(*,I),NJOINTS(I),
N _SPLN PAR(I)),
HERM (T,HERM_COEF (*,*,1) ,JOINTS (*,I),NJOINTS(I))))
*(1.L-GA(STATES_OBS(I)))+CY(STATES OBS(I));
END:
CASE ABS OPTION OF
BEGIN
BEGIN
G_FUN(T,CY,P,OPTION,G,DGY,DGP, ISEN) ;
IF OPTION>0 THEN
BEGIN
FOR J:=1 UNTIL N _STATE DO
FOR K:=1 UNTIL N_STATE DO
DGY (J,K) :=DGY (J,K) *GA (K) ;
END;
END;
BEGIN
G_FUN(T,CY,P,OPTION,G,DGY,DGP,ISEN) ;
END;
BEGIN
IF I BREAK=1 THEN
G FUN(T,Y,P,OPTION,G,DGY,DGP, ISEN)
ELSE
BEGIN
INTEGER INDX;
INDX:=BREAK (I_BREAK-1);
FOR I:=1 UNTIL
N _STATE DO Y(I):=STATE (INDX,I)*GAl(I);
FOR I:=1 UNTIL N_STATE_OBS DO
Y (STATES OBS(I)):=(CASE SMF OF (
SPLN_AL(T,SPLN _COEF(*,I),JOINTS(*,I),
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NJOINTS(I),N_SPLN PAR(I)),
HERM (T, HERM_COEF (*,*,I) ,JOINTS (*,I),NJOINTS (I))))*
(1.L-GAl (STATES OBS(I)))+Y(STATES _OBS(I));
IF OPTION>0 THEN
FOR I:=1 UNTIL N_STATE DO
FOR J:=1 UNTIL N _PAR DO
ISEN(I,J):=GAl(I)*JACOBIAN((INDX-1)*N STATE+I,J);
END;
END
END;
END CG_FUN;
FOR I:=1 UNTIL N BREAK DO
BEGIN
COMMENT INTEG TO BREAK(I);
LONG REAL ARRAY SAMPLE (1::BREAK(I)-BREAK(I-1)+1);
INTEGER N_PTS;
LONG REAL ARRAY B(1l::N_STATE,1l::BREAK(I)-BREAK(I-1)+1);
LONG REAL ARRAY
JB(1::N_PAR,1:: (BREAK(I)-BREAK(I-1)+1)*N STATE);
INTEGER INDX, JI
I_BREAK:=I;
N_PTS:=BREAK (I)-BREAK (I-1)+1;
FOR J:=1 UNTIL N_PTS DO
SAMPLE (J) : =PTS_TO_ HIT (BREAK (I)-N _PTS+J) ;
COMMENT INTEGRATE;
IF OUTPUT_SUP=1 THEN OUT1:=0 ELSE OUT1:=OUTPUT;
EFLAG:=0;
CASE INT PROC OF
BEGIN
BEGIN
GEAR (P, SAMPLE,B,JB,N_STATE,N PTS,EPS,HMIN,HMAX,
N_PAR,1,CG_FUN,KFLAG,OUT1, METHOD FLAG,O0,
INITY, INITYP);
IF KFLAG™=1 THEN BEGIN EFLAG:=1;GO TO OUT;END;
END;
BEGIN
TRAP (P, SAMPLE,B,JB,N_STATE,N_PTS,N PAR,
1,CG_FUN,EFLAG,OUT1);
IF EFLAG=1 THEN GO TO OUT;
END
END;
JI:=1;
INDX :=BREAK (I_BREAK-1) ;
IF INDX~=1 THEN JI:=2;
FOR J:=JI UNTIL N _PTS DO
FOR K:=1 UNTIL N _STATE DO
BEGIN
STATE (INDX-1+J,K) : =B (K,J) ;
FOR L:=1 UNTIL N_PAR DO
JACOBIAN ( (INDX-2+J) *N_STATE+K,L) : =
JB(L, (J-1)*N_STATE+K) ;
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END;
END I;
COMMENT EXTRACT NON WEIGHTED JACOBIAN
AND FORM RESIDUAL;
FOR K:=1 UNTIL N_PAR DO
BEGIN
M:=0;
FOR I:=1 UNTIL N_PTS_HIT DO
FOR J:=1 UNTIL N_STATE OBS DO
BEGIN
M:=M+1;
JAC (M,K) : —JACOBIAN((I 1) *N_STATE+STATES_OBS(J) ,K);
RES (M) :=STATE (I,STATES OBS(J))
(CASE SMF OF(
SPLN_AL(PTS_TO_HIT(I),SPLN_COEF (*,J) ,JOINTS(*,J)
,NJOINTS (J),
N_SPLN PAR(J)),
HERM(PTS TO_HIT(I) ,HERM_COEF (*,*,J) ,JOINTS(*,J),
NJOINTS (J))))
END;
END;
N RES:=M
COMMENT SPECIAL WEIGTING OF BREAK POINTS;
FOR I:=1 UNTIL N _BREAK DO
BEGIN
INTEGER INDX:
INDX:=(BREAK(I)-1)*N_STATE_OBS;
FOR J:=1 UNTIL N_STATE OBS DO
RES (INDX+J) : =RES (INDX+J) *W(I):;
FOR J:=1 UNTIL N_STATE_OBS DO
FOR K:=1 UNTIL N_PAR DO
JAC (INDX+J,K) :=JAC (INDX+J,K) *W(I);
END;
:=0.L;
FOR I:=1 UNTIL N RES DO F:=F+RES(I)**2;
COMMENT FORM GRADIENT:
FOR I:=1 UNTIL N_PAR DO
BEGIN
SUM:=0.L;
FOR J:=1 UNTIL N_RES DO
SUM:=SUM+JAC(J,I)*RES(J);
GRAD(I) :=SUM;
END;
OUT:END C FUNC;
INTEGER N STATE, N_STATE_OBS,OUTPUT_ SUP,QUTPUT, INT _PROC,METHOD
METHOD FLAG'
LONG REAL ARRAY STATE(1::INTDATA(1l) ,1::INTDATA(3));
LONG REAL ARRAY JACOBIAN(1l::INTDATA(1l)
*INTDATA(3) ,1::INTDATA (4));
INTEGER N_BREAK;
INTEGER ARRAY BREAK(0::50):
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LONG REAL ARRAY W(0::50);
LONG REAL ARRAY GA,GAl(1l::INTDATA(3));
N_PTS_HIT:=INTDATA(1);
N_STATE_OBS:=INTDATA(2);
N_STATE:=INTDATA(3);
N_PAR:=INTDATA (4);
SMF:=INTDATA (5) ;
OUTPUT :=INTDATA (6) ;
METHOD FLAG:=INTDATA(7);
OUTPUT_SUP:=INTDATA(9);
OUT_SEG:=INTDATA (10) ;
INT_PROC:=INTDATA(11);
IF MODE=0 THEN
BEGIN
INTEGER N_BRK; LONG REAL GAM;
COMMENT $OUTPUT TO USER
ENTER NUMBER OF BREAK POINTS
ENTER 0 FOR NO BREAK POINTS
$INPUT (N_BRK);
IF N _BRK~=0 THEN
BEGIN
COMMENT %OUTPUT TO USER
ENTER SAMPLE TIME SUBSCRIPTS FOR BREAK POINTS
DO NOT INCLUDE FIRST OR LAST SAMPLE TIME;
FOR I:=1 UNTIL N_BRK DO
COMMENT %INPUT BREAK(I);
BREAK (0) :=1; BREAK (N_BRK+1) :=N_PTS HIT;
N_BREAK:=N_BRK+1;
END B
ELSE
BEGIN
BREAK (0) :=1;
BREAK (1) :=N_PTS HIT;
N_BREAK:=1;
END;
COMMENT $OUTPUT
ENTER CONTINUATION PARAMETER
FOR INITIAL VALUE PROBLEM
$INPUT (GAM);
FOR I:=1 UNTIL N_STATE DO GA(I) :=GAM;
IF N_BRK~=0 THEN
BEGIN
COMMENT $OUTPUT
ENTER CONTINUATION PARAMETER
FOR BREAK POINTS. EACH COMPONENT
CORRESPONDS TO THE STATE VARIABLE
WITH THE SAME SUBSCRIPT;
FOR I:=1 UNTIL N_STATE DO
COMMENT $INPUT (GAl(I))
$OUTPUT
ENTER WEIGHTS AT BREAK POINTS
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FOR

ENTRY FOR EACH BREAK POINT;
I:=1 UNTIL N BRK DO

COMMENT $INPUT (W(I));
W(0):=1.L;

W(N_

END
ELSE

BREAK) :=1.L;

W(l):=1.L;

END
ELSE
BEGIN

COMMENT MODE NOT 0. IFIT OPTION;
N_BREAK:=1;

BREAK (0) :=1; BREAK(l):=N_PTS_HIT;

FOR I:=1 UNTIL N_STATE DO GA(I):=0.L;

W(l):=

END;
COMMENT
$OUTPUT

1.L;

$FILE EMPTY TEMPORARY FILE -SCl

ENTER STARTING LAMBDA, REL AND ABS TOL FOR MARQUARDT
% INPUT (LAM), (EPS R),(EPS A);

COMMENT

$OUTPUT TO USER IF IN BATCH, TO -SCl1 IF NOT,

MARQUARDT USED IN CONTINUATION PROCEDURE
OUTPUT REFERENCE NUMBER (OUT_SEG),

LAMBDA (LAM), RELATIVE ERROR TOLERENCE (EPS_R),
ABSOLUTE ERROR TOLERENCE (EPS_A);

MARQUARDT (EPS_R,EPS_A,N_PTS_ HIT*N_STATE OBS,

N PAR,C

FUNC,PAR,LAM,SVD_AL) ;

END CONTI.

3233

2%%%

PROCEDURE

BT TTTT TIBY FTTTT LY TTYD TTLY TBYY OLYET ¥%%%
Description of externally defined procedures

3233 2933 2933 33T 332 32T 23T 2333 2I%% 2383

CMD AL (STRING(80) VALUE CMD;

INTEGER VALUE N);

BEGIN
COMMENT
END.
PROCEDURE
BEGIN
COMMENT
END.
PROCEDURE
LONG REAL
LONG REAL
LONG REAL

EXECUTE AN MTS COMMAND;
CHECK_BATCH(LOGICAL RESULT BATCH) ;
CHECK IF IN BATCH MODE;

SVD_AL (LONG REAL ARRAY AD(*,*);
ARRAY S(*);

ARRAY UD(*,*);
ARRAY VD (*,*);

INTEGER VALUE MDIM,NDIM,M,N,NRHS,NU,NV);
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BEGIN
COMMENT SINGULAR VALUE DECOMPOSITION
USES U.B.C. FORTRAN VERSION OF
PROCEDURE BY G. GOLUB AND C. REINSCH,
NUMER. MATH. 14 (1970) 403-420;
END.
PROCEDURE G_FUN (LONG REAL VALUE T;
LONG REAL ARRAY Y (*);LONG REAL ARRAY P (*);
INTEGER VALUE OPTION;LONG REAL ARRAY G(*);
LONG REAL ARRAY DGY (*,*);LONG REAL ARRAY DGP (*,*);
LONG REAL ARRAY PREV_SENSE (*,*));
BEGIN
COMMENT MODEL DEFINITION ;
END.
PROCEDURE ECHO1 (INTEGER VALUE CAS);
BEGIN
COMMENT ECHO IBM 3270 CONVERSATION BUFFER
(AS USED BY MTS AT U.B.C.) AND RESET POINTERS SO
NO OVERLAP OCCURS;
END.
PROCEDURE SPLINT AL(LONG REAL ARRAY X (*);
LONG REAL ARRAY Y (*);LONG REAL ARRAY W(*);
INTEGER VALUE N;LONG REAL ARRAY P (*);
INTEGER VALUE RESULT M;LONG REAL ARRAY XJOINTS (*):
INTEGER VALUE NJOINT) ;
BEGIN
COMMENT LEAST SQUARES SPLINE APPROXIMATION;
END.
LONG REAL PROCEDURE SPLN_ AL (LONG REAL VALUE X;
LONG REAL ARRAY P (*);LONG REAL ARRAY XJOINT (*):
INTEGER VALUE NJOINT,M);
BEGIN
COMMENT CALCULATE SPLINE APPROXIMATION USING
SPLINT AL RESULTS;
END.
LONG REAL PROCEDURE DSPLN AL (LONG REAL VALUE X;
LONG REAL ARRAY P (*);LONG REAL ARRAY XJOINT (*);
INTEGER VALUE NJOINT,M);
BEGIN
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING
SPLINT AL RESULTS;
END.
PROCEDURE HERMIT AL(LONG REAL ARRAY X (*);
LONG REAL ARRAY Y (*);LONG REAL ARRAY KNOTS (*);
INTEGER VALUE N,NKNOTS;LONG REAL ARRAY COEF (*,*);
INTEGER VALUE NC1;INTEGER RESULT FLAG);
BEGIN ’
COMMENT LEAST SQUARES PIECEWISE CUBIC HERMITE
APPROXIMATION;
END.
LONG REAL PROCEDURE HERM (LONG REAL VALUE X;
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LONG REAL ARRAY COEF (*,*);LONG REAL ARRAY JOINTS(*);
INTEGER VALUE NJOINTS);
BEGIN
COMMENT CALCULATE HERMITE APPROXIMATION USING
RESULTS OF HERMIT ALj;
END.
LONG REAL PROCEDURE DHERM (LONG REAL VALUE X;
LONG REAL ARRAY COEF(*,*);LONG REAL ARRAY JOINTS (*);
INTEGER VALUE NJOINTS) ;
BEGIN
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING
RESULTS OF HERMIT AL;
END. '
PROCEDURE CREATE_DATA (LONG REAL ARRAY SIM PAR(*);
LONG REAL ARRAY START _PAR(*) ; LONG REAL ARRAY PAR(*);
LONG REAL ARRAY OBS PLACE(*) LONG REAL ARRAY PTS_TO_HIT(*);
LONG REAL ARRAY OBS(*,*);LONG REAL ARRAY STATE (*,*)7
LONG REAL ARRAY JACOBIAN(* *) ; INTEGER ARRAY OBS_STATUS (*);

INTEGER ARRAY STATES_ OBS (*) ; INTEGER ARRAY INTDATA (*) ;
STRING (31) VALUE MODEL;PROCEDURE EG FUN, GEAR,STANDARD HIT;
LONG REAL RESULT STD DEV;LONG REAL VALUE INITIAL TIME‘
INTEGER VALUE KFLAG,OUTPUT) ;

BEGIN

COMMENT SIMULATE OBSERVATIONS;

END.

LONG REAL PROCEDURE FVALUE_ AL (LONG REAL VALUE P;
INTEGER VALUE N1,N2);

BEGIN

COMMENT STATISTICAL F DISTRIBUTION;

END.

PROCEDURE SMT (REAL ARRAY X (*);

REAL ARRAY Y (*);REAL ARRAY P (*);

REAL ARRAY SI(*);REAL ARRAY T (*);

REAL ARRAY S(*),REAL ARRAY S1(*);

REAL ARRAY S2(*); INTEGER VALUE N,IFF,M);

BEGIN

CUBIC SPLINE INTERPOLATION;

END.

PROCEDURE FSLE_AL(INTEGER VALUE N,NDIMA;

LONG REAL ARRAY A(*,*); INTEGER VALUE NSOL,NDIMBX;
LONG REAL ARRAY B(*,*);LONG REAL ARRAY X (*,*);
INTEGER ARRAY IPERM(*); INTEGER VALUE NDIMT;

LONG REAL ARRAY TMP(*,*));

BEGIN

COMMENT SOLVE A LINEAR SYSTEM OF EQUATIONS;

END.
PROCEDURE
LONG REAL
LONG REAL
LONG REAL
LONG REAL

DIFF (INTEGER VALUE N;

VALUE RESULT LT;LONG REAL ARRAY LY(*,*);

ARRAY LSAVE(*,*);LONG REAL VALUE RESULT LH;

VALUE LHMIN,LHMAX,LEPS; INTEGER VALUE METHOD_ FLAG;
ARRAY LYMAX(*);LONG REAL ARRAY LERROR(*);
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INTEGER VALUE RESULT KFLAG;

INTEGER VALUE RESULT JSTART;

INTEGER VALUE MAXDER;LONG REAL ARRAY AA(*);
INTEGER RESULT ORDER;PROCEDURE FUN;

LONG REAL ARRAY P (*);REAL ARRAY PW(*));

BEGIN
COMMENT ALGOL FORTRAN INTERFACE TO GEAR'S CODE;
END.
PROCEDURE ECHO (INTEGER VALUE CAS);
BEGIN

COMMENT SIMILAR TO ECHOl1--USED IN INTERACTIVE FIT;
END.

PROCEDURE ALGRAF_AL (REAL ARRAY X (*);

REAL ARRAY Y (*);

INTEGER VALUE N,NS);
BEGIN '
COMMENT PLOT A SET OF DATA POINTS;
END.

PROCEDURE PLOT_AL (REAL VALUE X,Y;INTEGER VALUE IPEN);
BEGIN
COMMENT MOVE PLOTTING PEN TO (X,Y), CAN BE UP OR
DOWN DEPENDING ON IPEN;

END.

PROCEDURE ALSIZE AL (REAL VALUE XSIZE,YSIZE);
BEGIN '
COMMENT SET SIZE OF PLOT;

END.

PROCEDURE ALSCAL_ AL (REAL VALUE XMIN,XMAX,YMIN,YMAX);
BEGIN '
COMMENT SCALE DATA TO FIT PLOT;

END.

PROCEDURE ALAXIS_ AL (STRING(50) VALUE LABELX;

INTEGER VALUE NX;STRING(50) VALUE LABELY;

INTEGER VALUE NY);

BEGIN
COMMENT DRAW AXES;
END.

PROCEDURE DFBAND (LONG REAL ARRAY DA(*);

LONG REAL ARRAY DB (*); INTEGER VALUE N,LHB,NRHS;

LONG REAL VALUE RESULT RATIO;LONG REAL RESULT DET;

INTEGER RESULT JEXP; INTEGER VALUE NSCALE);

BEGIN

COMMENT SOLVE A BANDED SYSTEM OF LINEAR EQUATIONS
WITH A POSITIVE DEFINITE MATRIX USING

A CHOLESKY DECOMPOSITION;

END.
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