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ABSTRACT 

The problem of numerical least squares parameter estimation 

in d i f f e r e n t i a l equations i s considered. Several new algorithms 

that pay pa r t i c u l a r attention to the d i f f e r e n t i a l equation 

aspect of the problem are presented. These reduce some of the 

d i f f i c u l t i e s encountered when the problem i s treated solely as a 

question of nonlinear optimization. The extremely powerful 

int e r a c t i v e approach i s considered and an interactive package 

incorporating standard techniques using s e n s i t i v i t y equations 

along with a selection of our special algorithms i s presented. 

We consider methods involving the f i t t i n g of integrals and 

derivatives using piecewise polynomial approximations to the 

observations. Continuation methods with a quasi multiple 

shooting technique to bridge the gap between these coarse but 

well behaved methods and the f u l l least squares problem are 

explored. 

Special methods are developed for the important case of two 

state variables with observations available on only one of them. 

In p a r t i c u l a r we consider algorithms which use an i n i t i a l guess 

at the behavior of the unobserved state variable and then 

i t e r a t i v e l y improve th i s guess. 

The need for e f f e c t i v e algorithms for f i t t i n g population 

growth models in ecology i s one motivation for this thesis. We 

devote a chapter to an important predator-prey model of 

population dynamics and extensive experiments are presented 
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which demonstrate some of the t y p i c a l d i f f i c u l t i e s which can 

arise and which i l l u s t r a t e the a b i l i t y of our algorithms to 

overcome some of these d i f f i c u l t i e s . 

Some special problems involving jumps from one equilibrium 

to another (loosely referred to as catastrophes) are examined. 

This type of model has important applications in ecology. 

Models involving s t i f f d i f f e r e n t i a l equations are also 

considered. 

A short chapter i s devoted to the use of sequential 

reestimation techniques. Experiments indicate that such methods 

can be useful for improving a crude i n i t i a l guess at the 

parameters and this improvement can be c r u c i a l for the 

successful solution of the problem. 

F i n a l l y a chapter i s devoted to a selection of "real world" 

problems. It i s on such problems that the true value of an 

algorithm i s determined. 
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INTRODUCTION 

Parameter f i t t i n g in dynamic models occurs in a wide 

variety of f i e l d s (see for example Section 1 . 2 ) . In many cases, 

standard procedures (employing the s e n s i t i v i t y equations as 

outlined in Chapter 2) s u f f i c e . However, in a substantial 

number of cases, this approach i s extremely sensitive to poor 

i n i t i a l guesses at the optimal parameters (see for example 

Chapter 4 ) . The main purpose of this thesis i s to develop 

algorithms and strategies designed to overcome poor or absent 

i n i t i a l approximations to the optimal parameters. Our basic 

philosophy for attaining this goal i s to avoid the f u l l 

nonlinear optimization problem as much as possible during the 

early stages of parameter estimation. The interactive approach 

i s ideal for addressing this problem and the algorithms 

developed in thi s thesis are designed with user intervention in 

mind. Indeed there are cases, such as the one in Section 6.3, 

where an interactive approach appears to be the only way to 

obtain certain solutions. 

Chapters 1 and 2 establish our notation and provide a 

background for the numerical integration and optimization 

procedures employed throughout the thesis. In Chapter 3, we 

begin our development of special procedures. 

We st a r t Chapter 3 with the standard approaches of 

derivative and integral f i t t i n g and then we expand on these 

techniques later in the chapter. These techniques, which 
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involve the use of smoothed approximations to the observations 

on the state variables, are obvious candidates for an 

int e r a c t i v e approach. These methods are compared on a s t i f f 

problem and on a problem involving a change in equilibrium. In 

Section 3.4, we develop techniques (which employ guessed 

observations and i t e r a t i v e improvement of guessed observations) 

for extending the methods of Sections 3.2 and 3.3 to the 

important case when observations are not available on a l l state 

variables. As i l l u s t r a t e d in Sections 4.4 and 4.5, these 

iterated methods provide a powerful tool (especially in an 

interactive environment) for handling the case where some state 

variables are unobserved. Again, our basic philosophy, of 

avoiding the f u l l nonlinearity that arises with the d i r e c t 

approach, l i e s behind the success of these methods. 

In Section 3.5, we present systematic approaches using 

break points and continuation parameters for bridging the gap 

between the r e l a t i v e l y coarse integral f i t t i n g technique and the 

f u l l nonlinear problem. These methods are highly interactive by 

nature, and again, they attempt to ease the approach to the f u l l 

nonlinear problem. As shown in Section 3.5, these methods can 

be useful for overcoming i n s t a b i l i t i e s . 

We end Chapter 3 with a discussion on how the various 

methods developed should be incorporated into an interactive 

package. A discussion of e f f e c t i v e strategies employing our 

special technigues in an interactive environment i s also 

presented at the end of Chapter 3. 

INTRODUCTION 
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Chapter 4 gives extensive experiments comparing the 

techniques of Chapters 2 and 3 on a s p e c i f i c problem. 

In Chapter 5, we continue our search for methods which 

reduce the e f f e c t of the nonlinearity associated with a d i r e c t 

approach. In p a r t i c u l a r a sequential approach i s shown to be 

e f f e c t i v e in several cases where a d i r e c t method encountered 

d i f f i c u l t i e s . 

When solving a parameter f i t t i n g problem involving a 

dynamic model, the p a r t i c u l a r strategy employed can be as 

important as the choice of algorithms. This i s e s p e c i a l l y the 

case when an interactive approach i s used. In Chapter 6 we 

present d e t a i l s of successful strategies on four "real world" 

problems where the observations were obtained from physical 

experiments and not computer simulations. (A condensation of 

our experience with parameter f i t t i n g in dynamic models is 

contained in the flow charts at the end of Chapter 3.) The 

d e t a i l s of such strategies of course vary from problem to 

problem; however, as experience with such problems grows, 

certain strategies emerge as being more e f f e c t i v e than others. 

One such strategy that has proved highly e f f e c t i v e involves the 

temporary freezing of parameters. 

INTRODUCTION 
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CHAPTER 1 

NOTATION AND BACKGROUND 

1.1 INTRODUCTION AND BASIC NOTATION 

We are interested in the problem of f i t t i n g dynamic models 

to observations and wish to pay special attention to the 

d i f f e r e n t i a l equation aspect of the problem. Our dynamic models 

are of the form 

y'=g(t,y,p) 
(1.1.1) 

Y(t 0)=y o(p) 

where y i s an n-vector of state variables, p i s an m vector of 

parameters, t i s the independent variable which we c a l l time for 

convenience, and * denotes d i f f e r e n t i a t i o n with respect to time. 

Along with the above i n i t i a l value problem we have a set of 

observations v; ,...,v^ taken at d i s t i n c t times t , . . . 

respectively where _>tfl , 1 = 1,..., k. Each v^ i s an r-vector 

where r<n. That i s , not a l l components of y need be observed. 

Define the weighted residual vector f of length kr by 

for s=l,...,r; 1=1,...,k; where v i s component s of v̂  and 

y ., . (t.) i s the corresponding element of the vector y ( t . ) . 
41. A) X A 

Wl[£ i)+A '""S 3 weighting factor. The weighted least squares 
problem i s to find p to minimize 

F(p)=f T(p)f (p) . (1.1.3) 

CHAPTER 1 
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The use of weights in the above function allows us to handle 

some maximum l i k e l i h o o d problems (see Section 2.4). Adapting 

the notation in Bard[5], l e t 

V p , - ( f * u - . > * i W T ' ( 1 - 1 - 4 ) 

k 
M(P)= X. e Ap)e^(p) . (1.1.5) 

1 = 1 * 

where, for the moment, we are taking a l l weights equal to one. 

Further l e t the^v,"^ have normally distributed measurement errors 

with zero mean and covariance matrix V. When there are no 

errors in the t^ , the maximum l i k e l i h o o d estimate of p i s found 

by minimizing 

.5Tr(V _M(p)) (1.1.6) 

where Tr denotes the trace operator. (We are assuming the 

errors in the observations taken at d i f f e r e n t times are 

uncorrelated.) When V i s a diagonal matrix, (1.1.6) reduces to 

the form of the function in (1.1.3). It i s this special case we 

consider in Section 2.4. For a l i s t of some other objective 

functions we refer the reader to Bard[5]. 

The dynamic model considered above i s a special case of the 

standard dynamic model described by Bard[6,p221]. He considers 

problems where g and y of (1.1.1) are functions of a vector, x, 

of independent variables in addition to the above arguments and 

where the observations available are on variables which are 

given functions of t, y, p, and x. One of our aims in this 
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thesis i s to investigate special methods which handle some of 

the d i f f i c u l t i e s associated with f i t t i n g parameters in a 

d i f f e r e n t i a l equation, and, to avoid unnecessary complications, 

we confine our attention to models of the form (1.1.1) with 

observations taken d i r e c t l y on the state variables. 

The problem of finding p to minimize (1.1.3) can be nasty. 

Bard[6,p231] gives a concise description of some of the 

d i f f i c u l t i e s that can occur. Generally, the problem i s 

d i f f i c u l t because of the vast range of solutions that (1.1.1) 

can have as a function of p. This can result in a l l sorts of 

l o c a l minima for (1.1.3). S t a b i l i t y problems with the 

d i f f e r e n t i a l equation can also a r i s e . In some cases the 

solution to the i n i t i a l value problem (1.1.1) i s a discontinuous 

function of p and thi s can create d i f f i c u l t i e s . Also, many 

dynamic models are attempts to describe phenomena operating on 

d i f f e r e n t time scales and thus s t i f f i n i t i a l value problems can 

be expected to arise in practice. 

Parameter f i t t i n g in the predator-prey dynamic model 

y/ =p, Y, - P a y , vA / U+p^y, ) - P , y,a 

S ' (1.1.7) 
y^-p^+p^y, y a/(i+p sy, > 

is a t y p i c a l example of the type of problem considered in thi s 

thesis. For more d e t a i l s concerning this dynamic system, we 

refer the reader to Bazykin[7] and to Chapter 4 of thi s thesis. 

As shown in Chapter 4 (which i s devoted exclusively to this 

model) a poor i n i t i a l approximation to the optimal parameters 
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can often lead to a l o c a l minimum in parameter space at which 

the solution to the above i n i t i a l value problem i s q u a l i t a t i v e l y 

quite d i f f e r e n t from the observations. Several methods are 

presented in Chapter 3 which are designed to overcome poor 

i n i t i a l parameter estimates. Special methods are also developed 

in Chapter 3 for the important (and often d i f f i c u l t ) case when 

observations are not available on a l l state variables. We also 

consider methods designed to overcome i n s t a b i l i t i e s in the 

i n i t i a l value problem by the use of continuation parameters and 

break points. In Chapter 4 we present extensive experiments 

with many of the techniques developed in Chapter 3 applied to 

the above dynamic model. In Chapter 5 we present a promising 

technique for improving poor parameter estimates using a 

sequential reestimation approach. Experiments with this 

technique applied to problems involving the above dynamic model 

are also given in Chapter 5. 

Experience indicates that the successful resolution of a 

"real world" parameter f i t t i n g problem involving a dynamic model 

usually requires many optimization runs. Strategies such as 

freezing or rescaling parameters are also often useful. 

Frequently the model evolves as attempts are made to f i t i t to 

the data. It i s thus desirable to rapidly acquire experience 

with a given model. We conclude that an int e r a c t i v e approach 

can be valuable for resolving, in a reasonable time, a parameter 

f i t t i n g problem involving a dynamic model. This i s inherently 

expensive; however, as computer technology advances, the cost 
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factor becomes less important. It i s our view that the f i r s t 

point to consider when designing a good interactive package i s 

the set of numerical algorithms to be employed. The 

user-program interface should then be constructed to make 

optimal use of these algorithms. Of course the process works 

the other way too: interactive algorithms should be designed 

with a user-program interface in mind. One goal of t h i s thesis 

i s to develop dynamic model parameter f i t t i n g algorithms that 

exploit user in t e r a c t i o n . Another goal i s to organize a 

selection of these algorithms into an interactive package so 

that the various approaches developed complement one another. 

The end res u l t of t h i s work i s the interactive package PARFIT 

documented in Appendix A. 

1.2 MOTIVATION 

Dynamic models occur extensively in practice. To be 

meaningful, such models must be related to physical observations 

and this often involves adjusting some parameters in the models. 

In t h i s section we b r i e f l y describe some areas where parameter 

f i t t i n g in dynamic models i s important. 

Chemistry i s one f i e l d where parameter f i t t i n g in dynamic 

models occurs that i s frequently mentioned in the l i t e r a t u r e 

(see for example, Rosenbrock and Storey[61,p.189,p.204], 

Bard[6,p.222], van Domselaar and Hemker[71], and Bellman et 

a l [ 9 ] ) . T y p i c a l l y a dynamic model i s set up to describe a 

chemical reaction. The unknown parameters are reaction rates 

and the state variables represent concentrations of various 
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reactants. Since reaction rates can vary greatly, s t i f f dynamic 

models are important in chemistry. An example of such a model 

is considered in Section 3.2. The study of parameters in 

dynamic models with a large number of state variables i s also of 

interest to chemists (see for example Farrow and Edelson[22]). 

Many dynamic models occur in the f i e l d s of medicine and 

biology. Some of these models involve organic chemistry, while 

others are more d i r e c t l y related to b i o l o g i c a l processes. There 

are models describing enzyme a c t i v i t y in the blood (van 

Domselaar[70], van Domselaar and Hemker[71]). Models describing 

blood c e l l population dynamics are currently of interest 

(Mackey[42]). Parameter estimation in a model involving the 

e l e c t r i c a l a c t i v i t y of the heart has been studied by Bellman et 

a l [ l l ] . B i o l o g i c a l processes frequently operate on d i f f e r e n t 

time scales and thus s t i f f dynamic models are important here. 

At present, there i s a strong interest in dynamic models 

describing ecological processes. Several such models are 

considered in th i s thesis. Often ecological data i s sparse and 

has a large random error and thi s makes parameter f i t t i n g 

d i f f i c u l t . Models describing predator-prey interactions occur 

extensively in ecology. In Chapters 4 and 6, we give several 

examples with such models using both simulated observations and 

observations obtained from physical experiments. For more 

background concerning parameter f i t t i n g in dynamic models in 

ecology, see for example Swartz and Bremermann[66], 

Vandermeer[69], Martin et al[44], Parker[53], Long[40]. 

CHAPTER 1 



10 

1.3 MORE BACKGROUND 

Following the observations of Bard[6,p220], we elect to use 

methods of the form 
ptS +' J

 = p U > R 7 F ( p t / > ) (1.3.1) 

to minimize F(p) in (1.1.3) where VF represents the gradient of 

F, i s a scalar, and R^ i s a matrix (usually p o s i t i v e 

d e f i n i t e ) . The Gauss-Newton (see for example [50,p.267]) and 

Levenberg-Marguardt[39],[43] methods are part i c u l a r examples of 

such technigues. To apply these methods v F must be found. 

There are b a s i c a l l y two ways this can be done. One way i s to 

calculate v F through f i n i t e differences- Since the 

determination of F(p) involves the integration of an i n i t i a l 

value problem, we expect the use of f i n i t e differences to 

approximate VF to be an expensive undertaking. More inportant, 

however, i s the fact that with a dynamic model, the accurate 

ca l c u l a t i o n of VF by f i n i t e differences can be a t r i c k y task. 

In p a r t i c u l a r l e t 3F(p)/3p. be approximated by the difference 

F(p+Ap. e. )-F(p) 
" (1.3.2) 

A P -

where e- i s the unit vector with a 1 in position i . As pointed 

out by Bard[6,p226], several factors a f f e c t how well t h i s 

difference approximates dF/dp^ . For a good approximation, A P ; 

must be small; however, i f i t i s too small, rounding-error 

dominates and a poor approximation to the derivative i s 

obtained. More important, however, i s the fact that F(p) i s 
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obtained by integrating an i n i t i a l value problem and thus i t s 

accuracy depends on the d i s c r e t i z a t i o n used and on the order of 

the method used to numerically solve the d i f f e r e n t i a l equation. 

Thus for example i f F(p+Ap^.e^.) and F(p) are determined 

independently (each with i t s own discrete set of time values), 

they must be found with s u f f i c i e n t accuracy so that the 

difference approximation to ~dF/dp; i s v a l i d . This i s an 

expensive undertaking and i s not the proper way to proceed. It 

is more productive to think of F in terms of the discrete method 

used to find i t . Thus at a given point p in parameter space, 

"VF(p) i s approximated by integrating (1.1.1) m+1 times using the 

same discrete set of time values. This avoids for example the 

p o s s i b i l i t y of getting d i s c o n t i n u i t i e s in F(p) due to varying 

sets of discrete steps at neighboring points in parameter space. 

Of course such a discontinuity would play havoc with the f i n i t e 

difference approximation to the gradient. Thus to calculate 

F(p) and approximate vF(p) requires m+1 integrations of (1.1.1), 

only one of which involves error co n t r o l . However, (1.1.1) i s 

often a nonlinear i n i t i a l value problem. 

The second alternative for c a l c u l a t i n g VF, which we s h a l l 

use, employs the s e n s i t i v i t y equations. These are a set of 

linear i n i t i a l value problems coupled in only one d i r e c t i o n to 

the given i n i t i a l value problem (1.1.1). In our notation they 

are 

r* 3 J J (1.3.3) 
y, (0)Oy(0 f P ) / a p . 
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for j=l,...,m where the subscript p^ denotes p a r t i a l 

d i f f e r e n t i a t i o n with respect to p., and where g i s the Jacobian 

matrix (ag/ay). These equations may be obtained by 

d i f f e r e n t i a t i n g (1.1.1) with respect to p. To use the 

s e n s i t i v i t y equations, g and g must be found; however, for a 

wide selection of important dynamic models this i s not too 

d i f f i c u l t a task. For more d e t a i l s on s e n s i t i v i t y equations see 

Tomovic[67], Tomovic and Vukobratovic[68]. In Chapter 2, 

further d e t a i l s are given on the integration of the s e n s i t i v i t y 

equations. We observe that for models of the form (1.1.1), the 

solution to the s e n s i t i v i t y equations immediately gives V F(p). 

Following the notation used in (1.1.2), denote by J the kr x m 

Jacobian matrix of f with respect to p. The elements of J are 

given by 
J„,„ * (P)=w 3Yj(«j (t.) (1.3.4) 

4 ( 8 - 0 + 4 J ( j ^ A_ke.-iUA.-UA 

s=l,...,r; 1=1,...,k; j=l,...,m, 

and the gradient of F(p) is 

VF(p)=2J(p) Tf (p) . (1.3.5) 

We note that in the process of finding VF, we have found part of 

the Hessian matrix of F(p). (The Hessian matrix i s 

T kr 
2(J J+XZ f-G.) 

2=1 * * 

where G_ is the matrix of second p a r t i a l s of f with respect to 
o D 

P-) 
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Beale[8] distinguishes three basic problems in nonlinear 

parameter estimation. F i r s t there i s the problem of determining 

the optimal parameter vector p. This i s primarily a matter of 

numerical analysis and i t i s the problem we concentrate on. 

Second there i s the problem of defining a t h e o r e t i c a l l y 

s a t i s f a c t o r y confidence region or an approximate confidence 

region for p. Third, Beale i d e n t i f i e s the problem of describing 

this confidence region so that i t can be e a s i l y interpreted. 

Beale deals extensively in [8] with the second problem. 

Although we are primarily concerned with the f i r s t problem 

in t h i s thesis, some attention to the second and thi r d problems 

i s mandatory since a measure of the r e l i a b i l i t y of parameters 

greatly enhances their value to the model builder. Also, as 

seen in Chapter 4, a study of some of the s t a t i s t i c a l aspects of 

the problem can be useful for detecting linear relationships 

among parameters in a model. Following Bard[6,p.187], we make 

the 

DEFINITION 1.3.1: 

The Y - j o i n t confidence region i s a bounded closed subset 

S(W) in parameter space depending on the data sample W such that 

Pr [p*6S (W) ] = V (1.3.6) 

for a l l possible data samples W where p* i s the exact (and 

unattainable) value for the parameter vector, and Pr denotes 

p r o b a b i l i t y . 

S p e c i f i c a l l y , we use for S(W) an m dimensional e l l i p s o i d 
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centred at the estimate p" of p*. Following Bard[6,pl89], we 

approximate f(p) defined in (1.1.2) by a linear function in a 

neighborhood of p: 

f (p)atf (p)+J(p) (p-p) . (1.3.7) 

We assume the errors in the observations are normally 

dis t r i b u t e d with zero mean. Form the theory of multiple linear 

regression with V representing the kr x kr covariance matrix for 

the observations, the variable 

^ = (p-p) T(J T(p)V- lJ(p) ) (p-p) (1.3.8) 

has a ~\ a d i s t r i b u t i o n with m degrees of freedom. (We are 
T -I 

considering the general objective function f V f.) Unless 

stated otherwise, J i s evaluated at p" in the following 

discussion. Also, 

J=f ( p ) T V _ , f (p) (1.3.9) 

has a 'X d i s t r i b u t i o n independent of <J with kr-m degrees of 

freedom. Thus 

(kr-m)& 

m J 

has an F m ^ ̂ / l_ / > n d i s t r ibution ( m degrees of freedom in the 

numerator, kr-m degrees of freedom in the denominator). In 

par t i c u l a r when the covariance matrix V i s of the form o-*I, 

(that i s , when a l l observations are independent) then 
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_ T T 
(kr-m)J (kr-m)(p-p) J J(p-p) 

mj mf(p) Tf(p) 
- T T 

(kr-m)(p-p) J J(p-p) 
= (1.3.10) mF(p) 

Thus the"B-joint confidence region i s 
_ T T _ 

. (kr-m) (p-p) J J (p-p) -» 
— < 1 - 3 - 1 1 ' 

which i s an m dimensional e l l i p s o i d in parameter space. 

Following van Domselaar and Hemker[71], we can use the singular 

value decomposition of J (p") to extract further information on 

this e l l i p s o i d . Let 

J(P)=Q(P)X(P)R"r(P) (1.3.12) 

where Q and R are orthogonal matrices of size kr x m and m x m 

and X i s the mxm diagonal matrix [diag(s , . . . , s^)] of singular 

values arranged in descending order of magnitude. Let 

kr-m 
_ (1.3.13) 

&q=R T(p)(p-p). 

Our e l l i p s o i d may thus be written 

| S q : Sq " V Sq< 6^ • (1.3.14) 

Thus the p r i n c i p a l axes of the confidence region have lengths 

yi/s- , j=l,...,m. For our confidence intervals on p., j=l,...,m 
J 

we take the projections of the above e l l i p s o i d onto the 
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coordinate axes in p-space with the o r i g i n translated to the 

estimate p. Thus the confidence i n t e r v a l for p. i s 
_ j 

[p. - Vvf (J T (P)J(P))V; / P. +Vf(j"r(p)J(P)r' ]. (i.3.i5) 

This i s the confidence i n t e r v a l we use in our program PARFIT 

described in Appendix A. To find (JTT)~* we use 
(J Tjf'=R 2~V. (1.3.16) 

The expected value of p-p i s zero and in the special case 

considered above when V=«-al, the covariance matrix for p-p* is 

E( ( P - P * ) (p-p*)~^)=<>-a(JTJ)", (1.3.17) 

where E(.) denotes expectation (see for example van Domselaar 

and Hemker[71], Bard[6,p.59]). This matrix can be found using 

(1.3.16). The matrix of corr e l a t i o n c o e f f i c i e n t s has elements 

( J T J ) : ' . 
- J (1.3.18) 

*. T -I 

where fSA- = (J J)^. . Thus using the singular value decomposition, 

y0.j=cps(S/. , SJ ) (1.3.19) 

where S. , S. are the i 1 th and j 1 th row vectors of S=R2"! 

F i n a l l y we note that the above confidence intervals were 

derived under the assumption that f(p) could be well 

approximated by a linear function near p. This i s often not the 

case. Bard[6,pl91] gives a simple empirical way of checking 

t h i s . We want the l i n e a r i t y approximation to hold over the 

confidence region that has been found. That i s F(p) should be 
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near 
F(p)+.5(p-p) (J TJ) (p-p) 

in the confidence region. This can e a s i l y be checked at the 

boundary of the confidence region. We also note that when F(p) 

is large (and f i s only moderately nonlinear), then J T J i s a 

poor approximation to the Hessian matrix of F(p) and the 

quadratic approximation to F(p) stated above cannot be very 

good. Thus the confidence region stated above loses v a l i d i t y as 

the residuals increase. This can also be seen by observing that 

£ in (1.3.13) varies d i r e c t l y as F(p), and thus as F(p) 

increases, the confidence intervals can quickly become larger 

than the parameters themselves. For further comments on thi s 

case see Rosenbrock and Storey[61,p202]. 

We end this chapter with a b r i e f discussion on 

conditioning. There i s a close connection between nonlinear and 

linear least squares problems. For example, the Gauss-Newton 

i t e r a t i v e method for solving a nonlinear least squares problem 

can be viewed in terms of a sequence of linear least squares 

problems. That i s given an estimate p W for the parameter 

vector which minimizes (1.1.3), we seek a new estimate p ^ + , ) 

for t h i s minimizing parameter vector such that 

| |f ( p W ) + J ( p W ) I |* (1.3.20) 

is minimized where 
_p<«> . (1.3.21) 
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(In practice a robust least squares optimization procedure must 

do more. For example, i t should guarantee a reduction in the 

sum of the squares of the residuals after each iteration.) For 

s i m p l i c i t y of notation in the following discussion, we neglect 

superscripts and we l e t -$+'^=x. Also, we assume J i s of f u l l 

rank.; The condition number of the matrix J i s defined to be 

T((J) = I I J| l a l |J*I I a where J*= (J TJ)"' J T is the pseudo-inverse of J. 

F i r s t we consider the e f f e c t of small errors in f. The 

vector *x which minimizes 

||f-Jx||* (1.3.22) 

is given by x =J f. When J i s of f u l l rank x i s unique. Let f 

be an approximation to f and l e t f and f be projections of f 

and "f* onto the range space of J. Provided f^40, i t follows (see 

for example Stewartf65,p.221]) 

M j V j ^ t l l , \(J) | I f . - f l I L 
* < (1.3.23) 

I U T f | l A H f r l l a 

Thus when J i s i l l - c o n d i t i o n e d (^f(J) i s large) or when the 

projection of f onto the range space of J i s small, r e l a t i v e l y 

small errors in f can have a strong influence on the accuracy 

with which we can determine ~x . 

The effects of errors in J are much more complicated. The 

following theorem (see for example Stewart[65,p.223]) addresses 

thi s s i t u a t i o n . 

THEOREM 1.3.1: 

Let J be of f u l l rank and l e t f be defined as above. Let E 
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be a matrix of the same dimensions as J and l e t E^, fp and E^, 

be projections of E and f onto the range space of J and the 

orthogonal complement of the range space of J respectively. 

(The projection of a matrix onto a subspace i s defined to be the 

matrix whose i 1 t h column i s the projection of the i 1 t h column of 

the given matrix onto the subspace.) If 

I U 1"! I A I I E , | lA<.5 

then J+E i s of f u l l rank and 

i i x - i r i L IIEJL j i E j i A i i f j i 
<2 'X 5 + 4 ^ — 1 C.J^+s^—L-J- (1.3.24) 

l l x l l , . i u i i A I IJI 1^1 I f ^ l IA " J u t 
where x=(J+E)Tf and x =JTf. 

As noted by Stewart[65,p.224], i f f i s almost in the range 

space of J then "X i s the condition number of the least squares 

problem, while i f I I f ̂ 1 \gL/1 I f^ I 1̂  i s large then 7f i s the 

e f f e c t i v e condition number of the least squares problem. Thus 

depending on the orientation of f with respect to the range 

space of J, the least squares problem can be extremely sensitive 

to the condition number of J. 

The condition number of J can be influenced by certain 

transformations in parameter space. At times, such 

transformations can d r a s t i c a l l y reduce the condition number; 

however, on other occasions they can worsen the conditioning of 

a problem. For example consider the logarithmic transformation 

of Pj where we transform to "p. =ln (py ) . We consider the e f f e c t 

of t h i s transformation on the conditioning of the s t i f f problem 
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y'=-(1-y )y +p y 
' ' (1.3.25) 

y^=p, ( d - y x ) y , - ( P * + P s ) y a > 

with i n i t i a l condition 

y(0) = ( l , 0 ) T 

at the point 

(1000, .99, .01) T 

in parameter space. Without any scaling, the condition number 

was approximately 59600. The matrix J was evaluated using the 

observation times given in Section 3.2 where this i n i t i a l value 

problem i s given further consideration. The trapezoidal 

integration scheme available in the package PARFIT described in 

the appendices was used to approximate J. For this problem, a 

logarithmic scaling of the parameters reduced the condition 

number to approximately 4.4. There are cases, however, where 

thi s scaling increases the condition number (this occurs for 

example, in certain cases with exponential f i t t i n g problems), 

and thus i t must be used with caution. 
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CHAPTER 2 

OPTIMIZATION AND INTEGRATION 

2.1 NONLINEAR LEAST SQUARES 

Our goal i s to concentrate on the d i f f e r e n t i a l equation 

aspect of parameter f i t t i n g in dynamic models and not to compare 

the fine points of various optimization algorithms. However, 

the nonlinear least squares problem occurs repeatedly in th i s 

thesis and thus a b r i e f discussion of this problem i s in order. 

When choosing a method, i t i s important to keep in mind that the 

e f f i c i e n c y and r e l i a b i l i t y of an optimization program depend on 

both the p a r t i c u l a r algorithm and the d e t a i l s of i t s 

implementation. 

We must choose between methods designed s p e c i f i c a l l y for 

least squares problems, and more general methods designed for 

nonlinear optimization. For our par t i c u l a r problem the 

cal c u l a t i o n of f i r s t derivatives i s often expensive (through the 

s e n s i t i v i t y equations for example) and the calc u l a t i o n of second 

derivatives i s even worse. Thus we elect to use only f i r s t 

d erivative methods and we must s e t t l e for approximations to the 

Hessian matrix. Some comparisons between least squares methods 

and more general optimization methods applied to least squares 

problems (Bard[5], Bus et al[14]) indicate special least squares 

methods are to be preferred. We recognize, however, that there 

are cases when a more general method can be superior (see Ramsin 

and Wedin[57], McKeown[46]). The results of Bus et al favor the 

CHAPTER 2 



22 

Levenberg-Marquardt method ( [ 3 9 ] , [ 4 3 ] ) over more general 

optimization methods and over the Gauss-Newton method, (we 

include under the name Gauss-Newton, modified Gauss-Newton 

algorithms employing step length adjustment) while Bard finds 

his implementation of the Levenberg-Marquardt method to be as 

r e l i a b l e but s l i g h t l y less e f f i c i e n t than his implementation of 

the Gauss-Newton method. Bard, however, employs some special 

techniques in his implementation of the Gauss-Newton algorithm 

that are absent in the experiments of Bus et a l . This further 

points out the s e n s i t i v i t y of test results to pa r t i c u l a r d e t a i l s 

of implementation. Of course a l l results are also problem 

dependent. The Levenberg-Marquardt method appears to be a good 

algorithm for the nonlinear least squares problem and we employ 

i t extensively in this thesis. S p e c i f i c a l l y we iterate 

according to 

p f r " ; =p(f> - ( j T ( p ( ^ )j(p(P , + X i ) - ' j T ( P ^ ) f ( P V ) 
(2.1.1) 

where J, f, p were defined in Section 1.1 and X i s a posit i v e 

parameter chosen so that the sum of the squares of the residuals 

i s reduced by the above i t e r a t i o n . 
-r 

In the case when J J i s pos i t i v e d e f i n i t e (that i s , when J 

is of f u l l rank), we have the following important facts about 

th i s technique (see Marquardt[43]). 
(1) Let ^ = p < * " > _p(*> _ T h a f c . s 

( J T J + X l ) S = - J T f (2.1.2) 
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where we have d r o p p e d t h e s u p e r s c r i p t s . I t f o l l o w s t h a t 

$ =- ( J T J + X l ) " l J T f (2.1.3) 

m i n i m i z e s 

o v e r 

MJi + f l l * (2.1.4) 

: MSI 1^=1 IS.II^. (2.1.5) 

(2) For S> s a t i s i f y i n g (2.1.2) , | | % (X ) | £ i s a c o n t i n u o u s 

monotone d e c r e a s i n g f u n c t i o n o f X and 

l i m | IS (A) I |*=0. (2.1.6) 

(3) The q u a n t i t y 

^ = c o s - ' ( £ . S ) (2.1.7) 

where %^=-JTf. i s a c o n t i n u o u s monotone d e c r e a s i n g f u n c t i o n o f X 

and 

l i m * = 0 . (2.1.8) 

Thus as X-*-« , t h e d e s c e n t d i r e c t i o n S g i v e n by (2.1.2) 
-r 

a p p r o a c h e s t h e s t e e p e s t d e s c e n t d i r e c t i o n , g i v e n by - J f , and 

i t s m a g n i t u d e a p p r o a c h e s z e r o . T h i s c an c r e a t e p r o b l e m s i f t h i s 

a l g o r i t h m i s n o t c a r e f u l l y i m p l e m e n t e d . T h a t i s , we do n o t want 

X t o become so l a r g e t h a t we a r e t a k i n g v e r y s m a l l s t e p s i n a 

d i r e c t i o n t h a t i s e s s e n t i a l l y t h e s t e e p e s t d e s c e n t d i r e c t i o n . 
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To overcome th i s possible drawback, a check i s made to see i f % 

is within 45° of the steepest descent d i r e c t i o n . If i t i s , A i s 

not increased but instead a search in the d i r e c t i o n of the 

current £ i s carried out to obtain a better parameter vector. 

Marquardt[43] outlines the necessity of using this strategy. 

The following theorem (see Dennis[19]) gives conditions for 

the l o c a l convergence of the Levenberg-Marquardt method. 

THEOREM 2.1.1: 

l e t "p be a l o c a l minimum of F(p) and l e t ^ / be the smallest 

eigenvalue of J ( p ) T J ( p ) . Let 5( be a scalar such that for a l l p 

in a neighborhood of p~, 

I | (J(p)-J(p) ) T f (P) | | <*||p-p|L (2.1.9) 
a — «*• 

If Y<yi/then for any bounded sequence A ( ^ ^ of real numbers, 

there exists a neighborhood of p such that i f p i s in this 

neighborhood, the Levenberg-Marquardt i t e r a t i o n s defined by 

and \ A ^ j converge to p. 

For further reading concerning the convergence of the 

Levenberg-Marquardt algorithm see Osborne[51],[52]. 

There i s a l o t of choice available in a par t i c u l a r 

implementation of the Levenberg-Marquardt method. Much of thi s 

centres around the strategy for adjusting X- For a summary of 

some of the strategies we refer the reader to Van Loan[72]. 

Marquardt[43] suggests that we rescale parameter space at 

each i t e r a t i o n in such a way that J J in the scaled parameters 

has diagonal elements equal to one. The rationale for this 
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scaling i s that the Levenberg-Marquardt method i s biasing the 

descent d i r e c t i o n towards the steepest descent d i r e c t i o n and the 

steepest descent d i r e c t i o n i s scale dependent. Our 

implementation of the Levenberg-Marquardt technique has th i s 

scaling available as an option. Experimental results indicate 

that at times this scaling can be quite e f f e c t i v e . A l i s t i n g of 

our implementation i s given in Appendix B. 

Next, we mention a couple of recent developments in 

nonlinear least squares problems which, when they become more 

f u l l y understood, may be very useful for our problem where 

function and gradient evaluations are expensive. 

Steen and Byrne[64] propose an interesting nonlinear least 

squares algorithm which adjusts the descent d i r e c t i o n between 

the steepest descent and Gauss-Newton directions in a 

complicated, but (experimentally) apparantly more e f f i c i e n t way 

than that of the Levenberg-Marquardt method. Also, their 

algorithm does not suffer from the stepsize going to zero as the 

steepest descent d i r e c t i o n i s approached. This algorithm i s of 

pa r t i c u l a r interest to us because i t requires a subs t a n t i a l l y 

fewer number of function evaluations than does the 

Levenberg-Marquardt method on a f a i r l y wide range of test 

problems considered in [64]. On most of the test problems 

considered, this method i s superior to the similar SPIRAL method 

proposed by Jones[34]. 

The second recent development of p a r t i c u l a r interest 

involves work on the large residual least squares problem. In 
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th i s case J J i s no longer a good approximation to the Hessian 

matrix, and the Gauss-Newton and Levenberg-Marquardt methods are 

slowed down. This s i t u a t i o n can arise when we have a l o t of 

noise in the observations, when we have a poor model, or when 

our least squares algorithm i s converging to a l o c a l minimum 

with a large re s i d u a l . (As the experiments of Chapter 4 

indicate, numerous l o c a l minima can occur when we try to 

estimate parameters in dynamic models.) Recently, there has 

been some interesting work done on special algorithms which 

approximate the second derivatives in the Hessian of a least 

squares problem by techniques modelled after the quasi-Newton 

methods. (See for example Dennis[18,p.171,177], Dennis et 

al[20].) When the r e l i a b i l i t y of such methods increases, their 

application to parameter f i t t i n g problems in dynamic models 

seems worthwhile. If a reduction i s achieved in the number of 

numerical integrations required, the extra work invested to 

approximate the Hessian matrices should be well worth i t . For a 

good discussion of recent work in nonlinear least squares, we 

refer the reader to Dennis[19]. 

2.2 INTEGRATION OF MODEL AND SENSITIVITY EQUATIONS 

In the course of f i t t i n g parameters in a dynamic model, 

several d i f f e r e n t i n i t i a l value problems must be solved. That 

i s , every time the parameter vector changes, a new i n i t i a l value 

problem must be solved. Moreover, the solutions to these 

problems can vary d r a s t i c a l l y . Consider, for example, the algae 

growth model of Section 6.3 where small changes in the parameter 
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values can produce huge changes in the solution to the i n i t i a l 

value problem. To handle such problems, a parameter f i t t i n g 

algorithm requires a good general purpose numerical package for 

solving i n i t i a l value problems. The a b i l i t y to handle parameter 

estimation problems involving s t i f f dynamic models i s also 

important in practi c e . For several examples with such problems 

we refer the reader to van Domselaar and Hemker[71]. In th i s 

thesis, we employ the automatic integration package developed by 

Gear[25], [26], [27]. In addition to the standard predictor 

corrector methods, th i s package has available a set of s t i f f l y 

stable multistep methods of varying order. In our package, 

PARFIT, the user can e a s i l y switch between a regular multistep 

method and a s t i f f l y stable method. 

When f i t t i n g parameters in a dynamic model, the need for a 

general integration program i s clear; however, often a much 

simpler integration procedure i s adequate. Of course to 

mimimize the error introduced into the parameter estimates by 

the d i s c r e t i z a t i o n of the i n i t i a l value problem, an integration 

scheme with error control should be used. In the interests of 

economy, i t i s advisable to sta r t with a simple integration 

scheme not employing stepsize control i f this i s possible. In 

par t i c u l a r we make use of the trapezoidal method without error 

co n t r o l . In PARFIT, the discrete times used by the trapezoidal 

method are the "sample times" which by default are the 

observation times; however, the sample times can be 

i n t e r a c t i v e l y modified. Use of the trapezoidal method allows us 
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to handle s t i f f problems. F i n a l l y we note that other 

integration schemes can e a s i l y be added to PARFIT. 

In addition to integrating the given i n i t i a l value problem, 

the s e n s i t i v i t y equations defined in Section 1.3 must also 

frequently be integrated. The way the s e n s i t i v i t y equations 

(which are coupled in only one d i r e c t i o n to the given i n i t i a l 

value problem) are integrated can be c r u c i a l to the success of a 

parameter f i t t i n g algorithm. For example, as observed by 

Bard[6,p.231], the integration of the s e n s i t i v i t y equations at a 

point p in parameter space should not have any influence on the 

discrete steps used in the integration of (1.1.1) at p. That 

i s , F(p) should be independent of whether or not gradient 

information i s extracted at p. The s e n s i t i v i t y equations in 

theory provide a means of determining how the continuous 

solution y(t) to the given i n i t i a l value problem varies as a 

function of the parameter vector p. However, i n practice the 

given i n i t i a l value problem can only be solved approximately 

according to some discrete model (for example the trapezoidal 

method). For the purposes of numerical optimization, i t i s the 

solution to thi s discrete analog of the continuous problem that 

i s being f i t to the observations, and when finding the gradients 

of the objective function we r e a l l y want to know how the 

solution to the discrete approximation to the i n i t i a l value 

problem varies as a function of p at the observation times. 

Thus for the purposes of numerical optimization, the way the 

s e n s i t i v i t y equations are integrated should be related to the 
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solution method of the o r i g i n a l i n i t i a l value problem. This i s 

e s p e c i a l l y important i f a coarse approximation to the given 

i n i t i a l value problem i s used. 

There i s an analog to the above considerations in optimal 

control problems where the discrete approximation to the adjoint 

equations should be t a i l o r e d to the pa r t i c u l a r d i s c r e t i z a t i o n of 

the state equations. This can be a tedious undertaking in 

control problems as demonstrated by Kelly and Denham[35]. 

However, the main d i f f i c u l t y with control problems arises 

because the state equations are integrated forward in time and 

the adjoint equations are integrated backward in time. 

Fortunately for our purposes since we are integrating in only 

one d i r e c t i o n in time, the r e l a t i o n of the discrete s e n s i t i v i t y 

equations to the discrete state equations i s much simpler. In 

pa r t i c u l a r a l l we must do i s to ensure that the same method with 

the same discrete set of time values i s used on the s e n s i t i v i t y 

equations as i s used on the state equations. To be more 

s p e c i f i c , the diagram in Figure 2.2.1 must commute where S c 

represents the operator which produces s e n s i t i v i t y equations 

from an i n i t i a l value problem, D4- represents a d i s c r e t i z a t i o n 

operator, and S Q represents the operator which produces discrete 

s e n s i t i v i t y equations from discrete state equations. In our 

numerical integration procedures we take advantage of the one 

way coupling between the s e n s i t i v i t y equations and the state 

equations. S p e c i f i c a l l y , we integrate the state equations from 

time t to time t+h (under error control i f applicable). Then 
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continuous 
state eqns 

D. 

discrete 
state eqns 

continuous 
s e n s i t i v i t y eqns 

D. 

discrete 
s e n s i t i v i t y eqns 

Figure 2.2.1 
Di s c r e t i z a t i o n of s e n s i t i v i t y equations 

assuming there are m parameters and n state equations, we 

integrate each of the m s e n s i t i v i t y i n i t i a l value problems, each 

having n equations, from time t to time t+h using exactly the 

same d i s c r e t i z a t i o n that was used to integrate the state 

equations. This i s consistent with the comments by 

Bard[6,p.231] mentioned e a r l i e r in th i s section. We note that 

the s e n s i t i v i t y equations are linear i n i t i a l value problems. 

When Gear's program i s used, the above technique involves 

extracting information on the current stepsize and order from 

the integration package, and then integrating the s e n s i t i v i t y 

equations over the same step with the same order method. Gear's 

program employs the Nordsieck[49] formulation of a multistep 

method where approximations to higher derivatives are stored 
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instead of previous values. This makes changing the stepsize 

very easy. Our integration of the s e n s i t i v i t y equations employs 

exactly the same technique in phase with Gear's package. For 

more d e t a i l s see Appendix B. No error control i s used when 

integrating the s e n s i t i v i t y equations. As observed by van 

Domselaar and Hemker[71], an integration scheme has the same 

s t a b i l i t y properties on the s e n s i t i v i t y systems as i t has on the 

system of state equations. 

2.3 WHEN TO INTEGRATE THE SENSITIVITY EQUATIONS 

We must decide when to integrate the s e n s i t i v i t y equations. 

Two strategies are considered. These extra linear equations may 

be integrated every time (1.1.1) i s integrated (strategy one), 

or they may be integrated only when the Jacobian matrix and the 

gradient are required (strategy two). We expect the choice of 

strategy to depend in part on the implementation d e t a i l s of the 

optimization algorithm employed. For example, i f several 

objective function evaluations are required at each i t e r a t i o n , 

then the f i r s t strategy would c l e a r l y be i n e f f i c i e n t . On the 

other hand, i f only one objective function evaluation i s 

required per i t e r a t i o n (this i s generally not the case, although 

at times several i t e r a t i o n s follow this pattern), then strategy 

one would hold the advantage. To further complicate matters, 

the integration of the s e n s i t i v i t y equations i s generally easier 

than the integration of (1.1.1) which i s usually nonlinear and 

at times even s t i f f . Also, the step size adjustments are made 

when integrating (1.1.1) and not when integrating the 
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s e n s i t i v i t y equations. 

To aid in a more detailed analysis of the two alte r n a t i v e s , 

we make the following d e f i n i t i o n s . 

(a) Let W denote the basic unit of work for a pa r t i c u l a r problem 

defined as the work required to integrate (1.1.1). 

(b) Let w denote the fr a c t i o n of the work W required to 

integrate one s e n s i t i v i t y equation. 

(c) Let m be the number of s e n s i t i v i t y equation systems. This 

is just the number of parameters. 

(d) Let I be the number of it e r a t i o n s in the optimization run. 

(e) Let J be the number of objective function evaluations where 

no gradient i s required. These are the evaluations in the 

searches during the i t e r a t i o n s . 

Under the f i r s t strategy, the number of times the i n i t i a l 

value problem (1.1.1) i s solved i s 

I+J-(1-1)=J+1 (2.3.1) 

and t h i s i s also the number of times the s e n s i t i v i t y equations 

are solved. Therefore the t o t a l function evaluation work done 

in solving for the optimal parameters i s 

W, =(J+l)W+m(J+l)wW. (2.3.2) 

Under the second strategy, the number of times the i n i t i a l value 

problem i s solved i s I+J, and the number of times the 

s e n s i t i v i t y equations are solved i s I. Therefore the t o t a l 

function evaluation work done in solving for the optimal 

parameters i s 
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Wa= (I+J)W+mIwW. (3.3.3) 

Thus 

W /W =(J+1)(mw+1)/(I+J+mlw) 
' *• (2.3.4) 

=(J/I+1/I)(mw+l)/(l+J/I+mw). 

We neglect 1/1 compared to J / I . This i s equivalent to ignoring 

the s t a r t i n g function evaluation in the f i r s t strategy and thus 

in most cases, t h i s approximation i s not too s i g n i f i c a n t . Thus 

Wy /W XJ/I (mw+1)/(J/I+(mw+1) ) (2.3.5) 

Table 2.3.1 contains some values for W,/Wa as a function of J/I 

and mw. Entries less than 1 correspond to cases where i t i s 

v mw 

J/K .5 1 2 4 8 

i 0 .6 0 .667 0 .75 0 .833 0 .9 
1.2 0 .667 0 .75 0 .857 0 .968 1 .06 
1.5 0 .75 0 .857 1 .0 1 .15 1 .29 
2 0 .857 1 .0 1 .2 1 .43 1 .64 

Table 2.3.1 
Work rati o s W /W„ — \i-—a. 

more e f f i c i e n t to integrate the s e n s i t i v i t y equations each time 

the i n i t i a l value problem i s integrated. 

To carry t h i s analysis further, we need some t y p i c a l values 

for w. Consider Euler's method with no stepsize adjustment. 

Assume there are n state variables and l e t the work required to 

evaluate one component of a vector function or one element of a 

Jacobian matrix be Wc. The i n i t i a l value problem (1.1.1) i s 

CHAPTER 2 



34 

y'=g(t,y,p) 

and the s e n s i t i v i t y equations are of the form 

y.' =g u(t,y,p)y. +g_ ,j=i,...,m. 

We do not make any special allowances for parameters that occur 

only in the i n i t i a l conditions (thus making g =0) in the 

following analysis. Also, additions and mul t i p l i c a t i o n s 

associated with taking an Euler step are neglected. The work 

required to advance one time step in the solution of (1.1.1) i s 

nWc, and the work required to advance one step in the solution 

of one s e n s i t i v i t y equation system i s (na/m+n)Wc. Thus 

mw=(na+mn)/n=n+m. (2.3.6) 

In the case of Euler's method without error control, i t seems 

advisable to solve the s e n s i t i v i t y equations only when required. 

The same conclusion applies to e x p l i c i t multistep methods 

without error control since to advance one step in time requires 

only one evaluation of the vector function on the right hand 

side of (1.1.1) (see for example Gear[25,p.104]). 

The s i t u a t i o n i s , however, d i f f e r e n t with i m p l i c i t 

multistep methods. Here a generally nonlinear system of 

algebraic equations must be solved for each advance of one time 

step when integrating (1.1.1). If a predictor-corrector method 

i s used to solve the these nonlinear systems of equations then 

t y p i c a l l y two or three corrections are required at each time 

step (Gear[25,p.114]). Assume the predictor - corrector method 
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ends with an evaluation of y' at the new time value. To be 

concrete, assume four evaluations of g are required per time 

step. To solve the i m p l i c i t equations associated with the 

integration of the s e n s i t i v i t y equations, no extra function 

evaluations beyond those required for an e x p l i c i t multistep 

method are needed. However, m linear systems of equations each 

involving the same nxn matrix must be solved. This takes on the 

order of n /3+mn mul t i p l i c a t i o n s (see for example 

Stewart[65,p.136]). The number of mul t i p l i c a t i o n s required to 

evaluate a component of g can vary greatly between problems. To 

describe t h i s v a r i a t i o n , l e t Wc require 1 m u l t i p l i c a t i o n s . We 

w i l l vary 1 in the following analysis. The work required to 

advance one time step , without error control, in the solution 

of (1.1.1) i s 

4nWc=4nl mul t i p l i c a t i o n s (2.3.7) 

and the number of mu l t i p l i c a t i o n s required to advance one step 

in the solution of a s e n s i t i v i t y equation i s 

(na/m+n) l+n 3/(3m)+2n i. (2.3.8) 

The m u l t i p l i c a t i o n s required to form g y have been included in 

the above estimate. Thus 

mw=((n+m)l+na/3+2nm)/(41). (2.3.9) 

Some values for mw and for W^W^ are given in Table 2.3.2. The 

ordered pair (m,n) i s given below the mw values. From Table 

2.3.2, we see there are cases when i t i s advantageous to 
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1 = 5 1 = 25 
\mw 

1.92 3.92 3.27 6.17 1.38 2.38 2.25 3.43 
J / I \ (3,2) (3,5) (6,2) (6,5) (3,2) (3,5) (6,2) (6,5) 

1.0 0.745 0.831 0.810 0.878 0.704 0.772 0.765 0.816 
1.2 0.850 0.965 0.937 1.03 0.798 0.886 0.877 0.944 
1.5 0.991 1.15 1.11 1.24 0.921 1.04 1.03 1.12 
2.0 1.19 1.42 1.36 1.56 1.09 1.26 1.24 1.38 

Table 2.3.2 
Some work r a t i o s f o r a p r e d i c t o r - c o r r e c t o r method 

i n t e g r a t e the s e n s i t i v i t y equations every time the n o n l i n e a r 

i n i t i a l value problem i s i n t e g r a t e d . T h i s s t r a t e g y would be 

even more d e s i r a b l e i f an e r r o r c o n t r o l were used on the 

n o n l i n e a r i n i t i a l value problem. 

The case when the i n i t i a l value problem i s s t i f f r e q u i r e s 

s p e c i a l a t t e n t i o n . In t h i s case i t i s d e s i r a b l e f o r s t a b i l i t y 

reasons to use an i m p l i c i t i n t e g r a t i o n scheme; however, a 

p r e d i c t o r - c o r r e c t o r method can r e q u i r e very small step s i z e s to 

converge and thus a Newton-like method i s i n d i c a t e d 

(Gear[25,p.216]). T h i s r e q u i r e s i n f o r m a t i o n on g ; however, the 

exact g i s not r e q u i r e d and the usual s t r a t e g y i s to update g^ 

only when necessary (see Gear[25,p.217]). To be co n c r e t e , we 

assume oL e v a l u a t i o n s of g are r e q u i r e d per time step i n the 

s o l u t i o n of the giv e n i n i t i a l value problem ( u s u a l l y << <1.). 

There i s a f u r t h e r c o m p l i c a t i o n i n f i n d i n g work estimates i n the 

s t i f f case. I f the s e n s i t i v i t y equations are to be i n t e g r a t e d 

then we must f i n d g and the f a c t o r s of the a s s o c i a t e d l i n e a r 
J 
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system matrix at each time step. Thus this information i s 

f r e e l y available when we are integrating the given dynamic 

system. In the following estimates we assume no advantage i s 

taken of th i s free information. We have 

mw=( (n+m) l+na/3+2nm) / (4 (n+1) +<* (nl+n A/3) ) . (2.3.9) 

In Tables 2.3.3 and 2.3.4, results analogous to those in Table 

2.3.2 are given for the cases <<=.3 and <<=.6 respectively. 

We conclude that for i m p l i c i t methods, i t can be 

advantageous to follow strategy one, e s p e c i a l l y when the problem 

is s t i f f . Of course the optimal strategy i s strongly dependent 

on the optimization method used and for strategy one to be best, 

exact searches at each i t e r a t i o n should not be made. F i n a l l y we 

note that from the results on ten test problems considered in 

[5], J/I^1.2 for the Levenberg-Marquardt method. 
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1 = 5 1 = 25 

\ 1.22 1.57 2.08 2.47 1.12 1.49 1.83 2.15 
J / I \ (3,2) (3,5) (6,2) (6,5) (3,2) (3,5) (6,2) (6,5) 

1.0 0.690 0.720 0.755 0.776 0.680 0.713 0.739 0.759 
1.2 0.779 0.818 0.864 0.891 0.766 0.810 0.842 0.869 
1.5 0.895 0.947 1.01 1.05 0.879 0.936 0.980 1.02 
2.0 . 1.05 1.12 1.21 1.27 1.03 1.11 1.17 1.22 

Table 2.3.3 
Work ratios for a s t i f f method (a(=.3) 

1 = 5 

1.31 
(3,5) 

1.88 
(6,2) 

2.06 
(6,5) 

1 = 25 

0.997 1.19 1.62 1.72 
(3,2) (3,5) (6,2) (6,5) 

1.0 
1.2 
1.5 
2.0 

0.678 0.697 
0.764 0.789 
0.875 0.909 
1.02 1.07 

0.742 0.753 
0.847 0.862 
0.986 1.01 
1.18 1.21 

0.666 0.687 
0.750 0.775 
0.857 0.891 
0.999 1.05 

0.724 0.731 
0.823 0.832 
0.954 0.966 
1.13 1.15 

Table 2.3.4 
Work rati o s for a s t i f f method (<<=.6) 

2.4 AN EXAMPLE WITH KNOWN DIAGONAL COVARIANCE MATRIX 

Consider the i n i t i a l value problem 

Y ; = - P , Y ^ + P ^ 

y » - P / Y , Y * + p * y 3 - p * y * Y s + P * Y 5 - - P < Y ^ Y * 

y j =P, y, y a - P Z Y 3 - P , Y ^ - ^ Y ^ (2.4. I ) 

y ^ y * y « - p 5 - V P * y a y * 

with the i n i t i a l condition 
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y(0) = ( l , 1, 0, 0, 0 ) T . (2.4.2) 

This problem i s considered by Bard[5]. Observations used by 

Bard on a l l f i v e state variables are given in Table 2.4.1. The 

Time Observations 
10y3 lOOOy^ 10 00y^. 

12. 5 .945757 .961201 .494861 154976 .111485 
25 .926486 .928762 .690492 314501 .236263 
37. 5 .917668 .915966 .751806 „ 709300 .311747 
50 .928987 .917542 .771559 1 .19224 .333096 
62. 5 .927782 .920075 .780903 1 .68815 .340324 
75 .925304 .912330 .790539 2 .19539 .356787 
87. 5 .925083 .917684 .783933 2 .74211 .358283 
100 .917277 .907529 .779259 3 .20025 .361969 

Table 2.4.1 
Observations 

problem we consider, designated problem 3dl by Bard[5], assumes 

a known diagonal covariance matrix for the error in the 

observations on the state variables of 

V=diag(25E-6, 25E-6, 25E-8, 25E-10, 25E-12). (2.4.3) 

The objective function i s 

.5Tr (V_/M(p) ) (2.4.4) 

where M(p) i s defined in'Section 1.1. This i s just a maximum 

lik e l i h o o d estimate with the observation times known exactly. 

Since V i s a diagonal matrix, t h i s problem can be handled by our 

weighted least squares formulation. For convenience we ignore 

the .5 and minimize Tr (v'M(p)). Now 
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V =diag(4E4, 4E4, 4E6, 4E8, 4E10) 

and thus we weight the residuals associated with state variables 

1, 2, 3, 4, and 5 by 200, 200, 2000, 20000, and 200000 

respectively. Bard's starting approximation for p was 

(.01, .01, .001, .001, .02, .001)T 

Our implementation of the Levenberg-Marquardt method using 

Gear's predictor-corrector implementation to integrate the 

i n i t i a l value problem gave the results in Table 2.4.2. Our 

Component of p Our estimate Estimate in [5] 

1 .6358233E-2 .6358106E-2 
2 .6774440E-1 .6774396E-1 
3 .5920433E-4 .5916273E-4 
4 .4943161E-3 .4943798E-3 
5 .1018610 .1018756 
6 .4204069E-3 .4202537E-3 

Table 2.4.2 
Optimization results 

minimum for the expression in (2.4.4) was 21.38429 and Bard's 

minimum was 21.37944. Considering the complexity of the 

programs and the fact that we used Hermite interpolation to get 

integration results at the observation times, these results seem 

to be in good agreement. We note that no constraints were 

required to get the above optimum. Bard uses penalty functions 

to impose the constraint p->0, j=l,...,6 on this problem. They 

appear unnecessary for us; however, Bard[5,pl85] does require 
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the imposition of constraints to successfully resolve some 

parameter f i t t i n g problems involving the above dynamic system. 
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CHAPTER 3 

SPECIAL METHODS FOR THE INTERACTIVE APPROACH 

3.1 THE INTERACTIVE APPROACH 

Interactive techniques provide a powerful tool for 

nonlinear parameter estimation in general and they are 

es p e c i a l l y valuable for d i f f i c u l t problems such as those 

involving dynamic models. Indeed, even the resolution of simple 

nonlinear parameter estimation problems often requires several 

runs to adjust such things as termination c r i t e r i a , and star t i n g 

approximations to the parameters. With dynamic models, the 

problems of i n s t a b i l i t i e s , o v e r s t a b i l i t i e s , and at times 

numerous l o c a l minima in the optimization problem can make 

parameter estimation a tedious task. An interactive approach 

using algorithms designed with user intervention in mind can 

reduce many of the d i f f i c u l t i e s associated with parameter 

estimation in dynamic models. However, for the optimum use of 

any parameter estimation package there i s no substitute for a 

good understanding of the model under consideration. The design 

of a good interactive package i s an involved task. For a 

detailed introduction to interactive applications in numerical 

analysis see Smith[63]. The work by Aaro[l],[2] on a software 

system for interactive computing seems to hold promise for 

producing good transportable interactive packages with good user 

interfaces. We l i s t below some of the major considerations 

involved in producing a good interactive parameter estimation 
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package. 

(1) Special algorithms that exploit user judgement and 

intervention should play a large role in the interactive 

package. The development of such algorithms for the f i t t i n g 

of parameters in dynamic models i s one goal of thi s thesis. 

(2) An extensive set of commands should be available; however, a 

ty p i c a l user should not be forced to learn a detailed 

command language in order to use the program. One way to 

att a i n t h i s goal i s for the inte r a c t i v e program to display 

l i s t s of options (such as output options for example) and to 

prompt the user for the necessary d e t a i l s to complete a 

command. There i s , however, a tradeoff here and for certain 

highly r e p e t i t i v e commands (such as those involved with 

stepping through a nonlinear optimization intera c t i v e l y ) 

prompting should be kept to a minimum. F i n a l l y , the program 

should be r e l a t i v e l y "user proof". That i s , internal 

checking should be done so that regardless of what the user 

enters, the program should not end with a terminal error. 

Making a package user proof i s large l y a matter of detailed 

programming, and in the interests of e f f i c i e n t program 

development, i t should be l e f t u n t i l near the end. Another 

goal of t h i s thesis i s to develop a set of simple commands 

that are useful for interactive parameter f i t t i n g in dynamic 

models. 

(3) Careful consideration must be given to what information the 

interactive program displays. Graphical information seems 
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to be the most useful. In the case of parameter f i t t i n g in 

dynamic models, integration r e s u l t s , observations, and in 

the two state variable case, phase plane plots are obvious 

candidates for graphical display. 

A decision must be made on how the user should describe the 

parameter f i t t i n g problem to the interactive package. There 

are b a s i c a l l y two choices. F i r s t , the dynamic model can be 

defined through a user written subroutine, which i s 

separately compiled and then loaded with the interactive 

package. This subroutine can also contain other necessary 

a n a l y t i c a l information (such as Jacobian matrices) required 

by the integration and parameter f i t t i n g algorithms. 

A l t e r n a t i v e l y , the model can be entered and modified 

i n t e r a c t i v e l y (and of course saved on f i l e for later use so 

that i t need not be re-entered each time an interactive 

session begins). This i s a more v e r s a t i l e approach, but i t 

requires extensive programming. Its main advantage i s that 

the user can i n t e r a c t i v e l y modify as well as f i t a model. 

Starting with a simple model and gradually working up to a 

more complex model i s one way of getting starting 

approximations to parameters (see Bard[6,p.123]). However, 

the consequences of adding a new term to a dynamic model can 

be dramatic and interactive modification of dynamic models 

demands a l o t from the user. In the interests of 

e f f i c i e n c y , i nteractive model entry and modification require 

that any p a r t i a l derivatives needed by the numerical 
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algorithms should be found symbolically. This i s fe a s i b l e , 

but i t adds to the complexity of the ove r a l l program. The 

second option described above i s a good long range goal; 

however, i t i s e s s e n t i a l l y a matter of programming and not 

numerical analysis and i t should wait u n t i l the numerical 

aspects of the interactive package have been settled upon. 

This second option can be added later to a working package 

using the f i r s t option. 

(5) A good interactive package should be well structured so that 

new commands can e a s i l y be added, and so that existing 

commands can be e a s i l y modified and extended. Also 

attention should be paid to the d e s i r a b i l i t y of eventually 

producing a transportable program. Transportability i s 

es p e c i a l l y sensitive to the way the package uses graphics 

software. Thus i t is desirable to is o l a t e the interface 

between the interactive program and pa r t i c u l a r graphics 

procedures. Of course, the interactive program should only 

use generally available graphics operations. 

It i s our view that the f i r s t goal (to develop good 

interactive algorithms for the parameter f i t t i n g problem) i s the 

most important in that decisions made here influence the d e t a i l s 

concerning the way the other goals are attained, and even more 

importantly, the algorithms employed play a major role in 

determining how effective, the ov e r a l l package i s . Of course 

good algorithms can be degraded i f the user-machine interface i s 

neglected. 
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An e f f i c i e n t way to proceed seems to be to develop an 

experimental interactive package concentrating on the f i r s t 

goal, but also paying strong attention to the second t h i r d and 

f i f t h goals. This i s the strategy we have employed in 

developing our interactive package PARFIT described in d e t a i l in 

Appendix A. 

In this chapter, we consider several special techniques for 

f i t t i n g parameters in d i f f e r e n t i a l equations. Our goal i s the 

development of techniques which lend themselves well to an 

int e r a c t i v e approach, and which are less sensitive to the 

i n i t i a l parameter guess than the d i r e c t approach using the 

s e n s i t i v i t y equations. However, there i s a tradeoff and coarse 

but well behaved methods should only be expected to give 

approximate values to the optimal parameters and should not for 

example be expected to distinguish between neighboring l o c a l 

minima in the f u l l least squares problem. The f i r s t special 

method we consider i s the derivative f i t t i n g approach. This i s 

one of the most straightforward of the coarser methods. For 

experimental results with another implementation of this 

technique, we refer the reader to Swartz and Bremermann[66]. 

3.2 DERIVATIVE FITTING (DFIT) 

Assume observations are given d i r e c t l y on a set of state 

variables in the dynamic model under consideration. Thus, 

t h e o r e t i c a l l y , the desired derivatives of these state variables 

can be approximated as follows: (For the moment, we assume 

observations are available on a l l n components of the state 
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vector y(t).) Each component y^-vt) of y(t) i s approximated by a 

function ŝ . (t) f i t t i n g the data at the observation points which 

i s at least continuously d i f f e r e n t i a b l e . This can i d e a l l y be 

done i n t e r a c t i v e l y . The problem of finding p to minimize F(p) 

in (1.3.1) can now be approximated by the problem of finding p 

to minimize 

I Is'(t)-g(t,s(t),p) I |* (3.2.1) 

T 

where s(t) = (s ; (t) ,...,s„ (t)) . 

Since s(t) generally approximates noisy data, a careful 

determination of p to minimize the above expression in the L a 

sense cannot be j u s t i f i e d . Thus for computational purposes, we 

minimize the semi-norm on c' [t0 ,t^] defined by 
( S I I Is' ( t t ) - g ( t / ,s{tx ) ,p) | |* (3.2.2) 

where £t^ : l<l<k^ i s the set of observation times introduced in 

Section 1.1. Our parameter f i t t i n g problem has thus become a 

problem in nonlinear functional approximation which i s much 

cheaper and usually much easier than the o r i g i n a l problem. 

Indeed, i f g i s linear in p, a l l we have i s an ordinary linear 

least squares problem. 

The above observations make the derivative f i t t i n g approach 

very a t t r a c t i v e ; however, as noted by Bard[6p.128], i t has some 

severe • flaws. These occur in part because i t requires 

approximations to y(t) and y'(t) and good approximations to 

these functions are often hard to obtain. This i s the case for 
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example when the observations have large separations in time or 

when the data i s noisy. Bard further notes that an error 

analysis for the parameter estimates i s d i f f i c u l t with this 

approach. This l a t t e r drawback i s not too important from our 

point of view since we propose this method only as an 

intermediate technique and for the f i n a l determination of 

parameters and confidence i n t e r v a l s , we recommend the use of the 

s e n s i t i v i t y equations. A more severe drawback of this method i s 

that with a poor approximation to y or y 1 , parameters may be 

produced at which the solution to the i n i t i a l value problem 

deviates greatly from the observations or even blows up. This 

can be remedied at times by the technique of the next section 

where there i s no need for an approximation to y ' ( t ) . The 

errors in the approximations to y and y' are not the only 

factors a f f e c t i n g the r e l i a b i l i t y of this technique. Other 

c h a r a c t e r i s t i c s of the least squares problem of minimizing 

(3.2.2) must also be considered. In p a r t i c u l a r the results 

concerning conditioning mentioned at the end of Chapter 1 are 

important. For example, in view of (1.3.23), i t i s possible for 

r e l a t i v e l y small errors in our approximation to y' to have a 

large influence on the parameters estimated by the DFIT method. 

This i s e s p e c i a l l y important to keep in mind since the 

d i f f e r e n t i a t i o n of data tends to be error prone. The integral 

f i t t i n g method of the next section avoids this dependence on 

approximated derivatives. 

To implement the derivative f i t t i n g approach, a technigue 
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f o r using the o b s e r v a t i o n s to approximate y ( t ) and y ' ( t ) i s 

r e q u i r e d . I f there are f a i r l y l a r g e e r r o r s i n the data, i t i s 

not reasonable to use a d i f f e r e n c i n g technique to approximate 

y', and some smoothing method i s c a l l e d f o r . In our package 

PARFIT, we use l e a s t squares piecewise c u b i c s p l i n e 

approximations and l e a s t squares piecewise c u b i c Hermite 

approximations to the da t a . Approximations are made 

i n d i v i d u a l l y on each observed s t a t e v a r i a b l e and the p o s i t i o n i n g 

of the j o i n t s f o r each piecewise polynomial i s l e f t to the user. 

T h i s should i d e a l l y be done i n t e r a c t i v e l y . 

Cubic s p l i n e approximations are adequate f o r many cases; 

however, they run i n t o d i f f i c u l t i e s when sharp bends occur i n 

the f u n c t i o n being approximated. T h i s causes problems, f o r 

example, when the dynamic model under c o n s i d e r a t i o n i s s t i f f . 

Piecewise c u b i c Hermite approximations which are C ' as opposed 

to the C 3 c u b i c s p l i n e approximations do not have as gre a t a 

problem with sharp bends and are thus more s u i t e d f o r handl i n g 

the sharp turns that occur i n s t i f f problems. 

A couple of l i m i t a t i o n s with the d e r i v a t i v e f i t t i n g 

technique immediately come to mind. In the problem formulated 

i n S e c t i o n 1.1, i t was p o s s i b l e to have parameters a r i s i n g o n l y 

through the i n i t i a l c o n d i t i o n s . A d e r i v a t i v e f i t t i n g a l g o r i t h m 

cannot g i v e us any i n f o r m a t i o n on these parameters. Another 

d i f f i c u l t y a r i s e s with d e r i v a t i v e f i t t i n g when o b s e r v a t i o n s are 

not a v a i l a b l e on a l l the s t a t e v a r i a b l e s , but there i s a way 

around t h i s problem i n some of the cases where no parameters 
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occur exclusively in the subset of state equations corresponding 

to unobserved state variables. S p e c i f i c a l l y , we do a derivative 

f i t on the subset of state equations corresponding to observed 

state variables. At each least squares function evaluation at a 

point in parameter space during the i t e r a t i v e solution of this 

reduced derivative f i t t i n g problem, we integrate the subset of 

state equations corresponding to unobserved state variables. 

Thus, up to date information i s always available on the 

unobserved state variables in the reduced derivative f i t t i n g 

problem. However, th i s method has severe l i m i t a t i o n s . The 

obvious l i m i t a t i o n i s that i t only applies to a r e s t r i c t e d set 

of problems. Another l i m i t a t i o n involves s t a b i l i t y problems 

which can arise when a subset of a system of d i f f e r e n t i a l 

equations i s integrated. Nevertheless, t h i s technique has 

experimentally proven successful in some cases and for th i s 

reason we mention i t here. Next we give an example of the kind 

of s t a b i l i t y problem that can occur. 

Consider the problem 

y'=Gy (3.2.6) 

where y i s of length 2 and 

"-30 -22' 

28 20 
G = (3.2.7) 

The eigenvalues of G are -8 and -2 and the solution to (3.2.6) 

decays exponentially; however, i f we f i x y =sf (t) and integrate 
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y;J = 2 8 s / ( t ) + 2 0 y 4 , (3.2.8) 

depending on s ; ( t ) of course, the s o l u t i o n can grow 

e x p o n e n t i a l l y . The s t a b i l i t y problems that can a r i s e with the 

above m o d i f i e d d e r i v a t i v e f i t t i n g technique a l s o have an impact 

on the d e s i g n of s t a b l e i t e r a t e d i n t e g r a l and d e r i v a t i v e f i t t i n g 

a l g o r i t h m s i n S e c t i o n 3.4. To i l l u s t r a t e the d e r i v a t i v e f i t t i n g 

technique, c o n s i d e r the f o l l o w i n g problem i n v o l v i n g a set of 

coupled chemical r e a c t i o n s (see van Domselaar and Hemker[71]). 

The s t a t e equations are 

y>=_(l_y )y +p y 
' * * (3.2.9) 

y'=p ( ( 1 - y ) y - ( p +p )y ) 
a. I A. ' A 3 3 

and the i n i t i a l c o n d i t i o n i s 

y(0) = ( l , 0 ) r . (3.2.10) 

Th i s r e p r e s e n t s a model of a chemical r e a c t i o n and a l l 

parameters should remain p o s i t i v e . Observations were generated 

by i n t e g r a t i n g the above i n i t i a l value problem at 

(1000, 0.99, 0.01)T 

A l l simulated o b s e r v a t i o n s i n t h i s t h e s i s were found by 

i n t e g r a t i o n under e r r o r c o n t r o l . In the i n t e r e s t s of economy, 

a l l parameter f i t t i n g i n t e g r a t i o n s were done without s t e p s i z e 

adjustment unless otherwise i n d i c a t e d . For t h i s s t i f f problem, 

we used o b s e r v a t i o n s on both s t a t e v a r i a b l e s at the same 

o b s e r v a t i o n times that were used i n [71] . These o b s e r v a t i o n s 

(to four f i g u r e s ) are l i s t e d i n Table 3.2.1. The o b s e r v a t i o n s 
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Time y a Time y, 

0 . 0 0 0 2 0 .9998 0. 1 6 4 8 0.06 0 .9991 0. 4 9 9 8 
0 . 0 0 0 4 0 .9997 0. 2 7 5 3 0.08 0 .9 9 8 9 0. 4 9 9 7 
0 . 0 0 0 6 0 .9 9 9 6 0. 3 4 9 3 0.1 0 . 9 9 8 9 0. 4 9 9 7 
0 . 0 0 0 8 0 .9 9 9 6 0. 3 9 9 0 1.0 0 . 9 9 4 5 0. 4 9 8 6 
0.001 0 .9996 0. 4 3 2 2 2.0 0 . 9 8 9 5 0. 4 9 7 4 
0 . 0 0 1 2 0 .9 9 9 5 0. 4 5 4 5 5.0 0 .9747 0. 4 9 3 6 
0 . 0 0 1 4 0 . 9 9 9 5 0. 4 6 9 5 1 0 . 0 0 .9502 0. 4 8 7 2 
0 . 0 0 1 6 0 .9 9 9 5 0. 4 7 9 5 1 5 . 0 0 .9260 0. 4 8 0 8 
0 . 0 0 1 8 0 .9 9 9 5 0. 4 8 6 2 2 0 . 0 0 .9021 0. 4 7 4 3 
0.002 0 .9 9 9 5 0. 4 9 0 7 2 5 . 0 0 .8 7 8 6 0. 4 6 7 7 
0.02 0 .99 9 3 0. 4 9 9 8 3 0 . 0 0 .85 5 3 0. 4 6 1 0 
0.04 0 .99 9 3 0. 4 9 9 8 

Table 3.2.1 
Observations for s t i f f problem 

on y were approximated with a least squares piecewise cubic 

Hermite polynomial with one j o i n t at t=10, and the observations 

on y were approximated with a least squares piecewise cubic 

Hermite polynomial with j o i n t s at t=.0007, .0014, .0016, 15. 

Our star t i n g guess at the parameters was 

p('J =(50, 5, . 5 ) r . 

The DFIT method found the point 

(969.6, 1.113, -.1080) T 

in parameter space. Unfortunately, p^ i s negative. This 

suggests we try a square root transformation of p3 and estimate 

'p̂  = fp~3. With th i s transformation, the DFIT method found the 

point (unsealed) 

(969.6, 1.005, 9.33E-7)7" 
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in parameter space. We note that the DFIT method was quite 

capable of finding a good approximation to p ;. This should be 

compared with the results in the next section where the IFIT 

method was applied, to thi s problem. 

The d i r e c t method using the s e n s i t i v i t y equations also 

succeeded when i t was started from p given above; however, i t 

was slow to begin modifying p ; upward from 50. 

Before we give our next set of test problems, some 

conventions must be established concerning the presentation of 

graphical information. In p a r t i c u l a r , we use the following 

conventions: 

Observation points on y 

Observation points on y A 

Integration results on y 

Integration results on y^ 

Smoothing of data for y 

Smoothing of data for y a 

Guessed behavior for y 

Guessed behavior for y 

X 

a. 

Phase plane t r a j e c t o r i e s are s o l i d l i n e s . 

The above conventions are s u f f i c i e n t for most of our plot s . 

Other conventions are introduced as they become necessary. We 

use the method developed by McConalogue[45] to produce smooth 

curves for our p l o t s . 

In t h i s section and Section 3.3, we make some comparisons 

between derivative f i t t i n g and integral f i t t i n g on a problem 
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involving a change in equilibrium. The ef f e c t of noisy data on 

these two parameter estimation techniques i s investigated for 

the test problem, 

y'=p yi+pay,a+pl y, -y. 
' ' ' 51 1 * ' * ( 3 . 2 . 1 1 ) 

y' =p y 

with the i n i t i a l condition 

y ( 0 ) = ( 1 . 5 , 1.0 ) T ( 3 . 2 . 1 2 ) 

Our f i r s t set of observations was obtained by integrating 

the above problem at the parameter vector 

(-.1, - 1 , 2 . 4 , .1)T 
These generated observations, at times .5 ( . 5 ) 2 0 , are shown in 

Figure 3 . 2 . 1 . For c l a r i t y we present graphical results only on 

y . State variable y does not go through any rapid jumps. 

Observations are used on both state variables. A piecewise 

cubic Hermite approximation to the observations on y using 

j o i n t s at t=2, 4, 6, 7, 8, 9, 1 0 , 1 2 , 1 4 , 18 i s also shown in 

Figure 3 . 2 . 1 . The j o i n t s for the corresponding approximation to 

the observations on y were at t=3, 8, 1 5 . Using these 

approximations to the observations, the DFIT method produced the 

parameters 

( - . 0 7 7 4 0 , - . 7 9 9 5 , 1 . 7 2 5 , .09948)T 

No starting approximation to the parameters was required since 

the DFIT method involved solving a linear least squares problem 
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Figure 3.2.1 
Eguilibrium change—no error in observations 

20.00 

in this case. Integration results for y ; at the above 

parameters are also shown in Figure 3.2.1. A l l integrations of 

(3.2.11) were done using stepsize adjustment. These results 

should be compared with those in Figure 3.3.1 where results 

obtained with the IFIT method applied to this problem are shown. 

Next a normally distributed random error with mean 0 and 

standard deviation <r =1 was introduced into the above 

observations. The resulting observations on y and • their 

piecewise cubic Hermite approximation using j o i n t s at t=6,7,9,14 

are shown in Figure 3.2.2. Joints at t=6,12 were used for the 

smoothing of the observations on y . Using this smoothing, the 

DFIT method produced the parameters 
T (-.03942, -.4047, 1.168, .1007). 
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TIME 
Figure 3.2.2 

Equilibrium change—error in observations (tr=l) 

Integration results for y at these parameters are also shown in 

Figure 3.2.2. These results should be compared with those in 

Figure 3.3.2 where results with the IFIT method are presented 

for this problem. 

Our next experiment involved an increase in the noise; 

however, the change in equilibrium i s s t i l l v i s u a l l y 

discernable. A normally di s t r i b u t e d random error with mean 0 

and standard deviation o-=2 was introduced into the observations. 

The resulting observations along with a piecewise cubic Hermite 

smoothing function are shown in Figure 3.2.3. The jo i n t s for 

the smoothing functions were the same as for the case<r=l. With 

this smoothing , the DFIT method produced the parameters 

(-.02113, -.2394, .6449, .1023)T 
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F i g u r e 3.2.3 
E q u i l i b r i u m c h a n g e — e r r o r i n o b s e r v a t i o n s (<r=2) 

I n t e g r a t i o n r e s u l t s f o r y at these parameters are shown i n 

Fi g u r e 3 . 2 . 3 . By comparison with F i g u r e 3 . 3 . 3 , we see that the 

IFIT method produced much b e t t e r r e s u l t s i n t h i s case. 

3.3 INTEGRAL FITTING (IFIT) 

The d e r i v a t i v e f i t t i n g approach works w e l l i n many cases; 

however, i t has the drawback that i t r e q u i r e s the numerical 

d i f f e r e n t i a t i o n of (at times) n o i s y data. Thus i t i s reasonable 

to t r y to f i t i n t e g r a l s i n s t e a d of d e r i v a t i v e s . For some 

a d d i t i o n a l background to i n t e g r a l f i t t i n g we r e f e r the reader to 

B a r d [ 6 , p . 2 1 9 ] . As i n the p r e v i o u s s e c t i o n , we assume an 

approximation to the d e s i r e d s o l u t i o n to our i n i t i a l value 

problem i s a v a i l a b l e i n the n-vector s (t) = (s, ( t ) , . . . , s ^ ( t ) ) T 

which i s obtained by some smoothing technique. The i n t e g r a l 
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f i t t i n g problem i s to find the vector p to minimize 

f r ( p ) f ( p ) 

where 
f*ci-OW = ( Y * W - ( P > + j g , ( t , s ( t ) f P ) d t ) - s . (t^) (3.3.1) 

where 1=1,...,k; i=l,...,n; y (p) i s the i 1 t h component of the 

vector of star t i n g values for the i n i t i a l value problem 

y'=g(t,y,p), and g^.(t,s,p) i s the i 1 th component of g(t,s,p). 

The Jacobian matrices for the linear least square problems that 

arise when p i s found i t e r a t i v e l y have elements 

J»i = 2 1 * ( 3 = 1 ' ' k n ; J = 1 ' ' m (3.3.2) 

which are found by evaluating the integrals 

±y_oi(p)+ j 3g,(t,s,p)dt (3.3.3) 

for 1=1,...,k; i=l,...,n; j=l,...,m. 

Note that we are not solving our i n i t i a l value problem with 

these i n t e g r a l s . We are just integrating functions of time 

since s(t) i s known. Thus in terms of the number of evaluations 

of the function g, th i s method i s equivalent to the derivative 

f i t t i n g algorithm when a simple integration method such as the 

trapezoidal method using the times t

Q , t i , . . . , t ^ i s employed. 

Furthermore, t h i s method has the same degree of l i n e a r i t y as 

does the derivative f i t t i n g method. In par t i c u l a r the above 

least squares problem for p i s linear in p when g and Y c(p) are 
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linear in p. Also, the integral f i t t i n g method can provide 

information on parameters which occur only in the i n i t i a l 

conditions, and thi s can be very useful. As demonstrated in 

Chapter 4, access to the i n i t i a l conditions can also be very 

important when no parameters occur in the i n i t i a l conditions. 

One might expect the IFIT problem to be better conditioned 

than the DFIT problem; however, i t i s possible for the integral 

f i t t i n g problem to be singular even when the derivative f i t t i n g 

problem i s well conditioned, but this does not appear to be a 

serious drawback in practi c e . To see how thi s s i n g u l a r i t y can 

ari s e , consider the case when there are 2 parameters, 1 state 

variable, and three observation times, t , t A , and t 3 with equal 

spacing h. Let the i n i t i a l condition (at t ) be independent of 

the parameters and l e t the derivative f i t t i n g Jacobian be 

0 1 
1 0 

-1 0 

Using the trapezoidal integration method, the integral f i t t i n g 

Jacobian i s the rank one 2x2 matrix 

f h / 2 h/2l 
|_h/2 h/2j 

formed by multiplying the derivative f i t t i n g Jacobian by 

fh/ 2 h/2 0 "I 
|_ h/2 h h/2 

We note again that this was a s p e c i a l l y contrived si t u a t i o n and 

such a d i f f i c u l t y does not appear to arise in practice. 

CHAPTER 3 



60 

Our f i r s t experiment with the IFIT method i s on the s t i f f 

problem (3.2.9). Using the same smoothing and p v as were used 

in the previous section, the IFIT method found the point 

(607.3, .9901, .009281)7" 

in parameter space. The parameter p was not as well 

approximated as i t was with the DFIT method; however, no 

parameters have gone negative and good approximations have been 

obtained for p and p . 

Next we give some experiments with the i n i t i a l value 

problem (3.2.11) involving a change in equilibrium. Using the 

observations and smoothing of the previous section for the case 

<r=0 (no e r r o r ) , the IFIT method gave the parameters 

(-.1006, -.9913, 2.569, .1004)T 

Integration results for y at this parameter vector are shown in 

Figure 3.3.1. Using the observations and smoothing of the 

previous section for the case<?-=l, the IFIT method gave the 

parameter vector 

(-.00354, -.5883, 2.223, .09735)T 

Integration results for ŷ  at the above parameters are shown in 

Figure 3.3.2. These results should be compared with those in 

Figure 3.2.2. F i n a l l y using the observations and smoothing 

functions of the previous section for the casee>-=2, the IFIT 

method gave the parameters 

(-.03277, -.2655, 1.813, .09433)'. 
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Equilibrium change—no error in observations 
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integration results for y at the above parameters are shown in 

Figure 3.3.3. We observe that there was a substantial 
a 
••'•3 

DO 
TIME 

Figure 3.3.3 
Equilibrium change—error (<r = 2) 

improvement over the corresponding results for the DFIT method 

shown in Figure 3.2.3. 

3.4 ITERATED INTEGRAL AND DERIVATIVE FITTING 

In t h i s section, the important special case when 

observations are not available on a l l state variables i s 

considered. This s i t u a t i o n was mentioned b r i e f l y in Section 

3.2; however, the technique presented there was highly 

r e s t r i c t i v e in the class of problems i t could handle and i t was 

prone to i n s t a b i l i t i e s . 

At times the model builder knows approximately how 

unobserved state variables should behave to be consistent with 
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the observed state variables. Thus an i n t e l l i g e n t guess can be 

made and f i c t i t i o u s observations on the unobserved state 

variables can be created. With these created observations along 

with the physical observations, the DFIT and IFIT methods can be 

applied. Our interactive package PARFIT contains f a c i l i t i e s for 

setting up guessed observations on unobserved state variables in 

the important special case when only two state variables are 

present. PARFIT could e a s i l y be modified to handle cases where 

more than two state variables are present; however, as the 

number of unobserved state variables increases, the p r a c t i c a l i t y 

of t h i s method diminishes. The use of created observations can 

be a great help in determining the proper parameters, but, as 

one would expect, the success of this method depends on how well 

the proper behavior of the unobserved state variables can be 

anticipated. This i s again a good place for an interactive 

approach. The model builder can i n t e r a c t i v e l y modify the 

guessed observations, apply the DFIT or IFIT methods, observe 

the integration results at the parameters obtained ( i f 

integration i s possible), and then readjust the created 

observations. There are also automatic ways of improving the 

guessed observations and we concentrate on such methods for the 

remainder of this section. 

One stable way to i t e r a t i v e l y improve guessed observations 

and reestimate parameters i s with a nonlinear block Gauss-Seidel 

technigue. (For a discussion of nonlinear Gauss-Seidel 

techniques, see for example Ortega and Rheinboldt[50,p.224].) 
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For s i m p l i c i t y of notation, we look at the two state variable 

case with observations available on only one state variable. 

The extension to n state variables with observations available 

on r state variables (r<n) i s immediate. Note, however, that 

generally the parameter estimation problem becomes more 

d i f f i c u l t as the number of unobserved state variables increases. 

Indeed, removing observations on a state variable can change a 

well defined parameter estimation problem into a singular 

problem. An example of this i s given in the next chapter. 

Without loss of generality for our two state variable 

discussion, we assume that observations are missing on the 

second state variable. For the discrete set of time values t^, 

1=1,,,,N l e t s =s(t e) (where we are using a superscript to avoid 

confusion with the case when s(t) i s a vector) be the smoothed 

approximation to the observations on state variable y at time 

t^ , and l e t s ^ ^ s ' t t ^ ) be the corresponding approximation to the 

derivative of the observations at time t j . Let Cj be the 

approximation to the unobserved state variable y at time tp -

Usually, the points tj , 1=1,...,N are the observation times 

defined in Section 1.1. We seek p and 

c=(c 0,... ,cN)r 

to minimize 

N Jt -r a N , 
F = 2 T (g, (t , ( s \ c )',p)-s*') +21 (d,(c)) (3.4.1) 

1=0 ' * * 1=1 * 

where d (c) represents a d i s c r e t i z a t i o n of the second state 
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equation. That i s we want the c to approximately s a t i s f y the 

second state equation at the minimum of the above expression. 

For example i f the trapezoidal method i s used to d i s c r e t i z e the 

second state equation then 

d (c)=.5(g (t ,(s*-' ,c )^p)+ga (t , (s* ,c )T,p) ) 
A A x * (3.4.2) 

c -c. 
JL_ SL-I 

Define 
r 

v"p F= (£F, . . . ,3F) 
*P, 5P~ 

T (3.4.3) 
^F= (*F, . . . , 3F) . 

Thus the gradient of F i s 

VF=(9 fF T, v;F T) T. 

A necessary condition for 

(p r,cV=(p T,c rr 

to minimize F i s that 

V F ( ( p r , c ' V ) = 0 . (3.4.4) 

One way to solve (3.4.4) i s to use the nonlinear block 

Gauss-Seidel method starting with an i n i t i a l guess (p1"' T , c t 0 , T ) T 

for ( p . T / C T ) T . There are of course other ways to solve for 
— T — T T 

(p ,c ) . For example, we could minimize (3.4.1) by a standard 

nonlinear least squares technique such as the 

Levenberg-Marquardt method. To be e f f i c i e n t , however, such 
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methods should take advantage of the p a r t i c u l a r sparsity 

structure of the Jacobian matrix associated with (3.4.1). The 

use of a block Gauss-Seidel technique on the other hand requires 

only a standard nonlinear least squares technique such as the 

Levenberg-Marquardt procedure, along with a least squares 

technique designed for cases where the approximations to the 

Hessian matrices are banded matrices. A description of our 

algorithm for minimizing (3.4.1) and an outline of a l o c a l 

convergence proof for t h i s method follows. Assume a sta r t i n g 

approximation (p^ 0 ) r ,c1*' r ) T to (p T,c* T) T i s given. F i r s t hold c 

fixed at c and determine p (l* to minimize (3.4.1). This is 

just a standard nonlinear least squares problem and we solve i t 

using the Levenberg-Marquardt method. Next with p fixed at p 

determine c °̂ to minimize (3.4.1). This i s a sparse nonlinear 

least squares problem and we solve i t by the Gauss-Newton method 

using the normal equations and a standard l i b r a r y procedure for 

solving banded posit i v e d e f i n i t e linear systems by a Cholesky 

decomposition. Strategy (a) in Bard[5,pl75] was employed for 

step length adjustment in our sparse Gauss-Newton procedure. In 

practice f a i r l y rapid convergence was obtained with this part of 

the algorithm; however, we expect this to vary depending on the 

nonlinearity in y^ of the given i n i t i a l value problem. The 

o v e r a l l algorithm proceeds by successively reestimating p ^ and 

c ^ where on each estimation, the most recent information on p 

and c i s employed. Usually only a few f u l l i t e r a t i o n s were 

required for the algorithm to s e t t l e down to a value for 
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(P f C ) . 

The above algorithm i s just a special case with w=l of a 

block nonlinear successive over relaxation process (see for 

example Ortega and Rheinboldt[50,p.325, p.332]). Thus a l o c a l 

convergence proof i s standard and we confine ourselves to just a 

b r i e f outline of convergence-

Let x=(p r,c r) T, "x = (p r,c" r) T and assume x i s a l o c a l minimum 

of F- That i s 

*F(x)=0. 

Assume further that F i s twice continuously d i f f e r e n t i a b l e and 

that the Hessian matrix H of F i s posi t i v e d e f i n i t e in the open 

neighborhood S a of x . S p l i t the Hessian into 

H(x)=D(x)-L(x)-L T(x) 

where D(x) i s a block diagonal matrix, and L(x) i s a block lower 

triangular matrix and where the entries in L corresponding to 

the blocks in D are zero. Since H(x) i s symmetric and posi t i v e 

d e f i n i t e D(x) i s i s symmetric and positive d e f i n i t e . Also D-«L 

is nonsingular for any oo and in pa r t i c u l a r for 0<cu<2. Thus (see 

Varga [73 ,p. 77] ) , for 0<«K2 

It follows (Ortega and Rheinboldt[50,p.326]) that there 

exists an open b a l l S centred at "x and contained in S0 such 

where p (.) denotes spectral radius. 

that there i s a unique sequence in S s a t i s i f y i n g our 
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n o n l i n e a r block Gauss-Seidel a l g o r i t h m (d>=l) and 

1irn (x ) =x. 

There are other ways to estimate p i n c o n j u n c t i o n with 

i t e r a t i o n s on guessed o b s e r v a t i o n s . For example i n s t e a d of 

e s t i m a t i n g p to minimize (3.4.1) for a f i x e d c, we could 

estimate p using the DFIT or IFIT methods. Use of the DFIT 

method to estimate p i s e q u i v a l e n t to minimizing (3.4.1) with 

6X ( c ) = g a . ( t J - ' ( S < , C * ) T 'P)~°jt 

where cJ approximates the time d e r i v a t i v e of c at . The 

d e t a i l e d form of d^ depends on how cJ i s approximated. 

A l t e r n a t i v e l y , we could r e p l a c e the DFIT p o r t i o n of the 

above i t e r a t i v e a l g o r i t h m by an a p p l i c a t i o n of the IFIT method. 

T h i s has been found to work w e l l . We comment that the r e s u l t i n g 

a l g o r i t h m i s not e q u i v a l e n t to minimizing F ( ( p 7 " , c r ) T ) i n (3.4.1) 

with the f i r s t summation r e p l a c e d by i t s i n t e g r a l f i t t i n g 

c o u n t e r p a r t : 

N Cfj r * XL ( y , ( 0 ) + g ( t , ( s ( t ) , c ( t ) ) , p ) d t - s ( t ) ) . 
1=0 ' «i ' J 

I f the above term i s put i n p l a c e of the f i r s t sum i n (3.4.1) 

then the l e a s t squares problem for updating c l o s e s the s p a r s i t y 

s t r u c t u r e t h a t was present with d e r i v a t i v e f i t t i n g . Thus we do 

not c o n s i d e r f u l l i t e r a t e d i n t e g r a l f i t t i n g methods, but o n l y 

i t e r a t e d i n t e g r a l f i t t i n g methods where p i s updated using the 
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IFIT method and c i s updated using a sparse technique. 

There i s another way c can be updated besides using the 

f u n c t i o n (3.4.1) and e x p e r i m e n t a l l y t h i s method has proven 

e f f e c t i v e ; however, i t s u f f e r s from p o t e n t i a l i n s t a b i l i t i e s and 

must be used with c a u t i o n . T h i s method simply i n v o l v e s the 

g e n e r a t i o n of c at the new parameter vector p by i n t e g r a t i n g the 

second s t a t e equation h o l d i n g y f i x e d at s ( t ) . (We are s t i l l 

assuming y ^ i s unobserved.) As i n d i c a t e d i n the d e r i v a t i v e 

f i t t i n g s e c t i o n of t h i s chapter, t h i s subsystem can be very 

unstable at a p a r t i c u l a r p o i n t p i n parameter space even when 

the system y'=g(t,y,p) has no s t a b i l i t y problems. An example 

where t h i s method works very w e l l i s given i n the next chapter. 

F i n a l l y we observe that no d i f f e r e n t i a l equation s t a b i l i t y 

problems occur when we update c to minimize (3.4.1). 

A couple of examples using i n t e g r a l f i t t i n g and our sparse 

Gauss-Newton method to improve guessed o b s e r v a t i o n s f o l l o w . 

Consider the L o t k a - V o l t e r r a p r e d a t o r - p r e y model[41]. 

y'=p y -p y y / / / a. ' a 
y'=-p y +p y y. 

Here y^ r e p r e s e n t s the prey and y & r e p r e s e n t s the predator and 

P »P f P 3 fP^ are a H p o s i t i v e . T h i s model i s a s p e c i a l case of 

the model co n s i d e r e d by Bazykin[7] which we look at i n Chapter 

4. For our f i r s t example, we generated o b s e r v a t i o n s by 

i n t e g r a t i n g the above system s t a r t i n g at y =12, y^=2 and using 

p=(.15, .03, .8, . 1 ) T . 
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The observation times were 1(1)20 and observations were made 

available only on y . The generated observations on y and 

integration results for y^ at the above simulation parameters 

are shown in Figure 3.4.1. The function s ( t ) , defined by the 

TIME IS.DO 20.00 

Figure 3.4.1 
Simulation results and spline approximation 

least squares cubic spline approximation to the observations 

using j o i n t s at t=2, 3, 5, 9, 16, is also shown in Figure 3.4.1. 

The i n i t i a l guess at the observations i s shown in Figure 3.4.2. 

Successive improvements in the guessed observations are also 

shown in Figure 3.4.2. Integration results at successive 

parameter estimates are shown for y in Figure 3.4.3. 

Observations on y are also shown in Figure 3.4.3. Observe that 

the integral f i t t i n g problem i s linear and thus an i n i t i a l guess 

at the parameter values was not required. The least squares 
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problem for updating the guessed observations i s also linear in 

th i s example. Convergence was not too sensitive to the height 

of the i n i t i a l approximation to y , but i t was sensitive to the 

position of the peak. This, however, i s quite e a s i l y adjusted 

i n t e r a c t i v e l y . Thus an iterated approach to this problem 

reduces a p o t e n t i a l l y nasty nonlinear problem (especially i f 

there are no good guesses at the values of p̂  ,...,p ). to a 

simple i n t e r a c t i v e procedure of adjusting one quantity (the 

position of the peak) over a well defined i n t e r v a l . Of course 

some i n t u i t i v e idea about the "proper" behavior of y^ i s 

required; however, we would expect t h i s information to often be 

more readi l y available than a good approximation to the optimal 

parameter vector. 

Our second example i s the same as the above example except 

for the new observation times ,5(.5)12.5. Also our i n i t i a l 

guess at the behavior of y^ was much less informed than i t was 

for the previous example. The j o i n t s for the smoothing spline 

were at t=1.25, 2.5, 5, 9. Figure 3.4.4 shows the successive 

improvements in the guessed observations and Figure 3.4.5 

compares integration results with observations for y at the 

successive parameter estimates. We observe that the i t e r a t i o n s 

on the guessed observations did not attain the maximum that y 

does in Figure 3.4.1; however, th i s does not seem c r i t i c a l in 

view of the results in Figure 3.4.5. 
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3.5 CONTINUATION AND QUASI MULTIPLE SHOOTING 

The methods presented i n t h i s s e c t i o n are designed to 

br i d g e the gap between the coarse but w e l l behaved technigues of 

the p r e v i o u s s e c t i o n s and the f u l l n o n l i n e a r l e a s t squares 

problem. These coarse methods are good to s t a r t out with i f a 

good i n i t i a l approximation to the optimal parameter vector i s 

u n a v a i l a b l e . However, the parameters produced by these methods 

can be inadequate. For example the s o l u t i o n to the giv e n 

i n i t i a l value problem may blow up at the parameters found by a 

coarse method. The problem of i n s t a b i l i t i e s at the s t a r t i n g 

parameter values i s a common d i f f i c u l t y encountered when f i t t i n g 

parameters i n i n i t i a l value problems. V a r i o u s s t r a t e g i e s have 

been suggested (see f o r example Bard[6,p.233]); however, there 

does not appear to be any p r e f e r r e d technique. The methods 

suggested i n t h i s s e c t i o n lend themselves w e l l to an i n t e r a c t i v e 

a t t a ck on the problem. 

F i r s t we consid e r a c o n t i n u a t i o n method between the 

i n t e g r a l f i t t i n g (IFIT) technique and the f u l l l e a s t squares 

problem. Assume, f o r now, that o b s e r v a t i o n s are a v a i l a b l e on 

a l l s t a t e v a r i a b l e s . These o b s e r v a t i o n s p r o v i d e us with 

approximations s - ( t ) , i = l , . . . , n to the d e s i r e d behavior of the 

s t a t e v a r i a b l e s y - ( t ) , i = l , . . . , n . Consider the problem of 

f i n d i n g p to f i t the s o l u t i o n of 

u'=g(t, (l-*)s(t)+jru,p) 
(3.5.1) 

u ( t 0 ) = y 0 ( p ) 
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to s(t) in the least squares sense at the observation times 

where CKy<l. When y=0, thi s i s just the integral f i t t i n g 

technique and when 2f =1 i t i s the f u l l least squares problem (on 

the smoothed data). The eigenvalues of g u determine the 

s t a b i l i t y of the above i n i t i a l value problem. Now 

for y= (l- ' j f) s+jfu. Thus for small* , i t should be possible to 

integrate (3.5.1) even when i t i s unstable for a =1. Put another 

way, as y increases, more and more of the " d i f f e r e n t i a l equation 

nature" of the problem i s taken into account. 

There are two basic ways a continuation problem can be 

approached. One way i s to treat i t as an i n i t i a l value problem 

in the continuation parameter. This i s the Davidenko approach 

(for a good summary of Davidenko's work see Rail[56]). The 

second way i s to treat i t as a sequence of nonlinear problems 

each associated with a larger value of . This i s the Lahaye 

approach (see Rheinboldt[58],[59], Rail[56], Ficken[23]). 

For our purposes the Davidenko approach appears to involve 

an excessive amount of c a l c u l a t i o n . The Lahaye approach on the 

other hand lends i t s e l f well to an interactive attack on the 

problem. That i s we st a r t withy=0 (IFIT) and then successively 

f i t the solution to (3.5.1) to s(t) with progressively larger 

values for y If y i s increased too much and the integration 

of (3.5.1) becomes impossible, then Y can be i n t e r a c t i v e l y 

reduced u n t i l (3.5.1) can be integrated. Our limited experience 
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seems to indicate that t h i s approach by i t s e l f i s not very 

e f f e c t i v e (for a f u l l evaluation more experiments on a wide 

selection of problems are required); however, combined with the 

use of break points as described later in this section, the 

continuation approach seems to be a viable way to escape from an 

unstable region in parameter space. One of the main drawbacks 

with such technigues i s of course the expense involved. This 

however i s becoming less important with the increasing 

a v a i l a b i l i t y of powerful computers. 

Experimental results indicate that the use of break points 

in a quasi-multiple shooting technique along with a continuation 

method can be an e f f e c t i v e combination for handling the 

s t a b i l i t y problem. S p e c i f i c a l l y consider break points at 

T7<Ta<...<T8 

corresponding to observation times 

t. 
i 

Further l e t denote a continuation parameter vector for the 

break points. The vector «< i s of length n where n i s the number 

of state variables and 0<.<*- <1 > i=l,...,n. If break points alone 

are used (that is,2f=l) then observations need not be available 

on a l l state variables. The components of << corresponding to 

unobserved state variables should be equal to 1. Let u -(T <-) 

denote the solution to (3.5.1) arrived at by integrating up to 

break point T ; (which for i>l involves passing through i-1 

previous break points). In the process of integrating (3.5.1), 
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we reset u at the break points according to 

u"t'(T; ) =Au~ (TV ) +(I-A) s (T; ) 

where A=[diag(^ ( , . . . , * ^ ) ] , and (V ) acts as the new i n i t i a l 

condition at T. . Of course the appropriate modification to the 

solution of the s e n s i t i v i t y equations must also be made at the 

break points. For purposes of least squares approximation, the 

value u~ (Tj ) is used at T,-. Thus we can also weight the 

residuals at the break points with weights ŵ  ,ŵ ,...,ŵ . To 

summarize we have at our command 

(a) a continuation parameter Y 

(b) a set of break points T ,...,T 

(c) a continuation parameter vector << for the break points 

(d) a set of weights w ,...,w_ for the break points. 

This gives the user a powerful set of options to play with and 

for their optimal use, an interactive approach i s indicated. 

Extensive experiments over a wide range of problems are required 

before a proper evaluation can be made of the interactive 

f a c i l i t i e s suggested above. For the purposes of this thesis; 

however, we l i m i t ourselves to a few examples in this section 

which indicate the potential power of the above f a c i l i t i e s in an 

interactive environment. For d e t a i l s on another approach 

employing break points to aid in the f i t t i n g of parameters in 

dynamic models, we refer the reader to van Domselaar and 

Hemker[71]. For more background on shooting methods in general 

see for example Roberts and Shipman[60]. 
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Consider again the Lotka-Volterra predator - prey model 

described in the previous section. We w i l l try to f i t t h i s 

model to the data shown in Figure 3.5.1. This data i s contrived 

in 

2.CO 4.30 
—I 1 
c.oo a.oo 

TIME 
10.00 12.00 

Figure 3.5.1 
Data and smoothing for continuation tests 

14.00 

and there i s no reason to expect a good f i t with this model. 

Piecewise cubic Hermite least squares approximations to the data 

were used to define s ( t ) . The j o i n t s for s ; ( t ) were at t=l, 3, 

6 and the j o i n t for s (t) was at t=5. The components of s(t) 

are shown in Figure 3.5.1. The observations were generated so 

that the IFIT method produced parameters where the solution to 

the Lotka-Volterra equations with i n i t i a l conditions at 
T 

y=(12, 2) blew up. It is worthy of note that a f a i r amount of 

experimentation was required before such observations could be 

contrived. That i s for this problem, the IFIT method did not 
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seem l i k e l y to produce parameters corresponding to an 

i n s t a b i l i t y . The IFIT technigue (jf=0) produced the parameters 

(-.7273, -.06719, 1.525, .3295) T 

at which the given i n i t i a l value problem was unstable. Since 

the observations have no physical meaning, there i s no reason to 

require the paramerters to be p o s i t i v e . We are just looking for 

a set of parameters to minimize a sum of squares. 

Using break points at 

.6, 1.6, 4.5, 9.5 

and using = . 2, c< f (0 , 0) and with weights of 1 at the break 

points, the following parameters were found: 

(.07608, .02078, 1.032, .2150)T 

The i n i t i a l value problem was stable here and integration 

results at these parameters along with the observations are 

shown in Figure 3.5.2. The Levenberg-Marquardt technique had no 

problem converging from the above parameters to the optimum 

(-.6820, -.05733, .8184, .1941)T 

Integration results at the above paramters are shown in Figure 

3.5.3. The sum of the squares of the residuals was 

approximately 196. 

We comment that i t i s not necessarily advantageous to 

proceed with the continuation process once s t a b i l i t y has been 

attained. Parameters giving r i s e to an i n s t a b i l i t y may be 

produced and even with the use of break points, the careful 
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s i 

I UJ 
r— 

. CL 

X * >\ X X X X 
/ v X X X. + + + + + • v. • X y 

0.00 2.00 4.03 I 1 
6.00 8.00 
• TIME 

10.00 12.00 

F i g u r e 3.5.2 
R e s u l t s using break p o i n t s with V=.2 

— i 
14.00 

4.00 
TIME 

10.00 12.00 

F i g u r e 3.5.3 
R e s u l t s at optimal parameters 

14.00 
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increasing of continuation parameters can prove to be a tedious 

and expensive undertaking. Again interactive monitoring and 

control of the o v e r a l l process i s desirable and i f the process 

appears to get stuck a good strategy i s to return to a smaller 

continuation parameter and modify the break points. 

The use of the continuation parameter without break 

points did not appear productive on th i s problem. For example 

consider the sequence of H's in Table 3.5.1. The process worked 

f a i r l y well u n t i l V got near .75. It then became d i f f i c u l t to 

Continuation f i t re s u l t S t a b i l i t y 
P_*_ ?! \ 

0 -.7273 -.06719 1.525 .3295 u 
.3 -.5877 -.04820 1.524 .3341 u 
.6 u n s t a b 1 e 
.5 u n s t a b 1 e 
.4 -.5766 -.04640 1.397 .3092 u 
.5 -.5622 -.04465 1.242 .2783 u 
.6 u n s t a b 1 e 
.55 -.5697 -.04491 1.184 .2667 u 
.6 -.5759 -.04541 1.130 .2559 u 
.7 u n s t a b 1 e 
.65 u n s t a b 1 e 
.63 -.5723 -.04492 1.081 .2463 u 
.65 -.5704 -.04462 1.057 .2402 u 
.68 -.5741 -.04497 1.021 .2343 u 
.7 -.5809 -.04576 1.010 .2320 u 
.73 u n s t a b 1 e 
.72 -.5843 -.04610 .9881 .2279 u 
.74 -.5936 -.04724 .9853 .2270 u 
.76 -.9258 -.08865 1.043 .2637 u 

very d i f f i c u l t to continue 

Table 3.5.1 
A continuation experiment 

increase Tf and d i f f i c u l t to do the optimizations. 

The use of break points alone (with2f=l) was e f f e c t i v e on 
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thi s problem; however, i n s t a b i l i t i e s arose very e a s i l y i f too 

few break points were used. Here again we have a s i t u a t i o n 

where the interactive approach can provide a powerful t o o l . 

Starting at the parameters determined by the IFIT algorithm, 

with T f = l , «< = (0,0) an i n s t a b i l i t y arose in the integration of 

(3.5.1) when break points were used at 

1.8, 4, 7.5. 

With break points at 

.6, 1, 1.8, 4, 4.5, 6, 7.5, 10 

the integration of (3.5.1) blew up just after t=5. With break 

points at a l l the observation times, (3.5.1) could be integrated 

and the optimal parameters obtained were 

(-.4166, -.02940, .6279, .1280) T. 

The Volterra equations were stable at these parameters and 

star t i n g from th i s point in parameter space, the 

Levenberg-Marquardt method produced the optimum i l l u s t r a t e d in 

Figure 3.5.3. 

We conclude that for th i s problem the use of break points 

alone i s e f f e c t i v e , but t r i c k y , while the use of break points 

along with a continuation parameter in the d i f f e r e n t i a l equation 

can be very e f f e c t i v e . 

The techniques of this section demand a degree of judgement 

from the user; however, they provide a framework in which to 

tackle the i n s t a b i l i t y problem and in th i s sense they are to be 
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preferred over blind probing in parameter space. 

3.6 IMPLEMENTATION OF AN INTERACTIVE PACKAGE 

The development of a good interactive package i s an 

evolutionary process. Our package, PARFIT, represents the f i r s t 

stage in such a process. We outline below some of the 

sp e c i f i c a t i o n s that should be kept in mind as the package 

evolves. We also describe with the aid of flow charts how the 

various f a c i l i t i e s of PARFIT can be used to complement one 

another. In view of the increasing power of mini-computers and 

the inherent expense of using a program such as PARFIT, the 

f e a s i b i l i t y of implementing a version of PARFIT on a 

mini-computer appears to be a worthy topic of study. The work 

of A a r o f l ] , [2] should provide a very valuable tool for 

developing such an implementation. 

One goal when developing an interactive package for 

parameter f i t t i n g in d i f f e r e n t i a l equations should be to make 

special parameter f i t t i n g algorithms such as those of this 

chapter e a s i l y accessible and complementary. The package should 

also allow for the testing and addition of new algorithms. It 

is advantageous to be able to e a s i l y switch between techniques 

in an interactive manner since the success of a par t i c u l a r 

technique i s often c l o s e l y related to the problem on which i t i s 

employed. To f a c i l i t a t e the easy switching from one algorithm 

to another the interactive package must be c a r e f u l l y designed. 

For example piecewise polynomial smoothing of data i s used by 

several algorithms. Thus there should be a single data 
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structure for smoothing functions and i t should be accessible 

(and perhaps modifiable) by a l l the procedures using smoothed 

data. This i s just common sense; the general philosophy should 

be to define data structures at the most general l e v e l 

p r acticable. The various algorithms then function in an 

environment established by these data structures. It i s useful 

for t h i s environment to contain much more than just the set of 

data structures used by the numerical procedures, and i t i s 

convenient to think of i t as a data structure i t s e l f containing 

information on how the package i s to communicate with the user, 

on various c o n t r o l l i n g parameters such as the integration error 

c r i t e r i a and integration method, and on many other aspects of 

the operation of the package. We l i s t below some of the items 

which can be thought of as being part of the environment. 

(1) Communication mode: 

This governs the amount of program guidance and descriptive 

information provided during an interactive session. The way 

information i s entered (for example using a keyboard, or a l i g h t 

pen) i s also indicated here. 

(2) Echo f l a g s : 

These indicate what information produced during an 

interactive session i s to be retained for later hard copy 

output. 

(3) Graphics display c o n t r o l : 

This indicates what information i s to be displayed on the 

graphics device. For example the most recently generated data 
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(such as smoothing or integration results) may be displayed as 

the default. The user should be able to modify the display to 

include for example only selected state variables. The default 

display should be i n t e l l i g e n t enough to display appropriate 

plots during an interactive session. For example when smoothing 

i s being done, the data and approximating function for the given 

state variable should be displayed. When iterated integral 

f i t t i n g i s being done, the display of successive i t e r a t i o n s on 

the guessed observations would be valuable. It should of course 

be possible to override the graphics display control and request 

that s p e c i f i c data be plotted. 

(4) Numerical data structures: 

These contain, among other things, smoothing information 

and integration r e s u l t s . 

(5) Numerical control parameters: 

These include integration error c r i t e r i a and stepsize 

constraints as well as parameters used in the optimization 

procedures. 

(6) Problem and algorithm selection data structures: 

These indicate what integration and optimization procedures 

are being used. The use of various scalings (such as the square 

root or logarithmic scalings available in PARFIT) i s indicated 

here and an indication of any frozen parameters i s given here. 

In more sophisticated packages, constraints on parameters can be 

indicated here and a pa r t i c u l a r choice from a selection of 

various objective functions to optimize (from s t a t i s t i c a l 
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considerations) can be indicated here. 

(7) Notations accumulated during an interactive session: 

As a user experiments with a par t i c u l a r problem, he should 

have the f a c i l i t i e s to make notes. Thus a l i s t of notes 

containing for example "promising parameter values" can be 

created. The environment thus becomes t a i l o r e d to a pa r t i c u l a r 

problem. Of course i t should be possible to save the notes from 

run to run. 

There are two fundamental modes in which an interactive 

program can operate. One mode employs extensive control by the 

interactive program and the other r e l i e s on the user to i n i t i a t e 

the appropriate seguence of actions to solve a problem. A good 

approach when developing an interactive package of the f i r s t 

type i s to f i r s t build a package of the second type. Strategies 

for the solution to the problems under consideration are then 

developed through extensive use of this package and these 

strategies can eventually be incorporated into a package 

employing extensive program control over the solution strategy. 

PARFIT i s a package designed for user i n i t i a t e d and conducted 

strategies. Thus i t s e f f e c t i v e use requires a detailed 

knowledge of a l l i t s f a c i l i t i e s and how these can be used to 

complement one another in an e f f e c t i v e manner. In this section 

we give a description by way of flow charts of how the various 

approaches to the parameter estimation problem can be used 

together in an integrated package. The strategies outlined in 

these flow charts form the skeleton for a version of PARFIT that 
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would attempt to guide the user to the various f a c i l i t i e s 

required for the solution to a problem. The implementation of 

such a program i s a n o n t r i v i a l endeavor, and to j u s t i f y i t , 

there should be a good demand for such a package. Indeed, the 

sophistication required of the model builder to develop good 

dynamic models argues against the need for detailed computer 

control of the interactive process. When the user i s required 

to pick an appropriate strategy without program guidance, the 

strategies outlined in the following flow charts should be kept 

in mind. 
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ARE 
ALL STATES 
OBSERVED?^ 

NO 

YES 

TRY GUESSED 
OBSERVATIONS AND 
ITERATED IFIT OR 
DFIT—5 

YES TRY IFIT OR DFIT-4 
OR SEQUENTIAL 
METHOD—7 

NO TRY SEQUENTIAL-7 
OR 
INTERACTIVE METHOD-3 

Figure 3.6.1 
Overall strategy 
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1 

i 
DO NONLINEAR 
OPTIMIZATION 
(AUTOMATIC OR 
INTERACTIVE) 

RETHINK MODEL 

Figure 3.6.2 
Refined parameter f i t t i n g 

CHAPTER 3 



90 

Figure 3.6.3 
Interactive optimization 

CHAPTER 3 



91 

4 

t 
SMOOTH OBSERVATIONS 

IF NOT DONE 

1 
ESTIMATE PARAMETERS 

USING LINEARITY 
IF PRESENT 

SUCCESS? 

YES NO 
\ 

TRY 
COARSE METHOD-2 
OR INTERACTVE 
PROBING-•3 

TRY 
NEW SMOOTHING— -4 
CONT. WITH B.P. -6 
INTERACTIVE -3 

Figure 3.6.4 
Derivative and integral f i t t i n g 
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i 
SMOOTH 

OBSERVATIONS 
IF NOT DONE 

GUESS UNOBSERVED 
STATE IF NOT 

DONE 
11 

i 

ESTIMATE PARAMETERS 
RESTART IF REQUIRED 
EXPLOIT LINEARITY 

12 

fESUL1] 
SATISFACTORY? 

YES 
1 

NO 

ITERATIVE 
[MPR0VEMENT2-

YES ITERATIVELY IMPROVE 
GUESSED OBSERVATIONS 

DISPLAY RESULT. 

TRY 
NEW GUESSED OBS 11 
NEW COARSE METHOD—2 
INTERACTIVE 3 
NEW SMOOTHING 5 

Fi g u r e 3.6.5 
Guessed o b s e r v a t i o n s and i t e r a t i v e improvement 
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6 
1 

SMOOTH OBSERVATIONS 
AND SET STARTING p 

IF NOT DONE. 

! 
SET A SELECTION OF 
BREAK POINTS (B.P.) 
WEIGHTS ON B.P. 
B.P. CONT. PAR. 
I.V.P. CONT. PAR 

i — 

ESTIMATE PARAMETERS. 

1 

Figure 3.6.6 
Continuation and quasi multiple shooting 
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7 

4 
GUESS 

STARTING PARAMETERS 

1 

Figure 3.6.7 
Sequential reestimation (not implemented in PARFIT) 
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CHAPTER 4 

PARAMETER FITTING IN A PREDATOR-PREY DYNAMIC MODEL 

4.1 INTRODUCTION 

We consider in d e t a i l the problem of f i t t i n g parameters in 

a predator-prey dynamic model studied by Bazykin[7]. This model 

has several aspects which are at t r a c t i v e to ecologists modelling 

population dynamics. Depending on the parameter values, there 

are several possible phase plane configurations for the model, 

some of which contain l i m i t cycles. Certain l i m i t s to 

population growth are also inherent in the model and this i s 

phys i c a l l y appealing. Unfortunately, the varied behavior of the 

model which makes i t r i c h from an ecological point of view , 

complicates the parameter f i t t i n g problem. For example, with a 

poor guess at the optimal parameters, we may find ourselves with 

a phase plane configuration quite d i f f e r e n t from the one 

indicated by the observations. The a b i l i t y of some of the 

methods of Chapter 3 to handle this problem i s explored in thi s 

chapter. Only one parameter in the model considered by Bazykin 

occurs nonlinearly in the d i f f e r e n t i a l equations, and thus we 

expect some of the more global methods of Chapter 3 to be well 

suited to thi s model. 

4.2 A PREDATOR-PREY DYNAMIC MODEL 

The dynamic model considered in [7] has the form: 
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y; =P y -P,y, y x / ( i +p j ry ;)-P, Y? 

£ = _ p 3 Y * + p v y/ Y* 7 ( 1 + P * - Y / } _ p,y a* 

We confine ourselves to a very b r i e f interpretation of this 

model. For more d e t a i l s see [7]. State variable y represents 

the prey population, and state variable y a represents the 

predator population. The above equations evolved from the 

Lotka-Volterra model introduced in Section 3.4. Equations 

(4.2.1) reduce to the Lotka-Volterra model equations when 

P = P T F
= P 7

= 0 - T n e term- 1/{l+p^y/ ) in the above equations 

represents the s a t i a t i o n of the predators. That i s , as the 

number of prey increases, the a b i l i t y of the predators to 

consume prey i s limit e d , and when the number of prey i s large, 

the growth rate of the predators becomes independent of the prey 

population. The terms y (
z and P^y* represent competition among 

the prey and among the predators respectively. As the prey 

population y increases, i t becomes limited by such things as 

t e r r i t o r y . Similar l i m i t a t i o n s apply to the predator 

population. 

We consider one of the special cases studied by Bazykin. 

In this case, P 7=0 and there are two equilibrium points A and B 

in the phase plane (see Bazykin[7]). Point A i s at 

(P3 /(P^"P5.P3 ) ' ) (P, (Pv"P,- P3 > - P , P 3 )/(P^~P i rP 3 

and point B i s at 

( P /\9. 0) . 
/ 6 
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Since a l l the parameters are p o s i t i v e , for A to have physical 

meaning, we require p <p (p -p p )/p . Bazykin further shows 

that i f point A i s stable then p >p p a /(1+p a ) A where A has 

coordinates (a^ , a a ) , and i f A has b i o l o g i c a l significance and 

i s unstable, i t i s necessary that a l i m i t cycle occur. We 

consider three s i t u a t i o n s : 

(1) A has b i o l o g i c a l significance and i s stable; 

(2) A has b i o l o g i c a l significance and i s unstable; and 

(3) A has no b i o l o g i c a l s i g n i f i c a n c e . 

Case (1) arises for example at the parameter values 

(1, .1, 3, 1, .1, .15)17 

In t h i s case A i s at (4.29, 5.10) and B i s at (6.67, 0) . 

Case (2) arises at the point 

(.5, .1, 5, 1, .15, .01) ' 

in parameter space. In this case A i s at (20.0, 12.0) and i s 

unstable and B i s at (50.0, 0). Case (3) arises at the point 

(1, .1, 3, 1, .2, . 1 5 ) T 

in parameter space. In t h i s case A has no b i o l o g i c a l 

significance and B i s at (6.67, 0). Phase plane plots 

corresponding to the above three parameter vectors are shown in 

Figures 4.2.1, 4.2.2, and 4.2.3. We use integration results at 

the , above three points in parameter space to simulate 

observations for our test problems. 

In p a r t i c u l a r , we make use of the following three test 
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d i 1 1 1 1 1 ^ 1 i i 
2 00 3 00 4.00 5.00 6.00 7.00 8.00 3.00 ]0.00 

Yl 
Figure 4.2.3 

Phase plot for case (3) 

problems: 

PROBLEM 4.2.1: 

Observations are generated using the parameters of Figure 
r 

4.2.1 and the i n i t i a l condition y(0)=(2, 8) . 

PROBLEM 4.2.2: 

Observations are generated using the parameters of Figure 
f 

4.2.2 and the i n i t i a l condition y(0)=(24, 8) . 

PROBLEM 4.2.3: 

Observations are generated using the parameters of Figure 

4.2.3 and the i n i t i a l condition y(0)=(10, 10)'. 

In a l l of the above problems simulation runs were made using 

Gear's program [27], No random error was introduced into the 

generated observations, and observations were generated for both CHAPTER 4 
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state variables at times „5(.5)12.5 in a l l cases. The 

observations for Problems 4.2.1, 4.2.2, and 4.2.3 are displayed 

in Figures 4.2.4, 4.2.5, and 4.2.6 respectively. We also show 
o 

o 

: 1 1 1 1 1 1 1 
0.00 2.00 4.DD 6.00 8.00 10.00 12.00 14.00 

TIME 

Figure 4.2.4 
Observations for Problem 4.^.]L 

the cubic spline least squares approximations to the 

observations that are used throughout this chapter. In Figure 

4.2.4, the j o i n t s for the spline approximating the observations 

on y are at t=4,8. The jo i n t s for the cubic spline 

approximating the y a observations are at t=7,10.5. In Figure 

4.2.5, the joint s for the spline approximating the y 

observations are at t=6.5,11.25, and the jo i n t s for the spline 

approximating the y^ observations are at t=2,3.75,8.75. In 

Figure 4.2.6, the j o i n t s for the spline approximating the 

observations on y^ are at t=2.5,7.5, and the j o i n t for the 
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.00 

Figure 4.2.5 
Observations for Problem 4.2.2 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 24.00 
TIME 

Figure 4.2.6 
Observations for Problem 4.2.3 
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spline approximating the observations on i s at t=5. 

4.3 IMPROVING STARTING PARAMETERS 

In Table 4.3.1 we present results using the 

Levenberg-Marquardt method and employing the s e n s i t i v i t y 

equations (for convenience we c a l l this the FIT technique) along 

with results using the derivative f i t t i n g (DFIT) method followed 

by the FIT method to refine the parameter values, and results 

using the integral f i t t i n g (IFIT) method followed by the FIT 

method to refine parameter values. The derivative and integral 

f i t t i n g methods are used as i n i t i a l techniques to improve our 

approximations to the optimal parameter values. From Table 

Problem Starting p Results with indicated method 

( )-a figure, C-convergence, L-l o c a l minimum 
FIT DFIT+FIT IFIT+FIT 

4 . 2 . 1 ( 4 . 2 . 2 ) L ( 4 . 3 . 1 ) C C 
( 4 . 2 . 3 ) C C C 

4 . 2 . 2 ( 4 . 2 . 1 ) C C C 
( 4 . 2 . 3 ) M 4 . 3 . 2 ) C C 

4 . 2 . 3 ( 4 . 2 . 1 ) C M 4 . 3 . 3 ) C 
( 4 . 2 . 2 ) C L ( 4 . 3 . 3 ) C 

Table 4.3.1 
FIT compared with DFIT+FIT and IFIT+FIT 

4.3.1, we see that both the DFIT and IFIT methods work well for 

improving the approximations to the optimal parameters. This i s 

not too- unexpected since the d i f f e r e n t i a l equations are linear 

in a l l but one parameter. We observe that a d i r e c t method using 
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the s e n s i t i v i t y equations can lead to d i f f i c u l t i e s . This 

r e f l e c t s the increased nonlinearity that arises when we employ 

d i r e c t integration of the i n i t i a l value problem. The s i t u a t i o n 

that arose when the Levenberg-Marquardt technique was applied to 

Problem 4.2.1 starting with the parameters of Figure 4.2.2 i s 

t y p i c a l of the sort of thing that can happen. In this case a 

l o c a l minimum at 

(3.211, -.4441, -3.405, 3.159, -1.182, .6314)"^" 

was found. Integration results at these parameters are shown in 

Figure 4.3.1. At this l o c a l minimum the peaks and troughs in 
CD O 

d-\ 1 1 1 1 1 :—I 1 
0.00 2.00 4.00 6.00 8.00 - 10.00 12.00 14.00 

TIME 
Figure 4.3.1 

A l o c a l minimum for Problem _4 ._2. 1̂  

the observations are being balanced against one another. 

The FIT approach worked for Problem 4.2.2 sta r t i n g at the 

parameters of Figure 4.2.1, but d i f f i c u l t i e s were encountered. 

CHAPTER 4 



104 

S p e c i f i c a l l y , the parameter }\ in the Levenberg-Marquardt 

procedure had to be adjusted to avoid certain points in 

parameter space where the integration blows up. The use of 

constraints might also be useful here; however, i t i s noteworthy 

that no such d i f f i c u l t i e s arose with the DFIT+FIT and IFIT+FIT 

methods on th i s problem. 

The FIT approach to Problem 4.2.2 starting at the 

parameters of Figure 4.2.3 produced a l o c a l minimum at 

(3.087, .6111, 3.086, .7745, .2007, .08077)T 

Integration results at these parameters are shown in Figure 

4.3.2. No d i f f i c u l t i e s arose in this case with the DFIT+FIT and 

(f..Tl , , , , , j - | 
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 

TIME 
Figure 4.3.2 

A l o c a l minimum for problem 4_'2.2 

IFIT+FIT methods. 

Problem 4.2.3 requires further discussion. At f i r s t 
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glance, i t appears to be the simplest of the three problems 

since the observations seem to exhibit no special features. 

However, there i s a l o c a l minimum in parameter space 

corresponding to a solution to the d i f f e r e n t i a l equation which 

comes very close to the given observations. This appears to 

res u l t from the small peak in y ^ near t=0.5, and from the 

contrived nature of the problem with no random error in the 

observations. The observations st a r t at t=0.5 and i f we do not 

look at the i n i t i a l conditions, the small peak near t=0.5 i s 

i n v i s i b l e . Thus the DFIT method found a point in parameter 

space where th i s peak was absent. Consequently the DFIT+FIT. 

combination found a l o c a l minimum at the parameters 

(1.028, .2255, 1.290, .7186, .5493, .1517)T 

The sum of the squares of the residuals at th i s point in 

parameter space was approximately 10. Integration results at 

the above parameters are shown in Figure 4.3.3. If there were 

some random error in the observations, the solution shown in 

Figure 4.3.3 might appear quite adequate. However, in this 

contrived case there exists a more optimal solution with the 

objective function equal to zero. Our implementation of the 

IFIT method which has access to the i n i t i a l values had no 

d i f f i c u l t y with t h i s problem. The FIT approach to this problem 

managed to extract the global optimum, but not without some 

d i f f i c u l t i e s . Starting with the parameters corresponding to 

Figure 4.2.1, no problems arose; however, star t i n g with the 
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X 

d i 1 1 1 1 1 I 1 

0.03 2.CO 4.00 - 5.00 8.00 10.00 12.00 14.00 
TIME 

Figure 4.3.3 
A l o c a l minimum for Problem _4._2._3 

parameters of Figure 4.2.2, d i f f i c u l t i e s were encountered and X 

in the Levenberg-Marquardt procedure had to be increased to 

avoid certain regions in parameter space. 

4.4 GUESSED OBSERVATIONS AND ITERATED METHODS 

In this section we present some experiments with the 

techniques introduced in Section 3.4. These technigues are 

designed for the important case when observations are not 

available on a l l state variables. F i r s t we experiment with the 

use of guessed observations for unobserved state variables. To 

f a c i l i t a t e the guessing of state variable behavior, an 

interpolating cubic spline i s passed through a set of guessed 

observation points. This eliminates the need to enter long 

l i s t s of guessed observations. Experiments are conducted on 
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PROBLEM 4.4.1: 

This problem i s the same as Problem 4.2.1 except 

observations are only available on state variable y and 

Y a(0)=8. 

I n i t i a l l y we looked at Problem 4.4.1 with Y A(0) an unknown 

parameter. However, t h i s problem was singular due to a linear 

r e a l t i o n s h i p between p a and the i n i t i a l condition on y^. The 

columns corresponding to these two parameters in the least 

squares Jacobian matrices are multiples of one another and the 

cor r e l a t i o n c o e f f i c i e n t between these two parameters i s 1. This 

occurs because the state equation involving y^ i s homogeneous in 

y . Thus y can be replaced by cy and the second state 

equation i s not altered, except for the i n i t i a l condition on y a 

which i s divided by c. However, in the f i r s t state equation, p^ 

is replaced by cp . Thus a r e l a t i o n exists between p and the 

i n i t i a l condition on y . 
a. 

To apply the derivative f i t t i n g method to Problem 4.4.1, we 

approximate the observations on y with the least squares cubic 

spline used for experiments with Problem 4.2.1 presented in 

Table 4.3.1. In Figure 4.4.1, some guesses at possible 

observations on y are shown. Referring to this figure, curve 

(a) is an interpolating cubic spline for the points 

(0, 8), (2.5, 1.5), (7, 6.5), (10, 4.5), (12.5, 5), 

curve (b) i s an interpolating cubic spline for the points 

(0, 8) , (2.5, 3) , (8.75, 5) , (12.5, 4) . 

CHAPTER 4 



108 

\\ \ 

1 1 1 1 ; 1 : 1 I 
0.00 2.00 4.00 6.CO B.00 10.00 12.00 U . C O TIME 

Figure 4.4.1 
Guessed observations for problem 4.4.1 

and curve (c) i s an interpolating cubic spline for the points 

(0, 8), (5, 3), (8.75, 5), (12.5, 4) , 

(that i s , one point was moved). The guessed observations shown 

in curve (a) are f a i r l y close to the observations on y a in 

Problem 4.2.1, while the guessed observations in curve (c) are 

substantially d i f f e r e n t from those of Problem 4.2.1. The 

guessed observations in curve (b) are intermediate to those in 

curves (a) and (c). End conditions for the interpolations are 

described under the CREOBS command in Appendix A. 

Figure 4.4.2 shows the integration results at the parameter 

vector 

(.2354, -.1977, 4.983, 1.049, .01350, .05878) ' 

CHAPTER 4 



109 

obtained with the FIT approach (with error controlled 

integrations) to problem 4.4.1 using the starting parameters of 

TIME 

Figure 4.4.2 
FIT on Problem 4.4.1 

10.OD 14.00 

Figure 4.2.2. A l o c a l minimum has been obtained. 

Using points on curve (a) in Figure 4.4.1 for guessed 

observations, the DFIT+FIT, and IFIT+FIT combinations both 

produced the correct parameters. The starting parameter values 

were those corresponding to Figure 4.2.2. Using guessed 

observations from curve (b) in Figure 4.4.1, the DFIT+FIT 

combination found a l o c a l minimum at 

(.2507, -.3758, 1.676, 2.729, 1.698, .07026). 

Integration results at these parameters are shown in Figure 

4.4^3. The IFIT+FIT combination with these guessed observations 

produced the correct minimum. When guessed observations from 
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CD 

d i 1 1 1 i r 1 1 
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 

TIME 
"Figure 4.4.3 

DFIT+FIT on Problem ._4. 1̂  using guess (b) 

curve (c) in Figure 4.4.1 were used, both the DFIT and IFIT 

methods produced parameters from which the FIT method was 

unsuccessful due to i n s t a b i l i t i e s . The change of the position 

of one data point from t=2.5 to t=5 in the guessed observations 

of curves (b) and (c) of Figure 4.4.1, meant the difference 

between disaster and the agui s i t i o n of a minimum. The above 

experiments indicate that some interactive experimentation with 

guessed observations and with pa r t i c u l a r methods can be 

pr o f i t a b l e . 

Next some experiments using the i t e r a t i v e techniques of 

Section 3.4 for improving guessed observations are presented. 

These techniques can reduce the dependence on a good set of 

guessed observations. 
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Three methods are considered. F i r s t we consider iterated 

derivative f i t t i n g where the function (3.4.1) with d^(c) defined 

by (3.4.2) i s minimized. Second, we consider iterated integral 

f i t t i n g where our parameter estimates are updated by the 

integral f i t t i n g technigue and the guessed observations are 

updated to minimize the function (3.4.1). F i n a l l y , we consider 

an i t e r a t i v e scheme where the parameters are updated using the 

inte g r a l f i t t i n g technigue, and the guessed observations are 

updated by integrating a subsystem of the given system of 

d i f f e r e n t i a l equations. Experiments are conducted on Problem 

4.4.1. The case when there i s a random error in the 

observations i s considered in the next section. In a l l 

experiments, the i n i t i a l condition for the unobserved state 

variable remains fixed at 8. We observe that the least squares 

problem for updating the guessed observations with p held fixed 

i s linear in th i s example. Starting with the guessed 

observations of curve (b) in Figure 4.4.1 and the parameters 

corresponding to Figure 4.2.2, a l l three methods converged to a 

parameter vector from which the FIT method converged to the 

desired solution. In a l l cases, the observations on y were 

approximated with the spline shown in Figure 4.2.4. The 

iterated derivative and iterated integral f i t t i n g methods 

employing (3.4.1) produced similar results and we present 

graphical results only for the iterated derivative f i t t i n g case. 

In Figure 4.4.4, the observations on y and integration results 

for y at successive parameter estimates obtained with the 
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iterated derivative f i t t i n g method are shown. In Figure 4.4.5, 

0.00 2.00 4.00 B.0O 
TIME 

6.00 10.00 12.00 
J'4.00 

Figure 4.4.4 
Iterated DFIT results 

the i t e r a t i o n s on the guessed observations corresponding to the 

results presented in Figure 4.4.4 are shown. We note that the 

derivative f i t t i n g method using guessed observations from curve 

(b) in Figure 4.4.1, did not produce parameters from which the 

FIT method could find the global minimum, but the iterated 

derivative f i t t i n g method did produce parameters from which the 

FIT method was successful. In th i s case the it e r a t i o n s were  

c r u c i a l to obtaining the desired solution. 

Next we consider i t e r a t i v e l y improving the guessed 

observations by integrating the unobserved state variable with 

the observed state variable held fixed at the smoothed 

approximation to the observations. In Figures 4.4.6 and 4.4.7 
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Figure 4.4.5 
Iterated DFIT guessed observation i t e r a t i o n s 

we give results with this technique applied to Problem 4.4.1 

start i n g with the guessed observations of curve (b) in Figure 

4.4.1. Figure 4.4.6 shows the observations on y and 

integration results on y at successive parameter estimates. 

With th i s technique, the difference between i t e r a t i o n (0) and 

i t e r a t i o n (1) was substantial, while i t e r a t i o n s (1) and (2) were 

e s s e n t i a l l y i d e n t i c a l . The it e r a t i o n s shown in Figure 4.4.7 

correspond well to the simulation results in Figure 4.2.4. The 

FIT approach had no trouble converging to the global minimum 

start i n g at the parameters provided by this i t e r a t i v e process. 
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4.5 THE PRESENCE OF NOISE 

In this section we consider a selection of the previous 

problems with a random error introduced into the observations. 

The problems considered are: 

PROBLEM 4.5.1 

This problem i s the same as Problem 4.2.1 except a normally 

di s t r i b u t e d random error with zero mean has been introduced into 

the observations. The standard deviation for the error in y i s 

.5 and the standard deviation for the error in y i s 1. 

PROBLEM 4.5.2 

This problem i s the same as Problem 4.2.2 except a normally 

d i s t r i b u t e d random error with zero mean and standard deviation 2 

has been introduced into the observations. 

PROBLEM 4.5.3 

This problem i s the same as Problem 4.5.1 except the 

observations on y a have been removed. The i n i t i a l condition for 

y i s fixed at 8. 

We smooth the observations for Problems 4.5.1, 4.5.2, and 

4.5.3 using least squares piecewise cubic splines with the same 

jo i n t s as were used for the smoothings in Problems 4.2.1, 4.2.2, 

and 4.4.1 respectively. 

F i r s t we consider Problem 4.5.1. Starting at the 

parameters correspomding to Figure 4.2.2, a d i r e c t approach (FIT 

method) found the point 

(.3668, -.08827, 4.874, 1.237, -.4058, .07037) 7" 
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in parameter space. Integration results at this point were 

q u a l i t a t i v e l y quite d i f f e r e n t from the observations. The sum of 

the squares of the residuals at the above point in parameter 

space was approximately 515. The IFIT+FIT and DFIT+FIT methods 

both found a minimum at 
r 

(.8865, .04991, 2.983, .6827, -.009550, .1483). 

In both cases, the star t i n g parameters were those corresponding 

to Figure 4.2.2. The sum of the sguares of the residuals at the 

above point in parameter space was approximately 15.5. The FIT 

method also found the above minimum when i t was started from the 

parameters corresponding to Figure 4.2.3. Unfortunately, p̂ _ i s 

negative. This suggests we try a square root scaling of p6_ to 

constrain i t to be p o s i t i v e . With this scaling and starting at 

the parameters of Figure 4.2.2, the IFIT+FIT combination 

produced the parameters (unsealed) 
r 

(.8962, .05327, 3.076, .7405, .001897, .1498). 

The sum of the squares of the residuals at the above parameters 

was approximately 15.5. Integration results at the above 

parameters are shown in Figure 4.5.1. F i n a l l y , with this 

s c a l i n g , the FIT method also produced the above parameters when 

started from the parameters of Figure 4.2.2. 

Next we consider Problem 4.5.2. Starting at the parameters 

corresponding to Figure 4.2.3, the FIT method drew us to the 

point 
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(5.544, .7024, 2.647, -0.6093, -.07095, 1.021) 

in parameter space at which the integration results and the 

observations were q u a l i t a t i v e l y quite d i f f e r e n t . (The 

integration results on y contained a rapid and damped 

o s c i l l a t i o n . ) The sum of the squares of the residuals at the 

above parameters was approximately 1000. 

Both the DFIT+FIT, and the IFIT+FIT methods found an 

optimum at 
r 

(.4018, .03851, 1.254, .07606, .01059, .001893) 

The sum of the squares of the residuals at the above parameters 

was approximately 147. Integration results at the above point 
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in parameter space are shown in Figure 4.5.2. The FIT method, 

14.00 

Figure 4.5.2 
Results for Problem 4.5.2 

using a square root scaling of p and p and starting at the 

parameters of Figure 4.2.3, also found the above point in 

parameter space. 

F i n a l l y , we consider Problem 4.5.3. The random error in 

the observations combined with the missing observations on y^ 

make thi s a rather nasty problem. The noise i s f a i r l y large in 

this example, but this much noise i s not uncommon in problems 

involving population counts. Starting with the parameters 

corresponding to Figure 4.2.2, the FIT approach found an optimum 

at 
7" 

(.5945, .0005587, 5.760, .7368, -.1121, .1073) 

The sum of the squares of the residuals was approximately 5.4 at 
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the above parameters. Graphically, integration results at the 

above parameters look very good. However, p i s negative, and 

the integration results for y^ at the above parameters are very 

d i f f e r e n t from the simulation results shown in Figure 4.2.4. 

(the integration results for y^ have a spike which extends to 

around ya=400 at t~7.5.) Using the guessed observations from 

curve (b) in Figure 4.4.1, and sta r t i n g at the parameters 

corresponding to Figure 4.2.2, three i t e r a t i o n s of the iterated 

derivative f i t t i n g method produced the parameters 

(1.522, .3921, 3.186, 1.709, .3031, .1829)T 

The observations and integration results at the above parameters 

are presented in Figure 4.5.3. 

Using the same star t i n g conditions as for the previous 

experiment, three i t e r a t i o n s of the iterated integral f i t t i n g 

method (using subsystem integrations) gave the parameters 

(1.402, .2126, 3.584, 2.497, .4548, .2249)T 

Integration results at the above parameters are presented in 
Figure 4.5.4. 

Using the same star t i n g conditions as in the previous 

experiment, three i t e r a t i o n s of the iterated integral f i t t i n g 

method (using (3.4.1) to update the guessed observations) 

produced the parameters 

(1.388, .2153, 4.652, 2.493, .2981, .2275). 

Integration results at the above parameters are presented in 
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TIME 

Figure 4.5.4 
IFIT results (using subsystem integrations) 
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Figure 4.5.5. 

From each of the above parameter vectors, the FIT method 

found the same minimum that was found when the FIT method alone 

was used. Since results with the iterated methods appear f a i r l y 

TIME 
8 . D O 10.00 12.00 

Figure 4.5.5 
IFIT results (using (3.4.1)) 

14.00 

good graphically, and the parameters generated by the iterated 

methods are po s i t i v e , i t appears worthwhile to try a square root 

scaling on p starting from the results of an iterated method. 

Starting from the results of the iterated integral f i t t i n g 

method (using (3.4.1)) and using this scaling, we found an 

optimum at (unsealed) 
T 

(.6859, .03515, 6.092, 1.481, .2708E-5, .1213). 

The sum of the squares of the residuals at the above point in 

parameter space was approximately 5.8. Integration results at 
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the above parameters are shown in Figure 4.5.6. 

If we return to the d i r e c t FIT approach starting with the 

-) i 1 1 ,— 
4 -0C 6.00 8.00 10.00 12.00 

TIME 
Figure 4.5.6 

FIT results (p^scaled) st a r t i n g from IFIT results 

parameters corresponding to Figure 4.2.2 and with p scaled with 

a square root transformation, problems occur. The parameter p, 

becomes negative. The scaling of both p^ and p ^ d i d not prove 

very p r o f i t a b l e either. With th i s scaling and star t i n g at the 

parameters corresponding to Figure 4.2.2, we were drawn to a 

point in parameter space where a l l the parameters were p o s i t i v e , 

but where the integration results on y^ rapidly went to zero, 

and the results on y went to an equilibrium. Thus the iterated 

approach was extremely valuable for getting a solution to this 

problem. The use of guessed observations may be thought of as a 

means of guiding us to a preferred solution. 
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CHAPTER 5 

SEQUENTIAL TECHNIQUES 

5.1 INTRODUCTION 

The d i r e c t approach, using the s e n s i t i v i t y equations, for 

f i t t i n g parameters in dynamic models involves the choice of an 

i n i t i a l approximation to the optimal parameter vector, 

integrating at this point in parameter space, and then, with the 

aid of information from the solution to the s e n s i t i v i t y 

equations, finding a more optimal set of parameters. Often the 

i n i t i a l integration deviates greatly from the observations, and 

i t may even blow up. In these cases, the f i r s t few data points 

contain valuable information that can be used to improve the 

parameter estimates. It i s i n t u i t i v e l y appealing to use this 

information to improve some parameter values before we commit 

ourselves to a f u l l integration over the whole time i n t e r v a l 

under consideration. To carry this idea a l i t t l e further, an 

algorithm where we sequentially update parameter estimates each 

time taking into account a few more data points seems worthy of 

consideration. In a sense, such an algorithm i s using the 

observations to guide us along the correct path in state space. 

Sequential reestimation has received a great deal of 

attention. Much of this attention has been from a s t a t i s t i c a l 

point of view. For a concise introduction, we refer the reader 

to Young[76]. Problems involving the analysis of a large 

quantity of continuously a r r i v i n g data and requiring a "real 
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time" solution have been one of the main motivations for the 

development of sequential estimation techniques. A t y p i c a l 

example of such a s i t u a t i o n occurs in the estimation of missile 

t r a j e c t o r i e s from, say, radar data. Frequently, sequential 

techniques are used to estimate the state of a dynamic system; 

however, they can also be used to estimate parameters in a 

dynamic system. For a good discussion of sequential estimation 

techniques applied to dynamic systems, we refer the reader to 

Gelb[28]. 

As mentioned above, our motivation for considering 

sequential techniques does not come from the need to rapidly 

process a large quantity of data, but instead from the need to 

overcome poor i n i t i a l parameter estimates. Our goal i s to use 

the observations in a manner that addresses i t s e l f to the 

b a s i c a l l y sequential nature of an i n i t i a l value problem. 

5.2 A SEQUENTIAL ALGORITHM 

There are many ways to approach the development of a 

sequential algorithm. At one extreme there i s the approach of 

solving a sequence of parameter f i t t i n g problems, each using 

progressively more data points. Since we are dealing with a 

dynamic model, such an approach would be expensive. At the 

other extreme, we have the stochastic approximation techniques 

where parameters are updated by less refined but very fast 

reestimation algorithms ([6,p.251], [3], [33]). The method 

explored in t h i s chapter f a l l s between these two extremes. 

We assume the data points are processed in batches ending 
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at the observation times 

t. i • •« , t« (5.2.1) 

Batch s i s the set of observations taken at the observation 

times 

fcJk t i ' t * -+2. 
A - I n-i 

/ • • • f t . (5.2.3) 

where t f c + | i s the f i r s t observation time. Define f (p) 

according to (1.1.2) for the observation times 

(5.2.3) 

and l e t 

(P)=f(„, (P)f, r t (P) (o) (5.2.4) 

To s t a r t the sequential process we estimate p as well as 

possible to minimize (5.2.4). Note that k must be large enough 

that t h i s least squares problem makes sense. That i s , we do not 

want fewer data points than parameters. We expect this problem 

to often be singular since i t i s unreasonable to expect that an 

estimate of a l l the parameters can be obtained with just a few 

data points. 

Denote by p the optimal parameter vector obtained by 

minimizing (5.2.4), and denote the Jacobian matrix for f 

defined by (1.3.4), by J ^ (p). Next we include the batch of 

data points at the observation times 

Define f (p) according to (1.1.2) for the above observation 
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times. There i s some ambiguity to be resolved concerning 

f ( ) i (p) . The elements in f ( | ) (p) depend on the solution y(t) to 

(1.1.1) at the above observation times. We would, however, l i k e 

to integrate from time t ^ and not from time t f l in order to 

define f ^ (p). Thus i n i t i a l conditions are required at time 

t« for this integration. Consistent with the l i n e a r i z a t i o n 

employed below, we define the i n i t i a l condition on y . at time 

t*. by 

Y E > . ( t ^ )=y; (P ( - ) ) + (P"P(0, ) T(>Y;,...»%) (5.2.5) 

for i=l,...,n. Thus the i n i t i a l conditions for the integration 

between times t . and tA are functions of the parameters, and 

this must be considered when the s e n s i t i v i t y equations are 

integrated. 

Define the Jacobian matrix J ^ (p) corresponding to f ( | ) (p) 

according to (1.3.4). This matrix i s found by integrating the 

s e n s i t i v i t y equations from time t_^ to time t ^ . Let 

(AP) ( E J =P-P(OJ (5.2.6) 

and define f (p) by 

f l l )(p) = ( ( f ( f t ) (P ( e J )+J ( o J <P(„ ) U p > ( # ) ) T , f ^ (P) ^ (5.2.7) 

Our new parameter estimate, which we denote by p ̂  , minimizes 

f (P)f (P)- (5.2.8) 

The Jacobian matrices for f (p) are 
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J (p) = 
(O J - . (p) 

(5.2.9) 

We have just approximated f^0)(p) by the f i r s t term in i t s Taylor 

expansion at the point p . The success of a sequential 

technique i s clos e l y related to the size of the region in which 

t h i s approximation i s accurate. We continue in the above manner 

reestimating p for each new batch of data points. Thus when 

batch s i s under consideration, we are finding the estimate p ^ j 

using 

f (P) = 
(P{.> ) + J

 (.) (P l 6 ) ) (AP), 

f w (p) 

(5.2.10) 

and 

J (p) = 

J (*> ( P (,) > 

Jfr> (P) 

The new parameter estimate, p, , minimizes 

f w _ r ( P ) f U ) ( P ) . 

(5.2.11) 

(5.2.12) 

Note that only J (p) is changing in J 

determination of p 
(p) during the 

} . This fact can be used to advantage when 

implementing a sequential algorithm. For example, i f we are 

using the singular value decomposition of J then information 
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obtained when producing the decomposition of J ( p ^ ̂  ) can 

be used to e f f i c i e n t l y obtain the decomposition of J (p). 

5.3 EXPERIMENTAL RESULTS 

We experiment with Problems 4.2.1, 4.2.2, 4.5.1, and 4.5.2. 

The l a s t two of these test problems have noise in the 

observations. The star t i n g parameters for our experiments with 

Problems 4.2.1 and 4.5.1 are those corresponding to Figure 

4.2.2, and the star t i n g parameters for our experiments with 

Problems 4.2.2 and 4.5.2 are those corresponding to Figure 

4.2.3. We comment that with these parameters a d i r e c t approach 

(FIT) was unsuccessful on a l l four problems. Our experiments 

with Problems 4.2.1 and 4.2.2 star t with an i n i t i a l batch of 

observations corresponding to the f i r s t f i v e observation times. 

We then proceed through the remaining observation times in 

increments of f i v e observation times. For Problems 4.5.1 and 

4.5.2 the use of f i v e observation times proved to be 

i n s u f f i c i e n t to get started (the i n i t i a l parameter estimates 

were too inaccurate). For these two problems we star t with ten 

observation times and then proceed in increments of f i v e 

observation times. An interactive approach could be valuable 

here. 

For Problem 4.2.1, the parameter estimates after the f i r s t 

and l a s t batches were respectively 
T 

(.9743, .1281, 3.873, 2.101, .3153, .1473) 

and 
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( 1 . 0 1 4 , . 1 1 7 8 , 3 . 5 4 8 , 1 . 4 0 6 , . 1 6 3 2 , ,1539)T 

For Problem 4 . 2 . 2 , the parameter estimates after the f i r s t and 

l a s t batches were respectively 
T 

(.5550, . 0 9 2 7 7 , 3 . 2 5 6 , . 6 3 0 4 , . 1 3 9 0 , . 0 1 2 3 1 ) 

and 
r 

( . 4 6 8 7 , . 0 6 5 4 8 , 3 . 3 8 3 7 , . 4 2 2 6 , . 0 7 8 8 6 , . 0 0 8 3 6 4 ) . 

For Problem 4 . 5 . 1 , the parameter estimates after the f i r s t and 

l a s t batches were respectively 

( . 6 6 8 9 , . 0 2 4 9 3 , 4 . 0 8 5 , 1 . 3 0 9 , . 0 6 2 3 2 , . 1 1 5 4 ) 7 " 

and 

( . 7 6 9 0 , . 0 4 5 4 0 , 3 . 2 3 8 , . 8 0 0 6 , . 0 1 4 2 1 , .1286)7^ 

For Problem 4 . 5 . 2 , the parameter estimates after the f i r s t and 

l a s t batches were respectively 

( 7 . 2 2 7 , 1 . 3 0 3 , 3 . 3 3 7 , 1 . 3 3 3 , . 3 3 3 4 , . 2 2 6 6 ) " ^ 

and 
T 

(.6987, . 2 8 2 9 , 6 . 9 1 7 , 2 . 7 0 3 , . 3 3 8 9 , . 0 1 3 7 7 ) . 

A d i r e c t approach (FIT method) converged to the desired 

solution for Problems 4 . 2 . 1 , 4 . 2 . 2 , and 4.5.1 starting at the 

f i r s t and l a s t estimates given above. A square root 

transformation of p^. was required in the case of Problem 4.5.1 

to prevent p̂ _ from becoming negative. The d i r e c t approach on 
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Problem 4.5.2, star t i n g from the parameters obtained using only 

the f i r s t batch of observations, found a l o c a l minimum at 

(3.624, .8877, 4.064, 1.277, .2642, .1002) r 

where the sum to the squares of the residuals was approximately 

840. However, convergence of the d i r e c t method to the desired 

solution was obtained when we started from the f i n a l r e s u l t of 

the sequential pass on Problem 4.5.2. Thus the sequential 

updating was essential in th i s case. We summarize the above 

results in Table 5.3.1. We conclude that i t can be advantageous 

Problem FIT FIT FIT 
( f i r s t batch) (last batch) 

4.4.1 L C C 
4.4.2 L C C 
4.5.1 L C C 
4.5.2 L L C 

(L-local minimum, C-desired minimum) 

Table 5.3.1 
Results with sequential approach 

to consider the observations sequentially to obtain an improved 

approximation to the optimal parameters before we commit 

ourselves to a f u l l optimization attempt over the whole time 

i n t e r v a l . Indeed, in three of the above four cases a s u f f i c i e n t 

improvement to allow the FIT method to converge to the desired 

solution was obtained using only the f i r s t few observation 

points. 

A great deal of work remains to be done to f u l l y evaluate 
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the use of sequential methods for improving starting parameters; 

however, we have attained our limited goal of demonstrating the 

f e a s i b i l i t y of using a sequential strategy. 
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CHAPTER 6 

REAL WORLD PROBLEMS 

6.1 INTRODUCTION 

A l l the parameter f i t t i n g problems in thi s chapter involve 

physical observations as opposed to observations generated by a 

simulation. Such problems are a good deal more d i f f i c u l t than 

those using generated data. This d i f f i c u l t y occurs partly 

because the dynamic model under consideration often cannot, for 

any parameter values, give an adeguate description of the 

process being modelled. Also, experience indicates that the 

least squares surface for parameter f i t t i n g in dynamic models i s 

often plagued with numerous l o c a l minima. Starting with one of 

the more global methods of Chapter 3, i t i s f a i r l y easy to find 

one of these l o c a l minima. (See for example the experiments 

with Bazykin's model in Chapter 4.) The problem for the model 

builder i s to decide i f there i s a more optimal set of 

parameters somewhere else in parameter space or i f the 

qu a l i t a t i v e difference between the model and the data at the 

current minimum i s just the resu l t of a poor or incomplete 

model. This i s usually a d i f f i c u l t decision to make. 

Situations such as this arise frequently in nonlinear problems 

and a standard strategy i s to start optimizing from d i f f e r e n t 

points in parameter space. If the same minimum i s determined 

starting from several d i f f e r e n t points, then we can be more 

confident that the minimum i s a global minimum. An interactive 
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approach i s ideal for experimentally checking on a minimum; 

however, a good understanding of the model and the physical 

meaning of the parameters i s also very valuable. This l a t t e r 

understanding can be augmented through an interactive analysis 

of the effects of various parameter changes. 

An interactive parameter f i t t i n g package can be very useful 

in the design of models as well as in the f i t t i n g of individual 

models. For example, the model builder may start with a simple 

but incomplete model and find in the course of f i t t i n g i t that 

i t cannot account for some of the q u a l i t a t i v e behavior of the 

observations. This would be indicated for example i f the best 

f i t t i n g parameters produced a model which smoothed out a c r u c i a l 

peak in the data. With luck, in the course of f i t t i n g this 

model, some of i t s de f i c i e n c i e s may be determined and some 

insight into improvements may be gained. For this type of 

application, i t would be helpful to allow the dynamic 

r e d e f i n i t i o n of the model. 

We stress that the above process i s very tenuous and puts a 

large emphasis on the i n t u i t i o n and judgement of the model 

builder. It i s in such situations, however, where an 

interactive approach can be extremely advantageous. 

6.2 A DYNAMIC MODEL FOR AGGRESSIVE AND DOCILE MICE 

The model considered in this section proposes a population 

consisting of two interacting types of mice to account for 

observations on the t o t a l mouse population. For an introduction 

to this problem, we refer the reader to Myers and Krebs[48] and 
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Krebs et al[37]. Let u be the population density of docile 

mice, and v the population density of aggressive mice. Let p^ 

be the basic b i r t h rate, p^ the basic death rate, and l e t p̂ . 

describe the s e n s i t i v i t y of docile mice to crowding. Let c< be 

the proportion of aggressive mice in the o f f s p r i n g . Further 

assume the aggressive mice reproduce poorly (almost s t e r i l e ) and 

that this can be described by multiplying the basic b i r t h rate 

by u/(u+v). Under the effects of crowding, the docile mice are 

assumed to either emigrate or die, and this i s described by the 

term -p^ufu+v) in the equation for u'. The dynamic model i s 

thus 

u'=p, ( l - O u*/(u+v) -p u-p u(u+v) 
3 H (6.2.1) 

v ' =p3p<. u a / (u+v) -pH v. 

Questionable assumptions such as those given above are t y p i c a l 

of dynamic models in ecology, and with such assumptions we 

should not be too disappointed i f the model cannot describe the 

observations very well. Mouse population measurements are 

available only on the t o t a l population u+v. A more general 

formulation of the parameter f i t t i n g problem in dynamic models 

(see Bard[6,p.221]) could handle this d i r e c t l y ; however, the 

problem can be transformed to conform to our formulation. In so 

doing, we arrive at a problem with observations on only one 

state variable and some of the techniques of Chapter 3 can be 

used to produce starting approximations to the parameters. If 

we define y =u, y =u+v, and p =p (l-«0 then the above dynamic 
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model may be written as 

y/=P6 y,a/y -p y y y 
' 6 1 * f ' ^ (6.2.2) 
y'=p y a/y -p y -p y y . 

For our i n i t i a l conditions we take 

y (0)=p /(l+exp.(-pa ) ) 
' (6.2.3) 

Y (0)=p, i 

where we have ensured that y (0)<y (0). Observe that a l l 
/ a. 

parameters in this model, with the possible exception of p^, 

should be po s i t i v e . 

The 44 observations on y^ are shown graphically in Figure 

6.2.1. We comment that i t i s with reference to the scale of 

Figure 6.2.1 
Observations and spline approximation 

Figure 6.2.1 that the parameter estimates should be interpreted, 
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(The basic unit of time i s two weeks and the basic population 

density unit i s ten animals per acre.) A cubic spline 

approximation to the observations using j o i n t s at 

t=5,10,20,25,28,35 i s also shown in Figure 6.2.1. 

This problem i s r e l a t i v e l y d i f f i c u l t . In the following 

discussion, we outline a p a r t i c u l a r sequence of experiments 

which leads to a model which f i t s the observations quite well 

numerically. Such experiments, of necessity, involve a good 

deal of t r i a l and error, and thus an interactive approach i s 

i d e a l . In what follows, we try to give an indication of this 

i n teractive process. 

Since observations are available on only one state 

variable, the i t e r a t i v e methods of Section 3.4 may be useful for 

getting i n i t i a l approximations to the parameters. Furthermore, 

we observe that with the exception of p a , a l l the parameters 

occur l i n e a r l y in the residual functions of the IFIT and DFIT 

algorithms when guessed observations are used on y . However, 

to apply one of the i t e r a t i v e algorithms of Section 3.4, a 

sta r t i n g guess at the behavior of the unobserved state variable 

i s required. It must be less than y , and we expect i t to mimic 

in some sense the behavior of ya • A reasonable guess i s curve 

(0) in Figure 6.2.2. Note that one of the most prominent 

features of y / with respect to y^ i s the position of the 

proposed maximum of ŷ  . As indicated by the experiments in 

Chapter 4, the position of such a maximum can be c r i t i c a l . An 

interactive approach can be very valuable here. To get st a r t i n g 
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T I M E 

Figure 6.2.2 
Iterations on guessed observations 

approximations to the parameters, we used the iterated integral 

f i t t i n g method (using (3.4.1)) taking advantage of the l i n e a r i t y 

of the parameters in (6.2.2). We froze p̂  and p^ at 2.9 and 2 

respectively and iterated on the remaining four parameters. 

Figure 6.2.2 shows successive improvements in the guessed 

observations on y . In Figure 6.2.3, the solution y^ (t) 

obtained from integrating (6.2.2) at the successive 

approximations to p are shown. The observations on y^ are also 

shown in Figure 6.2.3. The trapezoidal d i s c r e t i z a t i o n was used 

throughout this section. Curve (i) in Figure 6.2.3 corresponds 

to curve (i) in Figure 6.2.2. The parameters corresponding to 

curve (2) in Figure 6.2.3 were 

(2.9, 2.0, 1.234, .2445, .003339, .6114). 
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Figure 6.2.3 
Integrations at successive parameter approximations 

Graphically, there appears to be substantial room for 

improvement in the parameter values; however, the iterated 

integral f i t t i n g method has e f f i c i e n t l y provided starting 

approximations to the l a s t four parameters. 

Now that we have star t i n g approximations to the parameters 

at which the i n i t i a l value problem can be integrated to produce 

reasonable r e s u l t s , i t i s worthwhile to try to refine the 

parameters values using a d i r e c t approach employing the 

s e n s i t i v i t y equations. The Levenberg-Marquardt method gave the 

parameters 
T 

(2.828, 1.963, 1.142, .06483, .008582, .5279) 

Integeration results corresponding to th i s parameter vector are 

shown in Figure 6.2.4. The sum of the squares of the residuals 
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at the above point in parameter space was approximately 1350. 

Clearly, an improvement has been made. However, the peak in the 
o 
C3 

m 

XX 
°J XX 

X X 
x x 

' i I ! I 1 1 r  
5.00 10.00 ]5.C0 20.00 25.00 30.00 35 00 40 00 TJME 

Figure 6.2.4 
Optimum star t i n g from iterated IFIT results 

observations i s not being approximated well. Considering the 

way the model was derived, there i s no reason to expect that the 

peak in the observations can be well approximated. If we want 

to try to f i t the peak in the data, we can experiment at other 

points in parameter space and try other algorithms such as those 

presented in Section 3.5. An interactive package can be very 

valuable for such probing and experimenting. Extensive 

experiments and the use of special methods such as the 

quasi-multiple shooting technigue of Chapter 3 did not produce 

parameter values which described the peak well. A logarithmic 

transformation of p which works well on the following two 
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models did not work here either. It i s impossible to say no 

such parameters exist ; however, in view of the better f i t 

obtained later in t h i s section when more f l e x i b i l i t y was put 

into the model, we are led to the conclusion that the model 

cannot adequately describe the observations. Such a conclusion 

i s a matter of judgement and a l l a good numerical package can do 

i s to provide information to make that judgement more informed. 

It i s f a i r l y easy using an interactive approach to produce 

parameters that give integration results which peak in the same 

v i c i n i t y as do the observations. For example, the following 

parameters were obtained i n t e r a c t i v e l y : 

(1.4, 1.24, .8272718, .07, .006, .5037043)T 

The interactive procedure employed involved freezing parameters, 

optimizing on subspaces, and the experimental resetting of 

parameters. Integration results at these parameters are shown 

in Figure 6.2.5. The d i f f i c u l t y seems to be that the sudden 

drop in the observations cannot be imitated. Thus when we t r i e d 

a f u l l least squares optimization starting at the above 

parameters, we obtained a possibly l o c a l minimum at 

(1.292, 1.171, .9662, .06040, .01371, .6242)T 

Integration results at the above parameters are shown in Figure 

6.2.6. The sum of the squares of the residuals was 

approximately 1150 at the above parameters. Observe that the 

results are s l i g h t l y d i f f e r e n t than those of Figure 6.2.4, but 

the peak in the data i s s t i l l not being imitated. Indeed, even 
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Figure 6.2.5 
Integration at parameters found i n t e r a c t i v e l y 

the i nteractive optimization on subspaces continually drew the 

integration results down to balance off the peak and the trough 

in the observations. Of course we could weight some of the data 

points in the least squares problem to emphasize the peak, but 

this i s a r t i f i c i a l and experiments indicate that while a good 

approximation up to the peak can ea s i l y be obtained, the rapid 

drop in the observations cannot be imitated. 

Next we experimented with a model with more f l e x i b i l i t y in 

the form of another parameter. S p e c i f i c a l l y , we l e t the death 

rates for the docile and aggressive mice be d i f f e r e n t . Denote 

by p^ the death rate for docile mice and l e t p^ denote the death 

rate for aggressive mice. Our dynamic model now i s 

CHAPTER 6 



142 

XX 

; i 1
 ! 1 1 1 i : i 1 1 

0.00 S.CD 10.00 35.00 30.00 25.00 30.CD 35.00 40.00 45.00 
T I M E 

.. FYgure" "6T2V6"~ 
Optimum star t i n g from parameters found i n t e r a c t i v e l y 

y'=p yVy -p y -p y y, 
' 6 ' * H ' ( 6 . 2 . 4 ) 
y'=p yVy.-py -p (y -y ) - P y y 

Using this model and starting at the parameters obtained 

i n t e r a c t i v e l y with p^=p^ , a l o c a l minimum to the f u l l unweighted 

least squares problem was found at 

( 1 . 4 0 2 , 1 . 2 4 1 , . 8 3 6 5 , . 1 8 7 5 , . 0 1 1 7 4 , . 6 7 4 8 , . 0 0 5 7 6 3 ^ 

The sum of the squares of the residuals at the above parameters 

was appproximately 9 6 0 . Although p and p d i f f e r , integration 

results at the above parameters do not d i f f e r s ubstantially from 

those shown in Figure 6 . 2 . 6 . 
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This i s in r e a l i t y a l o c a l minimum. Later in t h i s section, 

we return to t h i s model and achieve a much smaller but s t i l l 

perhaps l o c a l minimum. The s p e c i f i c strategy used to obtain 

th i s new minimum grew out of experiments with the following 

model. 

Experimentally, the following model f i t s the observations 

well. It i s the same as the . previous model except for a 

modification in the growth term for the aggressive mice. As in 

Equation (6.2.1), l e t u be the population density of docile 

mice, and l e t v be the population density of aggressive mice. 

Our proposed dynamic model is 

u'=p u"V(u+v)-p u-p u(u+v) 
v'=p3uv/(u+v) -p^v 

(6.2.5) 

which with y =u, and y„=u+v becomes 

y' = (p -P )y a/y +(P +P -P )Y -P_ y - P Y , Y „ 

(6.2.6) 
7 s- i a. 

The i n i t i a l conditions are given in (6.2.2). Our starting 

approximation to the optimal parameters was 
T 

(2.9, 2.5, .8, .07, .006, 1, .5), 

and the optimal parameters obtained were 
T 

(2.958, 2.630, .6503, .8892, -.007497, 1.108, .3108). 

The sum of the squares of the residuals at the above parameters 

was approximately 250. Graphically, the integration results at 

the above parameters are almost the same as those in Figure 
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6.2.7 except y a gets close to zero around t=36. Unfortunately, 

p^_ i s negative. We note that p^_ i s much smaller than the other 

six parameters and this suggests we try the logarithmic 

tr ansf ormation ^ =ln (p ) and e s t i m a t e d instead of p . It i s 

important to be sel e c t i v e when choosing a logarithmic 

transformation. For example, the rescaling of p to p^ by 

logarithmic transformations did not lead to the success 

described below when p alone was rescaled. Thus again we have 

a place for interactive experimentation. As mentioned at the 

end of Chapter 1, the use of logarithmic transformations also 

affects the conditioning of the problem. For example the 

condition number of the Jacobian matrix in the least sguares 

problem at the above parameters i s 1.1E5. If p i s scaled as 

suggested then the condition number becomes 1.3E4 and i f 

p ,...,p^ are a l l scaled by logarithmic transformations, the 

condition number becomes 2.6E4. With the transformed rj_ , we 

started the Levenberg-Marquardt procedure at the l a s t set of 

parameters preceding the f i r s t occurance of a negative value for 

p in the previous run, namely 

(2.88, 2.57, .728, .437, -5.17, .687, .465) T 

where we have renamed "p^ to be p̂ _. The optimal parameter values 

found were 

(5.335, 3.011, .08038, 3.966, -6.895, 4.266, -.01545) 7" 

where now p^ has taken on a negative value. (The transformed 

values of scaled parameters are given in this discussion.) The 
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sum of the squares of the residuals was approximately 56 at the 

above parameters. Graphically, the integration results at the 

above parameters are very similar to those in Figure 6.2.7 

except y curves up s l i g h t l y for t > 3 0 . The best parameters 

before p went negative were 
' T ( 4 . 3 6 2 , 2 . 9 8 9 , . 1 3 0 7 , 2 . 6 4 4 , - 6 . 2 3 2 , 2 . 9 0 9 , . 0 1 3 0 3 ) . 

It appears that a logarithmic, transformation of p^ may be 

p r o f i t a b l e . With this transformation and starting at the above 

point in parameter space, we found the minimum 

( 5 . 4 0 3 , 2 . 6 9 1 , . 1 0 4 2 , 3 . 5 0 7 , - 6 . 8 0 7 , 3 . 8 4 8 , -4.688)"T 

The sum of the squares of the residuals at these parameters was 

approximately 6 2 . Integration results at the above parameter 

values are shown in Figure 6 . 2 . 7 . 

From a numerical point of view, the f i t in Figure 6.2.7 

appears excellent; however, from a b i o l o g i c a l point of view i t 

has a flaw. The f i r s t state variable gets caught at zero and y A 

goes to an equilibrium. B i o l o g i c a l l y , we would l i k e the 

solution to the i n i t i a l value problem to o s c i l l a t e in time. 

Numerically, i t appears that more data points should be 

available i f we want to look for o s c i l l a t o r y behavior. 

The remarkable improvement achieved when a logarithmic 

transformation was used on p̂ _ suggests that we go back to the 

f i r s t two models and try this strategy. Starting with the 

' parameters obtained i n t e r a c t i v e l y , t h i s strategy did not change 

the results with the f i r s t model; however, starting at the 
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parameters obtanied i n t e r a c t i v e l y and with p =p , t h i s s t r a t e g y 

worked very w e l l on the second model where two death r a t e s were 

used. As with the t h i r d model, p^ became negative and small and 

a l o g a r i t m i c t r a n s f o r m a t i o n of p was a l s o used. The f i n a l 
? 

parameters obtained were 

(5.416, 2.350, 3.832, 3.394, -7.037, 3.822, -5.062)1" 

and the sum of the squares of the r e s i d u a l s and i n t e g r a t i o n 

r e s u l t s at the above parameters were e s s e n t i a l l y the same as 

those of Figure 6.2.7. I t i s i n t e r e s t i n g to note that f o r the 

parameter vector 

(4.205, 2.586, 2.905, 2.562, -6.636, 2.896, -5.298)T" 

the sum of the squares of the r e s i d u a l s was approximately 54000. 
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This sort of behavior i s t y p i c a l of i n i t i a l value problems and 

i s one reason why so many d i f f i c u l t i e s are encountered when 

f i t t i n g parameters in dynamic models. F i n a l l y , we comment that 

our investigation has been confined to numerical parameter 

f i t t i n g and no attempt has been made to interpret the parameter 

values in a physical sense. Before any parameters can be 

accepted, they must of course be p h y s i c a l l y reasonable. 

6.3 A MODEL INVOLVING A CHANGE IN EQUILIBRIUM 

The model considered in t h i s section represents an early 

attempt to describe data collected from Lake Pl a c i d , B r i t i s h 

Columbia [75]. The observations are on phytoplankton in the 

lake. Throughout much of the summer, their t o t a l mass remains 

f a i r l y constant at a r e l a t i v e l y low l e v e l . Then, within the 

space of a few days, i t jumps to a much higher l e v e l . The next 

few observations contain a l o t of noise, but i t appears that the 

l e v e l of phytoplankton remains high u n t i l near the end of the 

year when i t drops back to a low l e v e l . The observations on the 

phytoplankton are shown in Figure 6.3.1. The units for the time 

axis are in days.and time t=0 corresponds to the beginning of 

May. One unit along the state variable axis in Figure 6.3.1 

corresponds to 1/75 milligram of phytoplankton per l i t r e of 

water. It i s postulated that the sudden jump in the 

observations can be described by a dynamic model which loses a 

lower equilibrium and moves to a higher equilibrium. In 

p a r t i c u l a r we consider the dynamic model (proposed by Dr. C.J. 

Walters, Ins t i t u t e of Animal Resource Ecology, University of 
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F i g u r e 6.3.1 
P h y t o p l a n k t o n o b s e r v a t i o n s and smoothing f u n c t i o n 

B r i t i s h Columbia) 

y' =p r (t) y ( l - y / 2 5 ) -p z (t) y 2 / (p/+y a ) 
(6.3.1) 

y(0)=3.2. 

I n t h i s model, y r e p r e s e n t s the d e n s i t y o f p h y t o p l a n k t o n , and 

z ( t ) r e p r e s e n t s the d e n s i t y o f the p r e d a t o r z o o p l a n k t o n . The 

f u n c t i o n r ( t ) r e p r e s e n t s the e f f e c t o f s u n l i g h t on the growth 

r a t e o f the p h y t o p l a n k t o n . The term r ( t ) p ; ( l - y / 2 5 ) d e s c r i b e s 

the growth o f the p h y t o p l a n k t o n , and the term - z ( t ) p y^/fp^+y 3) 

d e s c r i b e s the f e e d i n g e f f e c t o f the z o o p l a n k t o n . 

To determine the e q u i l i b r i a of the above dynamic model, we 

s e t y'=0, and s o l v e f o r y. Thus f o r y^O, the e q u i l i b r i a occur 

a t the r o o t s o f 
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P / r ( t ) (l-y/25) (p*+ya) -p 3 z (t) y=0 (6.3.2) 

Depending on p , p , p , r ( t ) , and z ( t ) , the above algebraic 

equation in y can have one, two, or three real roots. Thus i t 

is t h e o r e t i c a l l y possible to gain or lose an equilibrium when 

(6.3.1) i s integrated. 

For r(t) we take the function 

r(t)=exp(-((t-110)/55) a). (6.3.3) 

The function z(t) was obtained from physical observations. To 

produce a continuous approximation to z ( t ) , we used a least 

squares piecewise cubic Hermite approximation to the 

observations. The j o i n t s used in t h i s approximation were at 

t=60, 120, 180. The data points and the continuous 

approximation to z(t) are shown in Figure 6.3.2. The 

observations have been scaled so that the maximum ordinate i s 1. 

We take 

P C * =d, i , . s r 

for our i n i t i a l parameter estimate. The success in Section 3.3 

of the integral f i t t i n g technique for this type of problem 

suggests we st a r t with this method. F i r s t we smoothed the 

observations with a least squares piecewise cubic Hermite 

polynomial with j o i n t s at t=110, 115, 140, 180. This smoothing 

function i s shown along with the observations in Figure 6.3.1. 

With this smoothing, the IFIT method produced the parameters 

(.1433, 5.509, .7300)7" 
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Figure 6.3.2 
Zooplankton densities 

Integration results at the above parameter vector are shown in 

Figure 6.3.3. Next we refined these parameters using the 

Levenberg-Marquardt technique and the s e n s i t i v i t y equations. 

This approach found the optimum 

(.1562, 3.336, .8963)'R 

where the sum of the squares of the residuals was approximately 

556. Integration results at the above parameters are shown in 

Figure 6.3.4. A di r e c t approach using the s e n s i t i v i t y equations 

and s t a r t i n g at p ̂  defined above also produced this r e s u l t . 

In Table 6.3.1, we l i s t some roots of (6.3.2) as a function 
of time at the above parameters. The results in thi s table 

indicate that at the star t of the time in t e r v a l under 

consideration there i s one r e l a t i v e l y low equilibrium. Later on 
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Time Number of real roots Real roots 

1 1 
1 
3 
3 
1 
1 
3 
3 
1 
1 

0.07464 
84 
85 
89 
90 
151 
152 
156 
157 
226 

2.093 
2.216 
3.130 

16.95 
17.14 
3.260 
2.134 
1.994 
0.1436 

5.142 
10.83 

9.331 
5.395 

13.45 
16.47 

16.60 
12.03 

Table 6.3.1 
Roots of J_6_.3_-.2_L corresponding to Figure 6.3.4 

we have three e q u i l i b r i a , and s t i l l later we have only one 

r e l a t i v e l y high equilibrium. S t i l l later in the time i n t e r v a l , 

we again acquire three e q u l i l i b r i a . At the end of the time 

i n t e r v a l , we are back to only one lower equilibrium. However, 

no rapid jumps to new e q u i l i b r i a are evident in Figure 6.3.4. 

In the results which follow, a more pronounced jump to a higher 

equilibrium was obtained. 

The above parameter vector corresponding to Figure 6.3.4 i s 

not the only point in parameter space where the solution to 

(6.3.1) f i t s the observations well. Starting at p defined 

above, and following an interactive strategy of freezing 

parameters, optimizing on subspaces, and resetting parameters, 

we arrived at the point 

(.9900, .7284, 2.796) r 

in parameter space. The sum of the squares of the residuals at 

the above l o c a l minimum was approximately 662. Integration 
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results at the above parameters are shown in Figure 6.3.5, 

Figure 6.3.5 
Integration at i n t e r a c t i v e l y obtained optimum 

(Integrations under error control were employed near the above 

point in parameter space.) This point was d i f f i c u l t to find and 

i t i s unlikely that an automatic approach would have much luck 

in finding i t . The d i f f i c u l t y seems to stem from the nature of 

the least squares surface near the above point in parameter 

space. For example i f we change p_̂  to .7 then the integration 

results become e s s e n t i a l l y zero for the f u l l time i n t e r v a l under 

consideration, and the sum of the squares of the residuals 

becomes 3085. Integration results corresponding to this sum of 

squares are shown in Figure 6.3.6. Starting from the parameters 

of Figure 6.3.6, the FIT approach again produced the optimum 

i l l u s t r a t e d in Figure 6.3.4. 
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In Table 6 . 3 . 2 , we l i s t some of the roots of ( 6 . 3 . 2 ) as a 

function of time at the parameters of Figure 6 . 3 . 5 . At the 

U J = 
r -
CLIO-
t— -« 
CO 
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+ 
, + + 

+ + 
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1 11 i11 " 1 -==-=5 1 , 
0.00 45.00 eo.00 120.00 160.00 200.00 240.00 

TIME 
Figure 6.3.6 

Integration near i n t e r a c t i v e l y obtained optimum 

Time Number of real roots Real roots 

1 1 0 . 0 0 7 2 4 4 
42 1 0 . 0 8 4 4 3 
43 3 0 . 0 8 7 3 0 1 0 . 6 6 1 4 . 2 5 
112 3 0 . 6 5 1 1 0 . 8 6 7 6 2 3 . 4 8 
113 1 2 3 . 5 2 
12 9 1 2 3 . 5 1 
130 3 0. 6 3 1 6 0.8947 2 3 . 4 7 
176 3 0 . 0 8 5 4 8 1 2 . 3 4 1 2 . 5 7 
177 1 0 . 0 8 3 6 7 
226 1 0 . 0 1 3 9 6 

Table 6.3.2 
Roots of J(j6.3_.2)_ corresponding to Figure 6.3.5 
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sta r t of the time i n t e r v a l , we have only a r e l a t i v e l y low 

equilibrium. Around t=43, we acquire three e q u i l i b r i a , and 

around t=113, the lower two of these three e q u i l i b r i a vanish and 

we are l e f t with only a r e l a t i v e l y high equilibrium. Later, we 

again acquire three e q u i l i b r i a , and around t=177, the higher two 

of these three vanish and we are l e f t with a r e l a t i v e l y low 

equilibrium which remains u n t i l the end of the time i n t e r v a l . 

The disappearance of the lower two e q u i l i b r i a around t=113 

corresponds to the rapid increase in the solution to (6.3.1) 

shown in Figure 6.3.5. 

The large error in the observations makes i t d i f f i c u l t to 

choose between the two solutions obtained for this problem; 

however, q u a l i t a t i v e l y the l a t t e r solution i s more pleasing. In 

conclusion, the inte r a c t i v e approach has provided us with a 

solution which q u a l i t a t i v e l y behaves in the desired fashion. It 

is now the task of the model builder to interpret and perhaps 

build on these r e s u l t s . When interpreting the parameters 

corresponding to to Figure 6.3.5, the model builder must of 

course take into account the dr a s t i c change possible in the sum 

of the squares of the residuals due to a r e l a t i v e l y small change 

in parameter space. 

6.4 A REINDEER POPULATION GROWTH MODEL 

The model presented below represents an attempt to describe 

the reindeer population in Alaska from the year 1891 to the year 

1963 [2]. The Bazykin predator-prey model discussed in Chapter 

4 i s employed. The reindeer correspond to the predators and the 
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forage corresponds to the prey. Let y^ represent forage in 

units of 100 tons per square mile, and l e t y^ represent the 

reindeer population density in units of animals per square mile. 

We consider the dynamic model (proposed by Dr. C.J. Walters, 

Institute of Animal Resource Ecology, University of B r i t i s h 

Columbia) 

y'=p y (1-cy )-(r/100)y y /(p +y, ) 
' ' ' ' 4 .* ' (6.4.1) 
K=pzry, Y*/ipz+Y< )_P«Y* 

where p^ represents the growth rate of the forage for small ŷ  

in the absence of grazing, 1/c represents the equilibrium for 

the forage in the absence of grazing, r represents the reindeer 

feeding rate, p and p are measures of the reindeer feeding 

e f f i c i e n c y , and p^ represents the reindeer death rate. Of 

course a l l parameters should be p o s i t i v e . Our i n i t i a l 

conditions are 

yf (0)=10, y a(0)=.001 

where t=0 corresponds to the year 1891. The i n i t i a l condition 

on y represents 1000 tons of forage per square mile. We take 

the constant c=.l. That i s , the equilibrium for the forage in 

the absence of grazing is 1000 tons per square mile, the i n i t i a l 

condition on y^ . The reindeer population density observations 

are derived from population counts over an area of approximately 

20000 square miles. Thus the i n i t i a l condition on y represents 

very few (approximately 16) reindeer in this area. We f i x r at 

2 (in units of tons per year) for the reindeer in this area. 
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Our i n i t i a l approximation to the parameters was 

p ( 0 ) =(.3, 1, .1, .06)T 

In Figure 6.4.1, the observations on y are shown along with 

integration results at the above parameter vector. There are no 
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x X 
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; w w o t f < < w ^ , , J ^ f ^ 
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0.00 8.00 16.00 24.00 32.00 40.00 48.00 55.00 64.00 72.00 
TIME 

Figure 6.4.1 . 
Observations and integration results at p 

observations on the forage, and the i n i t i a l condition on y 

represents a rough guess. 

In the following discussion, we demonstrate through a set 

of experiments, the power of an interactive approach on this 

f a i r l y d i f f i c u l t problem. 

EXPERIMENT 1 

It seems worthwhile to begin with a di r e c t attack on the 

problem. If this strategy succeeds, then we are finished, and 
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i f i t does not , we can try a more sophisticated strategy. Even 

i f this d i r e c t attempt does not work, i t may suggest further 

experiments. Starting at the above p ^ , the FIT approach 

produced the optimal parameters 

(-.2691, 24.82, .8093, .1763)!" 

The sum of the squares of the residuals at this mimimum was 

approximately 494. Integration results at these parameters are 

shown in Figure 6.4.2. The results look excellent graphically, 

T I M E 

Figure 6.4.2 
Integration results for Experiment .1 

but p^ i s negative and p ^ i s much too large. The 95% confidence 

intervals , as defined in Chapter 1, were 

(+4.041, +3788, +83.11, +.1385)T" 

The parameter p^ has strayed into a region where the least 
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squares surface i s very insens i t i v e to i t . The negative sign of 

p^ suggests we constrain i t to be pos i t i v e ; however, this 

strategy st a r t i n g at p ( 0 > did not prove e f f e c t i v e . (The 

parameter p/ became small, but the integration results remained 

e s s e n t i a l l y the same as those in Figure 6.4.1.) Freezing p/ at 
to) 

.3 and star t i n g at p did not help either; however, the next 

experiment was successful. 

EXPERIMENT 2 

In this experiment, p^ was frozen at 1 and the optimization 
(#) 

was started at p defined above. This strategy found an 
optimum at 

-r 
(-.2667, 1., .2250, .1366) . 

The sum of the squares of the residuals at these parameters was 

approximately 757. Graphically, the solution appears to model 

the observations quite well; however, p^ i s negative. Our next 

experiment produced q u a l i t a t i v e l y promising behavior with a l l 

parameters p o s i t i v e . 

EXPERIMENT 3 

In th i s experiment, p̂  and p^ were frozen at .3 and 1 

respectively, and we l e t p and p. star t at the values obtained 
3 * 

in the previous experiment. Optimizing on the resulting two 

dimensional subspace of parameter space produced the parameters 

(.3, 1, .9704, 1.488)T 
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The sum of the squares of the residuals at the above parameters 

was approximately 20,000. Integration results at the above 

parameters are shown in Figure 6.4.3. In spite of the large sum 
o 

o 

) 

a 

.00 

Figure 6.4.3 
Integration at results of Experiment 3 

of squares, the results look promising. The model equations 

suggest that by reducing p and p , a much better result should 

be possible; however, interactive experiments along these l i n e s 

produced i n s t a b i l i t i e s very e a s i l y . We improve on the above 

results in the next experiment. 

EXPERIMENT 4 

Starting at the parameters obtained in the previous 

experiment, and not employing any freezing, we found an optimum 

at the point 
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r 
(.04046, 14.61, 3.635, 2.669) 

in parameter space. The sum of the squares of the residuals at 

this point was approximately 490. Integration results at these 

parameters are shown in Figure 6.4.4. The parameters are now 

X^ 

x x x ^ x ^ ^ ^ X 
1 1 1 1 1 1 

0.00 3.00 16.00 24.00 32.00 40.00 46.00 56.00 64.00 72.00 
T I M E 

Figure 6.4.4 
Integration results at optimum of Experiment __ 

a l l positive and the integration results at these parameters f i t 

the data quite well. However, p^ i s again much too large, as 

are p_ and p^, and Y, does not appear to be as active as i t 

should be. It appears that the absence of observations on y 
j 

leaves too much f l e x i b i l i t y in the model. 

EXPERIMENT 5 

Our l a s t experiment in this section i s with guessed 

observations and iterated integral f i t t i n g methods. The 
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smoothing of the o b s e r v a t i o n s was a c c o m p l i s h e d w i t h a l e a s t 

s q u ares c u b i c s p l i n e u s i n g j o i n t s a t t=5, 10, 21, 23, 42, 57, 

59. The i n i t i a l guessed o b s e r v a t i o n s f o r the f o r a g e were p o i n t s 

on the c u b i c s p l i n e t h a t i n t e r p o l a t e s 

(0,10), (10,10), (20,9), (30,6), (50,3), (60,2), (72,1). 

The end c o n d i t i o n s f o r t h i s i n t e r p o l a t i o n a re d e s c r i b e d under 

the CREOBS command i n the PARFIT documentation i n Appendix A. 

The i t e r a t e d i n t e g r a l f i t t i n g approach (employing subsystem 

i n t e g r a t i o n s ) worked w e l l ; however, i t drew us t o the parameters 

found i n Experiment 1. F r e e z i n g p a and u s i n g the above guessed 

o b s e r v a t i o n s produced a n e g a t i v e p / on the f i r s t i t e r a t i o n , and 

f u r t h e r i t e r a t i o n s d i d not c o r r e c t t h i s s i t u a t i o n . Next, p^ and 

p^ were f r o z e n a t .3 and 1 r e s p e c t i v e l y . The i t e r a t e d i n t e g r a l 

f i t t i n g approach ( u s i n g (3.4.1)) produced the parameters 

c o r r e s p o n d i n g t o F i g u r e 6.4.3. 

W h i l e the methods employed i n t h i s experiment d i d not 

p r o v i d e any new parameter e s t i m a t e s , they a t l e a s t demonstrated 

the s t r o n g p r e f e r e n c e t h a t e x i s t s i n the model f o r the e s t i m a t e s 

o b t a i n e d i n the p r e v i o u s e x p e r i m e n t s . 

The above e x p e r i m e n t s are a d i s t i l l a t i o n o f a few f a i r l y 

s h o r t i n t e r a c t i v e s e s s i o n s . To g a i n comparable r e s u l t s w i t h a 

n o n i n t e r a c t i v e approach would take a good d e a l l o n g e r and would 

demand a l o t o f p a t i e n c e and d e t e r m i n a t i o n on the p a r t of the 

user . 

Much more c o u l d be done w i t h t h i s problem. For example, we 
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could search for other l o c a l minima. We could also t r y more 

parameters or d i f f e r e n t combinations of parameters. (For 

example, we could f i x one of the above parameters and l e t r be a 

parameter.) Our main goal, however, i s to gain experience with 

PARFIT on a variety of problems. Thus we turn to our next 

example, a problem involving an ocean plankton model. 

6.5 AN OCEAN PLANKTON MODEL 

Our f i n a l example in this chapter involves a model of the 

stages in the l i f e cycle of certain ocean zooplankton. We 

consider a s i m p l i f i e d model where only three stages in the l i f e 

cycle are represented by state variables. Let y , y , and y 

represent the population densities of these three stages in 

units of population per cubic metre of sea water. The adult 

population density i s represented by Y3 - Physically, there are 

death rates p , p , and p„ associated with y , y , and y 

respectively, and there i s a transfer rate p^ from y to y^, and 

a transfer rate p̂ _ from y^ to y^ . We drive the system with a 

function x(t) which represents the population density of the 

stage in the l i f e cycle before that represented by ŷ  . Let p^ 

represent the transfer rate from x(t) to ŷ  . Our dynamic model 

is thus ( [54]) 

y'=-(p +p )y +p x(t) 

y'=pv y, -(P^ +P f f-)y a (6.5.D 

y'=p y -p y 
3 fT A. 3 3 

We note that this model i s l i n e a r . Observations on a l l state 
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variables and on x(t) were taken using large p l a s t i c bags 

(suspended from the ocean surface) which were designed to 

is o l a t e samples of ocean water[16]. The observations are shown 

in Figures 6.5.1, 6.5.2, and 6.5.3. For these three graphs, 

time i s measures in days, observations on y are symbolized by 

, and integration results for y^ are represented by an 

unbroken l i n e . 

The function x(t) was approximated by 

22.15+8.036t -.309.91? +.003156t5 . (6.5.2) 

The i n i t i a l conditions were 

y(l)=(.407, .271, .291)T 

and our s t a r t i n g parameter vector was 

p ( o ) =(.03, .02, .01, .1, .2, .06)T 

A l l parameters should remain between Q and 1. A d i r e c t approach 

(FIT method) found the point 

(.1256, -.1121 , .1626, .06709, .2219, .07167)7" 

in parameter space. The sum of the squares of the residuals at 

the above parameters was approximately 1690. Unfortunately p_ 
a. 

i s negative. We note that no parameters have exceeded 1 and 

this i s encouraging. Next we constrained p_ with a square root 

s c a l i n g . With this transformation, the FIT method found an 

optimum at (unsealed) 
r 

(.09615, 1.160E-6, .1087, .09013, .1523, .06958) 
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when i t was started from p *" defined above. The sum of the 

squares of the residuals at the above parameters was 

approximately 1710. A l l the parameters are now between 0 and 1. 

Integration results at the above parameters are shown along with 

the observations in Figures 6.5.1, 6.5.2, and 6.5.3. 

Numerically this was a rather easy problem compared with 

the other three examples considered in this chapter. V i s u a l l y , 

there appear to be peaks in the observations which could be 

approximated better, and this i s a subject for further study. 
o o 

+ 
+ 

; H— , , , , , 1 ! 
OJJD 6.00 16.00 24.00 32.00 40.00 48.00 56.00 64.00 

T I M E 

Figure 6.5.1 
Observations and best f i t for y 
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Figure 6.5.2 
Observations and best f i t for y_t 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

Our goal was to develop techniques designed to overcome 

poor i n i t i a l approximations to the optimal parameters. The 

necessity for such technigues became evident with experiments 

(such as those of Section 4.2) using the d i r e c t approach 

employing the s e n s i t i v i t y equations. The basic conclusion from 

such experiments was that the d i r e c t approach often produced a 

highly nonlinear problem where the ef f e c t of small parameter 

changes could be dramatic. Thus we turned to such methods as 

derivative and integral f i t t i n g . As shown in Section 4.2, these 

approaches are very useful. It also became evident that to 

resolve a problem often required several runs employing 

d i f f e r e n t complementary procedures. Thus an interactive 

approach appeared to be a good way to proceed. 

The case when observations are not available on a l l state 

variables arises often in practice, and experiments indicated 

that this s i t u a t i o n can be very d i f f i c u l t i f approached d i r e c t l y 

with poor i n i t i a l parameter estimates. Thus we sought an 

extension of the derivative and integral f i t t i n g techniques that 

could handle th i s problem. As a result we developed the 

e f f e c t i v e approach of guessing the desired behavior of the 

unobserved states and then i t e r a t i v e l y improving this guess. As 

shown in Section 4.5, this approach can be very e f f e c t i v e when 
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the d i r e c t approach presents a l l sorts of d i f f i c u l t i e s . 

In keeping with our goal of developing tools for overcoming 

(at least in part) the d i f f i c u l t i e s associated with a d i r e c t 

approach, we investigated b r i e f l y in Chapter 5 the value of 

sequentially processing the observations. We conclude that this 

strategy can be superior to a d i r e c t attack on the problem. 

The main trouble with a coarse method i s that i t can 

produce parameters from which the dire c t approach i s s t i l l 

incapable of succeeding. For example the i n i t i a l value problem 

may be unstable at the parameters produced by the coarse method. 

In Section 3.5, we proposed methods employing continuation 

parameters and break points to bridge the gap between the coarse 

approach and the f u l l nonlinear problem. We conclude from the 

example of Section 3.5 that this approach can be e f f e c t i v e on 

problems involving an i n s t a b i l i t y . Our approach to the use of 

break points d i f f e r s from that of van Domselaar and Hemker[71], 

and we are unaware of any work connected with parameter 

estimation in dynamic models that involves the use of break 

points along with continuation parameters. 

We conclude from our experience on real world problems that 

with an in t e r a c t i v e approach i t i s possible, in a r e l a t i v e l y 

short time, to make substantial progress on these f a i r l y 

d i f f i c u l t problems. However, to be e f f e c t i v e such an 

interactive package must be well organized and have a f a i r l y 

wide range of options available. The implementation of such a 

package i s an evolutionary process. Our package PARFIT 
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represents the i n i t i a l stage in this process. 

7.2 SUGGESTIONS FOR FUTURE WORK 

The iterated integral and derivative f i t t i n g methods 

developed in Chapter 3 appear to be worthy of further study. 

For example in the experiments presented in Section 4.4, the 

iterated integral f i t t i n g method using subsystem integrations 

worked much better than the iterated integral and derivative 

f i t t i n g methods employing (3.4.1). The reason behind this seems 

worthy of further study. Hopefully, such a study may lead to 

other e f f e c t i v e ways of updating the guessed observations. 

Other promising avenues of further research involve the use 

of continuation parameters and break points, and the use of 

sequential techniques for improving sta r t i n g parameters. 

F i n a l l y there i s the development of new and improved versions of 

a package such as PARFIT. The value of good software when 

approaching the sort of problems considered in this thesis 

cannot be over emphasized. 
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APPENDIX A 

PARFIT DOCUMENTATION 

Our int e r a c t i v e parameter f i t t i n g program, PARFIT, serves 

several purposes. It establishes an environment in which new 

algorithms can be tested. It i s an experimental tool for 

investigating the u t i l i t y of various commands for interactive 

parameter f i t t i n g in dynamic models. It i s also a device for 

studying the organization of an interactive program of this 

nature. F i n a l l y , i t i s a p r a c t i c a l tool for f i t t i n g parameters 

in dynamic models. 

PARFIT i s structured so that the various numerical 

algorithms can e a s i l y be extracted into individual procedures 

(see Chapter 3 for flow charts ou t l i n i n g the f a c i l i t i e s of 

PARFIT). As mentioned in Chapter 3, the development of an 

inter a c t i v e package such as PARFIT i s an evolutionary process. 

The documentation in this appendix describes the f i r s t stage in 

this process. 
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PARFIT 

INTERACTIVE PARAMETER FITTING IN DYNAMIC MODELS 

CONTENTS 

1. Introduction and notation 

2. Information reguired by PARFIT 

3. Temporary f i l e s used by PARFIT 

4. The batch mode of PARFIT 

5. Commands in PARFIT 
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1. INTRODUCTION AND NOTATION 

The program PARFIT i s designed to allow a user to 
in t e r a c t i v e l y f i t parameters in an i n i t i a l value problem when 
observations are available on the solution to the problem. Its 
use does not require the learning of any complex set of 
commands. The program i s written in ALGOL W; however, a 
knowledge of FORTRAN i s s u f f i c i e n t for i t s use. S p e c i f i c a l l y 
the program handles i n i t i a l value problems of the form 

y'=g(t,y,p) 

y(t 0)=y 0(p) 

where y i s an n-vector of state variables, p i s an m-vector of 
parameters, t i s the independent variable which we w i l l c a l l 
time for convenience, and 1 indicates d i f f e r e n t i a t i o n with 
respect to time. Along with the i n i t i a l value problem, we have 
a set of observations v,,...,v^ taken at d i s t i n c t times 
t ,...,t^ respectively where tf may or may not equal t 0 and 
where t^ >t , 1 = 1,2,...,k. Each v̂  i s an r-vector where r<n. 
That i s , not a l l components of y need be observed. Each , 
however, contains observations on the same components of y. 

The central part of PARFIT i s a command reader. This 
nucleus of the program t i e s together the various f a c i l i t i e s such 
as integration, optimization and p l o t t i n g . After PARFIT has 
executed a par t i c u l a r command, control returns to the command 
reader and PARFIT i s ready for the next command. This continues 
u n t i l a QUIT command i s issued. Once a command i s issued, 
PARFIT usually e l i c i t s from the user a l l the information 
required to execute the command. This p r i n c i p l e i s , in the 
interests of e f f i c i e n c y , violated s l i g h t l y in the interactive 
option of the FIT command. 

It i s useful to view the operation of PARFIT in terms of an 
environment and a set of commands which operate in and on this 
environment. The environment consists of such things as echo 
fl a g s , parameter scaling and freezing indicators, sample times, 
output options, and algorithm selection indicators. 

PARFIT i s modular in nature and i s designed to make the 
addition of new commands very easy. Existing commands are also 
easy to modify. For example at present the Levenberg-Marquardt 
technique i s used to solve nonlinear least squares problems, but 
other optimization methods can e a s i l y be added. New integration 
schemes can also e a s i l y be added. 
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We summarize here some of the f a c i l i t i e s of PARFIT. For 
more d e t a i l s consult the command descriptions. There are 
extensive output f a c i l i t i e s for printing a variety of things 
such as Jacobian matrices, integration r e s u l t s , optimization 
d e t a i l s and smoothing r e s u l t s . Parameters can be frozen and 
scaled. There are f a c i l i t i e s for determining the optimal 
parameters in a least squares sense by automatic and by 
interactive techniques. There are f a c i l i t i e s for obtaining 
i n i t i a l approximations to the optimal parameters using such 
technigues as derivative and integral f i t t i n g , guessed 
observations and i t e r a t i v e improvement of guessed observations 
for unobserved state variables, and methods employing 
continuation parameters and break points. A subsection of 
PARFIT can be used in batch mode. Certain s t a t i s t i c a l 
information on the optimal parameters can be calculated and 
various control parameters governing the way PARFIT runs can be 
reset by the user. 

PARFIT functions with two sets of discrete time values. 
F i r s t we have the observation times where the observations 
v, ,...,v^ were taken and second we have the sample times. The 
sample times are the times at which plot points for the state 
variables and smoothed observations are taken and the times at 
which information on the continuous solution of the s e n s i t i v i t y 
equations (see below) can be extracted. For further d e t a i l s see 
the SAMPLE command and item 7 of the REPORT command. 

Before continuing our description of PARFIT, we must 
establish more notation. Define the weighted residual vector f 
by 

for s=l,...,r, 1=1,...k where r i s the length of vs , 1=1....k, 
v.iA i s component s of v 4 and y_ t x l ) (t^ ) i s the corresponding 
element of the vector y(t«). w/t(je-•)+/L 1 S a weighting factor. 
We note that f has length kr. We seek p to minimize 

F(p)=f T(p)f (p) . 

The gradient of F(p) i s 

VF(p)=2J T(p) f (p) 

where J(p) i s the kr x m matrix defined by 

J.. =3J; i=l,...,kr; j=l,...,m. 

The elements in J are found by integrating the s e n s i t i v i t y 
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equations: 

Yj =g t a(t,y,p)y + g (t fy,p) 

Yi> ' P J - f y . ) , , - <P> 
A 

for j=l,...,m derived from the o r i g i n a l i n i t i a l value problem. 
In our notation yf. and g,.. are n-vectors of p a r t i a l derivatives 
of the components Jof y and' g with respect to p. , and g i s the 
Jacobian matrix of g with respect to the vector y. Our 
integration program i s s p e c i a l l y designed to take advantage of 
the fact that our s e n s i t i v i t y equations are linear and coupled 
in only one d i r e c t i o n to the o r i g i n a l nonlinear i n i t i a l value 
problem. A l l the step size and order adjustments are done on 
the nonlinear i n i t i a l value problem and the linear problems are 
e f f i c i e n t l y solved along with the nonlinear problem. This i s 
the same strategy as that adopted by van Domselaar and 
Hemker [71] . 

The Levenberg-Marquardt technique for finding the optimal 
parameter vector p uses the i t e r a t i o n 

pl%«> =p<*> - ( J T ( p frJ )J(p' f J )+>!)-' J T ( P C ? J ) f ( p ( ' J ) 
where 0_<A<«o. As in [71] we employ the singular value 
decomposition in our implementation of this algorithm. This 
avoids the forming of J T J with i t s associated squaring of the 
condition number. A scaling option i s also available in our 
implementation of the Levenberg-Marquardt method. F i n a l l y in 
our notation a steepest descent i t e r a t i o n to get the optimal p 
i s 

P"**3 = Pfr J - S J T
( P

( y J ) f ( P < " ) 

where S i s the step length referred to in the interactive option 
of the FIT command. 

To run PARFIT the information detailed in Section 2 must 
f i r s t be supplied. The pa r t i c u l a r run command for PARFIT 
depends on what f a c i l i t i e s of PARFIT the user desires. The 
basic run command i s 

$RUN PFIT:PAR1+PFIT:L1+CP+*PRPL0T 4=DP T=t 

thi s provides a l l aspects of PARFIT except the SMOOTH, DFIT, 
IFIT, CONTIN and CREATE commands, and l i m i t s the integration 
method to the trapezoidal method. The f i l e CP contains the 
object code for the procedure G_FUN described in the next 
section, and DP i s the data f i l e described in the next section. 
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If CP i s the object code for the FORTRAN subroutine (named GF) 
version of G_FUN, then the MTS run command i s 

$RUN PFIT:PAR1+PFIT:L1+PFIT:LF+CP+*PRPL0T 4=DP T=t 

To run PARFIT with Gear's program and the CREATE command 
available, but without the DFIT, IFIT, CONTIN and SMOOTH 
commands, the MTS run command i s 

$RUN PFIT:PARl+PFIT:PAR2+PFIT:L12+CP+*PRPLOT 4=DP T=t 

If CP is a compiled FORTRAN subroutine, then as in the previous 
command, PFIT:LF must be used. To run PARFIT with everything 
but Gear's program and the CREATE command, the MTS run command 
is 

$RUN PFIT:PARl+PFIT:PAR3+PFIT:L13+CP+*PRPLOT+*NUMLIB 4=DP T=t 

(with the previous modification i f CP comes from a FORTRAN 
program). F i n a l l y , to run the complete PARFIT, the run command 
is 

$RUN PFIT:PAR1+PFIT:PAR2+PFIT:PAR3+CP+*PRPL0T+*NUMLIB 4=DP T=t 

(with the appropriate change for a FORTRAN CP). It i s suggested 
that a time l i m i t be put on a l l runs to avoid the p o s s i b i l i t y of 
unnecessary expense. A good strategy i s to start with the 
simple version of PARFIT and to use the more powerful f a c i l i t i e s 
when they become necessary. 

2. INFORMATION REQUIRED BY PARFIT 

To run PARFIT, the user must supply a procedure which 
defines g(t,y,p) as well as the Jacobian functions g^ and qp and 
which provides i n i t i a l i z a t i o n information. Since PARFIT i s 
written in ALGOL W, i t i s natural that this program should also 
be in ALGOL W, but as indicated in the run commands of the 
previous section, a FORTRAN subroutine can be used. If a 
FORTRAN subroutine i s used, i t should be named GF and a l l i t s 
real arguments should be double precision. If an ALGOL W 
procedure i s used, i t should be called G_FUN and i t should have 
the following header: (The pa r t i c u l a r parameter names are of 
course not important and may be changed by the user.) 

PROCEDURE G_FUN(LONG REAL VALUE T; LONG REAL ARRAY Y(*); 
LONG REAL ARRAY P(*); INTEGER VALUE OPTION; 
LONG REAL ARRAY G(*); LONG REAL ARRAY DGY(*,*); 
LONG REAL ARRAY DGP(*,*); LONG REAL ARRAY ISEN(*,*)); 
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where 

T i s the independent variable time, 

Y i s the vector of state variables y(t) of length n, 

P is the vector of parameters of length m, 

OPTION indicates which of various tasks G_FUN i s to perform: 

1 to return g(t,y,p) and g (t,y,p) 
-1 to return just g(t,y,p) 
2 to return g /.(t,y,p) 
3 to return i n i t i a l y in Y and i n i t i a l values for y , 
j=l,...,m in ISEN, J 

-3 to return just the i n i t i a l y in Y. 

G returns the n-vector g(t,y,p) when reguired, 

DGY returns the n x n matrix g^(t,y,p) when required, 

DGP returns the n x m matrix g (t,y,p) when reguired, 
ISEN returns the nxm matrix of i n i t i a l values for the 
s e n s i t i v i t y eguations. 

An example of an ALGOL W procedure G_FUN for the problem 
y/=-(l-y_Jy. +p i Y ; i 

y'=p ((1-y )y -(p +p )y ) 

y ( 0 ) = l , y (0)=0 

is given in Figure A . l . (This dynamic model i s considered by 
van Domselaar and Hemker[71].) 

Besides providing the procedure G_FUN, the user must 
provide a data f i l e containing the information outlined below. 
This data i s read under free format with blanks acting as 
deli m i t e r s . 

The f i r s t data card contains the model name associated with 
the p a r t i c u l a r set of d i f f e r e n t i a l equations. It consists of at 
most 30 characters with no embedded blanks. And i t cannot be 
the word CREATE (see the CREATE command). 
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PROCEDURE G_FUN(LONG REAL 
LONG REAL ARRAY Y(*);LONG 
INTEGER VALUE OPTION;LONG 
LONG REAL ARRAY G(*);LONG 

VALUE T; 
REAL ARRAY 
REAL ARRAY 
REAL ARRAY 

P(*) ; 
G(*) ; 
DGY(*, ) 

DGP(*,*) LONG REAL ARRAY ISEN(*,*)) 

A MODEL DEFINITION PROCEDURE; 

LONG REAL ARRAY 
BEGIN 
COMMENT EXAMPLE OF 
CASE ABS OPTION OF 

BEGIN 
BEGIN 
G (1) :=- (1. L-Y (2) ) *Y (1) +P (2) *Y (2) ; 
G(2) :=P(1)*((l.L-Y(2))*Y(1)-(P(2)+P(3))*Y (2)) 

THEN IF OPTION>0 
BEGIN 
DGY(1,1) 
DGY(1,2) 
DGY(2,1) 
DGY(2,2) 
END; 

END; 
BEGIN 
DGP(1,1) 
DGP(1,2) 
DGP(1,3) 
DGP(2,1) 
DGP(2,2) 
DGP(2,3) 
END; 
BEGIN 
Y(l) :=1.L; 
Y(2) :=0.L; 
IF OPTION>0 

BEGIN 
FOR I:=l 
FOR J:=l 
ISEN(I,J):=0.L; 
END; 

END 
END; 

END G FUN. 

:=-(l.L-Y(2)); 
:=Y(1)+P(2) ; 
:=P(1)*(1.L-Y(2)); 
:=-P(l) *(Y(1)+P(2)+P(3) ) 

= 0.L; 
=Y(2) ; 
= 0.L; 
= (1.L-Y(2) )*Y(1)-(P(2)+P(3) )*Y(2) 
=-P(l) *Y(2) ; 
=-P(l)*Y(2); 

THEN 

UNTIL 
UNTIL 

DO 
DO 

Figure A . l 
A t y p i c a l model d e f i n i t i o n procedure 
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The second data card contains the i n i t i a l time. 

The next data card contains 5 integers separated by blanks. 
These integers are 

(1) number of state variables 
(2) number of components of p 
(3) number of components of v 
(4) number of observation times 
(5) maximum number of sample times 

The maximum number of sample times must be greater than the 
number of observation times by at least one when there are no 
observations at the i n i t i a l time. When there are observations 
at the i n i t i a l time, the maximum number of sample times can be 
greater than or equal to the number of observation times. 

The next set of data cards contains the observations. 
Several observations can be put on each card. The observations 
are ordered f i r s t by state variable and then by time. For 
example i f n=5 and state variables 2 and 5 are observed then a l l 
the observations on state variable 2 are entered and following 
this set of numbers, a l l the observations on state variable 5 
are entered. It i s suggested, but not mandatory that 
observations on a new state variable s t a r t on a new card. 

The next set of data cards contains the observation times. 
These entries need not star t on a new card, but for c l a r i t y i t 
is suggested that they do. 

The next set of data i s a set of integers indicating which 
state variables have been observed. 

Next, an i n i t i a l guess at the optimal parameter values 
should be entered in the data f i l e . 

F i n a l l y , a set of weights corresponding to the observations 
may be entered by the user. This i s optional and i f no weights 
are entered, PARFIT by default sets a l l weights to one. If 
weights are to be entered, there should be an entry for each 
observation, these entries should be in the same order as the 
corresponding observations, and they must sta r t on a new card. 

The use of free format should make the data entry f a i r l y 
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simple. For example real numbers are entered as -.1, -3.2, 
.005, 2, 5 etc. and integers are entered as 1, -5, 2 etc. 
Numbers in exponential notation follow FORTRAN conventions. 

3. FILES USED BY PARFIT 

PARFIT uses a number of MTS temporary f i l e s when i t i s 
running. Normally the user need not be concerned with these 
f i l e s . However, i f PARFIT terminates with an error, the 
information in these f i l e s may be of value to the user. The 
temporary f i l e s used are: 

-SCI This f i l e takes output from the integeration and 
optimization procedures. It is always emptied before i t i s 
reused. 

-SC2 When required, this f i l e accumulates the information in 
-SCI for later output. , 

-GRAPH This f i l e takes the output from the pl o t t i n g procedures. 

-GRAPHSTORE This f i l e accumulates graphical data for later hard 
copy output. 

-REPRT This f i l e takes output from the report command. It also 
takes certain messages such as those indicating when a permanent 
copy of a graph has been requested. 

-AECHO This f i l e contains an echo of the sessions with the 
interactive option of the f i t command. 

-ECHO This f i l e contains echo information as requested through 
the ECHO command. It never contains any of the information that 
i s sent to -AECHO. 
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4. THE BATCH MODE OF PARFIT 

PARFIT i s designed as an interactive program. However, 
there are cases when, for reasons of economy say, a user would 
be advised to run sections of PARFIT in batch mode. For 
example, th i s might be the case in the f i n a l stages of parameter 
estimation when good approximations to the optimal parameter 
values are available and where these values are being further 
refined through the automatic option of the FIT command. The 
MTS RUN commands for a batch run are the same as for an 
interactive run. The PARFIT commands should follow d i r e c t l y 
after the RUN command. A l t e r n a t i v e l y , the user may specify 
SCARDS=filename in the RUN command, in which case the PARFIT 
commands are read form the f i l e attached to SCARDS. When in 
batch mode, PARFIT prin t s the command designators on *SINK*. 
When in batch mode, -SCI and -SC2 are not used. A l l output that 
goes to -SCI in an interactive run goes d i r e c t l y to *SINK* when 
PARFIT i s runnumg in BATCH mode. 

5. COMMANDS IN PARFIT 

The following are the commands currently available in 
PARFIT. 

(1) ECHO (2) OPTION (3) FREEZE (4) SCALE 
(5) SAMPLE (6) WEIGHT (7) PLOT (8) REPORT 
(9) SET (10) INTEG (11) PROBE (12) FIT 

(13) STATS (14) QUIT (15) SUSP (16) CREATE 
(17) SMOOTH (18) CREOBS (19) LINEAR (20) DFIT 
(21) IFIT (22) CONTIN 

With each of the above commands, we describe what action the 
command i n i t a i t e s and what interaction with PARFIT the user can 
expect after issuing the command. 
(1) ECHO 

The ECHO command allows the user to control the 
accumulation of a hard copy echo of an interactive session. 
When t h i s command i s issued, PARFIT requests an entry of 0 or 1. 
An entry of 0 turns off the echo and an entry of 1 turns the 
echo on. This command does not affect the echo associated with 
option 2 of the FIT command. At the start of an interactive 
session PARFIT turns the echo o f f . 
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(2 ) OPTION 

This command allows the user to set certain control 
parameters in PARFIT that govern the way various procedures 
function. These control parameters are automatically given 
default values by PARFIT at the st a r t of a run. After issuing 
the OPTION command, PARFIT returns with the following message 
indicating what control parameters the user can change 

DESIGNATE CONTROL PARAMETER AND NEW VALUE (0 TO END) 
OUTPUT 1 
INT. OUTPUT IN OPT. 0-YES,1-NO 2 
JACOBIAN 0-FULL 1-LEAST SQUARES 3 
GEAR'S METHOD 0-ADAMS , 1-STIFF 4 
EPS FOR INTEGRATION 5 
HMIN FOR INTEGRATION 6 
HMAX FOR INTEGRATION 7 
INTEGRATION PROCEDURE, 1-GEAR, 2-TRAPEZOIDAL 8 

The convention of using a 0 to end a seguence of input data 
of indeterminate length i s used in several places in PARFIT. 

Control parameter 1 governs the dumping of information 
during an integration. This option i s useful during the 
debugging stages with a new model when the integration program 
encounters d i f f i c u l t i e s . This may happen for example i f G_FUN 
is returning undefined values to the integration procedures. 
The default value of this control parameter i s 0 in which case 
no output occurs. If this control parameter i s set to the 
integer n, then after every n integration steps, the time and 
state variables are printed on -SCI. 

Control parameter 2 indicates whether or not any output 
requested by a nonzero control parameter 1 i s required when the 
integration procedure has been called by an optimization 
procedure. This control parameter i s 0 i f output i s desired 
during an optimization and 1 otherwise. Its default value i s 1. 
Control parameter 2 acts as a safety on control parameter 1 in 
that the user must s p e c i f i c a l l y request integration output in an 
optimization run thus guarding against the chance of getting a 
large quantity of output by accident. 

Control parameter 3 selects the information to be printed 
when output of the Jacobian matrix i s requested. If this 
control parameter i s 0 then the f u l l Jacobian on a l l the state 
variables and at a l l the sample times i s printed. If this 
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control parameter i s 1 then only the entries of the f u l l 
Jacobian that relate to observations on the state variables are 
printed. (That i s the Jacobian J i s printed.) The default 
value of control parameter 3 i s 0. The f u l l Jacobian i s of 
value to the model builder because i t can t e l l him (perhaps 
after further analysis) i f and where he should take further 
observations to better determine his parameters. This i s the 
case because the f u l l Jacobian matrix i s determined by solving 
the s e n s i t i v i t y equations and i s thus independent of the 
observations. 

Control parameter 4 indicates what option in Gear's 
integration procedure i s to be employed. If this control 
parameter i s 0 then integration of the i n i t i a l value problem i s 
done by Gear's implementation of an Adams' predictor corrector 
method[27]. If thi s control parameter i s 1 then the integration 
i s done by Gear's implementation of a multi-step method suitable 
for s t i f f problems[27]. The Adams' predictor-corrector method 
can be faster when s t a b i l i t y i s not a problem. The default 
value of control parameter 4 i s 1. 

Control parameter 5 contains the error c r i t e r i o n EPS to be 
used in gear's integration procedure. Its default value i s .01. 
As this value i s decreased, the user can expect his integrations 
to become more expensive. Among other things, the observation 
error should be considered when picking this control parameter. 
We comment that .01 i s a very weak error c r i t e r i o n . 

Control parameter 6 contains the minimum step size that 
integration procedures with stepsize control are allowed to use. 
Its default value i s .00001. 

Control parameter 7 contains the maximum step size that 
integration procedures with stepsize control are allowed to use. 
Its default value i s 5. 

Control parameter 8 indicates what integration procedure i s 
to be employed. If i t i s 1, Gear's program i s used. If i t i s 
2, a trapezoidal method without error control i s employed. The 
default value of control parameter 8 i s 2. 
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(3) FREEZE 

The FREEZE command allows the user to freeze selected 
parameters. These parameters then remain fixed u n t i l freezing 
i s removed. There must be at least two active parameters for 
the optimization procedures to function properly. The freezing 
in the int e r a c t i v e option of the FIT command i s at a higher 
l e v e l than the freezing indicated by the FREEZE command. When 
this command i s issued, PARFIT asks the user to enter a l i s t of 
subscripts of parameters to be frozen (0 to end). An entry of 0 
removes a l l freezing. 

(4) SCALE 

The SCALE command allows the user to transform selected 
parameters. Currently logarithmic scaling and square root 
scaling are a v a i l a b l e . With logarithmic scaling for p̂  , pj i s 
transformed according to 'p\=ln(Pj), and with square root 
scaling, Pj i s transformed according to 'pj. =Vp"j - Thus with 
logarithmic s c a l i n g , p- i s repalced by exp(p_ ) in the model and 
with square root scaling p_j i s repalced by "p̂  . When t h i s 
command i s issued, PARFIT asks the user to enter pairs of 
integers indicating subscripts of parameters to be scaled and 
the scaling to be used. The integer 1 indicates logarithmic 
scaling and 2 indictes square root scaling. A 0 subscript 
terminates the entry of scaling instructions. An entry of 0 
alone removes a l l scaling. When a parameter i s scaled, or 
descaled, i t s current numerical value i s automatically 
transformed. 

(5) SAMPLE 

This command allows the user to alter the set of sample 
times. As mentioned in the introduction, these are the times at 
which information i s extracted from the continuous problem. The 
default sample times are the i n i t i a l time and the observation 
times. When the user issues the SAMPLE command, a choice of 
three options i s presented. The f i r s t option restores the 
sample times to their default values. The second option allows 
the user to specify a uniform mesh of sample times sta r t i n g at 
the i n i t i a l time by entering the number of sample times (not 
counting the i n i t i a l time) and the sample time spacing. Of 
course an error results i f more sample times than are allowed 
(as indicated in the data f i l e ) are requested. With this 
option, no connection to the observation times i s maintained, 
and thus care must be used when thi s option i s in e f f e c t . For 
example, the FIT command cannot be used when thi s option i s in 
ef f e c t . The thi r d option i s for the interactive insertion of 
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sample times between existing sample times. The user i s f i r s t 
asked i f a l i s t i n g of the existing sample times i s desired. If 
i t is desired, the user enters the subscript range (in the 
existing vector of sample times) where the l i s t i n g is desired. 
To insert sample times between existing sample times, the user 
l i s t s in sequence the upper index (in the vector of sample 
times) of the i n t e r v a l where the new times are to be inserted, 
and the number of points to i n s e r t . The points are inserted 
uniformly in the i n t e r v a l . The user can request insertion of 
times in several i n t e r v a l s . A 0 for an interval's upper index 
ends the input. This interactive insertion option can be of 
value when the sample times straddle a time i n t e r v a l where the 
d i f f e r e n t i a l equation solution warrants further investigation 
(for example, i t might be taking a sudden jump.) 

(6) WEIGHT 

The WEIGHT command allows the user to i n t e r a c t i v e l y enter 
the weights for the observations. There are two options. 
F i r s t , the weights can a l l be set to their default value of one. 
Second, weights can be specified on selected observations on 
selected state variables which have been observed. Under the 
second option, the user i s given the chance to take a permanent 
copy of the weights in the scratch f i l e -WEIGHT. 

(7) PLOT 

The PLOT command allows the user to select various items to 
p l o t . When the command i s issued, the following instructions 
appear 

SEQUENCE OF ITEMS TO PLOT (END WITH 0) 
STATE VARIABLES 1 
OBSERVATIONS 2 
SMOOTHED OBSERVATIONS 3 
GUESSED OBSERVATIONS 4 
PHASE PLOT 5 

Of course before item 1 can be selected, an integration must 
have been performed, and before item 3 can be selected, the 
SMOOTH command must have been used, and before item 4 can be 
selected, the CREOBS command must have been used. Item 5 
applies only to 2 state variable problems. Before i t can be 
used an integration must have been performed. After the desired 
items are selected, the user i s given further choice. For 
example i f items 1 and 2 are selected, the user i s asked which 
state variables and which observations ( i . e . on which state 
variables) he wants plotted. This f l e x i b i l i t y allows the user 
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to i s o l a t e various aspects of the problem. 

After the user has described the desired plo t , a 
mini-print-plot appears at his terminal. The abscissae for the 
plotted points are the sample times. 

After the plot i s completed, the user i s asked i f a 
permanent record i s required. If the answer i s y for yes, a 
large scale version of the print plot i s accumulated in the f i l e 
-GRAPHSTORE for later output. A plot number (starting at 1) i s 
associated with each graph accumulated and when a plot i s 
accumulated, a message indication the current parameter values 
and the current plot number i s written on the f i l e -REPRT. The 
interface to the p l o t t i n g programs i s confined to one procedure 
in PARFIT and thus i t i s easy to modify the p l o t t i n g f a c i l i t i e s 
of PARFIT and the p l o t t i n g hardware employed can e a s i l y be 
altered. 

(8) REPORT 

This command controls a set of output procedures with which 
PARFIT can display various information to the user. When this 
command i s issued, PARFIT returns with the following message 
indicating what items the user can have printed. 

ENTER LIST OF ITEMS TO PRINT 
(END WITH 0) 
GENERAL DATA 1 
OBS 2 
PAR 3 
CREATION 4 
PTS AND STATE VARS—5 
SMOOTHING DATA 6 
JACOBIAN 7 
INTEG./OPT. DETAILS-8 
STATISTICAL DATA 9 
OPTION SETTINGS 10 
WEIGHTS 11 
GUESSED OBS 12 

new items can e a s i l y be added to this l i s t . The requested 
information i s displayed at the terminal and also put in the 
f i l e -REPRT so that a permanent record can be taken at the end 
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of a run with PARFIT. 

When item 1 i s selected, PARFIT displays the following 
basic information on the pa r t i c u l a r problem under consideration 

(a) the number of parameters 
(b) the number of state variables 
(c) the number of state variables observed 
(d) a l i s t of state variables observed 
(e) the number of observation times 

Selection of item 2 causes a l i s t of observations along 
with observation times to be printed. 

Selection of item 3 causes the starting parameter values to 
be printed (that i s the values read from the data f i l e ) along 
with the current parameter values and the freezing and scaling 
status of each parameter. 

Report item 4 prints information for the special s i t u a t i o n 
when test observations have been created by a simulation run. 
The parameter values for the simulation run are printed along 
with the standard deviation of the random error introduced into 
the generated observations. 

Report item 5 pri n t s the parameter values used in the l a s t 
integration of the i n i t i a l value problem along with the sample 
times and integration results at these sample times. 

Report item 6 pri n t s smoothing information generated by the 
SMOOTH command. F i r s t the type of smoothing used—either least 
squares cubic spline or least squares cubic Hermite i s 
indicated. Next the j o i n t s used for the piecewise polynomial 
smoothing function are displayed and f i n a l l y the smoothed 
observations and the smoothed derivatives at the sample times 
are l i s t e d . 

Report item 7 pri n t s the parameter values used in the l a s t 
integration along with the jacobian matrix. Whether or not a 
f u l l Jacobian matrix i s printed depends on control parameter 3 
which can be altered in the option conmmand. 
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Report item 8 prints optimization and or integration data. 
When an automatic optimization run i s made, detailed information 
on the run (eg. sums of squares of residuals, parameter values 
etc.) i s written on the scratch f i l e -SCI. Depending on the 
settings of control parameters 1 and 2 (see the option command), 
integration information may be written on -SCI. When the user 
selects item 8 and when PARFIT i s running i n t e r a c t i v e l y , the 
contents of -SCI are displayed at the terminal. Since a l o t of 
r e l a t i v e l y useless output may be present in -SCI, the user i s 
asked i f the contents of -SCI are to be accumulated for later 
output. If a later hard copy i s desired, the contents of -SCI 
are accumulated in -SC2. The f i l e -SCI i s emptied before i t is 
next reguired to accept output from PARFIT. An output reference 
number i s attached to each use of -SCI. When an accumulation i s 
made to -SC2, a message to this e f f e c t along with the current 
output reference number i s written on -REPRT and the output 
reference number i s incremented by 1. This allows a coordinated 
interpretation of the output from PARFIT. 

Report item 9 prin t s s t a t i s t i c a l data resulting from the 
STATS command. The F d i s t r i b u t i o n value used in determining 
confidence intervals on the parameters i s displayed along with 
i t s corresponding percentile value and number of degrees of 
freedom in the numerator and number of degrees of freedom in the 
denominator. The sum of the squares of the residuals is printed 
and the parameter values along with their confidence intervals 
are printed. F i n a l l y , the corr e l a t i o n and covariance matrices 
are printed. 

Report item 10 prints the current control parameter 
settings along with the default values for the control 
parameters. 

Report item 11 print s the weights given to the 
observations. 

Report item 12 prints the guessed observations and 
corresponding derivatives generated by the CREOBS command. 

(9) SET 

This command allows the user to redefine an element of the 
parameter vactor p by entering the integer subscript of the 
element and the new value of the element. This can be repeated 
for as many elements as desired. Entry of a 0 for a subscript 
terminates the command. For example to set the f i r s t and fourth 
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parameters to 3. and 6.2 respectively, the user would enter 

1 3. 4 6.2 0 

(The above set of numbers need not a l l be on one line.) 
Parameter subscripts refer to the f u l l parameter vector and no 
allowance for frozen parameters i s required. Scaling i s ignored 
by the SET command. 

(10) INTEG 

This command requests that the i n i t i a l value problem be 
numerically integrated using the current parameter values. The 
integration technique used i s determined by control parameter's 
4 and 8 which can be reset by the OPTION command. The 
integration results at the sample times are stored in an array 
for later use. For example these values may be plotted at some 
lat e r time in an interactive session. When this command i s 
issued, the user i s asked i f the Jacobian i s desired, and i f i t 
is the s e n s i t i v i t y eguations are integrated along with the given 
model equations and the f u l l Jacobian i s stored for later 
analysis. (for example by the PROBE command). If the 
integration procedure runs into d i f f i c u l t y , an error message i s 
printed and the user i s returned to the command section of 
PARFIT. A t y p i c a l d i f f i c u l t y with the integration procedure i s 
that i t cannot meet the error c r i t e r i o n with the current minimum 
step s i z e . 

(11) PROBE 

This command allows the user to investigate, among other 
things, the condition at the current point p in parameter space 
of the Jacobian matrix associated with the least squares 
problem. The user i s asked i f an integration i s required to 
determine the Jacobian at the current parameter values. ( i t may 
not be i f for example INTEG with a Jacobian option has just been 
executed.) A singular value decomposition i s done on the 
Jacobian for the least squares problem. The user is given the 
option of taking a permanent record of the PROBE results in the 
f i l e -REPRT. Furthermore, i f control parameter 1 i s set to 
request output in an integration, the user i s given the chance 
to view the output and accumulate i t in -SC2. Since the 
singular value decomposition i s available when the PROBE command 
has been executed, the potential exists for adding a procedure 
here to further analyse the problem at the current point in 
parameter space. 

APPENDIX A 

i 



195 

(12) FIT 

The FIT command puts the user in control of optimization 
procedures which apply d i r e c t l y to the least squares 
minimization problem mentioned in the introduction (as opposed 
to the DFIT command for example). Currently the user has two 
main choices with the FIT command. The f i r s t option uses the 
Levenberg-Marquardt algorithm. From a starting guess, this 
algorithm attempts to determine the optimum parameters 
automatically without user intervention. For e f f e c t i v e use of 
this procedure, the i n i t i a l guess at the optimal parameter 
vector should be f a i r l y good. The user i s asked to supply a 
start i n g value for the parameter A used in the 
Levenberg-Marquardt algorithm as well as error tolerances for 
termination of the automatic optimization run. A negative value 
for X t e l l s PARFIT to pick i t s own star t i n g value for X. At 
times X must be adjusted upward i n t e r a c t i v e l y to avoid points in 
parameter space where the d i f f e r e n t i a l equation cannot be 
integrated. The termination c r i t e r i o n take the form of a 
r e a l t i v e (e, ) and an absolute (e a) error tolerence. Termination 
of the optimization run occurs when either 

where F f i s the sum of the squares of the residuals on the q'th 
i t e r a t i o n . Of course computation costs increase as e, and e a 

are decreased and for fine tolerences a batch run of PARFIT i s 
probably advisable. Choice of e, and e a should of course depend 
on the accuracy of the observations and on the error c r i t e r i o n 
chosen for the numerical integration technique. 

Our implementation of the Levenberg-Marquardt algorithm has 
a provision for automatic scaling so that the diagonal elements 
of J J are a l l 1. To request scaling, e, and e A should both be 
negative. PARFIT uses their absolute values for the termination 
c r i t e r i a when scaling i s requested. The use of scaling can 
dramatically speed up convergence. 

The second option under the FIT command provides an 
inter a c t i v e optimization approach where the user has extensive 
control over PARFIT through a set of optimization commands. 
Among other thing ys, the user can reset parameters, freeze 
selected parameters, and plot graphs. Since i t i s anticipated 
that these commands w i l l be used very frequently, the 
descriptive messages from PARFIT are kept to a minimum and the 
command designators are very short. A description of the 
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currently implemented optimization commands follows. 

(a) T 

This i s the technique command where the user can 
choose either the Levenberg-Marquardt or the steepest 
descent optimization method. To request the steepest 
descent technique the user should enter 

T SD 

and then h i t the return. One or more blanks must separate 
the T and the SD. To request the Levenberg-Marquardt 
technique, the user should enter 

T MARQ 

The default i s the Levenberg-Marguardt technigue. 
(b) M 

By entering 

M r 

where r i s a real number, the current value of X for the 
Levenberg-Marquardt technique or step length for the 
steepest descent technique i s multiplied by r and this 
product replaces the current X or step length. A new 
i t e r a t i o n of the current optimization technique i s then 
attempted. PARFIT then reports on the success of this 
attempt and the user i s asked to enter a new optimization 
command. The default value of X i s .01. There i s no 
default value for the step length for the steepest descent 
method. The user should pick a starting value for the step 
length after observing the gradient. 

(c) N 

By entering 

N r 

where r i s a real number, the current value of X or step 
length (depending on the technique) i s replaced by r. 
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(d) V 

This i s the view command. It does not take any 
arguments. It requests a display of the current 
parameters, and current gradient components. Frozen 
parameters are indicated—see command (e). The current 
technique i s also displayed along with basic information 
associated with this technique. F i n a l l y , the current sum 
of squares i s displayed. 

(e) F 

This i s the freeze command. This command acts at a 
higher l e v e l than the main FREEZE command. It allows the 
user to s e l e c t i v e l y freeze various parameters at their 
current values and to continue the optimization on a 
subspace of parameter space. A 0 i s used to terminate the 
l i s t of parameters to be frozen. For example, to freeze 
the f i r s t and thi r d parameters, the user would enter 

F 1 3 0 

Currently, no special programming i s implemented to take 
advantage of the fewer s e n s i t i v i t y equations present when 
we are working on a subspace. 

(f) DF 

This i s the defreeze command. It removes a l l or some 
of the parameters from the l i s t of frozen parameters. This 
command does not influence freezing set by the FREEZE 
command. To remove a l l parameters from the l i s t of frozen 
parameters enter 

DF 0 

To remove freezing on say the third and fourth parameters 
enter 

DF 3 4 0 

(g) SET 

This i s the SET command and i t i s i d e n t i c a l , except 
for the pri n t i n g of guiding instructions, to the main SET 
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command. 

(h) PLOT 

This command is i d e n t i c a l to the main PLOT command. 
The state variables plotted are those from the l a s t 
integration. Thus i f a plot i s requested after an 
unsuccessful Marquardt i t e r a t i o n attempt, the state 
variables plotted are those at the l a s t set of t r i a l 
parameters. 

(i) Q 

This i s the quit command for the interactive 
optimization subsection. It returns control to the main 
command section of PARFIT. 

A detailed record of a l l commands and a l l command results 
(including mini-print-plots) that occur in an interactive 
optimization session i s kept in the f i l e -AECHO. The user has 
the option of taking a hard copy of thi s f i l e at the end of a 
run with PARFIT. 

(13) STATS 

This command reguests PARFIT to produce certain s t a t i s t i c a l 
information on the parameters after they have been optimized by 
the FIT command. An assumption of l i n e a r i t y in the parameters 
near the optimum i s made. The user i s requested to enter the 
percentile for the confidence i n t e r v a l s . The program then finds 
the reqired value of the F d i s t r i b u t i o n with the appropriate 
degrees of freedom. The confidence inte r v a l s on the parameters 
and the co r r e l a t i o n and covariance matrices are calculated when 
the STATS command i s issued. 

(14) QUIT 

This command terminates a run with PARFIT. Before 
execution i s terminated, the user i s given the chance to take a 
permanent copy of some or a l l of the information accumulated 
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during the interactive session. In batch mode a permanent copy 
of the accumulated plots i s automatically taken. 

(15) SUSP 

This command suspends execution of PARFIT and returns the 
user to MTS. The MTS command $RESTART causes the execution of 
PARFIT to be resumed. One use of this might be to examine 
various scratch f i l e s PARFIT has created. 

(16) CREATE 

This command allows the user to make a simulation run with 
his model and to generate a data f i l e from this simulation run. 
A primary purpose of this f a c i l i t y i s in the debugging of new 
procedures in PARFIT. The user i s asked for the parameter 
values for the simulation run, the observation times, the state 
variables observed, and the error tolerence, maximum step siz e , 
and minimum step size for Gear's integration program. (If the 
integration run does not succeed, i t s constraints can be reset 
and a new run can be made.) The user i s further asked for the 
standard deviation of the random error in the generated 
observations and the vector of starting values for the 
parameters. F i n a l l y the user can have the generated data put in 
the f i l e -DATA. When the create command i s to be used, the data 
f i l e should have a model name of CREATE in i t and of course only 
the f i r s t three data cards described in section 2 are required 
when the CREATE command i s to be used. 

(17) SMOOTH 

The SMOOTH command allows the user to f i t a least squares 
piecewise polynomial to the observations on each state variable 
observed. This i s normally used in preparation for the DFIT 
IFIT and CONTIN commands. The user has the choice of using 
either a piecewise cubic spline or a piecewise cubic Hermite 
polynomial—the l a t t e r should be used i f the observations take 
any sudden violent jumps. In either case, PARFIT sequentially 
goes through the state variables on which observations have been 
taken. On each state variable, the user i s asked to enter the 
number of j o i n t s and j o i n t positions for the indicated set of 
observations. A maximum of 15 jo i n t s for each piecewise 
polynomial i s allowed. 

It should be very easy to make this curve f i t t i n g aspect of 
PARFIT more in t e r a c t i v e , however for the present, the user must 
issue SMOOTH snd PLOT commands a l t e r n a t i v e l y when doing 
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interactive curve f i t t i n g . 

(18) CREOBS 

This command allows the user to guess observations on the 
unobserved state variable in the two state variable case. This 
i s in preparation for options 2 and 3 of the DFIT command and 
options 2, 3, and 4 of the IFIT command. The user is asked to 
enter the number of abscissae and the abscissae for an 
interpolating cubic spline to approximate the guessed 
observations. The f i r s t and l a s t sample times must begin and 
end the l i s t of abscissae. Next the user i s asked to enter the 
corresponding ordinates. At each end, the interpolating cubic 
spline matches the slope of the l i n e joining the two points of 
interpolation closest to the given end. 

(19) LINEAR 

The LINEAR command allows the user to specify that the DFIT 
and IFIT least squares problems are linear and thus starting 
parameters are not required since no it e r a t i o n s are required to 
obtain the optimal parameters. Currently this f a c i l i t y i s 
implemented in options 2 and 3 of the DFIT command and in 
options 2 3 and 4 of the IFIT command. 

(20) DFIT 

This command has three options. The f i r s t option uses the 
results of the SMOOTH command to estimate optimal parameters by 
a rather coarse, but at times inexpensive technigue. 
Furthermore, th i s procedure can be useful when our i n i t i a l 
parameter values correspond to an unstable i n i t i a l value 
problem. There are however some r e s t r i c t i o n s on the class of 
problems the DFIT command can handle. It cannot handle problems 
where some parameters occur only in the i n i t i a l conditions, and 
for this version of the DFIT command, a l l parameters must occur 
in the subset of the d i f f e r e n t i a l eguations defining the i n i t i a l 
value problem that correspond to state variables on which 
observations have been taken. This program works by applying an 
automatic Levenberg-Marquardt procedure to the nonlinear curve 
f i t t i n g problem 

s'=g(t,s,p) 

where ŝ,- (t) , the i ' th component of the vector s ( t ) , i s a 
piecewise polynomial approximation to the observations on y.. 
The nonlinear curve f i t t i n g i s done in a least squares sense at 
the sample times. No weighting i s employed at present. If not 
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a l l the state variables are observed, then at each i t e r a t i o n of 
the Levenberg-Marquardt procedure, a subset of the set of 
equations in our i n i t i a l value problem i s integrated (using 
s ( t ) , the current parameter vector and the integration technique 
indicated by control parameter's 2 and 8). Thus this technique 
can become expensive too. Also i n s t a b i l i t i e s at the star t i n g 
parameter values may arize in the subsystem i n i t i a l value 
problem. Furthermore, esp e c i a l l y i f the observations are far 
apart and have large errors, the parameters determined by t h i s 
technique are not very r e l i a b l e . However, they can serve as 
start i n g values for the FIT command. As in the automatic option 
of FIT command, the user i s asked to enter a star t i n g X along 
with a r e l a t i v e and an absloute error tolerence for the 
Levenberg-Marquardt procedure. 

The second option under the DFIT command currently applies 
only to the important special case when only two state variables 
are present and observations are available on only one of them. 
This option assumes the behavior of the unobserved state 
variable has been approximated using the CREOBS command. The 
observations on the other state variable must be smoothed with 
the SMOOTH command prior to using this option. This option of 
the DFIT command then f i t s derivatives using the smoothed and 
guessed observations. Only the nonfrozen parameters enter into 
the optimization. If a parameter occurs only in an i n i t i a l 
condition, i t must be frozen prior to the use of this command. 
If the least squares problem i s l i n e a r , (as indicated by the 
LINEAR command), then a linear least squares technique using the 
singular value decomposition i s employed. If the problem i s 
nonlinear, then the Levenberg-Marquardt algorithm i s employed 
and a st a r t i n g lambda and r e l a t i v e and absolute error tolerances 
must be supplied. 

The t h i r d option under the DFIT command provides a means of 
i t e r a t i v e l y improving the guessed observations with the aid of a 
sparse Gauss-Newton procedure. This option currently applies 
only to the two state variable case. Starting with guessed 
observations on the unobserved state variable, PARFIT attempts 
to find an optimal parameter vector p and corresponding guessed 
observations c= (c,, , .. . , C y ) r , where c^ i s the guessed observation 
at time t^ , to minimize 

ST ( g ( t , (s*,c ) T , p ) - s * ' ) a + Z. (d. (c))* 

where for notational convenience we have assumed y_ i s 
unobserved, where s =s(t x) (a superscript i s used to avoid 
confusion with our notation when s(t) i s a vector), and where 
d_^(c) represents a d i s c r e t i z a t i o n of the state equation 
corresponding to the unobserved state variable. Currently 
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PARFIT uses the trapezoidal d i s c r e t i z a t i o n for (c). That i s 

d^(c)=.5(g (t , ( 5 * " , C j l_ ) r,p)+g ( t , (s*,c ) T,p)) 

c. -c 

PARFIT employs a nonlinear block Gauss-Seidel technique to find 
the optimal p and c. That i s PARFIT starts by f i x i n g c and 
finding the optimal parameter vector to minimize the above sum 
of sguares. Then with p fixed at this optimum, an optimal c i s 
determined to munimize the above sum of squares. This l a t t e r 
optimization i s accomplished through a Gauss-Newton procedure 
which takes advantage of the pa r t i c u l a r sparsity structure of 
the problem. The user i s requested to enter a tolerance e to 
define the stopping c r i t e r i o n for the i t e r a t i v e determination of 
c. The i t e r a t i o n terminates when two successive iterates c (t> 
and c1*"* s a t i s i f y 

l c ^ + , ) -c*' K e d c f * I+.001) 
for 1=0,...,N. There i s an option to f i x the i n i t i a l conditions 
of the guessed observations. PARFIT has f a c i l i t i e s for handling 
the case when the estimation of p for a fixed c i s a linear 
problem. When this problem i s not l i n e a r , the user i s reguested 
to enter a st a r t i n g lambda and r e l a t i v e and absolute error 
tolerances for the determination of the optimal p by the 
Levenberg-Marquardt technique. After an optimal c i s found, the 
user i s given the chance to further refine this vector by 
decreasing the tolerance e. F i n a l l y , after an i t e r a t i o n (the 
determination of a new p and a new c) the user i s given the 
option of doing another i t e r a t i o n or terminating the i t e r a t i v e 
process. If the process i s terminated, i t may be restarted by 
issuing the same DFIT command that i n i t i a t e d the i t e r a t i v e 
process. 

(21) IFIT 

This command i s similar to the DFIT command except here 
integrals are used instead of derivatives. Currently there are 
four options available under this command. The f i r s t option 
requires observations on a l l state variables and i t determines 
parameters which minimize 

f "^pjf (P) 
where 
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*t 

f * U -.>•,• = y o „ ( P ) + K ( t , S ( t ) , p ) d t - S . (t) 
where 1=1,...,k; i=l,...,n; y a > . i s the i 1 t h component of the 
i n i t i a l condition vector and g y i s the i 1 t h component of 
g(t,s,p), and s(t) i s the smoothing function determined by the 
SMOOTH command. Currently there is no provision for the linear 
case and the Levenberg-Marquardt method i s used to obtain the 
optimal parameters. 

The second option under the IFIT command corresponds to the 
second option of the DFIT command. This option f i t s integrals 
to the smoothed observations and to the guessed observations. 
There are special f a c i l i t i e s for handling the linear case. 
Currently this option of the IFIT command applies only to the 
two state variable case. 

The t h i r d option under the IFIT command attempts to 
i t e r a t i v e l y improve the guessed observations by an 
experimentally e f f e c t i v e , but, occasionally, unstable technique. 
The i t e r a t i o n proceeds by f i r s t applying the method used in 
option two of the IFIT command to estimate the parameters, and 
then, holding the observed state variable equal to s ( t ) , a new 
set of guessed observations i s generated by integrating the 
state equation corresponding to the unobserved state variable. 
Currently t h i s option applies only to the two state variable 
case. As with the third option of the DFIT command, after an 
i t e r a t i o n i s complete, the user i s given the chance to terminate 
the i t e r a t i v e process. 

The fourth option under the IFIT command is very similar to 
the t h i r d option under the DFIT command. The only difference i s 
that the parameter vector i s updated using the procedure 
employed in the second option of the IFIT command. Provisions 
are available for linear parameter estimation problems. 

(22) CONTIN 

The CONTIN command provides the user with a technigue 
employing continuation methods and break points which i s 
designed to bridge the gap between the coarse integral f i t t i n g 
method and the f u l l least squares problem. A di r e c t 
continuation method i s available where the user can f i t the 
solution of 

u'=g(t, ( (l-*)s(t)+»u,p) 

u(t o)=y 0(p) 
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to s(t) in the least squares sense at the observation times 
where 0<X<1 and where s(t) represents a smoothing of the 
observations. The user can experiment with various values for 
the continuation parameter y . When **=0, we have the f i r s t 
option of the IFIT command, and when 2f=l, we have the f u l l least 
squares problem (on the smoothed observations). Observations 
must be available on a l l state variables to use this strategy in 
the CONTIN command. Another f a c i l i t y available under this 
command involves the use of break points. The user can specify 
break points at times 

T <T <...<T_ 

corresponding to observation times 

The user can also specify a continuation parameter vector ^ for 
the break points. As we integrate the i n i t i a l value problem 
through the break point at time T_. , u i s reset according to 

u(T. )=Au"(T- ) + (I-A)s(T- ) 

where A=diag («<v ,.. . , , and u"(T,-) i s the result obtained by 
integrating up to time T,- . The user also has the chance to 
weight the break points with weights w,,...,w.. F i n a l l y , when 
break points alone are employed (_=1), observations need not be 
available on a l l state variables. The components of e< 
corresponding to unobserved state variables should be set equal 
to 1. This command has no implementation r e s t r i c t i o n s on the 
number of state variables. 

APPENDIX A 



205 

APPENDIX B 

SELECTED PROGRAM LISTINGS 

In this appendix we give selected l i s t i n g s from the code that 

defines PARFIT. PARFIT i s coded in ALGOL W, and thus the 

l i s t i n g s given below should be f a i r l y easy to read. In the 

interests of brevity and c l a r i t y , we have replaced a l l 

input/output statements with descriptive pseudo-statements 

indicated by %INPUT and %OUTPUT. In these statements, actual 

variables in the ALGOL W code are enclosed in brackets. PARFIT 

performs a major portion of i t s input and output using FORTRAN 

subroutines. This was done mainly to take advantage of the good 

"user proof" set of FORTRAN c a l l a b l e free format input 

procedures available at the University of B r i t i s h Columbia. 

External procedures are indicated by %EXTERNAL in the following 

l i s t i n g s . The l a s t few pages of l i s t i n g s are devoted to the 

declaration statements for the external procedures not 

previously l i s t e d . B rief descriptions of the functions of these 

procedures are also included. Occasionally, PARFIT performs 

operations on MTS (Michigan Terminal System) f i l e s . These 

operations are indicated with %FILE in the following l i s t i n g s . 

i 
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%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Main driving program for PARFIT 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

BEGIN 
COMMENT MAIN DRIVING PROGRAM FOR PARFIT 
START BY SETTING UP SIZE INFORMATION; 
INTEGER N_STATE , N_PAR , N_STATE_OBS , N__OBS , MAX__PTS ; 
STRING(31) MODEL; 
STRING(1) ANS; 
LOGICAL BATCH; 
LONG REAL INITIAL_TIME; 
COMMENT %EXTERNAL CMD_AL, CHECK__BATCH; 
COMMENT %EXTERNAL GEAR, TRAP, SVD_AL, 
MARQUARDT, PARFIT; 
COMMENT EXECUTION BEGINS HERE 
######################################### 
#########################################; 
COMMENT ASSIGN UNIT NUMBERS FOR OUTPUT; 
COMMENT EMPTY TEMPORARY FILES; 
COMMENT DETERMINE IF IN BATCH MODE; 
CHECK_BATCH(BATCH); 
COMMENT IF IN BATCH OPTIMIZATION/INTEGRATION 
INFORMATION IS WRITTEN OUT DIRECTLY 
BY ASSIGNING SAME UNIT NUMBER FOR -SCI AND OUTPUT TO USER; 
COMMENT %INPUT FROM DATA FILE 
(MODEL),(INITIAL_TIME),(N_STATE),(N_PAR),(N_STATE_OBS), 
(N_OBS),(MAX_PTS); 
PARFIT (N_STATE , N_PAR,N_STATE_OBS ,N__OBS ,MAX_PTS ,MODEL , 
INITIAL_TIME,BATCH,CHECK_BATCH,GEAR,TRAP,SVD_AL, 
MARQUARDT,CMD__AL) ; 
IF BATCH=TRUE THEN 
COMMENT %FILE TAKE COPY OF -GRAPHSTORE; 
ELSE 
BEGIN 
COMMENT %OUTPUT TO USER 
IS A LISTING OF FULL ECHO DESIRED? Y OR N; 
COMMENT %INPUT (ANS); 
IF ANS="Y" THEN 
COMMENT %FILE TAKE COPY OF -ECHO; 
COMMENT %OUTPUT TO USER 
IS A COPY OF FULL PLOTS AND REPORTS DESIRED? Y OR N; 
COMMENT %INPUT (ANS); 
IF ANS="Y" THEN 
COMMENT %FILE TAKE COPY OF -REPRT, -GRAPHSTORE; 
COMMENT %OUTPUT TO USER 
IS A COPY OF INTEG./OPT. AND INTERACTIVE FIT 
DESIRED Y OR N; 
COMMENT %INPUT (ANS); 

APPENDIX B 



207 

IF ANS="Y" THEN 
COMMENT %FILE TAKE COPY OF -SC2, -AECHO; 
END; 

END. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Major procedure defining PARFIT 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE PARFIT(INTEGER VALUE N_STATE,FN_PAR, 
N_STATE_OBS,N_OBS,MAX_PTS; 
STRING(31) VALUE MODEL; 
LONG REAL VALUE INITIAL_TIME; 
LOGICAL VALUE BATCH; 
PROCEDURE 
CHECK_BATCH, GEAR, TRAP, SVD_AL, MARQUARDT, CMD_AL); 
BEGIN 
COMMENT MAJOR PROCEDURE IN PARFIT 

PROCEDURE EG_FUN(LONG REAL VALUE T; 
LONG REAL ARRAY Y(*); 
LONG REAL ARRAY P(*); 
INTEGER VALUE OPTION; 
LONG REAL ARRAY G ( * ) ; 
LONG REAL ARRAY DGY(*,*); 
LONG REAL ARRAY DGP(*,*); 
LONG REAL ARRAY ISEN(*,*)); 
BEGIN 
COMMENT INTERFACE TO USER DEFINED G_FUN TO ALLOW 
USE OF ENVIRONMENT FOR 
SCALING AND FREEZING OF PARAMETERS; 
COMMENT %EXTERNAL G_FUN; 
INTEGER KK; 
LONG REAL ARRAY PS(1::FN_PAR); 
LONG REAL ARRAY TDGP,TISEN(1::N_STATE,1::FN_PAR); 
IF PFRZ =TRUE THEN 
BEGIN 
COMMENT COPY NONFROZEN PARAMETERS AND 
FROZEN PARAMETERS TO PS; 
KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
PS(I):=P(KK); 
END 

ELSE 
PS(I):=FPAR(I); 
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END 
ELSE 
FOR I:=l UNTIL FN_PAR DO PS(I):=P(I); 
IF PSCL=TRUE THEN 
COMMENT SCALING PRESENT; 
FOR I:=l UNTIL FN_PAR DO 
IF SCL(I)=1 THEN 
PS(I):=LONGEXP(PS(I)) 
ELSE 
IF SCL(I)=2 THEN 
PS(I):=PS(I)**2; 
G_FUN(T,Y,PS,OPTION,G,DGY,TDGP,TISEN); 
CASE ABS OPTION OF 

BEGIN 
BEGIN 
END; 
BEGIN 
IF PSCL=TRUE OR PFRZ=TRUE THEN 
BEGIN 
COMMENT HANDLE FREEZING AND SCALING; 
KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
IF SCL(I)=1 THEN 
BEGIN 
FOR J:=l UNTIL N_STATE DO 
DGP(J,KK) :=TDGP(J,I)*PS (I) ; 
END 

ELSE 
IF SCL(I)=2 THEN 
BEGIN 
FOR J:=l UNTIL N_STATE DO 
DGP(J,KK):=TDGP(J,I)*2.L*P(KK) 
END 

ELSE 
FOR J:=l UNTIL N_STATE DO 
DGP(J,KK):=TDGP(J,I); 
END; 

END 
ELSE 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL FN_PAR DO 
DGP(I,J):=TDGP(I,J); 
END; 
BEGIN 
IF OPTION>0 THEN 
IF PSCL=TRUE OR PFRZ=TRUE THEN 
BEGIN 
COMMENT HANDLE FREEZING AND SCALING; 
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KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
IF SCL(I)=1 THEN 
BEGIN 
FOR J:=l UNTIL N_STATE DO 
ISEN(J,KK):=TISEN(J,I)*PS(I); 
END 

ELSE 
IF SCL(I)=2 THEN 
BEGIN 
FOR J:=l UNTIL N_STATE DO 
ISEN(J,KK):=TISEN(J,I)*2.L*P(KK); 
END 

ELSE 
FOR J:=l UNTIL N_STATE DO 
ISEN(J,KK):=TISEN(J,I); 
END; 

END 
ELSE 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL FN_PAR DO 
ISEN (I, J) :=TISEN(I,J) ; 
END 

END; 
END EG_FUN; 

COMMENT 

PROCEDURE EXTRACT__JACOBIAN (LONG REAL ARRAY JAC (*,*)) ; 
BEGIN 
COMMENT FROM A COMPLETE JACOBIAN AT ALL POINTS HIT AND ON 
ALL STATE VARIABLES, EXTRACT INTO JAC THE JACOBIAN 
DIRECTLY ASSOCIATED WITH THE OBSERVATIONS TAKEN, 
AND INCORPORATING THE WEIGHTS ON THE OBSERVATIONS; 
INTEGER M; 
COMMENT SET UP WEIGHTING SCALING OF LEAST SQUARES JAC; 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_OBS DO 
WT_VEC ( (1-1) *N_STATE__OBS+J) :=WT(I ,J) ; 
FOR K:=l UNTIL N_PAR DO 
BEGIN 
M:=0; 
FOR I:=l UNTIL N_PTS__HIT DO 
IF OBS_STATUS(I)~=0 THEN 
FOR J:=l UNTIL N_STATE_OBS DO 
BEGIN 
M:=M+1; 
JAC (M,K) :=JACOBIAN ( (I-1) *N__STATE+STATES_OBS (J) ,K) 
*WT_VEC(M); 
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END; 
END; 

END EXTRACT_JACOBIAN; 
COMMENT 

PROCEDURE STANDARD_HIT( LONG REAL VALUE INITIAL_TIME; 
INTEGER ARRAY OBS_STATUS(*); 
LONG REAL ARRAY OBS_PLACE(*); 
INTEGER VALUE N_OBS; 
LONG REAL ARRAY PTS_TO_HIT(*); 
INTEGER RESULT N_PTS_HIT); 
BEGIN 
COMMENT SET SAMPLE TIMES AS INITIAL TIME AND 
OBSERVATION TIMES; 
I:=l; 
PTS_TO_HIT(l):=INITIAL_TIME; 
OBS_STATUS(1):=0; 
IF ABS(OBS_PLACE(1)-INITIAL_TIME)<1.1-5 THEN 
BEGIN 
OBS_STATUS(1):=1; 
I: =0; 
END; 

FOR J:=2-I UNTIL N_OBS DO 
BEGIN 
PTS_TO_HIT(J+I):=OBS_PLACE(J); 
OBS_STATUS(J+I):=J; 
END; 

N_PTS_HIT:=N_OBS+I; 
END STANDARD_HIT; 

COMMENT 

PROCEDURE COPY_TRANS(LONG REAL ARRAY A(*,*); 
LONG REAL ARRAY B ( * , * ) ; 
LONG REAL ARRAY JA(*,*); 
LONG REAL ARRAY JB(*,*); 
INTEGER VALUE M,N,JM,JN,AUX_INT); 
BEGIN 
COMMENT TO REDUCE PAGING, INTEGRATION 
PROCEDURES INSERT DATA BY 
COLUMNS IN NXM ARRAY B,THEN B(TRANSPOSE) IS COPIED TO A 
TO ACCESS A BY COLUMNS FOR PLOTTING ETC.; 
FOR J:=l UNTIL N DO 
FOR I:=l UNTIL M DO 
A(I,J):=B(J,I); 
IF AUX_INT=1 THEN 
FOR J:=l UNTIL JN DO 
FOR I:=l UNTIL JM DO 
JA(I,J):=JB(J,I); 
END COPY_TRANS; 

COMMENT 
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COMMENT %EXTERNAL SPLINT_AL, SPLN_AL, DSPLN_AL, 
HERMIT_AL, HERM, DHERM, ECHOl; 
PROCEDURE READ_CMD_DATA(INTEGER ARRAY CMD_DATA(*)); 

BEGIN 
COMMENT READ A STRING OF INTEGERS SEPARATED 
BY BLANKS UNTIL A 
ZERO IS ENCOUNTERED, STORE THE INTEGERS INCLUDING THE ZERO 
IN THE VECTOR CMD_DATA; 
INTEGER I; 
I: =1; 
COMMENT %INPUT (CMD_DATA(I)); 
WHILE CMD_DATA(I)~ = 0 DO 

BEGIN 
I: =1+1; 
COMMENT %INPUT (CMD_DATA(I)); 
END; 

END READ_CMD_DATA; 
COMMENT 

COMMENT %EXTERNAL PLOT_COMMAND; 
COMMENT VARIABLE DECLARATIONS FOLLOW 

INTEGER ARRAY SCL,FRZ(1::FN_PAR); 
LONG REAL ARRAY CREOBS_JOINTS(1::15); 
LONG REAL ARRAY CREOBS_VAL(1::15); 
LONG REAL ARRAY CREOBS(1::MAX_PTS); 
LONG REAL ARRAY DCREOBS(1::MAX_PTS); 
LONG REAL ARRAY FPAR,START_PAR,SIM_PAR, 
INT_PAR,GRADIENT,PAR(1::FN_PAR); 
LONG REAL ARRAY OBS_PLACE , RESIDUAL__VECTOR (1: :N_OBS) ; 
LONG REAL ARRAY PTS_TO_HIT(1::MAX_PTS); 
INTEGER ARRAY STATES_OBS(1::N_STATE_OBS); 
LONG REAL ARRAY OBS(1::N_OBS,1::N_STATE_OBS); 
LONG REAL ARRAY WT (1: :N__OBS , 1: : N_STATE__OBS) ; 
REAL ARRAY WT_VEC(1::N_OBS*N_STATE_OBS); 
LONG REAL ARRAY OBS_SMOOTH (1: :MAX_PTS , 1: :N_STATE__OBS) ; 
LONG REAL ARRAY JOINTS(1::17,1::N_STATE_OBS); 
LONG REAL ARRAY SPLN_COEF(1::30,1::N_STATE_OBS); 
LONG REAL ARRAY HERM_COEF(1::16,1::4,1::N_STATE_OBS); 
INTEGER ARRAY NJOINTS,N_SPLN_PAR(1::N_STATE_OBS); 
LONG REAL ARRAY STATE(1::MAX_PTS,1::N_STATE); 
LONG REAL ARRAY JACOBIAN(1::MAX_PTS*N_STATE,1::FN_PAR); 
INTEGER DFIT_LIN,NO_CREOBS_JOINTS,CMD_NO,I,N_PTS_HIT; 
INTEGER ARRAY OBS_STATUS(1::MAX_PTS); 
LONG REAL ARRAY CON(1::FN_PAR); 
LONG REAL ARRAY COR,COV(1::FN_PAR,1::FN_PAR); 
LONG REAL STD_DEV; 
STRING(6) ARRAY COMMANDS(1::30); 
STRING(6) CMD;STRING(6) UNIT; 
LONG REAL FPROB;INTEGER SMF,WT_FLG; 
LONG REAL EPS,HMIN,HMAX; 
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INTEGER PLOT_NUMBER,PERCENTILE,AUX_INT,OUTPUT, 
KFLAG,METHOD_FLAG,OUTPUTJSUP,OUT_SEG,JAC_OPTION, 
INT_PROC,N_PAR,JJ; 
STRING(1) ANS; 
LOGICAL PFRZ,PSCL,ECHO; 
LONG REAL SUM_SQ_RES; 
COMMENT 
################################################# 
#################INITIALIZATION################## 
#################################################; 
ECHO:=FALSE; 
OUTPUT:=0; 
DFIT_LIN:=0; 
INT_PROC:=2; 
PLOT_NUMBER:=0; 
EPS:=.01; 
HMIN:=.00001; 
HMAX:=5; 
METHOD_FLAG:=1; 
OUTPUTJSUP: =1; 
OUT_SEG:=0; 
JAC_OPTION:=0; 
PFRZ:=FALSE;PSCL:=FALSE; 
FOR I:=l UNTIL FN__PAR DO 
FRZ(I):=SCL(I):=0; 
N_PAR:=FN_PAR; 
COMMENT 
DEFINE VECTOR OF COMMAND DESIGNATORS; 
COMMANDS (1) : = _ II PLOT " 
COMMANDS (2) : = _ II SET ? 
COMMANDS (3) : = _ II INTEG " ; 
COMMANDS (4) : = _ II FIT " ; 
COMMANDS (5) : = QUIT " ; 
COMMANDS (6) : = = " REPORT" ; 
COMMANDS (7) : = _ II CREATE" ; 
COMMANDS (8) : = = 1 1 SAMPLE" ; 
COMMANDS (9) : = _ II SMOOTH" / 

COMMANDS (10) : = "DFIT 
COMMANDS (11) : = "SUSP •I 

COMMANDS (12) : = "OPTION •I 
COMMANDS (13) : = "STATS 
COMMANDS (14) • = "PROBE n 
COMMANDS (15) = "WEIGHT II 
COMMANDS (16) = "CONTIN •I 
COMMANDS (17) = "CREOBS 
COMMANDS (18) • = "IFIT •I 

COMMANDS (19) • = "FREEZE •I 
COMMANDS (20) : = "SCALE II 

COMMANDS (21) : = "ECHO •I 

COMMANDS (22) : = "LINEAR II 
COMMANDS (23) : = "END •I 
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COMMENT 

COMMENT %OUTPUT TO USER -REPRT (MODEL); 
IF MODEL(0|6) ~= "CREATE" THEN 
BEGIN 
COMMENT READ IN DATA; 
COMMENT %INPUT FROM DATA FILE 
(OBS) , (OBS_PLACE) , (START__PAR) , (STATES_OBS) , (WT) , 
(WT_FLAG)—0 IF NO WEIGHTS IN DATA FILE; 
COMMENT SET ALL WEIGHTS TO 1 IF NOT PRESENT IN DATA FILE; 
IF WT_FLG=0 THEN 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_OBS DO 
WT(I,J):=1; 
COMMENT INITIALIZE PAR TO START_PAR; 
FOR I:=l UNTIL FN_PAR DO PAR(I):=FPAR(I):=START_PAR(I); 
END; 

COMMENT 
r 

COMMENT READ COMMAND DESIGNATOR AND IDENTIFY COMMAND; 
READ_CMD: 
COMMENT %OUTPUT TO USER 
ENTER COMMAND; 
COMMENT %INPUT (CMD); 
I:=l; 
WHILE COMMANDS(I)~="END " DO 

BEGIN 
IF COMMANDS(I)=CMD THEN BEGIN CMD_NO:=I;GO TO OUT; END; 
I:=1+1; 
END; 

COMMENT %OUTPUT TO USER 
COMMAND IN ERROR, RESPECIFY; 
GO TO READ_CMD; 
COMMENT 

OUT:IF ECHO=TRUE THEN ECH01(2); 
CASE CMD_NO OF 
BEGIN 

BEGIN 
COMMENT ### PLOT COMMAND ###; 
INTEGER KK; 
KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
FPAR(I):=PAR(KK); 
END; 

PLOT_COMMAND( OBS_PLACE, 
PTS_TO_HIT, STATE, OBS, OBS_SMOOTH,FPAR, 
N_OBS ,N__PTS_HIT,N_STATE_OBS ,N_STATE ,FN_PAR, 
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STATES_OBS,PLOT_NUMBER, 
READ_CMD_DATA,CMD_AL,CREOBS) ; 
END; 

COMMENT 

BEGIN 
COMMENT ### SET COMMAND ###; 
INTEGER I; 
COMMENT %OUTPUT 
GIVE LIST OF PARAMETERS AND VALUES (END WITH 0) 
SUBSCRIPTS CORRESPOND TO UNFROZEN PARAMETER VECTOR 
% INPUT (IK-
WHILE I~=0 DO 

BEGIN 
COMMENT %INPUT (FPAR(I)),(I); 
END; 

I: =0; 
FOR J:=l UNTIL FN_PAR DO 
IF FRZ(J)=0 THEN 
BEGIN 
I:=1+1; 
PAR(I):=FPAR(J); 
END; 

END; 
COMMENT 

BEGIN 
COMMENT ### INTEGRATE COMMAND ###; 
LONG REAL ARRAY INITY(1::1); 
LONG REAL ARRAY INITYP(1::1,1::1); 
AUX_INT:=0; 
COMMENT %OUTPUT TO USER 
IS THE JACOBIAN DESIRED? Y OR N; 
COMMENT %INPUT (ANS); 
IF ANS="Y" THEN AUX_INT:=1; 
BEGIN 
LONG REAL ARRAY B (1 : : N__STATE , 1: : N_PTS_HIT) ; 
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE); 
CASE INT_PROC OF 

BEGIN 
COMMENT %OUTPUT TO USER 
INTEGRATION METHOD AND PERTINENT CONTROL PARAMETERS; 
END; 

IF OUTPUT~=0 THEN 
BEGIN 
COMMENT %FILE EMPTY -SCI; 
COMMENT %OUTPUT TO -REPRT 
OUTPUT REFERENCE NUMBER (OUT_SEG); 
CASE INT_PROC OF 

BEGIN 
COMMENT %OUTPUT TO -REPRT 
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INDICATE INTEGRATION METHOD AND 
PERTINENT PARAMETERS; 
END; 

END; 
CASE INT_PROC OF 

BEGIN 
GEAR(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT, 
EPS,HMIN,HMAX,N_PAR,AUX_INT,EG_FUN, 
KFLAG,OUTPUT,METHOD_FLAG,0,INITY,INITYP); 
TRAP(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT, 
N_PAR,AUX_INT,EG_FUN,KFLAG,OUTPUT) 
END; 

AUX_INT:=1; 
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE, 
N_PTS_HIT*N_STATE,N_PAR,AUX_INT); 
END; 

JJ:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
JJ:=JJ+1; 
INT_PAR(I):=PAR(JJ); 
END 

ELSE 
INT_PAR(I):=FPAR(I); 
END; 

COMMENT 

BEGIN 
COMMENT ### FIT COMMAND ###; 
INTEGER I; 
LONG REAL ARRAY INITY(1::1); 
LONG REAL ARRAY INITYP(1::1,1:: 1) ; 
PROCEDURE FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 
LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT JACOBIAN GRADIENT AND RESIDUAL INFORMATION; 
INTEGER M,N_RES,OUTl; 
LONG REAL SUM; 
COMMENT INTEGRATE; 
IF OUTPUT_SUP=l THEN OUTl:=0 ELSE OUT1:=OUTPUT; 
EFLAG:=0; 

BEGIN 
LONG REAL ARRAY B(1::N_STATE,1::N_PTS_HIT); 
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE); 
CASE INT_PROC OF 

BEGIN 
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BEGIN 
GEAR(P,PTS_TO_HIT,B,JB,N_STATE, 
N_PTS_HIT,EPS,HMIN,HMAX,N_PAR,1, 
EG_FUN,KFLAG,0UT1, 
METHOD_FLAG,0,INITY,INITYP); 
IF KFLAG~=1 THEN BEGIN EFLAG:=1; GO TO OUT; END; 
END; 
BEGIN 
TRAP(P,PTS_TO_HIT, B,JB,N_STATE, 
N_PTS_HIT,N_PAR,AUX_INT,EG_FUN,EFLAG,OUTl); 
IF EFLAG=1 THEN GO TO OUT; 
END 

END; 
AUX_INT:=1; 
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE, 
N_PTS__HIT*N_STATE,N_PAR,AUX_INT) ; 
END; 

EXTRACT_JACOBIAN(JAC); 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_PTS_HIT DO 
IF OBS_STATUS(I)~=0 THEN 
BEGIN 
INTEGER INDEX; 
INDEX:=(OBS_STATUS(I)-1)*N_STATE_OBS+J; 
RES(INDEX):=(STATE(I,STATES_OBS(J))-
OBS(OBS_STATUS(I), J))*WT_VEC(INDEX); 
END; 

N_RES:=N_STATE_OBS*N_OBS; 
F:=0; 
FOR I:=l UNTIL N_RES DO F:=F+RES(I)**2; 
SUM_SQ_RES:=F; 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0. ; 
FOR J:=l UNTIL N_RES DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

OUT: 
END FUNC; 

COMMENT %OUTPUT 
CHOOSE METHOD 
MARQUARDT 1 
INTERACTIVE 2; 
COMMENT %INPUT (I) ; 
CASE I OF 

BEGIN 
BEGIN 
COMMENT FIT USING MARQUARDT1S TECHNIQUE ; 
LONG REAL LAM,EPS_R,EPS_A; 
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COMMENT %OUTPUT TO USER 
ENTER STARTING LAMBDA, RELATIVE TOLERENCE, 
AND ABSOLUTE TOLERENCE MARQUARDT; 
COMMENT %INPUT (LAM),(EPS_R),(EPS_A); 
COMMENT %FILE EMPTY -SCI; 
COMMENT %OUTPUT 
CURRENT OUTPUT REFERENCE NUMBER IS (OUT_SEG) 
MARQUARDT USED IN FIT COMMAND (LAM),(EPS_R),(EPS_A); 
MARQUARDT (EPS_R, EPS_A, N_OBS*N_STATE__OBS , N_PAR, 
FUNC,PAR,LAM,SVD_AL); 
END; 
BEGIN 
COMMENT %EXTERNAL INTERACTIVE_OPT; 
IF ECHO=TRUE THEN ECH01(3); 
INTERACTIVE_OPT(N_OBS*N_STATE_OBS,N_PAR,FUNC, 
PAR,SVD_AL,OBS_PLACE(*), PTS_TO_HIT(*), STATE(*,*), 
OBS(*,*), OBS_SMOOTH(*,*), CREOBS(*), 
N_OBS,N_PTS_HIT,N_STATE_OBS, 
N_STATE, STATES_OBS(*), PLOT_NUMBER, 
READ_CMD_DATA, CMD_AL, PLOT_COMMAND); 
IF ECHO=TRUE THEN ECHOl(l); 
END 

END; 
JJ:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
JJ:=JJ+1; 
INT_PAR(I) :=PAR(JJ) ; 
END 

ELSE 
INT_PAR(I):=FPAR(I); 
END; 

COMMENT 

BEGIN 
COMMENT ### QUIT COMMAND ###; 
GO TO FINISHED; 
END; 

COMMENT 

BEGIN 
COMMENT ### REPORT COMMAND ###; 
INTEGER ARRAY CMD_DATA(1::15); 
INTEGER II,UNI; 
COMMENT %OUTPUT TO USER 
ENTER LIST OF ITEMS TO PRINT (END WITH 0) 
GENERAL DATA 1 
OBS 2 
PAR 3 
CREATION 4 
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PTS AND STATE V A R S — 5 
SMOOTHING DATA 6 
JACOBIAN 7 
INTEG./OPT. DETAILS-8 
S T A T I S T I C A L DATA 9 
OPTION SETTINGS 10 
WEIGHTS 11 
GUESSED OBS 12; 
READ_CMD_DATA(CMD_DATA); 
FOR IREP:=1 UNTIL 2 DO 

BEGIN 
COMMENT % F I L E I F IREP=1 OUTPUT TO USER, 
I F IREP=2 OUTPUT TO -REPRT; 
II:=1; 
WHILE CMD_DATA(II)~=0 DO 

BEGIN 
CASE CMD_DATA(II) OF 

BEGIN 
BEGIN 
COMMENT OPTION 1, GENERAL S I Z E DATA; 
COMMENT %OUTPUT (FN_PAR),(N_STATE),(N_STATE_OBS) 
(N__OBS) , (STATES_OBS) ; 
END; 
BEGIN 
COMMENT OPTION 2, OBSERVATIONS; 
COMMENT %OUTPUT ( O B S ) , ( O B S _ P L A C E ) ; 
END; 
BEGIN 
COMMENT OPTION 3, PARAMETER VALUES; 
INTEGER KK; 
KK:=0; 
FOR I : = l UNTIL FN_PAR DO 
I F FRZ(I)=0 THEN 

BEGIN 
KK:=KK+1; 
F P A R ( I ) : = P A R ( K K ) ; 
END; 

COMMENT %OUTPUT (START_PAR),(FPAR) 
( F R Z ) , ( S C L ) ; 
END; 
BEGIN 
COMMENT OPTION 4, DATA ON MODEL CREATION; 
COMMENT %OUTPUT RAMDOM ERROR USED, 
SIMULATION PARAMETERS 
(S T D _ D E V ) , ( S I M _ P A R ) ; 
END; 
BEGIN 
COMMENT OPTION 5, TIMES, AND STATE VARIABLES; 
COMMENT %OUTPUT INTEGRATION PARAMETERS (INT_PAR) 
SAMPLE TIMES ( P T S _ T O _ H I T ) , 
INTEGRATION PROCEDURE (INT_PROC) 
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INTEGRATION RESULTS (STATE); 
END; 
BEGIN 
COMMENT OPTION 6, SMOOTHING INFORMATION; 
CASE SMF OF 

BEGIN 
BEGIN 
COMMENT SPLINE SMOOTHING CASE; 
COMMENT %OUTPUT 
SPLINE SMOOTHING JOINTS, 
SMOOTHED OBSERVATIONS, 
SMOOTHED DERIVATIVES ON OBSERVED 
STATE VARIABLES; 
END; 
BEGIN 
COMMENT HERMITE CASE; 
COMMENT %OUTPUT 
HERMITE SMOOTHING JOINTS, 
SMOOTHED OBSERVATIONS, 
SMOOTHED DERIVATIVES ON OBSERVED 
STATE VARIABLES; 
END 

END; 
END; 
BEGIN 
COMMENT OPTION 7, JACOBIAN OUTPUT; 
COMMENT %OUTPUT 
INTEGRATION PARAMETERS (INT_PAR); 
IF JAC_OPTION=0 THEN 
COMMENT %OUTPUT 
FULL JACOBIAN ON ALL STATES AT ALL SAMPLE TIMES; 
ELSE 
COMMENT %OUTPUT 
LEAST SQUARES JACOBIAN; 
END; 
BEGIN 
COMMENT OPTION 8, OPTIMIZATION 
AND/OR INTEGRATION DATA; 
IF BATCH=FALSE THEN 
BEGIN 
COMMENT %FILE DISPLAY -SCI 
TO USER IF (UNIT) SPECIFIES 
OUTPUT TO USER; 
IF UNIT="-REPRT" THEN 
BEGIN 
STRING(1) ANS; 
COMMENT %OUTPUT TO USER 
IS INTEGRATION/OPTIMIZATION DATA TO BE 
ACCUMULATED FOR LATER OUTPUT Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
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BEGIN 
COMMENT %OUTPUT TO -REPRT 
DATA ACCUMULATED IN -SC2 OUTPUT REFERENCE 
NUMBER IS (OUT_SEG) 
%FILE ACCUMULATE -SCI AT END OF -SC2; 
OUT_SEG:=OUT_SEG+l; 
END; 

END; 
END; 

END; 
BEGIN 
COMMENT OPTION 9, STATISTICAL DATA; 
INTEGER NI; 
Nl:=N_OBS-N_PAR; 
COMMENT %OUTPUT 
F DISTRIBUTION VALUE AT (PERCENTILE) PERCENT WITH 
(N_PAR) DEGREES OF FREEDOM IN NUMERATOR AND 
(NI) DEGREES OF FREEDON IN DENOMINATOR 
IS (FPROB), 
SUM OF SQUARES OF RESIDUALS (SUM_SQ_RES), 
CRRRELATION MATRIX(COR), COVARIANCE MATRIX (COV), 
PARAMETERS (PAR), CONFIDENCE INTERVALS (CON); 
END; 
BEGIN 
COMMENT OPTION 10 REPORT ON OPTION SETTINGS; 
COMMENT %OUTPUT 
OPTION SETTINGS: 
OUTPUT FLAG (OUTPUT), 
OUTPUT SUPPRESSION FLAG (OUTPUT_SUP), 
JACOBIAN OUTPUT MODE (JAC_OPTION), 
GEAR PROGRAM (METHOD_FLAG), 
GEAR PROGRAM EPS (EPS), 
GEAR PROGRAM MINIMUM AND 
MAXIMUM STEP (HMIN), (HMAX), 
INTEGRATION METHOD (INT_PROC); 
END; 
BEGIN 
COMMENT OPTION 11 REPORT ON WEIGHTS; 
COMMENT %OUTPUT 
OBSERVATION TIMES (OBS_PLACE), 
STATES OBSERVED (STATES_OBS), 
WEIGHTING FACTORS (WT); 
END; 
BEGIN 
COMMENT OPTION 12 CREATED OBSERVTIONS DATA; 
COMMENT %OUTPUT 
JOINTS OF INTERPOLATING SPLINE (CREOBS_JOINTS) 
ORDINATES FOR INTERPOLATING SPLINE (CREOBS_VAL) 
CREATED OBSERVATIONS (CREOBS) 
AND DERIVATIVES (DCREOBS) 
AT SAMPLE TIMES (PTS_TO_HIT); 
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END 
END; 

II:=II+1; 
END; 

END; 
END; 

COMMENT 

BEGIN 
COMMENT ### CREATE COMMAND ###; 
INTEGER ARRAY INTDATA(1::7); 
COMMENT %EXTERNAL CREATE_DATA; 
INTDATA(1):=N_STATE; 
INTDATA(3):=N_OBS; 
INTDATA(4):=FN_PAR; 
INTDATA(5):=N_STATE_OBS; 
INTDATA(6):=MAX_PTS; 
INTDATA(7):=METHOD_FLAG; 
CREATE_DATA(SIM_PAR, 
START_PAR, FPAR, OBS_PLACE, PTS__TO_HIT, OBS, 
STATE, JACOBIAN, OBS_STATUS, STATES_OBS, INTDATA, 
MODEL, EG_FUN, GEAR, STANDARD_HIT,STD_DEV, 
I N I T I A L J T I M E , KFLAG,OUTPUT); 
N_PTS_HIT:=INTDATA(2); 
FOR I:=l UNTIL FN_PAR DO 
INT_PAR(I) :.=SIM_PAR(I) ; 
N_PAR:=FN_PAR; 
END; 

COMMENT 
BEGIN 
COMMENT ### SAMPLE COMMAND ###; 
COMMENT %EXTERNAL HITPTS; 
HITPTS(STANDARD_HIT, 
READ_CMD_DATA, 
PTS_TO_HIT, 
N_PTS_HIT,MAX_PTS, 
OBS_STATUS, 
OBS_PLACE, 
N_OBS, 
INITIAL_TIME); 
END; 

COMMENT 

BEGIN 
COMMENT ### SMOOTH COMMAND ###; 
INTEGER MET; 
COMMENT %OUTPUT 
SELECT METHOD 
CUBIC SPLINE 1 
CUBIC HERMITE 2 
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%INPUT (MET); 
CASE MET OF 

BEGIN 
BEGIN 
COMMENT SPLINE CASE; 
INTEGER NJ,DEC-
LONG REAL ARRAY W(l::N_OBS); 
FOR I:=l UNTIL N_OBS DO W(I):=1.; 
FOR ST:=1 UNTIL N_STATE_OBS DO 
BEGIN 
COMMENT %OUTPUT 
ENTER NUMBER OF JOINTS (MAX 15), 
AND JOINT POSITIONS FOR 
STATE VARIABLE (STATES_OBS(ST)) 
%INPUT (NJ); 
NJOINTS(ST):=NJ; 
FOR I:=l UNTIL NJ DO 
COMMENT %INPUT (JOINTS(I,ST)); 
DEG:=3; 
SPLINT_AL(OBS_PLACE,OBS(*,ST),W,N_OBS, 
SPLN_COEF(*,ST), 
DEG,JOINTS(*,ST)tNJOINTS(ST)); 
N_SPLN_PAR(ST):=DEG; 
COMMENT INSERT VALUES INTO OBS_SMOOTH; 
FOR I:=l UNTIL N_PTS_HIT DO 
OBS_SMOOTH (I ,ST) : =SPLN_AL (PTS__TO_HIT (I) , 
SPLN_COEF(*,ST),JOINTS(*,ST), 
NJOINTS(ST),N_SPLN_PAR(ST)); 
END; 

SMF:=1; 
END; 
BEGIN 
COMMENT HERMITE CASE; 
INTEGER NJ; 
LONG REAL ARRAY COEF(1::40,1::4); 
FOR ST:=1 UNTIL N_STATE_OBS DO 

BEGIN 
INTEGER FLAG; 
REDO: 
COMMENT %OUTPUT 
ENTER NUMBER OF JOINTS (MAX 15), 
AND JOINT POSITIONS FOR 
STATE VARIABLE (STATES_OBS(ST)) 
DO NOT INCLUDE FIRST OR LAST OBSERVATION 
%INPUT (NJ); 
NJOINTS(ST):=NJ; 
JOINTS(1,ST):=OBS_PLACE(1); 
FOR I:=l UNTIL NJ DO 
COMMENT %INPUT (JOINTS(1+1,ST)); 
JOINTS(NJ+2,ST):=OBS_PLACE(N_OBS); 
IF N_OBS<(2*NJ+4) THEN 
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BEGIN 
COMMENT %OUTPUT TO USER 
EXCESS OF ((2*NJ+4-N_OBS)/2) JOINTS; 
GO TO REDO; 
END; 

HERMIT_AL(OBS_PLACE,OBS(*,ST),JOINTS(*,ST), 
N_OBSfNJ,COEF,40,FLAG); 
IF FLAG=1 THEN 
BEGIN 
COMMENT %OUTPUT 
SINGULAR PROBLEM—REDISTRIBUTE 
JOINTS OR REMOVE SOME JOINTS; 
GO TO REDO; 
END; 

FOR J:=l UNTIL 4 DO 
FOR I:=l UNTIL NJ+1 DO 
HERM_COEF(I,J,ST):=COEF(I,J); 
COMMENT INSERT VALUES INTO OBS SMOOTH; 
FOR I:=l UNTIL N_PTS_HIT DO 
OBS_SMOOTH (I ,ST) : =HERM (PTS__TO_HIT (I) , 
HERM_COEF(*,*,ST), 
JOINTS(*,ST),NJOINTS(ST)); 
END; 

SMF:=2; 
END 

END; 
END; 

COMMENT 

BEGIN 
COMMENT ### DFIT COMMAND ###; 
INTEGER ARRAY INTDATA(1::14); 
INTEGER METHOD; 
COMMENT %EXTERNAL DATAFT_COMMAND, DFIT_CRE, 
DFITITER,SPRGN; 
INTDATA(1):=N_PTS_HIT; 
INTDATA(2):=N_STATE_OBS; 
INTDATA(3):=N_STATE; 
INTDATA(4):=N_PAR; 
INTDATA(5):=SMF; 
INTDATA(6):=OUTPUT; 
INTDATA (7) : =METHOD__FLAG; 
INTDATA(9):=OUTPUT_SUP; 
INTDATA(10):=OUT_SEG; 
INTDATA(11):=INT_PROC; 
INTDATA(12):=DFIT_LIN; 
COMMENT %OUTPUT 
ENTER METHOD 
REGULAR 1 
USING GUESSED OBS 2 
ITERATED USING SPARSE GN 3; 
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CASE METHOD OF 
BEGIN 
DATAFT_COMMAND(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM, DHERM, INITIAL_TIME,EPS,HMIN,HMAX); 
DFIT_CRE(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM__COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,CREOBS,DCREOBS); 
SPRGN(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,CREOBS,DCREOBS,DFITITER) 
END; 

END; 
COMMENT 

BEGIN 
COMMENT ### SUSPEND COMMAND ###; 
COMMENT SUSPEND EXECUTION AND RETURN TO OPERATING SYSTEM; 
END; 

COMMENT 

BEGIN 
COMMENT ### OPTION COMMAND ###; 
INTEGER I; 
COMMENT %OUTPUT 
DESIGNATE CONTROL PAR. AND NEW VALUE (0 TO END)" 
OUTPUT 1 
INT. OUTPUT IN OPT. 0-YES, 1-NO 2 
JACOBIAN 0-FULL 1-LEAST SQUARES 3 
GEAR METHOD 0-ADAMS , 1-STIFF 4 
EPS FOR INTEGRATION 5 
HMIN FOR INTEGRATION 6 
HMAX FOR INTEGRATION 7 
INTEGRATION PROCEDURE 1-GEAR, 2-QUICK 8; 
WHILE I~=0 DO 

BEGIN 
CASE I OF 

BEGIN 
COMMENT %INPUT DEPENDING ON (I) 
(OUTPUT),(OUTPUT_SUP),(JAC_OPTION),(METHOD_FLAG), 
(EPS),(HMIN),(HMAX),(INT_PROC); 
END; 

COMMENT %INPUT (I) ; 
END; 

END; 
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COMMENT 

BEGIN 
COMMENT ### STATS COMMAND ### 
THIS COMMAND ASSUMES 
THE JACOBIAN AND THE SUM OF THE 
SQUARES OF THE RESIDUAL ARE AVAILABLE AT THE 
OPTIMUM PARAMETERS OBTAINED; 
LONG REAL ARRAY INV,VD(1::N_PAR,1::N_PAR); 
LONG REAL ARRAY UD,JAC(1::N_STATE_OBS*N_OBS,1::N_PAR); 
LONG REAL ARRAY S(1::N_PAR); 
INTEGER M; 
LONG REAL SUM,SUMI,SUMJ,SIG_SQ,E; 
COMMENT %EXTERNAL FVALUE_AL; 
M:=N_STATE_OBS*N_OBS; 
COMMENT %OUTPUT 
ENTER (INTEGER) PERCENTILE FOR F DISTRIBUTION 
COMMENT %INPUT (PERCENTILE); 
FPROB:=FVALUE_AL(1.-PERCENTILE/100.,N_PAR, 
N_OBS*N_STATE_OBS-N_PAR); 
COMMENT %OUTPUT (FPROB); 
EXTRACT_JACOBIAN(JAC); 
SVD_AL(JAC,S,UD,VD,M,N_PAR,M,N_PAR,0,N_PAR,N_PAR); 
FOR J:=l UNTIL N_PAR DO 
FOR I:=l UNTIL N_PAR DO 
VD(I,J):=VD(I,J)/S(J); 
COMMENT FORM INVERSE OF (JACOBIAN TRANSPOSE 
TIMES JACOBIAN); 
FOR I:=l UNTIL N_PAR DO 
FOR J:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0.; 
FOR K:=l UNTIL N_PAR DO 
SUM:=SUM+VD(I,K)*VD(J,K); 
INV(I,J):=SUM; 
END; 

SIG_SQ:=SUM_SQ_RES/(M-N_PAR); 
E:=N_PAR*FPROB*SIG_SQ; 
COMMENT CALCULATE CONFIDENCE INTERVALS; 
FOR I:=l UNTIL N_PAR DO 
CON(I):=SQRT(E*INV(I,I)); 
COMMENT CALCULATE COVARIANCE MATRIX; 
FOR I:=l UNTIL N_PAR DO 
FOR J:=l UNTIL N_PAR DO 
COV(I,J):=SIG_SQ*INV(I,J); 
COMMENT CALCULATE CORRELATION MATRIX; 
FOR I:=2 UNTIL N_PAR DO 
FOR J:=l UNTIL 1-1 DO 

BEGIN 
SUMI:=0;SUMJ:=0;SUM:=0; 
FOR K:=l UNTIL N PAR DO 
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BEGIN 
SUM:=SUM+VD(I , K)*VD(J,K); 
SUMI:=SUMI+VD(I ,K)**2; 
SUMJ:=SUMJ+VD(J,K)**2; 
END; 

COR(I,J):=SUM/SQRT(SUMI*SUMJ); 
COR(J,I):=COR(I,J); 
END; 

FOR I:=l UNTIL N_PAR DO COR(I,I):=1.; 
END; 

COMMENT 

BEGIN 
COMMENT ### PROBE COMMAND ###; 
STRING(1) ANS; 
INTEGER M; 
LONG REAL ARRAY INITY(1::1); 
LONG REAL ARRAY INITYP(1::1,1::1); 
LONG REAL ARRAY UD,JAC(1::N_STATE_OBS*N_OBS,1::N_PAR) 
LONG REAL ARRAY VD(1::N_PAR,1::N_PAR); 
LONG REAL ARRAY S(1::N_PAR); 
COMMENT %OUTPUT 
IS AN INTEGRATION REQUIRED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
IF OUTPUT~=0 THEN 
BEGIN 
COMMENT %FILE EMPTY -SCI 
%OUTPUT TO -REPRT INTEGRATION IN PROBE 
OUTPUT REFERENCE NUMBER IS (OUT_SEG); 
CASE INT_PROC OF 

BEGIN 
COMMENT %OUTPUT TO -REPRT 
INTEGRATION CONTROL PARAMETRERS; 
END; 

END; 
BEGIN 
LONG REAL ARRAY B(1::N_STATE,1::N_PTS_HIT); 
LONG REAL ARRAY JB(1::N_PAR,1::N_PTS_HIT*N_STATE) 
AUX_INT:=1; 
CASE INT_PROC OF 

BEGIN 
BEGIN 
GEAR(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT, 
EPS,HMIN,HMAX,N_PAR,1,EG_FUN,KFLAG,OUTPUT, 
METHOD__FLAG, 
0,INITY,INITYP); 
IF KFLAG~=1 THEN GO TO OUT; 
END; 
BEGIN 
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TRAP(PAR,PTS_TO_HIT,B,JB,N_STATE,N_PTS_HIT, 
N_PAR,1, 
EG_FUN,KFLAG,OUTPUT); 
IF KFLAG=1 THEN GO TO OUT; 
END 

END; 
AUX_INT:=1; 
COPY_TRANS(STATE,B,JACOBIAN,JB,N_PTS_HIT,N_STATE, 
N_PTS_HIT*N_STATE,N_PAR,AUX_INT); 
END; 

JJ:=0 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
JJ:=JJ+1; 
INT_PAR(I):=PAR(JJ); 
END 

ELSE 
INT_PAR(I):=PAR(I); 
END; 

M:=N_STATE_OBS*N_OBS; 
EXTRACT_JACOBIAN(JAC); 
SVD_AL(JAC,S,UD,VD,M,N_PAR,M,N_PAR,0,N_PAR,N_PAR); 
COMMENT %OUTPUT TO USER 
PARAMETERS (PAR) SINGULAR VALUES (S) 
IS A REPORT OF PROBE REQUIRED?, Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
COMMENT %OUTPUT TO -REPRT 
###PROBE COMMAND### 
PARAMETERS (PAR) SINGULAR VALUES (S); 
IF OUTPUT~=0 THEN 
BEGIN 
COMMENT %OUTPUT 
IS INTEG OUTPUT TO BE DISPLAYED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
COMMENT %FILE DISPLAY -SCI TO USER 
%OUTPUT 
IS INTEG OUTPUT TO BE ACCUMULATED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
COMMENT %OUTPUT TO -REPRT 
INTEGRATION DATA ACCUMULATED IN PROBE 
OUTPUT REFERENCE NUMBER IS (OUT_SEG) 
%FILE ACCUMULATE -SCI AT END OF -SC2; 
OUT_SEG:=OUT_SEG+l; 
END; 
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END; 
END; 

END; 
OUT:END; 

COMMENT 

BEGIN 
COMMENT ### WEIGHTING COMMAND ###; 
INTEGER CAS;INTEGER ARRAY ST_WT(1::N_STATE_OBS+l); 
INTEGER ST,SUB,SUB1; 
COMMENT %OUTPUT 
INDICATE OPTION 
SET ALL WEIGHTS TO 1 1 
INDIVIDUAL ENTRY OF WEIGHTS 2 
%INPUT (CAS); 
CASE CAS OF 

BEGIN 
BEGIN 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_OBS DO 
WT(I,J):=1; 
END; 
BEGIN 
COMMENT %OUTPUT 
ENTER LIST OF STATE VARIABLES WHOSE 
OBSERVATIONS ARE TO BE WEIGHTED. 0 TO END; 
READ_CMD_DATA(ST_WT); 
ST:=1; 
WHILE ST_WT(ST)~=0 DO 

BEGIN 
FOR I:=l UNTIL N_STATE_OBS DO 
IF STATES_OBS(I)=ST_WT(ST) THEN SUB1:=I; 
COMMENT %OUTPUT 
ENTER SEQUENCE OF OBSERVATION TIME SUBSCRIPTS 
AND NEW WEIGHTS FOR STATE VARIABLE 
(ST_WT(ST)) 
ENTER A ZERO SUBSCRIPT TO END INPUT 
%INPUT (SUB); 
WHILE SUB~=0 DO 

BEGIN 
COMMENT %INPUT (WT(SUB,SUBl)),(SUB); 
END; 

ST:=ST+1; 
END; 

COMMENT %OUTPUT 
DO YOU WANT THE WEIGHTS STORED 
IN THE FILE -WEIGHT? Y,N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
COMMENT %OUTPUT TO -WEIGHT (WT); 
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END; 
END 

END; 
END; 

COMMENT 

BEGIN 
COMMENT ### CONTINUATION COMMAND ###; 
INTEGER ARRAY INTDATA(1::15); 
COMMENT %EXTERNAL CONTI; 
INTDATA(1):=N_PTS_HIT; 
INTDATA(2):=N_STATE_OBS; 
INTDATA (.3) : =N_STATE ; 
INTDATA(4):=N_PAR; 
INTDATA(5):=SMF; 
INTDATA(6):=OUTPUT; 
INTDATA(7):=METHOD_FLAG; 
INTDATA(9):=OUTPUT_SUP; 
INTDATA(10):=OUT_SEG; 
INTDATA(11):=INT_PROC; 
INTDATA(12):=DFIT_LIN; 
CONTI(EG_FUN, 
PAR,0,INTDATA,OBS_SMOOTH,STATES_OBS, 
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,EPS,HMIN,HMAX); 
END; 

COMMENT 

BEGIN 
COMMENT ### CREOBS COMMAND ### 
THIS COMMAND ALLOWS THE USER 
TO CREATE OBSERVATIONS FOR AN 
UNOBSERVED STATE VARIABLE 
COMMENT %OUTPUT 
ENTER NO. OF JOINTS AND JOINT POSITIONS 
FOR STATE VARIABLE (3-STATES_OBS(1)) 
INCLUDE FIRST AND LAST SAMPLE TIMES 
% INPUT (NO_CREOBS__JOINTS) ; 
FOR I:=l UNTIL NO_CREOBS_JOINTS DO 
COMMENT %INPUT (CREOBS_JOINTS(I)); 
COMMENT %OUTPUT 
ENTER CORRESPONDING ORDINATES FOR CREATED OBS; 
FOR I:=l UNTIL NO_CREOBS_JOINTS DO 
COMMENT %INPUT (CREOBS_VAL(I)); 

BEGIN 
REAL ARRAY X,Y(1::NO_CREOBS_JOINTS); 
REAL ARRAY P (1: : 7 *NO__CREOBS_JOINTS) ; 
REAL ARRAY SI(1::2); 
REAL ARRAY T,S,SI,S2(1::N_PTS_HIT); 
COMMENT %EXTERNAL SMT; 
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FOR I:=l UNTIL NO_CREOBS_JOINTS-l DO P(I):=0; 
FOR I:=l UNTIL NO_CREOBS_JOINTS DO 

BEGIN 
X(I):=CREOBS_JOINTS(I); 
Y(I):=CREOBS_VAL(I); 
END; 

SI (1) : = (Y(2)-Y(1) )/(X(2)-X(l) ) ; 
SI(2):=(Y(NO_CREOBS_JOINTS)-Y(NO_CREOBS_JOINTS-l))/ 
(X(NO_CREOBS_JOINTS)-X(NO_CREOBS_JOINTS-l)); 
FOR I:=l UNTIL N_PTS_HIT DO 
T(I):=PTS_TO_HIT(I); 
SMT(X,Y,P,SI,T,S,SI,S2,NO_CREOBS_JOINTS, 
1,N_PTS_HIT);' 
FOR I:=l UNTIL N_PTS_HIT DO 

BEGIN 
CREOBS(I):=S(I); 
DCREOBS(I) :=S1 (I) ; 
END; 

END; 
END; 

COMMENT 

BEGIN 
COMMENT ### IFIT COMMAND ###; 
INTEGER ARRAY INTDATA(1::14); 
INTEGER METHOD; 
COMMENT % EXTERNAL CONT, IFIT__CRE , IFITI, SPRGN; 
INTDATA(1):=N_PTS_HIT; 
INTDATA(2):=N_STATE_OBS; 
INTDATA(3):=N_STATE; 
INTDATA(4):=N_PAR; 
INTDATA(5):=SMF; 
INTDATA(6):=OUTPUT; 
INTDATA(7):=METHOD_FLAG; 
INTDATA(9):=OUTPUT_SUP; 
INTDATA(10):=OUT_SEG; 
INTDATA(11):=INT_PROC; 
INTDATA(12):=DFIT_LIN; 
COMMENT %OUTPUT 
ENTER METHOD 
REGULAR 1 
USING GUESSED OBS 2 
ITERATED INTEG. SUBSYSTEMS 3 
ITERATED USING SPARSE GN 4 
%INPUT (METHOD); 
CASE METHOD OF 

BEGIN 
CONTI(EG_FUN, 
PAR,1,INTDATA,OBS_SMOOTH,STATES_OBS, 
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
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HERM,DHERM,EPS,HMIN,HMAX); 
IFIT_CRE(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,CREOBS,DCREOBS); 
IFITI(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF, 
NJOINTS, N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,CREOBS,DCREOBS,IFIT_CRE); 
SPRGN(EG_FUN, 
PAR, INTDATA, OBS_SMOOTH, STATES_OBS, 
PTS_TO_HIT, JOINTS, SPLN_COEF, HERM_COEF, 
NJOINTS, <N_SPLN_PAR,SPLN_AL,DSPLN_AL, 
HERM,DHERM,CREOBS,DCREOBS,IFIT_CRE) 
END; 

END; 
COMMENT 
r 

BEGIN 
COMMENT ### FREEZE COMMAND ###; 
INTEGER SUB,KK; 
KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
FPAR(I):=PAR(KK); 
END; 

COMMENT %OUTPUT 
ENTER LIST OF SUBSCRIPTS FOR FROZEN PARAMETERS (0 TO END) 
(AN ENTRY OF 0 REMOVES ALL FREEZING) 
%INPUT (SUB); 
IF SUB=0 THEN 
BEGIN 
PFRZ:=FALSE; 
FOR I:=l UNTIL FN_PAR DO FRZ(I):=0; 
FOR I:=l UNTIL FN_PAR DO PAR(I):=FPAR(I); 
N_PAR:=FN_PAR; 
END 

ELSE 
BEGIN 
PFRZ:=TRUE; 
WHILE SUB~=0 DO 

BEGIN 
FRZ(SUB):=1; 
COMMENT %INPUT (SUB); 
END; 

END; 
KK:=0; 
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FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
PAR(KK):=FPAR(I); 
END; 

N_PAR:=KK; 
END; 

COMMENT 

BEGIN 
COMMENT ### SCALE COMMAND ###; 
INTEGER SUB,KK; 
COMMENT UPDATE FPAR FOR RESCALING; 
KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
FPAR(I):=PAR(KK); 
END; 

COMMENT DESCALE FPAR IN PREPARATION FOR RESCALING; 
FOR I:=l UNTIL FN_PAR DO 
IF SCL(I)=1 THEN FPAR(I):=LONGEXP(FPAR(I)) 
ELSE 
IF SCL(I)=2 THEN FPAR(I):=FPAR(I)**2; 
COMMENT %OUTPUT 
ENTER LIST OF PARAMETER SUBSCRIPTS AND 
SCALING INDICATORS (0 SUBSCRIPT TO END) 
INDICATOR OF 1 GIVES LOG SCALING 
INDICATOR OF 2 GIVES SQUARE ROOT SCALING 
%INPUT (SUB); 
IF SUB=0 THEN 
BEGIN 
PSCL:=FALSE; 
FOR I:=l UNTIL FN_PAR DO SCL(I):=0; 
END 

ELSE 
BEGIN 
PSCL:=TRUE; 
WHILE SUB~=0 DO 

BEGIN 
COMMENT %INPUT (SCL(SUB)),(SUB); 
END; 

END; 
COMMENT RESCALE PARAMETER VALUES; 
FOR I:=l UNTIL FN_PAR DO 
IF SCL(I)=1 THEN FPAR(I):=LONGLN(FPAR(I)) 
ELSE 
IF SCL(I)=2 THEN FPAR(I):=LONGSQRT(FPAR(I)); 
COMMENT UPDATE PAR; 
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KK:=0; 
FOR I:=l UNTIL FN_PAR DO 
IF FRZ(I)=0 THEN 
BEGIN 
KK:=KK+1; 
PAR(KK):=FPAR(I); 
END; 

END; 
COMMENT 

BEGIN 
COMMENT ### ECHO COMMAND ###; 
INTEGER INT; 
COMMENT %OUTPUT 
ENTER 1 TO BEGIN ECHO, 0 TO END ECHO 
%INPUT (INT); 
IF INT=1 THEN ECHO:=TRUE ELSE ECHO:=FALSE; 
IF INT=1 THEN ECHOl(l) 
ELSE ECHOl(3); 
END; 

COMMENT 
BEGIN 
COMMENT ### LINEAR COMMAND ### 
TO INDICATE LINEARITY IN IFIT, DFIT; 
COMMENT %OUTPUT 
ENTER 1 IF IFIT, DFIT GIVE LINEAR PROBLEMS 
ENTER 0 TO REMOVE LINEARITY SETTING 
%INPUT (DFIT_LIN); 
END 

END; 
GO TO READ_CMD; 
FINISHED: IF ECHO=TRUE THEN ECHOl(3); 
END PARFIT. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Procedure to modify sample times 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE HITPTS (PROCEDURE S T AND A RD__H IT, READ_CMD_DATA; 
LONG REAL ARRAY PTS_TO_HIT(*); 
INTEGER VALUE RESULT N_PTS_HIT; 
INTEGER VALUE MAX_PTS; 
INTEGER ARRAY OBS_STATUS(*); 
LONG REAL ARRAY OBS_PLACE(*); 
INTEGER VALUE N_OBS; 
LONG REAL VALUE INITIAL_TIME); 
BEGIN 
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COMMENT MODIFICATION OF SAMPLE TIMES 
(DEFAULT, UNIFORM MESH, OR INSERTION); 
INTEGER HIT_OPTION; 
COMMENT %OUTPUT TO USER 
PICK OPTION 
OBS PTS+INITIAL TIME--1 
UNIFORM MESH 2 
INTERACTIVE INSERTION-3 
%INPUT SELECTION IN (HIT_OPTION); 
CASE HIT_OPTION OF 

BEGIN ' 
BEGIN 
COMMENT STANDARD SCHEME—OBSERVATION POINTS PLUS INITIAL 
TIME; 
STANDARD_HIT(INITIAL_TIME,OBS_STATUS,OBS_PLACE,N_OBS, 
PTS_TO_HIT,N_PTS_HIT); 
END; 
BEGIN 
COMMENT A UNIFORM MESH STARTING WITH INITIAL_TIME; 
INTEGER N;LONG REAL DEL; 
COMMENT %OUTPUT TO USER 
ENTER NUMBER OF POINTS AND POINT SPACING 
%INPUT (N),(DEL); 
PTS_TO_HIT(l):=INITIAL_TIME; 
FOR I:=l UNTIL N DO 
PTS_TO_HIT(1+1):=INITIAL_TIME+I*DEL; 
N_PTS_HIT:=N+1; 
END; 
BEGIN 
COMMENT INTERACTIVE INSERTION OF POINTS BETWEEN EXISTING 
POINTS; 
INTEGER L1,L2,K,J; 
LONG REAL ARRAY NEW_PTS_TO_HIT(1::MAX_PTS); 
INTEGER ARRAY NEW_OBS_STATUS(1::MAX_PTS); 
INTEGER ARRAY CMD_DATA(1::21); 
COMMENT %OUTPUT TO USER 
IS A LISTING OF SAMPLE TIMES REQUIRED? 
IF NOT ENTER 0, IF YES ENTER SUBSCRIPT LIMITS 
%INPUT (LI); 
IF L1~=0 THEN 
BEGIN 
COMMENT %INPUT (L2) 
%OUTPUT TO USER 
LIST OF SAMPLE TIMES BETWEEN SUBSCRIPTS L l AND L2; 
END; 

COMMENT %OUTPUT TO USER 
ENTER SEQUENCE OF UPPER INDICIES AND NUMBER OF 
TIMES TO INSERT BETWEEN INDICATED TIME AND 
PREVIOUS TIME (END WITH 0).; 
READ_CMD_DATA(CMD_DATA); 
K:=l; 
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J:=0; 
FOR I:=l UNTIL N_PTS_HIT DO 
IF CMD_DATA(K)=I THEN 
BEGIN 
COMMENT INSERTION OF POINTS; 
LONG REAL DEL; 
INTEGER N_INS; 
N_INS:=CMD_DATA(K+l); 
DEL: = (PTS_TO__HIT(I) -PTS_TO_HIT (I-1) )/(N_INS+l) ; 
FOR R:=l UNTIL N_INS DO 
BEGIN 
J:=J+1; 
NEW_PTS_TO_HIT(J):=PTS_TO_HIT(1-1)+R*DEL; 
NEW_OBS_STATUS(J):=0; 
END; 

J:=J+1; 
NEW_PTS_TO_HIT(J):=PTS_TO_HIT(I); 
NEW_OBS_STATUS(J):=OBS_STATUS(I); 
K:=K+2; 
END 

ELSE 
BEGIN 
COMMENT COPYING OF OLD POINT; 
J:=J+1; 
NEW_PTS__TO_HIT (J):=PTS_TO_HIT(I); 
NEW_OBS_STATUS(J):=OBS_STATUS(I); 
END; 

N_PTS_HIT:=J; 
COMMENT COPY NEW ARRAYS; 
FOR I:=l UNTIL N_PTS_HIT DO 
BEGIN 
OBS_STATUS(I):=NEW_OBS_STATUS(I); 
PTS_TO_HIT(I):=NEW_PTS TO HIT(I); 
END; 

END 
END; 

END HITPTS. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ! 

Trapezoidal integration procedure 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%! 

PROCEDURE TRAP(LONG REAL ARRAY PAR(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY STATE(*,*); 
LONG REAL ARRAY JACOBIAN(*,*); 
INTEGER VALUE N_STATE,N_PTS_HIT,N_PAR,AUX_INT; 
PROCEDURE FUN; 
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INTEGER RESULT EFLAG; 
INTEGER VALUE OUTPUT); 
BEGIN 
LONG REAL ARRAY PREV_G,G,PREV_Y,Y(1::N_STATE); 
LONG REAL ARRAY PREV_DGP,DGP,PREV_SENSE, 
SENSE(1::N_STATE,1::N_PAR); 
LONG REAL ARRAY PREV_DGY,DGY(1::N_STATE,1::N_STATE); 
LONG REAL T,PREV_T; 
INTEGER OUT_COUNT,M; 
LONG REAL CRIT; 
PROCEDURE INT_STEP; 
BEGIN 
COMMENT INTEGRATE WITH TRAP. RULE FROM PREV_T TO T; 
COMMENT IF AUX_INT IS NOT 0, INTEGRATE SENSITIVITY EQNS; 
LONG REAL ARRAY RES(1::N_STATE); 
LONG REAL ARRAY X,DGY_DYP, B (1::N_STATE,1::N_PAR); 
LONG REAL ARRAY TMP,A(1::N_STATE,1::N_STATE); 
INTEGER ARRAY IPERM(1::2*N_STATE); 
LONG REAL H,SUM,SSQD,SSQ; 
INTEGER MAXIT; 
COMMENT %EXTERNAL FSLE_AL; 
MAXIT:=12; 
H:=T-PREV_T; 
COMMENT NEWTON METHOD ON NONLINEAR SYSTEM FOR TIME STEP; 
FOR I:=l UNTIL N_STATE DO Y(I):=PREV_Y(I); 
FOR I:=l UNTIL MAXIT DO 
BEGIN 
FUN(T, Y,PAR,1,G,DGY,DGP,SENSE); 
COMMENT FORM JACOBIAN FOR NONLINEAR SYSTEM; 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL N_STATE DO 
A(I,J):=-DGY(I,J)*H/2.; 
FOR I:=l UNTIL N_STATE DO A(I,I):=1.+A(I,I); 
FOR I:=l UNTIL N_STATE DO 
B (1,1):=-Y(I)+PREV_Y(I)+H/2.*(G(I)+PREV_G(I)); 
FSLE_AL(N_STATE,N_STATE,A,1,N_STATE, 
B, X,IPERM,N_STATE,TMP); 
COMMENT UPDATE AND GET SUP NORM; 
SSQD:=0.; 
SSQ:=0.; 
FOR I:=l UNTIL N_STATE DO 
BEGIN 
SSQD:=SSQD+X(1,1)**2; 
Y(I) :=X(I,1)+Y(I) ; 
SSQ:=SSQ+Y(I)**2; 
END; 

IF SSQ<1.'-3L THEN SSQ:=1.'-3L; 
IF (SSQD/SSQ)<(CRIT**2) THEN GO TO OUT; 
END; 

COMMENT %OUTPUT TO USER 
ABNORMAL EXIT IN NEWTON IN INTEGRATION STEP; 
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EFLAG:=1; 
GO TO STOP; 
OUT:IF AUX_INT~=0 THEN 

BEGIN 
COMMENT THIS BLOCK SOLVES AUXILIARY LINEAR PROBLEMS; 
FUN(T,Y,PAR,2,G,DGY,DGP,SENSE); 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0.; 
FOR K:=l UNTIL N_STATE DO 
SUM:=SUM+PREV_DGY(I,K)*PREV_SENSE(K,J); 
DGY_DYP(I,J):=SUM; 
END; 

COMMENT SET UP RIGHT HAND SIDES FOR DISCRETE LINEAR PROB; 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL N_PAR DO 
B(I,J):=PREV_SENSE(I,J)+H/2.*(PREV_DGP(I,J) 
+DGY_DYP(I,J)+DGP(I,J)); 
COMMENT SOLVE SYSTEMS; 
FSLE_AL(N_STATE,N_STATE,A,N_PAR,N_STATE,B,SENSE,IPERM, 
N_STATE,TMP); 
END; 

END INT_STEP; 
COMMENT MAIN PROGRAM STARTS HERE; 
CRIT:=1-'-5L; 
EFLAG:=0; 
OUT_COUNT:=0; 
M:=0; 
COMMENT SET UP INITIAL CONDITIONS; 
PREV_T:=PTS_TO_HIT(1); 
FUN(PREV_T,PREV_Y,PAR,3,G,DGY,DGP,PREV_SENSE); 
FOR I:=l UNTIL N_STATE DO STATE(I,1):=PREV_Y(I); 
FUN(PREV_T,PREV_Y,PAR,1,PREV_G, 
PREV_DGY,DGP,SENSE); 
IF AUX_INT~=0 THEN 
BEGIN 
FUN(PREV_T,PREV_Y,PAR,2,PREV_G, 
PREV_DGY,PREV_DGP,SENSE); 
FOR J:=l UNTIL N__STATE DO 
BEGIN 
M:=M+1; 
FOR L:=l UNTIL N_PAR DO 
JACOBIAN (L,M) : =PREV__SENSE (J , L) ; 
END; 

END; 
FOR I:=2 UNTIL N_PTS_HIT DO 
BEGIN 
T:=PTS_TO__HIT (I) ; 
INT_STEP; 
COMMENT OUTPUT OPTION; 
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I F OUTPUT~=0 THEN 
BEGIN 
OUT__COUNT: =0UT_C0UNT+1; 
I F OUT_COUNT=OUTPUT THEN 

BEGIN 
COMMENT OUTPUT TO -SCI 
TIME AND STATE VARIABLES; 
OUT_COUNT:=0; 
END; 

END; 
COMMENT INSERT DATA INTO STATE AND UPDATE; 
FOR J : = l UNTIL N_STATE DO 

BEGIN 
S T A T E ( J , I ) : = P R E V _ Y ( J ) : = Y ( J ) ; 
P R E V _ G ( J ) : = G ( J ) ; 
PREV_T:=T; 
FOR K : = l UNTIL N_STATE DO P R E V _ D G Y ( J , K ) : = D G Y ( J , K ) ; 
END; 

COMMENT INSERT DATA INTO JACOBIAN I F REQUIRED; 
I F AUX_INT~=0 THEN 

BEGIN 
FOR J : = l UNTIL N_STATE DO 
FOR K : = l UNTIL N_PAR DO 

BEGIN 
P R E V _ S E N S E ( J , K ) : = S E N S E ( J , K ) ; 
P R E V _ D G P ( J , K ) : = D G P ( J , K ) ; 
END; 

FOR J : = l UNTIL N_STATE DO 
BEGIN 
M:=M+1; 
FOR L : = l UNTIL N_PAR DO 
J A C O B I A N ( L , M ) : = S E N S E ( J , L ) ; 
END; 

END; 
END; 

STOP:END TRAP. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

S e n s i t i v i t y e q u a t i o n s o l u t i o n and i n t e r f a c e t o G e a r ' s c o d e 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE GEAR(LONG REAL ARRAY P ( * ) ; 
LONG REAL ARRAY P T S ( * ) ; 
LONG REAL ARRAY Y _ P T S ( * , * ) ; 
LONG REAL ARRAY J A C ( * , * ) ; 
INTEGER VALUE N,N_PTS; 
LONG REAL VALUE EPS,HMIN,HMAX; 
INTEGER VALUE N_PAR,AUX_INT; 
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PROCEDURE FUN; 
INTEGER RESULT KFLAG; 
INTEGER VALUE OUTPUT; 
INTEGER VALUE METHOD_FLAG; 
INTEGER VALUE INIT; 
LONG REAL ARRAY INITY(*); 
LONG REAL ARRAY INITYP(*,*)); 
BEGIN 
REAL ARRAY PW(1::N*N); 
LONG REAL ARRAY LY(1::8,1::N); 
LONG REAL ARRAY LSAVE(1::10,1::N+3); 
COMMENT ASSUMING N IS AT MOST 15 IN DECLARATION OF SAVE; 
LONG REAL ARRAY LYMAX,LERROR(1::N); 
LONG REAL LT,LH,LHMIN,LHMAX,LEPS,LNEXT_PT,HPl,HP2,LTS; 
INTEGER JSTART,MAXDER,MAX_STEP,STEP_COUNT,PT; 
INTEGER OUT_COUNT; 
LONG REAL ARRAY G(1::N); 
LONG REAL ARRAY DGY(1::N,1::N); 
LONG REAL ARRAY DGP,SENSE(1::N,1::N_PAR); 
LONG REAL ARRAY Z(1::N); 
COMMENT DECLARATIONS FOR HERMITE INTERPOLATION; 
LONG REAL ARRAY HERM_SAVE(1::2,1::N,1::1+N_PAR); 
LONG REAL ARRAY INTERP(1::4,1::N,1::1+N_PAR); 
COMMENT DECLARATIONS FOR AUXILIARY INTEGRATIONS; 
LONG REAL ARRAY STORE_DER(1::8,1::N,1::N_PAR); 
LONG REAL ARRAY AA(1::8); 
INTEGER PASS,ORDER; 
INTEGER MJAC; 
COMMENT %EXTERNAL DIFF; 
LONG REAL PROCEDURE POLYVAL(LONG REAL VALUE X; 
LONG REAL ARRAY COEF(*); 
INTEGER VALUE N_COEF); 
BEGIN 
LONG REAL Y; 
Y:=0.; 
FOR I:=N_COEF STEP -1 UNTIL 2 DO 
Y:=X*(COEF(I)+Y); 
Y+COEF(1) 
END POLYVAL; 

PROCEDURE INTERPOLATE_COEF; 
BEGIN 
LONG REAL ARRAY COEF(1::4); 
LONG REAL ARRAY DATA(1::6); 
PROCEDURE HERMITE(LONG REAL ARRAY DATA(*); 
LONG REAL ARRAY COEF(*)); 

BEGIN 
COMMENT CUBIC HERMITE INTERPOLATION. DATA 
CONTAINS ABSCISSAE, ORDINATES, AND 
SLOPES IN PAIRS. COEF CONTAINS THE 
COEFFICIENTS STARTING WITH THE CONSTANT 
TERM IN THE CUBIC; 
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COEF (4) : = (DATA(5)+DATA(6) ) / (DATA (2 ) -DATA (1') ) **2 
-2.0L*(DATA(4) -
DATA(3))/(DATA(2)-DATA (1))**3; 
COEF(3):=(DATA(6)-DATA(5))/(2.0L*(DATA(2)-DATA(1))) 
-1.5L*(DATA(2)+DATA(1))*COEF(4); 
COEF(2):=DATA(5)-3.0L*DATA(1)**2*COEF(4) 
-2.0L*DATA(1)*COEF(3); 
COEF(l):=DATA(3)-DATA(1)**3*COEF(4)-DATA(1)**2*COEF(3) 
-DATA(1)*COEF(2); 
END HERMITE; 

DATA(1):=LT-HPl; 
DATA(2):=LT; 
FOR I:=l UNTIL N DO 
BEGIN 
DATA(3):=HERM_SAVE(1,1,1); 
DATA(4):=LY(1,1); 
DATA(5):=HERM_SAVE(2,1,1); 
DATA(6):=LY(2,I)/HP1; 
HERMITE(DATA,INTERP(*,1,1) ) ; 
IF AUX_INT~=0 THEN 
FOR K:=l UNTIL N_PAR DO 
BEGIN 
COMMENT INTERPOLATION ON AUXILIARY PROBLEMS; 
DATA(3):=HERM_SAVE(1,1,K+l); 
DATA(4):=STORE_DER(l,I,K); 
DATA(5):=HERM_SAVE(2,1,K+l); 
DATA(6):=STORE_DER(2,I,K)/HPl; 
HERMITE(DATA,INTERP(*,I,K+l)); 
END; 

END; 
END INTERPOLATE_COEF; 

COMMENT 
MANAGEMENT PROGRAM STARTS HERE; 
OUT_COUNT:=0; PASS:=1; MJAC:=0; 
MAX_STEP:=200; 
COMMENT ONLY USE UP TO FOURTH ORDER METHOD 
CONSISTENT WITH INTERPOLATION; 
MAXDER:=4; LHMAX:=HMAX; LHMIN:=HMIN; 
LEPS:=EPS; PT:=2; 
LH:=(PTS(2)-PTS(1))/3; 
COMMENT MAKE SURE STARTING H IS LESS THAN .1; 
IF LH>.1 THEN LH:=.l; 
COMMENT FOR USE WHEN AUX_INT~=0; 
HP2:=LH; 
COMMENT INITIALIZE; 
IF INIT=1 THEN 
BEGIN 
FOR I:=l UNTIL N DO Z(I):=INITY(I); 
END 

ELSE 
FUN(PTS(1),Z,P,-3,G,DGY,DGP,SENSE); 
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FOR I:=l UNTIL N DO 
BEGIN 
LY(1,I):=Z(I); 
Y_PTS(1,1):=Z (I) ; 
LYMAX(I):=1.; 
END; 

COMMENT INITIALIZE NON JACOBIAN PART OF HERM_SAVE; 
FOR I:=l UNTIL N DO HERM_SAVE(1,I,1):=Z(I); 
FUN(PTS(1),Z,P,-1,G,DGY,DGP,SENSE); 
FOR I:=l UNTIL N DO HERM_SAVE(2,1,1):=G(I); 
LT:=PTS (1) ; 
STEP_COUNT:=0; 
LNEXT_PT:=PTS(PT); 
JSTART:=0; 
COMMENT USE MULTISTEP METHOD SUITABLE FOR STIFF PROBLEMS; 
WHILE PT<=N_PTS DO 

BEGIN 
STEP_COUNT:=STEP_COUNT+l; 
IF STEP_COUNT>MAX_STEP THEN 
BEGIN 
COMMENT IOUTPUT TO USER 
OVER (MAX_STEP) STEPS USED IN GEAR—GAVE UP; 
GO TO STOP; 
END; 

COMMENT FOR USE WITH AUX_INT~=0; 
LTS:=LT; 
DIFF(N,LT,LY,LSAVE,LH,LHMIN,LHMAX,LEPS,METHOD_FLAG,LYMAX, 
LERROR,KFLAG,JSTART,MAXDER,AA,ORDER,FUN,P,PW); 
COMMENT PROCESS COMPLETION CODE; 
IF KFLAG<0 THEN 
BEGIN 
CASE ABS KFLAG OF 

BEGIN 
COMMENT %OUTPUT 
PRINT TO USER LINE INDEXED BY KFLAG 
H=HMIN USED, ERROR NOT ATTAINED 
MAX ORDER SPECIFIED IS TOO LARGE 
NO CORRECTOR COMVERGENCE FOR H>HMIN 
REQUESTED ERROR TOO SMALL FOR PROB.; 
END; 

IF OUTPUT~=0 THEN 
CASE ABS KFLAG OF 
BEGIN 
COMMENT %OUTPUT TO -SCI THE SAME MESSAGE 
AS SENT TO USER IN LAST OUTPUT STATEMENT; 
END; 

GO TO STOP; 
END; 

HPl:=LT-LTS; 
LTS:=LT; 
IF AUX INT~=0 THEN 
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BEGIN 
INTEGER ARRAY IPERM(1::2*N); 
LONG REAL ARRAY TMPR,U(1::N,1::N); 
LONG REAL ARRAY B,F_PRED(1::N,1::N_PAR); 
COMMENT %EXTERNAL FSLE_AL; 
COMMENT AUXILIARY SYSTEMS BEING INTEGRATED; 
IF PASS=1 THEN 
BEGIN 
COMMENT FIRST PASS INITIALIZE VARIABLES; 
IF INIT=1 THEN 
BEGIN 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
SENSE(J,K):=INITYP(J,K); 
END 

ELSE 
FUN(PTS(1),Y_PTS(1,*),P,3,G,DGY,DGP,SENSE); 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
STORE_DER(1,J,K):=SENSE(J,K); 
FOR J:=l UNTIL N DO 
BEGIN 
MJAC:=MJAC+1; 
FOR L:=l UNTIL N_PAR DO 
JAC(L,MJAC):=STORE_DER(l,J,L); 
END; 

COMMENT INITIALIZE FIRST DERIVATIVE PART OF STORE_DER; 
FUN(PTS(1),Y_PTS(1,*),P,1,G,DGY,DGP,SENSE); 
FUN(PTS(1),Y_PTS(1,*),P,2,G,DGY,DGP,SENSE); 
FOR K:=l UNTIL N_PAR DO 
FOR I:=l UNTIL N DO 
BEGIN 
LONG REAL SUM; 
SUM:=0.; 
FOR J:=l UNTIL N DO 
SUM:=SUM+DGY(I,J)*STORE_DER(1,J,K); 
STORE_DER(2,I,K):=HP2*(SUM+DGP(I,K)); 
END; 

COMMENT INITIALIZE PART OF HERM_SAVE FOR JACOBIAN; 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
BEGIN 
HERM_SAVE(1,J,K+l):=STORE_DER(1,J,K); 
HERM_SAVE(2,J,K+l):=STORE_DER(2,J,K)/HP2; 
END; 

PASS:=2; 
END; 

IF HP1~=HP2 THEN 
BEGIN 
COMMENT STEP HAS CHANGED AND STORED DERIVATIVES 
NEED RESCALING; 
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LONG REAL RATIO,FACTOR; 
FACTOR:=1.L; 
RATIO:=HP1/HP2; 
FOR I:=2 UNTIL ORDER+1 DO 

BEGIN 
FACTOR:=FACTOR*RATIO; 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
STORE_DER(I,J,K):=STORE_DER(I,J,K)*FACTOR; 
END; 

END; 
COMMENT UPDATE HP2; 
HP2:=HP1; 
COMMENT FIND PREDICTED VALUE BY MULTIPLYING STORE_DER BY 
PASCAL TRIANGLE MATRIX; 
FOR K:=l UNTIL N_PAR DO 
FOR J:=2 UNTIL ORDER+1 DO 
FOR J1:=J UNTIL ORDER+1 DO 

BEGIN 
INTEGER J2; 
J2:=ORDER-Jl+J; 
FOR I:=l UNTIL N DO 
STORE_DER(J2,I,K):=STORE_DER(32,I,K) 
+STORE_DER(J2+l,I,K); 
END; 

COMMENT SAVE HPl TIMES PREDICTED 
R.H.S. TO DE'S IN F_PRED; 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
F_PRED(J,K):=STORE_DER(2,J,K); 
COMMENT SET UP R.H. SIDES FOR ALGEBRAIC LINEAR SYSTEMS; 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
B(J,K):=STORE_DER(l,J,K)-AA(l)*STORE_DER(2,J,K); 
COMMENT ADD IN INHOMOGENEOUS TERMS; 
FOR I:=l UNTIL N DO Z(I):=LY(1,1); 
FUN(LT,Z,P,2,G,DGY,DGP,SENSE); 
FOR K:=l UNTIL N_PAR DO 
FOR J:=l UNTIL N DO 
B(J,K):=B(J,K)+HP1*AA(1)*DGP(J,K); 
COMMENT SET UP MATRIX FOR LINEAR PROBLEMS; 
FOR I:=l UNTIL N DO Z(I):=LY(1,1); 
FUN(LT,Z,P,1,G,DGY,DGP,SENSE); 
FOR I:=l UNTIL N DO 
FOR J:=l UNTIL N DO 
U(I,J):=-HPl*AA(1)*DGY(I,J); 
FOR I:=l UNTIL N DO U(I,I):=U(I,I)+1.; 
COMMENT SOLVE LINEAR SYSTEMS; 
FSLE_AL(N,N,U,N_PAR,N,B,SENSE,IPERM,N,TMPR); 
COMMENT STORE SOLUTION AT NEW TIME IN STORE_DER; 
FOR J:=l UNTIL N DO 
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FOR K:=l UNTIL N_PAR DO 
STORE_DER(1, J , K):=SENSE(J,K); 
COMMENT FIND R.H.S. OF DE 1S AT NEW POINT; 
FOR K:=l UNTIL N_PAR DO 
FOR I:=l UNTIL N DO 

BEGIN 
LONG REAL SUM; 
SUM:=0.; 
FOR J:=l UNTIL N DO 
SUM:=SUM+DGY(I,J)*STORE_DER(1,J,K); 
STORE_DER(2,I,K):=HP1*(SUM+DGP(I,K)); 
END; 

COMMENT CORRECT HIGHER DERIVATIVES; 
IF ORDER>1 THEN 
FOR I:=3 UNTIL ORDER+1 DO 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
STORE_DER(I,J,K):=STORE_DER(I,J,K)+AA(I) 
*(STORE_DER(2,J,K)-F_PRED(J,K)); 
COMMENT IF REQUIRED INSERT NEXT HIGHER DERIVATIVES 
IN STORE_DER; 
IF JSTART>ORDER THEN 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
STORE_DER(ORDER+2,J,K):=AA(ORDER+1)*(STORE_DER(2,J,K) 
-F_PRED(J,K))/(ORDER+1); 
END; 

COMMENT OUTPUT OPTION; 
IF OUTPUT~=0 THEN 

BEGIN 
OUT_COUNT:=OUT_COUNT+l; 
IF OUT_COUNT=OUTPUT THEN 

BEGIN 
LONG REAL ARRAY V(1::N); 
LONG REAL TIME; 
FOR I:=l UNTIL N DO V (I) :=LY(1,1) ; 
TIME:=LT; 
COMMENT %OUTPUT TO -SCI 
TIME AND STATE VARIABLES; 
OUT_COUNT:=0; 
END; 

END; 
COMMENT CHECK IF PASSED A POINT; 
IF LT> =LNEXT_PT THEN 

BEGIN 
LONG REAL E; 
INTERPOLATE_COEF; 
WHILE LT>=LNEXT_PT DO 

BEGIN 
E : = (PTS(PT)-LT)/HP1; 
COMMENT INSERT DATA INTO Y_PTS; 
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FOR I:=l UNTIL N DO 
Y_PTS(I,PT):=POLYVAL(PTS(PT),INTERP(*,I,1),4); 
COMMENT INSERT DATA INTO JACOBIAN IF REQUIRED; 
IF AUX_INT~=0 THEN 
FOR J:=l UNTIL N DO 
BEGIN 
MJAC:=MJAC+1; 
FOR L:=l UNTIL N_PAR DO 
JAC(L,MJAC):=POLYVAL(PTS(PT),INTERP(*,J,L+l),4); 
END; 

PT:=PT+1; 
IF PT>N_PTS THEN GO TO STOP; 
LNEXT_PT:=PTS(PT); 
END; 

STEP_COUNT:=0; 
END; 

COMMENT UPDATE HERM_SAVE; 
FOR J:=l UNTIL N DO 
BEGIN 
HERM_SAVE(1,J,1):=LY(1,J); 
HERM_SAVE(2,J,1):=LY(2 , J)/HPl; 
END; 

IF AUX_INT~=0 THEN 
FOR J:=l UNTIL N DO 
FOR K:=l UNTIL N_PAR DO 
BEGIN 
HERM_SAVE(1,J,K+1):=STORE_DER(1 , J , K); 
HERM_SAVE(2 , J , K+l) :=STORE_DER(2,J,K)/HPl; 
END; 

COMMENT RESET JSTART; 
JSTART:=1; 
END; 

STOP:END GEAR. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Marguardt procedure 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE MARQUARDT(LONG REAL VALUE EPS_R,EPS_A; 
INTEGER VALUE M,N; PROCEDURE FUNC; 
LONG REAL ARRAY P(*); LONG REAL VALUE LAM; 
PROCEDURE SVD_AL); 

BEGIN 
COMMENT MARQUARDT-LEVENBERG TECHNIQUE—AN ADAPTATION OF 
THE VERSION USED BY BARD (1970), SIAM J . NUMER. ANAL. 7, 
157-186—OPTIONAL SCALING OF PROBLEM IF EPS_R, EPS_A ARE 
BOTH NEGATIVE; 
LONG REAL ARRAY UD,JAC(1::M,1::N); 
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LONG REAL ARRAY RES,RES1(1::M); 
LONG REAL ARRAY Pi,S,GRAD,GRADl,AUX_VEC,Z,DELTA,C(1::N); 
LONG REAL ARRAY VD(1::N,1::N); 
INTEGER ERROR_COUNT,MAXIT,MAXINT,MAXERR,EFLAG,DECLAM; 
LONG REAL F,Fl,SUM; LOGICAL CONV,SCALE; 
LONG REAL PROCEDURE COSINE(LONG REAL ARRAY V l ( * ) ; 
LONG REAL ARRAY V2(*)); 
BEGIN 
COMMENT FIND COSINE OF ANGLE BETWEEN VI AND V2; 
LONG REAL S1,S2,S3; 
S1:=0.L; S2:=0.L; S3:=0.L; 
FOR I:=l UNTIL N DO 
BEGIN 
S1:=S1-V1(I)*V2(I); 
S2:=S2+V1(I)**2; 
S3:=S3+V2(I)**2; 
END; 

Sl/LONGSQRT(S2*S3) 
END COSINE; 

COMMENT INITIALIZE AND SET BOUNDS ON EFFORT IN OPTIMIZATION 
ATTEMPT; 
MAXIT:=25; MAXINT:=4; MAXERR:=3; CONV:=FALSE; 
ERROR_COUNT:=0; 
DECLAM:=0; 
IF EPS_R<0 AND EPS_A<0 THEN 
BEGIN 
SCALE:=TRUE; 
EPS_R:=-EPS_R;EPS_A:=-EPS_A; 
COMMENT %OUTPUT TO USER, -SCI 
SCALING USED IN MARQUARDT; 
END 

ELSE 
BEGIN 
SCALE:=FALSE; 
FOR I:=l UNTIL N DO C(I):=1.L; 
END; 

COMMENT INITIAL LEAST SQUARES FUNCTION EVALUATION; 
FUNC(P,F,RES,JAC,GRAD,EFLAG); 
IF EFLAG=1 THEN 
BEGIN 
COMMENT HANDLE ERROR RETURN 
%OUTPUT TO USER, -SCI 
ERROR IN FIRST FUNCTION CALL IN MARQUARDT; 
WRITE("ERROR IN FIRST FUNC CALL IN MARQUARDT"); 
GO TO STOP; 
END; 

COMMENT 
%OUTPUT TO USER, -SCI 
INITIAL SUM OF SQUARES (F); 
COMMENT %OUTPUT TO USER 
INITIAL SUM OF SQUARES IS (F); 
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FOR ITER:=1 UNTIL MAXIT DO 
BEGIN 
IF SCALE=TRUE THEN 
BEGIN 
LONG REAL SUM; 
FOR J:=l UNTIL N DO 
BEGIN 
SUM:=0.L; 
FOR I:=l UNTIL M DO 
SUM:=SUM+JAC(I,J)**2; 
C(J):=LONGSQRT(SUM); 
END; 
FOR J:=l UNTIL N DO 
FOR I:=l UNTIL M DO 
JAC(I,J):=JAC(I,J)/C(J); 
FOR I:=l UNTIL N DO 
GRAD(I):=GRAD(I)/C(I); 
END; 

COMMENT FIND SINGULAR VALUE DECOMPOSITION OF JAC; 
SVD_AL(JAC,S,UD,VD,M,N,M,N,0,N,N) ; 
IF ITER=1 THEN 
BEGIN 
COMMENT INITIALIZE LAM; 
LAM: = (IF LAM<0 THEN .OIL ELSE LAM); 
END; 

COMMENT PREPARE FOR AN ITERATION; 
FOR I:=l UNTIL N DO 

BEGIN 
SUM:=0.L; 
FOR J:=l UNTIL M DO SUM:=SUM+UD(J,I)*RES(J); 
AUX_VEC(I):=SUM*S(I); 
END; 

COMMENT DETERMINE LAM; 
REDO:FOR I:=l UNTIL N DO 
Z(I):=AUX_VEC(I)/(S(I)**2+LAM); 
FOR I:=l UNTIL N DO 

BEGIN 
SUM:=0.L; 
FOR J:=l UNTIL N DO SUM:=SUM+VD(I,J)*Z(J); 
DELTA(I):=-SUM; 
END; 

FOR I:=l UNTIL N DO Pi (I) :=P(I)+DELTA(I)/C(I) ; 
COMMENT 
%OUTPUT TO -SCI 
TRIAL LAMBDA (LAM), TRIAL PARAMETER VECTOR (PI); 
COMMENT FIND LEAST SQUARES FUNCTION AT TRIAL PARAMETERS; 
FUNC(Pi,F1,RES1,JAC,GRADl,EFLAG); 
IF EFLAG=1 THEN 
BEGIN 
COMMENT HANDLE ERROR RETURN; 
ERROR_COUNT:=ERROR_COUNT+l; 
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IF ERROR_COUNT=MAXERR THEN 
BEGIN 
COMMENT 
%OUTPUT TO USER, -SCI 
(MAXERR) FUNCTION ERRORS; 
GO TO STOP; 
END 

ELSE 
BEGIN 
LAM:=LAM*10.L; 
DECLAM:=0; 
GO TO REDO; 
END; 

END; 
ERROR_COUNT:=0; 
COMMENT 
%OUTPUT TO -SCI 
TRIAL SUM OF SQUARES ( F l ) ; 
IF F K F THEN 
COMMENT DECREASE LAM AFTER TWO SUCCESSFUL 
FUNCTION REDUCTIONS; 

BEGIN 
DECLAM:=DECLAM+1; 
IF DECLAM=2 THEN 
BEGIN 
LAM:=(IF (.1L*LAM>1.'-10L) THEN .1L*LAM ELSE l . ' - l O L ) ; 
DECLAM:=0; 
END; 

COMMENT CHECK FOR CONVERGENCE; 
IF (F-FKEPS_R*F1+EPS_A) OR (Fl<EPS_A) THEN CONV:=TRUE; 
GO TO UPDATE; 
END 

ELSE 
BEGIN 
IF (COSINE(DELTA,GRAD))<.707 THEN 
BEGIN 
COMMENT INCREASE LAM; 
LAM:=10.L*LAM; 
DECLAM:=0; 
GO TO REDO; 
END 

ELSE 
BEGIN 
COMMENT DIRECTION TOO CLOSE TO STEEPEST DESCENT, 
THEREFORE DO NOT INCREASE LAM, BUT INTERPOLATE; 
LONG REAL GA,R0,Rl,Wl; 
COMMENT 
%OUTPUT TO USER, -SCI 
INTERPOLATING; 
GA:=0.L; 
R0:=1.L; 
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FOR I:=l UNTIL N DO 
GA:=GA+DELTA(I)*GRAD(I); 
FOR INTERP:=1 UNTIL MAXINT DO 

BEGIN 
R1:=GA*R0**2/(2.L*(GA*R0+F-F1)); 
W1:=(IF (.75L*R0<R1) THEN .75L*R0 ELSE R l ) ; 
R0:=(IF (.25L*R0>W1) THEN .25L*R0 ELSE Wl); 
REPEAT:FOR I:=l UNTIL N DO 
PI(I):=P(I)+RO*DELTA(I)/C(I); 
COMMENT 
%OUTPUT TO -SCI 
TRIAL PARAMETER VECTOR ( P i ) ; 
COMMENT FUNCTION EVALUATION AT TRIAL PARAMETERS; 
FUNC(PI,Fl,RES1,JAC,GRADl,EFLAG); 
IF EFLAG=1 THEN 

BEGIN 
COMMENT HANDLE ERROR RETURN; 
ERROR_COUNT:=ERROR_COUNT+l; 
IF ERROR_COUNT=MAXERR THEN 

BEGIN 
COMMENT 
%OUTPUT TO USER, -SCI 
(MAXERR) FUNCTION ERRORS IN INTERPOLATION PART; 
GO TO STOP; 
END 

ELSE 
BEGIN 
R0:=R0*.5L; 
GO TO REPEAT; 
END; 

END; 
ERROR_COUNT:=0; 
COMMENT 
%OUTPUT TO USER, -SCI 
TRIAL SUM OF SQUARES (Fl) ; 
IF F K F THEN 

BEGIN 
IF (F-FKEPS_R*F1+EPS_A) 
OR (FKEPS_A) THEN CONV:=TRUE; 
GO TO UPDATE; 
END; 

END INTERP; 
COMMENT 
%OUTPUT TO USER, -SCI 
(MAXINT) INTERPOLATIONS TRIED, NO REDUCTION 
IN SUM OF SQUARES; 
GO TO STOP; 
END; 

END; 
UPDATE: 
FOR I:=l UNTIL N DO 
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BEGIN 
P(I) :=P1(I) ; 
GRAD(I):=GRADl(I); 
END; 

F:=F1; 
COMMENT %OUTPUT TO USER 
NEW SUM OF SQUARES IS (F); 
FOR I:=l UNTIL M DO RES(I):=RES1(I); 
IF CONV=TRUE THEN GO TO FINISHED; 
END ITER; 

COMMENT 
%OUTPUT TO USER, -SCI 
OVER (MAXIT) ITERATIONS REQUIRED; GO TO STOP; 
FINISHED: 
COMMENT 
%OUTPUT TO USER, -SCI 
FINAL PARAMETERS (P), FINAL GRADIENT (GRAD), 
FINAL SUM OF SQUARES (F); 
STOP:END MARQUARDT. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Interactive optimization 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE INTERACTIVE_OPT(INTEGER VALUE M,N; 
PROCEDURE FUNC; 
LONG REAL ARRAY P(*); 
PROCEDURE SVD_AL; 
LONG REAL ARRAY OBS_PLACE(*); 
LONG REAL ARRAY PTS__TO_HIT (* ) ; 
LONG REAL ARRAY STATE(*,*); 
LONG REAL ARRAY OBS(*,*); 
LONG REAL ARRAY OBS_SMOOTH(*,*); 
LONG REAL ARRAY CREOBS(*); 
INTEGER VALUE N_OBS,N_PTS_HIT,N_STATE_OBS 
,N_STATE; 
INTEGER ARRAY STATES_OBS(*); 
INTEGER VALUE RESULT PLOT_NUMBER; 
PROCEDURE READ_CMD_DATA; 
PROCEDURE CMD_AL; 
PROCEDURE PLOT_COMMAND); 

BEGIN 
STRING(6) ARRAY COMMANDS(1::20); 
STRING(6) CMD; 
INTEGER CMD_CTR,CMD_NO,TECH,NP,EFLAG,ECT; 
LONG REAL LAMDA,DEL,F,TRIAL_F,SUM; 
LONG REAL ARRAY AUX_VEC,S,SP,TRIAL_SP, 
TRIAL__P , GRAD, TRIAL_GRAD (1: :N) ; 
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INTEGER ARRAY FREEZE(1::N); 
LOGICAL NUM,INIT,SUCCESS; 
LONG REAL ARRAY RES,TRIAL_RES(1::M); 
LONG REAL ARRAY TRIAL_JAC,JAC,AJAC,UD(1::M,1::N); 
LONG REAL ARRAY VD(1::N,1::N); 
COMMENT %EXTERNAL ECHO; 
PROCEDURE ECHO_CHECK; 
BEGIN 
COMMENT ECHO 3270 CONVERSATION BUFFER; 
IF ECT>80 THEN 
BEGIN 
ECHO(2); 
END; 

ECT:=0; 
END ECHO_CHECK; 

PROCEDURE MARQ_PREP; 
BEGIN 
COMMENT EXTRACT JACOBIAN AND PARAMETERS 
ON NONFROZEN COMPONENTS; 
INTEGER J J ; 
LONG REAL SUM; 
JJ:=0; 
FOR J:=l UNTIL N DO 
IF FREEZE(J)=0 THEN 
BEGIN 
JJ:=JJ+1; 
FOR I:=l UNTIL M DO AJAC(I,JJ):=JAC(I,J); 
SP(JJ) :=P(J) ; 
END; 

NP:=JJ; 
SVD_AL(AJAC, S , UD, VD, M , N, M , NP , 0 , NP , NP) ; 
FOR I:=l UNTIL NP DO 

BEGIN 
SUM:=0; 
FOR J:=l UNTIL M DO 
SUM:=SUM+UD(J,I)*RES(J); 
AUX_VEC(I):=SUM; 
END; 

FOR I:=l UNTIL NP DO 
AUX_VEC(I):=AUX_VEC(I)*S(I); 
END MARQ_PREP; 

PROCEDURE INITIALIZE; 
BEGIN 
COMMENT INITIALIZE; 
FUNC(P,F,RES,JAC,GRAD,EFLAG); 
IF EFLAG=1 THEN 
BEGIN 
INIT:=FALSE; 
NUM:=FALSE; 
GO TO READ_CMD; 
END; 
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CASE TECH OF 
BEGIN 

BEGIN 
COMMENT STEEPEST DESCENT CASE; 
COMMENT I N I T I A L I Z A T I O N AUTOMATIC; 
END; 
BEGIN 
COMMENT MARQUARDT; 
MARQ_PREP; 
END 

END; 
INI T : = F A L S E ; 
END I N I T I A L I Z E ; 

PROCEDURE UPDATE; 
BEGIN 
CASE TECH OF 

BEGIN 
BEGIN 
COMMENT UPDATE FOR STEEPEST DESCENT; 
FOR I : = l UNTIL N DO 

BEGIN 
P ( I ) : = T R I A L _ P ( I ) ; 
G R A D ( I ) : = T R I A L _ G R A D ( I ) ; 
END; 

F:=TRIAL_F; 
END; 
BEGIN 
COMMENT UPDATE FOR MARQUARDT; 
F:=TRIAL_F; 
FOR I : = l UNTIL N DO 

BEGIN 
P ( I ) : = T R I A L _ P ( I ) ; 
G R A D ( I ) : = T R I A L _ G R A D ( I ) ; 
END; 

FOR I : = l UNTIL M DO 
RES ( I ) : = T RIAL_RES(I) ; 
FOR J : = l UNTIL N DO 
FOR I : = l UNTIL M DO 
J A C ( I , J ) : = T R I A L _ J A C ( I , J ) ; 
MARQ_PREP; 
END 

END; 
SUCCESS:=FALSE; 
END UPDATE; 

COMMENT I N I T I A L I Z E ; 
ECT:=0; 
ECHO(l); 
COMMENT %OUTPUT TO USER -REPRT 
######INTERACTIVE OPTIMIZATION ATTEMPT*#####; 
INIT:=TRUE; 
LAMDA:=.01; 
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TECH:=2; 
SUCCESS:=FALSE; 
NUM:=FALSE; 
FOR I:=l UNTIL N DO FREEZE (I) :=0; 
COMMENT SET UP COMMAND DESIGNATORS; 
COMMANDS(1):="T "; 
COMMANDS(2):="M 
COMMANDS(3):="N "; 
COMMANDS(4):="V "; 
COMMANDS(5):="F "; 
COMMANDS(6):="DF 
COMMANDS(7):="SET "; 
COMMANDS(8):="Q "; 
COMMANDS(9):="PLOT "; 
COMMANDS(10):="END "; 
COMMENT READ COMMAND DESIGNATOR AND IDENTIFY; 
READ__CMD: 
COMMENT %OUTPUT TO USER 
****ENTER OPTIMIZATION COMMAND****; 
ECHO_CHECK; 
COMMENT %INPUT (CMD); 
CMD_CTR:=1; 
WHILE COMMANDS(CMD_CTR)~="END " DO 

BEGIN 
IF COMMANDS(CMD_CTR)=CMD THEN 
BEGIN CMD_NO:=CMD_CTR; 
GO TO OUT; 
END; 

CMD_CTR:=CMD_CTR+1; 
END; 

COMMENT %OUTPUT TO USER 
COMMAND IN ERROR RESPECIFY; 
GO TO READ_CMD; 
OUT:CASE CMD_NO OF 

BEGIN 
BEGIN 
COMMENT CHOICE OF TECHNIQUE COMMAND; 
STRING(6) MET; 
INTEGER TECH1; 
ECT:=ECT+1; 
TECH1:=TECH; 
COMMENT %INPUT (MET); 
IF MET="SD " THEN TECH:=1 
ELSE 
IF MET="MARQ " THEN TECH:=2 
ELSE 

BEGIN 
COMMENT %OUTPUT TO USER 
ERROR IN TECHNIQUE SPECIFICATION; 
GO TO READ_CMD; 
END; 
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I F TECH~=TECH1 THEN INIT:=TRUE; 
END; 
BEGIN 
COMMENT MULTIPLY OPTIMIZATION PARAMETER BY A FACTOR; 
LONG REAL FACTOR; 
ECT:=ECT+3; 
COMMENT %INPUT (FACTOR); 
CASE TECH OF 

BEGIN 
DEL:=DEL*FACTOR; 
LAMDA:=LAMDA*FACTOR 
END; 

NUM:=TRUE; 
END; 
BEGIN 
COMMENT NEW OPTIMIZATION PARAMETER; 
ECT:=ECT+3; 
CASE TECH OF 

BEGIN 
BEGIN 
COMMENT %INPUT ( D E L ) ; 
END; 
BEGIN 
COMMENT %INPUT ( D E L ) ; 
END 

END; 
NUM:=TRUE; 
END; 
BEGIN 
COMMENT VIEW COMMAND; 
STRING(6) UNIT; 
ECT:=ECT+10; 
I F INIT=TRUE THEN I N I T I A L I Z E 
ELSE I F SUCCESS=TRUE THEN UPDATE; 

BEGIN 
COMMENT %OUTPUT TO USER 
PARAMETERS, GRADIENT, FREEZING; 
CASE TECH OF 

BEGIN 
BEGIN 
COMMENT STEEPEST DESCENT; 
COMMENT %OUTPUT TO USER 
STEEPEST DESCENT CURRENT STEP ( D E L ) ; 
END; 
BEGIN 
COMMENT MARQUARDT DATA; 
COMMENT %OUTPUT TO USER 
MARQUARDT, (LAMDA), ( S ) ; 
END 

END; 
COMMENT %OUTPUT TO USER 
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CURRENT SUM OF SQUARES ( F ) ; 
END; 

END; 
BEGIN 
COMMENT FREEZE COMMAND; 
INTEGER CMP; 
I F SUCCESS=TRUE THEN UPDATE; 
COMMENT %INPUT (CMP); 
WHILE CMP~=0 DO 

BEGIN 
ECT:=ECT+1; 
FREEZE(CMP):=1; 
COMMENT %INPUT (CMP); 
END ; 

INIT:=TRUE; 
END; 
BEGIN 
COMMENT DEFREEZE COMMAND; 
INTEGER CMP; 
I F SUCCESS=TRUE THEN UPDATE; 
COMMENT %INPUT (CMP); 
I F CMP=0 THEN 

BEGIN 
COMMENT REMOVE A L L FREEZING; 
FOR I : = l UNTIL N DO F R E E Z E ( I ) : = 0 ; 
END 

ELSE 
WHILE CMP~=0 DO 

BEGIN 
ECT:=ECT+1; 
FREEZE(CMP):=0; 
COMMENT %INPUT (CMP); 
END; 

INIT:=TRUE; 
END; 
BEGIN 
COMMENT SET COMMAND; 
INTEGER CMP; 
I F SUCCESS=TRUE THEN UPDATE; 
COMMENT %INPUT (CMP); 
WHILE CMP~=0 DO 

BEGIN 
COMMENT %INPUT ( P ( C M P ) ) , (CMP); 
ECT:=ECT+1; 
END; 

INIT:=TRUE; 
END; 
BEGIN 
COMMENT QUIT COMMAND; 
I F SUCCESS=TRUE THEN UPDATE; 
ECHO(3) ; 
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GO TO STOP; 
END; 
BEGIN 
COMMENT PLOT COMMAND; 
PLOT_COMMAND( OBS_PLACE, 
PTS_TO_HIT,STATE,OBS,OBS_SMOOTH,P, 
N_OBS,N_PTS_HIT,N_STATE_OBS,N_STATE,N, 
STATES_OBS,PLOT_NUMBER, 
READ_CMD_DATA, 
CMD_AL,CREOBS); 
ECT:=ECT+25; 
END 

END; 
COMMENT CARRY OUT NUMERICAL WORK I F REQUIRED; 
I F NUM=TRUE THEN 

BEGIN 
I F INIT=TRUE THEN 
I N I T I A L I Z E 
ELSE I F SUCCESS=TRUE THEN 
UPDATE; 
CASE TECH OF 

BEGIN 
BEGIN 
COMMENT STEEPEST DESCENT ITERATION ATTEMPT; 
FOR I : = l UNTIL N DO 
I F F R E E Z E ( I ) = 0 THEN 
T R I A L _ P ( I ) : = P ( I ) - D E L * G R A D ( I ) 
ELSE 
T R I A L _ P ( I ) : = P ( I ) ; 
ECT:=ECT+3; 
COMMENT %OUTPUT 
TRI A L PARAMETERS ( T R I A L _ P ) ; 
F U N C ( T R I A L _ P , T R I A L _ F , T R I A L _ R E S , T R I A L _ J A C 
,TRIAL_GRAD,EFLAG); 
I F EFLAG=1 THEN 

BEGIN 
NUM:=FALSE; 
GO TO READ_CMD; 
END; 
BEGIN 
I F TRIAL_F<F THEN 

BEGIN 
COMMENT REDUCED R E S I D U A L — T E L L USER; 
ECT:=ECT+3; 
COMMENT %OUTPUT TO USER 
STEEPEST DESCENT STEP SUCCESSFUL 
NEW SUM OF SQUARES ( T R I A L _ F ) , 
CHANGE I N SUM OF SQUARES ( F - T R I A L _ F ) ; 
SUCCESS:=TRUE; 
END 

ELSE 
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COMMENT STEP UNSUCCESSFUL; 
ECT:=ECT+3; 
COMMENT %OUTPUT TO USER 
STEEPEST DESCENT DID NOT REDUCE RESIDUAL 
NEW SUM OF SQUARES ( T R I A L _ F ) ; 
END; 

COMMENT %OUTPUT TO USER 
STEP WAS ( D E L ) ; 
END; 

END; 
BEGIN 
COMMENT MARQUARDT ITERATION ATTEMPT; 
LONG REAL ARRAY Z(1::N); 
INTEGER J J ; 
FOR I : = l UNTIL NP DO 
Z ( I ) : = A U X _ V E C ( I ) / ( S ( I ) * * 2 + L A M D A ) ; 
FOR I : = l UNTIL NP DO 

BEGIN 
SUM:=0; 
FOR J : = l UNTIL NP DO SUM:=SUM+VD(I,J)*Z(J) 
T R I A L _ S P ( I ) : = S P ( I ) - S U M ; 
END; 

JJ:=0 
FOR I : = l UNTIL N DO 

BEGIN 
I F F REEZE(I)=0 THEN 

BEGIN 
J J : = J J + 1 ; 
T R I A L _ P ( I ) : = T R I A L _ S P ( J J ) 
END 

ELSE T R I A L _ P ( I ) : = P ( I ) ; 
END; 
BEGIN 
COMMENT %OUTPUT TO USER 
TR I A L PARAMETERS ( T R I A L _ P ) ; 
ECT:=ECT+3; 
END; 

F U N C ( T R I A L _ P , T R I A L _ F , T R I A L _ R E S , 
TRIAL__JAC , TRIAL_GRAD , EFLAG) ; 
I F EFLAG=1 THEN 

BEGIN 
NUM:=FALSE; 
GO TO READ_CMD; 
END; 
BEGIN 
I F TRIAL_F<F THEN 

BEGIN 
COMMENT REDUCED R E S I D U A L — T E L L USER; 
ECT:=ECT+3; 
COMMENT %OUTPUT TO USER 
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MARQUARDT STEP SUCCESSFUL 
NEW SUM OF SQUARES (TRIAL_F) 
CHANGE IN SUM OF SQUARES (T-TRIAL_F); 
SUCCESS:=TRUE; 
END 

ELSE 
BEGIN 
ECT:=ECT+3; 
COMMENT %OUTPUT TO USER 
MARQUARDT DID NOT REDUCE RESIDUAL 
NEW SUM OF SQUARES (TRIAL_F); 
END; 

COMMENT %OUTPUT TO USER 
LAMBDA IS (LAMDA); 
ECT:=ECT+1; 
END; 

END 
END; 

NUM:=FALSE; 
END; 

GO TO READ_CMD; 
STOP:END INTERACTIVE OPT. 

; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

P l o t t i n g procedure 
%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE PLOT_COMMAND(LONG REAL ARRAY LOBS_PLACE(*) 
LONG REAL ARRAY LPTS_TO_HIT(*); 

LSTATE(*,*); 
LOBS(*,*); 
LOBS_SMOOTH(*,*); 
PAR(*); 
OBS,N_PTS_HIT,N STATE 

LONG 
LONG 
LONG 
LONG 

ARRAY 
ARRAY 
ARRAY 
ARRAY 

REAL 
REAL 
REAL 
REAL 

INTEGER VALUE N 
,N_STATE,N_PAR; 
INTEGER ARRAY STATES_OBS(*); 
INTEGER VALUE RESULT PLOT_NUMBER; 
PROCEDURE READ_CMD_DATA; 

CMD_AL; 
ARRAY LCREOBS(*)) ; 

OBS 

PROCEDURE 
LONG REAL 
BEGIN 
COMMENT PLOT COMMAND FOR STATE VARIABLES, OBSERVATIONS, 
SMOOTHING, GUESSED OBSERVATIONS, AND PHASE PLOTS; 
INTEGER ARRAY STATE_PLOT(1::N_STATE+1); 

OBS_PLOT,SMOOTH_PLOT,SCRATCH(1::N_STATE_OBS+l) 
PLOT_ITEMS(l::5); 
CRE PLOT,PH PLOT(1::2); 

INTEGER ARRAY 
INTEGER ARRAY 
INTEGER ARRAY 
STRING(1) ANS 
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INTEGER I ; 
LONG REAL X S I Z E , Y S I Z E ; 
STRING(10) LABELX,LABELY; 
COMMENT DECLARE SINGLE PRECISION ARRAYS TO PASS DATA 
TO GRAPHICS PROCEDURES; 
REAL ARRAY OBS_PLACE(1::N_OBS); 
REAL ARRAY PTS_TO_HIT(1::N_PTS_HIT); 
REAL ARRAY STATE(1::N_PTS_HIT,1::N_STATE); 
REAL ARRAY OBS(1::N_OBS,1::N_STATE_OBS); 
REAL ARRAY OBS_SMOOTH(1::N_PTS_HIT,1::N_STATE_OBS); 
REAL ARRAY CREOBS(1::N_PTS_HIT,1::1); 
PROCEDURE MAX_MIN(REAL ARRAY X ( * ) ; I N T E G E R VALUE N; 
REAL RESULT MAX,MIN); 

BEGIN 
COMMENT FIND MAXIMUM AND MINIMUM OF X; 
MAX:=X(1);MIN:=X(1); 
FOR I : = l UNTIL N DO 

BEGIN 
I F X(I)>MAX THEN M A X : = X ( I ) ; 
I F X ( I ) < M I N THEN M I N : = X ( I ) ; 
END; 

END MAX_MIN; 
PROCEDURE PLOT; 

BEGIN 
COMMENT THIS PROCEDURE CONTAINS THE INTERFACE TO ALL 
GRAPHICS PROCEDURES; 
REAL MAX_X,MAX_Y,MAX_XT,MAX_YT, 
MI N_X , MI N_Y , MI N_X T , MI N_Y T ; 
INTEGER I,NEW; 
COMMENT %EXTERNAL ALGRAF_AL, PLOT_AL 
ALSIZE__AL, ALSCAL_AL, A L A X I S _ A L ; 
PROCEDURE MAX_MIN_MTX(INTEGER ARRAY P O S ( * ) ; 
REAL ARRAY X ( * , * ) ; 
INTEGER VALUE N ) ; 

BEGIN 
INTEGER J ; 
J : = l ; 
WHILE POS(J)~=0 DO 

BEGIN 
MAX_MIN(X(*,POS(J)),N,MAX_YT,MIN_YT); 
I F MAX_YT>MAX_Y THEN MAX__Y : =MAX_YT; 
I F MIN_YT<MIN_Y THEN MIN_Y:=MIN_YT; 
J:=J+1; 
END; 

END MAX_MIN_MTX; 
PROCEDURE PLOT_HELP(INTEGER ARRAY P O S ( * ) ; R E A L ARRAY X ( * ) ; 
REAL ARRAY Y ( * , * ) ; 
INTEGER VALUE N,NS); 

BEGIN 
INTEGER J ; 
J : = l ; 
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WHILE POS(J)~=0 DO 
BEGIN 
ALGRAF_AL(X,Y(*,POS(J)),NEW*N,-5*NS-POS(J)); 
IF NEW>0 THEN NEW:=-1; 
J:=J+1; 
END; 

END PLOT_HELP; 
COMMENT DETERMINE BOUNDS FOR SCALING; 
MAX_X:=-1.'50;MIN_X:=1.'50; 
IF PLOT_ITEMS(1)=5 THEN 
MAX_MIN(STATE(*,1),N_PTS_HIT,MAX_X,MIN_X) 
ELSE 

BEGIN 
FOR I:=l UNTIL 5 DO 
IF PLOT_ITEMS(I)=2 THEN 
MAX_MIN(OBS_PLACE,N_OBS,MAX_X,MIN_X); 
MAX_MIN(PTS_TO_HIT,N_PTS_HIT,MAX_XT,MIN_XT); 
IF MAX_XT>MAX_X THEN MAX_X:=MAX_XT; 
IF MIN_XT<MIN_X THEN MIN_X:=MIN_XT; 
END; 

MAX_Y:=-1.'50;MIN_Y:=1.'50; 
I: =1; 
WHILE PLOT_ITEMS(I)~=0 DO 

BEGIN 
CASE PLOT_ITEMS(I) OF 

BEGIN 
MAX_MIN_MTX(STATE_PLOT,STATE,N_PTS_HIT); 
MAX_MIN_MTX(OBS_PLOT,OBS,N_OBS); 
MAX_MIN_MTX(SMOOTH_PLOT,OBS_SMOOTH,N_PTS_HIT); 
MAX_MIN_MTX(CRE_PLOT,CREOBS,N_PTS_HIT); 
MAX_MIN(STATE(*,2),N_PTS_HIT,MAX_Y,MIN_Y) 
END; 

I:=1+1; 
END; 

COMMENT DO THE PLOTTING; 
ALSIZE_AL(XSIZE-1.'-5,YSIZE-1.'-5); 
ALSCAL_AL(MIN_X,MAX_X,MIN_Y,MAX_Y); 
ALAXIS_AL(LABELX,50,LABELY, 50); 
NEW:=1; 
I : =1; 
WHILE PLOT_ITEMS(I)~=0 DO 

BEGIN 
CASE PLOT_ITEMS(I) OF 

BEGIN 
PLOT_HELP(STATE_PLOT,PTS_TO_HIT,STATE,N_PTS_HIT,0); 
PLOT_HELP(OBS_PLOT,OBS_PLACE,OBS,N_OBS,l); 
PLOT_HELP(SMOOTH_PLOT,PTS_TO_HIT,OBS_SMOOTH, 
N_PTS_HIT,2); 
PLOT_HELP (CRE_PLOT, PTS_TO_HIT , CREOBS , N_PTS__HIT, 3) ; 
PLOT_HELP(PH_PLOT,STATE(*,1),STATE,N_PTS_HIT,4) 
END; 
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I:=I+1; 
END; 

COMMENT PREPARE FOR NEXT PLOT; 
PLOT_AL(12.0,0,-3); 
END PLOT; 

COMMENT EXECUTION BEGINS HERE 
FIRST COPY ARRAYS TO SINGLE PRECISION COUNTERPARTS; 
FOR I:=l UNTIL N_OBS DO 
OBS_PLACE(I):=LOBS_PLACE(I); 
FOR I:=l UNTIL N_PTS_HIT DO 
PTS_TO_HIT(I):=LPTS_TO_HIT(I); 
FOR J:=l UNTIL N_STATE DO 
FOR I:=l UNTIL N_PTS_HIT DO 
STATE(I,J):=LSTATE(I,J); 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_OBS DO 
OBS(I,J):=LOBS(I,J); 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR I:=l UNTIL N_PTS_HIT DO 
OBS_SMOOTH(I,J):=LOBS_SMOOTH(I,J); 
FOR I:=l UNTIL N_PTS_HIT DO 
CREOBS(1,1):=LCREOBS(I); 
XSIZE:=5.; 
YSIZE:=3.; 
COMMENT %OUTPUT TO USER 
SEQUENCE OF ITEMS TO PLOT(END WITH 0) 
STATE VARIABLES 1 
OBSERVATIONS 2 
SMOOTHED OBSERVATIONS 3 
GUESSED OBSERVATIONS 4 
PHASE PLOT • 5; 
READ__CMD_DATA (PLOT_I TEMS) ; 
LABELX:="TIME";LABELY:="STATE"; 
I: =1; 
WHILE PLOT_ITEMS(I)~=0 DO 

BEGIN 
CASE PLOT_ITEMS(I) OF 

BEGIN 
BEGIN 
COMMENT %OUTPUT TO USER 
STATE VARIABLES(END WITH 0); 
READ_CMD__DATA (STATE_PLOT) ; 
END; 
BEGIN 
INTEGER II; 
COMMENT %OUTPUT TO USER 
OBSERVED VARIABLES TO PLOT (END WITH 0); 
READ_CMD_DATA(SCRATCH); 
II:=1; 
WHILE SCRATCH(II)~=0 DO 

BEGIN 
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FOR J:=l UNTIL N_STATE_OBS DO 
IF SCRATCH(II)=STATES_OBS(J) THEN OBS_PLOT(II) 
:=J; 
II:=II+1; 
END; 

OBS_PLOT(II):=0; 
END; 
BEGIN 
INTEGER II; 
COMMENT %OUTPUT 
SMOOTHED OBSERVATIONS TO PLOT (END WITH 0); 
READ_CMD_DATA(SCRATCH); 
II:=1; 
WHILE SCRATCH(II)~=0 DO 

BEGIN 
FOR J:=l UNTIL N_STATE_OBS DO 
IF SCRATCH(II)=STATES_OBS(J) THEN SMOOTH_PLOT(II) 
:=J; 
II:=II+1; 
END; 

SMOOTH_PLOT(II):=0; 
END; 
BEGIN 
COMMENT GUESSED OBSERVATIONS CASE; 
CRE_PLOT(1):=1;CREJPLOT(2):=0; 
END; 
BEGIN 
COMMENT PHASE PLOT CASE; 
PH_PLOT(l):=2;PH_PLOT(2):=0; 
LABELX:="Yl";LABELY:="Y2"; 
END 

END; 
I:=I+1; 
END; 

COMMENT %FILE EMPTY FILE -GRAPH; 
PLOT; 
COMMENT %FILE DISPLAY -GRAPH TO USER 
%OUTPUT TO USER 
IS A PERMANENT PLOT REQUIRED ANS. Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
XSIZE:=10; 
YSIZE:=10; 
COMMENT %FILE EMPTY -GRAPH; 
PLOT; 
COMMENT %FILE ACCUMULATE -GRAPH IN -GRAPHSTORE; 
PLOT_NUMBER:=PLOT_NUMBER+l; 
COMMENT %OUTPUT TO USER, -REPRT 
CURRENT PLOT_NUMBER (PLOT_NUMBER) 
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CURRENT PARAMETERS (PAR) 
DESCRIPTION OF PLOT CONTENTS; 
END; 

END PLOT COMMAND. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Sparse Gauss-Newton for iterated methods 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE SPRGN(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*) ; 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*); 
INTEGER ARRAY STATES_OBS(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*) ; 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM; 
LONG REAL ARRAY CREOBS(*); 
LONG REAL ARRAY DCREOBS(*); 
PROCEDURE ITER_PAR); 

BEGIN 
COMMENT ITERATED IFIT AND DFIT IN THE TWO STATE VARIABLE CASE 
USING A SPARSE GAUSS-NEWTON METHOD TO IMPROVE 
GUESSED OBSERVATIONS 
(2 OPTIONS, FIXED INITIAL CONDITIONS ON GUESSED OBSERVATIONS, 
AND VARIABLE INITIAL CONDITIONS FOR GUESSED OBSERVATIONS; 
PROCEDURE ITER_FUNC(LONG REAL ARRAY C(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY AHES(*); 
LONG REAL ARRAY GRAD(*); 
INTEGER VALUE FULL); 
BEGIN 
COMMENT LEAST SQUARES FUNCTION FOR 
ITERATIVELY IMPROVING THE 
GUESSED OBSERVATIONS USING A SPARSE GAUSS NEWTON METHOD; 
LONG REAL ARRAY A,JA(1::N_PTS_HIT); 
LONG REAL ARRAY B (1: :N_PTS__HIT-1) ; 
LONG REAL ARRAY JB (1: :N__PTS__HIT-1 ,1: : 2) ; 
LONG REAL ARRAY DGY,PREV_DGY(1::2,1::2); 
LONG REAL ARRAY DGP,SENSE(1::1,1::1); 
LONG REAL ARRAY G,PREV_G,Y(1::2); 
LONG REAL HI; 
Y(SM_Y):=OBS_SMOOTH(1,1); 
Y(CR_Y):=C(1); 

APPENDIX B 



264 

G_FUN(PTS_T0_HIT(1),Y,PAR,1,PREV_G,PREV_DGY,DGP,SENSE); 
A(l):=PREV_G(SM_Y) 
-(CASE SMF 0F(DSPLN_AL(PTS_T0_HIT(1), 
SPLN_C0EF(*,1),JOINTS(*,1), 
NJOINTS(1),N_SPLN_PAR(1)), 
DHERM(PTS_TO_HIT(l),HERM_COEF( * , * , 1),JOINTS(*,D, 
NJOINTS(1)))); 
JA(1):=PREV_DGY(SM_Y,CR_Y); 
FOR I:= 2 UNTIL N_PTS_HIT DO 
BEGIN 
Y(SM_Y):=OBS_SMOOTH(I,1); 
Y(CR_Y):=C (I) ; 
G_FUN(PTS_TO_HIT(I),Y,PAR,1,G,DGY,DGP,SENSE); 
A(I):=G(SM_Y) 
-(CASE SMF OF(DSPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(*,1),JOINTS(*,1), 
NJOINTS(1),N_SPLN_PAR(1)), 
DHERM(PTS_TO_HIT(I),HERM_COEF(*,*,1), JOINTS (*,D, 
NJOINTS(1)))); 
JA(I):=DGY(SM_Y,CR_Y); 
HI:=PTS_TO_HIT(I)-PTS_TO_HIT(1-1); 
B(I-l):=.5L*(G(CR_Y)+PREV_G(CR_Y))-(C(I)-C(1-1))/HI; 
JB(1-1,1) : = .5 L * P REV_DGY(CR_Y,CR_Y)+1.L/HI; 
JB(1-1,2):=.5L*DGY(CR_Y,CR_Y)-l.L/HI; 
FOR J:=l UNTIL 2 DO 
PREV_G(J):=G(J); 
FOR J:=l UNTIL 2 DO 
FOR K:=l UNTIL 2 DO 
PREV_DGY(J,K):=DGY(J,K); 
END; 

IF FULL=1 THEN 
BEGIN 
COMMENT FORM AHES TO CONFORM TO DFBAND; 
AHES(l):=JB(1,1)**2+JA(l)**2; 
FOR I:=2 UNTIL N_PTS_HIT-1 DO 
AHES (2* (I-D+l) :=JA(I) **2+JB (1-1,2) **2+JB(I ,1) **2; 
AHES(2*(N_PTS_HIT-1)+1):=JA(N_PTS_HIT)**2 
+JB(N_PTS_HIT-1,2)**2; 
FOR I:=l UNTIL N_PTS_HIT-1 DO 
AHES(2*1):=JB(I,1)*JB(I,2); 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PTS_HIT DO 
BEGIN 
GRAD(I):=JA(I)*A(I); 
IF 1=1 THEN GRAD(I):=GRAD(I)+JB(1,1)*B(1) 
ELSE 
IF I=N_PTS_HIT THEN GRAD(I):=GRAD(I)+ 
JB(N_PTS_HIT-1,2)*B(N_PTS_HIT-1) 
ELSE 
GRAD(I):=GRAD(I)+JB(I-1,2)*B(I-1)+JB(I,1)*B(I); 
END ; 
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END; 
COMMENT FORM F; 
F:=0.L; 
FOR I:=l UNTIL N_PTS_HIT DO 
F:=F+A(I)**2; 
FOR I:=l UNTIL N_PTS_HIT-1 DO 
F:=F+B(I)**2; 
END ITR_FUNC; 

COMMENT 

PROCEDURE ITER_FUNC_FIXIC(LONG REAL ARRAY C(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY AHES(*); 
LONG REAL ARRAY GRAD(*); 
INTEGER VALUE FULL); 
BEGIN 
COMMENT LEAST SQUARES FUNCTION FOR 
ITERATIVELY IMPROVING THE 
GUESSED OBS FIXED IC ON GUESSED OBS; 
LONG REAL ARRAY A, JA (1: :N_PTS__HIT-1) ; 
LONG REAL ARRAY B(1::N_PTS_HIT-1); 
LONG REAL ARRAY JB(1::N_PTS_HIT-1,1::2); 
LONG REAL ARRAY DGY,PREV_DGY(1::2,1::2); 
LONG REAL ARRAY DGP,SENSE(1::1,1::1); 
LONG REAL ARRAY G,PREV_G, Y (1 : : 2); 
LONG REAL HI; 
G_FUN(PTS_TO_HIT(1),Y,PAR,-3,G,DGY,DGP,SENSE); 
Y(CR_Y):=CREOBS(1); 
G__FUN (PTS__TO_HIT (1) , Y, PAR, 1, PREV_G , PREV_DGY, DGP , SENSE) ; 
FOR I:=2 UNTIL N_PTS_HIT DO 

BEGIN 
Y(SM_Y):=OBS_SMOOTH(1,1); 
Y(CR_Y):=C(1-1); 
G_FUN(PTS_TO_HIT(I),Y,PAR,1,G,DGY,DGP,SENSE); 
A(I-l):=G(SM_Y) 
-(CASE SMF OF(DSPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(*,l),JOINTS(*,1), 
NJOINTS(l),N_SPLN_PAR(1)), 
DHERM(PTS_TO_HIT(I),HERM_COEF(*,*,1),JOINTS(*,l), 
NJOINTS(1)))); 
JA(1-1):=DGY(SM_Y,CR_Y); 
HI:=PTS_TO_HIT(I) -PTS__TO_HIT (1-1) ; 
B(I-l):=.5L*(G(CR_Y)+PREV_G(CR_Y))-(C(I-l) 
-(IF I>2 THEN C(I-2) ELSE CREOBS(1)))/HI; 
JB(1-1,1):=.5L*PREV_DGY(CR_Y,CR_Y)+1.L/HI; 
JB(1-1,2):=.5L*DGY(CR_Y,CR_Y)-1.L/HI; 
FOR J:=l UNTIL 2 DO 
PREV_G(J):=G(J); 
FOR J:=l UNTIL 2 DO 
FOR K:=l UNTIL 2 DO 
PREV_DGY(J,K):=DGY(J,K); 
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END; 
IF FULL=1 THEN 
BEGIN 
COMMENT FORM AHES TO CONFORM TO DFBAND; 
FOR I:=l UNTIL N_PTS_HIT-2 DO 
AHES(2*(1-1)+1):=JA(I)**2+JB(I,2)**2+JB(1+1 f1)**2; 
AHES(2*(N_PTS_HIT-2)+1):=JA(N_PTS_HIT-1)**2 
+JB(N_PTS_HIT-1,2)**2; 
FOR I:=l UNTIL N_PTS_HIT-2 DO 
AHES(2*1):=JB(1+1,1)*JB(1+1,2); 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PTS_HIT-1 DO 
BEGIN 
GRAD(I):=JA(I)*A(I); 
IF 1=(N_PTS_HIT-1) THEN GRAD(I):=GRAD(I)+ 
JB(N_PTS_HIT-1,2)*B(N_PTS_HIT-1) 
ELSE 
GRAD(I):=GRAD(I)+JB(I,2)*B(I)+JB(1+1,1)*B(1+1); 
END; 

END; 
COMMENT FORM F; 
F:=0.L; 
FOR I:=l UNTIL N_PTS_HIT-1 DO 
F:=F+A(I)**2+B(I)**2; 
END ITER_FUNC_FIXIC; 

COMMENT 

PROCEDURE SPARSE_GN(LONG REAL ARRAY C(*); 
INTEGER VALUE NC; 
PROCEDURE ITER_FUNC); 
BEGIN 
COMMENT ITERATIVE UPDATING OF GUESSED OBSERVATIONS 
USING A SPARSE GAUSS NEWTON METHOD; 
LONG REAL F,Fl,RATIO,DET,GA,RO,Rl,Wl; 
LONG REAL ARRAY AHES(1::2*NC); 
LONG REAL ARRAY CI,GRAD,DELTA(1::NC); 
INTEGER JEXP,JAY; 
LOGICAL CONV; 
COMMENT %EXTERNAL DFBAND; 
CONV:=FALSE; 
FOR ITER:=1 UNTIL 25 DO 

BEGIN 
ITER_FUNC(C,F,AHES,GRAD,1); 
IF ITER=1 THEN 
COMMENT %OUTPUT TO USER 
STARTING SUM OF SQUARES IN SPARSE GAUSS NEWTON IS (F); 
IF ITER=1 THEN JAY:=0; 
JAY:=JAY DIV 2; 
R0:=l.L/2**(JAY); 
COMMENT SOLVE FOR DELTA; 
FOR I:=l UNTIL NC DO DELTA(I):=-GRAD(I); 
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RATIO:=1.'-7L; 
DFBAND(AHES,DELTA,NC,2,1,RATIO,DET,JEXP, 0) ; 
COMMENT FIND STEP LENGTH; 
FOR I:=l UNTIL NC DO 
CI (I) :=C(I)+RO*DELTA(I) ; 
COMMENT CHECK FOR CONVERGENCE; 
FOR I:=l UNTIL NC DO 
IF (ABS(C(I)-C1(I))>(TOL*ABS(CI(I))+.0 01L)) 
THEN GO TO CON; 
CONV:=TRUE; 
GO TO UPDATE; 
CON: ITER__FUNC (CI,Fl,AHES,GRAD,0) ; 
IF F1>F THEN 
BEGIN 
COMMENT INTERPOLATE; 
GA:=0.L; 
FOR I:=l UNTIL NC DO 
GA:=GA+DELTA(I)*GRAD(I); 
FOR INTERP:=1 UNTIL 5 DO 
BEGIN 
JAY:=JAY+1; 
R1:=GA*R0**2/(2.L*(GA*R0+F-F1) ) ; 
W1:=(IF (.75L*R0<R1) THEN .75L*R0 ELSE Rl); 
R0:=(IF (.25L*R0>W1) THEN .25L*R0 ELSE WI); 
FOR I:=l UNTIL NC DO 
CI(I):=C(I)+R0*DELTA(I); 
COMMENT CHECK FOR CONVERGENCE; 
FOR I:=l UNTIL NC DO 
IF (ABS(C(I)-CI(I))>(TOL*ABS(CI(I))+.001L)) 
THEN GO TO CONT; 
CONV:=TRUE; 
GO TO UPDATE; 
CONT:ITER_FUNC(CI,Fl,AHES,GRAD,0); 
IF F K F THEN GO TO UPDATE; 
END INTERP; 

COMMENT %OUTPUT TO USER 
TERMINATING—OVER 5 INTERPOLATIONS REQUIRED; 
GO TO FINISHED; 
END; 

UPDATE:FOR I:=l UNTIL NC DO 
C(I) :=C1 (I) ; 
COMMENT %OUTPUT TO USER 
SUM OF SQUARES IS ( F l ) ; 
IF CONV=TRUE THEN GO TO FINISHED; 
END ITER; 

COMMENT %OUTPUT TO USER 
TERMINATING—SPARSE GAUSS NEWTON NEEDS 
MORE THAN 25 ITERATIONS TO MEET ERROR CRITERION; 
FINISHED: END SPARSE_GN; 

INTEGER N_PTS_HIT,N_PAR,SMF,OUTPUT,METHOD_FLAG,OUTPUT_SUP, 
OUT_SEG , INT_PROC , SM_Y , CR_Y, NO__ITER, EFLAG ; 
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LONG REAL ARRAY B(1::1,1::INTDATA(1)); 
LONG REAL ARRAY BJAC(1::1,1: : 1) ; 
COMMENT COMMAND PROPER FOLLOWS; 
STRING(1) ANS,ANSI; 
LONG REAL TOL; 
N_PTS_HIT:=INTDATA(1) ; 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUTPUT:=INTDATA(6); 
METHOD__FLAG : =INTDATA ( 7 ) ; 
OUTPUT_SUP:=INTDATA(9); 
OUT_SEG:=INTDATA(10); 
INT_PROC:=INTDATA(ll); 
SM_Y:=STATES_OBS(1); 
CR_Y:=3-SM_Y; 
COMMENT %OUTPUT TO USER 
IS INITIAL VALUE OF GUESSED OBSERVATIONS FIXED? Y OR N 
%INPUT (ANSI) 
%OUTPUT 
ENTER RELATIVE TOLERANCE ON CHANGE IN ITERATES FOR 
TERMINATION OF SPARSE GAUSS NEWTON 
%INPUT (TOL); 
REPT:ITER_PAR(G_FUN,PAR,INTDATA,OBS_SMOOTH,STATES_OBS, 
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,NJOINTS,N_SPLN_PAR, 
SPLN_AL,DSPLN_AL,HERM,DHERM, 
CREOBS,DCREOBS); 
COMMENT SET UP AND OPTIMIZE SPARSE PROB; 
REDO:IF ANS1~="Y" THEN 
SPARSE_GN(CR.EOBS,N_PTS_HIT,ITER_FUNC) 
ELSE 

BEGIN 
LONG REAL ARRAY C(1::N_PTS_HIT-1); 
FOR I:=l UNTIL N__PTS_HIT-1 DO C (I) : =CREOBS (1 + 1) ; 
SPARSE_GN(C,N_PTS_HIT-1,ITER_FUNC_FIXIC); 
FOR I:=l UNTIL N_PTS_HIT-1 DO CREOBS(1+1):=C(I); 
END; 

COMMENT %OUTPUT 
IS A FURTHER REFINEMENT OF THE GUESSED OBSERVATIONS 
DESIRED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN 
BEGIN 
COMMENT %OUTPUT 
ENTER NEW TOLERANCE FOR SPARSE PROBLEM 
%INPUT (TOL); 
GO TO REDO; 
END; 

COMMENT %OUTPUT 
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IS ANOTHER ITERATION DESIRED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN GO TO REPT; 
OUT:END SPRGN. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Derivative f i t t i n g procedure 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE DATAFT_COMMAND(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*) ; 
INTEGER ARRAY STATES_OBS(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*); 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL, 
DSPLN_AL,HERM,DHERM; 
LONG REAL VALUE INITIAL_TIME,EPS,HMIN,HMAX); 
BEGIN 
COMMENT DATAFIT COMMAND; 
INTEGER. N_PTS_HIT, N_STATE__OBS , N_STATE , N_PAR, SMF, OUTPUT ; 
INTEGER OUTPUT_SUP,OUT_SEG; 
INTEGER METHOD_FLAG,INT_PROC; 
LONG REAL LAM,EPS_R,EPS_A; 
LONG REAL ARRAY DJAC(1::1,1::1); 
INTEGER KFLAG; 
LONG REAL ARRAY STATE_DATA(1::INTDATA(1),1::INTDATA(3)); 
COMMENT %EXTERNAL GEAR, TRAP, SVD_AL, MARQUARDT, CMD_AL; 
PROCEDURE DATA_FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 
LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT THIS PROCEDURE PROVIDES THE 
PERTINENT INFORMATION TO A NONLINEAR 
LEAST SQUARES ALGORITHM USED WITH THE DFIT METHOD; 
INTEGER K,M,OUTl; 
LONG REAL SUM; 
LONG REAL ARRAY INITY(1::1); 
LONG REAL ARRAY INITYP(1::1,1::1); 
LONG REAL ARRAY G(1::N_STATE); 
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LONG REAL ARRAY DGY(1::N_STATE,1::N_STATE); 
LONG REAL ARRAY DGP,SENSE(1::N_STATE,1::N_PAR); 
K:=0; 
IF N_STATE_OBS~=N_STATE THEN 
BEGIN 
COMMENT NOT ALL STATE VARIABLES ARE OBSERVED; 
INTEGER ARRAY SCRATCH(1::N_STATE); 
INTEGER ARRAY STATES_NOT_OBS(1::N_STATE-N_STATE_OBS); 
LONG REAL ARRAY STATE_INTEG(1::N_PTS_HIT, 
1::N_STATE-N_STATE_OBS); 
INTEGER L,N_STATE_NOT_OBS; 
PROCEDURE G_DATA(LONG REAL VALUE T; 
LONG REAL ARRAY Y(*); 
LONG REAL ARRAY P(* ) ; 
INTEGER VALUE OPTION; 
LONG REAL ARRAY G(*); 
LONG REAL ARRAY DGY(*,*); 
LONG REAL ARRAY D2(*,*); 
LONG REAL ARRAY D3(*,*)); 
BEGIN 
COMMENT INTERFACE TO G_FUN FOR DE SOLVER WHEN A 
SUBSET OF THE STATE VARIABLES ARE BEING INTEGRATED; 
LONG REAL ARRAY Y_A,DY_A(1::N_STATE); 
LONG REAL ARRAY DGY_A(1::N_STATE,1::N_STATE); 
LONG REAL ARRAY D2,D3(1: : 1,1 : : 1) ; 
FOR I:=l UNTIL N_STATE_NOT_OBS DO 
Y_A(STATES_NOT_OBS(I)):=Y(I); 
FOR I:=l UNTIL N_STATE_OBS DO 
CASE SMF OF 

BEGIN 
Y_A(STATES_OBS(I)):= 
SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I) 
,NJOINTS(I),N_SPLN_PAR(I)); 
Y_A(STATES_OBS(I)):= 
HERM(T,HERM_COEF( * , * , I),JOINTS(*,I) 
,NJOINTS(I)) 
END; 

G_FUN(T,Y_A,P,OPTION,DY_A,DGY_A,D2,D3); 
IF OPTION=l THEN 
COMMENT CONSTRUCT SUB JACOBIAN; 
FOR I:=l UNTIL N_STATE_NOT_OBS DO 
FOR J:=l UNTIL N_STATE_NOT_OBS DO 
DGY(I,J):=DGY_A(STATES_NOT_OBS(I),STATES_NOT_OBS(J)); 
FOR I:=l UNTIL N_STATE_NOT_OBS DO 
G(I):=DY_A(STATES_NOT_OBS(I)); 
IF OPTION=-3 THEN 
FOR I:=l UNTIL N_STATE_NOT_OBS DO 
Y(I):=Y_A(STATES_NOT_OBS(I)); 
END G_DATA; 

COMMENT FORM VECTOR OF STATES NOT OBSERVED; 
FOR I:=l UNTIL N_STATE DO SCRATCH(I):=1; 
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FOR I:=l UNTIL N_STATE_OBS DO 
SCRATCH(STATES_OBS(I)):=0; 
N_STATE_NOT_OBS:=N_S TATE-N_STATE_OB S; 
L:=0; 
FOR I:=l UNTIL N_STATE DO 
IF SCRATCH(I)~=0 THEN 
BEGIN 
L:=L+1; 
STATES_NOT_OBS(L):=SCRATCH(I); 
END; 

EFLAG:=0; 
COMMENT INTEGRATION; 
IF OUTPUT_SUP=l THEN OUTl:=0 
ELSE OUTl:=OUTPUT; 
BEGIN 
LONG REAL ARRAY B(1::N_STATE_NOT_OBS,1::N_PTS_HIT); 
CASE INT_PROC OF 

BEGIN 
BEGIN 
GEAR(P,PTS_TO_HIT,B,DJAC,N_STATE_NOT_OBS, 
N_PTS_HIT,EPS,HMIN,HMAX, 
N_PAR,0,G_DATA,KFLAG,OUTl,METHOD_FLAG, 
0,INITY,INITYP); 
IF KFLAG~=1 THEN 
BEGIN 
EFLAG:=1; 
GO TO OUT; 
END; 

END; 
BEGIN 
TRAP(P,PTS_TO_HIT,B,DJAC,N_STATE_NOT_OBS, 
N_PTS_HIT,N_PAR,0,G_DATA,EFLAG,OUTl); 
IF EFLAG=1 THEN GO TO OUT; 
END 

END; 
FOR J:=l UNTIL N_STATE_NOT_OBS DO 
FOR I:=l UNTIL N_PTS_HIT DO 
STATE_INTEG(I,J):=B(J,I); 
END; 

COMMENT COPY INTEGRATION DATA INTO STATE DATA; 
FOR I:=l UNTIL N_PTS_HIT DO 
FOR J:=l UNTIL N_STATE_NOT_OBS DO 
STATE_DATA (I, STATES_NOT_OBS (J) ) : =STATE__INTEG (I , J) ; 
END; 

FOR I:=l UNTIL N_PTS__HIT DO 
BEGIN 
G_FUN(PTS__TO_HIT(I) , STATE_DATA (I, * ) , P , 1, G, DGY, DGP , SENSE) ; 
G_FUN(PTS_TO_HIT(I),STATE_DATA(I,*),P,2,G,DGY,DGP, 
SENSE); 
FOR J:=l UNTIL N_STATE_OBS DO 
BEGIN 
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K:=K+1; 
CASE SMF OF 

BEGIN 
RES (K) :=G(STATES_OBS(J))-DSPLN_AL(PTS_TO_HIT(I) , 
SPLN_COEF(*,J), 
JOINTS(*,J),NJOINTS(J),N_SPLN_PAR(J)); 
RES(K):=G(STATES_OBS(J))-DHERM(PTS_TO_HIT(I), 
HERM_COEF(*,*,J), 
JOINTS(*,J),NJOINTS(J)); 
END; 

FOR L:=l UNTIL N_PAR DO 
JAC(K,L):=DGP(STATES_OBS(J),L); 
END; 

END; 
COMMENT FORM SUM OF SQUARES OF RESIDUAL; 
SUM:=0.; 
M: =K ; 
FOR I:=l UNTIL M DO SUM:=SUM+RES(I)**2; 
F:=SUM; 
COMMENT FORM GRADIENT IF REQUIRED; 

BEGIN 
FOR I:=l UNTIL N_PAR DO 

BEGIN 
SUM:=0.; 
FOR J:=l UNTIL N_PTS_HIT*N_STATE_OBS DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

END; 
END DATA_FUNC; 

COMMENT 
COMMAND PROPER FOLLOWS; 
N_PTS_HIT:=INTDATA(1); 
N_STATE_OBS:=INTDATA(2); 
N_STATE:=INTDATA(3); 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUTPUT:=INTDATA(6); 
METHOD_FLAG:=INTDATA(7); 
OUTPUT_SUP:=INTDATA(9); 
OUT_SEG:=INTDATA(10); 
INT_PROC:=INTDATA(ll); 
FOR I:=l UNTIL N_PTS_HIT DO 
FOR J:=l UNTIL N_STATE_OBS DO 
STATE_DATA(I,STATES_OBS(J)):=OBS_SMOOTH(I,J); 
COMMENT %OUTPUT 
ENTER STARTING LAMBDA RELATIVE 
AND ABSSOLUTE ERROR TOLERENCES FOR 
MARQUARDT PROCEDURE 
%INPUT (LAM),(EPS_R),(EPS_A) 
%FILE EMPTY TEMPORARY FILE -SCI 
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%OUTPUT TO -REPRT 
MARQUARDT USED IN DFIT COMMAND—OPTION 1 
LAMBDA, RELATIVE, AND ABSOLUTE 
ERROR TOLERENCES ARE (LAM),(EPS_R),(EPS_A); 
MARQUARDT(EPS_R,EPS_A,N_PTS_HIT*N_STATE_OBS,N_PAR,DATA_FUNC, 
PAR,LAM,SVD_AL); 
OUT:END. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Derivative f i t t i n g with guessed observations 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE DFIT_CRE(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*) ; 
INTEGER ARRAY STATES_OBS(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*) ; 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL, 
DSPLN_AL,HERM,DHERM; 
LONG REAL ARRAY CREOBS(*); 
LONG REAL ARRAY DCREOBS(*)); 

BEGIN 
COMMENT DFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS ON 
ONE HAVE 
BEEN GUESSED AT. SPECIAL HANDLING OF LINEAR PROBLEM; 
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK; 
LONG REAL LAM,EPS_R,EPS_A; 
INTEGER SM_Y,CR_Y,M,OUT_SEG; 
COMMENT %EXTERNAL SVD_AL, MARQUARDT, CMD_AL; 
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 
LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST 
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED; 
LONG REAL ARRAY SENSE,DGY(1::1,1::1); 
LONG REAL ARRAY Y,G(1::2); 
LONG REAL ARRAY DGP(1::2,1::N_PAR); 
INTEGER K,KK; 
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LONG REAL SUM; 
EFLAG:=0; 
K:=0; 
FOR I:=l UNTIL N_PTS_HIT DO 
BEGIN 
Y(SM_Y):=OBS_SMOOTH(1,1); 
Y(CR_Y):=CREOBS(I); 
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE); 
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE); 
FOR J:=l UNTIL 2 DO 
BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
RES(K):=G (J)-DSPLN_AL (PTS_TO__HIT (I), 
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1), 
N_SPLN_PAR(1)); 
RES(K):=G(J)-DHERM(PTS_TO_HIT(I), 
HERM_COEF(*,*,l),JOINTS(*,1),NJOINTS(1)) 
END; 

END 
ELSE RES(K):=G(J)-DCREOBS(I); 
FOR L:=l UNTIL N_PAR DO 
JAC(K,L):=DGP(J,L); 
END; 

END; 
COMMENT FORM F; 
F:=0; 
FOR I:=l UNTIL M DO F:=F+RES(I)**2 ; 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PAR DO 

BEGIN 
SUM:=0; 
FOR J:=l UNTIL M DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

END CRE_FUNC; 
COMMENT COMMAND PROPER FOLLOWS; 
N_PTS_HIT:=INTDATA(1); 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUT_SEG:=INTDATA(10); 
DFIT_LIN:=INTDATA(12); 
SM_Y:=STATES_OBS(1); 
CR_Y:=3-SM_Y; 
M:=2*N_PTS_HIT; 
COMMENT %FILE EMPTY TEMPORARY FILE -SCl; 
IF DFIT LIN~=1 THEN 
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BEGIN 
COMMENT %OUTPUT 
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES FOR 
THE MARQUARDT PROCEDURE 
%INPUT (LAM),(EPS_R),(EPS_A) 
%OUTPUT TO -SCI 
MARQUARDT CALLED IN DFIT OPTION 2 
OUTPUT REFERENCE NUMBER IS (OUT_SEG) 
LAMBDA, RELATIVE, AND ABSOLUTE ERROR TOLERENCES ARE 
(LAM),(EPS_R),(EPS_A); 
MARQUARDT(EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD_AL); 
END 

ELSE 
BEGIN 
COMMENT LINEAR LEAST SQUARES USING SVD; 
LONG REAL SING_CUTOFF; 
LONG REAL ARRAY JAC(1::M,1::N_PAR); 
LONG REAL ARRAY RES(1::M); 
LONG REAL ARRAY SP,S,GRAD(1::N_PAR); 
LONG REAL ARRAY V(1::N_PAR,1::N_PAR); 
LONG REAL ARRAY A(1::M,1::N_PAR+1); 
LONG REAL SUM,F; 
INTEGER K; 
LONG REAL ARRAY U(1::M,1::N_PAR); 
INTEGER EFLAG; 
SING_CUTOFF:=.00001L; 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
FOR J:=l UNTIL N_PAR DO 
FOR I:=l UNTIL M DO 
A(I,J):=JAC(I,J); 
K:=0; 
FOR I:=l UNTIL N_PTS_HIT DO 
BEGIN 
FOR J:=l UNTIL 2 DO 
BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
A(K,N_PAR+1):=DSPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(*,1),JOINTS(*,1),NJOINTS(l), 
N_SPLN_PAR(1)); 
A(K,N_PAR+1):=DHERM(PTS_TO_HIT(I), 
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(l)) 
END; 

END 
ELSE A(K,N_PAR+1):=DCREOBS(I); 
END; 

END; 
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N_PAR); 
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FOR I:=l UNTIL N_PAR DO 
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I) 
ELSE SP(I):=0. ; 
FOR I:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0. ; 
FOR J:=l UNTIL N_PAR DO 
SUM:=SUM+V(I,J)*SP(J); 
PAR(I):=SUM; 
END; 

COMMENT %OUTPUT TO USER 
LINEAR DFIT-OPTION 2 SINGULAR VALUE REJECTION LEVEL IS 
(SING_CUTOFF); 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
COMMENT %OUTPUT TO USER 
IN LINEAR PART SUM OF SQUARES OF RESIDUALS IS (F); 
END; 

END DFIT CRE. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Iterated derivative f i t t i n g procedure 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE DFITITER(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*); 
INTEGER ARRAY STATES_OBS(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*); • 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM; 
LONG REAL ARRAY CREOBS(*); 
LONG REAL ARRAY DCREOBS(*)); 

BEGIN 
COMMENT DFIT ON 2 STATE VARIABLES TO GO WITH 
SPARSE GAUSS NEWTON TO IMPROVE GUESSED STATE; 
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK; 
LONG REAL LAM,EPS_R,EPS_A; 
INTEGER SM_Y,CR_Y,M,OUT_SEG; 
LONG REAL ARRAY V0(l::2); 
COMMENT %EXTERNAL SVD_AL,MARQUARDT,CMD_AL; 
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 

APPENDIX B 



277 

LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST 
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED; 
LONG REAL ARRAY SENSE,DGY(1::1,1::1) ; 
LONG REAL ARRAY Y,G,INT_G,PREV_G(1::2); 
LONG REAL ARRAY DGP,INT_DGP,PREV_DGP(1::2,1::N_PAR); 
INTEGER K,KK; 
LONG REAL SUM,DEL; 
EFLAG:=0; 
K:=0; 
Y(SM_Y):=OBS_SMOOTH(l,l); 
Y(CR_Y):=CREOBS(1); 
G__FUN(PTS_TO_HIT(l) , Y,P ,-1,PREV_G ,DGY ,DGP , SENSE ) ; 
G_FUN(PTS_TO_HIT(l),Y,P,2,G,DGY,PREV_DGP,SENSE); 
FOR I:=2 UNTIL N_PTS_HIT DO 

BEGIN 
Y(SM_Y):=OBS_SMOOTH(1,1); 
Y(CR_Y):=CREOBS(I); 
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE); 
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE); 
DEL: = (PTS_TO_HIT(I)-PTS_TO__HIT(I-l) ) ; 
FOR J:=l UNTIL 2 DO 

BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
RES (K) :=G(J)-DSPLN_AL(PTS_TO__HIT(I) , 
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1), 
N_SPLN_PAR(1)); 
RES(K) :=G(J)-DHERM(PTS_TO__HIT(I) , 
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(1)) 
END; 

END 
ELSE RES(K):=.5L*(G(J)+PREV_G(J))-
(CREOBS(I)-CREOBS(I-l))/DEL; 
KK:=0; 
FOR L:=l UNTIL N_PAR DO 
BEGIN 
KK:=KK+1; 
IF SM_Y=J THEN 
JAC(K,KK):=DGP(J,L) 
ELSE 
JAC(K,KK):=.5L*(DGP(J,L)+PREV_DGP(J,L)); 
END; 

END; 
COMMENT UPDATE PREV_G,PREV_DGP; 
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FOR I:=l UNTIL 2 DO PREV_G(I):=G(I); 
FOR I:=l UNTIL 2 DO 
FOR J:=l UNTIL N_PAR DO 
PREV_DGP(I,J):=DGP(I,J); 
END; 

COMMENT FORM F; 
F:=0; 
FOR I:=l UNTIL M DO F:=F+RES(I)**2; 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0; 
FOR J:=l UNTIL M DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

END CRE_FUNC; 
COMMENT COMMAND PROPER FOLLOWS; 
N_PTS_HIT:=INTDATA(1); 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUT_SEG:=INTDATA(10); 
DFIT_LIN:=INTDATA(12); 
SM_Y:=STATES_OBS(1); 
CR_Y:=3-SM_Y; 
M:=2*(N_PTS_HIT-1); 
COMMENT %FILE EMPTY TRMPORARY FILE -SCI; 
IF DFIT_LIN~=1 THEN 
BEGIN 
COMMENT %OUTPUT 
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES 
FOR MARQUARDT 
%INPUT (LAM),(EPS_R),(EPS_A) 
%OUTPUT TO USER IF IN BATCH, TO -SCI IF NOT, 
MARQUARDT USED IN DFIT FOR SPARSE GAUSS NEWTON 
OUTPUT REFERENCE NUMBER IS (OUT_SEG), LAMBDA, 
RELATIVE AND ABSOLUTE TOLERENCES ARE 
(LAM),(EPS_R),(EPS_A); 
MARQUARDT(EPS_R,EPS_A,M,N_PAR,CRE_FUNC,PAR,LAM,SVD_AL) 
END 

ELSE 
BEGIN 
COMMENT LINEAR LEAST SQUARES USING SVD; 
LONG REAL SING_CUTOFF; 
LONG REAL ARRAY JAC(1::M,1::N_PAR); 
LONG REAL ARRAY RES(1::M); 
LONG REAL ARRAY SP,S,GRAD(1::N_PAR); 
LONG REAL ARRAY V(1::N_PAR,1::N_PAR); 
LONG REAL ARRAY A(1::M,1::N_PAR+1); 
LONG REAL SUM,F; 
INTEGER K; 
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LONG REAL ARRAY U(1::M,1::N_PAR); 
INTEGER EFLAG; 
SING_CUTOFF:=.000OIL; 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
FOR J:=l UNTIL N_PAR DO 
FOR I:=l UNTIL M DO 
A(I,J):=JAC(I,J); 
K:=0; 
FOR I:=2 UNTIL N_PTS_HIT DO 
BEGIN 
FOR J:=l UNTIL 2 DO 

BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
A(K,N_PAR+1):=DSPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(*,l),JOINTS(*,1),NJOINTS(1), 
N_SPLN_PAR(1))-VO(J); 
A(K,N_PAR+1):=DHERM(PTS_TO_HIT(I), 
HERM_COEF(*,*,l),JOINTS(*,1),NJOINTS(l))-V0(J) 
END; 

END 
ELSE 
A(K,N_PAR+1):=(CREOBS(I)-CREOBS(1-1))/ 
(PTS_TO_HIT(I)-PTS_TO_HIT(I-l)); 
END; 

END; 
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N,_PAR); 
FOR I:=l UNTIL N_PAR DO 
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I) 
ELSE SP(I) :=0.; 
FOR I:=l UNTIL N_PAR DO 

BEGIN 
SUM:=0.; 
FOR J:=l UNTIL N_PAR DO 
SUM:=SUM+V(I,J)*SP(J); 
PAR(I):=SUM; 
END; 

COMMENT %OUTPUT TO USER 
SOLUTION IN LINEAR DFIT FOR SPARSE GAUSS NEWTON IS (PAR) 
SINGULAR VALUES ARE (S) 
SINGULAR VALUE REJECTION RATIO IS (SING_CUTOFF); 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
COMMENT %OUTPUT TO USER 
SUM OF SQUARES OF RESIDUALS IS (F); 
END; 

END DFITITER. 
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%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Integral f i t t i n g using created observations 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE IFIT_CRE(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*) ; 
INTEGER ARRAY STATES__OBS (*) ; 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*) ; 
LONG REAL ARRAY HERM_COEF(*,*,*); 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*) ; 
LONG REAL PROCEDURE SPLN_AL,DSPLN_AL,HERM,DHERM; 
LONG REAL ARRAY CREOBS(*); 
LONG REAL ARRAY DCREOBS(*)); 
BEGIN 
COMMENT IFIT ON 2 STATE VARIABLES WHEN OBSERVATIONS 
ON ONE HAVE 
BEEN GUESSED AT—LINEAR OPTION AVAILABLE; 
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK; 
LONG REAL LAM,EPS_R,EPS_A; 
INTEGER SM_Y,CR_Y,M,OUT_SEG; 
LONG REAL ARRAY V0(l::2); 
COMMENT %EXTERNAL SVD_AL,MARQUARDT,CMD_AL; 
PROCEDURE CRE_FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 
LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT THIS PROCEDURE PROVIDES INFORMATION TO THE LEAST 
SQUARES MINIMIZER WHEN GUESSED OBSERVATIONS ARE USED; 
LONG REAL ARRAY SENSE,DGY(1::1,1:: 1) ; 
LONG REAL ARRAY Y, G,INT_G,PREV_G(1::2); 
LONG REAL ARRAY DGP,INT_DGP,PREV_DGP(1::2,1::N_PAR); 
INTEGER K,KK; 
LONG REAL SUM,DEL2; 
EFLAG:=0; 
K:=0; 
Y(SM_Y):=OBS_SMOOTH(1,1); 
Y(CR_Y):=CREOBS(1); 
G_FUN(PTS_TO_HIT(l),Y,P,-1,PREV_G,DGY,DGP,SENSE); 
G_FUN(PTS_TO_HIT(1),Y,P,2,G,DGY,PREV_DGP,SENSE); 
G_FUN(PTS_TO_HIT(1),INT_G,P,3,G,DGY,DGP,INT_DGP); 
FOR I:=l UNTIL 2 DO VO (I) : =INT__G (I) ; 
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FOR I:=2 UNTIL N_PTS_HIT DO 
BEGIN 
Y(SM_Y):=OBS_SMOOTH(I,1); 
Y(CR_Y):=CREOBS(I); 
G_FUN(PTS_TO_HIT(I),Y,P,-1,G,DGY,DGP,SENSE); 
G_FUN(PTS_TO_HIT(I),Y,P,2,G,DGY,DGP,SENSE); 
DEL2:=(PTS_TO_HIT(I)-PTS_TO_HIT(1-1))/2.L; 
FOR I:=l UNTIL 2 DO 
INT_G(I):=INT_G(I)+DEL2*(G(I)+PREV_G(I)); 
FOR I:=l UNTIL 2 DO 
FOR J:=l UNTIL N_PAR DO 
INT_DGP(I,J):=INT_DGP(I,J)+DEL2*(DGP(I,J)+PREV_DGP(I,J)) 
FOR J:=l UNTIL 2 DO 
BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
RES(K):=INT_G(J)-SPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(* f1),JOINTS(*,1),NJOINTS(l), 
N_SPLN_PAR(1)); 
RES(K):=INT_G(J)-HERM(PTS_TO_HIT(I), 
HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(1)) 
END; 

END 
ELSE RES(K):=INT_G(J)-CREOBS(I); 
FOR L:=l UNTIL N_PAR DO 
JAC(K,L):=INT_DGP(J,L); 
END; 

COMMENT UPDATE PREV_G,PREV_DGP; 
FOR I:=l UNTIL 2 DO PREV_G(I):=G(I); 
FOR I:=l UNTIL 2 DO 
FOR J:=l UNTIL N_PAR DO 
PREV_DGP(I,J):=DGP(I,J); 
END; 

COMMENT FORM F; 
F:=0; 
FOR I:=l UNTIL M DO F:=F+RES(I)**2; 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PAR DO 

BEGIN 
SUM:=0; 
FOR J:=l UNTIL M DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

END CRE_FUNC; 
COMMENT COMMAND PROPER FOLLOWS; 
N_PTS_HIT:=INTDATA(1); 
N_PAR:=INTDATA(4); 

APPENDIX 



282 

SMF:=INTDATA(5) ; 
OUT_SEG:=INTDATA(10) ; 
DFIT_LIN:=INTDATA(12); 
SM_Y:=STATES_OBS(1); 
CR_Y:=3-SM_Y; 
M:=2*(N_PTS_HIT-1); 
COMMENT %FILE E,PTY TEMPORARY FILE -SCI; 
IF DFIT_LIN~=1 THEN 
BEGIN 
COMMENT %OUTPUT TO USER 
ENTER STARTING LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES 
FOR MARQUARDT PROCEDURE 
%INPUT (LAM),(EPS_R),(EPS_A) 
%OUTPUT TO -SCI 
MARQUARDT USED IN IFIT OPTION 2 
LAMBDA, RELATIVE AND ABSOLUTE TOLERENCES ARE 
(LAM),(EPS_R),(EPS_A); 
MARQUARDT (EPS_R, EPS_A , M , N__PAR, CRE_FUNC , PAR, LAM , SVD_AL) ; 
END 

ELSE 
BEGIN 
COMMENT LINEAR LEAST SQUARES USING SVD; 
LONG REAL SING_CUTOFF; 
LONG REAL ARRAY JAC (1 : :M , 1: : N__PAR) ; 
LONG REAL ARRAY RES(1::M); 
LONG REAL ARRAY SP,S,GRAD(1::N_PAR); 
LONG REAL ARRAY V(1::N_PAR,1::N_PAR); 
LONG REAL ARRAY A(1::M,1::N_PAR+1); 
LONG REAL SUM,F; 
INTEGER K; 
LONG REAL ARRAY U(1::M,1::N_PAR); 
INTEGER EFLAG; 
SING_CUTOFF:=.0 0001L; 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
FOR J:=l UNTIL N_PAR DO 
FOR I:=l UNTIL M DO 
A(I,J):=JAC(I,J); 
K:=0; 
FOR I:=2 UNTIL N_PTS_HIT DO 
BEGIN 
FOR J:=l UNTIL 2 DO 
BEGIN 
K:=K+1; 
IF SM_Y=J THEN 
BEGIN 
CASE SMF OF 

BEGIN 
A(K,N_PAR+1):=SPLN_AL(PTS_TO_HIT(I), 
SPLN_COEF(*,1),JOINTS(*,1),NJOINTS(1), 
N_SPLN_PAR(1))-VO(J); 
A(K,N_PAR+1):=HERM(PTS_TO_HIT(I), 
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HERM_C0EF(*,*,1),JOINTS(*,1),NJOINTS(1))-V0(J) 
END; 

END 
ELSE A(K,N_PAR+1):=CREOBS(I)-VO(J); 
END; 

END; 
SVD_AL(A,S,U,V,M,N_PAR,M,N_PAR,1,0,N_PAR); 
FOR I:=l UNTIL N_PAR DO 
IF (S(I)/S(1)>SING_CUTOFF) THEN SP(I):=A(I,N_PAR+1)/S(I) 
ELSE SP (I) :=0.; 
FOR I:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0.; 
FOR J:=l UNTIL N_PAR DO 
SUM:=SUM+V(I,J)*SP(J); 
PAR(I):=SUM; 
END; 

COMMENT %OUTPUT TO USER 
LINEAR OPTION IN IFIT OPTION 2 PARAMETERS FOUND ARE 
(PAR), SINGULAR VALUES ARE (S), SINGULAR VALUE 
REJECTION LEVEL IS (SING_CUTOFF); 
CRE_FUNC(PAR,F,RES,JAC,GRAD,EFLAG); 
COMMENT %OUTPUT TO USER 
SUM OF SQUARES OF RESIDUALS IS (F); 
END; 

END IFIT CRE. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Iterated integral f i t t i n g (subsystem integration) 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE IFITI(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*); 
INTEGER ARRAY STATES__OBS (* ) ; 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*); 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL, 
DSPLN_AL,HERM,DHERM; 
LONG REAL ARRAY CREOBS(*); 
LONG REAL ARRAY DCREOBS(*); 
PROCEDURE IFIT_CRE); 

BEGIN 
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COMMENT ITERATED IFIT ON 2 STATE VARIABLES 
INTEGRATION OF SUBSYSTEMS TO UPDATE GUESSED OBSERVATIONS; 
COMMENT %EXTERNAL TRAP; 
PROCEDURE G(LONG REAL VALUE T; 
LONG REAL ARRAY Y(*); 
LONG REAL ARRAY P(*); 
INTEGER VALUE OPTION; 
LONG REAL ARRAY G(*); 
LONG REAL ARRAY DGY(*,*); 
LONG REAL ARRAY DGP(*,*); 
LONG REAL ARRAY ISEN(*,*)); 
BEGIN 
COMMENT INTERFACE TO G_FUN WHEN ONLY 1 STATE VAR 
IS INTEGRATED.; 
LONG REAL ARRAY Y1,G1(1::2); 
LONG REAL ARRAY DGP1,ISENl(1::2,1::N_PAR); 
LONG REAL ARRAY DGYl(1::2,1::2); 
Yl(CR_Y):=Y(1); 
Yl(SM_Y):=CASE SMF OF 
(SPLN_AL(T,SPLN_COEF(*,l),JOINTS(*,l),NJOINTS(l), 
N_SPLN_PAR(1)), 
HERM(T,HERM_COEF(*,*,1),JOINTS(*,1),NJOINTS(l))); 
G_FUN(T,Y1,P,OPTION,GI,DGYl,DGP1,ISENl); 
IF (OPTION=l) OR (OPTION=-l) THEN G(1):=Gl(CR_Y); 
IF OPTION=l THEN DGY (1,1) : =DGYl (CR_Y , CR__Y) ; 
IF OPTION=3 THEN Y(1):=Yl(CR_Y); 
END G; 

INTEGER N_PTS_HIT, N_PAR, SMF , OUTPUT , METHOD__FLAG, OUTPUT_SUP , 
OUT_SEG,INT_PROC,SM_Y,CR_Y,NO_ITER,EFLAG,OUTl; 
STRING(1) ANS; 
LONG REAL ARRAY B(1::1,1::INTDATA(1)); 
LONG REAL ARRAY BJAC(1::1,1::1); 
COMMENT COMMAND PROPER FOLLOWS; 
N_PTS_HIT:=INTDATA(1); 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUTPUT:=INTDATA(6); 
METHOD_FLAG:=INTDATA(7); 
OUTPUT_SUP:=INTDATA(9); 
OUT_SEG:=INTDATA(10); 
INT_PROC:=INTDATA(ll); 
SM_Y:=STATES_OBS(1); 
CR_Y:=3-SM_Y; 
REPT:IFIT_CRE(G_FUN,PAR,INTDATA,OBS_SMOOTH,STATES_OBS, 
PTS_TO_HIT,JOINTS,SPLN_COEF,HERM_COEF,NJOINTS,N_SPLN_PAR, 
SPLN_AL,DSPLN_AL,HERM,DHERM, 
CREOBS,DCREOBS); 
COMMENT INTEGRATION OF SUBSYSTEM (TRAPEZOIDAL RULE 
IMPLEMENTED); 
IF OUTPUT_SUP=l THEN OUTl:=0 ELSE OUTl:OUTPUT; 
TRAP (PAR, PTS_TO_HIT , B , B JAC , 1, N_PTS__HIT, N_PAR , 0 , G , EFLAG , 0) ; 
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IF EFLAG=1 THEN GO TO OUT; 
FOR I:=l UNTIL N_PTS_HIT DO 
CREOBS(I):=B(1,I); 
COMMENT %OUTPUT 
IS ANOTHER ITERATION DESIRED? Y OR N 
%INPUT (ANS); 
IF ANS="Y" THEN GO TO REPT; 
OUT:END IFITI. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%'• 

Continuation and quasi-multiple shooting 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%! 

PROCEDURE CONTI(PROCEDURE G_FUN; 
LONG REAL ARRAY PAR(*); 
INTEGER VALUE MODE; 
INTEGER ARRAY INTDATA(*); 
LONG REAL ARRAY OBS_SMOOTH(*,*); 
INTEGER ARRAY STATES_OBS(*); 
LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY JOINTS(*,*); 
LONG REAL ARRAY SPLN_COEF(*,*); 
LONG REAL ARRAY HERM_COEF(*,*,*); 
INTEGER ARRAY NJOINTS(*); 
INTEGER ARRAY N_SPLN_PAR(*); 
LONG REAL PROCEDURE SPLN_AL, 
DSPLN_AL,HERM,DHERM; 
LONG REAL VALUE EPS,HMIN,HMAX); 
BEGIN 
COMMENT CONTINUATION FORM IFIT WITH BREAK POINTS 
AND WEIGHTING AT BREAK POINTS; 
INTEGER N_PTS_HIT,N_PAR,SMF,DFIT_LIN,KK; 
LONG REAL LAM,EPS_R,EPS_A; 
LONG REAL ARRAY INITY(1::1); 
LONG REAL ARRAY INITYP(1::1,1::1); 
INTEGER KFLAG; 
INTEGER NP,SM_Y,CR_Y,M,OUT_SEC-
LONG REAL ARRAY V0(l::2); 
COMMENT %EXTERNAL TRAP, GEAR, SVD_AL, MARQUARDT, 
CMD_AL; 
PROCEDURE C_FUNC(LONG REAL ARRAY P(*); 
LONG REAL RESULT F; 
LONG REAL ARRAY RES(*); 
LONG REAL ARRAY JAC(*,*); 
LONG REAL ARRAY GRAD(*); 
INTEGER RESULT EFLAG); 
BEGIN 
COMMENT OPTIMIZATION FUNCTION FOR CONTINUATION METHOD; 
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INTEGER M,N_RES,OUTl; 
LONG REAL SUM; 
INTEGER I_BREAK; 
PROCEDURE CG_FUN(LONG REAL VALUE T; 
LONG REAL ARRAY Y(*); 
LONG REAL ARRAY P(*); 
INTEGER VALUE OPTION; 
LONG REAL ARRAY G ( * ) ; 
LONG REAL ARRAY DGY(*,*); 
LONG REAL ARRAY DGP(*,*); 
LONG REAL ARRAY ISEN(*,*)); 
BEGIN 
COMMENT G_FUN INTERFACE FOR CONTINUATION METHOD USING 
QUASI MULTIPLE SHOOTING; 
LONG REAL ARRAY CY(1::N_STATE); 
IF (ABS OPTION)~=3 THEN 
BEGIN 
FOR I:=l UNTIL N_STATE DO CY(I):=Y (I)*GA(I); 
FOR I:=l UNTIL N_STATE_OBS DO 
CY(STATES_OBS(I)):=(CASE SMF OF 
(SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I),NJOINTS(I), 
N_SPLN_PAR(I)), 
HERM(T,HERM_COEF(*,*,I),JOINTS(*,I),NJOINTS(I)))) 
*(1.L-GA(STATES_OBS(I)))+CY(STATES_OBS(I)); 
END; 

CASE ABS OPTION OF 
BEGIN 

BEGIN 
G_FUN(T,CY,P,OPTION,G,DGY,DGP,ISEN); 
IF OPTION>0 THEN 
BEGIN 
FOR J:=l UNTIL N_STATE DO 
FOR K:=l UNTIL N_STATE DO 
DGY(J,K):=DGY(J,K)*GA(K); 
END; 

END; 
BEGIN 
G_FUN(T,CY,P,OPTION,G,DGY,DGP,ISEN); 
END; 
BEGIN 
IF I_BREAK=1 THEN 
G_FUN(T,Y,P,OPTION,G,DGY,DGP,ISEN) 
ELSE 
BEGIN 
INTEGER INDX; 
INDX:=BREAK(I_BREAK-1); 
FOR I:=l UNTIL 
N_STATE DO Y(I):=STATE(INDX,I)*GA1(I); 
FOR I:=l UNTIL N_STATE_OBS DO 
Y(STATES_OBS(I)):=(CASE SMF OF ( 
SPLN_AL(T,SPLN_COEF(*,I),JOINTS(*,I), 
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NJOINTS(I),N_SPLN_PAR(I) ) , 
HERM(T,HERM_COEF(*,*,I),JOINTS(*,I),NJOINTS(I))))* 
(1.L-GA1(STATES_OBS(I)))+Y(STATES_OBS(I)); 
IF OPTION>0 THEN 
FOR I:=l UNTIL N_STATE DO 
FOR J:=l UNTIL N_PAR DO 
ISEN(I, J):=GA1(I)*JACOBIAN((INDX-1)*N_STATE+I,J); 
END; 

END 
END; 

END CG_FUN; 
FOR I:=l UNTIL N_BREAK DO 
BEGIN 
COMMENT INTEG TO BREAK(I); 
LONG REAL ARRAY SAMPLE(1::BREAK(I)-BREAK(I-1)+1); 
INTEGER N_PTS; 
LONG REAL ARRAY B(1::N_STATE,1::BREAK(I)-BREAK(1-1)+1); 
LONG REAL ARRAY 
JB(1::N_PAR,1::(BREAK(I)-BREAK(1-1)+1)*N_STATE); 
INTEGER INDX,JI; 
I_BREAK:=I; 
N_PTS:=BREAK(I)-BREAK(1-1)+1; 
FOR J:=l UNTIL N_PTS DO 
SAMPLE(J):=PTS_TO_HIT(BREAK(I)-N_PTS+J); 
COMMENT INTEGRATE; 
IF OUTPUT_SUP=l THEN OUT1:=0 ELSE OUTl:=OUTPUT; 
EFLAG:=0; 
CASE INT_PROC OF 

BEGIN 
BEGIN 
GEAR(P,SAMPLE,B,JB,N_STATE,N_PTS,EPS,HMIN,HMAX, 
N_PAR,1,CG_FUN,KFLAG,OUTl,METHOD_FLAG,0, 
INITY,INITYP); 
IF KFLAG~=1 THEN BEGIN EFLAG:=1;GO TO OUT;END; 
END; 
BEGIN 
TRAP(P,SAMPLE,B,JB,N_STATE,N_PTS,N_PAR, 
1,CG_FUN,EFLAG,OUTl); 
IF EFLAG=1 THEN GO TO OUT; 
END 

END; 
JI:=1; 
INDX:=BREAK(I_BREAK-1); 
IF INDX~=1 THEN JI:=2; 
FOR J:=JI UNTIL N_PTS DO 
FOR K:=l UNTIL N_STATE DO 
BEGIN 
STATE(INDX-1+J,K):=B(K,J); 
FOR L:=l UNTIL N_PAR DO 
JACOBIAN((INDX-2+J)*N_STATE+K,L):= 
JB(L,(J-1)*N_STATE+K); 
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END ; 
END I; 

COMMENT EXTRACT NON WEIGHTED JACOBIAN 
AND FORM RESIDUAL; 
FOR K:=l UNTIL N_PAR DO 
BEGIN 
M:=0; 
FOR I:=l UNTIL N_PTS_HIT DO 
FOR J:=l UNTIL N_STATE_OBS DO 

BEGIN 
M:=M+1; 
JAC(M,K):=JACOBIAN((1-1)*N_STATE+STATES_OBS(J),K); 
RES(M):=STATE(I,STATES_OBS(J))-
(CASE SMF OF( 
SPLN_AL(PTS_TO_HIT(I),SPLN_COEF(*,J),JOINTS(*,J) 
,NJOINTS(J), 
N_SPLN_PAR(J)), 
HERM(PTS_TO_HIT(I),HERM_COEF(*,*,J),JOINTS(*,J), 
NJOINTS(J)))) 
END; 

END; 
N_RES:=M; 
COMMENT SPECIAL WEIGTING OF BREAK POINTS; 
FOR I:=l UNTIL N__BREAK DO 

BEGIN 
INTEGER INDX; 
INDX:=(BREAK(I)-1)*N_STATE_OBS; 
FOR J:=l UNTIL N_STATE_OBS DO 
RES(INDX+J):=RES(INDX+J)*W(I); 
FOR J:=l UNTIL N_STATE_OBS DO 
FOR K:=l UNTIL N_PAR DO 
JAC(INDX+J,K):=JAC(INDX+J,K)*W(I); 
END; 

F:=0.L; 
FOR I:=l UNTIL N_RES DO F:=F+RES(I)**2; 
COMMENT FORM GRADIENT; 
FOR I:=l UNTIL N_PAR DO 
BEGIN 
SUM:=0.L; 
FOR J:=l UNTIL N_RES DO 
SUM:=SUM+JAC(J,I)*RES(J); 
GRAD(I):=SUM; 
END; 

OUT:END C_FUNC; 
INTEGER N_STATE , N_STATE_OBS , OUTPUT__SUP , OUTPUT, INT_PROC , METHOD 
, METHOD__FLAG; 
LONG REAL ARRAY STATE(1::INTDATA(1),1::INTDATA(3)); 
LONG REAL ARRAY JACOBIAN(1::INTDATA(1) 
*INTDATA(3),1::INTDATA(4)); 
INTEGER N_BREAK; 
INTEGER ARRAY BREAK(0::50); 
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LONG REAL ARRAY W(0::50); 
LONG REAL ARRAY GA,GA1(1::INTDATA(3)); 
N_PTS_HIT:=INTDATA(1); 
N_STATE_OBS:=INTDATA(2); 
N_STATE:=INTDATA(3); 
N_PAR:=INTDATA(4); 
SMF:=INTDATA(5); 
OUTPUT:=INTDATA(6); 
METHOD_FLAG:=INTDATA(7) ; 
OUTPUT_SUP:=INTDATA(9); 
OUT_SEG:=INTDATA(10); 
INT_PROC:=INTDATA(ll); 
IF MODE=0 THEN 
BEGIN 
INTEGER N__BRK; LONG REAL GAM; 
COMMENT %OUTPUT TO USER 
ENTER NUMBER OF BREAK POINTS 
ENTER 0 FOR NO BREAK POINTS 
%INPUT (N_BRK); 
IF N_BRK~=0 THEN 
BEGIN 
COMMENT %OUTPUT TO USER 
ENTER SAMPLE TIME SUBSCRIPTS FOR BREAK POINTS 
DO NOT INCLUDE FIRST OR LAST SAMPLE TIME; 
FOR I:=l UNTIL N_BRK DO 
COMMENT %INPUT BREAK(I); 
BREAK(0):=1;BREAK(N_BRK+1):=N_PTS_HIT; 
N_BREAK:=N_BRK+1; 
END 

ELSE 
BEGIN 
BREAK(0):=1; 
BREAK(1):=N_PTS_HIT; 
N_BREAK:=1; 
END; 

COMMENT %OUTPUT 
ENTER CONTINUATION PARAMETER 
FOR INITIAL VALUE PROBLEM 
%INPUT (GAM); 
FOR I:=l UNTIL N_STATE DO GA(I):=GAM; 
IF N_BRK~=0 THEN 
BEGIN 
COMMENT %OUTPUT 
ENTER CONTINUATION PARAMETER 
FOR BREAK POINTS. EACH COMPONENT 
CORRESPONDS TO THE STATE VARIABLE 
WITH THE SAME SUBSCRIPT; 
FOR I:=l UNTIL N_STATE DO 
COMMENT %INPUT (GAl(I)) 
%OUTPUT 
ENTER WEIGHTS AT BREAK POINTS 
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ONE ENTRY FOR EACH BREAK POINT; 
FOR I:=l UNTIL N_BRK DO 
COMMENT %INPUT (W(I)); 
W(0):=1.L; 
W(N_BREAK):=1.L; 
END 

ELSE 
W(l):=1.L; 
END 

ELSE 
BEGIN 
COMMENT MODE NOT 0. IFIT OPTION; 
N_BREAK:=1; 
BREAK(0):=1; BREAK(1):=N_PTS_HIT; 
FOR I:=l UNTIL N_STATE DO GA(I):=0.L; 
W(l):=1.L; 
END; 

COMMENT %FILE EMPTY TEMPORARY FILE -SCI 
%OUTPUT 
ENTER STARTING LAMBDA, REL AND ABS TOL FOR MARQUARDT 
%INPUT (LAM),(EPS_R),(EPS_A); 
COMMENT %OUTPUT TO USER IF IN BATCH, TO -SCI IF NOT, 
MARQUARDT USED IN CONTINUATION PROCEDURE 
OUTPUT REFERENCE NUMBER (OUT_SEG), 
LAMBDA (LAM), RELATIVE ERROR TOLERENCE (EPS_R), 
ABSOLUTE ERROR TOLERENCE (EPS_A); 
MARQUARDT(EPS_R,EPS_A,N_PTS_HIT*N_STATE_OBS, 
N_PAR,C_FUNC,PAR,LAM,SVD_AL); 
END CONTI. 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

Description of externally defined procedures 

%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% 

PROCEDURE CMD_AL(STRING(80) VALUE CMD; 
INTEGER VALUE N); 
BEGIN 
COMMENT EXECUTE AN MTS COMMAND; 
END. 

PROCEDURE CHECK_BATCH(LOGICAL RESULT BATCH); 
BEGIN 
COMMENT CHECK IF IN BATCH MODE; 
END. 

PROCEDURE SVD_AL(LONG REAL ARRAY AD(*,*); 
LONG REAL ARRAY S(*); 
LONG REAL ARRAY UD(*,*); 
LONG REAL ARRAY VD(*,*); 
INTEGER VALUE MDIM,NDIM,M,N,NRHS,NU,NV); 
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BEGIN 
COMMENT SINGULAR VALUE DECOMPOSITION 
USES U.B.C. FORTRAN VERSION OF 
PROCEDURE BY G. GOLUB AND C. REINSCH, 
NUMER. MATH. 14 (1970) 403-420; 
END. 

PROCEDURE G_FUN(LONG REAL VALUE T; 
LONG REAL ARRAY Y(*);LONG REAL ARRAY P(*); 
INTEGER VALUE OPTION;LONG REAL ARRAY G(*); 
LONG REAL ARRAY DGY(*,*);LONG REAL ARRAY DGP(*,*); 
LONG REAL ARRAY PREV_SENSE(*,*)); 

BEGIN 
COMMENT MODEL DEFINITION ; 
END. 

PROCEDURE ECHOl(INTEGER VALUE CAS); 
BEGIN 
COMMENT ECHO IBM 3270 CONVERSATION BUFFER 
(AS USED BY MTS AT U.B.C.) AND RESET POINTERS SO 
NO OVERLAP OCCURS; 
END. 

PROCEDURE SPLINT_AL(LONG REAL ARRAY X(*); 
LONG REAL ARRAY Y(*);LONG REAL ARRAY W(*); 
INTEGER VALUE N;LONG REAL ARRAY P(*); 
INTEGER VALUE RESULT M;LONG REAL ARRAY XJOINTS(*); 
INTEGER VALUE NJOINT); 
BEGIN 
COMMENT LEAST SQUARES SPLINE APPROXIMATION; 
END. 

LONG REAL PROCEDURE SPLN_AL(LONG REAL VALUE X; 
LONG REAL ARRAY P(*);LONG REAL ARRAY XJOINT(*); 
INTEGER VALUE NJOINT,M); 
BEGIN 
COMMENT CALCULATE SPLINE APPROXIMATION USING 
SPLINT_AL RESULTS; 
END. 

LONG REAL PROCEDURE DSPLN_AL(LONG REAL VALUE X; 
LONG REAL ARRAY P(*);LONG REAL ARRAY XJOINT(*); 
INTEGER VALUE NJOINT,M); 
BEGIN 
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING 
SPLINT_AL RESULTS; 
END. 

PROCEDURE HERMIT_AL(LONG REAL ARRAY X(*); 
LONG REAL ARRAY Y(*);LONG REAL ARRAY KNOTS(*); 
INTEGER VALUE N,NKNOTS;LONG REAL ARRAY COEF(*,*); 
INTEGER VALUE NCI;INTEGER RESULT FLAG); 
BEGIN 

' COMMENT LEAST SQUARES PIECEWISE CUBIC HERMITE 
APPROXIMATION; 
END. 

LONG REAL PROCEDURE HERM(LONG REAL VALUE X; 
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LONG REAL ARRAY COEF(*,*);LONG REAL ARRAY JOINTS(*); 
INTEGER VALUE NJOINTS); 
BEGIN 
COMMENT CALCULATE HERMITE APPROXIMATION USING 
RESULTS OF HERMIT_AL; 
END. 

LONG REAL PROCEDURE DHERM(LONG REAL VALUE X; 
LONG REAL ARRAY COEF(*,*)?LONG REAL ARRAY JOINTS(*); 
INTEGER VALUE NJOINTS); 
BEGIN 
COMMENT CALCULATE DERIVATIVE APPROXIMATION USING 
RESULTS OF HERMIT_AL; 
END. 

PROCEDURE CREATE_DATA(LONG REAL ARRAY SIM_PAR(*); 
LONG REAL ARRAY START_PAR(*);LONG REAL ARRAY PAR(*); 
LONG REAL ARRAY OBS_PLACE(*);LONG REAL ARRAY PTS_TO_HIT(*); 
LONG REAL ARRAY OBS(*,*);LONG REAL ARRAY STATE(*,*); 
LONG REAL ARRAY JACOBIAN(*,*);INTEGER ARRAY OBS_STATUS(*); 
INTEGER ARRAY STATES_OBS(*);INTEGER ARRAY INTDATA(*); 
STRING(31) VALUE MODEL;PROCEDURE EG_FUN,GEAR,STANDARD_HIT; 
LONG REAL RESULT STD_DEV;LONG REAL VALUE INITIAL_TIME; 
INTEGER VALUE KFLAG,OUTPUT); 
BEGIN 
COMMENT SIMULATE OBSERVATIONS; 
END. 

LONG REAL PROCEDURE FVALUE_AL(LONG REAL VALUE P; 
INTEGER VALUE N1,N2); 
BEGIN 
COMMENT STATISTICAL F DISTRIBUTION; 
END. 

PROCEDURE SMT(REAL ARRAY X(*); 
REAL ARRAY Y(*);REAL ARRAY P(*); 
REAL ARRAY SI(*);REAL ARRAY T(*); 
REAL ARRAY S(*);REAL ARRAY S l ( * ) ; 
REAL ARRAY S2(*);INTEGER VALUE N,IFF,M); 
BEGIN 
CUBIC SPLINE INTERPOLATION; 
END. 

PROCEDURE FSLE_AL(INTEGER VALUE N,NDIMA; 
LONG REAL ARRAY A(*,*);INTEGER VALUE NSOL,NDIMBX; 
LONG REAL ARRAY B ( *,*) ;LONG REAL ARRAY X(*,*); 
INTEGER ARRAY IPERM(*);INTEGER VALUE NDIMT; 
LONG REAL ARRAY TMP(*,*)); 

BEGIN 
COMMENT SOLVE A LINEAR SYSTEM OF EQUATIONS; 
END. 

PROCEDURE DIFF(INTEGER VALUE N; 
LONG REAL VALUE RESULT LT;LONG REAL ARRAY LY(*,*); 
LONG REAL ARRAY LSAVE(*,*);LONG REAL VALUE RESULT LH; 
LONG REAL VALUE LHMIN,LHMAX,LEPS;INTEGER VALUE METHOD_FLAG; 
LONG REAL ARRAY LYMAX(*);LONG REAL ARRAY LERROR(*); 
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INTEGER VALUE RESULT KFLAG; 
INTEGER VALUE RESULT JSTART; 
INTEGER VALUE MAXDER;LONG REAL ARRAY A A ( * ) ; 
INTEGER RESULT ORDER;PROCEDURE FUN; 
LONG REAL ARRAY P ( * ) ; R E A L ARRAY PW(*)); 

BEGIN 
COMMENT ALGOL FORTRAN INTERFACE TO GEAR'S CODE; 
END. 

PROCEDURE ECHO(INTEGER VALUE C A S ) ; 
BEGIN 
COMMENT SIM I L A R TO E C H O l — U S E D I N INTERACTIVE F I T ; 
END. 

PROCEDURE ALGRAF_AL(REAL ARRAY X ( * ) ; 
REAL ARRAY Y ( * ) ; 
INTEGER VALUE N,NS); 

BEGIN 
COMMENT PLOT A SET OF DATA POINTS; 
END. 

PROCEDURE PLOT_AL(REAL VALUE X,Y;INTEGER VALUE IPEN) 
BEGIN 
COMMENT MOVE PLOTTING PEN TO ( X , Y ) , CAN BE UP OR 
DOWN DEPENDING ON I P E N ; 
END. 

PROCEDURE A L S I Z E _ A L ( R E A L VALUE X S I Z E , Y S I Z E ) ; 
BEGIN 
COMMENT SET S I Z E OF PLOT; 
END. 

PROCEDURE A L S C A L _ A L ( R E A L VALUE XMIN,XMAX,YMIN,YMAX); 
BEGIN 
COMMENT SCALE DATA TO F I T PLOT; 
END. 

PROCEDURE A L A X I S _ A L ( S T R I N G ( 5 0 ) VALUE LABELX; 
INTEGER VALUE NX;STRING(50) VALUE LABELY; 
INTEGER VALUE N Y ) ; 

BEGIN 
COMMENT DRAW AXES; 
END. 

PROCEDURE DFBAND(LONG REAL ARRAY D A ( * ) ; 
LONG REAL ARRAY DB(*);INTEGER VALUE N,LHB,NRHS; 
LONG REAL VALUE RESULT RATIO;LONG REAL RESULT DET; 
INTEGER RESULT JEXP;INTEGER VALUE NS C A L E ) ; 

BEGIN 
COMMENT SOLVE A BANDED SYSTEM OF LINEAR EQUATIONS 
WITH A P O S I T I V E D E F I N I T E MATRIX USING 
A CHOLESKY DECOMPOSITION; 
END. 


