1L0GO:
AN APPROACH TO COMPUTER-BASED LEARNING

by
KIMBERLY ANN ARMSTRONG POLLACK

B. A., University of California, Berkeley, 1975

A4 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

May, 1979

© Kimberly Ann Armstrong Pollack, 1979

E-6 BP 75-511E

In presenting this thesis_in partial fu]fi]menf of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of __Computer Science

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

pate “\wﬁ 3 193G

ABSTRACT

The objective of this thesis 1is to explore the
possible use of LOGO as a ' vehicle for computer

assisted instruction in both - secondary and -

post-secondary environments. The spectrum of current
languages and systems for CAI is summarized by way of
selected example languages and some of the most recent

LOGO-based research is described. 1In particular, the

work performed at BBN, MIT and at the University of
Edinburgh is summarized. The remainder of the thesis
is based on the author's experience in using LOGO at
the University of British Columbia. Included are a
new LOGO User's Manual and the results of an

evaluation of both the language and the Manual as well

as a discussion of the actions taken based on the
students!' responses. The thesis concludes w¥ith a
comparison of LOGO with its nearest competitor
(BASIC), a critique of the BCLOGO implementation and a
final chapter containing the author's conclusions and
proposals for future research.

ii

TABLE OF CONTENTS

1. IntrOdUCtion ..o‘oo.ﬂ-'.ﬁ,.‘.v.‘.\.’-osoooo.-...-I.q-9...0..-0.... 1

2. Computers in EQUCAtiON sceevsccecccsccscasccsscncncacsnnas O
2.1 Survey within British Columbia ..ceccccececccccccacaces 5

2.2 Administrative USE .cecceccsscccacccstoccccaccnncenes b

2.3 Computer Assisted Instruction SyStems .ceccececesccas 8
SOPHIE cceeccescsvcscncsansccncsascsscsmasnancssensa 12

PLATO eeecescacecccssacsasscscascacssnnassseane 13
17

19

EUCLID .-.’o‘....-.---'.-o.....co-..o-lo.oa..c..

1

2

3

4 PILOT ceescccscscetsesssasscsocssscnccnacasence

5 NATAL-7H .ececencccascnnccsacancasnasascssosncsanaa 20
6 A Brief Comparison of the SysStemns .ccececceceses 22
rogranming and Problem SOlViNg ceccececcccescscssas 23

LOGO in Perspectlve ccmecccavscssccesessacecsscaccceancse 24
3. Brief HistorY Of LOGO ecceccccccccccccacoaccccnssncscse 2H
3. USe Of LOGO ecceccscsaccccnccscncscsacncsensossncsscnsenne 2D
-1 Bolt, Beranek and Newman, INC. ccecescsccecncsceces 25
2 Artificial Intelligence Laboratory at MIT 26
3 OUniversity of EAinburgh ecccecececcccccacsaccaeas 28
ompeting lLanguages_30

2
2
2

G
1
2
3.
3.
3
3

3. C
4. "Summary of LOGOi..;..;.......;,;.;..;;;;...... 32
5.7 Teaching Materials Built Around LOGO'.‘......CQI..bO;... 35
Experience in Computer Science 200 teccveececcacecaccicanse 37
6.1 The Two Assignments;.......... 38
6.2 Two-Part QuestioNRaire ..c.ccececccaccccecccncancscee 39
6 2 1 Questlons on LOGO‘.ICQ.....‘...........'.;. 39
6.

3

2.2 Questions on the Manual ecieescceccsccacsanasnecas U1
Questionnaire RESUlLS ceeccccacsscocsccccscccacacscce 42

6.
7._ Critique Of LOGO ..‘-.._I'-.-.“....-..q...;.;..;.‘......‘._. us
8. CODCluSiOn ...u--.-....-...--o.;n..-‘..n.‘a--q.--ﬂc...«-_...-.Om_u9

9. References ..;;...:;;_o....-.-.o...-..oc..‘q-_.g.-o...l... 51

Appendix ---..o.-o.-cg.o-cq...-;-.;o.o-.o;o-..;;oéou;.n-...q 5“

iv

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. Alan Mackworth, for
his many ideas, support, patience and careful editing of this
thesis. I would also like to thank Dr. Abbe Mowshowitz and
Vincent Manis for their comments and my husband, Bary, for his
encouragement and understanding. '

L0GO:
AN APPROACH TO COMPUTER-BASED LEARNING

1. Introduction

Although +the first nuses of computing were largely for
military and scientific computations, the major use today is
for data processing and administration. This wusage |is
charaéterized by 1large volumes of input- and output and
relatively simple computations. Data processing entails, among
other things, creating, wupdating and deleting records,
recording transactions, sorting and printing statements { BOHL,
1971]. These processes arise in the normal operation of
business, institutions and government. Other uses of computers
include generation of music, playing chess, checkers, or
bridge, generating pictures for animated films and controlling
machinery.

Why should computers in schools be confined to tasks 'such
as "cémpute the sum of the squares of .the first twénty odd
numberst? Why not use computers +o0 help children 1learn
fundamental skills which are needed in everyday 1life; 1let aus
use the comnputers to help educate the next generation. This
thesis describes one approach +to using computers in the
educational process.

Unfortunately, when educators speak about computers 1in
education they do not all have the same image in mind. Some
think of using the computer to program the child; others think

of teaching the <child to program the computer. But most

educators have at least this belief in common: the transactions
between the computer and the <c¢hild will be some kind of
conversatioﬁ or questions and answers using words or numbers.

Computers may be used to help children withAvarious levels
of ability and intelligence. They may be used to help thosé
students who are bright and find the everyday routine of the
classroom boring. These studeﬁts can use computers to help
them in advanced subjects while the teacher is busy with other
students. The computer may be used by those students who are
slow or who are having difficulty in a particular subject. The
computer can give these students the individual help which they
need. Interaction with computers can be an enjoyable learning
experience for ail students no matter how quickly or slowly
they learn if a proper environment is provided.

This thesis is about LOGO, a high-level advanced computer
language designed especially for the beginner. It was
developed jointly by Bolt, Beranek and Newman, Inc., and
Seymour Papert, a consultant from the Artificial Intelligence
Laboratory at MIT. Both BBN and Papert have been using LOGO to
help <children 1learn mathematical skills, to aid children who
have mental disabilities and to teach children to learn how to
think.

One of the features which makes LOGO especially attractive
for instructing beginners is its facilities for "turtles". A
turtle is a disk about one foot in diameter equipped with
wheels, a 1light, a horn and a pen found on the bottom in the

center of the disk. The turtle is run by commands given to it

by the child with the aid of a button box. The buttons specify
the following actions: Forward, Backward, Right, Left, Go,
Stop, Pendown, Penup and Honk. ' When the pen is down the turtle
traces the path it is taking.

Several studies have been done on children who are low in
scholastic skills; typically, after only one month of
individual work with +the computer these skills have improved
and the children have again become interested in learning.

The objectives of this thesis are to present a description
of L0GO, to evaluate the <claims of its proponents, to
critically review the LOGO approach, to expose the reader to a
few CAI languages with a description of each amd +to evaluate
students' reactions to LOGO. 1In Chapter 2 I discuss the area
of computers imn education -- how computers are used for
instruction in public schools throughout British Columbia and
how computers have helped simplify administrative tasks. I
also discuss Computer Assisted 1Instruction and present a
summary of the SOPHIE, PLATO, EUCLID, PILOT and NATAL-74
systems. Chapter 3 discusses the history of LOGO and summarize
what BBN, MIT and Edinburgh are doing' with the language.
Additionally, there is a section describing the other languages
with which LOGO has to compete. Chapter 4 presents an overall
summary of the LOGO language. LOGO is compared with LISP and
there is a short section on <control and data structures.
Chapter 5 describes the materials I have developedvfor making
use of LOGO. Chapter 6 presents a summary of my experience in

CPSC 200, a course in which LOGO and my manunal were used, also

the results of the questionnaire, listing each statement with
students' responses. Chapter 7 presents a critique of LOGO.
And in Chapter 8 I present my conclusions and some thoughts for

future work.

2. Computers in Education

—

2.1 Survey within British Columbia-

The use of computers in education is becoming very common:
out of approximately 90 school districts throughout British
Columbia 25 (including all Lower Mainland schools) have
computer access of one form or another [DODDS, 1978].
Available hardware ranges from time-shared medium- to
large-scale computer systems which are owned or rented by the
schools to portable micro-computers which are also owned or
rented by the schools. Although only BASIC is being taught and
used on most of these systems many students are sponsored to go
to UBC or SFU and learn additional 1lanquages -- PASCAL, APL
BCPL and others.

At the eleventh and twelfth grade 1levels full semester
computer courses are available; in grade levels eight, nine and
ten there are units on computers that the students may elect to
take. 1In all levels students write programs and do simulatiomns
in such areas as business applications, economics and
mathematics. Many students become very involved with computers
and spend most of their spare time learning more about their
organization, structure and use, as well as learning additional

languages.

2.2 Administrative Use-

The administrative use of computers in the secondary and
elementary schools may be divided into two general categories:
business applications and teacher related tasks.

At the Ministerial, School District amnd School levels, the
education system is a "business", with accounting,
record-keeping and reporting requirements very similar to any
other large business. Besides removing a lot of clerical work,
the use of computers for accounting, planning and management
provides advantages that are not possible with manual systems.
In many cases computer systems are faster, more cost effective
and more efficient.

There are a multitude of other tasks which relate
specifically to schools: cafeteria accounting, maintenance,
scheduling, pupil census, £film reservations, honour roll,
school bus scheduling, pupil health records, grade reports,
posting grades, test results and library holdings. Computers
are now being used to automate many of these tasks.

An important application ~not yet mentioned is that of
class scheduling. This involves correlating the requests for
courses supplied by students with the courses offered and the
facilities available in the school to plan which teachers will
teach which <courses in which rooms at what times, and which
students will be in each class. Reports are needed for
students, teachers and the principal for reporting to higher

levels in the school district. With the aid of the computer

this information may be obtained rapidly and inexpensively

without being so prone to "human error'.

2.3 Computer Assisted Instruction Systems-

In Computer Assisted Imstruction (CAI), the goal 1is to
replace the traditional student-teacher dialog with a
student-computer interaction. Because machines communicate
faster than humans, they should be able to provide more, and
better, communication. This objective has been achieved 1in
drill and practice, and in other narrowly defined circumstances
-- for example, classes for sales personal, aircraft and
weapon-systens training. However, these circumstances
represent only a fraction of all educational environments. In
the vast majority of <cases, CAI has yet to show results
comparable to those associated with an experienced human
teacher, even when exceptional programming material has been
available [SUGARMAN, 1978].

Instructional material prepared for CAI systems may be
compared to a series of textbooks that have been broken down
into small units of information. Unlike a textbook, however,
the material may be presented to students on many 1levels of
difficulty and each student progresses through the material on
an individual path charted by his previous performance. The
conmunication between the student at the terminal and the
teacher is private. Each student progresses at his own speed
and level, competing only with himself -- not with other
students. Fast students proceed more quickly because they make
fewer mistakes, while slower students take longer because they

are informed of their mistakes and are allowed to try again.

CAI systems are currently being used in many educational
environments: (1) At the University of 1Illinois most courses
are using CAI dinstruction in chemistry, physics, foreign
languages, medicine and accounting [SUGARMAN, 1978]; (2) At
the University of California at 1Irvine complete courses in
physics, mathematics and anthropology are using CAI
instruction; (3) At Stanford University four <complete
mathematic courses and parts of several foreign language
courses use CAI; (4) and at the University of British Columbia
NATAL-74, a typical CAI langunage, is currently being used.

Perhaps the most significant advantage of CAI over ﬁore
traditional instruction is its flexibility. In a typical CAI
classroom you might find one student doing drill on Spanish
verbs, another student conducting a chemistry experiment, yet
another student solving a mathematical problem and other
students studying French grammar, English, history and physics.
Each student progresses at his own learning rate -- the one
which is best suited for hima

Often when a person thinks of drill and practice
materials, he visualizes long sequences of addition problems or
vocabulary words and associates such exercises with dull
repetition, rote memory, low incentive and few side benefits.

This need not be the case. There are several examples of
well-designed drill materials in elementary mathematics
! DUGDALE, 1975} and one in science ! SMITH, 1971}. Each of
these examples exhibits more than just fote memory practice.

First, motivation is provided by making a competitive game of

10

the practice material. The practice comes as the student
generates (by addition, subtraction, multiplication and
division) many numbers in determining what he thinks 1is his
best move. The student competes against time, the computer, or
another student. In addition to reinforcement by drill,
another objective of the material 1is practice in decision
making and strategy development. The student mnust make
decisions as to how to proceed in the game and as he makes
these decisions he develops a strategy that helps determine the
outcome of the game. This type of drill and practice gives up
some of the control needed to measure the type of difficulty a
student is having, but it has many additional advantages.

O0f all the advantages claimed for CAI, the most important
is that it enables each student to learn at his own pace
instead of being forced to stay locked in step with <classmates

whose knowledge and learning rates are different.
Individualized instruction has long been a goal in education
| WEISGERBER, 1971].

Papert emphasizes the versatility of CAI and the exciting
opportunities it offers for teaching concepts and techniques in
mathematics, biology, and mechanics even to elementary school
students [PAPERT, 1971].

To provide the reader with a feeling for the : current state
of the art 1in CAI systems I present a brief survey of five
recent research projects: SOPHIE, PLATO, EUCLID, PILOT and

NATAL-74.

11

These five projects were selected because they_ are
representative of the CAI systems currently available and they
illustrate the various themes which CAI researchers follow in
their systems!' design and implementation. In particular,
SOPHIE is representative of +the artificial intelligence
approach towards limited, specific "intelligent"™ CAI systenms.
PLATO represents the more or less traditional general-purpose
large scale approach. EUCLID represents the traditional
special-purpose approach. PILOT is representative of systenms
which are designed for minicomputers and small-scale systems.
Lastly, the course ware for NATAL—?H exemplifes the wvarious
author languages available for CAI. This system is a direct
descendant of the first widely promoted author language;
COURSEWRITER, which was developed by IBM 1in the early and

mid-1960°*s.

12
2.3.1 SOPHIE

SOPHIE is an instructional system for teaching
expert~grade electronic troubleshooting which has been under
development at BBN for several years [BROWN, 1974 and 1976].
SOPHIE was developed to provide symbolic knowledge; problem
solving strategies and natural capabilities similar to a human
tutor. 1In particular SOPHIE uses many of the concepts and
techniques of Artificial Intelligence. SOPHIE is especially
important because it departs from the traditional CAI - approach
of providing only a question-response environment -- it is able
to draw conclusions based on its "intelligence". The primary
seat of this intelligence resides in a collection of special
purpose inferencing procedures, each of which performs a
certain <class of inferences extrenely efficientiy, The most
important of these procedures drive special and general purpose
simulétors in order to determine the result of some particular

action. The factual data base resides in a semantic net.

13
2.3.2 PLATO

Beginning in 1960 as a single terminal, which consisted of
a small keyboard and an ordinary television réceiver connected
to ILLIAC I, PLATO has evolved over the past 19 years to the
PLATO Iv System. This is probably the 1largest, most
heavily-funded Computer Assisted Instruction experiment in the
world [DENENBERG, 1978]. Bitzer and Braunfeld at the
University of Illinois initiated the PLATO project. The system
was used in its early stages for teaching computer-related
topics; as well as mathematics and language drills [KiNGERY,
1967].

The PLATO system is based on a Control Data Corporation
Cyber 73-2 computer with a high-speed central memory of 65,000
60-bit words and two central processing units each <capable of
approximately one m@million instructions per second {BITZER,
1976].

PLATO is <constantly being extensively evaluated by the
Educational Testing Services at Princeton, New Jersey. The
studies are on the use of PLATO in a variety of educational
settings.

PLATO has several aids to help students, teachers and
evaluators in gathering and processing relevant data. First,
the author or teacher can specify what variable .or
computer-student transactions should be stored by the computer
for later processing. Second, the stored information can be

sorted, processed and displayed in any manner specified by the

14

teacher_' The security of the system makes it possible for a
student to see such things as his progress through the 1lesson
material, test scores and relative ‘standing in the course,
without being able to see the identical‘ results for other
students.

The PLATO computer—based educational system has Dbeen
specifically designed to provide interactive, self-paced
instruction to large numbers of stﬁdents [BITZER, 1976].
Lesson material is displayed on a screen 22_centimeters square
and may consist of text, drawings, graphs, and colour
photographs. Students interact with +the material through a
special keyset that closely resembles a typewriter keyboard,
and they receive essentially instantaneous reinforcement of
correct work and assistance when they encounter difficulties.
Students <can work at their convenience in classrooms. The
users of PLATO range from grade school students 1learning
reading and mathematics to graduate students in the medical
sciences {SMIfH, 19761. The various PLATO installations
located 4in universities, colleges, community colleges, public
schools, military training schools and commercial organizations
now include several different maiﬁframes and over 950
terminals. The PLATO system at the University of Illinois
provides users access to more than 3500 hours of instructional
material in more than 100 subject areas {SMITH, 19761.

A complete lesson on PLATO has many of the characteristics
of a chapter in a textbook. Like <chapters in a book, such

lessons need to be assembled in a form that is easy for

15

students to use, A1l of the 1lessons associated with a
particular course can be made available from an index. Then,
when a student signs on to the PLATO system with his name and
the name of the course, he may choose topics or lessons to
study. He makes his selection from a list‘ of descriptive
titles, mnuch as chapters in a book are selected from the table
of contents.

There are three main conmnponents of the PLATO aspects of
the course: instructional 1lessons, homework and an on-line
gradebook. Students are assigned instructional 1lessons to
study; a part of their grade is based on how many of these
lessons they complete. Homework is graded by PLATO rather thanm
by the instructors. The student 1is given printed homework
problems that he 1is encouraged to work at home. When the
student is ready, he goes to a terminal to enter his results.
Each instructor can 1look at and change the scores of his own
students and can see scores for his section marked on the
course distribution graph. An important benefit of this
machinery is that an instructor can plan class activities on
the basis of wup-to-date information on how far students have
gotten in their studies.

PLATO has been integrated into instruction in many other
ways. For example, in 1language courses (including French,'
Spanish, German, Russian, Hebrew, Latin and Esperanto),.PLATO
is used heavily to drill the student on vocabulary and grammar
and to give practice in tranmnslating sentences from ome language

to the other. Another important integration of PLATO into

16

courses 1is illustrated by the use in chemistry of simulated
laboratory experiments as a means of better preparing the
student for a real laboratory experiment.

The PLATO computer-based teaching systenm provides
individualized instruction to hundreds of students
simultaneously. Lesson material can include natural 1language
dialogues, gréphics, numerical and algebraic exercises and

colour photographs.

17
2.3.3 EUCLID

EOCLID is a tool for individual instruction in high school
geometry along more or less traditional CAI lines [KELANIC,
1978}. With EUCLID students work at their own rates and along
their own routes in constructing proofs to theorems. EUCLID is
the fourth version of a theorem+«proving computer progranm
written by Kelanic since 1972, The present version was
developed at Taylor Allderdice High School, Pittsburgh,
Pennsylvania, in 1977.

EUCLID is written in extended BASIC. Various segments
contain the gemeral 1logic of interactive proofs, a Turing
controller and a user command interpreter, The Turing
controller provides for fully automatic theorem-proving by
determining which step to take next. The user command
interpreter operates on all input strings having fewer than
four characters.

Program segment EUCLID offers the user one of four modes
of operation. In all four modes, the user must input the given
assumptions and the statement to be proved. The four modes are
as follows: (1) Demonstration Mode: The Turing Controller
directs EUCLID in an attempt to prove . the theoren
automatically. The program supplies all statements, reasons,
conclusions, and hints to itself. The user sits back and
watches the changing file status message. (2) Practice Mode:
EOCLID supplies all reasons, all conclﬁsions and permits user

access to hints and conclusions. The user must supply all

18

statements and all reasons. (3) Quiz Mode: EUCLID supplies all
conclusions, checks user reasons and permits .user access to
hints and conclusions. The user must supply all statements and
all reasons. (4) Test Mode: EUCLID checks the reasons. User
access to hints, conclusions and file status is denied: The

user must supply all statements, reasons and conclusions.

19

————.

2.3.4 PILOT

PILOT is a dialog-oriented interactive language for use by
teachers and students on small systens [YOB; 1977]. 1Its simple
syntax and free format encourage innovation and use by those
frightened by computers or who 1lack time +to learn a more
complex language.

PILOT was developed im 1969 at the University of
California Medical Center by John Starkweather to meet some of
their instructional needs. It was used to train students in
pharmacology and later in an elementary school in Marin County.
Stanford Reasearch Institute used PILOT in an experimental
educational research project (with very good results) and later
developed a dialect, called PYLON {YOB, 1977}. In 1971 and
1972 other variants of PYLON were developed by Stanford
University, the California State College computer network and
the Lawrence Hall of Science at the Berkeley campus of the
University of California.

PILOT is a simple language which is entirely word- and
dialog-oriented. It is easier to write a simulated dialog in
PILOT than in most other languages. PILOT has several features
which aid the creation of dialogs. It has minimized the syntax

that often confuses the word-oriented human programmar.

20

2.3.5 NATAL=74

In 1974 the National Research Council and IBM completed
the design of a 1lanquage for CAI called the NATional Author
Language, NATAL-74 i WESTROM, 1974].

NATAL was implemented because IBM and NRC thought that CAI
would be an important factor in improving education in Canada.
The system was first implemented on the NRC PDP-10 computer in
1976 in Ottawa. The NATAL-74 system is now operational in
Ottawa and currently is being implemented at UBC in the
Department of Education.

NATAL contains three subdivisions -- procedure, unit and a
function:. The procedure is the routine which controls or
manages the lessons. Units are invoked only by being called
from procedures. Each unit invocation is a three step process.
First, the procedure must determine which unit is to be invoked
and assembled and provide all data needed by the: unit for its
execution in the calling parameter list. Second, the unit is
called. Third, the results of the unit are worked on if
necessary and stored away for future use in selecting other
units.

The unit is the basic routine from which all lessons are
constructed in the NATAL-74 language. All interactions with
the student must be specified in each unit routine.

Units may call the graphic function for the presentation
of special displays, the font block function to change the

display character set, the edit function +¢to edit students!'

21

responses and the general function .to perform response
analysis. Units may not invoke other units, nor may wunits be
implicitly 1linked together, but they may be linked by adjacent
calls from a procedure.

There can be only one response statement in a unit, but if
more are needed there may be a display statement preceding each

response.

22

2.3.6 A Brief Comparison of the Systems

Each of the five systems presented has notable strengths
and weaknesses. These are. due in part to their original
design, but also may be seen as resulting from the fact that
they do not all have the same objective. In particular, the
PLATO 1lanquage and system is the only one with a long history
of success in general CAI. NATAL-74 is attacking the same
area, general CAI, but it is too early to evaluate its success
or failure since experience with it is still quite limited.

SOPHIE is an experimental vehicle for testing some
specific artificial intelligence techniques. It has 1limited
applicability, but the artificial infelligence techniques may
become very valuable in implementing future CAI systems.

EUCLID 1is representative of specialized systems. It was
built to provide CAI in a single domain and exhibits success in
this area. It is distinguished from the other systems (except
SOPHIE) because it incorporates a theorem prover within its
basic design.

The PILOT system is distinqguished from the others in that
it implements CAI in a small scale system environment. A
variety of constraints are imposed such as limifed memory,
limited auxiliary storage, a small number of users, and the
like, which affect the system design. The most important such
restriction is PILOT's reliance on dialogue rather than

interaction formats.

23

2.4 Programming and Problem- -Solving -

Perhaps the most exciting application of computer
technology in the curricula of today's secondary schools is in
the area of problem solving -- the use of a computer to assist
in the study of problems in an existing non-computer
curriculun, The computer is most frequently used in
mathematics, chemistry, physics, science and business. Problen
solving may be thought of as curriculum-oriented rather than
computer oriented. The problem solving method is not new; it
is as 0ld as man. The use of the computer in the problen
solving’ process 1is relatively new; it creates excitement,
encourages creativity and makes +the subject matter more
interesting to the student.

The problem solving approach is based on recognition of
the fact that teaching is not telling. Problem solving is not
merely the conmmunication of knowledge or the 1learning or
memorization of facts -- it 1is discovering new things,
thinking, analyzing and searching. Students are cénfronted
with problems which are to be solved on a computer. They begin
to think. They conceive method for solving a problem. They
then obtain data and arrange that data in such a way that it is
meaningful. Problem solving forces the student +to carefully

interpret both problem and solution.

24

3. LOGO in Perspective

3.1 Brief History of LOGO

The development of LOGO began in 1968 at Bolt, Beranek and
Newman, Inc., funded by a grant from the National Science
Foundation, in collaboration with Seymour Papert, a consultant
from the Artificial Intelligence Laboratory at MIT. Since its
introduction in Navy classrooms for teaching young children,
LOGO has been used in two Massachusetts schools: Anderson Field
Elementary School (for a fifth grade class), and Emerson
grammar school { FEURZEIG, 1978 1.

Since then LOGO has continually been improved and it has
been used in several research projects dealing with children

and their desire to learn.

25

3.2 Use of LOGO -

3.2.1 Bolt, Beranek and Newman, Inc.

BBN has done considerable work in using LOGO to teach
mathematics. Much of +their work is documented in a
multi-volume report { FEURZEIG, 1971].

The BBN effort strongly emphasizes teletype geometry and
the use of LOGO to introduce geometric concepts. A variety of
experiments have been performed by BBN, primarily in the Boston
metropolitan area, to investigate LOGO's utility.

BBN has developed teaching sequences on geometry, number
representation, arithmetic algorithms, functions, equations and
on the conversion of story problems into formal mathematical
terms.

Much of their work aims to provide aspiring mathematics

teachers with the skills needed to teach problem solving.

26

3.2.2 Artificial Intelligence Laboratory at MIT-

In the past few years, the MIT LOGO group, directed by
Papert, has employed computers to provide a creative 1learning
enQironment in a public-school setting, has designed new course
material that allows graphical interactions in high-school
mathematics and physics, and has augmented the sensory
environment of handicapped children ! SUGARMAN, 197841.

Much of the MIT work has been directed towards children
and their experiences using LOGO and turtles.

One research project dealt with the deﬁelopment of
computers and computer controlled devices [PAPERT, 1971]. The
goal was to achieve a more involved and individual
participation of children in their school work. Using LOGO and
turtle the children were. able to achieve personal goals and
improve in their school work. Another research effort dealt
with the development of critical thinking; in particular it was
concerned with teaching children to analyze how things perform
the way they do i PAPERT, 1970}. With the aid of the turtle the
children started to understand that pushing a button marked
"forward" also made the turtle move forward.

Many other uses of LOGO, including the use of the turtle,
music notation, drawing pictures and carrying out tasks, have
been documented in MIT reports. Additional topics include
children solving mathematical problems, games and LOGO itself.
One especially significant project dealt with preschool

children learning to communicate with and program the turtle

27

[PERLMAN, 1974]. This experiment consisted of several LOGO
control boxes designed so that only a few new concepts were
introduced at a time, and more were added when the child became
familiar with what he was doing.

The first box the child saw was called the command box.
It had nine buttons. Each button evoked an immediate response
from the turtle. Next, when the child mastered the first box a
larger command box was presented. This box consisted of the
nine buttons from the smaller box plus an additional eleven.

The third box was called a memory box. This box had four
buttons controlling the actions: START, STOP, DOIT, FORGETIT
and HONK. This box allowed the students to create turtle
programs.

One of the main qualities needed to help a child play with
a button box is "common sense". That is why the child is shown
only a little bit at a time, more buttons being added when the
child is sure of the previous set. It is important‘ that the
child never feel that he is "too dumb" to learn or that the
button box is "too hard" for hinm. It is 'important not to
propose probléms which the child cannot solve. Thus the child

is confident of his ability at all times.

28

3.2.3~Universit1 of Edinburgh

The University of Edinburgh has done a considerable amount
of work on using LOGO and turtles.

One reseafch report describing an aspect of an
experimental project being undertaken at the university is
especially noteworthy [duBOULAY, 1977]. The project's
attention was directed at the learning and understanding of
elementary mathematics of two small groups of student teachers.
These student teachers were volunteers from a local college
near Edinburgh where they were taking a three-year diploma in
primary education. The course work devised for these students
was an example of the use of computers in higher education.
Tﬁe main commitment of the project was to explore the effect on
each student teacher of her interaction with a special learning
environment based on LOGO.

The objectives of the project were +to have +the student
teachers Dbecome aware of two main areas that related to
teaching mathematics in a primary school: understanding what is
being taught and understanding how to teach.

Another research project investigated how the fascination
for machines shown by autistic children could be exploited in a
L0GO-based learning environment [WEIR, 1976]. The project was
about an experience with a seven-year-old autistic child whose
active and enjoyable explorations in controlling the LOGO
turtle formed +the basis for the development of language . for

communication, both verbal and nonverbal. The researchers

29

discovered two features not shown by the child before. One vas
the onset of spontaneous language based on descriptions of the
turtle's behavior and the second was the active seeking out of
social \interaction. This discovery, the authors believe,
follows from the self-validating effect of understanding and
being understood. This in turn follows £from the highly
siructured but creatively open-ended nature of the LOGO
environment in which the <c¢rucial step of fseeing what is
relevant” is made transparently easy.

Earlier work by Omar Moore in the nineteen fifties [MOORE,
1964) showed a similar effect with the "talking typewriter".
Computers are not, therefore, necessary for this effect +to be
demonstrated. quever, they do allow for the flexible use of

machine - slaves. A well designed toy train layout could

conceivably work just as well, but less flexibly.

30

3.3 Competing Languages

The thrust of computers in elementary education seems to
be mostly in four areas: first, courses designed to teach about
computers, how they function and how to program them; second,
using the computer to pass curricula or other student materials
to the student; third, actively involving the students in using
the computer to solve problems in their course to study; and
fourth, allowing students to use the computer for their own
expression, self-integration and growth.

Each of these areas have languages associated with thenm.
FORTRAN, Assembly Language, COBOL and BASIC are. taught with
courses concerned with how to use and understand the computer.
PLATO and the IBM's Coursewriter are both CAI languages which
help students learn materials for their individual needs. Most
problem solving is done in BASIC with small efforts in FORTRAN
and LOGO. PILOT and LOGO are often used for self-expression
and growth.

BASIC is in essence FORTRAN with many non-essential
constructs removed. 1Its ready availability oﬁ small systems
(especially time-sharing systems) makes it quite popular for
mathematics and science teachers. The student learns BASIC as
a tooi for solving numerical problems posed in his courses.
However, BASIC is very weak with strings, words and data
structures; this may account for the fact that BASIC users tend

to be in the scientific and technical disciplines.

31

LOGO is a simplified variant of LISP in a manner amalogous
to the way that BASIC is a simplification of FORTRAN. Its
primary advantage over LISP for CAI purposes lies inmn its
capability for controlling devices such as the turtle, a
plotter-robot, and a "music box". LOGO is capable of handling
lists and recursive function calls. LOGO is excellent for
problems concerning the order and arrangement of things rather
than calculations. Unfortunately, at present there are few
users of LOGO and they are mainly mathematics and

computer-oriented.

32

4. "Summary of LOGO

The University of British Columbia‘'s implementation of
LOGO, BCLOGO, is an interpreter written imn BCPL - a
machine-independent 1language designed especially for compiler
writing (MANIS, 19731. Itlcurrently operates on the Amdahl
470/v6 under the Michigan Terminal Systenm.

Every 1language has a set of rules and LOGO is no
exception. L0GO's syntax 1is very simple —- the action to be
performed always precedes the listing of the data to be used.

LOGO allows you to define your own procedures. There are
built-in simple procedures which print sentences or words and
procedures for handling input/output. Procedures may be
recursive.

LOGO includes a primitive editing system as well. Along
with the Edit command there are Show, Erase, Showline and Save.
Each of +these commands helps you once you are inside a
procedure.

BCLOGO 1is initialized by reading in a file of commands.
These commands cause procedures to be defined, error messages
to be stored, initialization procedures to be called and
messages to be typed to the user.

Since LOGO 1is considered by many to be a "baby LISP" it
may be useful to discuss the 4differences between these tvwo
programming languages.

LOGO introduces two data types =-- WORDs and SENTENCEs.

Along with the standard 1list operations of FIRST (CAR) and

33

BUTFIRST (CDR), LOGO provides LAST and BUTLAST {GOLDSTEIN,
1975]. All four of these operations work on words as well as
sentences. Repeatedly BUTFIRSTing a sentence in LOGO always
terminates in the empty list. 1In LISP, with its more general
list structure built from "dotted pairs" and CONSing, this is
not always so. In LISP programs are themselves list structures
wvhereas in LOGO they are not. Editing and debugging in LISP
consequently becomes awkward due to the difficulty in naming
parts of the program. LOGO simplifies program structure by
requiring that a program be a series of numbered lines. The
locations of bugs and intended edits are then far easier to
describe. On the other hand dynamically creating programs in
LOGO is very awkward. DO (the interpreter corresponding to
LISP's EVAL) 1is consequently rarely used explicitly by the
user.

LOGO's 1lack of canned loops such as DO and MAPCAR can be
criticized as encouraging bad programming practice, such as
excessive use of GO. This obscures the logical structure of
programs. Also, it may be significantly confusing to the
beginner and the source of many bugs. A child might understand
quite well a control structure concept like "do this part of
the program three times", or "do this part of the program for
each element of the list", but may be unable to express that
control structure in terms of jumps and conditionals. LOGO
programs can't be automatically formatted to reveal their
1ogicgl structure as can progranms written in'LISP or block

structured languages.

34

A complete description of the syntax and semantics of LOGO

is provided in the LOGO User's Manual { POLLACK, 1978}.

35

5. Teaching Materials Built Around LOGO

I have seen children turn away from school because of the
lack of interest or the inability to read and understand what
they are reading. For this reason I choose to help children
with the aid of the computer. For if a child enjoys his work
then he will work harder to achieve more. My interests lie in
the elementary 1levels and for this reason my programs and the
manual are aimed at that level. I picked the 10GO 1language
because to me it showed enough flexibility for my usage. LOGO
is a easy language to learn and easy to understand.

I started out by writing arithmetic programs: one progran
for each arithmetic operation -- addition, subtraction,
multiplication and so on. Next I wrote some spelling programs.
One was called "0ld MacDonald". 1In ﬁhis program you had to
type in the name of an animal and the sound that animal makes.
To accomplish this the child had to be able to read and
understand whét was going on. There were. other spelling
programs which checked to see if you were spelling the vwords
correctly. There were also story programs which asked
questions; the answers were inserted into a story which the
child had to read and understand. These are amusing prograns,
but also educational, for they asked the <child to wuse the
skills he already has and improve on them. Moreover, the
programs would be available to the children to inspect as
non-trivial LOGO programs. They would be encouraged to change

the programs to produce different behavior. Here are some

36

exanples of the programs I wrote. The underlined words are

what the program types out and the words not underlined are

wvhat the user typed in.

TYPE IN TWO NUMBERS

L]

WHAT IS 5 + 6

WELL LET US SEE IF YOU ARE CORRECT

m-ﬂm
e
I3
A
It
18}
i+
{e)
N

L LET US SEE IF YOU ARE CORRECT

=T al=m v 0 #
|+
(o)}

*ml
5 |
%=
b
%3

‘== -YOUR ANSWER WAS CORRECT-

- e mm e o - -

IS IS ALL THERE IS FOR ADDITION--- GOODBYE-

= FARM
OLD MACDONALD HAD A FARM EEI EEI O

AND ON HIS FARM HE HAD A

PIG

EEI EEI O WITH A

OINK

OINK HERE, AND AN OINK OINK THERE HERE AN OINK -
THERE AN OINK EVERYWHERE AN OINK OINK

OLD MACDONALD HAD A FARM EEI EEI-O

AND ON HIS FARM HE HAD A

For further information see the the 1LOGO User's Manual

[POLLACK, 1978].

37

6. Experience in Computer Science 200

At the University of British Columbia in the Spring of
1978 i was fortunate +to be given the opportunity to have my
Manual used by eleven full-time students in Computer Science
200, Computers and Man, instructed by Dr. Abbe Mowshowitz.
The course is designed for non-Computer Science Majors. The
eleven students were all from the Faculty of Science ranging
from Mathematics to Biochemistry and from first year to fourth
year standing.

I vas allowed three hours with the class. One hour was
spent on an a introduction to basic mechanics: signing on to
the IBM 3270 terminals and the Vucoms, running LOGO and
answering questions about the terminalé,'the language and other
things. The second hour was spent talking about LOGO -~
explaining the usesAof the glossary, giving examples using LOGO
and discussing the two programming assignments which I
presented. The third hour was given three weeks later during
which the students asked me gquestions about LOGO and the
manual. During +this hour I also handed out a questionnaire

which covered the Manual and LOGO.

38

6.1 The Two Assignments

The two assignments which were given the class were:

(1) Write a procedure which adds up each number you type
in and at the end of the procedure the sum of the numbers is
printed out.

(2) Write a procedure which reads in a string and reverses
that string. Write another procedure which inputs two strings
and sees if they are both the same. Combine both procedures to
see. if a string 4is a palindrome (that is, it reads the same

from front to back and back to front).

39

6.2 Two-Part Questionnaire

The following questionnaire was used to help evaluate the

utility

of LOGO and my manual. It was presented to the CPSC

200 students at the end of the term.

6.2.1 Questions on LOGO

The following are questions on LOGO.

1)

2)

3)

4)

5)

6)

Is LOGO a good language to learn if you
do not know any other programming language?

Very Good Good OK Bad Very Bad

If your program has an error in it, does LOGO
explain the error well enough for
you to correct it?

Very Adequate Adequate OK Inadequate Very Inadequate’

Were there any specific things about LOGO
you did not 1like?
Why?

How can the language LOGO be improved?

Would you prefer to learn and use LOGO or
some other language? Specify the language:
Why?

Would you have liked to spend more

time in this course programming in LOGO?
How much time?
Why?

7) If you had the time available, would you 1like
to continue working with LOGO and
the computer?
Why?

40

41

6.2.2 Questions on the Manual-

The following are questions on the manual.

1)

2)

3)

4)

5)

6)

Does the manual provide enough information
to make you a reasonable programmar in LOGO?

Very Adequate Adequate OK Inadequate Very Inadequate

Were you bothered by the fact that the manual
was directed at the secondary level?

Very Bothered Bothered OK Not Bothered

Are the number of examples in the
manual adequate?

Very Adequate Adequate OK Inadequate Very Inadequate

(2) The best written section of
the manual was?
Why?

(b) The worst written section of
the manual was?
Why?

More additional work is needed in the
following areas of the manual.

What should be changed or added

.in the manual to make it easier for you

to learn L0OGO?

6.3 Questionnaire Results

The results were quite good. I was fortunate to have

42

had

students who were willing to spend the time to discuss in

detail the good and bad parts of both the manual and LOGO.

Following are the responses of the students to each of the

questions found in chapter 6.

Questions and responses on LOGO.

{1) Is LOGO a good language?
Very Good Good OK Bad Very Bad
3 3 4 1
(2) Does LOGO explain the errors well?
Very Adequate Adequate OK Inadequate
1 2 4 4

(3) Where there any specific things about
1.OGO you did not like? Why?

Too expensive
cannot rename a procedure

(4) How can the language LOGO be improved?

Sum and difference be
substituted by + -

allow for subroutines

more built in functions

error messages need improvement

43

(5) Would you prefer to learn LOGO or
some other language?

5 for LOGO —- easy to use, to learn, OK to
start with but need a more sophisticated
language to do more complicated problems

3 for FORTRAN -- used for scientific work,
but LOGO nice for fun, LOGO easy
to learn for a first language

3 with no comments

(6) Spend more time with LOGO?

6 stated Yes -- more problems, 3 or 4 more
weeks, a interesting language,
more lecture time

5 stated No -- more practical applications
would be appropriate, cannot afford to spend
the time, not enough time to spend on programs

(7) If you had the time would you like to
continue with LOGO and the computer?

8 stated Yes -- fun, useful to learn
another language, more difficult
programs, experiment with the language

3 stated No -- other interests, need
a language to solve mathematical problenms

Questions and responses oh the Manual.

(1) Does the Manual provide enough information?
Adequate OK Inadequate Very Inadequate
1 5 3 2

(2) Were you bothered by the fact that the
Manual was directed at the secondary level?

Very Bothered Bothered OK Not Bothered
6 5
(3) Are there enough examples in the Manual?
Adequate OK Inadequate Very Inadequate.

1 1 5 4

44

(4) (a) The best written section?
Sign On and Off, editing, how to use and

write programs, everything, explaining the
interactive nature of the language

(b) The worst written section?
Glossary, :a: as a mailbox is unclear,
test and editing sections, how to get
out of Edit, recursion examples not good,

building programs from commands, whole Manual
lacking in sufficient detail to be very useful

(5) Additional work is need?
Glossary, functions, test and editing,

more examples through the Manual, show
how the commands are to be used

(6) What should be added or deleted?

More complicated examples in mathematical
notation, better use of procedures, more
examples using Equalp, more examples
of programming

I used the results of the questionnaire to help prepare
the current version of the manual. I rewrote the glossary and

inserted examples for each. I also went through the manual and

put in examples where they were needed.

45

7. Critique of LOGO

Like most systems, LOGO has several notable weaknesses as
well as its advertised strengths.

LOGO's weaknesses are that it is limited in its ability to
perform numeric computations, and it provides only very
primitive control structures and data structures.

The comments of the CPSC 200 students were gquite useful in

correcting the User's Manual and in helping me evaluate the

language. With the variety of backgrounds of the students
taking the course it was difficult to form an overall
impression of their responses. Some of the students took the
course because they had a slight interest in computer science;
others had FORTRAN and/or BACIC experience and found LOGO to be
redundant and 1limited; still others were very interested in
exploring LOGO's possibilities.

Various suggestions for improvement of the BCLOGO
implementation include: enhance the efficiency to cut its cost;
provide for renaming of procedures; allow subroutines; provide
for the use of infix notation in addition to the current prefix
form; improve error diagnostics and implement more graceful
error recovery; and add a floating point data type.

LOGO's strengths are: 1) it 1is an extremely simple
language with relatively uncomplicated syntax; 2) it is easy to
teach and easy to learn; 3) it is designed for novices; 4) it

is interactive; 5) it was designed with the idea that using a

46

¢omputer should be "fun" -- not "work".

Comparison of BASIC and LOGO:

a) Th

he Goal of BASIC: The idea behind BASIC was to make it

easy for people and computers to interact. BASIC was developed
in the early sixties to provide facilities for people to obtain
solutions to mathematical and business problems with the aid of

the computer.

b) The Audience: The people who use BASIC are primarily
from the business world, i.e., industry, banking, manufacturiné
and related ~fields. Additionally a -large number of school
administrators and students are now using the language. Many
scientists in areas other than computer science use BASIC for
simple numerical computation.

c) Syntax: BASIC can be used to express problems and their
solutions in a form that is readily understandable by humans --
it looks reasonably similar to high school algebra. Some

versions include extensions for performing string processing.

d) Inplementations: There are many different versions of
BASIC being used. One popular version is BASIC-PLUS.
BASIC-PLUS allows both recursive functions and recursive
subroutines. This version of BASIC uses the
IF ... THEN ... ELSE ‘structure,- string functions and dynamic

string arrays.

47

e) Summary: BASIC is not a powerful language. It is weak
in control structures and weaker in data structures. It is a
language meant for interactive computing by novices, primarily

in the numeric domain.

LOGO:

a) The Goal of LOGO: The idea behind LOGO was to create a

programming language to do practical things with the aid of
computers and to describe algorithms. LOGO was designed to
work with symbols rather than with numeric values. This

feature distinguishes LOGO from BASIC and FORTRAN.

b) The Audience: The people who use LOGO are children with
special 1learning problems, *"normal" children and novice
programnars.

c) Syntax: LOGO has very few syntax rules, The user's
primary goal is to learn what the various features of LOGO do,
then how to write them down. LOGO is a interpreted 1langquage.
This means that LOGO operates 1in a direct execution mode
[MANIS, 1973j. As the user types in a line of code which is
not part of a procedure definition, LOGO obeys that command
immediately; but if a procedure is being defined, LOGO will
store the code away for later use.

d) Implementation: There are many versions of LOGO:

Edinburgh, BBN, MIT and UBC all have different LOGO
implementations, but they are similar in their semantics. UBC
does not have a turtle or a graphic environment working, but

the other three do have at least a working turtle.

48

Many of the CPSC 200 students complained that BCLOGO was
costly to use, especiaily in cémparison with other 1languages
such as FORTRAN. There are two reasons for this: 1) LOGO is
implemented as an interpreter and is therefore inherently more
expensive to run than compiled languages such as FORTRAN; 2)
the BCLOGO iﬁplementation in BCPL is inefficient. There is no
reason inherent in +the LOGO lanquage that should make it any
more or less costly to use than any other interpretive language
(such as BASIC or LISP).

e) Summary: LOGO is good at processing informétion but it
is not particularly suited to "number crunching". But given a
program written in BASIC by an elementary or secondary school
student to perform some calculation, LOGO could do the job as
well as BASIC so long as the numbers are smail_ However, UBC
LOGO has no floating point data.type, so the problem would have

to be solvable using integers.

The -Semantics of BASIC and LOGO:

Both languages have the roughly same format. Examples of

some of the most similar statements are:

LOGO BASIC
PRINT "this is a test" PRINT "this is a test"®
PRINT sum 8 22 PRINT 8 + 2
MAKE "A" yes LET A = yes
GO 100 GOTO or GO TO 100
END END
BYE BYE
MAKE "X" request INPOUT X
TEST is A yes IF A = yes THEN 100

IFTRUE GO 100
IFFALSE "wrong" PRINT "wrong"

49

8. Conclusion

LOGO is an ideal language for the elementary and secondary
levels of education, but it is difficult to see how the
language could be used in other environments. The primary use
of computers is in the business world. Perhaps LOGO should be
modified to reflect the needs of this user community. If LOGO
were to be used outside of the classroom it would have to be
made more powerful in the area of numeric computation.
Certainly if the BCLOGO implementation were to be used in
production environments the suggested improvements in the
previous chapter would have to be made.

LOGO's useful lifespan may already be over -- it has been
used in research environments for some time and it may be that
it is time to design a successor language, incorporating the
knowledge acquired in the various LOGO experiences and
experiments.

The future for LOGO is dim unless elementary and secondary
school educators are madé aware of its potential. Of course,
generating such awareness depends on inducing schools to use
L0OGO. For exanmple, if 1ILOGO were successfully used in one
elementary school in the Vancouver school district, others
night be encouraged to introduce the language, and perhaps LOGO
might find its way into secondary school curricula as well.

Both students and teachers would benefit from the
opportunity to seiect the most appropriate language for their

problem-solving tasks. The potential of LOGO as a vehicle for

50

teaching problem solving skills leads one to conclude that a
LOGO-like 1language ought to be provided as an alternative to

BASIC, FORTRAN and Assembly Language.

- 51

9. References

Bitzer, D. The Wide World of Computer-Based
Education, Advances in Compunters. Vol. 15
(3976), pages 239-283.

Brown, J., Burton, R., and Bell. SOPHIE --
A SOPHisticated Instructional Environment for teaching
Electronic Troubleshooting. Bolt, Beranek and Newman,
Inc. Artificial Intelligence, Cambridge, Mass.,
BBN Report No. 2790 (1974).

Brown, J., Rubinstein, R., and Burtomn R.,
Reactive electronics instruction. Bolt, Beranek and
Newman, Inc. Cambridge, Mass., BBN Report No. 3314

(1976) .

Denenberg, Stewart A., A person evaluation of
the PLATO system. ACM Sigcue Bulletin, Vol. 12,
No. 2 (1978), pages 3-10.

Dodds, W., Personal communication. Vancouver
School Board, Vancouver, B.C. (1978).

du Boulay, B., Learning teaching mathematics.
Department of Artificial Intelligence, University of
Edinburgh, D.A.I. Edinburgh, Scotland. Research
Report No. 18 (1977).

Dugdale, S., and Kibbey, D., The fractions
curriculum -- PLATO elementary school mathematics
project. Computer-based Education Research Laboratory,
University of Illinois, Urbana (1975).

Feurzeig, W., Personal communication, Bolt,
Beranek and Newman, Inc., Cambridge, Mass. (1978).

Feurzeig, W., Lukas, G., et al, Conceptual _
framework for teaching mathematics. Bolt, Beranek and
Newman, Inc., Cambridge, Mass., Vol. 1-4, BBN
Report No. 2165 (1971).

Goldstein, I., Lieberman, H., et al, LOGO -
an implementation of LOGO in LISP. MIT
Artificial Intelligence Laboratory, Cambridge, Mass.,

LOGO Memo 11 (1975).

Kelanic, Thoman J., Theorem-proving with
EUCLID. Creative Computing, Vol. i,
No. 4 (July-August, 1978), pages 60-63.

52

Kingery, R.A., Berg, R.D. and Schillinger,
E. H., A computer in the classroom. In Men
‘and Ideas in Engineering: Twelve Histories from
Illinois. University of Illinois Press.,
Urbana, Illinois (1967), pages 147-164,

Manis, Vincent S., A Machine Independent
Implementation of LOGO. University of
British Columbia, Department of Computer Science,
M. Sc. Thesis (1973).

Moore, Omar K., Autotelic responsive environments
and exceptional children, in: Jerome Hellmuth, ed.
The Special Child in Century 21. Special Child
Publication, Seattle, Washington (1964), pages 87-138.

Papert, S., Teaching children thinking. MIT
Artificial Intelligence Laboratory, Canmbridge, Mass.,
Al Memo No. 247 (1970).

Papert, S., A computer laboratory for v
elementary schools. MIT Artificial Intelligence
Laboratory, Cambridge, Mass., AI Memo No. 246
(1971) .

Perlman, R., TORTIS —- Toddler's Own
Recursive Turtle Interpreter System. MIT Artificial
Intelligence Laboratory, Cambridge, Mass., AI Memo
No. 311 (1974).

Pollack, Kimberly A., LOGO User's Manual.
University of British Columbia, Department
of Computer Science (1978).

Smith, S. G., Computer-aided teaching of
organic synthesis. J. Chemical Education 48 (1971),
pages 727-729.

Smith, Stanley G., and Sherwood, Bruce A., Education
Educational uses of the PLATO computer system.
Science, Vol. 192 (April, 1976), pages 344-352.

Sugarman, R., A second chance for computer-
aided instruction. IEEE Spectrum (August, 1978),
pages 29-37.

Sugarman, R., "What's new, teacher?" Ask the computer.
IEEE Spectrum (September, 1978), pages 44-49.

Weir, S., and Emanuel, R., Using LOGO
to catalysis communication in an autistic child.
Department of Artificial Intelligence, University of
Edinburgh, D.A.I., Edinburgh, Scotland, Reasearch
Report No. 15 (1976).

53

Weisgerber, R. A., Perspectives in-
Individualized Learning. Peacock, Itasca,
Illinois (1971).

Westrom, Marv, NATional Author Langquage (NATAL-74) -
Author Guide. National Research Council of
Canada, Ottawa, Ontario (1974).

Yob, G., PILOT. Creative Computing,
Vol 3, No. 3 (May-June, 1977), pages 57-63.

11.
12.

13.

APPENDIX: LOGO USER'S MANUAL

INtTOAUCEION eeeecaccccmscecaacancanansnannsecnacecsecss
How to Sign on to a Terminal .cccececceasccoscasesccncsnas
How to Run LOGO m......;....,..;.........._...;..,.;..;.
Running LOGO S S R S
Defining Proceduresm....,....;..
5.1 Examples of procedures cececcececeocccaccecccccocccacs

5.2 Running Your OWn ProCeduUresS ccceccececcacsnccecscnscss
5.3 Procedures with INPULS cccececccccvccseccccacccsccaanse

RecurSiODvnomoooooocowco----.‘.;....i......;--'o;--..

Editing a Procedure R RN LR RS EREN AR LR AN

ProceduresS fOT YOUL USE .weceeccaccescaceceeccamanncncns.

Examples of Writing @ PrOgram ecccecseecccessscannccosas

LOGO FUNCtIiONS weveiacsacccccsccecancacsacnnssaancaiancs
10.1 ATithMetiC ecleeecccceccecccscacscnccssasnacssssasasa
102 COMMANAS cececcomesccosancassosvsssnscsscsnsansoccccasnses
10.3 ConditionalsS ecececcecseraceccancccacsacsacssanscasaan
10.4 Input — OULPUt .ceicecacacececscssmcancsaconcccaane
10.5 Control FUNCLiONS eceeecacccccnccccacccnsnccsccncanse
10.6 VariableS cceecsccccsvccsccccccoccncsssosncscssnns
10.7 PrediCaAteS eeeecsecececscaccaccsccaccsasoccssacsassas
10.8 TeXt PrOCeSSiNg .cceccececcacccccccannnsocsccncsncs

Glossary ® 00 00 00 PN GECENNOETEEOENIEeCOSERs Sl OORNSTEE RS

Warning and error MeSSAgeS .ececeecccccasscccccccsccsca

54

56
57
59
61
68
69
71
72

74

.85

88
90

93

93

93"
93
94
94
94
94
94

95

107

References .cccccececccccececasocscanacccaaccnacscsccans 108

Index c..-"....o..o.-..-.-‘.‘..006.’.-.p..q‘..q.l.......#.‘ 109

55

Dear Sir,

In these fast-changing times with the 1lowering of moral
standards and the increase in new programming languages, I
often find troubled young men asking me the question, "Father,
how can I be sure that LOGO is the one true programming
language?"

For such confused souls and examination of their childhood
LOGO catechism often proves of comfort.

Remember how it begins ceeeec..

1. What is LOGO? LOGO is a programming language.
2. Who made LOGO? Papert and BBN made LOGO.
3. Why did they make LOGO? They made LOGO to
help children and social science students know it, love
it and through it learn to juggle and ride a unicycle.
4., Is there only one 1LOGO? No, there are many
L0OGO's but they are all reflectlons of
the one true LOGO.
5. Is LOGO just a programming language? No,
LOGO is more than a programming language,
it is also a theory of learning and the path
to deep psychological insight.
6. Will LOGO help me? Yes, LOGO will help you
by making your problem solving process explicit
and transparent unto you. A
7. What are the four last things? Procedures, debugging,
problem decomposition and recursion.
8. Will LOGO stop people kicking sand in my face? No,
but it should keep you off the beach.

Yours sincerely,
Fr. Aloysius Hacker,

Cognitive Divinity Progranm
Institute of Applied Epistemology [1]

56

LOGO USER'S MANUAL

1. Introduction

Welcome to the Wonderful World of L1LOGO. LOGO is a
programming language which is designed to be especially easy to
learn. It is designed to teach the elements of programming and
problem-solving.

As you read the pages that follow you will be 1learning a
computer language called LOGO. In order to use a computer
language you do not need to know how the computer works. You
just have to be able to put the information to work for you.
LOGO is an advan;ed computer language designed for children, or
anyone who is willing to learn and enjoy the use of a computer.
This manual was written for the secondary level of education
and hopefully it will be wused in helping children with
difficulties ip mathematics and spelling. No previous
experience. is needed to use this language or the computer.

The objective of this manual is to bring to the secondary
school a different method of using the qomputer. Currently,
the BASIC language is used in many secondary schools in the
Vancouver area, but it is my belief that students might benefit
more by learning the elements of programming in LOGO, and then
moving on to more advanced languages. Certainly students
should be made aware of the other programming languages that

are around.

57

2. How to Sign o

At the University of British Columbia you will find the
IBM ‘3270 display station which consists of a television-1like
screen and a typewriter keyboard. The computer can serve a
large number of users concurrently, offering each.user a wide
variety of services. The job of keeping track of all the
programs in the machine and of devoting some attention to each
of them every second or two is handled by the MNTS operating
system. MTS stands for Michigan Terminal Systen.

When you approach a terminal the screen will read:

in large block letters. This simply means that this terminal
is ready for your use. The cursor °_' 1is positioned at the
begining of the input area. In the examples everything which
is underlined is what the program types out on the screen and
what 4is rnot underlined is what you type. 1In order to request
service from the computer, you must first identify yourself to
MTS. This is done by typing in the word 'Signon' and ulletters
XXXX which are given to you by your teacher. The screen is
cleared of‘ the block 1letters 'MTS' and in front of you the

screen should look like this:

SIGNON XXXX
ENTER USER PASSWORD
2

58

The program is now ready for you to type in your password which
will be hidden. Once +this 4is dome the '#' mark will be
displayed on the screen confirming the completion of the Signon

process:

[E™

Now MTS is 1listening to you and is waiting for your request.

This communication is done through the MTS Command Langquage.

59

3. How to Run LOGO

LOGO is an interpreted 1lanquage. This means that LOGO
operates in a direct execution mode {MANIS, 1973}. As the user
types in a 1line of code, if "he or she is not defining a
procedure, LOGO obeys that command immediately; But if defining
a procedure, L0OGO will store tﬁe information away for later
use. You should think of LOGO as a friend who is not a very
fast learner, but is willing to carry out your orders. LOGO
does have one problem it will do what you say, not what you

mean. To use this language you simply type in:
$RUN LOGO:LOGO

The screen will then come back to you with a *=' sign. This
*=' sign means that 1LOGO is now listening to you. Now you are
ready to begin to give LOGO commands to do things for you.

When the time comes that you are ready to leave LOGO you

type in:
= BYE

- This will termihate LOGO and bring you back to MTS. To make a
copy of your work before you signoff and you are on the VUCOM
you press down on the SHIFT key and at the same time hold down
the C key and this will print the buffer. If you are on the
3270 terminal you hit the PF3 key and the same thing will

occur. If you are still in LOGO and wish to terminate all

60

together without going back in to MTS You type in LOGOUT. This
command will ask you if’you wish a copy of your work before you
are signed off with the charges. If you are talking to MTS and

you are through for the day you type in the following command:

SIGNOFF

This command will display on the screen the charges for the

session and then redisplay the *MTS' block letters.

61

4., Running LOGO

1L0OGO is a very simple language in which to program. You
tell LOGO to do something and it will do it. For example, if I

wanted LOGO to print out *HI* I would type in:
= PRINT "HI"

LOGO would then type out on the next line:

PRINT is a built-in word. It is an action while *'HI' is the
data. Note that the action that is to be performed always must
precede the data.

LOGO contains two kinds of objects WORDS and SENTENCES. A
word is any string of letters or digits surrounded by quote
marks | MANIS, 1973)}. A word can have as few as one or as many

as 255 characters in it. The following is an example of a

word:

= PRINT "2345%$"
2345%$ -

A sentence in LOGO is simple a sequence of words separated by

blanks. The following is an example of a sentence:

62

= PRINT "HI THERE, LOGO"

HI THERE, LOGO

= PRINT SENTENCE "HI" SENTENCE "THERE," "LOGO"
HI THERE, LOGO

By Jjoining sentences of words together you get a LIST. The

following are some examples of a list:

PRINT LIST "“HI" Y“THERE"

HI THERE

= MAKE "A" “LOGO"

= PRINT LIST "HI," :A:
HI, LOGO

For putting words and lists together, there is the command
~ WORD. WORD takes two inputs, both of which must be words, and

puts them together to make a longer word. For example:

= PRINT WORD "HI" “THERE"
HITHERE
1.0GO has four operations and when used with the command
word or sentence results in a very interesting output. For
example, FIRST outputs the first character of its input if the
input is a word; and if the input is a sentence, FIRST outputs
the first word. BUTFIRST outputs everything but the first
element of its input. LAST and BUTLAST are similarly defined.

The following are some examples of the usage of these

operations:

PRINT FIRST "CAT"

PRINT BUTFIRST "“CAT"

iw“l (@RI
3

63

PRINT LAST "“CATY
PRINT BUTLAST “CAT"
INT FIRST "LOGO IS FUN"

INT BUTFIRST "LOGO IS FUN"

g
1 1O o
(=
=2

PRINT FIRST FIRST "LOGO IS FUN"

= hn 'glll'lglll 'Slll =300
,lmfv

The output of FIRST or LAST is always a LOGO word. The output
of BUTFIRST or BUTLAST are always the same as their input -
either a word or a sentence. This means that a single word can
sometimes be a LOGO sentence. The'following are examples of

using more than one operation in a command:

PRINT SENTENCE "GO"™ WORD "MAN" ®GO"
GO0 HANGO
PRINT LAST (FIRST “THE CAT")

1]

=i

LOGO has many kinds of instructions which do things for

you. One kind of instruction is the CQMMAND which is an order

to do something like "Pick up your book"™. An QPERATION, on the
other hand, answers a question like "Yes, you can pick up my
book."

For -both operations and commands, the. instruction is
written with the name of the desired action, followed by the
data that the action needs. The input to an operation or
command may itself be the result of another operation, but
cannot be a result from a command since commands do not output

anything. Here are some examples which you might try:

64

= PRINT "X"

means that *X* will be typed out on the next line.

E SUM "5" llall

means that the number '5' and the number *4°% will be added

together. But.if you just type in the line without a comnmand

LOGO will return a error message:

ERROR MESSAGE -
“YOU DID NOT TELL ME WHAT TO DO WITH 5 % 4.1

The command PRINT needs only one argument. If you use a
word with this procedure you need to surround the word in
quotes, as shown above. But if thé argument is a number then
there need not be any quotes. Without the dquotes around the
letter X, Print would try to execute the procedure X and a
error message would be printed. Print also will accept a
sentence. All you need to remember about sentences, is that
they are composed of a double quote followed by a sequence of

words, ending with a double quote. Here are some . examples:

- SUM "1" ll2|l
ERROR MESSAGE
"You DID NOT TELL ME-WHAT TO DO WITH 3.M.

PRINT SUM " n w2n

It i

= PRINT HELLO
ERROR MESSAGE
"1.0GO DOES NOT KNOW HOW-TO HELLO."-

——— T SEea i i ————

65

= PRINT "HOW ARE YOU TODAY."
HOW ARE YOU TODAY

Now let us use these two words PRINT and SUM and try some

arithmetic problems. If you take:
(7 + (5 -2))

You know that in arithmetic the result would be 10. You would
first take the innermost parentheses and get the result; then
with that result you would go to the outer parentheses and
solve the problem. In LOGO you would type in the same problem

as follows:
(SUM 7 (DIFFERENCE 5 2))

To have the solution print out on the next line you nust use
the command Print. So the complete sentence in LOGO would read

as follows:

= PRINT (SUM 7 (DIFFERENCE 5 2))
10

The parentheses are there to help you- whén you look at the
problem, but are not necessary to solve the problen.

In this example the procedure DIFFERENCE is given the
numbers 5 and. 2. This procedure returns a result which happens
to be the number 3 this time around. Then, the procedure SUM

is run with the numbers 7 and 3, where 3 was the result fronm

66

the procedure DIFFERENCE. The procedure SUM also returns a
result, which happens to be the number 10. Next the command
PRINT takes over. 1Its effect is to print the number 10 on the
screen, Now, 1let us +try another sentence using the same
procedures, but in a different order. First let us see what it
would look like in arithmetic form:

(7 - (5+2)) =0
Now let us write it in LOGO form:

(DIFFERENCE 7 (SUM 5 2))

And with the command PRINT you get:

PRINT (DIFFERENCE 7 (SUM 5 2))

1ol

In this example the procedure SUM is given the numbers 5 and 2.
This procedure returns a result which is the number 7. Then,
the procedure DIFFERENCE is run with the numbers 7 and 7, where
the last 7 was the result from the procedure SUM. The
procedure DIFFERENCE also returns a result, which happens to be
the number 0. And at last, the command PRINT takes over and it
prints the result of these procedures, on the screen. -

All the arithmetic procedures need two inputs before they
can calculate their results. If you forget to use the conmand

PRINT, LOGO will return a message to you saying:

67

YoU DID NOT TELL ME WHAT TO DO WITH-RESULT:

where the result is the answer or value your sentence
calculated.

LOGO ‘reads your commands from left to right, looking for
the correct number of inputs for each procedure. Also note
that in LOGO operations always come before the numbers operated
on whereas in algebraic notation the operations come between
the nunmbers.

The LOGO command MAKE is used for naming. MAKE takes two
inputs; the first is the name and the second is the thing being

named.

= MAKE "Xx" 27
This statement will assign the name 'X' to 27. A name must be
a LOGO word. 27 is the value or thing, and may be a number or

a word or a list or anything else you wish it to. be.

PRINT :X:

HWgHI

MAKE "MILK" "LIQUID"
(MILK IS THE NAME AND LIQUID IS THE THING)
= PRINT ::MILK:

LIQUID

68

5. Defining Procedures

LOGO allows you to define as many separate procedures as
you 1like, and it stores them all in your section of working
space. Because you can have more than one procedure in the
workihg "space it is necessary to give each procedure its own
name so that you can run the one you want.

Defining a procedure is like telling someone what to do.
Your instructions should be clear and easy to follow. For

example:

HOW TO DRINK A GLASS OF MILK
1 GET A GLASS,
2 GET THE MILK,
3 POUR THE HILK INTO THE GLASS,
4 PICK UP THE GLASS AND DRINK THE MILK.

In order to define a procedure you must [MANIS, 1973]:

a. Think up a name or title for your procedure that will
help you in remembering what it does.

b. Decide on what inputs and output you want your
procedure to have.

69

5.1 Examples of Procedures-

In the example that follows you are showﬂ how to define a
new procedure which will be named GREET. This procedure's job

is to output two sentences on the display screen.

-TO GREET

10 PRINT "HELLO"

20 PRINT "WHAT IS YOUR NAME?"
END

Il

We call *TO GREET' the *'title line', and GREET is the name
of the procedure. The command END takes you out of editing mode
and it also causes LOGO to note that you have finished with the
definition of the ‘procedure, and it will respond with the

statement:

GREET DEFINED.

The body of a procedure is stored in the order of its line
numbers. Therefore you should start off at the number 10 and
increase by 10. Then, if there are amny insertions, you have
room for them. Once the procedure is defined it 1is stored 1in
LOGO's memory until you say *BYE'. If you wish to be able to
run one of your procedures at another session and do not want to
have to define it again you <can command LOGO %to 'SAVE!' the
procedure. The command SAVE needs only one input. This input
should be the quoted name of a procedure which is to be

renembered by LOGO. For exanmple:

= SAVE "GREET"

70

When you start up LOGO the next day or the next session and
you have SAVED the procedure GREET from the last session all you

must type in is the following line:
= GET "GREET"

This 1line will recall the procedure GREET from LOGO's memory.
You must type in this line, with the correct procedure 'NAME',
for every procedure you saved and wish to work with. When you
do not wish to have the procedure GREET around any more all you
do is type in the following command and the procedure GREET will

no longer exist:

= ERASE "GREET"

71

5.2 Running Your Own Procedures

Tdvrun any procedure you must type in the name of the
procedure without the 'TO?!. LOGO assumes that names without TO
are procedures to be executed. Running a procedure is 1like
telling someone to <carry out the instructions that you have
. given him earlier.

To run the procedure. GREET yéu just type in the nanme
without the TO, and the procedure will follow the instructions

that you told it to do. For example:

= GREET
HELLO
WHAT IS YOUR NAME?

—— e

The procedure GREET's job is to execute the. two 1lines in
the right order. ©Each one of the lines contain the name of one
of L0OGO's commands. In the case it is the command PRINT, and as

you can see two sentences are printed out on the screen.

72

5.3 Procedures with Inputs

After you have tried running the examples shown above a few
times you are probably ready for a new procedure.

A procedure with an input is one which expects to receive
information from you, the user. Remenmber thevérocedure GREET?

Well, let us create a new procedure with its aid.

TO GREET
10 PRINT "HELLO" (PRINTS OUT THE WORD 'HELLO')
20 PRINT "WHAT IS YOUR NAME?" (PRINTS SENTENCE)
END (END OF THE PROCEDURE)

REAT DEFINED. (THIS IS PRINTED BY LOGO)

Qi

TO RESPONSE :PERSON:
10 PRINT "HELLO" (PRINTS OUT THE WORD *HELLO')
20 PRINT "MY NAME IS" (PRINTS SENTENCE)
25 PRINT :PERSON: (PRINTS THE NAME GIVEN)
END (END OF THE PROCEDURE)

ESPONSE DEFINED. (THIS IS PRINTED BY LOGO)

==

ol I ey i | i)

Do you see the difference between these two procedures? There
titles are different. In the procedure RESPONSE the word person
surrounded by colons as been added to the 'title linet, Note
that the word PERSON comes after the title of the procedure. By
enclosing PERSON in colons you are telling LOGO that PERSON is a
variable. A variable is simply a holding place for a word or
number you wish to use at a 1later tinme. In other words a
variable is simply the name of the mailbox in which values can

be stored. For example:

= RESPONSE "KIMBERLY"
HELLO
MY NAME IS
KIMBERLY -

73

The word ‘*KIMBERLY' is put in the mailbox named PERSON. So

until you change PERSON, *KIMBERLY' will remain in the mailbox.
You may define a procedure with as many inputs as you want

by adding after PERSON another colon with another variable. For

examnple:

TO EXAMPLE :PERSON: :AGE: :SEX: :WEIGHT:

The LOGO operation REQUEST waits for the user to type in a

list and then outputs that list.

= TO AGREE

@ 5 PRINT "TYPE SOMETHING YOU LIKE"

@ 10 PRINT SENTENCE "I" S "LIKE" S REQUEST "TOO"
a2 END

AGREE DEFINED.

= AGREE

TYPE SOMETHING YOU LIKE

CARE AND ICE CREAM

I LIKE CAKE AND ICE CREAM TOQO

REQUEST always outputs a list, even if it is a list containing

one (or no) words.

74

6. Recursion

A procedure can call itself. This is called a recursion.
It can be a lot of fun to use, but it also can cause LOGO to rumn

Awild which may be quite expensive. For example:

= TO LAUGH {to is a command and
laugh is the procedure name)
10 PRINT "HA HA" (prints ha ha)
20 LAUGH (calls itself)
END (procedure stops)
AUGH DEFINED. (this is printed by LOGO)

What you will see on paper is the following:

LAUGH (name of the procedure)
HA HA-

HA HA-

HA HA

] ETC.

There is no way to stop this procedure except +to hit the
INTERRUPT button.

When the procedure LAUGH reaches line 20 it calls for the
execution of the sub-procedure LAUGH, aand it will then start a
new procedure called LAUGH which will also print HA HA's. The
result is a big 1loop, and page after page of HA HA's. The
example that follows shows a step by step trace through the

procedure LAUGH.

75

10
20

Snapshot 1

 "HA HA" LAUGH calls PRINT
ol HA HA

Snapshot 2

LAUGH calls another LAUGH

Snapshot 3

PRINT "HA HA" The nevw LAUGH calls
® G PRINT HA HA
HA HA

Snapshot 4

76

LAUGH LAUGH LAUGH) THE new LAUGH calls
. D) yet another LAUGH

e "

Snapshot 5

"HA HA"

Snapshot 7

HA HA
HA HA
HA HA

717

So please remember, although a recursive procedure may be fun to
try, it may also be very expensive. Make sure you are able to
stop the procedure once it has started to run.

Now, to try a recursive procedure that will stop:. To do
this you must put a limit on how many HA HA's will come out.

Therefore you must have a procedure with am input. For example:

TO LAUGH :N:

10 TEST IS :N: O

20 IFTRUE STOP '

30 IFFALSE PRINT "HA HA"

40 IFFALSE LAUGH DIFFERENCE
END
AUOGH DEFINED.

il
(X]
|~
e
——

Now, let us run this new procedure 'LAUGH®'.

= LAUGH 4
HA HA
HA HA
HA HA

|m
o
o
o

With this new procedure'LAUGH you have recursion and also the
ability to stop it. Remember the ability to stop the procedure
comes when the <computer must make a decision. A computer can
check to see if a number is zero, or whether a word is ‘'stop',
*go', or equal to another word. The decision to test these and

other conditions yields an output of either True or False.

78

In the procedure LAUGH you are asking if :N: is equal to O.
If N does equal 0, you take the IFTRUE branch and stop. But if
N does not equal 0, you take the IFFALSE branch and print out
*Ha HA'. Then you subtract 1 from N and do the test again. N
represents the number of times you ask the procedure +to 1loop
through the test. The example that follows shows a step by step

trace through the procedure LAUGH 4.

79

4 <> 0

@ "HA HA"

>) HA HA

LAUGH4
[calls
O/ PRINT

4 - 1 =3
LAUGHS
calls
LAUGH3

Snapshot 4

80

330

HA HA
HA HaA

LAUOGH3
calls
PRINT

3 -1=2
LAUGH3
calls
LAUGH2

Snapshot 8

81

2<>0

‘, "HA HA"

HA HA
HA HA
HA HA

LAUGH2
calls
PRINT

2 -1=1
LAUGH2
calls
LAUGH1

Snapshot 12

82

Snapshot 13

1< 0

HA
HA
HA
HA
LAUGHA1
calls
PRINT

Snapshot 15

1- 1=
LAOGH1
calls
LAUGHO

Snapshot 16

HA
Ha
HA
HA

83

Snapshot 17

Snapshot 18

STOP

Snapshot 19

84

The only time you use quotes in an input procedure is when the
input is a word. Look back to the procedure RESPONSE - page 68.
As you see, the word *KIMBERLY', is an input, and it is enclosed
in quotes; the number 4, 1is also an input, and it is not
enclosed in quotes. Why don't you try +the procedure RESPONSE
without quotes around the input word and see what happens. Do
the same thing with the procedure LAUGH.

The command OUTPUT can only be used in a procedure; it
returns control +to the <calling procedure, and outputs its
arquments. By using OUTPUT the user can define procedures which

are operations. See the glossary for example of using OUTPUT.

85

7. Editing a Procedure-
Once you have defined a procedure, you may want to change
something within it. To do this you need to call the conmnnmand

EDIT. For example:

TO LAUGH :N:

@ 10 TEST IS :N: 0 (SEES IF THE VALUE OF N = 0)

@ 20 IFFURE STOP (IF TRUE THEN STOP)

@ 30 IFFALSE PRINT "HA HA" (IF FALSE PRINT HA HA)

@ 40 IFFALSE LAUGH DIFFERENCE :N: 1 (ALSO IF FALSE
‘ 1 WILL BE SUBTRACTED FROM THE VALUE N)

@ END (THIS WILL END THE PROCEDURE)

LAUGH DEFINED.

If you had run LAUGH with the mistake on line 20, LOGO

would return an error message to the screen as follows:

I DO NOT KNOW HOW TO IFFURE.
LOGO WAS EXECUTING LINE 20 OF LAUGH.

From this error message you are told of the misspelled word
on line 20. To be able to correct the misspelled word you nust
first type in the command EDIT. EDIT by itself will not help
you, so what you need is the word EDIT followed by the name of

the procedure you wish to work on. For example:

= EDIT LAUGH (EDIT IS A COMMAND
TO LOGO AND LAUGH IS THE PROCEDURE
YOU WISH TO WORK ON)

You must be able to see what is in the procedure Laugh before
you can make any changes. To do this the command SHOW is wused.

SHOW will print out everything in the procedure. For example:

86

EDIT LAUGH
SHOW
I0 LAUGH :
10 TEST IS :N: 0
20 IFFURE STOP
30 IFFALSE PRINT "HA HAY
40 IFFALSE LAUGH DIFFERENCE :N: 1-

(0]

N:

Now, with the procedure before'you, you can correct the spelling
error. You correct it simply by retyping line 20. LOGO will
not let a procedure be run if there are two lines with the same
number, so the most recent line is saved and the o0ld 1line is
forgotten. So to correct the procedure LAUGH, you type in the

following line:
@ 20 IFTRUE STOP

The o01d 1line 20 with the misspelled word is forgotten and the

new line 20 with the correct spelling is remembered.

= EDIT LAUGH
@ SHOW

TO LAUGH :N:

10 TEST IS :N: 0

20 IFTRUE STOP

30 IFFALSE PRINT "HA HA"-

40 IFFALSE LAUGH DIFFERENCE :N: 1

END

END takes you out of editing mode while STOP terminates
execution of the procedure and returns control to the calling
procedure.

Sometimes it is necessary to delete lines from a procedure.

To do. this you would again EDIT the procedu:e and call the

87

command SHOW. ©Now, to delete a line you type in the number of

the 1line and enter it with nothing else on the line but the

number. For exanmnple:

40

(1))

This will delete 1line 40 from the procedure currently being
edited.

If you are make a typing mistake while defining a procedure
and it is before you have entered that line of code, you can
correct the mistake by pressing down the CTRL key at the sanme
time holding down the H key. Press the H - key a sufficient
nunber of times to bring the cursof under the 1last good
character. Then you continue to +type as if nothing had

happened. For example:
@ 20 IFFURE STOP -=--==-==-=- FTRUE STOP
This method is used on the silent 700 terminal. On the 3270

terminal there is a left arrovw which you use to do back steps.

And on the VUCOM there is also a left arrow.

88

8. Procedures for Your Use-

If vyou wish to run some procedures in either arithmetic or

spelling, you must type in the following statement:

= GET "22722"

The 122222¢ Should be replaced with the name of the procedure

you wish to run. For example:

= GET “FARM"
'FARM' is the name of one of the procedures that deals with
spelling

The following procedures are available to you on request:

MATHL -- Deals with less-than problems

MATHG -- Deals with greater-than problems
MATHE -- Deals with equal problenms
MATHS -- Deals with addition problems

MATHD -- Deals with subtraction problems
MATHP -— Deals with multiplication problems

MAXMIN -- Deals with maximum and minimum problems
FARM -- A spelling routine.
You are asked to spell a kind of animal
. animal and then spell the noise the

animal makes.

SPELL -- A spelling routine.
You are given a noise and you must
spell the kind of animal
that makes that noise,

TRUST, BUMP AND DREAM -- Spelling routines.
You simply respond to some
questions that are asked and
the answers you give will
find their way into a story.

89

LEARN -- A learning routine. .It
simply shows you how to create a
story of your own.

To terminate the spelling routines or the arithmetic routines
you nust type in the word *STOP' and you will find yourself back

with LOGO waiting for your next command.

Please remember that if you wish to run the math routines
you must type @n some additional information. If you wish to
run the procedure MATHL you must type in the following before

you can run MATHL:

= GET "MATHL"
= GET "MATHG"
The same goes for the other math routines. MATHG nmust be

accompanied by MATHS, MATHS must be accompanied by MATHD, MATHD
must be accompanied by MATHP, MATHP must be accompanied by

MAXMIN and MAXMIN can be by itself. All are typed as shown

above.

Please also remember that +the math routines only take

integers {whole numbers). 0 1 2 3 4 ...

90

9. Example of writing a progranm

The following is a program which tests one'®s understanding
of arithmetic multiplication. This program demonstrates the use
of most of the basic words that you will need when you write
programs of your own. Another way of writing sentences is with
the letter 'S'. Using 'S' you can fit every thing on one line.
If you spell out the word *Sentence!' there will not be enough
room for +the rest of the statement if the statement is a long

one.

TO0 MULTI
5 PRINT " % % % % % % % % % 0
10 PRINT S “WHAT IS"™ S RANDOM S ™" S5 RANDOM "2M
15 MAKE "A" REQUEST (ASKS YOU FOR A NUMBER
AND PUTS IT INTO THE MAILBOX CALLED *'A')
-20 TEST IS F:A: O (TEST TO SEE IF THE FIRST
ELEMENT IN THE MAILBOX 'A' = 0)
25 IFTRUE GO 100 (IF IT IS TRUE GO TO LINE 100)
30 IFFALSE GO 5 (IF FALSE YOU GO TO LINE 5)
@100 PRINT W % % % % % % % % % ®©
@102 PRINT " END OF EXERCISE -- BYE -- ¢
@ END (END OF THE PROCEDURE) MULTI DEFINED.

it

1))

vl

Now to see what it will look like when you run Multi.

= MOULTT
% k % %k % % % % % %
WHAT IS 7 * 9?2

63
* ok %k %k %k % % ¥k %k k %
WHAT IS 6 * 72

42 , .
£ % %k % % %k %k % %k %k %
WHAT IS 5 * 62

30
d %k ok % ok %k %k k % X
WHAT IS 9 * 1?2

0

* & %k Kk k %k %k % %k * %
END OF EXERCISE BYE ~--

Now you will see a modification of Multi.

e wole ol

)

([=]

ol

(1))

2wl i

TO

MUOLTI

5 PRINT " % % % % % % % % ©

10
15

20
25

-30

35
4o

45
U6
47
48

50

-51

52

PRINT "PLEASE TYPE IN TWO NUMBERS"
MAKE "X" REQUEST MAKE "Y" REQUEST
(ASKS FOR TWO NUMBERS)
PRINT S "WHAT IS"™ S :X: S "W 5 :Y: u?2n
MAKE "A" REQUEST (TYPE IN THE ANSWER)
PRINT "NOW LET US SEE IF
YOU ARE CORRECT.™
PRINT S :X: S W%n 5 :y: w=¥
PRINT PRODUCT F:X: F:Y:
(PRINTS THE PRODUCT OF THE FIRST
ELEMENT IN EACH OF THE
MATILBOXES X AND Y)
TEST IS F:A: PRODUCT F:X: F:Y:
(SEES IF 'A' IS THE ANSWER)
IFTRUE PRINT "GREAT YOUR ANSWER WAS
CORRECT" GO 50 (JUMP TO LINE 50)
IFFALSE PRINT "“LET US TRY AGAIN.
IFFALSE PRINT “"GIVE ME THE SAME NUMBERS
AS BEFORE." GO.50
TEST IS F:X: O
(IF X=0 THEN YOU WILL QUITE)
IFTRUE GO 100
IFFALSE GO 5 (GOES BACK TO 5)

100 PRINT " * * * % x
101 PRINT "END OF EXERCISE -- BYE —--"
END (END OF THE PROCEDURE) MULTI -DEFINED.

91

92
Now to see what it will look when you run Multi.

= MULTI

* Kk % Kk K k %

PLEASE TYPE IN TWO NUMBERS

4 5

WHAT IS 4 * 5 2

20

4 * 5 = 20

WELL LET 0S SEE IF YOU ARE CORRECT
20

GREAT YOUR ANSWER WAS CORRECT

% % % k & k X

00

WHAT IS 0 * QO ?

0

0 * 0 =0

WELL LET US SEE IF YOU ARE CORRECT
0

GREAT YOUR ANSWER WAS CORRECT

* % %k %k % Xk

END OF EXERCISE - - BYE - -

93

10. LOGO Functions

The intent of this section is to show the user the varioaus
functions and a vague idea of what they do [MANIS, 1973]..

10.1 Arithmetic

SUM, DIFFERENCE and PRODUCT do the familiar operations of
addition, subtraction, and multiplication.

DIVISION outputs a sentence of the quotient and remainder
from a division. QUOTIENT and REMINDER can be used to
compute just oneé or the other result.

RANDOM outputs a random digit.

MAXIMUM and MINIMUM select the maximum or minimum of two
numbers.

10.2 Commands

TO allows you to define a new function.

EDIT allows you to change the definition of an existing
function.

END signals that you have finished deflnlng or changing a
function.

ERASE expunges the definition of a function.

ERASELINE allows you to delete a particular 1line
of a function.

SHOW displays the definition of a function.

SHOWLINE displays a particular line of a function.

TITLE changes the title line of a function. :

OUTPOUT causes the currently executing function to return
output?'s input as its value.

GOTOLINE transfers control within the currently executing
function.

STOP terminates execution of the currently executing
function.

- 10.3 Conditionals

TEST sets the truth flag from its input.

IFTRUE executes a statement only if the truth flag is true.

IFFALSE executes a statement only if the truth flag is
false.

94

10.4 Input - Output

REQUEST reads in the a line of data, and outputs a list
representing that line.

TYPE prints its input onto the user's console.

TYPEIN takes an input; it is equivalent to
“"MAKE input REQUEST".

PRINT behaves as TYPE does, but follows the printing by
typing a carriage return.

10.5 System Control Functions

GOODBYE gets you out of LOGO and back to MTS.

GET allows you to add material from a file to the programs
and variables with which you are currently working.

SAVE stores your current workspace in a file.,

TRACE causes a specified function to be monitored for
debugging purposes.

UNTRACE turns off debug monitoring for a function.

LOGOUT before you get out of LOGO, you will be asked if you
wish a copy of your work, and in addition, this command
will hang up the telephone line to the computer.

10.6 Variables

MAKE changes the value of a specified variable.

10.7 Predicates

IS is TRUE when its two inputs are equal.

WORDP is TRUE when its input is a word.

SENTENCEP is TRUE when its input is a sentence or list.

BOTH is TRUE when both of its inputs are.

EITHER is TRUE when either of its inputs is.

NOT is TRUE when its input is false.:

NUMBERP is TRUE when its input is a numeric vord.

GREATERP is TRUE when its first input is numerically
greater than its second.

LESSP is TRUE when its first input is numerically less than
its second.

EQUALP is TRUE when its inputs are numerically equal.

ZEROP is TRUE when its input is numerically equal to 0.

10.8 Text Processing

FIRST, BUTFIRST,BUTLAST and LAST allow you to
take apart words, sentences or lists.
WORD, SENTENCE, and LIST allow you to create new things.

95

11. Glossary 0f LOGO Functions-

This section describes the set of LOGO functions currently
available. The functions are listed in alphabetical order. If
followed by a second version, this is the abbreviatioam which may
be ﬁsed if you do not want to spell out the entire word. Some
LOGO vwords output values to other LOGO words. We call these
words Operations. LOGO words which do not output are called
Commands. These words command things to be done now. Words
which switch +to another mode or device are called Switches.
Words which control the flow of a procedure (eg, Stopping, Going

to a nevw line) are called Flow words {(GOLDENBERG, 1975].

BOTH (operation)
Outputs the logical of both its inputs
which must be either TRUE or
FALSE. (ie. TRUE if and only
if both of its inputs are TRUE).

-MAKE "“RW N"TRUE" MAKE %“sS" UTRUE"
MAKE "Tuw 9FALSE"

PRINT BOTH :R: :S:

TRUE

PRINT BOTH :R: :T:

FALSE

BUTFIRST BF (operation)
Butfirst outputs the list
that contains all but the first
element of the list.

-MAKE "A" "HELLO"
-PRINT BUTFIRST :A:
ELLO

-PRINT :A:

96

BUTLAST BL (operation)
Butlast outputs the list
that contains all but the last
element of the list.

= PRINT :A:
HELLO

= PRINT BUTLAST :A:
HELL

DIFFERENCE DIFF (operation) _
Given two numeric words, there
DIFFERENCE is outputed.

-MAKE "C" 6 MAKE "D" 5
PRINT DIFFERENCE :D: :C:

'—l

DIVISION (operation)
Currently not working.

EDIT (switch)
Edit is a command followed by a procedure
name., This compand lets you add or
delete a line inside the procedure.
To switch off editing mode type END.

‘TO LAUGH
5 PRINT "HA HAM
10 PRINT "BY"

@ END

LAUGH DEFINED.

= EDIT LAUGH

2 10
?

oIl

LAUGH DEFINED.

EITHER ' (operation)
Outputs TRUE if either of the
inputs are TRUE, FALSE if
both are FALSE.

-MAKE wgn NpALSEY MAKE WT" UFALSE"
MAKE W“WRW UWTROE"

= PRINT EITHER :R: :S:

TRUE -

=-PRINT EITHER :S:
FALSE

niwin

T:

EMPTYP

END

EQUALP

ERASE

ERASELINE

97

(operation)

Outputs TRUE if the argument is
the empty word or the empty 1list,
FALSE otherwise.

Currently not working.

(switch)

Tells LOGO you are finished editing

or defining a procedure. Switches off
editing mode.

TO FOO
-5 PRINT "HI THERE."

END

FOO DEFINED.

= -EDIT FOO

@-10 PRINT “THIS IS A TEST."
@ END

FOO DEFINED.

S]]

(operation)

Outputs TRUE if its inputs are
numerically equal, and FALSE
if they are not.

= MAKE "A" 6 MAKE “B" 5 MAKE "C" 6
= PRINT EQUALP :A: :B:

= PRINT EQUALP :A: :C:
TROUE

(command)

Erases the procedure from the workspace.
A procedure may not be erased while it
is being edited or defined.

SHOW FOO
TO FOO

"PRINT "HI THERE."

PRINT "THIS IS A TEST."

K1}

-ERASE "“FOO"
-SHOW FOO
00 IS NOT A PROCEDURE.

RN T Y (6]
,zk:
=]

(editing command)
Removes that line from the procedure
you are in. Currently not working.

98

FIRST F (operation)
If the input is a list, First outputs
the first element of the list, which
may be a word or a list itself. If the
is a word or a number, First outputs
the first character of the word.

-MAKE "A"™ “"HI THERE"
MAKE "B" "HITHERE"Y
PRINT FIRST :A:

HI.
=-PRINT FIRST :B:
H
= MAKE "C'" 766 888 MAKE “D" "766 888"
= PRINT FIRST :C:
1
= PRINT FIRST :D:
166
= PRINT :D:
766 888

GET (command)

Get followed by a procedure name.
This procedure has been saved and
put in to a storage file. Calling this
procedure enables you to take the
procedure from the file and work on it.

=-GET "FOO"
FILE FOO -SAVED -ON-YEAR MONTH DAY

——— ——

GOODBYE BYE {(command)
Prints out a sweet message from LOGO
and returns you to the operating systen.

= GOODBYE

WOULD - YOU LIKE A HARD -COPY -
OF THIS SESSION?

-

GREATERP (operation)
Outputs TRUE if the first argument
is numerically greater than the second,
and FALSE if they are not.’

MAKE uwCY" 8 MAKE "D" g
PRINT GREATERP :C: :D:
ALSE

FALS

99

GOTOLINE GOTO GO (£flow)
Used in a procedure to transfer control
to that line of the procedure.

-TO BOO

@ 5 PRINT "JUST A TEST USING GOTO'S."
d 10 PRINT "TYPE IN A NUMBERY
@ 15 MAKE "A" REQUEST
®d 20 TEST IS FIRST :4: 0
@ 21 IFTRUE PRINT "GOODBYE" GO 100
@ 22 IFFALSE PRINT "A = 0" GO 10
@ 100 PRINT "* % %0 STQP
@ END
BOO -DEFINED.
= BOO
JUST-A TEST USING GOTO'S.
IYPE IN A NUMBER
9
A IS NOT-ZERO
TYPE IN A NUMBER-
0 T
GOODBYE
*E X%
IFFALSE IFF (control word)

Executes the line if the results of the
most recent local Test was FALSE.

@ IFFALSE PRINT "A = 0" GO 10

IFTRUE IFT (control word)
Executes the line if the results of the
most recent local Test was TRUE.

@ -IFTRUOE PRINT "GOODBYE" GO 100
IS {control word)
Is returns TRUE if the two objects are
the same and FALSE if they are not.

"MAKE "A" “HI THERE"
MAKE "B" "HITHERE"
'MAKE "G" “HI THERE"
= PRINT IS :A: :B:
FALSE

= PRINT IS
TRUE

A: :G:

LAST L

LESSP

LIST

LOGOUT

100

(operation)

If the input is a list, Last outputs.

The last element of the list, which may
be a word or a list itself. If the input
is a word or a number, Last outputs the
last character of the word.

MAKE "C" 789 MAKE "D" "789 999"
MAKE "A" "HI THERE"

MAKE "B" "HITHERE"

PRINT LAST :A:
HERE

PRINT LAST :B:

LI REREIRY

PRINT LAST :C:

PRINT LAST :D:
9

ol ol =i

(operation)

Outputs TRUE if the first arqgument
is numerically less than the second.
Otherwise FALSE.

-MAKE "C" 789 MAKE "D" "789 999"
-PRINT LESSP :C: :D: '

789 999 IS NOT A -NUMBER.

= MAKE "E" 789 '

= PRINT LESSP :C: :E:

FALSE '
(operation)

Outputs a two-element list, whose

FIRST is the first input and

whose LAST is the second input.

These inputs may be words, numbers or a
list of things.

MAKE IIA" lIHI"

‘MAKE "B" "JUST A TEST"
= PRINT LIST :A: :B:

HI <JUST A TEST>

=-PRINT LIST "HELLO," :B:
HELLO, <JUST A TEST) -

(command)

Control is returned to the operating
system -- by signing you off with a
message from LOGO. :

= LOGOUT

MAKE

MAXIMUM MAX

MINIMUM MIN

" NOT

NUMBERP

(command)

Assigns the name of the first element
to have the value of the second element.

“MAKE "“A" "HT THERE"
-PRINT :A:

HI THERE

MAKE “F%" :A:

PRINT :PF:

HI THERE-

-MAKE "A"™ REQUEST

-2 RN NI

i ln

-PRINT :A:

ot ol

(operation)
Outputs the maximum of the two
numeric arquments which are given.

-MAKE "C®"™ 789 MAKE "D" 99
-PRINT MAXIMUM :C: :D:
89 -

~H U

(operation)
Outputs the minimum of the two
numeric argquments which are given.

-PRINT MINIMUM :C: :D: f
9.

V=101

(operation)
Outputs TRUE if its input is FALSE
and FALSE if its input is TRUE.

MAKE "A" "HI THERE"

E MAKE "R" - "TRUEY" MAKE "S" "FALSE"

PRINT NOT :A:
= PRINT NOT :S:

= PRINT NOT :R:
FALSE

(operation)

Outputs TRUE if its input is a
number and PALSE if it is not.
-MAKE "“A"™ "“"HI THERE" MAKE “B"
-PRINT NUMBERP :A:

TRUE -

666

101

OUTPUT

PRINT P

PRODUCT PROCD

QUOTIENT

RANDONM

REMAINDER

(flow operation)
Output tells the procedure to stop
and output what it has in its hand.

=-T0 FOO
& 5 PRINT "HI THEREY
@ END
FOO DEFINED.
=-00TPUT FOO
HI THERE

{(command)

Print types its input on the console
followed by a carriage return.

=.PRINT "HI THERE"
HI -THERE -

= PRINT 789987
789987

(operation)
Outputs the multiplication of the
two numeric numbers which are given.

-MAKE "G" 8 MAKE "H" 9
PRINT PRODOUCT :G: :H:
2

~Hiak i

(operation)
When dividing two numeric numbers
Quotient will give you the ansver,

(1]
]

PRINT QUOTIENT tH:

se
=2
(X]

PRINT QUOTIENT :G:

=t} IS

(operation)

Outputs a one-digit random integer.
Zero can be a possible output.
-PRINT RANDOM

-PRINT RANDOHNM

I~ holit

{(operation)
Outputs the remainder of two numeric
numbers.

PRINT REMAINDER

LX)
(7]
"
m
=2
.

.
=2}
0
.
@
’

PRINT REMAINDER

=11l

102

103

REQUEST (operation)
Outputs a list.

"MAKE "A®" REQUEST
PRINT :A:
-PRINT :B:

-MAKE "B" :7:
-PRINT :B:

ol HILHIE kol ol

SAVE (operation)
The procedure will be saved and
put into a storage file, to be used
at a later date.

=-SAVE "FOO"

SENTENCE S (operation)
Outputs a sentence made from the first
input followed by the second.

=-PRINT SENTENCE “HI" "THERE"

HI -THERE

= MAKE "a®" “HELLO"

= PRINT SENTENCE :A: "THIS IS A TEST"

HELLO THIS IS A TEST-

SENTENCEP (operation)
Outputs TRUE if its input is a
sentence and FALSE if it is not.

Make "a" "this is a test"
-make "c" 99
-print sentencep :a:

oy

-+
Lo}
[«
®

print sentencep :c:
false

104

SHOW (switch)
Prints out the definition of the
specified procedure.

= SHOW FOO

IO FOO

5 PRINT "HI THERE"
END -

= EDIT FOO

@ SHOW

I0 FOO

5-PRINT "HI THERE"
END

@ - END

SHOWLINE (show command)
Currently not working.

STOP (flow)
Stop causes the currently executing
procedure to return.

TO NOUHM

5 MAKE "A" REQUEST

10 TEST IS FIRST:A: O

11 IFTRUE PRINT YA IS ZERO"™ STOP
12 IFFALSE PRINT "A = 0" GO 5
END

UM DEFINED.

-NOHM

= ol vl jzloie i)
IH
0
o)
-
N
=
(=]

lH
0
I
(=]
2]
10

SUM (operation)
Outputs the sum of tvwo numerical numbers.

"MAKE "A"™ 8 MAKE "B" 9
"PRINT SUM :A: =B:

7

PRINT SUM 8 9

7

{2l lal B 101

TEST

TITLE

TO

TRACE

TYPE

(command)

Test runs its input, which must
evaluate to TRUE or FALSE

and saves the result until Iftrue
or Iffalse can use the information.

TO NUNM

@ 5 MAKE "A" REQUEST
@ 10. TEST IS FIRST :A: O
@2-11 IFTRUE PRINT "A IS ZEROY STOP
@ 12 IFFALSE PRINT "A = 0" GO 5
@ END

(command)

Currently not working.

(switch)

Used to define procedures. The input
Title must contain a name not already
used by LOGO and may contain
additional words prefixed by ":" which
name inputs to the new procedure. To
turns on the editing mode and is
terminated by the switch End.

.TO FOO

5 PRINT "HI THERE"
@ END

FOO -DEFINED.

=.TO NUM :N:

ST ISAN]

(switch)

Trace causes the specified procedure
to print out every line while it is
executing. Untrace stops the tracing
action.

= TRACE FOO
HI THERE

= SHOW FOO

I0 EOO

5 PRINT "HI THERE".

mel
=
S}

(command)

Like Print except it does not carriage
return at the end of the line.
Currently not working.

= TYPE FOO
HI THERE

105

106

TYPEIN (operation)
Outputs only the first wvord as a
word, similar to Request.
Currently not working.

UNTRACE (switch)
Untraces the procedure that was traced.

= UNTRACE FOO
HI THERE-
WORD W (operation)
Outputs a word made from the chatacters
from the first input followed by those
from the second input. An input may be
a number instead of a word.

MAKE "A" WHI" MAKE “B" "THERE"
PRINT WORD :A: :B:
ITHERE
FoF .

B

WORDP (operation)
Outputs TRUE if its argument
is a word and FALSE otherwise.

"MAKE "A" "HI" MAKE "C" 9
'PRINT WORDP :C:

RUE -

= PRINT WORDP :A:

 LLRT

= PRINT WORDP :D:

= PRINT :D:

ZEROP (operation)
outputs TRUE if its input is
numerically equal to 0 and FALSE
othervise.

.MAKE "A" 8 MAKE "B" 0
PRINT ZEROP :A:

FALSE

= .PRINT ZEROP :B:

IRUE - ‘

ity

107

12. Warning and error messages

Source errors are printed by the conmpiler as they occur
after translation. LOGO explains what it is objecting to. The
following are some examples:

= .12PRINT "HI THERE"™
LOGO DOESN'T KNOW HOW TQ 12PRINT

= PRINT S :RANDOM S "%" S :RANDOM: S "=" F:A:

YOU CAN'T USE RANDOM SENTENCE " "M SENTENCE AS A NAME.
YOU CAN'T USE SENTENCE "="-F AS- A NAME.

MISSING :

= TO MULTI

@ 14 PRINT PRODUCT F:RANDOM: F:RANDOM:

@ END

= MOLTI

FIRST,BUTFIRST,LAST,AND BUTLAST DO NOT APPLY TOQ "%,
LOGO WAS EXECUTING LINE 14 OF MULTI.

= PRINT HOW ARE YOU TODAY"
HISSING "

13. References

A\

{1] Printed from the AISB European Newsletter
(July, 1976), page U46. .

Goldenberg, Paul E., AR glossary of PDP11 LOGO
primitives. MIT Artificial Intelligence Laboratory,
Cambridge, Mass., AI Memo No. 315A (March, 1975).

Manis, Vincent S., A Machine Independent
Implementation of LOGO. University of British
Columbia, Department of Computer Science,

M. Sc. Thesis (1973).

108

109

INDEX

ARITHMETIC cceccocococcccscacsascccsncncscncsnocncsscscnasanasceces I3
BOTH ceeececceccceacseccccccncccnccaseccccascnancnacacnncce 94,95
BUTFIRST ceccececcccacccacccacaccccacssscccccccncaccacecanss 02,94,95
BUTLAST cececccccceccaccsacascasascsccsncsesscncsscnsesases 02,94,96

BYE ...6...-..........O....‘D-..‘...I..‘.........Q‘...’...... 98

COMMANDS;....C...O...............‘..'..I...I‘.....ICQ.. 93

CONDITIONALS wceeeecacecocnnccracenaccacanascscsncsacassasnnee 93
CONTROL FUNCTIONS cececcececcnccanscccsccansnccccnannacsacscnsea U
"DIFFERENCE ececcecacacccsncccccanacaccacsasncsnnancccncscnns 93,96
"DIVISION ceccecccacsceconcsccnccnscnscanaccscscscsascsesanancncas 93,96

EDIT ® WSO PSS CE OGS NGO POS T GO ESS 0P ECS PN G EETOSEe s A e EanEe 93 96
EDITING a PBOCEDURE ..-.....Q....O;...‘..l..‘;.l........-‘... 85
EITHER Oooooonoouc.......o.s-o..c....‘....-.......0...0--. 9u 96

EMPTYPQ.......-.........‘...‘..‘....Q.....C...‘.. 97
END .O..;...-.‘.-...0.-..........-..-..-.....‘...-.. 69 86 93 97
EQUALP -.....l........QOQCQOOOI.-....ll...."....-0..-.... gu 97

ERASE ‘.‘.C.........l...'...........'..'.O...‘............ 93'97

ERASELINE‘Q.....l.I.‘..C--....'I.I..........‘........ 93;97
ERROR MESSAGES .-o-o.-...-‘n.-...-c.;......o....-..;.--o.... 107
FIRST ...-........-.nll‘.....o.C.o.Q........0-...n‘..n. 62 9“ 98

P teeeccmecccacsacececsonencsanencscacassccannsncnsecnisensanee 98
GET eeececaccccccaccacscsanssssacsssccsacsssananasnancasnse 69,94,98
GLOSSARY ceccececcacceansasenacssecncsccsanacssanccsnsannsaasscasasce 95
GO ..;..... 99
GOODBYE ivceecoacascssacsonsacssescasacsacnacsanassanascacananas 4,98
GOTO ‘.OC--‘...'O.I.....--.....-...........--....QC...O-.I... 99
GOTOLINE eececececcncscncsccncsecscnncsacanscsnsccssacscacncassce 93,99
GREATERP s cecscccscsccacnncsscasccacaimacsssscsnsccanaccancsces 94,98
IFFALSE covevecececaceccncasuaaacanccaconcaanccacanssncnans 93 99

IFF ‘.-.l...“.‘.....“..-..'........‘.......l'.‘.‘...-..I... 99

IFT ...-..I.l.’..-...-.D..O..'........l....D..‘...‘.‘..-.-O.. 99

IFTRUEo.....-..n.o......o.-.-...........;o.....-... 93 99
INPUT b OUTPUT .-...-.-.-....n..;-;.;....-;..-cc..;r-.o-.n'.- 9“

IS .l..-.l...-......'...;.l‘............I.....-.....i....l gu 99

LAST ceecccccccccecencscosnnccncsacccscsacsnasccsccsnnssss 02,94, 100
LESSP ceececcassccccscanciainacancsonnssnssnsccnancsasccansas 4,100
LIST ececcecceccccccccncacancsaasocadncsccncansosancaanas 62,94,100
LOGO FUNCTIONS;............................. 93
LOGO SIGNON;... 59
LOGOUTI...l..‘.......‘.0........... 59 9“ 100
MAKE ceccnccecececcaneasncocsosacnoncnncanasccncnnsesnsca 07,94,101
MAXIMOUM;.............................L.... 93,101

MAX .-.o-......o.‘-.......o.....-‘--o.lo....‘.-......o..o.g- 101
MINIMUMo?..-...t-.-........-’.......do.‘o...m;otono 93'101
MIN -o.....O....;...;...q.b;é;;tQ.,O.I......fl.c.-gq.q....qo.101

NOT ..n.........c......c;..Q.Q.C.....i-....-......--.Q.-. 94,101

NUMBERP ececcccccesccccccncaccnncecncecnsacannscncscaness I, 101
OUTPUT e vveccncemenosocesasancseasncsnaccacsscavasnsnnsces 84,93,102
PREDICATES;;... 94
PRINT WORK cccececceccccnceacacccacacseaascananasanssnscnansanes DI
PRINT ccccecccccancancesannnncnnsasacacsassveasanenenas 61,94,102

110

PROCEDURE EXAMPLES eciccecccacccavccacsoncccsassancscscscsanacnsascae 69
FROCEDURES WITH INPUTS eececoccccmcacacsccaccsacsncscscscscnncaas 72
PROCEDURES wccceascccescscannseacscesocsccsccsanaasacenanccsssanse 08
PROD cicevoceccccccacesccsanaacsecacscencsascsacscsssaascsansasncncasce 102
PRODUCT 2e cececesaocecccacacacccascscnsscsccscacccansscanasa 93,102
P eececcvacsoccceacecscanncssnasscsnanseancnasosssanisasoncsncae 102
QUOTIENT ..;... 93,102
BANDOM vveocccccesacccncacccsscasecaaeannoncasacencansans 93,102
RECURSION eccececccacccccoassaccacseacssancasnsecscncssancsansanae U
REMAINDER eecvcececccccceancscscecsancscscancansccssacacnnnanee 93,102
REQUEST cececcancecacanaconsaccancasnsannsacacnccscnas 73,94,103
" RUNNING PROCEDURES <ecececcasacocecacnscsanccccacasacsacnacacaa 71
SAVE ceevecccccccacccancsonsvsncscsenccsscsscacancnnsascasa 69,944,103
S;... 103
SENTENCE «.cueucececconcaaacsoacsassasosocaccsccosannas 62,94,103
SENTENCEP wuceeeesesocaanccecsacacseiacaaancnaccascanscnss 94,103
SHOW woeeccccccenacsaacsascdacacsccnncnsssaseenccnaaceacanssse 93,104
SHOWLINE cccevccveacacccsscncaacncsccccaacsonaccacossnnses 93,104
STOP v veeocciesaacecenccecsannenesocccascsncnncenacensss 86,933,104
SUM <cscsccceccccaceascacasascssscncnasaancsnanasscansaaa 93,104
TERMINAL SIGN ON ecceccecascaccencascacsncassncacnncnabacscanaa D7
TERMINAL SIGNOFF cececcencenceccacacsacceccaannanccnansnancnas D9
TEST wcevecocsccacnccccenasscssancuwosssacscsvesncaccanscssass 93,105
TEXT PROCESSING ..;.... 94
TITLE ..;...... 93,105
TO weceeccccceaacacepseanccnsnanacceascsancsaassccscannccncas 93,105
TRACE eececcecccecaccaccasnncacscasandensccnaaancsascassaas 94,105
TYPE eoecncccecesoaccncencoancsncsanscsasccnacssccsccsansnas 94,105
PYPEIN wocececccbccacoscencsacccncscocancccsaceoncsccascasaancas. I4,106
UNTRACE ...;. 94,106
VARIABLE;... 72
VARIABLES cccceccaceccccccacasanasseaancsasscassannscsnacancscscas IU
W eeconcecascccoconccscnvecsacncsscacaacssnsosnsasscncanannsnsas 106
WARNING MESSAGES iceteccevscccccenccsccnancnacanncccasacsnave 107
WORD eaeseccecesccoseacaadacseancancasmsnscaasnnssesssase 61,9U4,106
WORDP ceccoeecscccanncocseaccnsscscsascanscaacncncnsenasess IU4,106

ZEROP a-o‘q-_-‘oo-.---oqo_nonccqofn..c.-o-m-c-c‘o--_‘---'.oc;qo--_9“,106

