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A problem solving program capable of handling high school
level Euclidean geometry straight-edge and compass constructions
has been written. Figures are constructed by discovering, for
the points composing them, the loci which satisfy the given sets
of constraints. The representation of geometric knowledge is
procedural. The relation to theorem proving in geometry, and
aspects of the 1language PLANNER, which was wused in the

implementation of the program, are discussed.
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Introduction

One of the ancient and traditional realms of problen
solving 1is plane geometry. The continued role of geometry in
the high school curriculum is Jjustified not because of its
theoretical importance, but because it contains a wealth of
problems.for.the teaching and exercise of rigorous thought.
Plane geometry and diagrams are inseparable, and this fact lends
a concreteness to geometry vwhich is absent in many of the other
domains of rigorous thinking. Geometry problems are not ‘'toy
problems®'; they Are problems which have been studied for

millennia.

The characteristics which make geometry such an excellent
area for the teaching of problem solving also make it good for
the study of problem solving. ' Systems for proving theorems in

geometry have been -developed by Gelernter,!'*2 and Goldstein.3

! H., Gelernter et al, "Empirical Explorations of the
Geometry-Theorem Proving Machine,® Computers _and Thought, ed..
E.A. Feigenbaum and J. Feldman, (New York: McGraw Hill, 1963)
PpP.153-163.

2 H, Gelernter, "Realization of a Geometry-Theorem Proving
Machine," Computers and -Thought, pp.134-152.

3 Ira Goldstein, Elementary Geometry Theorgm Proving,
(Cambridge, Mass.: Massachusetts Institute of Technology, 1973)
AI Memo no. 280.




Work has also been done on related problems: Wong* has devised
a set of heuristics for constructions in a proof; PriceS has
examined the problem of drawing a diagram to satisfy the

constraints specified in the hypothesis of a theorem.

What 1is considered here is the straight-edge and compass
construction problem. Given a éomplete and consistent set of
geometric constraints, the problem is to construct the figure
which satisfies then. This problem relates to the othér
problems mentioned. Performing a construction 1is a form of
theorem proving; the theorem being proven is that there exists a
solution figure satisfying the constraints. In addition, sone
theorem proving ability is regquired for the proof of lemmas
exténding what is given to other facts concerning the solution

figure or other auxiliary fiqures used in its construction.

A procedural representation is used for the required.
geometric knowledge. Each definition or theorem is coded as a
procedure which determines wvhether its conditions are met and

its result applicable. This procedural knowledge 1is expressed

¢ Richard Wong, Construction Heuristics_for Geometry and a
Vector_ Aldebra Representation of_ Geometry, (Cambridge, Mass.:
Massachusetts Institute of Technology, 1972) Technical Memo
no.28. '

S Keith Price, "satisfying Geometric Constraints,"
(Cambridge, Mass.: Massachusetts Institute of Technology, 1971)
unpublished Bachelor's Paper.



in such a way as to aid in the search for the loci of points
which satisfy the constraints of the problem. When appropriate

loci are found the problem is solved.

The author has written a program, called the CONSTRUCTOR,

in MICRO-PLANNER® (the subset of Hewitt's language PLANNER?
which has thus far been implemented) for1the solution of
straight-edge and compass construction problems. The program
accepts the problem description in restricted English, and
produces an algorithm described in English for the creation of

the solution figure.

Polya, ® vho has studied problem sclving in order to teach
it, uses the construction problemn as a mnedium for the
communication of some 'patterns!'! of reasoning. By pointing out
the common thread running through the solutions of many problems

he hopes that the reader will, after working many exercise

¢ G.J. Sussman et al, MICRO-PLANNER Reference_ Manual,
(Cambridge, Mass.: Massachusetts Institute of Technology, 1971)
AI Memo no. 203A. . )

? Carl Hewitt, Description and Theoretical "Analysis_(Using
- Schemata) of PLANNER: A_Lanquage for Proving Theorems_and

Manipulating Models_in_a_Robot, (Cambridge, Mass.: Massachusetts
Institute of Technology, 1972) Revised Ph.D. ' Dissertation, Al

Technical Report no. 258.

® George Polya, Mathematical Discovery: On_Understanding,
Learning,_and_Teaching Problem Solving, (New York: John Wiley
and Sons, 1962) Vol. 1.




problems, internalize the underlying pattern of reasoning. This
work is an attempt to incorporate such patterns as an integral

part of a problem solving progran.



I Background And Preliminary Remarks

I.1 BRelated Work

Although wofk has been done on other aspects of plane
geonetry by researchers in Artifical Intelligence, no
exploration has been made of the straight-edge and compass
construction problem considered here. The main emphasis has
been on machine proof of geometry theorems, the earliest . and
most familiar work in this regard being that of Gelernter and
his co-workers.® The most interesting feature of the Geometry
Machine implemented by Gelernter, and the chief reason for its
success in proving moderately difficult theorems, is the
introduction of semantics into the proof process by the use of a

diagram as a model,

A MNMICRO-PLANNER program called BTP (Basic Theorem Prover)
has been written by Goldstein.!9 A procedural approach is used
to incorporate and extend the ideas enbedded in the Geometry
Machine. The established geometry theorems and definitions of

which BTP's knowledge 1is composed, are expressed as PLANNER

9 Gelernter et al, Computers_and_Thought, pp.134-163.

10 Goldstein, Elementary Geometry Theorem_ Proving.




procedures wvhich Goldstein calls *experts'. It appears that the
effort involved in the implementation of BTP was substantially
less than tﬁat of the Geometry Machine. ° This saving is
attributable to the procedural approach which allowed Goldstein
to concentrate more on the mathematics and 1less on the
programming. The procedural approach has been adopted 1in th;s
thesis. Goldstein also discusses a *'plausible move generator®
which would decide the order in which the ‘texperts! should be
tried rather than simply 1letting the right one be found by
PLANNER failure and backup. BTP, however, is all that Goldstein
has implemented thus far. Even without the ‘'plausible move
generator', BTP has been able to prove all the theorems which

the Geometry Machine proved. .

Neither .the Geometry Machine nor BTP create the diagram
which they wuse to filter invalid subgoals. A diagram must be
presented to both programs by the user of the system. Price has
explored the problem of creating a diagram from the constraints
implicit in the hypotﬁesis of a theorem, and has outlined but
not implemented, an algorithm for solving the problem. This
problem may at first appear td be the same or Qery similar to
the straight-edge and compass construction problem considered in
this work; however, there are several crucial differences. The
constraints contained in the hypothesis of a theorem in general
do not totally constrain the figure. It is possible that one or

more lengths or angles in the figure may be <chosen freely.



Price thinks of the number of such choices as the degree of
freedom of the diagram. In a straight-edge and compass
construction problem the degree of freedom of the solution

figure is zero.

Whereas the method of construction in a straight-edge and
compass problem is restricted as implied by the name, this is
not the case.vhen drawing a diagram for a theorem prover; any
technique, strategy, or tool c¢an be used. Price suggests
calling a construction routine based upén the heuristics Polya
discusses in relation to the straight-edge and compass
constructibn problen,

*"In the actual construction of a figure, given

some element to use, I depend on the work of G.

Polya in his chapter on solving construction

problems.®11% :
Although these heuristics would undoubtedly be: useful in th;
problem Price considers, they should be generalized.to eliminate
the restriction of loci to straight lines and circles. The main
thruét.of Price's algorithm is to analyse the degree of freedom
of the figure to be drawn; choose values for as many
unconstrained elements of the figure as there lare degrees of
freedom, thereby fully constraining the figure; and then to pass

this new problem to a construction routine. It is to this last

11 price, "Satisfying Geometric Constraints,” p.11.



step that work on the straight-edge and compass construction

problem‘is most directly related.

I.2 The Domain

Ll e s o et e e e

The problem domain is a subset of the class of
straight-edge and compass constructions. Under the restriction
that only a straight-edge and compass be used, the'problem is to
construct a figure which satisfies a list of constraints. The
type of figure dealt with here has been 1limited to that of
triangles and circles; howvwever, the majority of construction
problems concern them.  Although construction problems range
from the very difficult (or even the impossible trisectionvof an
angle) to the quite simple ,‘the problems used as examples are
taken from high school geometry texts. The problems may specify
angles, sides, radii, medians, altitudes, tangential circles,
tangential 1lines, and points‘on the circumference of circles.
All problems are assumed not to be contradictory, and to have at

least one solution.

I.3 The_ Pattern Of Two_Loci

There is a schema in which many straight-edge and compass
construction problem solutions may be classified. Geometric
objects are specifiable in terms of key points in them: a
triangle by its three vertex points, a 1line by two points

through which it passes, and a circle by its center and a point



of its circumference. The problem of constructing a figure can
thus be considered to be that of locating its essential points.
With the tools at hand, straight lines and circles may be drawn;
sets or loci of points are: thereby created. The intersection
set of two such straight-edge or compass 1loci 1is easily
determined diagramatically, and if the loci are distinct, has at
most two members. Thus, through the construction of loci of the

two available types, points can be located.

The statement of a straight-edge and compass construction
problem is, in its essential nature, a 1list of conditions or
restrictions which must be met by the figure. These conditions
can be reformulated into constraints on the points of the
fiqgure, The set of points satisfying a constraint can be used
in the construction of the solution figure if that set forms
either a circular or rectilinear locus. This approach to the
straight-edge and compass construction problem is summarized by
Polya:

“"First, reduce the problem to the construction of
ONE point., Then, split the condition into TWO
parts so that each part yields a locus for the
unknown point; each 1locus nust be either a

straight line or a circle."t2

He refers to it as the *pattern of two loci‘*.

‘Consider as an example the problem, "Construct a triangle

12 polya, Mathematical Discovery, Vol. 1 p.5.
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given the base, the vertex angle and a side.” If we name the
triangle ABC, the base BC, the angle BAC, and the side AB, after
placing thé side AB, point C can be determined using the
'‘pattern of two locit*., Point C 1is the intersection of the
circle center B‘radius BC, and the line through point A at angle
BAC to BC. This is sketched in figure I. The solution obtained
by the CONSTRUCTOR is given below. 1Included is a dump of the
assertions in the database as they were generated from the
English statement of the problem.!3 The solution algorithm is

the same as the one described above, except it is more explicit

about placing the first side.

13 The assertions are discussed in detail in sections 11.3
and II1.4,



Given:

FIGURE I

side AB

base BC

angle BAC

11
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——t s . i s, e

(construct a triangle given the base ,
the vertex angle and a side)

(CONSTRUCTING TRIANGLE A B C)

(AB IS A SEGMENT OF LINE LINE1 , AC OF LINE2 , AND BC OF LINE3)
(BC IS THE BASE)

(ANGLE BAC IS A GIVEN ANGLE)

(AB IS R GIVEN SIDE)

{ (LINE LINE3))

((LINE LINE2))

( (LINE LINE1))

((TRIANGLE A B C)) -

( (POINT C))

((POINT B))

( (POINT 1))

((POINT C (CONDITION-ON C ST TRIANGLE A B C)) . 20)
( (POINT B (CONDITION-ON B ST TRIANGLE A B C)) . 20)
((POINT A (CONDITION-ON A ST TRIANGLE A B C)) . 20)
((C ON LINE3))

((C ON LINE2))

((B ON LINE3))

((B ON LINE1))

((A ON LINE2))

((A ON LINE1))

( (KNOWN LENGTH AB))

( (KNOWN ANGLE BAC)) .

( (KNOWN LENGTH BC))

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))
( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)
(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))
( OUNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)
(TRYING CONDITION: (CONDITION-OR C ST TRIANGLE A B ())
( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION~ON C ST TRIANGLE A B C))
( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 1)

**%%xbeginning of solution algoritho#***x* \

((DRAW LINE LINE1 ANYWHERE) (A IS ON LINE LINE1) (PLACE POINT B
ANYWHERE ON LINE1) (POINT A IS ON THE CIRCLE WITH CENTER B RADIUS
AB) (CONSTRUCT LINE LINE2 THRU POINT A (AT ANGLE BAC TO LINE LINE1
y(C IS ON LINE LINE2) (POINT C IS ON THE CIRCLE WITH CENTER B
"RADIUS BC))
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Although the *pattern of two loci' is only used here in the
solution of construction problems it has a more general nature.
Polya points out that if the notion of locus is broadened to a
set of arbitrary items satisfying a restriction and the number
of sets is two or nmore, the pattern of finding the solution
element in the intersection still proves useful.19 The
generalized pattern can be seen: in the interplay of syntax and
semantics in natural language; in the choice of a theorem or
axiom for application in a geometry proof from the intersection
of those having applicable results with those whose result is
true in the diagram; and, of course, in the solution of a set of

simultaneous algebraic equations.

14 Polya, Mathematical Discovery, Vol. 1, pp.133-138.
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II The_ CONSTRUCTOR

II.1 OQverview

A frameuork/or theme is established by the 'pattern of two
loci' which has been incorporated into a program for the
solution of geometry construction problems. The pattern is not:
in itself a solution to the construction problem, but rather an
approach. The word ‘pattern' is used by Polya to connote the
fact that the solutioﬁs to various problems have a similar
structure, as do the reasoning processes which lead to then.,

The *pattern of two loci' is a skeleton which must be filled out

with methods for the discovery of the loci.1s

One formalism in which the pattern can be expanded upon is
that of first-order 1logic. The pattern is expressed by the
existential statement/question

(E xy) (Ci(x) &€ C2(x) & . . . Cn(x) &
Ci(y) 6§ C2(Y) &€ . . . Cn(y) &
(circle(x) v line(x)) & (circle(y) v line(y)) &
intersecting(x,y) & distinct (x,y))
where x,y are loci of a point’
and C1, . . ,Cn are the conditions
of the problem relating to that point

A proof of the preceding statement can be attempted within a

15 Polya, Mathematical Discovery, Vol. 1, pp.3-21.
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formal systenm containing axioms expressing the primitive
constructions (a line given two points on it, and a circle given
its center and radius), and theorems. Included must be theorens
about the construction of basic geometric objects (discussed in
the seciion "Basic Constructions"), as weli as theorens
concerning loc; and the conditions they satisfy. When a proof

is obtained, a method for the construction of a point in the

required figure can be derived from it.

-

The existential statement/question can be treated directly

in PLANNER as a PROG of two variables.

(prog (x y)
: (goal (C1 ?x))
(goal (C2 ?%x))

(goal (Cn ?x))
(goal (C1 ?y))
{(goal (C2 ?y))

{(goal (Cm ?y))
(or (goal (Circle ?x))
(goal (Line ?x)))
(or (goal (Circle ?y))
(goal (Line ?y)))
(goal (Intersecting ?x ?y))
(goal (Unequal ?x ?y)) )
This expression of the ‘'pattern of two 1loci' embodies its
essential nature. The pattern is further augmented to make a
full system for the solution of construction problems by the
establishnment of a set of procedures, PLANNER theorens,
representing the geometric knowledge of basic constructions and

locus theorems. These procedures are activated by the goals in
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the PROG. The instantiations of the two PROG variables are loci

whose intersection is the location of a required point.

The CONSTRUCTOR, a MICRO-PLANNER progranm, employs
procedures for the representation of the geometric knowledge it
requires, The utilization of this knowledgé is directed by the
conditions of the problem linked together by the 'pattern of two
locit' in its PROG form. The input to the program is a single
English sentence which expresses the problem's conditions,
Output is a list of instructions constituting an alqgorithm for
the construction of the figure satisfying the conditions. Since
the conditions are first specified in English they must be
transformed into a more usable form. This transformation could
be made directly into PLANNER goals, which when amalgamated into
a PROG, could be passed to the MICRO-PLANNER interpreter forv
evaluation. However rather than actually creating a PROG it is
somewhat easier and more efficient to write a control function
which evaluates the goals for thelsame net effect as a PROG
would have, but maintains greater control over the order in
which they are evaluated and the effects of backtracking when

. {
failure occurs.

The ‘'pattern of two loci' and the PROG formalization of it
are the nmotivating force behind the formulation of the

procedures described in the immediately succeeding sections,
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I1.2 Consegdent Knowledge

In construction problems, 1lengths, angles, and relations
between parts of the figure to be constructed are given. Using
this information to immediately begin the construction of the
figure is an impossibility. A relation between various parts of
the figqure cannot be directly represented on a piece '0of paper.
The solution is to wuse the well established analytic method,
that of working backwards from the conclusion of the problem, in
this case the desired figure, to its hypothesis, the information
given about the figure. The figure 1is determined when 1its
points have begn determined, so we have the following 'backward
chaining?' series of steps or goals as the basic mode of

operation of the constuctor.
(1) Construct the figure
(2) Construct its points

(3) Construct two loci on which a reguired point

lies.

(4) Construct other 1lines, points, angles etc.

Which are needed for the construction of the

\

loci.
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(n) Eventually in the construction of subgoal
figures, information givem as part of the

problem statement will be required.

The language. PLANNER, is particularly effectual in the
description of backwards chaining processes, because of its
featured pattern directed procedure invocation. Each' procedure
proclaims its abilities through the use of a pattern; when a
snbgéal must be satisfied, the listings of procedure patterns
are culled 'for the procedure most appropriate to the purpose.
The consequent knowledge of the CONSTRUCTOR is the reformulation
of geometry theorems into procedures, called specialists,t6

(THCONSE theorems) able to fulfill goals and their subgoals.

IX.2.A The Loci Specialists

The loci specialists constitute a group of procedures each
expert in extracting a locus from a condition the diagram must
fulfill when complete. Each specialist is adept at testing the
database to determine if the locus to which it ﬁertains is
usable in satisfying the current condition. Associated with a
specialist is a pattern which must match the current condition

in order for it to be invoked, implying that only specialists

16 This term is adapted from T. Winograd who discusses

semantic specialists.,



19

relevant to the condition expend any effort.

‘There is a body of theorems concerning loci proven for the
student in most geometry textbooks. These theorems relate a
locus to a set of conditions as in:

The locus of the vertex of a right triangle, with
a given hypotenuse as the base, is a circle upon

the hypotenuse as a diameter.?t?

These theorems are incarnated in the loci specialists.

From some conditions it may be possible to pry more than
one locus. Such conditions are not primitive, and must be
divided 1into their component conditions before even a single
locus can be obtained. 1In many cases a condition which the
figure must meet, as expressed in the input, will naturally
réesult in a single 1locus of points. As an example, the
condition, point C is equidistant from points A and B, is one
which results in point C being on the perpendicular bisector of
the 1line segment AB. Other conditions, point A is a vertex of
the triangle ABC, for instance, are compound in nature and can
be subdivided. In this case the subdivision 1is 1into the
restriction: A is distance AB from point B, A is distance AC
from C, A is on the line of which AB is a segment, and A is on

the line of which AC is a segment. A compound condition is

17 A.M. Welchons, W.R Krickenberger and H.R. Pearson, Plane
Geometry, (Boston, Mass.: Ginn, 1958) p. 353.
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considered to be satisfied if the conjunction of its component
conditions is satisfied. The division of a cémpound condition
into its component conditions is easily implemented in PLANNER
by creating one procedure for each component qondition. Each

procedure is given a pattern matching the original compound

condition,

Below is a description of each of the loci specialists in
terms of the condition to which it responds, the subgoals it
initiates, and the locus it returns if the sub-condtions are

met,

C-ALT1

Condition: the altitude (distance) from point P to
line L is D :

Snbgoals; is L known or can it be constructed?
is D known or can it be constructed?

Locus: . P is on a line parallel to 1 which is
distance D from L

€-DIST1

Condition: the distance of point P from Q is D

Subgoals: is the position of Q known or can it be
determined?

is D known or can it be determined?

Locus: P is on the circle of radius D center

3

C-EQUIDIST

Condition: the point P is equidistant from points Q
and R

Subgoals: is the 1line segment QR known or



Locus:

C-MEDIAN]

Condition:

Subgoals:

Locus:
C-TRI2
Condition:
Subgpals:
Locus:

C-TRI3

Condition:

Subgoals:

Locus:

Condition:

Subgoall:

Locus1:

equivalently, are points Q and R known
or can they be determined?

P is on the perpendicular bisector of QR

point P is the vertex of a triangle fronm
which the median of length M is dropped
to the base B

is the 1length M known or <can it be
determined? :

is the midpoint of B known or can it be
determined?

P is on the circle of radius M, center
the midpoint of B

point P is the vertex of a triangle PQR
(a compound condition)

is the line through P and Q known or can -

it be constructed?

P is on that line.

point P is the vertex of a triangle PQR

is the line through P and R known .or can
it be constructed?

P is on that line.

point P is the vertex of a triangle PQR

what 1is the 1locus of points such that
the distance of P to Q is PQ

the same as the result of subgoall’

21



Subgoal2:
Locus2:

C-1Is0s1

Condition:
Subgoal:
Locus:

-RITIRI1

Condition:

Subgoal:

Locuszs

C-CIRCLE1

Conditon:

Subgoals:

Locus1:

Locus2:

C-CIRCLE2

Condition:

what is the locus of points such that
the distance from P to R is PR?

subgoal2 locus

point P 1is the vertex of an isosceles
triangle PQOR

wvhat is the locus of points equidistant
from Q and R?

the result of the subgoal.

point P is the vertex of a right
triangle POR.

is QR a known line segment?

P is on the circle having segment QR as

a diameter.

point P 1is the center of a circle C
which 'is tangent to a curve V.

is the radius R of C known or can it be
determined?

is the curve V known or can it be
constructed? '

if Vv is a circle, then P is on a circle

whose center 1is that of V and whose -

radius is that of Vv plus that of C.

if v is a line, then P 1is on a 1line
parallel to Vv the radius of C from V.

o

point P is the center of a circle C
which is tangent to a curve V at a point
Q.. ‘

22



Subgoals:

Locusi:

Locus2:

Condition:
Subgoal:
Locus:

C=CIRCLES

Condition:
Subgoal:
Locus1:

Locus2:

One

succeeding, is whether or not exactly the same

produaced

is V known or can it be constructed?

if V is a circle, then P is on the 1line
which passes through Q and the center of
V.

if v is a 1line, then P 1is on the
perpendicular to V at Q.

point P is the center of a circle having
Q and R as points on its circumference.

what is the locus of points equidistant
from Q and R?

tﬂe result of the subgoal.

point P 1is the <center of a circle C
which is tangent to two lines.

are the two lines known or can they be
constructed?

if the lines intersect, then P is on the
bisector of the angle they form.

if the two lines are parallel, then P is
on the line parallel to both of them and
midway between them.

23

thing every locus specialist must check before

The two loci for a point must obviously be distinct.

locus

been

at some previous time in the determination of a point.
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B The_ Line _And_Slope_Specialists

The line specialists are procedures for the construction of
(infinite) straight 1lines.  Subgoals set wup by the loci
specialists often involve the determination of a line, and it is
to these reguests that the line specialists respond. The slope
specialists are expert in finding the slopes of lines, and are
called when a line specialist must know a line's slope in order

to construct it.

C-LINE2
a line is known if it passes through a known point
and its slope is known or can be determined.
C-LINE1
a line is known if it passes through two known
points
C-SLOPE1
the slope of a line is known if it is parallel to
another line whose slope is' known.
C-SLOPE2
the slope of a line is known if it intersects
another known line at a known angle.
C-SEG]

a line segment is known if its two endpoints are

known.
The line and slope specialists use the THUNIQUE feature of
MICRO-PLANNER to avoid infinite recursive loops. This means,
for example, that before each line specialist begins, it first

checks to see if it or any other line specialist is also in the
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process of determining the same line. The time and space
overhead involved is neither unreasonable in relation to other

factors, nor is there any other available solution.

Related to the 1line specialist§ is an- economnizing
specialist C-LINETEST. Time costs are high for determining
lines\because, with slopes involved, other 1line determinations
may be required. To avoid fruitless expenditure of effért in
the line and slope'specialists, C-LINETEST checks the database
(no .6ther specialists are invoked) for the presence of a knéwn
line or point. If no 1line or points are knoﬁn, the 1line

specialists cannot possibly succeed and are not invoked.

1I.2.C- Angle Specialists

The Aconstruction of angles is domne by the angle
specialists. Usually the requests for the construction of
anglés originate in the slope specialists.. The angle
specialists make use of THUNIQUE for the same reasons as the

line and slope specialists do.

C-ANGLE1
an angle 1is constructable if it is the angle of
intersection of two lines which are known or can
be constructed. .

C-ANGLE2

an angle is coastructable if it is equal to
another . angle which is known or can be
constructed.
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C-ANGLE3
an angle 1is constructable if it is a multiple of
another angle which is known or constructable,

an angle is constructable if it is one angle of a
triangle and the other two angles of the triangle
are known or can be constructed.

1

IT.2.D Assumption Specialists

Wwhen a point or a ' line 1is not known and is not
constructable from the hypothesis of tﬁé problem, it may be
expedient and permissible to locate it arbitrarily. Two such
assumptions, that of one line and one point, are admissible in
an individual problem. The rationale for this flexibility 1lies
in the freedom of choice of an origin and axis in a coordinate

systen.

The decision as to which point and line éhould be assumed
is crucial. Choosing a'point which might be determined by other
means résults in a reduction in the number of cdnditions
contributing toward the problem solution. 1In order'to give as
much direction_ as possible to this decision, it is postponed
until the choice which is made will be certain to bé of  use.
When a specialist requires a 1line or a point in order to
succeed, but it is mneither known nor constructable in the

current context, 1its ©position 1is assumed whenever allowable.
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The assumption specialists test the permissiblity of the
requisite assumption, and if it passes, assert that the point or

line is known,

There are two assumption specialists, one for lines and one
for points, embodying the restraints on the situations in which

arbitrary determination of positions can be made.

C-DTRMNPQINT

a point P has the dreatest 1liberty whenever no
other points or 1lines are known. It may under
those conditions - be placed freely without
constraint. Wwhen P lies on a line and that line
is known or constructable, P may be placed -
anywvhere along it. P has no freedom and must not
be assumed whenever another point is already
known. :

v e - e

whenever . no 1lines are known or constructable and
no points on the line in question are known, the
line may be positioned arbitrarily. If a point on
the line is known, then the slope of the line may
be chosen; however, the line must pass through the
known pPint.

IX.3 Input And Phrase Specialists

A single sentence consisting of several conjoined phrases
is accepted by the CONSTRUCTOR. The understanding of English
input is not a goél of this work, and thus the structure and
vocabulary of sentences understood by the CONSTRUCTOR has

remained very restricted.  Statements of straight-edge and
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compass construction problems have many features in common, the
essential framework being:
Construct an OBJECT given RESTRICTION1,
RESTRICTION2 . ... RBESTRICTIONN. ‘
Since most problems concerning triangles and circles in geometry
textbooks are stated in this format or.are'easily arenable to
it, the convenience of having a sentence as the nedium of
communication outweighs the overhead of its interpretation.

Example: Construct a right triangle given a leg and the altitude

.on the hypotenuse. \

Translation of the problem statement mnust result in a
database of information fo; reference by the consequent
knowledge speciélists._ This transformation of the input is
accomplished - by PLANNER antecedent theérems called phrase
specialists containing definitional geometric knowledge. A LISP
function operating under the assumption that ‘*given', ‘'and‘*,
*construct?', and ',*' act as phrase delimiters, splits the iniut
sentence into phrases which are then asserted (using the
MICRO-PLANNER primitive THASSERT ) triggering the execution of
appropriate phrase specialists. The interpretation of the input
is therefore effectively a pattern matching process. The
pattern matching is done when a phrase is matched to the calling
pattern of an antecedent specialist, although the facilities
available in MICRO-PLANNER for pattern wmatching purposes are

very rudimentary.
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To construct a figure both the knowns and the unknowns of
the problem must be specified, and this information must be
represented in the database. The knowns are the angles,
lengths, and relationships introduced as 1'givens' in the
‘problem, When an altitude is a ‘'given', for example, the
information conveyed is that a length is known and that a vertex
of a triangle is related to its opposite side by that 1length,
It is important to note that when an angle or length is stated
as 'given', this is merely a declaration of it as a known in the
problem; lengths and angles are rarely actually specified ih
geoemtry texts by accompanying diagrams. The unknowns are the
points, line segments, angles, lines and circles from which the
figure is to be composed, but about which nothing has been

specified. .

The knowledge used to develop the knowns and unknowns in
the database 1is contained in the phrase specialists. A
description of some of the key phrase specialists and an example

is given below.

A-CTRI :
this specialist describes a triangle. It asserts
the existence of three points and three lines, and
that each point lies on two of the lines., Three
compound locus restrictions stating that each of
the three points 1is part of a triangle are also

asserted.

this specialist handles both altitudes and medians
which are given, Altitudes and medians are



specified with respect to a side of a triangle,
however, it is the point opposite that side which
is the one affected by the restriction. The
appropriate point is determined by first finding
the side to which it refers in the database. The
point and its restriction are then added to the
database. A name for the length of the altitude
or median is generated and using this name, the
,  length is asserted to be known.

when a side is given this specialiSt‘is invoked.
It simply checks the database to find a side of a
triangle which 'is not known and asserts that it is
known.

-circle has a center and radius for which nanmes
are generated. A name for the circle 1is also
generated.  The circle is then asserted to exist,
its center to be its center and its radius its
radius.  The condition that the center point must
be the center of the circle is added as a
restriction on that point.

circles are frequently restricted to be tangent to
other . curves (lines or circles) at given points.
This requires the generation of names for a new
curve ‘and point, and the assertion of their
existence, The point ‘is asserted to be on both
the circle and the curve, as well as being known,

Although there are other phrase specialists the above are
indicative of their operation. As an example of the result of

the phrase specialists consider the coastruction problem:
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Example

(construct a triangle given a side , the altitude
to that side and the median to that side)

**%*xbeginning of output from input and phrase specialists#***x

(CONSTRUCTING TRIANGLE A B C)

(AB IS A SEGMENT OF LINE LINE1 , AC OF LINE2 , AND BC OF LINE3)
(AB IS A GIVEN SIDE)

(LET THE GIVEN ALTITUDE BE OF LENGTH LENS4)

(LET THE GIVEN MEDIAN BE OF LENGTH LEN5)

****end of output from input and phrase specialists**#x*
**%x%¢begin assertion base listing *%*%

((MIDPT6 ON LIKE1))
((MEDIAN C TO AB))

((LINE LINE3))

((LINE LINE2))

((LINE LINE1))

((TRIANGLE A B C))
((MIDPOINT MIDPT6 OF AB))
( (POINT C)) )

( (POINT B))

( (POINT A))

((POINT C (CONDITION-OK
((POINT C (CONDITION-ON
. 100)

( (POINT C (CONDITION-ON
((POINT B (CONDITION-ON
((POINT A (CONDITION-ON
({C ON LINE3))

((C ON LINE2))

((B ON LINE3))

{(B ON LINE1))

((A ON LINE2))

((A ON LINE1))

((KNOWN LENGTH LENS5))

( (KNOWN LENGTH LEN4))

ST MEDIAN C TO AB IS LEN5)) . =-110)
ST ALTITUDE C TO LINE1 IS LEN4J)

ST TRIANGLE A B C))
ST TRIANGLE A B C)) . 20)
ST TRIANGLE A B C))

> w0 a0

**x**end of assertion base listing#*%*x

((KNOWN LENGTH AB)) _
(TRYING CONDITION: (CONDITIOR-ON A ST TRIANGLE A B C))
( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))
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( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)
(TRYING CONDITION: (CONDITION-ON C ST MEDIAN C TO AB IS LENS))
( UNKNOWN POINTS (C) NO. OF LOCI POUND: 0)
- (PRYING CONDITION: (CONDITION-ON C ST MEDIAN C TO AB IS LENS))
( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 1)
(TRYING CONDITION: (CONDITION-ON C ST ALTITUDE C TO LINE1 IS
LENG))
( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 1)

((DRAW LINE LINE?1 ANYWHERE) (A IS ON LINE LINE1) (PLACE POINT B
ANYWHERE ON LINE1) (POINT A IS ON THE CIRCLE WITH CENTER B RADIUS
AB) (POINT C IS ON CIRCLE OF RADIUS LEN5 WITH CENTER MIDPT6 , THE
MIDPOINT OF AB) (POINT C IS ON A LINE PARALLEL TO LINE1 AT DISTANC
LEN4))

II.4 Point Ordering And Assumption

In most construction problems there is more than cone point
to be located in the determination of the final figure. The
question arises as to the order in which the points should be
attempted. Certainly the order is important because the loci of
some points can only be found with reference to other points. A
simple ordering scheme based upon the idea that those points
having the 1least freedom should be looked for first, has been
implemented. This leaves the pdints With the most <freedon
available for assumption, if necessary. The more restrictions
placed upon a point, the higher is the 1likelihood that there
will be at 1least two 1loci from which to determine it. The
ordering strategy is: first, begin with the search for the 1loci
of the most restricted point; then, if a subgoal of a loci

specialist requires a point to be known, it is simply assumed to
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be known, That is as 1long as the conditions of the point
assumption specialist are met. Any point assumed in this manner
will - be one with more freedom than the poiﬁt whose loci are
being sought. WNever is an effort made to determine a point
which - is required by a loci specialist, if it is not sinmply
stated to be known in the database, since this would mean
invoking thé loci specialists for it, thereby negating the top
level ordering of points. Allowing the assumption of lines and
points on the demand of a 1loci specialist that will make
immediate use of the assumption, gives a natural priority to the
choice of the single point and 1line available in any one

construction problem.

Some conditions on points are more restrictive than others,
with the effect that a simple count of the number of conditions
relevant to the required poin£s will not necessarily reveal the
most restricted point. To facilitate the ordering of points
according to their degree of restriction a numeric coefficient
is assigned to each condition which is asserted (using the
THPROP MICRO-PLANNER feature) in conjunction with the condition
by the phrase specialists. These coefficients are totalled and
the results sorted into decreasing order by a - supervisory LISP

function that initiates the point determinations.

The restriction coefficients of the various conditions are

given below.
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triangle 20
equidistant 40
altitude 100
median -110
right triangle 50
circle 100
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The coefficient foi the median condition is an exception because
the locus of points satisfying it is defined in terms of the
midpoint of a line segment. Since a line segment (two points)
canﬁot be assumed , the midpoint of the segment. would itself
have to be assumed in otrder fo proceed. However, the midpoint
. is not'a good point on which to exercise the freedom of
arbitrary 1location, because other points in the figure are
unlikely to be specified with respect to it. The specialist
requiring the midpoint to be known is thus a poor one to invoke
before the line segment is likely to have been constructed. The

low median coefficient ensures that it will not be. -

II.5 Solution Abstraction

In PLANNER there is no‘explicit method or feafute to be
used in collecting the solution as it is developed during the
execution of P£ANNER procedufes.v The onus of providing a
suitable formalism for abstracting the solution from the
execution sequence rests with the user. In. general, this

formalism embodies a generalized trace of the goals and
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procedures involved in forming the successful branch of the
search tree. The evolving 'state of the world' as reflected 4n
changes to the database, and a list of comments or instructions
interpretable by either man or machine regarding this evolution,
together, form the basis of this trace. For example, a change
in the state of the 'blocks' worldis was represented by the
erasure of an old location and the assertion of a néw location
for an object. This was coupled with the concatenation of a new
comnmand - (chosen from the small set {movehand, grasp, ungrasp)) to
a list of commands each describing changes in the ‘'blocks!
i

world. Interpretation of this 1list by graphics routines

resulted in a pictorial trace of the solution branch.

- A similar type of formalization is used in the CONSTRUCTOR. .

Whenever an angle,.line or locus, for example, 1is determined,
instructions for its construction are added to an expanding
list, The instructions and the 1list they form become an
algorithm for . the construction of the final-figqre._ Since the
algorithm is intended for human interpretation the instructions
it entails are communicated in English; however, they could just
as simply be coded as the names of graphics routines to be

called, or in any other machine interpretable form.

18 Terry Winograd, Procedures_as_a_Representation for Pata

(Cambridge, Mass: Massachusetts Institute of Technology, 1971)
Revised Ph.D. Dissertation, MAC TR-84.

/
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Two different types of traces result depending upon the
method used to concatenate new instructions to the list.
Permanent concatenation, that 1is concatenation which is not
undoable by PLANNER backtracking, results in a trace of all the
subresults obtained en route to the solution. Concatenation
which is undoable under PLANNER failure returns a list of only

those results. forming an integral part of the solution.

II.6 Basic_Constructions

-2

The outﬁut from the CONSTRUCTOR is a 1list of English
constructions representing an algorithm for the conétruction of
the actual figure described in the problem statement. 6 These
instructions are given in terms of constructions which are
considered to be basic although not primitive. The primitive
constructions are simply those of drawing 'a line given two
points on it and, of drawing 'a circle given its center and
radius. A basic construction is either a primitive construction
or . one such as: draw a line parallel to a given line at a given
distance. This is a simple construction, although it does
require definition in terms of the two primitive constructions.
The. justification for the use of a set of basic constructions is
that algorithmic directions are given for their construction in
nost geometry texts. A list of the basic constructions is given

in Appendix I.
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II.7 canonical Naming

s

As 1in geometry theorem proving systems, the problem of
uniquely identifying geometric objects arises here. Without a
naming system, redundancy in the definition and execution of the
specialists would be inevitable. In the BTP of Goldstein,!9

names were assigned on the basis of the coordinates of the
points involved in an object, as they were determined from the

' diagram the theorem prover used. . Since the CONSTRUCTOR does not
use or ever actually draw a diagram, a canonical naming based
upén lexicographic ordering is employed. Each point is given a
name from the letters of the alphabet and these are used to form

the names of other objects,

Letting x,y,2 be variables over . the set of point names
{A,B,C...} and letting >, < be relations of alphabetical order,

' the namin§ system is as follows:

{a) xy is a canonical line segment name if x and y

are the endpoints of the segment, and x < y

(b) =xyz is a canonical angle name if y is the

vertex point; x and z are points on the two

19 Goldstein, ‘Elementary Geometry Theorem Proving, PP.
13-14.
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rays which form the angle; and x < y.

(c) xyz is a canonical triangle name if x < y < z.
If a triangle is right angled or isosceles,
the distinguished vertex is always chosen to

be the first character of the triangle nanme.

(d) the naming of lines, as distinct from line
segments, presents a somevwhat different
problen. Line names LINE1, LINKE2, etc. are

generated for lines as they arise.
{e) circle names CIRCLE!1, CIRCLE2, etc. are

generated as circle references occur in the

input text.

I1.8 FLOW_OF CONTROL

The linkage between the segments of the CONSTRUCTOR 1is
accomplished by a LISP-PLANNER hybrid function. It is based in
LISP, but‘makes explicit calls to the MICRO-PLANNER interpreter
for the evaluation of some PLANNER code. The first steps in the
execution sequence are those of initialization, and reading the
problem statement., This statement is then divided into phrases,

as described previously, at which time the MICRO-PLANNER
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interpreter is called to assert 'each phrase in turn. The
assertion of the phrases results in the invocation of antecedent
phrase specialists, fabricators of a model delineating all the
knowns and unknowns of the problem. When all the phrases have
been asserted, those points essential to the construction of the
figure and their associated conditions are looked up and sorted
into order in accordance with the restriction count. The
MICRO-PLANNER interpreter is then commanded into action again
for evaluation of the conditions relevant to the first point.
Conditions are expressed as PLANNER goals. When two of these
goals have been satisfied the point is asserted to be known, and
attention is shifted onto the next point of the ordered
sequence. This process continues until all the points are
determined. - If a situation arises in which no two goals for a
point are satisfiable, any assumptions and changes to the
database .are undone (by MICRO-PLANNER backup) and the loci
possibilities of the other points are explored. Return is npade
to the point in question only after other points have been
established. When all points are realized the list of

instructions comprising the solution algorithm is printed.

The whole process is explicated by the adjoining flowchart.
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III Comments On_PLANNER

PLANNER has received simultaneous praise and criticism. Of
its three distinguishing features, an associative database,
pattern directed procedure invocation, and an automatic
backtracking control structure, the latter has been singled out
for acute criticism by G. Sussman  and D. McDermott.?0 The
laudability of PLANNER is illustrated by its instrumental role
in the formulation of the 'blocks!' world,2t and the geometry

theorem prover, BTP, 22

Backtracking is a single term for a process éhich can be
seen to consist of two distinct operations. The first operation
in the backtrack process is the return to a preceding state in
the computation, a decision point, an earlier node in the search
tree. The effect of all computation occurring after that node
was passed, is undone; the branch of the search tree developed
from that node is pruned from the tree.. This operation 1is the

heart of backtracking; however, the initiation of computation on

20 g,J. Sussman and D.V. McDermott, "From PLANNER to
CONNIVER~--A Genetic Approach,"™ Fall Joint Computer Conference
1972, pp. 1171-1179. .

21 Winograd, Procedures _as_a_Representation_for Data_ in_a

D P il Tl D . D A VDA S O VS . e 1 S At S i s

N e D i, . S SO S

22 Goldstein, Elementary Geometry Theorem Proving.
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a new branch emanating from the decision point is also often
considered to be implied by the term backtracking. This is most
certainly the case 1in reference to the PLARNER automatic

backtracking control structure.

.Criticism of automatic backtracking is similarily divi#ible
into two components; what it does and what it does not do. What
is pot done is the saving of any results from the abandoned
branch. Not even a record of the hypothesis which 1led to the
branch's explorafion is kept. The answer to this criticisnm
seems to lie in the establispment of contexts and operationmns for

their manipulation, as has been done in QA423 and CONNIVER. 24

What is done under the auspices of PLANNER backtracking is
the automatic examination of the next possibility at a decision
point, There is no control given to the programmer over this
restarting of computation at a point where it may very well be
unexpected. According to Sussman and McDermott the problen that‘

"an unexpected failure will propagate back . . .

and compute without our explicit programming of
this activity . . . 1is observed by real users of

23 J.F. Rulifson, J.A. Derksen and R.J. Waldinger, QA4: A
Procedural Calculus_for Intuitive Reasoning, (Menlo Park,
Calif.: Stanford Reasearch . Institute, 1973) Artificial
Intelligence Center Technical Note 73.

24 G.J. Sussman and D.V. McDermott, The CONNIVER Reference
Manual, (Cambridge, Mass.: Massachusetts Institute of
Technology, 1972) AI Memo no. 259.

N
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MICRO-PLANNER who complain that they cannot

understand the behavior of their programs because

the flow of control 1is not explicit” in the

code,"25
An essential difficulty lies with the GOAL primitive, the most:
common and complex form of decision point. It has too much
power vested in it for the frequency with which it must be used.
The author suggests syphoning some of this power off into a new
PLANNER primitive, to be <called IS. This new primitive is a
natural contraction of the ©power of GOAL. Much fruitless

exploration and - backtracking effort can be eiiminated by

replacing GOAL with the less powerful IS whenever possible.

The problem with the GOAL function is effectively
illustrated by an example which Sussman and McDermott use in
their criticism of backtracking. The example is:

(CONSEQUENT (X Y 2) (2X IN ?Y)
(GOAL (2X IN 232))
(GOAL (2Z IN 2Y)) )2¢
They comment that this theorenm
", . . if called by,e. g. (GOAL (BLOCK2 1IN
BOX1)), its only possible actions are either to

find a 2 between BLOCK2 and BOX1, or to fail.
Although which Z is found cannot possibly affect

25 Sussman and HMcDermott, “Prom PLANNER to CONNIVER--A
Genetic Approach," p.1173.

26 Syssman and McDermott, "From PLANNER to CONNIVER--A
Genetic Approach,™ p.1171,
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subsequent events, a failure back to the theoren
will cause it to look up another 2Z, succeed, and
allow its caller to fail again in exactly the sanme

gtn2? .
The difzggﬁlty arises in that the GOAL function operates under
the assumption that every distinct path used in satisffing the
goal could result in a different instantiation of the GOAL
pattern or in a different modification of the database. Thus
all possible methods of . satisfying the goal must be tried.
Often, however, this is not the case; different theorems, or
even the same theorem with different data, as in the above
example, maj satisfy the goal several times without
re-instantiation of the pattern or relevant change to the
database. Restarting computation a second time, after
re-satiéfying the goal in such an inconsequential manner, is
pointless. The IS function behaves more as a single test of the
environment. A query is made as to whether or not the statement
represented by the pattern occurs in the database, theorem base,
environment. BEquivalently, 1is there a matching datum in the
.database, or a matching theorem which, when invoked, succeeds?
The way in which the pattern statemeht is found is taken to he
of no consequence or significance. The problem in the example
is overcome by wusing (IS (BLOCK2 1IN BOX1)) to <call the

consequent theoren,

27 Sussman and McDermott, “"From PLANNER to CONNIVER--A
Genetic Approach,"™ p.1173.
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The IS function is easily understood when contrasted with
the GOAL fpnction. The GOAL function operates in the following
way with respect to success and failure. 1Initially an attempt
is made to satisfy the goal by finding a matching datum or
invoking matching theorens. If it 1is satisfied, the goal
succeeds and the next statement after the GOAL is evaluated.
The important aspect, in relation to backtracking, is that if a
failure propégates back from the statement following the GOAL,
to the GOAL, the search for a wmatching datum  or successful
theorem, which "was suspended when the GOAL was previously
satisfied, is restarted. 1In contrast, the IS function passes
the failure backwards rather than attempting to succeed a second
time, In all other aspects the operation of IS is the same as

GOAL.,

The use of the IS function solves the problem, arising in
the example, of another 7 being found even though it could have
no possible effect upon the subsequent computation. Rather than
£estarting the computation on the statement (GOAL (?X 1IN ?22)),
the failure 1is passed beyond the (IS (BLOCK2 1IN BOX1))
statement., Examination of MICRO-PLANNER traces of the goals and
theorems tried by the CONSTRUCTOR revealed the occurrence of
excessive backtracking which could be eliminated by using the IS
primitive in place of GOAL. The IS function, added by the
author as THIS to MICRO-PLANNER, was used slightly more often

than THGOAL in the implementation of the CORSTRUCTOR.
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The above discussion is not intended as a justification of
the imposition of an automatic backtrack control structure upon
the user of a language, as is the case in PLANNER. Backtracking
hés not turned out to be as useful a feature as it might at
first have appeared. Rulifson, Derksen, and Waldinger have
observed a shift, which they consider to be a “most surprising
trend in QA4 progranmming®”, avay from backtracking, 28
Nonetheless, backtracking may not be an entirely useless tool,
provided that sufficient control over it is available., It can
be used during the initial formulation of sclutions in order to
establish the shabe of a better formulation, and for the
handling of the element of search which exists in all non-ideal
algorithms. The distinction must be npade between poorly
formulatéd solutions to well understood problems, and well
~understood attempts to solve obscure and perplexing problenms.
Backtracking in PLANRER can be accused of encouraging the

former; controllable backtracking may enable the latter.

There 1is no question that the features of an associative
database, and pattern directed procedure invocation are
invaluable.,  They are the factors which have contributed to the

success PLANNER has enjoyed despite the difficulties encountered

28 Rulifson, Derksen and . Waldinger, QA4: A_Procedural
Calculus for Intuitive Reasoning, p. 289.
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The solutions to fhe exanples in previous sections, and
those given here were produced by the CONSTRUCTOR. The
CONSTRUCTOR code was interpreted by the MICRO-PLANNER
interpreter, modified to include the THIS function, which in
turn was operating under the LISP interpreter (no LISP compiler
is presently available) in the environment of the Michigan
Terminal System on an IBM 360/67. For the triangle problenms
timings ranged from 20 to 35 CPU seconds, while for the circle
problems the. range was from 10 to 20 CPU seconds. A
representative selection of the solutions found by the’/

CONSTRUCTOR is given below.

i}

The CONSTRUCTOR, as well as not solving problems concerning
figures which are different than those specified in the section
*"The Domain", has as its most serious limitation, the fact that
it cannot solve any problen requiring the introduction of a new
point.  BExamples of such problems are: construct a triangle
given tvwo sides and the median to the third side; and construct
a triangle given its three medians, The latter problenm is
discussed in more detail in the section "Directions for Further
Research™, Approximately five CPU minutes are required in order

for the CONSTRUCTOR to abandon such problems and admit failure.

The following comments may help in the understanding of the

output from the CONSTRUCTOR. The output begins with a statement
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of the names the CONSTRUCTOR has generated for the geometric
elements refered to in the problem. Following this theré is a
list of all the assertions in the database generated by the
input and phrase specialists. After the database dump, all
conditions ;hich vere set up as goals are printed. In addition,
the points in the figure wﬁich were unknown, and the number of
loci which had been found for the first point on the 1list of
unknown points, at the time the goal was attempted, is given.
The final part of the output 1is the algorithm for the
construction of the solution figure; It is a 1list of
instructions, each instruction enclosed in a separate set of

parentheses.
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(construct a right triangle given:a leg

and the altitude to the hypotenuse)

(CONSTRUCTING TRIANGLE A B C)

(AB IS A SEGMENT OF LINE LINE1 , AC OF LINE2 , AND BC OF LINE3)
({AB IS A GIVEN SIDE)

(LET THE GIVEN ALTITUDE BE OF LENGTH LENWY)

{(ANGLE BAC EQUAL ANGLE NINETY))

((LINE LINE3))

{(LINE LINE2))

((LINE LINE1))

((TRIANGLE A B C)) .

({RIGHT TRIANGLE A B C))

((POINT C))

((POINT B))

{(POINT a)) :

((POINT A (CONDITION-ON A ST ALTITUDE A TO LINE3 IS LEN4))

. 100)
((POINT A (CONDITION-ON A ST RIGHT TRIANGLE A B C)) . .50)
((POINT C (CONDITION-ON C ST TRIANGLE A B C)) . 20)
((POINT B (CONDITION-ON B ST TRIANGLE A B C)) . 20)
((POINT A (CONDITION-ON A ST TRIANGLE A B C)) . 20)

((C ON LINE3))

((C ON LINE2))

((B ON LINE3))

((B ON LINE1))

((A ON LINE2))

{(A ON LINE1))

((KNOWN LENGTH LENY4))

((KNOWN LENGTH AB)) -

((KNOWN ANGLE NINETY)) A

(PRYING CONDITION: (CONDITION-ON A ST ALTITUDE A TO LINE3 IS

"LEN4) ) »

( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST ALTITUDE A TO LINE3 IS

LERNY))

( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))

( UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON C ST TRIANGLE A B C))

( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON C ST TRIANGLE A B C))

( UNKNOWN POINTS (C) NO. OF LOCI FOUND: 1)

((DRAW LINE LINE3 ANYWHERE) (POINT A IS ON A LINE PARALLEL TO
LINE3 AT DISTANCE LENU4) (PLACE POINT B ANYWHERE ON LINE3) (POINT A
IS ON THE CIRCLE WITH CENTER B RADIUS AB) (ANGLE BAC IS EQUAL TO
ANGLE NINETY) (CONSTRUCT LINE LINE2 THRU POINT A (AT ANGLE BAC TO
LINE LINE1)) (C IS ON LINE LINE2) (C IS ON LINE LINE3))
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(construct a circle tangent to a given line
and tangent to a second intersecting
line at a given point)

(CIRCLE CIRCLE4 IS TANGENT TO LINE LINES6)
(THE CIRCLE IS TANGENT TO THE LINE LINE7 AT POINT C)

( (INTERSECTING LINE7 LINE6))
((RADIUS CIRCLE4 RADIUSS))
((CIRCLE CIRCLEY))

((CIRCLE4 TANGENT LINE6))
((CIRCLE4 TANGENT LINE7 AT C))
((LINE LINE7))

((LINE LINEG6))

( (POINT C))

( (POINT a))

((POINT A (CONDITION-ON A CENTER CIRCLE CIRCLE4)) . 100)
({(C ON CIRCLEY4))

((C ON LINE7))

((B ON CIRCLEY4))

((B ON LINE6))

((A CENTER CIRCLEY4))

( (KNOWN LINE LINE7))

( (KNOWN POINT C))

( (KNOWN LINE LINE6))

(TRYING CONDITION: (CONDITION-ON A CENTER CIRCLE CIRCLE4))
( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 0)
(TRYING CONDITION: (CONDITION-ON A CENTER CIRCLE CIRCLE4H))
( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 1)

((CENTER POINT A IS ON THE BISECTOR OF THE ANGLE FORMED BY LINES
LINE6 AND LINE7) (CENTER POINT A IS ON A LINE PERPENDICULAR TO
LINE7 AT POINT C))

(construct an isosceles triangle given a
base angle and the altitude to a leg)

(CONSTRUCTING TRIANGLE A B C)
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(AB IS A SEGMENT - OF LINE LINE8 , AC OF LINE9 , AND BC OF LINE10)
(ANGLE ABC IS A GIVEN ANGLE)
(LET THE GIVEN ALTITUDE BE OF LENGTH LEN11)

((ANGLE ABC EQUAL ANGLE ACB))
((ISOSCELES TRIANGLE A B C))
((LENGTH AB EQUAL LENGTH AC))
((LINE LINE10))

((LINE LINE9))

((LINE LINES))

((TRIANGLE A B C))

( (POINT C))

( (POINT B))

( (POINT 1))

{ (POINT C (CONDITION-ON C ST ALTITUDE C TO LINES IS LEN11))
. 100)

((POINT A (CONDITION-ON A ST A EQUIDISTANT B AND C)) . 40)
((POINT C (CONDITION-OE C ST TRIANGLE A B C)) . 20)

((POINT B (CONDITION-ON B ST TRIANGLE A B C)) . 20)

((POINT A (CONDITION-ON A ST TRIANGLE A B C)) . 20)

((C ON LINE10))

((C ON LINE9))

((B ON LINE10))

((B ON LINES))

((A OF LINE9))

((A ON LINES))

((KNOWN LENGTH LEN11))
((KNOWN ANGLE ABC))

(TRYING CONDITION: (CONDITION-ON C ST ALTITUDE C TO LINES IS
LEN11))

( UNKNOWN POINTS (C A B) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON C ST ALTITUDE C TO LINE8 IS
LEN11))

( UNKNOWN POINTS (C A B) NO. OF LOCI FOUND: 1) .
(TRYING CONDITION: (CONDITION-ON C ST TRIANGLE A B C))

( UNKNOWN POINTS (C A B) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST A EQUIDISTANT B AND C))
( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST A EQUIDISTANT B AND C))
( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 1) ‘

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))

( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 1)

((DRAW LINE LINE8 ANYWHERE) (POINT C IS ON A LINE PARALLEL TO
LINE8 AT DISTANCE LEN11) (PLACE POINT B ANYWHERE ON LINE8)
{CONSTRUCT LINE LINE10 THRU POINT B (AT ANGLE ABC TO LINE LINES8))
(C IS ON LINE LINE10) (POINT A IS ON THE PERPENDICULAR BISECTOR
OF BC) (A IS ON LINE LINES))
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{(construct a circle of given radius which
is tangent to a given circle at a given point)

(LET THE RADIUS BE OF LENGTH RADIUS13)
(THE CIRCLE IS TANGENT TO THE CIRCLE CIRCLE14 AT POINT B)

{ (RADIUS CIRCLE12 RADIUS13))

((CIRCLE CIRCLE14))

( (CIRCLE CIRCLE12))

((CIRCLE12 TANGENT CIRCLE14 AT B))

( (POINT B))

( (POINT 1)) _ ,
( (POINT A (CONDITION-ON A CENTER CIRCLE CIRCLE12)) . 100)
((B ON CIRCLE12))

({B ON CIRCLE14))

((A CENTER CIRCLE12))

( (KNOWN CIRCLE CIRCLE14))

{ (KNOWN POINT B))

( (KNOWN LENGTH RADIUS13))

(TRYING CONDITION: (CONDITION-ON A CENTER CIRCLE CIRCLE12))
( UNKNOWN POINTS (A) NO. OF LOCI FOUND: 0) \
(TRYING CONDITION: (CONDITION-ON A CENTER CIRCLE CIRCLE12)) .
( UNKNOWN POINTS (A) NO. OF LOCTI FOUND: 1)
- ((CENTER POINT A IS ON A CIRCLE CENTER B WITH RADIUS RADIUS13) (
CENTER POINT A IS ON A LINE THRU POINT B AND THE CENTER OF
CIRCLE4)) ‘

(construct a right triangle given a base angle and the hypotenuse

(CONSTRUCTING TRIANGLE A B C)

(AB IS A SEGMENT OF LINE LINE1 , AC OF LINE2 , AND BC OF LINE3
(ANGLE ABC IS A GIVEN ANGLE) ‘

(BC IS THE HYPOTENUSE)

((ANGLE BAC EQUAL ANGLE NINETY))

((LINE LINE3))

( (LINE LINE2))

((LINE LINE1))

( {TRIANGLE A B C))

{ (RIGHT TRIANGLE A B C))
{ (POINT C))

( {POINT B))
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((POINT A (CONDITION-ON A ST RIGHT TRIANGLE A B C)) . 50)
((POINT C (CONDITION-ON C ST TRIANGLE A B C)) . 20)
((POINT B (CONDITION-OR B ST TRIANGLE A B C)) . 20)
{ (POINT A (CONDITION-ON A ST TRIANGLE A B C)) . 20)

(
(
(
(
{
(
(

(C ON LINE3))
(C ON LINE2))
(B ON LINE3))
(B ON LINE1))
(A ON LINE2))
(2 ON LINE1))
(KNOWN LENGTH BC))

( (KNOWN ANGLE ABC))

(

(KNOWN ANGLE NINETY))

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B Q))

(

UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO. OF LGCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) ¥O. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON B ST TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO. OF LOCI FOUND: 0)

(FRYING CONDITION: (CONDITION-ON B ST TRIANGLE A B C))

(

UNKNOWN POINTS (A B C) NO., OF LOCI FOUND: 1)

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

(

UNKNOWN POINTS (R) NO. OF LOCI FOUND: 0)

(TRYING CONDITION: (CONDITION-ON A ST RIGHT TRIANGLE A B C))

(

UNKNOEN POINTS (A) NO. OF LOCI FOUND: 1)

{TRYING CONDITION: (CONDITION-ON A ST TRIANGLE A B C))

(

UNKNOWN POINTS (A) NO. OF LOCI FOUND: 1)

{ (DRAW LINE LINE3 ANYWHERE) (B IS ON LINE LINE3) (PLACE POINT C
ANYWHERE ON LINE3) (POINT B IS ON THE CIRCLE WITH CENTER C RADIUS

BC)

({DRAW CIRCLE WITH CENTER M AT THE MIDPOINT OF BC RADIUS BN)

(CONSTRUCT LINE LINE1 THRU POINT B (AT ANGLE ABC TO LINE LINE3))
(A IS ON LINE LINE1))
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¥ Directions_For Further Research

There are several areas in which further development could
proceed. . The CONSTRUCTOR could easily be expanded to handle a
broader class of figures than circles and triangles. Other
possible candidates for construction might include:
quadrilaterals such as parallelograms, sguares, and trapezoids;
as well as lines. Other constructions in which the solution
figure is composed of se&eral subfigures could also be solved,
although a difficulty arises in communicating the problen
specification. Sone fofm of input other tﬁan a single English

sentence would have to be employed.

The repetoire of the curient system could be expanded to
include problems in three dimensions. Just as two intersecting
loci determine solution points in two dimensions so does the
intersection of three 1loci 1in three dimensions. The loci in

\

three dimensions are surfaces rather than curves, but this would

not result in any complication,

The solution figure could be actually drawn if graphics
routines were developed for the interpretation of the output
algorithm. The specification of different values for the given
lengths and angles Iof the problem would result in different

solution figures.

One of the stipulations limiting the type of problem under

consideration is that they must not be contradictory and hence
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unsolvable. The CONSTRUOCTOR does not attempt to prove a
construction impossible; it simply succeeds with an algorithm or
reports failure. One technique which could be used in extending
the CONSTRUCTOR to prove the impossibility of a construction is
analagous to the 'pattern of two loci'. If a point is found to
be on two loci, and the loci can be proved to be
non-intersecting, then the construction is impossible. Exanmples
of loci which do not intersect are: two parallel lines and also,

two concentric circles.

Not all comstruction problems are solvable using only the
*tpattern of two loci'. It is, however, a basic technique, and
is required in forming at least part of the solution in all
straight-edge and compass constructions. The f*pattern of two
loci' can be used in constructing the 'stepping stone' which is
refered to in the *pattern of auxiliary figures®'.

"try to discover some part of the figure or some
closely related figure which you can construct and
which you can use as a stepping stone in
constructing the original figure."29 A
Discovering which auxiliary figure will be of use is in itself a
difficult problem for whic¢h the author is currently developing

techniques., The employment of a diagram would, of course, be

imperative when 1looking £for auxiliary figures. An auxiliary

N

29 Polya,

i ——— —— o - o S S i P P S < i S
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figure need not necessarily occur as a part of the diagram of
the solution figure, but may be formed by the introduction of
new points and 1lines, in other words a construction.3°0 3
geometry theorem prover such as that of Goldstein would also
have a place as a subpart of a more powerful straight-edge and
compass construction program. A proof that an auxiliary figure
has particular properties may be required before it can be

constructed.

As an example consider the problem, "Construct a triangle
given the three medians", Construct a triangle given the three
medians An quiliary figure, constructable by the CONSTRUCTOR;
is triangle MGD. A new point D, the wmidpoint of AM, is
introduced into the diaéram. It is necessary to prove that GD =
MF, and to recall the established result fhat the medians of a
triangle intersect at a point 2/3 the distance from the vertices
along the medians. Once a triangle MGD has been constructed,
angle GMD is known. With this new information triangle GAM can
be constructed by the CONSTRUCTOR, and hence triangle ABC. Both
the CONSTRUCTOR and Goldstein's theorem prover could be used as

subsystenmns.

30  The word ‘construction' is used here in a theorenm
proving context and means the introduction of a new element into
the problem, not the discovery of a figure.
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V1 cConclusion

This study has begun to explore the emnbodiment,
manipulation, and extent of the knowledge required for the
discovery of figures satisfying a complete and consistent set of
constraints, For the delineation and management of the
knowledge, procedures have been experimented with as a
representation, and the pattern of two loci has been tested as a

framework.

A base of knovledge consisting of established results, some
of which are common to the theorem provers of Gelernter and
Goldstein, was required. There is a differenée in tone between
the majority of results used in the two tasks however. The
theoren provers use results stating that if certain conditions
are met then a particular conclusibn is Jjustified and valid. .
The CONSTRUCTOR uses results stating that if certain conditions
exist in a partially constructed figure then it is possible to
continue the construction by following specific instructions and
drawing another locus. The theorem provers use a result to make

another step in a proof; the CONSTRUCTOR uses a result to make

another step in the construction of a figure.

Encoding the relevant knowledge as programs proved to be
both a flexible and adequate approach. It 1is possible to
maintain a clarity of pnind when expressing theorens as

procedures because they are written in the first person. The
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progranmer dons the cloak of a theorem and then describes its
behaviour as his owun, This does not imply that all such
procedures must be considered +to be independent. PLANNER
encourages .this assumption, but it 1is neither necessary nor
desirable., A procedure should and could be able to behave in
accordance with the failures and accomplishments of other
procedures, It 1is natural to first make the independence
assumption, write procedures, and observe their performance;
then discarding the assumption, interactions between procedures
can be added on the basis of their observed behaviour.
Regardless of the shortcomings of PLANNER in this respect, the
ability to formulate geometric concepts as procedures proved

invaluable,

It would be reasonable to ask why a diagfam was never qsed
as an aid 1in solving construction problems as it was by
Gelernter and Goldstein in proving theorens. originally it was
thought that a diagram would be essential; however, in the
applicétion of the ?'pattern of two locit' a diagram simply is not
necessary. All the information contained in the problen
statement can be represented directly in the database. There is
definitely a place fdr diagrams in the solution of construction
problems, ‘but it is associated more with +the theorem proving
aspecté of the problem. Before a locus which might satisfy the
restrictions on a point can be drawn, other points, 1lengths or

slopes may have to' be found. Such facts may possibly be
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determined by proving theorems relating them to other -known
facts., For example, an unknown length may be that of a side of
a quadrilateral whose opposite side 1is known. The unkhown
length is determined if the quadtiléteral can be proven to be a
parallelogram. Thus, the mechanism for the determination of
these other facts is theorem proving. The sophistication of the
machinery available in- the CONSTRUCTOR for .this 1is not
extensive, and it is in extending it that diagrams would have to

be introduced. .

An excellent framework is provided by the *pattern of two
loci' for the solution of a large class of straight-edge and
compass construction problems of a high school leﬁel. In
addition, a mastery of the *pattern of two loci' is prerequisite

to solving more difficult problenms.
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Appendix I

(a) Draw a circle given its center and radius.
(b) Draw a line given two points on it.
(c) Draw an angle equal to another given angle.

(d) Draw a line at a given distance, and parallel tc a
given line.

(e) Draw the perpendicular to a given line at a given
point.

(f) Find the midpoint of a given line segment.
(g) Draw the bisector of a given angle.

(h) Draw the perpendicular bisector to a given 1line
segment,

(i) Draw a line at a given angle to a given line, and at a
given point on the it,
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Appendix II

Sample Consequent_Knowledge Specialists

(thconse c-alti
; the locus of a point a known distance
;from a known line is a line parallel
: to that line
((threstrict a ' (lambda (%) (eq $?p X))) p line h)
(condition-on $?p st altitude $?a to $?line is $?h)
(this (known length $?h) (thuse c-length2 c-length1))
{this (determine line $?line) (thuse c-dtrmnline))
(construction point
$2a
is
on
a
line
parallel
to
$?line
at
distance
$2h))

{(thconse c-anglel
; an angle is known if it is
sis the angle of intersection of 2 known lines.
{a e v £)
{known angle $?a)
(thunique 'angle $?a)
(thgoal (explode $?a $?e $?v $?f)
(thnodb)
{(thuse c-explode))
(this (known line (thev (line $?e $?v))
(this (known line (thev (line $?2f $?v))
(thassert (known angle $?a)))’

) (thuse c-linetest))
) (thuse c-linetest))

(thconse c-assumeline

; assuming a line means to determine its position arbitrarily
; a line may be assumed to be known

:if no other line has been assumed

{1 point) !

(assume line $2?1)

{thnot (thgoal {(assumed line "24)))
(thassert (known line $71))
(thassert (assumed line $?1))
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{thcond
((thand (thgoal ($’p01nt on $?1))
; if a point on the line is known then
(thgoal (known point $?point)))
(construction draw line $?1 anywhere thru point $?point))
sthe line must pass thru it
((thnot (thgoal (known point %?w)))
(construction draw line $?1 anywhere))
;otherwise it may go anywhere
(t (thfail theorem))))

{thconse c-dtrmnline

; to determine a line means to first

;see if it is known (in the data base or by deduction)

; and if it is not known to assume that it is known
(1 point)
(determine line $721)
(thor (this (known line $?1) (thuse c-linetest))
(this (assume line $?1) (thuse c-assumeline)))
(thfail? t ¢ (thfail theorenm)))

;1f failure backs up to this p01nt the whole
,theorem should fail

(thconse c-1line2
; a line is known if it passes thru
:a known point and has known slope.
(1 a s)
(find line $7?1)
(thcond
((thand (thgoal ($?a on $2?1))
(thgoal (known point $?a))))
{(thand (thgoal ($?a on $?1))

(this (known point $?a) (thnodb) (thuse c-dtrmnpoint))))).
(thor (this (knoun slope $21 $?s) (thuse c-slope2 c-slopel))
(thfail theorem)) '

(thassert (known line $21))
(construction construct line $?1 thru point $?a $7s))

(thconse c-slope2
; the slope of a line is known if it
; intersects another known line at a known angle.
(1 m a s)
(known slope $?1 $2s)
(thunique t*slope $?1)
(thgoal ($?1 intersects $?m at angle $7?a)
{(thuse c-intersect1))
(this (known angle $?a) (thuse c-angle2 c-angle3l))
(this (known line $?m) (thuse c-linetest))
(thsetq $?s ("list" tat 'angle $?a 'to 'line $?m)))
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(thconse c-circleb
{(c ded

circle

11

rad

(threstrict 12 * (lambda (teq) (not (eq (thv 11) teq)))))
(condition-on (thv c¢) center circle (thv circle))
(thgoal ({(thv circle) tangent (thv 11)))
(thcond ((thgoal ((thv circle) tangent (thv 12))))

{(thgoal ((thv circle) tangent (thv 12) at "2%))))

(thcond

{(thgoal (intersecting (thv 11) (thv 12))
(thuse c-intersectingl1 c-intersecting?))
(this (determine line (thv 11)) (thtbf thtrue))
(this (determine line (thv 12)) (thtbf thtrue))
(construction center

point

(thv c¢)

is

on

the

bisector

of

the

angle

formed

by

lines

(thv 11)

and -
(thv 12)))

((thgoal (parallel (thv 11) (thv 12)) (thtbf thtrue))
{this (determine line (thv 11)) (thtbf thtrue))
(this (determine line (thv 12)) (thtbf thtrue))
{thgoal (radius (thv circle) (thv rad)))

(thdo
(thassert
(deduced length
(thv rad)
(is one half the separation of the parallel lines)))
(thassert (known length (thv rad))))
(construction center
point
(thv c)
is
on
a
line
parallel



to
lines
(thv 11)
and

(thv 12)
midway
between
them))))

Sample Input And_Phrase Specialists

(thante a-altmed?l
(side len
segment
a
b
c
(threstrict ot onto)
(threstrict factor altmedp)
(threstrict th ' (lambda (th) {(memg th ' (the that one)))))
(given the $?factor $?ot $2?2th $?side)
(thcond
{(memg $?side * (base hypotenuse))
(thgoal (triangle $?a $?b $2c))
(thsetq $?segment (seqg $?b $?c) $?point $?a))
{(eq $?side *'side)
(thgoal (triangle $?a $?b $?c))
(thcond
((thgoal (known length (thev (seg $?b $2a))))
(thsetqg $?segment
(seg $?b $2a)
$?point
$2c))
((thgoal (known length (thev (seg $?a $2c))))
(thsetq $?segment '
(thev (seg $?a $2c))
$?point
$?b))
(t :
(thsetq $?segmnent
(thev (seg $?b $72c))
$?point
- $2a)))) '
{t (thert bad side - a-altmed?)))
(thsetq $?len (gensym1 'len))
(thassert (known length $?len))
(tprint let the given $?factor be of length $2len)
(or (eq $?factor 'altitude)
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(thassert (median $?point to $?segment) §t))
(thassert
(point $?point
(thev
(tlist condition-on
$?point
st
$?factor
$?point
to
{cond
((eq $?2factor 'altitude) (line $?segment))
(t $?segment))
is
$21en)))
(thprop (cond ((eq $?factor *altitude) 100) (t -110)))))

(thante a-anyangle
{({threstrict art articlep) a b c)
(given $?art angle)
(thgoal (triangle $?a $?b $2c))
(thor
(thand (thassert (known angle (thev (ang $?a $?b $2c¢))))
(tprint angle (ang $?a $?b $?c) is a given angle))
(thand (thassert (known angle (thev (ang $?a $?c $?b))))
(tprint angle (ang $?a $?c $?b) is a given angle))
(thand (thassert (known angle (thev (ang $?b $?a $2c¢))))
(tprint angle (ang $?b $?a $?c) is a given angle))))

(thante a-isos!
“{a b c)
(isosceles triangle $?a $?b $?c)
{thassert
(point $7a
(thev
(tlist condition-on
$?a -
st
$?a
equidistant
$?b
and
$2c)))
{thprop 40))
{thassert
{length (thev (seg $?a $?b))
equal
length
(thev (seg $?a $7c)))))



{thante a-isos2
{a b c)
(isosceles triangle $?a $?b $?c)
(thassert
(angle (thev (ang $?a $?b $2c))
equal
angle
{thev (ang $?a $?c $?b)))))

Sample LiSP-PLANNER Hybrid Functions

(defun construction fexpr (cnarg)
;this function adds a new instruction to the
;solution algorithm after checking that the
;same instruction has not been added previously.
sthe instructions may be removed by failure
;backup if necessary
(prog nil
{(setq cntenmp
(mapcar ! (lambda ({(a)
(cond ({(atom a) -a)
{t (eval a)))) cnarg))
(cond ((member cntemp construction) {(return nil))
{t (setq thexp (list *thand
* (thsetq construction (cons cntemp construction))
(list 'threturn (list 'quote cntemp))))) )
(return t) ))
(setq cntemp nil)

(defun line expr cnsegs
(prog (cnsega cnsegb cnexp)
(cond ((eq cnsegs 2)
(setq cnsega (arg 1) cnsegb (arg 2)))
(t (setq cnexp (explode (arg 1)) cmnsega {car cnexp)
cnsegb (cadr cnexp))))
(return
{thval * (thprog (1)
(39 ($e cnsega on $?1))
($g (¥e cnsegb on $?1))
(threturn $?1)) thalist))
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