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0. Abstract

This thesis describes the design of a well mapped machine 1
for the lanquage BCPL. Based on a generalized notion of stack
machines the SLIM (Stack Language for Intermediate Machines)
machine is described., As the acronym suggests, representation
of BCPL programs in SLIM is in fact slim compared with other
architectures,  The utility of this measure for comparison with
other architectures is discussed and some encouraging results
presented. . Apart frcm this result, some advance is made in the
classical mode of porting BCPL programs. Normally the compiler
produces OCODE from which INTCCDE is generated, . The BCPL SLIM
compiler shortcuts this process by generating SLIM directly fronm
the program tree thus dispensing with software corresponding to
the OCODE to INTCODE translator., Translation of BCPL programs

is thus simplified and speeded up, .

1by well mapped vwe mean that transformations in the high level
language correspond closely to those in the low level machine
representation, .
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1... Introduction-

As with most work this thesis needs to be set in its proper
context. The historical perspective is one aspect of this but
more importantly there are a number of current issues that give
this thesis relevance, . We will first examine these two
components of this thesis's context and then proceed to outline
the objectives that gqvernéd the realization of the SLIN

machine,

1.1 Setting the context-

The ' way programming languages aré used is of interest to
» various people, , These people often include systeams architects,
language designers and compiler writers.. In the design of a
programming language it is useful to know the kind of constructs
that are most frequently used.; Compiler writers can use this
knowledge effeétively-as they deéide how much energy to devote
to compiling good code for.the more common constructs. By gooa
code we mean code that cdmpactiv and efficiently represents fhe
intentions of the language constructs used. For example, the
deminance of the assignment statement in programs is one
candidate for wﬁich good code shéuld be compiled. . Systenm
architects are more interested in how effectively the language
maps to the machine énd empirical evaluation can lead to some

fine tuned application oriented architectures, {see [in
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A number of people have studied the wéysv in which
programming languages are used: Tannenbauﬁ [2] has studied a
BCPL variant called SAL and vproposed a simple machine
architecture ; Knuth {[3) has analyzed Fortran programs;
Alexander [4] studied XPL as implemented on the IBM and
unearthed some inconsistency in the mwmapping from XPL to IBE'
assembler., . Wortman [5) studied student PL on an interpretative
system and used his analysié to incorporate changés into hié PL
rachine, £ He states:ﬁﬁe took as our design goal the development
of new design tools‘to aid the designer in building computers
that satisfied the actual rather than the imagined needs of the
programmer;P Gbrdon and Capstick [6] have examined COBOL.. Of
course we would be amiss if we failed to mention the design of
the ﬁurrouéh;s machines which were high level language machines
in the first place.. An analysis of over 60 ALGOL 60 compilers

by Wichmann [ 7] showed code produced by the Burrough®'s compiler

occupied half the space of code produced by the- IBM compiler. .
This level of approaching the problem from the lanquage point of
view has gone hand in hand with the dévelopment of
microprogramming.

Once the manufacturers offered user microprogramming there
was a flood of activity in this field.., Many machines were
désigﬁed which were truly meant to be very general purpose (see
[8] and [ 9] for examples) .. The Nanodata QM-1 was perhaps too
flexible but the emulation of the PDP-11 on it [10] proved it to
be useful. As usual, Burroughs in the design of +the B1700

series (see [11)) seriously and effectively attempted to free us
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from von Neﬁmann style machines.. Wilner states that "Von
Neumann derived machines are automatous malefactors who force
prograhmers to lie on many prociustean beds®. = Each particular
language would have its own S (S standing for secondéry) machine
éptimized for its own particular application area that would be
emulated by B1700 hardware, No machine language was built into
the hardware and therefoie each lanquage to be executed had to
first reconfigure the B1700 processor. Concurrent execution of
S machines was very feasible with the .fast suitching time (14 -~
53 microsec) - .,  Apart from this architecturallconcern on the
level of machine design, microprcgramming bitself was used to
measure conputer systems, .  Saal [12] used.this very transparent
technique to obtain system design quidelines, |

Despite all these activities that brought architecture to
-the fore as a research area, Rosin who was involved for a long
time with microprogramming, vas forced to define
microprogramming as "the implementation of hopefully reascnable
systems through interpretation on unreasonable machines" [13]..
Even this pessimistic comment should not detract fromv the -
overriding concern with machine architecture not just in itself
as an end but as a means to facilitating what people want to do.

It is in this light that we should see the development of SLIM, .

1.2 Current issues-

Computer science with 1its concern for easy and effective

expression has long been in the business of generating new
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ianguages., Translators consequently tend to be one of the most
frequently used pieces of software and will probably continue to
stay that way.,6 Translator writing systems are a manifestation
of this fact.,  However as Appelbe [14] states: "The pajor
complexities éncountered' in the design and implementation are
usually in the 'semantiés phase? of the translator in generating
the obiject progran from an internal source program
representation", This compléxity nd doubtvarises'from a number
of sources: Languages that are exceedingiy complex and hence
inevitably require complex code generation. Another nore
important source of complexity is that inhospitable host
‘architectures demand contortions on the part of the code
generatdr and hence the inmplementor, This 4is the complete
reversal of the situation in the parsing-syntax analysis' phase
where the methods are very well wunderstood. Despite.this
acknovlédgement, computer science has tended to minimize the
importance of wmachine. architecture and has often comforted
itself with the fact that the lanquagevwas implemented and left
it at that.. The implementation was the overriding concern and
after all, with cheaper memory prices we are not really
cbnéerned about how efficiently our programs are represented,
are we? This hides the main point.. 1It®s high time that
computer science not relegate machine design only fc the
military and the artificial intelligence conmunities where an
ovefuhelming need demands better architecture. #e need to
refute the‘ﬁotion that the description of a machine's assembly

language constitutes its complete definition.
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At present, even to the most casual observer, there is an
.explosion in the area of microprocessor technology, . The'market
here is in a continual state of flux as more and more products
are announced., The availability 6f bit slice components makes
possible the construction of new machines at reasonable costs. .
T.M. . HcWilliams et al. [15] describe the construction of a
PDP/11 using bit slices for a total cost of $1076. . This machine
even outperforms the LSI-11, . With this.continual state of flux
industry has adopted a microprocessor chip sténdard - the 1Intel
8080, , In light ‘of the abové'fact this is not the most desirable
chip from an architectural point of view,  Perhaps this
standardization was unavoidable, . Another more important
standardization of this technology is the language and its
ipplementation.. BASIC has become the standard language with a
variety of implementations,, Its implementation however is nore
'significant as far as SLIM is concerned.. Interpretation is the
accepted way of implementing Basic. From a very rudimentary
analysis of the BASIC source these interpreters interpret BASIC
programs at a fairly high lével.;

Before we draw out the significance of these facts we shall
guote from the Nov 15, 1977 draft of the objectives for computer
science 1in the department of Computer Science at UBC 161 ..
"Broadly speaking éomputer science is concerned with the ' design
of algorithms and with efficient implementations of algorithms
on computing syétems.r The computing systems may vary in size
from the hand held pfoqrammable calculator "to a conmplex

ccllection of devices interconnected by satellite and cable.”
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let us examine this statement in the context of high school
computing facilities, The systems that high school students are
dealing with are Basic ones in more than one sense! As a
department there are educational issues at stake., What are
potential university students in computer science being exposed
to? Is the form of expression really suited to “developing
structured programming? ¥ill university programs at the first
year level involve a certaih amount of deprogramming? One
attempt to address this issue of teaching computer science as a
unified discipline was Peck's 'Essence of computer science?
{177, . In this report the language BCPL and its abstract machine
INTCODE served as a reference point for teaching computer
science coherently.. In order. to  execute BCPL programs one
.interpreted their INTCODE representation,. The major limitation
of.the INTCGDE system was the size of the INTCODE version of the
compiler.since if the compiler caﬁnot fit on the host system, it
beccmes very cumbersome to comrpile progranms on.one machine and
exeéute them (via interpretation) on another. SLIM serves
exactly the same function as INTCODE except that it is much mbre
compact (as we show in Chapter 4) and hence the BCPL SLIM
compiler isr more compact, than the INTCODE version . However
both forms of realizing BCPL are exactly similar to the current
form of realizing BASIC - interpretation. Therefore if ccoputer
science is concerned with the representation of algorithms and
BCPL 1is accepted as a valid vehicle for this, then if SLIM
facilitates this process on a wide variety of machines it should

be of concern and use to the department in realizing one of its
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stated objectivés.ﬁ There seems to be the very real possibility
that computer science could be making inroads ﬁere not only in
the realization of more effective languaqes but also in the
realization of nore effective hardware. as 1in the bit slice
version of .the PDP/11, .

‘One final issue involves the language BCPL (see [20], [21]
and 122)) .; He will just present the case for this class of
langquage. By class we mean systenms programming languages c¢f the
BCPL type.. 0S-6 [19], a singie user operating system was
written almost coﬁpletely in BCPL. C, a BCPL offshoot with
PDP/11 constructions that have filtered up into the language, is
the source langauge for a very effective operating system UNIX,
[23] vritten for the PDP/11, . This demonstrates the utility and
effectiveness of this class of lanquage. Therefore our ccncern
with it is not misplaced,

A more local BCPL 4issue éoncerns the classical form of
translation to INTCODE, . BCPi .soﬁrce is first translated +to
OCODE and from this one translates to INTCODE., SLIM is
generated directly from the tree representation of the BCPL
program. A number of advantages accrue:

i. .One complex piece of software (OCODE to INTCODE translator)
is dispensed with.
ii. The obscure OCODE machine no longer confronts us.
iii. The realization that translation from the tree to SLIM is
straightforward and that simple optimizations are easily
handled.

For too long we have been stuck with the BCPL-> GOCODE -> INTCODE
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process, This thesis shows that this procedure is no longer
necessary, and more importantly shows that these two virtual

machines are not'ideally suited to BCPL. .

1.3 Objectives

The prime objective was to achieve compact progran
representation, . By compact program representaticn we mean that
the size of the translated program is small. This is always a
convenient result but more importantly it reflects how effective
the mapping is from lanqguage to machine., . The choice of this
mea sure rathér thén time for example, will be dealt with later
when wé address the issue of howv one actually evaluates an
architecture. Presently there is no standard evaluation
technigue tﬁat allows for program independent evaluation of an
architecture.

Simplicity was the second criteria.,. Partly this is a
teactioﬁ against the trend that dictates complexity to be  the
norm, but ‘a simple architecture has a number of advantages,
Simple architectures are more easily understood and can
exemplify architectural principles. If interpretation is going
to be the sole method of executing BCPL programs then the
Simpler the machine‘to be emulated the simpler the emulator. As
this most probably will be the form of execution in the
microprocessor field and since the emulator will most probably
be written in assembler, the €ase wiih which the intercreter is

implemented is very important.,., If we extend the notion of
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interpretation and temporarily equate it with micropregramming,
then the same - advantages apply except that in this case the
corresponding assembly language is more ©primitive.. If one
actually intends to glue together the SLIN machine using bit
slice technology then the simpler the machine the better.

A third gquideline was thai the machine acknowledge the
existence of BCPL right at the machine level., Thus in. effect
the SLIM machine is as easiiy déécribed by BCPL as it is by the
SLIM assembly lanquage, For example the CALL instruction should
actually Ado more than Jjust change the prﬁgram counter and
remember its previous value, The IBM 370 BALR instruction is a
classic example of refusing to écknowledge that a programmer’s
conmon forms of expression are at a much.hiqhef level and that
changing control is much more than a change in location. This
guideline hopes to demonstrate that the translation process can
be straiqhtforward and not élways involve numerous contortions
‘in.tﬁe‘éodé éeneiatiou section of the translator. .

Hith these objectives in mind, and the context in which
this thesis is set outlined, we now proceed to describe the SLIN

machine in an informal manner., .
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2., The SLI¥ machine description-

This machine is offered as an alternative to the current
way. of porting BCPL ptograms., This section contains a
specification of the machine but offers no Jjustificatiocn or
motivation for the <choice of SLIHN, However as the acronym
suggests (a Stack Lanquage for Intermediate Machines)  , one
advantage should be that of compact program representation or

S1LIM code,

2.1 Preliminaries

The memory of thé SLIM machine like INTCODE [ 22] and PICA-B
{26] , consists of an array of cells numbered from zero.. The
consecutive numbers assigqned to cells are Xnown as their
addresses. The number of bits per cell is unspecified.

The SLIM machine has.five registers. One accumulator (ACC)
is  used for all arithmetic, 1logical and varioué other
operations." P 1is used as an index register and points to the
base of the current stack frame and S points to the top of the
cutrent stack frame. . {Figure 2.1) The C register is used as a
program counter, . 6 is used to access the baselof the 1location
of the global variables. - We will justify this choice later, but
for the present we will give some examples of eguivalent
constructions in present day architectures. The HP-21MX's base
?age addressing functions in very much the same way.. Even the
PDP-8's zeroth page addréssing; in which evefy page can access
the zeroth page; is a form of global variable access, . Two more

-respected architectures- the HP 3000 and the B5500 (see [24})
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have similar features,. The LB register in the HP3000 poinfs to
the base of the global area that is in facf kept at the botton
of the stack. . The 5500's R register points to fhe. separate
(i.e., not in the stack) progrém reference table that confains
glokal variables and global procedure names.

To use the current terminology the SLIM machine is a single

accumulator, one address machine,

Previous stack frames Current stack frame
L 2 k J E | k] T R
{ {Linkage jParameters} Lccal | eson |
| t Info | }variables| 1
[ - : N i a. b N —

3 ) \
| l
{ !
i i
P S

Figure 2.1 The runtime stack

2.2 Yariables-

Before describing the operations provided by +the SLIM
machine we will look at the four sets of variables in BCPL and
describe how they may be éccessed.,

BCPL (a modified version) has four sets of variables -
local, static , global and external although instructions need
only be provided to access the first three. .

Local variables (see figure 2;]).are allocated space above

the parameters on the runtime stack, They are accessed relative
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to P and hence we see how P serves as an index reqgister., Notice
that once the current stack frame is released, space for all
local variables vanishes as well.

Static variables are aécesséd by reference to some 1label
and unlike local variables remain accessib;e throughout program
execution., The syntax of a label is simply a number followed by
a cclon. .

External variables are accessed as if they vwere static
variables except that information is provided for the loader so
that it can resolve these references, Externals can be thought
of as being another program's static variables.,

Global variables are accessed relative to the G register. .
This space is reserved by the runtime support for the particular

BCPL program and this support also initializes the G register.

2.3 Operands

The syntax of all operands is as follows. .

{11} [P ] G| L)< integer > i %

P refers to the stack pointer, . The contents of P is added
to <integer> to obtain the address of a particular variable
{parameter or locél) on the <current stack frame.. G is
interpreted similarly except .that it refers to the global

peinter. . L denotes a particular label {e.g., Ln) .. The operand
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in this case is treated as the address of the particular 1label. .
I nmeans indirection.. The operand determined thus far is
dereferenced once.. The * refers to the top- of the stack{i.e.,
thé' location pointed at by register S ). In this case the
contents of S-1 becomes the operand and S is decremented by 1.

Scme examples follows:

P2 address of cell at offset 2 from P

IP2 value of cell at offset 2 from P
L3 address of cell denoted by label 3
IL.3 value of cell pcinted to by label 3

(e.g. ,value of a static variable)

* value of a temporary variable

2.4 Operations
a,  Variable access operators
four. operations are used ; Load (LD), store (STORE), stack and

load {STKLD), and select field and store {(SLCTST).

LD operand ACC := operand
STORE operand location (operand) := ACC
STKLD operand 1S := ACC

S =S5 + 1
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SLCTST fieldselector select appropriate field of

14

the value in the accumulator and

store them in the correct field of

the cell specified by its

address

at the top of the stack. (i.e

!{(S-1)) Then decrement S by

Some sample variable loads and stores are illustrated.

temporary: LD *
local: LD IPn STORE Pn
static: 1D ILn STORE Ln

1. .

Nctice that LD Pn loads the address of the local variable not-

the value,

b, Diadic expression operators

All operators can be defined as follows.

op operand ACC := ACC op operand

Integer operators =~

MULT,DIV,REM,PLUS,MINTS

MULT, DIV, PLUS and MINUS are as expected. REM is the

remainder on the division of the ACC by the operand. .

integer
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Relational operators -

EQ,NE,LS,GR,LE,GE

EQ and NE are egual and not equal._ LS and GR are less than and
greater than, K LE and GE are less than or equal to and greater

than or equal to. .

Logical operators -

LSHIFT,RSHIFT,LOGAND,LOGOE, EQV, EXOR

L and RSHIFT are the left and right shift cperators, LOGAND and
LOGOR are the logical AND and OR. EXOR is the exclusive OR or

bitwise non-equivalence, . EQV is bitwise equivalence,

Bit operators -

SLCTAP

This applies to field selectors in the BCPL sense.. The

appropriate field is selected.

C., ; S Tregister manipulation

To allow for flexible manipulation of the S register a
combination of monadic and diadic operators are defined. This
allcws one to set the S register in a relative (i.e. SREL,
SRELI) or absolute sense, . (SSET, SSETI) .  If one allows an
extended BCPL in which dynamic storage allocation is inmplemented

then it is mandatory that the S register be manipulated in a



Chapter 2 16

relative sense, It is true that all local variables are in a
sense dynamically allocated but at present the sizes of vectors
must be fixed at compile time, This ability to determine run

time sizes of vectors is what we mean by dynamic allocation. .

SGET ACC = S

SSET S := ACC

SREL S = 5 + ACC
SSETI S := operand
SRELI S 3= S + operand

d. Monadic operators

NEG ACC := - ACC

NOT ACC == not ACC

DEREF | ACC = 1ACC

PUSH $5 2= ACC ; S := S + 1

POP ACC 2= I(S - 1) ; S :=5 -1
TROE ACC:= TRUE

FALSE ACC := FALSE

FINISH FINISH

. €, . Transfer

GOTO

9]
.
]
g
]
(@]

JUMP operand C := operand
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JT operand C :

1}
o~
|- o4
O
1

]

TRUE) -> operand, C

JF operand C := {ACC

FALSE) -> operand,C

The switchon statement is‘implemented by the SWITCHON command;
SWITCHON k Ld k1 11 k2 12 +ss0ee . Xk 1k

The accumulator controls the switch; it examines the k case
éonstants in left to right order and when a match occurs then a
jump is made to the corresponding case label, otherwise a jump

is made to the default label L4, .

f,,”Function and routine calling

No difference is made between the call and return
instructions for a functioﬁ or a routine, ¥When a function is
called it returns its result in the ACC., Prior to a call space
should be saved for the 1links, {(savespacesize denotes this
. number) the i parameters pushed on the stack and the address of
the routine loaded ihtd the ACC. .
The CALL i instﬁuction has the fcllowing effect

temp := S -~ (i + savespacesize)
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The RTRN instruction is as follovws

C == P10
S = P
P := P!

The xroutine called, on entry is responsible to set the S
register so that it points as in Figure 1 (above the parameters

and preliminary local variables). .

g... Pseudo instructions

<number>§ denotes label <number>. -

name denotes the start of the code for the
routine called name.

SECTICN "section name" indicates the start of the code for the
section "section name®,

END indicates the end of a section?s code

h, Data’reservation instructibns

There is one general purpose directive used to reserve
space. . This is the DATA operator.. Its operands can be numbers,
characters (enclosed in single quotes), strings (enclosed in
double guotes) or labels.,. It reserves space .in the subsequent

cells for its operands. -
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2.5 An Exanple
The following program and its SLIM code will serve as an

exangle. .

i

i1

|1 this is the sample BCPL prograa

11

let f(a, b, c) be
{
let v
and w
vil :

}

and start() be
£f(1, 2, 3)

vec 4
0
= {(a + b) *(b + )

o

this is the translated version of the above program intc SLIM:
It is an exact reproduction of the slim compiler output.

— o — -

SSETI P2 JUMP 15
af
1: SSETI P5 LD P7 STKLD 0 PUSH SSETI P12 LD IP5 PLUS 1
STKLD IP3 PLUS IP4 STKLD IP2 PLUS IP3 MULT * STORE

* RTRHN

astart

3: SSETI P2 SRELI 2 LD 1 STKLD 2 STKLD 3
STKLD IL2 CALL 3 RTRN

5: TFINISH
2: DATA L1
4: LATA 13
END

This example serves to illustrate three features in SLIM: the

call mechanism; vector allocation and expression evaluation.

i.. The call mechanisnm
The prelude before the actual call involves saving space
for the 1links and evaluating the parameters, Linkage space is

- saved by the instruction SRELI 2., Here two cells are 1left to
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contain the previous stack frame pointer and program counter.
The three parameters are evaluated and the address of "f" loaded

into the ACC. At this point the stack is as in Figure 2.2. .

r T ¥ T T T T 3
i ] old | new |1 12 |3 | {
i links{linksi | | | i
i § . | E N A i A 3

] i

| |

1 |

P S

Figure 2.2 Stack prior to call
The effect of the CALL 3 instruction can be pictured as in

T K] T T T Y v 3
i } 0old | new {1 12 13 | {
-4 {linksjlinks} | 1 I 1
1 i . i 4 i A A 3

3 2 \

| |

| {

P S

Figure 2,3 Stack after call
Notice how the P pointer has changed and we are now executing
with a new stack frame. As mentioned previously, the routine
called is responsible to ensure that S actually points where it
should; hence the SSETI PS5 instruction. This is necessary since
one can call routines with fewer parameters than they expect and
if the S register is not corrected, not only will further local

variable allocation be completely incorrect (within the current



Chapter 2 21

procedure) , but any temporaries used will map onto existing

local variables and cause havoc. .

ii, . Local variable allocation
This involves setting variables to their initial values and
alsc allocating 'space.{ The routine expects its environment to

be as in Figure 2.4, = (the numbers on the top denote stack frame

offsets)
23 4546
T k | L E | 4 E R B
| jlinkslalbliciviv] |
| H | I I O I I |
; i t S Ay & L A1 J
B 3
i |
i {
P S

Pigure.Z.y The routine's stack environment
The SSETI instruction adjusts the S register appropriately. At
this point offset 5 and 6 from the current stack frane pcinter
reserve space for the-variables v and ¥ except that they have
not been initialized, Since v by definition will contain the
address of a vector of size 5 the LD P7 STKLD 0 seguence
accomplishes this, w ié initialized via the PUSH instruction
since the previous instruction has already loaded zero into the
accumulator, All is well except that we must indicate somehow
that we have used 5 nmore cells for the vector v. SSETI P12

adjusts S to reflect this fact. .
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iii. Expression evaluation

At this time we will concentrate oé the sequence of slinm
code that evaluates
{a+b) *(b+c)
LD IP3 PLUS IP4 evaluates b+c, However at this stage we need to
save this result in’some temporary location., The STKLD IP2 PLUS
IP3 accomplishes this (vié STKLD) - while at the same +tine
evaluating a+b.. At this point the accumulator contains a+b and

the stack contains the following:

TN
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.
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i
|
L

TR

Figure 2,5
The stack in midst of expression evaluation

Now all that remains'to be done is retrieve the temporary result
and multiply it .hy the accumulator, = MULT * accomplishes this
and leaves the stack how it was, .

Although this is not particularly convincing oné must admit
to the relative eése with which temporaries ‘are handled.
Chapter 3 compares the amount. of code generated for the above
expression using a pure stack machine with that generatesd by the

SLIM compiler.
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3. . Machine Justification

In this chapter some justification for the choice of the
SLIM machine is outlined. Since a normal defense would consist
of responding to several guestions regarding the choice of

particular features, this is the form this chapter will take!

3.1 Why choose a stack machine architecture?

| We will first cutline a more generalized notion of what we
mean by a stack machine, By a stack machine we will mean a
machine in which a hardware stack plays a central role in
expression evaluation, étorage allocation and subroutine cecntrol
and 1linkage..  ®e will not require a machine té be a stack
machine if and only if most 4instructions operate on operands
held at the top of the stack. .

Software has made use of stacks for a long time but most
computers lack hérdvare sfacks. As the trend ¢to dévelop
softwére in higher 1level lanquages develops vwe are now
witnessing héraware acknowiedgement of ‘this fact with the advent
of hardware  stacks.,. The HP 3000, the Burrroughs machines
{B1700, BS500, B6700 and 7700) , the Data General Eclipse and
the PDP-11 to a more limitéd extent - are just some of the
machines with some form of “hardware  stack. . It is in this
context of higher level language use that we will outline some
of the advantages of‘stack machines, .

A key cdncept in software is the subroutine.  Some ©people

still argue that effective use of subrocutines (i.e., good
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structure) is uasteful of time and space, This is natural since
as Bulman [24) says, "the subroutine call and return mechanisn
seems to be almost an afterthought in the architecture of many
computers," The stack machine nips‘this arqument in the bud. .
The best mechanism for the subroutine call ‘and return mechanism
is to involve the stack to store the return address. The stack
then contains the record of the nesting of procedure calls and
one no longer has to worry about saving space for the return
address.

This last issue has been treated in many ways and points up
another advantage of stack 'architectures.; Often this return
address has been saved' in a register or worse still.a local
memory location.,  Both these nethods however Trequire extra
software if one allows fecnrsion or reentrant routines., . The
prograamer beconmes responsible for stashing this return address
somevhere before the next routinme (and in recursion it is the
same one) is invoked.,  Stack architectures remove this céncern
from the programmer and in fact it is hard not to write
reentrant programs when using a stack. .

Parameters are treated efficiently in a stack architecture.
What better place for them than on the stack? Many other
methodé that specify that space be permanently allocated to each
subroutine for its parameters or that space be shared, again
shift the burden for the management of this space onto the
programmer, . Stacking the parameters at once removes this
concern from the programmer and also uses the space only when it

is required. .
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Another key- advantage of stack architectures is that they
,adtcmatically provide | local environments.;l Typiéally a
éubprogram refers to only a small subset of all identifiers
declared in the whole program. In the BCPL case one only refers
to local or 'global variables ({(these include statics and
externals) ..  Since these local variables are only referenced in
the procedure 1in which they are defiﬁed it seems wasteful to
have space permanently allocated for these variablés vhen the
procedure is not active, Allocating this space on the stack in
the local environment also accomplishes something else,. Since
the 1local environment is acceséed relative to some environment
pointer (P in SLIM's case) addresses for these variables need
only specify offsets from this environment pointer.. Since these
offsets are typically small (95% < 10) - , instructions regquire
fewer bits, Hence program space is saved. . Program space saving
is also accomplished‘by requiring no ‘implicit addresses for
those variables. that arevimplicit._ Addresses are of two kinds
in a machine: explicit- those variables explicitly mentioned by
the program; and implicit - those that arise out of the need for
some temporary stotage 1location,  These ére automatically
provided by stack architectures and their reference Just
invclves referencing the top of the stack wﬁich reguires no
implicit address bits,, Once again code is compacted. .  Global
variable access also requires fewer bits siﬂce they are accessed
relative to some global environment pointer.

Another advantage of stack architectures is that they

exhibit the difference between program and task., Using
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Organick®s [26] terminology, an incarnation of a +task is a
combination of é time invariant algorithm{the code) and the time
varying record of execution. The stack embodies this record and
hence a task can be seen as codeiplus stack. Processes then can
be easily conceived of as some code plus some stack area for the
particular process., . Process switching then only involves
transfer of control and the provision of somé.space to contain
the time varying record of execution, .

Interrupt handling can also be treated effectively as
unexpected précadure calls., - Since we know the limit of the
stack the interrupt can Le serviced transparent to whatever was

executing at the time. .

3.2 ¥Why choose a single dccumulafor?

Simplicity is the main reason, A single accumulator is all
.one really needé.‘ Inbuilt registers like the P, S and &
registers provide the index fuhctions that one normally is
provided witﬁ except that the P and G are vautomafically
maintained. . In an environment of short procedures Tanenbaum { 2]
concludes "the register sets provided by a third generatiom
nachine are of little value". . They can be used for intermediate
results but with the Stack  mechanism (see chapter 2) one
fegister is sufficient.. 1In Tanenbaum's environment where one
out of every fodr statements is a procedure  call the
save-ﬁestoret overhead makes it.inefficient to use registers to

hold local variables. - When one considers what is involved in
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process switching the smaller the number of states associated
with a process, the quicker and easier it becomes to implement
process switching., 6K Having considered why we choose tc mininize
the number of registers one perhaps wonders why we did mnot go
the stack machine route completely and eliminate the ACC
altogether, . This will be addressed in seétion 3.4., but perhaps
we can outline an equivalence of SLIM and an addressatle top of
stack location on a pure stack machine., Consider the following
expression and its equivalent evaluation by three machines:
SLIM, a pure stack machine and a modified stack machine as

above,

(A + B) * (C + D)

Pure Stack SLIN | Modified Stack
LOAD A LD A LOAD A
LOAD B PLUS B PLUS B
PLUS | 'STKLD C. LOAD C
LOAD C PLUS D PLUS D
LOAD D MULT * MULT
" PLUS
TINES

The modified stack machine can be thought of as a machine
with a floating ACC in SLIM's sense,. This ACC is actually the.

current top of stack.  Ccmparing this and SLIM code one notices



Chapter 3 28

the similarity except that there are two versions of each diadic
operator in the case of the modified siack machine: one that
reguires an operand {(e.g., PLUS B & PLUS D) and one that takes
both its operands from the stack (e.g., MULT) .. This intrcduces
a further complexity into the machine when one has 2 versions of
each diadic operator. . Rith 17 diadic operators this is quite
significant since these'éxtra operators have to be encoded..
This might require extra bits in the opcode field for the
instruction leaving less space to encode the operands., . SLIM
however only has one extra operator {from a stack machine's
viewpoint) - STKLD. K Another factor that favours the single ACC
machine is the necessity of handling environmenfs that Ieturg
values. The two particular instances of this in BCPL are the
function and the valof block. In both cases some result
computed at the top of the current stack frame{in a pure stack
or modified stack machine) mnust be passed to the'preceeding
.environment whilé at the same time collapsing the. pfesent
environment, In the fundtion case this requires an extfa
operator FNRN to do precisely this.. The valof block uses the
RSTACK operator.. This unecessarily adds to the complexity of
the machine.SLI¥ only needs to return any value in the

accumulator and hence requires no extra operators. .

3.3 Why have an S register?
This register always points to the top of the stack and

hence indicates the next possible unused stack location.. There
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are three main reasons why this register is made explicit,
Interrupts can be cleanly handled since the S register
always indicates where a new stack frame could begin. . Hence the
interrupt hardware need only fill in the links as in a normal
call starting at where the S register pdints._ The K register
for the PICA-B machine [ 25) functions in much the same way.
Dynamic storage allocation is another major reason why one
needs the S register, . It is when one does not know theAsize of
the current stack frame (e.g.,, with dynamic vectors) that one
needs to be able to manipulate the S register inm a relative
manner.. One cannpot just use offsets from P since these offsets
are only known at run time., The CALL instruction is a relative
type of instruction in the sense that the "n" specifies the
number of parameters passed as opposed to the corresponding
INTCODE instruction K d vwhere the d specifies the size of the
callers stack frame., Standard BCPL does not allow¥ for dynamic
storage allocation (neither does the SLIM version of the
compiler) but for the ease with which this could be achieved we
present a BCPL fragment and the corresponding SLIM code. Fronm
this, one will hopefully appreciate the usefulness of the S

register.
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Extended BCPL. .

let v1 = vec <expri>
and v2 = vec <expr2>
and ¢ = 0

SLIN code.

SSETI Pn set S to point above space for vars
SGET get this value in the accumulator
STORE Pv1 make v1 point to its space

code to

evaluate

<expri>

SREL . adjust S by the value of <expri1>
SGET
STORE Pv2 make v2 point to its space

.

code to
evaluate
<expr>
SREL make S point to free space

LD 0
STORE Pc initialize c

Notice that this <code sequence  differs from the example in
chapter 2 since there we knéu sizes explicitly at compile time
and hence could ccmpile more efficient code. .

A third reason is that the S register is the meaﬁs of
generating and retrieving implicit variables that are required. .
The SLIM operators PUSH & STKLD and the operand * are the means

of realizing this very valuable feature,
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3.4 Why single address?

#hen one's prime objective in the design of a simple
macﬁine is that pregrams be represented efficiently,
considerable thought must be given to the number of addresses an
instruction should contain, . Thé greater the number of addresses
ihe 1argerrthe instruction size énd hencé a lérger total program
size is more likely,  The number of addresses per instruction
can vary from three to none in a pure stack machine. As Ibbett
et el. [27] state there are a number of confiicting virtues
related to the various possibilities. "Simple operations such
as the setting and incrementing of variables are more concisely
described by two and three address schemes, Evaluaticns of
longe; expressions are more concisely defined by =zero address
and one address systems, however, because the address in which
the result is accumulating is implied.®

| By considering some sample expressions a choice was made to
utilize the one address scheme, This is made possible by the
provision of +the STKLD instruction which first stacks the
accumulator contents, together with the * operand which provides
a way to access stacked partial results,. This maintains the
valuable features of a stack machine while providing more
compact code, In' the>follouing tWo examples two measures are
used: the number of words in the machine independent sense where
there is one instruction per word; the number of bytes in the
more applied' éense.{ A. comparison of - the total sizes

demonstrates the superiority of the one address schene., .
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EXAMPLE 1, .Comparison of SLIM and a stack machine

{A + B) *(C + D)

Stack machine words bytes SLIM words bytes

LOAD A 1 2 LD A 1 2
LOAD B 1 2 PLUS B 1 2
FLDS 1 1 STKLD c 1 2
LD C 1 2 PLUS D 1 2
LOAD D 1 2 NULT * 1 1
PLUS 1 1 Total: 5 9
MULT 1 1 |

Total: 7 11

EXAMNPLE 2. Comparison of SLIM and a stack machine

A+ B
Stack machine words bytes SLIM words bytes
LOAD A 1 2 LD A 1 2
LOAD B 1 2  PLUS B 1 2
PLUS 1 1 TOTAL: 2 4

TOTAL: 3 5



Chapter 3 33

Having illustrated a simple comparison above the rTest of this
thesis will attempt +tc¢ compare the SLIN ﬁachine with other
existing architectures, we will first discuss the issue of what
measure to use and then demonstrate that the first objective in

the design of SLIM has been achieved, .
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4. Measures and results-

4,1 Ideal Program representation

We are now at the stage where you may be asking - so what?
The . context of the design has been sketched and the machine
described and verbally justified. But how can we evaluate this
architecture? This  is what <concerns us in this chapter. - We
will examine scome general aspects of measures, describe three
specifically and then proceed to use the chosen measure to
compare our architecture with two other architectures.

What should be included in a measure? One obvious
component is that the.measure.be objective; something that can
ke precisely quantified. . Unfortunately non-quantitative
measures generally tend to receive little merit,. Somehow one
feels that the measure should also incorporate the space time
product. Space generally meaning program size, and time being
sone measure of ~hardware efficiency..  However - this space
component could justifiably include items such as compiler size,
size of the runtime support etc.. Somewhere one has to draw the
. 1imit. A more imporatnt issue is concerned with whether one can
evaluate architectures just on the basis of their design without
any reqgard for what use will be made of them.. OTr more
precisely: Can = architectures be evaluated in a progran
independent fashion? |

In the next section we will consider two not strictly
program independeﬁt‘measures and one strictly program dependent

measure, -
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4,2 Measures

i, Flynn®'s measures

Flynn [ 28] ccmpares an architecture against what he ‘takes
to be an ultimatély simple, fully explicit architécturet, As he
stateé: "In a simple architecture mnothing is. implied - no
registers or «counters are invisible to the problem state
programmer, , Each instruction contains an operation, the full
generalized address specification (allowing if necessar?
. multiple levels of indirection tﬁrough tables etc.) for both
source operandé, a result operand, and a test of the result
vhich selects an address for the next instruction".,.

}He then classifies instructions into ‘three broad
categories. -

B instructions- are memory partition movement instructions such

as the LOAD and STORE instructions which move data items within
a storage hierarchy. .

P instructions are procedural instructions which perfornm
functions associated with instruction sequencing, i.e., TEST,

BRANCH, COMPARE etc., but perform no transformation on data.

F  instructions perform computational functions in that they

operate on data. They include arithmetic operations of all

types, as well as logical and shifting operations

Tc Flynn B and P instructions are overhead instructions whereas
F type instructions are the only ones that do any vwork.

Therefore the three ratios to measure this overhead are:
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1. M ratio: ration of M to F instructions
2., P ratio: ratio of P to F instructions
3. . NF ratio: ratio of the sum of M and P instructions to F

instructions

An ideal machine would have M = P = NF = 0, Flynn uses these

ratios to evaluate the IBM 7090, system 360 and the PDP 10.

ii. Instruction mixes

This is the frequency distribution of the +types of
instructions executed during the processing of a workload.. The
hesf known published example is‘the.Gibson mixX. . Gibson obtained
frequencies in this mix from an analysis of +the use of
instructions 1in techanical and scientific applications in IBM
7090 installations., Flynn has obtained a mix appropriate to
system 360 'installations.f Theée mnixes are used to evaluate
architectﬁres ‘primarily - by providing time measures., . The
frequency of instruction use in the vparticular class is
multiplied by the average instruction execution time in +this
class and these summed for all classes in the mix. The result
of average instruction execution time is taken to be a measure

of the architecture and used for comparison pur poses.

iii, Program representation size
Given a program or a representative set of programs in some
high 1level language, one translates these programs to machine

language programs for various machines.. The space required by
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the object programs is used.for comparison among the various
- machines. . The spaller the space required for the code thé
better the machine architecture according to this measure. . fhis
measure is used by Tanenbaum and is the one we will use and
Justify shortly. .

At this point one needs to recognize that in some high
lével language translations the machine code contains a large
number of implicit as opposed to explicit subroutine calls to
built in library functions, Explicit calls to library functions
are those which the program directly specifies.. As a result the
machine code may be small but the percentage of implicit
subroutine cails may be high, . What this aétually points out is
that the <code for the built in 1library functions is the
microcode for the instructions required by the higher 1level
language.  This reflects +the fact that +the @machine at the
current level is not suited to the particular 1langquage.. For
this same measure to be used in cases like this, each implicit
library call should count for the number of words in the code of

that library call, nct just as one subroutine call. .

We. will now briefly comﬁent on these measures in light éf the
question raised previously: Can architectures be evaluated in a
program independent fashion? The underlying issue here is to
guage how effectively the machine éccomplishes its purpose.. By
machine we mean a configuration of the micro architecture that
realizes an instruction set, In many cases this confiquration

is hardwired but in others (e.q., the B1700) one can dynamically
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reconfigure the micro architecture. By purpose we mean how the
machine facilitates wvhat people want to do.. This of course is
accomplished at a number of 1levels: modes of expression
available (i.e., programming 1languages); software packages;
operating systems; - programming environments {batch or
timeshared) etc. What we are more concerned with here, is the
primary level concerning modes of expression., What pecple want
to do is most often expréssed aigorithmically in some high level
language.  Thus programs written-in a high 1level 1langquage are
the primary vehicle of conveying people'é intent to the machine. .
Therefore ve will assume thét programs in some pfoqrammiﬁg
language or 1lanquages are a good indication of the use of a
machine,  Note that we are not tying the expression‘ of
algorithnms t§ one particular langquage, Rather we are suggesting
that wmuch has been 1learned about algorithms and wa§s to
represent them in programming languages., . This makes programs in
a given class of languages representative of what people want to
do, and hence wachinés should be evaluated with respect to a
given class of languages. Prom this perspective the use of the
macﬁiae is the conmmon denominator in an evaluation not some
general notions of hachine design. We are now left with the
question of how to effectively and precisely measure how well
mapped the machine is, By well mapped match we mean how
concisely iransformations (or state transitions) in the high
level lanquage are represented in the lower level machine.. The
more concise this fepresentation the better mapped the machiﬂe.y

This is the bias we have in chocsing our measure of progran
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representation size (i.e, code space).

Flynn's measures clearly emphasize’ the functional
characteristics of an architecture, He attémpts to compare
archtectures solely from the functional architectural viewpoint. .
He is not stricty comparing architectures in a program dependent
manﬁer.: One however could possibly argue that his simple
machine is actually the nost optimal representation for programs
provided one accepts his defiﬁitibn of optimality. (i.e.. no
overhead) This measure however is more concerned with validating
or invalidating the following thesis: Machine desidn has strived
towards decreasinq memory references, (e.g., of instructions and
their operahds)-buf this has introduced considerable overhead. .
This overhead is a result of making several explicit functions
{in Flynh's simple machine case) implicit. Two casesb of this
overhead are:

i.. The treatment of programs as linear strings and consegﬁently
maintaining the fprogram counter implicitly. .

ii. The introduction of registers to hold operands in local
store and not in main memory. -

The former case has introduced the whole range of branch
instructions whereas the 1latter has introduced the Store and
Load variations, After making. some measurements of various
computer architectures Flynn concludes that in fact the overhead
is considerable, As we can see, the enmphasis in Flynn's
measures of measuring this overhead is not directly concerned
with how well mapped the machine is., Therefore we will not use

it.
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Instruction mixes basicallv are a test of hardware.. After
ocne has derived a suitable mix one is generally interested in
average instruction execution time or some such time oriented
measure, Although this 1is useful it subtly incorporates the
variables of the> technology wused and the encoding of
instructions, This 1attér variable greatly affecﬁs the
complexity of the microcode and hence the speed. . (We assume a
microcodéd implementatidn of an instruction sef.}- These
variables do not really give an indication of how well maéped
the machine is.. |

Even a fast average ihstruction execution time‘ does ﬁot
necessarily guarantee anything, If all one has is  fast
instructions that do nothing, the increase in instructions
needed .to dc scmething useful will definitely detract from any
advantage speed might have initially provided, 1In other words
the power o¢f an instructibn is not necessarily taken into
account., - This power is representative in some sense of what you
wculd like to do and since instruction mixes measure this poorly
Wwe will not use this measure'either.,

Also because different machines b(and hence instruction
sets) produce different user characteristics, it is not <clear
that the same instruction mix is applicable to all machines
under consideration..

We will now outline the reasons for our choice of the size
of programs as our measure., .- Small representation of programs
{i.e., code lspace)~c1early reflects a vell mapped machine. B If

some other machine requires more code space for the same progranm
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then this 1is indicative of the need for more state transitions
in the machine than actually required by the program., In other
words the machine is partially mapped. 1In our specific case we
wish to show that by'this measure for the lanquage BCPL, the
SLIMAmachine is a well mapped machine, well suited to BCPL, .
Secondly size and space are intertwined, The smaller the
program the faster the interpretation is likely to be. K Small
representaiion of programs also has a third nmore praciical
advantage. Iﬁ this age 6f mini and micro computers-the ability
to run large programs is a great advantage. with +the limited
memory these systems usually provide, Foufthly a decrease in
program size can lead‘ to an increase in the degree of
multiprdgramming and potentially decrease the page fault rate.
It is for this combination of architectural and practical
considerations that we use space as the measure for comparison

in the following sections,

4,3 Results

Now having established oﬁr measure for fhe purpcse of
comparison we uili proceed to compare the SLIM machine against
two architectures, Theéé are 6CODE (see {21)) -and EM-1 {(see
[[2)) . These machines'will not ke described but one is referred

to their adequate description elsewhere,

i. OCODE versus SLIM - round 1
OCODE is the classical first step in the translation of

BCPL programs. 6 From the Applicative Expression Tree (AE tree)



Chapter Four . k2

representation of the BCPL program OCODE is generated. OCODE is
a stack machine and this 1is one of the reasons why we have
chosen it as one of the machines for comparison., IR some sense
it 1is representative of stack machines for which there is wide
respect, The second reason for choosing OCODE is that it. vas
especially designed for the translation of BCPL. .

The procedure for comparisén has involvéd translating
approxiﬁately 8500 1lines of BCPL source into OCODE and SLIHM
code. In fact BCPL is not translated into OCODE but into BCODE.
The only difference between the two is that BCODE is intended to
be used as a real machine and so OCODE instructions are encoded
and object modules generated,  BCODE is the work of a local,
unpublished project at the University of British Columbia.

One might object here that encoding has not been mentioned. .
At ihis level of comparison, instrnctioné that take one word in
BCODE occupy the same in SLIM., Double word instructions will
occur moie frequently for SLIHM since there is 1less space for
encecding operands.  Therefore for the measure of code sizes
encoding can be treated as a constant in this case and not enter
into the ccomparisons. .

Two measures are used: number of instructions and code
sizés.- The following table describes the programs used and

gives the ratios of BCODE to SLIM for both measures.
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PROGRAN INSTRUCTIONS CODE SIZE
Intcode interpreter 1.18 1.20
{2 sections) 1. 22 1.17
Intcode assembler 1.09 1. 13
{3 sections) 1.18 1.15
1, 12 1.10
BCPL compiler 1. 14 1. 10
{6 sections) 1.11 . 1. 12
1.12 1. 10
1, 10 1. 10
1.05 1. 15
1. 14 1..20
QCODE to 370 assembler 1. 15 1.15
{5 sections) 1. 15 1. 11
1.14 1. 11
1. 18 1. 12
: 1.13 1.11
Text editor 1.03 1.06
{4 sections) - 1.06 1, 06
1.05 1,05
1.06 1.04
Average: 1. 12 1.12

TABLE I. ,OCODE and SLIM comparison

As can be seen there is a twelve percent gain on the averagqe for

the SLIM machine using this measure,

ii, . ENM-1 versus SLIM - round 2

This machine is a recent attempt to provide a machine that
will provide very compact representation for a. large <class of
languages.  For example ALGOL 60, ALGOL - 68 , Pascal, XPL,
BCPL, SAL etc,

In Tanenbaum's paper [2] he compares four programs and
their code sizes on the EM-1, PDP-11 and Cyber. He gets ratios

as 1low as 1.5 with the PDP-11 and as high as 6.3 on the Cyber,
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Thus this machine is well suited as a comparison with SLIN, In
order to perform the comparison we must first provide a more
compact encoding for SLIM to match EM-1's encoding., The
-encoding 1is presented in Appendix I. . Appendix II contains the
BCPL source for three programs used for the comparison., Since.
there is no BCPL to EM-1 compiler, equivalent C proqrams were
provided and these too are included. The following table

presents the results, .

OPTIMIZED EM-1 (bytes) SLIM (bytes)
Hanoi 46 41
Bubblesort 80 81
Expression 20 27

TABLE IXI. Optimized EM-1 and SLIM comparison

The three programs were chosen to represent 3 classes of
program : procedure calling (towers of hanoi) s+ 4general 1loop
mechanisms (bubblesort) and expression evaluation .. Before one
concludes too much here, where SLI® does noct outperform EM-1
dramatically  we should be aware of a number of characteristics

of "optimized" EM-1 code., It is yery closely tied to lanquage

——
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directed wmachine design. Two examples of this optimization
fcllow:
i) Tue to a fair amount of incrementing by 1 in higher level
languages EM-1 provides an increment operator. Since SLIM does
not, the equivalent SLIM code (LD IPn PLUS 1 STORE Pn) occupies
4 bytes as opposed to 1, If this operator were provided then
the 3 bytes we would save in SLIH code for the Bubblesort:
routine would make SLIM code more compact than EM-1 code in this
case. .
ii) Optimized EM-1 code recognizes <consecutive lcads and
replaces them by a single LOAD DOUBLE instruction. For example,
instead of generating LOAD A LOAD B it generates a LCAD DOUBLE
A, In our expression program there are 5 cases where this
occurs: (a+b) , {(c+d) , c+d, (a+b) and a+b. If this procedure
had been written with the order in these expressions reversed
then the results would have been significantly different..  One
need only note that 24 bytes are required for a pure stack .
machine for the expression evaluation alone and this does not
take into account the procedure entry and exit. .

The following table presenis the results assuming the lack
of the above two optimizations for EM-1 and also that procedure

entry and exit occupy three bytes as in SLIA. .
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EM-1 (bytes) SLIM (bytes)
'Hanoi 46 41
Bubblesort 83 81 .
Expression 27 27

TABLE III. EM~1 and SLIN comparison

Despite the lack of any EM~-1 type optimization in SLIM the
machines compare very favourably.. We now present our

observations and directions for further research.
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5. . Conclusions and directions for further research-

Although this thesis has presented the desiqﬁ of ‘an
intermediate machine suited.to a particular high level lanquage,
not much has been said about the various approaches to
instruction set desién., He wili now outline some approaches to
instruction set design and then make somé comments on the
particular approach used in this thesis. . N

Lipovski and Doty [30] describe three schools of thought on
instruction set design., The oldest approach is to ‘use
statistics based on coding experience with an older
architecture, to assist in constructing a more refined machine, .
Instructions that are freguently used are made faster aﬁd
perhaps more flexible,  Statistically siqhificant instruction
sequences are nade into primitive operations. . The éecond
appfdach is to choose a widely used high level language.., The
primitive operations necessary to execute this high 1level
language are identified, and then realized in the instruction
set. The third approach identifies a range of problems to be
éolved using the computer and a set of characteriétics of the
technology to be used to realize the machine., The problems to
be solved are treated as t*axicms?, (premises) and the decisions
leading up to the design of the architecture are treated as
*theorens!? (implications),; The ?*proof?! gives all the reasons
for the specific deéign decision {implication) in terms of the:
problems to be solved (premises) - and earlier implications;
Clearly the approach used in the design of SLIM is the high

level language approach. K These approaches all have their pros
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and cons.

The statistical approach generally assuies some feorm of
cempatibility between between the old and the mnore refined
machine,  This 1is convenient corporate policy but can tend {o
entrench existing patterns of operation and insight and not
allow for new innovations., The high level lanquage approach is
- more suited to the more common forms of exptession but is
generally applied to one specific high level lanqﬁaqe.w Since
most computers run more than one language, what is optimal for
one language may not be optimal for another., There are twé ways
to overcome this problen, One 1is +to allow for various
microcoded intermediate languages as in the Burroughs E17OC.,
The other is io design instruction sets that are well suited to
a number of languages. The EM-1 machine is one signpost iﬁ this
direction, . The.premise—implication approach requires careful
thought for all design decisions and hence mékes it difficult to
write the description. However this approach perhaps shows more
clearly what the system is intended for and what its limitations
are, .

e will now make some conclusions regarding the methodology
used in the design of SLIM and the results obtained. The
results clearly show that the objectivés governing the design of
SLIM have been achieved.,. Using the nmeasure of progran
representation size SLIM compares very favourably with a number
of archite;tures.,’SLIH is a definite improvement over OCODE and
is approximately equivalent to the EM-1 machine, Although no

mention has been made of INTCODE, one automatically can infer
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from the SLIM versus OCODE results that the SLIﬂvrepresentation

of progiams is much smallér than their INTCODE counteréarts.

The objective of simplicity in machine architecture also has

‘been realized, The achievement of these objectivés show that
useful bﬁork can be done. within this particular approach to

instructioﬁ set design. Regarding the approach itself it is
difficult to 59 specific. Although we have arqued elsewhere for

the importance of this approach it is difficult tc provide

handles to assist in'synthesizing the operations neceésary to

execute'high level languages, . Oﬂe not only Jhas to determine-
operations but one must first of all determine the-architecturél
builaing blocks on which these operations will operate.  There

are a number of accepted building blocks in existence. For

example the importance of stacks in. environment allocation,
procedure calling and expression evaluation. This is one area
of further research where similar work with other 1languages
might distill other architectural‘building blocks.. This in turn
will help to identify the primitive operations necessary to
execute high level languages. . a -

Another approach we have not mentioned that differs fronm
that of instruction set design is direct execution of hidh level
languages, In this approach the machine instruction set beconmes
the operations of the high level lanquage. This approach also
has a number of pros and cons, It eliminates tﬁe ccmpilation
process, spéeds up execution of programs and generally provides
greater program density. . On the other hand the size ‘ofv the

microprogram to interpret the high level language instructions
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will be large and very complex ., . With «current technclogy and

costs the construction of such a machine would be prohibitively

. expensive, The machine also by definition will be very special

purpose,  Since users may want to use other langquages he may
find it awkward to compile them into the base high 1level
language. rThe representation of these other high level language
programs in the base 1langquage may also be vlarge and their
execution slow,  More importantly, this approach depends on how
suited the langquage is to interpretive execution. In this mode
of execution each statement is decoded just before it is used.
BCPL in its pure source form is definitely nbt suited +to this
approach. For exanple a proéedure call that involves a
procedure that is defined 3000 lines further on in the . sourée,
cannot be immediately executed. For BCPL to be executed in this
manner some form of intermediate:programvrepresentatioﬁ would be
necessary., This borders closely on the approach we have used. .
Two areas of research arise out df considering this approach‘ as
it -applies to languages like BCPL.. One is to develop suitable
high level intermediate representations that <can be ditectly
executed..  The other is to develop lanquage design principles
that will provide langquages that can be directly executed.

The final issue that concerns us is the development of
suitable measures for architecture comparisons, The choice of
methodology in instruction set design clearly biases the choice
of measure. For example, +those adopting the statistical
approach might ‘be moré interested in time orieﬁted measures,

However we have arqued earlier for the importance of +the high



1evel"1an§u$ge épproach'to instruction set design and therefore
conclude that 6ur measure of program representation size dis an
important component of any measure that is devised. . Of course
our measure has a number of deficiencies., It 1is dependent on
the efficiency of the translation-section of the compiler used.,
Ccmparisons are meaningful cnly if the translation sections of
the various compilers use the same optimizations,  This is
sometimes difficult to achieve, Program representation size is
also just one component of a measure, . Though this measure has
been  useful for our comparison purposes, this subject of
measures for evaluation pdrposes reguires further work and study

to produce a more comprehensive measure, -
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Tovards a single byte encoding:

This appendix contains the encoding breakdown for SLIN
vhich fits the opcode in cne byte and the operand (if any) in
the following byte,, Double word instructions would have 255 in
the first byte which would singnify that the following three
bytes contain the instruction - 1 for the opcode and 2 for the
operands since this is a double %ord instruction,

We will first-examine the number of operands required for
the various operators and outline the distribution of opcodes..
Since we ‘only have a one byte opcode many operators may have
nine encodings to account for the nine possible operands. .

OPERAND TYPE NUMBEB OF VARIANIS (SYMBOLIC FORHN)
. global . -2 IG, G
local 2 : Ip, P
static 2 IL, L
top of stack 1 *
. relative address 2 IR, R

TOTAL: 9 ’

OPERATORS THAT COULD TAKE ALL NINE. VARIATIONS
.mult, div, plus, minus,

eq, ne, ls, gr,

-le, ge, 1shift, rshift,

logand, logor, exor, 14,

stkld, store, rem, egv °

SUB TOTAL: 20x9 = 180

OPEBATORS THAT DO NOT TAKE ALL NINE VARIATIONS
sseti - absolute and stack relative {(2) -~ 3

sreli - absolute and stack relative (2) - 3
call - absolute -1
‘Jjump- - relative(2) , static(2) - -4
jt - 1 . . U - C el
Jf - n -4
switchon - absolute -1
-slctap, slctst : o : - 2

SUB-TOTAL: 22
OPEEATORS THAT ONLY TAKE ONE VARTIATION
goto, neg, not, deref, push, fpop,
sset, sget, srel, finish, rtrn,
‘true, false " s o
. SUB-TOTAL: 13
SPECIAL ENCODING

LD IPn 1<= n <= 10 10
STKLD IPn " : 10
STCRE Pn " 10
CALL n 0<= n <= 5 6

TOTAL: 180+22+13#+#36 = 251
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Three eguivalent BCPL and C programs-

{1 Check procedure calling mechanism, The classic towers of hanoi.

global { ¥Writef:50 }
let Hanoi{ n, s, i, d) be
{ .
if n = 0 then return
Hanoi{ n-1, s, 4, 1i)
¥ritef ("Move %N from %C to %C*N¥, n, s, 4d)
Hanoi{ n-1, i, s, 4)

}

|| Bubblesort. General test of loop mechanisnms

manifest { falsevalue = 0 ; truevalue = 1}
let Bubblesort{a, n) be

{

let sorted = falsevalue

and LastValue = n

and temp = 0

LastValue := LastValue -~ 1

sorted := truevalue

for j = 0 to LastValue do
if a!j < at (j+1)

then
{
temp = atj
atj := atl(j+1)
al(i+1) == temp
sorted := falsevalue
1 .

} repeatwhile ( sorted = falsevalue) | ( LastValue ~= 1)

11 Expression evaluation.

let StupidProgram{ a, b, ¢, d) be
{a+b)* (c+d)
c+d
(
a

0 e o8

a+b) /d
+h+c

foonu

ool = VR @ T « i + RPN
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{1 and now for the C version of cach of these three prcogqranms
/% towers of hanoi */

hanoi(n, s, i, 4)
char s, i, 4 ;

{
if ( n == 0 ) return ;
hanoi( n-1, s, 4, 1)
printf ("move %d from %c to %c n", n, s, 4d) ;
hanoi (n-1, i, s, 4d) ;
}
#

#define false 0.
#define true 1 .
/* simple bubblesort routine */

bubblesort({ a, n)
int al ] ;

{

int sorted, lastvalue, temp, J 3

sorted = false ;
lastvalue = n ;
do { _
lastvalue = lastvalue -1 ;
sorted = true ;
for { = 0 ; § <= lastvalue ; i = § + 1)
if- (afj) < afj+1]) ) {
temp = af{j] ;
a[j) = a[j+1]
alfj+1] = temp
sorted false

i
“s @0

}

} while ( (.Sorted == false )} I { lastvalue ~= 1) )
}

/* a stupid program that evaluates expressions */

stupidprogram(4a, b, ¢, 4)
{

(ath) *(c+d) ;

c + 4 ;

(atb)y4 ;

atb+c ;

W un

a
b
C
d

-
*

56
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SLIM system software-

This appendix contains a brief‘ description of the SLIN
system software., This includes :
i. a BCPL to SLIM compiler
ii,, a SLIM assembler

iii. . a SLIM loader and interpreter

This allows one to compile and run BCPL programs, ¥We will
describe this software briefly and then illustrate the whole-
system on the eternal towers of hanoi!.

The compiler is as expected, It allows some Vancouver
extensions ({e.g.. for operators like '%?, *+:=' etc.) . The
assembler generates load modules and also performs compaction
making Jjumps and references relative if possible, This usually
saves from 5 to 10 percent of the progranm size;x The technique
is the same as that described by Peck et al., {1873, . All the
above software is written 1in BCPL so that protability is
enhanced,

We now éresent fhe eternal TOWERS OF HANOI right from the
BCPL source to SLIM interpretation.. This is an edited version

of a live NTS session at UBC,

# COMMENT LIST OF THE SOURCE
$§ LIST -HANOI ’

1 SECTION, "HANOI"

4 GET. "FOX:BCPLHDR"

4.5 ENTRY $( START:"START" $)
5 LET HANOI (N, S, I, D) BE

VVvVvVvyv
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e VVVVVVVVVVVVYV

6
7
8
9
10
11
12
13
14
15
16
17
18

. PARAMETER

R

212 -

-CC#

$( IF N <= 0 THEN RETURN
HANOI (N~-1, S,

WRITEF ("MOVE %N FROM %C TO %C*N", N, S,

HANOI {N-1, I,

AND START{() BE

$( LET N = 0

END OF FILE
COMMENT COMPILE IT
RUN BCPL,COMPILER T=1S SCARDS=-HANOI PAR=1I
EXECUTION BEGINS

BCPL/SLIM (1978 MAY)

= ¥

LOGICAL UNIT

SECTIGN HANOI

S,

I) .

D) §)

WRITES{"ENTER NUMBER*N")
N := READN({()

WRITEF ("NUMBER INPUT WAS %N*N", N) -

IF N <= 0 THEN FINISH

HANOI (N,

$) REPEAT

I
L)

SECTION HANOI

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
@HANOI
17:

LD L22

L1
L2
L3
L4
LS
L6
L7
L8
L9
L10
L1
L12
L13
L4
L15

"wRCH“
MRDCH"
PHRITEQ"M
PHRITED"®

"WRITEBEXY
WYRITEOCTY

"FRITESH
WYRITEFRY
“REALN"

"WRITEX"
PNEWPAGE"
UWNEWLINE®
P"ERITEN"Y

!Si'

"PACKSTRING"
U"ONPACKSTRING" SSETI P2 JUMP L20O

!I"

WAS NOT SPECIFIED;
LOGICAL UNIT *10*' ®WAS NOT SPECIFIED; -STATS ASSUMED. .

STKLD IP3

'D')

COMPILATION COMPLETE; 0O ERRORS DETECTED
EXECUTION TERMINATED
COMMENT LIST THE SLIM CODE
LIST

SSETI P6 LD IP2 LE O JF L21 RTRN
SRELI~-2 LD IP2 MINUS 1
STRLD IP4

STKLD IL18 CALL 4 SRELI 2

STKLD IP2

STKLD IP3.

CALL 4 SRELTI 2 LD IP2 MINUS 1

STKLD IP5

.=0C# ASSUMED. .

STKLD IP5

STKLD ILS8

D)

58
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STKLD IP4 STKLD IP3 STKLD IP5 STKLD IL18
CALL 4 RTRN
22: DATA ¥MOVE %N FROM %C TO %C*N®
AS5TART
19: SSETI P2
23: . LD 0 PUSH SRELI 2 LD L24 STKLD IL7 CALL 1
SRELI 2 LD I19 CALL O
STORE P2 SRELI 2 LD L25 STKLD IP2 STKLD IL8 CALL 2
LD IP2 LE QO JF L26
FINISH
26: SRELI 2 LD IP2 STKLD *'S? STKLD 1 STKLD ?D?
STKLD IL18 CALL 4 SSETI P2 JUMP L23
RTRN ’
25: DATA "NUMBER INPUT ¥AS J®Nx%N®
24: DATA "ENTER NUMBER*%NY
20: FINISH
16: LATA L19.
18z DATA  L17
ENTRY L16 ®START®
END
# END OF FILE
# COMMENT ASSEMBLE IT
# RUN ASM T=1S SCARDS=-0C#
# EXECUTION BEGINS
PARAMETER *'?
SPUNCH DEFAULTS TO *-CODE#?
S L I M ASSEMBLER { VERSION 3, JULY 1978 )
# EXECUTION TERMINATED
4 CGMMENT LIST THE LOAD HMODULE
# LIST ~-CODE#%#
ENTRY- "STARTY™ 000146
111002 126400 +000145 111006 (077002 040000 135402 174017
114602 077002 . 014001 103003 103005 103004 102410 +000147
120004 114002 075421 . 103002 103003 103005 102410 +000000
120004 114002 077002 014001 103004 103003 103005 102410
+000147 120004 174017 013324 153345 142500 066325 040306
154726 152100 066303 040343 153100 066303 012400 111002
074000 174005 114002 075453 102410 +000000 120001 . 114002
076410 +000000 120000 105002 114002 075426 103002 102410
+000027 120002 077002 040000 135402 174016 114002 (077002
102400 000342 102400 000311 102400 000304 103431 120004
111002 125537 174017 012325 162324 141305 154500 144725
153744 161500 163301 161100 066325 012400 006705 152743
142731 040325 162324 - 141305 1548425 174016 +000057 +000003
EXTERNAL "HRITES" 000065
EXTERNAL ®WRITEF" 000100
EXTERNAL "READNY 00CG071

END
# END O

# COMMENT NOW RUN THE LOADER/INTERPRETER

F FILE

WITH THE LIBRARY
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# RUN INT T=1S SCARDS=-CODE#+BCPLLIB
# EXECUTICN BEGINS
- SLIM - INTERPRETER/LOADER. VERSION 3 { JULY 1978 )

650 WORDS LOADED

LOAD MAP

000146 : "START®
001172 : "HRITES"
001175 : "WRITEE™
001202 : "READN®
001173 : "ONPACKSTRING®
001174 : “PACKSTRING"
001176 : "WRITED"
001177 : "WRITEN®
001200 : "NEWLINE"®
001201 : "NEWPAGE"
001203 : "WRITEOCT"
001204 'z "WRITEHEX"
001205 : "WRITEO"
001206 : “WRITEX"®
001207 : “RDCH"
001210 : MWRCH"
001211 : ®TERMINATORM

EXECUGTION BEGINS
ENTER NUMBER

3

NUMBER INPUT WAS 3

MOVE 1 FROM S TO D

MOVE 2 FROM S TO I

MOVE 1 FROM D TO I

MOVE 3 FRCH S TO D

MOVE 1 FROM I TO S

MCVE 2 FROM I TO D |

MOVE 1 FROM S TO D ‘ |
. ENTER NUMBER . N ‘
2 .

NOEBER INPUT WAS
NMOVE 1 FROM S TO
MOVE 2 FROM S TO
HOVE 1 FROM I TO
ENTER NUMBER

-1

NUMBER INPUT WAS -1

oMM

EXECUTION TERMINATED. . ( 12892 INSTRUCTIONS ) -
# EXECUTION TERMINATED



