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0. Abstract 

This thesis describes the design of a well mapped machine 1 

for the language BCPL. Based on a generalized notion of stack 

machines the SLIM (Stack language f o r Intermediate Machines) 

machine i s described. As the acronym suggests, representation 

of BCPL programs i n SLIM i s i n fac t slim compared with other 

architectures. The u t i l i t y of th i s measure f o r comparison with 

other architectures i s discussed and some encouraging r e s u l t s 

presented. Apart from t h i s r e s u l t , some advance i s made i n the 

c l a s s i c a l mode of porting BCPL programs. Normally the compiler 

produces OCODE from which INTCODE i s generated. The BCPL SLIM 

compiler shortcuts t h i s process by generating SLIM d i r e c t l y from 

the program tree thus dispensing with software corresponding to 

the OCODE to INTCODE translator. Translation of BCPL programs 

i s thus s i m p l i f i e d and speeded up. 

»by well mapped we mean that transformations in the high l e v e l 
language correspond c l o s e l y to those i n the low l e v e l machine 
representation. 
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Chapter 1 

1• Introduction 

1 

As with most work t h i s thesis needs to be set i n i t s proper 

context. The h i s t o r i c a l perspective i s one aspect of t h i s but 

more importantly there are a number of current issues that give 

t h i s thesis relevance. We w i l l f i r s t examine these two 

components of t h i s thesis*s context and then proceed to outline 

the objectives that governed the r e a l i z a t i o n of the SLIM 

machine. 

1.1 Setting the context 

The way programming languages are used i s of interest to 

various people. These people often include systems architects, 

language designers and compiler writers. In the design of a 

programming language i t i s useful to know the kind of constructs 

that are most freguently used. Compiler writers can use t h i s 

knowledge e f f e c t i v e l y as they decide how much energy to devote 

to compiling good code for the more common constructs. By good 

code we mean code that compactly and e f f i c i e n t l y represents the 

intentions of the language constructs used. For example, the 

dominance of the assignment statement i n programs i s one 

candidate for which good code should be compiled. System 

architects are more interested i n how e f f e c t i v e l y the language 

maps to the machine and empirical evaluation can lead to some 

fi n e tuned application oriented architectures.(see f 1 1) 
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A number of people have studied the ways i n which 

programming languages are used: Tannenbaum [2] has studied a 

BCPL variant c a l l e d SAL and proposed a simple machine 

architecture ; Knuth [3.1 has analyzed Fortran programs; 

Alexander [4] studied XPL as implemented on the IBM and 

unearthed some inconsistency i n the mapping from XPL to IBM 

assembler. Wortman [5] studied student PL on an interpretative 

system and used his analysis to incorporate changes into h i s PL 

machine. He states:"fle took as our design goal the development 

of new design too l s to aid the designer i n building computers 

that s a t i s f i e d the actual rather than the imagined needs of the 

programmer. *' Gordon and Capstick [6] have examined COBOL. Of 

course we would be amiss i f we f a i l e d to mention the design of 

the Burrough's machines which were high l e v e l language machines 

i n the f i r s t place. An analysis of over 60 ALGOL 60 compilers 

by Sichmann [7] showed code produced by the Burrough's compiler 

occupied half the space of code produced by the-IBM comjiler. 

This l e v e l of approaching the problem from the language point of 

view has gone hand in hand with the development of 

microprogramming. 

Once the manufacturers offered user microprogramming there 

was a flood of a c t i v i t y i n t h i s f i e l d . , Many machines were 

designed which were t r u l y meant to be very general purpose (see 

[81 and [91 for examples) . The Manodata QM-1 was perhaps too 

f l e x i b l e but the emulation of the PDP-11 on i t [10 1 proved i t to 

be useful. As usual, Burroughs i n the design of the B1700 

series (see [111) seriously and e f f e c t i v e l y attempted to free us 
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from von Neumann s t y l e machines. Hilner states that "Von 

Neumann derived machines are automatous malefactors who force 

programmers to l i e on many procrustean beds". Each particular 

language would have i t s own S (S standing for secondary) machine 

optimized for i t s own par t i c u l a r application area that would be 

emulated by B1700 hardware. No machine language was b u i l t into 

the hardware and therefore each language to be executed had to 

f i r s t reconfigure the B1700 processor. Concurrent execution of 

S machines was very feasible with the fast switching time (14 

53 microsec) . Apart from t h i s a r c h i t e c t u r a l concern on the 

l e v e l of machine design, microprogramming i t s e l f was used to 

measure computer systems., Saal [121 used t h i s very transparent 

technigue to obtain system design guidelines. 

Despite a l l these a c t i v i t i e s that brought architecture to 

the fore as a research area, Rosin who was involved for a long 

time with microprogramming, was forced to define 

microprogramming as "the implementation of hopefully reasonable 

systems through interpretation on unreasonable machines" [13 1 . 

Even t h i s pessimistic comment should not detract from the 

overriding concern with machine architecture not just i n i t s e l f 

as an end but as a means to f a c i l i t a t i n g what people want to do. 

It i s i n t h i s l i g h t that we should see the development of SLIM. 

1•? Current issues 

Computer science with i t s concern for easy and e f f e c t i v e 

expression has long been i n the business of generating new 
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languages. Translators conseguently tend to be one of the most 

freguently used pieces of software and w i l l probably continue to 

stay that way. Translator writing systems are a manifestation 

of t h i s f a c t . However as Appelbe f14^ states: "The major 

complexities encountered i n the design and implementation are 

usually i n the 'semantics phase* of the translator i n generating 

the object program from an i n t e r n a l source program 

representation". This complexity no doubt a r i s e s from a number 

of sources: Languages that are exceedingly complex and hence 

inevitably reguire complex code generation. Another more 

important source of complexity i s that inhospitable host 

architectures demand contortions on the part of the code 

generator and hence the implementor. This i s the complete 

reversal of the s i t u a t i o n i n the parsing-syntax analysis phase 

where the methods are very well understood. Despite t h i s 

acknowledgement, computer science has tended to minimize the 

importance of machine architecture and has often comforted 

i t s e l f with the fact that the language was implemented and l e f t 

i t at that. The implementation was the overriding concern and 

a f t e r a l l , with cheaper memory prices we are net r e a l l y 

concerned about how e f f i c i e n t l y our programs are represented, 

are we? This hides the main point. It*s high time that 

computer science not relegate machine design only to the 

m i l i t a r y and the a r t i f i c i a l i n t e l l i g e n c e communities where an 

overwhelming need demands better architecture. He need to 

refute the notion that the description of a machine's assembly 

language constitutes i t s complete d e f i n i t i o n . 
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At present, even to the most casual observer, there i s an 

explosion in the area of microprocessor technology. The market 

here i s i n a continual state of flux as more and more products 

are announced. The a v a i l a b i l i t y of b i t s l i c e components makes 

possible the construction of new machines at reasonable costs. 

T.M. HcWilliams et a l . [15] describe the construction of a 

PDP/11 using b i t s l i c e s for a t o t a l cost of $1076., This machine 

even outperforms the LSI-11. With t h i s continual state of flux 

industry has adopted a microprocessor chip standard - the I n t e l 

8080. In l i g h t of the above fa c t this i s not the most desirable 

chip from an a r c h i t e c t u r a l point of view. Perhaps t h i s 

standardization was unavoidable. Another more important 

standardization of t h i s technology i s the language and i t s 

implementation. BASIC has become the standard language with a 

variety of implementations. Its implementation however i s more 

s i g n i f i c a n t as far as SLIM i s concerned. Interpretation i s the 

accepted way of implementing Basic. From a very rudimentary 

analysis of the BASIC source these interpreters interpret BASIC 

programs at a f a i r l y high l e v e l . 

Before we draw out the s i g n i f i c a n c e of these facts we s h a l l 

quote from the Nov 15, 1977 draft of the objectives for computer 

science i n the department of Computer Science at UBC [16] . 

"Broadly speaking computer science i s concerned with the design 

of algorithms and with e f f i c i e n t implementations of algorithms 

on computing systems. , The computing systems may vary i n size 

from the hand held programmable calculator to a complex 

c o l l e c t i o n of devices interconnected by s a t e l l i t e and cable." 
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Let as examine t h i s statement i n the context of high school 

computing f a c i l i t i e s . The systems that high school students are 

dealing with are Basic ones i n more than one sense! As a 

department there are educational issues at stake. What are 

potential university students i n computer science being exposed 

to? Is the form of expression r e a l l y suited to developing 

structured programming? H i l l university programs at the f i r s t 

year l e v e l involve a certain amount of deprogramming? One 

attempt to address t h i s issue of teaching computer science as a 

unified d i s c i p l i n e was Peck's 'Essence of computer science' 

f 1 7 ]. In t h i s report the language BCPL and i t s abstract machine 

INTCODE served as a reference point for teaching computer 

science coherently. In order to execute BCPL programs one 

interpreted t h e i r INTCODE representation. The major l i m i t a t i o n 

of the INTCODE system was the s i z e of the INTCODE version of the 

compiler since i f the compiler cannot f i t on the host system, i t 

becomes very cumbersome to compile programs on one machine and 

execute them (via interpretation) on another. SLIM serves 

exactly the same function as INTCODE except that i t i s much more 

compact (as we show in Chapter 4) and hence the BCPL SLIM 

compiler i s more compact, than the INTCODE version . However 

both forms of r e a l i z i n g BCPL are exactly s i m i l a r to the current 

form of r e a l i z i n g BASIC - interpretation. Therefore i f computer 

science i s concerned with the representation of algorithms and 

BCPL i s accepted as a v a l i d vehicle for t h i s , then i f SLIM 

f a c i l i t a t e s t h i s process on a wide variety of machines i t should 

be of concern and use to the department i n r e a l i z i n g one of i t s 
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stated objectives. There seems to be the very r e a l p o s s i b i l i t y 

that computer science could be making inroads here not only i n 

the r e a l i z a t i o n of more ef f e c t i v e languaqes but also i n the 

r e a l i z a t i o n of more e f f e c t i v e hardware as i n the b i t s l i c e 

ver s i on of the PDP/11. 

One f i n a l issue involves the language BCPL (see [20], [21] 

and [22]) .We w i l l just present the case for t h i s class of 

language. By class we mean systems programming languages cf the 

BCPL type. OS-6 [19], a single user operating system was 

written almost completely i n BCPL. C, a BCPL offshoot with 

PDP/11 constructions that have f i l t e r e d up into the language, i s 

the source langauge for a very e f f e c t i v e operatinq system UNIX, 

[23] written f o r the PDP/11. This demonstrates the u t i l i t y and 

effectiveness of t h i s class of language. Therefore our concern 

with i t i s not misplaced. 

A more l o c a l BCPL issue concerns the c l a s s i c a l form of 

translation to INTCODE., BCPL source i s f i r s t translated to 

OCODE and from this one translates to INTCODE. SLIM i s 

generated d i r e c t l y from the tree representation of the BCPL 

program. A number of advantages accrue: 

i . One complex piece of software (OCODE to INTCODE translator) 
i s dispensed with. 

i i . The obscure OCODE machine no longer confronts us. 

i i i . The r e a l i z a t i o n that tr a n s l a t i o n from the tree to SLIM i s 

straightforward and that simple optimizations are e a s i l y 

handled. 

For too long we have been stuck with the BCPL-> OCODE -> INTCODE 
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process. This thesis shows 

necessary, and more importantly 

machines are not i d e a l l y suited 

8 

that t h i s procedure i s no longer 

shows that these two v i r t u a l 

to BCPL. 

1. 3 Objectives 

The prime objective was to achieve compact program 

representation. By compact program representation we mean that 

the s i z e of the translated program i s small. This i s always a 

convenient res u l t but more importantly i t r e f l e c t s how e f f e c t i v e 

the mapping i s from language to machine., The choice of t h i s 

measure rather than time for example, w i l l be dealt with l a t e r 

when we address the issue of how one actually evaluates an 

architecture. Presently there i s no standard evaluation 

technigue that allows for program independent evaluation of an 

architecture. 

Simplicity was the second c r i t e r i a . Partly t h i s i s a 

reaction against the trend that dictates complexity to be the 

norm, but a simple architecture has a number of advantages. 

Simple architectures are more easily understood and can 

exemplify a r c h i t e c t u r a l p r i n c i p l e s . If interpretation i s going 

to be the sole method of executing BCPL programs then the 

simpler the machine to be emulated the simpler the emulator. As 

t h i s most probably w i l l be the form of execution i n the 

microprocessor f i e l d and since the emulator w i l l most probably 

be written i n assembler, the ease with which the interpreter i s 

implemented i s very important. I f we extend the notion of 
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interpretation and temporarily equate i t with microprogramming, 

then the same advantages apply except that in t h i s case the 

corresponding assembly language i s more primitive. I f one 

actually intends to glue together the SLIM machine using b i t 

s l i c e technology then the simpler the machine the better. 

A t h i r d guideline was that the machine acknowledge the 

existence of BCPL r i g h t at the machine l e v e l . Thus i n e f f e c t 

the SLIH machine i s as e a s i l y described by BCPL as i t i s by the 

SLIH assembly language. For example the CALL i n s t r u c t i o n should 

actually do more than just change the program counter and 

remember i t s previous value. The IBM 370 BALB inst r u c t i o n i s a 

c l a s s i c example of refusing to acknowledge that a programmers 

common forms of expression are at a much higher l e v e l and that 

changing control i s much more than a change i n location. This 

guideline hopes to demonstrate that the tr a n s l a t i o n process can 

be straightforward and not always involve numerous contortions 

in the code generation section of the translator. 

Sith these objectives in mind, and the context i n which 

t h i s thesis i s set outlined, we now proceed to describe the SLIM 

machine in an informal manner. 
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2 . The SLIM machine description 

This machine i s offered as an alternative to the current 

way of porting BCPL programs. This section contains a 

s p e c i f i c a t i o n of the machine but o f f e r s no j u s t i f i c a t i c n or 

motivation for the choice of SLIM. However as the acronym 

suggests (a Stack Language for Intermediate Machines) , one 

advantage should be that of compact program representation or 

SLIM code. 

2*1 P r e l i f f l i l i a r i g s 

The memory of the SLIM machine l i k e INTCODE [ 2 2 1 and PICA-B 

[ 2 6 ] , consists of an array of c e l l s numbered from zero. The 

consecutive numbers assigned to c e l l s are known as th e i r 

addresses.. The number of b i t s per c e l l i s unspecified. 

The SLIM machine has f i v e r e g i s t e r s . One accumulator (ACC) 

i s used for a l l arithmetic, l o g i c a l and various other 

operations. P i s used as an index register and points to the 

base of the current stack frame and S points to the top of the 

current stack frame. {Figure 2.1) The C r e g i s t e r i s used as a 

program counter. G i s used to access the base of the location 

of the global variables. We w i l l j u s t i f y t h i s choice l a t e r , but 

for the present we w i l l give some examples of eguivalent 

constructions in present day architectures.. The HP - 2 l M X*s base 

page addressing functions i n very much the same way. Even the 

PDP-8*s zeroth page addressing, in which every page can access 

the zeroth page, i s a form of global variable access. Two more 

respected architectures- the HP 3000 and the B5500 (see [ 2 4 1 ) 
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have si m i l a r features. The IB r e g i s t e r i n the HP3000 points to 

the case of the global area that i s in fact kept at the bottom 

of the stack. The 5500*s R re g i s t e r points to the separate 

( i . e . , not i n the stack) program reference table that contains 

global variables and global procedure names. 

To use the current terminology the SLIM machine i s a single 

accumulator, one address machine. 

Previous stack frames Current stack frame 

r~ r 1 1 1 1 
| ]Linkage JParametersJ Local | .... | I I Info | |variables J j • J 1 a x i 

I I 
i I 
I I 
P S 

Figure 2.1 The runtime stack 

J2..2 Variables 

Before describing the operations provided by the SLIM 

machine we w i l l look at the four sets of variables in BCPL and 

describe how they may be accessed. 

BCPL (a modified version) has four sets of variables -

l o c a l , s t a t i c , global and external although i n s t r u c t i o n s need 

only be provided to access the f i r s t three. 

Local variables (see figure 2.1) are allocated space above 

the parameters on the runtime stack. They are accessed r e l a t i v e 
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to P and hence we see how P serves as an index register. Notice 

that once the current stack frame i s released, space for a l l 

l o c a l variables vanishes as well. 

S t a t i c variables are accessed by reference to some label 

and unlike l o c a l variables remain accessible throughout program 

execution. The syntax of a l a b e l i s simply a number followed by 

a colon. 

External variables are accessed as i f they were s t a t i c 

variables except that information i s provided for the loader so 

that i t can resolve these references. Externals can be thought 

of as being another program's s t a t i c variables. 

Global variables are accessed r e l a t i v e to the G register. 

This space i s reserved by the runtime support for the pa r t i c u l a r 

BCPL program and t h i s support also i n i t i a l i z e s the G register. 

2.3 Operands 

The syntax of a l l operands i s as follows. 

CI 3 [P | G | L] < integer > | * 

P refers to the stack pointer. The contents of P i s added 

to <integer> to obtain the address of a particular variable 

(parameter or local) on the current stack frame. G i s 

interpreted s i m i l a r l y except that i t refers to the global 

pointer. L denotes a p a r t i c u l a r l a b e l (e.g., Ln) . The operand 
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i n t h i s case i s treated as the address of the p a r t i c u l a r label. 

I means i n d i r e c t i o n . The operand determined thus far i s 

dereferenced once. The * refers to the top of the stack ( i . e . , 

the location pointed at by register S ) . In t h i s case the 

contents of S-1 becomes the operand and S i s decremented by 1. 

Some examples follow: 

P2 address of c e l l at o f f s e t 2 from P 

IP2 value of c e l l at offset 2 from P 

13 address of c e l l denoted by lab e l 3 

IL3 value of c e l l pointed to by label 3 

2.4 Operations 

a. Variable access operators 

four operations are used ; Load (LD) , store (STORE), stack and 

load (STKLD), and select f i e l d and store (SLCTST). 

(e.g. value of a s t a t i c variable) 

* value of a temporary variable 

LB operand ACC := operand 
STORE operand location(operand) := ACC 
STKLD operand !S := ACC 

S : = S + 1 

ACC := operand 
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SLCTST f i e l d s e l e c t o r s e l e c t appropriate f i e l d of 

the value i n the accumulator and 

store them i n the correct f i e l d of 

the c e l l specified by i t s address 

at the top of the stack, (i.e 

!{S-1)) Then decrement S by 1. 

Some sample variable loads and stores are i l l u s t r a t e d , 

temporary: LD * 

l o c a l : LD IPn STORE Pn 

s t a t i c : LD ILn STORE Ln 

Notice that LD Pn loads the address of the l o c a l variable not 
the value. 

b. Diadic expression operators 

A l l operators can be defined as follows. 

op operand ACC : = ACC op operand 

Integer operators -

MULT,DIV,REM,PLUS,MINUS 

MDIT, DIV, PLUS and MINUS are as expected. REM i s the integer 

remainder on the d i v i s i o n of the ACC by the operand. 
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Relational operators -

EQ, N E,L S,GR,LE,G E 

EQ and NE are equal and not equal. LS and GR are less than and 

greater than, LE and GE are less than or egual to and greater 

than or egual to. 

Logical operators -

LSHIFT,RSHIFT,LOGAND,LOGOfi,EQV,EXOR 

L and RSHIFT are the l e f t and right s h i f t operators. LOGAND and 

LOGOR are the l o g i c a l AND and OR. EXOR i s the exclusive OR or 

bitwise non-equivalence. . EQV i s bitwise equivalence., 

Bit operators -

SLCTAP 

This applies to f i e l d selectors i n the BCPL sense. The 

appropriate f i e l d i s selected. 

c., S regis t e r manipulation 

To allow for f l e x i b l e manipulation of the S register a 

combination of monadic and diadic operators are defined. This 

allows one to set the S reg i s t e r in a r e l a t i v e ( i . e . SREL, 

SR.ELI) or absolute sense. (SSET, SSETI) . I f one allows an 

extended BCPL i n which dynamic storage a l l o c a t i o n i s implemented 

then i t i s mandatory that the S register be manipulated in a 
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r e l a t i v e sense. I t i s true that a l l l o c a l variables are i n a 

sense dynamically allocated but at present the sizes of vectors 

must be fixed at compile time. This a b i l i t y to determine run 

time sizes of vectors i s what we mean by dynamic a l l o c a t i o n . 

SGET ACC := S 

SSET S := ACC 

SHEL S := S + ACC 

SSETI S := operand 

SBEII S := S • operand 

d. Monadic operators 

NEG ACC := - ACC 

NOT ACC := not ACC 

DEBEF ACC := !ACC 

POSH IS := ACC ; S := S + 1 

POP ACC := !(S - 1) ; S := S - 1 

TRUE ACC:= TBDE 

FALSE ACC := FALSE 

FINISH FINISH 

e. . Transfer 

GOTO C := ACC 

JUMP operand C := operand 
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JT operand C := (ACC = TRUE) -> operand, C 

JF operand C := (ACC = FALSE) .•-> operand,C 

The switchon statement i s implemented by the SWITCHON command; 

SWITCHON k Ld k1 11 k2 12 ...... kk l k 

The accumulator controls the switch; i t examines the k case 

constants i n l e f t to right order and when a match occurs then a 

jump i s made to the corresponding case l a b e l , otherwise a lump 

i s made to the default l a b e l Ld. 

f. Function and routine c a l l i n g 

No difference i s made between the c a l l and return 

instructions for a function or a routine. When a function i s 

ca l l e d i t returns i t s r e s u l t i n the ACC., Prior to a c a l l space 

should be saved for the l i n k s , (savespacesize denotes t h i s 

number) the i parameters pushed on the stack and the address of 

the routine loaded into the ACC. 

The CALL i instruction has the following effect 

temp := S - ( i • savespacesize) 

temp!0 := C 

temp!1 := P 

P := temp 

C := ACC 
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The 8T8N in s t r u c t i o n i s as follows 

C := P!0 

S := P 

P := P! 1 

The routine c a l l e d , on entry i s responsible to set the S 

regi s t e r so that i t points as i n Figure 1 (above the para meters 

and preliminary l o c a l variables). 

g. Pseudo instructions 

<number>: denotes la b e l <number>. 

Sname denotes the s t a r t of the code for the 

routine c a l l e d name. 

SECTION "section name" indicates the start of the code for the 

section "section name". 

END indicates the end of a section*s code 

h.. Data reservation instructions 

There i s one general purpose d i r e c t i v e used to reserve 

space. This i s the DATA operator.„ I t s operands can be numbers, 

characters (enclosed i n single quotes), strings {enclosed in 

double quotes) or labels.. I t reserves space i n the subsequent 

c e l l s f o r i t s operands. 
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2.5 An Example 

The following program and i t s SLIM code w i l l serve as an 

example. 
I I 
I I 
j | t h i s i s the sample BCPL program 
I I 
l e t f ( a , b # c) be 

f 
l e t v = vec 4 
and w = 0 
v!1 : = (a • b) *(b + c) 
} 

and s t a r t (} be 
f ( 1 , 2, 3) 

I I 
|| t h i s i s the translated version of the above program into SLIM: 
|| I t i s an exact reproduction of the slim compiler output. 
I I 
SSETI P2 JUMP L5 

Sf 
1: SSETI P5 LD P7 STKLD 0 PUSH SSETI P12 LD IP5 PLUS 1 

STKLD IP3 PLUS IP4 STKLD IP2 PLUS IP3 MULT * STORE 
* RTRN 

Sstart 
3: SSETI P2 SRELI 2 LD 1 STKLD 2 STKLD 3 
STKLD 112 CALL 3 RTRN 
5: FINISH 

2: DATA L1 
4: DATA 13 
END 

This example serves to i l l u s t r a t e 

c a l l mechanism; vector a l l o c a t i o n 

i . , The c a l l mechanism 

The prelude before the actual 

for the l i n k s and evaluating the 

saved by the instruction SRELI 2. 

three features i n SLIM: the 

and expression evaluation. 

c a l l involves saving space 

parameters. Linkage space i s 

Here two c e l l s are l e f t to 
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contain the previous stack frame pointer and program counter. 

The three parameters are evaluated and the address of " f " loaded 

into the ACC. At t h i s point the stack i s as in Figure 2.2. 

, T T r J 1 1 1 
I j old | nev |1 |2 |3 | | 
1 ] l i n k s | l i n k s ! | | | j t—— i 1 1 1 j * r 

t I 
1 i 
P S 

Figure 2.2 Stack prior to c a l l 

The effect of the CALL 3 i n s t r u c t i o n can be pictured as in 

Figure 2.3. 

t r 1 , — 1 1 , , 
1 I old J new |1 |2 |3 | | 
I J l i n k s | l i n k s | t i l l 1 1 . 1 i JL J 1 1 

A A 
i I 
1 I 
P S 

Figure 2.3 Stack after c a l l 

Notice how the P pointer has changed and we are now executing 

with a new stack frame. As mentioned previously, the routine 

c a l l e d i s responsible to ensure that S actually points where i t 

should, hence the SSETI P5 i n s t r u c t i o n . This i s necessary since 

one can c a l l routines with fewer parameters than they expect and 

i f the S r e g i s t e r i s not corrected, not only w i l l further l o c a l 

variable a l l o c a t i o n be completely incorrect {within the current 
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procedure) , but any temporaries used w i l l map onto existing 

l o c a l variables and cause havoc. 

i i , l o c a l variable a l l o c a t i o n 

This involves setting variables to their i n i t i a l values and 

also a l l o c a t i n g space. The routine expects i t s environment to 

be as in Figure 2.4, (the numbers on the top denote stack frame 

offsets) 

2 3 4 5 6 
, , 1 j—T—T~1 1 

I |links|a|b|c|v|w| | 
t i I I I 1 I I I L J J I I I I | 1 

* I 
1 I 
1 1 

P s 

Figure 2.4 The routine*s stack environment 

The SSETI instruction adjusts the S r e g i s t e r appropriately. At 

t h i s point o f f s e t 5 and 6 from the current stack frame pointer 

reserve space for the variables v and w except that they have 

not been i n i t i a l i z e d . Since v by d e f i n i t i o n w i l l contain the 

address of a vector of size 5 the LD P7 STKLD 0 sequence 

accomplishes t h i s . w i s i n i t i a l i z e d via the POSH in s t r u c t i o n 

since the previous i n s t r u c t i o n has already loaded zero into the 

accumulator. A l l i s well except that we must indicate somehow 

that we have used 5 more c e l l s for the vector v. SSETI P12 

adjusts S to r e f l e c t t h i s f a c t . 
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i i i . Expression evaluation 

At t h i s time we w i l l concentrate on the sequence of slim 

code that evaluates 

{a+b) *(b*c) 

LD IP3 PLOS IP4 evaluates b+c. However at th i s stage we need to 

save t h i s r e s u l t in some temporary location. The STKLD IP2 PLUS 

IP3 accomplishes t h i s (via STKLD) while at the same time 

evaluating a+b. At t h i s point the accumulator contains a*b and 

the stack contains the following: 

r 1—I 1 
| . . . . . . . . JH|b+c| 

» 
I 
i 
S 

Figure 2.5 
The stack in midst of expression evaluation 

Now a l l that remains to be done i s r e t r i e v e the temporary result 

and multiply i t by the accumulator. MULT * accomplishes th i s 

and leaves the stack how i t was. 

Although t h i s i s not p a r t i c u l a r l y convincing one must admit 

to the r e l a t i v e ease with which temporaries are handled. 

Chapter 3 compares the amount of code generated f o r the above 

expression using a pure stack machine with that generated by the 

SLIM compiler. 
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J * Machine J u s t i f i c a t i o n 

In t h i s chapter some j u s t i f i c a t i o n for the choice of the 

SLIM machine i s outlined. Since a normal defense would consist 

of responding to several guestions regarding the choice of 

particular features, t h i s i s the form t h i s chapter w i l l take! 

3.1 why choose a stack machine architecture? 

We w i l l f i r s t outline a more generalized notion of what we 

mean by a stack machine. By a stack machine we w i l l mean a 

machine i n which a hardware stack plays a central r o l e in 

expression evaluation, storage a l l o c a t i o n and subroutine control 

and linkage. We w i l l not reguire a machine to be a stack 

machine i f and only i f most instructions operate on operands 

held at the top of the stack. 

Software has made use of stacks for a long time but most 

computers lack hardware stacks. As the trend to develop 

software i n higher l e v e l languages develops we are now 

witnessing hardware acknowledgement of t h i s f a c t with the advent 

of hardware stacks. The HP 3000, the Burrroughs machines 

(B1700, B5500, B6700 and 7700) , the Data General Eclipse and 

the PDP-11 to a more limited extent are just some of the 

machines with some form of hardware stack. I t i s i n t h i s 

context of higher l e v e l language use that we w i l l outline some 

of the advantages of stack machines. 

A key concept i n software i s the subroutine. Some people 

s t i l l argue that e f f e c t i v e use of subroutines {i.e., good 
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structure) i s wasteful of time and space. This i s natural since 

as Bulman £24] says, "the subroutine c a l l and return mechanism 

seems to be almost an afterthought i n the architecture of many 

computers." The stack machine nips t h i s argument i n the bud. 

The best mechanism for the subroutine c a l l and return mechanism 

i s to involve the stack to store the return address. The stack 

then contains the record of the nesting of procedure c a l l s and 

one no longer has to worry about saving space for the return 

address. 

This l a s t issue has been treated in many ways and points up 

another advantage of stack architectures. Often t h i s return 

address has been saved i n a regi s t e r or worse s t i l l a l o c a l 

memory location. Both these methods however reguire extra 

software i f one allows recursion or reentrant routines. The 

programmer becomes responsible f o r stashing this return address 

somewhere before the next routine (and in recursion i t i s the 

same one) i s invoked,, Stack architectures remove t h i s concern 

from the programmer and in f a c t i t i s hard not to write 

reentrant programs when using a stack. 

Parameters are treated e f f i c i e n t l y in a stack architecture. 

What better place for them than on the stack? Many other 

methods that specify that space be permanently allocated to each 

subroutine for i t s parameters or that space be shared, again 

s h i f t the burden for the management of t h i s space onto the 

programmer. Stacking the parameters at once removes th i s 

concern from the programmer and also uses the space only when i t 

i s reguired. 
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another key advantage of stack architectures i s that they 

automatically provide l o c a l environments. T y p i c a l l y a 

subprogram refers to only a small subset of a l l i d e n t i f i e r s 

declared i n the whole program. In the BCPL case one only refers 

to l o c a l or global variables {these include s t a t i c s and 

externals) . S i n c e these l o c a l variables are only referenced in 

the procedure in which they are defined i t seems wasteful to 

have space permanently allocated for these variables when the 

procedure i s not active. Allocating t h i s space on the stack i n 

the l o c a l environment also accomplishes something else. Since 

the l o c a l environment i s accessed r e l a t i v e to some environment 

pointer (P i n SLIM's case) addresses for these variables need 

only specify o f f s e t s from t h i s environment pointer. Since these 

offs e t s are t y p i c a l l y small (95% < 10) , in s t r u c t i o n s reguire 

fewer b i t s . Hence program space i s saved. Program space saving 

i s also accomplished by reguiring no i m p l i c i t addresses for 

those variables that are i m p l i c i t . Addresses are of two kinds 

i n a machine: e x p l i c i t - those variables e x p l i c i t l y mentioned by 

the program; and i m p l i c i t - those that arise out of the need for 

some temporary storage location. These are automatically 

provided by stack architectures and their reference just 

involves referencing the top of the stack which requires no 

i m p l i c i t address b i t s . Once aqain code i s compacted. Global 

variable access also requires fewer b i t s since they are accessed 

r e l a t i v e to some global environment pointer. 

Another advantage of stack architectures i s that they 

exhibit the difference between program and task. Using 
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Organick*s [26] terminology, an incarnation of a task i s a 

combination of a time invariant algorithm(the code) and the time 

varying record of execution. The stack embodies t h i s record and 

hence a task can be seen as code plus stack, Processes then can 

be e a s i l y conceived of as some code plus some stack area for the 

par t i c u l a r process. Process switching then only involves 

transfer of control and the provision of some space to contain 

the time varying record of execution. 

Interrupt handling can also be treated e f f e c t i v e l y as 

unexpected procedure c a l l s . Since we know the l i m i t of the 

stack the interrupt can be serviced transparent to whatever was 

executing at the time. 

3.2 Why choose a single accumulator? 

Simplicity i s the main reason, A single accumulator i s a l l 

one r e a l l y needs. I n b u i l t registers l i k e the P, S and G 

reg i s t e r s provide the index functions that one normally i s 

provided with except that the P and G are automatically 

maintained. In an environment of short procedures Tanenbaum [2] 

concludes "the register sets provided by a t h i r d generation 

machine are of l i t t l e value". They can be used for intermediate 

r e s u l t s but with the stack mechanism (see chapter 2) one 

reg i s t e r i s s u f f i c i e n t . In Tanenbaum's environment where one 

out of every four statements i s a procedure c a l l the 

save-restore overhead makes i t i n e f f i c i e n t to use reg i s t e r s to 

hold l o c a l variables. When one considers what i s involved i n 
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process switching the smaller the number of states associated 

with a process, the quicker and easier i t becomes to implement 

process switching. Having considered why we choose to minimize 

the number of reg i s t e r s one perhaps wonders why we did not go 

the stack machine route completely and eliminate the ACC 

altogether. This w i l l be addressed in section 3.4., but perhaps 

we can outline an equivalence of SLIM and an addressable top of 

stack location on a pure stack machine. Consider the following 

expression and i t s equivalent evaluation by three machines: 

SLIM, a pure stack machine and a modified stack machine as 

above. 

(A + B) * (C •* D) 

Pure Stack SLIM Modified Stack 

LOAD A LD A LOAD A 

LOAD B PLUS B PLUS B 

PLUS STKLD C LOAD C 

LOAD C PLUS D PLUS D 

LOAD D MULT * MULT 

PLUS 

TIMES 

The modified stack machine can be thought of as a machine 

with a f l o a t i n g ACC i n SLIM's sense. This ACC i s actually the 

current top of stack. Comparing th i s and SLIM code one notices 
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the s i m i l a r i t y except that there are two versions of each diadic 

operator i n the case of the modified stack machine: one that 

requires an operand (e.g., PLUS B S PLUS D) and one that takes 

both i t s operands from the stack (e.g., MULT) . This introduces 

a further complexity i n t o the machine when one has 2 versions of 

each diadic operator. With 17 diadic operators t h i s i s quite 

s i g n i f i c a n t since these extra operators have to be encoded. 

This might require extra b i t s i n the opcode f i e l d for the 

in s t r u c t i o n leaving l e s s space to encode the operands. SLIM 

however only has one extra operator (from a stack machine's 

viewpoint) - STKLD. Another factor that favours the single ACC 

machine i s the necessity of handling environments that return 

values. The two par t i c u l a r instances of t h i s i n BCPL are the 

function and the valof block. In both cases some resu l t 

computed at the top of the current stack frame(in a pure stack 

or modified stack machine) must be passed to the preceeding 

environment while at the same time collapsing the present 

environment. In the function case t h i s reguires an extra 

operator FNHN to do precisely t h i s . ; The valof block uses the 

RSTACK operator. This unecessarily adds to the complexity of 

the machine.SLIM only needs to return any value i n the 

accumulator and hence requires no extra operators. 

3.3 Why have an S regist e r ? 

This register always points to the top of the stack and 

hence indicates the next possible unused stack location. There 
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are three main reasons why t h i s register i s made e x p l i c i t . 

Interrupts can be cleanly handled since the S register 

always indicates where a new stack frame could begin. Hence the 

interrupt hardware need only f i l l i n the l i n k s as i n a normal 

c a l l s t a r t i n g at where the S register points. The K register 

for the PICA-B machine [25] functions in much the same way. 

Dynamic storage a l l o c a t i o n i s another major reason why one 

needs the s register. I t i s when one does not know the size of 

the current stack frame (e.g., with dynamic vectors) that one 

needs to be able to manipulate the S register i n a r e l a t i v e 

manner. One cannot just use offs e t s from P since these off s e t s 

are only known at run time. The CALL instruction i s a r e l a t i v e 

type of in s t r u c t i o n i n the sense that the "n" s p e c i f i e s the 

number of parameters passed as opposed to the corresponding 

INTCODE ins t r u c t i o n K d where the d s p e c i f i e s the siz e of the 

c a l l e r s stack frame. Standard BCPL does not allow f o r dynamic 

storage a l l o c a t i o n (neither does the SLIM version of the 

compiler) but f o r the ease with which this could be achieved we 

present a BCPL fragment and the corresponding SLIM code. From 

t h i s , one w i l l hopefully appreciate the usefulness of the S 

re g i s t e r . 
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Extended BCPL., 

l e t v1 = vec <expr1> 
and v2 = vec <expr2> 
and c = 0 

SLIH code. 

SSETI Pn 
SGET 
STORE Pv1 

code to 
evaluate 
<expr1> 
• 
SREL 
SGET 
STORE Pv2 

code to 
evaluate 
<expr2> 

SREL 
LD 0 
STORE PC 

set S to point above space f o r vars 
get t h i s value i n the accumulator 
make v1 point to i t s space 

adjust S by the value of <expr1> 

make v2 point to i t s space 

make S point to free space 

i n i t i a l i z e c 

Notice that t h i s code sequence d i f f e r s from the example in 

chapter 2 since there we knew sizes e x p l i c i t l y at compile time 

and hence could compile more e f f i c i e n t code. 

A t h i r d reason i s that the S reqi s t e r i s the means of 

generating and r e t r i e v i n g i m p l i c i t variables that are reguired. 

The SLIM operators POSH & STKLD and the operand * are the means 

of r e a l i z i n g t h i s very valuable feature. 
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3.4 Why single address? 

When one's prime objective i n the design of a simple 

machine i s that programs be represented e f f i c i e n t l y , 

considerable thought must be given to the number of addresses an 

ins t r u c t i o n should contain. The greater the number of addresses 

the larger the in s t r u c t i o n size and hence a larger t o t a l program 

size i s more l i k e l y . The number of addresses per inst r u c t i o n 

can vary from three to none i n a pure stack machine, As Ibbett 

et e l . f27] state there are a number of c o n f l i c t i n g virtues 

related to the various p o s s i b i l i t i e s . "Simple operations such 

as the sett i n g and incrementing of variables are more concisely 

described by two and three address schemes. Evaluations of 

longer expressions are more concisely defined by zero address 

and one address systems, however, because the address i n which 

the res u l t i s accumulating i s implied." 

By considering some sample expressions a choice was made to 

u t i l i z e the one address scheme. This i s made possible by the 

provision of the STKLD in s t r u c t i o n which f i r s t stacks the 

accumulator contents, together with the * operand which provides 

a way to access stacked p a r t i a l results.- This maintains the 

valuable features of a stack machine while providing more 

compact code. In the following two examples two measures are 

used: the number of words in the machine independent sense where 

there i s one ins t r u c t i o n per word; the number of bytes in the 

more applied sense. A comparison of the t o t a l sizes 

demonstrates the sup e r i o r i t y of the one address scheme. 
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EXAMPLE 1. Comparison of SLIM and a stack machine 

<A + B) *(C + D) 

Stack machine words bytes SLIM words bytes 

LOAD A 

LOAD B 

ELDS 

LD C 

LOAD D 

PLUS 

MOLT 

Total: 

2 

2 

1 

2 

2 

1 

1 

11 

LD A 

PLUS B 

STKLD C 

PLUS D 

MULT * 

Tot a l : 

2 

2 

2 

2 

1 

9 

EXAMPLE 2. Comparison of SLIM and a stack machine 
A + B 

Stack machine words bytes SLIM words bytes 

LOAD A 1 2 LD A 1 2 

LOAD B 1 2 PLUS B 1 2 

PLUS 1 1 TOT&L: 2 H 

TOTAL: 3 5 
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Haying i l l u s t r a t e d a simple comparison above the rest of t h i s 

thesis w i l l attempt to compare the SLIM machine with other 

exis t i n g architectures. We w i l l f i r s t discuss the issue of what 

measure to use and then demonstrate that the f i r s t objective in 

the design of SLIM has been achieved. 
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2» Measures and r e s u l t s 
4.1 Ideal Program representation 

Be are now at the stage where you may be asking - so what? 

The . context of the design has been sketched and the machine 

described and verbally j u s t i f i e d . But how can we evaluate t h i s 

architecture? This i s what concerns us in t h i s chapter. He 

w i l l examine some general aspects of measures, describe three 

s p e c i f i c a l l y and then proceed to use the chosen measure to 

compare our architecture with two other architectures. 

What should be included i n a measure? One obvious 

component i s that the measure be objective; something that can 

be precisely quantified. Unfortunately non-quantitative 

measures generally tend to receive l i t t l e merit. Somehow one 

feels that the measure should also incorporate the space time 

product. Space qenerally meaning proqram size, and time beinq 

some measure of hardware e f f i c i e n c y . However t h i s space 

component could j u s t i f i a b l y include items such as compiler size, 

s i z e of the runtime support etc. Somewhere one has to draw the 

l i m i t . A more imporatnt issue i s concerned with whether one can 

evaluate architectures just on the basis of t h e i r desiqn without 

any reqard for what use w i l l be made of them. Or more 

prec i s e l y : Can architectures be evaluated i n a proqram 

independent fashion? 

In the next section we w i l l consider two not s t r i c t l y 

proqram independent measures and one s t r i c t l y proqram dependent 

measure, . 
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4.2 Measures 

35 

i . Flynn's measures 

Flynn [ 2 8 3 compares an architecture against what he takes 

to be an ultimately simple, f u l l y e x p l i c i t architecture. As he 

states: "In a simple architecture nothing i s implied - no 

registers or counters are i n v i s i b l e to the problem state 

programmer., Each i n s t r u c t i o n contains an operation, the f u l l 

generalized address s p e c i f i c a t i o n (allowing i f necessary 

multiple l e v e l s of i n d i r e c t i o n through tables etc.) f o r both 

source operands, a re s u l t operand, and a test of the r e s u l t 

which selects an address for the next in s t r u c t i o n " . 

He then c l a s s i f i e s instructions into three broad 
categories. 

i3 instructions are memory p a r t i t i o n movement instructions such 

as the LOAD and STORE inst r u c t i o n s which move data items within 

a storage hierarchy. 

2 instructions are procedural in s t r u c t i o n s which perform 

functions associated with i n s t r u c t i o n seguencing, i . e . , TEST, 

BRANCH, COMPARE etc., but perform no transformation on data. 

F instructions perform computational functions i n that they 

operate on data. They include arithmetic operations of a l l 

types, as well as l o g i c a l and s h i f t i n g operations 

Tc Flynn M and P instructions are overhead i n s t r u c t i o n s whereas 

F type instructions are the only ones that do any work. 

Therefore the three r a t i o s to measure th i s overhead are: 
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1. M r a t i o : ration of M to F instructions 

2. P r a t i o : r a t i o of P to F instructions 

3. NF r a t i o : r a t i o of the sum of M and P instructions to F 

instructions 

An i d e a l machine would have M = P = NF = 0. Flynn uses these 

r a t i o s to evaluate the IBM 7090, system 360 and the PDP 10. 

i i . Instruction mixes 

This i s the frequency d i s t r i b u t i o n of the types of 

instructions executed durinq the processinq of a workload. The 

best known published example i s the Gibson mix., Gibson obtained 

frequencies i n t h i s mix from an analysis of the use of 

instructions i n technical and s c i e n t i f i c applications i n IBM 

7090 i n s t a l l a t i o n s . Flynn has obtained a mix appropriate to 

system 360 i n s t a l l a t i o n s . These mixes are used to evaluate 

architectures primarily by providinq time measures. The 

frequency of inst r u c t i o n use i n the pa r t i c u l a r class i s 

multiplied by the average i n s t r u c t i o n execution time i n t h i s 

c l a s s and these summed for a l l classes i n the mix. The result 

of average instruction execution time i s taken to be a measure 

of the architecture and used for comparison purposes. 

i i i . Program representation s i z e 

Given a program or a representative set of proqrams i n some 

hiqh l e v e l lanquaqe, one translates these proqrams to machine 

lanquaqe proqrams f o r various machines., The space required by 
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the object programs i s used for comparison among the various 

machines. The smaller the space reguired f o r the code the 

better the machine architecture according to t h i s measure. This 

measure i s used by Tanenbaum and i s the one we w i l l use and 

j u s t i f y shortly. 

At t h i s point one needs to recognize that in some hiqh 

l e v e l language translations the machine code contains a large 

number of i m p l i c i t as opposed to e x p l i c i t subroutine c a l l s to 

b u i l t i n l i b r a r y functions. E x p l i c i t c a l l s to l i b r a r y functions 

are those which the program d i r e c t l y s p e c i f i e s . As a result the 

machine code may be small but the percentage of i m p l i c i t 

subroutine c a l l s may be high. What t h i s a c t ually points out i s 

that the code for the b u i l t in l i b r a r y functions i s the 

microcode for the instructions reguired by the higher l e v e l 

language. This r e f l e c t s the fact that the machine at the 

current l e v e l i s not suited to the particular language. For 

t h i s same measure to be used in cases l i k e t h i s , each i m p l i c i t 

l i b r a r y c a l l should count for the number of words i n the code of 

that l i b r a r y c a l l , not just as one subroutine c a l l . 

We w i l l now b r i e f l y comment on these measures i n l i g h t of the 

guestion raised previously: Can architectures be evaluated in a 

program independent fashion? The underlying issue here i s to 

guage how e f f e c t i v e l y the machine accomplishes i t s purpose. By 

machine we mean a configuration of the micro architecture that 

r e a l i z e s an inst r u c t i o n set. In many cases t h i s configuration 

i s hardwired but in others (e.g., the B1700) one can dynamically 
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reconfigure the micro architecture. By purpose we mean how the 

machine f a c i l i t a t e s what people want to do. This of course i s 

accomplished at a number of l e v e l s : modes of expression 

available ( i . e . , programming languages); software packages; 

operating systems; programming environments (batch or 

timeshared) etc. What we are more concerned with here, i s the 

primary l e v e l concerning modes of expression. What people want 

to do i s most often expressed algorithmically i n some high l e v e l 

language. Thus programs written in a high l e v e l language are 

the primary vehicle of conveyinq people's intent to the machine. 

Therefore we w i l l assume that programs i n some programming 

language or languages are a good indication of the use of a 

machine. Bote that we are not tying the expression of 

algorithms to one p a r t i c u l a r language. Rather we are suggesting 

that much has been learned about algorithms and ways to 

represent them i n programming languages. This makes programs i n 

a given class of languages representative of what people want to 

do, and hence machines should be evaluated with respect to a 

given class of languages. From th i s perspective the use of the 

machine i s the common denominator i n an evaluation not some 

general notions of machine design. We are now l e f t with the 

guestion of how to e f f e c t i v e l y and precisely measure how well 

mapped the machine i s . By well mapped match we mean how 

concisely transformations (or state transitions) in the high 

l e v e l language are represented i n the lower l e v e l machine. The 

more concise t h i s representation the better mapped the machine. 

This i s the bias we have i n choosing our measure of program 
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representation s i z e ( i . e , code space). 

Flynn's measures c l e a r l y emphasize the functional 

c h a r a c t e r i s t i c s of an architecture. He attempts to compare 

archtectures s o l e l y from the functional a r c h i t e c t u r a l viewpoint. 

He i s not s t r i c t y comparing architectures in a program dependent 

manner, one however could possibly argue that his simple 

machine i s actually the most optimal representation f o r programs 

provided one accepts his d e f i n i t i o n of optimality. ( i . e . no 

overhead) This measure however i s more concerned with validating 

or invalidating the following thesis: Machine design has strived 

towards decreasing memory references, (e.g., of instructions and 

t h e i r operands) but t h i s has introduced considerable overhead. 

This overhead i s a result of making several e x p l i c i t functions 

(in Flynn's simple machine case) i m p l i c i t . Two cases of t h i s 

overhead are: 

i . The treatment of programs as l i n e a r strings and consequently 

maintaining the proqram counter i m p l i c i t l y . 

i i . The introduction of r e g i s t e r s to hold operands in l o c a l 

store and not i n main memory. 

The former case has introduced the whole ranqe of branch 

instructions whereas the l a t t e r has introduced the Store and 

Load variations. After makinq some measurements of various 

computer architectures Flynn concludes that in fact the overhead 

i s considerable. As we can see, the emphasis i n Flynn's 

measures of measuring th i s overhead i s not d i r e c t l y concerned 

with how well mapped the machine i s . Therefore we w i l l not use 

i t . 
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Instruction mixes b a s i c a l l y are a test of hardware. After 

one has derived a suitable mix one i s generally interested in 

average i n s t r u c t i o n execution time or some such time oriented 

measure. Although t h i s i s useful i t subtly incorporates the 

variables of the technology used and the encoding of 

i n s t r u c t i o n s . This l a t t e r variable greatly a f f e c t s the 

complexity of the microcode and hence the speed. (We assume a 

microcoded implementation of an instruction set.) These 

variables do not r e a l l y give an indication of how well mapped 

the machine i s . , 

Even a f a s t average i n s t r u c t i o n execution time does not 

necessarily guarantee anything. I f a l l one has i s f a s t 

i n s t r u c t i o n s that do nothing, the increase in instructions 

needed to dc something useful w i l l d e f i n i t e l y detract from any 

advantage speed might have i n i t i a l l y provided. In other words 

the power of an i n s t r u c t i o n i s not necessarily taken into 

account. This power i s representative i n some sense of what you 

would l i k e to do and since i n s t r u c t i o n mixes measure t h i s poorly 

we w i l l not use t h i s measure either. 

Also because d i f f e r e n t machines (and hence instruction 

sets) produce d i f f e r e n t user c h a r a c t e r i s t i c s , i t i s not c l e a r 

that the same in s t r u c t i o n mix i s applicable to a l l machines 

under consideration. 

We w i l l now outline the reasons for our choice of the size 

of programs as our measure. Small representation of programs 

( i . e . , code space) c l e a r l y r e f l e c t s a well mapped machine., If 

some other machine reguires more code space for the same program 
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then t h i s i s i n d i c a t i v e of the need for more state t r a n s i t i o n s 

i n the machine than actually reguired by the program. In other 

words the machine i s p a r t i a l l y mapped. In our s p e c i f i c case we 

wish to show that by t h i s measure for the language BCPL, the 

SLIM machine i s a well mapped machine, well suited to BCPL. 

Secondly si z e and space are intertwined. The smaller the 

program the faster the interpretation i s l i k e l y to be. Small 

representation of programs also has a third more p r a c t i c a l 

advantage. In t h i s age of mini and micro computers the a b i l i t y 

to run large programs i s a great advantage with the limi t e d 

memory these systems usually provide. Fourthly a decrease i n 

program size can lead to an increase in the degree of 

multiprogramming and po t e n t i a l l y decrease the page f a u l t rate. 

I t i s for this combination of a r c h i t e c t u r a l and p r a c t i c a l 

considerations that we use space as the measure for comparison 

in the following sections. 

4.3 Results 

Now having established our measure for the purpose of 

comparison we w i l l proceed to compare the SLIM machine against 

two architectures. These are OCODE (see f 211) and EM-1 (see 

[2]) . These machines w i l l not be described but one i s referred 

to t h e i r adeguate description elsewhere. 

i . OCODE versus SLIM - round 1 

OCODE i s the c l a s s i c a l f i r s t step i n the tran s l a t i o n of 

BCPL programs, From the Applicative Expression Tree (AE tree) 



Chapter Four 42 

representation of the BCPL program OCODE i s generated. OCODE i s 

a stack machine and t h i s i s one of the reasons why we have 

chosen i t as one of the machines for comparison. In some sense 

i t i s representative of stack machines for which there i s wide 

respect. The second reason for choosing OCODE i s that i t was 

especially designed for the tra n s l a t i o n of BCPL., 

The procedure for comparison has involved translating 

approximately 8500 l i n e s of BCPL source into OCODE and SLIM 

code. In f a c t BCPL i s not translated into OCODE but into BCODE. 

The only difference between the two i s that BCODE i s intended to 

be used as a re a l machine and so OCODE instructions are encoded 

and object modules generated. BCODE i s the work of a l o c a l , 

unpublished project at the University of B r i t i s h Columbia. 

One might object here that encoding has not been mentioned. 

At t h i s l e v e l of comparison, instructions that take one word in 

BCODE occupy the same in SLIM. Double word instructions w i l l 

occur more frequently f o r SLIM since there i s less space for 

encoding operands. Therefore for the measure of code sizes 

encoding can be treated as a constant in t h i s case and not enter 

into the comparisons. 

Two measures are used: number of instructions and code 

s i z e s . The following table describes the programs used and 

gives the r a t i o s of BCODE to SLIM for both measures. 
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PROGRAM INSTRUCTIONS CODE SIZE 
Intcode interpreter 1.18 1.20 

(2 sections) 1. 22 1. 17 
Intcode assembler 1.09 1. 13 

(3 sections) 1.18 1. 15 
1. 12 1.10 

BCPL compiler 1.14 1. 10 
(6 sections) 1.11 1. 12 

1. 12 1. 10 
1. 10 1. 10 
1.05 1. 15 
1. 14 1.20 

OCODE to 370 assembler 1.15 1. 15 
(5 sections) 1. 15 1.11 

1. 14 1.11 
1. 18 1. 12 
1. 13 1.11 

Text editor 1.03 1.06 
(4 sections) 1. 06 1. 06 

1.05 1.05 
1.06 1.04 

Average: 1. 12 1. 12 

TABLE I. OCODE and SLIM comparison 

As can be seen there i s a twelve percent gain on the average for 

the SLIM machine using t h i s measure. 

i i . EM-1 versus SLIM - round 2 

This machine i s a recent attempt to provide a machine that 

w i l l provide very compact representation for a large c l a s s of 

languages. For example ALGOL 60, ALGOL - 68 , Pascal, XPL, 

BCPL, SAL etc. 

In Tanenbaum»s paper [2] he compares four programs and 

the i r code sizes on the EM-1, PDP-11 and Cyber. He gets r a t i o s 

as low as 1.5 with the PDP-11 and as high as 6.3 on the Cyber. 
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Thus t h i s machine i s well suited as a comparison with SLIM. In 

order to perform the comparison we must f i r s t provide a more 

compact encoding for SLIM to match EM-1*s encoding. The 

encoding i s presented i n Appendix I. Appendix II contains the 

BCPL source for three programs used for the comparison.. Since 

there i s no BCPL to EM-1 compiler, equivalent C programs were 

provided and these too are included. The following table 

presents the r e s u l t s . 

OPTIMIZED EM-1 (bytes) SLIM (bytes) 

Hanoi 46 41 

Bubblesort 80 81 

Expression 20 2 7 

TABLE I I . Optimized EM-1 and SLIM comparison 

The three programs were chosen to represent 3 classes of 

program : procedure c a l l i n g (towers of hanoi) ; general loop 

mechanisms (bubblesort) and expression evaluation .. Before one 

concludes too much here, where SLIM does not outperform EM-1 

dramatically we should be aware of a number of c h a r a c t e r i s t i c s 

of "optimized" EM-1 code. It i s very closely t i e d to language 
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directed machine design, Two examples of t h i s optimization 

fellow: 

i ) Due to a f a i r amount of incrementing by 1 i n higher l e v e l 

languages EM-1 provides an increment operator. Since SLIM does 

not, the eguivalent SLIM code (LD IPn PLUS 1 STORE Pn) occupies 

4 bytes as opposed to 1. I f t h i s operator were provided then 

the 3 bytes we would save i n SLIM code f o r the Bubblesort 

routine would make SLIM code more compact than EH-1 code i n t h i s 

case. 

i i ) Optimized EM-1 code recognizes consecutive leads and 

replaces them by a single LOAD DODBLE in s t r u c t i o n . For example, 

instead of generating LOAD A LOAD B i t generates a LOAD DOUBLE 

A. In our expression program there are 5 cases where th i s 

occurs: (a+b) , (c+d) , c+d, (a+b) and a*b.r If t h i s procedure 

had been written with the order i n these expressions reversed 

then the resu l t s would have been s i g n i f i c a n t l y d i f f e r e n t . One 

need only note that 24 bytes are reguired for a pure stack 

machine for the expression evaluation alone and t h i s does not 

take into account the procedure entry and exit. 

The following table presents the resu l t s assuming the lack 

of the above two optimizations for EM-1 and also that procedure 

entry and exit occupy three bytes as i n SLIM. 
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EM-1 (bytes) SLIM (bytes) 

Hanoi 46 41 

Bubblesort 83 81 

Expression 27 27 

TABLE II I . EM-1 and SLIM comparison 

Despite the lack of any EM-1 type optimization i n SLIM the 

machines compare very favourably. , We now present our 

observations and directions for further research. 
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5. Conclusions and directions for further research 

although t h i s thesis has presented the design of an 

intermediate machine suited to a particular high l e v e l language, 

not much has been said about the various approaches to 

ins t r u c t i o n set design. We w i l l now outline some approaches to 

instr u c t i o n set design and then make some comments on the 

part i c u l a r approach used i n t h i s thesis. 

Lipovski and Doty f 30 ] describe three schools of thought on 

instr u c t i o n set design. The oldest approach i s to use 

s t a t i s t i c s based on coding experience with an older 

architecture, to a s s i s t i n constructing a more refined machine. 

Instructions that are frequently used are made fast e r and 

perhaps more f l e x i b l e . S t a t i s t i c a l l y s i g n i f i c a n t i n s t r u c t i o n 

sequences are made into primitive operations. The second 

approach i s to choose a widely used high l e v e l lanquaqe. The 

primitive operations necessary to execute t h i s hiqh l e v e l 

languaqe are i d e n t i f i e d , and then r e a l i z e d i n the inst r u c t i o n 

set. The t h i r d approach i d e n t i f i e s a ranqe of problems to be 

solved using the computer and a set of c h a r a c t e r i s t i c s of the 

technology to be used to r e a l i z e the machine. The problems to 

be solved are treated as 'axioms 1, (premises) and the decisions 

leading up to the design of the architecture are treated as 

'theorems* (implications). The 'proof* gives a l l the reasons 

for the s p e c i f i c design decision (implication) in terms of the 

problems to be solved (premises) and e a r l i e r implications. 

Clearly the approach used i n the design of SLIM i s the hiqh 

l e v e l language approach. These approaches a l l have the i r pros 
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and cons. 

The s t a t i s t i c a l approach generally assures some form of 

compatibility between between the old and the more refined 

machine. This i s convenient corporate policy but can tend to 

entrench e x i s t i n g patterns of operation and insight and not 

allow for new innovations. The high l e v e l language approach i s 

more suited to the more common forms of expression but i s 

generally applied to one s p e c i f i c high l e v e l language. Since 

most computers run more than one language, what i s optimal for 

one language may not be optimal for another.. There are two ways 

to overcome t h i s problem. One i s to allow f o r various 

microcoded intermediate languages as i n the Burroughs B1700, 

The other i s to design i n s t r u c t i o n sets that are well suited to 

a number of languages. The EM-1 machine i s one signpost i n t h i s 

d i r e c t i o n . The premise-implication approach requires c a r e f u l 

thought for a l l design decisions and hence makes i t d i f f i c u l t to 

write the description. However this approach perhaps shows more 

cl e a r l y what the system i s intended f o r and what i t s l i m i t a t i o n s 

are. 

8e w i l l now make some conclusions regarding the methodology 

used in the design of SLIM and the results obtained. The 

results c l e a r l y show that the objectives governing the design of 

SLIM have been achieved. Using the measure of program 

representation s i z e SLIM compares very favourably with a number 

of architectures. SLIM i s a d e f i n i t e improvement over OCODE and 

i s approximately equivalent to the EM-1 machine. although no 

mention has been made of INTCODE, one automatically can i n f e r 
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from the SLIM versus OCODE r e s u l t s t h a t the SLIM r e p r e s e n t a t i o n 

c f programs i s much s m a l l e r than t h e i r INTCODE c o u n t e r p a r t s . 

The o b j e c t i v e of s i m p l i c i t y i n machine a r c h i t e c t u r e a l s o has 

been r e a l i z e d . The achievement of t h e s e o b j e c t i v e s show t h a t 

u s e f u l work can be done w i t h i n t h i s p a r t i c u l a r approach to 

i n s t r u c t i o n set design., Regarding the approach i t s e l f i t i s 

d i f f i c u l t t o be s p e c i f i c . Although we have argued elsewhere f o r 

the importance of t h i s approach i t i s d i f f i c u l t t c provide 

handles t o a s s i s t i n s y n t h e s i z i n g the o p e r a t i o n s necessary to 

execute high l e v e l languages. One not only has to determine 

o p e r a t i o n s but one must f i r s t of a l l determine the a r c h i t e c t u r a l 

b u i l d i n g b l o c k s on which these o p e r a t i o n s w i l l operate. There 

are a number of accepted b u i l d i n g b l o c k s i n e x i s t e n c e , f o r 

example the importance of s t a c k s i n environment a l l o c a t i o n , 

procedure c a l l i n g and e x p r e s s i o n e v a l u a t i o n . T h i s i s one area 

of f u r t h e r r e s e a r c h where s i m i l a r work with other languages 

might d i s t i l l other a r c h i t e c t u r a l b u i l d i n g blocks. T h i s i n t u r n 

w i l l help to i d e n t i f y the p r i m i t i v e o p e r a t i o n s necessary to 

execute high l e v e l languages. 

Another approach we have not mentioned t h a t d i f f e r s from 

t h a t of i n s t r u c t i o n set design i s d i r e c t e x e cution of high l e v e l 

languages, In t h i s approach the machine i n s t r u c t i o n s e t becomes 

the o p e r a t i o n s of the high l e v e l language. T h i s approach a l s o 

has a number of pros and cons. I t e l i m i n a t e s the c o m p i l a t i o n 

process, speeds up execution of programs and g e n e r a l l y provides 

g r e a t e r program d e n s i t y . , On the other hand the s i z e of the 

microprogram t o i n t e r p r e t the high l e v e l language i n s t r u c t i o n s 
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w i l l be large and very complex . With current technology and 

costs the construction of such a machine would be p r o h i b i t i v e l y 

expensive. The machine also by d e f i n i t i o n w i l l be very s p e c i a l 

purpose. Since users may want to use other languages he may 

f i n d i t awkward to compile them into the base high l e v e l 

language. The representation of these other high l e v e l language 

programs i n the base language may also be large and their 

execution slow. More importantly, t h i s approach depends on how 

suited the language i s to in t e r p r e t i v e execution. In t h i s mode 

of execution each statement i s decoded just before i t i s used. 

BCPL i n i t s pure source form i s d e f i n i t e l y not suited to th i s 

approach. For example a procedure c a l l that involves a 

procedure that i s defined 3000 l i n e s further on in the source, 

cannot be immediately executed. For BCPL to be executed i n th i s 

manner some form of intermediate program representation would be 

necessary. This borders c l o s e l y on the approach we have used. 

Two areas of research ari s e out of considering t h i s approach as 

i t applies to languages l i k e BCPL, One i s to develop suitable 

high l e v e l intermediate representations that can be d i r e c t l y 

executed. The other i s to develop language design p r i n c i p l e s 

that w i l l provide languages that can be d i r e c t l y executed, 

The f i n a l issue that concerns us i s the development of 

suitable measures for architecture comparisons. The choice of 

methodology i n in s t r u c t i o n set design c l e a r l y biases the choice 

of measure. For example, those adopting the s t a t i s t i c a l 

approach might be more interested in time oriented measures. 

However we have argued e a r l i e r for the importance of the high 
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l e v e l language approach to i n s t r u c t i o n set design and therefore 

conclude that our measure of program representation size i s an 

important component of any measure that i s devised. Of course 

our measure has a number of def i c i e n c i e s . I t i s dependent on 

the e f f i c i e n c y of the t r a n s l a t i o n section of the compiler used. 

Comparisons are meaningful only i f the translation sections of 

the various compilers use the same optimizations. This i s 

sometimes d i f f i c u l t to achieve. Program representation size i s 

also just one component of a measure. Though th i s measure has 

been useful f o r our comparison purposes, t h i s subject of 

measures for evaluation purposes reguires further work and study 

to produce a more comprehensive measure. 
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Towards a single byte encoding 
This appendix contains the encoding breakdown for SLIM 

which f i t s the opcode i n cne byte and the operand ( i f any) i n 
the following byte. Double word instructions would have 255 i n 
the f i r s t byte which would singnify that the following three 
bytes contain the instruction - 1 for the opcode and 2 f o r the 
operands since t h i s i s a double word i n s t r u c t i o n . 

He w i l l f i r s t examine the number of operands reguired for 
the various operators and outline the d i s t r i b u t i o n of opcodes. 
Since we only have a one byte opcode many operators may have 
nine encodings to account f o r the nine possible operands. 

OPERAND TYPE NUMBER OF VARIANTS (SYMBOLIC FORM) 
global 2 IG, G 
l o c a l 2 IP, P 
s t a t i c 2 IL, L 
top of stack 1 * 
r e l a t i v e address 2 IR, R 

TOTAL: 9 

OPERATORS THAT COULD TAKE ALL NINE VARIATIONS 
mult, div, plus, minus, 
eg, ne. Is, gr, 
l e , ge, l s h i f t , r s h i f t , 
logand, logor, exor, Id, 
st k i d , store, rem, egv 

SUB TOTAL: 20x9 = 180 
OPERATORS THAT DO NOT TAKE ALL NINE VARIATIONS 
s s e t i - absolute and stack r e l a t i v e (2) - 3 
s x e l i - absolute and stack r e l a t i v e (2) - 3 
c a l l - absolute - 1 
jump - r e l a t i v e (2) , s t a t i c (2) - 4 
j t - " - 4 
j f - - 4 
switchon - absolute - 1 
slctap, s l c t s t - 2 

SUB-TOTAL: 22 
OPERATORS THAT ONLY TAKE ONE VARIATION 
goto, neg, not, deref, push, pop, 
sset, sget, s r e l , f i n i s h , r t r n . 
true, f a l s e 

SUB-TOTAL: 13 
SPECIAL ENCODING 
LD IPn 1<= n «= 10 10 
STKLD IPn " 10 
STORE Pn " 10 
CALL n 0<= n <= 5 6 

TOTAL: 180+22+13+36 = 251 
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Three equivalent BCPL and C programs 

|| Check procedure c a l l i n g mechanism. The c l a s s i c towers of hanoi. 

global { Sritef:50 } 
l e t Hanoi{ n, s, i , d) be 

{ 
i f n = 0 then return 
Hanoi{ n-1, s, d, i) 
I r i t e f <"Move %N from SIC to %C*N«, n, s, d) 
Hanoi{ n-1, i , s, d) 
} 

|| Bubblesort. General test of loop mechanisms 

manifest { falsevalue = 0 ; truevalue = 1 } 
l e t Bubblesort(a, n) be 

{ 
l e t sorted = falsevalue 
and LastValue = n 
and temp = 0 

r 
LastValue := LastValue - 1 
sorted := truevalue 
f o r j = 0 to LastValue do 

i f a!j < a! (j + 1) 
then 

( 
temp := a!j 
a!j := a! (j+1) 
a! (j + 1) := temp 
sorted := falsevalue 
} 

} repeatwhile ( sorted = falsevalue) | { LastValue -«= 1 ) 
} 

|| Expression evaluation. 

l e t StupidProgram ( a, b, c, d) be 
i 
a := (a+b)*(c+d) 
b := c+d 
c := (a+b)/d 
d := a+b+c 
} 
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| | and now for the C version of each of these three programs 

/* towers of hanoi * / 

hanoitjn, s , i , d) 
char s, i , d ; 
{ 

i f ( n == 0 ) return ; 
hanoi( n-1, s , d, i) ; 
printf("move %d from %c to %c n", n, s, d) ; 
hanoi (n-1, i , s, d) ; 

} 

# 
#define fa l se 0 
•define true 1 
/* simple bubblesort routine * / 

bubblesort{ a, n) 
i n t a[ ] ; 
{ 

i n t sor ted, l a s t va lue , temp, j ; 
sorted = fa l se ; 
las tva lue = n ; 
do [ 

las tva lue = las tva lue -1 ; 
sorted = true ; 
for { j = 0 ; j <= las tva lue ; j = i + 1 ) 

i f ( a[ j ] < a[ j*1] ) { 
temp - a[ j ] ; 
a[ J3 = a [ j*1] ; 
aCj+1] = temp ; 
sorted = fa l se ; 

} 

} while ( ( sorted =• = fa l se ) | | { las tva lue -»•= 1 } ) ; 
} 

/* a stupid program that evaluates expressions * / 

stupidprogram( a, b, c , d) 
I 

a = (a+b)*{c+d) ; 
b = c + d ; 
c = (a+b)/d ; 
d = a+b+c ; 



Appendix I I I 57 

SLIH system software 

T h i s appendix c o n t a i n s a b r i e f d e s c r i p t i o n of the SLIM 

system software. T h i s i n c l u d e s : 

i . a BCPL t o SLIM compiler 

i i . a SLIM assembler 

i i i . a SLIM loader and i n t e r p r e t e r 

T h i s a l l o w s one t o compile and run BCPL proqrams. We w i l l 

d e s c r i b e t h i s software b r i e f l y and then i l l u s t r a t e the whole 

system on the e t e r n a l towers of hanoi! 

The c o m p i l e r i s as expected. I t allows some Vancouver 

ext e n s i o n s (e.g. f o r op e r a t o r s l i k e *%*, •+:=' etc.) , The 

assembler generates l o a d modules and a l s o performs compaction 

making jumps and r e f e r e n c e s r e l a t i v e i f p o s s i b l e . T h i s u s u a l l y 

saves from 5 t o 10 percent of the proqram s i z e . The technique 

i s the same as t h a t d e s c r i b e d by Peck et a l . [ 1 8 ] . , A l l the 

above software i s w r i t t e n i n BCPL so that p r o t a b i l i t y i s 

enhanced. 

We now present the e t e r n a l TOWERS OF HANOI r i g h t from the 

BCPL source t o SLIM i n t e r p r e t a t i o n . T h i s i s an e d i t e d v e r s i o n 

of a l i v e MTS s e s s i o n at DBC. 

# COMMENT LIST OF THE SOURCE 
# LIST -HANOI 
> 1 SECTION. "HANOI" 
> 4 GET. "FOX:BCPLHDR" 
> 4.5 ENTRY ${ START:"START" $) 
> 5 LET HANOI (N, S, I , D) BE 
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> 6 $( IF N <= 0 THEN RETURN 
> 7 HANOI (N-1, S, B, I) 
> 8 WRITEF ("MOVE %U FROM %C 
> 9 HANOI(N-1, I, S, D) $) 
> 10 
> 11 AND START {) BE 
> 12 ${ LET N = 0 
> 13 WRITES("ENTER NUMBER*N") 
> 14 N := READNQ 
> 15 WRITEF("NUMBER INPUT WAS 
> 16 IF N <= 0 THEN FINISH 
> 17 HANOI(N, *S», 'I», »D») 
> 18 $) REPEAT 
# END OF FILE 
# COMMENT COMPILE IT 

TO %C*N", N, S, D) 

%N*N", N) 

BUN BCPL.COMPILER T=1S SCARDS=-HANOI PAR=I 
EXECUTION BEGINS 
BCPL/SLIM (1978 MAY) 
PARAMETER = * I' 
LOGICAL UNIT '0* WAS NOT SPECIFIED; -OC# ASSUMED. 
LOGICAL UNIT *10* WAS NOT SPECIFIED; -STATS ASSUMED, 

SECTION HANOI 

COMPILATION COMPLETE; 0 ERRORS DETECTED 
S EXECUTION TERMINATED 
# COMMENT LIST THE SLIM CODE 
# LIST -GC# 

SECTION HANOI 

EXTERNAL 11 "WRCH" 
EXTERNAL L2 "RDCH" 
EXTERNAL L3 "WRITEO" 
EXTERNAL L4 "WRITED" 
EXTERNAL L5 "WRITEHEX" 
EXTERNAL L6 "WRITEOCT" 
EXTERNAL L7 "WRITES" 
EXTERNAL L8 "WRITEF" 
EXTERNAL L9 "REACN" 
EXTERNAL L10 "WRITEX" 
EXTERNAL L11 "NEWPAGE" 
EXTERNAL L12 "NEWLINE" 
EXTEBNAL 113 "WRITEN" 
EXTERNAL L14 "PACKSTRING" 
EXTERNAL L15 "UNPACKSTRING" SSETI P2 JUMP L20 
3BAN0I 
17: SSETI P6 LD IP2 LE 0 JF 121 RTRN 
21: SRELI 2 LD IP2 MINUS 1 STKLD IP3 STKLD IP5 
STKLD IP4 STKLD IL18 CALL 4 SRELI 2 
LD L22 STKLD IP2 STKLD IP3 STKLD IP5 STKLD IL8 
CALL 4 SRELI 2 LD IP2 MINUS 1 
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STKLD IP4 STKLD IP3 STKLD IP5 STKLD IL18 
CALL 4 RTRN 
22: DATa "MOVE SN FROM ^C TO %C*N" 
3START 
19: SSETI P2 
23: LD 0 POSH SRELI 2 LD L24 STKLD IL7 CALL 1 
SRELI 2 LD 119 CALL 0 
STORE P2 SRELI 2 LD L25 STKLD IP2 STKLD IL8 CALL 2 
LD IP2 LE 0 JF L26 
FINISH 
26: SRELI 2 LD IP2 STKLD 'S' STKLD «I» STKLD *D* 
STKLD IL18 CALL 4 SSETI P2 JUMP L23 
RTRN 
25: DATA "NUMBER INPUT WAS 5JN*N" 
24: DATA "ENTEB NUMBER*N" 
20: FINISH 
16: DATA L19 
18: DATA L17 
ENTRY L16 "START" 
END 

# END OF FILE 
# COMMENT ASSEMBLE IT 
# RUN ASM T=1S SCARDS=-OC# 
# EXECUTION BEGINS 

PABAMETER 

SPUNCH DEFAULTS TO *-CODE#J 

S L I M ASSEMBLER ( VERSION 3. JULY 1978 ) 
# EXECUTION TERMINATED 
# COMMENT LIST THE LOAD MODULE 
# LIST -CODE# 

ENTRY "START" 000146 
111002 126400 +000145 111006 077002 040000 135 402 174017 
114002 077002 014001 103003 103005 10300 4 102410 +000147 
120004 114002 075421 103002 103003 103005 102410 +000000 
120004 114002 077002 014001 103004 103003 103005 102410 

+000147 120004 174017 013324 1533 45 142500 066325 040306 
154726 152100 066303 040343 153100 066303 012400 111002 
074000 174005 11400 2 075453 102410 +000000 120001 114002 
076410 +000000 120000 10 5002 114002 075426 103002 102410 
•000027 120002 077002 040000 135402 174016 114002 077002 
102400 000342 102400 000311 102400 000304 103431 120004 
1 11002 12553 7 174017 012325 162324 141305 154500 144725 
153744 161500 16 3301 161100 066325 012400 006705 152743 
142731 040325 162324 141305 154425 174016 +000057 +000003 

EXTERNAL "WRITES" 000065 
EXTERNAL "WRITEF" 000100 
EXTERNAL "READN" 000071 
END 

# END OF FILE 
# COMMENT NOW RUN THE LOADER/INTERPRETER WITH THE LIBRARY 
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# RON INT T=1S SCARDS=-CODE#+BCPLLIB 
# EXECOTION BEGINS 

- S L I M - INTERPRETER/LOADER. VERSION 3 ( JOLY 1978 ) 

650 WORDS LOADED 

LOAD MAP 

000146 : "START" 
001172 : "WRITES" 
001175 : "WRITEF" 
001202 : "READN" 
001173 : "ONPACKSTRING" 
001174 : "PACKSTRING" 
001176 : "WRITED" 
001177 : "WRITEN" 
001200 : "NEWLINE" 
001201 : "NEWPAGE" 
001203 : "WRITEOCT" 
001204 : "WRITEHEX" 
001205 : "WRITEO" 
001206 : "WRITEX" 
001207 : "RDCH" 
001210 : "SRCH" 
001211 : "TERMINATOR" 
EXECUTION BEGINS 
ENTER NUMBER 
3 
NUMBER INPUT WAS 3 
MOVE 1 FROM S TO D 
MOVE 2 FROM S TO I 
MOVE 1 FROM D TO I 
MOVE 3 FROM S TO D 
MOVE 1 FROM I TO S 
MOVE 2 FROM I TO D 
MOVE 1 FROM S TO D 1 

, ENTER NUMBER '" 1 

2 
NUMBER INPUT WAS 2 
MOVE 1 FROM S TO I 
MOVE 2 FROM S TO D 
MOVE 1 FROM I TO D 
INTER NUMBER 
-1 
NUMBER INPUT WAS -1 

EXECUTION TERMINATED.,( 12892 INSTRUCTIONS ) 
# EXECUTION TERMINATED 


