
MACHINE ARCHITECTURE AND THE PROGRAMMING LANGUAGE BCPL

by

MASK C. FOX

B.Sc,
The University of B r i t i s h Columbia, 1975

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept t h i s t h e s i s as conforming
to the reguired standard.

THE UNIVERSITY OF BRITISH COLUMBIA

September, 1978

(c) Mark C. , Fox, 1978

In presenting this thesis in partial fulfilment of the requirements for

an advanced degree at the University of Brit ish Columbia, I agree that

the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis

for scholarly purposes may be granted by the Head of my Department or

by his representatives. It is understood that copying or publication

of this thesis for financial gain shall not be allowed without my

written permission.

Department of Computer Science

The University of Brit ish Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T 1W5

Date Sept, 12. 1978.

i i

0. Abstract

This thesis describes the design of a well mapped machine 1

for the language BCPL. Based on a generalized notion of stack

machines the SLIM (Stack language f o r Intermediate Machines)

machine i s described. As the acronym suggests, representation

of BCPL programs i n SLIM i s i n fac t slim compared with other

architectures. The u t i l i t y of th i s measure f o r comparison with

other architectures i s discussed and some encouraging r e s u l t s

presented. Apart from t h i s r e s u l t , some advance i s made i n the

c l a s s i c a l mode of porting BCPL programs. Normally the compiler

produces OCODE from which INTCODE i s generated. The BCPL SLIM

compiler shortcuts t h i s process by generating SLIM d i r e c t l y from

the program tree thus dispensing with software corresponding to

the OCODE to INTCODE translator. Translation of BCPL programs

i s thus s i m p l i f i e d and speeded up.

»by well mapped we mean that transformations in the high l e v e l
language correspond c l o s e l y to those i n the low l e v e l machine
representation.

Table of contents i i i

0, ABSTRACT
1. INTRODUCTION ...

1.3 Objectives - -
2. THE SLIM MACHINE DESCRIPTION,10

2 .1 Preliminaries
2.2 Variables
2.3 Operands
2.4 Operations
2.5 An example

3. MACHINE JUSTIFICATION
3.1 Why choose a stack machine archtectur€?
3.2 Why choose a single accumulator?
3.3 8hy have an ;S register?
3.4 Why single address?

4., MEASURES AND RESULTS-.vyy.:
4.1 Ideal Program representation
4*2 M 63.SUZT6S • • • * • • * • • • * « • • • • • • • • • • • • • •- • • •
1̂ • 3 R©suX fcS • * « • • • * * • • • • • • • » • • * * ' * • • • * • • * • • * '

5. CONCLUSIONS AND DIRECTIONS FOB FURTHER RESEARCH .
BIBLIOGRAPHY
APPENDXX X •«••»•••*••••••*§•**••••••*•••••***«•«•**••••*«•*• , 5ty
APPENDIX II
APPENDIX I I I - SLIM system software

•* • ' • * * • * . 11
* * * *' • • • . 1
• • • * * • • . 1
• • • • • * • . 3
• » • • • 8

10
* * f '•• • *' • 10

11
* • • *•' ,12
• • • • • • * . 13
• • • * 19
• * • * • • • 23
• * * * • * • 23
• • # * * * • 26
* ••'*'•' .28
• •»••*• * 31
'* '•• *' *•" 34
• • * * • • • 34
• • • • 35

41
• * • • * • • ,47

52
• • • « • • • 54

• * • 55
• • • •' • • • ,57

L i s t of tables iv

I. OCODE and SLIM comparison 43
II. , Optimized EM-1 and SLIM comparison J»i|
I I I . Modified EM-1 and SLIM comparisonv........,46

L i s t of figures v

2.1 The runtime stack 11
2.2 Stack prior to the c a l l 20
2.3 Stack after the c a l l 20
2.4 The routine's Stack Environment 21
2.5 The stack i n the midst of expression evaluation 22

vi

Acknowledgements

I would l i k e thank the Department for the provision of

various Teaching assistantships. My thanks also go to my

supervisor Sam Chanson, for his provision of a research

assistantship that allowed me to devote more time to t h i s work,

and also f o r h i s constructive c r i t i c i s m of my thesis. Harvey

Abramson i s also to be thanked for reading t h i s t h e s i s .

Outside the department I am grateful for other friends and

i n t e r e s t s at UBC p a r t i c u l a r l y the community of Fairmont House

that were there during the academic f r u s t r a t i o n s of t h i s past

year. For the broader perspective provided by these people I am

very thankful.

Chapter 1

1• Introduction

1

As with most work t h i s thesis needs to be set i n i t s proper

context. The h i s t o r i c a l perspective i s one aspect of t h i s but

more importantly there are a number of current issues that give

t h i s thesis relevance. We w i l l f i r s t examine these two

components of t h i s thesis*s context and then proceed to outline

the objectives that governed the r e a l i z a t i o n of the SLIM

machine.

1.1 Setting the context

The way programming languages are used i s of interest to

various people. These people often include systems architects,

language designers and compiler writers. In the design of a

programming language i t i s useful to know the kind of constructs

that are most freguently used. Compiler writers can use t h i s

knowledge e f f e c t i v e l y as they decide how much energy to devote

to compiling good code for the more common constructs. By good

code we mean code that compactly and e f f i c i e n t l y represents the

intentions of the language constructs used. For example, the

dominance of the assignment statement i n programs i s one

candidate for which good code should be compiled. System

architects are more interested i n how e f f e c t i v e l y the language

maps to the machine and empirical evaluation can lead to some

fi n e tuned application oriented architectures.(see f 1 1)

Chapter 1 2

A number of people have studied the ways i n which

programming languages are used: Tannenbaum [2] has studied a

BCPL variant c a l l e d SAL and proposed a simple machine

architecture ; Knuth [3.1 has analyzed Fortran programs;

Alexander [4] studied XPL as implemented on the IBM and

unearthed some inconsistency i n the mapping from XPL to IBM

assembler. Wortman [5] studied student PL on an interpretative

system and used his analysis to incorporate changes into h i s PL

machine. He states:"fle took as our design goal the development

of new design too l s to aid the designer i n building computers

that s a t i s f i e d the actual rather than the imagined needs of the

programmer. *' Gordon and Capstick [6] have examined COBOL. Of

course we would be amiss i f we f a i l e d to mention the design of

the Burrough's machines which were high l e v e l language machines

i n the f i r s t place. An analysis of over 60 ALGOL 60 compilers

by Sichmann [7] showed code produced by the Burrough's compiler

occupied half the space of code produced by the-IBM comjiler.

This l e v e l of approaching the problem from the language point of

view has gone hand in hand with the development of

microprogramming.

Once the manufacturers offered user microprogramming there

was a flood of a c t i v i t y i n t h i s f i e l d . , Many machines were

designed which were t r u l y meant to be very general purpose (see

[81 and [91 for examples) . The Manodata QM-1 was perhaps too

f l e x i b l e but the emulation of the PDP-11 on i t [10 1 proved i t to

be useful. As usual, Burroughs i n the design of the B1700

series (see [111) seriously and e f f e c t i v e l y attempted to free us

Chapter 1 3

from von Neumann s t y l e machines. Hilner states that "Von

Neumann derived machines are automatous malefactors who force

programmers to l i e on many procrustean beds". Each particular

language would have i t s own S (S standing for secondary) machine

optimized for i t s own par t i c u l a r application area that would be

emulated by B1700 hardware. No machine language was b u i l t into

the hardware and therefore each language to be executed had to

f i r s t reconfigure the B1700 processor. Concurrent execution of

S machines was very feasible with the fast switching time (14

53 microsec) . Apart from t h i s a r c h i t e c t u r a l concern on the

l e v e l of machine design, microprogramming i t s e l f was used to

measure computer systems., Saal [121 used t h i s very transparent

technigue to obtain system design guidelines.

Despite a l l these a c t i v i t i e s that brought architecture to

the fore as a research area, Rosin who was involved for a long

time with microprogramming, was forced to define

microprogramming as "the implementation of hopefully reasonable

systems through interpretation on unreasonable machines" [13 1 .

Even t h i s pessimistic comment should not detract from the

overriding concern with machine architecture not just i n i t s e l f

as an end but as a means to f a c i l i t a t i n g what people want to do.

It i s i n t h i s l i g h t that we should see the development of SLIM.

1•? Current issues

Computer science with i t s concern for easy and e f f e c t i v e

expression has long been i n the business of generating new

Chapter 1 4

languages. Translators conseguently tend to be one of the most

freguently used pieces of software and w i l l probably continue to

stay that way. Translator writing systems are a manifestation

of t h i s f a c t . However as Appelbe f14^ states: "The major

complexities encountered i n the design and implementation are

usually i n the 'semantics phase* of the translator i n generating

the object program from an i n t e r n a l source program

representation". This complexity no doubt a r i s e s from a number

of sources: Languages that are exceedingly complex and hence

inevitably reguire complex code generation. Another more

important source of complexity i s that inhospitable host

architectures demand contortions on the part of the code

generator and hence the implementor. This i s the complete

reversal of the s i t u a t i o n i n the parsing-syntax analysis phase

where the methods are very well understood. Despite t h i s

acknowledgement, computer science has tended to minimize the

importance of machine architecture and has often comforted

i t s e l f with the fact that the language was implemented and l e f t

i t at that. The implementation was the overriding concern and

a f t e r a l l , with cheaper memory prices we are net r e a l l y

concerned about how e f f i c i e n t l y our programs are represented,

are we? This hides the main point. It*s high time that

computer science not relegate machine design only to the

m i l i t a r y and the a r t i f i c i a l i n t e l l i g e n c e communities where an

overwhelming need demands better architecture. He need to

refute the notion that the description of a machine's assembly

language constitutes i t s complete d e f i n i t i o n .

Chapter 1 5

At present, even to the most casual observer, there i s an

explosion in the area of microprocessor technology. The market

here i s i n a continual state of flux as more and more products

are announced. The a v a i l a b i l i t y of b i t s l i c e components makes

possible the construction of new machines at reasonable costs.

T.M. HcWilliams et a l . [15] describe the construction of a

PDP/11 using b i t s l i c e s for a t o t a l cost of $1076., This machine

even outperforms the LSI-11. With t h i s continual state of flux

industry has adopted a microprocessor chip standard - the I n t e l

8080. In l i g h t of the above fa c t this i s not the most desirable

chip from an a r c h i t e c t u r a l point of view. Perhaps t h i s

standardization was unavoidable. Another more important

standardization of t h i s technology i s the language and i t s

implementation. BASIC has become the standard language with a

variety of implementations. Its implementation however i s more

s i g n i f i c a n t as far as SLIM i s concerned. Interpretation i s the

accepted way of implementing Basic. From a very rudimentary

analysis of the BASIC source these interpreters interpret BASIC

programs at a f a i r l y high l e v e l .

Before we draw out the s i g n i f i c a n c e of these facts we s h a l l

quote from the Nov 15, 1977 draft of the objectives for computer

science i n the department of Computer Science at UBC [16] .

"Broadly speaking computer science i s concerned with the design

of algorithms and with e f f i c i e n t implementations of algorithms

on computing systems. , The computing systems may vary i n size

from the hand held programmable calculator to a complex

c o l l e c t i o n of devices interconnected by s a t e l l i t e and cable."

Chapter 1 6

Let as examine t h i s statement i n the context of high school

computing f a c i l i t i e s . The systems that high school students are

dealing with are Basic ones i n more than one sense! As a

department there are educational issues at stake. What are

potential university students i n computer science being exposed

to? Is the form of expression r e a l l y suited to developing

structured programming? H i l l university programs at the f i r s t

year l e v e l involve a certain amount of deprogramming? One

attempt to address t h i s issue of teaching computer science as a

unified d i s c i p l i n e was Peck's 'Essence of computer science'

f 1 7]. In t h i s report the language BCPL and i t s abstract machine

INTCODE served as a reference point for teaching computer

science coherently. In order to execute BCPL programs one

interpreted t h e i r INTCODE representation. The major l i m i t a t i o n

of the INTCODE system was the s i z e of the INTCODE version of the

compiler since i f the compiler cannot f i t on the host system, i t

becomes very cumbersome to compile programs on one machine and

execute them (via interpretation) on another. SLIM serves

exactly the same function as INTCODE except that i t i s much more

compact (as we show in Chapter 4) and hence the BCPL SLIM

compiler i s more compact, than the INTCODE version . However

both forms of r e a l i z i n g BCPL are exactly s i m i l a r to the current

form of r e a l i z i n g BASIC - interpretation. Therefore i f computer

science i s concerned with the representation of algorithms and

BCPL i s accepted as a v a l i d vehicle for t h i s , then i f SLIM

f a c i l i t a t e s t h i s process on a wide variety of machines i t should

be of concern and use to the department i n r e a l i z i n g one of i t s

Chapter 1 7

stated objectives. There seems to be the very r e a l p o s s i b i l i t y

that computer science could be making inroads here not only i n

the r e a l i z a t i o n of more ef f e c t i v e languaqes but also i n the

r e a l i z a t i o n of more e f f e c t i v e hardware as i n the b i t s l i c e

ver s i on of the PDP/11.

One f i n a l issue involves the language BCPL (see [20], [21]

and [22]) .We w i l l just present the case for t h i s class of

language. By class we mean systems programming languages cf the

BCPL type. OS-6 [19], a single user operating system was

written almost completely i n BCPL. C, a BCPL offshoot with

PDP/11 constructions that have f i l t e r e d up into the language, i s

the source langauge for a very e f f e c t i v e operatinq system UNIX,

[23] written f o r the PDP/11. This demonstrates the u t i l i t y and

effectiveness of t h i s class of language. Therefore our concern

with i t i s not misplaced.

A more l o c a l BCPL issue concerns the c l a s s i c a l form of

translation to INTCODE., BCPL source i s f i r s t translated to

OCODE and from this one translates to INTCODE. SLIM i s

generated d i r e c t l y from the tree representation of the BCPL

program. A number of advantages accrue:

i . One complex piece of software (OCODE to INTCODE translator)
i s dispensed with.

i i . The obscure OCODE machine no longer confronts us.

i i i . The r e a l i z a t i o n that tr a n s l a t i o n from the tree to SLIM i s

straightforward and that simple optimizations are e a s i l y

handled.

For too long we have been stuck with the BCPL-> OCODE -> INTCODE

Chapter 1

process. This thesis shows

necessary, and more importantly

machines are not i d e a l l y suited

8

that t h i s procedure i s no longer

shows that these two v i r t u a l

to BCPL.

1. 3 Objectives

The prime objective was to achieve compact program

representation. By compact program representation we mean that

the s i z e of the translated program i s small. This i s always a

convenient res u l t but more importantly i t r e f l e c t s how e f f e c t i v e

the mapping i s from language to machine., The choice of t h i s

measure rather than time for example, w i l l be dealt with l a t e r

when we address the issue of how one actually evaluates an

architecture. Presently there i s no standard evaluation

technigue that allows for program independent evaluation of an

architecture.

Simplicity was the second c r i t e r i a . Partly t h i s i s a

reaction against the trend that dictates complexity to be the

norm, but a simple architecture has a number of advantages.

Simple architectures are more easily understood and can

exemplify a r c h i t e c t u r a l p r i n c i p l e s . If interpretation i s going

to be the sole method of executing BCPL programs then the

simpler the machine to be emulated the simpler the emulator. As

t h i s most probably w i l l be the form of execution i n the

microprocessor f i e l d and since the emulator w i l l most probably

be written i n assembler, the ease with which the interpreter i s

implemented i s very important. I f we extend the notion of

Chapter 1 9

interpretation and temporarily equate i t with microprogramming,

then the same advantages apply except that in t h i s case the

corresponding assembly language i s more primitive. I f one

actually intends to glue together the SLIM machine using b i t

s l i c e technology then the simpler the machine the better.

A t h i r d guideline was that the machine acknowledge the

existence of BCPL r i g h t at the machine l e v e l . Thus i n e f f e c t

the SLIH machine i s as e a s i l y described by BCPL as i t i s by the

SLIH assembly language. For example the CALL i n s t r u c t i o n should

actually do more than just change the program counter and

remember i t s previous value. The IBM 370 BALB inst r u c t i o n i s a

c l a s s i c example of refusing to acknowledge that a programmers

common forms of expression are at a much higher l e v e l and that

changing control i s much more than a change i n location. This

guideline hopes to demonstrate that the tr a n s l a t i o n process can

be straightforward and not always involve numerous contortions

in the code generation section of the translator.

Sith these objectives in mind, and the context i n which

t h i s thesis i s set outlined, we now proceed to describe the SLIM

machine in an informal manner.

Chapter 2 10

2 . The SLIM machine description

This machine i s offered as an alternative to the current

way of porting BCPL programs. This section contains a

s p e c i f i c a t i o n of the machine but o f f e r s no j u s t i f i c a t i c n or

motivation for the choice of SLIM. However as the acronym

suggests (a Stack Language for Intermediate Machines) , one

advantage should be that of compact program representation or

SLIM code.

2*1 P r e l i f f l i l i a r i g s

The memory of the SLIM machine l i k e INTCODE [2 2 1 and PICA-B

[2 6] , consists of an array of c e l l s numbered from zero. The

consecutive numbers assigned to c e l l s are known as th e i r

addresses.. The number of b i t s per c e l l i s unspecified.

The SLIM machine has f i v e r e g i s t e r s . One accumulator (ACC)

i s used for a l l arithmetic, l o g i c a l and various other

operations. P i s used as an index register and points to the

base of the current stack frame and S points to the top of the

current stack frame. {Figure 2.1) The C r e g i s t e r i s used as a

program counter. G i s used to access the base of the location

of the global variables. We w i l l j u s t i f y t h i s choice l a t e r , but

for the present we w i l l give some examples of eguivalent

constructions in present day architectures.. The HP - 2 l M X*s base

page addressing functions i n very much the same way. Even the

PDP-8*s zeroth page addressing, in which every page can access

the zeroth page, i s a form of global variable access. Two more

respected architectures- the HP 3000 and the B5500 (see [2 4 1)

Chapter 2 11

have si m i l a r features. The IB r e g i s t e r i n the HP3000 points to

the case of the global area that i s in fact kept at the bottom

of the stack. The 5500*s R re g i s t e r points to the separate

(i . e . , not i n the stack) program reference table that contains

global variables and global procedure names.

To use the current terminology the SLIM machine i s a single

accumulator, one address machine.

Previous stack frames Current stack frame

r~ r 1 1 1 1
|]Linkage JParametersJ Local | | I I Info | |variables J j • J 1 a x i

I I
i I
I I
P S

Figure 2.1 The runtime stack

J2..2 Variables

Before describing the operations provided by the SLIM

machine we w i l l look at the four sets of variables in BCPL and

describe how they may be accessed.

BCPL (a modified version) has four sets of variables -

l o c a l , s t a t i c , global and external although i n s t r u c t i o n s need

only be provided to access the f i r s t three.

Local variables (see figure 2.1) are allocated space above

the parameters on the runtime stack. They are accessed r e l a t i v e

Chapter 2 12

to P and hence we see how P serves as an index register. Notice

that once the current stack frame i s released, space for a l l

l o c a l variables vanishes as well.

S t a t i c variables are accessed by reference to some label

and unlike l o c a l variables remain accessible throughout program

execution. The syntax of a l a b e l i s simply a number followed by

a colon.

External variables are accessed as i f they were s t a t i c

variables except that information i s provided for the loader so

that i t can resolve these references. Externals can be thought

of as being another program's s t a t i c variables.

Global variables are accessed r e l a t i v e to the G register.

This space i s reserved by the runtime support for the pa r t i c u l a r

BCPL program and t h i s support also i n i t i a l i z e s the G register.

2.3 Operands

The syntax of a l l operands i s as follows.

CI 3 [P | G | L] < integer > | *

P refers to the stack pointer. The contents of P i s added

to <integer> to obtain the address of a particular variable

(parameter or local) on the current stack frame. G i s

interpreted s i m i l a r l y except that i t refers to the global

pointer. L denotes a p a r t i c u l a r l a b e l (e.g., Ln) . The operand

Chapter 2 13

i n t h i s case i s treated as the address of the p a r t i c u l a r label.

I means i n d i r e c t i o n . The operand determined thus far i s

dereferenced once. The * refers to the top of the stack (i . e . ,

the location pointed at by register S) . In t h i s case the

contents of S-1 becomes the operand and S i s decremented by 1.

Some examples follow:

P2 address of c e l l at o f f s e t 2 from P

IP2 value of c e l l at offset 2 from P

13 address of c e l l denoted by lab e l 3

IL3 value of c e l l pointed to by label 3

2.4 Operations

a. Variable access operators

four operations are used ; Load (LD) , store (STORE), stack and

load (STKLD), and select f i e l d and store (SLCTST).

(e.g. value of a s t a t i c variable)

* value of a temporary variable

LB operand ACC := operand
STORE operand location(operand) := ACC
STKLD operand !S := ACC

S : = S + 1

ACC := operand

Chapter 2 14

SLCTST f i e l d s e l e c t o r s e l e c t appropriate f i e l d of

the value i n the accumulator and

store them i n the correct f i e l d of

the c e l l specified by i t s address

at the top of the stack, (i.e

!{S-1)) Then decrement S by 1.

Some sample variable loads and stores are i l l u s t r a t e d ,

temporary: LD *

l o c a l : LD IPn STORE Pn

s t a t i c : LD ILn STORE Ln

Notice that LD Pn loads the address of the l o c a l variable not
the value.

b. Diadic expression operators

A l l operators can be defined as follows.

op operand ACC : = ACC op operand

Integer operators -

MULT,DIV,REM,PLUS,MINUS

MDIT, DIV, PLUS and MINUS are as expected. REM i s the integer

remainder on the d i v i s i o n of the ACC by the operand.

Chapter 2 15

Relational operators -

EQ, N E,L S,GR,LE,G E

EQ and NE are equal and not equal. LS and GR are less than and

greater than, LE and GE are less than or egual to and greater

than or egual to.

Logical operators -

LSHIFT,RSHIFT,LOGAND,LOGOfi,EQV,EXOR

L and RSHIFT are the l e f t and right s h i f t operators. LOGAND and

LOGOR are the l o g i c a l AND and OR. EXOR i s the exclusive OR or

bitwise non-equivalence. . EQV i s bitwise equivalence.,

Bit operators -

SLCTAP

This applies to f i e l d selectors i n the BCPL sense. The

appropriate f i e l d i s selected.

c., S regis t e r manipulation

To allow for f l e x i b l e manipulation of the S register a

combination of monadic and diadic operators are defined. This

allows one to set the S reg i s t e r in a r e l a t i v e (i . e . SREL,

SR.ELI) or absolute sense. (SSET, SSETI) . I f one allows an

extended BCPL i n which dynamic storage a l l o c a t i o n i s implemented

then i t i s mandatory that the S register be manipulated in a

Chapter 2 16

r e l a t i v e sense. I t i s true that a l l l o c a l variables are i n a

sense dynamically allocated but at present the sizes of vectors

must be fixed at compile time. This a b i l i t y to determine run

time sizes of vectors i s what we mean by dynamic a l l o c a t i o n .

SGET ACC := S

SSET S := ACC

SHEL S := S + ACC

SSETI S := operand

SBEII S := S • operand

d. Monadic operators

NEG ACC := - ACC

NOT ACC := not ACC

DEBEF ACC := !ACC

POSH IS := ACC ; S := S + 1

POP ACC := !(S - 1) ; S := S - 1

TRUE ACC:= TBDE

FALSE ACC := FALSE

FINISH FINISH

e. . Transfer

GOTO C := ACC

JUMP operand C := operand

Chapter 2 17

JT operand C := (ACC = TRUE) -> operand, C

JF operand C := (ACC = FALSE) .•-> operand,C

The switchon statement i s implemented by the SWITCHON command;

SWITCHON k Ld k1 11 k2 12 kk l k

The accumulator controls the switch; i t examines the k case

constants i n l e f t to right order and when a match occurs then a

jump i s made to the corresponding case l a b e l , otherwise a lump

i s made to the default l a b e l Ld.

f. Function and routine c a l l i n g

No difference i s made between the c a l l and return

instructions for a function or a routine. When a function i s

ca l l e d i t returns i t s r e s u l t i n the ACC., Prior to a c a l l space

should be saved for the l i n k s , (savespacesize denotes t h i s

number) the i parameters pushed on the stack and the address of

the routine loaded into the ACC.

The CALL i instruction has the following effect

temp := S - (i • savespacesize)

temp!0 := C

temp!1 := P

P := temp

C := ACC

Chapter 2 18

The 8T8N in s t r u c t i o n i s as follows

C := P!0

S := P

P := P! 1

The routine c a l l e d , on entry i s responsible to set the S

regi s t e r so that i t points as i n Figure 1 (above the para meters

and preliminary l o c a l variables).

g. Pseudo instructions

<number>: denotes la b e l <number>.

Sname denotes the s t a r t of the code for the

routine c a l l e d name.

SECTION "section name" indicates the start of the code for the

section "section name".

END indicates the end of a section*s code

h.. Data reservation instructions

There i s one general purpose d i r e c t i v e used to reserve

space. This i s the DATA operator.„ I t s operands can be numbers,

characters (enclosed i n single quotes), strings {enclosed in

double quotes) or labels.. I t reserves space i n the subsequent

c e l l s f o r i t s operands.

Chapter 2 1 9

2.5 An Example

The following program and i t s SLIM code w i l l serve as an

example.
I I
I I
j | t h i s i s the sample BCPL program
I I
l e t f (a , b # c) be

f
l e t v = vec 4
and w = 0
v!1 : = (a • b) *(b + c)
}

and s t a r t (} be
f (1 , 2, 3)

I I
|| t h i s i s the translated version of the above program into SLIM:
|| I t i s an exact reproduction of the slim compiler output.
I I
SSETI P2 JUMP L5

Sf
1: SSETI P5 LD P7 STKLD 0 PUSH SSETI P12 LD IP5 PLUS 1

STKLD IP3 PLUS IP4 STKLD IP2 PLUS IP3 MULT * STORE
* RTRN

Sstart
3: SSETI P2 SRELI 2 LD 1 STKLD 2 STKLD 3
STKLD 112 CALL 3 RTRN
5: FINISH

2: DATA L1
4: DATA 13
END

This example serves to i l l u s t r a t e

c a l l mechanism; vector a l l o c a t i o n

i . , The c a l l mechanism

The prelude before the actual

for the l i n k s and evaluating the

saved by the instruction SRELI 2.

three features i n SLIM: the

and expression evaluation.

c a l l involves saving space

parameters. Linkage space i s

Here two c e l l s are l e f t to

Chapter 2 20

contain the previous stack frame pointer and program counter.

The three parameters are evaluated and the address of " f " loaded

into the ACC. At t h i s point the stack i s as in Figure 2.2.

, T T r J 1 1 1
I j old | nev |1 |2 |3 | |
1] l i n k s | l i n k s ! | | | j t—— i 1 1 1 j * r

t I
1 i
P S

Figure 2.2 Stack prior to c a l l

The effect of the CALL 3 i n s t r u c t i o n can be pictured as in

Figure 2.3.

t r 1 , — 1 1 , ,
1 I old J new |1 |2 |3 | |
I J l i n k s | l i n k s | t i l l 1 1 . 1 i JL J 1 1

A A
i I
1 I
P S

Figure 2.3 Stack after c a l l

Notice how the P pointer has changed and we are now executing

with a new stack frame. As mentioned previously, the routine

c a l l e d i s responsible to ensure that S actually points where i t

should, hence the SSETI P5 i n s t r u c t i o n . This i s necessary since

one can c a l l routines with fewer parameters than they expect and

i f the S r e g i s t e r i s not corrected, not only w i l l further l o c a l

variable a l l o c a t i o n be completely incorrect {within the current

Chapter 2 21

procedure) , but any temporaries used w i l l map onto existing

l o c a l variables and cause havoc.

i i , l o c a l variable a l l o c a t i o n

This involves setting variables to their i n i t i a l values and

also a l l o c a t i n g space. The routine expects i t s environment to

be as in Figure 2.4, (the numbers on the top denote stack frame

offsets)

2 3 4 5 6
, , 1 j—T—T~1 1

I |links|a|b|c|v|w| |
t i I I I 1 I I I L J J I I I I | 1

* I
1 I
1 1

P s

Figure 2.4 The routine*s stack environment

The SSETI instruction adjusts the S r e g i s t e r appropriately. At

t h i s point o f f s e t 5 and 6 from the current stack frame pointer

reserve space for the variables v and w except that they have

not been i n i t i a l i z e d . Since v by d e f i n i t i o n w i l l contain the

address of a vector of size 5 the LD P7 STKLD 0 sequence

accomplishes t h i s . w i s i n i t i a l i z e d via the POSH in s t r u c t i o n

since the previous i n s t r u c t i o n has already loaded zero into the

accumulator. A l l i s well except that we must indicate somehow

that we have used 5 more c e l l s for the vector v. SSETI P12

adjusts S to r e f l e c t t h i s f a c t .

Chapter 2 22

i i i . Expression evaluation

At t h i s time we w i l l concentrate on the sequence of slim

code that evaluates

{a+b) *(b*c)

LD IP3 PLOS IP4 evaluates b+c. However at th i s stage we need to

save t h i s r e s u l t in some temporary location. The STKLD IP2 PLUS

IP3 accomplishes t h i s (via STKLD) while at the same time

evaluating a+b. At t h i s point the accumulator contains a*b and

the stack contains the following:

r 1—I 1
| JH|b+c|

»
I
i
S

Figure 2.5
The stack in midst of expression evaluation

Now a l l that remains to be done i s r e t r i e v e the temporary result

and multiply i t by the accumulator. MULT * accomplishes th i s

and leaves the stack how i t was.

Although t h i s i s not p a r t i c u l a r l y convincing one must admit

to the r e l a t i v e ease with which temporaries are handled.

Chapter 3 compares the amount of code generated f o r the above

expression using a pure stack machine with that generated by the

SLIM compiler.

Chapter 3 23

J * Machine J u s t i f i c a t i o n

In t h i s chapter some j u s t i f i c a t i o n for the choice of the

SLIM machine i s outlined. Since a normal defense would consist

of responding to several guestions regarding the choice of

particular features, t h i s i s the form t h i s chapter w i l l take!

3.1 why choose a stack machine architecture?

We w i l l f i r s t outline a more generalized notion of what we

mean by a stack machine. By a stack machine we w i l l mean a

machine i n which a hardware stack plays a central r o l e in

expression evaluation, storage a l l o c a t i o n and subroutine control

and linkage. We w i l l not reguire a machine to be a stack

machine i f and only i f most instructions operate on operands

held at the top of the stack.

Software has made use of stacks for a long time but most

computers lack hardware stacks. As the trend to develop

software i n higher l e v e l languages develops we are now

witnessing hardware acknowledgement of t h i s f a c t with the advent

of hardware stacks. The HP 3000, the Burrroughs machines

(B1700, B5500, B6700 and 7700) , the Data General Eclipse and

the PDP-11 to a more limited extent are just some of the

machines with some form of hardware stack. I t i s i n t h i s

context of higher l e v e l language use that we w i l l outline some

of the advantages of stack machines.

A key concept i n software i s the subroutine. Some people

s t i l l argue that e f f e c t i v e use of subroutines {i.e., good

Chapter 3 24

structure) i s wasteful of time and space. This i s natural since

as Bulman £24] says, "the subroutine c a l l and return mechanism

seems to be almost an afterthought i n the architecture of many

computers." The stack machine nips t h i s argument i n the bud.

The best mechanism for the subroutine c a l l and return mechanism

i s to involve the stack to store the return address. The stack

then contains the record of the nesting of procedure c a l l s and

one no longer has to worry about saving space for the return

address.

This l a s t issue has been treated in many ways and points up

another advantage of stack architectures. Often t h i s return

address has been saved i n a regi s t e r or worse s t i l l a l o c a l

memory location. Both these methods however reguire extra

software i f one allows recursion or reentrant routines. The

programmer becomes responsible f o r stashing this return address

somewhere before the next routine (and in recursion i t i s the

same one) i s invoked,, Stack architectures remove t h i s concern

from the programmer and in f a c t i t i s hard not to write

reentrant programs when using a stack.

Parameters are treated e f f i c i e n t l y in a stack architecture.

What better place for them than on the stack? Many other

methods that specify that space be permanently allocated to each

subroutine for i t s parameters or that space be shared, again

s h i f t the burden for the management of t h i s space onto the

programmer. Stacking the parameters at once removes th i s

concern from the programmer and also uses the space only when i t

i s reguired.

Chapter 3 25

another key advantage of stack architectures i s that they

automatically provide l o c a l environments. T y p i c a l l y a

subprogram refers to only a small subset of a l l i d e n t i f i e r s

declared i n the whole program. In the BCPL case one only refers

to l o c a l or global variables {these include s t a t i c s and

externals) . S i n c e these l o c a l variables are only referenced in

the procedure in which they are defined i t seems wasteful to

have space permanently allocated for these variables when the

procedure i s not active. Allocating t h i s space on the stack i n

the l o c a l environment also accomplishes something else. Since

the l o c a l environment i s accessed r e l a t i v e to some environment

pointer (P i n SLIM's case) addresses for these variables need

only specify o f f s e t s from t h i s environment pointer. Since these

offs e t s are t y p i c a l l y small (95% < 10) , in s t r u c t i o n s reguire

fewer b i t s . Hence program space i s saved. Program space saving

i s also accomplished by reguiring no i m p l i c i t addresses for

those variables that are i m p l i c i t . Addresses are of two kinds

i n a machine: e x p l i c i t - those variables e x p l i c i t l y mentioned by

the program; and i m p l i c i t - those that arise out of the need for

some temporary storage location. These are automatically

provided by stack architectures and their reference just

involves referencing the top of the stack which requires no

i m p l i c i t address b i t s . Once aqain code i s compacted. Global

variable access also requires fewer b i t s since they are accessed

r e l a t i v e to some global environment pointer.

Another advantage of stack architectures i s that they

exhibit the difference between program and task. Using

Chapter 3 26

Organick*s [26] terminology, an incarnation of a task i s a

combination of a time invariant algorithm(the code) and the time

varying record of execution. The stack embodies t h i s record and

hence a task can be seen as code plus stack, Processes then can

be e a s i l y conceived of as some code plus some stack area for the

par t i c u l a r process. Process switching then only involves

transfer of control and the provision of some space to contain

the time varying record of execution.

Interrupt handling can also be treated e f f e c t i v e l y as

unexpected procedure c a l l s . Since we know the l i m i t of the

stack the interrupt can be serviced transparent to whatever was

executing at the time.

3.2 Why choose a single accumulator?

Simplicity i s the main reason, A single accumulator i s a l l

one r e a l l y needs. I n b u i l t registers l i k e the P, S and G

reg i s t e r s provide the index functions that one normally i s

provided with except that the P and G are automatically

maintained. In an environment of short procedures Tanenbaum [2]

concludes "the register sets provided by a t h i r d generation

machine are of l i t t l e value". They can be used for intermediate

r e s u l t s but with the stack mechanism (see chapter 2) one

reg i s t e r i s s u f f i c i e n t . In Tanenbaum's environment where one

out of every four statements i s a procedure c a l l the

save-restore overhead makes i t i n e f f i c i e n t to use reg i s t e r s to

hold l o c a l variables. When one considers what i s involved i n

Chapter 3 27

process switching the smaller the number of states associated

with a process, the quicker and easier i t becomes to implement

process switching. Having considered why we choose to minimize

the number of reg i s t e r s one perhaps wonders why we did not go

the stack machine route completely and eliminate the ACC

altogether. This w i l l be addressed in section 3.4., but perhaps

we can outline an equivalence of SLIM and an addressable top of

stack location on a pure stack machine. Consider the following

expression and i t s equivalent evaluation by three machines:

SLIM, a pure stack machine and a modified stack machine as

above.

(A + B) * (C •* D)

Pure Stack SLIM Modified Stack

LOAD A LD A LOAD A

LOAD B PLUS B PLUS B

PLUS STKLD C LOAD C

LOAD C PLUS D PLUS D

LOAD D MULT * MULT

PLUS

TIMES

The modified stack machine can be thought of as a machine

with a f l o a t i n g ACC i n SLIM's sense. This ACC i s actually the

current top of stack. Comparing th i s and SLIM code one notices

Chapter 3 28

the s i m i l a r i t y except that there are two versions of each diadic

operator i n the case of the modified stack machine: one that

requires an operand (e.g., PLUS B S PLUS D) and one that takes

both i t s operands from the stack (e.g., MULT) . This introduces

a further complexity i n t o the machine when one has 2 versions of

each diadic operator. With 17 diadic operators t h i s i s quite

s i g n i f i c a n t since these extra operators have to be encoded.

This might require extra b i t s i n the opcode f i e l d for the

in s t r u c t i o n leaving l e s s space to encode the operands. SLIM

however only has one extra operator (from a stack machine's

viewpoint) - STKLD. Another factor that favours the single ACC

machine i s the necessity of handling environments that return

values. The two par t i c u l a r instances of t h i s i n BCPL are the

function and the valof block. In both cases some resu l t

computed at the top of the current stack frame(in a pure stack

or modified stack machine) must be passed to the preceeding

environment while at the same time collapsing the present

environment. In the function case t h i s reguires an extra

operator FNHN to do precisely t h i s . ; The valof block uses the

RSTACK operator. This unecessarily adds to the complexity of

the machine.SLIM only needs to return any value i n the

accumulator and hence requires no extra operators.

3.3 Why have an S regist e r ?

This register always points to the top of the stack and

hence indicates the next possible unused stack location. There

Chapter 3 29

are three main reasons why t h i s register i s made e x p l i c i t .

Interrupts can be cleanly handled since the S register

always indicates where a new stack frame could begin. Hence the

interrupt hardware need only f i l l i n the l i n k s as i n a normal

c a l l s t a r t i n g at where the S register points. The K register

for the PICA-B machine [25] functions in much the same way.

Dynamic storage a l l o c a t i o n i s another major reason why one

needs the s register. I t i s when one does not know the size of

the current stack frame (e.g., with dynamic vectors) that one

needs to be able to manipulate the S register i n a r e l a t i v e

manner. One cannot just use offs e t s from P since these off s e t s

are only known at run time. The CALL instruction i s a r e l a t i v e

type of in s t r u c t i o n i n the sense that the "n" s p e c i f i e s the

number of parameters passed as opposed to the corresponding

INTCODE ins t r u c t i o n K d where the d s p e c i f i e s the siz e of the

c a l l e r s stack frame. Standard BCPL does not allow f o r dynamic

storage a l l o c a t i o n (neither does the SLIM version of the

compiler) but f o r the ease with which this could be achieved we

present a BCPL fragment and the corresponding SLIM code. From

t h i s , one w i l l hopefully appreciate the usefulness of the S

re g i s t e r .

Chapter 3 30

Extended BCPL.,

l e t v1 = vec <expr1>
and v2 = vec <expr2>
and c = 0

SLIH code.

SSETI Pn
SGET
STORE Pv1

code to
evaluate
<expr1>
•
SREL
SGET
STORE Pv2

code to
evaluate
<expr2>

SREL
LD 0
STORE PC

set S to point above space f o r vars
get t h i s value i n the accumulator
make v1 point to i t s space

adjust S by the value of <expr1>

make v2 point to i t s space

make S point to free space

i n i t i a l i z e c

Notice that t h i s code sequence d i f f e r s from the example in

chapter 2 since there we knew sizes e x p l i c i t l y at compile time

and hence could compile more e f f i c i e n t code.

A t h i r d reason i s that the S reqi s t e r i s the means of

generating and r e t r i e v i n g i m p l i c i t variables that are reguired.

The SLIM operators POSH & STKLD and the operand * are the means

of r e a l i z i n g t h i s very valuable feature.

Chapter 3 31

3.4 Why single address?

When one's prime objective i n the design of a simple

machine i s that programs be represented e f f i c i e n t l y ,

considerable thought must be given to the number of addresses an

ins t r u c t i o n should contain. The greater the number of addresses

the larger the in s t r u c t i o n size and hence a larger t o t a l program

size i s more l i k e l y . The number of addresses per inst r u c t i o n

can vary from three to none i n a pure stack machine, As Ibbett

et e l . f27] state there are a number of c o n f l i c t i n g virtues

related to the various p o s s i b i l i t i e s . "Simple operations such

as the sett i n g and incrementing of variables are more concisely

described by two and three address schemes. Evaluations of

longer expressions are more concisely defined by zero address

and one address systems, however, because the address i n which

the res u l t i s accumulating i s implied."

By considering some sample expressions a choice was made to

u t i l i z e the one address scheme. This i s made possible by the

provision of the STKLD in s t r u c t i o n which f i r s t stacks the

accumulator contents, together with the * operand which provides

a way to access stacked p a r t i a l results.- This maintains the

valuable features of a stack machine while providing more

compact code. In the following two examples two measures are

used: the number of words in the machine independent sense where

there i s one ins t r u c t i o n per word; the number of bytes in the

more applied sense. A comparison of the t o t a l sizes

demonstrates the sup e r i o r i t y of the one address scheme.

Chapter 3

EXAMPLE 1. Comparison of SLIM and a stack machine

<A + B) *(C + D)

Stack machine words bytes SLIM words bytes

LOAD A

LOAD B

ELDS

LD C

LOAD D

PLUS

MOLT

Total:

2

2

1

2

2

1

1

11

LD A

PLUS B

STKLD C

PLUS D

MULT *

Tot a l :

2

2

2

2

1

9

EXAMPLE 2. Comparison of SLIM and a stack machine
A + B

Stack machine words bytes SLIM words bytes

LOAD A 1 2 LD A 1 2

LOAD B 1 2 PLUS B 1 2

PLUS 1 1 TOT&L: 2 H

TOTAL: 3 5

Chapter 3 33

Haying i l l u s t r a t e d a simple comparison above the rest of t h i s

thesis w i l l attempt to compare the SLIM machine with other

exis t i n g architectures. We w i l l f i r s t discuss the issue of what

measure to use and then demonstrate that the f i r s t objective in

the design of SLIM has been achieved.

Chapter Four 34

2» Measures and r e s u l t s
4.1 Ideal Program representation

Be are now at the stage where you may be asking - so what?

The . context of the design has been sketched and the machine

described and verbally j u s t i f i e d . But how can we evaluate t h i s

architecture? This i s what concerns us in t h i s chapter. He

w i l l examine some general aspects of measures, describe three

s p e c i f i c a l l y and then proceed to use the chosen measure to

compare our architecture with two other architectures.

What should be included i n a measure? One obvious

component i s that the measure be objective; something that can

be precisely quantified. Unfortunately non-quantitative

measures generally tend to receive l i t t l e merit. Somehow one

feels that the measure should also incorporate the space time

product. Space qenerally meaning proqram size, and time beinq

some measure of hardware e f f i c i e n c y . However t h i s space

component could j u s t i f i a b l y include items such as compiler size,

s i z e of the runtime support etc. Somewhere one has to draw the

l i m i t . A more imporatnt issue i s concerned with whether one can

evaluate architectures just on the basis of t h e i r desiqn without

any reqard for what use w i l l be made of them. Or more

prec i s e l y : Can architectures be evaluated i n a proqram

independent fashion?

In the next section we w i l l consider two not s t r i c t l y

proqram independent measures and one s t r i c t l y proqram dependent

measure, .

Chapter Four

4.2 Measures

35

i . Flynn's measures

Flynn [2 8 3 compares an architecture against what he takes

to be an ultimately simple, f u l l y e x p l i c i t architecture. As he

states: "In a simple architecture nothing i s implied - no

registers or counters are i n v i s i b l e to the problem state

programmer., Each i n s t r u c t i o n contains an operation, the f u l l

generalized address s p e c i f i c a t i o n (allowing i f necessary

multiple l e v e l s of i n d i r e c t i o n through tables etc.) f o r both

source operands, a re s u l t operand, and a test of the r e s u l t

which selects an address for the next in s t r u c t i o n " .

He then c l a s s i f i e s instructions into three broad
categories.

i3 instructions are memory p a r t i t i o n movement instructions such

as the LOAD and STORE inst r u c t i o n s which move data items within

a storage hierarchy.

2 instructions are procedural in s t r u c t i o n s which perform

functions associated with i n s t r u c t i o n seguencing, i . e . , TEST,

BRANCH, COMPARE etc., but perform no transformation on data.

F instructions perform computational functions i n that they

operate on data. They include arithmetic operations of a l l

types, as well as l o g i c a l and s h i f t i n g operations

Tc Flynn M and P instructions are overhead i n s t r u c t i o n s whereas

F type instructions are the only ones that do any work.

Therefore the three r a t i o s to measure th i s overhead are:

Chapter Four 36

1. M r a t i o : ration of M to F instructions

2. P r a t i o : r a t i o of P to F instructions

3. NF r a t i o : r a t i o of the sum of M and P instructions to F

instructions

An i d e a l machine would have M = P = NF = 0. Flynn uses these

r a t i o s to evaluate the IBM 7090, system 360 and the PDP 10.

i i . Instruction mixes

This i s the frequency d i s t r i b u t i o n of the types of

instructions executed durinq the processinq of a workload. The

best known published example i s the Gibson mix., Gibson obtained

frequencies i n t h i s mix from an analysis of the use of

instructions i n technical and s c i e n t i f i c applications i n IBM

7090 i n s t a l l a t i o n s . Flynn has obtained a mix appropriate to

system 360 i n s t a l l a t i o n s . These mixes are used to evaluate

architectures primarily by providinq time measures. The

frequency of inst r u c t i o n use i n the pa r t i c u l a r class i s

multiplied by the average i n s t r u c t i o n execution time i n t h i s

c l a s s and these summed for a l l classes i n the mix. The result

of average instruction execution time i s taken to be a measure

of the architecture and used for comparison purposes.

i i i . Program representation s i z e

Given a program or a representative set of proqrams i n some

hiqh l e v e l lanquaqe, one translates these proqrams to machine

lanquaqe proqrams f o r various machines., The space required by

Chapter Four 37

the object programs i s used for comparison among the various

machines. The smaller the space reguired f o r the code the

better the machine architecture according to t h i s measure. This

measure i s used by Tanenbaum and i s the one we w i l l use and

j u s t i f y shortly.

At t h i s point one needs to recognize that in some hiqh

l e v e l language translations the machine code contains a large

number of i m p l i c i t as opposed to e x p l i c i t subroutine c a l l s to

b u i l t i n l i b r a r y functions. E x p l i c i t c a l l s to l i b r a r y functions

are those which the program d i r e c t l y s p e c i f i e s . As a result the

machine code may be small but the percentage of i m p l i c i t

subroutine c a l l s may be high. What t h i s a c t ually points out i s

that the code for the b u i l t in l i b r a r y functions i s the

microcode for the instructions reguired by the higher l e v e l

language. This r e f l e c t s the fact that the machine at the

current l e v e l i s not suited to the particular language. For

t h i s same measure to be used in cases l i k e t h i s , each i m p l i c i t

l i b r a r y c a l l should count for the number of words i n the code of

that l i b r a r y c a l l , not just as one subroutine c a l l .

We w i l l now b r i e f l y comment on these measures i n l i g h t of the

guestion raised previously: Can architectures be evaluated in a

program independent fashion? The underlying issue here i s to

guage how e f f e c t i v e l y the machine accomplishes i t s purpose. By

machine we mean a configuration of the micro architecture that

r e a l i z e s an inst r u c t i o n set. In many cases t h i s configuration

i s hardwired but in others (e.g., the B1700) one can dynamically

Chapter Four 38

reconfigure the micro architecture. By purpose we mean how the

machine f a c i l i t a t e s what people want to do. This of course i s

accomplished at a number of l e v e l s : modes of expression

available (i . e . , programming languages); software packages;

operating systems; programming environments (batch or

timeshared) etc. What we are more concerned with here, i s the

primary l e v e l concerning modes of expression. What people want

to do i s most often expressed algorithmically i n some high l e v e l

language. Thus programs written in a high l e v e l language are

the primary vehicle of conveyinq people's intent to the machine.

Therefore we w i l l assume that programs i n some programming

language or languages are a good indication of the use of a

machine. Bote that we are not tying the expression of

algorithms to one p a r t i c u l a r language. Rather we are suggesting

that much has been learned about algorithms and ways to

represent them i n programming languages. This makes programs i n

a given class of languages representative of what people want to

do, and hence machines should be evaluated with respect to a

given class of languages. From th i s perspective the use of the

machine i s the common denominator i n an evaluation not some

general notions of machine design. We are now l e f t with the

guestion of how to e f f e c t i v e l y and precisely measure how well

mapped the machine i s . By well mapped match we mean how

concisely transformations (or state transitions) in the high

l e v e l language are represented i n the lower l e v e l machine. The

more concise t h i s representation the better mapped the machine.

This i s the bias we have i n choosing our measure of program

Chapter Four 39

representation s i z e (i . e , code space).

Flynn's measures c l e a r l y emphasize the functional

c h a r a c t e r i s t i c s of an architecture. He attempts to compare

archtectures s o l e l y from the functional a r c h i t e c t u r a l viewpoint.

He i s not s t r i c t y comparing architectures in a program dependent

manner, one however could possibly argue that his simple

machine i s actually the most optimal representation f o r programs

provided one accepts his d e f i n i t i o n of optimality. (i . e . no

overhead) This measure however i s more concerned with validating

or invalidating the following thesis: Machine design has strived

towards decreasing memory references, (e.g., of instructions and

t h e i r operands) but t h i s has introduced considerable overhead.

This overhead i s a result of making several e x p l i c i t functions

(in Flynn's simple machine case) i m p l i c i t . Two cases of t h i s

overhead are:

i . The treatment of programs as l i n e a r strings and consequently

maintaining the proqram counter i m p l i c i t l y .

i i . The introduction of r e g i s t e r s to hold operands in l o c a l

store and not i n main memory.

The former case has introduced the whole ranqe of branch

instructions whereas the l a t t e r has introduced the Store and

Load variations. After makinq some measurements of various

computer architectures Flynn concludes that in fact the overhead

i s considerable. As we can see, the emphasis i n Flynn's

measures of measuring th i s overhead i s not d i r e c t l y concerned

with how well mapped the machine i s . Therefore we w i l l not use

i t .

Chapter Four 40

Instruction mixes b a s i c a l l y are a test of hardware. After

one has derived a suitable mix one i s generally interested in

average i n s t r u c t i o n execution time or some such time oriented

measure. Although t h i s i s useful i t subtly incorporates the

variables of the technology used and the encoding of

i n s t r u c t i o n s . This l a t t e r variable greatly a f f e c t s the

complexity of the microcode and hence the speed. (We assume a

microcoded implementation of an instruction set.) These

variables do not r e a l l y give an indication of how well mapped

the machine i s . ,

Even a f a s t average i n s t r u c t i o n execution time does not

necessarily guarantee anything. I f a l l one has i s f a s t

i n s t r u c t i o n s that do nothing, the increase in instructions

needed to dc something useful w i l l d e f i n i t e l y detract from any

advantage speed might have i n i t i a l l y provided. In other words

the power of an i n s t r u c t i o n i s not necessarily taken into

account. This power i s representative i n some sense of what you

would l i k e to do and since i n s t r u c t i o n mixes measure t h i s poorly

we w i l l not use t h i s measure either.

Also because d i f f e r e n t machines (and hence instruction

sets) produce d i f f e r e n t user c h a r a c t e r i s t i c s , i t i s not c l e a r

that the same in s t r u c t i o n mix i s applicable to a l l machines

under consideration.

We w i l l now outline the reasons for our choice of the size

of programs as our measure. Small representation of programs

(i . e . , code space) c l e a r l y r e f l e c t s a well mapped machine., If

some other machine reguires more code space for the same program

Chapter Four 41

then t h i s i s i n d i c a t i v e of the need for more state t r a n s i t i o n s

i n the machine than actually reguired by the program. In other

words the machine i s p a r t i a l l y mapped. In our s p e c i f i c case we

wish to show that by t h i s measure for the language BCPL, the

SLIM machine i s a well mapped machine, well suited to BCPL.

Secondly si z e and space are intertwined. The smaller the

program the faster the interpretation i s l i k e l y to be. Small

representation of programs also has a third more p r a c t i c a l

advantage. In t h i s age of mini and micro computers the a b i l i t y

to run large programs i s a great advantage with the limi t e d

memory these systems usually provide. Fourthly a decrease i n

program size can lead to an increase in the degree of

multiprogramming and po t e n t i a l l y decrease the page f a u l t rate.

I t i s for this combination of a r c h i t e c t u r a l and p r a c t i c a l

considerations that we use space as the measure for comparison

in the following sections.

4.3 Results

Now having established our measure for the purpose of

comparison we w i l l proceed to compare the SLIM machine against

two architectures. These are OCODE (see f 211) and EM-1 (see

[2]) . These machines w i l l not be described but one i s referred

to t h e i r adeguate description elsewhere.

i . OCODE versus SLIM - round 1

OCODE i s the c l a s s i c a l f i r s t step i n the tran s l a t i o n of

BCPL programs, From the Applicative Expression Tree (AE tree)

Chapter Four 42

representation of the BCPL program OCODE i s generated. OCODE i s

a stack machine and t h i s i s one of the reasons why we have

chosen i t as one of the machines for comparison. In some sense

i t i s representative of stack machines for which there i s wide

respect. The second reason for choosing OCODE i s that i t was

especially designed for the tra n s l a t i o n of BCPL.,

The procedure for comparison has involved translating

approximately 8500 l i n e s of BCPL source into OCODE and SLIM

code. In f a c t BCPL i s not translated into OCODE but into BCODE.

The only difference between the two i s that BCODE i s intended to

be used as a re a l machine and so OCODE instructions are encoded

and object modules generated. BCODE i s the work of a l o c a l ,

unpublished project at the University of B r i t i s h Columbia.

One might object here that encoding has not been mentioned.

At t h i s l e v e l of comparison, instructions that take one word in

BCODE occupy the same in SLIM. Double word instructions w i l l

occur more frequently f o r SLIM since there i s less space for

encoding operands. Therefore for the measure of code sizes

encoding can be treated as a constant in t h i s case and not enter

into the comparisons.

Two measures are used: number of instructions and code

s i z e s . The following table describes the programs used and

gives the r a t i o s of BCODE to SLIM for both measures.

Chapter Four 43

PROGRAM INSTRUCTIONS CODE SIZE
Intcode interpreter 1.18 1.20

(2 sections) 1. 22 1. 17
Intcode assembler 1.09 1. 13

(3 sections) 1.18 1. 15
1. 12 1.10

BCPL compiler 1.14 1. 10
(6 sections) 1.11 1. 12

1. 12 1. 10
1. 10 1. 10
1.05 1. 15
1. 14 1.20

OCODE to 370 assembler 1.15 1. 15
(5 sections) 1. 15 1.11

1. 14 1.11
1. 18 1. 12
1. 13 1.11

Text editor 1.03 1.06
(4 sections) 1. 06 1. 06

1.05 1.05
1.06 1.04

Average: 1. 12 1. 12

TABLE I. OCODE and SLIM comparison

As can be seen there i s a twelve percent gain on the average for

the SLIM machine using t h i s measure.

i i . EM-1 versus SLIM - round 2

This machine i s a recent attempt to provide a machine that

w i l l provide very compact representation for a large c l a s s of

languages. For example ALGOL 60, ALGOL - 68 , Pascal, XPL,

BCPL, SAL etc.

In Tanenbaum»s paper [2] he compares four programs and

the i r code sizes on the EM-1, PDP-11 and Cyber. He gets r a t i o s

as low as 1.5 with the PDP-11 and as high as 6.3 on the Cyber.

Chapter Four 44

Thus t h i s machine i s well suited as a comparison with SLIM. In

order to perform the comparison we must f i r s t provide a more

compact encoding for SLIM to match EM-1*s encoding. The

encoding i s presented i n Appendix I. Appendix II contains the

BCPL source for three programs used for the comparison.. Since

there i s no BCPL to EM-1 compiler, equivalent C programs were

provided and these too are included. The following table

presents the r e s u l t s .

OPTIMIZED EM-1 (bytes) SLIM (bytes)

Hanoi 46 41

Bubblesort 80 81

Expression 20 2 7

TABLE I I . Optimized EM-1 and SLIM comparison

The three programs were chosen to represent 3 classes of

program : procedure c a l l i n g (towers of hanoi) ; general loop

mechanisms (bubblesort) and expression evaluation .. Before one

concludes too much here, where SLIM does not outperform EM-1

dramatically we should be aware of a number of c h a r a c t e r i s t i c s

of "optimized" EM-1 code. It i s very closely t i e d to language

Chapter Four 45

directed machine design, Two examples of t h i s optimization

fellow:

i) Due to a f a i r amount of incrementing by 1 i n higher l e v e l

languages EM-1 provides an increment operator. Since SLIM does

not, the eguivalent SLIM code (LD IPn PLUS 1 STORE Pn) occupies

4 bytes as opposed to 1. I f t h i s operator were provided then

the 3 bytes we would save i n SLIM code f o r the Bubblesort

routine would make SLIM code more compact than EH-1 code i n t h i s

case.

i i) Optimized EM-1 code recognizes consecutive leads and

replaces them by a single LOAD DODBLE in s t r u c t i o n . For example,

instead of generating LOAD A LOAD B i t generates a LOAD DOUBLE

A. In our expression program there are 5 cases where th i s

occurs: (a+b) , (c+d) , c+d, (a+b) and a*b.r If t h i s procedure

had been written with the order i n these expressions reversed

then the resu l t s would have been s i g n i f i c a n t l y d i f f e r e n t . One

need only note that 24 bytes are reguired for a pure stack

machine for the expression evaluation alone and t h i s does not

take into account the procedure entry and exit.

The following table presents the resu l t s assuming the lack

of the above two optimizations for EM-1 and also that procedure

entry and exit occupy three bytes as i n SLIM.

Chapter Four 46

EM-1 (bytes) SLIM (bytes)

Hanoi 46 41

Bubblesort 83 81

Expression 27 27

TABLE II I . EM-1 and SLIM comparison

Despite the lack of any EM-1 type optimization i n SLIM the

machines compare very favourably. , We now present our

observations and directions for further research.

Chapter 5 47

5. Conclusions and directions for further research

although t h i s thesis has presented the design of an

intermediate machine suited to a particular high l e v e l language,

not much has been said about the various approaches to

ins t r u c t i o n set design. We w i l l now outline some approaches to

instr u c t i o n set design and then make some comments on the

part i c u l a r approach used i n t h i s thesis.

Lipovski and Doty f 30] describe three schools of thought on

instr u c t i o n set design. The oldest approach i s to use

s t a t i s t i c s based on coding experience with an older

architecture, to a s s i s t i n constructing a more refined machine.

Instructions that are frequently used are made fast e r and

perhaps more f l e x i b l e . S t a t i s t i c a l l y s i g n i f i c a n t i n s t r u c t i o n

sequences are made into primitive operations. The second

approach i s to choose a widely used high l e v e l lanquaqe. The

primitive operations necessary to execute t h i s hiqh l e v e l

languaqe are i d e n t i f i e d , and then r e a l i z e d i n the inst r u c t i o n

set. The t h i r d approach i d e n t i f i e s a ranqe of problems to be

solved using the computer and a set of c h a r a c t e r i s t i c s of the

technology to be used to r e a l i z e the machine. The problems to

be solved are treated as 'axioms 1, (premises) and the decisions

leading up to the design of the architecture are treated as

'theorems* (implications). The 'proof* gives a l l the reasons

for the s p e c i f i c design decision (implication) in terms of the

problems to be solved (premises) and e a r l i e r implications.

Clearly the approach used i n the design of SLIM i s the hiqh

l e v e l language approach. These approaches a l l have the i r pros

Chapter 5 48

and cons.

The s t a t i s t i c a l approach generally assures some form of

compatibility between between the old and the more refined

machine. This i s convenient corporate policy but can tend to

entrench e x i s t i n g patterns of operation and insight and not

allow for new innovations. The high l e v e l language approach i s

more suited to the more common forms of expression but i s

generally applied to one s p e c i f i c high l e v e l language. Since

most computers run more than one language, what i s optimal for

one language may not be optimal for another.. There are two ways

to overcome t h i s problem. One i s to allow f o r various

microcoded intermediate languages as i n the Burroughs B1700,

The other i s to design i n s t r u c t i o n sets that are well suited to

a number of languages. The EM-1 machine i s one signpost i n t h i s

d i r e c t i o n . The premise-implication approach requires c a r e f u l

thought for a l l design decisions and hence makes i t d i f f i c u l t to

write the description. However this approach perhaps shows more

cl e a r l y what the system i s intended f o r and what i t s l i m i t a t i o n s

are.

8e w i l l now make some conclusions regarding the methodology

used in the design of SLIM and the results obtained. The

results c l e a r l y show that the objectives governing the design of

SLIM have been achieved. Using the measure of program

representation s i z e SLIM compares very favourably with a number

of architectures. SLIM i s a d e f i n i t e improvement over OCODE and

i s approximately equivalent to the EM-1 machine. although no

mention has been made of INTCODE, one automatically can i n f e r

Chapter 5 49

from the SLIM versus OCODE r e s u l t s t h a t the SLIM r e p r e s e n t a t i o n

c f programs i s much s m a l l e r than t h e i r INTCODE c o u n t e r p a r t s .

The o b j e c t i v e of s i m p l i c i t y i n machine a r c h i t e c t u r e a l s o has

been r e a l i z e d . The achievement of t h e s e o b j e c t i v e s show t h a t

u s e f u l work can be done w i t h i n t h i s p a r t i c u l a r approach to

i n s t r u c t i o n set design., Regarding the approach i t s e l f i t i s

d i f f i c u l t t o be s p e c i f i c . Although we have argued elsewhere f o r

the importance of t h i s approach i t i s d i f f i c u l t t c provide

handles t o a s s i s t i n s y n t h e s i z i n g the o p e r a t i o n s necessary to

execute high l e v e l languages. One not only has to determine

o p e r a t i o n s but one must f i r s t of a l l determine the a r c h i t e c t u r a l

b u i l d i n g b l o c k s on which these o p e r a t i o n s w i l l operate. There

are a number of accepted b u i l d i n g b l o c k s i n e x i s t e n c e , f o r

example the importance of s t a c k s i n environment a l l o c a t i o n ,

procedure c a l l i n g and e x p r e s s i o n e v a l u a t i o n . T h i s i s one area

of f u r t h e r r e s e a r c h where s i m i l a r work with other languages

might d i s t i l l other a r c h i t e c t u r a l b u i l d i n g blocks. T h i s i n t u r n

w i l l help to i d e n t i f y the p r i m i t i v e o p e r a t i o n s necessary to

execute high l e v e l languages.

Another approach we have not mentioned t h a t d i f f e r s from

t h a t of i n s t r u c t i o n set design i s d i r e c t e x e cution of high l e v e l

languages, In t h i s approach the machine i n s t r u c t i o n s e t becomes

the o p e r a t i o n s of the high l e v e l language. T h i s approach a l s o

has a number of pros and cons. I t e l i m i n a t e s the c o m p i l a t i o n

process, speeds up execution of programs and g e n e r a l l y provides

g r e a t e r program d e n s i t y . , On the other hand the s i z e of the

microprogram t o i n t e r p r e t the high l e v e l language i n s t r u c t i o n s

Chapter 5 50

w i l l be large and very complex . With current technology and

costs the construction of such a machine would be p r o h i b i t i v e l y

expensive. The machine also by d e f i n i t i o n w i l l be very s p e c i a l

purpose. Since users may want to use other languages he may

f i n d i t awkward to compile them into the base high l e v e l

language. The representation of these other high l e v e l language

programs i n the base language may also be large and their

execution slow. More importantly, t h i s approach depends on how

suited the language i s to in t e r p r e t i v e execution. In t h i s mode

of execution each statement i s decoded just before i t i s used.

BCPL i n i t s pure source form i s d e f i n i t e l y not suited to th i s

approach. For example a procedure c a l l that involves a

procedure that i s defined 3000 l i n e s further on in the source,

cannot be immediately executed. For BCPL to be executed i n th i s

manner some form of intermediate program representation would be

necessary. This borders c l o s e l y on the approach we have used.

Two areas of research ari s e out of considering t h i s approach as

i t applies to languages l i k e BCPL, One i s to develop suitable

high l e v e l intermediate representations that can be d i r e c t l y

executed. The other i s to develop language design p r i n c i p l e s

that w i l l provide languages that can be d i r e c t l y executed,

The f i n a l issue that concerns us i s the development of

suitable measures for architecture comparisons. The choice of

methodology i n in s t r u c t i o n set design c l e a r l y biases the choice

of measure. For example, those adopting the s t a t i s t i c a l

approach might be more interested in time oriented measures.

However we have argued e a r l i e r for the importance of the high

Chapter 5 51

l e v e l language approach to i n s t r u c t i o n set design and therefore

conclude that our measure of program representation size i s an

important component of any measure that i s devised. Of course

our measure has a number of def i c i e n c i e s . I t i s dependent on

the e f f i c i e n c y of the t r a n s l a t i o n section of the compiler used.

Comparisons are meaningful only i f the translation sections of

the various compilers use the same optimizations. This i s

sometimes d i f f i c u l t to achieve. Program representation size i s

also just one component of a measure. Though th i s measure has

been useful f o r our comparison purposes, t h i s subject of

measures for evaluation purposes reguires further work and study

to produce a more comprehensive measure.

B i b l i o q r a p h y 52

1. A b d - a l l a , A.M S K a r l g a a r d , D.C. H e u r i s t i c s y n t h e s i s o f
microjjrocfrafflaed c o m p u t e r a r c h i t e c t u r e s . I E E E t r a n s a c t i o n s on
C o m p u t e r s , V o l C-29, No. 8, Aug 1974.,

2. Tanenbaum. , A.S. I m p l i c a t i o n § o f s t r u c t u r e d - programming f o r
machine a r c h i t e c t u r e . CACM, V o l 21, number 3, March 1978
pp237-246

3. K n u t h , D. E. An e m p i r i c a l s t u d y o f FORT'S All p r o g r a m s .
S o f t w a r e p r a c t i c e a n d e x p e r i e n c e 1 (1 9 7 1) , pp261-301

4. A l e x a n d e r , I.G. How a programming l a n g u a g e i s u s e d .
CSRG-10 , U. o f T o r o n t o , O n t a r i o , Canada

5., Hortman, D.B, A s t u d y o f l a n g u a g e d i r e c t e d computer d e s i g n .
CSRG-20, U. o f T o r o n t o , T o r o n t o , O n t a r i o l l 9 7 2) , CanadaT

6., S a l v a d o r i , A., G o r d o n , J.S C a p s t i c k , C. S t a t i c p r o f i l e o f
COBOL p r o g r a m s . S i g p l a n n o t i c e s (ACM) 1 0 (1 9 7 5) , pp20 - 33

7. Sichmann, B.A. ALGOL 60 C o m p i l a t i o n and a s s e s s m e n t .
Academic P r e s s , London and New Y o r k , 1975

8, A g r a w a l a , A.K. & R a u s c h e r , T.G. F o u n d a t i o n s o f
m i c r o p r o g r a m m i n g : A r c h t e c t u r e . S g f t w a r e ajid A p p l i c a t i o n s .
A cademic P r e s s . 1976

9., S a l i s b u r y , A.B. Microprogrammed Computer • A r c h : ^ c t u r e s . - New
York : E l s e v i e r . . 1976

10. M a r s h l a n d , T.A. & Demco, J.C. A c o n t e m p p r a r j ; computer
emulation.* T e c h n i c a l r e p o r t TR76-1, F e b . 1976, D e p t . o f
C p s c , U n i v e r s i t y o f A l b e r t a , Canada.

11. H i l n e r , W.T. The d e s i g n o f t h e B u r r o u g h s B17Q0. P r o c . o f
t h e AFIPS F J C C , V o l . 41, AFIPS p r e s s , M o n t v a l e N7J., 1972, pp
489 - 497

12. S a a l , H.J. On m e a s u r i n g c o m p u t e r s y s t e m s by
m i c r o p r o g r a m m i n g i n [2 9]

13. R o s i n , R.F. Systems A r c h i t e c t u r e and M i c r o p r o g r a m m i n g :
some comments i n f 29] ~

14. A p p e l b e , W.F. A s e m a n t i c r e p r e s e n t a t i o n f o r t r a n s l a t i o a o f -
h i g h - l e v e l A l g o r i t h m i c L a n g u a g e s . PhD T h e s i s , 0 . o f B r i t i s h
C o l u m b i a , V a n c o u v e r , Canada, 1978

15. M c B i l l i a m s , T.M. & F u l l e r S.H. S Sherwood, W.H, Using
L S I p r o c e s s o r b i t s l i c e s t o b u i l d a PDP-11 z 1 £ a s e -study i n
lig£QPoroputer Resign . P r o c , AFIPS NCC 1977. pp 243-253.

16. D r a f t as o f Nov. 15, 1977 o f t h e O b j e c t i v e s f o r computer

Bibliography 53

science. Local memo from the Dept. head D.C. Gilmore to
faculty and graduate students

17. Peck, J.E.L. The essence of computer science, DBC,
Vancouver, 1975

18. Peck, J.E.L., Manis, V.S. 6 Webb, W.E. Code compaction
for minicomputers with INTCODE and MINICODE. Technical Report
75-02, Dept. of Computer Science, U. of B r i t i s h Columbia,
Vancouver, Canada

19. Stoy, J.E. 6 Strachey, C. OS-6 - an experimental operating
system f o r a small computer. The computer Journal, 15, Nos 2~&
3, 1972.

20. Richards, M. BCPL: a t o o l for Compile writing and Cistern
JSoaramming. Proc. of the AFIPS 1969 SJCC Vol 34, AFIPS press,
Montvale, New Jersey (1969), pp 557-566

21. Richards, M. The p o r t a b i l i t y of the BCPL compiler.
Software Practice and Experience, 1:1(197?), pp135 - 146

22. Richards, M. Bootstragging the BCPL comp.iler. i n Van der
Poel, W.I, S Maarsen, I. (eds.) Machine orien.teJi higher l e v e l
iaS3Jjases. , North Holland and American Elsevier,?974

23. Ritchie, D.M. & Thompson, K, The ONIX timesharing System.
CACM , Vol.. 17 No. 7, (July 1974), pp365-375

24. Bulman, D.M. Stack Computers:An introduction. Computer, May
1977. pp 18-28.

25. Abramson, H., Fox,M., Gorlick,M., Manis,V. & Peck, J. The
PICA-B computer. An abstract target machine f o r a transportable
Single-Oser- Operating Environment, submitted f o r publication.

26.Organick, E.I. Computer system organization« The B5700/B6700
Series. ACM Monograph Series, Academic Press (1973)

27. Ibett, R.N. & Capon, P.C. The development of the Ml)5
Computer system CACM vol 21 no 1 Jan~1978. pp 13-247"

28. Flynn, M.J. Computer organization and architecture.. Lecture
notes for the Advanced course on operating systems Munich,
Germany. July 28 to August 5, 1977.

29. Boon, C. (ed.) Microprogramming and System architecture^
INFOTECH state of the art report 23, Maidenhead™ Berkshire,
O.K., 1975.

30. Lipovski, G.J. & Doty, K.L. BeyjeloEments and Directions
in Computer Architecture. Computer, Aug. 1978. pp 54-67. ,

Appendix I 54

Towards a single byte encoding
This appendix contains the encoding breakdown for SLIM

which f i t s the opcode i n cne byte and the operand (i f any) i n
the following byte. Double word instructions would have 255 i n
the f i r s t byte which would singnify that the following three
bytes contain the instruction - 1 for the opcode and 2 f o r the
operands since t h i s i s a double word i n s t r u c t i o n .

He w i l l f i r s t examine the number of operands reguired for
the various operators and outline the d i s t r i b u t i o n of opcodes.
Since we only have a one byte opcode many operators may have
nine encodings to account f o r the nine possible operands.

OPERAND TYPE NUMBER OF VARIANTS (SYMBOLIC FORM)
global 2 IG, G
l o c a l 2 IP, P
s t a t i c 2 IL, L
top of stack 1 *
r e l a t i v e address 2 IR, R

TOTAL: 9

OPERATORS THAT COULD TAKE ALL NINE VARIATIONS
mult, div, plus, minus,
eg, ne. Is, gr,
l e , ge, l s h i f t , r s h i f t ,
logand, logor, exor, Id,
st k i d , store, rem, egv

SUB TOTAL: 20x9 = 180
OPERATORS THAT DO NOT TAKE ALL NINE VARIATIONS
s s e t i - absolute and stack r e l a t i v e (2) - 3
s x e l i - absolute and stack r e l a t i v e (2) - 3
c a l l - absolute - 1
jump - r e l a t i v e (2) , s t a t i c (2) - 4
j t - " - 4
j f - - 4
switchon - absolute - 1
slctap, s l c t s t - 2

SUB-TOTAL: 22
OPERATORS THAT ONLY TAKE ONE VARIATION
goto, neg, not, deref, push, pop,
sset, sget, s r e l , f i n i s h , r t r n .
true, f a l s e

SUB-TOTAL: 13
SPECIAL ENCODING
LD IPn 1<= n «= 10 10
STKLD IPn " 10
STORE Pn " 10
CALL n 0<= n <= 5 6

TOTAL: 180+22+13+36 = 251

Appendix II 55

Three equivalent BCPL and C programs

|| Check procedure c a l l i n g mechanism. The c l a s s i c towers of hanoi.

global { Sritef:50 }
l e t Hanoi{ n, s, i , d) be

{
i f n = 0 then return
Hanoi{ n-1, s, d, i)
I r i t e f <"Move %N from SIC to %C*N«, n, s, d)
Hanoi{ n-1, i , s, d)
}

|| Bubblesort. General test of loop mechanisms

manifest { falsevalue = 0 ; truevalue = 1 }
l e t Bubblesort(a, n) be

{
l e t sorted = falsevalue
and LastValue = n
and temp = 0

r
LastValue := LastValue - 1
sorted := truevalue
f o r j = 0 to LastValue do

i f a!j < a! (j + 1)
then

(
temp := a!j
a!j := a! (j+1)
a! (j + 1) := temp
sorted := falsevalue
}

} repeatwhile (sorted = falsevalue) | { LastValue -«= 1)
}

|| Expression evaluation.

l e t StupidProgram (a, b, c, d) be
i
a := (a+b)*(c+d)
b := c+d
c := (a+b)/d
d := a+b+c
}

Appendix I I 56

| | and now for the C version of each of these three programs

/* towers of hanoi * /

hanoitjn, s , i , d)
char s, i , d ;
{

i f (n == 0) return ;
hanoi(n-1, s , d, i) ;
printf("move %d from %c to %c n", n, s, d) ;
hanoi (n-1, i , s, d) ;

}

#define fa l se 0
•define true 1
/* simple bubblesort routine * /

bubblesort{ a, n)
i n t a[] ;
{

i n t sor ted, l a s t va lue , temp, j ;
sorted = fa l se ;
las tva lue = n ;
do [

las tva lue = las tva lue -1 ;
sorted = true ;
for { j = 0 ; j <= las tva lue ; j = i + 1)

i f (a[j] < a[j*1]) {
temp - a[j] ;
a[J3 = a [j*1] ;
aCj+1] = temp ;
sorted = fa l se ;

}

} while ((sorted =• = fa l se) | | { las tva lue -»•= 1 }) ;
}

/* a stupid program that evaluates expressions * /

stupidprogram(a, b, c , d)
I

a = (a+b)*{c+d) ;
b = c + d ;
c = (a+b)/d ;
d = a+b+c ;

Appendix I I I 57

SLIH system software

T h i s appendix c o n t a i n s a b r i e f d e s c r i p t i o n of the SLIM

system software. T h i s i n c l u d e s :

i . a BCPL t o SLIM compiler

i i . a SLIM assembler

i i i . a SLIM loader and i n t e r p r e t e r

T h i s a l l o w s one t o compile and run BCPL proqrams. We w i l l

d e s c r i b e t h i s software b r i e f l y and then i l l u s t r a t e the whole

system on the e t e r n a l towers of hanoi!

The c o m p i l e r i s as expected. I t allows some Vancouver

ext e n s i o n s (e.g. f o r op e r a t o r s l i k e *%*, •+:=' etc.) , The

assembler generates l o a d modules and a l s o performs compaction

making jumps and r e f e r e n c e s r e l a t i v e i f p o s s i b l e . T h i s u s u a l l y

saves from 5 t o 10 percent of the proqram s i z e . The technique

i s the same as t h a t d e s c r i b e d by Peck et a l . [1 8] . , A l l the

above software i s w r i t t e n i n BCPL so that p r o t a b i l i t y i s

enhanced.

We now present the e t e r n a l TOWERS OF HANOI r i g h t from the

BCPL source t o SLIM i n t e r p r e t a t i o n . T h i s i s an e d i t e d v e r s i o n

of a l i v e MTS s e s s i o n at DBC.

COMMENT LIST OF THE SOURCE
LIST -HANOI
> 1 SECTION. "HANOI"
> 4 GET. "FOX:BCPLHDR"
> 4.5 ENTRY ${ START:"START" $)
> 5 LET HANOI (N, S, I , D) BE

Appendix III 58

> 6 $(IF N <= 0 THEN RETURN
> 7 HANOI (N-1, S, B, I)
> 8 WRITEF ("MOVE %U FROM %C
> 9 HANOI(N-1, I, S, D) $)
> 10
> 11 AND START {) BE
> 12 ${ LET N = 0
> 13 WRITES("ENTER NUMBER*N")
> 14 N := READNQ
> 15 WRITEF("NUMBER INPUT WAS
> 16 IF N <= 0 THEN FINISH
> 17 HANOI(N, *S», 'I», »D»)
> 18 $) REPEAT
END OF FILE
COMMENT COMPILE IT

TO %C*N", N, S, D)

%N*N", N)

BUN BCPL.COMPILER T=1S SCARDS=-HANOI PAR=I
EXECUTION BEGINS
BCPL/SLIM (1978 MAY)
PARAMETER = * I'
LOGICAL UNIT '0* WAS NOT SPECIFIED; -OC# ASSUMED.
LOGICAL UNIT *10* WAS NOT SPECIFIED; -STATS ASSUMED,

SECTION HANOI

COMPILATION COMPLETE; 0 ERRORS DETECTED
S EXECUTION TERMINATED
COMMENT LIST THE SLIM CODE
LIST -GC#

SECTION HANOI

EXTERNAL 11 "WRCH"
EXTERNAL L2 "RDCH"
EXTERNAL L3 "WRITEO"
EXTERNAL L4 "WRITED"
EXTERNAL L5 "WRITEHEX"
EXTERNAL L6 "WRITEOCT"
EXTERNAL L7 "WRITES"
EXTERNAL L8 "WRITEF"
EXTERNAL L9 "REACN"
EXTERNAL L10 "WRITEX"
EXTERNAL L11 "NEWPAGE"
EXTERNAL L12 "NEWLINE"
EXTEBNAL 113 "WRITEN"
EXTERNAL L14 "PACKSTRING"
EXTERNAL L15 "UNPACKSTRING" SSETI P2 JUMP L20
3BAN0I
17: SSETI P6 LD IP2 LE 0 JF 121 RTRN
21: SRELI 2 LD IP2 MINUS 1 STKLD IP3 STKLD IP5
STKLD IP4 STKLD IL18 CALL 4 SRELI 2
LD L22 STKLD IP2 STKLD IP3 STKLD IP5 STKLD IL8
CALL 4 SRELI 2 LD IP2 MINUS 1

appendix I I I 59

STKLD IP4 STKLD IP3 STKLD IP5 STKLD IL18
CALL 4 RTRN
22: DATa "MOVE SN FROM ^C TO %C*N"
3START
19: SSETI P2
23: LD 0 POSH SRELI 2 LD L24 STKLD IL7 CALL 1
SRELI 2 LD 119 CALL 0
STORE P2 SRELI 2 LD L25 STKLD IP2 STKLD IL8 CALL 2
LD IP2 LE 0 JF L26
FINISH
26: SRELI 2 LD IP2 STKLD 'S' STKLD «I» STKLD *D*
STKLD IL18 CALL 4 SSETI P2 JUMP L23
RTRN
25: DATA "NUMBER INPUT WAS 5JN*N"
24: DATA "ENTEB NUMBER*N"
20: FINISH
16: DATA L19
18: DATA L17
ENTRY L16 "START"
END

END OF FILE
COMMENT ASSEMBLE IT
RUN ASM T=1S SCARDS=-OC#
EXECUTION BEGINS

PABAMETER

SPUNCH DEFAULTS TO *-CODE#J

S L I M ASSEMBLER (VERSION 3. JULY 1978)
EXECUTION TERMINATED
COMMENT LIST THE LOAD MODULE
LIST -CODE#

ENTRY "START" 000146
111002 126400 +000145 111006 077002 040000 135 402 174017
114002 077002 014001 103003 103005 10300 4 102410 +000147
120004 114002 075421 103002 103003 103005 102410 +000000
120004 114002 077002 014001 103004 103003 103005 102410

+000147 120004 174017 013324 1533 45 142500 066325 040306
154726 152100 066303 040343 153100 066303 012400 111002
074000 174005 11400 2 075453 102410 +000000 120001 114002
076410 +000000 120000 10 5002 114002 075426 103002 102410
•000027 120002 077002 040000 135402 174016 114002 077002
102400 000342 102400 000311 102400 000304 103431 120004
1 11002 12553 7 174017 012325 162324 141305 154500 144725
153744 161500 16 3301 161100 066325 012400 006705 152743
142731 040325 162324 141305 154425 174016 +000057 +000003

EXTERNAL "WRITES" 000065
EXTERNAL "WRITEF" 000100
EXTERNAL "READN" 000071
END

END OF FILE
COMMENT NOW RUN THE LOADER/INTERPRETER WITH THE LIBRARY

Appendix III 60

RON INT T=1S SCARDS=-CODE#+BCPLLIB
EXECOTION BEGINS

- S L I M - INTERPRETER/LOADER. VERSION 3 (JOLY 1978)

650 WORDS LOADED

LOAD MAP

000146 : "START"
001172 : "WRITES"
001175 : "WRITEF"
001202 : "READN"
001173 : "ONPACKSTRING"
001174 : "PACKSTRING"
001176 : "WRITED"
001177 : "WRITEN"
001200 : "NEWLINE"
001201 : "NEWPAGE"
001203 : "WRITEOCT"
001204 : "WRITEHEX"
001205 : "WRITEO"
001206 : "WRITEX"
001207 : "RDCH"
001210 : "SRCH"
001211 : "TERMINATOR"
EXECUTION BEGINS
ENTER NUMBER
3
NUMBER INPUT WAS 3
MOVE 1 FROM S TO D
MOVE 2 FROM S TO I
MOVE 1 FROM D TO I
MOVE 3 FROM S TO D
MOVE 1 FROM I TO S
MOVE 2 FROM I TO D
MOVE 1 FROM S TO D 1

, ENTER NUMBER '" 1

2
NUMBER INPUT WAS 2
MOVE 1 FROM S TO I
MOVE 2 FROM S TO D
MOVE 1 FROM I TO D
INTER NUMBER
-1
NUMBER INPUT WAS -1

EXECUTION TERMINATED.,(12892 INSTRUCTIONS)
EXECUTION TERMINATED

