A CASE-DRIVEN PARSER
by
Brock H. Taylor
B.Sc., University of British Columbia. 1973A THESIS SUBMITTED IN PARTIAL FULFILMENT OFTHE REQUIREMENTS FOR THE DEGREE OFMASTER OF SCIENCEin the DepartmentOf
COMPUTER SCIENCE
We accept this thesis as conforming to the required standard.

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Computh Science
The University of British Columbia Vancouver 8, Canada

Date

ABSTRACT

A parser for English sentences using case and an augmented transition network is described. The interaction between syntax, semantics, and case is examined with special emphasis on their role in this particular system. The thesis concludes with a re-affirmation of the inseparability of syntax and semantics. and with cautious optimism for the future cf case in computational linguistics.

TABLE OF CONTENTS

CHAPTER 1 1
SECTION 1.1: Introduction 1
SECTION 1.2: A Brief Look at Some Relevant Case Systems 2SECTION 1.3: A top-level description6
CHAPTER 2: CASES 9
SECTION 2.1: List of Cases 11
SECTION 2.2: Determination of Case 18
SECTION 2.3: Verb Specific Cases 21
SECTION 2.4: The Structure Returned 23
CHAPTER 3: THE DICTIONARY 25
SECTION 3.1: Verb Definitions 26
CHAPTER 4: AN EXHAUSTIVE EXAMPIE 32
CHAPTER 5: SOME DETAILS 45
SECTION 5.1 Anaphoric references 45
SECTION 5.2 Particles 49
SECTION 5.3 Ergative Verbs 51
SECTION 5.4 Some Obvious Extensions 52
CHAPTER 6: CONCLUSION 53
BIBLIOGRAPHY 57
APPENDIX I: Some Examples 59
APPENDIX II: Some Non-examples 74
APPENDIX III: A Description of What the System Returns 75
APPENDIX IV: The Dictionary 77
APPENDIX V: The Code 95
The Case Analysis Code 96
The ATN Grammar 129
Some Auxiliary Routines 137
The ATN Parser 138

TABLE OF PIGURES

FIGURE 1: An Example From Schank 4
FIGORE 2: The Dictionary Entry for the verb "to order" 28
FIGURE 3: An ATN Parse of Sentence (4.1) 3 3
FIgURE 4: Incorrect Initial Structure for Sentence (4.1) .. 37
FIGURE 5: The Structure for "the man beside the window" ... 40
FIGURE 6: Correct Initial Structure fcr Sentence (4.1)42
FIGURE 7: The Final Structure for Sentence (4.1)44

Each man
has a way to betray
the revolution
This is mine

I fought in the old revolution on the side of the ghost and the king Of course I was very ycung and I thought that we were winning I can't pretend I still feel very much like singing as they carry the bodies away
-I. Cchen

SECTION 1. 1: Introduction

The work described in this paper was largely inspired by Roger Schank's [11] work with Conceptual Lependancy Networks, although it is not intended to be an implementaticn of his ideas. It is a parser which uses the notion of case in its breakdown of a sentence, and which labels sentence parts with case names in the structure that it returns. The syster is written in LISP and it runs at the oniversity of British Columbia on an IBM 370-168 under the MTS operating system.

Case is a much more intuitive apprcach tc language than transformational grammars are. It not only demands the integration of semantics into the parser, but it makes it obvious that this is where the semantics belong. Case at least partially unifies these long separated components of language.

SECTION 1.2: \mathfrak{A} Brief Look at Soge Geleyant Case Systegs

Since Fillmore [6] wrote bis paper "The Case for Case" in 1968 there has been a strong movement in computaticnal linguistics towards a case analysis of the English language. Very briefly, fillmore introduced a notion of defp case in which a simple sentence is composed of $\begin{gathered}\text { verb with certain froferties }\end{gathered}$ such as tense, aspect, etc., and a set of noun phrases lakelled with case names. Fillmore does not give an exhastive list of the deep cases in English, but he does list a few cases that be views as essential. They are: agentive, dative, INSTRUMENTAL, factitive, locative, objective, and efnefactive. verbs are classified by their case environments, that is, by the set of cases they accept.

In 1972 celce-murcia [3] proposeda case system of five cases: CASUAL-ACTANT, THEME, LOCUS, SCURCE, and GOAL. Simmons [13] has written a system based on Celce-Murcia's theory. He classifies all, verbs into what he call "paradigms" according to the way the five cases may be arranged with the verb in the surface structure. He gives the example of the verb "to break". It belongs to the "ergative" paradigm which allows four case patterns.in the surface structure in the active voice:
(1.1) John broke the window with the hammer.
(1.2) John broke the window.
(1.3) The hamer broke the window.
(1.4) The window troke.

They can all be generated from the structure:
break: CASUAL-ACTANT1: John
THEME: window
CASUAL-ACTANT2: hammer
with the appropriate deletions and re-arrangements allowed ergative verbs. If enough verbs can be so classified, this provides a simple, yet apparently foverful mechanism for generating language. Using this scheme. for parsing, however, leads to the usual problems case systems have. In sentence (1.4) what is the CASUAL-ACTANT1, the AGENT in my terminclcgy? What is the CASUAL-ACTANT2, my INSTROMENT case? The system may be able to tell from context, or to make an intelligent guess. I do not mean to imply that these are problems particular to Simmon's work. They are not. His paradigm idea is very useful in that it limits to four the number cf possible arrangents of these three cases for ergative verbs.

The basic problem with using only five cases is that information which is fairly readily available in the surface structure tends to become obscured, if not lost. In sentence (1.1). for instance, we can infer a lot of information not explicit in the sentence. For instance, we guess that John
performed some act which caused the hammer to strike, and thus to break through the pane of glass in the window. Ee protably held the hammer in his hand and struck the window with its metal head, but he could have thrown it through the window; he cculd have struck the window sill or frame thus causing the pane to break, etc.

It is this more general picture that schank tries to build up with his conceptual dependancy nets. Schank employs fourten verbal primitives, or ACTs, and at least fcur cases (OBJECTIVE, RECIPIENT, DIRECTIVE, and INSTRUMENTAL) to build up a structure of primitives which captures the "meaning" of the sentence. I say "at least four cases" because other cases such as AGENT are implicit in his structures.
(1.5) John grew the plants with fertilizer.

For instance, from sentence (1.5) he builds the structure in figure 1.

Figure 1 - An Example from Shank

Notice that "fertilizer" appears to be in the instrument case in the surface structure, but it is in fact the cbjective
case of the $A C T$ "trans". Schank's structures cafture more of the meaning of the sentences than fillmore's deep structure do. Currently at MIT Xartin [9] is building a case system for the MAPL project. He has proposed a set of some thirty cases.

SECTION 1.3: A TOp=level Descripticn

The basic objective in this thesis was to explore the use of case in a system which parsed English sentences into a structure like Schank's conceptual dependancy networks. A lcose and incomplete set of verbal primatives were used instead of Schank's fourteen primative ACTs because they $s \in \in \mathbb{m} \in \mathbb{C}$ more intuitive. $\nabla \in \mathrm{rbs}$ like "buy", "sell", "give", "take", "steal", etc., are represented by "trans"; verbs like "go", "come", "run", and "leave" by "move"; and socn.

An important feature of case which Simmons does not acknowledge is that Fillmore's "case frames" can be used to select, from the multiple meanings of a verb, its intended meaning in the sentence. The procedural definiticn of a verb in my dictionary consists of a list of case frames which distinguish verb meanings.
(1.6) John stole the jewel.
(1.7) John stole into the building.

For instance the two meanings of the verb "to steal" in sentences (1.6) and (1.7) are distinguished ty the two case frames for the verb. The case frame for the meaning used in (1.6) demands a patient, wile the one for (1.7) requires a locative phrase with an adverbial preposition. This notion is used in a similar way by Schank.
(1.8) He stole.

Sentence（1．8）is ambigucus to $⿴ 囗 十 y y s y s t e m$ since the case frames for the verb cannot tell which meaning is intended．The system must resort to context，as you and I do，to resolve the ambiguity．This mechanism has not been programmed，so currently the system will return the first meaning it succeeds on，which， after several failures to find a patient cr a locative fhrase， will be＂to thieve＂．

The rest of this chapter will be devoted tc a simple description of the control structure in which these case frames operate．

The system takes the sentence and tries to fit it into one of the frames，that is，it tries to find which meaning is being used in the sentence by looking at the sentence structure，its parts，and their semantic categories．If it gees through all of the meanings without finding one that．fits the sentence，it weakens its tests on the semantic categories，and then tries all of the meanings again．
（1．9）The turnip play d_{d} a wild dance on the violin．

In sentence（1．9），for instance，the system will at first fail to find an agent because all of the case frames for＂to play＂ demand an animate，if not human，agent．These tests will be weakened，however so that on the second，or third time thrcugh the list of case frames a meaning will be selected．This process of going through the case frames again with weaker tests is refered to as the top－level back－up，althcugh it is not really back－up in the usual sense，since decision points are not
stacked and backed-up through on failure.
This was done for a specific reascn. Since the case frames are tried in order, the ordering can be used to help disambiguate the verb. In defining the second case frame for a verb, for instance, it is often useful to use the fact that ite first case frame has failed.

If the system backs up into this second frame with a weaker test, however, it may not be true that the first case frame would fail on the weaker test.

Another reason for not backing up in the usual sense, is for efficiency. Since the case frames are tried in order, obviously the most common verb usages should be put first in the list. If all of the meanings fail beacuse the tests are too severe, one still wants to try the most common meaningsfirst with the weaker tests.

Once the system has succeeded on a particular meaning of the verb it will proceed to look at the rest of the sentence nct already looked after by the framing frccess. Here a genuine back-up mechanism is employed. If the system thinks it has the correct case for a particular sentence part, it stacks a form to put the corresponding sub-structure into the main structure of the parse. If the rest of the sentence is handed ccrrectly, when the stack is unwound at the end, all of the forms so stacked are EVALed, and these sub-structures are put in. If, on the other hand, the system fails later on in the parse, it will back up to this decision point and lock for ancther way to handle this particular sentence part.

CHAPTER 2

They will never ever reach $t h \in$ roon at least not the one that they're after

It is floating broken on the open $s \in a$ and it carries nc survivors
-I. \quad Cchen

CASES

The question of how many cases we need to describe English is a contentious one. As mentioned above, fillmore is vague cn the issue, whereas Celce-Murcia claims that five cases will do. The purpose of this work is to capture as much of the $\boldsymbol{m} \in \mathrm{aning}$ of a sentence as is possible, and to make it explicit in a formal structure. Case, then, is an explanation of the semantic function of a sentence part, so a fairly.large number of cases have been used, one for each of these "semantic functions". We are not adamant about our set of cases. The system is flexible and structured enough, that the addition or deletion of cases is a simple operation.

The system was originally designed with Martin's thirty-odd cases as its basis. There are currently twenty-fcur general cases implemented, plus numerous verb-specific cases. Some of Martin's cases have been dropped completely, some have simply not been implemented yet, and several have been added.
fairly self-explanatory. With each case is a set of examples (mostly from Leonard Cohen, if they seem strange) with the case in question underlined. Those cases which are flagged by certain prepositions have these prepositicns listed.

SECTION 2.1: List of Cases

Agent

The man in white says he has no friends.
The trees are burning in your promised land.
I got wiped out by several charismatic holy men. Love calls you by your name.

Patient

He trained \mathfrak{a} hundred gogen just to kill an unborn child.

You can read their address by the moon.
I am punished by your sclitary truth.
I washed ㄸy eyelids in the rain.

Location

A scalpel blade lay beside my sily yer spoon.
Your letters all say that you are beside me now.
I sleep beneath the golden hill.
In city and in forest our steps will always rhyme.
I have lain by this windoy long encugh.
Flagged by at, in, on, by, near, beside, before, beneath, upcn.

Tinge
I love ycu in the morning.
If by chance I wake at night and ask you who I am.
I suppose that he froze when the wind took your clothes.

We all should study etiquette before we study magic.
She fell in love for us in 1961.
Flagged by at, in, on, by, near, during, before, after, when, while, around.

Recipient

She said that you gave it to her.
They brought me their comfort.
Flagged by to.

Source

We will come from the shadows.
Thanks for the trouble you took from her eqes.
Taking from his wallet an old scheduel
of trains, he'll say. "I tcld ycu when I came I was a stranger."

Flagged by from.

Destination

I will let you take me home.
Into this furnace I ask you now to venture.
She leads you to the river.
Take me to the slaughterhouse.

Flagged by to, into, onto, toward, towards.

Duration
You have lived for years for nothing.
He will sleep for one night with the woman he flans to abandon.

They played their game in two hours.
Flagged by for, in.

Instrument

She touched your perfect body with hel mind.
Cover up your face with scap, now ycu're Santa clause.
The infant with his cord is hauled in like a kite. Flagged by with.

Manner
They left in \mathfrak{a} hurry.
I walk with my mouth shut into the drifting world.
I choose the rooms that I live in with care.
I am eating a juicy peach by lamplight.
Flagged by in, with, by.

Path

We started up the mountain.
Through the graves the wind is bloving.
I journeyed down a hundred steps.
we poured across the border.
Flagged by by, about, along, up, down, arcund, acrcss.

Method
I do not intend to save you any work $k y$ keeping silent.

Some men find strength by going their lonely ways. Who would have foretold that the heart grows old
from touching others.
Flagged by by, from.

Expected=effect

I am only whispering to my tomahawk sc the image itself will reduce you to scorn.

They blamed Mitchell so the peofle wculd nct susfect them.

Flagged by so.

Quantity

What is grey and comes by the guart?
We produce oil by the barrel and sell it ky the cup. Flagged by by.

Exchange

I bought it with a nickle and I sold it for a dime.
He wants to trade the game he plays for shelter.
You could not trade them for priesthood.
They are waiting to see a signal that some killer will be lighting for pay.

Flagged by with, for.

Beneficiary
I fought every man for her until the night was cuer.
I sing this to the crickets, I sing this
for the army.
I forgot to pray for the angels,
and so the angels forgot to pray for us.
Flagged by for, to, before.

Conagent

I went with the one who found me.
I lived with a child of snow.
Nancy wore green stockings, and she slept
with eytryone.
Oh, come with me my little cne.
Flagged by with.

Descriptive (A case of the Ncun)
Suzanne takes you down to her place near the river.
The woman in blue is asking for revenge.
The hand of your beggar is burdened down with money. Flagged by of, from, at, in, on, with, by, near, beside, before, after, along, up, down, arcund, across, under.

Topic
It is time we began to laugh abogt it all again.
Lets not talk of love or chains.
Sometimes I find I get to thinking \underline{c} the gast.
Flagged by of, about.

Canse
It rained so I got wet.
Flagged by sc.

Puㄷpose

You who build these alters to sacrifice these children, you must not do it any more.

You were traning with mirrors to make
yourself perfect.
I lit a thin green candle to make ycu
jealous of me.
Flagged by to.

Enable
He robbed the bank so he and his wife could have separate holidays.

I had to kick you down the stairs so I could Savour uneqployment once again.

He have to put her away so we can get back tc the war. Flagged by so.

Like
He sank beneath your wisdcm like a
 Choir, I have tried in my way to be free.

The sun pours down like honey on our lady of the morning.

Flagged by like.

브는

The rcom just filled up with mosguitos.
He locked himself in a library shelf
with the details of gur honey=Igcn.
Flagged by with.

With most of the cases above is listed the prepositions that flag each case. This is a gross over-simplification of the relationship between verbs, prepositions, and cases. A preposition which flags one case for cne verb may very well flag ancther case for a different verb.
(2.1) I walked about the room.
(2.2) I talked about the room.

For verbs of movement like "walk", "about" flags the path case as in (2.1), but for verbs of communcaticn like "talk", it usually flags the topic case as in (2.2). . Martin notes this and proposes for each verb meaning to list all of the casesflagged by each preposition. Since there is a great deal of uniforifty across verbs in this regard, however, it wuch more efficient to set up a master table for all verbs in the system, then for $\mathfrak{f a c h}$ verb, to list only the irregularities.
(2.3) The scandal was whispered about the room.

Sentence (2.3) illustrates that "abcut" can flag the fath case for a communication $v \in r b_{\text {, }}$ so we dc nct want to rule cut the path case, we just want topic to be tried first. In (2.3) the topic slot will already be filled by "the scandal", so topic will be rejected, and the path case will be tried next.

This foregrounding of cases is specified by the perscn who
writes the dictionary. He may specify that for the verbs talk, laugh, whisper, etc., the occurrence of the preposition "abcut" should trigger the topic case before the path case.

There is another obvicus way of determining case names for prepositional and noun phrases. Consider the sentences:
(2.4) Fred bought the car for Mary.
(2.5) Fred bought the car for one dollar.

The preposition "for" flags many cases. In (2.4) it flags the beneficiary case, and in (2.5) it flags the exchange case. Associated with each case is a test which a phrase must pass to be accepted as that case. In the beneficiary case the test is:
(MUST-BE ANIMATE)
indicating that the beneficiary has to be animate, wile the test for the exchange case is:
(NOT (SHOULD-BE HUMAN ABSTRACT))
indicating that one usually dones not exchange something for a person or something abstract. These tests correctly sort out the cases in sentences. (2.4) and (2.5).

In general tests on cases are very difficult to design adequately. What test would be appropriate for the topic case? What could not be talked, laughed, or cried about? Perhaps some complex verb and context dependant test cculd be concocted, but
one has not been designed for this system. The test for the topic case is therefore T. one must therefore be careful when invoking the topic case because it will always succéd.

The exchange case is almost as bad, Anything can be exchanged for something. The weak test
(NOT (SHOULD-BE HUMAN ABSTRACT))
is put in which will at first fail if a human or an abstract noun is the candidate, but will pass if nothing else sefms to fit either. This simpletest runs into problems with certain sentences.
(2.6) I paid a fortune for $\mathbb{m} \boldsymbol{y}$ mother's release.
(2.7) I paid a fortune for my wother.
(2.8) I paid a fortune for the prosititute.

It will initially force the exchange case to reject "for my mother!s release" in (2.6) because it is abstract, kut later cn it will accept it since all of the other cases flagged by "for" will also reject it. Sentence (2.7) is ambiguous, tut "mother" is almost certainly in the beneficiary role here, so again the test works correctly by rejecting the exchange case. Sentence (2.8) is also ambiguous, but our interpretation would usually be that "prostitute" is being used in the exchange case here. Tte system will, however, assign it the beneficiary case as it did in (2.7). Much work must be done on case tests if this paradigm is to be useful.

SECTION 2. 3: Verb=Specific Cases

The cases listed in SECTION 2.1 are general cases, alfost all of which can be asscciated with any verb. Many verbs, however also have special cases.

The verb "to be" is a prime example. In this system "to be" has eight meanings. Let's look at a few of them.

The third meaning of "tc be" is "tc have the property...". as in sentence (2.9).
(2.9) The house is red.

If you look at the entry for "to be" in the dictionary in APPENDIX IV you will see that this meaning is picked up ty the form:
((ADJ-LIST T) ADJ CBL (AGENT T) AG OEL)

The function ADJ-IIST looks for an adjective phrase. Sc an adjective phrase is considered to be a special case of the verb "to be".

The sixth meaning of "to be" is "to be frcm . . .", as in sentence (2.10).
(2. 10) The lady is from Ouagadcugcu.

This special case is locked for by the functicn Clade which takes as arguments a list of prepositions to look for, a test
that the prepositional phrase must pass, and a name for the case it is looking for. In this case the form is:
(CLADSE (FROM) '(MUST-BE COUNTRY CITY TOQN CONTINENT LOCATION)
'LOCATION) ${ }^{1}$

In other words: Look for a phrase starting with "from" which is a location of some kind.
(The third argument is needed for the back-up mechanism. It is possible to turn the MUST-BE tests cff for cnlycertain cases. This is useful when you are happy with the action cf all of the tests but those asscciated with a certain case cr two.)

My notion of case is rather general, in which an important function of a case is to distinguish betwen verb meanings. In the following chapter we will look carefully at just how cases are employed to do this.

1 Note that (MUST-BE LOCATION) will suffice as the test here, since COUNTRY, CITY, etc., all have the attribute LOCATION. The other categories are put in since they occur most often in this structure, and will thus speed up the sєarch. He comes from the West.". would also be handled since "West" would alsc bave the attribute LOCATION.

SECTION 2. 4 : The Structure Returned

APPENDIX III gives a formal description of the structures returned by the system. This section will give a more informal and intuitive description. APPENDIX I gives lots of examples of these structures.

The basic idea was to return a structure which coulc be EVALed by LISP for further processing. The top-level function was to be " $<=\Rightarrow$ " wich would be an FEXER since it can take a variable number of arguments. The first argument to $\Leftrightarrow={ }^{\circ}$ is the agent or subject of the verb. The "or subject" is necessary in cases like sentence (2.11) because some verb primitives, HayePROP in this case, allow $\Leftrightarrow=\Rightarrow$ to take sentences as a first argument.
(2.11) That I came is sillp.

The second argument $t c \Leftrightarrow$ is the tense of the $v \in r$.
The third argument is the predicate. This is alway a list beginning with the verb symbol "<--". The idea again was that this would be a form to ke Evaled. The first argument for-- is a verb-primitive. The second and third arguments are optional for some verbs, and not for others. The second is an adverbial phrase structure beginning with "<-ADV-". For instance,

Would have the structure:

$$
(<-- \text { MCVE }(<-A D V-\text { QUICKLY)) }
$$

If the verb takes a patient in the sentence, this patient follows the adverbial phrase if it is there, ctherwise it follows the verb primitive.

The rest of the arguments to $<\Rightarrow=$ are the cases of the verb, and any top-level adverbial phrases, like "well" in sentence (2.12).
(2.12) He played the piano well.

Their order is not considered important in the structure, so they just appear in a list at the same level as the verb symbol <-- The cases are lists beginning with an atom of the form

<-CASE-

were CASE is replaced by any of the cases but agent, Patient, or DESCRIPTIVE. These three cases are treated specially. As mentioned abcve, the agent is the first, argument of <==>, and the patient is the last argument of $<-$. The $\operatorname{leSCRIPTIVE}$ case is a special case which is used to hande all of the prepositional phrases which modify nouns. This case, therefcre, is embedded in the noun-phrase structure. This is ade more explicit in CHAPTER 4.

CHAFTER

3

> Thanks for the troukle
> you tcok from her eyes I thought it was ther for oocd sc I never tried
> $-L . ~ C c h \in n$

THE DICTIOKARY

Each word in the dictionary is set up as follcws:
(WORD I1 P1 I2 F2 In Pn)
where WORD is the word in questicn, and each pair (Ii Pi), i>0 is an indicator and a property which are to be fut on the property list of WORD. ${ }^{1}$

For each word, one of the indicators should be a part of speech. The property under this indicator is information for the morphology routines. For a noun, for instance, the property under N indicates how the plural of the noun is formed; for verbs, the property under V indicates how the first-person singular and past tenses are formed; etc.

On the property list of ncuns is a list of the noun's

[^0]properties under \mathbb{N}-PROP, its superset under SuPERSFT, and so on. For verbs cne puts a procedural definition of the verb under V-MEAN. To understand just how the system works it is necessary to see how these procedural definiticns work.

SECTION 3.1: Verb Definitions

The verb is treated as the focal point of the sentence. A verb can have many meanings. The system discovers which meaning is intended by looking at the rest of the sentence. In so doing, it builds a structure representing a parse of the sentence.

Gith each verb, then, is associated a set of cases cf the verb, some cbligatory, some optional, and some concitionally optional. These cases are embedded in a form on the proferty list of the verb. Ample examples of verbal definitions can $k \in$ found in APPENDIX IV, but a careful lock at one in detail is necessary for an understanding of the system. In CEAFTFR 4 a long example is given showing just how these definitions work in parsing a sentence.

Consider the verb "to order." Its dictionary entry is as fcllows:

```
MORDER V
S-ED
    PREP-CASE ((WITH RITH))
        V-MEAN
        (IF ((AGENT (MOST-BE HUNAN))
            AG
                (OPT (GETR PASSIVE) SOMEONE)
                (PATIENT (MOST-BE ANIMATE))
            PA
                OBL
                (TO-COMP (GETR FA))
                TOC
                OBL)
                (BUILDQ ("<==>" ? "+" ("<--" ORDER "+")) AG TNS TCC)
                ((AGENT (MUST-BE HUMAN))
            AG
                (OPT (GETR PASSIVE) SOMEONE)
                    (PATIENT (AND (MUST-BE THING) (NOT (MOST-BE HUMAN)))
                    PA
            OBL)
            (BUILDQ ("<==>" ? "+" ("<--" CREER ?)) AG TNS PA)))
```

Figure 2 - The Dictionary Entry for the verb "tc order"

```
Onder the indicator V-MEAN you will see a form teginning
```

 (IF (IAGENT . : .
 IF is a function which takes an even, but otherwise variable, number of arguments, each pair representing a meaning of the verb. . The first element of each pair is a set of cases to be looked for, and the second is the structure to be built if they are found.

It is in the first element of the pair that the complexity lies. Let us look at it more closely.

The list of cases is, in fact, a list of triples. The first element is a form to be EVALed. It is usually lcoking for
a case, but any form is admissible. The second element of the triple is an atom: a register name. If the first form evals to a non-Nil value, the value is put into this register. In cur example, for instance, the first triple is:
(AGENT (MUST-BE HUMAN)) AG (OPT (GETR EASSIVE) 'SOMEONE))

The function of the first form is to find the agent of the sentence. If it succeeds, this agent is put intc register AG. The third element of the triple says wat to do on failure. If it is the atom "OBL", then this indicates that the case was obligatory, so if it was not found, then IF should fail on this meaning of the verb. If the atom is "OPT". then the case is optional, so the register is left.empty, and If continues with this meaning. The third possibility is that this third element is a form, in which case it is EVALed. If it returns "OEL" cr "OPT", then the result is as described abcve. If it returns anything else, then that is put into the register, and $1 F$ continues with this meaning of the verb.

Let us look at "to order" again. The third element of the first triple is
(OPT (GETR FASSIVE) 'SOMECNE)

OPT is a very simple function which, if its first argument is non-NIL, returns its second argument. Otherwise it returns "OBL".
is true if the sentence is in the passive vcice.
So the first triple can be read as follows:
Look for an agent which must be huran. If ycu find one, put it in register ag. Ctherwise, if the sentence is passive, make SOMEONE the agent. otherwise fail.

The second triple is more simple. It merely says: If you find an animate patient, then put it in register $P A$, else fail. The third triple is equally simple, but it is not looking for a case, but a to-complement. If these three elements are found in the sentence, then the system will look no further, but assume that it has found the correct meaning of the verb. It will EVAL the second forll of the pair: in this case:
(BUILDQ ("く==>" ? + ("<--" ORDER +)) AG TNS TOC)
which builds the basic structure for the sentence.
BUILDQ takes a variable nuaber of arguments. The first is a kind of template u ith slots in it. The rest of the arguments fill the slots.

The "+" denotes a slot which is filled by the contents of a register.

The "?" Is filled by the applicaticn cf the function NOUN-POT to the contents of a register.

[^1]Finally, the "\#" indicates that $\begin{aligned} & \text { form is to te } E v A L \in d \text {, and }\end{aligned}$ the result put, into the slot. The slcts are filled in crder ty the second, third, $\in t c$, arguments.

So in this case:
(NOUN-POT (GETR AG)) is put in for the ?. (GETR TNS) in place of the first +. (GETR TOC) for the second +.

Where GETR returns the contents of a register.

You who build the alters now to sacrifice these cbildren you must nct do it any more A scheme is not a vision and you never have been tempted by a demon or a god
-I. Cchen

AN EXBAUSTIVE EXAMPLE

Programming details tc not belong in a thesis of this kind. All of the code is in APPENDIX V for those interested. In the following example, then, function names and excessive details will be, on the whole, left out. A detailed account of the basic algorithm and control structure will be given. We will look at a simple sentence. More complex structures such as relative and subordinate clauses are treated in much the same way as their parent sentences.

Consider the sentence:
(4. 1) The man beside the window played the fianc for Mary.

The first step in the process is a partial parse using an augmented transition network (ATN) as described ky wcods[15]. "Partial" is used bacause the parser is purely syntactic. The structural description usually associated with a parse is incomplete. That is, no decisions are \mathbb{A} de about what modifies
what, what meaning of the verb is being used, etc. The basic idea behind the $A T N$ is to find the verb; but whif it is dcing this, it might as well chop the sentence up intc its parts. There are problems with just how this chopping should be done, but with most. sentences it is straight forward. A look at the sample parses in APPENDIX I will give more examples of this notion.

The ATN parse returned will look like this:

S

$$
\mathrm{NP} \mathrm{NIL}
$$

DET THE
N MAN
NUMBER SG
PP NIL BESIDE
NP NTL
DET THE
N WI NDOW NUMBER SG
VP NIL
TNS
PAST
VOICE ACTIVE
V PLAY
NP NIL
DET THE
a PIANO
NUMBER SG
PP NIL FOR
NP NIL
NPR MARY

Figure 3 - An atn Parse of Sentence (4.1)

ATNS have been found to be a useful formalism for procedural definitions of grammars, but have been criticized for their slowness. Because this ATN returns such a simple
structure, however, it is very fast, and consumes little of the total time to process a sentence. It is on this preliminary parse that the program works.

First, the main verb is found, and a function is invcked which controls the top-level back-up. This functicn fVals the form on the property list of the verb under the indicator V-MEAN. This form for play is a very long one, so rather than reproducing it here, you are refered to the entry for play in the dictionary which is listed in AppencIX IV.

The form in question is a call to IF, whose mechanism has been briefly described in SECTION 3.1. In this case IF has eight arguments, indicating that there are four meanings to the verb PLAy in the system.

The first meaning is "to play a musical instrument."
The first case looked for is the AGENT. This agent shculd be a musician, and must be human. This search is made by Evaling the first form in the first triple of the first argument to IF:
(AGENT (AND (SHOULD-BE MUSICIAN) (MUST-BE EOMAN)))

AGENT is fairly complex, but basically it looks for a component of the $A T N$ parse (in future called the "p-parse", for partial-parse) which is in an appropriate position to $k \in$ an agent, and which passes the test (the argument tc AGENT.) By 'appropriate position' is meant, for instance, that if the sentence is in the active voice, the agent is frgbably the first noun phrase in the sentence.

In this case, AGENT immediately finds "the man" as the obvious candidate, and it applies the test
(AND (SHOULD-BE MUSICIAN) (MUST-BE HUMAN))

Now, unless something special has been put on the property list of MAN previously, the
(SHCUID-BE MUSICIAN)
part of the test will fail.
(There are two levels of tests in this system: SHOULD-BE tests and MUST-BE tests. This crude mechanism is very useful for forcing a verb like play to lock hard for a musician to flay an instrument -- but to accept any human if it fails at first. This is especially powerful for resolving anaphoric references.) So AGENT fails. This invokes the third element of the AGENT triple:
(OPI (GETR PASSIVE) SOMECNE)

This may be read as: AGENT is optional if the sentence is in the passive voice, in which case put SOMEONE in as the agent. Otherwise AGENT is obligatory. So, since the sentence is not passive, AGENT is obligatory. Since the AGENT case was not found, this first meaning of play fails.

So If goes on to the next pair of arguments. This pair is
designed to pick up the meaning of PLAY as in "tc play music." Note that the test on AGENT is just like the previous cne, so it will also fail.

So we go on the the third meaning of to PLAY: "to play a sport." Here the test on AGENT is
(AND (SHODLD-BE SPORTS-MAN) (MUST-BE HUMAN))

Once again, providing MAN does not have SPORTSMAN cn its property list, this meaning fails.

On to the fourth, and last, meaning. This is sort of a catch-all. It is just "to play" as in "tc entertain oneself." Here the test on AGENT is
(MUST-BE ANIMATE)
"The man" passes this test. (Note that in the dicticnary MAN has the property anIMATE under N-PROP)

Since $A G E N T$ is the only case locked for, this $\mathbb{I} \in a n i n g$ is taken to be the correct one, and the fcllowing structure is built by the call to BuIIDQ:

```
<==>
N MAN
            NUMBER SG
            <-DEFINITE- THE
PAST
<-- LO
<-CAUSE-
            <==>
                N MAN
                    NOMBER SG
                    <-DEFINITE- THE
                pRESENT
                <-- HAVP-PROP ENTEBTAINED
```

Figure 4 - The Incorrect Initial Structure for Sentence (4. 1)

So IF has completed its job. It has found what it takes to be the correct meaning of the verb. Now the rest of the sentence must be handled. The second element of every top-level list in the p-parse is a flag which is initially NIL, rut which is turned on when that part of the sentence is considered tc be correctly handled. In our example, so far only two parts are so flagged: the first noun phrase: "the man", and the verb phrase. The function which takes care of the rest of the sentence siaply goes down the p-parse checking these flags. If it finds one which is NIL it works on that part of the sentence until it either succeeds, or fails -- causing back-up.

In our example, then, the first phrase it comes upen needing work is the prepositional phrase: "beside the mindow."

There is a structure in the system which associates each preposition with the cases it may flag. BESIDE flags the cases: LOCATION and DESCRIPTIVE.

A11 of the cases but DESCRIPIIVE are cases of the verb. DESCRIPTIVE is a special case which is used for preposition
phrases which modify nouns.
When the list of cases associated with a prepcsition is retrieved, there is a question as to which case to try first. For this there is a foregrounding routine. There are several criteria for foregrounding:

First of all, on the property list of each verb is kept a record of which prepositions flagged which cases in the previous sentences. The cases associated with the preposition in question (if there are any) are foregrounded, so they will $\mathrm{f} \in$ tried first (the most recent case first, etc.)

Secondly, if DESCRIPTIVE is one of the cases in the list of cases for this preposition, and if a noun phrase or a prepositional phrase immediately precedes the phrase in question, and if the noun in that noun fhrase or preposticnal phrase is not a proper noun, then DESCRIPTIVE is put at the front of the list, so it is tried first.

This seemingly obscure rule for foregrounding the DESCRIPTIVE case is just a heuristic. If the tests associated with each case are good enough, it makes no difference to the final outcome if the foregrounding is done or nct. In some instances, however, if the DescriptIve case is not tried first, it will never be tried. In cur example, for instance, it is the man who is beside the window (DESCBIPTIVE case); be dic not play the piano beside the window (LOCATION case). But it is perfectly feasible for him to have played it beside the window (if we know nothing about the location of the fianc.) So either of the cases will succeed. It is only the position of the prepositional phrase that indicates which case is correct.

Continuing with our example: the CESCRIPTIVF case is foregrounded, and so the descriptive case functicn, DESC, is invoked with the phrase "beside the window" as its argument. Since the descriptive case almost always involves a prepositional phrase modifying the noun phrase or prepositicnal phrase immediately before it, DESC first checks to see if "beside the window" is a possible descriptor of "the man."

Since we do not have a data base to check to see if there is a man beside a window, our check must be a general one. Most nouns have a size associated with thex under the indicator OBJ-SIZE. This is a very crude breakdown of objects into $\in l \in v \in n$ size categories. "The world" is size 10 and "a fin" is size 0 . (As has been pointed out by an esteemed colleague, these sizes should be able to be changed by classifiers, adjectives, or modifying phrases. A toy elephant is probably not the same size as an elephant. This feature is currently not implemented.) The check for "beside" is merely used to rule out things like "the pin beside Canada." Abstract nouns have nc size information, so sentences like "He had a thought beside the ocean" are not ambiguous. In any event, "beside the window" is found to be a likely modifier of "the man", so DESC succeeds.

Since "beside" is a locative type cf frefosition, DESC returns the structure:
(<-LOC- BESIDE (NP (N WINDOW (NUMBER SG) (<-DEFINATE-THE))))

A form is stacked which will put this structure intc the main sentence structure if the rest of the sentence can te
handled. Just where it is placed is determined $k y$ resc. Since the prepositional phrase modifies "the man", it will be fut in as follows:

```
N MAN
    NUMBER SG
    <-DEFINITE- THE
    <-LOC- BESIDE
        N WINDOW
            NOMBER SG
            <-DEFINITE- THE
```

Figure 5-The Structure for "the man beside the window"

So the prepostional phrase "beside the window" is flagged as completed, and the next unflagged phrase, "the piano", is picked up.

Here we run into problems. Where does "the piano" fit into the structure? What does it modify? What is its case? There are relatively few ways a noun phrase can be used at this point. It could be an example of the TIME case, as in "I came home this morning.", but "piano" fails the TIME-test. It could $t \in a$ classifier, but the phrase following it would have tc te a noun phrase for this to be the case. So we have a failure. Something has gone wrong. IF must have chosen the wrong meaning of the verb. So we back up.

All the parts of the sentence that are flagged as used are un-flagged, and we back up into $I F$ again. Here it is found that there are no meanings of the verb left to try. one cf the meanings that was rejected earlier must have been the correct one. So we fail out of $I F$ and get back into the top-lєvel back-
up mechanism.
There are two reasons we could have failed:

1) Either we did not look far enough back in cut attempt to resolve an anaphoric reference.
or
2) Our tests were too severe. (ie: the sfould-EE tests made us fail when they should not have.)

The anaphoric part of the system has not been explained yet, that will come later, but there were no proncuns in the sentence, so the first reason can be ruled out. In order to weaken the tests, a flag is set to shut cff the SHOULD-BE tests. That is, all SHOULD-BE tests will succeed in future.

So we enter IF once again.
We start as before, but this time the first invocation of AGENT will succeed, because the test

```
(AND (SHOULD-BE MUSICIAN) (MUST-EF HOMAN))
```

succeeds. So the structure it returns is put in theregister AG.

Then IF takes us into the second triple of parameters. Tbe form
is EVALed.
PatIENT is very similar to AGENT: it looks in the appropriate place in the sentence for the patient of the verb. It then applies its TEST to it. In an active sentence, such as our example, the candidate for PATIENT is the first ncun phrase after the verb. "The piano" is found. Since it passes the test
(MOST-BE MOSICAL-INSTROMENT)

PATIENT returns "the piano" as the patient of the sentence.
So again IF thinks it has found the correct meaning of the verb, and so it EVALs the BUILDQ asscciated with that meaning, and the following structure is built:

```
<==>
        N MAN
            NUMBER SG
            <-DEFINITE- THE
        PAST
        <-- DO
        <-CAUSE-
            <=#>
                N PIANO
                            NUMBER SG
                            <-DEFINITE- THE
                PAST
                <-- EMIT
                        NP
                N SOUND
```

Figure 6 - The Correct Initial Structure for Sentence (4.1)
(An aside: I do not intend to defend the structures that my system returns. They are vaguely like the structures that Schank's system returns, as illustrated in Chafter 1, but are
more or less arbitrary. If the user does not like them they are easy to change.)

Once again we must try to clean up the unflagged parts of the sentence. The first one again is "beside the window", and exactly the same thing is done that was done before: it is decided that "beside the window" is a lccative descriftor of "the man", and this decision is stacked for later action.

The only other part of the sentence tc be handed is "for Mary." As with "beside", the cases associated with "for" are returned from the CaSE-TABLE. They are: DURATION, BENEFICIARY, EXCHANGE, and IND-SUBJ. (IND-SUBJ has not been implemented yet.) Assuming that there have been nc relevant previous sentences, the foregrounding of cases will have no effect on this ordering.

The DURATION case is tried first. CURATION is a particularly simple case. Basically it checks tc see that the noun phrase in the prepositional phrase has the property TIME under the flag N-PROP. "Mary" fails this test, sc DORATICN is rejected as being the correct case.

The next case is beneficIary. The cnly test for this case is that the noun phrase be animate. "Mary" passed this test since it has the SUPERSET WOMAN and WOMAN has the N-FROP ANIMATE. SO BENEFICIARY succeeds and returns:

$$
\text { (}<- \text { BENEFICIARY- (NPR MARY)) }
$$

Unlike "beside the window", this phrase is a case of the verb. All cases of the verb (but agent and fatifnt) are considered to
be essentially parallel uith respect to the verb, sc they are put into the structure at the same level: that of the verb syinbol "<--", and their crder is independent. So a form is stacked to put the above structure intc the wain sentence structure in the correct location.

Next the p-parse is checked for more unused fhrases. None are found, so we are done.

The two forms are put into the structure, and it is returned as the "meaning" of the sentence:

```
<==>
N MAN
                                    NUMBER SG
        <-DEFINITE- THE
        <-LOC- BESIDE
            N WINDOW
                            NUMBER SG
                            <-DEFINITE-THE
PAST
<--DO
<-CAUSE-
        <==>
            N PIANO
                    NUMBER SG
                    <-DEPINITE- THE
            PAST
            <-- EMIT
                    NP
                    N SOUND
<-BENEFICIARY-
            NPR MARY
```

 Figure 7 - The Final Structure for Sentence (4.1)

CHAPTEF 5

> He gave you a german shepherd to walk with a collar of leather and nails and he never once made you explain or talk about all cf the little details
-L. Cchen

SOME DETAILS

SECTION 5.1 Anaphoric References

Perhaps it is not the function of a parser to resclve anaphoric references, but this system was constructed to be a front end to a larger system which would require references to be resolved, so a mechanism for resolving them was put in. As has been said before, this system is not designed with any particular domain in mind, so no data base is keft. The resolution of anaphoric references, therefore, must defend solely on the previous sentences. The anaphoric routines will have to be changed to work in a larger system which maintains some kind of global structure describing what has gene cn sofar and how it fits into the world knowledge that the system has. The anaphoric capabilities were put intc this system because, if
a reference is unresolved the system cften cannct tell what case it is. They were also put in to illustrate how well such a mechanism fits into the case paradigm.

Only the tasic idea of how anaphoric references are resolved will be given here, along with examples illustrating the range of the system's capabilities.

When a pronoun is found in the sentence (in the case analysis, not the $A T N$ parse), it triggers a call to the function ANAPHORIC. ANAPHORIC takes four arguments:

1. A list of cases to lock fcr.
2. A test that the referent must pass.
3. A number indicating how far back in the histcry tc look.
4. The pronoun referenced.

The search is breadth first, in that the program tries very hard to find the referent in the earliest possible sentence. The test is an arbitrary form. SHCOID-EE and MUST-EF $\in l \in \mathbb{I} \in \operatorname{li}_{\mathrm{n}} \mathrm{s}$ of the test are shat off on failure as they are in the rest of the back-up procedure. (See Chapter 4)

Say, for instance, that the system is given the sentence:
(5.1) He played the piano.

The call to AGENT would be the form:
(AGENT (AND (SHOULD-BE MOSICIAN) (MUST-BE HUMAN)))

Since the obvious candidate for the agent is a proncun,

ANAPHORIC would be invoked. Its TEST would be:
(AND (SHOULD-BE MUSICIAN) (MUST-EE RUMAN))

So ANAPHORIC $u o u l d$ look back through the parses and pparses of the recent sentences which are kept as glcal variables, looking for a noun phrase that will pass this test. As it becomes more and more desperate it will make the test less strict. Since "he" is the proncun, aNAPHORIC is smart enough to insist that the referent be male and animate.

Most, pronoun references within a sentence itself can also be resolved. For instance:
(5.2) Fred went to Londcn so he cculd visit the queen. (5.3) Jack took you up in his airplane.

References to events and places can also be handed:
(5.4) It was unfortunate that the children were killed.
(5.5) I went to France. Pred lives there.

The resolution of locational references ("here" and "there") is a hard problem. By treating "there" as a pronoun whosereferent must be a location, "there" is handled fairly well by the system. "Here" is a much more difficult prorlem, since its resolution is highly context dependant, and is hardly addressed at all.

There is still one problem with references within a
sentence, and that is that if the referent of a froncun in the main clause is in a subordinate clause, then it will not be resolved. For instance, in the sentence:
(5.6) While he walked home, Fred was mugged.
"Fred" is not even considered as a candidate for "he". It is a simple extension to put this in (ANAPHORIC just has to lock into subordinate clauses), but it has just not been done yet. More difficult problems are illustrated by sentence (5.7).
(5.7) Mary was aboard the Titanic when she sank.

This sentence is ambiguous: Mary could have sunk in a swimming pool while she was on the ritanic, but this is frobably not the intended meaning. If "to sink" is defined with a test like
(SHOULD-BE BOAT)
then the system will pick up "Titanic" correctly. Its first choice as a candidate is "Mary", however, so if the test does not rule "Mary" out, the system will choose her as its initial guess.

This perhaps illustrates a fundamental problem with the system's anaphoric routines. The first candidate found which passes the test is chosen, rather than all of the candidates being locked at, and the most likely accepted.

SECTION 5.2: Particles

There are many verbs in English which, when used with a particle, take on a very different meaning.
(5.6) Pick a girl.
(5.7) Pick up a girl.
(5.8) Pick a girl up.
(5.9) Pick out a girl.

The policy with particles in this system is to create a new verb by tacking the particle onto the end of the infinitiveform of the verb. So (5.7) and (5.8) both become
(5.10) Pick-up a girl.

This conjuction takes place in the ATN. Each vert that takes one or more particles has a list of particles on its property list under the indicator EABTICLES. The verb "to look", for instance has (FOR AT LIKE). on its property list. (Look can take other particles: up, into, etc. but they are not currently handled by the system.) In the dicticnary explicit entries are made for the verbs LOCK-FCR, LOCK-AT, and LOOK-LIKE as well as Look. This usually works well, but it sometimes leads to problems. Consider the sentence

> (5. 11) John looked for Mary.

This sentence is ambiguous. "Mary" could be the patient of the.
verb "look-for", or the patient could be unspecified, and "for Mary" be the beneficiary case, or even the exchange case. The problem is that the atn is purely syntactic, and it is not fart of the back-up mechanism, so the system will always choose the "look-for" meaning.

Let me re-iterate that the system usually works correctly on particles, but in a more competent system the decision about conjoining particles to verbs will have to be put off until the semantics are at work.

SECTION 5.3: E[gative yerbs

There are problems with many of the cases in this system. In particular, the agent case is not properly defined.
(5.12) The door opened.
(5.13) The key opened the door.
(5.14) He opened the door with the key.
(5.15) The key opened.

If AGENT were called on sentence (5.12) it would return "the door" as the agent, whereas the agent is actually unspecified, and "the door" is the patient. Similarily, it would choose "the key" as the agent in (5.13). There is a whole set of verbs that behave like open. They are described in SECTION 1.2.' Simmons calls them ergative verbs. This system handles them specially.

Basically, a routine, ERGATIVE, was written which uses AGENT as a routine for returning the first noun phrase of the sentence. By checking to see if it is animate ERGATIDE can tell if it is the agent as in (5.14) or the patient or instrument. If it is the agent the sentence offers no problems in this regard. If. it is not the agent, then the system can $i \in c i d \in$ between the instrument case and the patient by checking to see if there is a patient following the verb. . Thus the system would interpret "the key" in sentence (5.15) as the fatient. for more details look at the dictionary entry for "to open" or "to rreak" in APPENDIX IV and the ERGATIVE routine in APPENDIX V.

SECTION 5. 4 : Some Obvious Extensions
The purpose of this thesis was tc implement a fairly large case system, and to explore the use of case and the interaction between case, syntax, and semantics. In the time allotted for this work, then, the main concentration was on cases. Thus some fairly large gaps were left in parts of the system. It can cnly handle declarative sentences, for instance. This is nct because it would be incapable of handling questions and imperatives, but just because there were other things that were more challenging. Adding the ability to parse these other types of sentences whld basically just involve extending the arn tc transform them into declarative sentences with the appropriate flags indicating type, etc. There are lots of aTN's arcund which do this fairly well.

Harder questions wich were not addressed are those of conjunction, ellipses, and negation. Again, there are some atns which do mediocre jobs in these areas, but I dc nct advocate pushing these difficult questions into that supposedly simple and fast portion of the system. It is possible that negation and conjuction could be put into the $A T N$, and still have a fast system if the arn just kept them as separate entities in its initial parse. That is. if it did not attempt to say what was being negated or conjoined, but left these decisions to the routines using case and semantics.

CHAFTER 6

Some women wait for Jesus sore women wait for Cain so I hang upon my alter and hoist $\mathbb{M} y$ axe again

-L. Cchen

CONCLUSION

A sentence parser is a very small part of what is needed to have machine intelligence. Among a vast number of other things, the structures returned by a parser must be incorporated into a global structure which represents at least the information conveyed in the previous utterances, and some relevant world knowledge.

This thesis was not an attempt to design cr build such a global structure, but thoughts in this direction are certainly relevant to the extension of this type of system. Also rele vant is the question of the usefulness of case in such a structure.

It is clear that we want wore than a list of case parses in a global structure. Schank is almost certainly on the right track with his conceptual dependency networks. Much of what we convey in an utterance, or in a series of utterances is $n \in v \in r$ actually stated. Much is implied or inferred by the listener, and if a computer is to have any competence with language it must be able to determine these implicaticns and inferences, and to make them explicit in its global structure. Some attempt has
been made in this system to make explicit some of the unstated information in the sentential parses.

What has been learned by the work on this system? The most glaring message is probatly that using even the most simple syntactic parser before using semantics leads to proklems. If I were to write this system again. I would nct use an ATN as a pre-parser. One of the problems that my use of the atw causes is illustrated in seCTION 5.2, where the parser is unable to undo an erroneous decision to classify a word as a particle, but more generally, I do not believe that cne can decide syntactically how to break a sentence up into the correct components for a semantic analysis. This becomes more and more obvious as one pushes this system into more complex sentences involving nested relative and subordinate clauses.

I am not. sure that Schank's fourteen ACTS form a good $s \in t$ of verbal primitives: they were not intuitive enough for me when I started this project, but my experience with this system leads me to strongly support his intent, at least, of carefully la ying down a small set of primitives, and being very hesitant to change the set later.

No semantic primitives were set down at the outset of this project. New ones were merely created as they were needed. The set of cases was extended in a similar, though more controlled manner. Future work with the current system will probably be hampered by this unstructured approach. to these difficult problems. Ptolemaic astronomers have been scorned for their naivity when they added epicycles upon epicycles in their attempts to model the solar system. We shculd therefore be very
suspicious of a natural language system that dees the same thing with semantic primitives and cases.

We have seen that there are some problems with this system, both linguistic and computational, but I feel that it has $m \in t$ all of its objectives. The system employs case to hande a wide range of English sentences. It has illustrated problems with a certain approach, and we have seen ways arcund these difficulties. Finally, this system lends support to those of us Who believe that case will prove to be a useful tcol in machine understanding of language.

It is your world.... It is your $f l e s h$ that I wear

D
[1] Bach, Emmon. "Noun and Noun Phrases" Universals in Linguistic Theory. Editted by Bach and Harms. New York: Holt, Ginehart, and Winston, 1968
[2] Bruce, Bertram. Case Systems for Natural Language. Rutgers, New Jersey, 1974
[3] Celce-Murcia, M. "Paradigms for Sentence Recognition", in System Developement Corp. Final Report Nc. ERt$15092 / 7907$.
[4] Chafe, Wallace L. Eeaning and the Structure $\frac{f}{}$ fanguage. Chicago: The University of Chicagc Press, 1970
[5] Charniak, Eugene. Towards a Model of Children's Story Comprehension. Cambridge, Massachusetts: MiT 1972 . PhD dissertation
[6] Fillmore, Charles. "The Case for Case" Universals in Liguisitic Theory. Editted by Each and Farms. New York: Holt, Rinehart, and Winsten, 1968
[7] Jesperson, Otto. The Philosophy of grammar. New york: W. 日. Norton Co., 1965. (original pub. 1924)
[8] McCawley, James D. "The Role of Semantics in a Gramar" Universals in Linguistic Theory. Editted by Bach and Harms. New York: Holt, Binehart, and Winston, 1968
[9] Martin, William A. "Translation of English intc MAPL Using Winograd's Syntax, State Transiticn Networks, and a Semantic Case Grammar" Automatic Frogramming Group Internal Memo 11, MIT Project MAC, 1973
[10] Rosenbaum, Peter S. The Grampar for English predicate Complement Construction Cambridge, Massachusetts: MIT press 1967
[11] Schank, Roger C. "Conceptual Lependancy: A Theory of Natural Language Understanding" Cognitive Psycholocy 3 (1972) 552-631
[12] Schank, Roger C. "Identification of Conceptualizations Underlying Natural Language" Computer Mcdels of Thought and Language. Editted by Schank and Cclby. San Fransisco: W. H. Freeman and Co. 1973
[13] Simmons, R. F. "Semantic Networks: Their Ccmputaticn and Use for understanding English Sentences" Computer Models of Thought and Ianguage. Editted ky schank and Colby. San fransisco: W. H. Freeman add cc. 1973
[14] Winograd, Terry "A Procedural Model of Language Understanding" Computer Model $^{\prime \prime}$ of Thought and Lanquage. Editted by Schank and Colby. San Fransisco: W. H. Freeman and Co. 1973
[15] woods, W. A. "Transition Network Grammars for Natural Language Analysis" Commuicaticns cf the AcM Vcl 13 (Oct. 1970) 591-606

APPENDIX I: Some Examples

The following is a sample run of the system. Fach parse is in two parts. First comes the ATN partial parse. This is printed out only to illustrate the notion of the partial parse. After that comes the final parse of the sentence. It alwas begins with the symbol $<==$.

```
(LETS-GO)
    HELLO. YOU ARE NOW IN CONVEESATIONAL MOLE.
    ANY LISP FORMS WILL BE EVALED IN THIS MODE.
    YOU MAY RETURN TO LISP BY ENTERIEG A #.
    IF YOU ENTER A 左 AS A WORD IN A SENTENCE, THAT SENTENCE
            GILL BE ABORTED
    THE MAN WITH THE WIFE WHO IS BIGGER THAN HE GOES
TO VIENNA WITH A WOMAN WHO IS SMALLER TEAN EE.
    PARSE:
    S
            NP NIL
                DET THE
                N MAN
                    NUMBER SG
    PP NIL NITH
        NP NIL
            DET THE
            N WIFE
                NUEBER SG
            REL NIL
        RELPRO NHO
        VP NIL
            TNS
                PRESENT
                VOICE ACTIVE
                V BE
        <-ADJ- NIL BIG
            COMP-SUP COMPARATIVE
            THAN-PH NIL
        NP NIL
                                    PRO HE
        VP NIL
        TNS
            PRESENT
                    VOICE ACTIVE
        V GO
    PP NIL TO
```

```
>
```

 NP NIL
    ```
    NP NIL
        NPR VIENNA
        NPR VIENNA
        PP NIL WITH
        PP NIL WITH
            NP NIL
            NP NIL
        DET A
        DET A
        N HOMAN
        N HOMAN
                NUMBER SG
                NUMBER SG
    REL NIL
    REL NIL
        RELPRO WHO
        RELPRO WHO
        VP NIL
        VP NIL
        TNS
        TNS
            PRESENT
            PRESENT
            VOICE ACTIVE
            VOICE ACTIVE
        V BE
        V BE
    <-ADJ- NIL SMALL
    <-ADJ- NIL SMALL
        COMP-SUP COMPARATIVE
        COMP-SUP COMPARATIVE
        THAN-PH NIL
        THAN-PH NIL
        NP NIL
        NP NIL
        PRO HE
        PRO HE
BY HE I ASSUME YOU MEAN TGE MAN
BY HE I ASSUME YOU MEAN TGE MAN
IS THAT CORRECT?
IS THAT CORRECT?
<==>
<==>
    N MAN
    N MAN
        NUMBER SG
        NUMBER SG
        <-DEFINITE- THE
        <-DEFINITE- THE
        <-DESC- OITH
        <-DESC- OITH
                N WIFE
                N WIFE
                NUMBER SG
                NUMBER SG
                <-DEFINITE- THE
                <-DEFINITE- THE
                <==>
                <==>
                    N WIFE
                    N WIFE
                            NOMBER SG
                            NOMBER SG
                            <-DEFINITE- THE
                            <-DEFINITE- THE
                PRESENT
                PRESENT
                <-- HAVE-PROP
                <-- HAVE-PROP
                    BIG
                    BIG
                                    <-COMPARED-TO-
                                    <-COMPARED-TO-
                                    N MAN
                                    N MAN
                                    NUMBER SG
                                    NUMBER SG
                                    <-DFFINITE- TEE
                                    <-DFFINITE- TEE
    PRESENT
    PRESENT
    <-- MOVE
    <-- MOVE
    <-SOURCE- SOMEPLACE
    <-SOURCE- SOMEPLACE
    <-DESTINATION-
    <-DESTINATION-
            NPR VIENNA
            NPR VIENNA
        <-CO-AGENT-
        <-CO-AGENT-
            N WOMAN
            N WOMAN
            NOMBER SG
            NOMBER SG
            <-INDEFINITE- A
            <-INDEFINITE- A
            <==>
            <==>
                N MOMAN
                N MOMAN
                                    NUEBER SG
                                    NUEBER SG
                                    <-INDEFINITE- A
                                    <-INDEFINITE- A
                PRESENT
                PRESENT
                    <-- HAVE-PROP
```

 <-- HAVE-PROP
    ```

SMALL
\(<-\) COMEAREL-TC-
N MAN
nomefr Sc
<-DEFINITE- THE

\section*{FRED LOVED THE OLD WOMAN BEFORE HE CAME TO CANADA. PARSE:}

S
NP NIL
NPR FRED
VP NIL
TNS
PAST
VOICE ACTIVE
V LOVE
NP NIL
DET THE
N WOMAN
NUMBER SG
\(<-A D J-O L D\)
BEFORE NIL
NP NIL
PRO HE
VP NIL
THS
PAST VOICE ACTIVE
V COME
PP NIL TO
NP NIL
NPR CANADA
BY HE I ASSUME YOU MEAN FRED
IS THAT CORRECT?
Y
\(\langle==>\)
NPR FRED
PAST
\(<-\) HAVE-AFFECTION-FOR
\(<-A D V-M D C H\)
N WOMAN
NUMBER SG
<-ADJ-OLD
\(<-D E F I N I T E-T H E\)
\(<-\) TIME- BEFORE
<=
NPR PRED
PAST
<-- MOVE
\(<-S O U R C E-\) SCEEPLACE
\(<-D E S T I N A T I O N-\) NPR CANADA

THERE IS A SMALL PEN IN THAT BOX.
```

> PARSE:
S
<-ADV- NIL THERE
VP NIL
TNS
PRESENT
VOICE ACTIDE
V BE
NP NIL
DET A
N PEN
NUMBER SG
<-ADJ- SMALI
FP NIL IN
NP NIL
DET THAT
N BOX
NUMBER SG
<==>
N REN
NUMBER SG
<-ADJ- SMAIL
<-INDEFINITE-A
PRESENT
<-- HAVE-LOC
IN
N BOX
NOBEER SG
<-DEFINITE- THAT
IT IS IDIOTIC THAT FRED WENT TO INDIA TC PLAY FOOIEALL.
FARSE:
S
NP NIL
PRO IT
SUBJ
O BJ
NUMBER SG
VP NTL
TNS
PRESENT
VOICE ACTIVE
V BE
<-ADJ- NIL IDIOTIC
THAT-COMP NIL
<==>
NPR FRED
PAST
<-- MOVE
<-SOURCE- SOMEPLACE
<-DESTINATION-
NPR INDIA
<-PURPOSE-
<==>
NPR FRED

```
```

>
>
>
> <==>
<==>
NPR PRED
PAST
<-- MOVE
<-SOURCE- SOMEPLACE
<-DESTINATICA-
NPR INDIA
<-PURPOSE-
<=>
NPR FRED
PRESENT
<-- FLAY
N FOOTBALL
NUMBER SG
PRESENT
<-- HAVE-PROP
IDIOTIC
the piano was played In tue Emety ball.
pARSE:
S
NP NIL
DET THE
N PIANO
NUMBER SG
VP NIL
TNS
PAST
VOICE PASSIVE
V PLAY
PP NIL IN
NP NIL
DET THE
N HALL
NOMBER SG
<-ADJ- EMPTY
N PIANO
NUMBER SG
<-DEFINITE- THE
PAST
<-- EMIT
NP
NSOUND
<-LOC- IN
N HALL

```

\section*{ERESENT}
```

<-- ELAY
N FOOTBALL NUMEERSG

$$
\langle==\rangle
$$

NPR FRED
PAST
<-- MOVE
$<-S O U R C E-$ SOMEPLACE
<-DESTINATICA-
NPR INDIA
<-PURPOSE-
<==>
NPR FRED
$<-$ FIAY
N FOOTBALL
NUMEER SG
<-- HAVE-PROP
IDIOTIC
THE PIANO WAS PLAYED IN THE EMPTY HALL. PARSE:
S
NP NIL
DET THE
N PIANO
NUMBER SG
VP NIL
TNS
PAST
VOICE PASSIVE
V PLAY
PP NIL IN NP NIL
DET TEE
N HALL
NOMBER SG
$<-A D J-E M P T Y$

```
```

<=> SOMEONE

```
<=> SOMEONE
    PAST
    PAST
    <-- DO
    <-- DO
    <-CAUSE-
    <-CAUSE-
        <==>
```

 <==>
    ```
```

>
>

```
```

 NUMBER SG
 <-ADJ- EMPTY
 <-DEFINITE- THE
 THE MAN WITH THE BIG HANDS PLAYED TBE EIANO
LIKE EEETHOVEN FOR MARY.
PARSE:
S
NP NIL
DET THE
N MAN
NOMBER SG
PP NIL WITH
NP NIL
DET THE
N HAND
NUMBER PL
<-ADJ- BIG
VP NIL
TNS
PAST
VOICE ACTIVE
V PLAY
NP NIL
DET THE
N PIANO
NUMBER SG
PP NIL LIKE
NP NIL
NPR BEETHOVEN
PP NIL FOR
NP NIL
NPR MARY
<==>
N MAN
NUMBER SG
<-DEFINITE-THE
<-DESC- WITH
N HAND
NUMBER PL
<-ADJ- BIG
<-DEFINITE- THE
PAST
<-- DO
<-CAUSE-
<==>
N PIANC
NUMBER SG
<-DEFINITE- THE
PAST
<-- EMIT
NP
A SOUND
<-BENEFICIARY-
NPR MARY

```
```

 <-IIKE-
 NPR BEETHOVEN
 THE MAN IN THE HOUSE HAS HANDS.
PARSE:
S
NP NIL
DET THE
N MAN
NUMBER SG
PP NIL IN
NP NII
DET THE
N HOOSE
NUMBER SG
vP NIL
TNS
PRESENT
VOICE ACTIVE
| HAVE
NP NIL
N HAND
NUMBER PL
<==>
N MAN
NUMBER SG
<-DEFINITE- THE
<-LOC- IN
N HOUSE
NUPBER SG
<-DEFINITE- THE
PRESENT
<-- POSSESS
N HAND
NUMBER PL
FRED WENT TO INDIA NITH JACK.
PARSE:
S
NP NIL
NPR FRED
VP NIL
TNS
PAST
VOICE ACTIVE
V GO
PP NIL TO
NP NIL
NPR INDIA
PP NIL UITH
NP NIL
NPR JACK
<==>
NPR FRED

```
```

>
>
>
>
>
>
>
>
*
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
PAST
<--MOVE
<- SOURCE- SOMEPLACE
<-DESTINATION-
NPR INDIA
<-CO-AGENT-
NPR JACR
FRED PLAYED JACK FOOTBALL.
PARSE:
S
NP NIL
NPR FRED
VP NIL
TNS
PAST
VOICE ACTIVE
V PLAY
NP NIL
NPR JACK
NP NIL
N FOOTBALL
NUMBER SG
<==>
NPR FRED
PAST
<-- PLAY
N FOOTBALL
NUMBER SG
<-CO-AGENT-
NPR JACK
FRED FLAYED FOOTBALL WITH JACK.
PARSE:
S
NP NIL
NPR FRED
VP NIL
TNS
PAST
VOICE ACTIVE
V PLAY
NP NIL
N FOOTBALL
NUMBER SG
PP NIL WITH
NP NIL
NPR JACK
<=>
NPR FRED
PAST
<- PLAY
N FOOTBALL
NUMBER SG

```
```

 <-CO-AGENT-
 NPR JACK
 THE HOUSE WITH THE PIANO IN IT GAS GIVEN TO FEEE EY EIS WIFE.
PARSE:
S
NP NIL
DET THE
N HOUSE
NOMBER SG
.PP NIL WITH
NP NIL
DET THE
N PIANO
NUMBER SG
PP NIL IN
NP NII
PRO IT
SUBJ
OBJ
NUMBER SG
VP NIL
TNS
PAST
VOICE PASSIVE
V GIVE
PP NIL TO
NP NIL
NPR FRED
PP NIL BY
NP NIL
DET
POSSERO BIS
N WIFE
NUMBER SG
BY HIS I ASSUME YOU MEAN FRED
IS THAT CORRECT?
Y
<==>
N NIFE
NUMBER SG
<-POSS-BY- FRED
PAST
<-- TRANS FER
N HOOSE
NUMBER SG
<-DEFINITE-THE
<==>
N HOUSE
NOMBER SG
<-DEFINITE-THE
PRESENT
<-- CONTAIN
N PIANO
NUMEER SG

```
```

>
>
>
>
>
>
>
>

* beethoven wrote a piano scnata in vienna fog frif.
> PARSE:
> S
>
>
>
>
>
>
>
>
NP NIL
PRO HE
<-DEFINITE- THE
<-RECIPIENT-
NPR FRED
<-SOURCE-
N WIFE
NUMBER SG
<-POSS-BY- FRED
S
NP NIL
NPR BEETHOVEN
VP NIL
TNS
PAST
vOICE ACTIVE
v WRITE
NP NIL
DET
DET A
N SONATA
NUMBER SG
<-CLASS-
N PIANC
NUMBER SG
PP NIL IN
NP NIL
NPR VIENNA
PP NIL FOR
NP NIL
NPR FRED
<=>
NPR BEETHOVEN
PAST
<-- COMPOSE
N SONATA
NUMBER SG
<-CLASS-
N PIANO
NUMBER SG
<- BENEFICIARY-
NPR FRED
<-LOC- IN
NPR VIENNA
VP NIL
TNS

```
\(>\)
>
>
>
>
>
>
>
>
```



```
>
Y
BY HIM I ASSUME YOU MEAN FRED
IS THAT CORRECT?
Y
```



```
>
>
>
>
>
>
>
>
>
>
# THE BIG MAN IN TEE RED HOUSE PLAYS THE PIANO WELL.
P PARSE:
> S
    S
        NP NIL
                DET THE
            N MAN
                                    NUMBER SG
                    <-ADJ- BIG
            PP NIL.IN
                NP NIL
                                    DET THE
                                    N HOUSE
                                    NUNBER SG
                                    <-ADJ- RED
            VP NIL
                TNS
                    PRESENT
                    VOICE ACTIVE
                V PLAY
            NP NIL
                DET THE
                N PIANO
                                    NUMBER SG
>}<<=><-ADV-NIL WELL
```

```
>
PRESENT
<-- DO
<-CAUSE-
        <==>
            N PIANO
                        NUMBER SG
                        <-DEFINITE- THE
            PRESENT
            <-- EMIT
                        NP
                                    N SOUND
    <-ADV - WELL
THE MUSIC PLAYED LOUDIY FEOM THE SMALI FCOM.
    PARSE:
    S
        NP NIL
        DET THE
        N MUSIC
                            NOMBER SG
            |P NIL
                TNS
                    PAST
                    VOICE ACTIVE
                V PLAY
            <-ADV- NIL LOUD
            PP NIL FROM
                NP NIL
                    DET THE
                    N ROOM
                                    NUMBER SG
                                    <-ADJ- SMALL
    <=> SOMEONE
            PAST
    <-- PLAY
        N MUSIC
                NUMBER SG
                <-DEFINITE- THE
            <-SOURCE-
            N ROOM
                NUMBER SG
                <-ADJ- SMALL
                    <-DEFINITE- THE
            <-ADV - LOUD
```

```
THE HAMMER BROKE THE WINDCH.
    PARSE:
    S
        NP NIL
        DET THE
        N HAMMER
                            NUMBER SG
        VP NII
        TNS
            PAST
                VOICE ACTIVE
                \nabla BREAK
        NP NIL
        DET THE
        N WINDOW
            NOMBER SG
    <=> SOMEONE
        PAST
        <-- BREAK
            N WINDOW
                NOMBER SG
                <-DEFINITE- THE
        <-INSTRUMENT
            N HAMMER
                NUMBER SG
                <-DEFINITE- THE
THE DOOR OPENED.
    PARSE:
    S
        NP NIL
        DET THE
        N DOOR
            NUMBER SG
        VP NIL
        TNS
            PAST
            VOICE ACTIVE
                V OPEN
    <=> SOMEONE
        PAST
        <-- OPEN
        N DOOR
            NOMBER SG
                <-DEPINITE-THE
THE KEY OPENED THE DOOR NITH EASE.
    PARSE:
    S
        NP NIL
                DET THE
                N KEY
                NUMBER SG
            VP NIL
```

```
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
I BROKE THE VINDOW WITH VENGENCE NITE A HAMMER.
    PARSE:
    S
        NP NIL
            PRO I
                SUBJ
                NUMBER SG
            VP NIL
            TNS
                    PAST
                    VOICE ACTIVE
            V BREAK
        NP NIL
            DET THE
            N GIN DOW
                    NUMBER SG
            PP NIL WITH
            NP NIL
                    N VENGENCE
                                    NUMBER SG
            PP NIL WITH
            NP NIL
                    DET A
                    N HAMMER
                                    NOMBER SG
    WHAT IS YOUR NAME?
BROCK
    #
    NPR BROCK
```

```
> PAST
> <-- BREAK
    N WINDOW
        NUMBER SG
        <-DEFINITE- THE
    <-INSTRUMENT-
    N HAMMER
        NOMBER SG
        <-INDEFINITE-A
    <-MANNER- WITH
        N VENGENCE
        NUMBER SG
```

APEENDIX II: SOMe Non=examples

In CHAPTER 2 many examples are given of fhrases which fit into 盺 set of cases. There are, however, many which do not. Here are a few of them.

I know from her smile that tonight will be fine. The METHOD case expects a sentence after "from".

I listen all night for your step on the stair.
LISTEN-FOR is not defined in the system, although it could be.

Looking at the late late show through a
semi=precious stone.
There is no direction or aEdium case.
I walked through the morning.
This is not really the Path case, although that is what the system would call it.
-. Between the ocean and your open vein.
-. Between the hour and the age.
. . . Rusted from the elbow to the finger. The type of structure in these three examples is not defined to the syst \in 㥸.

I met a woman long ago.
The TIME case will not accept this.
I am turning into gold.
TURN-INTO is not defined.
You held onto me like I was a crucifix.
The LIKE case does not expect a sentence.
He looked once behind his shoulder.
This is another example of the non-existant DIRECTION case.

She died without a whisper.
The system does not know about "without". It is a difficult word.

AEPENDIX III: A Formal Description of what the System Returns.

Symbols in upper-case are terminal symbols. Symbols in lower case are non-terminal symbols. A vertical bar, "ן", means either, but not both, can be taken. A symbol in parenthesese, "(....)", is optional. A symbol in square brackets with an asterisk following it, "[...]*", may be repeated one or more times.

```
                    s ::=<==> subj tns pred cases (adjp)
    subj ::= s | np | npc
                np::= nh noun nmods
            nh::=N | NPR
        noun ::= MAN | WOMAN | FRED | DCG | TREF | . . .
        nmods ::= (NUMBER nu) (det) (s) (adjp) (class)
                            (quant) (desc) (location) (poss)
            nu ::= SG| PL
            det ::= def | indef
            def ::= <-DEFINATE- defdet
            defdet ::= THE | THAT | THIS | . . .
                            indef :}:=<<-INDEFINATE- indefde
indefdet ::= A | AN | ANY | . . .
    adjp::=[<-ADJ-adj (advp)(comp-sup)]*
            adj::= BIG | SMALL | RED | HAEPY | . . . 
    advp ::= <-ADV- adv (advp)
            adv ::= VERY | SUPEISINGLY | * . .
comp-sup ::= COMP-SUP cS
            CS ::= COMPARATIVE | SUPERLATIVE
            class ::= <-ClASS- cnp
            cnp::= nh noun
            quant ::= QUANT qp
            qp::= (intp) (ordp)
    intp ::= INTEGER int
        int ::= ONE | TWC | THREE | . . . 
    ordp ::= ORDINAL ord (qp)
            ord ::= FIRST | SECOND | THIRD | ....
    desc::= <-DESC- prep np
    prep::= WITH | OF | BESIDE | ON | IN | UPON | . . .
    poss ::= <-POSS-BY- np
            nPC ::= SOMEPLACE | SOMEONE | ...
            tns ::= PAST | PRESENT | FUTURE | * . . 
    pred ::= <-- vp
            vp ::= vtp | vip | vcp | vi
            vtp ::= vt (advp) np
            vt ::= TRANSFER | PLAY | HEAB | INHAEIT |
                        SEARCH-FOR | EXAMINE.| ORDER | ...
            vip ::= vi (advp).
            vi ::= MOVE | DO | . . .
            vcp::= vc adjmod
            VC ::= HAVE-PROP I APPRAR | . . .
adjmod ::= adjp | adjmod1 | adj
adjmod1 ::= adj (comp-sup) (than-ph)
than-ph ::= <-COMPARED-TC- np
```

```
            v1 ::= HAVE-LOC lprep np
        Iprep ::= IN | ON| BY | NEAR | BESIDE | BEFORE | UNDER
        cases ::= location | time | duration | manner |
            destinaticn | co-agent | instrument |
                        exchange | beneficiary | recipient | topic |
                        purpose | path | method | quantity |
                        source | expected-ef | cause | enable |
                like | with
    location ::= <-LOC- lprep np
            time ::= <-TIME- tt
            tt::= prep-time | noun-time | stime
    prep-time ::= tprep np
    tprep::= IN | AT | EY | ABOUT | NEAR | BEFORE | AETER |
        DURING
    noun-time ::= YESTERDAY | TODAY | TOMORROW | . . . 
        stime ::= wp s
            wp ::= WHEN | WHILE | BEFORE | AFTER
    duration ::= <-DURATION- dprep np
            dprep :}:==\mathrm{ IN | FOR
        manner ::= <-MANNER- mprep np
        mprep ::= IN | WITH
destination ::= <-DESTINATION dtprep np
            dtprep ::= TO | INTO | ONTO | TOWARD | TOWARDS
            dsn : := np | SOMEPLACE
        co-agent: := CO-AGENT- np
    instrument ::= <-INSTRUMENT- np
    exchange ::= <-EXCHANGE- np
beneficiary ::= <-BENEPICIARY- np
    recipient ::=<-RECIPIENT- np
        topic:::= <-TOPIC- nE
        purpose ::= <-PORPOSE- s
            path ::= <-PATH- pathprep np
        pathprep ::= ACROSS | AROUND | DOWN | UP | ALONG | ABOUT | BY
            method ::= <-METHOD- s
        quantity ::= <-QUANTITY- EY np
        source ::=<-SOURCE- (FROM) dsn
expected-ef ::= <-EXPECTED-EFPECT- s
            cause ::= <-CAOSE- s
        enable::= <-ENABLE- s
            like ::= <-LIKE- np
            with::=<-WITH- np
```


ARPENDIX IV: The Dictionary

Below is a copy of the dictionary currently used by the system. Chapters 3 and 4 briefly refer to certain parts of word definitions, but it is appropriate to give a fuller description of what appears in the dictionry.

Each dictionary entry is of the form
(WORD I1 P1 I2 P2 ... Ii Pi)
where Pi is a property which is to be put on the property list of WORD under the indicator Ii. Different word types have different indicators on their property lists. If a word falls into more than one syntactic category it may have the properties of all of the categories. For instance "close" is a vert and an adjective, thus it would have the indicatcr v and the indicator ADJ. The only types of word whose dictionary entries will be described in full here are the two complex.ones: nouns and verbs. If these are understood, the lesser word types will be easy to follow.

Nouns have the following properties:

N: This indicates that the WORD is a noun. The property under N indicates how plurals are formed. For instance:
($O X \mathrm{~N}$ IRR)
(OXEN N (OX (NUMBER PL)))
(FRED NPR NONE)
(WATER N MASS)

The entry for "ox" indicates that it forms its plural irregularily. The plural form must be in the dictionary as a separate word. NPR is a special case of N indicating that the noun is a proper noun. NONE indicates that there is no plural form of the ncun. Mass nouns have the property MASS under N .
$N-P R O P:$ Under this indicator is a list of properties of the noun.
(BOY N S N-PROP (YOUNG))
indicates that a boy has the property young.

SUPERSET: The noun's super-sets are put in a list under this indicator:
(BOY N S N-PROP (YOUNG) SUPERSET (MAN))
(MAN N IRR N-PROP (MALE) SUPERSET (HUMAN))
(HUMAN N S N-PRCP (ANIMATE) SUPERSET (ANIMAL))
the N-PROP and SOPERSET properties form a network whereby BOY, for instance, will be found to be animate through the
above chain of SUPERSETS and N-PROPS. To avoid a lot of searching, redundant information is often put in:
(BOY S S-PBOP (HUMAN MALE YOUNG)
SUPERSET (MAN HUMAN)).

OBJ-SIZE: is the indicator whose property is a number from 0 10 giving a rough estimate of the size of an object. Some nouns such as Joy will not have this property.

NOM: This is used if a noun can have more than one number. For instance, the noun "paper" is defined as:
(PAPER N S N-PROP (INFLAMABLE LITERATURE) SUPERSET (OBJECT) OBJ-SIZE 1 NOM (MASS))

The property under NUM indicates that paper can $b \in$ a mass noun, as in "the room is full of paper."
"Football" has

NUM (MASS (SPORT GAME))
on its property list indicating that if football appears as a mass noun, it only has the $N-P R O P S$ SFORT and CAME frcm the whole set on its property list:

```
N-PROP (SPORT GAME CBJECT)
```

This is needed because the system only uses one set of properties to cover all of its meanings.

Verbs have the following indicators:

V: This is the verb indicator. Its property indicates how the first-person singular and the past tense are formed.

```
(KICR V S-ED)
(GIVE V IRR)
(GAVE V (GIVE. (TNS PAST)))
(GIVING V (GIVE (PART PREPART)))
(GIVES V (GIVE (TNS PRESENT)))
```

Irregular verbs have IRR as the property under v. All of the tenses of an irregular verb must be listed separately in the dictionary, giving the infinitive form of the verb and the tense or whatever of the form in questicn.

PREP-CASE: This is for the foregrounding routines. It is a list of lists. Each sub-list starts with a prepostion, which is followed by a variable number of cases. These cases are always tried first and in the order in which they appear when the prepostion is encountered in the sentence with that verb.

V-MEAN: The procedural definition of the verb is the property of

V-MEAN. CHAPTER 3 gives all of the details.
ro-comp: If the verb can take a to-complement. T is under this indicator.

THAT-COMP: If the verb can take a that-complement, T is under this indicator.

PARTICLES: If the verb takes one or more particles, they are listed here.

```
A DET $
(APUUT PREP*)
(ALROSS PREP*)
(ADAGE N S DPJ-SIZE 3 NUM (MASS) N-PKOH (NACHINEI)
(AFRICA :HPR RONE N-PROP {LUCAIION) SUPERSET (COHTINENT} ORJ-SILE G)
(AFTER PREP *)
(AIRPLANE N S OBJ-SILE & NUM (NASS) N-PHOP (CCNVEYANCE MACHIIIEI)
|ALENS N-PROP ILICUIO ALCOHOLICI SUPERSEI (EEVERAGES NUM (MASS\)
IALL GUANTIFIER *)
(ALCNG PREP %).
(AYV {BE (TNS PRESENT) (PNCOOE HISG")|)
(AN DET *)
(AND CONJ %)
(ANGER If NCNE N-PROP (ABSTRACTJ)
(ANIMAL N S SUPERSET (THING) CBJ-SILE 3)
| ANNOY V
        S-EO
        PREP-CASE ((WITH INSTRUMENT))
        V-MEAN
        |fF (|AGENT (MUST-bE ANIMATE))
            AG
            (OPT (GETR PASSIVE) SUMEONE)
            {PATIENT (MUST-BE ANIMATE)}
            PA
                    OBL)
                (ZUILDO ("<==>" ? W+H ("<--* ANNOY ?!) AG TNS PA)))
|ANYONE GENPRO * N-PRCP (HUMAN)]
|APPLE N S N-PROP (EATABLE) OBJ-SIZE & SUPERSEY (FRUITI)
(ARE V (BE (TNS PRESENT)I)
IARM N S ORJ-SILE 2)
(AROUND PREP *)
(AT PREP \AT ADJ) PARTICLE T-)
(AT PREP *)
(ATE V (EAT (TNS PAST));
|AUSTRALIA NPR NONE N-PROP (LOCATION) SUPERSET (COUNTRY)'OEJ-SIZE g)
(AUSTRIA NPR NONE N-PROP (LOCAIION) SUPERSET (COUNTRY) OBJ-SIZE B)
(AUTOMOBILE N S GBJ-SILE 3 NUM (MASS) N-PROP (CCNVEYANCE MACHINE))
IBACH NPR
            SUPERSET
            (COMPOSER MAN)
            N-PROP
            (COMPOSER HUMAN MALE)
            DEFAULT
            ({PATIENT) (WRITE COMPOSE) (N MUSIC (T<-NUMBER-W SG)I)
            OBJ-SILE
            3)
{BAD ADJ IRR N NONE N-PRCP (ABSTRAGT)\
(BAOLY ADV *)
|BE Y
            IRR
        PREP-CASE IIKITH WITHIS
        THAT-COMP
        T
        V-MEAN
        \IF ((THERE-IS) YH OBL (AGENT T) AG OBL (EE-LOCII LOC DEL)
        {BUILDQ (n<=#>" ? "+N ("<--* HAVE-LOC "+")| AG TNS LOC)
        ({THERE-IS).TM OBL (AGENT T) AG DBL)
        (BUILUQ ("<==>* ? *+N ("<--n EXIST)) AG TNS)
        (\AUJ-LIST T) ADJ OBL \AGENT T) AG OBL)
        {RUILOQ {*<= =>* ? **** (*<<-* HAVE-PROP *+*)} AG TNS ADJ}
        (PPATIENT {MUST-BE THING)) PA OUL (AGENT (NOT (EO (CAR TESTEE) (THAT-COMP)I) AG OBLI
```



```
        ((COPULAR-ACV? (NOT (EO (CAR TESTEE) THAT-CONP))) ADV ORL (AGEAT T).AG OBL,
        (BUILDU (Nく==>" ? "+" ("<--N HAVE-LCC "+")) AG TNS ADV)
        ({CLAUSE (FROM) *MUST-GE COUNIRY CITY IOWN CONTINENT LCCATION) ELCCATION\
            LOC
                03L
                (AGENT (MUST-EE HUMANI)
            AG
                OBLI
            (BUILDQ ("<==>* ? PAST ("<--* |NHABIT ?)) AG LOC)
            ((BE-LOC) LEC CEL (AGENT (NCT (EQ (CAR PESTEE) 'THAT-COMP))) AG GBL)
            (BUILDS ("<==>n ? "+" ("<--* HAVE-LOC "+")) AG TNS LOC)
            ((AGENT (NOT (EO (CAR IESTEE) EHAT-COMP)|) AG OBL)
            (BUILDO ("<=#>"?"*" |"<--" EXISTI|AG TNSI)\
(BEATRICE NFR * N-PKOP (HUMAN FEMALEI SUHERSET (KOMAN) OBJ-SIZE 3)
(REAUTY N NONE M-PROP (ARSTRACTI)
IGEEF N MASS N-PRCP (FCOD ANIMAL) OHJ-SIZE I SUPERSET (FOODI)
(BEER A S N-PROP (LIOUID ALCOHCLIC) SUPERSET (EEVERAGE) NUM IMASSII
(BEETHOVEN NPR
                                    *
                                    SLPERSET
                    (CUMPOSER MAN)
            N-prup
            (COMPOSER HUMAi' mALE)
            OEFAURT
            ((PATIENI) {HRITE COMPCSE) (N MUSIC (W<-NUMBER-H SGI)!
            OEJ-SILE
            3)
(BEFORE PREP (IEFCRE ADV ADJ))
(BFHIND PREP (HFHIND ADV AOJ))
|EERKLEY NPR NUNE N-PRUP (LOCATION) SUWERSET (CTIY) OBJ-SIZE G)
IBESIDE PKEP*)
```

```
101 (BEST ADJ {GCOO ISUPERLATIVE)] ADV (WFLL {SUPERLATIVEI)\
```

(BLUE AOJ R-SIISIRE 3 NUM (MASSI N-PROP (CONIVFYANCE MACHINE)

```

```

(BOX N ES N-PHOP (CCNTAINEK) ORJ-SILL 2 SUPERSEF (OBJECT))
IBRAHMS NPK
SUPERSET
(COMPOSER MAN)
N-PROP
(CUMPOSER HUMAN MALE)
DEFAULT
((PATIENT) (WRITE COMPOSE) (N MUSIC ("<-NUMUER-* SG\))
OBJ-SILE
3)
(BREAD N S N-PROP (EATAOLE) SUPERSET (FOOD) ORJ-SIZE 1)
IBREAK V IRR PREP-CASE (IHITH INSTRUNENII) TO-CCNP.T V-MEAN (ERGATIVE GREAKI)
(EREAKING V (BREAK (PART PRESPART)))
(BREAKS V (BREAK (TMS PRESENII))
(BROCK NPR \# N-PROP (HUMAN MALE) SUPERSET (NANI CBJ-SILE 3:
(EROKE V (BREAK (TNS PAST))]
(BRCKEN V (BREAK (PART PASTPART)))
(BOUGHT V (BUY (TNS PAST)(PART PASTPART)))
|EULL N S N-PROP (MALE BOVINE ANIMAIEI SUPERSEI (ANIMAL) OBJ-SIZE 3)
(BUSH N ES N-PROP (VEGETATION) OBJ-SILE 3 SUPERSET (OBJECTI)
(BUT CONJ*)
(BUY V
IRR
PREP-CASE ({WITH EXCHANGEI)
TO-COMP
T
V-MEAN
(IF (IAGENT (MUST-BE HUMAN))
AG
|PAYIENT (NOT (SHOULD-BE HUMAN)),
PA
SOMETHING
(PREP-CASE-LCOK (EXCHANGE) ({FOR)) (SHDULO-BE MONEY)!
EX
MCNEY
(OR (PREP-CASE-LOOK (EXCHANGE) ({(FOR W[TH)) (SHOULD-BE HUNAN))
(INO-OBJ (SHOULD-BE HUMAN ORGANIZATION)))
REC
(GETR AG)
(PREP-CASE-LCOK (SSURCE) ({(FROM)\ © (SHOULD-BE HUMAN ORGANIZATIONI)
SOU
SOMEDNE)
IBUILDQ |"く=シ>* ?
(*<--* TRANSFER 2)
(M<-RECIPIENT-* ?)
(N<-SOURCE-" 7)
("<-EXCHANGE-* ?)\
AG
TNS
PA
REC
SOU
Ex||)
{BUYING V (BUY (PART PRESPART)))
(BUYS V (BUY (TNS PRESENTI))
(BY PREP (BY ADV ACJ))
(CABBAGE N S N-PROP (EATABLE) SUPERSFT (YEGETABLE) OBJ-SILE I)
(CAKE N S N-PROP (FCDO) OBJ-SIZE I SUPERSET IFOCCI)
(CAME V {COME (TNS PASTI))
(CAN MODAL *)
{CANADA NPR * N-PROP {PLACE COUNTRY LOCATION} CEJ-SILE 8)
(CANDOR N NONE N-PROP (ABSTKACT)]
(CANDY N ES N-PROP (FOOD SWEET) OBJ-SILE O SUPERSET (FOOD))
(CAR N S DBJ-SILE 3 NUM (MASSI N-PRCP (CGNVEYANCE MACUINE))
(CARROT N S N-PROP IORANGE EATABLE) SUPERSES (VEGETABLE) ORJ-SIZE I)
\CARROT N S N-PROP IORANGE EATABLE) (ANIMAL) CBJ-SIZE 3)
(CHICKEN N S N-PRCP (ANIMATEI SUPERSEI (ANINAL) CBJ-SIZE 3)
(CHOCOLATE N S N-PRUP (FOOD SHEET) CLJ-SIZE O SUPERSET (FOOOI)
{CIOER N S N-PROP (LICUID ALCOHOLIC| SUPERSET (BEVERAGE) NUM \MASSS)
\CIOER N S N-PROP ILICUIOSCOMP T V-MEAN (ERGATIVE ICLOSE))
(COFFEE N S N-PROP ILIUUID) SUPERSET (EEVERAGEI NUM (MASSI)
(CCLQUR N S NUM (MASS))
ICOME V
IRR
PREP-CASE
({TO DESTINATION PURPOSE\ (WITH NIIH) (AT TIME RATEI)
V ME AN
|IF (|AGENT {MUST-BE ANIMATEI)
AG
OEL
(PREP-CASE-LOOK (IDESTINATIGN) (\TO INTO ONTO TOWAROS TOWARO\) |)
DEST
HERE
|PREP-CASE-LOOK *{SOURCE\ ({(FROMI) I)
SRC
(COND ({WHEHE-IS \NOUN-LIST-GET {GETR AGI}))
|\mp@code{Sovep, аEE!"}

```

```

 AG
 INS
 SRC
    ```
(CDMES V (COME (TNS PRESEIT) (PNCODE "3ST;")))
(COMPOSER N S SUPERSET (MAN MUSIC-MAKEM) N-HROP (HUNAH MUSIC-MAKER) OBJ-SILE 3)
(COMPUTER N S OBJ-SIZE \& NUM (NASS) N-PROP (MACHINE))
(CONDUCTOR \(N\) S SUPERSET (MAN MUSIC-NAKEK) N-PROP (HUMAN MUSIC-NAKER) ORJ-SILE 3)
(CONIAINV S-ED)
ICONTENTMENT N NONE N-PROP (ABSTRACTI)
(CONTINENT N ES N-PROP (LOCATION PLACEI OBJ-SIZE 9)
(COUNTRY N ES N-PROP (LUCAIION PLACEI OUJ-SIZE 8)
(COULU MOUAL*)
(COW S S N-PROP (ANIMATEI SUPERSET (ANIMAL) OUJ-SIZE 3)
(CUP N S N-PROP (CONTAINER VESSEL) SUPERSEI (UTENSIL) OBJ-SIZE I)
(CYONEY NPR \(\Rightarrow N\)-PROP (HUMAN FENALE) SUPERSET (WCMAN) OBJ-SIZE 3)
(DAY N S N-PROP (TIME) NUM (MASSI)
(DENMARK NPR NONE N-PROP (LOCATION) SUPEKSET (CCUNTRY) OBJ-SIZE 8)
(DESPITE PREP
(DID V (DO [TNS PASTI))
(OISCOMFORT N NONE N-PROP (ABSTRACT))
(DISCONTENTMENT N NONE N-PROP (ABSTRACI))
IDISLIKE TO-COMP
\(V\)
\(V\)
S-D
PREP-CASE
( (FER CAUSE))
V-MEAN
(IF ((AGENT (MUST-BE HUMAN)) AG OEL (OR (TU-COMP (GETR AG)) (PATIENT T)) PA QBL) (BUILUG ("<= \(=>" ? "+"\) ("く--" DISLIKE ?)) AG TNS ePA)) )
(DISSATISFACTION N NONE N-PROP (ABSIRACT))
(DOV IRR)
(DDG N S N-PROP (ANIMATE) SUPERSET (ANIMAL) OBJ-SIZE 3)
[DOING \(V\) (DO (TNS PRESENT) (PART PRESPARTI))
(DONE V (DO (TNS PAST) (PART PASTPART)))
(DOOR N S SUPERSEY (OBJECT) OBJ-SIZE 3)
(DOWN PART * PREP *)
(CRANK \(V\) (DRINK (TNS PAST)))
IDRINK V
IRR
PREP-CASE ((WITH INSTRUNENT))
\(V-M E A N\)
'If ( (AGENT' (MUST-be ANIMATE))
AG
(OPT (GETR PASSIVE) SOMECNE)
(PATIENT (MUST-BE LIQUID))
PA
(OPT (NOT (GETR PASSIVE)) :LIQUID)
(PREP-CASE-LOUK (SOURCE) ((FRON)) T)
SOU
GLASS)

AG
TNS
PA
SOU
AG) I)
(DRINKING \(V\) (DRINK (PART PRESPART)))
(DRINKS \(V\) (DRINK (INS PRESENT)))
(DRUNK \(V\) (OR INK (PART PASTPART)) N \(S\) N-PRQP (HUMAN) SUPERSET (MAN WOMANI)
(DURING PREP *)
(EACH QUANTIFIER *)
(EARLY ADV * ADV-PROP (TIME))
(EAT V
PREP-CASE ( (WITH INSTRUMENT))
\(V\)-MEAN
(IF (IAGENT (MUST-BE ANIMATE))
AG
(OPT '(GETR PASSIVE) SOMEONE)
(PATIENT (SHOULD-BE FOOD))
PA
(OPT * (NOT (GETR PASSIVE)).FOOO)?
(BUILDO \({ }^{\prime \prime}<=\Rightarrow\) "
("<--" TRANSFER ?)
("<-SCURCE-" SOMEPLACE)
(m<-OESTINATION-" [NIO ?\})
AG
TNS
PA AGII)
(EATEN V (EAT (PART PASTPART))
(EATING \(V\) (EAT (PART PRESPART)))
(EATS V (EAT (TNS PRESENT) (PNCODE "3SGH)I)
(EIGHT NUMBER *)
(EIGHTH ORDINAL EIGHT ADV*)
(ELEGTRIC ADJ *)
IEMPTY ADJ
ER-EST
PREP-CASE (IWITH INSIRUMENT)|
V
ES-ED
\(V-M E A N\)
(IF (AGENT (MUST-BE ANIMATE))
\(A G\)
(UPT (GETR PASSIVE) 'SUNE-ONE)
(PATIENT (MUST-DE CONTAINEH PLACE LOCATICN)I
PA
OBL
(SEC-SUBJ IOR (GREATERP (SIZE (GETR PAI) (SILE TESTEEIII)
SEC
```

 {BUILDO (CONTENTS-OF ",") PAI)
 BUILDQ ("<==>"? "+" ("<--" IRANSFER A) ("<-SOUACE-" ?) ("<-DESTINATION-" |||
 AG
 INS
 (COND ((EO 'CONTEINTS-OF (CAK (GETR SECI)) (GEIR SECI)
 {T (NOUH-PUS SEC))]
 PA
 |BUILDQ (OUT-OF ?A PAII)\
 (EMPTY V ES-ED ADJ*)
ENCLAND NPR NONE N-PROP (LOCATICN) SUPERSET (COUNTRY) OBJ-SIZE B)
EVERY OUANT IFIER *)
(FAR ADV *)
(FAST ADV ER-EST)
FAT AOJ ER-ESTI
IFIFTH ORDINAL FIVE AOV *)
(FIRST DROINAL ONE ADV *)
(FISH N ES N-PRÓP (ANIMATE) SUPERSET (ANIMAL) NUN (MASS) OBJ-SIZE 2)
IFIVE NUMBER \#1
(FOOD N MASS N-PRCP (EATABLE) SUPERSET (THING) CEJ-SIZE 1)
(FOOTBALL N S N-PROP (GAME SPORT ORJEGI) OBJ-SILE I NUM (MASS (SPORT GANEI)I
(FOR PREP (FOR ADJ) PARTICLE T)
(FORK N S SUPERSET (UTENSIL) OBJ-SILE I)
(FOUR NUMBER *)
(FOURTH ORDINAL FOUR ADV *)
(FRANCE NPR NONE N-PROP (LOCATION) SUPERSET (CCUNTRY) OBJ-SIZE 8)
FRED NPR
*
N-PROP
(HUMAN MALE SPORTS-MAN)
DEFAULT
((PATIENT) (PLAY) (N SPORT (t<-NUMBER-m SG)))
SUPERSET
(MAN)
OBJ-SIZE
3)
(FROM PREP *1
(FRUIT N S N-PROP IVEGETATION FOOD) SUPERSET (FCOD) OBJ-SILE I)
(FUNNY ADJ ER-EST)
(FURTHER ADV (FAR (COMPARATIVE)))
(FURTHEST AUV (FAR. (SUPERLATIVE)))
(GAME N S N-PROP (SPORT)I
(GAVEV (GIVE IINS PASTII)
(GERMANY NPR * N-PROP (PLACE COUNTRY LOCATICN) CBJ-SILE B).
(GERTRUDE NPR * N-PROP (HUMAN FENALE) SUPERSET (WCMAN) OBJ-SIZE 3)
GIVE V
IRR
FEATURES
(TRANS INDOBJ)
PARTICLES
IUP. IN OUT
PREP-CASE
((TO RECIPIENT) (FROM SOURCE))
V-MEAN
(CONO ({AND (EQ 'GIVE (CADR (START-LIST `Y SENTENCE)))
(CASE ((AGENT (MUST-RE ANIMATE))
AG
IOPT (GETR PASSIVE) SOMEDNEI
(OR (PREP-CASE-LCOK (RECIPIENT) ((TO)) (IMUST-BE ANIMATE))
([NO-CHJ (MUST-BE AN[AATEI))
REC
-SOMEONE
(PATIENT (NOT (SHCULD-BE ANIMATE)))
PA
UBLI)
ISETO STKUCT IBUILOQ (N<=\#>* ?
("<--" TRANSFER ?)
("<-RECIPIENT-* ?)
("<-SOLRCE-* ?))
AG
INS
PA
REC
AG:?
(IA1L-ENDS)\
STRUCTI))
IGIVE-UP V
IRR
PREP-CASE
((TO RECIPIENT) (FROM SOURCE))
V-MEAN
(IF (IAGENT (MUST-BE ANIMATE))
AG
OBL
{PATIENT (NOT {MUST-BE ABSTRACT)|)
PA
CBL
{PREP-CASE-LODK '{RECIPIENT\ ({TC)) (MUST-BE ANIMATE))
REC
* SOMEONEI
{BUILDO ("く=m>" ?
("<--")TRANSFFR ?)
"<-MANNER-" UNWILLINGLY)
("<-MANNER-" UNWILLINGLY)
("<-SIUURCE-" ?)
("く-RECIPIENT-"?)]
(GIVES V (GIVE (TNS PRESENT) (PNCGDE "3SG") 1)
(GIVES V IGIVE (INS PRESENT) ICONTAINER VESSEL) SUPERSET (UTENSIL) OBJ-SIZE I)
(GLASS N ES N-PROP (CONTAINER VES
(GLEE N NONE N-PRCP (AOSTRACTI)
1 GO V
IRR
PREP-CASE
((TO DESTINATION PUKPQSE) (AT RATE TIME)(WI(H WITH))
V-MEAN
(IF (\{AGENT \{MUST-BE ANIMATEI)
$A G$
(PQLE-CASE-LOOK (DESTINATION) • (TTO INTO ONTO TOWARDS TOHARO)) T)
DEST
SOMEPLACE
(PREP-CASE-LCOK (SOURCE) (IFROM)) I)
SRC
(COND (\{WHERE-IS (NOUN-LIST-GET (GETR AG))))
(T SOMEPLACE)))
(BUILDQ ("<=\#>"? $n+n \cdot("<-\infty$ MOVE) ("<-SCURCE-" ?) ("<-EESTINATICN-" ?)
AG
INS
SRC
DESTII
(GO PART * V IRR FEATURES (INTRANS))
(GOES V (GO (TNS PRESENT) (PNCODE "3SG*)))
(GOINGV (GO (PART PRESPART)))
GONE V (GO PASTPARTI)
GOOD ADJ IRR N S N-PROP (ABSTRACT THING) NUN (MASS (ABSTRACTI))
(GRAPE N S N-PROP (EATAELE) OBJ-SIZE O SUPERSET (FRUIT))
GRAPEFRUIT N S N-PROP (EATABLE) OBJ-SIZE I.SUPERSET (FRUIT)I
(GREEN ADJ ER-EST)
(GUITAR N S N-PROP (MUSICAL-INSTRUMENTI OBJ-SIZE 2 NUM (MASS))
(HADV (HAVE (TNS PAST) (PART PASTPART)])
(HALL N S N-PROP (BUILDING PLACE LOCATICN CCNTAINER) SUPERSET (BUILDING THING) DBJ-SIZE \&)
(HAMMER N S N-PROP (TOOL INSTRUMENT) SUPERSET (TCGL OBJECT))
(HAND N S OBJ-SILE 1)
(HAND N S OBJ-SILE l)
(HAPPINESS N NONE N-PROP (ABSTRACT))
(HAPPINESS N NONE N
(HAPPY ADJ ER-EST)
(HAPPY ADJ ER-EST)
hate TO-COMP
t
S-D
PREP-CASE
((FOR CAUSE))
V-MEAN
(IF ((AGENT \{MUST-BE HUMAN)) AG OBL (OR (TO-COMP (GETR AG)) (PATIENT T)) PA OBL)
(BUILDQ ("<==>" ? " + " ("<--" DISLIKE ("<-ADV-"MUCH)?)) AG TAS PA)))
IHAVE V
IRR
V-ME AN
(IF (IAGENT (AND (NOT (MUST-BE ABSTRACT)) (SHCULD-BE ANIMATE)I)
AG
CBL
(PATIENT T)
IPA
PA
OBLI

(HAVING V (HAVE (PART PRESPART)))
(HE PRO * PERSONAL T)
IHEAR V
IRR
PREP-CASE \{(WITH INSTRUMENTI)
THAT-COMP
${ }_{\mathrm{T}}^{\mathrm{T}}$
PREP-CASE
((OF TOPIC))
V-MEAN
(IF I(PATIENT \MUST-BE NUSIC MUSIC-MAKER)!
PA
oel
(AGENT (MUST-BE ANIMATE))
AG
(OPT (GETR PASSIVE) SOMEONEI)

(HEARD V (HEAR \{TNS PASTI (PART PASTPART))]
(HELEN NPR* N-PROP (HUMAN FEMALE) SUPERSET (hONAN) ORJ-SIZE 3)
(HELGA NPR \% N-PROP (HUMAN FEMALE) SUPERSET (WONAN) ORJ-SILE 3)
(HER DET (HER (POSSPRO)) PKO (HER (POSS) (OBJ) (NUMBER SG)) PERSONAL T)
(HERE ADV* ADV-PROP (LOCATION))
(HIM PRO * PERSONAL T)
(HIS DET (HIS (POSSPRO)) PERSONAL T)
(HIXON NPR NONE N-PKOP (LDCATIUN) SUPERSEI (CITY) OBJ-SILE 6)
(HOLLAND NPR NONE N-PROP (LIJCATION) SUPERSI:T (CUUNTRY) UBJ-SIRE 8)
(HORSE N S N-PRCP (ANIMATE) SUPERSET (ANIMAL) DEJ-SILE 3)
(HOUR N S N-PROP (UNIT TIME))
(HOUSE N S N-PROP (PLACE LUCATION CONTAINER) SUPERSET (BUILDING THING) CBJ-SIZE 4)
HOW QUET $\# 1$
(HUMAN N S SUPERSET (ANIMAL) N-PRCP (AMIMATE) OEJ-SIZE 3)
(HUMAN N S SUPERSET (HUSIMAND N S UUJ-SILE 3 N-PROP (HUMAN MALE) SUPERSET (MAN))
(I PRO II (SUBJ) (NUMBER SG)) PERSCNAL I)
(IDIOT N S N-PROP (ANIMATE) (BBJ-SILE 3)
(IDIOTIC AUJ *)
(IN PREP (IN ADV ADJ) PARYICLE TI
(INDIA NPR NONE N-PKOP (LOCATION) SUPERSET (CGUATRY) DRS-SIRE A)
(INNSBROOK NPR NONE N-PRUP (LOCATION) SUPERSET (CITY) OBJ-SIIE G)

```
(IS V {BE (TNS PRESENT) (PNCODE "3SG")))
(II PRO (IT (SUOJ) (OBJ) (BUMBER SGII)
I IVES NPR
    +
    SUPERSET
    (COMPOSER MAN)
    N-PROP
    (COMPOSER HUMAN MALE)
    DEFAULT
    ((PATIENT) (WRITE COMPOSE) (N MUSIC ("<-NUMOER-" SG)))
    QBJ-SI LE
    3)
(JACK NPR
    N-PROP
    (HUMAN MALE MUSICIAN)
    SUPERSET
    (MAN)
    DEFAULT
    ((PAYIENT (PLAY) (N MUSICAL-INSTRUMENT))]
    OBJ-SIZE
    3)
(JAGUAR N S N-PROP (ANIMATE) SUPERSET (ANIMAL) CRJ-SIZE 3)
(JOAN NPR # N-PROP (HUMAN FEMALE) SUPERSET (WOMAN) OBJ-SILE 3)
|JCHN NPR * N-PROP (HUMAN MALE))
(JOY N NONE N-PROP (ABSTRACT))
(JUICE N S N-PROP (LIQUID) SUPERSET (BEVERAGE) NUN, (MASS))
(KEY N S N-PROP (INSTRUMENI) SUPERSET (OBJECI) CBJ-SIZE I)
(KNIFE N IRR OOJ-SIZE I SUPERSET (UTENSIL))
(LAKE N S N-PROP (CONVEYOR WATER) SUPERSET (THING) OBJ-SIZE G NUM (MASS))
(LARGE ADJ R-ST)
(LAST ORDINAL LAST ADV*)
(LATE ADV * ADV-PROP (TIME))
(LEAST * *)
ILEAVE V
            IRR
            PREP-CASE
            ((TO PURPOSE) (AT.RAIE TIME) (IN MANNER) (&Y METHOD) (FCR DURATICN) (WITH WITH))
            V-MEAN
            (IF (IAGENT (MUST-BE ANIMATE))
            AG
                (OPT (GETR PASSIVE) 'SOME-ONEI
                    (PATIENT (MUST-BE PLACE BUILDING lCCATION))
                    PA
                    (COND ({WHERE-IS (GETR AG)))
                    (T 'SOMEPLACEJ)|
            (BUILOQ("<==>" ? "+" ("<--" MOVE) ("<-SCURCE-" #) ("<-DESTINATION-" #))
                    AG
                    TNS
                    {LEAVE-SOU (GETR PA)!
                    (LEAVE-DEST (GETR PA))])
(LEAVES V (LEAVE (TN'S PRESENT)))
(LEAVING V (LEAVE (PART PRESPART))\
(LEFT V (LEAVE (TNS PAST) (PART PASTPART)\)
(LEMON N S N-PROP (EATABLE) OBJ-SIZE l SUPERSET (FRUIT))
(LEOPARD N S N-PROP (ANIMATE) SUPERSET (ANINAL) CBJ-SILE 3)
(LETTER N S N-PROP (LITERATURE) OBJ-SIZE 1)
(LETTUCE N S N-PROP (EATABLE) SUPERSET (VEGETABLE) OBJ-SIZE I)
ILETTUCE N
PARTICLET
        TO-COMP
            T
    S-0
    PREP-CASE
    ((FOR CAUSE))
    V-MEA:I
    |IF ({AGENT (MUST-8E HUMANI) AG OBI. (OR (IO-COMP (GETR AG)) (PATIENT T)) PA OBLJ
                (BUILDQ ("<==>" ? "+" ("<--" HAVE-AFFECTI(IN-FOR ?)) AG TNS PA)))
(LION N S N-PROP (ANIMATE) SUPERSET (ANIMAL) OUJ-SILE 3)
ILISTEN V
                S-EO
                PREP-CASE
        ((TO TOPIC))
        V-ME AN
        |IF (|AGENT (MUST-BE ANIMATE))
            AG
                (OPT (GETR PASSIVE) SOMEQNE)
                    (TOPIC-LOQK (MUST-BE NOISE HUNAN MUSIC-MAKER THINGI)
                    TOPIC
                    (OR (ANAPHORIC '(TOPIC PAIIENT)
                            - (mIIST-BE NDISE HUNAN MUSIC-MAKER THING)
                                    (COND (IEQ ANAPHOR-CEPIH O) (SETO ANAPHUR-DEPTH 1)]
                                    (f ANAPHOR-DEPTH))
                                    NIL)
                            (CPT))
                BUILDO ("<==>" ? "+" ("<--" LISTEN ("<-TOPIC-" #)|}
                        AG
                        TNS
                            {LISTEN-TOPIC?(GETR TOPICI))\)
ILIVE V
        S-0
        PREP-CASE (|WITH WITH))
        V-MEAN
        (IF (IAGENT (MUST-BE ANIMATE)) AG OBL (PREP-CASE-LOOK (LCCATICN) (\(IN AT)) T) L OPT)
            (BUlLDO ("<==>" ? "*" ("<-#" INHAUIT ?)| AG TNS LI
            (|AGENT (MUST-BE ANIMATE))
                AG
```

08L （PREP－CASE－LOOK（（METHOO）（（ION））＇（SHOULO－BE FCOD）） $P A$ COL）
（BULLOQ 1＂$\left.^{\prime \prime}==\right)^{n}$ ？
＂＋＂
（＂く－－HEXIST）
 ＂+ ＂
（＂く－－＂TRANSFER ？）
（＂く－SOURCE－＂SOMEPLACE）
（＂く－OESTINATION－＂INTO ？）））

```
                    AG
                TNS
                AG
                TNS
                PA
                ACI
            ({AGENT (NUST-BE ANIMATE)) AG OBL)
            IBUILDO ("<=#>" ? "+" ("<--" cXIST)) AG TNS)))
```

(LUNDON NPR NONE N-PROP (LUCATION) SUPERSET (CITY) OUJ-SILE 6)
LOOKV
(LODK V
PARTICLES (FOR AT LIKE)
PREP-CASE (IWITH (NSTRUMENI))
V-ME AN
(IF (IAGENT (MUST-BE ANIMATEJ) AG OBL (AOJ-LIST T) ADJ OBL)

((AGENT (MUST-BE ANIMATE))
$A G$
081
(PREP-CASE-LOOK (DIRECTION)
* (ACROSS INTO OUT UP ONTO TOWARD TCWAROS ALONG DOWN AROUND UNOER))
T)
OIR

$A G$
TNS
(COND (\{NULL (GETR DIR)) NIL)
(T (GETR DIR)))))
(LEOK-AT V S-ED PREP-CASE (IWITH [NSTRUMENT))
V-MEAN (IF ((AGENT (MUST-BE ANIMATE))
AG (OPT (GETR PASSIVEI SENEQNE)
(PATIENT T) PA OBL)
(BUILUC ("く==>" 3 + (N<—" EXANINE ?)
("<-INSTRURENT-" (N EYE (NUMBER PL)("<-POSS-BY-" ? $\|\|$
AG TNS PA AGIII
(LOOK-FDR V S-ED PREP-CASE ((WITH INSTKUMENT))
V-MEAN (IF (IAGENT (MUST-BE ANIMATE))
AG (OPT (GETR PASSIVE) SDMEONE)
(PATIENT T) PA DBL)
\{BUILUQ ("く==>"? $+(*<-\infty$ SEARCH-FOR ?)) AG TNS PA);)
(LGOK-LIKE V S-ED
V-MEAN IIF (IAGENT (NUST-BE. ANIMATE))
AG OBL
(PATIENT T) PA OBL)

(LDUD ADJ ER-EST)
ILOVE TO-COMP
7
V
S-D
PREP-CASE
((FOR CAUSE))
V-MEAN
(IF ((AGENT (MUST-BE HUMAN)) AG OBL (OR (TO-COMP (GETR AGI) (PATIENT T)) PA OBL)

(MAN N IRR SUPERSET (ANIMAL) N-PROP (ANIHATE HUNAN MALE) DBJ-SIZE 3)
(MARY NPR \ddagger N-PROP (HUMAN FEMALE) SUPERSET (WGMAN) OBJ-SILE 3)
(MEAT N MASS N-PROP IFDOD ANIMAL) CBJ-SIZE 1 SUPERSET (FODDI)
(MEAT N MASS N-PROP (FDOD ANIMAL) CBJ-SIZE I SUPERSET (FODD)!
(MELBOURNE NPR NONE N-PROP (LOCATION) SUPERSET (CITY) OBJ-SIZE 6)
(MEN N (MAN (NUMBER PLI)))
(MEXICO NPK NONE N-PRDP (LOGATIGN) SUPERSET (COUNTRY) OBJ-SIZE 8)
(MONEY N MASS U甘J-SILE UI
(MONEY N MASS UBJ-SI
(MORE AOV * COMP *)
(MORE AOV
(MOST $* *$)
(MOST ADV *)
(MUG N S N-PROP (CONTAINER VESSEL) SUPERSET (VTENSIL) OBJ-SILE I)
(MUNIC NPR NONE N-PROP (LOCATION) SUPERSET (CITY) OBJ-SILE 6)
(MUNIC NPR NONE N-PROP (LOCATION) SUPERSET (CITY) OBJ-SIZE 6)
(MUNICH NPR NONE N-PROP (LOCATION) SUPERSET (CITY) OBJ-SIZE 6)
(MUSHROOM N S N-PROP (EATABLE) SUPERSET (VEGETARLE) OEJ-SIZE I)
(MUSHROOM N S N-PROP (EATABLE) SUPERSET (VEGETABLE)
(MUSICN NONE SUPERSEI (SOUND) N-PROP (MUSIC SOUND))
(MY DET (MY (POSSPRC)) PERSONAL I)
(NEAR PREP $*$)
(NEAR PREP \ddagger)
(NEW ADJ ER-EST)
(NEWPAPER N S N-PROP (LITERATURE) SUPERSET (PAPER) OBJ-SILE I)
(NEWPAPER N S N-PROP (LITER
(NEXT ORDINAL NEXI ADV *)
(NIGHT N S N-PROP (IIME) NUM (MASS))
(NINE NUMBER*)
(NINETH ORDINAL NINE ADV*)
(NO NEG*)
(NOISENS)
(NONE NEG ()
(NONE NEG *)
(NOT NEG*)
(NOT NEG *)
INOTEN S N-
INOVEL S N-PRDP (LITERATURE) OBJ-SIZE I!
(NOPROP (LITERATURE) SUPERSET (BOOX) CBJ-SILE I)
(OBJECT N S)
(OCEAN N S N-PROP (CONVEYOK WATER) SUPERSET (TMING) OOJ-STLE 9 NUH (HASSI)
(CF PREP (UF ADJ))
（CNE NUMBER＊PRO＊）
（ONION N S N－PROP（EATAQLE）SUPERSET（VEGETARIE）OBJ－SIUE I）
（ONTO PREP（ONTO ADVI）
（OPEN V S－EO TO－COMP I V－MEAN（ERGATIVE OPEN））
（CR CONJ＊）
（ORANCE N S N－PROP（EATABLE）DEJ－SIZE I SUPERSET（FRUIT））
（ORCHESIRAN S SUPERSEI（MUSIC－MAKER CHJ－SIZE 4）N－PRQP（MUSIC－MAKER））
IORDER V

$$
S-E D
$$

PREP－CASE（（WITH WITH））
V－MEAN
（IF I（AGENT IMUST－8E HUMANI）
AG
（OPT（GETR PASSIVE）＇SOMEONE）
（PATIENT（MUST－8E ANIMATE））
PA
OBL
（TO－COMP（GETR PA））
TOC
OBL）

（（AGENT（MUST－BE HUMAN））
ΔG
（OPT（GETR PASSIVE）SOMEDNE）
（PATIENT（AND（MUST－BE THIVG）（NCT（MUST－RE HUNAN））））
PA
OBLI
\｛BUILDQ（＂く＝＝＞＂？＂＋＂\｛＂＜－－＂ORDER ？））AG TNS PAl）
（OTTANA NPR NONE N－PROP（LOCATION）SUPERSET（CIIY）OBJ－SILE 6）
IOWN V

$$
S-E D
$$

V－MEAN
IIF IIAGENI（AND \｛NUI（MUST－BE ABSIKACF）I ISHUULU－BE ANIMAIEI）］
AG
OBL
（PATIENT T）
PA
DBLI
（RUILDQ（＂く＝$=>{ }^{\prime \prime}$ ？＂＋＂（＂く－－n PQSSESS ？））AG TNS PA）））
（PAPER N S N－PROP（THIN FLAMABLE LIGHT LITERATURE）SUPERSET（DBJECT）OBJ－SIZE I NUM（MASS））
（PEACH N ES N－PROP（EATABLE）CBJ－SIZE I SUPERSET（FRUIT））
（PEANUT N S QBJ－SIZE O）
（PEAR N S N－PROP（EATABLE）OBJ－SIZE I SUPERSET（FRUIT））
（PEN N S N－PROP（WRITING－INSTRUNENT）SUPERSET（CRJEGT）ABJ－SIZE I）
（PENCIL N S N－PROP（WRITING－INSTRUMEPI）SUPERSET（OBJECT）OBJ－SILE 1）
（PIANO N S N－PROP（NUSICAL－INSTRUMENT）QBJ－SIZE 3 NUM（MASSI）
（PIEN S N－PROP（FOOD）OBJ－SIZE 1 SUPERSET（FCOC））
（PIG S N－PROP（ANIMATE）SUPERSET（ANINAL）ORJ－SILE 3）
（PLANE N S OBJ－SIZE 4 NUM（MASS）N－PROP（CCNVEYANCE MACHINE）I
IPLAY V
$S-E D$
V－MEAN
（IF（（AGENT（AND（SHOULD－BE MUSICIAN）（NUST－BE HUMAN））） AG
（OPT（GETR PASSIVE）SOMEDNE）
（PATIENT（MUST－BE MUSICAL－INSTRUMENT））
PA
\｛COND \｛（AND（NOT FAIL－TEST）\｛DEFAULT＇PATIENT（NOUN－GET（GETR AG）$)\}$ ）
（T OBL）））

AG
TNS
PA
TNSI
（ $A G E N$（AND（SHUULD－BE MUSICIAN）（MUST－BE RUMAN）！）
AG
（OPT（GETR PASSIVE）SOMEONE）
（PATIENI（MUST－BE MUSICI）
PA
OBL）
（BUILDO（＂く＝＝＞＂？＂＋＂（＂く－－＂PLAY ？））AG TNS PA）
（ $A G E N T$（AND（MUST－BE HUMAN）（SHOULC－BE SPORTS－MAN）））
AG
（OPT（GETR PASSIVE）＇SOMEDNE）
（IND－CBJ（MUST－BE HUMAN））
CO－A
QPT
（PATIENT（MUST－BE SPORTI）
PA
（COND（INOT FAIL－TEST）（OEFAULT •PATIENT（NOUN－GET（GETR AG）II）
（T＇OBL））

AG
TNS
PA
（PROG（TEMP）
（RETURN（CONO（SETO TENP（GETR CD－A））
（IAGENT（NUST－BE ANIMATEJ）AG OBL）
I8UILDQ（＂く二 $=>1$ ？

$$
11+11
$$

$$
("<--* 00)
$$

AG
TNS
AG
（IAGENT（MUST－bE MUSIC）PA GHLI）
IPUSSESS V
ES-ED
V-MEAN
(IF (IAGENT (ANO (NOT (MUST-BÉ ABSTRACT)) (SMOULD-BE AHIMATE)))
$A G$
(PATIENT T)
Pa_{A}
OBL)

(IPATIENT (ANO \{SHOULO-BE HUMAN) (NUST-BE ANIMATEI)) PA DBL (AGENT T) AG DEVIL)

(POTATO N S N-PROP (EATABLE) SUPERSET (VEGETABLE) OBJ-SIZE II
(POUND N S IJBJ-SIZE O N-PHOP (OIJANTIFY))
(PRAGUE NPR NONE N-PROP (LQCATICN) SUPERSET (CITY) ORJ-SI?E G)
(QUIET AOJ ERTEST)
IQUILL N S N-PROP (ANIMAL-PART WRITING-INSTRUNENT) SUPERSET (OBJECT) ORJ-SILE I)
(RADISH N ES N-PROP (EATARLE) SUPERSET (VEGETABLE) DBJ-SIIE I)
(RAN V (RUN (TNS PAST) (PARI PASTPART)))
IRAY NPR * M-PROP (HUNAN MALE) SUPERSET (NAN) DEJ-SIZE 3)
(RED ADJ ER-EST)
(RICHARD NPR *N-PRUP (HUMAN MALE) SUPERSET (NAN) CBJ-SIZE 3)
(RIVER N S N-PROP (CONVEYOR WATER) SUPERSET (IIING) OBJ-SIZE 5 NUM (MASSI)
(ROAD N S N-PROP (CONVEYOR) SUPERSET (THING) OBJ-SIZE S NUM (MASS))
(ROOF N S UBJ-SIZE 3)
(ROOM N S N-PROP (PLACE LOCATION CONTAINER) SUPERSET (BUILEING THING) ORJ-SIZE 4)
(ROQSTER N 5 N-PRGP (NALE ANINATE) SUPERSET (ANIMAL) OBJ-SIZE 3)
IRUN V
IRR
PREP-CASE (WITH HITH))
FEATURES
(TRANS INTRANS)
PREP-CASE
((BY PATH METHCD))
V-MEAN
(IF ($A G E N T$ (MUST-BE ANIMATE))
AG
OBL
(PREP-CASE-LOOK '(DESTINATION) ((ITO INTO ONTO TCWIARO TOWARDS)) T)
DEST
SOMEPLACE
(PREP-CASE-LODK •(SOURCE) *(FROM)) T)
SRC
(RUN-SOURCET))
(BUILDO (" $<=\Rightarrow$ "?
" +11
("<--" MOVE ("<-ADV-" QUICKLY))
("く-MANNER-* BY (N FOOT (NUMBER PL)))
("<-SOURCE-" ?)
("<-SOURCE-DESTINATION-m ?))
AG
TNS
SOU
DEST)
((AGENT (MUST-BE MACHINE)) AG OBL)
(BUILUQ ("く==>" SOMEONE
" + "
("<--" DO)

TNS
AG
TNS
(START-LIST " "<-ADV-" (START-LIST 'VP SENTENCEI)))
(RUNNING V \{NUN (PART PRESPART)))
(RUNS V (RUN (TNS PRESENT) (PNCODE "3SG")))
(RUSSIA NPR NONE N-PROP (LUCATICN) SUPERSET (COUNTRY) OBJ-SIZE B)
(SADNESS N NONE N-PROP (ABSTRACT))
I SALLY NPR * N-PRCP (HUMAN FEMALE) SUPERSET (WONAN) DBJ-SIZE 3)
(SALZBURG NPR NONE N-PROP (LQCATICN) SUPERSET (CITY) CBJ-S[ZE B)
(SATISFACTIUN N NONE N-PROP (ABSTRACT))
(SCHOOL N S N-PROP (PLACE LOCATION SCHOCL) CBJ-SILE 5 SUPERSET (THING))
(SECOND ORDINAL TWO ADV*)
(SEE V
IRR
PREP-CASE ($(W I T H$ INSTRUMENT))
$V-M E A N$
(IF (IAGENT (MUST-BE ANIMATE) AG (OPT © (GETR PASSIVE) TSCNEONE) (PATIENT T) PA OBL)
(IF (IAGENT (MUST-BE ANIMATE)) AG (GPT (GEIR PASSIVE) SCMEONE) (PATIENT T) PA OBL)
(BUILDQ ("くニ=>"\#"+" ("く--"SEE \#) (NCUN-PUT AG) TNS (NOUN-PLY PA)))
ISELL V
IRR
TO-COMP
T M M AN
(IF I(AGENT (MUST-BE HUMAN))
AG
(OPT * (GETR PASSIVE) © SOMEONEI
[PATIENT (NOT (SHOULO-BE HUMAM)])
PA
SOMETHING
(PREP-CASE-LOOK ((EXCHANCE) ((FOR)) (SHOULO-BE-MONEY))
EX
MONEY
IOR (INU-CBJ (SHOULO-BE HHMAN IURGANIZATION))
(PREP-CASE-LOUK (RECIPIENI) ((IO)) (GHOULO-BE HUMAN GRGANIZATIUN)))
REC

SOMEONE
（PREP－CASE－LOOK（BENEFICIAKY）＇（FGR））•（SHUULE－BE HUMAN ORGANIZATION））
BEN
（GETR AC）！
IBUII．DO $\because \because<==>"$ ？

＂+ ＂

（＂く－＂TRNHSFER ？）
（＂く－SOURCE－＂？）
（＂く－RECIPIENT－＂？）
（＂＜－EXCHANGE－＂？）
$A G$
TAS
PA
BEN
REC
EXI）
（SELLING V（SELL（PART PRESPART）））
（SELLS V（SELL（TNS PRESENT）））
（SEVEN NUMBER ψ ）
（SEVENTH ORDINAL SEVEN ADV＊）
（SHALL MOOAL＊）
（SHRUB N S N－PROP（VEGETATION）OBJ－SIZE 3 SUPERSET（OBJECT））
（SIDE N S NUM（MASS））
（SILENT AUJ ER－EST）
（SIX NUMBER＊）
（SIXTH ORDINAL SIX ADV＊）
（SLOW ADV ER－EST）
（SMALL ADJ ER－EST）
（SO PREP＊）
（SOFT ADJ ER－EST）
（SOLD V（SELL（TNS PAST）（PART PASTPART））
（SOME QUANTIFIER $\%$ ）
（SOMEONE GENPRO $~=~ N-P R O P ~(H U M A N)) ~$
（SONATA N S SUPERSET（MUSIC）N－PRCP（MUSIC））
（SOON ADV ADV－PROP（TIME））
（SGUND N S SUPERSET（NOISE）N－PROP（NOISE））
（SPAIN NPR NONE N－PROP（LOCATION）SUPERSET（COUNTRY）OBJ－SIZE 8）
（SPOON N S SUPERSET（UTENSIL）DBJ－SILE 1）．
（STACK N S ABJ－SIZE 3）
ISTEAL V
PREP－CASE（ W WITH WITH））
TO－COMP
$T 0$
V－MEAN
（IF（AGENT（ShOULD－BE ANIMATE））AG OQL
（PREP－CASE－LOOK（DESTINATION PATH）＇（（INTO TO ONTC TOWARD TOWARDS）
（BY ABOUT BESIDE ALDNG UP DCWN ARDUND ACROSS））
（AND（NCT（MUST－BE HUMAN））（SHCULD－BE PLACE LCCATION））？
DEST OBL
（EUILDO（＂く＝＝＞＂？$n+n$（＂＜－－＂MOVE（＂＜－ADV－＂STEALTHILY）+1 AG TNS DEST）
（（AGENT（MUST－BE HUNAN））
AG
（OPY（GETR PASSIVE）SUMEUNE）
（PATIENT（NOT（SHOULD－8E HUMAN AESTRACT））？
PA
SOMETHING
（OR（IND－OBJ（SHOULD－BE HUMAN））
（PREP－CASE－LOOK（RECIPIENT）（（FOR））（SHOULC－BE HUMAN DRGANIZATION）？）
REC
（GETR AG）
（PREP－CASE－LOOK＇（SOURCE）（（FROM））＇（SHCULD－BE HUMAN ORGANIZATION PLACE））
SOU
SOMEPLACE）
（EUILDO（＂く＝＝＞＂？
＂＋
（＂く－－＂TRANSFER ？）
（＂く－SCURCE－＂ 31
（＂く－RECIPIENT－＂？）．
（＂＜－EXCHANGE－＂NOTHING））
AG
TNS
PA
SOU
KECIII
（STEALING V（STEAL（PART PRESPART）））
（STEALS V（STEAL（TNS PRESENT）））
（STOLE V ISTEAL（INS PASTI））
（STOLEN V（STEAL（PART PASTPART）））
（STORY N ES N－PROP（LITERATURE）SUPERSET（BOOK）CBJ－SILE I）
（STRANGE ADJ ER－EST）
（STUPID ADJ ER－EST）
（SUPPORT N S OBJ－SILE 3）
（SUPRISINGLY ADV＊）
（SYMPHONY N S SUPERSET（MUSIC）N－PROP（MUSIC））
（TABLE N S OBJ－SIZE 3）
TTAKE V
－IRR
fEATURES
（TRANS）
PREP－CASE
（ITO RECIPIENT）\｛FROM SQURCE）（BY MANNER）（WITH INSTRUMENTI（INIO DESTINATIONI）
V－ME AN
IIF（IAGENT（MUST－BE ANIMATE））
AG
（UPT（GETR PASSIVE）SOMEONE）
（PATIENT T）
PA
OBL
（PKEP－CASE－LOOK（RECIPIENT）（ITO））（HUST－BE HUMAN））
1064 (THERE AOV * ADV-PRCP (LOCATION))
1066 (THING N S)
1067 (THIRD ORDINAL THREE ADV *)
1068 (THIS PRO (THIS (SUBJ) (OBJ) (NUMBER SG)))
1069 (THOSE PRO (THAT (SUBJ) (OBJ) (NUMBER PL)I)
1070 (THREE NUMCER *)
1071 (TIGER N S N-PROP (ANIMATE) SUPERSET (ANIMAL) OBJ-SIZE 3)
(PREP-CASE-LOOK (SOURCE) ((FROM)) :{NUST-BE PLACE LOCATIUN fUNAN CONTAINEA))
SOU
(CONO ((WHERE-IS (GETR PA)))
(T SOMEPIACEI)।
(BUILDO ("<==>" ? "+" ("G--" IRANSFER ?) ("<-SOURCE-" ?) ("<-RECIPIENT-" ?)|
AG
INS
PA
SOU
REC)
({AGENT (MUST-DE ANIMATE))
AG
OBL
(PATIENT T)
PA
OBL
(PREP-CASE-LOOK '(SOURCE) '((FRIJM))'(MUST-BE HUNAN CENTAINER PLACE LOCAT(ON))
SOU
(COND ((WHERE-IS (GETR PA)))
(T 'SOMEPLACE))
(NOT (PREP-CASE-LOOK '(RECIPIENT) ((TO)) '(MUST-BE HUMAN)))
REC
OBL)
(BUILDO ("<==>" ? "+"("<--" TRANSFER ?)("<-SOURCE-" ?) ("<-RECIPIENT-" ?))
AG
INS
PA
SCU
AG)
((AGENT (MUST-BE ANIMATE))
AG
(OPT (GETR PASSIVE) SOMEONE]
(PATIENT T)
PA
OBL
(PREP-CASE-LOOK (DESTINATION)
-((TO TOWARO TOWARDS NEAR BESIDE INTO ONTO))
(MUST-BE PLACE LOCATION))
DEST
CBL.
(PREP-CASE-LOOK (ISQURCE) (I(FROM)) T)
SOU
(COND ((WHERE-IS (GETR PA)I)
(T SOMEPLACE)))
(BUILDQ{"<==>" ? "+" ("<--"* TRANSFER ?) ("<-SOURCE-" ?) ("<-CESTINATION-" ?)\
AG
TNS
PA
SCU
DEST)|
(TAKEN V (TAKE (PART PASTPART)))
(TAKES V (TAKE (TNS PRESENT) (PNCODE "3SG*))|
(TAKING V (TAKE (PART PRESPART)))
(TEA N S N-PROP (LIGUID) SUPERSET (BEVERAGE) NUN (MASS))
(TEN NUMBER *)
TTENTH ORDINAL TEN ADV *)
(TERRY NPR * N-PROP (HUMAN MALE) SUPERSET (NAN) CBJ-SILE 3)
(THAN * *)
(THAT DET \& PRO (THAT (SUBJ) (DEJ) (NUMBER SGI))
(THE DET *)
(THEM PRO (THAT (SUEJ) (OBJ) (NUMBER PL)))
(THERE AOV * ADV-PROP (LOCATION))
(THREE NUMCER *)
(TO PREP (TO ADV))
ITO PREP*!
(TODAY ADV * ADV-PROP (TIME))
(TOM NPR * N-PROP (HUNAN MALE) SUPERSEI (NAN) DEJ-SILE 3)
(TOMATO N ES N-PROP (EATARLE) SUPERSES (VEGETAPLE) CBJ-SIZE I)
(TCMORROW ADV * ACV-PROP (IIME))
(TOOK V (TAKE (TNS PASTI))
(TOOL N S SUPERSET (OBJECT) OBJ-SILE 1)
(TOP N S NUM (MASS))
(TORONIO NPR NONE N-PROP (LOCATION) SUPERSET (CITY) OBJ-SILE B)
(TOWARD PREP *)
(TOWARDS PREP*)
{TRAIN N S OBJ-SIZE 4 NUM (MASS) N-PROP {CONVEYANCE MACHINE)}
(TREE N S N-PROP (VEGETATION) OBJ-SILE 4 SUPFRSEY (OBJECTI)
(TROMBONE N S N-PROP (MUSICAL-INSTRUMENI) DHJ-SILE 2 NUM (MASS))
(TURNIP N S N-PROP (EATABLE) SUPERSET (VEGEIABLE) OBJ-SILEE I)
(TFO NUMBER *)
(UBC N NONE N-PROP (UNIVERSITY LOCATION) OBJ-SIZE 5 SUPERSET (UNIVERSITY))
(UGLINESS N NONE N-PROP (AUSTRACTI)
(UNCOVER V S-ED)
(UNDER PREP (UNDER ADV AOJ))
(UNDER PREP*)
(UNEASINESS N NONE N-PROP (ABSTRACT))
IUNIATHINESS N NUNE N-YKUP IABSIKACIJJ
(UNIVERSIY N ES N-PROP {PLACE LOCATION SCHOOL) ORJ-SILE 5 SUPERSET (SCHEUL))
(UP PART *)
(UP PREP * PARTICLET)
(UPON PREP *)

```
（USA WPR NONE M－PROP（LOCATION）SUPERSEI（CCUNTRY）OBJ－SIRE 8）
（USSK NPR NONE N－PRCP（LOCATION）SUPERSII（COUNTRY）GOJ－SIZE B） IUTENSIL N S SUPFRSET（IWUL）UBJ－SILE 11
（VANCOUVER NPR NONE N－PKOP ILOCATIUNI SUPERSET（CITY）OBJ－SIZE G）
（VENGENCE N NONE N－PRCP（AHSTRACT））
（VERY ADV＊）
（VIENNA NPR＊N－PROP（PLACE COUNTHY LIJCAIION）OBJ－SILE 6）
（VINCE NPK N－PREP（HUMAN MALE）SUPERSEI（NAN）UBJ－SILE 3）
（VINE N S N－PROP（VEGETATION）OBJ－SIIE 3 SUPERSET（OGJECT）） IWANT TO－COMP
\(T\)
THAT－COMP
\(t\)
S－ED
V－MEAN．
（IF（ \(A G E N T\)（MUST－BE ANIMATE））
AG
（OPT（GETR PASSIVE）SOMEONE）
（PATIENT（MUST－BE THING））
PA
08LJ
18UILDO（＂く＝\＃＞＂SOMEONE
FUTURE
（＂＜－－＂TRANSFER ？）
（＂く－SOURCE－＂\＃）
（RECIPIENT ？）
（＂＜－CAUSE－＂（＂く＂＝＞＊？FUTURE（＂く－－＂HAVE－PROP PLEASED））））
PA
（COND（（NOUN－LIST－GET（WHERE－IS（GETR PA）））） （T SOMEPLACE））
AG
AC）
（（AGENT（NUST－BE ANIMATE））
AG
（OPT（GETR PASSIVE）SOMEDNEI
（TO－COMP（GETR AG））
PA
（BUILDQ（＂く＝＝＞＂＂＋＂（＂く－CAUSE－＂（＂く＝＝＞＂？FUTURE（＂＜－－＂HAVE－PRQP．PLEASED））））PA•AG）
（（AGENT（MUST－BE ANIMATE））
AG
（OPT（GETR PASSIVE）＇SOMEONEI
（PATIENT（MUST－BE THING））
PA
OBL
（TO－COMP（GETR PA））
TOC
DBL）
（BUILDQ（＂く＝＝＞＂+ ＋＂（＂＜－CAUSE－＂（＂＜＝＝＞＂？FUTURE（＂く－－HAVE－PROP PLEASED））））
TCC
AGI）
（WAS \(V\)（BE（TNS PAST）））
（WELL ADV IRR）
（WENT V（GO（TNS PAST）））
（WHAT ODET＊）
（WHERE QDET＊ADJ＊）
（WHICH QDEY RELPRD T）
（WHILE PREP＊）
（WHO QOET＊RELPRQ T）
（WHY QDET＊）
（WIFE N IRR OBJ－SIZE 3 N－PROP（FEMALE HUMAN）SUPERSET（WOMAN））
（WILL MODAL＊）
（WINDOW N S N－PRDP（PLACE LOCATION）SUPERSET（ORJECT）DBJ－SIZE 2）
（WINE N S N－PROP（LIQUID ALCOHCLIC）SUPERSET（BEVERAGE）NUM（MASS））
（WIT N S）
（WITH PREP（WITH ADV ADJ））
（WOMAN N IRR SUPERSET（ANIMAL）N－PRCP（ANIMATE HUMAN FEMALE）OBJ－SIZE 3）
（WOMEN N（W゙JMAN（NUMBER PL）））
（WCRLD N S N－PROP（PLACE LOCATION EARTH）SUPERSET（PLANET OBJECT）OBJ－SIRE IO）
（WORSE ADJ（BAO（COMPARATIVE）））
（WORST ADJ（RAD（SUPERLATIVE）））
（ WOULD MODAL＊）
IWRITE THAT－COMP
T
TO－COMP
\(T\)
PREP－CASE
（（OF TOPIC）（KITH INSTRUNENT））
\(V\)
IRR
V－MEAN
（IF（（AGENT（AND IMUST－BE HUNAN）（SHOULD－BE COMPOSER）））
AG
（OPT（GETR PASSIVE）SOMEONE）
（PATIENT（MUST－BE MUSIC LITERATUREI）
PA
（OR（DEFAULT＊PATIENT（NOUN－GET（GETR AG）））
－（NP NIL（DET A）（N LETYER（NUMBER SG））））
（INO－CBJ（MUST－BE HUMAN））
IND
OPT
（ BUILDQ（a（＂く＝＝＞＂）（？）（＂＋＂）（＂く－－＂～7）4）
AG
INS
（WRITET（GETR PA））
PA
（WRITE－IND－OBJ（GETR IND）（GETR PA）I））
（WRITES V（WRITE（TNS PRESENT）））
（WRITING \(V\)（WRITE（INS PRESENT）（PARY PRESPART）））
```

IWRITTEN V (WRITE IPART PASTPARTI)I
(WKUTE V (WR ITE ITNS PASTI))
(YEAR N S N-PRUP (IIME) SUPERSET (TIME)I
(YELLOW AOJ ER-EST)
(YESTERDAY AOV * ADV-PROP (TIME))
(YCU PRO (YOU (SUGJ) (OBJ) (NUMUER SC-PL)))
(YCU PRO (YOU (SUUJ) (OBJ) (NUYBER SC-PL)))
(YOUNG ADJ ER-EST)
(YOUNG ADJ ER-EST)
(YOUR PRO (YOU (NUMBER SG-PL) (POSSESIVE)) PERSCHALI T)
(YOUTH N S N-PROP (HUMAN TIME) SUPEKSET (TIME MAH WU:AAN) OBJ-SIZE 3 NUM (MASSI)
("1805" N NONE N-PRCP (YEAR TIME))
("1974" N NONE N-PROP (YEAR TIME))
("3270" $\mathrm{N} S \mathrm{OBJ}$ SILE 3 NUM (MASS) N-PROP (MACHINE))
NIL

AEPENDIX V: The Code

The code for this system is presented here in four parts. The first is the main part of the system: the case-analysis code. The routines are in alphabetic order.

The next part is the ATN grammar. This starts on page 129.
The third part is on page 137, and is just a few auxiliary routines.

Finaly is listed the $A T N$ parser which was written $k y$ Dr. Raymond Reiter at UBC.

```
(DEFUN AOJ-LISI MEXPR (TESI)
This is a case of the verb "to be". it hamhles:
; "HE IS BIG."" AND "HE IS SHALLER THANGFRED."
    (PROG (TESTEE-K-S FT RET)
        (SETQ K-S KEEP-SENT)
    LOUP
        (cono ((nulle k-S)
                            (COND (FT (SEFG FAIL-TEST Y FAIL-TEST-LIST (APPEND (LIST (ADJ-LIST) FAIL-TEST-LIST))))
                    (RETURN NIL))
            (IAND (EO (GAAR K-S) ""<-AD.J-")
                    (NOT (CADAR K-S))
                    (SETE TESTEE (CAR k-S))
                    (SETO FFT)
                    (EVAL TEST))
                    (flag-on restee keep-sent t)
                    (COND (IANL {EO (CAAR {SETO K-S (CDR K-S))] (THAN-PH)
                            (EO -COMPARATIVE (CADR (START-LIST 'COMP-SUP TESTEE))))
                            (dELETE ((COMP-SUP Cumparative) testee)
                            (RPLACO (ENIB-LIST TESTEE)
                                    (lIST (lISt '"<-COMPAREO-ro-"
                                    (NGIUN-LIST-GEY (COPY (SUPER-NP-BUILO (COPY (CAR K-S))))\))]
                            (FLAG-ON (CAR K-S) KEEP-SENT HI)
                    (RETURN (CUDR TESTEE)))
            (T (SETQ K-S (CUR K-S)) (GO LOQP)ill)
(DEFUN ADJTYPE NEXPR (Z)
    (EQ (GET NEW-WORD (ADJ) Z))
(DEFUN ADV-MDD? (PART TEST KASE)
; THIS WORKS GUT AOVERBIAL MODIFICATIONS:
; "HE CAME yeSterday." "HE WENT THERE."
    (PROG (TEMP)
                (COND (IAND (MEMBER 'TIME (SETO TEMP (GET (CADOR PART) 'ADV-PROP)|) (EVAL TEST))
                    (SETQ FN '(RPLACD (END-LIST (FINO-LIST STRUCT ""<==>")) (LIST STRGT))
                    NOD (PHRASE-INUM 'VP KEEP-SENT))
                *ILIST '"<-IIME-" (CAODR PaRTIl)
            ((MEMBER 'LOCATIUN TEMP) (ADV-lOC PART TEST KASE))
            (T (SETO FN '(RPLACD (END-LIST (FIND-LIST STRUCT ""&=#>")) (LIST STRCT))
                    MDO (PHRASE-NUM 'YP KEEP-SENT)
                        (CONS (CAK (COPY part)) (CODR part)l))l)
(DEFUN ADV-LOC (PART TEST KASE)
; this routine tries to kesclve references invclving "here" and."there".
    (PROG (TEMP AD RET)
            (CUND ((NOT (MEMBER (CAODR PART) ('THERE HERE))) (RETURN NIL)))
            (CONO (IZEROP ANAPHOR-DEPTH) (SETO ANAPHOR-DEPTH I)\)
            (SETQ AD ANAPHOR-DEPTH)
        LOOP
            (CONO (IAND (NOT (NULL KASE)) (SETO TEMP (CASE-ANAPIIOR KASE PART TEST)])
                (FLAG-ON PART KEEP-SENT (SETQ RET (LIST (MAKE-ARROH KASE) (NOUN-LIST-GET TEMP))))
                (SET-UP-FN KASE NIL)
                (RETURN RET))
            ((SETG TEMP (ANAPHORIC 'lCCATION TEST MNAPHOR-DEPTH (CDR PART)))
                IFLAG-ON PARI
                    KEEP-SENT
                            (SETG RET (CONO ((CET (CAR TEMP) 'PREP)
                                    (LIST '"<-LOC-" (CAR TEMP) (NCUN-LIST-GET TEMP)))
                                    (T ILISY ""<-LOC-" TEMP)||)
                                    I SETQ ANAPHOR-DEPTH AD
                                    FN '(RPIACO (END-LIST (FING-LIST STRUCT ""く==>")) (LIST STRCTI)
                                    NUM (PIIRASE-NUM 'VP KEEP-SENT))
                                    RETURIV RE[)
                ((LESSP ANAPHOR-GEPTIG &) (SETG ANAPHOR-DEPTH (ADII ANAPHOR-DEPTH)) (GO LOOP))
                (T (PRINI ""I GANNOT RESULVE YIUR REFERENCE TO")
                    (PRINI (GADDIR PARTI)
                    (TERPRI)
                    (PKINT '"I SHALL CONTINUE ANYWAY.")
                    (FLAG-ON PABT KEEP-SENT (SETG REE (LIST "*S-LOC-" 'SOMEPLACEI)I
                    ISETQ ANAPMHR-DEFTII AD
                        FN'(RPLACD (END-LIST (FIND-LIST STRUCT ""<==>")) (LIST STRGT))
                    MHID (PHKASE-NUM 'VP KFEP-SENT))
                    (RETURN RETI)\)I
```

(UEFUN AFTER-AND-MOU? (PREP NA)
(LESSP (PIRASE-HUM 'VP KEEP-SENT) NN))
(DEFIJN AgENT NEXPR (TEST)
AGENT FINOS THE AGENT CASE: %

```

```

 pHRASES STARTING WITH "|Y".
 IF THE SEHTENCE IS NOT PASSIVE IT TAKES THE FIRST NOUN PHRASE OF
 THE SENTENCE TO BE THE AVENT. THIS IG A MAJUR ERKCR ANO SHOHLO
    ```

```

 IF THE SENTECE bEGINS WITH A THAT-COMPlEmENI OR A TO-COMPLEMENT,
 IT IS THE NGENT.
 (PROG (TESTEE TEMP PRN LST NUMS VNUM NUM)
 ICOND (lGETR PASSIVE)
 (PRUG (K-S)
 (SETU K-S KEEP-SENT NUH 1)
 LOOP
 CONU ((NULi K-S) (RETURN (PASSIVE-AGE:IT LST TEST NUMS VIUUM)I)
 ((EU (CAAR K-S), VD) (SETQ VHUM NUM))
 ((AND (EO (CAAR K-S) 'PP)
 (EG (CADOAR K-S) 'BY)
 (SETO LST (APPEND LST (LIST (CAR K-S))) NHiAS (APPENO NUMS (LIST NUM))))))
 (SETU K-S (COR K-S) NUM (ANOL NUM))
 (G0 LUOP)l)
 (SETQ TESTEE (CDND (IAND (EO PNP (CMAR L)) (NOT (CADAR L))) (CAR L))
 ((ANO (ATOM (CAR L)) (EO 'NP (CAADR L)) (NOT (CADADR L))) (CAOR L)))
 (COND (INULL (SETQ PPN ISTARI-LIST 'PRO TESTEEI))
 (CGiNO (1OR (TEST-GFF? (AGENT) (EVAL TEST))
 (FLAG-gN TESTEE MEEP-SENT T)
 (RETURN TESTEE))
 (T (SETO FAIL-TESI T FAIL-rEST-LIST (APPENC (LIST ,AGENT) FAIL-TEST-LIST))
 NTLI!
 IT ICOND IINOT INULL ISETG temp IANAPhoric 'IAGENT bENEFICIARY
 RECIPIENT
 CO-AGENT
 patient
 TOPICI
 TEST
 ANAPHOR-DEPTH
 PRNIIII
 (FLAG-ON TESTEE KEEP-SENT T)
 (RETURN TEMP)|lll
 (IAND (GET VERB 'THAT-COMP)
 (eq ithat-comp (Car (SEtg testee (car keep-sent))))
 (FLAG-GN TESTEE KEEP-SENT T)
 TESTEE:)
 (lANU (GET VER& 'TO-GOMP)
 (EQ ,TU-COMP (CAR (SETQ TESTEE (CAR KEEP-SENT))))
 ISETQ TESTEE leval icONS IS
 IST (APPEND (LIST 'INP T (N SOMEONE)))
 (REL-MODS-JOIN (CCDR TESTEE) 1))\))
 (flag-on (CAR KEEP-SENT) KEEP-SENT I)
 TESTEEJ)\)
 (DEFUN ALL-FLAG-OFF (K-S)
 (MAPG (LAMBOA (X) (FLAG-OFF X K-S)) K-S)
 K-S)
 IDEFUN ALL-HIST-OFF (S-H)
 (CONO (NULL S-H))
 (T (ALL-FLAG-OFF (CAR S-H)) (ALL-HIST-UFF (CDR S-H)))))
 (DEfUN ALL-PREPS (NN K-S)
 ; THIS ROUTINE RETURNS T IF ALL OF THE FIRST NN SENTENGE PARTS
 ; OF K-S are prepoSITION pHRASES.
 (COND ((NOT (EQ 'PP (CAAR-K-S))) NIL)
 (1EQ NN O))
 (T (ALL-PREPS (SUBL NN) (CDR K-S))\))
 (0EFUN ANAPHOR? (TESTEE KASE HIST TEST PRN)
 (AND (OR (TEST-OFF? KASE) (EVAL TESTI)
 IOR (FUULL PRN)
 (AND (UR (NOT (EG PGO (CAR PRN))) (PRN-MATCH? PRN TESTEE)) (ANAPHOR-QUERY PRN TESTEE)))
 resfEEIJ
 (DEFUN ANAPMOR-CASE-LOOK (KASE TEMP)
 (PROG (TEYP K-S)
 (SETO K-S KEEP-SENT)
 LOOPI
 (CONO ((NULL KASE) (RETURN NIL)))
 LOOP2
 (CONO (INULL K-S) (SETQ KASE (GOR KASE) K-S KEEP-SENT) (GO LOOPW))
 (IAND (E| '"<-ADV-" (CAAK K-S))
 (MEMAER 'LOCATION (GET (GADAR K-S) 'ADV-Prop))
 (SEGG IEMP (AUV-NOO? (CAM K-S) TEST N1L.))
 (FLAGG-(ON (CAR K-S) KEEP-SENT T))
 (RETIOKN TEMP))
 (T (SETO K-S (COK K-S)) (CO LCOP?)))))
    ```
(DEFUN ANAPHIDRIC (KASE TEST OEPTII PKA)
ANADHORIS IS THE ANIN ANAPIGKIC REFERENCE ROIJT INE *
IT TAKES A LIST. WF CASES TO L.OOK FOK, A IEST THE REFERENT -
MUST PASS, A NUMEER INOLCATING WHAT SEMIENCE IN THE HISTORY
TO LOOK AT, AND THE PROHIUN BEING RESOLVEO.
(PROG IHISF TESTEL O K H-S)
(CUNU (IMEMEER (CADR PRN) - (I ME MY MINEI) (RETURN (SPEAKER (CACR PRN))))
IIAND FHAT-CMP
THIS HANDIES SENTFALCES LIKE: "IT IS UNFORTUNATE THAT YOU CAME."
(CET VERB THAT-COMP)
(MEMBER 'AGENT KASE)
(EQ (CADR PRH) *II)
(SETQ TESTEE (START-LIST GHAT-CONP KEEP-SENT))
(NOT (CADR IESTEL))
(F\&AC-OH TESTEE KEEP-SENT T)
(PETIJKN TESTEE))
( (ASD (GET VERE ' TO-COMP)
THIS HANDLES SENTENCES LIKE: "IT IS NECESSARY TO GO HOME."
(MEMBER •AGENT KASE)
(EQ (CADK PRN) 'I I
(SETOTESTEE (START-IST -TD-CDMP KEEP-SENT))
(NOT (CADR TESTEE)I)
(IFLAG-UN IESTEE KEEP-SEMT T)
(RETURN (TO-CDMP (INP \(Y\) (N SOMEONE))))
THIS RETURNS INTERNAL REFERENCES TO THE AGENT AS IN:
"FRED MARRIED THE WOMAM THAT HE LOVED."
( (ANU AG-ANAPHDR (ANAPHOR? AG-ANAPIGR KASE HIST TEST PRN)) :RETURN AG-ANAPHOR))
THIS PICKS UP INTERINAL KEFERENCES IOTHE PATIENT AS IN:
"FRED TODK MARY TO HER HUUSE."
( (AND PA-ANAPHOR (ANAPHOR? PA-ANAPHOR KASE HIST TEST PRN)) (RETURN PA-ANAPHOR))
1 (AND AG-ANAPHGR
THIS RESOLVES OTHER INTERNAL REFERENCES LIKE:
"FRED PLAYED THE MUSIC FUR MARY SD SIE WDULO PE HAPPY."
(SETQ TESTEE (FIPN-ANAPHOR SUPER-SENT 'CHECK TEST PRN SUPER-SENTI) (RETURN TESTEEI)))
ISETG HIST HISTORY
- THIS PART DOES THE REFERENCES TO PREVIOUS SENTENCES.

D 1
H-S SENT-HIST
K (COND ( (AND (ATOM KASE) INOT (NULE KASE))) (LIST KASE))
(T KASE)))
(COND (IGREATERP D UEPTH) (RETURN NILI))
LOOP
(COND (INULL HIST) (RETURN NTLI)
( (LESSP D DEPTH) (SETU D (ADDI D) H-S (CDR H-S) HIST (CDR HIST)) (GO LOOP))
((FIND-ANAPHOR (CAR HIST)K TEST PRN (CAR H-SI))))

\section*{(DEFUN ANAPHOR-QUERY (PRN TESTEE)}
; DNCE A POTENTIAL REFERENT HAS BEEN FOUNO FOR A PRONOUN
; THE USER IS ASKEU IF IT CORRECT. THE FIRST PART MAKES SURE
- IT has Not alreaby beEn asked.
(PROOG (RESP TEMPI TEMP2)
(COND (IEQUAL (CAR (SETO TEMPI (TOP-LEVEL-START-LTST PRN ANAPHOR-RESP)) ):PRN).
(CONO ( (EQ (MAIN-WORU-GFT TESTEE) (MAII-WQRC-GET (CAOR TEHPI) ))
(RETURN (SELECTO (CADADR TEMPL) (YES T) (NO NIL) NIL))
((EQ (CADADR TEMPI) YES) (RETURII AIL)))
((DEEP-MEMBERI (LIST TESTEE YES) ANAPHCR-RESP) (RETURN NIL)))
(PRINI BY)
(PRINI (CADR PRN))
(PRINI "II ASSUME YOU MEAN")
(PRINI (SETU TEMP2 (MAIN-WORD-GET TEST:EE)))
(TERPRI)
(PRINT "IS THAT CORRECT?")
LOOP
(COND ( (EO Y Y (CAR (EXPLODE (SETO RESP (HYEVAL (READ))))) )
(SETR ANAPHOR-RESP (APYEND (LIST (LIST PRN (LIST TESTEE YES))) ANAPHOR-RESP)I)
( (EO M (CAR (EXPLODE RESP)))
(SETO ANAPHCR-RESP (APPEND (LIST (LIST PRN (LIST TESTEE 'NO))) ANAPHOR-RESP))
NII.)
(T (PRINT *PLEASE ANSWER YES UR NO") (GO LOOP))I))
(DEFUN BEI? (NLIST)
ICUND ( \(1: 0\) PL (CAOR (START-LIST NUMBER NLIST)) 'SUUSET-OF-SET)
(T (BEL-DET NLIST)) )
!
```

(DEFUN BE1-DET (NL)
(PKOG (TEMP)
(COND ((INJLL (SETO TEAP (START-LIST *OET NL')) 'ELENENT-OF-SET)
((DEFINITE-DET? (CAOH TEAP)) 'ELEMCNT-OF-SET)
(r - SUESET-OF-SET))I)

```



                                    - (nhis mat rhese biegjf)



                            - (huis That rhese luusej)
                            (SETQ NU (GADR (START-LIST MHPGRER PROI)I))

(ldefun before-nfter-descl? (testee prep Nin nu)
    (PROG (bFURE)

        (CONO (IEQ NU (GADK (START-LIST-NUNBEK BFOREI)) (NB-BUILU BFORE)IIII
IDEFUN BE-LOC ()
; THIS IS THE LOCATIONAL CASE OF "rG RE":
: "FREO IS IN THE ATTIC."
; "FRED IS WITH MAKY."
    (PROG (PRERS PREP TESTEE RET)
        (SETQ PREPS 'IIN ON UNOER WITH AT BY NEAR BESIDE DEFORE UP DOWN AROUNO ACROSS UPON))
        IRETURA (COND ( (SETQ TESTEE (ELAT (ACDI (PHRASE-NUM (VP KEEP-SENT)) KEEP-SENT))
                                    (CONO (IAND (EO (CAR TESTEE) POP)
                                    (NDT GADR TESTEEJ)
                                    (OR (TEST-GFF? LOCATION) (NOT (MUST-BE nOSTRACT)))
                            (SEIO PREP (CAR (NEMBER (CACDR TESTEE) PREPSI)))
                                    (flas-0N TESTEE

                                    (i.LST "י"く-LOC-CF-"
                                    (NOUN-LIST-GET (NP-BUILD TESTEE))))
                                    (t llist prep
                                    (NOUN-LIST-GET (AP-BUILD TESTEEI)))!)
                                    RETHOHII
    IDEFUN BE-LOCI い
    (PROG (PREPS PREP TESTEE KET NNN)
        (SETW PREPS IIN ON UNDER WITH AT BY NEAR BESIDE BEFORE UP DOWN AROUND ACROSS UPON ')
            (SETQ NNN (ADD 1 (PhRASE-NUM PVP KEEP-SENTI))
        LOOP
            (COND ( (SETQ TESTEE (ELMT NNN KEEP-SENT))
                    (COND (IAND. (EQ (CAR TESTEE) 'PP)
                        (not icanr testeel)
                        (UR (TEST-GFF? 'LOCATION) (NDT (MUST-BE ABSTRACT)))
                        (SETQ PREP (CAR (MEMBER (CACDR TESTEE) PREPSI)))
                    1FLAG-0A TESTEE
                                    KEEP-SENT (COND (IEQ PREP 'WITH)
(SETQ RET (CN
                                    (LIST M<-LOC-OF-" (NGUN-LIST-GET (NP-BUILD TESTEE)))
                                    (T (LIST PREP (NOUN-LIST-GET (NP-BUILD TESTEE)II)) I)
                                    (RETURN RET))
    (DEFUN BENEFICIARY (TESTEE PREP)
    : THIS FINDS THE BENEFICIARY CASE: "FREO PLAYS THE PIANO FOR MARY."
        (PROC (PRN)
            (RETURN (COND ((SETO PRN (PRO? TESTEE))
                                    (PREG (IEMP)
                                    ICOND IISETG tEmp (PRO-anaplior? 'lagent beneficiary
                                    CC-agent
                                    tGPIC
                                    TGPIG
PATENTI
                                    - (MUST-bE AN(MATE)
                                    PRN
                                    [ESTEE)]
                                    (SET-UP-FN • BENEFICIARY PREP)
                                    (REIURN : LIST ""く-BENEFIC[ARY-" TEMP)) ll)
                                    ( (MUST-BE ANIMATE)
                                    (SET-UP-FN P FENEFICINRY PREP)
                                    (LIST,"く-BENEFICIARY-" (NOUN-LIST-GET (NP-BUILE TESTEEI)))II)
    (DEFUN BUILOI (FRAG)
    ; THIS IS PART OF the buildo function for builuing final strucitures.
    (PROG (A)
            (RETURN (COND ( (iJUIL FRAG) NIL)
                                    ((EO FRAG \(\quad "+\cdots\) ) (GETRV (Cak reglsti))
                                    ((EQ fRAG '? ) (NMUN-PUT (CAR REGLST)))
                                    ((EO FRAG '?) (NMUN-PUT (CAR REGLS
(IEQ FRAG ?
                                    (1EU FRAG : \({ }^{(12)}\) )
                                    ( (ATUM FRAG) FRAG)
                                    (IEW (CAR FRAG) ? + +")
                                    (SEIU A (UNCONS REGLST REGESTI)
                                    (SEIU A (UNCONS REGLST REGEST))
                                    (CONS loetrval (bullol (LOR fragall)
                                    (1eq (car fras) "?)
                                (SETO A (UNCONS REGLST REGLSTI)
                                    (CuNs (NOUN-FIJT A) (BUILDA (CDR FRAGI)))
                                    ( (for (cah fragi) , a)
                                    (SElo a vngons peglst reglst))
                                    (CUNS IEVAL a) (BuItil (CDR FRAGI)I)



```

!
I(OEFUN CAN-CLASS? (NP TMP)
; THIS ROUFINE ASKS THE USER IF A NOUN PHKASE IS A CLNSSIFIER
OF ANOTHEK NOUN PHRASE.
(COHD ((AND (EO (GAK FAP) 'NP) (NUL.I. (START-LIST GOET TMD)) (NOUN-GET NP))
(PR{H1 [S)
(PRIMI (NDUA-GET NP))
{PRINL "A CLASSIFIER OF*")
(PRINL (MTUN-GET TMP))
{TERPRI)
(COMO ((EEO M (CAR (EXPLODE (REND))))
(SETC FN 'IKGLACD (ENO-LIST HLACE) (LIST STRCT)) PLACE (NOUM-LIST-GET TMP))
{RETURN (LIST ""<-CLASS-" (NOUN-L.IST-GET (NP-BUTLUPAKTI)J)J)})\
(DEFUN CAN-MOD-DESC? (TESTEE PART PREP)
(APPLYL (IMPLODE (LIST'DESC '"-" PRED)) TESTEE PART))
(DEFUN CASE NEXPR (CASES)
; THIS ROUTINE GOES THROUGH A LIST GF CASE FRAMES FOR A VERR TO
; FIND THE CORRECT DNE.
(PROG (OU-OPT FAIL-TEST)
LOOP
(COND ((NULL CASES))
((PROGN (SETQ FAIL-TEST NIL) (EV-SETR (CADR CASES) (CAR CASES)))
(SETQ CASES (CDDOR CASES))
(GO LOOP))
(EO.'DBL (SETQ OG-OPT (HYEVAL (CAOUR CASESI))) (ALL-FLAG-DFF KEEP-SENT) NIL)
((EQ 'OEPT OB-OPT) (SETG CMSES (COCDK CASES)) (GO LOOP))
((EQ 'OPT OB-OPT) (SETM CASES (COCLK CASES)) (GO LOOP))
(DEFUN CASE-ANAPHOR (KASE PART TEST)
; THIS ROUTINE IS INTENOED TU BE EXIENDED.
; CURRENTLY IT ONLY WORKS WITH THE SOURCE CASE. IF THE SOURCE
CASE IS LOOKED FGR BUT NOT FOUND IN A SENTENCE, THIS
ROUTINE IRIES TO FIND THE SOURCE PY LOOKING FDR WHEQE THE
THING OR PERSON WAS BEFURE THE MOVEMIENT DESCRIBED IN THE SENTENCE.
(PROG (TESTEE)
ISELECTQ KASE
(SOURCE (AND (SETO TESTEE (WHERE-IS (NOON-LIST-GET (GETR AG))))
(OR (VEST-OFF? KASE) (EVAL TEST))
TESTEE)\
NIL\)
(DEFUN CASE-ATOM-ASSOC (KASE)
(SELECTO KASE (LOCATION 'LOC) KASE))
(UEFUN CASES? (PART NN)
- THIS ROUTINE IS GIVEN A SENTENCE PART AND ASKED TO FIND WHAT CASE IT IS.
- IF IT STARTS WITH A PHEPGSTITIDIN IR IS A COMPLEMENT, THEN
: CASE-CALLER IS CAI.LEO. GTHERWISE MOUIFY? IS INVOKEO.
(PROG (NUM FAIL-LIST PLACE PREPRCASE STRCT FN TEMP)
(COND ((AND) (PREP-START PART) (CASE-CALLER (CAODR PART) VERB (CCOOR PART) NN)I)
((AMD (SETO TEMP (COMPLEVENT PART)) (CASE-CALLER TENP VERB (CDDR PART) NM)))
((MODIFY? (CUNU ((ATOM (CAR PART)) PART) (T (CAR PART))) NN)))))
(DEFUN CASE-SALLER (PREP VERB NP NN)
CASE-CALLER CALLS THE FUREGROUNDI:IG SOUTINE, THEN INVOKES THE
ROUTINE FOREGROUNDED. IF THAT ROUYIGE FAILS, OR THE SYSTEM
FAILS LATER (VIA CONTINUE) THEN TIEE NEXT REITINE IS INVILKEO.
fHIS IS THEREFORE THE RUUTINE WIIIH GONTROLS THE DECISION POINTS
- Fur the back-|f.
(PKOG (TEMP)
(SETQ FEMP (CASE-FGRE-GRUUND VERB PREP (PREP-LIST-GET PREP CASE-TABLE) NN))
LOOP
(COND (\NOLL TEMP) NIL)
((AND (EQ (LENGTH NP) <)
CNOT (MEMBER (CAR TEMP) (NETHOD CAUSE TIME PURPOSE EXPECTED-EFFECT))))
(SETO TEMP (COK TEMP))
(CO LOCIP)
((ANO (SETO STRCT (AP:IYI (CAR TENP) NP PREP)) (CONTINUE)))
(T (SETQ TEMP (COR TEMP)) (GO LOOP))))\

```
IDEFUN CASE-DELETE (VERB PRED L)
- THIS ALLOW LERTAIN CASES TI BE RUAED OUT FOR CESTAIN VERGS ANO PREPDSTIONS
    (PROG (TEMP)
        (RETURN (COND (INULL (SETQ TEMP (PREP-LIST-GET VERB ANTT-CASE-TABLE))) L)
                        ((OR (INUL (CADOU TEMP)) (HEMBER PREP (CADOR TEMP)))
                        (SOFT-UELETE (CADR TEMP) I L) )
                                (r.L) ) )
(DEFUN CASE-FIHD) (X KASE)
- THIS IS USED FIJR FINDING A CASE IN A PREVIOUS FINAL STRUCTURE.
- IT IS USEO BY THE ANAPHURIC ROUTIINES.
    (PREC (TEMP)
        IRETURN ICOMD I SETO TEMP ICOR ISTART-I.IST ISELECTO KASE
                                    ( AGENT \(\because\) "く= = > ")
                                    (PATIENT ""く--")
                                    (LDCATIDN \(\quad\) " \(<-L O C-H\).)
                                    (RECIPIENT "
                                    (TINE '"く-TINE-")
                                    (DURATICN " "く-DURATION-")
                                    (DESC ? " \(<-\) DESC-")
                                    (TOPIC " "く-TOPIC-")
                                    (PENEFICIARY " \(\because<-\) BENEFICIARY-")
                                    (PATH " "く-PATH-")
                                    (PATH "LS-PATH-")
(EXCHANGE " \(<-E X C H A N G E-*) ~\)
                                    (EXCHANGE " \(\angle-E X C H A N G E-")\)
(CO-AGENT \(\quad\) "<-CD-AGENT-")
                                    (OESTINATION " "く-DESTINATION-")
                                    (SDURCE \({ }^{\prime \prime}<-\) SOURCE-")
                                    (LICEE" "く-LIKE-")
                                    (LIKE " H -LIKE-")
(WITH " H (HITH-")
                                    NIL)
                    xili
                    (CQND (IEQ KASE PPATIENT) (CADR TEMP))
                        (IEO KASE AGENT) (CAR TEMP))
                        ( INOT (ATOM (CAR TEAP))) (CAR TEMP))
                            (T [EMP))
                    ((SETG TEAP (START-LIST "く= \(=>"(C D R X))(C A S E-F I N D T E M P K A S E))!):\)
    (DEFUN CASE-FORE-GROUNO (VER!3 PREP KASES NN)
    ; THIS IS THE TOP-LEVEL FOREGROUHIING ROUTINE. AFTER V-FORE-GRBD IS
    ; CALIED IT CHECKS TO SEE IF DESC IS ONE GF THE CASES TO EECALLED.
    ; IF SO, IF THE PREVIOUS PHRASE IS A NOUN- OR A PREP-PHRASE, IT
    ; FOREGROUVDS DESC
    (PROG (TEMP BEF)
            ISETQ 「EMP (CASE-DELETE VERG
                                    PREP
                                    PREP
                                    CCDR IPREP-LIST-GET PREP
                                    (GET VERB
                                    VERB
-PREP-CASEIIIII
                                    (COMP-INTERSECTION (COR KASES) TEMP)))
            (CUND (IANO (MEMBER DESC TEMP)
                        (MEMBER (CAR (SETA BEF (ELMT (SUBL NN) KEEP-SENT))) (PP NP)
                        (NOT (START-LIST MPR BEFJ))
                            (RETURN (APPEND (LIST UESC) (SUFT-DELETE (DESC T TEMP)))
                (T TEMP) I))
(DEFUN CASE-PREPS (VERB K)
    (PROG (TEMP L CSS)
            (SETQ TEMP (GET VERB PPREP-CASE) CSS (COND ((ATOHK) (LISTK)) (T K)))
            LOOP
                (COND ( (NULL TEMP) (RETURN L.J)
                        ((INT-LISTCSS (CDAR TEMP)) (SETOL(APPEND (LIST(CAAR TEMP)) L))))
                    (SETO TEMP (CUR TEMP))
                    (Gu LOOP)),
    (DEFUN CASE-RETURN (ARKOW PREP PH)
        (APPEND (LIST (MAKE-ARRUW AKROA))
            (CUNI) (INUT (NULL PREP)) (LIST PREP)))
                [LIST (LIST (NOUI-LIST-GET (NP-BUILJ (CAR PH))))) )
    CONSTRUCTS, THEN IT SOKIG UUT THE ENABLE AND CAUSE CASES.
    "SO CAIU" COUSTRUCTS ARE THE EBABLE CASE SINCE SO-CCMPLFMENTS
    ARE SENGANCES, S IS CALLED. AG-AVAPMMR AND PA-AYAMHOR
    ARE SET FOK INFEKNAL REFERENCES
    (SELECTOPREP
                (150
                                    (CONG ( (NOT (EG 'WOUI.O (CAR TESTEE)))
                                    (PROG (TEMP)
                                    (SETU AC,-ANAPHOR (CETR AG) PA-ANAPHOK (GFIR PA))
                                    ICOMD ( (NOT (ATOM (SETO TEMP (EVAL (GOND (INCT (EQ 'S (GAAR TESTEE)))
                                    (CADR (ESTEE))
                                    (T (CAK TESFEE)) ) ) ) )
                                    (SET-UP-FN CMDSE NIL.)
                                    (SETO AO-AHAPGOR NIL PA-ANABHOR NIL)
                                    (RETIRRN (BUILDI (: : )
                                    (COND ((MEABER (CAR TESTEE) (COULD CAN))
                                    " "く-ENABIE-")
                                    (T ("く-CAUSE-")
                            「EMP)才)才才)
                NIL)
(OEFUN CHARACTERISTIC (A U)
; THIS CASE IS NOT IMPLEMENTED YET.
    NIL)
(DEFUN CHOOSE-ELMT (PART NN F-L)
; THIS ROUT INE IS USEO TO ChOOSE A CANOIDATE WHEN TRYING TO FIGURE
WHAT A CERTAIII SENTENCE PART MDDIFIES.
    F-L: IS TIIE LIST OF CANDIDATES ALREADY FAIAED. IT GEGINS BY
    LOOKING AT THE PART BEFGRE THE PART IN DUESTITM, THEN THE
    ONE BEFORE THAT, ETC. IF THEY ALL FAIL, IT ICOKS AT THE ONE
; AFTER THE PART IN QUESTION, THEN THE ONE AFTER THAT, ETC.
    (PROG (P)
        (COND (IAND (NOT (MEMBER (SETQ NHM (SUBI NN)) F-L)) (LESSP O NUM))
                            (RETURN \{ELMT NUM KEFP-SENT)) \}
                    ( (AND (NOT (MEMBER (SETQ AUM (AODI NN)) F-L)) (NOT (GREATERP NUM (LENGTH KEEP-SENT).)))
                            (RETURN (ELMT NUM KEEP-SENT)))
                            (T (SETQ NUM (SUB 2 NN))
                    IRETURN IPRUG NIL
                LOOP
                            (COND ( (GREATERP O NUM)
                                    (CQND ( \(N Q T\) (MEMBER NUM F-L)) (RETUPN (ELMT NUM KEEP-SENT)))
                                    (T (SETO NUM (SUBL NUM)] (GC LCOP))))
                                    (T (SETQ NUM (AOO 2 NN))
                                    IRETURN IPROG NIL
                                    LOOPL
                                    (COND \{(AND INOT (MEMBER NUM F-L))
                                    (SETG P (ELMT NUM KEEP-SENT))
                                    (RETURN \(p\) )

(DEFUN CHOUSE-ELMT-PREP (NP NN F-L)
    THIS ROUTINE IS USED BY THE LOCATIVE CASE. IF THE SENTENGE
    ; PART IN QUESIION IS THE FIRST IN THE SENTENCE OR FOLLOWS
; QNLY PREP-PHRASES, THEN IT RETURNS THE VERB-PHRASE AS
- the likelr candidate.
: THE LIKELY CANOTDATE. ThAT IS, THE PhRASE IS CONSIDERED. TG bE the locative case, not the oescriptive case.
    THAT IS, THE PHRASE IS CONSIDERED. TQ BE THE LOGATIVE CASE, NOT THE OESCRIPTIVE CASE.
ICOND (IOR (EQ NN L) IALL-PREPS NN KEEP-SENT)) (ELMT (SETG NUM (PHRASE-NUM VP KEEP-SENTI) KEEP-SENT)I
        (T) (CHOOSE-ELMT NP NN F-LI))
(DEFUN CLASS? (NP)
    (PROG (TEMP) (RETURN (CONO ( (SETU TEMP (ELMT (SETU NUM (ADOI N)) KEEP-SENT)) (CAN-CLASS? NP TEMP) J)) )
```

|
coefun clause (prep test kasei

- THIS ROUIIHE lOUKS FUK A pacposithon phorase feginNING hithi ONE OF THE
PREPOSITIONS IN PREP.
\&PROG (TESIEE K-S TEMP PRH PR RET PG
(SETOK-S KEEP-SEHM)
Lu(7P
(COND ((NULL K-S) NIL)
(IANO (EQ 'pP (CAR (SEID TESTEE (CAR K-SI)I)
(nOT FG)
(not (Cadm testegj)
(SETS PR (CAR (MLMUGR (CNOUR TESTEE) PREPP)))
(CONO (ISETO PKN (PRO? TESTEE)) (PRO-ANAPHOR? KASE TEST PRIN TESTEE))
((amb (EO ""<-ADV-" (CAAR ICOODR TESTEE)))
\&SETO TEMP (ADV-mbo? (CADOOR TESIEE) TEST KASEII)
(flag-CN TESTEE K-S TEMP)
(RETURN TEMPI)
(|NNU (OR (TEST-IFF? KASE) (EVAS TEST))
(PRDGON (SEIO FAIL-IEST ivIL)
(FLAG-CN TESIEE K-S ISEIG RET (CASE-CLABSE-BUILD KASE PR TESTEEIU)
RETMJ
(T (SETG FAIL-TESTT K-S (CDR K-SI) (GO LGOP))))
(T (SETQ K-S (CDR K-SI)
this part is an attempt iu(IT ro ereak up relative clausfes.
IF FG IS T THE ROUTIAE THINNS IT IS IN A RElatIVE Clause
AND WILL NOT ACCEPT THE PHRASE.
ACCEPT THE PHRASE.AR TESTEE) (IREL DBJ-REL RED-REL DEJ-RED-REL)) (SETG FG TI)
((e0 (car testee) 'vp) (SEtQ fg Nil)))
(60 LOOP)|))
IDEFUN CO-AGENT (TESTEE PREP)
; this is the co-agent case.
(PROG (PRN)
(RETURN (COND (ISETG PRN (PRO? TESTEEI)
(PROGG (TEMP)
ICONO IISETQ TENP. (PRO-ANAPHOR? '(AGENT RECIPIENT
CC-AGENT
PatIENT
BENEF[CIARY)
- (hust-be ainlmate)
PRN
testeE),
(SET-UP-FN CO-AGENT PREP)
{RETURN (LIST ""<-CO-AGEMT-" TEMP)|ll)
(l:MUST-BE ANIMATE)
(SET-UP-FN -CU-AGENT PREP)
(LIST,"<-CO-AGENT-" (NOUN-LIST-GET !NP-BUILD TESTEE)))))!))
(DEFUN COMP-INTERSECTION (A B)
(MAPC (LAMBDA (X) (COND ((MEMBER X B) (SETQ A (SOFT-DELETE X T A)l))) A)
A)
IDEFUN COMPLEMENT (L)
ISELECTO (CAR l)
('to-comp *TO)
('by-COMP 'by)
(1SU-COMP -SO)
('WHEN 'WHEN)
('WHILE 'WHILE)
('bEFORE 'bEFORE)
('AFTER 'AFTER)
NILJ)
IOEFUN CONTEXT (A S)
; this case is not implemented yet.
NIL)
{defun CONTINUE (1
dEFUN CONTINUE (HTing that controls the stack of cases.g fn is the function
WHICH WILL AOD A SIRUCIURE TO THE CURREMT STRUCTURE IN STRUCT
TAIL-ENUS SUCGEEUS IF THE REST OF THE SENTENCE CAN bE ANALYZED IN THE
CURRENT ©ASE fRAME.
(SETQ FAIL-LIST (APPEND FAIL-LIST (I.IST NUM)!)
(FLAG-ON PART KEEP-SENT STRCT)
(CONO ((IAIL-ENOS) (EVAL FN) (PUY-IN-LIST VERE 'CASE-HIST PREP\&CASE)))/
C

```
(DEFUN COPULAR-AOV? NEXPR (TEST)

; "!lis IS AMEA,
"! AM WLEL."
OPROG TTESTEE K-S FT NN TEMU RET)
 LOUP



(FLAG-OH TESIEE KE゙EP-SENT (SETO KEF (COPR TEAP)))
(RETURN REF) )
(T (SETG TESTEE (FLMT ISE:O NN \{ADOL NNI) KEEP-SENTJ) (GU LOOP) I)!)
(UEFUN OATE (NP)
(MEMAER 'YEAR (GET (NOUN-GET NP) •N-PROP)))
(OEFUN DELQ ( 2 )
(LIST QUJTE (LIST QUOTE 2)))
(DEFUN DEEP-MEMBL:R (I.1 L2)
; THIS ROUTINE SUCCEEOS IF L2 IS A DEEP MEMBER OF LI.
IPROG NIL
LOOP
(COMO (NULL LI) (KETURN NIE))
((DEEP-MEMRERI (CAR LI) LZ) (RETURN (CAR LI)))
(T (SETQ L1 (COR 1.L)) (GOLOOP))))
(UEFUN DEEP-MEMBERI (LI L2).
(COND (NULL L?) NIL)
( (EQUAL LI L2))
( (ATOM L2) NIL)
\((T\) (OR (DEEP-MEMBERL LI (CAR L2)) (DEEP-MEMBERLLL(COR LZ))))))
(DEFUN DEEP-PHRASE-NUM (A L)
(PROG (NN)
(SETQ NiN O)
LOOP
(COHO ( (AU!.L L) O)
( (DEEP-MEMBERI A (CAR LI) (AOOL NNi)
(T (SETQ NN (AUDL NN) L (GOR L)) (SO LOOP) J) \()\)
(DEFUN DEFAULJ (A B)
THIS RDUTINE AILOWS THE OICTIOHARY WRITER TO LEY CASES EEFAULT IF NOT
; SPECIFIED IN THE SENTENCE. [E: "HHE PIANIST \&IAYEO ALL DAY." - -
; THE PATIENT GASE COULD UEFAULT TO "THE PIABO" BY USING THIS RIUUT INE
: IN THE DEFINITION OF "TO Play".
(PROG (TEMP)
(SETG TEMP (GET B DEFAULT))
LOOP
(COND ( (NULL REMP) OBL)
((AND (MEMBER VERB (CADR TEMP)) (MEABEP A (CAR TEMP)))
(REFURN (LIST BUOTE (CADOR TEMPY)) )
(T (SETQ TEMP (COOOR TEMPY) (GO LCOP))))
(DEFUN DEFINITE-DET? (D)
(MEMBER 0 ' (THE NLL THAT THOSE THIS THESE)?)
(DEFUN DESC (TESTEE PKEP)
    - THIS IS IHE DFSGRIPIIVE CASE: THE CASF OF THE NOUN.
    THE PIRRASE PRECEEOING, IS THE DNLY OAIE CONSIDERED AS THE
    OHE GEING MOOIFIEN. THIS COUAO BE CHAMGGO BY INVOKING;
    CHOOSE-ELMT. TILE ELEMENI CHOOSEN MUSI BEE A PREP-PHRASE
    OHR A NOUNN PHRASI:.
    (PROG IPRN IEMP)
            (COND ((ANI) (MEMBER PRED (BFFOKE AFIER)) (SETO TEMP (BEFORE-AFTER-DESC? YESTEE PREP NNY))
                        (SETO TESTEE TEMP))
                    ({SErG PRAV {PRQI? {ESTEE))
                            (SERO TESTEE (PRO-ANAPHOR? (PATIENT OESC TOPIC AGENT) T PRN IESTEESI))
            (COND ((NULL FESTEE) (REFURN NIL.)
```



```
                    (RETURN NIL)))
                    (CONO ((ANO (OR ISTART-LIST 'DET TESTEF) (NOT (EQ (CADR (START-LIST *NUMEER TESTEE)) 'SG)I)
                    (DESC-M(O)? TESTEE TEMP PREPI)J
                    (T {RETURN NIL|)|)}
IOEFUN DESC-ACROSS (A B)
    (DESC-rRAJ 'ACROSS A BJ)
(DEFUN DESC-AROUNO (A B)
    (DESC-TRAJ (AROUNC A R)).
(DEFUN DESC-AT (TESTEE M-PH)
    (NOT (MUST-BE HUMAN)))
(OEFUN DESC-BESIDE (A B)
    (OESC-BY-NEAR-BESIOE 'BESIDE A B))
(DEFUN DESC-BY (A B)
    (DESC-BY-YEAR-BESIDE 'BY A B))
IDEFUN DESC-BY-NEAR-EESIOE (KASE D-PH M-PH)
; THIS HANDLES THE DESCRIPTIVE CASE FOK PHIRASES BEGINNING WITH
; BY, NEAR, UR RESIDE. IT INSISTS THAT THE NOUNS IN OUFSTIUN EITHER
; bOTH be SMALL OR ELSE EE ABUUT THE SAHE SILE, OR ELSE THE SECONO
; ONE MUST BE A BOLY OF WATEK: "I WALKEO SESIDE THE CCEAN."
    (PROG (SL S2)
            (SETG S2 (GET (NOUN-GET M-PH) (OBJ-SIPF))
            IRETURN ICOND (IANU IDR (START-LIST -DET O-PH)
                                    (AND (HABITUAL?) (MOT (EQ SG {CADR (START-LIST 'NUMBER D-PH))])\)
                                    (OR (AND (LESSP (SETO SI (GET (NOUN-IET D-PH) 'OBJ-SIZE)) 6) (IESSP S2 6))
                                    (LESSP (ABS (SUUS SI S2)) 2)
                                    (MEMBER (NOUN-GET O-PH) (DCEAN SEA LAKE))))
                                    (CASE-RETURN 'LCC KASE O-PH)||)|
    IDEFUN LESC-FROM (D-PHI M-PH)
: THIS HANOLES THE STRUCTURE: "THE MAN FROM PARIS. . ."
    (PROG (TESTEE)
            (SETG TESTEE M-PH)
            (COND ((GREATERP (GET (NOUN-GET O-PH) 'ORJ-SIZE) 3)
                                    (COND ((AND (MUST-BE ANIAATE) (SETQ TESTEE D-PH) (MUST-RE LOCATION))
                                    {BUILDO ("<==>" # PAST {"<--" [NHABIT #})
                                    (NOUN-LIST-GET (COPY M-PHI))
                                    (NOUA-LIST-GET (NP-EUILD O-PH)I))
                            (T (CASE-RETURN (UESC PF,CMD-PH))))))\
    (DEFUN DESC-IN (DESC-PH MOD?-PH)
; THIS HANILES PHIRASES LIKE: "THE MAN IN THE HOUSE."
    (PRUG (SI SZ)
            (SETQ S] (GET (NOUN-GCT DESC-PII) GBJ-SI/E) SZ (GET (NOUN-GET MODT-PH) (OBJ-SIZE))
            (RETURN (CONO ((OK (NULL SI) (NULL S?)) NIL)
                                    (IANO FEST-UFF (GREATEP:' (SUB Sl 2) S2)) {CASE-RETURN 'LOC 'IM DESC-PHO)
                                    (IANG SHONLD-TEST-DFF (GREATERP (SURI SI) S2J) {CASE-RETURN (LOC * [N DESC-PH))
                                    ((GREATERP SI S2) (CASE-RETURN ILOC (IN DESC-PH))))))
                                    1OEFUN DESC-MOD? (TESTEE PART PREP)
    (PROG (TEMP)
            (COND (IANO (OR (START-LIST 'OEI PART) (NOT (EQ (GADR (START-LIST *NUMGER PARI)) SG))\
                {SETQ rEAP (CAN-MOH-OESC? TESTEE PART PREP))\
                    (SETO FN (RPLACO (END-LIST PLNCE) (LIST SIRCT))
                        PLACE (HOUN-LIST-GET PART)
                        PREPECNSE ILIST PHEP 'OESCI
                            NUM (PHRASE-NUMZ PART KEEP-SENT))
                    TEMP)|)|
    IUEFUN DESC-NEAK (A R)
    (DESC-BY-NEAR-BESIDE 'NEMR A B))
```

（DEFUN DESC－GF（TESTEE PART）
：fhis handles＂THE bOOKS UF JOHN．．．＂ANi）＂THE bOX DF ROCKS．．．．＂
－（prog（femp）
（SETG TEMP TESTEE）\cdot－
（COHU（CMUST－BE HUMAA）
（LiST 1＂く＝あう＂
（NOUN－LIST－GET（NP－BU！LD TEGTEE））
（LISI＇＂く－－＂（POSSESSION IESTEE PART）（NOUN－LISY－GET（COPY PART）I）））
（（AND）（SETO（ESSEE PART）（MUST－BE CORIAIAER））
 （I（LIST＂＂＜－1）ESC－＂PREP（HOUN－I．IST－GER（NP－BUILD YESTEE）III）I）
（DEFUN DESC－ON（AB）
IOESC－ON－UNOER •ON A BI）
（DEFUM DESG－ON－UNDEK（KASE D－PH M－PH）
；this handles：＂the man on the rable＂ano＂the man under the lar．＂
；ir has the jobious size restraints．
1PROG（S1 52）

（REIURA（COND（IOR（NULL SI）（HULL SZ））NIL）
（IOR（AND TEST－GFF（LESSP SI 10））
（AND SHOULD－TEST－OFF（LESSP SI 7））
（AND（LESSP SI ？）IOR（SPEASERP SI O）（LESSP S2 2）11）
（CASE－RETURA＇LOC KASE D－Pti））！））
（DEFUN DESC－TRAJ（KASE D－PH M－PH）
；THIS HANDLES＂THE MAN ACROSS THE ROOH．＂ETC
（PROG（SL S2）（GETQ S1（GET（NOUN－GET D－PM）（OBJ－SIZE）S2（GET（NCUN－GET M－PH）＇OBJ－SIZE））
（SETQ Sl IGET（NOUN－GET O－PH）（OBJ－STZE）SIL）
（RETUR（CUND（IOR（NULL SI）（NHL S？）I）NHL）
（lOR（ANO TEST－GFF（GREATERP SL O））
（ANO SHOULD－TEST－OFF（GREATERP SL 11）
（greaterp sl 2l）
（CASE－RETURN＇loC KASE O－PH）ll！）
（DEFUN DESC－UNDER（A B）
（DESC－DN－UNDER UUNDER A BI）
（DEFUN DESC－WITH（D－PH M－PH）
；THIS HANDLES＂THE BOX WITH THE PENCILS IN IT．．．＂
；＂THE GIRL WITH THE REO HAIR．．．＂ETC
（PROG（NEXT PRN）
（RETURN（CONO（IAND（NOT SHQULD－TEST－EFF）（START－LIST＇NPR M－PH））NIL）

（CASE－METURN DEESC WITH D－PH））
（FLAG－GN NEXI KEEP－SENT T）
（HREP－VERB－ASS（4－CCRPLX－RFTURN（CCPY M－PH）D－PH NEXT））
（T（CASE－RETURN＇UESC（WITH D－PH））l））
（DEFUN DESTINATION（TESTEE PREP）
（SOURCE－DEST TESIEE PREP DESTINATIOM））
（OEFUN DROP（N LETS）
（CDHD（lZEROP N）LETS）
（T（DROP（SURI N）（COR LETS）l））！．
（DEFUN DROPEGO（LST LETS）
（SETQ LETS（UROP（LENGTH（CAR LST））LETS））
（EVAL（CADR LSTI）］
（DEFUN OURATION（NP PREP）
；this is the duration case．
（COND（（DURATIUN？NP）
（SET－UP－FA CDURAIIIN PREP）
（BUILDU（＂く－DURATIUN－＂\＃）（NOUN－LIST－GEF（NP－BUILQ NP）I）！）！
（DEFUN DURAT IOA？（ND）
；；TiHS IS THE TEST FOR THE DURATION CASE．
II SUCCEEOS OM＂HIEY PLAYEO FOR AN HOUR．＂
；＂they playeo in an hour．＂
（UR（AND（IS－IT NP＇TIME）（EQ（CAR（GETR TNSI）PBAST）（NOT（DASE NPI））
（ANO（IS－II NP＇TIME）（EQ（GAR（GETR TNSI）PRESENT）（HABITUAL？））I）

```
OOEFUN ELMS (NK-S)
; THIS RETINNS IHE NTH ELEMENY OF TMR I.!ST K-S.
    |P&oG HIL
        LOOP
            (CIND)((OR (NULE K-S) (LESSPN 1)) NIL.)
                        ((LESSP 1 N) (SETQ N (SUHA N) K-S (COR K-S)) (GO LOOP))
                        (J (RETURN (CAR K-S))))))
(DEFUN ENO-LISI (TEMP)
; THIS KEIURHS THE LAST ELEMENT OF A LIST.
```



```
(DEFUN ERGATIVE (VERB)
; THIS IS THE OICIIGNARY ENTRY FOR ERGNTIVE VERBS.
    (IF ({AGENT (MUST-BE NNIMATE))
            AG
            SOMEONE
                (CEND ({AND (EQ 'SUMEONE (GETR AC)) (AGENT (NOT (SHLUIDDBF HUMAN))))))
                INST
            OP!
                    (PATIEHT (NOT (SHOULD-BE HIUMAN)))
                    PA
                    (PROGN (SETR PA (GETR [FST)) (SETR [NST NIL) 'OPT))
            (BUILDO (自 ("く==>") (?) ("+") (("く--"# #)) #)
                AG
                TNS
                VERB
                PA
                (COND (INULL (GETR INST)) NILI
                    (T (LIST (IIST ""<-INSTRUMENT" (NCUN-PUT 'INST)|)|)]))
(DEFUN EV-SETR FEXPR (X)
; THIS ROUTINE EVALS (CAR X) AND SETR'S IT TO (CADR X).
    (PROG (TEMP)
            (SETQ REGS (CONS (CUNS (EVAL (CAR X)).
                                    (SETQ TEMP (CUNO (IATOM (SETQ TEPP (EVAL (CADR X)))). TEMP)
                                    (T (MYEVAL (EVAL (CADR X))))))
                                    REGS\)
                    (RETURN TEMP)))
(DEFUN EXCHANGE (TESTEE PREP)
: THIS IS THE EXCHANGE CASE.
    (PROG (PRN)
            (RETURN {COND {ISETG PRN (PRO? TESTEE)}
                                    (PRU-ANAPHOR? '(PATIENT EXCHANGE BENEFICIARY AGENT)
                                    - (NOT (ShULLU-BE HUMAN ABSTRACT))
                                    PRN
                                    IESTEES)
                            ((NOT (SHOULO-EE HUMAN ABSTRACT))
                            (SET-UP-FN PEXCHANGE PREP)
                            (LIST "<-EXCHANGE-" (NONN-LIST-GET (NP-8UILD TESTEE)))))))
(OEFUN EXPECTEU-EFFECT (TESTEE PREP)
; THIS IS THE EXPECTED-EFFECT CASE.
; "FRED PLAYED THE PIANO SU WE WOULO lEAVE."
    (PROG \SUPER-SENT)
            (SETG SUPER-SENT (ALL-FLAG-OFF (COPY KEEP-SENT)))
            (COND ((AND (EQ 'SO PREP) (EG (CAR TESTEE) 'WOULO))
                    (PROG (TEMP)
                            (SETQ AG-ANAPHOR (GETR AG) PA-ANAPHOR (GETR PA))
                            (COND ((NOT (ATGM (SETG TEMP (EVAL (CADR TESTEE)))))
                                    (SET-UP-FN 'EXPECTEO-EFFECT PREP)
                                    (SETQ AG-ANAPHOR NIL PA-ANAPHOR NIL)
                                    (RETURN (LISI. "<-EXPECTEO-EFFECF-" TEMPI)])))|))
{DEFUN F[NI-ANAPHIUR (HIST K TEST PRN |IST-SNT)
    (PROG [TP TEMP)
            LOOP
                (CONO ((NULL HIST-SINT) (RFTURN NIL))
                    (IANO (OR (AND {NOLL K) (NOT (CAONR HIST-SNT))) (EO K 'CHECK))
                        (SETQ TEMP (NNAPHOR? (CAR HIST-SNT) NIL HIST-SNT TEST PRN))
                            (PROGN (FLAG-DN IGAR HIST-SNT) (CAR SENT-HIST)T) T)
                    「EMP!)
                    (|ANO {NOT (ivUlL K))
                            (NOT {EQ (CHECK K))
                            (SETG IEMP (CASE-FIND HIST (CAR K)))
                            (SETO TH (ANAPHUR? HEMP (CAR K) HIST TEST PRN))
                    TP)।
                    (IAND (NUT (INULIL K))
                            (NOT (E! (CHECK K))
                            (SETO TEMP (NOUN-LIST-GET (SECOND-CHANGE (GAR K) PRN HIST-SNT HIST))))\
                            ((ANO)(NOT (WULL K)) (NOT {EO CHECK K)) (HHIRD-CHANCE (CAR K) PRN HIST)))
                    (INULLK) (SETO HSST-SNT (CDR HIST-SNT)) (GO LDOD))
                    ((EO K 'CHECK)
                            (CONO (INOT (MEMBER * (SO-COMP THAP-CONP TO-COMP BY-COMP)
                                    (CAAR (SETi) HIST-SNT (CDR HIST-SNT))}))
                                    (G0 LOOP)
                                    (T (RETURN NILI))\
                            |(NOT (NULL (SETO K.(GOR K)))\ (G0 LOUP))J)].
```

(OEFUN FIND-LIST (L. A)
(CUNU (IUR (NUIL L) (ATOM LI) NIL)
(1EU a (CARL)) L!
((FIND-LIS.T (CARL) A))
(T (F[ND-LIST (CUK L) AJ))
TOEFUN FLAG-DFF (X k-S)
; thas lurvs xis fiAg off.
iprog nil
loop

(ledual x (car k-s)]
(rplaca (Cuar k-S) nil)
(CDND ((MEmber (Car x) (rel obj-rel ped-rel obj-red-rel))

x)
(T) (SETOK-S (CDR K-S)) (GO LOOP)II))
goefun flag-off-hist (a b)
T
deffun flag-on (p k-s flag)
; this turns pis flag on (sets it tu flag).
I PROG NIL
LOOP
(COND ((NULL K-S) NIL)
((EQUAL P (CAR K-S)) (RPLACA (COAR K-S) FLAG) P)
(T (SETQK-S (CDR K-S)) (GO LCOP)))))
CDEFUN GET-UNFLGO-NP-AFTR-VB ()
; THIS RETURNS THE FIRST UNFLAGGED NP AFTER THE VERB.
(PRUG (K)
(SETO K KEFP-SENT)
LOOP
\{COND (\{NULLK) \{RETURN NIL)\}
((EQ (CAAR K) VP))
(T (SETQ K (COR K)) (GO I.COP)))
(COVD (IAND (NULL (CADR (SETNK (CADR KI))) (EQ (NP (CAR K)\}) (RETURN K)))))
(DEFUN HABITUAL? ()
(DR HABITUAL (DEEP-MEMBER (USUALLY ALWAYS SOMETIMES OFTEN) INPUTA\#)))
(DEFUN IF FEXPR (X)
; IF IS THE MAIN FUNCTION USED IN DEFINING CASE FRAMES.
; IT TAKES AN EVEN NUMBER QF AKGUMENTS ANO APPLIES CASE TO
THE FIRST OF THE PAIRS. BUILDS THE STRIJCTURE ASSUCIATED IITH THAT
CASE FRAME, CALLS TALL-ENDS, ANO KETURNS THE STRUCTURE THUS BUILT.

IF ANY O
IPROG NIL
LOOP
(COND ($(N$ ULL $X)$ NIL)
((ANO (APPLYL 'CASE (CAR X)) (SETQ STRUCT (EVAL (CAOR X))) (TAIL-ENOS)) (RETURN STRUCT))
(T (SETQ $X(C O O R X I)(G O$ LOOPI))))
(OEFUN IMPloue (l)
(COND ((EQ (LEMGTH L) I) (CAR L))
(I (IMPLODE (APPEND (LIST (MKATOM (CAR L) (CACR L))) (CDDR L))))))
(defun indefinite-det (D)
(NOT (DEFINITE-OET O)))
\{DFFUN IND-SUBJ \{A F)
; THIS CASE IS NOT IMPLEMENTEO YET.
iNIL)
(DFFUN INDOODJ NEXPR (TEST)
; TIIS FINDS AN INOIRECT GBJECT WHEN IT IS A NOUN PHRASE:
; "FRED PLAYED JACK TENNIS."
IPROG (IESTEE HRN TEMP)
(CUND (INOT (NULL (SETO TESTFE (GET-UNFLGU-NP-AFTR-VB))))
(LUND (INULL (SFTQ PRN (START-LIST BPRU TESTEE)))
(CUNO (IOR ITEST-IIFF? (IND-UBS) IEVAI TEST))
(FLM-MN IESTER KEEP-SENT T)
(RETURN TESTEE))
(I) (SET) FA(L-TEST T) NIL))
(T (PRO-ANAPIUR? (MGENT GENEFICIARY RECIPIENT CO-AGENT PATIENI) TEST PRN TESTEEIIIIIJ
$!$
(DEFUN INFER? (A)
A)
(DEFUN INSTRUAEHT (TESTEE PREP)
; THIS IS THE INSTRUMENT CASE.
(PROG (PRH)
(RETURN \{COND (\{SEJO PRN (PRIT? TESTEEJ)
(PRUG (TEMP)
(COND ((SETQ RENI. (PRO-ANAPHOR? (PAI IENT INSTRUMENT)

- (INST-TEST TESTEE VERB PREP) PRN
TESTEEII
(SETT-UP-FN IINSTRUMENT PREP)
(RETIJRN (LIST " "<-INSTRUMENT-" TEMP))) \|
((INST-TEST TESTEE VERG PREP)
(SLT-UP-FN INSTRUMENT PREP)
(1.1ST, "く-INSTRUMENT-" (NOUN-LIST-GET (NP-BUILD TESTEE)))))))
(DEFUN INST-TEST (TESTEE VEKB PRFP)
(AND (NOT (MUST-BE HUMAN)) (EQ (CAAR TESTEE) 'MP) (NUST-EE OBJECT)))
(DEFUN INTERSECT (A 8)
; THIS RETURNS THE INTERSECTION OF IISTS A \& B.
(PROG (TEMP)
(CDIND ((NULL A) (RETURN NIL)!)
LoOp
\because (CONO (IAULL B) (RETURN NIL))
((MYOR (MAPCAR (LAMBDA (X) (MEMEER X A))
(EETO TEMP (APPEND (PKOP-LIST B (SUPERSET) (PROP-LIST B M-PROP) B)!)) (T (SETQ B (SUPERSET E)) (GO LDOP)) I)

CDEFUN INT-LIST (A B)
(COND (IOR (NULL A) (NULL B)) NIL)
(IMEMEER (CAR AI B))
(T (INT-LIST (COR A) B))))
(DEFUN IS-IT (PH PRUP)
(MEMBER PROP (MYEVAL (GET (NOUN-GET PH) *N-PROP))))
(DEFUN LEAVE-DEST (A)

- THIS IS A STUB. IN "FREO IEFT THE HOUSE." THE DESIINATION IS
: UNSPECIFIED. A ROUTINE COULD BE WRITTEN TO TRY TO FICURE OUT WHERE HE
; WENT: (UUTSIDE?)
- SDMEPLACEI
(DEFUN LEAVE-SOU (TESTEE)
(COND ((MUST-BE ANIMATE) (LIST "<-LQC-OF-" (NOUN-PUT TESTEE)))
(T (NOUN-PUT TESTEE)))

```
IDEFUN LETS-GO (1)
    THIS IS THE VERY TOP-LEVEL ROUTINL WHICH READS IN SEOHENCES
    AS SIRINGS UF LHOIVIDUNL ATGMS. II CGNSIDEHS A SENTENCE FNDEO IF IT
    FIMOS A. ? OR : AT THE END OF A hUMO. THESE ARE THE ONLY.
    PUNGTUAIIUN MAKKS ALLDWEU. IT ChECXS FOR A a TO ABORT A SENTENCE,
    OR A A TO LEAVE HHIS MOOE. AHY LISP FOKM HILL BE EVALEO IN THIS MOOE.
    if a ruifine is not loadeo (via lumueg) it will Not be evalfu.
```



```
        SPEAKER ANAPHOR-RESP REL-LEVEL SHOULD-TEST-OFF SENT-HIST TNS-FIX? AG-ANAPHOR PA-ANAPYIOR)
        (PRINT ""HELLO. YUU ARE :HW IH GUNVERSATIONAL mGUE.")
        (PRINT "#ANY LISP FURMS WILL BE EVALEO IN THIS HOUE.")
        (PRIAT ""YOU may RETURN TU LISP GY ENTERING A #.")
        (PRINT ""IF yOU ENTER A a AS A iHGRD IN A SENTENCE, THAT SENTENCE")
        (PRINT ". HILL BE ABGRTEO")
        (VERB-CLEAN)
        (SETO SPEAKER NIL)
    loOPl
        (SETQ INPUT## NIL)
        LOOP2
            (SETU WORD (READI)
            (COND ((HOT (ATOM WURD)) (PRINT (MYFEVAL WORO)) (GO LOOPZ))
                ((EG WDRD '#) (RETURN ""{YE BYE"))
                ((EO WORD -a) (PRINT '"SFNTENCE ABORTED") (GO LOMPI))
                    ((NOT (MEMBER (CAR (SETO WI (REVERSE (EXPLGDE WORO)l)) '1. ? !l))
                    (SEIO INPUTH# (APPEND INPUTHA (LIST WGRD)))
                (G0 L00P2)),
            (sETg rhat-CMp hil
            INPUTa# (append INPUT!# (list (Implode (REvFRSE (CDR Wl)))l)
            level o
            ANAPGUR-DEPTH O
            TEST-OFF NIL
            FAIL-IEST-LIST NIL
            TNS-FIX? NIL
            ANAPHUR-RESP NIL
            SHOULO-TEST-OFF NIL
            REL-I.EVEL O
            HISTURY {APPEND ICONO IIATOM, ICAR ISETO TM ILIST (INFER? (PRTY-PRINT (EVAL GMYPARSE INPUTH#
                                    (T TMM)
                H(STORY)I
            (ALL-HIST-OFF SENT-HIST)
            (GO LOOP\)))
ldefun like (testee prep)
; THIS IS THE LIKE CASE.
    (PROG (PRN)
        (RETURN (COND (ISETO PRN (PRD? IESTEE))
            (PROG (TEMP)
                                    (COND (ISETQ TEMP (PRO-ANAPHOR? '(LIKE PATIENT TOPIC AGENT BENEFICIARY)
                                    T
                                    PRN
                                    TESTEEI)
                                    (SET-UP-FIN 'LIKE PREP)
                            (RETURN (t.IST , "<-LIKE-" TEMP):)|)
                            (T (SET-UP-FN 'LIKE PREP) ILIST '"<-LIKE-" (NOUN-LIST-GET (NP-GUILD TESTEE)))))\))
```

(DEFUN LISTEN-TOPIC? (TESTEE)
: THIS BUILOS THE TOPIC CASE FOR LISTEN. "LISTEN TO BEETHOVEN"
: MEANS LISTEN TO THE MUSIC COMPOSEO gY bEETHOVEN. ETC.
(COND ((NULL TESTEE) ' (IN (SOMETHENE))
(IMUST-BE MUSIC) INOUN-LIST-GET TESTEE)
(lmust-be composer)

(IAUST-BE MUSICIAN)

(UEFUN LIST-IT (A)
(COND ((HULL A) NIL)
(r (list All))
(DEFUN LIST-IT-I (A)
(COND (NULL A) NIL)
(T (CONO ((EQ (IENGIH A) 2) (SERO A (APPEND (CAR A) (CADR A))!)
(T (setu a (car a)))!
(LIST (MAPCAR 'LIST-IT-2 A)))))
(DFFUN LIST-IT-2 (A)
(COND (IOR (ATOM A) (NULL A)) A)
(IANO (NOT (HULL (CAOK A)!) (NOT (EO F (CAOR A))!) A)
(I) (CONS (Car a) (CODR Alili)
1

```
i
(DEFUN LOCAIION (TESTEE PRLP)
; THIS lS rIE LOCATION CNSE
; (PROG NIL
(COND ({NOT (LIC-TEST, IREP)) NIL)
                    | (CONO (IAFTER-SNO-MOO? !kEP NH:
                        (SET-UP-FN 'LOCATION RRET
                            (LIST ""<-LUC-" PKEP (NOUP-LIST-GET (NP-RUILD TESTEE))))
                                    (T (rMOG (TEMP)
                                    LOOP
                                    (SETH TEMP (CHOOSE-ELMT-PREP TESTEE NN FAIL-LISY))
                                    (CONG (INULT. IEMP) NIL.)
                                    ((IOC-MOD? (ESTEETEMP PREP))
(DEFUN LOC-MOD? (NP PHRASE PREP)
    (PROG (TEMP)
        (RETURN (COND ((EO VF {CAR PHRASE))
                        (SET-UP-FN 'LOCATION PPEP)
                            (LIST "<-LOC-" PREP (NOUM-LIST-GET (NB-BUILO NP))))
                    ((OR (START-LIST *N PHRASE) (START-LIST 'NPR PHRASE))
                            (SEIQ PREPGCASE ILIST PREP 'LOCATICN)
                        PLACE (NDUN-LIST-GEY PHRASE)
                                    FN (RFLACO (ENU-LIST PLACE) (LIST STRCT))
                                    NUM (PHRASE-NUM2 PHRASE KEEP-SENT))
                                    (LIST ""<-LOC-" PREP (NOUN-LIST-GET (NP-BUILO NP)))))))'
(DEFUN LOC-TEST (PREP)
    (OR (AND (EQ PREP I IN) ISHOULO-BE CONTAINER RUILOING COUNTRY CITY CONTINENT STATE PROVINCE))
            (AND (EQ PREP 'AT) (NOT (MUST-BE HOMAN NESTRACT)))
            (MUST-BE IHING PLACE LOCATIUN)))
(DEFUN LOOK-DONN (TESTEE PRN TEST)
; THIS KOUTINE IS CALLED GY THIRO-CIIANCE. IT LOOKS BACK THROUGH
; THE DLD PARSES TO RESOLVE ANAPHORIC REFERENCES.
    (PROG (TEMP)
        (COND ((OR (NULL TESTEE) (NULL TEST) (ATOM TESTEE)) NIL)
                            ((EVAL TEST))
                    (|AND (SETQ TEMP (LODK DONN (CAR TESTEE) PRN TEST))
                        (ANAPHOR-QUERY PRNG (AOUN-LIST-GET TEMP))
                        TEMP)I
                    ((AND (SETG YEMP (LOOK-DOWN (CDR TESTEE) PRN TEST))
                        (ANAPHOR-QUERY PRN (NOUN-LIST-GET TEMP))
                        TEMPIIJ)I
(DEFUN MAIN-NORD-GET (TESTEE)
; THIS RETURNS THE MAIN WDRD OF A PHRASE.
    (PROG (TEMP)
                (RETURN (CONO ((SETO TEMP (NOUN-GET TESTEE)) TEMP)
                                    (ISETQ TEMP (START-LIST. V IESTEE)) (CADR IEMP))
                                    ((SETQ TEMP (SIART-LIST PRO TESTEE)) (CADR TEMP))))))
(DEFUN MAKE-ARROW (KASE)
    (IMPLODE (LIST ""<-" KASE ("-")))
(DEFUN MANNER (TESTEE PREP)
; THIS IS THE MANNER CASE.
    {COND {(SETQ PRN (PRO? TESTEE)) NIL)
                ((MANNER-TEST TESTEE VERB PREP)
                    (SET-IJP-FN 'MANNER PREP)
                (LIST '"<-HANNER->" PREP (NOUN-LIST-GET.(NP-DU(LD TESTEE))')))
    (DEFUN MANNER-TEST (TESTEE VERB PREP)
    ; THIS IS THE TEST FUR THE MANNER CASE.
    (OR (AND (EQ 'GU VERQ) (MUST-BE CONVEYANCE)) (NUST-BE ABSTRACTI))
(DEFUN METHUD (TESTEE PREP)
- THIS IS THE METHOD CASE.
    "THEY WIENT WY CAR."
; "FREU HURT MARY BY HITTING HER."
    (PROG (TEMP)
        (COND ({AND (EQ (CAAR TESTEF) (NP) (MUST-BE CONVEYOR CONVEYANCE\)
                            (SET-UP-FN PMETHODO PREP)
                            (LIST (MAKE-AGRINW 'MFIHUD) PREP (NOUN-LIST-CET (NP-BUILD TESTEE))I)
                    ((ANI) (EQ 'BY PREP) (SEIQ AG-ANAPIGOR (GETK AG)))
                    (SETQ PA-ANAPIGUR (CEIR PA))
                    ICOND IINUT IATOM ISETO IEMP. IEVAL ICCNS 'S
                                    ILIST (APPENO
                                    LIST (COPY AC-ANAPHOR)
                                    (REL-MOOS-JOIN TESIEE NN))||)||
```

GDEFUN MODIFY? (PART NI
this is cmlqeg if something otutr mhan a prffositunal phirase

```

```

 AJVERG PHRASES, KIIATIVE CIAUSES, AHG GLASSIFIERS AKE HANDLED HERE.
 dHE SYSTEM DOES MOT HABDLE THINGS I-IKE: 口I WG:NT HOME LAST NICHI."
 SINGE the mOHY-PHPASE "LAST NIGHI" IS NOT HANOLEL IN THIS ROUTINE.
 IT WOULO BE SIMPLE IU CHANGE.
 (PROG (TEMP NUMM)
    ```

```

 ((aND (EO brEl (Cak paril)
 (SETO STRCI (REL-CEAUSF (REL-MODS-.JOIN PART N) N))
 (COnT\NuE))
 (IAND (EO 'REG-REL (CAR PART))
 SETQ STKCT (RED-REL-CLAUSE (REL-MODS-JDIN PART N).N))
 (COHTIANE))!
 (|ANG) (EG (JisJ-REL (CAR PART))
 (SETO STRCT (OGJ-REL-CLAUSE (REL-MOOS-JCIN PART N) N))
 (continuE)))
 ((ANO (EO - GBJ-REO-REL (CAR PART))
 SEFO STRCR (ORJ-REU-REL-CLAUSE (REL-MOUS-JGIN PART N) NII
 (CONTINuE)!)
 ((AND (EQ 'HP (CAR PART)) (SETO STRCT (ClASS? PART)) (CONTINUE)))
 (T (PRINL MOUIFY?) (PRINL PART) (TERPRI)))\)
 (DEFUN MORPH (WORD)
; THIS IS THE MOKPHOLOGY RDUTINE.
(COND (IGET WORO 'OICT))
(t (SETQ letters (reverse (Explode word)))
(COND ((MORPHIT MORPH-TABLE LETTERS) I)
(t (query wURD))|l)
(DEFUN MORPHIT (H-T LETS)
(COND ((NULL M-T) NIL)
((MYEO (CAAR M-T) LETS) (CONO ((NOTNIL (OROPEGO (CAR H-T) LETS))) (T (MORPHIT (COR M-T) LETS))))
(T (MORPHIT (CDR M~T) LETS))I)
IOEFUN MUST-SE FEXPR (A)
(PROG (TEMP) (COND ((INTERSECT A (SETO TEMP (NGUN-MEAN (NOUN-GET TESTEE)))) (RETURN TEMP)))))
(DEFUN MYEQ (LST LETS)
{COND ((NULL LST))
((Njt (EQ (Car lST) (GAR iEtS))) NIL)
(T (MYEQ (COR LST) (COR LETSI)I))
(DEFUN MYEVAL (Z)
fHIS TAKES a form and calls Soft-EVAL dN IT IF IT IS A LISt
WITH a function Name starting it.
OIHERWISE II JUST RETURNS THF FORM.
(PROG {G FN TEMP)
(COND ((ATOM Z) Z)
(COR (SETQ FN (GET (SFTO Q (CAR Z)) (SETQ TEMP 'EXPR)))
(SETQ FN (GET Q (SETQ TEMP (SUBR)))
(SETQ FN (GET Q (SERO TEMP (FSUBR)))
(SETQ FN (GET ((SETG TEMP 'NSUBR))])
(SUFT-EVAL FN Z TEMP))
(T ん))!
(DEFUN MYGET (W L)
(COND ((ATOM L) (GET W L))
(T (GET W (CAR L)))))
(DEFUN MYGETR FEXPR (LST)
(COND ((NULL (CDR LST)) IGETRV (EVAL (CAR LST))))
((numberp (cadr lSt))
(CUNO (llEROP (CADR LSTH) (GETRV (EVAL (GAR LST)I))
(T (CDR (ASSO (CAR LSI) (CAOAR (NIH STACK (CADR LST)]))))]
(T (COR (ASSQ (CAR LST) {CADK (ASSQ (CAUR LSH STACK))I)l)]
IDEFUN MYOR (L)
(COND (INULL L) NIL)
(lcar l.))
(t (myOr (COR L))]))
(DEFUN MYPARSE FEXPR (L)
(PROG; (A :levEi. : TAB ST)
(SETG:LFVELO)

```

```

 (f (SETO ST (CADR L))))
 ISEIG a laERRSE! (pakSEl (!val (Car Lil)l)
 (RETURN (CONO (IATOM A)NIL)
    ```

```

 !
 (OEFLUN MYPUR (L)
, (PUT (CAR L) 'GRAMMAR (COK LI))
(DEFUN MYRETURN (NRO FLAG)
|MYEVAL (CET WRD FLAGI)।
(DEFUN NEXT (CLASS)
; THIS RETURNS T IF THE NEXR WORO IH THE INPUT STREAM IS DF TYPE CLASS.
IPROG NII.
(COND ((ATOM CLASS) (SETQ CLASS (LIST CLASSI)))
LoOP
(CONS ({NHI.L CLASS) NIL)
({GET IEX (CAK CLASS)))
(T (SETQ CLASS (COR CLASSI) (GO LOUP)))))
(DEFUN NOINIL (L)
(CONO ((NULL L.) NIL.)
((NOT (NULL (CAR L))))
(T (NOTNIL (CDR LI))))
(DEFUN NOUN-GET (PH)
; THIS ROUTINE AND THE NEXT TWO REIURN DIFFERENT LEVELS IN THE NOUN-PHRASE
; \IKUCIURE.
(CADR (NOUN-LIST-GET PH)))
IDEFUN NOUN-LIST-GET (PH)
*COND (INTOM PH) PH)
((MEMGER (CAR PH) (THAT-COMP TO-COMP)) (CADDR PH))
(T (NOUN-LIST-GET-FULL PHI)))
{DEFUN NOUN-LIST-GFT-FULL (PH)
(COND ({START-LIST M PH))
((START-LIST 'NPR PH))))
(DEFUN NOUN-MEAN (NOUN)
THIS ALLOWS THE USEP TO PUT A FORM ON THE PROPERTY LIST OF A NDUN
; WHICH WILL BE EVALED ANL RETURNED AS THE MEANING DF THE NOUN
; [NSTEAD OF THE NOUN ITSELF. THIS FEATURE IS NUT USEO CURRENTLY.
(PROG (TEMP) (COND ((SETG TEMP (CET NOUN (N-MEAN)) (EVAL TEMP)) (T (LIST NOUN)))))
(OEFUN NDUN-PUT (LZ)
(PROG (Z) (COND ({EQ H\&==>". (CAR (SETQ Z (GETRV ZZ)))) Z) (T. (SOFT-NCUN-LIST-GET (NP-BUILD Z))I))
(DEFUN NP-BUILD (NP)
- THIS TAKES A NOUN PHRASE ANO BUILUS THE APPROPRIATE STRUCTURE
* FOK IT. ITS MAIN CONCERN IS WITH THE DETERNINER STRUCTURE.
(PROG (DET W WGP)
(SETQ WWP (START-LIST 'NP NP))
(COVD ({NULL WWP) (KETURN NP))
(T (SETQ N? W"AP)l)
ICOND (INULL (SETQ DET (CADR (START-LIST 'DET NP))\)NP)
((START-LIST "<-DEFINITE-" NP) NP)
((START-LIST "<<-INDEFINITE-"NP).NP)
((START-LIST "'<-POSS-BY-'t NP) NP)
((DEF[N:TE-DET? DET) (SETO W (BUILDO ("<-DEFINITE-" \#) DET)))
((MEMBER DET '(A SN SGME ANY)) (SETQ W (BUILDG ("<-INOEFINITE-" H) DET)\)
((EQ 'POSSPRO {CAR DET))
(SETQ W (BUILDQ ("<-POSS-BY-* t) (NOUN-GET (NP-BUILD (PCSS-ANAPHOR CET NP)))))))
(RETURN (CONO ((NULL W) NP) (T (RPLACO (ENO-LIST (CADDDR NP)) (LIST W)) NP)))\)
IDEFUN NTYPE NEXPR (2)
(EQ (GET NEW-WORD 'N) Z))
(DEFUN NUMAGREE (DET NOUN N-INPR NUM)
; THIS CHECKS NUMBER AGREEMENT PETNEEN A DETERMINER OR PRONOUN
; aiNO a NUUN.
(COND (INUMAGREEL DET NOUN N-NPR NUM))
((UR (GET NOUN 'NUM) (EQ 'NONE (GET NOUN 'N))I))]
(DFFUN NUMAGREE: (DET NOUN N-NPR NIMM)
(COND ((EQ N-NPR 'NPR) (NULL DET))
((EG NUM 'SG) (AND (NOI (NOLI. DET)) (NOT (MEMBER OET '(THESE THCSE)))))
(IEQ NUM 'PL) (NOT (MEMMER DET (A THAT THIS))|
(T T)]

```
(DEFUN NUMBER? ()
```



```
(DFFUN OBJ-REO-RFI-GLAUSE (REL POSI
THIS HAMDLES OBJECTIVE REDUCED RELATIVE CLAUSES: "HME BALL JOHN HOLDS.*
    (PROG (TEMP)
            LOOP
                (CUNO (IANU (SETQ TEMP (START-LIST 'NP (ELMT (SUML POS) KEEP-SENTI))
                    (0BJ-REL-EVAL (CDDR REL) T(MO)))
                                    (T (SETQ POS (SURL POSI) (GO LOOP))))}
(DEFUN OUJ-REL-CLAUSE (KEL POS)
    THIS HANDLES OHJECTIVE RELATIVE ClAUSES.: "THE BALL WHICH JOHN HOLDS."
    (PROG (TESTEE PRO)
                ISETO PRO (CAOR (CAODR REL))\
            LOOP
                    (COND (IMULL (SETU TESTEE (START-LIST 'PI' (ELNT (SUBI POSI KEEP-SENT)I)) (RETURN NILII
                        ((OR (AND (MEMQER PRO '(WHICH THAT)) (NOF (HUST-BE HUNAN)))
                            (AND (MENBER PRO (WIGOM WHOSE)) (MUST-BE HUMAN)))
                            OHJ-REL-EVAL (COONIR REL) TESTEE))
                                    (T (SETQ POS (SUBL POSI) (GO LOOP))|))
(DEFUN OBJ-REL-EVAL (REL OBJ)
: THIS TAKES A SURFACE DBJEGTIVE RELATIVE CLAUSE, BUILOS IT UP
    INTO A STRUCTURE WHICH LUUKS LIKE A SENTENCE, PUTS THE OBJECT IN IT CORRERT
    PLACE, ANO CALL S ON IT.
    "THE BALL WHICH JOHN HOLDS."
    ; "THE LAKE INTO WHICH I JUMPED."
        (PROG (TEMP)
            (SETO REL-LEVEL (ADOI REL-LEVEL)
                AG-AIAPHOR (GETR AG)
                PA-ANAPHOR (LETR PA)
                TEMP IEVAL (APPEND (LIST 'S)
                            (COND ((EQ PREP (CAAR REL))
                                    (1.IST (APPEND (CDR REL.)
                                    ILIST ICONS 1PP
                                    ICCNS NIL
                                    (CONS (CADAR REL)
                                    (LIST (COP`OBJ)J)||N|
                                    (T (LIST (APPEND REL (LIST (COPY GBJ)))J)|))
                        REL-LEVEL (SUBL REL-LEVEL)
                AG-ANAPHOR NIL
                PA-ANAPHOR NIL)
            (CEND ('NOT (NULL TEMP))
                        \SETQ FN (RPLACO (ENO-LIST (CAR (END-LIST PLACE))) ILIST STRGT))
                                    PLACE (START-LIST *NP OBJ))
                                    (RETURN TEMP)))))
(DEFUN OPT (TEST SUBST)
        (COND (TEST SUBST)
            (T 'OBL)))
IDEFUN PASSIVE ()
    (PROG (TEMP)
            ICOND (IEQ 1GE (GETR V))
                (COND (\ANO (SETQ TEMP (GETF PART)) (FQ TEMP 'PASTPART))
                    (PRIGN (COND (\MOF (MEMGER PPROGRESSIVE (GETR ASPECT))) (LIFTR HABITUAL T S)))
                                    T)|!
    (DEFUN PASSIVE-AGENT (LST TEST NUMS VINIM);
    THIS IS PASSFD A LIST OF ALL OF THE PREP-PHRASES STARTING
    WITH "BY" BY AGENT IF THE. SENTENCE IS PASSIVE. IT GOES THRGUGH
    THEM UNTI! IT FIADS ONE THAT PASSES 「EST. IT RETURIS NIL ON FAILURE.
    (PRUG (TESTEE LL SH-F)
                (SETQ SHAF SHOULD-TEST-OFF)
            LOOPI
                    (SETO LL (RE-ORDER LST NUMS VNUM))
            loOP2
                    (CUND ({AND (INULL LL) SHOULU-TEST-(IFF) (RETURN NILI)
                            ((NULL LL) ISETQ SHGOUL-T:ST-GFFFT) (GO LCOPI))
                            ({AND) (SETQ TESTEE (CAOR (CODAR LLJ)) (OK (TEST-UFF? 'AGENT) (EVAL TEST)))
                            (SETO SHUUULD-TEST-OFF SH-F)
                            (FLAC-ON (CAR LL) KEEP-SENT T)
                            (REIURN TESTEE))
                    (T(SETQ LL (COR LL)) (GOLQOP2)))))
```

(DFFUN PATH (TESTEE PREP)

- rHIS IS THE PATH CASE, IT IS ONLY APPI.ICABLE TO VERBS GF MOVEMENT.
(PROG (PRN)
(RETURN (COAD (INOT (EOUML MMVE (CADR (STARI-LIST ""く--" STRUCTH))) NIL) (ISEIO PRN (PRU? TESTEEI)
(PRKO-ANAPHOK? ' (BATIENT TRAJECORY TOPIC)
- (anu (ndt (mLSf-be human)) (should-bf CONVEYOR))

PRE
TESTEEI)
(A AN (NOT (MUST-BE ANIMATE)) (ShOULD-BE CONVEYOR))
(SET-UP-FN PPATH PREP)

(DEFUN PATIENT NEXPR (TEST)
; THIS IS THE PATIENT CASE. IT FINUS THE FIRST UNFLAGGEO NP
; AFTER THE VERB IN ACTIVE SENTENCES, OR THE FIRST IN THE SENTENCE
; IN PASSIVE SENTENCES.
(PROG (TESTEE LL TEMP PRN)
(SETU LL. L)
(CDHD ((GETR PASSIVE) (SETO LL (REVERSE LL))))
(CUNO ((ATGM (CAR LLi) (GO LSHPZ)))
LOOP1
(COVD ((AND (CDR LL) (NOT (ATOM (CADR LL)))) (SETQ LL (CDR LL)) (GO LOOPI)))
(SETQ LL (CDR LL))
LQOPZ
(COND ((AND (NOT (NULL (COR LL))) (CADAR LL)) (SETO LL-(COR LL)) (GO LOOP2)))
(CONO ($A N D$ (EQ INP (CAAR LL)) (NOT (CADAR LL')))
(COND (INULL ISETG PRN ISTART-LIST PPRO
(SETQ TESTEE (COND (IAND (GETR PASSIVF)
(EQ © $N P$ (CAADR LL))\}
(CADR LLI)
(r (CAR LL))])])
(COND (IOR (TEST-GFF? 'PATIENT) (EVAL TEST))
(FLAC-ON TESTEE KEEP-SENT T)
(RETURN IESTEE))
(T (SETQ FAIL-TEST T $\quad \begin{aligned} & \text { FAIL-TEST-LIST (APPEND (LIST PATIENT) FAIL-TEST-LIST)) }\end{aligned}$
NILI)

- IT (COND ((NOT (NULL (SETQ TEMP (ANAPHORIC 'PATIENT TEST ANAPHOR-DEPTH PRN))I)
(FLAG-GN TESTEE KEEP-SENT TENP)
(RETURN TEMP)I)I)
(AND \{GET VERB 'THAT-COMP) (SETO TESTEE (TOP-LEVEL-START-LIST THAT-COMP KEEP-SENT))
(FLAG-DN TESTEE KEEP-SENT T). TESTEEII)
(DEFUN PERSONAL-PRN (PRN TESTEE)
(COND ((GET PRN (PERSONAL) (MUST-BE NNIMATE))
(I (NOT (MUST-BE ANIMATE))))

IOEFUN PHRASE-NUM (A L.)

- This returns o if a does not start a lop-level list in l.
; OTHERWISE IT RETURNS THE NUHBER OF THE LIST THAT A STARTS.
1PROG (NUM)
(SETO NUM 1)
LOOP
(COND ((NULL L) O)
(IEQ (CAAR L) A) NUM)
(1) (SETA L (COR L) NUM (AOOI NUM:) (GO LOOP))))
(DEFUN PHRASE-NUMZ (A L)
- THIS RETURNS 0 IF A IS NOT A TUP-LEVEL ELEMENT OF L.
:- OTHERWISE IT RETURNS THE NUNBER IN THE LIST THAT A IS.
(PROG (NUM)
(SETO NUM I)
LOOP
(COVD ((NULL L) 0)
(IEQUAL A (CAR L)) NUN)
(T (SETU NUM (ADUI NUM) L (COR L)) (GO LCOP))) 1)

```
GEFUN POSS-ANAPHOR (PHN NP)
THIS RGIUTINE SYSIEMAIICALLY GIES THMOUCOH A SENTENCE TRYING TU
; RESOLVE a pOSSESIVE PRUNOUN REFEQEMCE.
    (PRUG (TESTEE REG NIN NUMP)
        (SETG REG (AG PA REC SOU GEN))
        LOOPI
            (CO41) ((NULL RFC) (GO LOOPZ)
                    {(AND (SERO IESTEE (GETRV (CAR REG))) (PRN-MAICH? PRN IESTEE) (ANAPHUR-OUEKY PRN TESTEE))
                (RETURN TESTEE))
            (T (SETG REG (CDR REG)) (GO LOOP\)I)
        toopz
            (SETG NH (PHRASE-NUM2 NP KEEP-SENT) NUMP 0)
        (COND) (IZEROP NN) (SETQ NA (DEEP-PHRASE-SNM ISP KEEP-SENT)) )
    LOOP3
    (SETG NUMP (ADDI NUMP)
    (CONO (INOT (LESSP NUMP NFH)) (GO LOOP4))
            ((ANL (SETO TESTEE (EI.MT IUMP KEEP-SENT))
                        (PRN-MAICH? PRN TESTEE)
                        (ANAPHDK-QUERY PKN TESTEE) )
                RETURN TESTEEII
            (T (GO LOOP3)))
        L00%%
            (RETURN (ANAPIIORIC NIL T ANAPHOR-DEPTH PRN)I))
    (DEFUN POSSESSION (AG PA)
    : THIS IS A START ON THE PROBLEM OF POSSESSION. IN
    ; "BEETHOVEN'S MUSIC" WE UON'T WANT TO SAY THAT BEETHOVEN OWNS
    ; THE MUSIC, BUT THAT HE WROTE IT.
    (PROG (TESTEE)
        (SETQ TESTEE AG) (CUNO (IAND (MUSI-BE COMPOSER) (SETQ TESTEE PA) (MUST-BE HUSIC)) 'COMPOSE)
                            (T OWN))\)
    IOEFUN PREP-CASE-LOOK IKASE PREP TEST)
    THIS ROUTINE TAKES A LIST DF CASES, A LIST OF PREPOSITONS', AND A TEST.
    IT LOOKS THROUGH THE CURRENI SENTFNGE FOR A PREP-PHRASE STARTING
    WITH DNE OF THE PREPOSITIONS WHICH PASSES THE TEST.
    IF NONE IS FOUND, IT LOOKS BACK INTO THE PREVIOUS SENTENCE.
    (PROG (KK)
        (SETO KK KASE)
        LOOP
            {COND ({OR (NULL.KASE) (NIJL PREP)) {ANAPHOR-CASE-LCOK KK TEST))
                    ((CLAUSE (CAR PREP) TEST (CAR KASE)))
                    (I (SETQ KASE (COR KASE) PREP (CDR PREP)) (GO LOOP)))))
    (DEFUN PREP-CLAUSE (PREPS SNT)
    ; THIS RETURNS A LIST OF ALL OF THE PHIRASES IN A SENTENCE BEGINNING
    ; WITH ANY OF THE LIST OF PREPS IN PREP.
    (PROG (LST)
        LOOP
            (CONO ((NULL SNT) LST)
                    (AND (EQ 'PP (CAAR SNT)] (MEMBER (CAONAR SNT) PREPS))
                            (SEIQ LST (APPEND LST (LIST (CAR SAT))) SNT (COR SNT))
                            (GO LOOP))
                    IT (SETQ SNT (COR SNT)) (GO LODPI)I))
    (DEFUN'PREP-LIST-GET (PREP L)
    (PROG (TEMP)
        LOOP
            (COVO ((NULL L) NIL)
                (IOR (ANO (ATOM (SETQ TE:OP (CAAR L))) (EQ TENP PREP)) (MEMRER PREP TEMP)) (CAR LI)
                    {T (SETQ L. {COR LJ) (GU LOOP))))
    (DEFUN PREP-REL-CLAUSE (REL PREF PRO POS)
    ; THIS HANDLES "THE MAN IN WHOSE HOUSE..."
    (PROG (TESTEE)
        LOOP
            (COND ((NULL ISETO TESTEE {SIART-LIST *NP (ELMT (SUBL POS) KEEP-SENT)))\ (RETURN NILI)
                            (IOR (AND (EQ *WHICH PRO) (NOT (NUST-BE HUMAN)))
                                    (AND (MEMBER PRO (WGGM WHOSE)) (MUST-BE HUMAN)))
                    (PREPGREL-EVAL REL PREP IESTEEI)
                    (T (SETQ PUS (SUEL POS)) (GO LOOP)))\)
1DEFUN PREP-REL-EVAL (REL PREP ORJI
    (PKOG (TEMP)
        SETG REL-LEVEL (ADOL REL-LEVEL)
                            IEMP (EVAL (APPEND (LIST SE) ILIST (APPENO REL (LIST (CONS PPP (CONS PREP ICOPY OBJI)JIIII
                    REL-LEVEL (SUBI REL-LEVFLI)
                (COVU ((NOT (NULL TEMP))
                    (SEIO FN '(KPLACO {END-LIST (CAR (ENO-LIST PLACE))) (L.IST STRCTI) PLACE OBJ)
                    (RETURN TEMP)))।)
```

 OEFUN YREP-STAUT (YARTI
 (COIJU (IATLM PART) IIL)
 ((CO (C゙AK Par!\ 'IP))|'
 DEFUY PREP-VERB-ASSI)-COHPLX-RETUK'V (PIGI PH2 PH3)
 HHIS CBivVERIS "rIf BOX FITH THE HI:IS IN IT" INTO
 "THE BOX, IHE BOX COIITAINS THF PEIIS."
 LLIST "*<==>"
 (NUJ:Y-LIST-OFT (NM-IJUILO PHI))
 MP!?ESE:JT
 |LIS| '"<--"
 (SFLELTQ (FAUUR PH3) ('UN 'SUPPGRT) ('IN 'CONTAIN) 'RELATIOH)
 (:NOUN-LIST-GET (HIP-BUIID PHIZI)))
 DEFUH PRO? (TESTEEV
(START-LIST 'PRO TESTEE))
DEFUH PRO-AAAPHOR? (CSS TEST PRN TESTEE)
IHIS FLAGS A PRONOUN AS BEING HANULEO IF ANAPHORIC CA:J RESOLVE IT.
(PROG (TEMP)
(RETURH {COND (INOT INULL. ISITG TEYP (ANAPHORIC CSS TEST ANAPHOR-UEPTH PRNJ)I)
(FLAG-ON JESTEE KEEP-SENT TEMP)
(EMP)\))
OEFUN PROP-LIST (L FLG)
THIS RETURNS A LIST OF WHAT IS UINOER FLG ON THE PRGPERTY
LISTS OF ALL OF. THE ELEMENTS IN L.
(PROG (TEMP)
LOOP
(CGNO (MULL L) TEMP)
(T (SETG TEMP (APPENO TEMP (GET (CAR LJ FLG)) L (COR LJ) (GO LOOP)\))\
CEFUI: PRN-GEN (PRN)
THIS PGUTIVE RETURNS A PROMOUN'S GENUER.
(CO:JO (|!EMUER PRN (HE HIM HISI) MASCULINE)
((IEMAER PRN '(SHE HER)) 'FENIIIINE)
((MEMSER PRN * YOUR I THEY THEM NF NY)) BUTH)
(|?EMSEN PRN (IT THAT THOSE)) PIEITHER)
|((PR:J-GEN-QUERY PRN))|\
(DEFUN PRN-GE:I-OUERY (PRN)
; IF A PRCNCU:I GENDER IS NOT KNOW:%, THE USER IS ASKEO FOR IT, AND
THE RQUTINE PKN-GEN IS CHANGED.
|PRJG (TEMP)
(PKINI 'IS)
(PRINL FQN)
(PRINI "MASCULINE UR FEMININE?")
(TERPRI)
LOOP
(PRIINT "ENTER MASCULINE, FEMININE, BOTH, OR NEITHER")
(PRINT ""ENTER \# TO ABQRT")
ICOVD (NNOT (MEHBFR (SETO TENP {READ\) '(MASCULINE FEMININE BOTH NEITHER AII) (GO LOOP)\
(IEC IEMP *H) {RETUR:I IILJ)\
IPRN-RPLACD PRU-GEN PRN ISELECTO TEMP (NASCULINE 1) (FEMININE 2) (BOTH 3) (NEITMER 4)II
(RETURN TEMP)\)

```
```

(DEFUIV PRN-MATCH? (PRN TESTEE)

```
(DEFUIV PRN-MATCH? (PRN TESTEE)
- THIS ROUT INE CHECKS TO SEE IF THE PRCNCUN PRN MATCHES TFSTEE.
```



```
(DEFUN PRN-NUM (PRN)
: THIIS ROUTI:JE RETURNS A PRONOUN'S FOMMBFR.
    (COND ((NEMBER PR:Z 'IIT HE SHE I H{:A HER THAT HIS MY)) (SG MASSI)
            (INEMBER PRA (THEY THEM HIOSE AE)) OPL)
            ({HEMBER PRN (YOU)) (SGPL BNSS))
            (T (PRIT-iNUM-OUERY PRN))))
(DEFU:\ PRN-YUMF,GEN? (NUM GEN TESTEE)
    (A:HO (SGFT -MEY NUHH (CAON (START-LISY "*-NOMIEH-" TESIFEI))
```



```
    (UR (ANU (E:GEN MASCULINL) (M1SI-&EEMILE))
```



```
            (:HUT (AGMRER GE| (MNSCULINEFEH(NIFEJ)))J)
```


(PREU (IV:NP)

(Píl:I PRN)
(PRI: *i "St:YOULAR UR PLURAL")
(TtHPKI)
LOUP
(PRINT "E:U! HR SG, PL. SGPL")

(CUHi (INUT (MEMH:SK (SETO TENP IRE:

(PRU-RPLACO PRN
(RETUK' (EIAP))

DEFU:N PRM-RPLACD (FCH PRN NUM)

IATO FC:

 (4 (RPLACO (EPIU-LIST (CADADR (COAADR ICAODR (CODOR (GET FCN PEXPR).)II)I ILIST PRNI)III

CEFUN PRTY-PRINT (LSTI
CONO (A ATGM LST) (PRINT LSTI)
((NOT (NULL LST)) (PRINTPARSE LST O))
(T (PKINT "THAT D[U NOT PARSE")))
LST)

ICEFUN PURPUSE (SERT PREP)
; THIS IS THE PURPOSE CASE.
"I RAN GOME TO GET MY BOCK."
ISELECTO PREP
1- 10
(PROG (TEMP)
RETURN (COND ((SETR AG-ANAPHOR (GETR AG))
(SETA Pa-ANAPHOR (GETR PA))
(SET-LUP-FN PURPOSE PREP)
(SETU $A G-A N A P H O R$ NIL PA-ANAPLCR NIL)
(LIST (MAKE-ARROW (PURPOSE) [EMPIII))I)
vill)
(DEFU: PUT-IN-LIST IAT IND WHATI
; THIS AOUS WHAT TO THE LIST ON THE PICPERTY LIST CF AT UINCER IND.
(PROG ITEMP)
CUNO (INUL (SETO TEMP (GET AT IND))) (PUT AT IHD (LIST WHAT)))
(T (PUT AT INO (APPENU (LIST WHAT) TEMP))))!)
(OEFUA PUTON (HL)
(PUT W DICT T)
IPUT W
(COND (IATO: (CADR LJ) (CAOR Li)
(T (G.AUP (CADK L)))
(COND (\{EOUAL (CADUR (CDR L)) **),*)
(T (APMEND (LIST NEN-HORO) (COOUR LJ))))

IDEFUN PUTTHEN (H L)
PTHEN IH OLI IN THE OICTIGNARY. IT PUTS PAIRS ON THE PROPERTY LIST.
 (T (PUT W (CAR LI (CAUR L)) (PUTTHEM H (COOR L))))

OEFUN QUANTITY (IESTEE PREP)

- IIHS IS IHE CUN:ITITY CASE: "WHAI COHES BY THE QUART?"
(PRUG (PRN)

(PRCG (TEMP)
ICOND (ISEIO TENP (JRG-AHAPMER? (GUANTITY)
- (MUST-BE GUNNTITY)

PRN
TESTECII


```
IDEFUN OUEWY IGOMD
THIS SS THAT QUERIES THE USER AUCUY A WQRD THAT IT DGES
; :OUT KNOW.
    IPROG (L)
        IPRI:I "II LO NOT KNOW WHAT")
        [PRI:I] WURD)
        (PKIN1 (MEANS)
        (TERPRI)
        (PAIMT "PPLEASE ENTER A DICTIONARY ENTRY FOR IT'S ROOT HOKO")
        (PRINT "OR ANOTHER WORD")
        (HKI:IT ""ENJER O TO ABORT THIS SEHTENCE.")
        (SETU & {REAO))
        (CO:\i (EO L 'a) (PKIHT "SENTENCE ABOKTED") NIL)
            ((ATGML) (MORPH L) L)
                (I (PUTTHEM (CAR L) (CDR Li) (MGRPH HORD))))
IDEFUN RATE (A S))
- this case has not been implemented yet.
cOEFUN REAUIN ()
; THIS REAOS I:A THE DICTIONARY FROM BROC:OICT
    (PROG (L)
                IOPEN (BUF 255 BROC:DICTI)
            LOOP
                (SETG L (READ EUF)), (PUTIHEM (CAK L) (CDK L.)] (GO LOOPI))))
(OEFUN RECIPIEST (TESTEE PREP)
; tHIS IS THE RECIPIENT CASE.
        (PROG (PRY)
            IPETURN ICOND (ISETG PRN (PROT TESTEEI)
                                    (PKOG (TEMP) (ISONO (ISETQ TEMP (PRO-ANAPHOR? 'IAGENT BENEFICIARY
                                    CC-AGEMT
                                    RECIPIENT
                                    IOPIC
                                    patIENTI
                                    -(muSt-be ANIMATE)
                                    PRN
                                    TESTEE)
                                    (SET-UP-FN 'RECIPIENT PREP)
                                    (RETURH ILIST ""<-RECIPIENIT-" TEMPII!!!)
                    ((muSt-be ANIMATE)
                            (SET-UP-FN PRECIPIENT PREP).
                            |LIST ""<-RECIPIENT-" (NOUN-LIST-GET (NP-BUILD TESTEE)IIIJ))!
(DEFUN RED-REL-CLAUSE (REL POS)
; this routiane sets up the call to rel-eval for reduceo relative clauses.
    (PROG (TEMP Tl T2)
            LOOP (SAO (SETO TEMP (START-LIST PNP (ELMT (SUSL POS) KEEP-SENT)])
            (CONO ((A:&O (SETQ TEMP ISTARTGLS (CADR TEMP))))
                                    (CONO (:HULL (SETO TI (CADR TEMP))))
                                    (T (FLAG-OFF TENP KEEP-SENTI)'
                            (SETO T2 (REL-EVAL (CDOR REL) TEHP))
                            (CONU (TI (FLAG-ON TEMP KEE:P-SENT TII)
                                    (T (flag-drf renf kE:EP-SENTI))
                            T21)
                                    ((LESSP i POS) (SETQ POS (SU|l pOS)) (GO LGOP))))\
    (DEFU: REL-CLNUSE (KEL POS)
    - tMIS SOMTS UUT RELATIVE CLAUSES FRDM PREPOSIICNAL RELATIVF ClauSES.
        (prug (ralpied)
            (RETURG (COND (FG) (CAR (STO RLLPRO (CMGOR REL))) PREIPROI)
                                    {REL-CLAUSE-HOO? {CHMOR REL) (CAUR RELPRO\ POSJ)
                                    (REL-CLAUSE-RONO
                                    (PR!!P-REL-CLAUSE (CDOMOR REL) (CADR RELPRO) (CACK (CNOODR REL)) POS)J)])
```

1OEFUN REL-ت゙LAUSE-MUN? (REL PRO POS:
(PROGG (TESTEE TI I2)
LOUP
ICOND (UAND (SETM TESTEE (START-LIST NP (ELMI (SNBI POS) KEEP-SENTII)
(COND (INULL SSETO II (CADK TESTEEJ)I)
(I fflac;off restee ketp-jenth)

(AND (EQ 'WHICH PROI (NOT (MUST-BE HUMAN)I)I
(HEL-EVAL REL TESTEE) I)
(COMD (TL IFLAG-ON IESTEE KEGP-SENT TI)
(T (FLAG-bIF MESTEE KEEP-SENTH)
(ILESSP I POS) (SETQ pos (SUBL POSH) (GO LOOPI)I))
IDEFUN REL-EVAL (REL SUBS)
; this rouidne builos up a sentence paisse dut of the relative clause, and evals it.
(PROG (TEMP)
ISETU SUPER-SENT KEEP-SENT
REL-LEVEL (AODI REL-LEVEL)
AG-ANAPHOR (GEER AG)
Pa-ANAPHOR (GETR PA)
PA-ANAPHOR (GETR PA)
IEMP (EVAL (APPEND (IIST S) (LIST (APPEHD (LIST (CGPY (STAKT-LIST 'NP SUBJ))) REL))))
REL-LEVEL (SUBI REL-LEVEL)
AG-ANAPHOR NIL
PA-ANAPHOR NIL
SUPER-SENT NILI
(COVO (INOT (NULL TEMP))
(SETO FN - (RPLACD (END-LIST (CAR (ENO-LIST PLACEI) ILIST STRCT))
PLACE (START-LIST 'NP SUBJ))
(RETURN TEMP) II)
(DEFUN REL-MONS-JOIN (PART NH)
; this rout ine takes a sentence part and its element number, and
; APPENOS TU IT ALL OF THE FULLOWING PARTS WHICH. ARE NP, PP, ETC.
appenc the partial parse returned gy the fitn, a relative clause

LATER, IF TUO MUCH IS AUDED ON IN THIS HDUTINE, THE ENO CNES ARE OROPPEO
; one ar a tlime.
(PROG (TEMP)
LOOP
(COND (IAND (SETQ TEMP (ELMT (ADUL NN) KEEP-SENT))
(MEMBER (CAR TEMP)
- (pp no
REL
RED-REL
OBJ-REL
OBJ-REL
THAT-CGMP
TO-Comp
SO-COMP
BY-COMP
THAN-PH
"<-ADV-"
"(-ADJ-"))
(NOT (CADR TEMP)])
(SETO PART (APPEND PART (LIST TEMP)) NN (ADDL NN))
(co LOOP))
(T (RETURN PART)])])
(DEFUN RE-DROER (LST NUMS VNUMS)
(COND (INULL NUMS) LST)
((LESSP (CAR NUMS) VNUMS) (RE-GRDER (APPEND (COR LST) (LIST (GAR LST))) (COR NUMS) VNUMS))
(TLST))
(DEFUN S NEXPR (SENTENCE)
; this routine is the very first fungtion called after the atn returns.
; IT TAKES AN ATM PARSE AND INVOKES IHE CASE ANALYSIS ON IT.
: IT TAKES AN ATN PARSE AND INVOKES [HE CASE ANALYSIS OA IT.
; IT SETS UP A FEN GLOBAL VARIABLES, ANB BUILDS A bist l OF THE
NOUN PHKASES MHD THE VERB. THIS IS USED
(PROG (NL SENT VERB KEEP-SENT STRICT VP)
(PROG (N L SENT VERB KEEP-SENT STRUCT VP)
ISETO LEVEL
ISETR PASSIVE

(SETO VERB (CADK (START-LIST •V VEI))
(SETR TAS (CADR (START-LIST 'TVS VP)I)
(CONO (TNS-FIX? (TEISE-FIX (GETR TNS)I))
Loop
(cuno (iNuLl SENT)
(SETO TMP (WHICH-MEANING; L SENTENCE N VERO))
(COND (TEG LEVEL I) (SEfO SENT-HIST (APPEND (LIST (ALL-FLAG-OFF KEEP-SENH)) SENT-HISTI)U)
(SETO LEVEL (SUBI LFVELI)
(MP)
((EG) (CAAR SENT) (NP)
(SEMO (APPENU L (ISS (CAR SFNT)) SENT (COR SENT) N (ADOI N))
(GO LOUP)
(1E0 (CAMR SENT) DVP)

(BO 1.00 OP)
(T (SIETO SENT (CDR SENT)) (GO LDOP)I)))
dDEFUN SECUVD-Change (KASE PRN H-S HISI)

- If annphoric faits to resolve a lucative reference. this routine
- is calleo which tries every phirase in ihe sfintence.
(SELEETQ KASE (LUCATIUN (ANAPHOPIG NIL '(BUST-BE LOCATION) ANAPHOR-DEPTH PRNI) NIL))

CDEFUN SET-UP ()
SEt-up sets up three tables. mokph-table is the set of morphology rules.
case-ragle associates witheach pheporition the cases it michi flag. Anti-case-rable is a list gf verbs with a set uf cases which they will
not take.
f progn (seta morph-taele '(1)
(mapcar etry
((NII. N (NTYPES) (NIMMBER PL)) INIL V
(OR (VBTYPE S-ED) (VBTYPE S-D))
(TNS PQESENT)
(pNCUDE "3SC"))))
1ISEI)
I MAPCAR •TRY
((((Y) N (NTYPE ES) (NUMBER PL))
((Y) V (VQTYPE ES-FD) (TNS PRESENT) (PNCOOE "3SG"))))\}
(ISE)
MAPCAR PTRY
((INIL N (NTYPE ES) (NUMAER PLI)
(NIL V (VBTYPE ES-EO) (TNS PRESENT) (PNCODE "3SG")))))
(IS.E V)
(MAPCAR ITRY
-(I(EF) N (NTYPE IRR) (NUMBER PL))
((F) N (NTYPE IRR) (NUMBER PL))))
((S "1")
MAPCAR TRY

- ((NIL N T (PCSSESIVE T) (NUMAER SG))
(NIL NPR.T (POSSESIVE T) (NUMBER SGI))),
((":" S)
m MAPCAR TRY
- ((NTL N T (PCSSESIVE r) (NUMBER PL))
(NIL NPR T (POSSESIVET) (YUMEEP PLI))!
((Y L) (MAPCAR 'TKY (INIL (ADJ ADV) 'TER-EST) (IE L) (ADJ ADV) 'T *))) ((Y L I) (TRY (YY) (AUJ ADV) 'T *)))
(YYLGNI)(TRY (\{E) (V ADV) (VBTYPES-C) *)))
(IGNI)
IMAPCAR EVAL
- (ITRY (NIL V 'T (PART PRESPART))) (TRY ((E) V (VBTYPE S-D) (PART PRESPART))) (COND ((EQ (CAR LETS) (CAOR LETS))
(DRUPEGU (LIST (LIST (CAR LETS))
(ITRY (NIL V (T. (PART PRESPART))))
LETSI)J)
((D) (TRY (NIL V (VUTYPE S-D) (PART. PASTPART) (TNS PASTIJ))
(10 E)
imapcar eval
- ITRY INIL V
(OR (VBIYPE ES-ED) (VBTYPE S-ED))
(PART PASTPART)
(TNS PASTI)
(COND (IEQ (CAR LETS) (CADR LETS))
(ORUPEGO (LIST (LIST (CAR LETS))
- ITRY iNIL V
(DR (VBTYPE ES-ED)
(VBTYPE S-EDI)
(PART PASTPART)
(rNS PAST)))
LETSI) I) I)
(10 E ($)$ (RRY ((Y) V (VBYYPE ES-EO) (TNS PAST) (PART PASTPART)))) (D) (TRY (NIL V (VBTYPE S-D) (TNS PAST) (PART PASTPART)))) $(\| R E)$
(MAPCAR EVAL
- (itry (NIL noj (adjutype er-est) (comp-sup comparative)))
(risy (illt adV (AOVTYPE IR-EST) (COMP-SUP COMPARATIVEJ)) (COND ((EO (CAR LETS) (CAOR LETS:) (DROPEGO (1.IST (LIST (CAR IEIS)) - (tRy (nIl aijj
(AOJTYPF ER-EST)
(COMP-SUP COMPNRATIVE)))
LETSIIIJI

((RE I) (TKY (IY) ADJ (ADJTYPE (THY (NIL AOS (ADJTYPER-ST) (CONP-SUP COMPARATIVEJ))

((T S) IJKY (NIL ADJ (AUJTYPER-ST) (COMP-SUP SUPEKLAYIVEJ)) ((TSE)

IMAPCNK EVAA

- (ITRY (NIL adJ (AU.JTYPE EK-EST) (COMP-SUP SUPERLATIVE))
(TRY (AIL ADV (ADVTYPE ER-EST) :COMP-SUP SUPERLATIVE))) (CO:ND (IEO ICAR LETS) (CADR LETSI) (DROPECU (LIST (LIST (CAR LETS)) - ITRY INIL AOJ
-T
(COHP-SUP SUPERLATIVE)))
LETSI\|)IHY
Iseta case-table •I lin location
TIME
DESC
DURATION
MANNER
OESTINATION
CONTEXT
CHARACTERISTIC
WITH-RESP-TO)
IWITH CO-ACENI
INSTRUMENT
WITH
MANNER
DESC
DESTINATICN
EXCHANGE
IND-SUBJ
PREREQUISITE-USEDI
(FOR DURATION BENEFICIARY EXCHANGE IND-SUBJ)
(ON LOCATICN OESC CIIARACTERISTIC DESTINATICN INO-SUBJ)
(TO RECIPIENT BESTINATION TODIC PURPOSE IND-SUBJ)
(AT lUCATICN DESC TIME RATE CESTINATION)
IOF DESC IOPIC SEC-DBJECT WITH-RESP-TOS
fBY LOCATION OESC TIME PATH METHOD UUANTITY)
(ABOUT TEME TOPIC PaTH)
(INTO DESTINATION)
(ONTO DESIIIATION)
(TOWARD DESTINATION)
(TOWARDS DESTINATICN)
(MEAR LOCATIDN UESG TIME)
(BESIDE LOCATION DESC)
(DURING TIME)
(BEFORE TIME LOCATIUN DESC)
(AFTER TIME DESC)
(ALONG PATH)
(UP PATH DESC)
(FROM SOURCE DESG)
(DOWN PATH DESC)
(AROUND PATH UESC)
(ALRUSS PAIH UESC)
(SO EXPECTED-EFFECT CAUSE)
(UNGER LOCATION CONTEXT DESC)
(LIKE LIKE)
(DESPITE DESPITE)
(WHEN TIME)
(WHILE TIME)))
(SETG ANTI-CASE-TABLE ((GO (LQCATIUN)) (COME (LOCATION))))
(GRAMMAR-IN)
(REAUIN))

(SET-UP)

(OEFUN SET-IJP-FN (CS PRN)
WHEN A CASE HAS BEEN DETERMINED FOK A PREPOSIONAL PHRASE, IF IHE CASE
IS OF THE STANDARO IYPE, SET-UP-FN IS INVORED TO BUILO THE USUAI.
FUNCIIUN FN TO PUT THE STRUCTURE STRCT INTO STRUCT CO-ORCINATE WITH
THE VERB.
(PROG (TEMP)
(SETG PREPGCASE (LIST PRN CS)
FN (CUND ((AND (SETO TEMP (START-I.IST (MAKE-ARRON (CASE-ATOM-ASSOC CS)) STRUCT)) (MEMBER (CADR TEMP) * (SOMEONE SOMPLACE HERE)))
(PROLSN (SETO PLACE TEMP) '(RPLACD PLACE (LIST (CDR STKCT))))

NUM (Pł\&RASE-N(JM PV KEEP-SEN(I))
(DEFUN SHOULD-BE FEXPR (A)

(DEFUN SILE (NP)
(COAD ((CET (NOUN-GET NP) (UBJ-STZE))
(1)01)

TDEFUN SOFI-DELETE IMTS TEST LI

- THIS ROUT INE REHOVES ALL ELEHENTS OF ATS IN 1. IOQ ELEMENTS DHICH START
- WITH AIS W!THEJUT SCREWING UP IHE LIST THE WAY OEEETE DOES.
(COND (IANO (ATUM ATS) (NOT (NULL AISH) (SETO ATS (I.IST ATSI)))
(COND (IOR (NULL LI INULL ASSI) MIL)
(ANO (MEYBER (CAR L) ATS) (FVAL TEST)) (SOFT-BELETE ATS TEST (CDR L))
((ANO (MEYBER (CAR L) ATS) (EVHMGR (CAAR L) ATS) (EVAL TESY)) (SCFT•DELETE ATS TEST (CDR LI)) ((AND (NOT (ATGM (APPENO (LIST (CARL)) (SUFT-DELETE ATS TEST (CDR L)))))

```
IOEFUN SOFT-EG (A B)
```

 (OR (EQ A B) (NULL A) (NULL B)))
 (DEFUN SOFT-EVAL (FN LST TP)
SOFT-EVAL TAKES A LIST STARTING WITH A FUNCTION NAME, AND WHERE
: POSSIRLE CHECKS TO SEE THAT THE NUMRER OF ARGUMENTS IS CORRECT.
: POSSIRLE CHECKS IO SEE THAT THE NUMRER OF AR IT EVALS IT, ELSE IT JUST RETURNS IT.
IF SO, IT EVALS IT, ELSE IT JUST RET) (EOVAL LST))
(COND (\{MEMBER TP '\{SUBR FSUBR NSUIR)) (EVAL LST)) (ENOR FN)) (SUBL (LENGTH LST)) (EQ 'FLAMEDA (CAR FNI)))
($A N D$ IEO IP
T(STJ))
(DEFUN SOFT-MEM (BA)
(COND ($(\triangle T O M B)(S D F T-E Q$ A B))
(T (BR (MEMBER A B) (NULL A) (NULL B))))
(DEFUN SOFT-NOUN-LIST-GET (A)
(CONO ((NOUN-LIST-GET A))
(T A)))
(DEFUN SOFT-NOUN-PUT (ZZ)
(SOFT-NOUN-LIST-GET (NP-BUILD (GETR 2Z)) NIL))
(DEFUN SOU-DEST-PRO? (PRN TESTEE PREP VERE KASE)
(PROG (TEMP)
(COND (ISETQ TEMP (PRO-ANAPMOR? - (AGENT CO-AGENT BENEFIGIARY) (MUST-RE HUMAN) PRN TESTEE))
(SET-UP-FN DESTINATIDN PREP)
(RETURA (LIST (MAKE-AKKOW KASE) (LIST LLOCATION 'OF TEMP))))
(RETURN (LIST (MAKE-ARROW KASE) ILIST PLACE LOCATION BUILING) PRN TESTEE))
(SET-UP-FN KASE PREP)
(RETURN (LIST (MAKE-ARROW KASE) TEMP))J)))
(DEFUN SOURCE (TESTEE PREP)
(SOURCE-DEST TESTEE PREP 'SOURCE))
(OEFUN SUURCE-DEST ITESTEE PREP KASE)
; THIS IS THE SOURCE AND DESTINATIUN CASE.
(PROG (PRN)
(RETUKN (COND (ISETG PRN (PRO? TESTEEI) ISOU-CEST-PRO? PRN TESTEE PREP VERB KASEI)
(IMUST-GE LUCAIION PLACE BUILOING CONTAINER)
(SET-UP-FN KASE PREP)
(LET-UP-FN KASE PREP)
(LIST (MAKE-ARRCW KASE) (NCUN-LIST-GET (NP-BUILC TESTEEI))))))
(DEFUN SPEAKER (orn)

- If fore persoual gingular pronoun is used, the speaker is asked
- FOR UIS AAME. IF HE IS HOT KNOWH TI HE SYSTEM, HE IS ASKED FUR HIS SEX.

(PROG, (NANE N-PROP SEX SUPER RESP) LOOPL
(PRINT ${ }^{\text {"WhHAT IS YOUR HAME?") }}$
(SEID MANE (head))
(COND ((NOT (NTDM NAME)) (PRINT " DDONT GE CUME") (GU LOCP1)))
LOOP?
(COND (MOR (MEMBER (CAR (GET HAME 'SUPERSETH) (MAN WUMAH)))
(-prlint " "are you male ur femalez")
(SETO SEX (K! AD))

(SETO N-PROP (HUMAN MALF) SUPERSET ((MAN)))
((MEMBER SEX ' (FEMALE F FEHININE WIMAN GIRL CHICK))
(SETO N-PROP ((HMMAN FEMALE) SUPERSET (WOMAN)))
((MEMBER sf:x (bBTH NEEHER BI BISEXUAL))
(PRINT ""IN THAI CASE . . . ")
(T (PTOP)', "WOULD YOU GIVE ME A STRAIGHT ANSWER") (GO LOOPZ1)' (PUT NAME AN-PROP N-PROP) (put Nane 'superser super) (PUT NAME OHJSEILE ""3") (put name dict ti
(PUT NAME PNPR **)
(RETURN (SETO SPEAKER (LIST (NP NIL (IIST (NPR NAYE)])))
(T (RETURN ISERO SPEAKER (LIST 'NP NIL (LIST MPR NAME)))II)I)
(T SPEAKER))
d defun start-list (zz L)
: THIS RDUTINE RETURNS THE FIRST SUB-list of l beginning with ZZ.
- (COND ((NULL L) NIL)

$$
\text { (}(E Q(C A R L) Z Z) L)
$$

((atom l) Nill)
(ISTART-LIST 27 (CAK L))
(T (START-LIST ZZ (CDR LU)l)

10EFUN START-REL (L)
(SETQ (CODR L))
(COND (EEQ (CAAR L) 'RELPRO) (SETO L (COR L)))
(COND (IEQ (CAAR l.) PPREP) (SETOL (CDR LJ)))
l)

IOEFUN SUPERSET (X)
; this returns a list of all of the supersets of the elements of x.
(PROG (L)
(SETO L NIL)
LOOP
(COND ((NULL X) L)

(DEFUN SUPER-NP-BUILD (NP)
; this routine calls np-build, but if np is a pronoun it resolves the reference first.
(PROG (TEMP)
(COND (CETO TEMP (PRO? NP)
(SETO AG-ANAPHOR (GETR MG) PA.ANAPHOR (GETR PAI)
(SETO TEMP (ANAPHORIC NIL T AHAPHOR-DEPTH TEMP))
(SETQ AG--ANAPHOR NIL PA-ANAPHGR NIL)
(RETURN (NP-BUILD TEMP)))
(T (NP-BUILU NP)!)!)
(OEFUN SUPER-START-LIST (ZL L TEST)

- this is the same as start-list, but test must be trige for it to succeeo on
; a part uf l.
i COND (INULL L) MIL)
((ANO (EO (CAR L) LL) (EVAL TEST)) L.)
((ATOM L) NIL)
((SUPER-START-LIST LZ (CAR L) reSt))
((SUPER-START-LIST LZ (CDR L) rEST) Il)

```
INEFUN TAIL-E:NSS ()
```



```
HAPSE FE:X ELEME:ITS WHICH HAVE NOJ BEEN HASGLGU YET, CASFST IS IHVOKED
FOR THEN.
    (PROG (S::R \Al)
        SETG SNR KEEP-SENT NNA 1)
            LOOP
```



```
                                    (IOR (CADAR SINA) (EU IVP (CAAR SUK)
                                    (GO Lump)
                                    ((E) 0 REL-LEVEL) (ALL-HIST-OFF SENG-HIST) NIL)
                                    (T \!)
(OEFUN TENSE-FIX (TNS)
    (PROG.(TEMP)
            LOOP
                (CU:JU (ISULL ISETO TEMP (SUPER-START-LIST ©TYS KEEP-SERT (NULL (CAOR LJ)I)) (RETURN NIL))
                        (T (RPLACA (COR TEMP) TNS) (GO LCCP))IN)
IDEFUN TEST-IJFF? (K)
    (AFD TESI-UFF (NDT (GETK THAT-COMP)) (MEMRER K FAIL-TEST-LIST)))
1DEFUN THERE-IS(1
; THIS IS A CASE OF "TO be"": "THERE IS A MAN IH THE HDUSE."
    (CO:ND (IAMD (EQ "<-AOV-" (CAAR KEEP-SENT)) (EO THERE (CAODAR KEEP-SENT)I)
                                    {FLAG-ON (CAR KEEP-SENI) KEEP-SENT T).
                                    T\)
(CEFUN THIKO-CHANCE (KASE PRN HIST)
* IF a LDCATIVE REFERENCE CANNOT GE RESOLVED, THIRD CHANCE LOOKS
; BACK OVER HIST, THE PREVIOUS PARSES.
        (LCCK-COAIV HIST'PKN (COND (IMENBER KASE (SOURCE DESTINATION LCCATION)) (MUST-BE LOCNTIDN)I)I)
(DEFUN TINE (NP PREP)
THIS IS IHE TIME CASE. W-N-TIME IS CALLEO FGK THE POSSIBLY CONPLEX CONSTRUCTS.
- (CONO (IAIND (EQ PREP (IN) (DURATIGN? YP)) NIL)
            ((NENBER PREP (IGEFORE AFTER WHIEN WHILE)) (H-H-TIME NP PREP))
            (IIS-IT.NP 'TIME)
                (SETO FN '(RPLACL (END-LIST (FINO-LIST STRUCT "|E=>")\ (LIST STRCT)))
                (SETQ PREPGCASE (LIST PREP (TIME))
                (SETU PGOD (PIIRASE-NUM 'VY KEEP-SENT))
                (TIME-BUILD NP PKEP)\)\
{DEFUN TINE-BUILD (NP PREP)
        (BUILDO ("<-T(ME-"##') PREP (CAOR (STAKT-LIST 'N NP))))
    (DEFUN TO-CO:P (SUBJ)
            THIS RUUTINE TAKES A TO-COMPLEMENT, NDOS SUBJ BEFORE IT, AND ANY
            POSSIRLE PHRASES ON THE END UF IT. TIUS RUIIOING UP A SENTENCE PARSE,
        A:ID INVUKES S DN IT.
    (PROI, (K-S TEMP NM)
                                    (CEVD (INULL SUSJ) (RETURN NILI))
                (SETG K-S KEEP-SENT NN 1)
            LOOP
                (COND ((NULL K-S) (KETURN IIL\)
                                    ((AND (EQ 'rO-COMP (CAAR K-S))
                            (SETO TEMP (EVAL (AUPEMD (LIST 'S)
                            (FLAG-ON (CAR K-S) KECP-SENT T)
                            TEMP))
                                (T {SETG NV (ADO\ NNJ K-S (CDR K-S)) (GC LOOP)))))
    (DEFSI: TOPIC (TESTEE PREP)
        : THIS IS THE TOPIC CASE. THERE IS NO TEST ON IHIS GASE.
        (?FOE (P只:)
            |REIURN (COND (ISETG PNPG (FKIF? TESSFEI)
```


IDEFUN TOPIC-LCTK NEXPR (TEST)

; JHIS POUIIAE LGOKS FOR JItE IUPIC CASË IF IT IS A NCUN-PHRASE.
(PRUG ITLMP TESTE: CLSS PRII
(SETUCLSS (PREP-CLAUSE (CASF-PREPS VEBE PTIPIC) KEEP-SENTI)
Loip
(COND (IAULL CLSS) (RETURN NILI)
(INJLL (SETO PKH (START-LIST PRRO (SETO TESTEE (CAR CLSS)))])

(T (SETG CLSS (CDR CLSS)) (GO I ROP)) I)
 (FLAG-DN TESTEE KEEP-SENT TEMP) (UELO (RETUPA TEMPI))
(T (SETG CLSS (COR CLSS)) (GO LOOP))J)))

```
(DEFUN TOP-LEVEL-START-LIST (AT L)
```

- THIS IS THE SAME AS STAKT-IIST, BUT IT LOOKS CNLY FOR AT IM THE
: TOP-LEVEL CF L.
IPROG NIL
LOOP
(CONO (INULL L) NIL)
((ATOM (CAR L)) (SETGL (COR L)) (GO LOOP))
((EQUAL (CAAR L) AT) ICARL))
(T (SETOL (COR Li) (GULCOP)))))
(DEFUSH TRY VEXPR (L)
- THIS IS PART OF THE MOKPHCLGGY ROUTINES. IT ADOS A LIST OF LETTERS ONTO
; A ROOT NOKD, ATNO CHECKS TO SEE IF IT IS A KNGNN NORO.
(PROG (riEh-WOQD)

IDEFU:Y VBTYPE IEXPR (Z)
(EU (GET VEH-WORO •V) Z))
(CEFUN VERB-CLEA* ()
[MAPOB (LAMBDA (X) (REM X (CASE-HIST)))]
(OEFUN VEKS-PREP? (VERB PREP)
|PROG (TEMP)
(SETG TEMP (GET VERX (PREP-CASE))
LOOP
(COYO (IVULL TEMP) NIL)
((EQ PREP (CAAR TEMP)))
IT (SETQ TEMP (COR TEMP)! (GOLOOP)I))!
(DEFUN V-FORE-TRND (VERE PREP LST)
- THIS ROUTINE TAKES A LIST OF CASES. ANO FOREGROUNOS THOSE CASES
; USED PREVICUSLY HITH VERB AND FLACGEU BY YHEP. IT DCES NOT
; USED PREVICUSLY WITH
; TGUCH THE DESC CASE.
(PROG (TEMP)
(SERG IEMP IGET VEKB 'CASE-HISTI).
LOOP
(CONO' (INULL TEMP) (RETURIN LST))
(IANO (EQ PREP (CAAR IEMPI) (NOT (EO DDESCRIPTIVE (CACAR TEMP))))
(KETURN (APPEND (LIST (CACAR TEKP)) (SOFT-OELETE (CADAR TEMP) T LST))))
(r (SETO TEMP (COR TEMP)) (GO LOUP))))
(DEFUN WEVAL (STRIMGI STATEL STACXI REGSL HCLEI PATHI)
; THIS IS PART UF RAY REITER'S AJN PARSER. I MAUE A SMALL CHANGE TO IT.
(PROG (A BULY-S ARCTYPE LEX)
(PPRACE ENTERING STATE (STATEI): STRINC = (STRINGI))
(PPRACE
(PIPEGS)
(SETG* (CODD (INULL STKINCI) AII.)
((SEIO HGKPMIENP IMCRPM (CAR STRINGL))
ICAND (IE:J MIRWHTEMP T) (CAR SIKINGII)

(T (KPIACA STR[GCil :OKHATEMP))
(T (ERROR (HICTFRR))))
LEX * 1

1: I: sodr-s (GET SIAIEL GRAMMAHI)
TNし
(CiNi, ((NULL nOOY-S) (HLOCXL!) (BLIUKY Rill))
(I \{SLTO AKCIYPL (EAAK E(H)Y-S))\})


```
I
IDEFUN where-1S (who)
; this routlhe tries to find out where who is.
    (PROG (HIST TEMP)
        . (SETO HIST HISTORY)
            loOP
            (CONO (NULL HIST) (RETURN 'SJMEPLACE))
                ((UR (EQUAL WHO (CASE-FIMG (CAR HIST) 'AGENT))
                    (EQUAL WHO (CASE-FIND (CAR HIST) CO-AGENT))
                    (EGUAL WHG (CASE-FINU (GAR HIST) (BENEFICIARY)))
                            OND ((SETO TEMP (WHERE-IS-I WIIG (CNR HIST)))
```



```
                (T (SETQ HIST (COK HIST)) (GO LOOP))\))
(DEFUN WHEREEIS-1 (WHO SENT)
    lor (CASE-FIND SENT 'DESTINATION)
        (CASE-FINO SENT 'LOCATIGN)
```



```
            IAND IEQ 'INHABIT ICADR ISTART-LIS
        DEFUN WHICH-MEANING (L SENT N VERB)
        THIS FUNCTION CONTROLS thE TOP-LEVEL BACK-UP.
        THE FIRST IINE INVOKES THE DEFIMITION OF THE VERB.
        THE NEXT PAHT CHANGES ANAPHOR-DEPTH TO ALLOW ANAPHORIC TO LODK
        THE NEXT PART CHANGES DEPER INTO THE HISTORY OF THE CGNVERSTAIION TO RESOLVE
        REFERENCES. IT CANAOT GO BACK. FURTHER THAN 2.
        THE NEXT THING If TPIES IS TO SHUT OFF THE SHOULD-BE TESTS.
; THE NEXT THITNGMPT IIT SHUTS OFF THE MUST-bE TESTS.
    (COND ((EVAL (GET VERB, V-MEAN)))
        l(eq o rel-level)
                (GONO ({GREATERP (MIN 2 (LENGTH HISTORY)) ANAPHOR-DEPTH O)
                        (SETQ ANAPHOR-DEPTH (ADDI ANAPHOR-DEPTHI)
                                    (aLL-FLAG-OFF KEEP-SENT)
                                    (which-meanimg l SENT N VERB))
                            ((NOT SHOULD-TEST-DFF)
                                    (SETQ SHOULD-TEST-OFF T)
                                    (ALL-FLAG-DFF KEEP-SENT)
                                    (COND ((GREATERP NHAPIOR-DEPTH O) ISETQ ANAPHOR-DEPTH llll
                                (bHICH-menNING L SENif N yerbi)
                            ((NOT TEST-OFF)
                            (SETO TEST-OFF T)
                            (ALL-FLAG-GFF KEEP-SENT)
                            (COND ((GREATERP ANAPHOR-DEPTII O) (SETQ ANAPHOR-DEPTH 1)))
                            (WHICH-MEANING L SENT N VERB))
                            (T '"I DONT GET IT")\)!)
(DEFUN WITH (TESTEE PREP)
; this IS THE WITH CASE.
    (PROG (PRN)
        (RETURN (COND ((SETQ PRN (PRO? TESTEE))
                                    (PRUG (TEMP)
                                    COHO (ISETQ TEMP (PRO-ANAPHOR? '(WITH PATIENT TOPIC AGENT)
                                    -(nOt (mUST-bE ABSTRACT HUMAN))
                                    PRN
                                    TESTEEI)
                                    (SFT-IIP-FN 'WITH PREP)
                                    (RFTURN (LIST "<-WITH-" TE&P)|)I))
                            ((NOT (MUST-DE ABSTRACT HUMAN))
                            ISET-UP-FN 'VITH PREFI
                            (LiST ""<-WITH-" (NOUN-LIST-GET (NP-BUILD rESTEE)))!)!)
    (DEFUN WITH-RESP-TO (A S)
    ; THIS CASE IS NUT IMPLEMENTED YET.
        NIL)
    IDEFUN WRITE? (A)
        (CONO ((IS-Ir ^ 'muSIC) 'COMPOSE)
            (r WRITE.l)
    IDEFUN WRITE-[NO-OBJ (IND PA)
        THIS FINDS THE CASE OF AN INDIREE, OMJECT FOR THE VERB "TO WRITE".
        IFIS MUSIC IS WRITIEN, THE INDIMECI OMJFCT IS THE HENEFICIARY CASE, ELSE IT IS THE
    RECIPIENT.
    (CONO ((NHLL IMO) NIL)
            (IIS-IT PA 'MUSIC) (LIST "<-IENEFICIARY-" (NIUUN-L.IST-GET (NP-BUILD PA)))).
            |f (LIST ""<-RECIPIENT-" (BOUN-LIST-BET (NP-BUILO PA))\H)
```

```
(DEFUN W-W-TIME (NIP PREP)
; THIS HAIDLES COMPLEX TIME CASES.
"BEFORE JUHN CAME. . ""
"WHILE I WALKEO IIOME. ."
(PRGG (PAKT RET)
(SLIO PART (REL-MOUS-JOIN NP \{PARASE-NHPZ (CONS PKEP (CONS NIL NP) KEEP-SENT) K)
(COND I(PROCN (SETU AG-ANAPHOK (BETR AG) FA-ANAPHOR (GETR PA))
(SERO RET (EVVAI. (CHNS -S (LIST PART)))
(SETO AG-ANAPHIIR NIL PG-ANAPHIOR NII.)
(SET-UP-FN (ATOM RET))
(SET-UP-FN 'TIME PREF)
(RETURN (CONS ""く-TIME-" (CONS PREP (LIST KET)))))))
```

```
FUN CRAMMAR-IN ()
MAPC 'MYPUT
    I|S (CAT PARIIClEE*
    (ANO (MUT (GET& PAETICLE)]
                (MEMEER * (GE: (CAR (SETO VV (COM (START-I.IST 'V (GETR VP))))) 'PARIICLES)\)
    (AOUR SENT {BUILHO {PAKIICLE r *)})
    (RPLACA VV (MKATGN (CAR VV! *'-N *))
    (SETR PAKTICLE ()
    (TO S))
(WRD THAN T {TU THAH-PH))
(WMD 50 r (TO SO-COHP))
(MEM {WHEN WHILE AFTEK BEFORE) I (SETR WH-WH *) (TO WHEN-WHILE)}
(WRD 1N T (TO [N-IN))
(WRRO BY T (TO BY-COMP))
    (WRO THAT (OR (NUT (GETK SENT)) (GETR VP)) (TO THAT-CONP))
    (WRD TU IOR (NOT (CETR SESII) (GEIR YP)) (TO TO-GOMPI)
    (PUSH PP (NEXT *PREP) (ALOK SENT *) (TO S))
    IPUSH VP
            NOT (GETR VP))
            I.SENDR V (GETR V))
            (SFNOR IENSE (CETR TENSE))
            SETR VH *)
            (ADDR SENT *)
            (T0 S))
        {PUSH! REL T (ADDR SENT *) (TO S))
        IPUSH ADJP
            (OR (NEXT 'ADJ) (NEXT 'ADV) (NEXT 'VI)
            (PROG (TEMP)
                    (SETQ TEMP *)
                    LOUP
                    (CDND ((NULL TEMP))
                        ((NULL TEMP))
            (ro si)
    (PUSH ADV (NEXT 'ADV) (AODR SENT *) (TOS S)
    (PUSH NP T (SENDR NP I) (ADIJR SENT *) (TO S))
    (JUMP S-YESNO (NEXT VV))
    (POP (BUILUQ (S "+") SENT) (PROGN (SETO HABITUAL (GETR HABITUALI) T)))
(WHEN-WHILE {PUSH NP T (SETR W-V (LIST (GEFR WH-WH) NIL *)) (TO W-W-NP)I)
(WH-W-NP (PUSH PP (NEXT PREP) (ACOR H-W *) (TO W-W-NP))
(W-W-NP (PUSH PP (NEXT PREP) (ACGR H-W *) (NO W-W-NP)ITR W-N)) (TO S))
            (PUSH VP (NEXT 'V) (AODR W-W *) (AOUR
(THAN-PH (PUSH NP T (AODR SENT (BUILDQ (THAN-PH NIL &))) (TO S)))
(SD-COMP (WPD THAT T (SEIR MODAL-FINO T) (TO SO-COMP))
            IPUSHS
                    (SENDR SO-COMP T)
                            (CUND ((ANU (UETR MODAL-FIND) (NOT (GETR NODAL))) NIL)
                                    ((GERR FODAL) (ALDR SENT (BUILDO (SO-CONP NIL "+" *) MODAL.)))
                                    ((ANO (NOT (EETR MODAL-FIND)) (NOT (GETR MODAL)))
                                    (ADDR SENT (BUlLDQ (SO-CONP N[L *)))))
                    (TO 5)))
ITHAT-COMP (PUSH S
                    (SENOR THAT-COMP T)
                    (SENDR TENSE (GETR TESSE);
                    (CORD (INOT (NULL *))
                            (PKOG (THAT-COMP)
                            (SETR FHAT-COMP T)
                    (AODR SENT (BUTLDO (THAT-COMP NIL #) (EVAL *))))
                    (SETG THAT-CMP T)))
                    (TO S))
ITO-COMP IPUSH VP
                            (NEXT 'V)
                            |SENUR TENSE {GETR TENSEI)
    (SENDR TO-CONAP I)
    |SETK TO-VP *)
    (TO TO-CONP-VP)))
GO-COMP-VP IPUSH PP
                    (NEXT HREPP)
                    (SETR,TG-COMP T)
                    (AUQR SEMT (BUILDO (TO-COMP NLL "+" *) TO-VP))
                    (rOS))
            IPUSH NP
                    T
                    (SETR TU-COM\rho T)
                    (AOOR SENT` (BUIL.OO (TO-COMP NIL "+"*) TO-VP))
                    (ros))
                            (JUMP S F (AOOK SENT (BUILUQ (TO-COMP NIL "+") TC-VP))))
(IN-IN (WRO ORDER I (TO (N-OAOER)))
(IN-GRDEK (WRO TO T (TO IO-COMP)))
IBY-COMP ICATV
            (EQ 'PRESPMRT (GETF PART))
            (SETR S-V (GETR V))
            (COND ((GRTM v))
                (r (SL:IU TNS-FIX? T)
            (SEIR TENSE (TOIK TENSEI)
            ISETK y *)
            (SETR BY-V (BUII_D-VP))
            (SETR V (GETR S-v))
```

 (1051)
(S-PP(J-PGP (POP (BUILG-PP(J) T))
(S-PP (JUMP S-YESNO (ARH) (GETR W!
(S—DCL (PUSH NP \quad (SETR SUBJ *) (SETK S-SUHJ (OETR MEADNOUH)) (TO S-NP)))
IS-IMP ICAT V
(GETE UNTEASEO)
(SEIK SUBJ • INP (DET NIL) (PRO YOU) (NU SC-PL)))
(SETR V *)
(SERR TEREE (UNTENSED))
(SEIR S-SVOJ (DUHMY YOU MIL))
(SEJR S-VERB (BUIT.CO (a (V*) (\#)) FEATURES))
(TO \vee-AUX))"
(S-NPU (PUSH NP T (SETR SU日J *) (TO S-NPQ-PGP)))
IS-YESND ICAT V
(\wedge UX*)
(SETR V (BUILDQ (V *)))
(SETR TYDE YES-NO)
(SETR TENSE (IIST (GETE TASS)))
(SETR YESNU T)
(TU S-YE SNO-MEG)))
(S-YESNO-NEG (WRU NOT (SETR NEG (NEGATIVE)) (TO S)) (JUMP S T))
(S-WII ICAT OADV
(CONU ((NULL (CDR STRING)) N(L)
((AUXV [CADR STRINC))))
[ADOK ADVERGS (BUILDO (GACV *))]
(SETR TYPE '(QADV))
(TO S-YESNO))
IPUSH QP
(AND (GET LEX 'QPRD) (NDT (ASSO SUBJ (COR (GET LEX 'QPRO)))))
(CONU ($\mathbb{C N U L L} S T K I N G) ~(A B C R T))$
((NOr (AUXV LEX)) (ABORT)))
(HOLD (APPEND \uparrow (GETR PREPPHRASES)))
(SETR TYUE • (UPRO))
(SETR QOES (GETR HEADQPRO))
(SETK S-DO (GETR OOBJ))
(SETH PREPPYRASES NIL)
(TO S-YESNO))
(PUSH QP
(ANO (GET LEX 'OPRO) (NOT (ASSQ GBJ (CDR (GET LEX PQPRO))))
(COND ((NULL STRING) (ABORT))
((NOT (GET LEX ©V)) (ABORT)))
(SETR SUQJ (APPEND $*$ (GETR PREPPHRASESI))
(SETR S-SUBJ (GETR HEADOPRO))
(SETR TYPE (OPRO))
(SETR PREPPHRASES NIL)
(TU S-NP))
(CAT QDET T (SETR QDET \&) (TO S-QOET)))
IS-QDET IPUSH NP-DET
T
(SENUR DET (GET? GDET))
(SENUR SEM-DET (BUILDO (ODEJ."+") GDETI)
(SETR WH-NP (APPENO (GETR PREPPHRASES))
(SETR FYPE (IODET))
(SETR PREPPHIRASES NIL)
(TUS-VH-NP)))
IS-WH-NP IJUMP S-YESAO
(AUXV LEX)
(SETR S-DO (GETR HE AONOUN))
(HOLD (GETR WH-NP))
(SETR QOBJ (GETR HEAONCUN)))
(JUMP S OVP (GET LEX V) (SETR SUBJ (GEIR WIT-NP)) (SETR S-SUEJ (GETR HEADNDUN)I))
(REL (MEM (WHICH WHO WHUM THAT WHOSE) T (SETR RELPRO (BUILDQ (RELPRO *))) (TOREL-PRO)I
(CAT PREP (SETR PREP (BUILDO :PREP *)) (TO REL-PREP))
(JUMP RED-REL (NEXT (N NPR DET PRO V))))
(REL-PREP (MEM (WH:CH WHOM WHOSE) (SITK KELPRO (OUILDO (RELPRO *))) (TO REL-PRO))) IRED-REL ICAT V
(EQ 'PRESPART (GETF PART))
(SETR V *)
(SETR TENSE '(PRESENT))
(SETR VP (BUILD-VP))
(SETR REDUCED T)
\{TO REL-VP) \}
(CATV
\{EO PPASTPART \{GETF PARTI)
(SETR V)
(SETR VOICE - (VOICE PASSIVE))
(SETR IENSE (DAST))
(SETR VR (BULLIJ-VP))
(SETR REDUCFO 「)
(IU REL-VO))
(REI.-PRO (PUSH NH T (SEIK OUJ-REI. I) (SETR NP(*) (TOREL-NPI))
(PUSH VI
(ANO (NOI (GEIR PREP)) (MEABER (CADR (CETR RELPRO)) (WHICH WHIO THAT)))
(SETR VA*)
(TOREI-VP)))

（LIST（CUNO（AAND（GETK REDUCED）（GETK OBJ－REL））OBJ－BED－HEL） （（GETR REOUCED）PRED－REL ）
（CEIK UBJーREL ）（BBJ－REL）
（T＇RELI）
（LIST－IT（GETR RELPRO））
（LIST－IT（GETR PREP））
IHP 1
（LIST－IT（CETR MOE－NHI）） Vト1
T）
（REL－VP（PUSH NOJP
（NAD（OR（NFXT •ADJ）（NEXT •AOV））（EO •BE（CAOR（START－LIST VV（GETR VP）））））
（MAPC（ $(\angle A M H O A(X)(A O D K$ AOJ $X)) * 1$ ．
（IO REL－VP－NP2））
（JUMP REL－VP－NPZ T））
REL－VP－NP2（POP（BUILOQ（D \｜（NIL）\quad \＃$\#$（＂＋＂）＂＋＂\＃）
（T RRELJ）
（LIST－IT（GETR KELPRO））
（LIST－IT（GETR BREP））
（ILST－IT（GETR NPIT）
VP
ADJ （LIST－IT（GETR NPZ）））
TIJ
（VP（JUMP V－AUX（GETR Vi）
ICATV
（OR（GETF TNS）（ANO（GETR TUFLAG）（GETF UNTENSED））
（COND（（NOT（GETK TENSEJ）（SETR TENSE（ILSI（GETF TNS））J））
（COND（ A AND（NOT（GETR TO－CCMP）） （NUT（GERR THAT－COMP））
（NOT（GETR BY－COMP））． （NOT（GETR SO－COMP）））
（LIFTR TENSE（GETR TENSE）SII）
（SETR S－VERB（BUILUU（D（V＊）（A））FEATURES））
（SETR V＊）
（IO $V-A U X)$ ）
cat MODAL
T
（SETR MODAL＊）
（LIFTR MODAL＊SO－CUMP）
（COND（（MEMBER＊（HOULD WILL SHALL））（SETR TENSE（FUTURE））））
（TO VP））
（JUMP VP－VP（GETR V））
（S－iNPU－OOP（POP（BUILD－NPU）T）
（ V－AUX（＇NRD NOT（VFEATURE（GETR V）＊AUX）（SETR NEG（NEGATIVE））（TO V AUX）） ICAT V
（PERFECT）
（SETR V ）
（SETR ASPECT（PERFFCT））
（SETR S－VERB（BUILDQ（a（V＊）（\＃））FEATURES））
（TO V－AUX））
（CAI V
（PRUGRESSIVE）
（SETR V＊）
（SETR ASPECT（APPENU（GETR ASPECT）（PROCRESSIVE）））
（SERR S－VERB（EUILD（a（V＊）（i））FEATURES））
（TO $V-A U X)$ ）
ICAT V
（FUTURE）
（SETiR V＊）
（SETR TENSE（FUIURE））
（SETR S－VERB（BUILDO（A（V + ）（4））FEATURES））
（rov－AUXI）
ICATV
（PASSIVE）
（SEIR V＊）
（SETR S－VERB（BUILDO（a（V＊）（H））FEATURES））
（SETR VOICE＇（VOICE PASSIVE））
（TO VP－VP））
icat V
（OU－AUX）
（SETR V＊）
（SETH S－VERB（BUILOQ（a（V＊）（z））FEATURES））
（C．UND（（AND（NOT（GETR YESNO））（NOT（GEIR NEG）））（SETR MODAL．（NODAL DO））I） （IO VP－VP））
cat v
（MOUAL）
（SEJK MOHOL（BUILDO（MODAL＂＋＂）VI）
（SETR V 女）
（SETR S－VERB（BUILDO（a（V＊）（＊））FEATURES））
（TOV－AUX））
ICAT PREP
（MEMBER＊［GET（GETK V）．PARTICLFSI）
（SETR V（MKATIM（CETR V）＊＂－＂＊））
（To vpavpi）
（JlMP VP－VP 「））
（VP－VP（HOP（BUILD－VP）T）
（S－V（VIK NO（CONO（（HUT（V－DO－AGPEEMENT））（ABORTI））（SFTR OBJ＊）（TO S－V－TOCOMP）
IPUSH NP
（OR（VFEATURE（CETR V）（IRAMS）（VFEATURE（GEIR V）＇COPULA））
（SENDK MUTIUAFFIAC F）
（SETK S－DD（GEIR HEAONOUN））
（COND（（NOT（V－DÍI－AGREEMENT））（ABORT）））
（SETR OBJ t）
$(\operatorname{ros} s-V-\operatorname{COCOMP}))$
IPUSH AD．JP
（ANO（VFEATURE（GETR V）©COPULA）（OR（GET LEX＇ADV）（EET LEX＇AOJ）J）
（SETK V＊）
（COND（（NOT（PREOADJ－SEMANTICS（LISY（GETP．HEAUADJ））（GETR S－SUBJ）））（ABORT）））
（SETR S－VERG＊）
（TU S－PREDAUJ）
（CAI PREP
（ANO）（NOT（GETR PARTICLE）（HEMOEK＊（GET（GETR V）PPARTICLES）））
（SETR V（MKATOM（CETR V）＂＊－＂\because ）
（SETR S－VERG（BUlLUS（V＂＋＂）V））
（SETR PARTICLE I）
（TO S－V））
（WRD THAT（VFEATURE（GETR V）．THAT）（TC S－V－WRO＝THAT））
（WKO FO T（TO $\mathrm{S}-\mathrm{V}-\mathrm{WRO}=\mathrm{r}$ J））
（ H USH ADV（GET LEX（AOV）（ADOR ADVERBS＊）（TOS－V））
（JUSAP S－V－WRO）THAT
（AND（VFEATURE（GETR Y）（THAT）
（NOT IMEMU LEX＊（TO THAT））
（NOT（GETR PASSIVEFLAG）III
（JUMP S－V－PPT））
（S－PREDADJ（WRG THAN（COMPVERB（GETR V））（TO S－PREDADJ－COMP））（JUPP S－MAINCLAUSE T））．
（S－PREDADJ－COMP（PUSH NP I（SETR UBJ \rightarrow ）（TC S－MAINCLAUSE）））
（S－V－NP IVIR NP
（ANO（VFEATURF（GETR V）［INDOQJ）（MEMQ（CAR（GETR TYPE））（QPRO QDETI））
（ADOR UREPPIRASES（BUITCG（PP（PREP TOI＂＋＂）OEJ））
（SETR S－INOO（GETR S－UNI）
（SETR S－DO（GETR QUBJI）
（COND（（OR（NGT（V－DO－SEMANTICS（GETR S－VERB）（GETR S－OO）））
（MOT（V－IMDO－SENANTICS（GETR S－VERE）（GETR S－INDO））））
（ABOR（））
（SETR OBJ \ddagger ）
（TO S－V－PP））
IPUSH NP
（VFEATURE（CETR V）INLOBJ）
（SETHOR AGFLNG（GETR AGFLAG））
（COND（（OR（ATSD（GETR WHOEJ）（NOT（GETR PASSIVEFLAG）））（GETR QOBJ）） （SEIR S－INUD（GETK HEADNOUN））
（ADQR PREPPHRASES（BUILDU（PP（PREP TO）\＆）））
（T（ADIR PREPPHRASES（EUILDQ（PP（PREP TG）＂＋＂）OBJI）
（SETR S－INDO（GETR S－DOI）
（SETR S－DO（SETR HEADNDUN）） （CIND（IOR（NOT（V－DO－SEMANTICS（OETR S－VERY）（GETR S－DO）））
（HOT（V－INDD－SEMANTICS（GETR S－VERB）（GETR S－INDO）））
（APCRT）$)$ ．
（SETR OBJ＊））
（TO S－V－PP））
（PUSH ADV（GET LEX＊ADV）（ADOR ADVERBS＊）（TO S－V－NP））
（JUMP S－V－PP T）
（S－V－PREP＝RY（PUSH NP
r
（SENOR AGFLAG \｛GETR AGFLAG）\}
（SEMDK MOTIONFLAG．T）
（CUNO（INOT（S－V－SEMMHTICS（GETR HEADNOUN）（GETR S－VERBJ））
（ADDR PPEPPHRASES（BUILDO（FP（PREP BY）＊）））
（T（SETR SUCJ＊）（SETR S－SUBJ（GETR MEADNOUN））（SETR AGFLAG NIL）））
（TO S $-\mathrm{V}-\boldsymbol{P}$ ）））
（S－V－PP（WRD BY（GETK AGFLAG）（TO S－V－PKEP＝BY））
IPUSH PP
（GET LEX PRES）
（SEADR MOTIUVFIAG（COMD（（NOT（ASSO＇MOTION（CDR（GET LEX PPREP））））））
（SENDR ACFLAG（GETR AGFLAGI）
（AGDR PREPPHRASES＊）
（TGS－V－pp））
（PUSH AOV（GET IEX ADV）（AODR ADVERBS \＆（TOS－V－PP））
（JUMP S－MAIMCLAUSE 「））
IS－V－WRD＝THAT IFUSH S－OCI．
T
（SENDR TYPE（UCL））
（ADOR CUMPL（BUILUO（COMPL（CTYPE THAT）＊））
（AND）（VFEAIURE（GFTK V）ERANS）ISETK S－CO（CAR（GETR COMPLI）））
（T0 S－MA（NCLNUSE）））
IS－V－TUCUMP ICAT PREP
（AND（NU：（GETR PART（GLE））（MEMAER＊（BET（GETR V）PPARTICLES）））
（SEIK V（MKATOM（GEJKV）＊＂ー＂＊））
（SETR S－VERB（BUILDO（V ${ }^{*+}+{ }^{\prime \prime}$ ）V））
（SLIR VARFICHE T）

（WRD TO $1(10 \quad S-V-W R D=T(1))$
（JUMP S－V－N！I）

```
(S-V-WRO)=TO (OUSH S-N
    I
                            I
SGNOR TOFLAG II
SENDP TYPE (GCL))
SENUK SUBJ (CLNNG ({GETR OBJ)) ((CETR SUBJ)))
(SENDR 「EHSE (CITTR TENSE.)
```



```
ADDR COMBL (BLJILOG (CGMP INANSE. (SEIK S-UN (CAR (GEPR COMPLI)I)
(AND) (VFEATURE (GETM
(10 S-MAI!(CLAUSE))
G-mAINCLAUSE (CAT CONJ T (SEGM CONJ *) (TO S-CONJ)) (JUPM S-S T))
IS-CONJ ICAT V
(AND (NITT (NEXT V)
(NGT (GETK PASSIVEFLAG))
(NOT {EWUAL (G&TR TYPE) ((IMP)))
(WOT (GETR YESNO)])
        (SETR CONJ-V*)
        (TOS-CONJ-V-ACIIVEI)
    ICAT V
(ANO (NOT (NEXI V))
                    OR (GETK PASSIVEFLAG) (GETR YESNO)
            (MOT (EOUAL. (GETR TYIE) (IIMP))))
        (ANU (COR STRLNG) (GETR (HBJ) (HOLO (GETR OBJ)))
        (SETK CONJ-V *)
        {TU S-CONJ-V-PASSIVEI)
        (PUSH S I (SETR S-CONJ %) (TO S-S)))
S-CONJ-V-ACTIVE (PUSH S-V-SEMANTICS
                    (NUT (NULI SIRING))
                    (SENDR SUEJ (GETR SUBJ))
                    (SFNOR S-SUHJ {GETR S-SUBJ))
                    (SENDR TYPE {GETR TYPE))
                    SENOR NLGG (GETR NEG))
                    (SENDR TFNSE (GETR TENSE))
                    (SENOR ASPECT (CETR ASPECT))
                    (SENDR V (GETR CONJ-V))
                    (SENDR S-VERB (BUILDO (V "+") CONJ-V))
                    (SETR S-CONJ *)
                    (TD S-S))
                            (JUMP. S-CONJ-BHIID (NULL.STRING)))
IS-CONJ-V-PASSIVE (PUSH S-V-SEMANTICS
                    (NOT (NULL STRING))
                    SENDR SUBJ (CETR SUBJ)
                    (SEINDR S-SUAJ (GETR S-SUBJ))
                    (SENDR TYPE (GETR TYPE))
                    (SENOR NEG (GETR NEG))
                    (SENDR VOICF (GETR VOICE))
                    (SENCR TFINSE (GETR TENSE))
                    (SENDR ASPECT (GETR ASPECTI)
                    (SENOR V (GETR CONJ-V))
                    (SENUR S-VERB (BUILDO (V "'") CONJ-V))
                    (SENOR YASSIVEFLAG {GETR PASSIVFFLAG))
                    (SENUR AGFLA; (GETR PASSIVEFLAG))
                    (SENDR S-DO (GETR S-DO))
                            (SENDR S-ONOR YESND (GETR YESNO))
                            (SENDR AUVERES (COND ((EGUAL (GETR TYPE) (GAOV)) (GETR ADVERBS))))
                            ISETR S-CONJ *)
                            (TO S-S))
                            (JUMP S-CONJ-BUILD (NULL STRING) (SETR CONJ-PASSIVE II)I
IS-CONJ-BUILD (JUMP S-S
                                    (S-SEMANTICS (GETR S-SUBJ) (BUILDO (V *+") CONJ-V) (GETR S-DO) NIL)
                            (SETR S-CONJ (BUILD-S-CONJ)))]
(S-S (POP (PUILU-S) (S-SEMANTICS (GETR S-SUBJ) (GETR S-VERB) (GETR S-DU) (GETR S-INDO)I))
INP ICAT GENPRO
    T
    (SETR PRUPER (BUILDO (GENPRO *)))
    (SETR NU SG)
    SETR SEM-NOUN (BUILOQ (GENPIRO * ((NUMBER SGI)))
    (LIFTR HEAD'NOUN (GETR SEM-MGUN))
    (T0 NP-GENPROH)
    ICAT DET
    (NOT (GETF POSSPRO))
    (SFIR UET *)
    (SETR SEM-DET (LIST UET % FEATURES))
    (SETR QFLAG (GETF OUANT))
    (TO NP-UETI)
    CCAT OET
    (GETF POSSPRO)
    (SETR SEM-OET (BUILDQ (POSS *)))
    (SETR UET (BUILDO (POSSPRO *)I)
    (TO NP-DET)]
    ICAT NPR
            IGETF POSSESSIVE)
            (SETR PUSSFIAG T)
            (SETR SEM-DET (BU(LOO (POSS *)))
            (MOOR NUOS (BUILUO (POSS (NOR *)\))
            (rO MP-DI:T))
        ICAT PRO
            NOT (GESF POSSPROI:
            SETR MROPER (HULLDN (A {PRO *) #) FEATURES)\
            ISETO ANAPHOK-DEOIII II
```

```
            (SETR SEA-NOHN (BHILOQ (a (PHO &) (N)) FEATURES))
            (LIFTR HEADNUHN (GETR SEM-ROU:O))
            (SETR NU (GETF NUMBER))
            (SETR pizO T)
            (10 NP-N))
    ICAT NPR
            (NOT (GETF POSSESSIVE))
            (SFIR PROPER (RUALDO (á (NPR *) #) FEATURES)
            (SETR SEM-NOUN (&UILUQ (A (NPR *) (H)) FEATURES))
            ILIFIR HEADNOUH (GETR SEM-HOUSNI)
            (setr nu -sG)
            (t0 N(N-N))
    lCAT QDET
            NOT (EU * 'WHO))
            (SETR UET *)
            (SETR SEM-DET (BUILDQ (GDET *))
            (lIFTR WII-PHIRASE T SI
            (mapC (lambua (x) (apply 'liftr (list -TypE '(lodet) X)))
                (S S-DCL S-Y S-V-NP S-PREUAOJ-COMP S-V-PREP=EY S-V-PP)I
            SETR QFLAG (GEIF QUANT)
            (TO NP-URO))
    ccat pru
            (GETF rOSSPRRO)
            (SEtR SEM-DET (buILDO (POSS *)))
            (SEYR DET (BUILOD (POSSPRO *)I)
            (SETK N ' ONES)
            (SETR INU 'SG-PL.)
            (SETR SEM-NOLIA (OURMY ONES NIL))
            (LIFTR HEADNOUN (GETR SEM-HCUN))
            (tO NP-MAINPHRASE))
    (JUMP NP-DET T))
(NP-GENPRO (PUSH! ADJP
                                    lOR (GET LEX 
                                    (TO NP-N))
            (JUMP NP-N I))
(NP-DET (CAT ORUINAL T (ADOR MODS (BUILDG (("S-ORD-" NIL *)))) (SETR DRD T) (TO NP-QRO))
    icat aos
            ggetf superlative)
            (ADDR MODS (BUILDQ (ORD (a ("<-ADJ-" *) #)) FEATURESI)
            SETRR ORD T)
            (ru NP-DKD))
    (Jump NP-ORU T))
(NP-ORD (PUSH QUANTP T (SETR DUANT T) (ADDR MODS *) (SETR SEM-DET NIL) (TO NP-QUAIIT))
            (JUMP NH-DUANT T)
    I JUMP NP-MAINPIIRASE
            (OK (AIND (GETR ORO) (GETR DETI) (GETR GFLAG) (GETR POSSFLAG))
            (SETR N OONES)
            (setR NU 'Sg-pl)
            (SETR SEM-NOUN '(DUMmy ONES NIL))
            (LIFIR HEADNOUN (GETR SEM-NOUN))
            (SETR NU 'SG-PL)))
INP-QUANT IVRO OF
                    UR (AND (GETR ORO) (GEIR DET)) (GETR OFLAG) (GETR QUAGTI)
                    (TU NP-(JUANT-PREP=0F))
            IJUMP NP-QUANT-PREP=OF
                    (AND (NOT {GETR ORD\)
                    (NOT (GETR OUANT))
                    (CESR OFLAG)
                    (MEMQ (GETR DET) '(ALL BOTH))))
            (JUMP NP-PART (NOT (EQ * 'OF)))
            (JUAPP NP-MAINPHRASE
            (OR (GETK (QUANT) (GETR QFLAG) (GETR POSSFLAG) (AND (GETR ORD) (GETR DET)))
            (SETR N 'ONES)
            (SETK NU 'SG-PL)
            (SETR SEM-NOUN '(DUNNY ONES NIL))
            (LIFTR HEADNOUN (GETR SEM-NOUN))
            (SETR NU 'SG-PLI))
NP-QUANT-PREP=UF (PUSH N'
                                    ADODR PP (BUILUQ (PP (PREP OF) %ll)
                                    (SETR N 'UNTSS)
                                    (SETR NI) SG,-PL)
                            (SETR SEM-NOUN '(DUMMY ONES NIL))
                            ILIFER MEADNUU: (GETR SEM-NOUNI)
                    (SETK NU - SGI-PL)
                            (IO NP-MAINPHRASE))/
INP-PART ICAT N
            (GETF POSSESSIVE)
            lador smijos
                    ("<-POSS-(3Y-" (a (*)(A) #))
                        featumes
```



```
                (CONU ((GETK CLASS) (SEIR MOOS NIL) (SETR CLASS NILJ))
                (SETR moDSS (GEta Smodos))
                (AUDK MOOS (BUILDO (a (POSS (N *) 4)) FEATURES))
                (SETr gFlag Nil) .
                (SEPR ORI) NIL)
                isErM POSSFtag ri
```

```
    |SETK OWAHM NIL.)
    (SETK GEH-IDET NIL)
    (S上JR ¢KM-N!JG NIt.)
    (「U NP-I)ET))
    ICAT N
    (ANO (NOP (DETFF POSSESSIVE)) (NUMAGREE (GETR DET) * 'N (GETF NUMBER)))
    (SETK iN *)
    (SETH N&GAT FEATURES)
    \SETK :NU (GEIF NUMBER))
    (SETR SEA-NDUN (BUILDO (D (N *) (#)) FEASURES))
    (10 NP-N))
    ICATN
        (AND {NOT (GETF PUSSESSIVEJ) (NOT (GETR CLNSS))}
        (SETR N *)
        ISETR NFEAT FEATURESS
    (SETR SU(GETf NUMRER))
    ISETR SHOOS (GETR MOOSI)
    (SETR MOOS :NIL.)
    (SETR CLASS (BU(LDO ("<-CLASS-" #) (NP-BUILD (NOUN-LIST-GET (BUILD-NP)))))
    (A^AN)
    (SETK MODS (GETR SMOOSI)
    (ADOR MDUS (GETR.CLASSI)
    (AAAA)
            (SETH N NIL)
            (IU NP-PART))
ICAT NPR
    (NOT (GETF POSSESSIVE)).
    (ADDR MODS {BU{LOQ (ADJ (Q (N "+") "+")) iv NFEAT))
    (SETR NFEAf feATURES)
    (SETR NPR *)
    (SETR NU 'SO)
    (SETR SEM-MOHN {BUILDO (D (NPR *) (#)) FEATURES))
    (TO NP-N))
        (PUSH AOJP
            (OR (GET LEX 'ADJ) {GET LEX 'ADV) (GET LEX 'V))
            (SENDR NP T)
            AODR MODS *)
            (ADDR SEM-ADJS (GETR HEADAOJ))
            (TO {P-PART)))
INP-ADJ [CAT N
            (GETF POSSESSIVE)
            (AUDR MOOS (BUILDQ (ADJ (a (N "+") "+")) N NFEAT))
            (AUDR SMOOS
                (:<-POSS-9Y-" (0)(*) (#) #))
                FEATURES
                (COND ((GETR CLASS) (LIST-[T-\ (GETK NODS)))))
            (CONO ((GETR CLASS) (SETR MOIS NIL) (SETR CLASS NIL)))
            (SETR MDDS (GETK SMODSI)
            (AODR NODS (BUILDO {POSS (a (N *) #)) FEATURES))
            ISEIR OFLAG NIL. 
            {SETR ORO NIL}
            (SETR MOSSFLAG T)
            (SETR gUANT NIL)
            {SETR SEA-DET NIL)
            (SETR SEM-AOJS NIL)
            (TO NP-DET))
            (CAT N
            (ANO (NOT (GETF POSSESSIVE)) (HUMAGREE (GETR DET) * 'N (GETF NUMBER)))
            (AOUR MDDS (BUILDQ (ADJ (al (N "+'H) 't+")) N NFEAT))
            (SETR N*)
            (SETR NFEAT FEATURES)
            (SETR NU (SETF NUMBER))
            (SETR SEM-NOUN (WUILDQ (a (N *) (#)) FEATURES))
            (TU NP-AOJ))
    ICAT N
            (AND (NOT (GETF POSSESSIVE)) (NOT (GETR CLASS)))
            (SETR N*)
            (SETR NFEAT FENTURES)
            (SETR NU (SETF NOMBER))
            (SETR SMODS (GEER MOOS))
            (SETR (LASS (B::MLOO ("<-CLASS-"#) (BUILD-NP)))
            (SEIR MODS IGFTR SMGOSI)
            (AUUR MODS (GETR CLASS))
            (SEIR N NIt.)
            (TU NP-PART))
    ICAT NPR
            (NOT (OETF PUSSESSIVE))
            (ADDR MODS (BU[tDO (AOJ (# (N "+") "+")) N NFEAT))
            (SEIR NFEAT FEATIJRES)
            (SETR NPR *)
            (SETR NU 'SG)
            {SETR SEM-HOU:N (BUILIO (a (NPK *) (#)) FEATURES))
            (T:1)NP-ADJ))
                            JUMP NP-N 「))
(NP-N (PUP (BUMLU-IDP) T))
(NP-MA(NPIARASE (CAT CONJ I (SETR CONJ *) (TO NP-CONJ)) (JUMP NP-NP T))
(NP-CONJ I PUSH NP
            I
                            (SENOR CONIFLAG T)
                            (SETr NP-GON.j *)
            (CUNO (IAIOM {CAOR (GETR HEAONOUN)))
```

（TO NP－148））
（AP－NP（POP（BUILO－NP）（NP－SEAAITICS（GETR SEM－DET）（CIGK SEN－ADJS）（GETR SEN－NCUN）J） （ADJ（MEM（MURE MOST）T（SE\｛R FEAT（BUOLDW（H））（COMP－SUPER）））（TO NOJ－FEAS）） ICATV
（AND（PAKTICIMLE）（CETH NP））
（SETR ADJ（DUPLOO（H＊）（DARTICIPLE））
（LIFTK HEADAD．）（BUILUQ（V＊（\＃＊））（PARTICIPLE））NP－PART）
（LIFTR HEAOADJ（BUIIDO IV＊（H＊）（PARIICIPLE））S－V）
（TOADJ－AOJ））
（JUMP AUJ－FEAT T））
（ADJ－FEAT ICAR AU．D
（SETA ADJ＊）
（OR（GETR FEAT）（SETR FEAT FEATURES））
（LIFTR HEADAOJ（BUILDO（ADJ＊（＂＋＂））FEAT）NP－PART）
（LIFTR HEAOAUJ（BUTLOO（ABJ＊（＂＋＂））FEAT）S－V）
（TO AD．s－AOJ））
（ADJ－ADJ fPOP（GUILDO（可（＂く－AUJ－＂NIL．＂＋＂）＂＋＂）ADJFEAT）T））
（ADV（MEM（MURE MOST）T（SETK FEAT（BUILDQ（（H））（CDPM－SUPER）））（TO ADV－FEAT））
（JUMP ADV－FEAI T））
（ADV－FEAT ICAT ADV
T
（SETR ADV＊）
（OR（GEIR FEAT）（SETR FEAT FEATURES））
（COND（IMEMBER＊（THERE HERE））（SETQ ANAPHOR－DEPTH 1）））．
（IO AOV－AOV）））
（ADV－ADV（POP（BUILDO（A（＂く－ADV－＂NIL＂＋＂）＂＋＂）ADV FENT）T）
IAUJP（PUSH ADJ
（OR（NEXT＇（AUJ ADV V）））
（SEMDR NP（GETR NP））
（COINO（（NULL．（GETR ADV））（ADOR ADJ＊））
（T（ADDK AOJ（APPEND \＃（LIST（LIST－IT－2（GETR ADV）））））（SETR AOV NIL）））
（TO AOJP））
IPUSH AOV
（OR（NEXT＊ADV）（NEXT •V））
（CONO（（NULL（GETR ADV））（SETR ADV＊））
（T（SETK ADV（APPEND＊（LIST（LIST－IT－2（GETR ADV））））））
（TO ADJP））
（JUMP ADJP－ADJP T）
（ADJP－ADJP（POP（GETR ADJ）（NOT（NULL（GETR ADJ）））））
（PP（CAT PREP（SETR PRE？\because ）（TE PP－PREP））
（PP－PREY（MEM（THERE HERE）（SETR NP（RUILDQ（＂く－ADV－＂NIL＊））（TO PP－PP）（ （PUSH NP T（SETR NP＊）（TO PP－PP））
（PUSH OP
（GET LEX＇UPRO）
（SETR NF ：）
（LIFTR TYPE GPRO S）
ILIFTR WH－PHRASE T SI
（rO $P P-P R$ ））
（PP－PP（POP（BUILDQ（PP MIL $\quad+\boldsymbol{+ \prime + \pi}$ ）PREP iNP）T））
（0P（CAT OPRO T（SETR QPRO＊）（TC GY－GPRO）．））
（QP－OPRO（PUSH PF（GET LEX PPREF）（SETR PD＊）（TO QP－QP））（JUMP．QPMQ．TI）
（QP－OP（POP（BUIID－OP）T）
（OUANTP（CAT NUABER I（SETR G（DULIDG（INTEGER＊）））（TO QUANTP－Q））
（CAT QUANT T（SETR $0 *$ ）（TO QUANTP－Q））
（JUMP QUANTP－O r））
（QUANTP－O（WRO AT T（TO QUANTP－PREP＝AT））
（CAT COMP T（SETR COMP（BL：ILDQ（ADV＊））（TO QUANTP－COMP））
（JUMP QUANTP－DUANTP（GETR O）（SETR QWORD T）））
（QUANTP－PREP＝AT（CAT SUPER T（SETR SUPER（BULLDQ（AOV ：）））（TO QUANTP－MOUS）I）
（WUANTP－COMP（WRO THAA T（TQ UUANTP－MODS））
IJUMP OUANTP－OUANTP
（COND（IAND（GETE（COMP）
（ED（CADR（GETR COMP））＇MIRE）
（GET LEX＊ADJ）
（EO（GET．IEX＇ADJ）＊））
N（L）
（T）
（SERR OWORD（NOT（AND（GEYR COMP）（GETR O）J）））
（QUANTP－MDDS \｛CAT DET（NOT（GETR DET））（SETR DET＊）（TO QUANTP－MUDS））
（BUSH QUANF：T ISETR CUANT \because（TO DUANTP－QUANTPI）
（JUMP（JUANTP－OUANTP（AND（CEFR Q）（NOT（CEIR CONP）））））
（QUANTP－GUANTP（POP（BULIU－DUANG！1））））


```
    (i,:f;% BUli.|-%, 1)
```



```
        (G.mNO (|fera vilicil)
```



```
    (LIFTR VOIGE (f;̈rR VOICE))
```



```
    SETK V {HUII.MO (V "+") V))
```



```
        (} (Ai)ML AJVEKVS "<-NOV-"))।
    ({UILDU(a (v\mu) (inIL) ("+") ("+") "+") AUXV A[:VEMBS))
(ú&fu゙& HリJLD-:JP ()
```



```
    ISETKN
```



```
                        ((GETK NPK) (BUILDO (I) (NPK "+")"*") NPR NFEAT)|
                            ((GETR PR(JPER))))
    (SETR NP (HUILDM (A) (NP) (HIL) "+**** ("+")) UES PCSSN) )
    (COND (IGETR CDNJ) (BUILDN (NP ("+"*"" "+")) CONJ Nr NP-CONJ)
        (T (GETR :!P)|)}
(OEFU:1 BUILD-QP ()
    ISETR PP (CONO ((GETR PP) (LIST (GETL PPJ))))
```



```
{DEFUN BUILJ-QUANTP ()
    (GOND ({AND (CETR ONORD) (GETR O)) (BUILDO (RUANT "+") Q))
```



```
            (T (SETR Q (CONO (IGETR Q) (BU|LOL ((GUANT "+")) Q))))
```



```
                    (SETP SUPER (COVO ((GETK SUPER) (HU&LLG ((SJPER "+")) SUPER)|)
                    (SETR OET (CONO ((GETR GET) (MUILDC ((LET-***)) DET))))
                    (JE「R guANT (COND ((GETR QUANJ) (LIST (GETR GUANT)))))
                    (BUILDU (a (QUAMIP) "+"**"*+N. "+*"+"*) Q CGMP SUPER
    OECUN BUILD-ADJP ()
    (GẼTR ADJ))
(CEFUIL PERFECT ()
    (ANO (EQ (PARTICIPLE) 'PASTPARY) (EO (GETR V) 'HAVE)I)
(EEFUN PROGRESSIVE ()
    (AGD \EO (PGRTICIPLE) 'PRESPART) (EO (GETR V) 'GEI))
ICEFUN FUTURE ()
    (A:ND (GETF U:ITENSEO) (MEMO (GETR V) (WILL SHALL))))
(DEFUN PARTICIPLE ()
    |CO:ND ((EG 'PRESPART (GETF HART)) PPRESPART)
            ((EQ 'PASTPAUT (GETF PART)) PPASTPART)))
IDEFUN EOMP-SUPER (1
```

 (MAKE-ARRUW (CADR (ASSO * ((MORE COMPARATIVE) (MCST SUPERLATIVEj)))))

ILEFPROP SETR EXPR

IFLAMEOA IXI ISEIQ RECS ICONS ICONS ICAS X) (EVAL ICACR XJII REGSIII:

COEFPROP GETR EXPA
(flamean (LST)

(CNumbeap icaca LSill
COH (IZ
IT (COR IASSO CCAR LSTI tCADR ICAOAR INTK STACK (CADR L.5TJJJJIJ!
(CAR LSTI TCADR IASSO (CAOR LSTI STACXJJIHIll!
IDEFPROP GETRV EXPR
(LAFBCA (REC)
(PROG (8)
IRETURN
ICOND itEO REG (OUOTE EI) El
[ISETO B IASSO REG RECSII (COR AIJIIIII
TOEFPROP EUILCO EXPK
(FLAMBDA (L)
teuILD (CAR L) (COR L3IBI

CDEFPROP EUILD EXPR
ILAMBCA IFRAG REG\#]
IPROG IREGLST
SETO REGLST REG*
(RETURN (GUILOL FRAGIII)?
SDEFPROP BUILDI EXPR
ILAmada fFrac:
IPROG (A)
tretuan
(COND T(NULL FRAG) UIL:
I(EC FRAG (CUSTE I) TGETAY ICAR REGLSTIII
ItEQFRAG IGUOTE AI) IFVAL CCAR REGLSIIII
(CES FRAG GUOTE II
f\{ATOM FRAGI fRAG)
T\{ATOM FRAGI fRAG)
f(EO (CAR FRAG) (GUDTE + 11

fica (car frasei icuilol ICor fragibil
[iEA ICAR FRAGI ICuCTE Oi)
SSETA A IUNCCNS RECLST (QuOTC REOLSTII:
(iECAS (EVAL A) (BuILC: (CER fRAGII)
(iEQ ICAR FRAC) (GUOTE OI) (CCHS © IBURLDI FCDR FAAGIIII

CDEFPROP PARSEL EXPR
(lavaca (SENTENCE)
(PRCG (A MORPMTEAP)
(TMET-TRACE)
ISETO REES HES

tCONO

 IAND IPRINTPARSE

IOEFPROP WEVAL EXPA

ILAMBDA CSTRIMGL STETEI STACKI REGSA HOLOI PATMI fPAOG IA BOOY-S ARCTYPE \&EX

IPRRACE ENTERING STAIE ISTATELI : SIRIMG = (STAIMGEHE
CPTREGS:
ISETO
CCOMO IfMLL STRIMEII HILI
(ISETO MCAPMEED (MCAPH fCAR STRINGLIIS
ECONO IGEO MORSNTEMF II (CAR STRIMGIIS
If EERROF IRPLACA STRIKGL MCRPMTENPIIII

- iEs

CCONO (INOT GEET STATEL ICUCTE GRANKARIIS SERAOR SERODRZIIIS
ISETG BODY-S IGET STATEA (CUOTE GAAFMARII!
TAG \&CONO IIMULL BODF-SI EELEEXEDS (RETUNH MILAP
ICOMD iISETQ A IEYAL TCAR BODY-SDII IRERUAM AB

TDEFPROP PUSH EXPR
(flampoa ils
CPROC ISTAING STATE STACX REGS HCLO PUSHREGSI
IfNitialites
RETUPY
[CCND IINSLL STRIMG: MIL!
\|(NOT [EVAL (CAOR LiJ) NILI
ir (PRIMTPUSin)
tueval sirinc
(CAM L)
IPSSHSTE ILIST STATE REGS IFJADACJIONS ICODR LItII
fCOSEMORS tCEER G!I
HOLD


```
        (IMITIALI2E)
        |RETUAN
            CONO IINOT {EVAL (CAOR &il) NIL:
                IT IMAPG IGLOTE EyALI {CODR LII
                IPTRACE JJHP 70 ilCAR L|l
```



```
IDEFPHOP CAT EXPR
    IFLAHBDA 《!
                PPROG ISTRING STATE SIACK REGS HOLO FEATLAES:
                    |INITIAlILEJ
                        GRETURN
                                CCOTD tINULL STGIFIN: NTL:
                                    |{AND ICAYEGSRY {CAR L|) |EvAL ICADR E|]|
                                    IPR!HTARC دACTYPE,
                                    |APPLY IOUDTE PRCGNX| {COCR LII||:|!:
\DEFPROP PUSHPROGN EXPR
    (FIAM80A (L)
                ICOND IINULL &s {ERRGA (ERRORIIJ:
                    liNuLl ICOR Lis
                            NULL ICOR LIA
                            ICNOLR ICOR lis
```



```
                    |T IEVAL &CAZ LH) (APPIY (GUOTE PUSMPRGCN' (CDR IBHISS STATE LEVIIHII
    GDEFPROP TRACEPARSE EXPR
        ILAMBCA MIL
            |SETO =TRACE T|J]
CDEFPAOP UNTRACEPARSE EXPR
    |LAMBCA NIL
            SETQ :TRACE NIL|)
UDEFPRGP INIT-TRACE EXPA
    ClAMACA MIL
                    CONO
                IPTRACE ISETO ITAS O1
                    IPRINT IGUNIE SEMTETICEEII
                    PRINT SENTENCE)
                    (TERPRIJ|)])
IDEFPROP PRINTAGC EXPR
    lLAHBCA {ARCIMPE:
            |PTRACE TAKING IARCTYPE (CAR LIS ARCIII
IDEFPROP PRINTPUSM EXPR
    1LAMBCA NIL
            |SETO ILEVET {AÜOT =LEvEi&!
            |AND (PIRACE ABOUT TO PUSHI SSETO &TAB fADD ETAS 21%M%
TDEFPAOP PRIMTPDP EXPR
    |LArsCA Nil
            \SETO :LEVEL ISUG& ELEvELI%
            GANO IPTRACE ABDUT TO POD - to)&
                ISETC STAS ISUB &TAS 2IJII|
IDEFPRGP PARSE EXPR
    [FLAMBOA \1]
            IPROG IA zLEVEL &TAB ST]
                |SETQ ILEVEL O)
                CCND
                    i!null tcor il:
                    IPERROR SECCND AREUMERT TO FARSE IS UKSPECIFEEDS
                    |RETURN MILII
                    IT ISETQ ST ICADR LJIJ?
                    ISETG A IERRSET IPARSEL ICAR EJ)S:
                IRETURM ICONO (IATOM A) NILI IT ICAR AJIHII!
TDEFPROP ERRORL EXPR
    ILAFBOA NIL
        |PERROR NO TERMIMATING NEXP STATE AETIEM CH CUAGENT ARCISI
DEFPROP ERROR2 EXPA
    HLAMgOL MIL
        (PEAROG STATE (STATES) UNOEFINED:I%
IDEFPROP MOLCLEYEL EXPR
    ILAPBOA MIL
        ICONO \INULL HOLD: TI
            (IEQ (CAAR HOLD) :LEVELJ NIL)
            |(EG\C
IDEFPROP VIR EXPA
    (FLAMgDA {l)
        (PROG ISIRING STATE STICK RECS MCLO LEY'
                |iNITIALILE!
```

```
            ICONO IINULL HCLDI NILB
            {A:{0 {SETO (CEAR HELO})
            IVIRCATECORY &CAY LI)
            IEYAL ICAOR LII]
            IPRINTARE ARETYPEI
            (POPHOLO)
            ISETOLEY zLEVELS
            IAPPLT IOUOTE PUSNPROEMS ICEDR LSIIBSIII
COEFPMOP POPHILO EXPR
    |lamaCa MIL
```

 RETURN
 ISETO HOLD ICOA MGLDI)
 PPRACE POPDING
 HOLD
 LIST
 \(\stackrel{+}{+}\)
 CuRRENT
 HOLO
 IS
 (ICOND (MOLD (COAR MOLDIIIII)
 IOEFPROP ERROR3 EXPR
ILAMBDA NIL
(PEAROA NO TEST ON POP ARC OF STATE (STATEII)
SOEFPAOP ELGCXED EXPR
ILAFBDA NIL
(PTRACE BLOCXEDI

(CCNO (ICAR PATHI) (PTRACE BACKED UP TO STAFE ficha pathiljilily
COEFPROP HOLD EXPR
(FLAMBOA IL!
fprog ial
setg a ieval ican lijs
SETRACE HOLDINE ASM
ISEIC HOLO (CONS icays alevel A) mCLDIBIIs
IOEFPROP CATEGORY EXPR
clarsda (CAT)
tCOND
liget lex cati
iseta features tGetcatfeatuaeso. (cetacaria
Tilis
IEEFPRCP GETGATFEATURES EXPR
llamaca Nil
NPROC SPROP:
TSETQ PROP IGET LEX CATJI
COONO
CRATOM PROPI
GRETUAN
ISELEET CAY
IIOUOTE NI
(COMD IIEO PROP (OUOTE PASSI) IOUDTE (INUPBER NASSIBIS
If COUOIE ifNuMBER SGIIBIII
itevare y)
(LIST toudte itns paesenti)
COUCTE (PNEECE X3SG)
fovote funtensedilil
mic)ll
©5ETO PROP ICER PROPIS
tretuan
fcono
IIAND IEO CAT IOUOTE VI?
(ASSA (OUDTE TNS] pagp)
(NOT (ASSO lOUOPE PNCCDES PROPII:
[CONS (CUOTE (PNCODE ANTII PROPSI
IIANO IEQ CAT [CLOTE PRCI)
(NOR (ASSS (QLOTE SURJ) PRQPI)

ICENS (GUCTE \&SUBJII PRODII ...
itpropililis
-
IOEFPROP GETROOT EXPR
GLAMBOA WIL
(PROG (PROP)
(SETC DROP ICET LEX CATJ)
(RETURN (CGAD (INGT (ATCM PROP)I (CAA PROPI: (T LEX)IJII)
TOEFPROP GETF EXPR
Iflameja tfeatures
(PROG (TEMP)

(SETA TEMP \{ASSE ICAR FEATURES FEATLRESI)
tcuivo

IOEFPROP VIMCATEGOAY EXAR


```
            (LAPBOA (CAT)
```

 (LAPBOA (CAT)
 {EO Cat ICAR EJII
 {EO Cat ICAR EJII
 COEFPMOP PRIMTPARSE EXPR
 COEFPMOP PRIMTPARSE EXPR
 flAmgCA [PARSE TA5.)
 flAmgCA [PARSE TA5.)
 ICGNO |HMEEL PARSEI|
 ICGNO |HMEEL PARSEI|
 (TAICM (CAR PARSE)| {SKTP TAB\ TPRI PARSEI:
 (TAICM (CAR PARSE)| {SKTP TAB\ TPRI PARSEI:
 IPRINTOARSE (COR PARSEI TABIJII)
 IPRINTOARSE (COR PARSEI TABIJII)
 \DEFPACP PN1 EXPR
 \DEFPACP PN1 EXPR
 (largca {Parse]
 (largca {Parse]
 CGNO ({NLLL PARSEJ {TERPRI!:
 CGNO ({NLLL PARSEJ {TERPRI!:
 |(AIOM {CAA PARSEI) (PRINI (CAR PARSES) (PRI (COR PARSEII)
 |(AIOM {CAA PARSEI) (PRINI (CAR PARSES) (PRI (COR PARSEII)
 |FERPa|
 |FERPa|
 IPAINIPARSE ICAR PARSEY IADO TAB 4|I
 IPAINIPARSE ICAR PARSEY IADO TAB 4|I
 IPRINTPARSE TCOR PARSEI IAOD TAB 4iJBII!
 IPRINTPARSE TCOR PARSEI IAOD TAB 4iJBII!
 CDEFPROP DISPLAY EXPR
 CDEFPROP DISPLAY EXPR
 CFlamboa ILI
 CFlamboa ILI
 IL!
 IL!
 ICARL
 ICARL
 States
 States
 {CONO (INULL ICOR EJ) mIL)
 {CONO (INULL ICOR EJ) mIL)
 TI)
 TI)
 COEFPROP UNCISPLAY EXPZ
 COEFPROP UNCISPLAY EXPZ
 lLamgDA MIL
 lLamgDA MIL
 ISETO zaEGS NIL ISTATES NELII%
 ISETO zaEGS NIL ISTATES NELII%
 IDEFPROP PAINREGS EXPR
IDEFPROP PAINREGS EXPR
ILAMBOA (REGLST)
ILAMBOA (REGLST)
|RApC
|RApC
fcuote
fcuote
(lamAda (x)
(lamAda (x)
(PRINI K)
(PRINI K)
|PRIMI {CUOTE a!l
|PRIMI {CUOTE a!l
(PRINI IGETRY Xis
(PRINI IGETRY Xis
(TERPRIIIJ
(TERPRIIIJ
aEC(S%)!
aEC(S%)!
IDEFPROD ERACR4 EXPR
IDEFPROD ERACR4 EXPR
LAPBOL-NIL
LAPBOL-NIL
GPRINL
GPRINL
quote
quote
O>>NAGMING-ATTEAPT TO AOOL OR AOCR TO ATOAIC VALUED REGISTER=IS
O>>NAGMING-ATTEAPT TO AOOL OR AOCR TO ATOAIC VALUED REGISTER=IS
SN1P41
SN1P41
PRIN: \CAR LI\
PRIN: \CAR LI\
GAINL lOLOTE -J]
GAINL lOLOTE -J]
CPA\&:N1 41
CPA\&:N1 41
IPRINI IOUOTE STATE - \#It
IPRINI IOUOTE STATE - \#It
GPRINI STATEJ
GPRINI STATEJ
(TERPRIJS)
(TERPRIJS)
CDEFPROP AFCL EXPR
CDEFPROP AFCL EXPR
(FLAMgDA (L)
(FLAMgDA (L)
1pa0t 6A)
1pa0t 6A)
isETO a
isETO a
centay tean mis
centay tean mis
MEGS
MEGS
ICONS ICONS (CSR L) (CCHS (EYAL {CADR LIS EIS REGS):

```
                    ICONS ICONS (CSR L) (CCHS (EYAL {CADR LIS EIS REGS):
```



```
IOEFPAOP ADOR EXPR
```

IOEFPAOP ADOR EXPR
tFLAMBOA (L)
tFLAMBOA (L)
|PROG (A)
|PROG (A)
iSETO A
iSETO A
CEETRY ICAR LI%
CEETRY ICAR LI%
REGS
REGS
ICOMS ICCNS ICAN LI TAPPENO A TLIST'IEVAL ICADR EJIIII
ICOMS ICCNS ICAN LI TAPPENO A TLIST'IEVAL ICADR EJIIII
ICGYD (IANO (AIOA A) (NOT (NULL A!II (ERRON\&) TII)I)
ICGYD (IANO (AIOA A) (NOT (NULL A!II (ERRON\&) TII)I)
-
-
OEFPROP GETAECS EXPR
OEFPROP GETAECS EXPR
CLAMBCA NIL
CLAMBCA NIL
\#
\#
|PROC (A)
|PROC (A)
IMAPC
IMAPC
guote
guote
(lamgoa (x)
(lamgoa (x)
|CGNO \IMEMO {CAR x| A!!
|CGNO \IMEMO {CAR x| A!!
RECS!
RECS!
|f [SETO a {CONS (CAR X) A}j)I}!
|f [SETO a {CONS (CAR X) A}j)I}!
|RETGRM AJJJ)
|RETGRM AJJJ)
IDEFPROP PTRESS EXPA
IDEFPROP PTRESS EXPA
ILAMBCA NIL
ILAMBCA NIL
CCOND
CCOND
1:2EGS

```
                1:2EGS
```



```
MGSLSI
                    isxip ETAS
                    IMAPC
                        iquote
                        {lamboa (3xs)
```



```
                                    (1) Imapesf
```



```
    GDEFPROP PPARSET EXPA
        ilav80a NIL
            {SETQ :PRIMTPARSE {NOT :PRIMTPARSEI)!}
    CDEFPROP ERRSET EXPG
        [FLAMBDA {SEXDS!
            |LIST (EyAL (CAR sEXPsj)Ij)
    IOEFPROD ERRDR EXPG
    (FLA43DA {syals)
            (UNEVAL louOTE ERRSET: (CAR svalSSII:
    IESFPROP ABCAT EXPR
    HLARBCA NIL
        (PTRACE agogtej)
            (SETO BCOY-S (CDR BOOY-5);
            IGO TAG!II
    CEFPADP :REPLACE EXPR
    [LAFOCA {LST EL N)
        {APPENO (SUT-NTH LST M) (CONS EL ICOR (NTH LST NHHBISI
    IDEFPREP BUT-NTH EXPR:
    (LAMBDA [L H)
        COND PIEON IS MIL,
```



```
    |cifzagd finOHEILHy Expr
    {lamzon {x|
        (COND (tMuMaERP X) (COND (ILESSP ILENGTH STACKI X) O) (XIH:
            If HFINOPOS STACK ziJIJI
        IDEFPROP FIMOPAS EXPR
        (LAYBOA (L ST)
            PROG (CNI PTR)
            (SETO CNT O PTR L)
            Tag iccNo (INULL pTa) (rETURN 0:]
                |(EU (CAAZ PTR) STI (RETUAN {ADDI ENTII'
```



```
\0EFPROP LIFTR EXPR
    IFLAMbOA (L)
        (PRCC (HEJGht temp)
                ICONO
                    |NULL {COOR L1]
                IRETURN (APPLY (QUOTE LIFTX) IAPPENO L ILIST IHIII:
            ISETG HEICHP (FINOHEIGHT (GIOOR &l)%
            IRETURN
                (COND {\IERGP MEIGHT!)
                    Iseto stack
                                    gagEplace stack
                                    |:replace isete temp icar mith stacx hejghtily
                                    ICONS ICONS ICAR IF IEYAL ICMOR&HI
                                    icadr terpi!
                                    HEIGMT\I\II|!
(SETO ipqimyPagSe t =regS mit)
|lutrageparse;
602
END cF file
```


[^0]: 1. For a detailed description of just what properties go with what word types see APPENDIX IV.
[^1]: ${ }^{1}$ An example of a to-complement is: "Fred took the kook to ang \underline{f} Maモy."

