T.0GIC-PER-TRACK ASSOCTATIVE MEMORY

by
GEOK-SENG TANG
B.Sc., Nanyang University, 1967
M.Sc., University of Ottawa, 1969

‘A THESIS SUBMITTED IN PARTTAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in the Department
of
Computer Science

We accept this thesis as conférming
to the required. standard

THE UNIVERSITY OF BRITISH COLUMBIA
April, 1976 -

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree.at the University of British Columbia, | agree that
the Library shall make it freely available for reference and study.

| further agree that pemission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission,

Geok-Seng Tang

Department of Computer Sclence

The University of British Columbia

2075 Wesbrook Place
Vancouver, Canada
V6T 1WS

Date April 6, 1976

ABSTRACT

An associative,mor content-addressable, memory, one in
which -data may be retrieved by its value rather than by real
address, has always been an attractive idea. Although such a
memory has not yet proven practical for files of respectable
size,'much interesting work has been done on the subject, for
example, Minsky ' (1972), Slotnick (1970) and Parker (1970, 1971).
This thesis is concerned with the device proposed by Slotnick
and Parker, called 'Logic Per Track Device'. After briefly
reviewing the design and cdpabilities of their device, the thesis
proceeds to propose some modifications to the design which not
only lead to greatly enhanced perfoxmance, but also establish its
practical application for files of respectable size. In the
device of'Slotnick and Parker, there is a fiarly sophisticated
logic chip attached directly to each non-movable read-write head.
This allows all logic heads to search simultaneously for informa-
tion matching a given key, so that any desired record could be
located wirthin one revolufion. However, reading and writing will
require a second revolution because part of the record will have
passed the head before the match is recognized. Mbreover, if more
than one record matches the search key, the extra bookkeeping will
be needed if matching records on different tracks should partially
overlap. These problems have been ignored in the retrieval system

developed by Parker (1970, 1971).

ii

The following four additional features 0f the device
have been proposed: |

1. Two logic heads on each track has been introduced.
The leading head will continue to have the primary responsibility
for simultaneous searching. The additional second head,
trailing a fixed distance behind will do the actual reading and
writing of records.b |

2. A delay regiéter whose length is the distance between
logic heads on the same.track, has been added to the read-write
head. The functipn of the delay bit is to tell the read-write
head partner where to start reading (or writing) a record
whenever a match is recognized so that retrieving (or writing) a
single record can always be performed in the same reVolution.

‘ 3. Another major design change will give the new device
the ability to keep track of all records which may be retrieved
within a single revolution by parallel search. To thié end, the
monitor, which synchronizes the activities of all logic head
couples, will be provided with a record counter, and a mark entity
will be prefixed to every record on the disk itself.

4, A file identification mechénism has been established
for the associative memory. Functiors of égch a mechanism are
(a) to manage file names, and (b) to manipulate data on the
storage device.

Next step is to.explore the use of such a modified device
for file-oriented problems. ‘'Hierarchical search' for records

possessing a speéified combination of keys can be performed

iii
direcfly on the key part of records without the intermediate
‘step of transmitting records into the main computer memory.

In an application requiring chain processing, the chain pointer
can be a key of the record because each record in the associative
memory is accessed by content rather than by real address. The
chain key can be generated from the key 6f the record it points
to by a simple and reversible procedure. Such a chailn technique
has a number of advantages: (a) any chain is in fact a twb—way
chain, (b) each record in the chain can be retrieved bj following
the chain key, or directly by the key of the record if it is
known, and (c) the tangle of actual physical addresses in the -
chain processing can be avoided. The storage organization for
more complex data structure such as tree structures presents
another unique feature of the modified memory. In a tree
structure, indexes to the subofdinate records may be kept with
each parent record, or each subordiante redoﬁdmmgyssﬁofeaaniiﬁd&x
to its parent record. Both data structures take the same amount
of storage space. Comparison 6f its performance to the convenz
tional counterpart shows that significant improvements in access .

times can be achived,

iv
CONTENTS

1. LOGIC-PER-TRACK ASSOCIATIVE MEMORY ¢ ¢ cusesconnsaonnssses i
1.1 Review of The Hardware Device and Physical Data
Format...Il............’..I.II....II......0........ 1

1.2 Logic-Per-Track Retrieval System..............;... 7

2. SOME ACCESSING PROBLEMS....-......................r....l@ﬁ
2,1 File Identification MEChaniSie s seesceassessssassssll
2.2 Some Accessing Problems...........................16
2.3 The Additional Mechanism.....................;....19

3. THE MODIFIED MEMORY DEVICE..--.-.......................22

1 The Modified Memory DEViCCseossnasssssssssssassnesll

2 Generalized Physical Data FOrmatescsesssesssassessslb

.3 The Dynamic Behaviour of The MEMOTY. s sesssasssssesl?
4 Synchronization of The Parallel Activities of

" The Memory,.......................................35

3.5 Performance -of The Memory.........................35

1. Retrieval of a single 76COrAesessssossssassaes3b

2. 1Insert a ECOTAr s s sesaseassessssssasssanssnssdbd

3. Insert a set of PECOTAS s esesssesssssssanenssssld

L, Deletion......................................38

5, Create or delete a F1lCesensssesesnnsssesssosssld

6. Garbage collection............................39

3.6 Alternate to The Modified Memory DeviCeessensesss s 40

3,7 Hierarchical Search MEChANL MMe s sosesssessoaasanesslbld

3.8 Evaluation of Hierarchical SEarCNecsssssssssennsesd?

L, STORAGE ORGANIZATION AND ACCESS METHODS ¢ s esvosssosaessaes50
4.1 Chain Storage Organization In Logic-Per-Tfack

Environment.......................................50

4,2 Some Aspects of Chain'Structures..................59

1. Sequential File A CCESSeeesossssssssssssassssssesdd

2. Insertions and DeletioNSeescossssssssssssssssedd

4,3 Tree. Structure Representations .f%°-------°-------61

4,4 Evaluation of Chain Structure Search.esssesssssess O

L,% An inverted Data Base Model for Conventional
DiSk Devicelol..l..l..lll..l.ll..l.ll...l000000065

L"l6 Conclusion.l...ﬂi....l....................l.....?z

REFERENCESl.lcl.il!!l..oll..no.ol‘!.o.O!lollll!tonlco'\8‘17:"r

Figure
Figure

Figure
Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure

1.1(a)
1.1(Db)

1.2
3.1

vi

FIGURES

Primitive information item in bit stream.... 4
Sample data “%track in the logic-per-track

A1SKe oooooesooasasecassessasscnssasassassess W
Cyclic key searching mechaniShMes.essssseeess 8
System configuration with request quewue,

read and write queuing buffers.ssesssscscsssl3
The cyclic memory delay device of the

associative memory and its linear map

-to -the d_isk -trackl..l..."I....I.......CIOIQZL!’

Control processes for the request: retrieve

a set of records with the given key.s....28-29
Alternaté system configurationessssessssesedd2
Examples of the student record stored in

the student fileueeessosssssssssossesscesasss53
Basic format of record in a chaiNeseeessesss56
Sample chain of student personal records....56

_Conceptual view of tree structure..sssseces 62

Example of student record represented by

a tree‘structure......,.....................62
A data organization representing Figure 4.5 63
Another data organization representing

Figure 4e5 veeessssososssssssnsssssesassasesebd3
Layout for the inverted file organization

for the conventional disk device discussed

by Cardenas, 1975,;.........................68

vii

ACKNOWLEDGEMENTS

Special thanks are due Dr. J.R. H. Dempster for his
inspiring supervision and generous assistance throughout the
duration of this thesis, expecially during hours of numerous

weekends.
Valuable discussions with Dr. Allan Ballard of
Computer Centre are acknowledged with.gratitude.
| My heartfelt thanks go to my wife Karen for her
sustaining encouragement and her invaluable assistance in the

+typing of the complete manuscript.

CHAPTER 1

LOGIC-PER-TRACK ASSOCIATIVE MEMORY

1.1. Review of The Hardware Device and Physical Data Format

The logic—per—track_device was proposed by Slotnick
(1970) and further developed by Parker (1970). Although such
a device Hés not-been built, it is worth-thinking.
about in the presence of less expensive, highly reliable
electronic parts, as was pointed out by Slotnick during 1970.
The device is designed to achieve high performance on file-
oriented problems. The structure and the circuitry of the
logic head was designed by Parker (1970); a retrieval system
for'such a device has also been proposed by Parker (1970,
1971). Since then, there has been no further development of
retrieval systems'for such a device. In this thesis,
Chapters 1 and 2 contain a review of the work of Slotnick
and Parker; while improvements for such a device and the
retrieval system comprise Chapter 3. Finally, Chapter 4
demonstrates some applications of such an improved device and
retrieval system. ‘Moreover, comparisons betwéen the proposed
device and conventional ones are drawn in order to evaluate |
the performance of the device.

A logic-per-track disk is a fixed head disk with a

logic chip attached directlj to each read-write head. The
logic chip allows each head to operate as an independent
device. Each head reads and writes, and;séarches for space to
write .new records on=its-own. track. The device is intended to
have a thousand heads with approximately one million'fbitsAfor
each track. This gives a total bit capacity of 109 bits
(Parker, 1970). ALl of the individual logic heads are
connected together and communicate with a central source.
The disk device is designed to operate as an essentially
independent entity, which records and retrieves information
on the basis of a set of keys associated with each group
of information items. The purpose of the design is to
combine a new hardware device with a software system %o
provide a total information retrieval system. Moreover, it
is desirable to have a system such that random access by means
of any key in the system to any data item woﬁld be extremely
rapid, on the order of gbth of a second or less, where gb
second is the revolution time of the disk.

Each track is broken up into four equal segments or
disk quadrants. There is a single pair of clock tracks which .
governs all the heads. One clock track indicates the bit
time; the other clock track indicates the beginning of a
quadrant, or a quarter of a disk. The disk device treats data
and keys as serial bit streams. Each head looks at its own

stream of bits as information: keys, data, and holes (spaces

with no data). There is no direct communication in this
design between adjacent heads. Everything in the system is
serial by bit. In order for each head to know what it is
reading at a given time, these information entities are
coded in the stream with the following format:

Each information item in the bit stream contains two
fixed length fields and one variable length field. The first
field is a two-bit indicator of the type of primitive
information item that exists in the third field. The second
field specifies the length of the variable length third field,
which contains an arbitrary bit pattern. Thus each primitive
information item can be depicted by Figure 1.1(a) in which,

field 1: +two indicator bits specifying the
three types of primitive information
items,

field 2: Dbinary integer indicating number
of bits in field 3,

field 3: arbitrary bit pattern representing
logical data entities of a record.

The following describes the basic primitive ihformation
items.

1. Hole item:

The bit pattern contéins no information in field 3 and

is therefore called garbage. It indicates that this slot on

the track is available for key or data items. This type of

01(2 3 +0¢ k| kt+l

® 9006008080

eso0oeclll

T, field 2 field 3
field 1
Figure 1.1(a) Primitive information

record

item in bit stream,

key entity L key entity

l» data entity

fTo]Length[Keyl1[0[Lengthlxey[111\Length[nata

e

[-

record ;r—record
key entity | data entity hole . entity

3

}olLength[KeyI1|1|Length|DataF0[1nLengthlHole |-

P a— record o record -
key entlty | data entity | hole entity '
110 |Length|Key |1]1 [Length[Datal 0{1] Length Hole [..v...

Figure 1.1(b) Sample Data Track in the

Logic per Track Disk.

primitive information item spans over unused .space.
2., Key item:

This type of primitive infbrmation item represents a
key and its value, given by the bit pattern in field 3. A
key is any logical item used to identify a class of related
primitive data ltems.
3., Data item:

This primitive information item represents a record
which is a collection of struétured data items.

The following table gives the distribution of two

indicator bits and. their associated primitive items:

Indicator bits Primitive information items
00 unused
01 hole
10 key
11 : data

The following patterns for the entities have been
chosen in (Parker, 1970) as a basic storage organization:
- a quadrant contains a number of records,
- a record is either
(a) a hole, or
(b) one key to several keys followed by a

data item.

See Figure 1.1(b) for a sample data track. Since a record
element is composed of an arbitrary number of key items, there
exists a multiple keying potential for retrieving records
residing on the disk.

It is described in (Parker, 1970) that each logic head
contains four registers needed to process records residing on
disk tracks. These four registers are the length register,
bit register, auxiliary register and operation register.

1. Length register:

This is used to hold the length (given by field 2) of
the current primitive information item being searched for in
the bit stream.

2. Bit register:

This contains the current bit address on the track.
It is used to.find a record by location and for reporting
back record locations to the controller.

3, Auxiliary register:

This holds temporarily a bit address while the head
skips through an entity of no current value.

4., Operation register:

This register contains the operation code passed down
by the controller. It also counts down the length‘of the
current primitive item to find the beginning of the next item.
This register has both shift and add capabilities so that it

can compare the length of a desired item with the length of

the current item.

The following are some built in primitive instructions

on each head:
load the operation register,
transfer one register to another in the same logic
head,
search for a hole of specific length,
search for a key of specific bit pattern,
read from a specific location,
write to a specific location.

The important characteristic of the logic head is that
it has the capability to identify every primitive entity in
the bit stream; moreover, since each physical record in the
bit stream ends either with the data entity or with a hole
entity, the logic head is also sensitive to the begin/end
location of a physical record in the bit stream. In other
words, the logic head is designed in such a way that it 1is
sensitive to all primitive entities, and physical records
containing the specific patterns of the entities described
previously. The patterns of the primitive entities in the
bit stream will be generalised in Chapter 3.

1.2. Logic-Per-Track Retrieval System

A record residing on any track is retrieved by
searching for one of its key entities. During. a search, the

key is broadcast from the central source. Since all entities

Quadrant boundary ——>|) ; i
. S 1 v
Quadrant track 01234567890123456789012345678901234567890. ..

. ' cyclilcycle cycle jcycle [cycle{cycle | soeades
Cyclic key pattern (01111 011110011110 1111001111001111001111G. .3

Bit stream [100000000000000001101111001] data _entity... -

ﬂ'key length key'r ,
K - key match found

key indicaﬁbf\
1 2 2
. 8 - . 0 1 -
Quadrant track e 0478901234 5678901234 5678901234 567890123456, 4 -

’ - kfycle cyclelcycle jcycle |cycle cyclet)w- [_ '
Cyclic key pattern ""'011110011110011110 1111001111001111001111001,..

-+. [1000000000000000011.0110011] ___another data entity] -
' T ' key length keyT ' ‘

: , key match found _
key indicator . ' .

Figuré,1,2. Cyclic key searching.mechanism

are of variable length, the keys may not start at the same

bit numbers. Therefore the key is broadcast to each logic
head over and over again cyclically. Please see Figure 1.2
for the cyclic bit pattern of the key '011110' being broadcast
from the central source. Each head compares whatever bit it
reads from the key with the bit being broadcast. This

implies that sometimes the last bits are compared first. On
an equal-unequal compare this does not matter. As long as the
keys can be written offset by the record writing software, the
offset is always compensated by the broadcasting. If the key
is to be written at a given bit address in the system that

bit address is taken modulo the key length. If the bit address
modulo the key length is not zero then the first part of the
key is broken off. The number of bits corresponds to the bit
address modulo the key length. This is shifted to the other
end of the key and is broadcast last. It follows that a key
written at different locations on a given track may show
different information bit patterns in the third field of the
key item. The following example demonstrates the cyclic key

pattern.

Example:
Assume that the key value (field 3) is given by the
6-bit pattern 011110, that is,

bit count: 012345

10

key pattern: 011110
key indicator: 10
key length: 00...0110 in 18-bit format.
Thus, for k=20 two different ¢yclic key patterns written on

two different locations on a track appear as follows:

Cyclic pattern 1:

Quadrant blit addresss 11141111111 222222
01 234567890123456789 012345 seese

Bit stream: .10 000000000000000110 111001

In this example, the first two bits are the indicator bits for
key entity, and the next 18 bits is the binary number specify-
ing the length of the key residing in the third field of this
key entity. The bit address for the third field is 20, and
this bit address modulo the key length is 2, and hence the

key is broken in two parts depicted by the following figure:

first 1last
par’t part

01 1110

The last part is then shifted to the other end of the key, so
that the physical pattern of the key at the bit location 20

appears as follows:

11

last first
part part.

1110 01

This gives the cyclic bit pattern '111001' to be written in
the third field of the key entity. How this physical key pv
pattern is matched to the giveh key broadcast cyclicly from
the central source is depicted in Figure 1l.2.

Cyclic pattern 2:

The following is another cyclic key pattern for the
same key but written at bit location 207. Please see
Figure 1.2 for how the cyclic key pattern is matched to the

given key.

11 111111111112222222 222222
88 899999999990000000 000111
Quadrant bit address: ...78 901234567890123456 789012...

10 000000000000000110 110011

The above example Zives a fairly clear picture of the
simultaneous cyclic}%earch for a . fixed kefiinstruction. In
the "search for a hole'instruction, the length of the hole to
be searched for is loaded into the length register which will
be used to compare to the length of every hole entity
encountered by the logic head. Thus each logic head looks

for a proper hole, large enough to contain the record that is

N 12
to be inserted. If the length of the hole is not exactly

equal to the length of the record, it must be at least k
bits longer, in order that the unused part can still be
recorded as a hole.

On the search operations all heads are searching
simultaneously for the given key. Therefore the entire disk
can be scanned for a match on a single revolution. This
takes about 25 milliseconds with most current disks. As soon
as the location of the record is found, the record may be read
from or written to the specified location. However, with a
single logic head, this has to be done in the next revolution
because the logic head can perform only one primitive
instruction at a time. We shall return to this point in
Chapter 3. The following common operations may be bullt up
from the individual operations of the logic heads:

search for a fixed key,

insert or delete record or a new key to the fecord,
frequency counting based on a fixed key,

file recopy and restructuring, and

garbage collection--collecting all hole entities.

Simultaneous search for a fixed key comprises the
basic idea of the logic per track retrieval system.
Application of such a retrieval system to single key records
has been described in detall by Parker (1970). However, there

is no comprehensive description how such records can be

13

manipulated within a file. To solve this problem, a file
jdentification mechanism for such a retrieval system is

introduced in Chapter 2, and some accessing problems are also

discussed.

CHAPTER 2
SOME ACCESSING PROBLEMS

2.1. PFile Identification Mechanism

Records are grouped together to form a file or files@f
Each record in a fiie consists of the same type of information
held in an identical format as every other record in the file.
An example is a personnel'file that consists of employee
records. There is one record for each employee and all records
hold the following data: -employee number, family name and
initials, social insurance number, skill code(s), starting
employment date, address etc. These data elements are present
in all employee records. However, to retrieve a record, we
must know before hand the name of the file to Which it
belongs, and in particula;. the physical location of the file
in the memory storage. It follows that a storage area
identification mechanism for the device should be established.
Functions of such a mechanism are (1) to manage file names,
and (2) to manipulate data on the storage device.

The mechanism would establish a file name within a
_ context by constructing a physical file identifier. A user
refers to a specific file by a symbolic name. For each

symbolic name in a given context theré is a uniquely defined

15
internal physical represéntation in the form of a bit string.
This bit string is the unique identifier associated with the
symbolic name .given by and referenced by the user. Moreover,
the physical file identifier will be the key item written on
the very beginning of the quadrant boundary of each track
where the file resides. Supposing £hat no two files will
share the same track quadrant, then the physical file identifier
will identify the actual location of the file in the memory.‘
Those unused quadrants will be identified by a uniquely
designed key whiqh is also writteh on the very beginning of
the quadrant boundaries.

In this manner,'all quadrants are named, and the very
first key in each gquadrant is the physical file identifier.
To manipulate data on the file, all logic heads will Dbe firét
positioned on awQuadrahtfbdundgryﬁetheﬁithe‘“ - |
physical file identifier associated with the symbolic file
name will be broadcast from the central source to all logic
heads so that the key for the file name is searched throughout
the entire memory. If the quadrant identifier matches the
file name, then the corresponding logic‘head remains active,
otherwise it idles. The jprbdésécof*Searchinguforfthe file .name
repeated for every quadrant. Thié gscheme obvigusly makes
use of the facility for simultaneous search. Moreover, 1t
will simplify the implementation of the I/0 system, since

most of the detail in locating physical records is performed

16

by hardware.

2.2. Some Accessing Problems

Consider the problem of processing information on the
disk. Suppose that a set of records must be retrieved from
the disk storage. These records may or may not vary in
length but are arbitrarily distributed. The bit stream which
contains holes, keys and data items must be originated from
a fixed location on the track, as otherwise we cannot tell
what each bit represents. Thus, there would be an average
latency of % revolution to get ©o the starting point;ﬂ~ThévN
latency 18 reduced by using four starting points, that is
quadrant boundaries, which divide each disk track into four
equal segments. With quadrant segments, the average latency
is reduced to % revolution; after one has reached the.quadrant
boundary there is the usual average rotational delay of half
a revolution to find the record.

In what follows are brief descriptions of the three
basic operations (Parker, 1972): search, insertion and deletion,
and their execution time in term of disk revolutions.

1. Search operation:

steps descriptions

1 Position logic heads to the next quadrant boundary
and search for the file name (% revolution on

average).

17

2 Search for the fixed key (less than or equal to one
revolution to find the matching key plus one
revolution back to the record position again).

3' Read the matching record from the disk (fraction T
of a revolution identical to the length of the
record). 'If there is only one record to be searched,
then the operation is completed. Otherwise, two
extra steps (4, 5) are‘needed for more than one
matching record. |

4 Return to the position of the last matching point
(1-T revolution).

5 Repeat from step 2 to steﬁ L until the search (sw%ep
2) has returned to. the quadrant boundarybat which
it ‘begans at- W step 1.

2. Insert operation:

" steps descriptions

1 Pdsition logic heads to the next quadrant boundary
and search for the file name (% revolution on average).
2 Search for a proper hole, large enough to contain
the record that is to be inserted (less than or
equal to one revolution to find the location of a
proper hole entity plus one revolution back to the
beginning of the hole éntity again).
3 Write the new record and a new smaller hole entity

- if any is left - into the place of the original

18
hole entity (a fraction T of a revolution which is
identical to the length of the original hole in

disk revolutions).

3. Delete operation:

steps descriptions
1 Position logic heads to the next quadrant boundary

and search for the file name (% revolution on
average).

Search for the first record (less than or equal to
one revolution to find the first matching key plué
one revolution back to the record position agéin).
Write a hole into the place of the record (a
fraction T of a revolution identical to the lengfh
of the record). If more than one record is to be
deleted, then two more extra steps (4 and 5) are
needed). |

Return to the position of the last matching point
(1 - T revolution).

Repeat from step 2 until the search (step 2) has

‘return: ito 1 the quadrant boundary at which it

began ..in. step 1.

It follows from the above description that even if it

can be guaranteed that there is at most one match to the record

key, the basic operations (i.e., seafch, insertion, deletion)

cannot be performed on the same revolution due to the fact

19
that the same physical head can carry out‘only one primitive
instruction at‘ét time. If these opérations are to be
performed in less than one revolution time, - .~j--rg,:f_;~

an additional mechanism is required.

2.3. The Additional Mechanism

It is the purpose of this thesis to develop the
additional mechanism (Chapter 3) in order to speed up the
basic operations. The following is a brief summary of such
additional mechanism:

To speed up the access time, we shall infroduce a
second logic head on each track. The second logic head,
like the first lggic head, is also sensitive to each
primitive entity, the starting and finishing of each record
in the bit stream. Its function is to read a record from
the track or to write a record onto the track. Moreover the
second logic head, when coupled with the original logic head
over each track, will enable the device to..perform some basic
operations such as search, insertion and deletion within a
single revolution. This means thét the original logic head
will search for a record key or a hole while performing these
basic operations, and then the second logic head will carry
out the read/write inStruction for the operation.

Next, consider the simultaneous search'instruction
with only one logic head over each track. Suppose that two

logic heads find matches at the same time; then these two

20
matched records musf be read.simultaneously. However, this
may be impossible if a great many simultaneous matches are
found. To resolve such a conflict some record(s) will be
processed first.‘ For example, simultaneously matched records
may be processed according to the sequence number assigned to
each track. However, this may require as many extra revolu-
tions as the nﬁmber of those records that are found. This is
of course another inefficient retrieval scheme.

To give a genéral solution to the simultaneous matching
problem, each record will be prefixed by a mark entify, and
a record counter will be added to the device. The record
counter is a builtin device that saves the number of matched
records to be processed.. Thus, in the simultaneous match,
the number of matching records will be added to the counter.
Whenever a matching record is processed, it will be marked,
and the record counter decreased by one. A matching record
will not be processed twice since it && identified by the
marking mechanism, and.all matching recdrds will be retrieved
as the completion is governed by the content of the record

counter.,

CHAPTER 3
THE MODIFIED‘MEMORY DEVICE

3.1. The Modified Memory Device

The main featuré of the modified memory device is
that there is another logic head associated with each
existing logic head on every track. These fwo logic heads
remain a constant distance of d bits apart. One will be called
the control head (CH) while the one following will be cakled
the read/writé head (RWH).

The functions of allbhead couples are synchronized
by a single monitor which we shall describe in detail later.
The structure of the control and read/write heads is given
by Figure 3.1. The control head has the same structure as
descriﬂed in (Parker, 1970), and the same functions‘for its
registers: Dbit, length, auxiliary and operation. The RWH
contains a bit register, a length register and an operation
register which have the same functions as in the control
head. It also contains a circular read/write delay register
of d bits in length where d is the distance between logic
heads on the same track. The bits of the delay register are
scanned cyclically by the RWH at the same rate as bits on the

track itself. Consequently, a delay bit set when the CH sees

22
a certain point on the track will be scanned again when the
same point passes the RWH. The monitor also contains a
record counter register which is common to all logic heads.
Whenever the record key is matched successfully by a control
head, the latter notifies its associated read/write head to
set the delay and also notifies the monitor unit to add one
to thé record counter. Figure 3.2 sketches the delay device
and the physical locations df its bits. By initialization of
the delay device we mean all bits of the delay memory are set
to '0'. To set/reset (or turn on/turn off) the delay device
means a 1/0 bit is written at the indicated location by the
RWH. The bit will also be referred to as the delay bi#t
We shall return to this topic later.
The following comﬁon operations may be built up from
the individual operations of control heads:
search for quadrant name,
search for a key of specific pattern{
search for a hole of specific length,
unmark a record, 4
notify the controllep when a match is found,
notify the associated RWH to read, to write
or to delete the matching record.
The read/write head which follows the control head over the
same track has the following capabllities:

read/write/delete the record from/to the

23

iCH o
TRACK

o

& O _ TRACK

?hWH
MONITOR N
' 4“?_‘ REVOLUTICN
CONTROL , DATE
| CHANNEL | CHANNEL
| PROCESSOR PROCESSOR
[RECORD :
|_COUNTER , CONTROL HEAD
: TENGTH REGISTER
REQUEST ~ |READ = WRITE

MAIN MEFORY
DATA CHANNEL .

AUXILIARY REGISTER
BIT REGISTER
OPERATION REGISTER

READ/WRITE HEAD

' LENGTH REGISTER
BIT REGISTER
OPERATION REGISTE
READ WRITE DELAY

MAIN MEMORY

Figure 3.1. System configuration with request
queue, fead and write queuing buffers

24

read/

write
delay
device

delay
b%t
012 ... m d-Ne..d-2 d-1
read/Write [570 0 0 0 1 0 veeneeeeereensnsese 0O O
delay :
match match
record found
addFess)
e 0 O|mark bit| key 1|ec.|kEy'™n |au.
r 3 3
‘ d bits : >
———JIRWH ‘ , T CH

Figure 3.2. The cyclic memory delay device of the
associative memory and its linear map
to the disk. track. The delay bit in the
delay device 'is the bit which corresponds
to the address of the matching record.

. 25
specific locatioh as instructed by its
control head or by the controller,

mark the matching record,
read records into the buffer in the garbage
collection instruction.

As illustrated in Figure 3.1, attached to one end of
the control channel controller are the control heads.
Similarly, attached to the two ends of the data channel
controller are RWH's and read/write buffer quéues.
Communication between the data buffers and the main memory is
serviced by the main memory data channel.' All outstanding
'reqﬁests are qﬁeued up in the,request,queue. Some possible
requests are the following::

insert a_record,

delete a record,

retrieve a record orva set of records,
garbage collection,’

create a file, delete a file,

retrieve all file names.

We shall call these requests primitife operations
with the property that only one at a time can be serviced
by the monitor. |

The activities of the control heads,_read/write'heads,
control channel, data qhannel.and thé’main memory data

channel are supervised by the monitor. The function of the

26
control channel is to support the acti?fties of the control
heads. In particular, it broadcasts the file name and the:record
-key‘ih.ﬁhé ~ cyclic bit pattern to each active logic control
head in performing a search operation. In the meantime, it
should be able to notify the monitor when the record is found.
Thus it is a fairly sophisticated multiplex‘éhannel processor.
'The function.of the data channel is to transmit data between
read/write heads and data buffers, and to control the

activities of the read/write heads.

3.2. Generalized Physical Data Format

Primitive information entities to be stored on the logic
per track disk will be generalized to include the 'mark’
entity:

indicator bits mark bit

00 0O or 1

The mark éntity is a one bit entity, and is always the first
entity of a record in the bit stream. A 'hole' record will
contain two entities: the mark entity followed by the hole
entity. A data record will contain the following generalized
entitylpatterns:

(mark, key, ..., key, data).
The following example démonstrates an important concept on the
key part of a data record. Consider a simple data record
pattern:

(mark, kéy, data)

27
The data record may contain personnel informatioh, in which
the social insurance number is the key. It may contain payroll
information, in which thé employee number is the key. These
two distinct records share the same record pattern in a single
fiie. Thus, a search for the social insurance number might
end up with an employee number. In order to identify the record
key properly, the key must be qualified by the object refilected
by the key. |

The mark entity not only leads a physical.record in

the bit stream, but also indicates the end of thé preceding
physical record. With this dual function of the mark entity,
the logic heads can identify each variable length record in
the bit stream. Because of this capability, the logic—per—
track associative memory possesses all‘features of the
conventional disk storage device, and is also an efficient

information retrieval oriented device.

3+.3. The Dynamic Behaviour of The‘Memory

The dynamic behaviour of the memory (that is, the
complex of main memory, monitor, control channel, data
channel, logic heads) 1is briéfly illustrated in'Figure 3.3.
For simplicity, the memory is represented by five cdlumns:
the first column represents the monitor, the second column
the control channel processor and the third column the control
heads. Column four identifies data channel and read/write

head activities, and finally, column five the main memory

28

MONITOR CONTROL CHANNEL CONTROL HEAD DATA CHANNEL MAIN MEMORY
RCAD/WRITE HEAD DATA CHANNEL

ia: next request *
arrives

1b: activates control
© channel
2a: initializes

all control
heads and
position them
to quadrant
boundaries

ONE REVOLUTION

II.a Phase one: search for file name

ic: initiates search
for file name

2b: broadcasts 3a: all control heads
file name to search for the
all control file name
heads

3b: each control head
remains active if
it finds the file
name matched

1d: if necessary,
activates main
main memory
data channel

I1.b Phase two: search for the record key

3¢: active control
heads unmark record
during the first
revolution
ie: initiates search
key instruction
2c: broadcasts key 3d: active control heads

in eyelic - -~ search for the
pattern to all record key
active control

heads

3e: if a control head

finds a match, then

it (1) notifies the
monitor which in turn
adds 1 to record counter
during the 1st revolu-
tion, (2) marks on the
delay device of RWH

i1f: activates data
channel if
necessary

II+c Phase three: read/write operation

Tg: iFf read bulfer
available and
the data channel
is free, then
broadcast the
ready signal to all
active RWH's
ha: the RWH being triggered
by the ready signal and
the delay bit does the
following: (1) resets the
delay bit, (2) marks and -.
reads the matching
record; in the meantime,
the monitor substracts
1 from the record
counter.
4b: other RWH's being
wakened by their delay
clocks will just reset
the delay. bit

., .continued ...

MONITOR’

CONTROL CHANNEL CONTROL HEAD DATA CHANNEL

READ/WRITE HEAD

MAIN MEHORY
DATA CHANNEL

1i: if necessary,
activates main
memory data
channel
transmits
data to main
memory
ITI TEST FOR COMPLETION
1j: if record counter¥0

then another
revolution is
needed and BOX II
repeats; otherwise
requst is
completeg.

Figure 3.3. Control processes for the request:
retrieve a set of records with the given key.

30
_data channel. The activity of various boxes in Figure 3.4
depends upon the specific request being served by the memory.
By a request (or a primitive operation) we mean the quadruple:
(1) the file name, (2) the record key, (3) the request type,
and (4) the data. All the built-in operations of the logic
nead couple, and all the primitive operations described in the
last section form some basic request types for the device.
In some requests, such as read a record from.or write a record
to a specific location, the record key may be a dummy key,
which will thus disable the activities of the control heads.
With such a dummy record key, the search for the record key
will not take place. A request to retrieve a record or a
set of records with a given key in a file means all records
with the matching key will be‘retrieved. The service of each
reqﬁest is divided into three major steps:

(1) initialization, box I,

(2) operation, box II, and

(3) test for complefion, box IITI.
We shall describe the activities of the memory using a specific
request: retrieve a set of records with key in a file. At the
moment, we shall ignore most of the issues involVed with the
need to synchronize the varidus parallel activities 6f the
memory.
»;‘ .”Suppose that the memory 1is instructed.to retrieve a

set of records with the given key. The following steps must

31

be performed:

a)

)

c)

d)
e)

1)

g)
h)

Position all control heads at the quadrant boundaries.
Search for the file name which is the first key in
the quadrant.

Any control head which finds#&the file name matched
will remain active, otherSNWill idle to the next
quadrant boundary. |

All active control heads search for the key.

If a control head finds a match, then the record

will be read by the associated RWH, but meanwhilé, the
delay bit is set.

The outstanding matched record count will be kept

in the record counter register.

Continue step d to step e thoughout the quadrant.

At the end of one revolution, step b to step g

~will be repeated if there is an outstanding matched

record.

. The execution of this request begins by the monitor

instructing the control channel to initialize all control heads

and position all control heads to the next quadrant boundary.

These steps are represented by box I, and are executed -once

for each request. The next step is to find the quadrants

where the file resides, that is, to execute box II.a. Note

that we identified the file name by the quadrant name, which

is the very first key on each quadrant. Accordingly, using

2
the-simultanuous search feature of the device, the file name
is broadcast from the control channel to all logic control .
heads, searching for the file identifier key. First of all,
the length of the file name will be loaded into the length
register, which is used to compare with the length of quadrgﬁt
name. If the lengths are not equal, then the search is |
unsuccessful and the corresponding control head becomes idle.
Consequently, it remains to compare those quadrant names with
the same length. As soon as the last bit of the file name is
broadcast, all matches will be found. The successful heads
will remain active, whereas others will become inactive.
Accordingly, the file location in the parallel quadrants is
well defined so that records will be retrieved from the proper
quadrants. This step is represented by box II.a and will be
executed once for every Quadrant.

The next and principal step (box II.b) is to search for
the key and read every record (box II.c) with a‘matching key.
One of the primary functions of each active control head is to
unmark each record whenever the record comes under the control
head in the first'révolution. The key to be searched will be
continuously and cyclically broadcast to all active control
heads by the control channel controller throughout the parallel
quadrants. If a control head finds a match to the fecord key,
then the monitor will be notified via the channel controller.

The channel controller adds one to the record counter register.

33

In the meantime, the control head will notify its associated
head to mark the delay device. The record counter is used to
ensure that all matching records are processed for the current
request., If a read buffer is available and the data channel
is free, the monitor initiates a control signal, called the
ready signal, to all active RWH's. The signal will be
terminated if either a buffer is not available or the data
channel is ndt free. The RWH, when triggered by its delay
clock, checks for the ready signal. Tf there is no ready ...
signal, thehcit jusm@néﬁetégthé”démaylélockiV@OEherwisé, it
does the following: |

(1) resets the corresponding bit in the delay device,

(2) reads the matching record into the specific location

in the read buffer queue,, .
(3) notifies the channel controller to subtract one from
the record counter, and

(4) marks the matching record.
An acknowledge Signal is generated when the reading is completed.
The monitor, once it receives the acknowledge signal, activates
the main memory data channel and the record is transmitted to
the main memory .

’The above occurences will be repeated during one

complete revolution. At the end of the revolution, the monitor
bchecks the record counter register. If the fecord counter

is greater than zero then another revolution is required and

3
box IT will be repeated. All active control heads will find
the same matches as in the previous'revolution.' However, in
the second and subsequent revolutions, the matching control
head will notify its associated RWH head to mark the delay
device only if the matching record has not already been marked
by the RWH. Thus the marking mechanism assures that each na
matching record will be procéssed once only.

Some remarks follow:
1. From the above description,vat least one revolution is
necessary for retrieving a sét of records of the given kéy.
If we know that there is at most one match for the given key,
then the request is completed as soon as the matching record
is read by the RWH, regardless of the rest of the revolution.
This will save the unhecessary latency‘time for the next request.-
2. The record counter has its contents changed if (a) the
associated control head finds a match, or (b) the RWH begins
to read the matching recordi In case (a), the record counter
will be increased by 1, and the corresponding bit of the delay
device will be marked. In case (b), the record counter will
be decreased by 1, and the corresponding bif of the delay
device will be turned off. These two events may, however,
occur simultaheously. To resolve'Sﬁch a conflict, the
concurrent processes must be interlocked in order to keep the
outstanding matching countlup to date.

We should keep in mind that the above description is

35
only an example. Actually the memory must be able to carry
out a variety of primitive instructions, and the actual activity
of most boxes in Figure 3.3 is therefore a function of the
instruction being served. There.should be a way to select

the desirable algorithm each time.

3.4. Synchronization of The Parallel Activities of The Memory

In what follows, we shall discuss the need to synchronize
the various activities of the controller with éach other and
‘with the rotation of the disk. Such synchronization imposes
" constraints on the sequential processes of the memory that
may run concurrently.

1. The controller cycle (Box II) is the total time that
the monitor takes to execute boxes lc to 1f. Box lc must be
executed in a time very significantly less than the time for
the disk to move k bits, where k is the length of the first
two fields in a- primitive information item.

2. If more than one active RWH head is triggered by
its delay ciock simultaneously, then these heads check for
the ready signal. If there is a ready signal, then the channel
controller, which controls the activities of logic heads, will

enable only one of these RWH heads.

3.5, Performance of The Memory

We shall now try to justify the revised memory device

by describing its performance in carrying out the operations

which were defined as primitive instructions (that is,
requests to the memory). Basic to every request is to position

the control heads to a quadrant boundary, which take

¢ol=

revolution on the average.

1. Retrieval of a single record

This is, of course, based’on the assumption that there
is at most one match for the given key. The average time is
% +‘% = g revolution. In the cpnventional fixed head file, it
takes % revolution to position the head to the starting point
and since every track must be searched sequentially, this takes
another % revolution(s) to retrievé the record, where n is the
number of tracks allocated to the file, so that the total time
is 3(nt1l) revolutions. However, some fixed head disks can
detect segment boundaries (for'example,vIBM 2305 disk); then
the average retrieval time is reduced to only_% revolutiongs).
Thus, the conventional device may be more efficient if the
file has only one track. In what follows, we shall assume
that the conventional device is a fixed head disk whose heads
- are sensitive to segment boundaries so that the time to
position the heads to the next starting point is negligible.

2. Insert a record

In the conventional fixed head disk, the insert

operation has two steps:

(1) getting to the point where the item has to be

written: 3 revolution.

37

(2) the actual writing process.
Since, in general, the time required to perform step 2 is
stgnificantly less than step 1, the service time is %
revolution. To insert a record in our memory has three steps:

(1) position control head to fhe quadrant boundary

(% revolution), |
(2);search for an empty slot (hole) of appropriate
size (% to 1 revolution),

(3) write the record on the slof found, and

(4) write the hole entity on #the tail of the slot.
Steps 3 and 4 need approximately S revolution time, . same
as the conventional device, where S is thé revolution time
to write s bits of information on the device. Again, since
this is significantly less than thé time to perform steps 1
and 2, it is neglected in the following discussion. Step 2
needs up to one revolution if there is only one quadrant
allocated to the file, or all quadrants allocated happen to
be in the same disk quadrant. Since this will be the worst
case, it should be avoided if possible. It follows .- that a
file should occupy at least four consecutive non-parallel
quadrants, since if the empty slots are uniformly distributed
over the quadrants, then we can write on the first appropriate
empty slot of the first quadrant encountered. In this case,
step 2 requires on the average % rgvolutidn, which gives the

total service time of 4 revolution. Thus, if the file is not

38
heavily loaded, we have a very good chance of improving the
total service time,

3. Insert a set of records

In the conventional device, this takes ($ + sT)
revolution. Since ST is the same in both devices, we shall
drop it ih the following comparisoh. In.our memory, this
depends heavily on the distribution of empty slots on the file.
The worst case will be that these records have to be inserted
into four honparallel quadrants. This will need in general
6ne revolution time. However, 1f we can insert all records
in the first quadrant encountered, then the total service time
‘is reduced to 3 revolution (excluding sT). Here is the average
time distribution (excluding ST):

Number of nonparallel. .
quadrants encountered: 1

o
-~

ST |
L
l_\

Service time, in revolutions: %
L4, Deletion
This instruction has 3 steps:
(1) position control heads té the quadrant boundary,
(2) search for the key (% to 1 revolution),
(3) write a hole entity on thé matching record.
If there is more fhan one match on the file, then the service
time is % revolutions. However, if there is a singie match,
5

then it is about 8 revolution. In the conventional device,

since every track should be searched sequentially, it takes

39
% revolution to search for the key, ahd then erase the record,
where n is the number of tracks allocated to the file.

5, Create or delete a file

This takes at most one revolution to write/delete the
file name, i.e. change the quadrant name(s). However, in the
conventional device, it is necessary only to create/delete a
file directory entry which, of course, requires 3 revolution
on the average.

6. Garbage collection

Garbage collection is the most inefficient service.
It will be called when:
(1) the file is highly loaded,
(2) a large number of small hole entities have been
created as a result of insert/delete instructions, or
(3) no empty slot of proper size 1§ found in
performing an insert instruction.
Garbage collection in the first two cases is initiated by
request, whereas in the third case it is initiated automatically
by the monitor. Garbage collection is eésentially equivalent
to the act of file reorganization which results in improving
the service time of other requeéts. However, the service time,
as we have pointed out previously, depends on the loading factor
and the distribution of hole entities. Hence, additional

quadrants may be required if after garbage collection,

each quadrant is still highly loaded.

Lo

To improve the efficiency of garbage collection, we
shall assume that a free parallel quadrant and free buffer of
6ne quadrant in length are always available. The function
of the active control head of the file will be read only, that
is, transmitting non-hole entities, one bit at a time to the
free buffer via the controlvchannel. The data channel will
then transmit the corresponding data to the RWH of the free
quadrant. If after the garbage collection, the quadrant is still
heavily loaded, then an eXtra'quadrant is required. The first
half of the records will be written on the immediate next free
quadrant, and the other half will be written on the subsequent
quadrant. New quddrants allocated to.the file will be marked
so that garbage collection will not be applied to them. After
the garbage collection, it réquires an.extra revolution to unmark

all quadrants of the file,

3.6, Alternate to the Modified Memory Device

As we have seen so far, the fundamental mechanisms that
makes the logic head couple work are the delay clock device
and the record counter register. It may be expensive to
implement the delay clock mechanism for each RWH. In facf,

with a matching record queuing buffer, these can be replaced

L1
by a single record countér register in the channel controller
(figure 3.4). Each entity in the matching record quebe
contains a record address. Attached to one end of the
control channel are the request queue and the matching record
queue. When the control head finds a match to the record key,
it performs the following:

(1) adds one to the record counter register during the

first revolution,

(2) notifies the ménitor of the masching record.
Whenever the monitor receives the matching signal, it puts
the address of the matching record in the matching record
queue if there is a free entry in the queuing buffer. In case
there is no free entry, then the matching record will be picked
up in the next or éubsequent revolution. If the read buffer
is availabie and the data channel is free, the monitor,
which constantly keeps track of the read/write head location,
selects from the matching record queue the record which comes
first under a RWH and initiates the ready signal to the
corresponding RWH., The RWH then marks and reads the matching
record. Whenever a read instruction is completed, the counter
will be reduced by 1 and'the-RWH will generate an acknowledge
signal to the monitor so that ﬁheunéXtihgad:banibé;selecteqi;At
the end of the revoLution, the contents of the couﬁter will

be checked. If the contents of the counter is 0, then all

42

‘§¥ TRACK

match
equest record

read write

Kb - TRACK
MONITOR
e . disk .
, revolution
conﬁrol data
channel channel
|processor processor
record |
counter

Control Head

length register
auxiliary register
bit register
operation register

main m
data ¢

emory
hannel

Read/Write Head

main m

emory

léhgfﬁ register
bit register
operation register

Figure 3.4. Alternate system configuration

43
matching records have been retrieved; otherwise another
revolution is needed. In. the next revolution, all control .
heads search for unmarked records, but do not add 1 to the
record counter for matching records, The address of the
matching record will be added to the matching record queue and
the process is repeated as in the previous revolution. 1In this
alternate scheme, there is one cycle of'the gselection-read-
acknowledge process for each matching record, and each matching
record must be in the gueue prior to being accessed.

In order to read adjacent matching records of the same
_track'or of parallel tracks sequentially, the time to generate
the acknowledge signal and to execute the selection of the
matched record should be less than two bits time, which is the
time for the logic head to read the indicator bits of the mark
entity. The RWH must receive the ready signallprior to
encountering'the mark bit of the mark entity. If more than
one match to the key occurs concurrently, then the matching
signals will be intercepted by the control channel processor.
The control channel processor will then instruct the record
counter to increase the content by the number of matching
records; however, it will place only one of these matching
records in the matching record queue. Since the monitor
constantly keeps track of all RWH iocations, it can always
have the next selected matching record available, and in the

meantime free those matching records whose addresses have

Ll
passed the RWH's. This implies that(l).adjacent matching
records can be processed sequentially since the.ready signal
can be generated within two bits timé, and (2) a free entry
in the queue is available for other matching‘records. We
shall see later that this alternate device limits hierarchical-

searth in the simultaneous keying mechanism.

3.7. Hierarchical Search Mechanism

Consider the modified memory deyice described in
section 3.1; that is, éach RWH logic head'is_éQﬁipped with a
delay device, but without the matehing record queue for the
system (Rigure 3.1). As we have seen so far, the oﬁerational
characteristic of the logic per track disk memory_device is
the simulténeous keying mechaism. This simultaneous keying
mechanism enables us to establish aﬁother mechanism for the
device, that is, an hierarchical search mechanism on the key
part of the record. This, in fact, is not yet available in
conventional disk devices.

Let k, k

Koy wes kﬁ be keys of a record. A finite

1’
set of primitive predicates may be defined over the key-part .
of the records. These predicates, in turn define the

hierarchical search. The following are examples of predicates

which are likely to be included in the primitive predicates:

b5
1. For a given key k, retrieve all records whose key-part
has a key matching k, or has no key matching k. These
predicates will denoted symbolically by k and -k respectively.
In the simultaneous search, the given key 1s broadcast over
and over again cyclically, and each head compares whatever bit
is read from the key of the record with bit being broadcast,
This implies that sometimes the‘last bits are compared first.
'As we have demonstrated previously, this does not matter on
an equal-unequal comparision. However, the equal-unequal
comparision mechanism enables us to implement the abbve
predicate.
2. The next predicate is the limited combination of 'and’ and
‘or' logical operations oﬁ the key-part of records. Given a
set of keys, ky, kyy .0 k = say, it isépossible:tOYfetfiéve
?ecordsfwhqgé:kprbaft;satisfiesrfﬁe fplloWingspfedicates:

kl and k2 and ... and km .
kl or k2 O +¢s OF km ,

..and k2 or k3 or ku ,

kl and k2 and ... and ki or ki+1 or ki+2 or

s

_kl
I..‘or k
= "m
etc.
The introducation of the marking mechanism enables us
to implement the above primitive predicates, and the introduction

of the logic head couple on each track will speed up the sevice

L6
time.

The following example demonstrates a predicate search
on the lggic—per-trackAassociative memory. Suppose that we
want to access a record whose keys satisfy the following
predicate:

klland kz.

Then in the first revolution, all active control heads will

search for key kl; If a key is found, then theccontrol head -

will notify the aséociataiRWH to mark the delay deviee, as
described previously (Noéte thaﬁ the alternate associatiye
memory described in Sectioﬂ\326;Coniéihswaameméﬁﬁhggnennndi
queue instead of the delay device.“K}pnpbiem;OQCurs;iﬁla;
match is found while the matching record queue ié fuli;

this would explain why it limits hierarchical search). This

in fact; memorizes all matched records within d bits distance
of each RWH. Then the RWH will in turn mark the matched
record when the matched record passes under the RWH. In the
next revolution, all active control heads will seérch the marked
records fbr;kgy.kz. If key kz is matched to a key of a
marked neconds then the control head will again notify the
associate RWH to turn on the delay bit. In this manner, when
the RWH encounters the delay bit, it will leave the record as
it is marked, otherwise, the RWH will just unmark the record-,:

It follows that all marked records satisfy the given predicate,

b7

and all desired records are ready for retrieving.

3.8,

Evalustion of Hierarchical Search

We shall consider two types of hierarchical search:

OR search and AND search.

a. 'OR'

An 'OR’

searchs, kl or

reflecting age

prefix: AGE.

'AGE20", The

'OR' condition
STEP 1:
STEP 2:
STEP 3;

search:

search 1s a disjuction of equal-unequal
K, O +ee OF k « For example, K, is the key
in the personal recbrd, and is qualified by the

Thus a key of age 20 would be represented by

procedure to retrieve records satisfying an

is:

Position all control heads to the quadrant
boundary, % revolution on average.

In the first revolution, the control heads

unmark all records and search for key k If

1’

a match is found by a control head, it will
be marked by the associated read write head,
and the record counter will be increased by

one, At the end of the first revolution, all

matching records are marked and the number of

- matching records is contained in the record

counter.
In the next revolution, the control heads search

for key k2 on the unmarked records.

Lg
If a match ' is found, then the record will be
marked by'the RWH and the record counter will
' be. increased by one.

STEP 4: Repeat STEP 3 for keys k3, eee kKoo

STEP 5: The final step is to read all marked records.
This requires at least one revolution, at most
n revolutions, whHere n is the number 6f parallel
quadrants allocated to the file. Therefore,
the total ééééss time is at least m + %

revolutions. and at most m+n+% revolutions.

b. 'AND' search

An 'AND' search is a conjunction of equal-unequal
condition,

kl and k2 ahd ... and km

such that each ki reflects a distinct object, for example:

'AGE20' and ‘'SEXFEMALE'.
The retrieval procedure is as follows:

STEP 1: Position control heads to next quadfant
boundary, % revolution.

STEP 2: In the first revolution, the control heads
unmark and search for key kl' If a match is
found, then the record counter is increased
by one, and the associated RWH marks the
matched record. Thus at the end of the first

revolution, the number of matched records is-

STEP. 3z

STEP 4:

e
contained in fhefrecgrd,counter,;andfall

matched records are marked. If the reéord
counter is O then the: .request ié_COmp}eﬁeQ5
otherwise proceed to STEP 3. This takes ohe
revolution.

In the next revolution, the control heads

search on these marked records only. If a
marked record does not.match keylkz, then the
record will be unmarked by the assoéiated RWH
and the record counter decreased by one. A%

the end of the revolution, if the record counter
is 0 then the request is completed, otherwise

repeat STEP 3 for keys k This step

g1 e km.
takes at least one revolution and at most m-1
revolutions.

At this point the number .. of records satisfying
the 'AND' condition is held in the record counter
and all such¥ecords are marked. If the counter

is O then the request is completed, otherwise

read all marked records which takes at least

one revolution, at most n revolutions, where n is
the number of parallel quadrants allocated to the
file. Therefore, the total access time is at most
(m # n + %) revolutions, assuming that there is

at least one record satisfying the AND condition

and at least % revolutions.

CHAPTER 4
STORAGE ORGANIZATION AND ACCESS METHODS

4,1, Chain Storage Organization In Logic-Per-Track Environment

The basic storage organization and access methods
described in the previous chapter facilitate random file
organization with direct access. Moreovef, the ﬁarking
mechanism provides an hierarchical access file organization.
It is the purpose of this chapter to develop a.more general
storage orgahization, that is a chained sto#aée; organization,
and to demonstrate some applications of such a file organization
in a simultaneoﬁs search ehvironment as the coUnferpart of
the file organizations and access méthods in conventional disk
storage devices.

The basic method for strudturing and processing records
in a file in the logic-per-track environment is that records
are stored, updated and retrieved by key or keys.' The
characteristic of the basic storage organization is that each
record in a file consists of the same type of information held
in an identical format as other recbrds in a file} this form

of record structure will be referred to as multiple-record

structure. An example is a student file that consists of
personal. information, semester information:and -course

information. A typical record in a student file may hold data

51
given by Table 4.1, With the iogical components of,information‘
specified in this table, the‘étudent record may be stored as
a whole.as one physical record (the multiple record approach),
or may be segmented into three physical records -- personal,
semesters and”q@@ﬁs@s. In either case a record kéy}ﬁustfbe
chosen, say the student number, Moreover, an additional key
is needed invorder to differentiate the personal records,
seméster records and course records in the file (Figure b4.1);
the student record can be accessed by the student number, or
by both the student number and the student record type.
Consequently, records should be stored and retrieved in some
way so that each record can be properly identified. One method
for suchf@&mﬂ;Lidentification is given by Figure 4.1: each
record is identified by the student number. All these recofds
can be retrieved in_random_ordering by the student number with
a single reqﬁest to the associative memory. If the records must
be retrieved in‘a fixed order, then they should be chained -
together.

A unary chain is the simplest technique of linking
logically related records; related recofds are linked by a
pointer that contains a reference to the néxt relatedvrecofd
in logical sequence so that all related records are chained
together by successive poinﬁers. Implementation of a chain

in the logic-per-track environment is described below.

B . . S : "-52
1., . Personal: Information:‘stﬁdenf number ‘
| name ' ‘
social insurance number
sex
. birth date
| .« place of birth ,
i "fl o ,,FL“ -; institution last attended
© previous degree held
:nggkf“'“'@’J record toidate ,
R " year of first admission o,
address . o
2., Semesterfinformgtionx ”faculty.~dépf-'and’year attended .
- o) | Academic session '
“tuition fee
"fStanding'.: _154 S
' etc;: .

'3, Course Information:, grades |

| B "“ S o - . course number - -
_tf; e s course name’
c " meetings

- 'descrlptlon

“Table . 4.l fLogmcal components 1n a typlcal
- | student record

53

KEY | | DATA

MARK

~student no. | personil .| semester | courses

Tétudent 1nformat10n is stored as a whole by one
record' the key entlty holds the student number, and the data
\'! entlty holds personal ;‘semester and course. information as

Y
spe01f1ed in the loglcal structure of the studeﬁt record.

KEY | KeY “DATA

: student no. | record type | persomel . -record
MARK | KEY 1 KEY | . . DATA
student no. record type semester record
KEY . KEY DATA
MARK T - _ _ ,
_student no. | record type ‘course record

zStudent 1nformatlon is stored as three records in
“the flle- personal ' semester and courses. Moreover,
" each record 1s 1dent1f1ed by the student number (KEY) and the
'record type. |)
Flgure b 1,‘ Examples of the student record stored in-

‘the student file.

54
Depending on the software approach being used, the contents
of the pointer can be either of the following:

1. Actual address: The pointer is a key entity which

holds.an actual physical address. The track address of the
logic head, and its location, are controlled by the channel
controller. The chain may be created as foliows: Each record
of the chain is allocated a key entity, which will hold the
address of the preceding record or-the succeeding record.

If the pointer holds the address of the preceding record,

then we have a backwards chain; when the current record is
created, its address is saved to be useias a key of the next
record in the chain. th.&hécother hand, if the poihter holds
the address of its succeeding record, each record in the chain
will be created in two steps: (1) write the current record and
save its address, (2) insert the address into the chain pointer
of the precediﬁg reéord. Because each record in the chain
depends on the physicél position of the next record, all
pointers may have to be revised after each file reorganization
or garbage collection.

The revisedjﬁﬁmﬁi&ﬂlrecord formats for the associative

memory device introduced in Section 3.2 can avéid the tangle
of actual physical addresses in the chain structure. A chain

organization which utilizes such a revised physical record

format is described below. In what follows, the chain

55

organization (chain structure) simply refers to the chain

utilizing such a revised physical record format for the

associative memory. In other words, records are not chained

by actual physical addresses.

2. Key pointer: The pointer is a key entity of each

record in the chain. An element of the chain is a structure
and at least one figld in each record is a pointer value that
is used to point to another record. Obviously, the purpose

of the chained organization is to tie together the elements

of a data structure and the Chaih'key is propefly cﬁosen by

the application program. In the logic-per-track environment,
each record in a chain needs two key fields: one for the key

of the record, and the other for the pointer field (Figure 4.2).
The pointer field contains a chain key which is generatéd

from the key field of the record it points %o by a simple

(and reversible) process such as appending‘a single special
character. TFor example, in a Student record structure, the
personal record has é record keyv'7500001', and a pointer
field which contains a chain pointer '$7500002' pointing to

a succeeding personal record in the chain. The chain pointer
'$7500002" is genepated from the succeeding personal record by .
appehding a single special character, '$' say, to the key of
the succeeding record of the student number 7500002. By
continuing this pfqpess,the_stUdent personal records are

chained together. This simple example is adequate %o

KEY

KEY / DATA

|MARK POINTER

record in a
record and ¥

| Figure 4.2, Basically, two key fields‘are needed for each

chain: one for the key of the
he other the chain pointer.

Personal T KEY POINTER ~ “DATA
Records 1 |MARK V200001 [$7500002 data
* IMARK _ 7500002 |$z5o?oo3 1 datal|
[MARK | 7500003 1$7500009 [data)
|MARK 7506009 |chain pointer data
to next record

|

" Figure 4.2,

"record in the chain

e e Loy

56

:M7Figure L,3. Sample‘chain of student‘personal records. Eachi
o ' ‘has the format as shown in

57

demonstrate the following important features of the logic-per-
track retrieval system:

a. The chain key of each record is reversible. For
example, with the chain key of any record, say '$7500003', by
applying the reverse procedure, we can obtain the key of fhe
succeeding record: 7500003. Thus the chain is in fact a binary
chain with only one pointer field in the chain, which is
impossible in conventional computer storage.

- b. Each record in the chain can be retrieved by following
the chain key, or directly by the key of the record if it is
known.

In general, a record in the chain can include any
number of pointer fields. In the simultaneous search
environment, eéch record in the storage is uniquely identified
by one of its key(s). If more than one record possesses the
samé key, then a simuitaneous search for the key would encounter
all these records regardless of their physical positions in
the chain; 'vathe order of records in the chain is importaﬁt,
then elements in the chain must be linked in the!deéired’drder.
We shall call such a chain a linked list:; ahalogous to list
structures in compﬁter storage. From the remark above, no two
distinet records may contain identical keys whicﬁ serve as
pointers in a linked list. The key in the pointer field of a

chain may be generated by a simple’and reversible procedure.

58
The chain may be ended with an end-of-chain marker, or
by discontinuing the pointing key."The end-of-chain marker
"is a specified key value. Each chain record once accessed
will be checked against this key by software, in order to test'
for the end-of-chain. If the chain is terminated by discbﬁtinuing
the chain k&y, then an attempt to access the record with the
chain key of the record will fail to match any record in the
file,, and acéordingly, will signal the éhd of the chain. The
first record of the chain may be'acgessed by one of its keys.
This key may.be (1) the chain key of some. other fecord, (2)
obtained from some other file, or (3) supplied by fhe user,
dependhg on the data structure of the file. The following is
the procedure to retrieve the entire forward chain: .
(1) Retrieve the first record of the‘chain (g revolution
on average).
(2) Generate the key of the succeeding record from
the chain key of the current record; retrieve the
succeeding .record by this key (g revolution on
average) . |
(3) Repeat step;"(z) until “the end of the chain is
encountered.
Thus, with forward linking, we must find and read the record
with key K before we can locate its successor. Step (2)
reads, with backward linking: cbnStruct a chain key for the
predecessor from thé key K of the current record, theﬁ*reirieve

the preceding record by its chain key.

59

4,2, Some Aspects of Chain Structures

Some of the most important aspects of processing a
chained file are the 'following:

1. File access -- sequential method,

2. File maintenance -- makihg_ insertions aﬂd deletions,

3. Describing and building more complex data structures.

1. Sequential File Access

Sequential access means that the data elements (that is,
logical records) are referenced in a manner dependent upon
thesequénpe'in which data. . - elements are stored. The sequence
of records is .linked by a chain, and the file records can be
accessed sequentially by the procedure described in Section 4.2.

2, Insertions and Deletions

If the logical sequence of records in a chain is of no
significance, insertions are simply arranged. If a record is
to be inserted in the chain, a pﬁinter is created in the new
record to reference the first record in the chain. The key of
the first record in.the chain is generally_peld in the master
record (for example, a record with ;?dummy-kéy would work well).
The pointer held in the master record is then altered to
reference the newly inserted record. Where the logical sequence
of records within a chain is important, then with the
conventiénal device, the chain must be followéd from the

beginning until. the insertion point is reached. However,

60
this may not be necessary in the logic-per-track environmeht.q
Insertion need not requiﬁeithat the chain be followed from
the beginning if the key of the record at the point of insertion
is known. In this case, the record can be retrieved directly
by simultaneous search., The pointer of the prededing (or
succeeding) record is then altered to reference the new record.
The original pointing key in the preceding (dr_succeeding)
record is inserted in the new record, which then re—establisheé/
the link to the next record in the chain. The same is true of
the convehtional device, if the address of the record at the
point of insertion is known. However, it requires that the ~-
address of the record in a chain be stored somehow segérately

whéther in the coré memory or in another disk file.,

‘The deletion of records is an equally simple matter.
Regardless of the logical sequence of the records'in ﬁh?gghain;
the record to be deleted can be located and can be retrieved
directly by simultaneous search. Moreover, the successor
(or pfedecessor) of the deleted record can aiways be found
directly Because. the chain key of the successor (or
predecessor) is constructed by the simple and reversible
procedure from the key of the deleted record. This record will
be deleted ohce it is accessed. The chain key of the deleted
record will be stored as the pointer key field of the succeeding

or preceding record, and the deletion is completed.

| 61

b3, Tfeé’StructureAReDreséntationg =

One of the data structures that model many real-life
situations is the tree structure. For example, tree structures
can be used to describe: the organization structure of a
business; a student registration'reporting system organized
by department, courses, etc. A tree is defined recursively
as a finite set T of nodes structured as follows: |

(1) one node is designated as the root of the tree

"(T); and
(2) the remaining nodes are partitioned into disjoint
sets T4, Toy ees T each of which 1s a tree.

The trees Tl’ T2, . Tng are known as subtrees of the tree T.
A terminal node is a node which has no sﬁbtrees and a
nonterminal node is referred to as a branch node. For ekample,
in the tree structiure depicted in Figure 4.5, node A1 is the
rodot of the tree, node Bl'aﬁd B2 are branch nodes, and nodes
BB’ Cys Co 03, Cpy» 05, Cg are terminal nodes. Figure 4.6
gives an. . example of the student, semegter, and course data
represented.as a tree structure.

There is more thah one way to implement tree structures
in the logic-per-track environment. For example, in Figure b,7
indexes to the subordinate records are kept with each parent
record, I(B) denotes the index (%héi‘is, the chain key) to
the record with key B., From a record with key A, we can

compute the keys B1; B, B3 fromithe index fields and then

A:_ Figure 4.5 Conceptual view of tree structure.

student
record

semester- semester semester
record . record 1 record
course course course course course
record record record record .record:

Figure 4.6 Example of student record
represented by a tree structure.

63

A1 I(Bl) I(BZ) I(B3) | data
Bl- I(Cl) I(CZ) I(CB) data
Bé I(Cﬁ) ’I(C5) data
B3 data
Cl data
C2 data
C3 data ,
_ Figure 4.7. A data organization
CM data representing
* . Fig'ure LI’. 5-
C5 data
A1 data
B1 I(Al) data
B, I(Al) ‘data
B§ I(Al) data‘
C1 I(Bl) data Figure 4.8. Another data
. ' organization
o representing
CZ I§B1) data ‘ Figure 4.5. ©Note
) that both
03 I(Bl) data representations
have the same
C 1(B,) data amount of storage
in 2 space -.
C5 I(BZ) data

64
access directly the subordinate record with each of these keys.
Also, given record B1 say, we can access the parent record A
by computing the index I(Bl) and using it as a search key. A
different data organiéation is shown in Figure 4.8. Here, each
subordinate record stores an index to its parent record. Given
any record with key B2 say, we can retrieve its predecessor
which is the record with key Al’ or all its immediate successors
which are the records with key I(Bz) because both keys I(Al)
and I(Bz)'are formed by a simple and reversible procedure from

the keys A

1 and B2, respectively. Both data organizations take

the same total amount of storage space.

L,l., Evaluation 66 Chain Structure Search

In the logic-per-track environment, the chain structure is
the major storage organization besides the basic storage organiza-
tion described in Chapter 3. Evaluation of the performance of such
a...: storage organization is necessary. Assume that chain records
are distributed uniformly around the disk track, and the chain
has n records.

a. Retrieval Time for a Chain

A record in the chain may be retrieveain two ways:
(1) by directly accessing it if a key of the record is known,
and (2) by folkowing fhe.chéin otherwise. If the key of the
record is known, than the retrieval time is g revolution on the
average. (Section 3.5). Suppose on the other hand that the key

of the record to be retrieved is not known; then the chain must

3l

65
be followed. This will take %? revolution.

b. Insert Time

" Inserting a new record R in a forward chain can also

be done in two ways: If the key of the record P at the point

of insertion is known, then the procedure is simply:

1. Retrieve the record P directlyg(g_revolution on average).
The reogrd P‘will be deleted in the next révolution (one
revolution).

2. Move the chain key of the retrieved record to the chain key
field of the record R to be inserted. Replace theigﬁain key
of the retrieved record P by the chain key derived from the
key of the record R to be inserted.

3, Write record R and the record P (%g revolution). Therefore,
the total time is %g revolutions on average.

Suppose on the other hand that the key at the point of
insertion is not known, then the chain must be followed. This
would take at most %? extra.revolutions, where n is the length

- of the chain.

c. Deletion Time
Deletion of a record is mueh simpler because the key of
the record to be deleted is known; the record can be deleted

b

directly, which takes 13 revolutions on average.,

4.5. An Inverted Data Base Model for Conventional Disk Device

To draw a comparison wilth conventional devices, an.

 inverted data base structure (Cardenas, 1975) will be used.

. A 66
In this model of an inverted data base, each record is accesss
éﬁle via a hierarchical structure of three directory files:
a track index file, a key-value index file and an accession
index file (Figure 4.9).

The folhowing is the inverted file organization
description (Gardenas, 1975, page 255). The inverted file
organization consists of four types of blocks, where the block
or page is the unit of data physically transferred between
secondary storage and main memory as a result of a single I/0
operation: |

a. Data blecks, which contain the records, that is the
data base. The complete record is Stored, including the
inverted key-values. |

b. Key-value index blocks, which cdntain the access keys.
An access key consists of the pair key-nafe/key-value; a
short representation of the inverted key-name is.Stored
addition to the key?value. These are noted I and VALUE,
respecti#ely, in thé key-value format shown in Figure 4.9.

The VALUE could be fixed length with blank fill, but will be
considered variable length and thusvwill be preceded by a
key-value length indicator, kl. Associated with each access
key is a pointer, PTR (the actual physieal address), to the
beginning of a 1list of record addresses (often called the

accession list) and the length, LGTH, of this list. The access:

67

'/ keys - are stored sequentially in key-value blocks and ordered

"Dy Kéy'name I,"%hen/by VALUE:\ o |

€. Record ad@ress blocks or aceession blocks which
contain the lists of“"accession numbers", which are pointers
to records in the data base. Each list is a series of consecu-
tive words. No information is stored within the accession block
as to where a list begins or ends, since this information is
provided in the key-value blocks. Each list is ordered
according to the value of the ﬁointer.

d. A track index block is provided for fast access %o
key-value blocks. The Fformat of each frack index block entry
is identieal to the key-value format. The track index block
contains each key-value appearing at the beginning of a key—value.
block and the pointefs to these blocks (as diagrammed in
Figure 4.9). The use of one track index block probably suffieces
for most applications. .

In order to}Compufe‘aVerage access time, estimates of
three basic units of time are’“usedg'" -

1. TT’ the average time to access a block 6r page

' (that is, a track).
2. TC’ the average time to compare an access key or
key—value.A
3. Tq» the avérage time to intersect bf{féfmérgd'tWoa
bl,,KSLin%gdessién numbers., |

These estimates vary depending on device environments.

http://blp.cksL-.of

68

“Index” or “Directory™ in Fast
Random Access Storage ’

Key-Value Accession

| Track Index Index Blocks . {Record Address}
Block (Page} . ‘ (Pagesy . . T, Blocks {Pages)
. > ‘ /'
— . ol
=1 =7 = =
] . \ - bl \
[. . —
: \. . : | == DATA
| \\ p— BASE
i | —— A
i \ pr— p————
l e e, —
2 N == Ve =0
S—— Track pnmet
o — (e
: \: . 'l Or Page —— Ri:rds
/ L]
I / I .
; /R I
i / \ I M
/ \ ' e
' / v
: / Lyt 1 t Y]
v/ oy { ' ¢ ¢
h / 1 \ l 1 ' t b)
I // \\|
{/ Key-Vatue Format \
ke - vare [pe Joom
e £ v H £
s 3 £ ¥
- 3 S 4
§§] T oE
>
(3
x

Figure 4.9

Layout for the inverted file organization
for the conventional disk device discussed
by Cardenas, 1975. (Figure 2, page 25h.
CACM, May 1975),

69

In what follows, we describe briefly the average access
times for Equal-Unequal search, 'OR' search and 'AND' search
in the conventional device; details can be found in
Cardenas ;(1975). The average access time for each searth is
derived step by step in terms of the basic units of time as if
one were taking each step through the directory and into the
data base. The track index block, the key-value blocks and
the accession blocks are assumed to be in ordered form and
thus binary search is used Wwhere possible. Moreover, a iarge
block size is used coinciding with.track size mh.;A
that is, the pages accessed are whole tracks. if N denotes
the number of faccéSS‘keyé = that are stored sequentially in
each block, then the averége ‘search: time~ for- a-key isr=
TC*logZN, which is small compafing to TT and TI’ and therefore,
will be ignored in the folloWing discussion.

a. BEqual-Unequal Search,

An equal-unequal search, 'greater than' and 'less than'
searches have the same access time according to the analysis
of Cardenas (1975). The following are the procedures and access
times for these searches in the conventional disk device:

Step 1: Read track-index: TT
Step 2: Search track-index
Step 3: Read key-value blqck: TT
Step 4: Search key-value block.

Step 5: Read accession pointer list: TT*Xa, where

X, is the average number of accession pointer -

70
blocks.

Step 6: Read data blocks: TT* XD’ where Xp is the
average number of data blocks that will be
accessed per query. According to the analysis
of Cardenas, for the storage organization in the
conventional device, the average number of
blocks that must be read is: Xp=D(1-(1-1/D)")
data blocks, where D is the number of data blocks
in the data base, and K is the average number
of records satisfying the query.

In the above procedure, Step 1 to 5 search for all locations

of records residing in the data base satisfying the query, and
the total average access time is TT*(2+Xa). Because Tip is the
average time to access a traék, and Xa> 1, the time to searching
the directory will be at least 3 revolutions (BTT) on average
comparing to only % revolutions in logic-per-track environment.
Tn gtep 6, XD=D(1—(1-1/D)K).is the average number of data blocks
containing K records satisfying the query. If K(éD, then xDﬁuK.
In this case, both devices would take about . the s&Mefhﬁmbérgof

" revolutions to read K récords. If X is large, then XD< K, the
logic-per-track device‘mgy be slower, but this always can be

compensated by the search time.

¥ - N : K ’ -

71
be 'OR' and 'AND' searches -

'OR' search: kl or k2 OT ese OT km
'AND' search: kl.and kz and ... and km.

Step Read track index: TT

Step Search track index

T

Search key-value block

1:
21

Step 3: Read key-value block: T
Step 4:
5:

Step Repeat Steps 3 to 4 for each of the equal-unequal
searches: mTT |
Step 6: 'OR' search: read and merge accession lists.
AND search: read, merge and intersect
accession lists.
In both cases, the time is (TT+TI)*m*Xa»

Step 7: Read data blocks: TT*X .

Therefore, in either 'OR' or ‘'AND' search, the directory blocks
access time is “
TT+m(TT+TI)Xa+mTT
=.(1+m+mXa)TT + mXaTT
According to the analysis in Section 3w8, it takes an average of
m+% revolutions for the logic-per-track device to search and
mark each matching record, compared with 1+m+mXa revolutions

(ignoring mXaTI) for the conventional device.

It is now clear that significant improvements in access

72
times cén be achieved by using the logic-per-track environment.
Moreover, this brief comparison drawn between the logic-per-track
assoclative memory and the conventional one has demonstracted
the potential advantage of this new approach in information

systems.

L,6., Conclusion

The basic method for structur@hggand processing records
in a filé has been diécussed: fecords are stored, updated and
retrieved by key or keys. It is important to note that our
interest in information systems in the logic-per-track environ-
‘ment is considerably more than an intellectual excursion into -
new methods of organizing and accessing data. The logié—per—
track.information sjstem provides immediate and efficient real
time query access to integrated informational resources. The
characteristic demand in such an informationai resource is that
inputs to the system are.heterogeneous and occur at random
intervals. Requests for information from the system are
dynamic and time-dependent, so that quries and responses cannot
be prepared before hand. Files are large; thus, redundant data
must be factored out to reduce the waste of storage space.
Moreover, information must be current and up to date to meet the
needs of a modern society. Therefore, an informational change
must be reflected immediately in all associated files in the
informational resource. With the logic—per—tfack associative

memory a retrieval systém is able to meet the requirement for

73
fast access to large, integrated files that are designed to be
updated dynamically in'a'reél time operational environment. In
an informational query system,‘thevnumber of records satisfying
the quefy is usually smali, and therefore they can be retrieved
within one and one—eighth revolutions time which is almost -
impossible for a large file in a conventional device.

The developement of the rotational associative memory for
such an efficient informational query system should be credited
to Slotnick (9170) and Parker (1970) for their earlier work.

In the device of Slotnick and Parker, thére ig a fairly sophis-
ticated logic chip attached directly to each read-write head.

A1l individual logic heads are connected together and communicate
with a central source. The logic chip allows each head to
operate as an independent device, able to reéd and write its

own track, to search gimultaneously for information matching

a given key, or to search simultaneously for space to write new

records. The simple but unique cyclic key pattern (Figure 1.2)
introduced by Parker (1970) makes the simultaneous search
mechanism possible (Section 1.2). Because all heads could
perform searching simultaneously, a desired key, or desiréd
space could be located in no mére than a single revolution of
the device. However, reading and writing cannot - take place
on the same revolution once the position of the record has been
discovered because the search key may not be first in theéreCord

so part of record will have passed the head before the match is

74

recognized (Section 2.2). Moreover, in the simultaneous key-
matching operation, if the search key is not a unique record
identifier, but_irather appears as a key in alnumber of different
records iﬂ the file, then simultaneously matched records (if any)
must be retrieved, in~an'unspeéified order. In the device of
Slotnick and ?arker, one read-write head at a time can actually
be redding a record for transmission to the main computér.
Extra revolutions, and extra bookkeeping, will certainly be
needed if matching records on differenf tracks should partially
overlap. These problems have been ignored in the retrieval
system developed by Parker (1970, 1972). It has been the
purpose of this thesis to modify the design of Slotnick and
Parker in order to provide a means for reading and writing a
record in the same revolution after its position has been
‘ﬁiscoﬁeréd}ﬁ and to provide necessary bookkeeping for retrieving
simultaneously matching overlapping records.

The following are four additional features of the device:

1. Two logic head on each track, having similar but.
distinct logical capabilities, remain a constant d bits apart
(Figure 3.1). The leading head, called the Control Head (CH)
Wili continue to have +the primary responsibility for -
simultaneous.gearching. The additional second head, called
the Read-Write Head (RWH) trailing a fixed distance behind the
control head as the track is scanned, will do the actual reading

and writing of records (Section 3.1).

75
2. A delay register of d bits in length, where d is the

constant distance between logic heads on the same track, has
been added to the Read-Write Head., In the simultaneous key
search and read (or hole search and write) operation, the
control head, when it recognizes a{euccessful match, Will signal
its RWH partner to begin reading (or Writing) at the appropriate
position on the track. Such an appropriate position should -
always lie somewhere between the two logic heads as they scan
along their own disk track. . The bit in the delay register
corresponding to such an appropriate position is called a deiday
bit (Section 3.1), and will be marked by the RWH whenever a
match is recognized. The delay time is the number of bits
counting from the position of the RWH when a match is reported,
to the location of the matching record. After such a delay, the
RWH upon encountering the delay bit jusf set and the desired
record position simuiteneously (or almost simultaneously), will
always reset the delay bit. Thus, the function of the delay bit
is to tell the RWH partner,where to start reading (or writing)
a record so that retrieving (or writing) a smingle record can
always be performed in the same revolution. The functions of all
head couples are synchronized by a single monitor (Section 3.3).
3., Another major design change will give the new device
the ability to keep track of all records which may be retrieved
Simultaneously (or almost simultaneously) by a parallel search.

To this end, the monitor will be provided with a record counter

| 76
(Figure 3.1), and a mark entity (Section 3.2) will be prefixed
to every record on the disk itself. The record counter is common
to all logic head cogples. In a simultaneous search, the number
of matching record'wiil'be‘added to the record counter. When-
ever a matching record has been processed, it will be marked
by the RWH, and the record counter‘decreased‘by one., Accordingly,
a matching record will not be processed twice since it is
identified by the marking.mechanism, and all matching records
will be read because the completion is governed by the content
of the record counter.
4, A file identification mechanism has been established
for the associative memory (Section 2.1). Functions of such
a mechanism are (a) to manage file names, and (b) to manipulate
data on the storage device. 1In order to ensure that any .
simulfaneous search operation confines its attention to the ..
desired file, the file name will be the key item written on the
very begimming of quadrant boundary of each track where the file
resides. Supposing that no two files will share the same track
quadrant, then the first key of each quadrant will identify
the actual location of the file in the memory device. Thus, a
file is made up of a number of track quadrants rather than whole
track(s). |
A schematic representation of the complete associative
' memory system is given by Figure 3.1: disk, logic head couples,

and the monitor, The monitor includes the record counter

77
register, channel processors for the search and read-write heads,
read and write buffers, and a queuvue for réquests received from
the main computer memory. The dynamic behaviour of the
associative memory system depends upon the speéific request
being served by the memory. The control process for a redquest
to retrieve a set of records with a given key in a file has been
described in detail (Section 3.3 and Figure 3.3). It should be
emphasised that the control process for the request described
in the thesis‘is Just an example of one of a number of possible
control processes. However, this example is sufficient to
demonstrate the general activities of the modified associative
Memory.

In order to explore the capabiiities of the modified
memorj device we have Just described in outline, the procedures
for its use in a 'hierarchical search' for records possessing
a specified combination of keys (Section 3.7), in an application
requiring sequential access to all the records of a file (Section
b,1), and in operation on a file with a more complex tree
structure (Section 4.3), have been described in detail. With
the introduction of the marking mechanism, the search for records
satisfying some basic query conditions can be performed directly
on the key part of records without the intermédiate step of
transmitting records into the main computer memory, which is
always required with all conventional devices. By comparing

its performance to the conventional counterpart (Section 4-5X7

78

signifidant improvements in access times can be demonstracted.

A chain is a simple but‘important techhique of linking
logically related records; relatéd records are linkéd by a
pointer that contains a reference.to the next related record in
logical sequence so that all related records are chained together
by sﬁccessive pointers. As described in Section 4,1, an element
ofvthe.chain is a structure and at least one field in each
record is a pointer value that is used to point to another
record. Because a record in the associative memory is accessed
by one of its logical keys rather than by address, the pointer
value can be a logical key entity, which is- usually generated
from the key of the record it points to by a simple and
reversible process (for example, see Figure 4.3). Such an
organization has a ﬁumber of advantages: -{a) a chain is in fact
a two-way chain, (b) each record in the chain can be retrieved
by following the chain key, or directly by the key of the record
if it is known, and (c) it can avdid the tangle of actual
physical addresses in the chaih structure.

The storage organization for more.complex data structures
such as tree structures (Section 4.3) preéents another unique
feature‘of the associative memory. For example, Figurés b,7 and
4.8 demonstrate two distinct representations frequently used
for tree structure data. In Figure 4.7 indexes to the subordinate
records are kept with each parent record, whereas in Figure 4,8,
each subordinate record stores an index to its parent record.

Both data structures take the same amount of storage space.

79

An associative memory has always been an'attractive idea
because (a) data is accessed by content rather than by address,
and (b) it has potential application in data bases for informa-
tion query systems. However, so far only a few designs for an
associative memory have been published. Usually, each design
is just a simple modification to an existing disk device in order
to meet requirements for a specific application (for example,
Minsky,‘i972). In this thesis, a design for a general purpose
associatime memory using sophisticated logic chips has been
proposed., Readers'may question the reality and cost justifica-
tion of such a design. It has been about 15 years since the
electronic industry made its first miniature electroénic
éircuit on a silicon 'chip\; Since then a steady adwance
in circuit organizatlon and complexity has led to the
microprocessor, a deV1ce whose logic and memory circuits can be
held on one's thumb. According to the survey of current makket

and electronic industries made by D. J. Theis (1974):

"Microproeessors bring us one step closer to having
a whole computer on a single chip of silicon. No larger than
Z~inch square, they contain all the essential elements of a
central processor, including the control logic, instruction
decoding, and arifhmatic processing circuitry. To be useful,
the microprocessor chip or chips are combined with memory and
I/0 integrated circuit chips to form a 'microcomputer', a

machine almost as powerful as a minicomputer which usually

80
fills no more than a single printed circuit board and sells for

less than $1,000." (Theis, page 90).
in conclusion of his survey, he stated further that:

"Tn the future, one chip will include the APU, memory,
and I/0 interfaces, so we will truly have a computer on a chip
«es The Prefix *'micro' denotes small size and connotes small
cost; however, it certainly does not imply small capabilities",

(Theis, page 100).

Therefore, with the modern computer hardware tachnology, the
associative memory that is described throughout this thesis |
not only will become realistic (although at some cost), but also
will have its impact on the development of another computer

generation.

81

REFERENCES

Cardenas, A.F. (1975), Analysis and Performance of Inverted
Data Base Structures, Communications of the ACM, May
1975, Volumn 18, Number 5, 253-263.

Minsky, N. (1972), Rotating Storage Deviées as Partially
Associative Memories, Proc. AFIPS 1972 Fall Joint
Computer Conference, Volﬁmn 441, Part I, AFIPS Press,
Montvale, N.J., 587-592.

Parker, J.L. (1970), A Logic Per Track Information Retrieval
Systém, Ph.D. Thesis, University of Illinois,
Department of Computer Science. |

Parker, J.L. (1971), A Logic Per Track Retrieval System,
Information Processing 71, North-Holland Publishing
Company, 711-716.

Slotnick, D.L. (1970), Logic Per Track Devices, Advances in
Computers, Academic Press, 291-296.

Theis, De.Jde (1974), Microprocessor and Microcomputer Survey,

Datamation, December 74, 90-101,

