QUERY LANGUAGES FOR RELATIONAL DATA BASE

MANAGEMENT SYSTENMS

by
Brian M. Jervis

B.Sc., University of British Columbia, 1972

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard.

The University of British Columbia

May 1974

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, | agree that
the Library shall make it fréely'available for reference and study.

! further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his rgpresentatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission,

Department of Computer Science

The University of British Columbia
Vancouver 8, Canada

Date May 23, 1974,

ii

ABSTRACT

A new data base independent guery language for relational
systems 1is presented. Queries in this language specify only
properties of the data which is to be retrieved. An algorithm
for reducing queries to a response relation is described. This
reduction algorithm makes use of Micro-Planner to decide which
relations in the data base are applicable to the query, and how
these relations should be manipulated. A semantic model is used
as the basis for this work. This gquery 1language 1is also

compared with existing languages.

iii

Table of Contents

INTRODUCTION .cececesssccccscscccssccacsccsoscesscssoscssnscasscsnsl
THE RELATIONAL APPROACH.TO DATA BASE MANAGEMENT ecceevesossel
The Relational Fodel Of Data .,.,...........,....Q.....3
Classes Of RelatiONS eccecececcscccsscsccsnsassosscscscsessse)
Advantages Of Relational SYStEHMS ceeesosocsocsncncccsnsl!
Previocus ReSEArCh scescecscccssssccsssscscscsnssssasssssesl
RELATIONAL ALGEBRA .ccceecceseccsansscssscscascscssosansnnssnsssssnsell
Sample RelatiONS ccevessossssccsnssossssscsenssssnconcse 12
Operations On RelatiONS ..eceeccssncssscacscsonccscsssasns 12
UNIODN cecevssossesencsccsnsscsscncsosssncsssssscssell
INtersSeCtionN ecececscssccsccnsssassnssosssonsnnsesneasll
Difference............................,....;..,..,1&
Cross Product,.................,...........1“
Projection eccsceccessceccscscsssscssscssncssssssnscss i
JOIN eceeeecescccssoscsccsccscosncscssssssssnsosssssnssseld
ResStriCtiol ..ccceccccccccsccsassssascasoscsssscneslb
DiviSiON e eeeecceassccosscsacsssscscssscsscnsnscnsescsassansld
Choice Of Operations In The Relational Algebra .ecesee..18
Implementation Of The Relational Algebra .ceecsseeceecssael?
The Relational Algebra As A Query Language essesescceeell
RELATIONAL CALCULUS sececscsnceccccassosscsnrsscnssonocsssncsell
INtroduCtiOn so.eseceescecssacsonssssnsnssssacsccssssssssslld
The Relational CAlcUluS .evavecesscosesssosscssssnsssosaell

The AlphabEt .‘"..Q'..Q‘.'..OOCOQ.QOOOO...QOQ§09'23

TermsC..O'000000000000.023

WFFS ."’QQ.'I......._.‘."............l‘..’...".".‘zu

Range Formulae ..;.;,...........,....,............25

Pure Range FOTMUlA@ escaessscseescssesssssancssesssld
Range Coupled Quantifiers ..ccecescencescscssscccseaslb
Q?formulae,..;...,..,...........,........27
Q-eXPreSSiONS .sceenscsessscssssssscssscsansssssssseeell

A Reduction AlgOrithm .eceessscsccssnsssscsvessssasansselB
Global And LoCal BRANGES cesessscsssscsscsssscsssccsesld

The Join AlgOorithM .eeeeesecssssssccssssssssscsnseesll

The Reduction Algorithnm ..;.............;.........32
Implementation Of The Reduction Al1gorithm .eeesescsceses33
Restrictions On The Relational CalculusS .esesoeeese3l
Representation Of The Queries ..ceccesceecsssecssssese3d
Evaluation Of The Relational CalcCulusS ..esecessssssessssalb
A QUERY LANGUAGE FOB RELATIONAL SYSTEMS .veecccccccsccscesasidl
The Relational Calculus Re-Defined ..ceccecassssesacasasiil
The Alphabet .cecescscesssssssccsscssssscacsssaaacll
TELES escesossnsescesscssannsocsssnsssssasssssnscsanssldl

WFFS cesessccacccsssosssssnscsssscsssesssssssescsesseseldl
Q-EXPreSSiONS seescscescsssssssscsssnsscsssssssenseldl
Range FOTMUlA€ ceoesssccccvcscancssssesosassnscsonsslil
Range Coupled QuaNtifierS .ceesccccssssscsecsscsseslil
Target LiSt ..seseecscessscsssessscssnsesssssncesasld
QUET1ES cuessescescasssessesassssscssssanssscscsssnnseldd
Explanation Of The QUETieS ceecscsssccscscssscsssasscsesseld?
Comments On The Relational CalculuS ..ceseesscscseali8

U-Se With Natural Language ..C.,l'l.._-.....'O.......'Q.’.ug

iv

A NEW FRAMEWORK FOR RELATIONAL SYSTEMS cvesscasecscscossscsad2
Reduction Of Queries = AN OVELVIiCW ccevsosssessssosseseedl
The Use Of Micro-PlanNNer cseccesccsscacsosssccassasol

The Semantic MOAE€l c.cescccnsccccosscccscosscscsnssccasedbd
The Meaning Of BRelationNS .cceeecscccnsccsscccanscocsadl
Properties Of RelationNsS ccceececosercnncsscscnsssns?
Optimizing Information cccececescsccccsscscscssssesdd
Active And Inactive Data ceeesecsccscccccasceccncseabl
Generality Of The Semantic Model ...ceeeccocacseaeb3
Proving Relational TeIMS .sececcsceccccccccssscsssssncscsesbll
Explanation Of The Problel .ccccsesccsscsncsncssesesbh
Properties Of RelatioONS ..ccocecsssccscscncscassneab’
Proving XRy .,...........;;..............,...,.,,.69
Proving XRYR'Z .ccececscccsscscscscsscsssccnsssscssscssll
Usefulness Of The Valid Path .esececccscscscssceeslll
SUNMALY cecsccscssccsscssnssncsssssasescsnsesancsscsasli

The Processing Of Relational TermS ec.ccessccccsccsscaseld
The List Returned By Micro-PlanNNer ..cesececcssseneslb
Proving X eceeccesesecesssesccsccssssssssscssssasesnsl8
PTOvVing XRY ecesccccscccsccsscesssssscscsasccccsscsscsld
Representation Of The GoalsS .eeeeccscessseneceld

Basic Proof Strategy cecececccecsscossccscessessBl

Limiting Unnecessary WOLK ..sceeeeevcscccsceeeB2
Remembering The Proof .ceeesccesescccscscscsseB3

The Effect Of Real HWorld Knowledge .cceeceesse85

Proving XRYR'Z .ccceesecacnscsscccscsnassssosscsasscesed’

The Reduction Algorithm ooq...-.o--coooo-..qooqo.oc.o.oBB

The Reduction Algorithm — An OVEIVIeW cossceessseaa88
Justification Of The Reduction Algorithh ..eee000.91
Treatment Of Conjunctions And Disjunctions ,.91
Treatment Of Negated Terms S .
Treatment Of QuantiflersS ecocesscsscccsssssnesesI3
The Allowable Variables In Target LiStS ceccecsesse95

Why The Relational Calculus Of Codd Is Bypassed ..95

The Treatment Of Real World Knowledge ..cceeocccecsssesesd?

Representation 0f Real World Knowledge scecseceessed?

Multiple Path Problems .._....'.‘.'..."."Q..,.......O,’.1OO

SUMHARY ..’Q.'...'.,.O.....'....’.....-...Q......Q.....'...Q10u

BIBLIOGRAPHY '.O-..g-.o...o....Q...-..'.-.0...Ql‘.p....'..ot106

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

T eceosesescssscassnsesasssosssssscssssscssssnsscesssnelll
T B
P B 1
A B
5 cecescsscssccesessasesassensensvscsccsssscnsascccss t2U
6 ceeesesssseccsessssssessssesscscssesencsascasvecss 129
T cecececccscssssoscsssssccssccssssscnssssncesssssess 33
B cecevesessscscacssconennasnecnscacscssscscccssnnsal3’
9 teecsecesseccscscessssscecccescsssssscsssssosses U]

10'...'..'....‘_’.'..QQ..C‘_.Q.'....'-...’.......q....juG

vi

11I.~‘.....Q......"._...'...‘OQ...‘.Q..."Q1SO'

vii

ACKNOWLEDGEMERT

I would like to express my appreciation to Lr. Ray Reiter
for the valuable guidance, direction, and inspiration he
provided throughout this work. I would also like to thank IDr.

Doug Seeley for his helpful suggestions.

The financial support of the National Research Ccuncil is

gratefully acknowledged.

INTRODUCTION

Historically, data base management was performed by
individuval programmers who attempted to design their files in
such a way as to optimize the executicn of their programs. If a
new application was found, the data would be re-arranged, and a

new file containing redundant information would be created.

Since this approach is both costly and impractical, general
purpose data base management systems are now in widespread use.
These systems permit many users, each with} a different
application, to <concurrently share a dynamic data base. There

are now a large number of such systems in existence[6].

From the development of these systems emerged a number of
general principles for designing data base management
systens[5]. As a result, a number of new proposals have been
put forward. One such proposal is the relational agpproach to
data base management. In this apprdach, data bases are viewed

as a collection of time varying relaticns which are operated

upon by a number of set theoretic operations.

This thesis is‘primarily concerned with user languages for
relational systems. The relational calculus, which has Leen
proposed by Codd{ 11] as the basis for all query llanguages for
relational systems, 1is critically examined. Several inherent
difficulties are observed, which lead to the proposal of a new

framework,

This framework includes a new query language which requires

users to specify only the properties of the data they want
retrieved. This language is not data base dependent, and thus
gueries are expressed in the same fashion regardless of the
current organization of the relations. This requires the systen
to be capable of deciding which elemePts of the data base are
relevant to the user's request, and deciding how these elements
should be manipulated in order to produce the correct response,

This is a non-trivial problem which adds a completely new

dimension to the systems proposed by Codd.

The current system is not only capable of answering queries
but will accept real world knowledge which affects the response
to the queries, introduce new relations, and accept new
information about the current data base which 1is automatically

used to optimize the retrieval process,

]

THE RELATIONAL APPROACH TO DATA BASE MANAGEMENT

.The Relational Model of Data o
"Since set theory provides a wealth of
operations for dealing with relations, a
set-theoretic data structure appears worth
investigation.,"!

In this thesis, we are concerned with the relational model
of data presented by Codd [8). The term relaticn is used here
in its accepted mathematical sense. Given sets S1,5S2,...,5n not
necessarily distinct, R is a relation on these n sets if it is a
set of n-tuples, each of which has its first element £from 51,
its second element from S2, etc., More concisely:

R(S1 S2 ... Sn) < S1 X S2 X ... X Sh.

We refer to Sj as the jth domain of R. As defined aktcve, R is

said to have deqree n.

s Exanple 1.1 o

If sS1 is Project#, S2 is Project name, and S3 1is Project

location, then:

R (Project,Project name,Project location) C

Project# x Project name x Project location

Relations are represented in a table-like format, with the
domain names appearing at the top of the table, and the tuples

in the relation appearing beneath.

! Childs, D.L. "Description of a Set-Theoretic Data Structure."
Proceedings of the 1368 FJCC, Pp.557-564.

o Example 1.2 e

R (PROJECT# PROJECT-NAME PROJECT-LOCATICN)
1. ROYAL TOWERS VANCOUVER
2 BURRARD SHIPYARDS VANCOUVER
3 P.C.C. . MERRITT
4 RAPID TRANSIT VICTORIA
5 GRANVILLE MALL : VANCQUVER
6 OLYMPIC SEAWAY VICTORIA

In this framework, the data base consists of a ccllection
of time varying relations of assorted degrees. The relations
are not static, but constantly changing. They are subject to

insertion, deletion, and mcdification.

Since relations are only special sets, the relaticnal model
makes use of set-theoretic operations in order to perform the
data management functiomns. This set of operations, called a

relational algebra, forms the only set of operations which may

select data from the data base.

s Example 1.3 e
In order to form the relation which lists the prcjects who
are located in Vancouver, one restricts R to those tuples
whose value of PROJECT-LOCATICN 1is Vancouver. This

roduces a new relation R' whose tuples are:
P

R' (PROJECT# PROJECT-NAME PROJECT-LOCATION)
1 ROYAL TCWERS VANCOUVER
2 BURRARD SHIPYARDS VANCOUVER

5 GRANVILLE MALL VANCOUVER

Relations fall into one of two classes - simple, or
compound. Simple relations have the property that no domain in
the relation is itself another relation.i Compound relations, on
- the other hand, have the property that at least. one domain in
the 7rTelation is itself a relation. Compound relations define
hierarchies,

s Example 2.1 »
In this example, R is a compound relation.

R (PART# PART-DESC Q-0-H (PROJECT# PROJECT~-DESC NUMBER-ORDERED))

(1 WIDGETS 47 1 HOUSING 4o
2 APARTMENTS 3)
(2 FIDGETS L 1 HOUSING 2
4 TOWN-HOUSES 1)

Codd[9,10] points out that compound relations can ke
reduced to a number of corresponding simple relations with no
information loss., Further, he shows that this 1is not only
possible, but desirable. This process is calleé normalizaticn,
and the new relations wvwhich are produced; are said to be

normalized.

There are two advantages to using data bases which consist
of normalized relations. Firstly, it simplifies the relational
algebra, since the operations on relations need only deal with
simple relations. Secondly, normalized data bases are
consistent, non-redundant, and free of undesirable update

dependencies.

e Example 2,2 o

In example 2.1, R can be represented by:

P (PART# PART-DESC Q-0O-H)

Q (PART# PROJECT# PROJECT-DESC NUMBER-ORDERED)

This Tepresentation is preferable to that of example 2.1..
Notice that with relation R, if a new part is added to the
system, it cannot be recorded until at least one project which
orders that part is also recorded, W®With the representation of
example 2.2 however, this is no longer true since the relation P
contains no information about the projects which use the part.

It deals with part ipnformation omnly.

This repreéentation is still inadequate., If a new project
is recorded, it cannot be put in the data base until the parts
which it will be using are known. Therefore relation Q is split
further.

» Example 2.3 »

PART (PART# PART-DESC Q-0-H)

PROJECT (PROJECT# PROJECT-DESCRIPTION)

SUPPLY (PART# PROJECT# NUMBER-ORDERED)

The information dealing with parts, projects, and the
supply of parts to projects 1is now represented by separate
relations., The data base contains exactly the same information

as before but is now free of the previous update dependencies.

For the purposes of this thesis, we assume that all

relations are normalized.

o 1.3. Advantages of Relational Systems o

There are many properties of relational systems which nmake
them more desirable than +traditional fact retrieval systems.
These can be summarized as follows:

1. They provide a high degree of independence between the

user and the data base,

2. The data bases are consistent, and non-redundant.

3. The data structure is simple, yet extremely powerful.

4, They have a superior query capability. .

5. They provide good interactive support for the casual

user.

The chief virtue of relational systems is the high degree
of user - data independence they provide. This independence
occurs at two levels., Firstly, the user is presented with a
logical representation of his data which may well differ from
its physical representation., This is possible since relations
can only be accessed through the operations of the relational
algebra. This is a valuable property, since factors 'such as
efficiency and machine configuration can now be taken into
account without influencing the users view of his data. While
this is a fundamental concept in information retrieval, most

current systems violate it{5].

Secondly, the user need not be aware of how his data is
arranged into relations. The information which must be stored
can be broken into relations in any convenient manner, and

information in the data base, even though it may be implicit

(i.e. in separate relations), will still be retrievable. No
current fact retrieval systems are capable of drawing

conclusions from information which is stored in separate files,

Another advantage 1is that through the process of
normalization, redundant and inconsistent informaticn can be
removed from the data base. Thus, these systems tend tc be free
of undesirable update and deletion dependencies., This process
also tends to arrange data bases in conceptually clear and

concise units.

Thirdly, the data structure is both simple and versatile.
Other data structures, such as rings, trees, netwcrks, and

graphs, can be represented using relations.

Finally, relational systems lend themselves to a variety of
different dquery languages. This point will be anply

demonstrated in the following chapters.

o 1.4. Previous Research o

Over the past five years, there has been considerable

interest in the relational approach to data base management.

The first contributions were by Feldman and Rovner{13].
They introduced an approach whereby data is stored in the form
of binary relations. Users can access these relaticns from
Algol ©programs by means of attribute-object-value triples. A

similar approach was taken by Levin and Maron[21]. Several

implementations have been based on this scheme, including one by

Gammill[14].

The initial contribution towards the goal of a system based
on arbitrary relations came from Childs{3,4). He presents a set
theoretic data structure comprised of set operaticns, datum
names, data, and set names. In this system, the set operations
are implemented as subroutines which operate on sets in the data
base. This approach 1is still being followed, although the
operations in current relational algebras differ from those
presented by Childs. The emphasis of this system, however, was

still on binary relations,.with access paths being pre-defined.

Since Child's paper, most new work has been Lased upon that
of Codd[8]. In this article, he argues in favor of relational
data bases, and outlines a set of operations on relations which
are applicable to relations of arbitrary degrees. With this
framework access paths between relations need not be pre-
defined. . Supplementing this article, Codd[9,10] deals with
normalization of data bases in order to eliminate redundant

information and unwanted domain dependencies.

In the area of user languages, the main advances have again
come from Codd[7,11,12]. In [11] he defines a relational
algebra and proposes the relational calculus, an agplied
predicate calculus with n-tuple variables, Based upon the
relational calculus is DSL-ALPHA[7], an Asap-like query

language.

10

The above papers inspired many implementations. Among
these are the systems of Strnad[27], Notley[24], Goldstein and
Strnadf 15], and Bracchif 2]. Unfortunately, these works show
little originality. They are all basically implementations of
the relational algebra. One very noticable point about research
in this area is that although there are many implementations

based on Codd's work, very little has been done to extend it.

Noticable exceptions are Palermo[26], who introduces a new
relational calculus with an improved reduction algorithm, and
Heath[17], who outlines some unacceptable file operations in a

relational data base. .

As of yet, there has been no comprehensive study of how
relations can best be stored in order +to optimize system
performance, Since the operations of the relational algebra are
well defined, and since the nature of these operations is easy
to observe, one would expect some concrete results could be
obtained. It is surprising that such little effort has been put
into this area, since efficiency is one of the largest problenms
inhibiting the commercial use of relational systems. Palermo's

concept of semi-join is the only advance that has been made.

1

II. RELATIONAL ALGEBRA

There are certain primitive operations on relaticns which
form the basis of any relational system. This set of operations

is referred to as a relational algebra.

These operations are the only ones which can manipulate the
relations - all other routines in the system must access the
relations through then. This 1implies that the relational
algebra should be <chosen so that the selective power it
possesses is complete, in the sense that any request which could
possibly be formulated in the system can also be formulated as a

query in the relational algebrafu].

The operations of the relational algebra take relations as
their argqguments, and produce a response which is always a new
relation. Accordingly, the result is called the

Lesponse relation.

This section defines the relational algebra which this
thesis adopts. It is based upon the algebra proposed by

codd[11].

12

The following relations will be used as examples throughout

this chapter.

R1 (A B)
1 2
4 7
R2 (SUPPLIER# PART#)
' 1 3
1 2
2 1
2 2
2 3
3 1
R3 (PART# PART-NAME)
-1 A
2 B
3 c

The relational algebra includes eight operations on
relations. They are:

A. Union
B. Intersection
C. Difference
D. Cross product
E. Projection
" F. Join
G. Division
H. Restriction

Of these operations, division and restriction are definable 1in

terms. of the first six.

13

The union of two relations R and S is defined to be:
RUS=({(r) : T€R v res } ,
where R and S are each of degree n.
e Exanmple 2.1 e

The union of R1 and R2 is:

RP (AP BP)
1 2
1 3
2 1
2 2
2 3
3 1
4 7

Union is typically used to «create a relaticn which
enumerates the values of some domain wusing a set of other

relations, each of which contains this domain.

2.2.B Intersection

The intersection of two relations R and S is defined to be:
R INT S = {(r) : T€R & r€S } ,
where R and S are each of degree n.
e Example 2.2 o .

The intersection of R1 and R2 is:

RP (AP BP)
1 2

Intersection creates a relation that contains the tuples

which are common to all the relations being intersected.

http://2siP.fi

The difference of two relations R and S is defined as:
R - S = {(r) :r€R & r-~€s }
» Exanple 2.3 »

The difference of R1 and R2 is:

RP (AP BP)
1 3
2 1
2 2
2 3
3 1
2.2.D Cross Product

The cross product of two relations is defined to be:
RXS={(x,s) : TER & s€S]}
e Exanple 2.4 o
The cross product of R1 and R2 is:

RP (SUPPLIER# PART#
1

WN @ =2WNNNNON

- NN e WRN - W W
PUTRNS N — ST . NI — PR ~ SO e
NN NNNNNSNNDNINDSNN D

15

Suppose r is a tuple of an n-ary relation R. Then for
§=1,2, «e+ n, r[j] denotes the jth component of tuple r, or the
projection of r on domain number j. This notation is extended
to a list 2 = (j1,32, ... Jjk), where ji€ (1,2, ... N)..

Now, r{Al={r[]j1],r[J2]se..,r{ 3k]} «
a Definition a
The projection R[A] of R on A is defined by:

R{A] = {r[A] : r€R} .

Thus, if the relation R (PART# PART-NAME) were projected on
its first domain, a relation which contains only part numbers
would be formed.

» Example 2.5 e

The projection of R2 on its second domain, R2[2], is:

SP { PART#)
1
2
3
2.2.F Join

Join is perhaps the most powerful operation of the
relaticnal algebra. It 1is defined as follows. 1Let €(r,s)
denote an arbitrary predicate whose only variables are of the
form r[i], s[j). Then the © join of R with S is defined by:

R[6])S = { (r,s) : TER & s€S & ©(r,s)}

16

» Example 2.6 e
Suppose s and p are tuples of relations R2 and R3

respectively. Then the join R2(s[2])=p[1])R3 is:

RP (SUPPLIER# PART# PART# PART-NAME)
1 3 3 C
1 2 2 B
2 1 1 A
2 2 2 B
2 3 3 C
3 1 1 a

The join R2(s[2]>p[1] R3 is:

RP (SUPPLIER# PART# PART# PART-NAME)
1 2 3 C
2 1 3 C
2 1 2 B
2 2 3 C
3 1 3 C
3 1 2 B

The join R2(s[2]*5=r[1])R1 is:

RP (SUPPLIER# PART# A B)
2 1 4 7
3 1 4 7

2,2.6 Restriction

Let 6 be an arbitrary predicate whose only variables are of
the form r[{j]. Then define the restriction r{€) of R by € to
be:

R{(6) = {(r) : r€rR & 6(r)} .

e Example 2.7 e
The restriction of R2 , R2(r[2])=2) is:
RP (SUPPLIER# PART#)

1 2
2 2

The above 1is a typical use of restriction, If there is a

17

relation that indicates the suppliers who supply parts, then
restricting that relation to the case where the part number is
two will result in a relation showing which suppliers supply

part number two.

2.2.H Division

Division 1is the wmost counter-intuitive operation in the
relational algebra. It is included since it is the algebraic

counterpart of the universal gquantifier.

Assume R is a binary relation. Then the image set gR(x) of
X under R is defined by:
gR(x)={y * (X,¥)€R}
s Example 2.8 o
When r=(1 3), the image set gR (2)=(1,2) since r[2]=3, and

the tuples (1 3) and (2 3) are both in R.

The division of R on A by S on B is defined by:

R[A/B]S={T[ABAR] : T€R & S[B]=gR (r[ABAR])} ,

where ABAR is the domain list which is the complement of A, and
gR(x) is the image set of x under the relation R. 1In this
definition, we consider that R is a binary relaticn composed of

the two compound domains B and ABAR.

The process of division operates as fcllows. Consider each
tuple in R to consist of two eleirents, r1 and r2. Then rl1 is a

tuple in the quotient of R[A/B])S if for each tuple r3 in S[B],

18

there exists a tuple in R with r3=r2 and r1 is always the other

"half" of the tuple in which r2 is contained.
e Example 2.9 e
The guotient of R2[2/1])R3[{ 1] is:

RP S#)
2

since supplier 2 is the only supplier who supplies all
parts. Notice that 1r3[1] produces a relaticn which

enumerates the part numbers.

n 2.3, Choice of Operations in the Relational Algebra o

Other authors{3,4,8,17,24] have proposed relational
algebras which appear to have the same selective power[4], as
the one defined above, yet they contain considerably different

operations.,

This thesis deals with queries which are expressed in a
predicate calculus notation, and must eventually be reduced to a
sequence of operations in the relational algebra. Since
projection and division form the algebraic counterparts of the
existential and universal quantifiers, and since restriction can
be used to process restrictions in the query, the choice of this

algebra is fitting.

19

n 2.4, Implementation of the Relational Algebra =

The operations of the relational algebra have been
implemented using the programming language LISP[31]. This
section explains how the relations are stored, and shows the

syntax of the relational algebra queries.

Each relation has two properties on its property list. The
first property is DOMAINS, whose value is a 1list of all the
domain names for the relation. The second is TUPLES, whose
value is a list of all the tuple names this relation contains.
Then, wunder the flag DATA on each tuple name is a list which is
the actual tuple in the relation.

» Example 4.1 o
(GET *R 'DOMAINS)

(GET 'R 'TUPLES)
(GET *T1 *'DATA)

(PART# PART-NAME)
(T1 T2 T3)
(1 2)

Notice that in LISP, function calls are written 1in prefix
normal form. The name of the function and its arquments are

always enclosed in brackets, and function calls can be nested.

The notation 'R is equivalent to (QUOTE R). (The function
QUOTE returns as its value the arqument which it was passed
without evaluating it.) thus, if one set N egual to 5, the value

—— e ———

of N would be 5, whereas the value of (QUOTE N) would be N.

This data structure allows both quick retrieval of the
tuples, and ease in processing the relations tuple-wise. This
is crucial, since all operations in the relational algebra

access the relation by tuple, rather than by domain.

20

e Exanmple 4,2 e
The following commands illustrate the syntax of each
operation in the relational algebra:
(RINTERSECT RLIST)
(RUNION RLIST)
(RCROSS RLIST)
(RDIFF *REL1Y1 'REL2)
(PROJECT 'REL1 'LIST)
(JOIN *REL1 'REL2 THETA)
(DIVIDE 'REL1 *LIST *REL2 'LIST)
{RESTRICT 'REL1 THETA) ,
THETA is an arbitrary LISP predicate, and DPLIST 1is a 1list of
domain numbers of the preceeding relation, and RLIST is a list

of relation names.

In order that specific elements cf tuples can be referenced
within the predicates, thev user cah .always -assume that the
variable T1 points to the current tuple in REL1, and T2 points
to the current tuple in REL2. In order to express a predicate
which says "the second domain of REL1 must be equal to ten times
the third domain of REL2", one would write:

(EQ (ELEM T1 2) (TIMES (ELEM T2 3) 10)) .

Appendix 3 contains a number of sample queries in the
relational algebra, and shows the output they produce. For a
conplete 1listing of the routines which define these cperators,

please see Appendix 7.

21

The Relational Algebra as a Query Language o

Despite the fact that most current relational systems use
the relational algebra as their top level gquery language, it is
clearly unsuitable for general use. The wuser is required to
generate the correct sequence of operations which will retrieve
the desired data. Queries are expressed in terms of "how to
retrieve the data"™, rather than in terms of what is wanted.
Oberations such as division are also counter-intuitive, and the
average user would find it difficult, if not impossible, to

master their use.

22

RELATIONAL CALCULUS

p 3.1. Introduction o

In an attempt to provide a more reasonable query language
for relational systens, Coddf[11] introduced a
relational calculus. This query language is not intended +to be

used directly by users, but to be used as the basis for higher

level query languages.

Queries in the relational calculus are expressed using a
predicate calculus notation, They tend to be more "property

defining" than the queries in the relational algebra.

This chapter presents a relational calculus tased on that
of Codd[11] and Palermo[26]. It also describes a reduction
algorithm which takes a query in the relational <calculus and
reduces it to a semantically equivalent sequence of operations
in the relational algebra. It concludes with a critical
evaluation of the wusefulness of the relational calculus as a

framework for relational systenms.

23

The Relational Calculus o

3.2.A The Alphabet
The following notation is adopted:
Tuple variables T1,T2, oae
Range Predicates P1,P2, ...
Individual Constants a,b, ...
Index constants 1,2, oo

3:2.B Ternms

There are two types of terms in the relational calculus -

Range terms are used to identify the range of each tuple
variable in the query. For each relation Ri, there exists a
corresponding monadic predicate Pi which determines whether or
not any tuple r in the data base is an element of Ri. [Thus, P
can tell if a tuple is in a relation R, whereas R can tell if n
s Definition =

A range term is a monadic predicate followed by a tuple
variable.,
e Example 2.1 o

P3r1 is a range term,

Join terms in the relational calculus are used to determine

how relations in the data base are to be joined. They are

24

arbitrary functions, whose purpose is to show how the tuples
which are their arguments are to be related.
s Definition =
An indexed tuple is an expression of the form r[XN], where r
is a tuple variable, and N is an index constant. Its purpose is
to identify the Nth element of r.
s Definition =
Let a,b be indexed tuples, and ¢ be a constant. Then if 8
is a predicate whose only elements are either a and c, or a and
b, then 8 is a join term.
s Example 2.2 e
R 1]=r3[2] and (ri1[1]*7) = 26
are both join terms; whereas
ri{1]=r3[2])=r5{7)] and P1ir1

are not,

The well formed formulae (WFFs) of the relaticnal <calculus
are defined as follows.

1. Any term is a WFF.

2. I£f U is.a WFF, then so is =§.

3. If §1 and P2 are WFFs, so are (P1 & P2) and (§1 v §2) .

4, If § is a WFF in which r occurs as a free variable, then

34r (§) and ¥r(J) are WFFs.

5. No other formulae are WFFs.

The WFFs of the relational calculus are not suitable as

25

queries in the relational calculus since +they allow the
formation of meaningless queries, Furthermore, quantified
expressions can be written in a more meaningful way than is

allowed by the WFFs.

D Range Fornulae

Range formulae attempt to 1limit the ranges c¢f tuple

variables to well defined relations. While doing this, they must

still allow the ranges to be specified in some natural manner.
This notion was introduced by Palermo[26], and is an improvement
over the original formulation by Codd who did not allow join
terms in the formulae.
s Definition =
¥ is a range formula over r if:
1« § is a quantifier free WFF,
2. r is the only tuple variable in ¥.
3. § is in disjunctive normal form (dnf), and each
conjunct contains at least one non-negated range term.
4, The relations defined by each range term in § have the
same number of domains.
s Example 2,3 »
Pir1 r1 comes from R1
Pir1 & P2r2 r1 is in R1 and is also in R2
Pir1 & r1{2])=5 r1 comes from R1, and the value of 1its

second domain is 5.

In the definition of range formulae as presented by

26

Palermo, restriction three above 1is not present, Hovever,
without it, formulae such as:

(P3r3 v r3[2)=1) ,
which - clearly do not specify a valid range for r3, are
acceptable, Restriction three disallows formulae of this type
by specifying that when in dnf, each conjunct must have at least
one non-negated range term. Formulae such as:

P3r3 v (PUr3 & r3[2])=1) , and

P3r3 & (P4r3 v r3[27F=1)
which are both valid range formulae are still acceptable using

this new definition,

A range formula which consists only of range terms is known

as a pure range formula.,

2.F Range Coupled Quantifiers

s Definpition =
9% and ¥§ are called range <coupled gquantifiers, and are

defined by the equations:

39 (9)
¥0{¢)

Ic(V & ¢)
¥r (-9 v ¢)

Assume ¢ 1is a WFF having r as a free variable, and § is a

range formula over r. Then 99 (¢) and ¥P () are also HWFFs,

27

We now define the formulae which can be used in gueries in
the relational calculus.
a Definition =
A WFF ¢ in the relational calculus is a Q-formula if it is a
conjunction of the form:
¢ = U1 6026 ... § Up& W, where

1. Each U1 is a range formula over ri, i=1,2, ... P.

2. W is either null, or is a WFF in prenex normal form,
with free variables +v1,v2, ... ,vp, and bound variables
Vp+l1,Vp+2, ... ,Vp+q.

3. The matrix of W is in disjunctive normal form(dnf).

4, There are no -~ symbols immediately preceding a join
tern.

5. Every variable is coupled to a range:

i, If a variable is free, it belongs tc the set of
variables whose ranges are specified by
ul,u2, ... ,up.

ii. Every quantifier in W 1is range coupled. This
implies that any bound variable alsc has its range
specified.

6. The matrix of W is devoid of range terms.

7. p21.

These Q-formulae correspond somewhat to the range separable
WFFs of Codd[11] and to the C-formulae of Palermo[26]. Examples

of Q-formulae can be found in Appendix 4.

28

3.2.H Q-expressions

We are now in a position to define the queries of the
relational calculus. These queries, which will be referred to

as Q-expressions, are similar to the Simple Alpha-expressions of

Codd[11], and the Gamma-expressions of Palermo[26].
= Definition =
A Q-expression has the form:
(t1 t2 ... tn) : Q, vhere:
1. ¢ is a Q-formula of the relational calculus.
2. The set of tuple variables occurring in
t1,t2, ... ,tn 1is precisely the set of free variables

in Q. .

This section shows how a query in the relaticnal calculus
can be reduced to a semantically egquivalent sequence of
operations in the relational algebra. The method used is based

upon the reduction algorithm of Palermo[26].

The reduction algorithm does not actually generate a query
in the relational algebra. 1Instead, it works its way through
the query, calling upon the operations of the relaticnal algebra
to produce new relations which are necessary for - the

construction of the query's response relation,

The reduction algorithm begins by creating the relations

29

which form the range of each tuple variable. Variations of
these relations are then joined, according to the jein terms in
W. After the appropriate unions and intersections of the
remaining relations have been made, the new Trelatiocn is
repeatedly divided or projected in order to take the quantifiers
into account, This relation is then projected on the domains of
the target 1list, resulting in the response relation. All

operations of the relational algebra are used in this process.

The reduction algorithm operates in such a way as to

minimize the amount of necessary core.

3.A Global and Local Ranges

In a Q-formula, W has the form:
0(p+1) Q(p+2)0Q(ptqg) [€1 v 82 ... Vv 8k],
where Q(i) is a range coupled gquantifier, and 6i is a

conjunction of join terms.

Let ¢ (ik) be the subformula of @i consisting of terms whose
only variable is r(k), and let:

The range formula Uk, if r(k) is a free variable.

¥ (k)
= The range formula for the quantifier which binds r (k)
otherwise.

s Definition =

The local range L(ki) for r() inm @i is defined by the

formula:
L(ki) = {(r) : §(k) & ¢(ik)} .
The global range G (k) for r(k) is defined by:

30

G(k) = {(r) : §(K)} .
The 1local ranges of a variable are simply restrictions of its

global range.

When reducing a query, no relation need ever «ccntain a

domain which 1is not explicitly referenced in the query[26].

Thus, we define the reduced local (glgbal) range for a variable
to be the projection of its local (global) range cn all its
referenced domains, It is with these relaticns fhat the

reduction algorithm deals.

3.3.B The Join Alqorithm

In his reduction algorithm, Codd[11] begins by taking the
cross product of the global ranges of all the variables used in
the query. This cross product is then restricted to the cases
defined by the join terms of ®©, and the result processed
according to the quantifiers., Needless to say, the size of this

relation can become unbearably large.

As Palermof26] observed, the forming of the cross product
is unnecessary. The individual local ranges can instead. be
joined according to the terms of 6i, producing the relations Ci,
The subset of S defined by © can now be produced by taking the
union of each Ci which was produced. This method results in

considerable savings of time and space. .

It is the function of the join algorithm to procduce the

relations Ci defined by their corresponding i, The algorithm

31

assumes that the 1local range for each variable in 6i has teen

created,

The join algorithm proceeds as follows,

STEP 1, A list of the reduced local ranges used in 6i |is
created. This 1list 1is ordered, with the smallest relation
coming first.

STEP 2, The first reduced range is placed in a workspace,
called the core, and removed from the list.

STEP 2. A list of all terms in €6i which reference a domain
in the core is created, since these terms can be used to Jjoin
the core with some new range from the list.

‘The range which involves the smallest relation is

STEP 5. The core is then joined to this range, wusing the
term from €i as the join predicate.
STEP 6. This term is removed from the list, and processing
continues with step 2. This process is repeated until either:
i. The range 1list 1is not vyet empty, indicating nmore
joining is to be done, yet there are no more jcin terms
connected to the core, Inv this case, save the current
core, and go to step 1.
ii. The range list is empty, in which case one can return,

providing no cores have been saved. If cores have been

saved, then form the cross product of the cores and return,

32

3.3.C The Reduction Algorithm

The first step in the reduction algorithm is to create the
relation defined by 6. . Since @ is in dnf, this can ke done by
taking the union of the relations Ci defined by each €i in 6.
Each relation Ci is created using the join algorithm.

Form the reduced global range for each variable in
the query. This is done by examining the range formula of the
variable.

STEP 2. Form the relations Ci which are defined by €i. 1In
order to do this, first form the reduced lccal range for each
variable used in i, then utilize the jcin algorithm with the

terms of 6i to produce Ci.

STEP 3. Form the union of all Ci, producing the relation

——— - —

Once the relation Tp+q has been derived, the next step is
to take the effect of the quantifiers into account. Quantifiers
are processed from right to left - i.e., from Q(ptq) to Q(p).
Their effect is:

1. If Q(j) 1is an existential quantifier, project the
relation Tp+j on all domains .except those processed by the
relation which defines the range of r(j).

2. If Q(j) is a universal quantifier, divide the relation
Tp+j by the relation which defines the range of 1 (j). This
results in a relation whose tuples are in some sense "“true" for
all £ {(j).

The result of each of the above operations is the relation

http://3_._3._C

33

The quantifier operations of Frojection
(existential) and division (universal) are applied for each
quantifier Q(i) in the prefix of W, with the gquantifiers being
processed from right to left. This produces the relaticn Tp.
STEP 5. Project the relation Tp on each of the domains
specified 1in the target 1list, The result 1is the response

relation for the query.

Please refer to Appendix U4 for sample queries in the

relatiocnal calculus,

o 3.4, Implementation of the Reduction Algorithm o

The reduction algerithm as described above has bLeen
implemented in LISP. Appendix 4, which shows sample reductions,

was created using these routines.

The purpose of this section 1is to show why some
restrictions have been placed on the relational calculus for the
benefit of the implementation and to show how the queries are

represented in LISP.

34

3.4.A Restrictions on the Relational Calculus

There are two restrictions which have been made in the
relational calculus for the benefit of the implementation. The
first of these is that in a Q-formula, the matrix of W must be
devoid of range terms. This means that when creating the global
range for a variable, the matrix of W need not be examined. The
result of this restriction 1is that the range of each free

variable must be declared in some Ui rather than in W.

Secondly, the range formulae must be in dnf. Without this
restriction, the formulae can become extremely complex, and
individual elements of the formula cannot be processed

independently of the other elements in the formula. When in

dnf, each conjunction will define a valid relation, and thus
ranges can be determined by taking the union of the relations
defined by each conjunction.

o Example 4.1 o

P7r1 & [PUT1 v (EQ (R1 1) A) v P5r1 v (EQ (R1 2) B)] .

Notice that in this example, the second element of the
conjunction does not in itself define a valid relation, and thus
cannot be processed independently of the first element of the
conjunction. When this expression 1is in dnf however, each

conjunct defines a valid relation.

35

BEach query is assigned a unique name, and has the following
information on its property list:

1. VARS - a list of all the variables in the guery, in the

reverse order of their appearance,

2, THETA - a list of all 6i occurring in the query. For

example, (THETA1 THETA2).

3. TARGET - the target list for the query. Fbr example,

((R1 4) (R2 3))

Each element in the list THETA has the flag TERMS on its
property list., The value of this flag is a list of the names of
the terms occurring in the particular €i.

Each term has its definition as its value. For example, the
value of TERM1 might be (EQ (R1 2) 970). On the property 1list
of the term, under the flag VARS, is a list of all the variables
in the term. In the above case, this list would ke (R1).

Each variable has on its property list the flags:

1. QUANTIFIER - weither ALL, if the variable is universally
quantified, EXISTS, if the variable is existentially quantified,
or NONE.

2. USED-IN-TERMS - a list of all terms in which the variable is
used,

3. REFDOMAINS - a list of all domains of the global range of the
variable which are referenced anywhere in the query.

4., RANGE - either the name of the reduced global range for the

variable, or an expression which defines the global range.

36

The value of the variable is its current reduced- 1local

range.

In writing queries, join terms are expressed as arbitrary
LISP predicates, with the list (R1 1) being wused to represent
the first domain of tuple R1, The above representation
conmpletely characterizes the query. The reduction algorithm
needs no additional information in order to respond to a query

'in the relational calculus.

o 3.5. Evaluation of the Relational Calculus ®©

It is the position of this thesis that as a top level query
language, the relational calculus is 1inadequate. Further, if
the relational calculus is to be used as the target language for
a higher 1level gquery language, there are a number cf problenms
which must be overcome. The purpose of this section is to
evaluate the feasibility of the relational calculus as a

framework for relational systems.

Consider the relational calculus as a top-level query
language. Since the queries are very much tuple oriented, it is
often difficult to express information about domains. In the
relational calculus it is possible to say "for all tuples in
relation X", something is true, but difficult to say "for all
parts" something is true. This can only be done with a single

quantifier if the relations which enumerate the parts have

37

exactly the same number of domains. Even then it 1is possible
only if the part occurs in the same position in each relation.
If this is not true, several quantifiers will have toc be used to

quantify one entity. This is indeed undesirable.

Forming queries in the relational calculus tends to be a
difficult process.
s Example 5.1 o
Assume the existence of the following three relaticns:
R1 (SUPPLIER# SNAME SLOCATION)
R2 (PROJECT# PART-NAME)
R3 (SUPPLIER# PART# PROJECT#)
Then the query "Find the numbers of the suppliers, each of whonm
supplies all parts" is represented as:
R1[1] : P3r1 & ¥P3r2 9p3r3 (r1[2]=r3{1] & r2[2]=r3[2])
Despite the fact that this is an applied predicate calculus,
it is still not possible for a user to state the properties of

the data he wants retrieved.

There are several reasons why the relational calculus is so
difficult to use. Firstly, it is very data base oriented. A
user must have a thorough knowledge of the current organization
of his data base, since 1in stating the ghery, the relations

which are to be used must be explicitly identified.

This is a very serious flaw, since a prime advantage of
relational systems is the independence they present between the
system and the current organization of the data. In his
original paper, Codd[8] states "users at terminals ... should

remain unaffected when the internal representation of the data

38

is changed, and even when some aspects of the external
representation are changed", When the relational calculus is
used as a top level query language, this basic principle is

vioclated.

Not only does the fact that the queries directly reference
the data base mnake them hard to write, but it means that the
same gquery will have to be expressed differently for a different

organization of the data base.

Secondly, not only do the gueries tell the system what
information to use, they also tell the system what to do with it
in order to produce the response relation.,

Example:

Assume the existance of the three relations in example 5. 1.
Then the query "Find the names of the suppliers, each of whon
supplies all projects" is represented as:

R1[2] : P1r1 & ¥P2r24p3r3 ((ri[1J=c3[1] & (r2[1)=r3[3]))

Not only does this query tell the system which relaticns to
use, but it also says what should be done with them. Namely,
take a tuple r1 in R1. . Then for each tuple r2 in R2, there must
be some tuple r3 in R3 such that the first domain cf r1 is equal
to the first domain of r3, and the first domain of r2 equals the
third domain of r3. If this is true, save the second domain of

r1. Now take the next tuple in R1, and try again.

In order to formulate the above guery, the user must know

how the data base is arranged, which pieces of it he is

39

interested in, exactly how this information should be related,

and how the system can recover his data.

Clearly, any system which forces the user to decide howvw his
data should be selected before he can even formulate his query
is wunsatisfactory. Such a system 1is performing c¢nly the
mechanical part of the retrieval process, while forcing the user

to do the real work.

Now consider the relational calculus as the tafget language
for a higher level query language Q. Then Q should possess the
following properties:

1. Queries in Q should be expressions of properties of what

is to be retrieved.

2. Queries should pnever reference relations, but instead,

reference domains. thus, Q will be domain oriented, whereas

the relational calculus is tuple oriented. .

3. Quantifiers in Q should not be dependent upon the data

base, as the relational calculus has been exhibited to be.

4, Queries should not have to contain any information about

how the query is to be answered.

In order to overcome the restrictions the relational
calculus imposes, the interface between Q and the relatiocnal
calculus must be capable of taking an arbitrary query expressed
in some property defining form, identifying which relations are
applicable to the request, determining how they should ke
joined, and how the retrieval is to be done. No previous systen

is capable of doing these,

40

IV. A QUERY LANGUAGE FOR RELATIONAL SYSTEMNS

This section presents a new gquery language for relational
systems. The 1language is an applied predicate calculus which
requires users to specify only the prcoperties of the data they
want retrieved. Specific relations are never directly
referenced in the query. Thus, the language is not data base
dependent, and queries are expressed in the same fashion

regardless of the current organization of the relaticns.

The 1anguage has been specifically designed as a target
language for a natural'language system. In fact, a system[16]
which compiles queries into a similar representation, kut which

uses a different problem domain, has already been implemented.

This chapter -begins with a formal definition of the query
language. This is followed by a somewhat more intuitive
explanation of the language, and concludes with a discussion of

its use as the target language for a natural language systemn.

o 4.1, The Relational Calculus Re-Defined o

Unlike the relational calculus of Codd, queries in the new
relational calculus reference domains rather than tuples. This
makes the gqueries data base independent, since specific

relations need never be referenced.

4,1.A The Alphabet

The following notation is adopted.

Domain variables d1,42, ...
Diadic Predicates T1,T2, o»e
Arbitrary Predicate F

o Example 1.1 o
PART# and SUPPLIER are both domain variables.

If SUPPLIES is a predicate which says yes or no

41

to

"SUPPLIER SUPPLIES PART#" for specific values of SUPPLIER

and PART#, then SUPPLIES is a diadic predicate.

4.1.B Ternms

There are four types of terms in the relational calculus -

simple terms, relational terms, restriction terms, and join

terms.
s Definition =
A simple term is a domain variable.
(31 r1 42 <Kr2 43 ... <cn dn>>), where <X> denotes
optional occurrence of X.
s Exanmple 1.2 o
PART# and SUPPLIER are simple terms, whereas:

(SUPPLIER SUPPLIES PART#) is a relational term.

an

42

= Definition =

A restriction term is a term of the form F(d), where F

represents an arbitrary monadic predicate.
A join term is a term of the form F(d1,d2), where F
represents an arbitrary diadic predicate.
e Example 1.3 o
(EQ PART# 10) is a restriction term, whereas:

(EQ (TIMES PRICE 10)
(PLUS PART-PRICE 3)) is a join term.

s Definition =

Two terms are said to be compatible if they contain a common

domain variable,

e Example 1.4 o
(S# SUPPLIES PART#) and
(PROJECT IS-IN PLOC) are not compatible, whereas
(S# SUPPLIES PART#) and

(PART# IS-USED-IN PROJECT#) are.

4,1.C WFFs

The well formed formulae (WFFs) of the relational «calculus
are defined as followus:

1. Any term is a WFF.

2. If 9§ is a WFF, then so is =¥.

3. If ¥1 and ¥2 are WFFs, so are (P71 & §2) and (§1 v §2).

B, If 9 is a WFF in which r occurs as a free variable, then

3r (¥) and ¥r (y) are WFFs.

43

5. No other formulae are WFFs.

4.1.D Q-Expressions

s Cefinition =

A WFF Q in the relational calculus is a Q-expressicn if:

1. Q contains no quantifiers,

2. Q0 contains no simple terms which are negated.
3. Q0 is in dnf, with each conjunction being cf the form
(¢ & ¢), where:

a. § contains only simple and relational terms, and ¢

is either null or it contains only restriction and

join terms.

b. If § contains more than cne term, then each term in

¢ is compatible with some other term in 4.

c. If a term T in ¢ is negated, then ¢ contains a non-

negated term which is compatible with T.

4, There is a term in each conjunct of ¢Q which is

compatible with some other term in a different conjunct of

Q.
e Example 1.5 =

The following are all Q-expressicns:

(SNAME SUPPLIES PART#)
(SNAME SUPPLIES PART#) & (EQ PART# 10)

(((SNAME SUPPLIES PART#) & (EQ PART# 10)) v
((PART# USED-IN PROJECT#) & (EQ PROJECT# 4))).

(SNAME & -~ (SNAME IS-IN SLOC) & (EQ SLOC 'VANCOUVER))

(S# SUPPLIED PART#) v (PART# IS-USED-IN PROJECT#)

4t

» Example 1.6 »
None of the following are Q-expressions:
-SNAME

(EQ PART# 10)

SNAME & (PART# IS-USED-IN PROJECT#)
~SNAME & - (SNAME SUPPLIES PARTH#)

(SNAME SUPPLIES PART#) V (EQ PART# 10)

s Definition =
J is a range formula over domain 4 if:
1. © is a quantifier free Q-expression.
2. J contains at least one relational term which has 4 as
a free variable.
3. FEach conjunct in § has d as a simple ternm.
e Example 1.7 o
(S# SUPPLIES PART#) & (EQ PART# 5)

is a range formula over S#.

1.F Range Coupled Quantifiers

s Cefinition =
Let ¢ be a WFF having d as a free variable, and § be a range
formula over d. Then 49 and ¥y are called range coupled

quantifiers over d, and are defined by the equations:

JU(¢) = J4(V & ¢)

45

¥U() = ¥d(~V v ¢) ..
349 () and ¥Y(¢) are also WFF.
e Example 1.8 o
¥ (PART#), and
¥ (PART# & (PART# IS-SUPPLIED-BY S#) & (GREATERP S# 10)) are

both range coupled gquantifiers,

s Definition =
A target list T 1is a sequence T=t1,t2, ... ,tk cf domain

variables.

We are now in a position to define the queries of the new
relational calculus.
s Pefinition s«
A WFF in the relational calculus is a query if it is a WFF
of the form:
T : W, vhere
1. T is a target list.
2. W is a WFF in prenex normal form.
3. All guantifiers in W are range coupled.
4, The matrix of W is a Q-expression.
5. There are no range coupled quantifiers over any element
ti of T.

6. Each domain variable in T is also in each disjunct of W.

46

e Example 1.9 o

The following are sample gqueries in the relaticnal

calculus.

1.

List the names of the parts that supplier number 1 supplies.

PART-NAME : (S# SUPPLIES PART-NAWME) & (EQ S#% 1)

2. List the projects that supplier number 1 supplies.
PROJECT-NAME : (S# SUPPLIES-TO PROJECT-NAME) & (EQ S# 1)
3. Which projedts use part 5?2
PROJECT-NAME : (PROJECT-NAME USES PART#) & (EQ PART# 5)
4, Which suppliers supply all suppliers?
SNAME : (¥ PROJECT-NAME) (SNAME SUPPLIES PROJECT-NAME)
5. Which suppliers have more than 10 units of part 122
SNAME : (SNAME HAS QOH OF-TYPE PART#) & (GREATERP CCH 9)
& (EQ PART# 12)
6. Which suppliers supply all parts that cost more than 5
dollars?

SNAME : (¥ PART# & (PART# COSTS PRICE) & (GREATERP PRICE 5))
& (SNAME SUPPLIES PART#)

A more conmplete set of sample gqueries and their responses

can be found in Appendix 4.

47

One tends to think of the data base in terms of the domains
involved (eg. SUPPLIERS and PARTS). Queries in the new
relational calculus allow queries to be formulated in terms of

these domains, rather than in terms of the relations.

The terms of the language reference domains. Simple ternms
such as PART# are domain names, Relational terms such as

(S# SUPPLIES PART#) exhibit relationships among domains.

Restriction terms, such as (EQ PART# 10) restrict the values of
domains, and join terms are used to indicate when terms with
different names are really the same. For example,
(EQ PARTA PARTB) is a join term. The terms in the <relational

calculus can be combined to produce meaningful queries.

Using these terms, one constructs the WFFs of the
relational calculus. The WFFs, however, are far tco powerful to
be of use since they can be used to define neaningless queries,
For example, the formulae of example 1.6 are WFFs, yet they do
not define mnmeaningful gueries., The query language nust

therefore be a restricted subset of the WFFs.

The restriction process involves three stages. Firstly,
the Q-expressions are defined. These expressions will
eventually form the body of the query. They define a class of
WFFs which express a valid query (and thus define a valid
relation) and are in a form which the new reducticn algorithm

can process. Q-expressions may not contain quantifiers.,

48

Secondly, the range formulae are defined. This is a set of
WFFs which are only capable of defining a subset of the values
of a particular domain. Since the query language deals with

guantifiers which express domains or specific subsets thereof,

this set of WFFs had to be isolated.

A range coupled quantifier is now defined to be a WFF whose

range is a range formula.

Finally, users mnmust be able tc specify the domains which

they want retrieved. This they do through the target list.

Having defined the valid quantifiers ¢Q, the valid query
bodies B and target lists T, the queries can be defined to be a
list of the form:

T ¢ W
where all the quaﬁtifiers in W are of the form Q, the matrix of

W is a valid body B, and each element of T is in W.

2.2 Comments on the Relational Calculus

If the relational calculus were to be used as a top level

query language, then two changes would be desirable.

Firstly, it would be nice to say:
(SNAME SUPPLIES 10) , rather than
(SNAME SUPPLIES PART#) & (EQ PART# 10)
This would require the system to determine that 10 was a PART#

and not, say, a PROJECT#. 1In cases such as:

L9

(WIDGETS ARE-USED-IN VANCOUVER) ,
the system must know that WIDGETS are part names, and that
VANCOUVER is being used as the location of a project and not as
the 1location of a supplier. The semantic model to be proposed
in Chapter V would be of use for disadhiguating .information of

this type.

Secondly, one would like the restriction that each variable
in T must also be in W to be removed. Thus, queries such as:
(SNAME SLOC : (SNAME SUPPLIES PART#))
would be valid. Currently, this query is expressed as:

(SNAME SLOC : (SNAME SUPPLIES PART#) & (SNAME IS-IN SLOC))

The problem with handling queries of this type can not be
discussed until the mechanism by which queries are handled is
understood. A solution to this problem is presented in Chapter

V.

o 8.3. Use with Natural Language o

The overriding goal in the design of this system 1is to
produce a framework which 1is suitable for direct use in a
natural language environment. In particular, the query language
must be structured so that the semantics of the natural language
system can produce queries in this language. = Since the
relational calculus of Codd contains direct reference to the
data base, and since the queries contain so wmuch information

about how the retrieval is to be done, the relational calculus

50

is not suitable for use in this context. A data base
independent language and a system which can decide how the

retrieval precess is to be done are necessary.

WALT[16], a systenm for handling natural language
interrogations, has been implemented at the University of
British Columbia. This system is modelled after . the LSNLIS
systen by Woods{341]. . The program attempts to retrieve
information about LISP programs as a result of natural 1language

queries.

WALT makes use of an Augmented Transition Network
grammar{ 35] in order to parse the sentence and produce a
linguistic deep structure. The semantic component then uses the
parse tree to build an interpretation of the sentence.. This
type of semantics is based on the procedural semantics of

Woods[331.

The semantic construct produced is a FOR statement whose
form is:

(FOR QUANT X CLASS R(X) P (X))
where QUANT is a quantifier, X is the variable being quantified,
CLASS is the name of a set over which the quantificaticn is to
range, R(X) is a restriction on the range of quantification, and

P(X) is the proposition which represents an action to Le taken.

51

e Exanmple 3.1 o

In WALT, the gquery "List the functions which the routine

MATCH calls." would have the interpretation:

(FOR EACH X (FUNCTION) (CALLS 'MATCH X) (PRINT X)) ..

The query language proposed in this chapter contains the
same information as does the FOR statement of WALT. Only the
syntax used to express the information is different. .

» Example 3.2 e
The relational calculus query:
SFAME : (SNAME SUPPLIES PART#) & (EQ PART# 10)
is equivalent to:
({FOR EACH X (SNAME) TRUE
(FOR THE Y (PART#) (EQ PART# 10)

(AND (SUPPLIES X Y¥)
(PRINT X))))

It is hoped that the approach presented in this thesis will

soon be extended to encompass natural language queries.

52

V. A NEW FRAMEWORK FOR RELATIONAL SYSTEMS

This'chapter presents a new framework for interacting with
relational systens. Using this framework, it is possible to
reduce queries in a new relational calculus to a sequence of
semantically equivalent operations in the relational algebra.
This involves determining which relations are relevant to the
query, and how the retrieval should be done. Previously, these
tasks were assigned to the user. The relational calculus of

Codd is not used as an intermediate language.

The chapter begins by describing the basic methodology
which is employed to respond to a query. Following this is a
description of the main components of the new framework - the
semantic model, and the theorem prover. These are discussed in
detail, and a general result which shows when it is possible to
prove that two or three domains are related by some arbitrary

relation is presented.

The chapter concludes with a description of a reduction
algorithm which makes use of the semantic model and the theoren

prover to respond to queries in the relational calculus.

The approach which has been taken is somewhat interesting
in itself. It makes use of standard Artificial Intelligence(AI)
techniques in order to solve a problem in fact retrieval.
Instead of representing information using tables or graphs, a
.general semantic model is used. This concept, which is basic to

most work in AI, allows the most pertinent information about the

53

system to be explicitly represented. The meaning of the
relations are represented in this way. From this basic
information, other information is deduced by a theorem prover.
In fact, queries in the system are formulated as a series of
theorems to be proven true., The steps of these proofs show how

the retrieval can be done.

This framework is both incremental and flexible. New
information can be constantly added to the semantic mcdel, ' and
its effects will be automatically taken into account. The

addition of new relations is also a trivial task.

AD Qverview o

-
e — -

o 5.1. Reduction of Queries

This section outlines the basic approach to handling
queries, and gives a brief description of Micro-Planner, a

language which is used in the reduction process.

The basic approach tc answering gqueries is as follouws.
Firstly, the user enters a query in the language described in
Chapter IV.

» Example 1.1 o

If one wanted a list of all suppliers who supply all parts,

one would say:

SNAME : (¥ PART#) (SNAME SUPPLIES PART#) .

This query is then formulated as a series of theorems to be

proved. In Example 1.1, an attempt would be made to prove:

54

(SNAME SUPPLIES PART%#) .
If this is possible, then the system knows that there is indeed
information in the data base which allows‘us to conclude that
some suppliers supply part numbers. As a. side effect, the
prograns which perform this proof create instructions which show
how the relation which contains this information can be created.
In the above example, the relation:

SUPPLIES (SNAME PART#)
would be created. Quantifiers and simple terms in the query are
treated in a similar manner. These, relations are then
restricted and joined according to the restriction and join

terms in the query, and a response relation is derived.

5.1.2 The Use of Micro-Planner

The reduction of -a query is based upon the ability to prove
that the simple and relational terms of the gquery are true,
using the elements of the semantic model as the axioms of the

system. Section 5 outlines this procedure in detail.

In order to accomplish this task,‘ the language giggg;
Planner{ 18] is used. Micro~Planner is a language which is
oriented towards the accomplishment of goals, which in turn are
broken into a series of sub-goals, It provides a back-up
mechanism, so that if one possible way of accomplishing the goal

is tried and fails, then another possibility will be tried

etC.._ .

The following traditional example of deducticn will

55

illustrate some elementary features of Micro-Planner,
e Example 1.2 o
If we know that Turing is a human, and all humans are
fallible, then Turing is fallible.
In Hicro-Pianner, this is expressed by saying:
(THASSERT (HUMAN TURING))

(THCONSE (X) (FALLIBLE $7?X)
(THGOAL (HUMAN $7X)))

THASSERT and THGOAL can be abbreviated to $A and 3G
respectively. The proof would be generated by evaluating the
goal: .

(THGOAL (FALLIBLE TURING) $T)

From this example, several points should bLe observed.
Pirst, information is stored in Micro-Planner in one of two ways
- as ASSERTIONS, or as THEOREWNS, Simplé facts, such as Turing
is a human, are represented by assertions, whereas more
complicated facts which may involve quantification and logical
connectives are expressed as theorems. In the above example, a
THCONSE (conseguénce) theorem is shown. This theorem states

that a consequence of X being a human is that X is fallible.

Micro-Planner, being a programming language, provides a set
of functions which can be used to define‘ theorems and goals.
For example:

(THFIND ALL $?X (X) ($G (FALLIBLE $?X) $T)))
would return a 1list of all items which are fallible. These
items need not explicitly be stated as being fallible, but can

be items which are provably fallible using the current set of

56
theorems and assertions,

As well as THCONSE theorems, Micro-Planner provides THANTE
(antecedent) theorenms.
e Example 1.3 o

(THANTE T (X Y) (LIKES $?X $?Y)
(THASSERT (HUMAN $?X)))

In this example, the theorem T says that if an assertion is made
about X 1liking Y, then we should immediately assert that X is
human. These theorems decrease the amount of explicit

information which is necessary at any one time.,

The following chapters will reveal how the facilities of
Micro-Planner are used to form a framework for relaticnal

systens.

Traditional relational systems have claimed a high degree
of user-data independence, This is true only in that the users
need not be aware of how their relations are physically stored
on a storage device. K Unforunately, they must still be aware of
how the data is organized. In particular, they must know which
relations exist, and what information each contains. In order

to overcome this, the concept of a semantic model is introduced.

The semantic model is the most vital component of the systen.

The semantic model serves as an interface between the

system and the data base, and is used to determine the relations

57

which are relevant to a Trequest, The process which reduces
queries refers only to this model, and pever to the data kase
itself. Just as the use of the relational algebra allows the
user to be independent of the physical representation of his '

relations, the semantic model allows him to be independent of

The basic function of the semantic model is to describe the
information conveyed by each relation in the data base. That
is, it describes the meanings of the relations. Without this
information, it would be impossible to tell which relations
contain information about an event X, and which do nct. The
model also contains real world knowledge which describes the
current state of the environment which the data base represents,
Information describing various préperties which the relations
may or may not possess and, 6 information which is useful for

optimizing the retrieval is also contained in this nmodel.

.A The Meaning of Relations

Consider the relation:

R1 (S&# PART# PROJECT#)
where a tuple (X Y %) is in R if supplier X supplies part Y to
project 2. Exactly what information does this relation convey?
It tells us that:

1. . S#% supplies PART#

2. PART# is used in PROJECT#

3. PROJECT# uses PART#

4, S# supplies PROJECT#

5. PART# is supplied by S#
6. PROJECT# is supplied by supplier S#, and

58
7. S# supplies PART# to PROJECT#

If queries are to be expressed in a lanquage which does not
directly reference the relations, then this information will kLe
necessary to identify the relations which are applicable to a
request. Therefore, information of this type must be included
in the semantic model., The entries in the semantic model for
the above relation would be:

{$A (S# SUPPLIES PART# R1))

($A (PART# IS-USED-IN PROJECT# R1))

($A (PROJECT# USES PART# R1))

{($2 (S# SUPPLIES-TO PROJECT# R1))

($A (PART# IS-SUPPLIED-BY S# R1))

($2 (PROJECT# IS-SUPPLIED-BY-S S# R1))

($A (S# SUPPLIES PART# SUPPLIES~TO PROJECT# R1))

It should be noted at this point that no special
information about the semantic model need be expressed. For
example, Micro-Planner does not need to know what
(S# SUPPLIES PART#) nmeans, but will accept it as a primitive

fact. Thus, it 1is as weasy to represent informaticn about

employees and wages as about suppliers and parts.

Information describing the overall topic with which the
relation deals can also be expressed. For exangle, if
R2 (PART# PRICE) were present, we might:

($A (R2 CONCERNS CURRENT PARTS))

This 1is especially useful if several relations in the data base
have identical domains, but different meaning. For example, if
R3 (PART# PRICE) were also included, then we would:

($A (R3 CONCERNS OBSOLETE PARTS))

59

B Properties of Relations

In the process of determining which relations in the data
base are relevant to a given request, it is often necessary to
check for specific properties which a relation may c¢r may not
possess. Therefore, the semantic model also contains
information showing the properties each relation possesses. 1In
this framework, the properties of 1importance are T-TRANS and
DETERMINES (see section 3.B).

e Example 2.1 e

In the relation R4 (S# SNAME), it 1is 1likely that the

supplier number uniguely determines the supplier name and

vice versa. This would be represented by:

($A (S# DETERMINES SNAME RU))
($A (SNAME DETERMINES S# RH4))

It also happens that S# and SNAME are T-TRANS in R4, This
would be represented by either:

($& (S# AND SNAME ARE T-TRANS IN RY4)) or
($A (R4 IS T-TRANS))

5.2.C Optimizing Informaticn

The semantic model may also contain information which can
be used by the system in order to lessen the time required to

retrieve the data for a request..

The system which is implemented shows one possible use of
this facility. Consider a query which requires the system to
create a relation which enumerates the elements of a domain 4.

To do this, one would project each relaticn in the data base on

60

d, and then take the union of these results. This produces a
relation which 1is guaranteed to contain all the values of a

domain which are present in the data base.

If, hoyever, a single relation enumerates the values of 4,
then this process 1is unnecessary. All that is needed is a
projection of this one telation. Even if two relations together
enumerafe d, then time can be saved if the system is made aware
of this fact. Therefore, one can add information of the form:

($2 (R1 ENUMERATES S#))
($2 (R1 PARTIALLY-ENUMERATES S#))

This 1is especially useful when quantifiers are being fprocessed,
since quantification is always over a domain or a restricted

sutset of that domain.

5.2.D Active and Inactive Data

The semantic model also contains information that reflects
the current state of the environment which the data base
describes., This we refer to as "real world" knowledge.

» Examnple 2.2 o
(VANCOUVER SUPPLIERS ARE ON STRIKE)

is a typical example.

In order to handle real world information, the ccncepts of
the currently active and inactive portions of the data base are
introduced., The active information is that which can be used in

responding to a query. The inactive data is data which is

present in the data base, but should temporarily be ignored..

61

The system will never make use of inactive data when responding

to a query.

The effect of real world knowledge is to temporarily alter
the part of the data base which is currently considered active.
There are two cases which must be dealt with. Firstly, whole
relations can be inactive. Alternatively, the tuples in certain
relations which satisfy some criterion can be considered

inactive.

In order to indicate that a relation is currently inactive,
one simply adds an assertion of the form:

($A ($?REL IS INACTIVE))
to the semantic model, where $?REL is a variable whose value is

the name of the relation which is inactive.

The inactivation of tuples within a relation is
accomplished in a somewhat more complicated manner. It is most
suitable to restrict tuples by showing the properties that each
domain in the tuple nmust satisfy. Therefore, one can add
information of the type:

($A (REST RESTRICTS DOMAIN TO LPRED))
where REST is the name of the restriction, DOMAIN is the domain
to be restricted, and LPRED is an arbitrary LISP predicate whose

only unbound variable is DOMAIN.

62

e Example 2.3 o
The semantic model would contain the asserticn:
(52 (REST#1 RESTRICTS SLOC TO kNOT ({EQ SLOC *VANCOUVER))))
if the tuples in some relation are to be restricted to the
case where the location of the supplier is not VANCOUVER.

This allows restrictions to be specified independently of the

relations which are restricted.

In order to make use of this information, the semantic
model can also contain assertions of the form:

($A (PRED IN RELATION IS-RESTRICTED-TO REST#))
where PRED is the name of a diadic predicate in the query
language, RELATION is the name of a relation, and REST# is the
name of the restriction. For example, we might have:

(SUPPLIES IN R3 IS~-RESTRICTED-TO REST#1).
This says that if the predicate SUPPLIES is seen in a relational
term of a query and if R3 is being used in the reducticn of the
query, then only those tuples of R3 which satisfy REST#1 should
be used. Notice that this 4is more general than restricting

whole relations to specific cases. .

The way that these assertions are used to represent real

world knowledge is discussed in section 5.6.

63

5.2.E Generality of the Semantic Model

It is felt that a semantic model is necessary tc process
gqueries in any language which does not make direct reference to
the data base. This work shows the type of informaticn which a
typical semantic model might contain. The bulk of this
information describes the meaning of the relaticns. For

exanmple,

‘($2 (PART# IS-USED-IN PROJECT# RS)).

The semantic model is represented by a set of Micro-Planner
assertions. However, the representation 1is not the important
feature; the model 1is proposed as a general ccncept, and the

manner in which it is represented can be determined by the

application in which it is being used.

In this thesis, the framework is formulated in such a way
that it is useful in the context of a natural 1language systen.
For this application, wusing M#icro-Planner to describe the
semantic model is ideal. 1If one were attempting to design a
commercially wusable retrieval system, however, it is unlikely
that LISP and MNicro-Planner would be used. They make
implementing the system easy, but are- not exceptionally
efficient. 1In this application, the semantic model could be
represented using a more "“conventional®" data structure such as a
network. The nodes of the network could be the domains in the
data base, with the arcs being labelled with the predicate that
relates the nodes., For example, the assertion:

(PART# IS~USED-IN PROJECT# R5)

6u

would be represented by:

RUY
540 NG
gg) O
©” 15-USED-IN
PART#-=—m—m=m—m—mmmmm PROJECT &

The results which are presented in the following chapters
are applicable regardless of how the semantic model is
represented, and are not dependent upon the use cf Micro-

Planner.

o 5,3, Proving Relational Terms o

Queries in the new relational calculus contain nc direct
reference to the data base. Therefore, the system which handles
them must be capable of deciding which relations are relevant to
the request, and how the relations should be manipulated in
order to produce the correct respomnse. This section discusses

how this is accomplished.

In any query, the relational 3§£g§ are of vprimary
importance. The users view these as the mechanism through which
they can express the properties of the data they desire. To the

system, however, they represent new relations which must be

Created.

65

e Example 3.1 e
Consider the query:
(SNAME : (SNAME SUPPLIES PROJECT#) & (EQ PROJECT# 17))
which asks for all suppliers who supply project 17. . 1In
order to answer this, the relation:

SUPPLIES (SNAME PROJECT#) must first be created.

When processing a query, the relation which corresponds to
each relational term and each simple term must be created.
(Restriction and join terms do not require new relations to be
created.) The queries, however, contain no information as to how
this should be. done., It is up to the system to determine how

the information can be extracted from the data base.

In order to create the relation corresponding to‘ some
relational term T, the following approach is taken, First, T is
formulated as a theorem, and an attempt is made to prove it
using the semantics of the data base as the axionms, If the
theorem can be proven true, then the proof will show how the
relation can be created. 1If it is false, then we <can conclude
that the data base does not contain sufficient information to

ansver the query.

The remainder of this section is devoted to discussing
when, in general, a term can be proven true. The next section

discusses the implementaticn.

66

In the following sections, we represent relational terms of

the form (X R Y) by the standard set-theoretic notation xRy.

Consider relational terms of the form xRy. If a single
relation in the data base contains the information requested in
the relational term, then the axiom xRy will appear in the
semantic model, and fhe proof will be trivial. It will not
alvays be the case that a single relation contains all the
desired information., Several relations will often be needed.

s Example 3.2 »
To form the relation defined by the term in example 3.1

above, relations R3 and RS must be used.

Consider the problem of proving xRy, when two relations aré
necessary. If one relationm says xRz, and another says that
ZzR'y, then <can we conclude that xRy, or xR'y, or even xR"y?
Consider the following examples which all attempt to prove a
term of the form xRz by showing xRy and yR'z.

3.2.1. 1f we know (SNAME IS-NUMBERED S#) and
(S# SUPPLIES PROJECT), then we can conclude that
{SNBAME SUPPLIES PROJECT).

3.2,.2, . 1f we know (S8 SUPPLIES PART#), and
(PART# IS-USED-IN PROJECT#), then we <can not conclude that
{(S# SUPPLIES PROJECT#). He can only conclude that
(S# R PROJECT#), where ﬁ is some relation whose name happens to
be "maybe supplies", If, however, we know that PART# uniquely

determines PROJECT#, then we can conclude that

67

(S# SUPPLIES PROJECT#).

3.2.3. If we know that (A IS-THE-SQUARE-OF B), and

{B DOUBLED-IS C), then we cannot conclude that
(A IS-THE-SQUARE-OF C) in any case, regardless of the fact that
B uniquely determines A,

3.2.4. If we know that (SUB-PART# IS-PART-OF PART#), and
(PART# HAS-NAME PART-NAME), then we <can always conclude that

(SUB~-PART# IS-PART-OF PART-NAME).

These examples illustrate that the proof of xRy is going to
depend wupon the properties of the relations involved, not just

upon their content.

5.3.B Properties of Relations

There are two properties which relations may possess that
influence the way they can be used in creating new relations. .
These properties are called T-TRANS and UNIQUELY-DETERMINES,

s Definition =
Two domains a and y in relation R' are said to be T-TRANS
(Through Transitive) if, for each xRa,

XRa & aR'y => xRy.

A relation R' is said to be T-TRANS if all domains in R?

are pairwise T-TRANS.,

68

+ Example 3,3 e
If (X R S#) and (S# R' SNAME) => (X R SNAME), then SNAME
and S# are T-TRANS in R'.

s Example 3.4 o
The relation R(S# SNAME PROJECT# PROJECT-NAME) is not

T-TRANS, whereas R' (S# SNAME) is.

This proberty will be used to show that the conclusions in
ekamples 3.2.1 and 3.2.4 are valid, whereas no conclusicn can te
drawn from 3.2.3, which is syntactically similar to both 3.2.1
and 3.2.4.

» Definition =

A domain a in R uniguely determines domain b in R if, for

any value of a in R, there exists only one value of b.

e Example 3.5 »

PART#)

WA wd e
(S Mo - JEN BF —

Here, PART# uniquely determines S#., Notice that S# does not
uniquely determine PART#. This property will be necessary in

the proof of 3.2 above.

69

5.3.C Proving xRy

If the axiom xRy is not present in the semantic model, then
more than one relation will be involved in the proocf. Thus, the
proof is broken up into twc stages. Firstly, an attempt is made
to find a domain a such that xR'a. If this succeeds then the
proof of aR"y is attempted. If this also succeeds, then we can
conclude that a relation R exists between x and y. The validity
of this conclusion, however, depends upon certain relationships
which may or may not exist between a, x, and y. Exanmple 3,2
illustrated this point. Further, it will most often be the case
that the relation R which is desired will be specified, rather
than arbitrary. Thus, the property T-TRANS will also need to be

taken into account.,

Consider first the problem of trying to prove xRy, where R

is an arbitrary relation.

Heath[17], in attempting to show that any relation can be
reduced to a natural join of relations in third normal form{10],
proves the following two results:

1. The relation R(A,B,C), where A determines B, is the

join of R' (A,B) and R™(A,C).

2. The relation R(A,B,C), where A determines B and B

determines C, is the join of R' (A,B) and R" (E,C).

70

s Definition =
If A determines B in R'(A,B), and neither A nor C determine
each other in R"(A,C), then the projection R(BE,C) of the
relation R(4,B,C), formed by joining R'(A,B) and R"(a,C) is a
Similarly, if A determines B in R' (A,B) and B determines C
in R"(B,C), then the projection R(A,C) of the relation R (a,B,C)
formed by joining R' (A,B) and R"(B,C) is also a valid relation.
We speak of the steps of the proof of a relational term as
the path of the proof. Any path which requires the formation of
valid relations and valid rélations only is said to be a
e Example 3.6 o
If we know that A:(PART# IS-SUPPLIED-BY S#), and that
B: (PART# IS-USED-IN ©PROJECT#), then if PART# uniquely
determines S# in the relation defined by the relational
term A, we can form the valid relaticn R (S#,PROJECT#),

where the name of R is actually "supplies-to",

In any proof, an attempt is made to find a valid path
before a non-valid path. Note that a non-valid path is not
always undesirable, since even if PART# does not determine S# in
example 3.6, the join of the relations defined by the terms 1
and B produces a new relation whose name is "maybe supplies",
rather than "supplies". This concept is extremely valuable, as
it guides the proof in a reasonable direction. This point will

be illustrated later.

A

Now consider the problem of trying to prove xRy where R 1is
specified. Given relations R'(X,A) or R*'(A,X), and R"(A,Y) or
R" (Y,A), then the following table shows the conclusions which
can be drawn assunping the new relations are valid. The

conclusions marked with asterisks are the ones of interest,

since they show when one can prove xRy.

f ; R'" T-TRANS T R" T-TRANS }
| R'(A,X) R"(A,Y) | R"(X,Y)% | RY(L,X) |
| R'(X,A) R"(A,¥) | R"(X,¥)* | R'(X,1)% |
| R*(A,X) R"(Y,A) | R"(Y{,X) | R'(Y,X) !
| R'(X,A) R"(Y,A) | RB"(Y,X) | R'(X,Y)% |
| | | |

We are now in a position to define the conditions under

which xRy can be proven true., xRy is true if either:
1. xRy is an axiom of the system.
2. i. xRa and either aR'y or yR'a.

ii. y and a are T-TRANS in R°',

iii, Either a determines x in R or a determines y in R°'.
3. i. aRy and either aR'x or xR'a.

ii. x and a are T-TRANS in R®,

iii. Either a determines y in R or a determines x in R'.

These are the only conditions which allow us to show that

XRY.

72

e Example 3.7 e

Say one 1is attempting to prove xBRy. If it is known that
XRa, then one must simply show that aR'y where y and a are
T-TRANS in R', and either a determines x in R or a
determines y in R'. This in tﬁrn could be done by showing
that aR"b and bR"'y, where b and y ére T-TRANS in R"?', and

where b determines a in R" or b determines y in R"?,

Thus, this method allows for proofs of arbitrary length,

not just proofs with two steps.

» Example 3.8 e

The term (S# SUPPLIES-TO PROJECT-NAME) can be proven true,
since:

1. {(S# SUPPLIES-TO PROJECTH#)

2. (PROJECTH# IS-NAMED PROJECT-NRAME)

3. The relation defined by 2 is T-TRANS, and

4, In the relation defined by 2, PROJECT# determines

PROJECT-NAMNE,

5.3.D Proving xRyR'z

true.

There are six conditions under which xRyR'z can be proven

XRYR'2z is true if either:

1. XRyR'z is an axiom of the systen.

2.Aio
ii,

iii.

‘aRyR'z and either aR"x or xR"a.
~x and a are T-TRANS in R",
,Either a determines x in R"™ or a determines (y 2) in the

relation defined by the term.

73

3., i. xRaR'z and either aR"y or yR"a.
ii. y and a are T-TRANS in R".
jii. Either a determines y in R"™ or a determines (x z) in the
relation defined by the tern.
4, i. xRyR'a and either aR"z or zR"a.
ii. z and a are T-TRANS in R",
iii, Either a determines z in R"™ or a determines (x y) in the
relation defined by the term.
5., i. xRy and xR'z
ii, x determines y in the relation defined by (x R y)
6. i. XRy and yR'z
ii. x determines y in the relation defined by (x R y)

iii. y determines 2z in the relation defined by (x R' 2)

Notice that in case 5, x is related to y and 2z, while in
case 6 x is related to y and y is related to z. This represents
the two interpretations of ternary semantic information. 1In
this framework, it is possible to prove a term of the fornm
xRyR*'z, even if the semantics contain only binary information.
e Example 3.9 o

We can prove (SNAME SUPPLIED PART# SUPPLIED-TO PROJECT#),

since:

1. (S# SQPPLIED PART# SUPPLIED-TO PROJECT#)
2. (S# IS-CALLED SNAME)
3., S% and SNAME are T-TRANS in the relation defined by 2

4, S# determines SNAME in the relation defined by 2.

74

5:.3.E Usefulness of the valid Path

The concept of a wvalid path is crucial to the proof
mechanism siﬁce it tends to eliminate "garbage" ©paths..
Consider, for example, an attempt to prove that
(S# SUPPLIES-TO PROJECT-NAME). The desired proof is:

1. (S# SUPPLIES-TO PROJECT#), and |

2. . (PROJECT# IS-NAMED PROJECT-NAME).
At first glance there seem to Abe several other correct but
undesirable proofs. For example:

A. (S# SUPPLIES PART#), and

B. (PART# IS-USED-IN PROJECT#), and

C.. (PROJECT# IS-NAMED PROJECT-NAME)
would also appear to be correct., We would hope that if the
system found this version cf the proof before the first version,
it would be rejected. This is, in fact, the case. Unless PART#
uniquely determines S# in A, steps A and B do not define a valid
relation, and therefore, the system will abandon this path and
the correct proof will eventually be found. If PART# does
determine S# in A, then this proof produces the same response

relation as does the first, and is therefore acceptakble.

This section has defined the conditions wunder which the
relational terms xRy and xRyR'z can be proven. Above all, it
has demonstrated that in order to prove a term such as xRy, it

is not sufficient to show that:

75

xRa & aR'b & bRYc & cCR'"™My.

The properties of the relations must be taken into account.

n 5.4. The Processing of Relational Terms o

This section discusses the implementation of the procedures
which prove the wvalidity of the relational terms. In the
previous section, the conditions under which this could be done

were outlined.

Relational terms can be proven true only if the data base
contains enough information to create the relation which the
term defines. Therefore, the proof is constructed by showing
that it is, in fact, possible to create such a relaticn. The
steps of the proof are "“remembered", and from these, wé can

determine how the relation can be constructed.

This section begins by describing the format in which
Micro-Planner saves intermediate steps. It alsc describes the
routines which prove that x, XRy, or XRyR'z are true. Included
are descriptions of how real world knowledge is handled, and how

Micro-Planner saves the relevant parts of the proof.

76

5.4.A The List Returned by Micro-Planner

In proving a relational term, it is important to know not
only that the corresponding relation can be created, but how it
can be created. A routine whigh just says "yes, you can create
the relation" is of 1little use in itself. Therefore, the
Micro-Planner procedures keep track of the information they use
in the proof, and organize it in a fashion which makes it easy
to see how the relation can be created. This infeormation is
stored in a list, and given the name #RESULT# since it 1is the
result of a successful proof. The 1list shows which relations

are needed in order to create the relation defined by the

relational term, and shows how they should be used to form it.

If the relational term T has n domain variables, then the
first n elements of #RESULT# are lists of the forum:

(DOMAIN RELS),
where DOMAIN is the name of a domain in T, and RELS is the 1list
of relations which together enumerate the elements of DOMAIN.
For example, we might have:

(PART#&# (R7 RS))
if PART# was to come from relations R5 and R7. The list RELS is
not actually used in the current scheme, The 1last element of
#RESULT# is a list which shows how to create the relation. It
has the form:

(REL1 D1 REL2 <D2 REL3 ... <DN RELN>>), where RELi is a list

of relations, and Di is a domain name. .

Using the list #RESULT# the relation defined by the term is

717

created as follows:
1. Create a list T of each domain in the term, and delete the
first n elements from #RESULT#.
2. Take the first list of relations from #RESULT#. Call this
list R. If B is a list of one elemeﬁt, then go to step 3.
Otherwise, find the 1list L of domains which are common to all
relations in R, and project them on these domains. Take the
union of the results, and go to step 3.
3. Now do the same for the list of relations which is the third
element in #RESULT#.
4, Join the relations created in steps 2 and 3 on the condition
that the values of the domain which is specified by the second
element of #RESULT# are équal.
5. . Replace the first three elements of #RESULT# with the name
of the relation from step 4, If #RESULT# contains more than one
element, go to step 2, Otherwise, continue with step 6.
6. Project the relation which is the first (and only) element
of #RESULT# upon the domains D1,D2 ... Dn which are in the 1list
T. This is the relation defined by the relational term.
» Example 4.1 o
The proof of the relational term (SNAME SUPPLIES PARTH)
will return the list:

{ (SNAME (R3)) (PART# (R5 R7)) ((R3) S# (R5 R7))).
To form this relation, take the union U of the projecticns of R5
and R7 on (S#,PART#). Now join R3 and U on the common domain

S#.

78

S.4.B Proving X

A simple term is provably true if its domain variable
occurs as the domain of any relation in the data base.

Otherwise the proof will fail, and the query cannct be answered.

As a side effect, any successful proof will create a list
which shows how to obtain the relation which enumerates the
values of this domain. Proving a simple term X is accomplished
by issuing the goal:

($G (ENUMERATE $2X) $T).

s Example 4,2 o
(3G (ENUMERATE PART#) $T) results in #RESULT# being bound
to the list:
((PART# (R1 R8)) (R1 R8)),
since taking the wunion of R1 and R8, and projecting this

relation on the domain PART# results in a relaticn which

enumerates the parts currently mentioned in the systen.

The list showing which relations enumerate the term will be
derived in one of two ways. The first possibility is that the
semantic model contains an assertion which states that a certain
relation enumerates the term. If this is true, the 1list 1is
simply a 1list of one element, namely this relaticn., Secondly,
the semantic model could contain several assertions which state
that certain relations partially enumerate the term. In this
case, the list is a list of all such relations. If neither of
these are true, then the semantic model must be examined to see

which relations, if any, deal with this domain. If cne or more

79

are found, then a 1list of all these relations is built,

Otherwise, the proof fails.

In this last case, only semantic information of the form
(D PD) or (D) need be examined, since each domain in each

relation will be included in a semantic term of this type.

5.4.C Proving xRy

Section 3 outlined the conditions under which it is wvalid
to conclude that xRy. The inmplementation of this proof
procedure must do more than just check for these conditions., It
must also check that each relation it attempts to use is active,
check for restrictions upon the tuples it selects, and process
any restrictions which are found. It must not only show that
the proof can be done, but remember which relaticns were
involved, and how they were used. Further, since Micrc-Planner
performs its proofs in a depth first manner, simple proofs must
always be attempted before complex cones. Thus, the conditions
under which a proof is possible cannot simply be stated, but
nust be expressed so that Micro-Planner will construct the proof

with a minimum of wasted effort.

5.4.C.1 Representation of the Goals

Proving a relational term xRy is accomplished by issuing
the goal:
($G (32X $?R $?Y $?REL) $7?2T),

where X and Y are domains, R is a diadic predicate, and REL is

http://5_.4_.Ct_1

80

the name of a virtual relation which, if it were created, would
show that xRy.
e Example 4,3 o

A typical goal is:

($G (PART# IS-USED-IN PROJECT-NAME $?REL) $T).

None of the variables in the goal need be specified.
Therefore, the goal:

($G (PART# $?R PROJECT-NAME $?REL) $7T)
is perfectly valid. If this proof is successful, then $?R will
contain the name of the relation between PART# and PROJECT-NAME.

The possible uses of this feature are discussed in section 6.

5.4.C.2 Basic Proof Strategy

Omitting the conditions that specify when X, Y, and A nust
be T-TRANS and DETERMINE one another, it is possible tc prove (X
R Y REL) if we can prove either:
1. (X R A REL1) and either (Y R' A REL2) or (A R' Y REL2)

2. (A R Y REL1) and either (X R' A REL2) or (A R' X REL2).

The program begins by checking to see if (X R A REL1) is
true in the semantic model, If it is, then the system looks to
see if either (A R* Y REL2) or (Y R' A REL2) are in the semantic
model, where R' is now an arbitrary relation, If one of these
succeeds, then the proof succeeds. If both fail, then an
attempt is made to prove that (A R* Y REL2) (for some arbitrary
R') in the same manner that the original proof of (X R A REL1)

was attempted. If this fails, then we attempt to prove

81
(Y R* A REL2).

If this also fails, then the system 1looks tc see if
(A R Y REL1) is 4in the semantic model, If it is, then the
system looks in the semantic model for eitger (X R* A REL2) or
(A R' X REL2). Should eitﬁer of these succeed, then the proof
also succeeds. If they both fail, then an attempt is made to

prove that one of them is true..

By checking in this manner, the system tends to come up
with trivial proofs qﬁickly._ If it attempted to prove (X R A
REL1) in general Dbefore checking to see if (A R Y REL1) is in
the data base, proofs could often take an excessive amount of

time. Checking the data base first saves a great deal of wasted

effort.

If the proof succeeds this far, then the properties of
T-TRANS and DETERMINES must be checked. The conditions which

must apply are stated in section 3.C of this chapter.

If these properties are both present, then the proof will
succeed. Since we now know that it is possible to <create a
relation which shows that xRy, we add this informaticn to the

semantic model. In fact, we create a yirtual relation - that

is, a relation which is fully semanticized, but not physically
present. The relation is given some arbitrary name N, and the
assertions:

(X R Y N)

is placed in the semantic model. Further, the properties of ¥

82

are also added. For example, if A determines X in R, and &
determines ¥ in R', then X determines Y and Y determines X in N.
The variable $?REL in the original gocal is now bound to N, and

the proof procedure "returns".

The reason N is not explicitly created at this point is
that the correct proof is seldom generated immediately.
Incorrect paths are often taken. Thus, immediate generation of
relations would mean that unnecessary relations would often be
created. It 1is considerably more efficient +tc create the

relation only when it is known for sure that it must be done.

5.4,C.,3 Limiting Unnecessary Work

There are several facts that the proof mechanism makes use
of in order to restrict the amount of unnecessary work which is
done., If we are attempting to prove ($?X $?R $?Y $?REL) where
$2Y is unbound, then unless the proof succeeds uéing an axiom in
the data base, there is no point trying to prove it via the xRa
method, ~ since this will always fail. Likewise, if $?X is

unbound, there is no point trying the aRy method.

Secondly, once an assertion in the semantic model has tLeen
used as a step in the proof, the same assertion should hever be
used again. Therefore, it is removed from the semantic model
for the duration of the prcof., This saves a considerable amount

of extra effort, especially if the proof is doomed tc fail.

83

5.4.C.4 Remembering the Proof

In order to create the relation corresponding to the
relational term, Micro-Planner keeps track of the relevant part
of the proof. This information is kept in the lists #RESULT#,
$#RESTRICT#, and #EXTRA#., The facts which are relevant are the
nanes of fhe relations which are used, and the names of the
domains not present in the relational term which are used in the
prcof., 1In fact, any time a piece of semantic information is
used, the name of the relation which contains this information
is saved. Further, if the information involves a domain not
referenced in the original term, the name of the domain is also

saved.

Consider, as an example, a proof of xRy which goes as
follows:

(X R A REL1)

(A R Y REL2)

Then Micro-Planner will save REL1, A, and REL2 in #RESULT#,
since the relation which defines xRy can be created by Jjoining
REL1 to REL2 on the common domain A. The value of #RESULT# will
be:

((X REL1) (Y REL2) (REL1 A REL2)).

In general, #RESULTH# is constructed as follows. Any time
that (X R A RELN) succeeds, the 1list (RELN A) is added to
#RESULT#. When (A R' Y RELX) or (Y R' A RELX) succeeds, RELX is
also added to the end. If both (A R' Y RELX) and (Y R* A RELX)

fail, then Micro-Planner backup automatically erases the 1list

84
(RELN A) from #RESULT#, and a new choice of A is tried.

The same basic method 1is applied when (A R Y RELN)
succeeds. Care is always taken so that when the 1list #RESULT#
is processed from left to right, all the domains necessary for

the joins will be present.

Any time a proof of a term (X R Y RELN) is made by finding
the axiom xRy in the semantic model, then all relaticns which
show that xRy are found. This is easily done with a THFIND ALL
statement, The reason for doing this 1is that it is not
sufficient to examine only one relation which says that xRy -
all relations ﬁhich contain this information must be examined.
For example, if we attempt to prove that:

(S# SUPPLIES PART# 3?REL),
then since both R5 and R7 contain this informaticn, they must
both be wused in constructing the relaticn defined by the term.
This is why #RESULT# is composed of 1lists of relaticn nanes,
rather than single relaticn names.

e Example 4.4 o

Consider the term (SNAME SUPPLIES PART#). 1In order to prove
this tern, we - would first check to see if
(SNAME SUPPLIES $?a $?REL) is an axiom. This goal will succeed,
with $?A being bound to S#, and $?REL being bound toc RS5. A
search for all relations containing the information
(S%# SUPPLIES PART#) produces the list (R5 R7)._ #RESULT# is now
set to ((R5 R7) S#).. The next goal is tc see 1if

(SNAME $?R' S# $?REL2) is an axiom. This it is, and B$?R' 1is

85

bound to IS-NUMBERED, and $?REL2 is bound to R3. Since this is
the‘only relation which relates SNAME and S#, #RESULT# is set to
((RS R7) S# (R3)), which shows how to create the relation
defined by the original term. Since SNAME determines S#, and

since SNAME and S# are T-TRANS in R3, the proof succeeds.

In the description of the basic proéf strategy, the
influence of real world restrictions was ignored. Real world
restrictions can take on one of two forms. ‘ They can either
restrict whole relations, or specific tuples within relaticns.
Each time a new relation is used in the proof, a check is made
to see if it is currently active. If so, then the relation can
be used. If not, then the goal which just succeeded 1is forced
to fail.

» Example 4.5 o

If we attempt to prove (S# SUPPLIES PART# $?REL), and $?REL

is returned bound to RS, then R5 must be an active

relation. If not, we try for a new relation. This also

implies that when the 1list of relations which show (S#

SUPPLIES PART#) is formed, only active relations should be

included,

Each time that Micro-Planner attempts to prove a term of
the form (X R Y RELN), a check is made to see if R is restricted
in RELN. For example, in (S# SUPPLIES PART# R5), we would check

to see if SUPPLIES is restricted in R5. If a supplier were on

86
strike, then then this would be true.

If a restriction is found, then the restriction number is
noted. Using this number, it is possible to find out which
domain is being restricted, and what the restriction is. It is
possible, however, that the domain being restricted is in a
relation which 1is not being used in the construction of the
relation defined by the relational term. For exabmple, if the
term T were (S# SUPPLIES PART#), then the restriction could be
on SLOC which appears only in relation R3. Noﬁhere is R3 used
in the construction of the relation defined by T. For this
reason, if the domain D being restricted is neither'x ner ¥ (the
domains in the term), the system attempts to relate either X to
D, or Y to D, This results in a method whereby the relation

being created can be joined to a relation which «contains the

domain being restricted.

Any time a restriction is found, the following four pieces
of information are placed in the front of #RESTRICT#:
1. The restriction,
2. The domain being restricted.
3. The relation R which contains this domain.
4, The domain JD which can be wused to join R to the

original relation.

When processing of the relational term is complete, each
domain which is restricted is compared to #RESULT#. If BRESULT#
contains the domain being restricted, then the restriction on

the domain is simply added to the end of the query. It can now

87

be treated as if the user had specified it. If the domain is
not used in the construction of the relation, then we must join
the relation defined by the term with the relation R on the
common domain JD. Thus, the list (JD R) is added to the end of

#RESULT#.

This approach presents a dJeneral wmechanism for relating
dorains to the gquery when the user has not specified how the

domain is to be related.

Examples of this can be found in Appendix 5 and Appendix 6.

S5.4.D Proving XRyR'z

A procedure for proving relatiocnal terms of the form xRyR'z
has also been implemented. 'It utilizes the result given in
section 3.D, which shows when it is possible to prove relational
terms of this type. This procedure operates in a manner which

"is very similar to that described for its binary counterpart.

For a complete listing of the routines descriked in this

section, please see Appendix 9.

88

o 5.5. The Reduction Algorithm m

In Chapter IV, a new query language which possesses many
desirable properties was presented. The preceeding sections of
this chapter proposed a semantic model that is used to determine
which relations are relevant to a request. This model describes
the meaning of the relations as well as the properties they
possess, and contains certain other information which affects
the applicability of the relations to the queries. This section
also presented a method whereby Micro-Planner could be used to
construct a list showing how to <create the relaticns which
corresponds to a relational term. Further, it was shown how

real world information could be used in this process.

This section utilizes the results presented in the previous
sections to define a process which reduces a query in the
relational calculus to a semantically equivalent sequence of

operations in the relational algebra. This process is referred

to as the reduction algorithm,

5.A The Reduction Algorithnm

An Overview

This section presents a reduction algorithm for reducing
queries.in the new relational calculus. The basic approach is
to create the relation defined by each conjunct of the dnf
query, and take the union of the common domains of these
relations. This result is projected upon the domains of the
target list., The relation defined by a'conjunct is <created by

taking the intersection of the relations defined by the

89
relational terms in the conjunct,

Notice that the relational terms can be processed
independently of each other, FuFther,‘the quantifiers can be
processed independently of the rest of the query.. The algorithm
proceeds as followus:

STEP 1. This step is referred to as the DISJUNCT processor.
Since the gquery 1is in dnf, pass each element C of the
disjunction 'to STEP 2, the CONJUNCT processor, Each time this
is done, a relation will be returned. When all such relations
have been returned, find the domains D which are common to then
all, and project each relation on D, Take the union of these
relations, and call the result R. Go to step 7.

STEP 2. This step is referred to as the CONJUNCT processor.
Go through C, and attempt to prove each relational term therein.
If the term can be proven true, then create the relation defined
by the tern. Otherwise, the query fails. For each relation,
remenber if the relational term which defined it 1is negated.
Call the set of relations defined by the relatiocnal terms of C
RC.

STEP 3., Go through each restriction term in C, and apply
the restrictions to each relation in RC which contains a domaih
mentioned in the restriction.

STEP 4, Pass through thé join terms J of C, and Jjoin all
relations in RC using J as the predicate of the join. Call the
set of relations which were not used in this process and the

relation which this process created RCJ.

STEP 5. Create a 1list L of all the relations in RCJ whose

90

defining relational terms were not negated. Take the first
relation from L, and remove it from the 1list. Join this
relation with some joinable relation R in L under the criterion
that the common domains are equal. Remove R from the list, and
start again at the front of L. This produces a relaticn RP.

STEP 6., Find a relation RN whose defining term was negated.
Create a list L of the domains which are common to RN and RP..
Form a new relation R which 1is the difference between RP
projected on L and RN projected on L. Set RP to be the join of
RP with R. This ,in effect, takes the difference between RP and
RN. Continue this process for each relation RN whose defining
term was negated., This results in a relation RC, the relation
defined by the conjunction. Return to step 1.

STEP 7. This step takes the effect of the gquantifiers into
account. Determine the relation RQ defined by the right most
quantifier. This is done by passing the guantifier to the
DISJUNCTION processor. If the quantifier is ¥, then create the
relation defined by the range of the quantifier. Then divide R
by RQ. If the quantifier is 9, then join R with RQ and project
the result on all domains except the domain which RQ contains.
Do the same for each quantifier in the query. The result is a
relation R.

STEP 8, This step <creates the response relation. This is

done by projecting the relation R on the domains given in the

target list. Print this relation.

Although queries are assumed to be in dnf, most queries

will consist of a single disjunct. Therefore, the reduction

91

algorithm checks the second element of the query (not including
the target list or quantifiers), If it is not an V symbol, then

the query is assumed to consist of a set of conjoined terms.

5:.5.B Justification of the Reduction Alqorithnm

5:5.B.1 Treatment of Conjunctions and Disjunctions

Begin by considering the treatment of relaticnal terms in
conjuncts. If two terms A and B have a common domain variable
D, then the reduction algorithm states that the relaticn defined
is the join of the relation defined by A with the relation
defined by B under the criterioﬁ that the values of D are equal.
For example, if a conjunct contains terms:

(PROJECT# USED PART#) & (S# SUPPLIED PART#),
then the relation desired is one that shows the parts which were
used by the project and supplied by the supplier. Joining the
relations defined by these two terms produces this relation,
since any part number in the first relation which is not in the

second will not appear in the join and vice versa.

In processing a disjunction, however, the relation defined
is the wunion of certain projections of the reldtion defined by
the elements in the disjunction., For example, if the query
contains:

(SUPPLIER SUPPLIES PART#) v (PROJECT# USES PART#)
taking the wunion of +the projection of the first relation on

PART# with the projection of the second relation on PART#

92

prcduces the corresponding relation.

Notice that the query language has been defined soc that the

relational terms are compatible, and the join and unicn process

5:5.B.2 Treatment of Neqated Terms

In processing a conjunct, the relations defined by the
non-negated terms are each created. These relations are then
joined, resulting in a single relation RP. The effect of the
negated terms must now be taken into account. Since each
negated term defines a set of values for some domain D which
must not be contained in the response relation, we attempt to
eliminate any tuple in R whose value of D is equal to a value of
D in RN. The easiest way to do this is to take the difference
between the projection of RP on D and the projection of RN on T,
(which Tesults in a list of acceptable values for the domain),
then join this relation with RP.

e Example 5.1 o

If the gquery is:

(S# : (S# SUPPLIES PART#) & - (PART# IS-USED-IN PROJECT#))
then we create the relations R1 (S# PART#), and

R2 (PART# PROJECT#H). Taking the difference between

R1[PART#] and R2[PART#] produces a relation R3 which

enumerates all allocwable parts. Joining R3 with R1 using

the predicate (EQ (R1 2) (R2 1)) results in a relation

R4 (S# PART#), where the supplier supplies a part which is

93

not used in the proiject.

The query language defines range coupled guantifiers in
such a way that quantification can only be over a single domain
. although the alloﬁable values for the domain can easily be
specified. Therefore, each quantifier defines a relation which

has one domain.

Since quantifiers are in dnf, the relation they define can
be created by calling the disjunction processor, This processor
returns the name of the relation over which the quantification
is to range.

e Example 5.2 e
Calling the disjunction processor with the quantifier:
(PART# & (PART# IS-USED-IN PROJECT#) & (EQ PROJECT# 7))
results in a relation whose tuples are the parts which are

used in project 7.

If the quantifier is universal, then the relaticn R defined
by the guery must be divided by the relation RQ defined by the
quantifier, since only the tuples in R which are "true" for each

value of RQ are desired.

e Example 5.3 o

If the relation R defined by the query is:

R (S# PARTS®)
1 1
1 2
3 1

94

and the relation RQ defined by the quantifer (¥ PART#) is:
RQ (PART#)
1
2
Then the quotient R (PART#/PART#)RQ is:

RP (S#)
1

If the quantifier is existential, then the relation R
defined by the gquery must be joined with RQ, and the result
projected on all domains but the domain D of RQ. This is done
so that the only tuples of R are those for which there exists a
value of D in R which also exists in a tuple of RQ.

e Example 5.4 o
If the relation R defined by the matrix of the query is:

R (S PART#)

nul\)_hw
2000

and the relation RQ defined by the quantifier:
J(PART# & (S# SUPPLIES PART#)) is:
RQ (PART#)
7
8

then the join R with RQ yields:

RP (S# PART# PART#)
1 7 7
3 8 8

Projecting this relation on S# produces:
RR (S#)

1
3

This relation lists all suppliers for which there exists a

95

part with the desired condition,

C The Allowable Variables in Target Lists

The current version of the guery language specifies that
any variable occurring in a target list must also appear in each
disjunct of the query body. Thus, queries such as:

(SNAME SLOC : (SNAME SUPPLIES PART#))
are not acceptable, The reason for this restrictiocn is that the
domain SLOC may never be wused in the construction of the
relation defined by the gquery. Therefore, the system, after
creating the initial response relation, would have to try to
relate SHNAME to SLOC, and thus create a new response relation,
This could be done in a manner similar to the way that real
world restrictions which reference domains not used in the query
are handled. However, with queries such as:

(SNAME SLOC : (PART# IS-USED-IN PROJECT#))
it is still unclear what should. be done. Should SNAME be
related to PART#, or PROJECT#? Forcing the user to make such

relations explicit eliminates the need to make these decisions.

5.5.D Why the Relational Calculus of Codd is Bypassed

One way of reducing queries in this language would be to
use Micro-Planner to identify the relations which are relevant
to the request, then translate the query into an expression in
the relational calculus proposed by Codd. Since it 1is already

known how gqueries in this language can be reduced, and since

96

this reduction algorithm has already been implemented, it would

appear to be a logical approach.

However, the process of +translating gqueries in the new
relational calculus to the old relational calculus is extremely
difficult, Firstly, one 1is translating from a representation
which uses domain variables to one which uses tuple variables.
As Chapter IIT showed, gqueries using tuple variables can te
extremely awkward to express, especially when the data base
becomes complicated, Queries using domain variables, however,

are unaffected by the complexity of the data base.

Micro-Planner also provides complete information as to how
the retrieval can be accomplished. Using only this information,
it is a trivial task to create the relation. Re-expressing this
query as a query in the o0ld relational calculus while possible,
is simply not practical. Codd's relational calculus is just too

awkward to use.

Further, the @new reduction algorithm |is often more
efficient than Codd's, Consider, for example, the quantified
expression:

¥(P2r2 & (r1f1]=10 v £1[11=12))
In the new relational calculus, this query is represented as:
¥ (PARTH# & (OR (EQ PART# 10) (EQ PART# 12)))
using Codd's reduction algorithm, the two relations defined Ly:
(P2r2 & r2[1)=10), and
(P2r2 & r2[11)=12)

are created, and their union is taken. This process requires

97

four passes through relations: two for «creating the new
relations defined above, and two for constructing the wunion of
these relations, With the new reduction algorithm, only one
pass of one relation is made, since the tuples of the relation
which enumerate PART# are simply subjected to the restriction

which is given,

o 5.6. The Treatment of Real World Knowledge ©

In the current system, input from a user which cannot be
interpreted as a gquery 1is added to the semantic model. This
allows users to give the system any information which they think
is relevant, and the system in turn uses this information when
processing a query. This gives the user the impression that the
system has “vunderstood"™ what he has said. One such class of

information is real world information.

5.6,A Representation of Real World Kncwledge

When a user enters a piece of real world informaticn, it is
imwmediately placed in the semantic model. This in itself does
little gcod, since there 1is no indication of how this
information affects the data base., Therefore, corresponding to
each type of real world knowledge which might be entered is a
Micro-Planner ANTECEDENT theorem, whose purpose is to nctify the
system which part of the data base is affected by this type of

information, The system must provide facilities to allow these

98

theorems to be expressed. Of particular concern 1is that in
writing theorems the user need never explicitly reference a
relation in the data base. Instead, he should be able to say,
"This information affects all relations which satisfy this

criterion.,"®

This is in keeping with the general principle that if the
organization of the data is changed and the semantic model is
changed accordingly, the wuser and his programs should be

unaffected by the change.

The effect of any real world information will be to alter
the active portion of the data base. Therefore, the theorens
discussed above must make use of the assertions which state that
relations are inactive and that the usable tuples cf certain

relations are to be restricted.

The current system demonstrates how real world information
is handled. For example, we can say:

(CURRENT PARTS ARE NOT AVAILABLE) or
(OBSOLETE PARTS ARE NOT AVAILABLE).

The corresponding Micro-Planner theorem is:
(THANTE NOT-AVAILABLE (X RELS) ($2?X ARE NOT AVAILABLE)
(THSETQ $?RELS
(THFIND ALL ($?REL) (REL) (%G ($?REL CONCERNS $?X))))
(THMAPC 'ASSERTFUN $?RELS)) _

(THCONSE ASSERTFUN (X) (3$?X) ($A ($?X IS INACTIVE)))

This theorem states that the result of asserting that X is
not available is to assert for each relaticn REL which CONCERNS

X that REL is inactive. Thus if we:

99

($A (OBSOLETE PARTS ARE NOT AVAILABLE) 3T),
the assertion:
($A (R8 IS NOT AVAILABLE))

wvill éutomatically be added to the semantic model.

The system also handles real world information dealing with
suppliers who go on strike. Since strikes affect the supply of
parts, when someone asks for the suppliers who can supply a
certain part, clearly any supplier who is on strike should not
be included. Therefore, any semantic information which is
concerned with the supplying of a part should be "notified" that
there is a restriction on the suppliers who can currently supply
the parfs. On the other hand, if we ask for a list of all
surpliers, we really want all suppliers regardless of whether or
not they are on strike. This is the reason why restrictions are
stated as:

(SUPPLIES IN R3 IS-RESTRICTED-TO REST#1) rather than

(R3 IS-RESTRICTED-TO REST#1). .

As an example, consider the statement:

(VANCOUVER SUPPLIERS ARE ON STRIKE). .
If this were asserted, the antecedent thereom ON-STRIKE would
immediately be invoked. This general theorem says that if we
know that X Suppliers are on strike, then:
1. Assert that (REST#1 RESTRICTS SLOC TO (NOT (EQ SLOC X)))
2. Find all relations R which say that either:

a. A supplies B

b. A supplies# B, where supplies# is "supplies number of

100

parts®
C. A is-supplied-by B,
and then assert that -
a. (SUPPLIES IN R IS-RESTRICTED-TO REST#N), or
b. (SUPPLIES# IN R IS-RESTRICTED-TO REST#N), or

C. (IS-SUPPLIED-BY IN R IS-RESTRICTED-TO REST#N)

In other words, notify all relevant predicates that the
suppliers they have as arguments must satisfy certain criterion

before they can be used.

The use of this type of system means that if a strike
occurs, it is not necessary to keep two copies of each relation
- one which takes the affects of the strike into acccunt, and
one which does not. Instead, the data base remains constant,
and the system makes sure that it uses only active tuples and

relations.

1. Multiple Path Problesms o

One of the serious problems which arises when trying to
resolve a query in a language which is relation independent is

that of nmultiple paths, There are often several ways to answer

the same gquery, and thus there are often several "correct"
proofs. Sometimes any one of these proofs 1is sufficient;
sometimes all are required. Three cases are exanmined - one
where multiple paths occur due to several relations containing

the same information, one where queries are ambiguous and

101

several paths are found, each of which has a different meaning,
and finally one where several paths exist but each has the sane

meaning,

Consider a semantic model ' which contains the following
information:

a. (S# IS-NAMED SNAME R3)

b. (S# SUPPLIES PART# R5)

C. -{S# SUPPLIES PART# R7)

In this case, there are two ways in which SNAME and PART#
can be related, and thus the prcof of
(SNAME SUPPLIES PART# $?REL) could be accomplished using either
a and b or a and c. The proof which is selected is of no
importance, since before the final result is computed, the
system automatically searches for all the relaticns which
contain any information used in the proof. The union o¢f these
relations is taken, and the result used in further processing.

Multiple paths due to several relations containing the sanme

information are all dealt with in this manner.

Consider now a semantic model which contains the following
information:
a. (EMPLOYEE IS~PAID SALARY WORKS-SHIFT SHIFT# R1)
b. (SHIFT# IS-SUPERVISED-BY FOREMAN R2)
c. (FOREMAN IS-PAID SALARY R3)
The request (EMPLOYEE $?R FOREMAN $?REL) to relate employees
to foremen by some arbitrary relation is ambiguous; the systen

does not know whether the user wants the employees and foremen

102

vho are working the same shift, or who receive the same salary..
In any case yhere the query contains a predicate which was left
unspecified, the query may be ambiguous and there will be
several "correct" proofs. The current system simply chcoses one

of them,

If one 1is working in a natural language environment, if a
query 1is encountered which compiles into a relational calculus
query which has an unspecified predicate, the user should either
be asked to <clarify his request, or be told which meaning the

system has assumed, .

Finally, consider a semantic model which contains the
following information:

a._ (S# SUPPLIES PART# R1)

b. (PART# IS-CALLED PART-NAME R2)

C. .(S# SUPPLIES PROJECT R3)

d.:(PROJECT USES PART-NAME RU)

If a relational term (S# SUPPLIES PART-NAME $?REL) were to
be proven, then assuming the proper T-TRANS and TLCETERMINES
conditions hold, the following two procofs are possible:

1. (S# SUPPLIES PART# R1) and

(PART# IS-CALLED PART-NAME R2), or
2. (S%# SUPPLIES PROJECT R3) and

(PROJECT USES PART-NANE RY).

This example illustrates the case where two paths exist each
of which have the same meaning. Providing the data base is

consistent it does not matter which proof is chosen since the

103

result of each proof is the same. However, if the data base is
not consistent (ie. Some informaticn is missing from one of the
files) then one must perform both proofs and take the wunion of

the results.

In gepneral it is necessary to find all valid prococfs. The
current system does not do this; it finds only one such proof.
Attempting to find all possible ©proofs is conbinatorially
explosive since there is no a priori bound on the maximum length
of a valid path. In effect, one must do a breadth first search
with truncation on cycles. The current system essentially does
theorem proving in the propositional calculus, and therefore

this problem is decidable. However, the soclution is

impractical.

It follows that the system presented in jincomplete when
data bases are not consistent. That is, there exist queries for
which a partial solution is returned. The system will sometimes
return certain values which are correct, but not necessarily all
the values. This problem only arises when the information in
the data base is incomplete., This case must be considered since

even consistent data bases are often inconsistent during periods

of online update,

104

VI. SUMMARY

Current research in relational data base management systems
has resulted in the proposal of several different query
languages. Each of these réquire the user to determine how the
retrieval is to be dcne, and to specify the relations which are
relevant to the request, This type of language is unsuitable
for many applications, and is undesirable since the user is not

independent of the organization of the data base.

A need was observed for a new query 1language in which
queries specify only the properties of the data tc be retrieved.
This necessitates the development of a system which is capable
of determining the relations which are relevant to a query, and

deciding how the retrieval can be done using these relations. .

This thesis has presented a new query language for
relational systems, and a framework which 1is capable of
processing these queries. The language is data base independent

and queries never reference the relations directly. 1In order to

retrieve information, each query is formulated as a series of
theorems to be proven, The steps of the proof show how the

retrieval can be done.

The reduction of queries is based upon information

contained in a semantic model. This model forms the basis for

the entire system, since the information it contains ccmpletely
characterizes the data base. 1In this work, the semantic model

is represented as a set of Micro-Planner assertions, although it

105

is shown that it could easily be represented using a more
conventional data structure. It is felt that a semantic model
will be necessary in any system which attempts to handle queries

in a data base independent language.

The new dquery language can be used as the target language
of a natural language system. The semantic components cf these
systems are capable of compiling a natural language query into a
representation which specifies the properties of the request. .
They are not capable of determining how the retrieval is to be
accomplished, nor should they be. This means that the query
languages of éxisting systems are not suitable as target
languages, since the systems can not determine how the retrieval

should be done.

Future relational systems which hope to make use of natural
language input, or at least provide users with a query language
which does not require them to know how their request will be
processed, will be forced to address the problems discussed in

this thesis.l

106

BIBLIOGRAPHY

1. Armenti, A. et al. M"LISTAR - Lincoln Information Storage and
Associative BRetrieval Systen."” Proceedings_of the_ 1970

2. Bracchi, G. et al. “A Relational Data Base Management
System." Proceedings_of_the_ 1972 Annual Conference_of the

3. Childs, David L. A"Deséription of a Set-Theoretic Data
Structure." Proceedings_of the 1968 FJCC, pp.557-564.

4, Childs, David 1. "Feasibility of a Set-Theoretic TrCata
Structure, " Proceedings of the 1968 IFIP Congress,
pp.420-430.

5. Codasyl systems Conmmittee. Feature Analysis_of Generalized
Data_ Base_MNanagement Systems, May 1971.

6. Codasyl Systems Committee. A_Survey of Generalized TLata_Ease
Management Systems, May 1969.

7. Codd, E.F. "A Data Base Sublanguage Founded on the
Relational Calculus." Proceedings of the 1971 ACHM SIGFIDET

8, Codd, E.F. "A Relational Model of Data for Large Shared Data
Banks." Commupications_of the ACM 6(1970), pp.337-387.

9, Codd, E.F. Further Normalization of the Data_Base_Relational
Model. TI.B.M. Research Report RJ909, VYorktown Heights,
N.Y., 1971,

10. Codd, E.F. NormalizZzed Data_ Base_Structure: A _Brief
Tutorial, IY.B.M. Research Report RJ935, Yorktown Heights,

- ——— —

11. Codd, E.F. Relational Completeness_of Data_Base
Sublangpnages. I.B.H. Research Report RJ987, Yorktown
Heights, N.Y., 1972,

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

107

‘Feldman, J. and P. Rovner. "An Algol-Based Associative

Language." Communications_of the ACM 8(1969), pp.U439-458,

Codd, E.P., Seven Steps to Rendezvous HWith the Casual User. .
I1.B.M. Research Report RJ1333, Yorktown Heights, ¥N.Y.,
1974,

Gammill, R.C. "Applicatidns of Relational Cata Structure
Models in Man-Machine Systenms."® Proceedings _of the 1972
Annual Conference of the ACM, pp.u60-u468.

Goldstein, Robert C. and &alois Strnad. "“The MacAIMS Data
Management System." Proceedings of the 1970 ACM SIGFIDET

Hall. W., B. Jervis, and J. Jervis. WALT. Cepartment of
Computer Science, University of British Columbia, 1973.
Heath, I.J. "Unacceptable File Operations in a Relatiocnal

Pata Base." Proceedings of the 1971 ACM SIGFILET Rorkshop,
pPp. 19-33.

Hewitt, Carl. Description and Theoretical Analysis_ (Using
Schema) of Planner: A_Language_for Proving Theorems_and
Manipulating Models_in_a_Robot. Cambridge, Mass:

Massachusetts 1Instutute of Technology, Revised Ph. L.
Dissertation, AI Technical Report no 258, 1972,

Jervis, B. And J.L. Parker. “An Approach for a Working
Relational Data System,® Proceedings_of_the 1972 ACHM
SIGFIDET Workshop, pp.125-145.

Kﬁhns, J.L. "™Quantification in Query Systems." Proceedings

Retrieval, pp.81-92.

Levien, R.E. and WM.E. Maron. "A Computer System for

Inference Execution and Data Retrieval."” Communications_of
the ACM_11(1967), pp.715-721.

Mealy, G.H. ™"Another Look at Data.” Proceedings_of the
1967 _FJCC, pp.525-534.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

108

Minker, J. and S. Rosenfeld. "Introduction and
Perspectives for the 1971 ACM Information Storage and
Retrieval Symposium,® Proceedings_of_ the_ 1971 _ACHM
Symposiunm_on_Information Storage_and_ Retrieval, pr.1-3.

Notley, M.G. The PETERLEE_IS/1 System, . I.B.M, . UK
Scientific Report, Peterlee, U.K., 1972. '

Pacak, Milos and A. Pratt. "The Function of Semantics in

Automated Language Processing." Proceedings_of the 1971
ACM_sSymposium_on_Information_Storage and_ Retrieval,
pp.5-17.

Palermo, Frank P. A_Data Base Search Problenm, I.B.HN.
Research Report RJ1072, Yorktown Heights, N.Y., 1972.

Strnad, A.J. "The Relational Approach to the Management of
Data Bases." Proceedings_of the 1971 IFIP Congress, Augqust

Symonds, A.J. and R. Lorie, “A Schema for Cescribing a
Relational Data Base." Proceedings_of the_1970_ACHM
SIGFIDET Workshop, pp.230-244,

Thompson, F. et al. "REL - A Rapidly Extensible Language
Systen," Proceedings _of the 24th ACM National Conference,
1969. pp.399-417,

Tsichritzis, D. et al. "The Case for Relaticnal Data
Bases." CIPS_ Computer Maqazine_ 2(1974), pp.21-28,

Wilcox, B. and C. Hafner, LISP/MTS User's Guide, Mental
Health Research Institute, Ann Arbor, Michigan, 1973.

Winograd, Terry. Procedures_as_a_Representation_for Data_in
a_Computer Program_for_ Understanding Natural Language. .
Cambridge, Mass.: Massachusetts 1Institute cf Technology,
Revised Ph.D. Dissertation, MAC TR-84,1971.

Woods, W. "Procedural Semantics for a Question Answering
Machine."™ Proceedings_of the 1968 FJCC, pp.U57-471. .

109

34, Woods, ‘ We The_Lunar_Sciences Natural Langquage_and
Information System: Final Report, Bolt, Beranek, and
Newman Inc., BBN Report No. 2378, 1972.

35. Woods, W, “Transition Network Grammars for Natural Language
Analysis."™ Communications _of the ACM 10(1970), pPpP.591-606.

110

APPENDIX 1.

The Data_ Base

R2 {(PROJECT# PROJECT-NANE PLOC)
1 ROYAL TOWERS VANCOUVER
2 BURRARD SHIPYARDS VANCOUVER
3 rp.C.C. MERRIT
4 RAPID TRANSIT VICTORIA
5 GRANVILLE MALL VANCOUVER
6 OLYMPIC SEAWAX VICTORIA
R3 (SNAME St SLocC)
APPOLLO SHEET METAL 1 MONTREAL
VALLEY STEEL 2 TORONTO
PEARSON IRON WORKS 3 MONTREAL
COAST STEEL 4 VANCOUVER

R4 (S# PART# #PABRTS PROJECT# DATE-RECEIVED)
1 7 4 2 SEPT 15
1 3 1000 3 SEPT 19
1 7 25 3 SEPT 19
1 2 40 6 OCT 1
2 1 400 4 AUG 21
2 1 800 5 AUG 24
2 5 50 5 AUG 24
2 3 1000 1 SEPT 7
2 7 12 3 SEPT 15
2 7 15 2 SEPT 17
2 7 26 6 SEPT 19
3 4 80 2 MAR 14
3 4 80 2 MAR 27
3 2 200 2 APRIL 17
m 1 400 1 SEPT 6
4 2 20 1 SEPT 6
4 3 1000 2 SEPT 9
4 4 40 1 SEPT 6
4 5 25 4 ocT 12
4 6 1 5 OCT 17
4 7 23 5 ocT 17
4 8 500 3 NOV 3
4 9 10 3 NOV 3

The LCata Base

11

R1 (PART# PRICE PURCHASE-UNITS)

1 20 400
8 25 500
3 2 1000
9 40 10
5 45 25
6 98 1
7 74 1

R5 (PROJECT# PART# #PARTS S#)
1 1 400 4
1 7 14 4
1 1 800 1
1 3 1000 2
1 8 25 2
1 1 400 2
1 7 15 2
1 1 400 3
2 4 40 1
2 3 1000 4
3 3 1000 1
3 4 80 2
3 9 . 10 4
3 6 1 4
4 6 4 3
4 9 100 3
4 5 50 3
4 6 3 1
4 4 40 4
4 5 25 4
4 8 500 4
5 3 1000 1
5 9 10 4
6 5 50 1
6 7 2 4

R10 (ORDER# SALESMANS)

1 17
2 27
3 32
4 4
5 21

The Tata Base

R6

R7

R8

R9

(

(

(

PROJECT# PART#

PP EFEOEFEWWWNN @D.LS

PART
2
4

ORDER#

£WN -

1

AUV E S WNNNON w -

NaWwoUVhEFUNaeWwWws-

PART# QOH

#

ONAN N RDWN O =N WE -

1600
40
4000
20
41
1200
490
3
800
3
2000
500
50
3
20

PRICE
36
48

SOURCE
MONTREAL
MONTREAL

TORONTO
VANCOUVER

101

)

PURCHASE-UNITS

10
40

112

The LCata Base

(52
($A
($A
($A

($3
(A
($A
($A
($4
($2
(A
($a
($A
($A
(A

($a
($A
($A
($A
($a
($3
($A
(32
(%A
($A
(32

(¥a
($A
($A
($A
($A
($A
($a
($A
(A
($a
(33
($A

113

APPENDIX 2.

The Semantic_ Model

(PART# COSTS PRICE R1)) .

(PART# COMES-IN PURCHASE-UNITS R1))
(R1 P-ENUMERATES PART#))

(R1 CONCERNS CURRENT-PARTS))

(PROJECT# IS-CALLED PROJECT-NAME R2))
(PROJECT-NAME TIS-NUMBERED PROJECT# R2))
(PROJECT# 1IS-IN PLOC R2))

(PROJECT# DETERMINES PLOC R2))

(PROJECT# DETERMINES PROJECT-NAME R2))
(PROJECT-NAME DETERMINES PROJECT# R2))
(PROJECT-NAME DETERMINES PLOC R2))

(R2 ENUMERATES PROJECT#))

(R2 ENUMERATES PLOC))

(R2 ENUMERATES PROJECT-NAME))

(R2 IS T-TRANS))

(S# IS-CALLED SNAME R3))
(SNAME IS-NUMBERED S# R3))
(S# IS-IN SLOC R3))

(S# DETERMINES SLOC R3))

(S# DETERMINES SNAME R3))
(SNAME DETERMINES S# R3))
(SNAME DETERMINES SLOC R3))
(R3 ENUMERATES S#))

(R3 ENUMERATES SNAME))

(R3 ENUMERATES SLOC))

(R3 IS T-TRANS))

(S# SUPPLIED PART# RY4))

(S# SUPPLIED-TOC PROJECT:# RY4))

(PROJECT# ORDERED-FROM S# RY4))

(S# SUPPLIED-# #PARTS RU4)) |

(PROJECT# USES PART# R4))

(PART# IS-USED-IN PROJECT# RU4))

(PROJECT# ORDERED PART# RUY4))

(PROJECT4# RECEIVED-ON DATE-RECEIVED R4))

(PROJECT# RECEIVED-# #PARTS RECEIVED-ON DATE-RECEIVED RU4))
(PROJECT# RECEIVED PART# RECEIVED-ON DATE-RECEIVED R4))
(S# SUPPLIED-# #PARTS SUPPLIED-TO PROJECT# R4))
(S¢ SUPPLIED PART# SUPPLIED-TO PROJECT# RY4))

The Semantic Model

(32
($2
(32
($a
($2
($a
($A
($2
(%A
($A
(3a

($A
(34
($a

($a
($A

($a
(%A
($a
($a

($A
(A

($a
($A
($A
(3a

(S# SUPPLIES-TO PROJECT# R5))

(S# SUPPLIES PART# R5))

(S# SUPPLIES-# #PARTS RS))

(PROJECT# ORDERED-FROM S& R5))

(PROJECT# ORDERED-# #PARTS R5))
(PROJECT# ORDERED PART# R5))

(PROJECT# USES PART# R5))

(PART# IS-USED-IN PROJECT# RS))

(PART# IS-SUPPLIED-BY S# R5))

(S# SUPPLIES PART# SUPPLIES-TO PROJECT# R5))

(S# SUPPLIES-# #PARTS SUPPLIES-TO PROJECT# RS))

(PROJECT# USES PART# R6))
(PROJECT# HAS QOH OF-TYPE PART# R6))
(PART# IS-USED-IN PROJECTS R6))

(S# SUPPLIES PART# R7))
(S# HAS QOH OF-TYPE PART# R7))

(PART# COSTS PRICE R8))

(PART# COMES-IN PURCHASE-UNITS R8))
(R8 P-ENUMERATES PART#))

(R8 CONCERNS OBSOLETE-PARTS))

(ORDER# COMES-FROM SOURCE R9))
(R9 P-ENUMERATES ORDER#))

(ORDER# WAS-SOLD-BY SALESMAN# R10))
(SALESMAN# SOLD ORDER# R10))

(R10 ENUMERATES SALESMAN#))

(R10 P-ENUMERATES ORDER#))

114

The Semantic Model

(32
($2
(34
(53
(34
($A
($a
($a
(2

(EXTRA
(EXTRA
(EXTRA
(EXTRA
(EXTRA
(EXTRA
(EXTRA
(EXTRA
(EXTRA

DETERMINES))
ENUMERATES))

1S))

CONCERNS))
P-ENUMERATES))
RESTRICTS))

TO))

IN))
IS-RESTRICTED-TO))

115

The Semantic Model

116

APPENDIX 3.

Sample_Queries_in_the Relational Algebra_

This appendix shows some sample queries in the relational
algebra. There are five sets of queries, each of which produces
a relation that contains the information which answvers a certain
request. The reguests are shown at the start of each set of
queries, and intermediate relations which are formed are usually
printed.

1. List all the part numbers.

(RUNION ' (R1 R8))

REL1

(PRINTREL 'REL1)
REL1 (PART# PRICE PURCHASE-UNITS)

7 74 1
6 98 1
5 45 25
9 40 10 -
3 2 1000
8 25 500
1 20 400
4 48 4o
2 36 10

REL1

(PROJECT 'REL1 * (1))
REL2

(PRINTREL 'REL2)
REL2 (PART#)

NEaoWOUOSN

REL2

Sample Queries in the Relational Algebra

117

2. Find the parts which no supplier has in stock.

(RDIFF 'REL2 (PROJECT *R7 ' (2)))
RELY
(PRINTREL ‘'RELWY)
REL4 (PART#)
7
RELY

3. List the names of the projects which are in Vancouver,

(PROJECT (RESTRICT 'R2 '(EQ (ELEM T1 3) 'VANCOUVER)) ' (2))
REL13 A
(PRINTREL 'REL13)
REL13 (PROJECT-NAME)
ROYAL TOWERS
BURRARD SHIPYARDS
GRANVILLE MALL
REL13

4, Find the suppliers who supplied EACH project.

(PROJECT 'R5 ' (1 4))
RELS
(PROJECT 'R2 ' (1))
REL6
(RDIVIDE *'RELS *'REL6 ' (1) '(1))
RELS
(PRINTREL 'RELS)
RELS (S#)
4
1
RELS

Sample Queries in the Relational Algebra

118

5. Find the names of the suppliers who supplied more

than 25 units of part 4 to some prcject.

(RESTRICT 'R4 * (AND (EQ (ELEM T1 2) 4)
(GREATERP (ELEM T1 3) 25)))
REL10 ,
(PRINTREL 'REL10)
REL10 (S# PART# #PARTS PROJECT# DATE-RECEIVED)

4 4 40 1 SEPT 6
3 4 80 2 MAR 27
3 4 80 2 MAR 14

REL10

(JOIN *REL10 'R3 ' (BQ (ELEM T1 1) (ELEM T2 2)))
REL11

(PROJECT 'REL11 ! (6))

REL12
(PRINTREL 'REL12)
REL12 (SNAME)
COAST STEEL
PEARSON IRON WORKS
REL12

Sample Queries in the Relational Algebra

119

APPENDIX 4.

Sample Queries_in_Codd's Relational Calculus_

——

In this appendix, the following relations are used:

R1 (S# SLOC SNAHE)

211 NY AA
325 SF XX
237 LA 1Y

R2 (J% JLOC JNAME)
970 POK A

971 SJ X

972 SJ Y
R3 (P# PTYPE)

31 A

32 A

33 B

R4 (S# P J% DR)
2117 31 97117 11
325 32 971 31
211. 33 970 55
2117 31 972 66
237 31 970 75
237 32 970 91
237 33 970 101
237 32 9717 121
237 317 971 121
237 31 972 125

1. £1{3],c1[2] : PIr1 & J(P2r2 & r2[2]=SJ)
¥(P3r3 & r3{2]=1)
J(p4ry)
((c8[1])=ci[1]) &
(r4[{ 3])=r2[1]) &
(r4f[2]=r3[1]))

Sample Queries in Codd's Relational Calculus

120

(REDUCE 'Q1)

THE REDUCED GLOBAL RANGE FOR R4 IS:
REL1 (S# P# J%)

237 31 972

237 31 971

237 32 97

237 33 970

237 32 970

237 31 970

211 31 972

211 33 970

325 32 971

21131 971
THE REDUCED GLOBAL RANGE FOR R3 IS:
REL3 (P#%)

31

32
THE REDUCED GLOBAL RANGE FOR R2 IS:
RELS (J#%)

971

972
THE REDUCED GLOBAL RANGE FOR R1 IS:
REL6 (S# SLOC SNAME)

237 LA YY

325 SF 1X

211 WY AA
THE REDUCED LOCAL RANGE FOR R4 IN THETA1 IS
REL1 (S# P# JE)

237 31 972

237 31 971

237 32 971

237 33 970

237 32 970

237 31 970

211. 31 972

211 .33 970

325 32 971

211 .31 971,
THE REDUCED LOCAL RANGE FOR R3 IN THETA1 IS
REL3 (P#)

31

32 |
THE REDUCED LOCAL RANGE FOR R2 IN THETA1 IS
RELS (J#)

971

972
THE REDUCED LOCAL RANGE FOR R1 IN THETA1 IS
REL6 (S# SLOC SNANE)

237 LA 1Y
325 SF XX
211 NY AA

Sample Queries in Codd's Relational Calculus

121

THE FIRST ELEMENT IN THE CORE OF THETA1 IS:
REL3 (P#)
31
32
JOINING CORE WITH R4 YIELDS:
REL7 (P# S$% P& J%)
32 325 32 971
32 237 32 970
32 237 32 97
31 211 31 971
31 211 31 972
31 237 31 970
31 237 31 971
31 237 31 972
JOINING CORE WITH R2 YIELDS:
RELS (P# S& P# J% J&)
31 237 31 972 972
31 237 31 971 971
31 21131 972 972
31 21131 971 971
32 237 32 971 971
32 325 32 971 971
JOINING CORE WITH R1 YIELDS:
REL9 (P# S# P# J# J8 S& SLOC SNAME)
32 325 32 971 971 . 325 SF XX
32 237 32 971 971 237 LA YY
31 211 31 971 971 211 NY AR
31 211 .31 972 972 211 NY AA
31 237 31 971 971 237 1A YY
31 237 31 972 972 237 1A YY
PROJECTING OFF R4 YIELDS:
REL10 (P# J%# S& SLOC SNAME)
31 972 237 LA YY
31 971 237 LA YY
31 972 211 NY AA
31 971 211 NY AR
32 971 237 1A 1Y
32 971 325 SF XX
DIVISION BY R3 YIELDS:
REL12 (J# S# SLOC SNAME)
971 237 1A Yy
PROJECTING OFF R2 YIELDS:
REL13 (S# SLOC SNAME)
237 LA YY
THE RESPONSE RELATION IS:
REL14 (SNAME SLOC)
YY 1A
REL14

Sample Queries in Codd's Relational Calculus

122

2. r1{3]): P1r1 & P4r2 &
((r2[{2)=32 & ri[1]}=r2[1)) V
(r2[{3)=970 & r1{1]=r2[1] & -~(x1[1]=237)))

(REDUCE 'Q1)
THE REDUCED GLOBAL RANGE FOR R2 IS:
REL15 (S% P& J%)
237 31 972
- 237 31 971
237 32 971
237 33 970
237 32 970
237 31 970
211 .31 972
211 .33 970
325 32 971
211 .31 971
THE REDUCED GLOBAL RANGE FOR R1 IS:
REL16 (S# SLOC SNAME)
237 LA YY
325 SF XX
211 NY AA
THE REDUCED LOCAL RANGE FOR R2 IN THETA1 IS
REL17 (S%# P& J&)
325 32 971
237 32 970
237 32 971
THE REDUCED LOCAL RANGE FOR R1 IN THETA1 IS
REL16 (S# SLOC SNAME)
237 LA YY
325 SF XX
211 NY AR
THE FIRST ELEMENT IN THE CORE OF THETA1 IS:
REL16 (S# SLOC SNAME)

237 La YY
325 SF XX
211 NY AA

JOINING CORE WITH R2 YIELDS:
REL18 (S# SLOC SNAME S# P# J8%)
325 SF XX 325 32 971
237 1A Yy 237 32 971
237 LA YY 237 32 970
THE REDUCED LOCAL RANGE FOR R2 IN THETA2 IS
REL19 (S# P& J&)
211 33 970
237 31 970
237 32 970
237 33 970

Sample Queries in Codd's Relational Calculus

THE REDUCED LOCAL RANGE FOR R1 IN THETAZ IS
REL20 (sS# SLOC SNAME)

211 NY AA

325 SF XX
THE FIRST ELEMENT IN THE CORE OF THETA2 1IS:
REL20 (S#% SLOC SNAME)

211 NY AA

325 SF XX
JOINING CORE WITH R2 YIELDS:
REL21 (S# SLOC SNAME S# P%# J#)

211 NY AR 211 . 33 970
PROJECTING OFF R2 YIELDS:
REL23 (S# SLOC SNAME)

325 SF XX

237 La YY

211 NY AA
THE RESPONSE RELATION IS:
REL24 (SNANE)

AA

YY

XX
REL24

123

Sample Queries in Codd's Relaticnal Calculus

124

APPENDIX 5.

Sample Micro-Planner_ Runs

($G (PROVE* SNAME SUPPLIES PART#) $T)

ATTEMPT TO PROVE SNAME SUPPLIES PART#

(R7 SAYS S# SUPPLIES PART#)

(TRY TO RELATE SNAME AND S#)

(R3 SAYS S# IS-CALLED SNAME)

DONE.
$RESULT#

((SNAME (R3)) (PART# (RS R7)) ((R3) S# (R5 R7)))
$RESTRICT#

NIL

($G (PROVE* SNAME SUPPLIES-TO PROJECT-NAME) $T)
ATTEMPT TO PROVE SNAME SUPPLIES-TGC PROJECT-NAME
(R5 SAYS S# SUPPLIES-TO PROJECT#)

(TRY TO RELATE SNAME AND S#)
(R3 SAYS S# IS-CALLED SNAME)
(G2 SAYS SNAME SUPPLIES-TO PROJECT#)
(TRY TO RELATE PROJECT# AND PROJECT-NAME)
(R2 SAYS PROJECT# IS-CALLED PROJECT-NAME)
DONE.
#RESULT#
((SNAME (R3)) (PROJECT-NAME (R2))
((R3) S# (R5) PROJECT# (R2)))

($6 (PROVE* PROJECT-NAME USES PART#) $T)
ATTEMPT TO PROVE PROJECT-NAME USES PART#
(R6 SAYS PROJECT# USES PART#)
(TRY TO RELATE PROJECT-NAME AND PROJECT#)
(R2 SAYS PROJECT# IS-CALLED PROJECT-NAME)
DONE.
§RESULT#
((PROJECT-NAME (R2)) (PART# (R4 RS R6))
({R2) PROJECT# (R4 RS R6)))

(3G (PROVE* PROJECT-NAME ORDERED PART#) $T)
ATTEMPT TO PROVE PROJECT-NAME ORDERED PART#
(R5 SAYS PROJECT# ORDERED PART#)

(TRY TO RELATE PROJECT-NAME AND PROJECT#)
(R2 SAYS PROJECT# IS-CALLED PROJECT-NAMNE)
DONE.

#RESULT#
((PROJECT-NAME (R2)) (PART# (R4 R5)) ((R2) PROJECT# (R4 RS5)))

Sample Micro-Planner Runs

125

($6 (PROVE* PROJECT-NAME ORDERED-FROM S#) $T)
ATTEMPT TO PROVE PROJECT-NAME ORDERED-FROM S#
(RS SAYS PROJECT# ORDERED-FROM S#)
(TRY TO RELATE PROJECT-NAME AND PROJECT#)
(R2 SAYS PROJECT# IS—-CALLED PROJECT-NAME)
DONE.
#RESULT#
((PROJECT-NAME (R2)) (S# (R4 R5)) ((R2) PROJECT# (R4 R5)))

(3G (PROVE* S# SUPPLIES-TO PROJECT-NAME) $T)
ATTEMPT TO PROVE S# SUPPLIES-TO PROJECT-NAMNE
(R5 SAYS S# SUPPLIES-TO PROJECT#)
(TRY TO RELATE PROJECT# AND PROJECT-NAME)
(R2 SAYS PROJECT# IS-CALLED PROJECT-NAME)
DONE.
#RESULT#
((S%# (R5)) (PROJECT-NAME (R2)) ((R5) PROJECT# (R2)))

($G (PROVE* PART# COMES~IN PURCHASE-UNITS) $T) -
ATTEMPT TO PROVE PART# COMES~-IN PURCHASE-UNITS
DONE,

#RESULT#
((PART# (R1 R8)) (PURCHASE-UNITS (R1 R8)) ((R1 R8)))

($G (PROVE* SNAME SUPPLIED-TO PLOC) $T)
ATTEMPT TO PROVE SNAME SUPPLIED-TO PLOC
(R4 SAYS S# SUPPLIED-TO PROJECT#)

(TRY TO RELATE SNAME AND S#)

(R3 SAYS S# IS-CALLED SNAME)

(G8 SAYS SNAME SUPPLIED-TO PROJECT#)
(TRY TO RELATE PROJECT# AND PLOC)
(R2 SAYS PROJECT# IS-IN PLOC)

DONE.

$RESULT#

((SNAME (R3)) (PLOC (R2)) ((R3) S# (R4) PROJECT# (R2)))

(3G (PROVE* S# SUPPLIES PART# SUPPLIES-TO PROJECT-NAME) $T)
ATTEMPT TO PROVE S# SUPPLIES PART# SUPPLIES-TC PROJECT-NAME
DONE.

#RESULT#

((s# (R5)) (PART# (R5)) (PROJECT-NAME (R2))
. {(RS) PROJECT# (R2))) -

($G (PROVE* SNAME SUPPLIES PART# SUPPLIES-TO PROJECT-NAME) $T)
ATTEMPT TO PROVE SNAME SUPPLIES PART#
SUPPLIES-TO PROJECT-NAME
DONE.
$RESULT# :
((SNAME (R3)) (PART# (R5)) (PROJECT-NAME (R2))
((R5) PROJECT# (R2) S# (R3)))

Sample Micro-Planner Runs

126

($6 (ENUMERATE S#) $T)
(ENUMERATE S#)
$RESULT#

((S# (R3)) ((R3)))

($6 (ENUMERATE PART#) $T)
(ENUMERATE PART#)

#RESULT#
((PART# (R1 R8)) ((R1 R8)))

($6 (ENUMERATE PLOC) $T)
(ENUMERATE PLOC)
$RESULT#
((PLOC (R2)) ((R2)))

(36 (ENUMERATE PURCHASE-UNITS) $T)
(ENUMERATE PURCHASE-UNITS)

$§RESULTH#
((PURCHASE-UNITS (R8 R1)) ((R8 R1)))

($A (OBSOLETE-PARTS ARE NOT AVAILABLE) $T)
((OBSOLETE-PARTS ARE NOT AVAILABLE))

($6 (ENUMERATE PART#) $T)
(ENUMERATE PART#)
#RESULT#
((PART# (R1)) ((R1)))

($A (R7 IS INACTIVE))
((R7 IS INACTIVE))

($G (PROVE* SNAME SUPPLIES PART#) $T)
ATTEMPT TO PROVE SNAME SUPPLIES PART#
(RS SAYS S# SUPPLIES PART#)
(TRY TO RELATE SNAME AND S#)
(R3 SAYS S# IS-CALLED SNANME)
DONE.
$RESULT#
((SNAME (R3)) (PART# (R5)) ((R3) S# (R5)))

(THERASE (R7 IS INACTIVE))
((R7 IS INACTIVE))

Sample Micro-Planner Runs

127

($A (VANCOUVER SUPPLIERS ARE ON STRIKE) $T)
((VANCOUVER SUPPLIERS ARE ON STRIKE))

($6 (PROVE* SNAME SUPPLIES PART#) $T)
ATTEMPT TO PROVE SNAME SUPPLIES PART#
MAKING NOTE OF RESTRICTION ON SUPPLIES IN RS
(R5 SAYS S# SUPPLIES PART#)
(TRY TO RELATE SNAME AND S#)
(R3 SAYS S# IS-CALLED SNAMNE)
DONE.
#RESULT# :
((SLOC) (SNAME (R3)) (PART&# (R7 R5)) ((R3) S# (R7 RS)))
#RESTRICT#
((NOT (EQ SLOC (QUOTE VANCOUVER))))

($G (PROVE* S# SUPPLIES PART#) $T)

ATTEMPT TO PROVE S# SUPPLIES PART#

MAKING NOTE OF RESTRICTION ON SUPPLIES IN R7

DONE.
#RESULT#

((SLOC) (S# (RS R7)) (PART# (R3)) ((R5 R7) S# (R3)))
$#RESTRICT#

((NOT (EQ SLOC (QUOTE VANCOUVER))))

($G (PROVE* SNAME SUPPLIES PART# SUPPLIES-TO PROJECT-NAME) $T)

ATTEMPT TO PROVE SNAME SUPPLIES PART#

SUPPLIES-TO PROJECT-NAME

MAKING NOTE OF RESTRICTION ON SUPPLIES IN RS

DONE.
$RESULT#

((SNAME (R3)) (PART# (R5)) (PROJECT-NAME (R2))

((R5) PROJECT# (R2) S# (R3)))

#RESTRICT#

((NOT (EQ SLOC (QUOTE VANCOUVER))))

($A (MERRIT SUPPLIERS ARE ON STRIKE) $T)
((MERRIT SUPPLIERS ARE ON STRIKE))

(3G (PROVE* SNAME SUPPLIES PART#) $T)

ATTEMPT TO PROVE SNAME SUPPLIES PART#

MAKING NOTE OF RESTRICTION ON SUPPLIES IN RS

(R5 SAYS S# SUPPLIES PART#)

(TRY TO RELATE SNAME AND S#)

(R3 SAYS S# IS-CALLED SNAME)

DONE.
#RESULT#

((SLOC) (SNAME (R3)) (PART®# (R7 RS)) ((R3) S# (R7 RS)))
#RESTRICT#

((NOT (EQ SLOC (QUOTE VANCOUVER)))

(NOT (EQ SLOC (QUOTE MERRIT))))

Sample Micro-Planner Runs

128

(THFIND 1 ($2X $?R) (X R)
($G (PROVE SALESMAN# $?R DESTINATION $2?X) $T)))

(R10 SAYS SALESMAN# SOLD ORDER#)

(TRY TO RELATE ORDER# AND DESTINATION)

(R9 SAYS ORDER# COMES-FROM DESTINATION)

(R9 SAYS ORDER$# COMES-FROM DESTINATION)

(TRY TO RELATE SALESMAN# AND ORDER#)

(R10 SAYS ORDER# WAS-SOLD-BY SALESMAN#)

ABOUT TO TRY FOR A NON-VALID PATH

(R10 SAYS SALESMAN# SOLD ORDER#)

(TRY TO RELATE ORDER# AND DESTINATION)

(R9 SAYS ORDER# COMES-FROM DESTINATION)

DONE.
#RESULT# ‘

((SALESMAN# (R10)) (DESTINATICN (R9)) ((R10) ORDER# (R9)))
#RESTRICT#

NIL

Sample WMicro-Planner Runs

129

APPENDIX 6.

Sample Queries_in_the New_Relatiocnal Calculus

1. List the suppliers who supply any part.
(SNAME : (SNAME SUPPLIES PART#))
REL6 SNAME)
COAST STEEL
PEARSON IRON WORKS
VALLEY STEEL
APPOLLO SHEET METAL

2. List the suppliers who supply a part whose number is greater

than 20.
(SNAME : (SNAME SUPPLIES PART#) & (GREATERP PART# 20))

NONE,
3. List the suppliers who supply a part whose number is greater
than 8.
(SNAME : (SNAME SUPPLIES PART#) & (GREATERP PART# 8))
REL33 (SNAME)

PEARSON IRON WORKS
COAST STEEL

4, List the projects who are supplied by supplier number 1.
(PROJECT-NAME : (S# SUPPLIES-TO PROJECT-NAME) & (EQ S# 1))
REL37 (PROJECT-NAME)
ROYAL TOWERS
BURRARD SHIPYARDS
p.C.C.
RAPID TRANSIT
GRANVILLE HMALL
OLYMPIC SEAWAY

5. List the suppliers who supply each project,
(SNAME : (V PROJECT#) (SNAME SUPPLIES-TC PROJECT#))
REL4Y (SNAME)
APPOLLO SHEET METAL
COAST STEEL

6. List the suppliers who supply each part.
(SNAME : (V PART#) (SNAME SUPPLIES PART#))
REL65 (SNAME)
COAST STEEL

Sample Queries in the New Relational Calculus

130

7. List the parts which are used by project 2.
(PART# : (PROJECT# USES PART#) & (EQ PROJECT# 2))
REL8 (PART#)

WRNE J=aOn

8. List the parts which are either used by project 2 or
are supplied by a Vancouver supplier.
(PART# : ((PROJECT# USES PART#) & (EQ PROJECT# 2)) V
{(SLOC SUPPLIES PART#) & (EQ SLOC 'VANCOUVER)))
REL25 (PART#)

NN OO ENWa

9, List the suppliers who supply each part which is used
by project 2,
(SNAME : (V PART# & (PROJECT# USES PART#) & (EQ PROJECT# 2))
(SNAME SUPPLIES PART#))
RELS4 (SNAME)
COAST STEEL

10. List the Vancouver suppliers.,
(SNAME : (SNAME IS-IN SLOC) & (EQ SLOC °*VANCOUVER))
REL58 (SNAME)
COAST STEEL

11. List the suppliers who are not located in Vancouver,
(SNAME : SNAME & - (SNAME IS-IN SLOC) & (EQ SLOC *'VANCOUVER))
REL67 (SNAME)
PEARSON IRON WORKS
VALLEY STEEL
APPOLLO SHEET METAL

12. List all the suppliers.
(SNAME : SNAME) B
REL69 (SNAME)
APPOLLO SHEET METAL
VALLEY STEEL
PEARSON IRON WORKS
COAST STEEL

Sample Queries in the New Relational Calculus

131

13. List the suppliers who supply part 3 to a Vancouver project.
(SNAME : (SNAME SUPPLIES PART# SUPPLIES-TO PLOC)
& (EQ PART# 3) & (EQ PLOC *'VANCOUVER))
REL6 (SNAME)
VALLEY STEEL
COAST STEEL
APPOLLO SHEET HMETAL

14, List the parts that are supplied to each project by
a Vancouver supplier.
(PART# : (SLOC SUPPLIED PART# SUPPLIED-TO PROJECT#)
& (EQ SLOC '"VANCOUVER))
NONE.

15. List the suppliers who have more than 10 units of part 8
in stock.
(SNAME : (SNAME HAS QOH OF-TYPE PART#) & (GREATERP QOH 10)
& (EQ PART# 8))
RELI0O (SNAME)
COAST STEEL

16. List the suppliers and the projects where the supplier
supplies a part which is used in the project.
(SNAME PROJECT# : (SNAME SUPPLIES PART#) &
(PROJECT# USES PART#))
REL82 (SNAME PROJECT#)
APPOLLC SHEET METAL 4
APPOLLO SHEET METAL
APPOLLO SHEET METAL
APPOLLO SHEET METAL
APPOLLO SHEET METAL
APPOLLC SHEET METAL
VALLEY STEEL
VALLEY STEEL
VALLEY STEEL
VALLEY STEEL
VALLEY STEEL
VALLEY STEEL
PEARSON IRON WORKS
PEARSON IRON WORKS
PEARSON IRON WORKS
PEARSON IRON WORKS
PEARSCON TRON WORKS
PEARSON IRONW WORKS
COAST STEEL
COAST STEEL
COAST STEEL
COAST STEEL
COAST STEEL
COAST STEEL

NWUINawa ST WUINN=E20TWUNSNANWONN -

Sample Queries in the New Relational Calculus

132

17. List the suppliers and the projects where the supplier
supplies a part to the project.
(SNAME PROJECT# : (SNAME SUPPLIES PART# SUPPLIES-TC PROJECT#))
REL8S5 (SNAME PROJECT#)
COAST STEEL
APPOLLO SHEET METAL
COAST STEEL
APPOLLO SHEET METAL
COAST STEEL
APPOLLO SHEET METAL
PEARSON IRON WORKS
COAST STEEL
VALLEY STEEL
APPOLLO SHEET METAL
COAST STEEL
APPOLLO SHEET METAL
PEARSON IRON WORKS
VALLEY STEEL
APPOLLO SHEET METAL
COAST STEEL

- e S NN WWWEEETOVOVOO

18. List the suppliers who do not supply part 3.
(SNAME : SNAME & -~ (SNAME SUPPLIES PART#) & (EQ PART# 3))
REL102 (SNAME)
PEARSON IRON WORKS

19. Inform the system that all Vancouver suppliers are on strike.
(VANCOUVER SUPPLIERS ARE ON STRIKE)
OQK.

20, List the suppliers who are currently supplying parts.
(SNAME : (SNAME SUPPLIES PART#))
REL7 (SNAME)
APPOLLO SHEET METAL
VALLEY STEEL
PEARSON IRON WORKS

21. List the suppliers who do not supply part 3.
(SNAME : SNAME & -~ (SNAME SUPPLIES PART#) & (EQ PART# 3))
REL20 (SNANE)
COAST STEEL
PEARSON TRON WORKS

Sample Queries in the New Relational Calculus

VD NP P WA

APPENDIX 7 - RELATIONAL ALGERRA

3 PROJELT
.3 RETURNS THE PROJECTION CF THE RELAYXUN DN THE DOMAT
s POSITIONS ARE GIVEN IN THE LIST A,

ETSE

(DEFUN PROJECT [RELATION A) .
(PRDu {NEWREL UOMAINS NEWDOMAINS YNAME NEWDATA PROJECTIOKY
SETQ NEWREL [CENSYML ?REL}}
(PUT NEWREL *8TUPLES 0O}
SEYQ DOMAINS (GET RELATICN SDOMAINS)E
CPUT NEWREL 'DOMAINS {CHOOSE DDMAINS AYY
{HAPC *{LAMRDA {TUPLE)
{SETQ YUPLE {GET TUPLE “DATAI)}
(SETQ NEWDATA (CHOOSE TUPLE A)) .
(COND | (NOT (MEMBER NEWDATA PROJECTIONY)
CADDTUPLE NEWDATA NEWREL)Y
(SETQ PROJECTION {CLONS NEWDATA PROJECTIONY)
. 18] . . . ! -
]
(GET RELATION *TUPLES))
(RETURN NEWREL)
)

JOIN Y :
RETURNS THE THETA-JOIN OF Rl WITH R2. THETA IS EXPRESSED
BY PREDICATE, AN ®%ARBITRARY#s LISP EXPRESSION WHICH MUSY
BE SATISFIED BEFORE THO TUPLES CAN BECOME PART DF THE JOIN.

Ry

(DEFUN JOIN (RL R2 PREDICATE)

. (PROG INEWREL TNAME)
' (SETC NEWREL (GENSYH1l *REL))
[PUT NEWREL *aTUPLES 0)
- LPUT KEWREL *DOMAINS {APPEND (GET R *DOMAINS) .
(GET RZ 'OOMAINSI®} . -~ -
{MAPC *(LAMBDA (TI1)) ' o S
(SETQ T1 (GET T1 *DATAN) ’ . A
(RAPC *{LANBDA (T2) : ’ co
(SETQ T2 GET T2 *DATAY)
(COND { {EVAL PREDICATE)" :
{ADDTUPLE (APPEND T1 72) NEWRELD 1) -
.) (GET R2 *TUPLES))
} {GET R} *TUPLES)) .
(RETURN NEWREL)
' '

+ RESTRICT : '
.3 RESTRICT- RETURNS A NEW RELATIGN WHICH CONSTSTS GF THOSE
i TUPLES IN “RELATION"™ WHICH SATISFY THE PREDICATE. -

" {DEFUN RES?RICT (RELAT}DN PREDICA?EI

tPROG {NEWREL T1}
(SETYQ NEWREL [GENSYML 'RELII
LPUT NEWREL "ATUPLES O} :
{PUY NEWREL 'DOMAINS (GET. RELATION 'DGMAINS))
(MAPC '[LAMBDA- { TNANE)

ASETQ T1 {GET TNAME tDAYA))

(COND | (EVAL PREDICATE)

' {PUT NEWREL *TUPLES (CONS TNAME

"

{GET NEWREL 'TUPLES)))

LN :
{GET RELATION *TUPLES))
(PUT NEWREL *WTUPLES {LENGTH (GET NENREL .*TUPLES)I))
{RETURN NEWREL) : . :
) N

' DIvVICE
A IS A LIST OF THE DOMAIN NUMAERS OF RELATION Ri TO BE
DIVICED BY DOMALN NUNMBERS B OF R2.

CIVICE WCRKS AS FOLLOWS. FOR EACH ROW R IN Rl, IF EACH
TUPLE TN THE PROJECTIC!HM OF R2 ON B 1S A MEMBER OF THE-
IMAGE SET OF THE PROJECTION OF ABAR CN R, UNDER Rl YHEN
XKEEP THE PROJECTICN OF ABAR ON R.

{DEFUN RDIVIDE (RL R2 A B)
{PROG {REL SONB ISET ABAR ALL USED ABARDATA)
(SETQ SONB (PROJECY R2 8))
(SETQ ABAR (SETDIF (CENLISY IGET RL ‘DOMAINS}I) A}
{SETQ REL (GENSYMI *REL)) X
{PUT REL *JTUPLES 0) :
(PUT XEL *DUMAINS (CHCOSE {GET RI *DOMAINS) ABIR)I
(MAPC *(LAMBDA (T1)
(SETQ Tl LGET T1 *DAFAYY
(SETQ ABARDATA (CHUDSE T1 ABAR))
({CCND { [NOT (HEMBER ABARDATA USED))
5tTQ ISET (IMAGESET (CHOOSE T1 ABAR)
R1

101
1c2

103’
106"

1¢5
1C6
1¢7
ics
1ce
110
[B9}
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
133
139
140
141
142
143
1446

- 145

148

147

148
149
150
151
152
153

155
156
157
158
159
160
181
162
163
164
165
166
Le7
188
169

170

in
172
173
17«
175
176
177
178

179

180
181
1ee
183
184
185
186

187

183
189
130
191
192
193
194
195
196
197
193
199
200

ABAR
. ALl
{SETQ aLL 1)
{SETQ USED (CONS ABARDATA USED)).
(MAPC {LANMBDA (T2)
(SETQ T2 (GET T2 10ATA))
(COND { (NOT (MEMBER T2 ISET})
ISETQ ALl NIL)
(UNEVAL *MAPC NIL))Y)

(GET SCNe 'FUPLESI)
(AND ALL {ADDTUPLE ABARDATA REL)}
1]

) .
(GET R1 'YUPLESI) : . T e
IRETUAN REL) .

)

"{DEFUN RUNICN (L)

3 THIS PROCEDURE WILL RETURN A RELATION WHICH IS THE UNIGN
: DF ALL THE RELATIONS IN L.
{PRCG (REL)

(SETC REL (CAR L)}

IMAPC *{(LAMBDA (R}

fCOND { INULL R) (RETURN REL}}
{ T (SETQ REL (RUNICH® REL R))) i
) .

(COR L))
(RETURN REL))}

IDEFUN RUNION® (R1 R2)
s THIS PRUCEDURE WILL RETURN A RELATION WHICH IS THE UNION
i OF RL AND R2. THE NEW DOMAIN NAMES ARE THOSE OF Rl.
{PRIG {REL UNION TUPLE)
LCOND { (NDOT (EQ (LENGYTH (GET Rl *DOMAINS)Y)
fLENGTH (GET R2 *DOMAINS)) §)
(RETURN NIL)))
(SETQ REL (GENSYM1 *REL))
{PUT "REL *DONAINS {GET Rl 'DONAXNS)I
"~ [PUT REL *#TUPLES 0)
(H2PC *(LAMBDA {X)
(SETQ TUPLE (GET X 'DATA}}
{COND [(NDT (MEMBER TUPLE UNIONY)
(ADDTUPLE TUPLE REL)
[SETO UNION (CONS TUPLE UNlUN))l)

(APPEND [GET R1 *TUPLES) (GET R2 *TUPLES)))
{RETURN REL)) o

{DEFUN ACROSS (L)
i THIS PRUCEDURE WILL RETURN A NEW RELATION WHICH IS THE
8 CROSS PADDUCT OF ALL THE RELATICNS IN Lo .
(PRCG {REL)
(SETQ REL {CAR L1)
. AMAPC *(LAWBDA (R)
fCOND ' (NULL R) (RETURN RELD)
: § T (SETQ REL (RCROSS® REL R))))
] . :
(COR L))

TRETURN REL)
)

{DEFUN RCROSS* (R1 R2} .) Cw
i THIS PROCEDURE WILL RETURN A NEW RELATICN WHICH IS THE
3 CROSS. PRODUCT OF R1 AND R2. -
tPROG {REL)

ISETQ REL (GENSYH1 'REL))
(PUT REL *DOMAINS (APPEND (CET Rl 'DOMAINS)
. AGET R2 *QOMAINS))Y
lPUT REL *4TUPLES 0}
(MAPC *(LAMBOA (T1)s
{MAPC *(LAMHDA (T2} .
(ADDTUPLE (APPEND {GET T1 *OATA) -
{GET T2 *0ATA}) REL)

}
{GET RZ *TUPLES})

)
- (GET R1 *TUPLES))
{RETURN REL) }

{DEFUN RINTERSECT (L)
¢ THIS ROUTINE WILL RETURN THE lNTERSECTIOV dF ALL RELATIONS T4 L
{PRLCG {REL)
§SETQ REL (CAR L)}
{RAPC Y (LAMBDA (R}
USETQ HEL (PROJECT (JOIN REL R *(ECUAL T1 12))

134

201
202
203
2C4
203
266
207
T 208
209
210
211
212
213
216
215
218
217
218
219
220
221
222
223
224

225 -

226
221
228
229
230

231

232
233
234
235
236
237
238
23
240
241
2462
243
244

245
246 -

247
.248
249
250
251
252
253
256
255
256
257
258
259
260
261
262
- 263
266
285

- 266

267

" 28

269
270
2n
212
213
274

275 .

278
217
218
2719

- 280

281
282
283

‘284

285

286
287
288

289 .

290
291

]
(COR L1}
(RETURN RELD}

(DEFUN RDIFF (R1 R2) -
3 THIS PRCCEDURE RETURNS R1 = R2.
fSETO REL (GENSYM1 *REL}) -
{PUT. REL *DOMAINS {GET R1 *DOMAIN
{PUT REL *aTUPLES 0)
{MAPL *(LANBDA (TD) ‘
(OR {IN F1 R2)
CADDTUPLE (GEY T) *D

}
{GET R1 *TUPLES))
REL .

(DEFUN IN (TUPLE R}
¢ THIS PRUCEDURE RETURNS T IF TuP
{PROG €)
IRAPC ¢ {LAMBDA (T2)
SCOND t (EQUAL (GET T2
(GET TU
{RETURN T)))

H
{GET & *TUPLES))

$ IMAGESET

H PROVIDES_TﬁE IMAGE SET DF X UNDER THE RELATION Ry WHERE A
$ IS A LIST OF DOMAIN NUMBERS CORR
T

"IS THE COMPLEMENT OF A.

¢DEFUN IMAGESET (X R A ABAR]
LPROG (ISET) :
[MAPC: * {LAMADA: (TUPLE) -
(SETQ TUPLE [GET TUPLE *DA
(COND ([ECUAL (CHOOSE TuP
(SETQ ISET (CONS §
1
|
. . (GEY R 'TUPLES))
(RETURN ISET)
)

1 SETOIF
% RETURNS SEfl—SETZ-‘

(DEFUN SETDIF [SET1 SET2)
3 (REVERSE {EXCLUDE SET2 SET1)}
_{PROG (DIFF}
{MAPC *(LAMBDA (E)
(OR (MEMBER E SET2) (SETQ DI
) .

: SET1}
{RETURN (REVERSE DIFF))

©§ ADCTUPLE -
? ADOS THE TUPLE TO THE RELATION, AND RETUARNS THE NAME GOF THE TyrLe

{DEFUN ADDTUPLE {TUPLE RELATION)
{PROG (TNAME)
VPUT RELATION *TUPLES (CONS {

AGENLIST {GEY REL >DCMAINS)IINY -

.

318

ATA) RELI)

.

LE IS IN THE RELATICN Ra

"bATA,
PLE *DATA})

ESPONDING YO X, AND ABAR

TAMY

LE At X} .
CHOOSE TUPLE ABAR)
SETI) N .

FF (CONS E DIFF)))

SETQ VHAME {GENSYM] *T})

IGET RELATIGN TUPLES)))

(PUT RELATION *4TUPLES (ADDL
(PUT INAHME 'DATA. TUPLE)
[RETURN TNANME)
)

(GET RELATION "#TUPLES))

135

136

302 N . .
303 :) : - o .
304 3 CHGOSE : - o L o
308 3 RETURNS THE PROJECTION OF THE TUPLE ON THE DOMAINS WHOSE - : : T : <
366 3 POSITIONS ARE GIVEN BY THE LIST A.) . . R - : o
307
308 . o : '
339 ¢DEFUN CHOOSE (TUPLE A) . .
310 - {HAPCAR *(LAMBDA (DOMAIN} (ELEM TUPLE DONAIN))
311 aA)
312 3

313 :

314

315
.31s - 3 ELEM : .

37 .3 RETURNS TME NTH ELEMENT OF & LIST.
318 3 IF POSITION IS A LIST OF DOMAIN NUMBERS, ALL CORRESPONDING ELEMENTS
319 3 WllLL BE RETURNED,

320

321 :

322 (DEFUN ELEM (LIST POSITION))
323 . {COND ¢ INUMBERP POSITION)" - . o
324 . © (CaR INTH LIST POSITICN))) R o -
325 - U T (MAPCAR *{LAMBDA (N} : L .

326 . . (CAR (INTH LEST N)) . Co Lo
327 . .) - “ !

323 : -POSITIONT)Y - T ’ :

329 H .

330 . R .

331 - : o "

332 C
333 $ GENLIST A
334 3 GENERATES A LIST OF NUMBERS FROM 1 TO THE NUNBER OF DOMAINS
335 .
336 . ' o
337 (DEFUN GENLIST (DOMAINS) - : ’ VL
338 (PROG (INC) ! . o - . o i
. 339 {SETQ INC ©O) - : C

340 (MAPCAR ¢ [LAMBDA (X) ISETQ INC {ADDL INC1I} DOMAINS}

341) . i

342]

363 : .

22 : : - iy .
345 (OPEN {IMPLODEBUFFER 10G1))
END OF FILE . c

WO NSOV W

[DEFUN REDUCE (QUERY)

:
s
H
:
{
i

1)

THIS ROUTINE wILL TAKE A QUERY‘!N THE RELATICHAL Coiift
AND REDUCE IT TU.A SEQUENCE OF GPERATIONS IN THE REL

ALGEBRA. IT IS
OF PALERMO.

HODEL

APPEND (X § - RELATIONAL CALCULUS

LED ON THE JMPROVED REDUCTEICN ALG‘EITHH'

€}

PRCG IRESULT GLOBAL_RANGE)

FCRM THE GLORAL RANGE FOR EACH VARTABLE IN THE Queay.

(KAPC *{LAMBDA

© fPUT VAR 'RANGE {SETQ GLOBAL_RANGE {RANGE VAR}})

{coND
(AND TAA

VAR}

{NULL
{PRINL
{PRINL

IGEY GLOBAL_RANGE *TUPLES)) . .
*"THE GLOBAL RANGE FOR™] {PRIN1 YAR} L. .
""IS EMPTY”) (TERPRI) [RETURN NIL)) H

CE {PRINL *"TIHE REDUCED GLOBAL RANGE FOR~)
(PRINI VAR) (PRINI *1S:})

{PRINTREL GLOBAL_RANGE))

{GET QUERY *VARS)) -
CONSTRUCT THE COMPONENTS Cil}, EACH DEFINED BY THETA{1)
. $MAPC *(LAMBDA {THETAL) cof .
. {SETQ RESULT (RUNION {LIST (FORM_C1 THETAI) RESULTID)
} S

{GET QUERY

(MAPC *(LAMBDA (

*THETA)) . ' i :
APPLY THE OPERATIGNS OF DIVISION AND PROJECTION TO THE RESULT
TG GBTAIN THE RELATIGN TP, N . .

VAR} "

{SET VAR (GET VAR SRANGE}) : A
(COND { (GET VAR *QUANTIFIER) R e

)

ISETQ RESULT {PORD RESULT VAR‘) . ’ .

(AND TRACE (PRINTREL RESULT))

{MAPC

{CONI

LT {UNEVAL *MAPC NILD)Y)

*{LAHBDA (V) . o
D { (GREATEWP {GET V SSTARTS) -
B (GET VAR *STARTS))
{PUT V 'STARTS (SUB (GET V *STARTS)
TLENGTH {GET (EVAL VAR) *DOMAINS)) }) § }

IGET QUERY *VARS)) } B . o

(GET QUERY *VARS}} - - B Lo

PROJECT TP ONTO THE DESIRED OUTPUT DONATNS X
{PRINI *WTHE RESPONSE RELATION 1S:%3 i ’
(RETURN (PRINTREL (PROJECT. RESULT {GENTARGET (GET GQUERY STARGET1})))

{DEFUN FORM_CI [THETAI)

THIS ROUTINE WILL FORM TME SUBSET C1 OEFINED BY THETAS

17 USES THE GULBAL VARIABLE RANGE_LIST
{PRIG (L_CF_CORES POSS_TERMS USEDVARS CORE JOIN_TERM
ORE_RANGE STARTS RANGE_LISY V INO)

POSITION C
{SETQ STARTS 1)

FORM THE REDUCED LOCAL RANGE FROM THE REDUCED GLUBAL RANGE.

(MAPC ' {LAMBDA

(VAR)

ISET VAR {GET VAR SRANGE})

"{FORM_RR VAR
(AND "TRAZE

(PRINY :*»THE REDUCED LOCAL RANGE.FGR“! (PRINI VARY

THETAL

3
1

(PRINI "IN} (PRINI THETAI) (PRINL *IS) (PRINTREL {EVAL VAR)))

3
(GEV QUERY 'VARS))

3 CREATE A LIST OF THE RANGES USED IN THETAl, WITH INDSE HAVING.
3 THE SMALLEST NUMBER OF TUPLES COUMING FIRST,
(SETQ RANGE_LIST {RANGES THETAI)) :

-

o

LOGP (SETQ POSS_TERMS NIL)

(SETQ CORE (EVAL {CAR RANGE_LIST)))

{AND TRACE

[PRINL *~THE FIRST ELEMENT IN THE CCRE OF™)
(PRINL THETA{) (PRIN1 'IS:) (PRINTREL CORE) .} .
{PUT {CAR RANGE_LIST) *STARTS STARTS)

{SETQ STARTS (ADD

STARTS . Co)
{LENGTH [GET (EVAL (CAR RANGE_LISTI) *DOMAINS))})

(SETQ USEDVARS (COMS [UNCENS RANGE_LIST RANGE_LIST) NIL))

3 CONSTRUCT A LIST OF TERMS WHICH CAN BE USED TO JOIN THE

CCRE WITH A NEW RANGE.
LOCP2Z ISETQ POSS_TERMS {UNION {INTERSECY

{GET {CAR USEDVAAS) YUSED_TN_TERNS)
(GET THETAL "TERMS))
POSS_TERMS))

IF THERE ARE NO MORE JOIN TERMS CGNNECTED TQ THE CORE,

START AGAIN.

§COND ((NULL POSS_TERMS)
' [SETQ L_OF_CORES (CONS CORE L_CF_CORESH)
. {GO LOOP)}) .
NOW- THAT WE KNDw wHICH JOIN TERMS CAN BE USED, CHCOSE THE GNE WHICH
JRVCLVES THE SHMALLEST RELATION ’ .
{MAPL *(LAMBDA (VAR)

tconp ¢

FIND ALL OTHER

{SETQ

(SETQ
{3E7Q
(SETQ
(SETQ
TERMS
{HAPC
(CoN

JOIN_TERM (INTERSECT POSS_TEARMS e
[GET VAR SUSED_IN_TERMS)))

JOIN_TERM (CAR JOIN_TERM))
RANGE_LIST {DELETE VAR RANGE_LIST})
POSS_YERMS {UELETE JOUN_TERN POSS_TE#KS)}
HEW_RANGE VAR) . .
WHICH INVOLVE ONLY THESE TWO RELATIONS. .
PLLAMBOA (TERM)
D € LEGUAL (GET TER™ *vARS) (GET JOIN_TERM 'VARS))
: ESETQ PGSS_TERMS (DELETE TERM PCSS_TERNS))

ESETY JOtN_TERM (LIST YAND JOIN_TERM TERMIY 3)

)
PSS TERANMSY

137

http://CiUtt.CS*

101
102
103
104
105
1co
107
108

169
10
n
112
113
14
115
116
117
118
119
120
12t
122
123
124
125
126
127
128
129
130
131
132

133

134

T 135

136
137
138
139

140

141
142
143

146

145
166
147
148
149
150
151

152
153
156
155
156
157
158
159

160
161
162
163

164

165

167
168
169

170

171
172
173
174
175
176
117
178
17¢

180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
165
196
1917

"{COND ({EQ (CAR {GET JCIN_TERM 'VARS)) NEW_RANGE}
(SETQ CORE_RANGE fCACR (GET JOIN_TERM™ '¥ARS$))))
€ T (SETQ CORE_RANGE (CAR (GET JOIN_TERM 'VARS)II})
LPUT VAR YSTARTS STARTS))
{SETQ STARTS (ADD STARTS LLENGTH (GET {EVAL VAR) *DOMAINSIIID
(SETQ USEDYVARS ICCNS VAR USEDVARS))
(UNEVAL 'MAPC NILY))

)
RANGE_LIST)
3 JOIN THE CCRE VO THE NEW RANGE
{SETQ CORE {JOIN CORE (EVAL KEW_RANGE}
(FIx» (EVAL JOIN_TERN} CORE_RANGE *T1 NEW_RANGE *7233}
{AND TRACE UPRINL "™JGINING CCRE WITH"}
{PRIN! NEW_RANGE} (PRINI *Y1ELDS:)
({PRENTREL CORE})
3 SEE IF WE ARE -DONE
{CCND { RANGE_LIST (GO LDOP2})
{ L_OF_CORES [RETURN [RCROSS (REVERSE L_OF_CORES)I)I))
{ T LRETURN CCRE}))
1] :

_.ADEFUN FIx+= (JOIN_TERM CORE_RANGE T1 OTHER_RANGE T2)

$ THIS ROUTINE wWILL CHANGE ALL OCCURRENCES OF (OTHER_RANGE N)
s IN JOIN_TERM TO (ELEM T2 N), AND ALL DCCURRENCES OF
¢ (CORE_RANGE M)} TO (ELEM T1 CORE-N)e
(COND { (NULL JOIN_TERH) NIL)
{ (ATOM {CAR JOIN_TERN))
[FIXx® {COR JOIN_TERM) CORE_RANGE Y1 OTHER_RANGE T21)
{ (EQ (CAAR JOIN_TERM) OTHER_RANGE}
(RPLACA JQ]N TERM (LIST YELEM
T2
UNENDCMAIN DTHER_ RANGE (CADAR JOIN_TERNIIN}
(Fix® {COR JOIN_TERM) CCRE_RANGE T1 OTHER_RANGE ¥2))
.4 (EQ (CAAR JOIN_TERM) CORE_RANGE]
(RPLACA JOIN_TERM (LIST *ELEM TI1
{sunl (ADD (GEY CGRE _RANGE *STARTS)
INEWDOMAIN CORE_RANGE (CADAR JOIN_TERM)) 3)I))
CFIX® {CDR JOIN_TERM)} CORE_RANGE T1 OTHER_RANGE T2))
¢ T (FIx® {CAR JOIN_TERM) CCRE_RANGE T1 OTHER_RANGE T2)
(FIx® (CDR JOIN_TERM) CORE_RANGE T1 CTHER_RANGE 721}
: n : .
JOIN_TERM
) .

{DEFUN PDRD (REL VAR)
3 THIS RCUTINE WILL EITHER PROJECT REL ON ALL 1TSS DOMAINS,
t EXCEPT THE ONES CONTAINED IN THE RELATICN SPECIFIED BY VAR,
3 OR IT WILL DIVIDE REL BY THE RELATION SPECIFIED BY VAR.
{PRGG {DOH2S PDUMHS DOMAINAS)
ISETQ DOMAINSS (GENLIST [GET REL *DOMAINS)))
(SETQ COM#S {MAPCAR *(LAKBDA (D#)
_taco {SUBL DBJ (GET VAR 'STARTS!)
]
{GENLIST (GET (EVAL VAR} 'DUHAINS)) [2D
{COND { (EC (CET VAR fQUANTIFIER) JEXISTS)
" {MAPC % (LAMBDA (X)
(GR (MEMQ X DOMIS)
{SETQ PDOMAS (CONS X PDOMSSI))
}

DOMAINASY
(AND TRACE (PRINY *®PROJECTING OFF®) (PRINL VAR)
{PRIN1 *YIELDS:))
(RETURN {PROJECT REL {(REVERSE POOMISI)))
§ T (AND TRACE (PRINY **DIVISION BY‘I (PRINL VAR)
IPRINL 'YIELODS))
tRETURN {ROIVIDE REL
. (EVAL YAR}
0OMaS
(GENLIST [GET (EYAL YARY *DOMAINSH) ¥)3)

{DEFUN FORM_RR (VAR THETAI)
3 THIS ROUTINE FORNS THE REDUCED LGCAL RANGE FOR VAR IN
s THETAL., THIS ANOUNTS TO RESTRICTING VAR TO FHOSE CASES
3 DEFINED BY TERMS IN FTHETAI WHICH CONTAIN ONLY 1 TUPLE -
3 VARABLE.
LPRCG V)
[MAPC * [LAMBDA {TERM)
(COND ([AND (EQ fLENGTH [GET TERM *VARS)) 1)
(EQ (CAR (GET TERM *VARS!) VAR})
(SETQ Vv [CAR (GET TERN *VARS)))
(SET Vv (RESTRICT {EVAL V)
(FUx# LEVAL TERM) NIL NIL V *T1)})
(PUT THETAI *TERMS {OELETE TERMN (GET THETAL *TERMS))
1) -

)
LGET THEYAI °*TERMS))

138

198
199
2¢0
2491

2c2
203
204
285
205

207
208

210
211
212
213
214
215
216
217
218
219
220
22}
222
T 223
224
225
226
227
228
229

23

‘232

233
234
238
236
237
238
239
240
241
242
243
FL1}
245
245
247

2487

249
250
251
252
253
254
255
- 256
257

258,

259
260
261

262

263
264
2465
266
267
268
269
210
271
2712
273
274
275
278

217

278
2719
280
281
282
283
284
285
288

287

- {DEFUN NEWDGMAIN (VAR OLD#)
H

139

(DEFUN GENTARGET (TARGET_LisT)) : P

THIS PROCEDURE METURNS A LIST OF THE DOMAIN NUMBERS ' e

i UPON WHICH THE RESPONSE RELATION SHOULD BE PROJECTED. . . -

(HAPCAN Y(LAMBDA (ELEMENT) ,

tLIST (ADD (NEWDOMAIN (CAR ELEKENT) {CAOR. ELEMENT))
(SUBL (GET [CAR ELEMENT) *STARTS)1} }
’ . .

TARGET_LIST)

(DEFUN CRDER {VARS)
3 THIS RGUTINE TAKES A LIST OF VARIABLES, AND GRDERS THENR
3 WITH THE ONES WHICH HAVE THE SHALLEST RANGES COMING FIRST.
{PROG CANS LEN L) : ’
[SETQ ANS (LIST (CaR VARS1)) C
(KAPC *(LANMBDA (V) ¢ .
(SETQ LEN {GET fEVAL v} '#TUPLEST) ; .
(COND { (NOT (GREATERP LEN (GET (EVAL {CAR ANS)) YATUPLES) })
: §SETQ ANS {CONS vV ANS))))
§ (NOT (LESSP LEN (GET (EVAL (CAR (LAST ANS))) *4TUPLES))
ISETQ ANS TAPPEND aNS (LIST Vil) . R
€ T (SETQ L ICCNS NIL ANS)H) .
(MAPC *(LAMBDA (ELT) o
(COND { (LESSP LEN {GET (EVAL.ELT) *aYUPLES))
CRPLACD L (CONS V (CDR L
LUNEVAL *HAPC NIL))
’l T ISETQ L (COR L})))

ANSY 3)

S : , - . . : S o
. (COR VARS)) - : : S N .
(RETURN ANS)) . : — ’ S

GIVEN A VARIABLEs AND A DONAIN NUMBER IN THE GLOBAL RANGE
¢ FOR THAT VARIABLE, THIS ROUTINE WILL RETURN THE DOMAIN NUMBER
i OF THE SAME DUMAIN IN THE GLOBAL DR LOCAL RECUCED RANGE.
{COND { (NUMBERP OLD#) L. : . 5
o {SUB (LENGTH IGET VAR *REFOOMAINS)} : S
ALENCTH LCOR IMEMQ CLGH (GET VAR YREFDORAINSII})))
-8 T {MAPCAR *{LAMBDA (N} N
{SUB (LENGTH {GET VAR *REFDOMATINS)) 3
(LENGTH (COR IMEMQ N (GET VAR *REFDOMAINS1)IN

)
oLD#)}
i

(DEFUN RANGES {THETAI)
THIS ROUTINE WILL RETURN A LIST OF THOSE RANGES USED IN
i THETAL, WITH THOSE HAVING THE SMALLEST NUMBER OF TUPLES
3 APPEARING FIRST.
(PRCG (RANGE_LIST)
(FAPC *(LAMBDA (T)
§SETQ RANGE_LIST (UNION (GET T "VARS) RANGE_LIST))
) .
" . ULGET THETA1 *TERRS))
{RETURN (ORDER RANGE_LIST))
H] .

(OEFUN RANGE (VAR} . : :
THIS ROUTINE WiLL CREATE THE REDUCED GLOBAL RANGE FOR VAR,
{PRCG (FORM UN)
(SEYQ FORM (GET VAR RANGE!)
{COND - { [ATGOM FORM) (SETQ UN FORH))
. { (EQ (CAR FORM) *aND) -
" ISETC UN (EVAL (PRGCESS_AND {COR FORM) VARY))) |
¢ LEQ (CAR FORM) *'QR)
CMAPC *(LAMBDA [CONJY)
~{COND J1ATCM CONJY {SETO CaNJ ILIST CONJI1Y
T ISEYO CONJ (COR €ONJIY))
USETQ UN {RUNIGN (LIST (EVaAL {PROCESS_AND CCNJ YARS)
UNI}) :

A

|

ICOR FORM)))
C 6T (PRINT "“ILLESAL RANGE FORMULA™Y))
(RETURN {PROJECT UN (GET VAR *REFDOMAINSI)) }

140

288 .
289 .
290 {OEFUN PROCESS_AND [AKGS VAR)
291 3 THIS ROUTINE WILL PROCESS THE ELEMENTS OF A CONJUNCTION IM
292 s THE RANGE FORMULA OF VAR.
293 (PRCG (FORR INT_TERMS DIFF_TERMS REST_TERMS SAVE) .
294 (MAPC S(LAMBDA (ELT) b -
295 : (COND { [ATOM ELT) S ‘
296 (SETO INT_YERMS (CONS ELT INT_TERNS)}) .
207 . € (AND (EQ TCAR ELT) *NOT)
298 . (ATOM [CADR ELY}))
299 . [SETQ DIFF_TERNS (CONS (CADR ELT) OIFF_TERMS))) o L e e
3C0 € T (SETQ REST_TERMS [CONS ELT REST_TERNS})) § ’ o L " .
3ol } . .
3z ’ ARGS) .
3c3 . SETQ SAVE (GET VAR *REFDOMAINS))
36 . (PUT VAR SREFDOMAINS (GEMLIST (GET (CAR INT_TERMS) *DOMAINSI))
305 " ICOND { (GREATERP (LENGTH INT_TERNS) 1)
3Cs . ISETQ FORM (LIST *RINTEHSECT (LIST *QUGTE INT reansn) '
307 { T-(SETQ FORM (LIST *QUOTE (CAR INT_TERMS10))) ‘) C
acs CHAPC TLLAMBDA (T) Lo . o : .
309 {SETQ FORM {LIST *RDIFF FORM {LIST *QUOTE T)))) " .
il0) ' . . .
311 ' DIFF_TERNS) . o . : ‘ -
312 (COND { IGREATERP {LENGTM REST_TERMS) 0)
313 “4SETQ FORM (LIST *RESTRICT FORM SLIST 'QUOTE (FIxs CCONS YAND REST_TERMS) - .
314) . NIL NIL
315 T VAR 'TIN))Y
318 : tPUT VAR 'REFDOHA!NS SAVE) n T
N7 (RETURN FORM})
318
"END OF FILE
M 1o
1

QDO P WA

)

APPENDIX 9 - MICRO-PLANNEF ROUTINES S 11

(THCONSE LISP2 (X R Y) (PROVES $7% $7R $7Y)
- ITHOO {THAND TRACE : .
- [PRINLS *“ATTEHPT 10' PROVE™) .
ATHCOND [(THASVAL $7X) (PRINI® $2X)) (T (PRENIE t23X)))
{THCOND (- (THASYAL 37R) (PRINL® $7R11 (T (PRINI® V57R}) §
(THCOND | (THASVAL 37Y) (PRINI® $2V2) IT {PRINIS *57¥)) }
’ i (TERPRIN) L . : . .
(THOD ITHEIND L $7REL (REL) (SG (PROVE $7X $7R 37Y SPREL) {THUSE PROVE-X-R-¥J))
. o :

(THCONSE PROVE-X-R-Y {X R ¥ REL VALID RESULT USED) [PROVE $7X $7R $7Y STREL)
[THSETQ SPUSED (LIST nlL)} : . .
(THCO (SETQ SRESTRICTA NIL PEXTRAF NIL)) .
ITHCOND { (THAND (3G (37X s2R $2Y S7REL}) {SG (ACTIVE $7REL} T3
[$G {UPDATE~REST $7X $7R $7Y $SIREL) sT)
{THSETQ S?RESULT 3G (F-ALL $7X $7R 3?2Y) (THUSE FIND-RELS)))
ESETOQ SRESULTS $?RESULTS 3 i iR
€ 1SC (87X $2R $?Y $7REL} 3T)
[SETQ FRESULTA THYALUE)Y }
. U {TRAND (THSETQ s2VALIO T) B .
. TPRINT* *“ARCUT TO TRY FOR A NON-VALID PATHw}
(THSETQ $7USED {LIST NILY} P :
(THDO {SETQ HRESTRICTS NIL1) .
€3G (s2x S7R $2¥ $7REL) 3T} '
CSETQ JRESULYS THYALUE)))y '
(UPDATE~RESULT)
ISETQ SRESULTS [LIST (LIST $7X (CAR FRESULTH)) .
(LIST $7Y (CAR (LAST BRESULTA)Y)
. #RESULT#))
(THCOND { W#EXTRAS (SETQ SRESULTS [APPEND #EXTRAR BRESULTEY))
¢ (THSUCCEEDD)Y) i
ITHFAIL THEOREM}

{THCONSE RECATE-X-Y (X Y R R2 RP a REL RELZ REL3 VAR A2 RELATION aPS)
(37X $7R $2Y SPRELATION) .
{THPROG (LHS RHS)
(THCOND ((THAND (THASVAL $2X} {THASVAL $7v1)
(THCOND { (HEMBER (LIST $2X°37Y) $7USED) (THFAIL THEQREN)) -
| ITHVSETQ S2USED (CONS {LIST $2X $7Y) SPUSEDI)) [I]
{ {THSUCCEED))) . -
(THCOND { (THNOT {THASVAL 87R))) - . . o
) [THSETQ $7vAR T} . . o T -
{ {THSETQ $7R2 $7R))) : ’
{THCR (THAKD (THASVAL $7Y) '
o (THOR [THAND 3G {$7X $2R $7A $7REL)) (3G (DK 378} sT) .
.) {8G (ACTIVE $7REL) $T) . o :
(3G (UPDATE-REST $7X $7R $?A $2REL) $T) :
£3G (F-4LL $2X $?R $7A) {THUSE FIND-RELS)}
(SETQ ¥RESULTS THVALUE} (THSETQ $?LHS GRESULT#))
(THAND [THNGT (THAND 156G [$742 $7R2 $2Y $7REL3}) {36 (0K $?R2) $T2 1)
: $36 (87X $7R $7A $IREL) $T) . , :
(ISETQ FRESULTE THYALLE) R
JUTHSETQ $7ULHS #RESULT#)
($5 TACTIVE $7REL) $T) . : I
. . (36 (K $7R) $T) 3) o . S : ,
(THSETQ $2LHS (APPEND $2LHS (LIST $2A}}) ' o
(PRINT® (LIST $7REL *SAYS $7X $2R $7A))
{THCCNO { (THASVAL $2Y) {NGT (EC $7V $2A)))
 IPRINT® (LIST *wIRY YO RELATE® 374 YAND 37Y)) 1)
(THCOND { {THAND {SG (S7A $2RP $7Y $ZREL21) (3G (0K $7RPY ST} {$G {ACTIVE SIRELZ) $7))
(36 (UPDATE-REST $7A $7RP $7Y $PRELZ) $T}- .
| 48G {F-ALL $74 $7RP $7Y) (THUSE .FIND-RELS)}
ISETQ ¥RESULTA THVALUE) (VHSETQ $7RMS 4RESULTS)
EPRINTS {LIST SPREL2 *SAYS $74 S?RP $7V))) :)
{THAND 1SG (S?Y $2RP $74 SZREL2)) [5G (0K 3?RP) ST} (3G (ACTIVE STREL2) $T})
£3G LUPDATE-REST $7Y $7RP $74 $PREL2) $1) :
€3G (F-ALL $7Y $2RP $74) (THUSE FIND-RELS})
§SETQ $RESULTS THVALUE) (THSETG S?RHS KRESULTS)
(PRINT# (LIST S7RELZ 'SAYS $7Y $7RP 374)))
U (THAND (55 ($24 $7kP $7Y $2REL2) $T) (36 (0K $7AP) $T) (3G (ACTIVE $TRELZ) $T))
ESETQ BRESULYA THVALUE) . :
AThSETQ. $2RHS SRESULTA)
(PRINT® (LIST $2REL2 *SAYS $2A $2RP $2Y))) .
(THAND (3G (32Y $22P "S7A4 $PREL2) $T) (3G (0K $7RP) $T) (3G (ACTIVE $?REL2) 7))
§SETQ MRESULTS THYALUE) . .
(THSETQ $7RMS BRESLLT?) . : ’
. SPRINTs (LIST $PREL2 *SAVS $2Y $7RP $2A)})3
(THOR (3G (37X AND $2Y ARE T-TRANS IN $7REL2)}
. (3G {$2R5ZL2 15 T-TRANSI), ' .
§THAND (TPASVAL $7VARY (THSETQ $7R (GENSYM ISRI1) 3 . ' : —
§THOR (3G (3?2 DETERMINES $?X $?REL)) . A~
(3G (874 DETERMINES 7Y $7REL2))
(THASVAL $2VALID))
[THSETQ $2?VAR (GENSYM))
(84 182X $7R $2Y $vap))
(THCOND { {THAND {36 (374 DEVERMINES $?X ST7REL))
1$G (32A DETERMINES $7Y $7RELZ))) :)
{SA ($7X DETERMINES $7Y 37VAR}) . - . .
(3A ($2Y DETERMINES $7X $7ViRI)) . N o ')
¢ (THSUCCEED))) :
(THSETQ STPRELATION $7VAR)

-

)
{THAND (THASVAL $2X) :
{THCOND { (THAND (S 1374 7R $7Y STREL)) (3G LACTIVE $7RELI $T1)
(3G LUPCATE~REST $7A $7R $2Y SIREL] $T)
13G {F-ALL $74 $7R $7Y) (THUSE FIND~RELS))
USETQ ¥RESULTA THVALUE) {THSETQ $7RHS RRESULTH))

101

183

179
180
181
182

183
184

185
186
187
188
189
190
191
192
193
-394
195
195
197
138
199
2¢€0

(THCONSE LISP3
(THEQ (THAND

{THCD (THFIND 1 $?R {RD) ($G (PROVE $7X $2R1 $IY $2R2 S22 $TR) (THUSE PROVE<X-R-Y-R2—Zli)
n

t {THAND (3G ¢
{SETQ sRESUL

374 S2R $7Y $TREL} $T). (36 (ACTIVE STREL) 8$¥))"
TE THVALUE) .

LTHSETQ $7RHS SRESULTS))Y K .
(THSETQ $?RHS (CONS 324 $2RHS)) : .) S

(3G (0K $2R) $T)
EPRINTS (LISY $2REL *§

AYS 374 $7R 3?7V}) ’ ’ A L o

(THCOND { tTHASYAL $?X) (NOT (EQ $TX $7A}) ° .
{PRINT® (LIST *STRY TQ RELAVE®™ 82X CAND 3?7M)F)) :

[THCOND [(THAND (3G ¢

18G (UPDATE-

(3C (F-2iL s
{SETO WRESUL

$7A 379 $2X STREL2)) (3G (OK $7AP) $T) (G (ACYIVE $2REL2) sT1
REST 324 S7RP $7X $7REL2] sT) . '
24 $7RP $2X} {THUSE FIND-RELS)) .

T# THVALUE) {THSETQ $7LMS SRESULTS)

(PRINT® {LIST $2REL2 *SAYS £7A S?RP 37X)) 1}

- 6 CThAND 186G ¢
© 135 (UPDATE-
{36 (F-aALL s
{SETQ #RESUL

37X STRP $2A $IKEL2)) (3G (OK S7RP) $T) 136G {ACTYIVE $7REL 2) $T))
REST $?X $7AP $7A $IREL2) 3T} L X .

2X $2RP $2A) (THUSE FIND-RELS))

T8 THVALUE) (THSETQ $7LMS ZRESULTS)

{PRINT* (LIST $2?RELZ *SAYS $7x STRP s721})

{THAND (3G I

$S7A $7RP $2X SIREL2) $T) (3G [OX $?RP) $T) {$G UACTIVE $7REL2) 3?))

{SETQ SRESULTH THVALUE)
(THSETQ S?ULHS SRESULTA) N ;)
(PRINT® (LIST $?REL2 *SAYS $74 STRP $2x13. }

{THAND 3G
{SETQ wRESUL

(THSETQ $?LHS RRESULTSH)

{PRINT® (LIS

ITHOR (SG 1374 AND $7X ARE T-TRANS IN $?RELZ)) -

$2x 32RP $7A4 S?REL2) $T) {sC (0K $7RP) ST} ($G {ACTIVE $2REL2) T
T#. THVALUE) - . '

T S2REL2 *SAYS $2X S7RP STAIY))

{36 {$IREL2 1S T-TRANS))

(THAND (THASVAL
CTHOR (3G (574 DETERN]
(3G ($2A DETERM{

$?VAR) UTMSETQ SR {GENSYN-*ISR))}))
NES $2Y $7REL)) .
NES $2?X $?RELZ))

{THASVAL $2VALID))

(THSETQ $2VAR (GENSYM)

}

§$A {$7X $2R $?Y 37veR}) . . : . '
ITHCOND § (THAND (3G (374 DETERWINES $7¥ $7REL)) S

(3G
{84 ($7x per
{$A ($7v DET

$7A DETERMINES $7X SREL21Y)
ERMINES $7Y $2VAR))
ERNINES $2X $?VAR)) }

142

{ (THSUCCEED})) R _ o S

(THSETQ $7R $7K2)

(THSETQ $7RELATION $7vaR) P]
[THSETQ $?RES (APPEND $2LHS S7RHS))
(THRETURN $7RES)

(X R1 Y R2 Z) (PROVE®
TRACE

)

$7X $?R1 32?Y 32R2 $72) -

(PRINL® '“ATTEMPT T0 PROVE™)

(THCOND ¢ (THASVAL $7X
{THCCND ¢ (THASVAL $7R
(THCUND (THASVAL s7v
(THCOND [{THASVAL s7R
(THCOND ((THASVAL $22
(TERPRE)))

)} (PRINL® $2X)) [T (PRINIe *$7x)) ')
i} IPRINL® $?R1}) { T (PRINI® *$2R1)) §
} IPRINI® $2Y)) [T (PRINI* *$7v}))
2) IPRINL® $2R2)) (¥ (PRINI® *$7R2)} H
} IPRINI® $22)) (& T (PRINL® *322)))

{YHCONSE PROVE-X~R~Y-R2-Z (X Rl Y A2 2 REL XVAR YVAR IVAR VALID RESULT USED)
{PROVE $?X $?R1 $?2Y $7R2 $77 $2REL)
(THOQ (SETC WRESTRICI® NIL JEXTRAS NIL))

{THCHK (THNOT
{THCR (THNOT
(THOR (THANOT

{THASVAL $2X3) {THSETQ
(THASVAL $7Y)) (THSETC
[THASVAL $22)) (THSETO

$7XVAR $7x}) : :
$2YVAR $7V)) :)
$7IVAR $7Z))

(THCOND. { (THAND (3G 132X S2R1 $2Y $7R2 $?Z $IRELY) (3G (ACTIVE $?7REL} T o .
{THSETQ S7RESULT (3G ‘(F-ALL3 37X S?RI 82V $7R2 3711 (THUSE F3RELS))) ' :

ITHSETQ s?yvar {Ca2 SZRESULTYH)

{SETQ IRESULTH SIRESULT))
{ U35 (37X $7RL $72Y.32R2 $7
[PRINT® (SETQ BRESULT# TH
(SETQ BRESULTH (AEVERSE #RESULTA))
(UPCATE~-RESULT)
(SETQ #RESULTR (LEST (LIST 37X $7xvaR)

(LEIST $2¥ 32y
{LIST $72z2 s2zv
BRESULTIN)

(THFAIL THMEDREM)

(TMCONSE RELATE~X-Y-Z IX ¥ Rl R2 RE
(37X $7R1 $2Y $7R2 $22 $IRELATICN)

(THGR (THNQT
{THCR {THNOY
{THOR (THaND

(THASVAL $7R13) (THSET
(THASVAL $7R2}) (THSET
18G (4?24 $2R1 87y $712
(3G (ACTIVE $2REL} sT)
(36 (RELAVE-X-A $2X $2
(SETC #RESULTE THMVALUE
U3G {UPDATE-REST] 374

STHSETQ $21TEM 1)

- ATHSEFQ S7RHS (3G (F-4

LTHAND

ITHOR {THNQF (EC s2xve
(THOR LTHNOT (£Q $72va
[THOR (TRNOT (EQ s2vve
($G (372X $2R) s74 s7m2
$3G LACTIVE S?REL) sT)

L 37REL) (THUSE RELATE~X-Y-2})
VALUEL)))

AR} -
AR)Y

L RELZ & LMS anS RELATION ITEM VAR) VARZ RP) . o

Q $7VARL TI)
Q s7vaRr2 Ty
$7L $2MELY)

A) {THUSE R-Xx-A)})
! {THSETQ S7LHS SRESULTN)
STRL 37Y $2R2Z $22 SIREL) $Ty

LL3 $7A SRV $7y $7R2 $22) (THUSE F3RE1S)I)
ROS2X3) [THSETQ S?XVAR (CAR $2LHS))) -
R 9221} [THSETQ $2ZVAR (CAR $7RMS)})
R 7YY (THSEVQ $2YVAR [CAR $7RMS))) §
$2L $2REL)) : ’

201

239

250

242
243
254
745

248
247

28

249

250
251
252
25%

256

255
258
257

258,

25%

- 260

261
282
263
2864

- 265

2¢8
287
2¢8
289
270

2711

272
2rn
274
2715
278

- 2Tt
t278

279
2e0
281
282
283
284
283
236
237
288
259

T 290

291

t292

293
294

255
297
298
299

($G IRELATE-X-A $?Y $?A4) (THUSE R-X~A}}
(SETQ #RESULT® THVALUE) (THSETO $7LHS SRESULTE)
(THCR (THNOT (EQ $7YVAR $?Y1) {THSLTC $2YVAR ARESULT#P)
. 413G (UPCATE-RESTI $7X $7RL $74 $7RZ $72 S2RELY 8T}
(THSETQ $21TEM 2) .)
{THSETO $7RKS {$G (F-SLL3 £7X $7R1 $7A $2R2 $72) fYHYSE F3RELSI)
(THOR ETHNCT T€Q S?XVAR $2X)) LTHSETQ $7XVAR (CLR $IR1SH D)
: {THCR 1THNOT (EC $7ZVAR %2213 [THSETC $72VAR (CAR SIRHSDD))
(THAND (SG (52X $?R1 $2Y 37R2 $74 $EL)) .
3G {RCTHIVE $2REL) $T)
(3G [RE{ATE~X=A $77 $7A4) (THUSE R-X=A)}
ESETO FRCSULTE THVALUE) (THSETO $71LHS ERESULTS)
$36 tUPCATE~RESTI 42X $7RL $7Y $IRZ 2K $7REL) 1)
(YHSETQ $TITEM 3)
LYHSETD S2RHS (36 [F~ALL3 £2X $7R1 $7Y $7R2 $74) fTHUSE E3RELSY))
(THOR (THNDT (EQ $7XVLR $7X1} (THSETC $I2vAR (LaR $2RHSBID |
(THGR (THNGT (E0. $7LVAR 37233 (THYETO $7IVAR (CAR S$2emMSID)
.. {THOR {THNDT (EQ $7YVvak $7Y)) (THSETO $2YVAR (CAR $2RMSIDY)
(THAND (3G (RELAYE-X~A $7X 378} {THUSE A-X=A)) :
(SEYO ¥RESULTA THVALUZ) (THSETC $?2LHS 2RESULTS)Y ’
[THOR (TLHOT (EQ $2XVAR $7X11 [THSETO $7XVAR (CAR STLHSY))
156 (RELATE~X-Y~A. 374 $7R1 $7Y $2R3 $22} {THUSE R~X-Y~A)}
(SETQ WRESULTW THVALUE) (THSETG $7RKS SRESULTH) - :
(THSETR STITEM 1)) ’
_ITHAND (SG (RELATE=X-A 3?7Y $78) {THUSE R=-X=A1)
. (SETC PRESULTE THVALUE) (THSETG $?LMS SRESULTH)
{THOR (THNDT (EQ $7YVAR $2Y)) [THSETQ $7YVAR (CAR SLHSID)
(356 (RELATE-X-Y=~A $?X.$7R) 378 $?R2 $72) {THUSE R--¥-A))
(SETC WRESULTH THVALUE) (THSETQ $7RHS SRESULTE)
: - (THSETQ S?UTEM 21) .
ITHAND [$G (RELATE-X-& $7Z $74) (THUSE R-X-2))
© . USETQ ARESULT# THVALUE) (THSETC S7LHS ERESULTH}
{THOR (THNDT (EQ $?IVAR $21)! (IMSETC $7IVAR (CAR SILNS D)
{$6 IRELATE~X-Y=2 $7X $7RL $7Y $7A2 $78) (THUSE R-X-v=A})
{SETC #RESULTY THVALUE) ITHSETD $7aMS SRESULYS . :
. GTHSETQ $2ITEM 3))
ETHAND ($G (52X $7R1 $?Y $7REL) $T)
- (SETQ #RESULTS THVALUE)
(THSETQ SLHS 2RESULTSE}
{THSETQ $?0SED (L1ST NIL))
136 [UPDATE~REST 57X S7RL $S?Y SIREL) .$T)
. . (36 [ACTIVE S7REL) $T)
(86 ($7% $7R2 372 S2REL2) $T}
(THSETQ $2USED. LLISY NILD)
{SETQ WRESULT Y THVALUE)
($G [UPTATE-HEST $7X S7RZ $2I $TREL2} &T%
(36 (ACTIVE $7KEL2) '8V} o
[THSETQ $7RNS (LIST $7X ARESULTE})
(THOR (3G ($2X DETERMINES $2Y $7REL))
o $3G 13?X CETERMINES $77 S2REL2))
. LTHASVAL $2vaLID) 1)
| OUTHAND ($G IS7X SFRL S7¥Y $IREL) $T)
(THSETO SPUSED 1LIST NILN)
(SETQ SRESULTA THVRLUE) .
(8G (UPDAYE-AEST $7X $7RL $?Y $IREL) &T)
- [5G 1ACTIVE $7REL) $T) X
(THSETC $7L.HS SRESULTR) .
(THOR {$G (47X DETERMINES $2Y $PREL)) (THASVAL $IVALIDYS -
($G (57Y $2RZ 172 $7RCL2) $%TL . .
(THSETQ $PuUSED {LIST NiL))
{SETQ #RESULTH THVALUE)
(3G (UPDATE-REST $7Y $7R2 $22 S7RELZ) $T)
A$G (ACTIVE S?REL2) $T)
(THSETO $7RHS {LIST £2Y SRESULTNY)
fTHOR (3G {52?Y DEYERNINES $72 STYREL2Y) (THASVAL $IVALIDN)
(THSETC S?YVAR {APPEND (CAR $7L1S) (CDR (LAST $2RHSII3))

, .
{THCOND { (THNOT (THASVAL S?ITEMI} (THSUCCEED))
’ {

{EQ 711K 1) .
fTHOR ($G (S?8 DETERMINES $2X $?REL2))
(THAND [$G (357a DETERMINES $?Y $2REL))
. (3G {$S?A DETERMINES $72 $IREL)I)
(THOR -{$6 {$7REL2 IS T-TAAuS)} :
. (THAND (THASVAL $TVARL) [THSETQ £731 (GENSYM *isR)
(3G (S7A CETERMINES $?Y $2RELT)
{THASVAL $7VAR2)
(THSEYQ $7R2 {GENSYM *ISR1Y 11}
(EQ $21TEN 2) . .
ATHOR (36 (274 DETERMINES $2Y $33FL21) -
(THAND ($6 1878 CETERMINES $7% $27RELIY .

-

. UG (874 DETERMINES $72 S7THELI} § O
(THOR ($G {$?2REL2 1S F-FRLNSI}
[THAND [THASVAL 37VARL) {TRSCTO $751 (GENSYR *I1SRYE
($G (374 DETERKINES €71 $?RELY)
" {THASVAL $2VAR2) .
(THSETO $2R2 (GENSY™ #1S3}3 3})
(EQ-$21TEM 3) . -
(THOR (86 0378 DETERNINES $3Z $7RE(21} .
[IHAND ($G 1374 CETERMINES $7X $72€L))
(3G 1324 DETERWINES $7Y $S?RELI)) 3
(THOR 3G [$7REL2 IS T-TRaNS))
(THERD {THASVAL $TVAR2) .
{THSETQ $23EL2 [GENSYM TISAt) 1))

-

(THSEYQ $7A (GENSYM})

(Sh Ls7% $7R1 £?Y $7R2 $72 $7AY)

(THSETQ $7RELATION $749 .
SINSUCCEED THEOREM (APPEND $7UMS. $7RHS) -)

143

14k

. 330

300 . . S . 3

301 : - .

302

303 (THCONSE ENUMERATE-DOMAIN (X RESULT R) (ENUMERATE $7X)

306 ETHCOND ((36 (32R ENUMERATES 37X))

305 (3G (ACTIVE 37R) sT)

306 | . . - (THSETQ $2RESULY {LIST 123

307 U (3G (s7Rr P-ENUMERATES $7X)}

308 B (THSETQ s?RESULT .)

309 (THFIND ALL S7RELS (RELS) CTHAND (3G ($7RELS P~ENUMERATES $7X})

310 (36 LACTIVE $?RELS) TH)) . ~

31! ¢ (THSETQ $7RESULT T .

312 . X (THFIND ALL $7RELS (RELS A} {THAND .

313 3 . . {THGR (3G ($7X $7R $74 S7RELS))

314 : . X . (36 {324 $2R $7x S?RELSI))

315 . ’ (3G (ACTIVE $2RELS) $T)}) 1"

316 } :) :

L7 © {SETQ GRESULYS® (LIST (LIST $2X $?RESULT) {LIST S?RESULTII)

318 -) . . .

319

320

321 :

322 {THCONSE VALID-PREDICATE (R) (CX $2R)

323 ETHNOT (3G (EXTRA $7R)))

324)}

325)

328 - : -

327 CTHCONSE ACTIVE-RELATION (RY {ACTIVE $7R)

328 (THNOT (3G (37R IS INACTIVE) D)

329) - :

332 (THCONSE CHECK~RESTRICTIONS (X Y R REL NOS) - -

333 . CUPDATE~REST $7X $7R $2Y $SPREL} . : : . .

334 {THCOND [(THSETYQ $7NGS (THFIND ALL (s7X $7v $INO) (NO) (S$G ($?R IN $7REL IS_RESTRICTED,_TO s$N032Y 0
335 € (THSUCCEED THEQREM))) .)

© 33 . (THCO ¢(THAND TRACE {PRINl® *"MAXING NOTE CF RESTRICTION ON®))

337 . (PRINL® S?R)} {PRINL® *IN) (PRINL® STREL) {TERPRT)}) .

318 {THPAPC SUPDATE $2nOS) . X

339 })

340

341

342 h . . .

343 §THCONSE UPDATE (X Y NO R2 REL2 DOMAIN A REST) (s?Xx 32V $2N0)

314 {36 {$7NC RESTRICYS $700MAIN TO $2REST))

355 (THCOND € (36 1$7Xx 3?R2'32DOMAIN $ZREL2))

345 . ($G (0K $7R2) sT) . .

347 {THSETQ $72 $2X) (THSETQ $IRELZ {LIST SPREL2)D)

343 t (SG 182y s7R2 $?00MATIN $72REL2)) Lt N . .

349 . (3G (0K $7R2) $T) - .o S - .

350 ETHSETQ 37A 87Y) (THSETO $7REL2 (LIST $7REL2))) . . *

- 351 § (3G {$7X S?R2 $200MalN S7REL2) 3T)
3s2 . (SETQ YRESULT# THVALUE) (THSETQ $?REL2 PRESULTE) ~ X H
353 CTHSETQ $74 $7x1) ' L :

354 £ (SC (37Y $7R2 $70CMAIN $7REL2) $T) .

358 ’ (SETQ ARESULT# THVALUE) {THSETQ $7RELZ SRESULT#)
356 ITHSETQ 374 $2Y)) 3 .

357 (SETQ SRESTRICT# (APPEND (LIST S7REST $7A S7RELZ $700MAIN)
358 . SRESTRICTR}) -

359) - . . .
360 . - - ’
381 - . : . .) B
362 -

363 {THCONSE CHECK-3RESTRICTIONS {X RL Y R2 Z REL)

364 . (UPDATE~REST3 372X $7R1 7Y $7RZ 37?7 STIREL)

365 ($G - (UPDATE-REST $7X $7R} $7Y $7REL) 3T)

386 (THCR {THAND ([5G ($7?X $7R2 372 $7REL))

367 ($G (UPDATE-REST $7X $7R2 $72 $2REL) $7))

368 (3G (UPDATE-REST $7Y $?R2. 371 $7RLLIST))

369 } -

370

mn -

372 R

3ry ITHCOASE FIND-RELS (X R Y RES) (F=ALL $7X $7R 3$7?Vv)

ERLY LTHSETQ $7RES) . s
3715 ITHFIND ALL $7RELS IRELS) (THAND (3G 182X $7R s2v $IRELSH)
376 . . 3G 1ACTIVE $?RELS) 3T)

. S o : - UTHERASE (87X $2R 32Y S?RELS)) » =
3718 } -
3719 ITHSUCCEED THEOREM [L1ST $2RES))
3e0) : .
3a81 : . : B
3g2 . ’ o .o
333) . . .

384 [THCONSE F3RELS (X Rl Y R2 T RES) (F-ALL) $2X 37R1 s?Y $?R2)

385 ITHSETQ $?RES .

3t (THEIND ALL $7RELS {RELS) (THAND €3G {$7x $2R1 $7v $7R2 $22 $RELS))

3ar . (3G LACTIVE $2RELS) $T)))

irg) .

389 {THSUCCEED THEQREM (LIST $2RESN) . . ot
330) .

391

392
393
394
355
3%
397
353
399
- 4C0
401
462
403
404
114
4G6
407
408
4C9
%10
[33S
412
413
416
415
C 416
- 417
418
419
«20
421 .
422
423
424
425
4«26
427
428
429
430
431
432
433
| 434
435 .
436
437
438
439
%440
C 46]
442
443
K44
LT}
446
447
448
449
450
451
452
453
4564
455
456
457
458
459
450
461
462
463
£64
488
468
467
468
469
47¢
47)
472
413

§ START OF ANTECEDENT THEOREHS

(THCONSE R~x-2 IX A RP REL2 LHS) (RELATE~X~A $7X $74A)

: }THCUND L (THAND (3G ($?2x s7RP $7A $7RCL2)) (3G (GK $7RP) $T) (3C (ACTIVE $7REL2)

. €3G (UPDATE-REST $2X $7RP $74 SIREL2) T}
({THSETQ $7(HS {sG (F-ALL $2X $7RP $7A) (THMUSE FINO-RELSY}))

€ (THAND (3G 1374 $2RP s7x $PREL2}) (3G (OK $7RP) $TI (s (ACTIVE $7REL2)

[$C (UPDATE-REST $?7a $7RP $7x $TREL2) 3T)
. . (THSETQ $2LHS (3G (F-ALL $7a $2RP 32X} ITHUSE FIND-RELS)))))
[THSUCCEED THEDREM [APPEND S7LHS {LIST $2A1))
} - . .

(THCONSE R-X-Y-A {X Y Z Rl RZ RHS) (RELATE-X-Y-A" $2X $?R1 7Y $7Ré $22)

(THCOND ((THAND (SG {$7x S?R1 $7Y $2R2 372 $?RELI} (s$G {ACYIVE S7REL) $T))

(3G (UPDATE“REST3 $7X $7RY $7Y $IM2 372 $7REL) $T)

(THSETQ $2RHS ($G (F-ALL3 soX $7RL $7Y $7R2 $77) (THUSE F3RELSH))

(THOR INOT (EQ $?7x $7XVAR)}) {THSETQ |S?7XVYAR [CAR $7KHS$))) -
- fTHOR (NOT (EQ $7Z $?ZVAR}) (THSETO $7ZVAR (CAR $?RHS}))
. {THOR INOT (EQ $7Y 37YVAH)) (THSETQ $?YVAR (CAR $7RHS)})]

(SETQ -#RESULT# THVALUE)
{36 TACTIVE $?REL) sT) -
. (THSEYQ $?RHS MRESULT#))) o o
(THSUCCEED THEOREM $7RAS} - ’

(THANTE NOT-AVAILABLE (X RELS) ($2X ARE NOT AVAILABLE)
(THSETQ S$?RELS (THFIND ALL (S$7REL) (REL) (3G (S?REL CONCERNS-$7X})))
LTHMAPC *ASSERTFUN $7RELS)

3 .

{THCONSE ASSERTFUN §X1 182X) (3A (37X 1S INACTIVE)))

LTHANTE ON-STRIKE (X RESTH RELS LIST) (32X SUPPLIERS ARE ON STRIKE}

(THSETQ SIRESTH {GENSYM *RESTA}}

(THSETQ $2LIST (LIST *NOT {LIST *EQ *sSLOC LLIST *QUOTE $7X31))
fSA (STRESTH RESTRICTS SLOC TO $?LIST))

CTHSETQ S?RELS (THFINC ALL {SUPPLIES $7R $PRESTE) (R A B)

.- 418G 157?A SUPPLIES $28 $7R)} 1) .

. ATHMAPC *ASSEAT-RESTRICTION $7RELS) . :

(THSETQ $2RELS (THEIND ALL (SUPPLIES~# $7R $?RESTH} (R A -B)

$$C ($72A SUPPLIES-# $78 $7R11 1) .
CTHMAPL *ASSERT-RESTRILTION 37RELS)
(THSETC S2RELS (THFIND ALL [I15-SUPPLIED~BY $7R S7RESTS) (R A B)
. 438G (S?A IS-SUPPLIED-BY $78 $7R1))
(THMAPC VASSERT-RESTRICTION $?RELS):

(THCONSE ASSERT-RESTRICTION {RELSHIP RELS REST#} (STRELSHIP $7RELS $S7RESTH)
(SA ($?RELSHIP [N S?RELS IS_RESTRICTED_YO $7REST#)) . »

({DEFUN UPDATE-RESULT { }
(PRCG (REST TEMP) X
{COND ({NULL (SETQ REST ARESTRICTAN) {RETURN T)3 3
LOGP (SETQ TEMP (CCNS {CAR REST) fEMP))
(OR {ASSO (CAGDDR REST) 4RESULTSY
{SETQ NEXTRAZ (APPEND {LTST {LIST (CADODA RESTH)}
. . | SEXTRASY) }
(COND ((NOT IMEMBER [CADOR REST) #RESULTE))} o
$SETQ HRESULTH (APPEND #RESULTSH

(THANG [$G ($?X $?R1 $?Y $7R2 $2Z $REL) (THUSE RELATE-X~Y-1}})

(LIST {CACR REST) (CADDi REST))) l.ll

(COND { [NULL {SETQTREST (CCOOGR RESTII)
. {SETQ ERESTRICTE TEMP))
{RETUAN T))

T (GD L8CPI))

)
END CF FILE

sTi)

$T))

e

145

CAPPENNIX 10 - NEW REDUCTION ALGORI|THM 146

(DEFUN REDUCE (QUERY)

1
2 3 THIS RCUTINE WILL REDUCE & CUERY IN THE RELATIONAL CALCULUS TO
3 3 A RESPONSE RELATION. IT DOES SO DY USING THE RELATIONAL ALGESRAS
& (PROG {TARGET_LIST RESPONSE QUANTS €RESULTS CEXTRAG FRESTRILTO)
5 CAKD TRACE (PRINT “ABOUT TO RECUCE THE CUERY*})
6 USETQ TARGETY_LIST (CREATE_TARGET GUERY))
7 (SETQ QUERY (COR IMEMQ ®: GUERY)}
8 (HAPC ¥ (LAMBDA (QUANT}
) fCOND €' {MEMQ {CAR CUANT) *IE v}) .
10 (SETQ QUERY ICOR QUERY}) .
1 {SETQ QUANTS [CCKS (CENSYML 'QUANT) QUANTSY)
12 . . (SET (CAR GUANTS) (CADR GUANT!} ’ -
13 : T {PUT ICAR QUANTS) *REL (CREATE_QUANT (COR QuanTI®D 8 -
14 ¢ (UNEVAL *MAPC NIL)) § U : -
15 . Ly . ey
16 QUERYY ~ o :)
17 T USETQ RESPONSE (DIVIDE_OR_PROJCCT (DISJUNCT QUERY) QUANTSS) -
18 - (RETURN (PROJECT RESPONSE [DOMAINES RESPONSE VARGET_LISTIN) ¥ -
19 N . - . . . ¥ .
20 .
21 .
- 22 ’
- 23 (OEFUN CREATE_TARGET {QUERY) i
-7 24 .5 THIS ROUTINE WItL CREATE A LIST OF THOSE GOMAINS WHICH ARE YO
. 25 3 BE PRESENT IN THE RESPONSE RELATION.
26 . {FRCG (RESULT) -
27 {MAPC Y{LAMBOA (ELT)
28 (COND ((EQ ELT *2) (UNEVAL *mapC [Qf8}
29 - & T (SETQ RESULT (CONS ELT RESULTI}) 9
30 . B | R . .
- 31 QUERY)
32 - {RETURN (REVERSE RESULTI)
33 M) -
34 h :
s . .
386 L . . :
14 ‘(DEFUN CREATE_QUANT [QUANTS ' B ’ C
- 38 3 THIS RDUTINE TAKES A QUANTIFIER FRON THE QUERYs AND CREATES THE
39 " 5 CCRRESPONDING RELATION.
. 40 - (PRCG LRESULT) c o
R 9 (AND YRACE (PRINL *“DETERMINE THE RELATION WHICH QUANTIFIES®) |
&2 - . ' {PRINL {CAR QUANT))} (TERPRI)} S
43 . (SETO RESULT (DISJUNCT QUANT}})
46 - (PROJECT RESULT (DOMAINSS RESULT (CaR QUANT))) .
45 3] : ' !
AR . .
&7
. 48 - . : ’) T ’ . o
. T 49 {DEFUN CREATE_RELATION (PLIST) ' -, . s "
- 50 § THIS RGUTINE TAKES THE LIST THAT PLANNER RETURNS, AND CREATES . . - °
Si 3 THE RELATION WHICH IT OEFINES. -
52 §PRCG (METHOD RESULT JTERH #LIN rL24)
53 (SETQ METHOD (CAK (LAST PLISTI)S
S4 ISETC PLIST (GELETE HMETHOD PLIST))
55 {SETG RESULT (REL_DEF_BY (UNCONS METHOD KETHCD1Y)
56 §MAPC *(LAMBDA {REL} .
57 - . (COND { (ATCM REL) (SETQ JTERM REL)}
58 L . U T (SETQ REL {REL_DEF_BY REL))
.59 : - (SETQ #L14 (COMAINSS RESULT JTERM) _
€0 . L ’ . AL2A (DOMAINGS REL JTERMI)
61 o - -USETQ RESULT (JOIN RESULY
62 o . - REL
63 - . . . : *(EQUAL (ELEM T1 sL1%)
&4 (ELEN T2 #1L283))}))
65) . S :
66 - METHOD)
67 {SETQ DOMAINS (MAPCAR *CaR PLIST}}
68 - {RETURN (PROJECT RESULT (DOMAIN#S RESULT DONAINS) 3)
69 13]
‘70
‘n
T2
- ' 3 IDEFUN REL_DEF_BY (RELS)) .o
' 7% © i THIS ROUTINE TAKES A LIST OF RELATION NAKES, AND RETURNS THE RELATICN

5 WHISE DCMAINS ARE THOSE CGMMON 10 ALL RELATICNS IN RELS.
[PRCG {DUMAINS RESULT) i '
ICCND (EQ (LENGTH RELS) 1) (RETURN (CAR RELS)))1
¢ CREATE A LIST OF THE DOMAINS WHICH ALL THE -RELATIONS HAVE IN COMMOM.
{SEYQ DOMAINS {GET (CAR RELS) *OCHAINS) Y
(MAPL Y (LAMBDA (REL) K
{SETQ UOMAINS (INTERSECT DOMAINS (GET REL *DOMAINS)I)
} .
(CCR RELS))
- ISETQ RESULT {PROJECT (CAR RELS) (DOMAINAS (CAR RELS) OCNAINSIIY
(HAPC . (LAMBDA (REL} . ’ . . .
{SETQ RESULT TRUNIONS® RESULT (PROJECT REL (DQMAINFS REL DGMAINS)S))

)

- fCOR RELS}H)
(RETURN RESULT)
n

96 .

ki (DEFUN CISJUNCT (QUERY) . !

98 ¢ THIS ROUVINE WILL PROCESS =2 H 1S IN D.N.F. 1T COES THIS
59) i BY CETERMINING THE RELATE

EALH CONJUNCY, AND THEN TAKIAGC

ico - i THE UNION QF THESE RESULTZ MEON DONATNS.

cew

101

102
163
106
105
106
107
. 108
109
110
L1l
112
13

116

115

T 116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
136
135
136

137

138
139
140
141
162
143
144

145
146 . -

147
148

149 -

150
151
152
153
154
155
156
157
158
159
160
161

162

163
164
165
166
167

168

169
17¢
17
172
173
17s
175
178
177
178
1719
180
181

182
183

184
18%
186
187
188
189
190
191
192
193
194
195
198
197
198
199
200

“{PRGG (RELS)
{COND € €OR (NULL (CDR QUERY}) (EQ (CADR QUERY) *£1)
{RETURN (CCNJUNCT QUERY)J))
{KaPC ¢ (LANBDA {C)
1GR {EQ C *V)
(SETQ RELS [CONS [CCMJUNCT C€). RELSI))
)
] © QUERY)
(REL_DEF_BY RELS)
%)

(DEFUN CONJUNCT (QUERY)
THIS RDUTINE WILL RETURN THE RELATION CEFINED BY A CONJUNCYTICN
IN THE CUERY. ALL RELATIONAL TERMS ARE PASSED TO PLANNER AS
THGOALS, AND THE CCRRESPONDING RELATIONS ARE CRESTEOD. .
YHESE ARE THEN SUBJECTED TG THE RESTRICTIONS IN THE CONJUNCTION,
WIiTH THE FINAL RESULTS BEING JOINED YOGETHER ON ElfH’R COMACN
OCMAINS, OR AS SPECIFIED BY THE JOIN TERPKS,
{PRCG (FNR KELS JYERMS R FLAG RELSP RELSN DO”AINS)
(MAPC '(LAMBDA {RELTERM) H -
$COND t LEQ RELTERM *g&) NIL)
((EQ RELTERM *~) (SETQ FLAG T))
((ATOA RELTERM) (TRVAL (LIST *$G LLIST 'ENUHERAYE RELTERM) 'ST)
T (LLST NIL NXL))I
((FUNCTIONP {CAR RELTERM}}
{UNEVAL *MAPC NIL))
(.7 (THVAL [LIST *3G (CONS *PROVE® RELYERN) 'ST'
. {LIST NIL NILDY D))
{OR {NULL ¥RESTRICT#) {SETQ QUERY [APPEND CUERY ORESTRICT#))}
-{SETQ QUERY {(CDR CQUERY}), ’
(OR {LQ RELTERM *C) {EC RELTYERM ¢~}
(SETQ RELS (CON3 (CREATE_RELATION JRESULTS) RELS))
(COND -t [AND FLAG {NDT (EQ MELTERN *-~}1) (PUT {(CAR RELS) 'NEGATED 12]
{SETQ FLAG NIL}))
{SETQ #RESTRICTE NIL FEXTRAS NIL)

s 4 00 0s ws an

} .
QUERY)
GO THROUGH ALL THE RESTRICTICN AND JOIN TERMS, APPLYING YHE RESTRICTIONS
TO YHE APPROPRIATE RELATIONS, AND SAVING THE JCIN TERMS, ALONG WITH
THE NAMES OF THE DOMAINS THEY CONTAIN.
{NAPC *(LAMBDA (TERM)
(CCND { (EQ TERM *£) NIL)
{ [ATDM (SETQ DCHAINS (DGMAXNS IN TERNI)}
{MAPC *{LAMBDA (REL)
[AND (MEMQ DOMAINS [GET REL DOMAINS))
{SETQ R (RESTRICT REL (FIXPRED DOMAINS TERM REL *TLIN}
{PUT REL *TUPLES (GET R *TUPLES))
(PUT REL “WTUPLES {GET R Y4TUPLES))
{AND TRACE [PRINL *KESTRICT} (PRINL REL) (PRINDL *TO)
: (PRIN1 TERM) ernan)) H

]
RELS))
(T (SEYQ JTERMS. (CONS (LIST TERM DOMAINS) JTERMSY) 1}

OUERV’ B i

$ GLUE ALL THE RESULTS TQGETHER ~ JOIN ALL RELATICNS WHICH HUST BE
i JOINED USING JOIN TERMS.

{SETC RELS {JCIN_WJIT RELS JTERNS))
$ TAKE THE UNION OF ALL NON-NEGATED RELATIDNS

{MAPC *{LAMBCA (R)

(COND { [GET R *NEGATED) {SETQ RELSN {CCNS R RELSN)))
{7 ISETQ RELSP (CONS R RELSP)) 1)

)
RELS)
(AND TRACE (PRINL ‘“TAKE THE UNIGN OF RELATIONS™) (PRINL RELSPI L{TERPRIY)
§SETQ RELSP {JOIN_RELS RELSP))
{ TAKE THE DIFFERENCE BETWEEN THIS RELAT[GN AND EACH OF THE NEGATED
3 RELATICNS..
{HAPC *({LAHMBDA {RN)
{AND TRACE {PRINL ""THE DIFFERENCE BETWEEN™) {(PRINL RELSP)
{PRIN]1 *AND) [PRINL AN) (TERPR1})
{SETQ OCMATNS (INTERSECT [GET RELSP YOOMAINS) {GET RN ¢DOMALINS)))
[SETQ RELS (ROIFF (PROJECT RELSP {DOMAINSS RELSP DCMAINS))
- (PROJEZCT RN {DOMAINIS RN COMAINSIY 1)
(SETQ RELSP (JOIN_RELS (LISY RELS? RELSHI)
) .

RELSN)
{RETURN RELSP)
Y -

(DEFUV DIVICE_OR_PROJECT (REL QUANTS)
3 THIS ROUTINE WILL PROCESS THE QUANTIFIERS FRCM RIGHT TD LEFT,
3 DIVIDING OR PROJECTING THE CURRENT RELATION BY THE QUANTIFIED
3 VARIABLE. - 4
(PRCG (VAR DOMAINS)
(HABC *{LAMBOA 1Q)
[SETQ VAR (GET @ *REL))
(SETQ UGMAINS (GET VAR 'DOMAINS))
T(COND T tEQ Q *S)

{COND { TVRACE (PR[dl *"PROJECT THE RESPONSE RELATION OM ALL FIELDS EXCEPT™)

(PRINL (EVAL Q)3 (TERPRIN}
[BRER SR
{SETO REL {PROJECT REL (DOMAINYS REL (SETDIF {CGET REL *DOMAINS)

(GET VAR *COMAINS)II) I})

{ T ISETQ REL {ROIVIOE REL VAR (UOMAINYS REL DOMAINS)
. UGENLIEST OOMAINS) L)

147

201
2C2
203
204
205
208
207
208
209
210
21t
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

.27

228
229
230
231
232
233
234
235
236
237

238

239
240
241
242
263
244
245
246
247
248
249
250
251
252
253

255
255
257
258
259
260

261

262
263
254
268
268
287
268
. 269
270
271
212
273
274
215
276
217
- 218
219
280
281
282

283

284
285
286
€7
288
289
290
291
292
293
294
295
256
297
298
299

(CEFUN FIXPRED (DOMAIN JTERM REL TX}

(AND YRACE (PRINI *"DIVIDE THE RESPONSE RELATION 8y=)

(PRINL (Evatl ¢)) LTERPRI)))

.
QUANTS)
(RETURN REL}
}

{DEFUN JOIN_WJT (RELS JYERHS)

3 UNDER CRITERIGN SPECIFIED BY JTERMS.
IT RETURNS A REW LIST OF THE CURRENT RELATICNS
(PRCG (R1 R2 R}
(HAPC. * (LAMBDA (JTERM)
{MAPC *(LAMBDA (R}
{COND { 1GET R *NEGATED) {UNEVAL *MAPC NIL))
§ (MEMQ (CAADR JTERM) (GET R TOUMAINS})
{SETQ R1 R}} }
f (MEMQ (CADADR JTERH) (GET R *DOMAINS))
{SETQ R2Z R))) :
]

RELS)

USETQ JTER™ (FIXPRED ICAR DOMAINS) lFXXPREd (CADR DOMAINS) JTERM R2 ‘T2) RL *7}1))

{5ETC R (JOIN Rl RZ JTERM))
(SETQ RELS (DELETE R) [DELETE R2 RELSY)
. RELS (CONS R RELS))

]
o JTERNS)
{RETURN RELS)
1

(DEFUN JOIN_RELS (RELS) . . Co -
3 THIS ROUTINE WILL TAKE A LIST OF RELATICNS AND JOIN THEAM
"3 ON COMMON DOMAINS. :
{PRCG (REL DOMAINS sL1# .28}
§SETQ REL {UNCONS RELS RELS))
[AND {NULL RELS) {RETURN REL))
(MAPL *(L2MBDA (R)

(AND {SETC DOMAINS (INTERSECT {GET R *DUMAINS) (GET REL *DOMAINS}I))

(SETQ SLL# (DOMAINHS REL OCrAINS))
(SETQ #L2¥ (DOMAINAS R OCFAINSY)

ISETQ REL (JOIN REL R S{EGUAL (ELEM TI PL13) (ELEM YZ"LZ.)')’

INULL (SETO RELS {DELETE R RELS))) {RETURN REL)
| 2] :

. RELS . .
"€JOTN_RELS (CONS REL RELS}}
) .

{DEFUN DONAINGS (RELATION L_OF_DONAINS)

8 THIS ROUTINE WILL RETURN;THE PUSITIONS EACH OF THE bO&AlNS IN L_OF_COMAINS

"3 DCCUPIES IN RELATION.
{PRCG (DCMAINS)

[AND (ATCM L_OF_DOMAINS) (SETQ L_OF_DOMAINS (LIST L_OF_DOHMAINS)))

ISETQ DOKAINS (GET RELATION *DOMAINS))
[MAPCAR *(LAMBOA (DOMAIN)

. fADD1 (SUB (LENGTH DOMAINS)
(LENGTH (MEMQ DOMAIN DOMAINS)) 3}

)
L_OF_DOMAINS)
" o

(DEFUN INTERSECT (L1 L2}

i THIS PROCEDURE RETURNS THE INTERSECTION OF LISTS L1 AND L2.
{PRCC (RESULT))
{MAPC *{{LANBDA (EL) .
: TAND [MEMBER E1 L2) (NOT [MEMBER Ei RESULT))
{SETQ RESULT (CONS El RESULTI))

(%)
(RETURN RESULT)
L2 .

8 THIS ROUTINE wILL CHANGE ALL GCCURRENCES OF DOMAIN IN JTERN

TG ELEM TX N) , WHERE DOMAIN 1§ IN THE NTH POSITION OF Rel.
- 1COPY JTERN OCMAIN (LIST *ELEM TX (CAR (DOMAINAS -REL DINAINI)Y
) . .

{DEFUN COMAINS_IN (FUN)
3 THIS ROUTINE WILL RETUAN EITHER A LIST GF ALL COMAIN YAR[TABLES
i IN THE FUNCTION, CR THE NAME OF THE VARIABLE IN THE FUNCTIGN
i IF THERE IS ONLY ONE.
{PRECG (4NS)
(OCMAINS_IN® FuN) X .
(COND | (EQ (LENGTH ANS] ‘L) (RETURN (CAR ANS)))
U T (RETURN ANS)}))
2]

THIS ROUTINE WILL JOIN ALL RELATICNS IN RELS WHICH CAN BE JDINZD

148

B2

. 149
¥
300 o : . ’ S . .
301 . . o o : -
302 (CEFUN COMAINS_IN® (FUN) . :
303 tPRCG & }
304 ©LCOND & (CR (NULL FUN} (EC (CAR FUN) *CUGTE)}
305 " LRETURN NIL1) . .
308 U (ATOM (CAR FUNI) . . i S -
307 Co LOR (NUMBERP {TAR FUN)) [FUNCTICNP (CAR FUN)) . - . : ' - R
308 (SETQ ANS (CONS (CAR FUN) ANS)) 1) : ’ . : ’ :
3¢9 . { ¥ (DOMAINS_IN® (CAR FUNI1))
310 ({DDHAINS_IN® (COR FUN)) . :
311 »o
312
313 C ’ R e
314 : : e - o : v
315 (DEFUN FUNCTIONP (FUN) - o oo - . : .
o3 $ THIS ROUTINE RETURNS T IF FUN IS A LISP Fuucnnn. : o : -
317 tOR (GET FUN YEXPR) -
318 . _ LGET FUN *SUBR)
319 {GET FUN *FSUBR)) -
320) _
END CF FILE -
,
i .
R ;
o

WO N WA

PPENDIX 11 - AUXILIARY ROUTIMES

QUERY

{DEFUN CUERY {

READ - REPLY tOOP

(PRCG (RR TRACE)

[PRINT *=TRACE ON, OR OFF7%)

{OR (EQUAL (READ) ‘OFF) (SETQ TRACE T))

RD (SETQ RR (READ))

LCOND | (£Q RR '#END) (RETUAN STHANXS))
{NOT (MEMG *: RR}) B
(THVAL (LIST +sa RR '3T) LLIST NIL NIL))
(PRINT smp.k.») (o RD}) :
(T (SETC RR {REDUCE RRY)) }))
ICOND ((ZEROP (GET RR "STUPLES)) (PRINT *ENONE."})
T (PRINTREL RR)})

t
{GO RD)

DEFRELS (DEFINE RELATIONS)

IN INTERHAL FORMAT:
THE RELATION NAME HAS 3 PROPERTIES ON ITS P-LIST:

1S DEFINED.

#TUPLES ~ THE NUMBER OFf TUPLES CURRENTLY IN THE RELATION.
ON THE P-LIST GF & TUPLE NAME, UNDER THE FLAG "DATA", IS THE
ACTUAL TuPLE,

(DEFUN CEFRELS FEXPR (FILE)

(APPLYL *GPEN (L]ST 'RELINPUTY 255 (CaAR FILE}S)

(OPEN (BUFFER 255))

(PRCG (RELATION RNAME TNAME) .

RD {CGND t (EQ (SETQ RELATION (READ RELINPUT)) *#END)
(RETURN NIL))) .
(SETQ HNAME (UNCONS RELATICN RELATION))
(PUT RANAME #TUPLES o)
[PUT RNAME SpOMAINS (CAR RELATIONY)
{MAPC *iLaMaDA {TUPLE}
{ACOTUPLE TUPLE RNAME) }
(CDR RELATICN})

60 wi 0 w40 ws 40 w0 ge

{GO RD)

PRINTREL
PRINTS A GIVEN RELATION

{DEFUN PRINTREL (RELATION) .
(PROG [SPACES CENTRES)
(TERPR]) . .
(COND { INULL (SETQ CENTRES {GET RELATION *CENTRES)))
(SETQ CENTRES (FIND_CEKTRES RELATICN)) 1 2]

{PRINL RELATION)

(PRINT *%)w) (TgRpRI)
(MAPC *(LAMBDA {TUPLE)
{PRINT_TUPLE (GET ‘TUPLE *DATA) CENTRES)
(TERPRI))
" (REVERSE (GET RELATION *TUPLES) ')
{RETURN RELATION})

(PRINL *®(%) (PRINT_TUPLE IGET RELATION *DOMAINS) CENTRES)

{DEFUN PRINT_TUPLE (TUPLE CENTRES)"

§ THIS ROUTINE WILL PRINT A TUPLE, WITH EACH ELEMENT BEING ©

s CENTRED ABOUT.THE POSITION GIVEN IN FME LIST CENTRES
{PRCG (L LEN) - .
IMAPC *{LANBDA (NaME POS) -
(COND { (NUMBERP NAME) (SETQ LEN (NLEN NAME))})
. § USETQ LEN (PLEN NAME)))]
{TAB (SUD POS (Fix fOIVICE LEN 210
{PRINL NAME) -

}
TUPLE CENTRES)
1 2]

THIS ROUTINE WILL AcCept INPUT FROM THE USER. THE INPUT CAN EITHER
BE A CUERY, OR A PIECE OF INFORMATION TO BE ACDED TG THE. SEMANTIC MODEL.

DEFRELS READS 1IN RELATIONS FRON THE FILE "FILE®, AND STORES THEN

COMAINS= A LIST OF THE DOMAIN NAMES UPON WHICH THE RELATION

TUPLES = A LIST OF THE TUPLE NAMES WHICH OCCuR IN . THE RELATION,

150

151

86 .
a7 {DEFUN FIND_CENTRES [RELATION) :
88 3 THIS ROUTINE WILL CREATE A LIST WHICH CONTAINS THE PRINT 7OSITION
69 § WHERE EACH DOMAIN IN THE RELATIGN SHOULD BE CENTRED. . -
S0 - APRCC (TEMP LEN CENTRE) : o .
91 - ACOND & INULL (GET RELATICN *CENTRES)) : -
2. . . {PUT RELATICN *CENTRES (MAPCAR *(LAMBDA (X) O) (GET RELATION *DOMAINSII) §)) -
93 . (SETQ CENTRE (GET RELATION 'CENTRESS) . : . : ’
9% . (MAPC *{LAKSDA (TUPLE)
95 . YOR {LISTP TUPLL) (SEYQ TUPLE (GET TUPLE *DATAI))
96 {SETQ TEWP CENTRES :
97 (MAPC *{LAMBDA (ELT) : e
98 ICOND | (NUM3ERP ELT) TSETQ LEN (NLEN ELT))) :
99 ’ § ISETQ LEN (PLEN ELTI)Y § - - : *
1co L LAND. {GREATERP LEN (CAR TEHP)) (RPLACA TEMP LEN)) - |
101 ‘ : (SETQ TEMP (COR TEMP)) R o
102 ’ S -
103 TUPLE) : ;
104 .) : ‘ . : S
105 VAPPEND (LIST IGET RELATION *DOMAINS)) {GET RELATION *TUPLES?) r -
1C5 {PUT RELATION *CENTRES (UPCATE_CENTRES RELATICN CENTRE)) - s
107 b} : : : ’ :
108 : : : -
1c9 .
110 . -
in VOEFUN UPDATE_CENTRES (RELATIGN CENTARES)
112 ? THIS ROUTINE RILL CHANGE THE LIST OF MAXINUN DOMAIN SIZES
113 5 TG A LIST OF CENTRES FOR -EACH DCFAIN . L
114 (PRCG (SUM LIST) '
115 (SETQ SUM (DD & (PLEN RELATION))}
ks " 4MAPC Y (LAMBDA (L) ¥
17 -4SETO LIST {CONS (ADD (FIX {DIVIDE € 233 1 SUM) LIST})
118 : (SETC SUM (ADD SUN C'2)) . .)
119 :) L _ . -
120 - CENTRES) -
121 © (RETURN (REVERSE LIST})
122 - 9 .
123 -
124
125 .
126 (DEFUN NLEN (NQ)
127 §_THIS ROUTINE RETURNS THE PRINT LENGTH OF A NUMBER
128 (TAB 1 BUFFER)
- 129 - UPRINI NO BUFFER 21 :
136 (PLEN BUFFER)™™"~~ . -
131 } . - :
132
133
134 -
135 GENSYNL :))
136 " 3 LIKE GENSYM, EXCEPT THHT NUMBERING STARTS AT 1 FOR EACH DIFFERENT -
137 i CHARACTER STRING C. C : -
138 . : ’ ..
139
140 {DEFUN CENSYML (C} - :
141 (CONC { {NULL {GET € *GS#)}) (PUT C %CS# 01)) ,
- 162 (IAPLODEL C {PUT C *GS4 (ADDY (GET C *GSs}i) §
143) -)
144
‘185
l‘b - . . . -
147 ¢ IMPLCOEL i : St
148 . 3 GIVEN TWO ATOMS A AND B, RETURNS THE ATOM AB. . . :
149 :
150
151 (DEFUK IMPLCDEL (A 8)
152 © UT4B 1 IMPLGOE3UFFER)
153 {PRIN1 A IMPLOUE3UFFER 2)
154 (PRINL B IMPLODEBUFFER 2)
155 " (READ IMPLGDEBUFFER)) ;
156) . . :
157 o : : - .
158
159 -
160
161
162 $ PRINT®
163 3 THIS ROUTINE WILL PRINT THE ARGUMENT $ONLY® If TRACE 1§ ON. . -
154 . : 2
165 (CEFUN PRINT® (ExP) .) L.
166 (CR IAOT FRACE) [PRINT EXP)} . . .
167) . - . s s
168 N
169 .
170
171 3 PRIN®
172 # THIS ROUTINE WILL CALL PRINL ONLY IF YRACE 1§ NIL.
173 . *
174 {CEFUN PRINL* (EXP)
175 {CR. [HOT TRACE} (PRINL EXP)) -

176 }
END CF FILE

