
Schema Reintegration Using Generic
Schema Manipulation Operators

by

X u n Sun

B . S c , Concordia University, 2004
B . E . , J i l i n University, 1997

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of Br i t i sh Columbia

September, 2006

© X u n Sun 2006

Abstract

Schemas are very likely to be changed from time to time because of re

quirement changes, design revisions, database migration and such scenarios.

Especially in a multi-user environment, schemas may be used by different

groups or people and are modified to different versions. A t some point in

time, it is necessary to reintegrate the different versions and have a final

unique version of the schema. Basically, the problem of creating the unique

version is to merge the modified schemas. Previous works on schema merg

ing describe how to merge two schemas given the mapping between them. In

those works, the two schemas need not come from a common source schema.

In fact, the original schema is often unavailable. However, in our scenario,

we have the original schema, and we use it in decision-making. This s impli

fies what might otherwise be a complex matching procedure. We attempt

to find a generic solution to the schema reintegration problem (i.e., when

the original schema is present).

In this thesis, we created a framework that implemented the schema re

integration algorithms using generic model management operators. These

generic operators have been widely mentioned and explained abstractly in

many previous papers. Here we have implemented each operator required,

which necessitated formally defining and creating the algorithm for each

operator used for this specific schema re-integration purpose. Our contri

butions are: (a) determining that the generic operators can be used for

schema reintegration, and (b) designing, implementing, and analyzing the

model management operators used in details.

Table of Contents

Abstract "

Table of Contents iv

List of Tables v i i i

List of Figures ix

Acknowledgements x i i i

1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 5

1.3 Contributions . . 5

1.4 Thesis Outline 6

2 Background 7

2.1 Generic Model Management 7

2.1.1 Model 8

2.1.2 Mapping 11

2.1.3 The Inclusion Rules . 1 3

2.1 A Generic Model Management Operators 16

2.2 Generic Merge 18

2.2.1 Rondo 19

2.3 Three-Way-Merge 20

2.4 Summary ,28

3 Operators 30

3.1 Operator Merge 30

3.1.1 Input 31

3.1.2 Output 32

3.1.3 The Merge Algorithm 32

3.2 Operator Diff 36

3.2.1 Input 37

3.2.2 Output 39

3.2.3 Algorithm 41

3.2.4 Related Work 43

3.3 Operator range 46

3.3.1 Input • 46

3.3.2 Output 46

3.3.3 Algor i thm , 47

3.3.4 Related Work 48

3.4 Operator Apply 49

3.4.1 Apply 50

3.4.2 Function T in Reintegration . 51

3.4.3 Related Work 53

. 3.5 Operator Match 54

3.5.1 Input 54

3.5.2 Output 55

3.5.3 Algor i thm 55

3.5.4 Related Work 59

3.6 Summary 59

4 Support Elements 60

4.1 Definition 62

4.2 Usabil ity of Support Elements 63

4.3 Support Elements Adding Algorithms 65

4.3.1 Algor i thm to F i n d Which Elements Need Support . . 66

4.3.2 E N S Representatives 68

4.3.3 Support Elements Adding Engine and Algorithms . . 69

4.4 Discussion 78

4.4.1 The Root Element 78

4.4.2 Support Elements in Input 79

5 Reintegration System 80

5.1 Reintegration (Three-Way-Merge) Algor i thm • . . 80

5.2 Discussion of Problems in Reintegration System . 82

5.2.1 N u l l Model 82

5.2.2 Support Elements in Input 84

5.2.3 Model Validation 86

5.3 Summary 87

6 Experiment 89

6.1 Operator Experiments 91

6.2 Support Element Engine Experiments 92

6.3 Reintegration System Experiments . . 94

7 Conclusion and Future Work 98

7.1 Conclusion 98

7.2 Future Work 99

Bibliography 101

A Reintegration System Example 104

List of Tables

2.1 Three-Way-Merge Rules 22

2.2 Three-Way-Merge Example 27

3.1 Element Correspondence for Each Operator 57

6.1 Experiments Performed for Each Operator 92

List of Figures

2.1 Different relationship kinds 9

2.2 Model Product 10

2.3 ModelMapping Product 13

2.4 Illegal Model 13

2.5 Morphism in Rondo 20

2.6 Three-Way-Merge Example [14] 21

2.7 Three-Way-Merge Result 21

3.1 Mapping between Model A and Model B 31

3.2 Merge result of Model A , Model B and Mapping 31

3.3 A Mapping between Model A and Mode l B, Model A is the

Preferred Model 34

3.4 Mapping between Model O and Model B. Element c is not

mapped 37

3.5 Diff result from Figure 3.4, assuming that O is the base

model. Element a is shaded as support element 38

4.1 Support Elements Mapping Example 60

4.2 The Diff result in Figure 4.1 wi th the support elements needed

to make it a valid model. Support elements are visualized as

shaded nodes throughout this thesis 63

4.3 Mapping between a Model wi th a Support Element and a

Normal , Element 65

4.4 Elements Need Support & Representatives 68

4.5 Greedy Algorithm Example 76

4.6 Redundancy in Greedy Algorithm: B — E are candidate sup

port elements. The Greedy Algor i thm wi l l add al l of them as

support elements, but D is not necessary 76

5.1 Support element c in Input model, which is not needed in

Merge result 85

6.1 Model Reintegration System 90

A . l The Original Model MO 105

A.2 The First Modified Model MA 106

A .3 The Second Modified Model MB 107

A.4 The Mapping MapoA between Model MO and Model MA . 108

A.5 The Mapping MapoB between Model MO and Model MB . 109

A.6 The Model Map'OA from Apply(Map0A) . 1 1 0

A . 7 The Model Map'OB from Apply(Map0B) H I

A .8 The Model ChangedA 112

A .9 The Model ChangedB (A N U L L model) 113

A . 10 The Mapping MapchangedBChangedA between Models ChangedB

and ChangedA 114

A . 11 The Mapping MapchangedAChangedB between Models Changed A

and ChangedB 115

A.12 The Difference Model A' between Models ChangedA and

ChangedB 116

A.13 The Difference Model B' between Models ChangedB and

ChangedA 117

A . 14 The Mapping MapAB between Models MA and MB 118

A . 15 The Merged Model G from Models MA and MB 119

A . 16 The Mapping MapoA' between Models G and A' 120

A . 17 The Merged Model GA' from Models G and A' 121

A . 18 The Mapping MapcA'B' between Models GA' and B' 122

A . 19 The Merged Model GAB from Models GA' and B' 123

A.20 The Model DeletedA Showing The Difference between Models

MO and MA 124

A.21 The Model Deleteds Showing The Difference between Models

MO and MB 125

A.22 The Mapping Model MapoACB between Models DeletedA

and ChangedB 126

A.23 The Mapping Model MapoBCA between Models Deleteds

and ChangedA 127

A.24 The Difference Model ShouldDeleteA between DeletedA and

Changeds 128

A.25 The Difference Model ShouldDeleteB between Deleteds and

Changed A 129

A.26 The Mapping Model between Models GAB and ShouldDeleteA 130

A.27 The Difference Model GABSDA between Models GAB and

ShouldDeleteA 131

A.28 The Mapping Model between Model GABSDA and Model

ShouldDeleteB 132

A.29 The F i n a l Result Model Result, Difference between Models

GABSDA and ShouldDeleteB 133

)

Acknowledgements

I would like to thank Rachel A . Pottinger for being my supervisor and

supporting me on finishing this thesis. She provided great guidance and

help on my work. I would like to thank Dr . E d w i n M . K n o r r for being my

second reader and giving me great comments on this thesis.

I would like also to thank all the people at database management lab and

the University of Br i t i sh Columbia. I have really enjoyed the time working

with them. Finally, I would like to thank my wife Huifen L i , my daughter

Cecil ia Sun and all my family members for their supports. I couldn't have

accomplished this thesis without them.

Chapter 1

Introduction

1.1 M o t i v a t i o n

Database schemas are frequently modified and updated because of require

ment changes, design revision, environment changes, customers' require

ments changes, project re-engineering, etc. Additionally, in a teamwork

environment, different teams may work remotely from each other and would

also potentially make changes on database schema structures. Such changes

can cause problems for al l users of the database. Let's consider the following

scenario:

Company O has designed a product management system that includes

a schema named "product" with the following data definition:

C R E A T E T A B L E P R O D U C T S (

ProductID int P R I M A R Y K E Y ,

ProductName string,

Brand string,

Quantity real,

UnitPr ice int

This schema is used by two groups, A and B , separately to develop the

system. Producto is the original schema and Product A and Product B are

the schemas as modified by groups A and B respectively. Dur ing the de

velopment, each group makes a lot of changes, both on the design of the

system and the database. Comparing with Producto,the main differences

in schema Product A is that the property Brand has been deleted:

C R E A T E T A B L E P R O D U C T S (

ProductID int P R I M A R Y K E Y ,

ProductName string,

Quantity real,

UnitPr ice int

);

While , in schema Products, a new property Discount has been added.

C R E A T E T A B L E P R O D U C T S (

ProductID int P R I M A R Y K E Y ,

ProductName string,

Brand string,

Quantity real,

UnitPr ice int,

Discount real

);

The changes made by groups A and B fit their local needs. After some

time, however, the two parts need to be integrated. Whi le the schema and

data from each group are very similar, they cannot be reintegrated easily.

Company O has the original schema Producto, which is a baseline to com

pare the changes that each subsidiary has made and match the components

that are from the original one. Based on this init ial schema, we expect to

generate the following schema as the integration result:

C R E A T E T A B L E P R O D U C T S (

ProductID int P R I M A R Y K E Y ,

ProductName string,

Quantity real,

UnitPr ice int,

Discount real

);

Previous research shows that in reintegration scenarios the goal is to keep

all changes [14]. Here the attribute Brand has been deleted as in schema A ;

it should not appear in the final version schema. Because the new attribute

"Discount" appears in the version B , it is believed that the new property is

valuable and should be added in the final version.

\

Reintegration has been researched in various scenarios before. In [12], the

authors show a flexible object merging framework that defines the merging

policy targeting to different applications and the context of the collabora

tive activities, so that the reintegration process can be done in automatic,

semi-automatic, and interactive ways. It also tries to be generic to suit

objects wi th arbitrary structure and semantics. In [2], the authors give a

framework describing how to synchronize file systems. It focuses on how to

resolve update conflicts.

Reintegrating a small number of small schemas can be done manually.

However, if the schemas are more complicated and there are many schemas,

it is not efficient and productive to do it manually. It is necessary to have

a way to solve it programmatically. Some previous works, such as [11], can

do reintegrations programmatically. However, these solutions have to be

reprogrammed for each data model, and the operations that are done are

not always generalizable to other schema operations.

Schema management can usually be abstracted as Model Management

[4][1]. A Model is not bounded to any kind of specific schema, but is con

sidered to be.a general form for schema integration. In Model Management,

we use generic model management operators to manipulate the models. It

wi l l be more valuable to use a generic way to achieve the reintegration goal,

so that it can also be used in other scenarios that can also be represented by

model management, such as reintegrating different versions of U M L ' s or E R

diagrams. Frameworks and algorithms developed for Model Management

are generic and can be applied to a variety of data models.

1.2 P r o b l e m Statement

In this thesis we focus on analyzing and presenting the problem of reintegra

tion of models. Given an original model MO and two modification versions

MA and MB, where MA and MB are generated from MO by using model

management operators which provide History properties showing the map

pings from MA and MB to MO, we generate an integrated model MG that

takes into consideration the changes made in both MA and MB. In [14],

the authors have given an algorithm for the steps necessary to do wi th such

reintegration. Here we solve the problem programmatically by analyzing

and implementing the details of each operator and solving the conflicts that

arise in each operator and each step.

1.3 Contributions

We have the following contributions in this thesis:

• We analyzed the generic model management operators that are used

in the schema reintegration system and gave details on the algorithms

for implementation.

• We discussed the details of "Support Element" that are used to help

the integrity of models. We give three algorithms -to select support

elements based on different expectations. The "Support Element E n

gine" is generic and can be used by any model management operator.

• We fully designed and implemented the Three-Way-Merge system that

can be used for Schema Reintegration purposes.

1.4 Thesis Outl ine

The remainder of this thesis is organized as follows: Chapter 2 gives back

ground knowledge on generic model management, generic merge and the

three-way-merge algorithm. In Chapter 4, we discuss the support elements

and the algorithms used to add support elements to models. In Chapter

3, the operators used in the reintegration system are formally defined and

analyzed, including Diff, Range, Apply and Match. In Chapter 5, the

Three-Way-Merge algorithm and the Schema Reintegration system are ex

plained. In Chapter 7, we talk about the experiments and give conclusions

and suggestions for future work.

Chapter 2

Background

In this chapter, we describe previous works on generic model management,

model manipulation operators and merging methods.

2.1 Generic M o d e l Management

There are many different kinds of schemas: relational, X M L , etc. Schema

manipulations to schemas share many commonalities to problems related

to objects and relationships operations outside of databases. For example,

U M L , E R diagrams, file systems and ontologies also present a k ind of schema

structure that can be used to generate different kinds of data models and

designs. When there are different modified versions of these kinds of objects,

the reintegration process is very similar to the problem of database schema

reintegration. The issues all relate to the objects and the mappings between

them, and how to resolve conflicts and keep updates from different versions.

If the research of schema manipulation is only restricted to database

schema, it would lose the potential to solve similar problems, such as those

of E R and the other models mentioned above. Therefore, previous research

of Schema Manipulat ion has been abstracted to a higher level: the Model

level [1] [5] [4]. A Model is denned as a complex application artifact. It is

usually represented as a directed graph and it can abstract and represent

many applications, including relational schemas, X M L D T D s , ontologies,

U M L s , file systems, and network flows. This abstraction generates an 0 0

like style of data model and platform. Therefore, it can utilize some benefits

of 0 0 design and it is generic enough to be applied to any specific data

model, including schema management.

2.1.1 M o d e l

Models [5] [14] [11] can be represented with graphs. The graph is composed

of elements and relationships between these elements.

Each element contains a set of properties, which describe the detail of

the element, such as the name, constraints, or any needed information of

these properties. Each element has a required property Name, ID and

History. Property Name is used to represent the name of the element. ID

is used to uniquely identify the element. The History property records the

last operations to the element. In other words, it shows where and how this

element is generated. For example, one element may have a history property

of: "diff(300012)", meaning this element is generated by applying the diff

operator to the first element with ID: 300012. Note that the element must

have another unique ID different from 300012.

A relationship is a binary link between two elements and must be one

of following five types: Associates, Contains, Has-A, Is-A, and Type-Of.

Associates Contains Has-a ls*a Type-of

Figure 2.1: Different relationship kinds

These five relationship types are illustrated in Figure 2.1. The relationship

types and Figure 2.1 come from [14]. More specifically, the semantics of the

relationship types are as follows:

1. Associate, A(x,y), is a weak relationship. It simply expresses that if

x Associate y, then they have a very weak relationship; it implies no

restrictions to the other as shown in Figure 2.1(a).

2. Contains, C(x,y), means x Contains y. It shows a container - x

and containee - y relationship. The existence of the containee relies

on the existence of the container. For example, in Figure 2.1(b), if

table is deleted, then attribute Bob cannot be kept either. Contains

is transitive and acyclic.

3. Has-a, H(x,y), means x Has-a sub-component y. It is similar to

Contains in the sense that it also expresses the hierarchy of com

ponent vs. sub-component. The difference is that it can be cyclic and

the sub-component does not need to be deleted when the component

Figure 2.2: Model Product

is deleted. For example, in Figure 2.1(c), if the relation deletes the

key, the column can st i l l exist in the relation.

4. Is-a, I(x,y), means x Is-a specialization of y. It is very like the idea of

inheritance in Object Oriented Design, which expresses a specialization

relationship. In Figure 2.1(d), Student is a special kind of Person.

Is - a is transitive and acyclic.

5. Type-of, T(x,y) means x's type is y. It expresses the type of an ele

ment. In Figure 2.1(e), it means the Street is the type of Column. It

is required that one element can only have one Type-of relationship.

In [14], there are more details of the one-type restriction.

We can represent the product schema in our previous schema examples

using a graph like Figure 2.2. For example, in Figure 2.2, element product

has five Contains relationships and each subelement has a Type-of relation

ship. The Product Jd element also has an Is.a relationship showing that it

is a primary key.

2.1.2 M a p p i n g

One important representation in model management is the mapping, which

shows the relationship between two models. Without the mapping, it is hard

do anything to manipulate models. As in [3], we assume that a mapping is

also a model, which means it also includes elements Emodei and relationships

Rmodel that any model has. Moreover, it also contains:

• Two models, Modeldamain and ModelTange. The mapping defines the

relationship between them.

• Mapping relationships Rmap- A mapping relationship r is between

an element em e Emodei and an element e G Edomain U ETange. Ele

ments in domain and range that have Model Mapping Relation ships

from the same element in map are related to each other. The type of

mapping relationship can be either "Equal i ty" or "Simi lar i ty" . Here

the expression of "Similarity" is different from the way in [14]. In [14],

"Similarity" is presented as a "how related" property in the element.

If the element is marked as a "Similarity" type, al l the elements in the

domain or range that the element connects to are treated as similar to

each other. Here we use the idea used in [13], such that the elements

are the same, but the mapping relationships they connected to could

have different types, "Equal i ty" or "Similar i ty" . In this way, whether

the elements are equal or similar does not rely on the mapping ele

ment, but on each element in the domain and range separately. The

same mapping element can be "similar" to one element and equal to

another. This also frees the mapping elements from showing "how

related". The mapping elements are the same as normal elements in

a model and can exist in a mapping model without any mapping re

lationships linked. It makes more sense to the 0 0 design. In this

way, "similarity" mapping relationships can be easily identified from

"equality" mapping relationships at the relationship level.

For example, Figure 2.3 shows a mapping between the original product

schema (partial) and the version of group A . The domain model is the orig

inal product schema and the range model is the product schema of version

A . The map includes ModelMapping elements that are used to match the

elements in model domain and range. Each ModelMapping element has a

M odelM apping-Relationship to one of elements in the domain and range

models. The relation may be equality, meaning they are exactly the same;

or similarity, meaning that they are similar but have differences. There may

also be existing elements in the mapping model that are not model map

ping elements, but normal model elements to express some structure of the

mapping.

In summary, a mapping defines how the domain and range models are

related to each other. The ability to name both mapping relationships and

all other relationships in the mapping means that each element in the map

ping is not required to be the origin of a mapping relationship. However,

the mapping must be a model. To do this, it must be adhere to the inclusion

rules that follow in section 2.1.3.

Domain (original) Mapping Range (version A)

Figure 2.4: Illegal Model

2.1.3 T h e Inclusion Rules

In order for the operators to be composable, the result of any operator must

be a model. To be a model, all elements must be connected by relationships

showing that the elements are members of the model. It is not always true

that al l relationships among a number of elements result in a valid model.

For example, Figure 2.4 shows an example that even though all the three

elements are connected by relationships, they do not construct a legal model.

If an invalid model is used as the input of some operators, the result may

be unpredictable and error-prone. In model management, the completeness

can be verified using inclusion rules [14]. B y saying legal, it means that al l

the elements and relationships can be covered using the inclusion rules and

there is no dangling element or relationship.

The inclusion rules are based on the relationship types in the model.

Each model has a unique root element, eR, and all the other elements, E L ,

have direct or indirect relationships, Re, to the root element. The rules

include:

• The root element, CR, is always in the model.

• I(p, q),p G EL —• q G EL- If p has a Is-a relationship to q, and p is an

element of Model , then q is also in the Model .

• H(p,q),p G EL —> q G EL- If p has a Contains relationship to q, and

p is an element of Model , then q is also in the Model .

• T(p,q),p G EL —> q G EL- If p has a Type-of relationship to q, and p

is an element of Model , then q is also in the Model .

• p G EL,q G EL —> R{p,q) G ReL- If P , 9 are al l elements of Model ,

then all the relationships between p and q are in the Model .

• M(p,q),p G EL -> M{p,q) G i ? e L : If V is an element of Model , then

all the model mapping relationships that have p as the origin are in

the model.

Because the inclusion rules determine when an element is in a model by

the relationships we need find all the relationships in a given model, includ

ing those relationships that can be deducted implicitly. The implications

include those relationship types that are transitive and the cross — kind —

relationship implications.

Transitive relationship types include Contains, Has —a and Is —a. The

cross — kind — relationship implications are:

• If p (Type-of) q and q (Is-a) r =» p (Type-of) r

• lip (Is-a) q and q (Has-a) r =*> p (Has-a) r

• If p (Is-a) q and q (Contains) r => p (Contains) r

• If p (Contains) q and q (Is-a) r ==> p (Contains) r

• If p (Has-a) q and q (Is-a) r => p (Has-a) r

Using these rules, we can find al l the explicit or implicit relationships in

the model and then we can determine if a given model is legal or not. The

inclusion rules can also be used to remove the redundant relationships that

can be implied using existing relationships.

We say element X is inclusion — implied by a relationship R (denoted

II(R, X) if: (1) R(X, Y) and the inclusion rules state that if R(X, Y) and

Y is in a model, then X is in the model, or, (2) R(Z,X) and the inclusion

rules state that if R(Z, X) and Z is in a model then X is in the model.

2.1 A Generic M o d e l Management Operators

There axe several operators in model management, such as Diff, Delete,

Match , Extract , Domain, Range, Compose, Invert, Apply , Copy, and M o d -

elGen [11] [14] [3]. These operators give a programmatic way to transform

models in abstract levels. Here we briefly introduce the functionality of

these operators, which wi l l be used to implement our generic schema rein

tegration. v

• Diff - Dif f(x, y) = z: Takes two models, x and y, as input and returns

model z, which contains the elements that are in x but not in y. Diff

wil l be discussed in more detail in Section 3.2.

• Delete - Delete(x,y) = z: Takes one model x and a set of elements y,

and deletes elements y from x and returns the result model z.

• Match - Match(x,y) — Mapz: Takes two models x and y and finds

the mapping relationships between two given models and returns the

mapping model Mapz. Match w i l l be discussed in more detail in

Section 3.5.

• Extract - Extract(x, y) = z: Takes one model x and a set of elements

y, which contains partial elements of x, and selects those elements in

y from x and relationships related to y and returns the result model

• Domain - Domain(x,ymap) = z: Takes a model x and a mapping

model y that has x as the domain of the mapping, and returns a

partial model z of x that contains only the elements having mapping

relationships in y.

• Range - Range(x,ymap) — z: Takes a model x and a mapping model

y that has x as the range of the mapping, and returns a partial model

z of x that contains only the elements having mapping relationships

in y. Range w i l l be discussed in more detail in Section 3.3.

• Compose - Compose(Mi(x,y), M2{y,z)) = Ms(x,z): Takes two map

ping models M\ and M2, which are mappings between model x and y,

and between y and z respectively. The operator Compose generates a

new mapping model M3 between x and z. Whi le quite complicated in

some cases, it is not complicated in our schema reintegration. More

information on composition can be found in [3].

• Invert - Invert(Map(Mi,M2)) = Map'(M2,Mi): Takes a mapping

model Map between domain model M\ and range model M2, swaps

the domain and range roles in the mapping and returns a new mapping

model Map' that has M2 as domain and M\ as range.

• Apply - Apply(x) = y: Takes a model x and applies a function to each

element in x to make changes according to the function and returns

the modified model M'. Apply w i l l be discussed in more detail in

Section 3.4.

• Copy - Copy{x) = y: Takes a model x and return a new model y that

has the same elements and relationships as x.

• ModelGen - ModelGen(x) = y: Takes a type of model x and generates

a new type of model y from x. For example, generate a relational

schema from an X M L schema.

2.2 Generic Merge

Given two models and the mapping between them, the generic merge gen

erates the model that includes al l the information from the two input models.

There are several algorithms and implementations [14] [11] describing

generic merge. The general steps are:

First , generate the necessary elements. Basically, the elements are the

set union of the two input models, where the mapped elements are treated as

the same principle and are only represented using one element in the result.

Each such representative element includes all the properties of the elements

that it represents. Then, the relationships are merged. One key factor is that

any relationships in the domain/range and the mapping should not be lost.

A l l the elements, whether they are in the domain/range or the mapping,

have representatives in the result model. A l l the relationships are between

elements in the domain/range and mapping, so all the relationships can be

preserved in the mapping result. However, if all the relationships are simply

added to the final result, there may be conflicts existing, such as cycles or

multiple types for an element. There may also be some existing redundant

relationships that can be implied and induced from other relationships. So

the final step is to check and fix these kinds of conflicts.

2.2.1 R o n d o

Rondo [11] is the first complete prototype of generic model management sys

tem. Rondo systematically defines the key model management operators,

such as Domain, Invert, Compose, etc, and suggests several new generic

operators, such as Extract, Delete, etc. It also shows a schema integration

system that can be used for relational database Schemas or X M L Schemas.

The differences of our approach to Rondo's lie on the data structure.

Rondo uses a new data structure to represent the mapping. It is called

a morphism. A morphism is a binary relationship between two models.

Figure 2.5 is an example from Rondo that shows a morphism between a

relational schema and an X M L schema. In implementations, a morphism is

a pair of elements. This is a convenient way to represent mapping relation

ships.

However, in our framework, we have everything existing as first-class

objects. The idea of a morphism violates the 0 0 principle. The existing of

mapping relies on the models and cannot be presented by itself. Therefore,

.we use a mapping model to present the mapping relationships. Furthermore,

in our system, every step gives an output of a complete model, which is easy

to maintain and extend. A l l of our operators have first-class objects as input

and output. These operators can be easily used in any other generic model

CREATE TABLE PRODUCTS(
PID int,
Pname varchar

)

<schema xmlns = "...">
<complexTvpe name - "product">

<element name = "ProdudlD" type = "xs:int" />
<element name = "ProductName" type =

"xs:string" />
•̂ ftlpment name = "ProductType" type =

"xs:string" />
</complexType>

</schema>

Figure 2.5: Morphism in Rondo

management tasks.

2.3 T h r e e - W a y - M e r g e

In this section, we review the Three-Way-Merge algorithm discussed in [14],

which is the basic algorithm used in this thesis.

The Three-Way-Merge algorithm merges a given model and two different

modified versions of it into one model. For example, Figure 2.6 shows the

example used in [14]. There is the original model O and two different modi

fied versions, model A and model B. The goal is to create a final model, L,

that captures all of the changes in A and B. The modification of model A

is that the element d changed its parent from the root to element b, while

in Model B, the element c was deleted.

When these models are to be merged, because element c is deleted in

Model B, the final version should capture the deletion and exclude c. E l

ement d is modified in Model A; therefore, the final version should also

Model A Model 0

C D C D C D
\ / \ • v •

C D C D

Figure 2.6: Three-Way-Merge Example [14]

Model L

Figure 2.7: Three-Way-Merge Result

capture the modification and change the parent element of d to b from a.

The merged result model is shown in Figure 2.7.

There are several rules targeting the different changes made to each

modified version. Let A, B denote the two modified versions, O denote the

original version, and L be the final merged version. The rules are shown in

Table 2.1. It defines different situations that different versions may have and

how the final version should be with regard to the element. For example, i n

row 4, it means if the element is in O, it is deleted in one model (A here)

and modified in the other model (B here), then in the final result L, the

modified version should be kept, it is in the final model.

Based on these rules, the three-way merge algorithm in [14] w i l l do the

' O A B L
1 0 add add ©
2 0 unmodified unmodified 0
3 O deleted unmodified 0
4 O deleted modified O
5 O modified unmodified O
6 O modified modified O

Table 2.1: Three-Way-Merge Rules
0: element in model

0: element not in model

following steps to merge models A, B and O. The result is the same as

shown in Figure 2.7. Note that because we are only demonstrating a simple

example, some steps may generate empty models.

Step Operation Figure

MapoA = Match(0, A)
Mapping

Cp (p Cp (7^L (~p fP

B y History Property

» \ X 1

Mapcu

' V if'

MapoB = Match(0, B)
Mapping

Gp CD Cp C p ^ C p CD f D

\ s \ 0 *

B y History Property Mapa

MapoA' = Apply(MapoA)

CD cp

if e E MapoA and domain(e)

is identical to range(e), then

delete e

Mapping

f a 3

MapoB' = Apply(MapoB)

He £ MapoB anddomain(e)

is identical to range(e), then

delete e

0

5 ChangedA = range(MapoA')
ChangedA

the things changed in A

6 Changeds = range(MapoB')

the things changed in B 0

7 MapchA-ChB =

Match(ChangedA,ChangedB)

0

8 MapchBJOhA =

Match(Changeds, Changed A)

0

9 A' = Dif f (ChangedA,

ChangedB, MapChA.ChB)
A'

CO
(a)

10 B' = Diff(Changeds,

Changed A , MapchB-ChA)

0

11 MapA_B = Match(A,B)

According to OIDs

Modal A Mapping M ^ B

CD C D C D C p C p CD

~ - - Map»*

Model G

12 G = Merge(A, MapA_B, B)

C p CD
CD

13 MapG_A' = Match(G, A')

Model G Mapping

C p CD C p Cjb

CD / \ CD
Mao %

14 GA

Merge(G, MapG_A',A')
Model G A

with preference for A '

C p CD

CD
15 MapGA'-B> =

Match(GA',B')

0

16 GAB = Merge(GA',MapCA>-B',B')

with preference for B '

Mode! GAB

CD

17 DeletedA = Diff(0,A,Map0A) 0

Deleted B

C O

18 Deleteds = Diff(0, B, MapoB)

19 MapDeletedA-ChangedB =

Match{D el eted A , ChangedB)

0

20 MapDeletedB-ChangedA =

Match(Deleteds, Changed A)

0

21 ShouldDeleteA =

Dif/(DeletedA, ChangedB,

MaprjeletedA-ChangedB)

0

SltouWDalBled G

C D
v

22 ShouldDeleteB =

Dif f (Deleteds, ChangedA,

MaprjeletedB.ChangedA)

cb

23 MapGAB^DA =

Match(GAB, ShouldDeleteA)

0

24 GABSDA
Di f f(GAB, ShouldDeleteA, MapcABs

Model GABSDA ShouldDtMoted B

C p CEX & > s £ D
T s / \ /
CD

DA)

25 MapcABSDASDB =
Match(GABSDA, ShouldDeleteB)

Model GABSDA ShouldDelated B

c^c^x cb. c L
cL - ^

26 Fina l result —
Diff {GABSDA, ShouldDeleteB,
MapGABSDASDB)

Model L

Table 2.2: Three-Way-Merge Example

In the original algorithm, it does not mention how to deal with the

completeness problem of models. For example, in step 5, the range operator

wi l l only keep the element d in the result. It is desirable to keep the result

not being a simple element, but st i l l a model. Here the elements a and b are

added to keep the structure of the model. In order to distinguish them from

the result elements, they are marked as support elements. Not only could

the operator range generate an incomplete model, other operators could

also have the same problem and need support elements to help in the result

model. A key factor is that because Rondo considers only morphisms, it does

not use support elements. Support elements are discussed briefly in [3], but

one contribution of this thesis is a fuller understanding of support elements.

We discuss them more fully and describe our conclusions in Chapter 4.

2.4 S u m m a r y

Model Management gives an abstract way to solve meta-data management

problems. B y using graph theories, models can be programmatically ma

nipulated by the model management operators.

The mapping between two models is important and used very often in

most operators and applications. However, the presentation of mapping

varies a lot in different systems. It can be a first-class object - a model;

it can be a morphism that uses direct links between model elements; or it

can be just some pairs without data structure support. Some have been re

searched deeply, such as match and merge. The other operators have been

introduced and discussed, but few have details on the algorithm and few

have been researched for the behavior of the operator and how they interact

with each other. These operators are st i l l in an abstract level. Even if the

idea is clear, the actual implementation varies depending on different k ind

of applications that the operators use. In this thesis, we only use first-class

objects (models) and the operators are implemented based on the require

ment of schema reintegration and functionality.

Chapter 3

Operators

In this chapter, we discuss the generic model management operators that

are used in our reintegration system. As described Section 2.3, there are

five operators used: Merge, Diff, Range, Apply, and Match.

In Section 3.1, we briefly review Merge. We have fully analyzed and

implemented the other four operators, which are discussed in this chapter.

We discuss Diff in Section 3.2, Range in Section 3.3, Apply in Section 3.4

and Match in Section 3.5.

3.1 Operator Merge

Merge has been fully described and implemented in [14] as discussed in Sec

tion 2.2. Because it is a generic model management operator, it can directly

fit into our schema reintegration system as one of the operators.

Merge works as follows: Given two models, M\ and M2, and the map

ping, map, showing their relationships, Merge generates a new model, MQ,

that unions the two models without any duplicates and conflicts. For ex

ample, Figure 3.1 shows an input of Merge and Figure 3.2 shows the result

Modal A Mapping Modei B

q £ (V) Op C p
v - — • •—flu.

N . -
"** Map*s

Figure 3.1: Mapping between Model A and Model B

Model G

Figure 3.2: Merge result of Model A , Model B and Mapping

model of Merge operation.

3.1.1 Input

The Merge operator has three input models, M\, M2 and the mapping be

tween them, Map. Map defines how M\ and Mo. are related as described in

section 2.1.2. One of M\ or M2 can be designated as the preferred model.

When there are conflicts between M\ and Mj j , Merge w i l l follow the behav

ior of the preferred model to break the conflicts.

3.1.2 O u t p u t

The Merge operator generates a model as output, which contains al l the

information in Mi, Mo. and Map, but has duplicates eliminated and conflicts

resolved. The duplicates are from the Map, which shows the relationship of

elements in M\ and M2.

3.1.3 T h e M e r g e A l g o r i t h m

The Merge algorithm [14] includes the following steps:

1. Initialize: Create a new empty model G as the result.

2. Elements: Group the elements from M\, M2 and Map based on the

mapping relationships. If there is a mapping relationship R(ei,em),

where G M i UM2 and em € Map, then and e m belong to the same

group. In the original paper, em must be an Equality mapping element

for ej and e m to be grouped together. The difference between Equality

and Similarity is in the mapping elements. In this thesis, mapping

elements are all the same; the relationship R differentiates between

Equality and Similarity. Therefore, rather than requiring e m to be an

Equality element, Merge requires that R is an Equality type mapping

relationship. A l l the elements in M i , M2 and Map are divided into

each group. Then for each group, create a corresponding element in

G.

3. Element Properties: Intuitively, each element e created in G has a cor-

responding group of element(s) Em from M\, M2 and Map. Element

e has the union of the properties that all the elements in Em have, ex

cluding the History, ID and HowRelated properties. When the same

property p is contained in multiple elements in Em, its value in e is

determined following the order of Map, Preferred Model, Any Model.

Formally, for a group of elements Em, a property p, and some elements

e m £ Em have the property p, if there is an element emap 6 Map n Em

that has property p, then the value, of p in e is same as the value of

p in emap. If e m a p does not exist, it tries the same rule but from the

preferred model, then the other model. Whenever p is included in more

than one element in the same model, its value is chosen arbitrarily.

For example, Figure 3.3 shows a simple mapping between model A

and B, where model A is designated as the preferred model. Elements

EA and E' of model A both map to the same mapping element EM of

Map, which also maps to element EB in model B. Suppose elements

E A , E' and EB contains the same property p, but different values, VA,

v' and Vb respectively. When the two models are merged, elements

E A , E', EM and EB belong to the same group. The corresponding

element EG € G also contains property p. To decide the value of p,

the algorithm first checks the mapping. Since the mapping does not

have the property p, the algorithm wi l l further check the elements in

model A, which is the preferred model. Because both element E and

E' are in model A and contain property p, the algorithm w i l l arbi

trari ly choose one from them. Therefore, the resulting element Eg w i l l

have a property p, whose value is either VA or v'..

Model A Mapping Model B

L L

Figure 3.3: A Mapping between Model A and Model B, Model A is the
Preferred Model .

The ID property is set to a new number assigned by the system. The

History property is set to the value of "Merge(IDS)", where IDS

includes all the IDs of the elements in the group Em. This gives the

traceability of the elements in G to the original elements that it merges.

If M i or M2 is a mapping, the element e is a mapping element given

the corresponding elements in group Em, M i or M2, are also mapping

elements. If e is a mapping element, its How — Related property is

determined following the same selection order as the other properties.

4. Relationships: Each element in G has a corresponding group of el

ements in M i , M2 and Map. If there exists a relationship R(e,f),

where e and / are from different groups, a same type of relationship

R'(e', / ') is created in G, where e' and / ' are elements in G and cor

respond to e and / . Mapping relationships wi l l not be created in G

since if element e\ and e2 have a mapping relationship, they would

have been in the same group and the mapping relationship between

them would not be copied to G. Since there is no "similarity mapping

element" any more in the system, the steps to process the similarity

mapping elements are ignored. Finally, the relationships that can be

applied from other relationships in G are removed.

5. Fundamental conflict resolution: The previous steps generate a model

G that includes the duplicate-free union of the input models. How

ever, there may be some conflicts existing in G at the meta-meta-model

level. This step resolves the conflicts according to the rules and strate

gies that have been specified.

For example: in Figure 3.1, Mapping shows how Model A and Model

B are related. Basically, the elements are matched by names shown in the

figure. Figure 3.2 shows the result after the algorithm is executed upon the

mapping. Note that there was a has-a relationship between element a and d

after all relationships are added based on the input models. However, since

the has-a relationship from a to d can be implied from a to 6 and b to d,

this relationship is deleted in the final result.

To build the reintegration system, we must extend the algorithm to

take into consideration the use of support elements mentioned in Chapter

4. The Merge operation usually does not need extra support elements for

the merged result elements if the input models have no support elements.

However, if the input models have support elements, they need to be taken

care of in the result model.

According to the merge algorithm, each element e in the result model G

has a corresponding group of elements Em which are from the input models.

If al l the elements in Em are support element, the element e may act as a

support element in G as well. It may not be necessary and may need to<be

deleted. Therefore, it w i l l be marked as "delete" by creating a property of

"delete=true" and then when the model is passed to the "Support Elements

Engine" mentioned in Chapter 4, the engine wi l l decide if it wi l l be a support

element or be deleted.

3.2 Operator Diff

The Diff operator is used to compute the difference between two models,

given the mapping between the two models. Intuitively, it w i l l find all the

objects in the first model, that we refer to as the base model, that do not

have corresponding matching in the second model. As in Merge, the map

ping should have been created by some other operators, such as match, and

is assumed to be given.

In previous works, such as [11] [3] [5], the Diff operator is either men

tioned as a combination of other operators, or using extra mapping to show

which elements are the Diff result and which are not. In this thesis, we give

a detailed definition of Diff and the algorithm to compute it . We.also use

the support elements to make the result a self-contained model.

Diff works as follows: suppose there, are two models M i and M2. The

Model O Mapping

Ma pen

Figure 3.4: Mapping between Model O and Model B. Element c is not
mapped

relation between them is also provided, which is presented as a mapping

map. Formally, Dif f(M\,Map,M2) — Md finds the elements that appear

in the base model M i but not in model M2 based on map. The result wi l l

be a new model named Md-

3.2.1 Input

The Diff operator has two input models, M\, and M2, one of which has

been denoted as the "base" model (say, M i) , i.e., the model which the re

sult model is based on, and the Mapping map .

The mapping map tells how the model M i is related to M2. Without

knowing map, the computation wi l l be meaningless. The format of the

mapping is covered in depth in section 2.1.2

To see how Diff works, we present an example in Figure 3.4. Figure 3.4

Deleted B

Figure 3.5: Diff result from Figure 3.4, assuming that O is the base model.
Element a is shaded as support element

shows a mapping between two models, Model O and Model A, where we

assume that Model O has been designated as the base model. Note that ele

ments b and d of Model O are matched to corresponding elements in Model

A w i th the "Equal i ty" mapping relationship. Therefore, these two elements

should not be part of the result model, since both elements appear both

in the base model and in the other model. The element c has no mapping

relationship, and it w i l l be part of the result model. Sometimes, elements

may have a mapping relationship with some elements in the mapping, but

do not match to any other elements in the other model. These elements

should also be included in the result model. The result is shown in Figure

3.5.

A "Similarity" Model Mapping Relationship means that the Model Ele

ment e\ is similar to the corresponding element based on the mapping. Such

elements need to be kept in the result model to show the difference.

3.2.2 O u t p u t

The expected output result wi l l be a model Md , which includes all the

elements that are in the model M i , but not involved in any "Equal i ty"

type Model Mapping Relationships with any Model Mapping Element in

the mapping map that has Model Mapping Relationship wi th elements in

the other model.

Therefore, intuitively, the result model Md is a sub-model of the input

base model M\. Each Model Element Ed in Md is generated from some

element E\ in M i . Therefore, Ed has the same properties of E\ and those

relationships of E\ such that the other elements of the relationships are also

in Md.

Furthermore, because the result model Md contains Model Elements

and Relationships that correspond to only some elements and relationships

in M i , the init ial result may not be a complete model. As described in the

[14], al l the elements and relationships in a model must conform to the i n

clusion constraint: an element or relationship is included in the base model

if and only if there is a path of containment from the root to that element

or relationship. Therefore, some elements may not be included in Md af

ter applying all the inclusion rules (i.e., searching for a containment path).

Clearly, we would like our result, M ^ , to be a valid model, both from the

perspective of wanting to make sure that the operators are composable and

from the perspective of wanting to make sure that there is enough informa-

tion to solve future problems using Md- To solve the integrity problem, the

model is processed to "Support Element Engine" as described in chapter 4.

Algorithmically, this means that we have several phases to the algorithm.

To compute the different elements in Md, we first delete all the elements

that have matching element in map; this corresponds to the elements (and

relationships) that are truly in the difference of the models, but this result

is not a model. Then we add back some elements and relationships as the

support elements. However, because our model is not a tree (i.e., there can

be more than one containment path from the root to a given node), we have

to decide which deleted elements should be added to model Md as the sup

port elements. This can be done using the algorithms described in Chapter 4.

To summarize, the result model Md includes the following:

1. Elements: For each element e\ G M\ s.t. there is no ei G M2 and

BM G map s.t. Me(eM,ei), Me(eM,e-2), 3 a new element e<i G Md, s.t.

ed has a new ID, and inherits the name and al l the properties except

the History property of e\ . Give the new History property of as

r > i / / (d) .

• History property. Each result element w i l l have a new History

property, wi th the value Dif f(ID(e\)) Because the new History

has the original element ID, we can easily trace back to the orig

inal and find the history of this element.

2. Relationships: For each relationship Rd{&\^2) € M\, e\,e'2 G Md, s.t.

ID (History (e\)) = ID(ex) and ID(History(e'2)) = ID(e2), 3R'd G

Md and R'd conform to the inclusion rules. The relationships of

the result model Md are all inherited from M i , which means each

relationship R'd G Md must have a corresponding relationship Rd G

M\ and the origin/destination element of R'd corresponds to the ori-

gin/destionation element of Rd- However, not all the relationships of

M\ have corresponding relationships in Md- Only those corresponding

relationships of Mi that have both its origin elements and destination

elements (including different elements and support elements) included

in Md and conform to the inclusion rules are included in the result

model Md-

3. Supporting elements: As described above, supporting elements are

those nodes added to support the model integrity of the result ele

ments. These elements wi l l include an extra property, named "Sup

port" with value true, to indicate that they are support elements, but

not part of the real result elements. They are added as described in

Chapter 4.

3.2.3 A l g o r i t h m

To compute the Diff result, the algorithm includes the following steps:

1. Duplicate: Make a full copy of model M i , including all its elements

and all relationships in M i (i.e., we do not include relationships that

are incident on elements in M\ but are not in M\ according to the

inclusion rules). Note that the mapping relationships in Map are not

part of M\, and therefore they are not copied. However, it is st i l l

necessary to keep the information about which elements correspond

to those elements e € Mi that have mapping relationships Me(x,e),

where x e Map and there exists some element e2 S M2 s . t .M e (x ,e 2) .

Let the set of such e elements = Eremave, which are the elements set

to be deleted. To show which elements have mapping relationships, a

list, L, is built to include all the elements in E r e m o v e . The new model

is called Mc.

2. Marking: For each element e € E r e m o v e , e is marked as "delete".

These elements are not in the result elements set, but may appear in

the model as support elements.

3. Support Elements: G iv ing the model Mc to the support element en

gine to check which elements should be added as support elements.

Those support elements that are decided by the support element en

gine are marked "support" and do not have the "delete" mark any

more.

4. Delete: For each element e 6 Mc that has the "delete" mark, e is

deleted from Mc and all the relationships that have e as either an

origin or a destination are also deleted.

5. Finally, return Mc.

3.2.4 Related W o r k

There axe several papers that mention the diff operation. They are summa

rized as follows:

• Rondo[l l] : There is no explicit definition of diff , but it uses All(sl) —

Domain(sls2) to do the same job as diff if the two models are s i

and s2. This is described as: al l elements of s\ without the matched

(and thus not deleted) element. The result is a new schema and a

mapping between the result schema and the original schema, which

describes how these two are related. In Rondo, modules are mapped

using Morphisms, which are just binary relations.

For example, the following shows two schemas:

sl.Orders(Oid, OrderDate, Employee, Customer, PONum, SalesTaxRate)

s2.0rders(Oid, OrderDate, Customer, PONum, SalesTaxRate, ShipDate

FreightCharge, Rebate)

In Rondo, the mapping is represented using the following morphism:

s i s2

O i d O i d

OrderDate OrderDate

Customer Customer

P O N u m P O N u m

SalesTaxRate SalesTaxRate

Then the operation combination All(sl) - Domain(sls2) would be the

whole elements set in s i , which include al l the attributes of s i , minus

the left part of the morphism, and the result is simply computed by

set operations. This result elements set itself cannot represent the

data structure. The result elements set has to be combined with the

original schema to show a meaningful result, so that it can be used in

other operators.

Rondo does not mention how the "-" operator is implemented. It

does not mention support nodes either. It uses mapping (morphisms)

indicating how the deleted result module is related to the original

module. Our method is more self-contained.

• Vision[5]: Difference is believed to be basically the same as matching,

except that the answer needs to highlight the differences. The diff

operation is said to be a Fu l l OuterMatch. In Vision, it treats diff

as a contrast of match. It does not explicitly describe the input and

output of the diff. However, the desired result can be computed from

some hints: In Vis ion, schemas are represented as first class objects;

Mapping is also a first class object. In the description of Match , it tries

to find how the domain and the range objects are related. Therefore,

in the Differencing, it should be assumed that the main task is to find

how the domain and the range objects differ. It is different from what

we have described about diff, where we assume the mapping is in hand,

but Vis ion somehow tries to find the mapping (and difference).

• Apply ing Model Management to Classical M e t a Data Problems [3]:

In this paper, the input is the model and the mapping. (M\,map\)

and the result also include two parts, the objects that are not refer-

enced in the mapping and a new mapping between the result model

and the original model: (M[,map2)-

Three problems are considered in this paper. 1. Root is always in

cluded in the result object. 2. To ensure the result model is a well-

formed model, all the objects on the path of has-a relationships from

the root to the result objects are also included. These added objects

are support objects. 3. Use a new mapping between the original model

and the diff result to mark the support objects.

Mark ing support objects in the result is treated as introducing another

structure (the marked model) and is avoided. Their paper defines the

desired input and output of diff in detail. However, in our diff, we wi l l

have different methods to add support elements, which wi l l ensure

least elements are added. Moreover, we wi l l consider all the inclusion

constraints rather than only the "hasA" relationships. Because in our

system, we have created the structure of "property", we can utilize

this structure to mark the support elements. Therefore, we do not

need to add another mapping, which may otherwise make the system

more complex.

In the Diff operator of this thesis, we keep all the input models and out

put models as first-class models and we use "Support Elements" to keep the

integrity of these models. Our Diff allows "Support Elements" appearing

in both input models and output models.

3.3 Operator range

Given two models, one being the range model and the other being the

domain model, and the mapping between them, the Range operator finds

the elements that appear in the range model of a mapping that have cor

responding mapped elements in the domain model. The mapping itself is

presented as a model, which contains elements that correspond to the do

main model (Md), the range model (Mr) and other mapping elements (Em).

The range model here is not the same as the result model (Mrange) by the

Range operator. The Range result model Mrange only contains elements

that refer to part of the range model Mr. A l l the elements in Mr that are

referred by elements in Mrange must be associated in a mapping relationship

with some elements in the domain model. We w i l l give more details when

discussing the output part.

3.3.1 Input

The map model includes the domain model, the range model and the map

ping elements, which describe the relationships between elements in the

domain and the range. Therefore, the map model itself provides enough

information for the range operator. It is the only input for the operator

range.

3.3.2 O u t p u t

The output result would be a new model that copies the range model in

the input map model, but only those elements that have been "mapped" to

some elements in the domain model are the result elements and the result

elements would have new ID's. In order to keep the result as a complete

model, some unnecessary elements are also needed to act as support ele

ments.

Formally, for each element e € Mr, there is a corresponding element

Grange G Mrange such that 3e0 G Mmap (the Mapping) , and 3ed G Mdomain

(the domain model), and there exists model mapping relationships r\ and

r2 such that r\ is between e0 and erange and r2 is between eQ and edomain-

The relationships and support elements would be added in the same way

as for operator diff.

In each element, range(id(erange)) w i l l be added to the history property.

3.3.3 A l g o r i t h m

The algorithm is very similar to the algorithm in the operator diff in that

it also selects part of the model in map, but it selects the contrary part to

what Diff selects.

The range operator includes the following steps:

1. Duplicate: Extract the range model from the input mapping. Make

a new model, Mr, which copies all the elements (with new ID's) and

relationships of model range.

2. Mark : First ly , iterate al l the elements in Mr and mark them as "delete".

For each element e G MT, find the corresponding element erange G

range, such that e is generated by copying erange. If 3em G Mmap

and ed G Mdomain such that there exists Model Mapping relationship

r i (e

m,&domain <md r2(em, e r a n o e) , remove the delete mark of e. In

this step, all the elements that should be in the result model are se

lected and al l the other elements are marked as "delete".

3. A d d Support Elements: Give the model MT to the "Support Element

Engine" to check which elements should be added as support elements.

Those support elements that are decided by the "Support Element

Engine" are marked "support" and do not have the "delete" mark any

more.

4. Delete: For each element e G Mr that has the "delete" mark, e is

deleted from MT and all the relationships that have e as either an

origin or a destination are also deleted.

5. Return: Final ly return model Mr.

3.3.4 Re lated W o r k

Operator range was only previously discussed in Rondo[l l] . In Rondo,

range is defined as Domain(Invert(map)). It firstly reverse the role of

domain and range in the input map and then return the domain model. It

is because the operator Domain is defined as a primitive operator and the

operator range can be generated using existing primitive operators.

Because the map in Rondo uses morphisms, in other words, the map

pings are element pairs between domain and range, the domain or range

operator can then simply extract the needed half in the morphism. It is a

straight-forward operation.

The range in this thesis uses first-class models, so it needs to extract

some elements that are really acting in the mapping. Here we also show

the detailed algorithm and use "Support Elements" to make the result self-

contained. The domain operator wi l l be exactly the same and only care

about the schema in the other side of the mapping.

3.4 Operator Apply

The operator Apply is different than the other operators. It is a generic

method that takes effect on each element in the input Model .

There is no specific target on how Apply affects each element. Instead,

Apply provides a generic template for a function which affects the elements

of some model. When Apply is used, it must bind to some real function, T,

to perform the expected functionality. Therefore, operator Apply is like a

delegate function that has T as a internal function pointer.

In this section, we discuss both Apply and function T used in the rein

tegration system.

3.4.1 Apply

3.4.1.1 Input

The input of Apply includes the following:

• A Model , M, which contains the elements that are to be affected by

the operator.

• A n internal function, F, which is the real function that wi l l take effect

on the elements in M.

3.4.1.2 Output

The output of Apply is a Model , which is generated from model M, but al l

the elements have been processed with function T.

Formally, MA = Apply(M), and for each element eA € MA, 3eM G M

such that eA = Y(eM)-

3.4.1.3 Algorithm

The algorithm for Apply includes the following steps:

1. Duplicate: Create a new model, MA, which copies all the elements, EQ

(with new ID's) and relationships of model M. Update the History

property of element e € MA as Apply(e0).

2. Execute: For each element e G MA, execute function T(e). Note that

because the functionality of T is not unique, the result element may

be changed in one of several ways. For example, it may be deleted.

However, because the system always guarantees the integrity of the

model, if the element is to be deleted by function T, it is marked as

"delete" and w i l l be processed with the Support Element Engine to

decide if it should be deleted or act as a support element.

3. A d d Support Elements: process the model MA with the Support Ele

ment Engine. The elements that are marked as "delete" but need to

exist as support elements wi l l be marked as "support".

4. Delete: For each element e G MA that has a "delete" mark, e is deleted

from MA and al l the relationships that have e as either an origin or a

destination are also deleted. If MA is a mapping, the model mapping

relationships of "support" elements are also deleted.

5. Return model MA-

3.4.2 F u n c t i o n T in Reintegrat ion

The function T that is created to be used by Apply in our Reintegration

system only has one target: it checks the input mapping element e to see if

the elements that e links to in the domain and range are identical. If they

are the same, element e is deleted.

Two elements, a G domain and b G range, are believed to be identical

if:

• They are mapped by a mapping element and "equality" mapping re

lationships (i.e., 3 an element m G Map, s.t. Me(m,a) and Me(m,b)).

• They have all the same properties (both the name and the value),

except for the "history" property. If each property p{X) of a and X is

not ID or History, there is a property p'{X) of b and p{X) — p'(X).

• Element a and 6 should have same kind of relationships, of which a

and b are the destinations, and the origins should match each other.

For each non-mapping relationship r(x, a) in the domain, there exists

a relationship r'(y,b) in the range, where r' has the same type as r ,

and there exists a mapping element e in map, such that there exists

mapping relationships Me(e,x) and Me(e,y). Then a and b are be

lieved to be identical. Here it only considers the relationships from

the "parent", and if a child changed, it wi l l only be considered when

the child element is inspected. Otherwise, if both the origins and des

tinations are checked, one change wi l l be caught in two places and be

redundant.

3.4.2.1 Input

The input is an element e of a Mapping Model M. It can be a normal

element or a mapping element.

3.4.2.2 Output

Strictly, the function does not have Output. Instead, it modifies the input

element e and updates e with the proper action. If the function needs to

Chapter 3. Operators

delete e, it only mark it as "delete".

3.4.2.3 Algorithm

The algorithm includes the following steps:

1. From the given model mapping model M, extract the domain and

range in M - Md and MT respectively. For the given mapping element

e, find the elements ed £ Md and e r £ Mr.

2. Comparison:

• First ly , for each property pd £ e ,̂ such that Name(pd) ^ "His

tory" , if 3 property pr £ er such that Name(pT) = Name(pd) and

Value(pr) — Value(pd), continue; otherwise, mark e as "delete"

and return.

• Secondly, for each non-mapping relationship rd £ Md, such that

destination(rd) = and origin(rd) = e0d {eod £ Md), check that

3 r r £ Mr and destination(rT) — er , origin(rr) = eor (eor £ Mr),

such that 3em £ M and 3 model mapping relationship r\,r2 £

M, and destination[r{) = eQd, destionation[ri) — e^. If so,

continue; otherwise, mark e as "delete" and return.

3.4.3 Re lated W o r k

The operator Apply was first discussed in [3], where it gives the formal

definition. The purpose of this operator is to reduce the need for application

programs to navigate a model. The input function can define a purpose

and the Apply operator defines the rules and algorithms to traverse the

model. However, it does not have any implementation details. Here we

have discussed the input, output and algorithms in detail, and the need to

involve support elements.

3.5 Operator Match

Match finds the mapping relationships between the elements in two input

models. In this thesis, we do not try to solve the general matching problem,

which is the subject of many other papers such as [15] [11] [3] [5]. The

mapped elements are based on History properties of the elements in the

input models. It is assumed that only the model management operators

appear in the History properties. If two elements in two different models

can be tracked to the same element from the History properties, the two

elements match to each other. The details of tracking from the History

properties based on different operators are discussed in the algorithm part.

3.5.1 Input

The Match operator takes two models as input. The ID of each element in

the models wi l l be used to track which elements are derived from the same

element and can be matched. Here, it is assumed that the History properties

of all the elements are available, so that each element can be tracked based

on the full history information.

3.5.2 O u t p u t

The Match operator returns a mapping model. This mapping model con

tains the two input models as domain and range, the model mapping ele

ments E, and the model mapping relationships Rmap that present the match

ing relationships. It also contains relationships Rmodel that connect these

model mapping elements E. These relationships are based on one of the

two input models. The purpose of these relationships is to link the mapping

model elements and they should not create any additional information for

the input models. Because the output model would not include more ele

ments than any of the input models, the model relationships of the output

model can be created based on any of them. Sometimes, only part of the in

put elements could have been matched. In this case, some mapping elements

might have been created with no mapping relationships to any other model

elements. They are only used to connect the mapped mapping elements to

the root based on the relationship given in the input models. These elements

would act as support elements.

3.5.3 A l g o r i t h m

The mapping model includes elements and relationships.

1. Elements:

• Create a new Mapping Mode l M, and make the input domain

and range the internal domain and range respectively. Create a

model mapping element em for each element ed £ domain.

• B u i l d the element correspondences, Coru. The matched elements

in domain and range may not be generated from an element d i

rectly. They may have been manipulated by several operators in

multiple steps. Therefore, the only available source of all the el

ements is the whole space, which is called the universe, U, here.

In order to create the element correspondences, for each element

e £ U, extract its History property Ph- Ph usually has the format

of OPERA TOR (IDs), where OPERA TOR is one of the operators:

Match, Diff, Merge, Compose, Apply, ModelGen, Select, Range,

Domain and Delete. The history with any of these operators ex

cept Match provide tracing information. The ID of e and IDs

can be put into one correspondence. For example, if ID(e) —

300008 and the History property is Mer#e(300001,300002), the

created correspondence wi l l be {300008, 300001, 300002}. The

number of IDs in OPERATOR(IDs) depends on different oper

ators, which is summarized in Table 3.1:

If either ID(e) £ correspondence c o r l or IDs £ cor2 before,

then the corresponding IDs in c o r l and cor2 are combined and

we generate a new correspondence which includes all the related

IDs.

Operator Created Correspondence
x = Match(y, z) N / A
x = Diff(y,z) {x, y}

x = Merge(y,z,w) {x,y,z,w}
x = Compose(y,z) {x,y,z}

x = Apply (y) {x, y}
x = Copy(y) {x, y}

x = ModelGen(y) {x, y}
x — Select(y) {x, y}

x = Range(y, z) {x, y}
x — Domain(y, z) {x, y}
x — Delete(y, z) {x, y}

Table 3.1: Element Correspondence for Each Operator

• Locate the Matched Elements: M has the same number of el

ements as domain. Therefore, for each element e<i G domain,

3em G M, such that e m is generated from e .̂ If 3er G range,

core G Coru, such that ID{ed) G core and ID(er) G core, then em

is marked with a new History property as Match(ID(ed),ID(er));

otherwise, e m is marked as "delete".

2. Create Relationships: M has the same corresponding relationships to

the ones in domain. For each non-mapping relationship r^ G domain,

let Origin(rd) = eod, Destination(rd) = edd\ F i n d the elements e ^ ,

edm G M, which are corresponding elements of,e0d and edd , create

relationship r m G M, such that Origin(rm) = e ^ , Destination(rm) =

edm and the relationship type is same as r^.

3. P u t M into the Support Element Engine to find the necessary support

elements.

4. Remove elements in M that are marked as delete and return M.

In the above algorithm, it is assumed that the matched elements in

domain and range are one-to-one. However, it may happen that the match

ing is one-tc-many or many-to-many. In this case, the above algorithm only

need a small modification: l imit the usage of correspondence to one time.

The "Locate the Matched Elements" step w i l l be changed to:

• Each element ed £ domain, 3em £ M, such that e m is generated from

ed- F i n d the correspondence core £ Coru, such that £ core; F i n d al l

the elements Ec = {ec\ec £ core such that e c £ domain or e c £ range;

Mark the History property of em as Match(ID(EC)); Remove core

from Coru. If the correspondence core cannot be found, mark the

element e<j as "delete".

In this way, if elements ei,e2 £ domain match to the same group of

elements Er £ range, when e\ is processed, the history property of the

corresponding element em w i l l include all the elements,ei, e2 and al l Er.

Then, this corresponding tuple wi l l be deleted. When e2 is processed, it

cannot find the corresponding elements. Therefore, the element em2 £ M

that is generated from e2 w i l l be marked as "delete" and wi l l probably be

deleted or act as a "support element", but not have mapping relationships

to any elements in domain or range. This guarantees that each group of

matched elements only have one mapping element in M.

3.5.4 Re lated W o r k

The Match operator has been widely discussed,(e.g., [15] [11] [3] [5]). Generic

Match is not discussed in this thesis. The Match operator in this thesis is

used for the Reintegration system environment and the matching process is

done with the help of the History properties.

3.6 S u m m a r y

In this chapter, we have discussed the five operators that are used in the

Reintegration system. Four of them have not been discussed in such detailed

level before. We have formally defined the input, output and algorithms to

be used for each operator. Moreover, we have used the idea of Support

Elements on al l the operators, which features heavily in each operator, and

has not previously been described in detail. To handle support elements,

we designed and implemented the Support Elements Engine, which wi l l be

discussed in Chapter 4. It is a generic engine that can be used by any

operator. This method makes the input and output of each operator more

self-contained and more generic.

Chapter 4

Support Elements

In Model Management, most operators generate new models. It is valuable

to ensure that all outputs of operators are composable For this to be true,

the output of each operator must be a valid model. Here the term valid model

means that al l the elements and relationships in the output must conform

to the inclusion rules mentioned in chapter 2.1.3. However, some operations

wi l l delete some elements or relationships from a model and this may make

some elements "unconnected", and thus not included in the model. C o n

sider the example shown in Figure 4.1. It is a mapping between Productl

and Product2. If we apply the Diff operation on it to compute the differ

ence between them, the result only includes the Product element (the root)

and the Pid element. They are not connected and it is hard to say what

relationships they should have between them.

Domain Range

Figure 4.1: Support Elements Mapping Example

In order to keep the result sti l l as a complete model, some elements are

added to the result model to support the structural integrity of the model.

They are originally in the model, but may have been deleted. However,

because these elements should not be included in the result, they must be

identified from the other elements in the model. Here they are called support

elements.

The support elements idea was first proposed in [3]. To identify the sup

port elements, it uses a mapping between the result model and the original

model. Only the result elements have mapping relationships to the original

model elements, and those support elements are not mapped. This way has

its benefits. It does not require a new data structure to mark the sup

port element and it only uses available structures, model and mapping, to

identify the result. However, the result of the operators that need support

elements wi l l then become a pair < M, mapping >. When the results are

further used as input for other operators, it w i l l make the process complex.

The operators cannot always expect a simple model as input, but sometimes

the input is a pair, which is actually a new data structure. If there are a

number of such steps, the result model wi l l become more complex and hard

to follow or trace.

Another method to mark the support elements is also mentioned in [3],

which is to simply mark the elements as support. The disadvantage of

this method is that it introduces another structure, the marked model.

This method is not recommended. In our framework, we have the property

attributes in each element. We can simply use the property as a marker to

identify if the element is a support element.

4.1 Definition

In model management, Support Elements are those elements that are i n

cluded in the model only for model completeness and integrity purposes.

They are included in the model, but except for l inking other elements to

gether, they do not have any other functionalities." If any of the support

elements are not included, the rest of the elements would not be a complete

model anymore. If elements that need support are deleted, those support

elements that only support the deleted elements should also be deleted.

Formally, for a model M with elements EM , we divide EM into the sets

ES
M, where ES

M contains al l support elements, and EM, where Ee
M contains

al l elements in the model that appear as normal, non-support elements.

These sets are disjoint and completely partition EM- That is EMC\EM — 0

andEs
MUEM = EM.

Additionally, let M' be the attempt at inducing a model from the ele

ments of Ee
M. That is, M' is built by (l)adding Ee

M to M', and (2) adding

to M' each relationship r , s.t. origin(r) G M' and dest(r) G M'. Then

based on the inclusion rules M' is not a model. Similarly, all elements in

EM are required for the result to be a model. That is, let M" be any model

M — E's, where E's is a non-empty subset of ES
M. Then by the inclusion

^Product!

Figure 4.2: The Diff result in Figure 4.1 wi th the support elements needed
to make it a valid model. Support elements are visualized as shaded nodes
throughout this thesis.

rules, M" is not a model.

To visualize the difference, we shade the elements to identify the support

elements. For example, the Diff result from the example in Figure 4.1 would

be the model shown in Figure 4.2. Note that the element Pid is acting as

a support element and is shaded. In the underlying representation, this is

represented by adding a property support = true to the Pid element to

show that it is now a support element.

4.2 Usabil ity of Support Elements

Though originally motivated as a requirement for Diff [3], we show that a l

most all the other operators may also need support elements. For example,

in the range operator, only the elements in the range model that have map

ping relationships wi l l be in the result. This means that only some elements

of the original model wi l l be in the final result. In the operator match,

two models may have a leaf element matched, but not on their ancestors.

To make the mapping be a first-class object, we need make their ancestors

support elements. In order to keep the result as a model, we have to use

support elements to help. If we have support elements existing in the result

model, the result may be further used in other operators. This means that

support elements may be quite common in both input and output models.

It is valuable to keep all our input and output as full models. In this way,

we can make our operators more generic, composable, and easy to maintain.

The output of one operator can be used as the input of another operator.

If we are expecting a kind of model, we can always assume that it is a full

completed model that conforms to the inclusion rules. It w i l l be trouble

some if the Diff operation only generated a set of discrete elements without

structure and cannot be used in those operators that need models as input.

Our purpose is to keep the result model complete. However, we should

not add any extra information to the result and we should not lose any

information either. For example, in Figure 4.2, we cannot just add in a

type-of relationship, or any relationship between the element product and

int that would make it a model. This addition may make the operation not

accurate. B y adding the support element pid, as shown in Figure 4.2, we

can keep the original structure and mark those elements that do not belong

to the result model. We can achieve the goal of not adding any extra i n

formation or losing anything essential. Moreover, the support elements also

help in improving the traceability of operations. If a model is manipulated

Mapping

Figure 4.3: Mapping between a Model with a Support Element and a Normal
Element

by a series of operations, some support elements may become not supported

anymore in the final result; but, we can st i l l trace the generation of the ele

ments from the history property. Suppose the model in Figure 4.2 is used in

a merge operator with another model as shown in Figure 4.3. In the result

model, Pid w i l l be a normal element (non-support) with a history property

of merge(ID(pid\),ID(pid^)).

4.3 Support Elements A d d i n g Algor i thms

In this section, we discuss the engine for adding support elements that the

algorithms use to determine which support elements to add.

We consider as input to the problem of adding support elements a model

M , and a set of elements EM C EM that are required elements in our result:

the model M'. Our goal is to find the support elements set E3 to add to M'.

B y adding the set E S , the partial graph M' of M includes only elements in

ES and E M , and the relationships whose origin and destination are all in

E S \ J E M . The partial graph M' is then our return result.

Because our model is a graph, not a tree, for a given element that needs

support elements, there may exist several paths to the root. We have to

select a proper path based on some expectations or rules and add the ele

ments in the path but not in E M .

First we determine which elements need support, EENS, in Section 4.3.1.

Then we determine which elements EENSR, EENSR £ DENS, can represent

all the elements in EENS hi Section 4.3.2. We only need consider EENSR

when we look for support elements. Finally, we discuss the different algo

rithms used to find the support elements for EENSR m Section 4.3.3.

4.3.1 A l g o r i t h m to F i n d W h i c h Elements N e e d S u p p o r t

Firstly , we need find our target elements set that need support, which is

called Elements Need-Support (EENS)- Basically, any graph search algo

r i thm can be used to recursively include the elements by the inclusion rules

starting from the root, which is always in the model by definition. Here

a breadth-first search method is used. A queue can be used to keep track

of which elements to explore next. It is also necessary to avoid cycles by

remembering which elements have been used in the queue.

The algorithm takes a model M' as input. Model M' can be any valid

model, including a mapping. There are two categories of elements of M'.

One is the normal elements, E M , which are the elements that the result

model must contain and some of which need support elements. The other

category is the elements, E M , that can be deleted and which may need to

be support elements. These elements are different from EM in that they

have a property delete w i th value true, meaning that they are to be deleted

if they are not support elements. Note that this input is also the input of

the whole "Support Element Engine" .

The expected result of this part of algorithm is a set of elements, EENSU

E M , that cannot be included in the model without the support of some el

ements, ES U E M .

The algorithm details are as follows:

1. Define element set ECMIERED — 0 , EQUEUE '= 0 ;

2. P u t the root element of M' into Ecovered and E Q U E U E ;

3. While(E Q U E U E IS not Empty) Do:

L E T e = Dequeue(EQUEUE);

I F e has been visited, N E X T ;

F I N D the corresponding element e' G M that corresponds to e;

F O R E A C H inclusion-rule relationship R

I F e' is the origin of a relationship R ;

L E T ed be the corresponding destination;

I F ed £ EE
M

P U T ed into Ecmiered\

Figure 4.4: Elements Need Support & Representatives

P U T ed into E Q U E U E ;

E N D W H I L E

4. R E T U R N EENS = E- E ^ ^

4.3.2 E N S R e p r e s e n t a t i v e s

Not all the elements in EENS need to be considered when adding support

elements. In the example shown in Figure 4.4, elements B and C are not

in E E
M . EENS includes elements D,E,F. However, it is not necessary to

consider element F when adding support elements, because if either D or

E is included in the model by adding proper support elements (B, C here),

F wi l l automatically be included in the model. Although D,E,F are con

nected together, it is st i l l necessary to consider both D and E as the E N S R ,

because they do not have ancestor- descendant relationships, and adding D

wil l not ensure that e is in the model, and vice-versa.

Therefore, if relationship r is between elements A and B, A G EENS, B £

EENS and II(r, B) (i.e., r implies inclusion of B, see Section 2.1.3), by which

it can induced that if A is in the model then B is also in the model, then it is

only necessary to consider adding A as a support element, and not B, since

adding A would also include B . Therefore, in this step, only some elements

from the EENS set are selected as representatives. Only these E N S Rep

resentatives (E N S R) are considered to add support elements. Each E N S R

element may represent a set of elements in EENS- This may reduce the

number of elements to be considered and speed up the overall process.

This step takes the following as input: the model M' and the output

elements set EENS from previous step in section 4.3.1. The algorithm is:

Iterate each element e G EENS and test if 3ep G EENS, such that if ep G M

then e G M by inclusion rules. If so, we delete e from EENS- Finally, we

get the set EENSR, the representative elements set.

4.3.3 Support Elements A d d i n g E n g i n e a n d A l g o r i t h m s

Because support elements are used in almost al l the operators in the rein

tegration system, the adding process wi l l be a separate, reusable engine, so

that al l the operators can share the process and algorithms.

The Engine has the following input and output:

1. Input: The input includes the original model M, the current uncom

pleted result model M', whose elements set as E M . The whole el-

ements set of M as E. Here M' is a copy of M, except that the

elements which are not in the result set E E
M are marked as delete by

adding the property delete = true. If these elements are marked as

support later by adding the property support — true, they wi l l be kept

as support elements. For those elements in EM that are not marked

as support, they wi l l be deleted in the final step. In this way, the

algorithm can operate on one model and avoid the frequent steps to

locate the corresponding element in the original model.

2. Output: Updated model M' such that al l the elements of ENS are

included by inclusion rules.

To find the support elements set, there are many different ways. Here

we list three methods. Each of them has different advantages and disad

vantages. Section 4.3.3.1 discusses the "Shortest Path A lgor i thm" , which

is a fast algorithm and the most straightforward way: we consider each el

ement in ENSR separately. Section 4.3.3.2 discusses the "Least Support

Elements" algorithm, which is valuable when the number of support ele

ments is desired to be as small as possible. For example, when support

elements are costly for storage reasons, it wi l l be better to add as few sup

port elements as possible. Section 4.3.3.3 discusses the "Greedy A lgor i thm" ,

which is useful when the model structures are complicated and the elements

interact with each other a lot.

4.3.3.1 Shortest Path Algorithm

One straightforward method is to find the shortest path for each E N S R el

ement. For each E N S R element, the algorithm uses a reverse breadth-first

search to track its ancestors. The ending condition is the tracing process

reaches to either the root element, or any element that is already included

in the model, or an element that has been marked as a support element by

using the inclusion rules. Then al l the elements in the found path that did

not belong to the result elements set are included in the result model as sup

port elements. Furthermore, because the path is found with breadth-first

search, it is guaranteed that it is the shortest path. The detailed algorithm

is as follows:

1. For each element e m G ENSR, put em into the processing queue Q.

2. Whi le the queue is not empty and there is no path found, let eq be

the first element in Q , use reverse breadth-first search method. For

each relationship r that is in the inclusion rules and for which eq is the

destination, find the elements E 0 , such that for each element e0 G E0

there exists a relationship r between e0 and eq and II(r,eq).

3. For each element e0 G E 0 , if e0 G EENS, put it into Q and record the

corresponding path; otherwise, if eD G E M , or e0 G EENS and e0 has

a property of "support — true", then the shortest path for element e

has been found.

4. F i n d out the whole path from e to e0. In this path, if any element

is marked as delete, change its property to support. For each such

element, recursively apply the inclusion rules again to find its descen

dant. If any of its descendant is in the EENSR, remove it from EENSR-

5. When al l the elements in EENSR have been covered, the algorithm is

done. Final ly remove those elements from M' if they st i l l sti l l marked

as delete by having the property of udelete=truev.

The advantage of this algorithm is the speed. Even to reach the root,

the average case complexity for this algorithm is 0(log(n)). However, since

we need to keep track of each level, the space usage is very high.

4.3.3.2 Least Support Elements Algorithm (LSE)

In some applications, it may be valuable to use as few support elements as

possible. This algorithm can minimize the number of support elements to be

added overall. This means if n support elements are added to the model and

make up all the elements in E N S R included in the model by the inclusion

rules, it would be impossible to find any other better combination with fewer

than n support elements that could also include all the elements of E N S R in

the model. To determine the least support elements, it is necessary to find

all the possible paths that all the E N S R elements may use to be included in

the model. The steps are as follows:

1. The first step is very similar to the Shortest Path Algor i thm in that it

also uses the reverse breadth-first search for each element e G EENSR-

It also keeps an elements tracing queue Q for the breadth-first search

similar to that for the Shortest Path Algorithm. The difference is that

it does not stop when it finds the first element that is already in the

model. Instead, it wi l l only record this path (but not trace this path),

and it wi l l continue with other possible paths. When all the possible

paths have been found, which means Q is empty, we terminate the

tracing process. We record al l the possible paths, but do not delete

elements from E N S R when we find all the paths, because we are not

sure yet which path wi l l be used in the final result.

2. Repeat the above step for each element in E N S R . Then we have all

the paths set for ej € EENSR- For example, the following may be the

final result of the paths to be considered:

path(eo)[0] = { e n , e i 2 , e i 3 }

path(e0)[l] = { e n , e i 5 }

path(e\)[0] = { e n , e i 2 , e i 7 , e i 8 }

path(e\)[l] = { e i 9 , e 2 o , e 2 i }

path(e2)[0] = {e 22}

path(en)[k} = {e2i,e26,e27}

The paths may have intersections. Each element can choose one of

the available paths to add support elements. Different combinations

of paths chosen by each element in E N S R have different number of

elements by union the elements of selected paths.

3. Compute the total number of elements of each path combination by

selecting a path from each element's path set. For the above example,

we have:

count(path(eo)[0] Upath(ei)[0] Upath(e2)[0)) = 6, (counting elements

e n , ei2, e i 3 , e i 7 , e i 8 , e20)

count(path(eo)[0} U Path(ei)[l] Upath(e2)[0]) — 7, (counting elements

e n , ei2, e i3 , e ig , e2o, 621,22)

4. Pick up a combination of paths with the minimal count and mark all

the elements in the selected paths that are not in the model (marked

as delete) and mark them as support.

LSE guarantees that only minimum support elements are selected. How

ever, the complexity of this algorithm is relatively high.

4.3.3.3 Greedy Algorithm

The idea of the Greedy Algor i thm is to select the element that can cover

most of the E N S R elements to be a support element in each step. The de

tailed algorithm is as follows:

1. F i n d al l the elements Edp, such that for each element edp € Edp, 3e e

ENSR and a relationship r between edp and e, and II(r,e).

2. For each element in Edp, compute the out degree: the relationship r

that is included in the inclusion — rule and II(r, e) for some element

e € ENSR.

3. Select the one with highest out degree, e^, and mark it as a support

element by adding property "Support = true".

4. P u t eh into E N S R .

5. Remove those elements in E N S R that can be covered by e/i.

6. F i n d the direct parents of and put them into Edp.

7. Repeat from step 2, unti l E N S R is empty.

The Greedy Algor i thm cannot guarantee an optimal result (i.e., the least

support elements). For example, Figure 4.5 shows an example of using

the Greedy Algor i thm. The algorithm may choose Do...Dn as the support

elements, because Dn has the highest out degree. However, we know that the

least support elements should be only B and C. This example demonstrates

that in some cases, the Greedy Algor i thm may generate a worse selection

of support elements. However, it can generate a "better than naive" result

and has an acceptable complexity. In practice, since database schemas are

mostly well structured and the depth of the model graph is small , the Greedy

Algor i thm can often find the "important" elements to be added as support

elements first. These elements can play a good role on supporting elements

in ENSR.

Redundancy in the Greedy Algorithm

C D (J D
Figure 4.5: Greedy Algorithm Example

Figure 4.6: Redundancy in Greedy Algorithm: B - E are candidate support
elements. The Greedy Algorithm wi l l add al l of them as support elements,
but D is not necessary.

The Greedy Algorithm that it cannot always produce the optimum result

(the least support elements). Moreover, sometimes elements are included as

support elements, but the model could sti l l be completed even if those ele

ments are not support elements. For example, Figure 4.6 shows an example

of adding support elements using the Greedy Algorithm.

The model shows that elements F to O are result elements and elements

B,C,D,E are not in the model and are candidates for support elements.

Following the Greedy Algor i thm, the steps axe:

• E N S R s are elements F to 0 , and the out-degree D for the direct

parents are: D(C) = 5, D(D) = 6, and D(E) = 5

• Element D is firstly selected as the support element, and it covers

elements H to M.

• The updated E N S R s are elements F,G,D,N,0, and the out-degrees

are: D(C) = 2, D{B) = 1 and D(E) = 2

• Then, the element with highest degree, C, is selected as the support

element, then E is selected.

• Finally, B is selected as the support element and we are done.

• The support elements are B, C, D, E.

However, notice that element D is redundant. If D is not a support

element, all the E N S R s can st i l l be covered by C and E.

In our Schema Reintegration system, all three algorithms have been im

plemented and tested; In practice, we have used the Shortest Path A l

gorithm the most, because most models that represent database schemas

are trees. In such cases, the Shortest Path Algorithm can correctly, effi

ciently, and optimally solve the problem. However, if the model structure

is a complex structured graph, and it is necessary to consider the cost of

the total number of added support elements, the other two algorithms can

help. When the number of added support elements is really" critical, for

example, adding a support element wi l l cost several gigabytes of disk space,

then the "Least Support Elements" gives the optimal solution. When the

model structure is very broad (high out-degree on most elements) and has

complex relationships between elements, the "Least Support Elements" is

very costly. It needs to find all the paths to some elements already included

in the model. In such cases, the "Greedy Algor i thm" gives a good solution

to quickly find the support elements.

4.4 Discussion

4.4.1 T h e R o o t Element

In Model Management, each Model is required to have a unique root ele

ment. In a mapping, it is also assumed that the root elements of the domain

and range match each other. When the models are manipulated by opera

tors the root element may not be deleted from the model. For example, in

the Diff operator, if the root elements of the domain and range are matched

in the mapping, the root of the result model wi l l be a support element.

However, in the support elements adding algorithms, one of the conditions

to stop tracking each path is when the path reaches the root. Therefore,

the root element must be processed separately. In any operator, if support

elements are to be added, it is necessary to guarantee that the root element

is included in the model first. If not, it should be marked as a support

element at the beginning of any operations.

4.4.2 Support Elements in Input

Most operators need support elements in their result model. These results

can be further used as input to other operators. Therefore, each operator

needs to consider how to deal wi th the support elements in their input.

Moreover, it should also be considered when such models (which already

have support elements) need to add more support elements. These issues

wi l l be addressed in Section 5.2.2.

In this chapter, we discussed in detail the support elements used in model

management. Support elements are helpful to maintain the integrity of mod

els during model management operations without adding extra information

or losing information. We gave an algorithm to locate the support elements

and we gave three support elements adding algorithms that could be used

in different situations.

Chapter 5

Reintegration System

Having developed all the operators needed for the reintegration algorithm,

in this chapter, we discuss the details of the reintegration system (Section

5.1) and some complicated problems that have to be solved (Section 5.2).

5.1 Reintegration (Three -Way-Merge) A l g o r i t h m

As shown in the example in Table 2.2 in Chapter 2, the reintegration algo

r i thm can be done in 26 steps using the operators described in Chapter 3.

The input of the algorithm is one original model O and two different mod

ified versions O, Model A and Mode l B. In model A and B, each element

e has a History property indicating which element eQ G O e is derived

from. Again, since each Model Management operator provides the history

property, this information would be easy to derive even if there were more

intervening operators.

The output of the algorithm is a single model Mresuit, which is generated

conforming to the rules mentioned in Table 2.1.

A t the highest level, the reintegration steps include the following:

1. Merge the two modified versions, Model A and Model B, into Mode l

MQ- This includes all the existing elements in both versions (steps

10-11). When two elements from two models are merged, sometimes,

there are conflicts. For example, one element may have the property

"minOccur = 5" and in the other model, the matched corresponding

element may have the same property with a different value, such as

"minOccur = 5". In the merge theory, there is usually a preferred

model to break the conflict. If the preferred model does not include

the latest modification, it may override the latest version. Therefore,

the merged version need check whether the modified part in Model A

and the modified part in Model B are included. This is done by using

merge again between Model MQ and the changed parts of A and B.

Steps 1 to 9 find the elements that are changed in A or B but not

both. Steps 12 to 16 merge the changes wi th MQ- However, MQ may

also include those elements that should be deleted.

2. F i n d the deleted elements in Model A and Model B separately, namely

MoeletedA and MoeletedB, which may need to be deleted from the

merged version MQ- Steps 17 to 18 find these deleted elements. How

ever, these deleted elements may have been modified in the other ver

sion. Therefore, not all the elements in MrjeietedA a n d MrjeietedB c a n

be deleted from MG-

3. F i n d the those elements that are deleted in one model but not modified

in the other. These elements are those that can be really removed

from the wholly merged version. Steps 19 to 26 find those elements

and delete them from the merged model MQ-

5.2 Discussion of Problems in Reintegration

System

We have implemented the reintegration system, including all the operators

discussed in Chapter 3 and the reintegration algorithm [14] shown as an

example in Chapter 2 and summarized in Section 5.1. The system was

tested with several test samples, from very simple ones to very complicated

ones. We discovered some interesting problems that have not been previ

ously studied.

5.2.1 N u l l M o d e l

Our experiments started with the simple example shown in Chapter 2.

Though this example is simple, it can raise some unexpected results. For

example, many operations generate a resulting model that is NULL, i.e.,

the result model includes no element or relationships. Previous work had

not identified this as a possibility, but is clearly a special case that must be

handled properly. We treat the N U L L model as a special type of model.

The Null model is necessary. M a n y operators take a pair of models as

input, such as Diff, match, range, and match. Also, the map can be an

input. Without the Null model, these operators would not be able to han

dle the cases where input models have no elements. But intuitively, the

existence of the null model makes sense to real problems. For example, in

the example in Table 2.2, Step 7, models changed^ and changeds have no

common elements. Their mapping wi l l result in a null model. We need to

define the behavior of each operators when one or more input models are

null .

• In Diff, if the domain model is a null model, then the result model

is null too. If the range model or the map is a null model, then the

result model is exactly the same as the domain model.

• In merge if any of domain or range is a null model, the result w i l l

be the same as the other model (range or domain). In merge it is

assumed that the two root elements of the domain and range are

mapped to each other if neither of them is null . Therefore, the map

cannot be null .

• In range, if the domain model is nul l , the map w i l l be null too. There

fore, the result model w i l l be same as the range model. If the range

itself is null , the result wi l l be null too.

• In match, if any of the domain or range is nul l , the result mapping

wi l l be null too.

• In Apply, if the input model is null , obviously a nul l model wi l l be

returned.

Furthermore, if all the elements in a result model are support elements,

this model wi l l be a null model, instead of a model that includes al l support

elements.

5.2.2 S u p p o r t Elements in Input

As we have mentioned in Section 4.4.2, support elements may appear in the

input models of each operator. While the Reintegration system is composed

of the operators and the result of one operator w i l l be used in future oper

ators as input, the support elements wi l l be more likely to appear in input

models. They need to be handled with clear rules. Here is how they are

handled in the system.

The first step is that al l the support elements in input models are marked

as "delete" candidates. More specifically, if an element in the input mod

els has a property of "p(support) = true", this property is deleted and we

add a new property as "p(delete) = true". This means that these elements

may be deleted after the operator finishes. Because the "support elements"

may not useful in the result model, i.e., it is not necessary to "support" any

elements. For example, Figure 5.1 (a) shows a mapping between model A

and model B, which includes a support element c to support the element d

to be included in the model. The merge result is shown in (b). Obviously,

element d is now included in the model because of the existence of element

b, and support element c is not necessary any more.

The second step is that the model with elements marked as "delete"

is processed by each operator normally as input. The elements marked as

Model A Map Model B Merge(A, B, Map)

Figure 5.1: Support element c in Input model, which is not needed in Merge
result.

"delete" are treated as normal elements in the algorithms. However, each

operator needs to handle the delete property in the input element differently.

• In Merge, each element in the result model represents a group of

corresponding elements. If any element in the group does not have the

"delete" property, the corresponding result element wi l l not have the

"delete" property.

• In Diff, if the domain model contains elements that have the "delete"

property , the corresponding elements in the result model also have

the "delete" property.

• In Range, if the range model contains elements that have the "delete"

property, the corresponding elements in the result model also contain

the "delete" property.

• In Apply, the "delete" property of the elements in input model w i l l

be kept in the corresponding elements in the result model, unless the

Apply function modifies this property on purpose.

• In Match, each model mapping element in the result map represents

a group of elements. Only when all the elements in the group have the

"delete" property, the corresponding element in the result map also

has the "delete" property. Otherwise, the elements in the result map

do not have the "delete" property.

In the third step, the result model w i l l be processed by the "Support

Elements Engine" as usual and if the elements that are marked as "delete"

are st i l l essential to support some other elements, they w i l l be marked as

"support" by the engine. If the elements are st i l l marked as "delete", they

wi l l be deleted from the result.

The specific handling of "Support Elements" enables the Reintegration

system to work for any cases with full "Support Elements" functionality

support. The "Support Elements" can appear in any place. The Support

Element Engine has been fully discussed in Chapter 4.

5.2.3 M o d e l V a l i d a t i o n

A l l the operators in the Reintegration system assume that the input models

are valid. A l l the algorithms in each operator also rely on valid models.

However, this assumption may be challenged when the input models are

complex.

During system testing, we tried some complex examples that include hun

dreds of elements. Some human errors may make the input models invalid.

For example, some elements are supposed to be in a model, but cannot be

inclusion-implied, or the relationships have cycles. If the input models have

such kinds of invalid problems, the performance and result of each operation

can hardly be guaranteed. This may lead to system instability. Therefore,

all the input models need to be validated before being used. The model val

idation procedure includes validating the elements and relationships. The

rules used are the "Inclusion Rules" shown in Section 2.1.3. Starting from

the root, if al l the elements and relationship can be included by using the

inclusion rules, then the model is valid. If the model is mapping, we also

check if the two roots of the domain and range are mapped. The correctness

of logic of the input models is not validated in this system. It depends on

the user to make sure the logic in the model is correct. Invalid input models

are rejected from proceeding further during Reintegration.

In this way, the system becomes more stable and could be used on com

plex models, which are more general, and hence the system is more valuable.

5.3 S u m m a r y

The Reintegration system integrates all the operators that are required for

Reintegration. Because all the operators are designed in a way that they

can consume the output models from other operators, they can be easily,

incorporated into the system to accomplish the integration task. The "Sup

port Element Engine" is designed to support all the operators, so that each

operator can focus on its functional algorithm.

This kind of design makes the system more flexible and extensible. It

is suitable for future model management operators development and other

relevant model management topics. The system also includes a graphic pre

sentation that enables the models and algorithm procedures to be visualized.

This makes the system easier to be validated and observed for discovering

interesting issues.

We have made the system stable in a sense that it always checks the

validation of input models, and during each algorithm. From our exper

iments, we have also discovered the corner cases in the system that need

to be considered to make the system more general and compatible. These

corner cases are not usually discussed but they are st i l l technically essential

to make everything stable in the system.

A l l these efforts make the system ready to accomplish the schema rein

tegration. Now that the system is ready, we describe the experiments on

the system in Chapter 6.

Chapter 6

Experiment

The implementation of the Model Reintegration System is based on the

previous work of Merge in [14]. The system is written in C # and includes the

classes for the basic data structures, such as Element, Model , Relationship,

Mapping, and operators. We built each operator as a class, so that the class

can be decoupled from other operators, and is easy to extend. We also built

a class that integrates al l the operators and follows the Three-Way-Merge

algorithm. In order to make the system more transparent and clear, the

result models in the steps are al l visualized using Visua l Studio . N E T 2003

and the FlowChart . N E T component [8]. A l l the elements are displayed

using an automatic tree-structure arrangement plan. This is a good way for

observing the elements and relationships for demonstration purpose. Figure

6.1 shows a mapping in the Model Reintegration System interface that we

used for demoing the reintegration procedure.

The system includes the following main parts:

• Model Display

• Model Selection

• Support tools.

Internet Model Reintegration System Unknown Site E
Load

Reintegration
Model MO

Model MA

Model MB

4. MapOB'

B, MapChangeA

1. MapOA

2 MapOB

3. MapOA'

5. ChangedA
B. ChangedB

7. MapChangeB

9. A'

10.B'
11 MapAB

12.G
13MapGA'

14.GA'

15MapGA'B'
16.GAB

U.DeletedA
18.DeletedB

19.MapDACB

20MapDBCA

21.ShouldDelete
22.ShouldDelete

23.MapGABSDA

24 GABSDA
25.MapGABSDA

26Resii l t

Property Display

8 Simple

C Full

MapOA = Match(MO, MA)

Figure 6.1: Model Reintegration System

After a demo is loaded, the user can select any model in the steps by

clicking the related item in the left bar, and the selected model wi l l be dis

played in the main area. There are some functionalities to make the system

more convenient for the users. For example, there are two modes in which

to view the model: the simple mode only shows the name of each element,

and the full mode shows all the details of each element, including all the

properties. There is also a zoom bar to view the model in different sizes.

6.1 Operator Experiments

While we developed each operator, we performed numerous experiments

to ensure the correct behavior of each operator. These experiments are

designed to cover different situations that may happen in the input. For

example, the following are part of the experiment cases that were used for

testing Diff:

• Element in domain and has a valid match to some elements in the

range

• Element in domain but has no mapping relationship

• Element in domain and has a mapping relationship with some element

in the map, which has no mapping relationships wi th elements in range

• Mult iple elements in domain match to the same element in range

• One element in domain matches multiple elements in range

Operator # of experiment cases
1 Merge 25
2 Diff 6
3 Range 6
4 Apply 2
5 Match 4

Table 6.1: Experiments Performed for Each Operator

• A l l the elements in domain have valid matched elements in range

We have designed different test cases for different operators. We have

covered different rules in each operator, including some special scenarios

that have been mentioned. In each operator and some basic modules, there

are also some functionalities that accomplish a single task. For example, we

have a function to verify if a model is valid. Table 6.1 shows the experiments

that we have performed for the operators, not including the test on basic

functions, support elements and the whole system.

From these experiments, we learned a lot of corner cases that we must

cover for a complete system, such as how to deal wi th the root element in

each operator. These observations are helpful when using these operators in

the reintegration system.

6.2 Support Element Engine Experiments

The "Support Element Engine" described in Chapter 4 is an assistant mod

ule that all the other operators rely on. Because its input is only a model

and its output is the same model with support elements found and marked,

the experiments on this module were performed in both single module sce

narios and integration scenarios wi th other operators. We have designed

18 test cases to covered different scenarios. We also tested the engine with

mappings models. The engine is expected to be able to support any kind of

model.

Moreover, because we have three different support elements adding al

gorithms (See Sections 4.3.3.1 4.3.3.2 and 4.3.3.3), al l of the experiments

were performed using all the algorithms separately. We have also designed

cases to show that different algorithms would generate different results on

the selection of support elements.

We also tested the performance of the engine. We have designed test

cases that include elements arranged in a wide structure, for example, one

level contains more than 10 elements, and in a deep structure, for example,

the model contains more than 5 levels. These models have very complex

relationships between elements in each level and in different levels. The

result shows that al l three algorithms can finish in less than one second, even

for large models, which is acceptable speed. Among the three algorithms,

the shortest path algorithm is a little bit faster than the other two. This is

because this algorithm searches support elements in a direct way, which is

less than the height of the graph from the root. The support elements adding

step for each element is independent from each element. However, in the

other two algorithms, the correlation of each element that needs support has

to be considered. This increased the complexity of the algorithms. Therefore

the Shortest P a t h Algorithm is the one that we recommend if the number

of support elements added is not very small.

6.3 Reintegration System Experiments

We designed four experiments to test the reintegration system. Because the

system is composed of only the five operators mentioned in this thesis, these

tests are also a way to further test each operator. In the experiments, we

primarily used the shortest path algorithm in the Support Element Engine.

However, in the last two more complex experiments, we have randomly

chosen one of the three support element adding algorithms in each step

of the reintegration system. This ensures that all three algorithms work

properly.

In order to quickly create models for testing, we also designed functions

to automatically add elements to models and find and add history prop

erties to match to corresponding elements in another model (usually the

original model). This gives us a quick way of adding elements and building

the structure of models and the relationships between elements in different

models, so that we can put more of our focus on the reintegration system

itself.

Our first experiment is a simple one mentioned in [14] (Merging Models

Based on Given Correspondences). The original model includes four ele

ments. The derived models contain two scenarios: one element is modified

in one model and not changed in the other; one element is deleted in one

model and not changed in the other. Even from this simple experiment, we

found many improvements that the system needed in order to be more sta

ble. For example, the simpler the models are, the more likely there are null

models appearing in the result of operators, which may be used by other op

erators as input. From Table 2.2, we can see that there are 11 results among

the total 26 steps are that null models. This brought our attention to han

dling null models for each operator and it is necessary to define the correct

behavior when the input has null models, as discussed in Section 5.2.1. We

have attached screen shots of all the steps of this experiment in Appendix A .

The rules mentioned in Table 2.1 are the principle cases that our system

should cover. Therefore, our second experiment was designed to include

elements that can cover al l the scenarios in the rules. The original model in

cludes eight elements which are arranged in three levels. One derived model

contains eight elements and the other contains seven elements. These ele

ments are arranged in a designed hierarchy to cover each scenario that we

are going to test.

Furthermore, we also performed experiments on the cases that Rondo

[11] uses. This includes a relational schema case and an X M L schema case.

Both schemas are translated into models that can be used in our system and

run the Reintegration algorithm on them.

In the first of these two experiments, we created a four-level parent-child

hierarchy data model. The first level is the root for the whole database; the

second level includes one element for each schema in the database; the third

level includes one element for each attribute; and the last level includes the

type of each attribute and if it is a primary key, there is also a child element

of primary key. The translated models contain the following information:

• Model O: 37 elements, in 4 levels

• Model A : 49 elements, in 4 levels

• Mode l B : 45 elements, in 4 levels

• Mapping relationships between O and A : 33

• Mapping relationships between O and B : 29

• Mapping relationships between A and B : 31

• F i n a l result model contains 57 elements

In the second example, we translate each X M L node of the example as an

element in the each model. The translated models contain the following

information:

• Model O: 27 elements in 5 levels

• Model A : 32 elements in 5 levels

• Model B : 26 elements in 5 levels

• Mapping relationships between O and A : 19

• Mapping relationships between O and B: 20

• Mapping relationships between A and B : 16

• F ina l result model contains 37 elements

The overall test results showed that our system achieves the correct out

put. The first two experiments resulted in the results dictated by three-way

merge. The last two cases got the same results as Rondo. These were the

results that were dictated by the rules of three-way merge, and is the be

havior that make sense to most people.

From these two more complex examples, we observed that it is very i m

portant to always keep the input model and output model valid. Sometimes,

a dangling relationship or element is a human mistake while the model is

created. Therefore, we added a validation step to make sure that all the

input models are valid, that is, they are compatible with the inclusion rules.

This extra step makes the system more reliable.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we discussed the details of the Model Management operators:

Diff (Section 3.2), Range(Section 3.3), Apply(Section 3.4) and Ma£c/t(Section

3.5) . We formally defined each operator and gave algorithms after analyz

ing them in detail. We showed that these operators always need support

elements to maintain integrity.

We developed a model reintegration framework that integrates al l the

operators and accomplishes the Reintegration task, which is the essential

algorithm for schema reintegration purposes. The model reintegration sys

tem demonstrated how the original schema can help when merging different

versions of modified schemas correctly.

The schema reintegration system can be used in many areas, such as for

relational schemas, X M L schemas, U M L , and ontologies. When the circum

stance happens that there are one original schema and two or more different

modified versions of the schema, the schema reintegration can facilitate the

automation of the reintegration steps.

We discovered the need for, and also discussed the "Support Element

Engine" in detail. This engine is designed and developed in a generic way,

so that al l other operators can simply rely on it to select the appropriate

elements as the support elements. This method does not add any extra

information to the result of each operator and does not lose any existing

information either. It is also a way to keep tracking the history of the

evolvement of each element. W i t h this engine assisting of model manage

ment, all the other operators can now focus on their own algorithms and

leave the structure problem of their result models to the engine in the final

step.

Our experiments have shown that these generic model management op

erators indeed can be used for schema reintegration purposes. This system

can be used for different kind of schemas and generate good result. The rules

implemented in each operator can be customized to be compatible wi th dif

ferent utilizations in the real world. We always keep "generic" in mind when

we design our system. This system can be easily extended to other relevant

applications.

7.2 Future W o r k

In this thesis, we focused on analyzing and implementing the operators Diff,

Range, Apply, and Match (based on History property), which are for rein-

tegration. There are st i l l many other operators in model management to be

explored, such as compose and modelGen. These operators can be useful

for other model management purposes.

In our reintegration system, models are created manually. This is only

for demo purposes. The transformation from a schema to our model is slow

if it is done manually. It wi l l be very helpful if there are interpreters that

can transfer each kind of schemas to our models.

The Match operator in the system is based on the "History" property.

This works fine and is reliable in the middle of the algorithm after the models

are built. However, in the first step, when we create the input models,

we have used the element names to automatically build the corresponding

"History" properties. This is because we do not discuss other automatic

matching methods. The automatic matching in model management has

been discussed widely, for example, [11] [15] [6] [7] [10] [9]. If a reliable matcher

can be integrated into the system and build the init ia l relationships between

the input models and elements, the system wi l l be more complete and have

better usability.

Bibliography

[1] Suad Alagic and Phi l ip A . Bernstein, A model theory for generic schema

management, D B P L , 2001, pp. 228-246.

[2] S. Balasubramaniam and Benjamin C. Pierce, What is a file synchro

nizer?, A C M / I E E E International Conference on Mobile Computing and

Networking (M O B I C O M) , 1998, pp. 98-108.

[3] P. A . Bernstein, Applying model management to classical meta data

problems, Conference on Innovative Data Systems Research (C I D R) ,

2003, pp. 209-220.

[4] Phi l ip A . Bernstein, Generic model management: A database infras

tructure for schema manipulation., CoopIS, 2001, pp. 1-6.

[5] Ph i l ip A . Bernstein, A lon Y . Halevy, and Rachel A . Pottinger, A vision

of management of complex models, S I G M O D Record 29 (2000), no. 4,

55-63.

[6] David W . Embley, L i X u , and Yihong Ding , Automatic direct and

indirect schema mapping: experiences and lessons learned, S I G M O D

Record 33 (2004), no. 4, 14-19.

[7] Fausto Giunchiglia and Mikala i Yatskevich, Semantic matching, K n o w l

edge Engineering Review 18 (2004), no. 3, 265-280.

[8] MindFusion Limited , Flowchart.net component, Version 3.2.2, 2006.

[9] Jayant Madhavan, Ph i l ip A . Bernstein, A n H a i Doan, and A lon Halevy,

Corpus-based schema matching, I C D E '05: Proceedings of the 21st In

ternational Conference on Data Engineering (ICDE'05) (Washington,

D C , U S A) , I E E E Computer Society, 2005, pp. 57-68.

[10] Jayant Madhavan, Ph i l ip A . Bernstein, and Erhard R a h m , Generic

schema matching with cupid, V L D B '01: Proceedings of the 27th In

ternational Conference on Very Large Data Bases (San Francisco, C A ,

U S A) , Morgan Kaufmann Publishers Inc., 2001, pp. 49-58.

[11] Sergey Melnik, Erhard Rahm, and P. A . Bernstein, Rondo: A pro

gramming platform for generic model management, A C M S I G M O D

International Conference on Management of Data (S I G M O D) , 2003,

pp. 193-204.

[12] Jonathon P. Munson and Prasun Dewan, A flexible object merging

framework, Conference on Computer Supported Cooperative Work

(C S C W) , 1994, pp. 231-242.

[13] Rachel A Pottinger, Processing queries and merging schemas in support

of data integration, P h . D . thesis, University of Washington, 2004.

http://Flowchart.net

[14] Rachel A . Pottinger and P. A . Bernstein, Merging models based on

given correspondences, Technical Report UW-CSE-03-02-03, University

of Washington, 2003.

[15] Erhard R a h m and Phi l ip A . Bernstein, A survey of approaches to au

tomatic schema matching., V L D B J . 10 (2001), no. 4, 334-350.

Appendix A

Reintegration System

Example

Here we list the screen shots of the first experiment that we did on the Rein

tegration System.

Figure A . l shows the original model and Figures A .2 and A .3 are the two

different modified versions. Figures A .4 through A.29 list al l the steps that

correspond to the procedures shown in Table 2.2.

[Ji' Internet - Model Reintegration System - Unknown Site
Load

R e i n t e g r a t i o n ' , P r o p e r t y D i s p l a y

1 ! «8 S i m p l e

C Ful l M o d e l M A

M o d e l M B

! «8 S i m p l e

C Ful l

1. M a p O A M o d e l O

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A CD 6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A m CD Q
9. A '

1 0 . B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

Figure A . l : The Original Model MO

Hi' Internet - Model Reintegration System - Unknown Site
Load

R e i n t e g r a t i o n 1 1 P r o p e r t y D i s p l a y
[M o d e l M O " ® S i m p l e

M o d e l M A r Ful l

j M o d e l M B
1. M a p O A M o d e l A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

B. M a p C h a n g e A

9. A '

1 0 . B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 , M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

Figure A . 2 : The First Modified Model MA

5? Internet - Model Reintegration System - Unknown Site
Load

R e i n t e g r a t i o n -•—— , P r o p e r t y D i s p l a y
M o d e l M O)

r eg S i m p l e
C Ful l

M o d e l M A

)
r eg S i m p l e

C Ful l
M o d e l M B

)
r eg S i m p l e

C Ful l

1. M a p O A M o d e l B

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

B. C h a n g e d B Mi
7. M a p C h a n g e B

8. M a p C h a n g e A • Q
9. A '

1 D . B '

11 . M a p A B

1 2 . G

1 3 M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

25 . M a p G A B S D A

| 2 B . R e s u l t

Figure A .3 : The Second Modified Model MB

" Internet - Model Reintegration System - Unknown Site

Load

Reintegration
Model MO

Model M,

Model M

1.MapOA

2 .MapOB

3. MapOA'

Property Display

<8 Simple

r Full

MapOA = Match(MO, MA)

10.B1

11 .MapAB

12.G

13.MapGA'

14.GA'

15.MapGA'B'

16.GAB

17.DeletedA

18.DeletedB

19.MapDACB

20.MapDBCA

21,ShouldDelete

22.ShouldDelete

23.MapGABSDA

24.GABSDA

|25.MapGABSDA

26. Result

Figure A.4 : The Mapping MapoA between Model MO and Model MA

Internet - Model Reintegration System - Unknown Site i
Load

i Reintegration
Model MO

Model MA

Model MB

1. MapOA

2 .MapOB

3. MapOA'

4. MapOB'

5. ChangedA

6. ChangedB

7. MapChangeB

8. MapChangeA

9. A'

10.B'

11 .MapAB

12.G

13.MapGA'

14.GA'

15.MapGA'B'

16.GAB

17DeletedA

18.DeletedB

19.MapDACB

20.MapDBCA

21.ShouldDelete

22.ShouldDelete

23.MapGABSDA

24.GABSDA

25.MapGABSDA

26.Result

Property Display

S Simple

C Full

MapOB = Match(MO, MB)

Figure A .5 : The Mapping MapoB between Model MO and Mode l MB

Internet - Model Reintegration System - Unknown Site
Load

r- Reintegrat ion
Model M O

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A 1

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 D e l e t e d B

1 9 M a p D A C B

2 0 , M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

fi" S i m p l e

r Ful l

M a p O A ' = A p p l y (M a p O A)

Figure A .6 : The Model Map'OA from Apply{MapoA)

1 . M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B 1

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 M a p G A '

1 4 . G A '

1 5 M a p G A ' B '

16 G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 M a p D A C B

2 0 M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

_

[JR Internet - Model Reintegration System - Unknown Site
Load

Reintegration
Model M O

Model M A

M o d e l M B

• i D l x l

P r o p e r t y D i s p l a y

S i m p l e

r Full

M a p O B ' = A p p l y (M a p O B)

Figure A .7 : The Model Map'OB from Apply(MapoB)

It,}"' Internet - Model Reintegration System - Unknown Site
Load

p Reintegrat ion - m P r o p e r t y D i s p l a y
Model M O

" <8 S i m p l e

C Full Model M A

Model M B

" <8 S i m p l e

C Full

1. M a p O A C h a n g e d A = R a n g e (M a p O A)

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B K
7. M a p C h a n g e B

B. M a p C h a n g e A flfe
9. A '

n
10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

126.Result

Figure A .8 : The Model ChangedA

Internet - Model Reintegration System - Unknown Site
Load

Reintegration
Model M O

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 M a p A B

1 2 . G

1 3 M a p G A '

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 D e l e t e d B

1 9 . M a p D A C B

2 0 M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

S i m p l e

r Ful l

C h a n g e d B = R a n g e (M a p O A)

Figure A .9 : The Model ChangedB (A N U L L model)

Hi Internet - Model Reintegration System - Unknown Site
Load

Reintegration
Model M

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B
7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10.B'

11 . M a p A B

12.G

1 3 M a p G A '

14.GA'

15 .MapGA'B '

1 6 . G A B

17.DeletedA

18.DeletedB

1 9 . M a p D A C B

2 0 M a p D B C A

21 .ShouldDelete

2 2 S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

26.Result

Property Display

CS Simple

r Full

M a p C h a n g e d B A = M a t c h (C h a n g e d B , C h a n g e d A)

Figure A . 10: The Mapping MapchangedBChangedA between Models
ChangedB and ChangedA

2i Internet - Model Reintegration System - Unknown Site
Load

R e i n t e g r a t i o n - -
" ' M o d e l M O

/lodel M A

Model M B

LQjxJ

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10.B'

11 . M a p A B

12.G

13 .MapGA'

14.GA'

15 .MapGA'B '

1 6 . G A B

17.DeletedA

18.DeletedB

1 9 . M a p D A C B

2 0 . M a p D B C A

2 1 S h o u l d D e l e t e

2 2 S h o u l d D e l e t e

2 3 M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

26.Result

I • i • i i i i i i |

Property Display

® Simple

r Full

M a p C h a n g e d A B = M a t c h (C h a n g e d A , C h a n g e d B)

Figure A . l l : The Mapping MapchangedAChangedB between Models
ChangedA and ChangedB

[fi Internet - Model Reintegration System - Unknown Site
Load

Reintegration
lei M O

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 , M a p G A B S D A

24 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

Property D i s p l a y

S i m p l e

r Full

A ' = D i f f (C h a n g e d A , C h a n g e d B)

Figure A.12: The Difference Model A' between Models ChangedA and
ChangedB

IJi Internet - Model Reintegration System - Unknown Site
Load
Reintegrat ion

M o d e l M O

rfodel M,

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 M a p G A '

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 M a p D A C B

2 0 M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 M a p G A B S D A

2 6 . R e s u l t

^ l P l . * J

P r o p e r t y D i s p l a y

® S i m p l e

r Full

B ' = D i f f (C h a n g e d B , C h a n g e d A)

Figure A.13: The Difference Model B' between Models ChangedB and
ChangedA

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B'

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 , S h o u l d D e l e t e

2 3 , M a p G A B S D A

2 4 . G A B S D A

2 5 , M a p G A B S D A

26 .ResuIt

y " Internet - Model Reintegration System - Unknown Site
Load

Reintegration
M o d e l M O

M o d e l M A

M o d e ! M B

P r o p e r t y D i s p l a y

® S i m p l e

r Full

M a p A B = M a t c h (M A , M B)

Figure A . 14: The Mapping MapAB between Models MA and MB

Qf Internet - Model Reintegration System - Unknown Site

Reintegration
Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 , S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

S i m p l e

r Full

G = M e r g e (M A , M B)

Figure A.15: The Merged Model G from Models MA and MB

LI*1 Internet - Model Reintegration System - Unknown Site
Load

Reintegration

• | D | x |

M o d e l M O

M o d e l M A

i M o d e l M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B'

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

c S i m p l e

r Full

M a p G A ' = M a p (G , A')

Figure A.16: The Mapping MapoA' between Models G and A'

Wi Internet - Model Reintegration System - Unknown Site
Load

r Reintegrat ion j P r o p e r t y D i s p l a y
Model M O f1- S i m p l e
Model M A

C Ful l
Model M B

C Ful l

1. M a p O A G A ' = M e r g e (G . A')
2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

B. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A CD G)
9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

|2B.Result

Figure A.17: The Merged Model GA' from Models G and A'

|Q"' Internet - Model Reintegration System - Unknown Site
Load

r~ Reintegrat ion
Model M O

j P r o p e r t y D i s p l a y

' ffi S i m p l e

r Full [Model M A

j P r o p e r t y D i s p l a y

' ffi S i m p l e

r Full
| M o d e l M B

j P r o p e r t y D i s p l a y

' ffi S i m p l e

r Full

M a p G A ' B ' = M a t c h (G A , B') 1. M a p O A M a p G A ' B ' = M a t c h (G A , B')
2 . M a p O B

M a p G A ' B ' = M a t c h (G A , B')

3. M a p O A '

M a p G A ' B ' = M a t c h (G A , B')

4. M a p O B '

M a p G A ' B ' = M a t c h (G A , B')

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B 7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 , M a p G A B S D A

|26.Result

Figure A . 18: The Mapping MapcA'B1 between Models GA' and B'

Q? Internet - Model Reintegration System - Unknown Site
Load

- R e i n t e a r a t i o n - - " - -
Model M O

j P r o p e r l y D i s p l a y
® S i m p l e

C Full
Model M B

j P r o p e r l y D i s p l a y
® S i m p l e

C Full

1. M a p O A G A B = M e r g e (G A , B;)
2 . M a p O B

3. M a p O A

4. M a p O B 1

5. C h a n g e d A

6. C h a n g e d B j p i
7. M a p C h a n g e B

8. M a p C h a n g e A

9. A ' f
10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

126.Result

Figure A.19: The Merged Model GAB from Models GA' and B '

IB? Internet - Model Heintegral ion System - Unknown Site

''flHHflHIi HHHHHiilHHiHHHHHflHHHIHIHH
- R e i n t e g r a t i o n , P r o p e r t y D i s p l a y

Model M O)
S i m p l e

C Full Model M A

)
S i m p l e

C Full
j Model M B

)
S i m p l e

C Full

11. M a p O A D e l e t e d A = D i f f (M O , MA)
2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B null
7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

24 . G A B S D A

2 5 . M a p G A B S D A

126.Resu.lt

Figure A .20: The Model DeletedA Showing The Difference between Models
MO and MA

http://26.Resu.lt

|LTi Internet - Model Reintegration System - Unknown Site - i n l x|
Load
-Reintegrat ion

Model M O

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

f S i m p l e

r Full

D e l e t e d B = D i f f (M O , M B)

Figure A.21: The Model Deleteds Showing The Difference between Models
MO and MB

\i Internet - Model Reintegration System - Unknown Site
Load

l F Reintegrat ion
M o d e l M O

M o d e l M A

M o d e l M

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 M a p D A C B

2 0 M a p D B C A

21 . S h o u l d D e l e t e

2 2 S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

C" S i m p l e

r Full

M a p D A C B = M a t c h (D e l e t e d A , C h a n g e d B)

Figure A .22: The Mapping Model MapoACB between Models DeletedA and
Changeds

Q± Internet - Model Reintegration System - Unknown Site
Load

Reintegration
I Model M O

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 , M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

P r o p e r t y D i s p l a y

<S S i m p l e

r Full

M a p D B C A = M a t c h (D e l e t e d B , C h a n g e d A)

Figure A.23: The Mapping Model MapoBCA between Models Deletedg and
Changed A

Internet - Model Reintegration System - Unknown Site
Load

Reintegration i P r o p e r t y D i s p l a y
Model M O J

S i m p l e
Model M A r Full

| Model M B
r Full

11. M a p O A S h o u l d D e l e t e A = Dif f (DeletedA, C h a n g e d B)

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B null

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B 1

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 , S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

126 . R e s u l t

Figure A.24: The Difference Model ShouldDeleteA between DeletedA and
ChangedB

1 Internet - Model Reintegration System 1

- Unknown Site
- ICI l x|

Load
R e i n t e g r a t i o n ^

Model M O

Model M A

Model M B

1. M a p O A

2 . M a p O B

3. M a p O A

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A

10 .B'

11 . M a p A B

1 2 . G

1 3 . M a p G A

1 4 . G A

1 5 . M a p G A ' B '

1 6 . G A B

17 D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

2 6 . R e s u l t

Property D i s p l a y

«S S i m p l e

C Full

S h o u l d D e l e t e B = Di f f (DeletedB, C h a n g e d A)

Figure A.25: The Difference Model ShouldDeleteB between DeletedB and
ChangedA

Q"' Internet - Model Reintegration System - Unknown Site
Load

[- R e i n t e g r a t i o n ^ 1 • P r o p e r t y D i s p l a y
Model M O)

<* S i m p l e
Model M A r Full

| Model M B
r Full

1. M a p O A M a p G A B S D A = M a t c h (G A B . S h o u l d D e l e t e A

2 . M a p O B

3. M a p O A "

4. M a p O B '

5. C h a n g e d A

B. C h a n g e d B
null J

7. M a p C h a n g e B

8. M a p C h a n g e A

9. A '

10 .B '

11 . M a p A B

1 2 . G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 . M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

|2B.Result

Figure A.26: The Mapping Model between Models GAB and
ShouldDeleteA

0 ? Internet - Model Reintegration System - Unknown Site
Load

Reintegration i P r o p e r l y D i s p l a y
Model M O J

S i m p l e
Model M A r Full

! Model M B

1. M a p O A G A B S D A = Diff (G A B , S h o u l d D e l e t e A)

2 . M a p O B

3. M a p O A '

4. M a p O B '

5. C h a n g e d A

6. C h a n g e d B

7. M a p C h a n g e B

8. M a p C h a n g e A f y CD
9. A ' m

110.B'
j 11 . M a p A B
|12.G

1 3 . M a p G A '

1 4 . G A '

1 5 . M a p G A ' B '

1 6 . G A B

1 7 . D e l e t e d A

1 8 . D e l e t e d B

1 9 , M a p D A C B

2 0 . M a p D B C A

21 . S h o u l d D e l e t e

2 2 . S h o u l d D e l e t e

2 3 . M a p G A B S D A

24 . G A B S D A

2 5 . M a p G A B S D A

126.Result

Figure A.27: The Difference Model GABSDA between Models GAB and
ShouldDeleteA

I'* Internet - Model Reintegration System - Unknown Site

Load
Reintegration

Model MO
I Property Display

' (? Simple

r Full Model MA

I Property Display

' (? Simple

r Full
Model MB

I Property Display

' (? Simple

r Full

1. M a p O A M a p G A B S D A S D B = Match(GABSDA, ShouldDeleteB)
2 .MapOB

3. MapOA'

4. MapOB'

5. ChangedA
U\ ,) j o)

6. ChangedB

7. MapChangeB

8. MapChangeA

9. A' ¥ ^> 2 V
10.B'

11 .MapAB

112.G 13.MapGA'

14.GA'

15.MapGA'B'

16.GAB

17.DeletedA

18.DeletedB

1 9 M a p D A C B

2 0 . M a p D B C A

21.ShouldDelete

|22.ShouldDelete

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 . M a p G A B S D A

126.Result

Figure A.28: The Mapping Model between Model GABSDA and Model
ShouldDeleteB

Lfi Internet - Model Reintegration System - Unknown Site
Load

Reintegration
Model M O

Model MA

Model MB

1. MapOA

2 M a p O B

3. MapOA'

4. MapOB'

5. ChangedA

8. ChangedB

7. MapChangeB

8. MapChangeA

9. A'

10.B'

11 .MapAB

12.G

1 3 M a p G A

14.GA'

15MapGA'B '

16.GAB

17.DeletedA

18.DeletedB

1 9 M a p D A C B

2 0 M a p D B C A

21.ShouldDelete

22.ShouldDelete

2 3 . M a p G A B S D A

2 4 . G A B S D A

2 5 M a p G A B S D A

26.Result

Jfllxj
Property Display

CS Simple

r Full

Result = Diff(GABSDA, ShouldDeleteB)

Figure A.29: The F i n a l Result Model Result, Difference between Models
GABSDA and ShouldDeleteB

