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Abstract 

Schemas are very likely to be changed from time to time because of re

quirement changes, design revisions, database migration and such scenarios. 

Especially in a multi-user environment, schemas may be used by different 

groups or people and are modified to different versions. A t some point in 

time, it is necessary to reintegrate the different versions and have a final 

unique version of the schema. Basically, the problem of creating the unique 

version is to merge the modified schemas. Previous works on schema merg

ing describe how to merge two schemas given the mapping between them. In 

those works, the two schemas need not come from a common source schema. 

In fact, the original schema is often unavailable. However, in our scenario, 

we have the original schema, and we use it in decision-making. This s impli 

fies what might otherwise be a complex matching procedure. We attempt 

to find a generic solution to the schema reintegration problem (i.e., when 

the original schema is present). 

In this thesis, we created a framework that implemented the schema re

integration algorithms using generic model management operators. These 

generic operators have been widely mentioned and explained abstractly in 

many previous papers. Here we have implemented each operator required, 

which necessitated formally defining and creating the algorithm for each 



operator used for this specific schema re-integration purpose. Our contri

butions are: (a) determining that the generic operators can be used for 

schema reintegration, and (b) designing, implementing, and analyzing the 

model management operators used in details. 
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Chapter 1 

Introduction 

1.1 M o t i v a t i o n 

Database schemas are frequently modified and updated because of require

ment changes, design revision, environment changes, customers' require

ments changes, project re-engineering, etc. Additionally, in a teamwork 

environment, different teams may work remotely from each other and would 

also potentially make changes on database schema structures. Such changes 

can cause problems for al l users of the database. Let's consider the following 

scenario: 

Company O has designed a product management system that includes 

a schema named "product" with the following data definition: 

C R E A T E T A B L E P R O D U C T S ( 

ProductID int P R I M A R Y K E Y , 

ProductName string, 

Brand string, 

Quantity real, 

UnitPr ice int 



This schema is used by two groups, A and B , separately to develop the 

system. Producto is the original schema and Product A and Product B are 

the schemas as modified by groups A and B respectively. Dur ing the de

velopment, each group makes a lot of changes, both on the design of the 

system and the database. Comparing with Producto,the main differences 

in schema Product A is that the property Brand has been deleted: 

C R E A T E T A B L E P R O D U C T S ( 

ProductID int P R I M A R Y K E Y , 

ProductName string, 

Quantity real, 

UnitPr ice int 

); 

While , in schema Products, a new property Discount has been added. 

C R E A T E T A B L E P R O D U C T S ( 

ProductID int P R I M A R Y K E Y , 

ProductName string, 

Brand string, 

Quantity real, 

UnitPr ice int, 

Discount real 



); 

The changes made by groups A and B fit their local needs. After some 

time, however, the two parts need to be integrated. Whi le the schema and 

data from each group are very similar, they cannot be reintegrated easily. 

Company O has the original schema Producto, which is a baseline to com

pare the changes that each subsidiary has made and match the components 

that are from the original one. Based on this init ial schema, we expect to 

generate the following schema as the integration result: 

C R E A T E T A B L E P R O D U C T S ( 

ProductID int P R I M A R Y K E Y , 

ProductName string, 

Quantity real, 

UnitPr ice int, 

Discount real 

); 

Previous research shows that in reintegration scenarios the goal is to keep 

all changes [14]. Here the attribute Brand has been deleted as in schema A ; 

it should not appear in the final version schema. Because the new attribute 

"Discount" appears in the version B , it is believed that the new property is 

valuable and should be added in the final version. 

\ 



Reintegration has been researched in various scenarios before. In [12], the 

authors show a flexible object merging framework that defines the merging 

policy targeting to different applications and the context of the collabora

tive activities, so that the reintegration process can be done in automatic, 

semi-automatic, and interactive ways. It also tries to be generic to suit 

objects wi th arbitrary structure and semantics. In [2], the authors give a 

framework describing how to synchronize file systems. It focuses on how to 

resolve update conflicts. 

Reintegrating a small number of small schemas can be done manually. 

However, if the schemas are more complicated and there are many schemas, 

it is not efficient and productive to do it manually. It is necessary to have 

a way to solve it programmatically. Some previous works, such as [11], can 

do reintegrations programmatically. However, these solutions have to be 

reprogrammed for each data model, and the operations that are done are 

not always generalizable to other schema operations. 

Schema management can usually be abstracted as Model Management 

[4][1]. A Model is not bounded to any kind of specific schema, but is con

sidered to be.a general form for schema integration. In Model Management, 

we use generic model management operators to manipulate the models. It 

wi l l be more valuable to use a generic way to achieve the reintegration goal, 

so that it can also be used in other scenarios that can also be represented by 

model management, such as reintegrating different versions of U M L ' s or E R 

diagrams. Frameworks and algorithms developed for Model Management 



are generic and can be applied to a variety of data models. 

1.2 P r o b l e m Statement 

In this thesis we focus on analyzing and presenting the problem of reintegra

tion of models. Given an original model MO and two modification versions 

MA and MB, where MA and MB are generated from MO by using model 

management operators which provide History properties showing the map

pings from MA and MB to MO, we generate an integrated model MG that 

takes into consideration the changes made in both MA and MB. In [14], 

the authors have given an algorithm for the steps necessary to do wi th such 

reintegration. Here we solve the problem programmatically by analyzing 

and implementing the details of each operator and solving the conflicts that 

arise in each operator and each step. 

1.3 Contributions 

We have the following contributions in this thesis: 

• We analyzed the generic model management operators that are used 

in the schema reintegration system and gave details on the algorithms 

for implementation. 

• We discussed the details of "Support Element" that are used to help 

the integrity of models. We give three algorithms -to select support 



elements based on different expectations. The "Support Element E n 

gine" is generic and can be used by any model management operator. 

• We fully designed and implemented the Three-Way-Merge system that 

can be used for Schema Reintegration purposes. 

1.4 Thesis Outl ine 

The remainder of this thesis is organized as follows: Chapter 2 gives back

ground knowledge on generic model management, generic merge and the 

three-way-merge algorithm. In Chapter 4, we discuss the support elements 

and the algorithms used to add support elements to models. In Chapter 

3, the operators used in the reintegration system are formally defined and 

analyzed, including Diff, Range, Apply and Match. In Chapter 5, the 

Three-Way-Merge algorithm and the Schema Reintegration system are ex

plained. In Chapter 7, we talk about the experiments and give conclusions 

and suggestions for future work. 



Chapter 2 

Background 

In this chapter, we describe previous works on generic model management, 

model manipulation operators and merging methods. 

2.1 Generic M o d e l Management 

There are many different kinds of schemas: relational, X M L , etc. Schema 

manipulations to schemas share many commonalities to problems related 

to objects and relationships operations outside of databases. For example, 

U M L , E R diagrams, file systems and ontologies also present a k ind of schema 

structure that can be used to generate different kinds of data models and 

designs. When there are different modified versions of these kinds of objects, 

the reintegration process is very similar to the problem of database schema 

reintegration. The issues all relate to the objects and the mappings between 

them, and how to resolve conflicts and keep updates from different versions. 

If the research of schema manipulation is only restricted to database 

schema, it would lose the potential to solve similar problems, such as those 

of E R and the other models mentioned above. Therefore, previous research 

of Schema Manipulat ion has been abstracted to a higher level: the Model 



level [1] [5] [4]. A Model is denned as a complex application artifact. It is 

usually represented as a directed graph and it can abstract and represent 

many applications, including relational schemas, X M L D T D s , ontologies, 

U M L s , file systems, and network flows. This abstraction generates an 0 0 

like style of data model and platform. Therefore, it can utilize some benefits 

of 0 0 design and it is generic enough to be applied to any specific data 

model, including schema management. 

2.1.1 M o d e l 

Models [5] [14] [11] can be represented with graphs. The graph is composed 

of elements and relationships between these elements. 

Each element contains a set of properties, which describe the detail of 

the element, such as the name, constraints, or any needed information of 

these properties. Each element has a required property Name, ID and 

History. Property Name is used to represent the name of the element. ID 

is used to uniquely identify the element. The History property records the 

last operations to the element. In other words, it shows where and how this 

element is generated. For example, one element may have a history property 

of: "diff(300012)", meaning this element is generated by applying the diff 

operator to the first element with ID: 300012. Note that the element must 

have another unique ID different from 300012. 

A relationship is a binary link between two elements and must be one 

of following five types: Associates, Contains, Has-A, Is-A, and Type-Of. 



Associates Contains Has-a ls*a Type-of 

Figure 2.1: Different relationship kinds 

These five relationship types are illustrated in Figure 2.1. The relationship 

types and Figure 2.1 come from [14]. More specifically, the semantics of the 

relationship types are as follows: 

1. Associate, A(x,y), is a weak relationship. It simply expresses that if 

x Associate y, then they have a very weak relationship; it implies no 

restrictions to the other as shown in Figure 2.1(a). 

2. Contains, C(x,y), means x Contains y. It shows a container - x 

and containee - y relationship. The existence of the containee relies 

on the existence of the container. For example, in Figure 2.1(b), if 

table is deleted, then attribute Bob cannot be kept either. Contains 

is transitive and acyclic. 

3. Has-a, H(x,y), means x Has-a sub-component y. It is similar to 

Contains in the sense that it also expresses the hierarchy of com

ponent vs. sub-component. The difference is that it can be cyclic and 

the sub-component does not need to be deleted when the component 



Figure 2.2: Model Product 

is deleted. For example, in Figure 2.1(c), if the relation deletes the 

key, the column can st i l l exist in the relation. 

4. Is-a, I(x,y), means x Is-a specialization of y. It is very like the idea of 

inheritance in Object Oriented Design, which expresses a specialization 

relationship. In Figure 2.1(d), Student is a special kind of Person. 

Is - a is transitive and acyclic. 

5. Type-of, T(x,y) means x's type is y. It expresses the type of an ele

ment. In Figure 2.1(e), it means the Street is the type of Column. It 

is required that one element can only have one Type-of relationship. 

In [14], there are more details of the one-type restriction. 

We can represent the product schema in our previous schema examples 

using a graph like Figure 2.2. For example, in Figure 2.2, element product 

has five Contains relationships and each subelement has a Type-of relation

ship. The Product Jd element also has an Is.a relationship showing that it 

is a primary key. 



2.1.2 M a p p i n g 

One important representation in model management is the mapping, which 

shows the relationship between two models. Without the mapping, it is hard 

do anything to manipulate models. As in [3], we assume that a mapping is 

also a model, which means it also includes elements Emodei and relationships 

Rmodel that any model has. Moreover, it also contains: 

• Two models, Modeldamain and ModelTange. The mapping defines the 

relationship between them. 

• Mapping relationships Rmap- A mapping relationship r is between 

an element em e Emodei and an element e G Edomain U ETange. Ele 

ments in domain and range that have Model Mapping Relation ships 

from the same element in map are related to each other. The type of 

mapping relationship can be either "Equal i ty" or "Simi lar i ty" . Here 

the expression of "Similarity" is different from the way in [14]. In [14], 

"Similarity" is presented as a "how related" property in the element. 

If the element is marked as a "Similarity" type, al l the elements in the 

domain or range that the element connects to are treated as similar to 

each other. Here we use the idea used in [13], such that the elements 

are the same, but the mapping relationships they connected to could 

have different types, "Equal i ty" or "Similar i ty" . In this way, whether 

the elements are equal or similar does not rely on the mapping ele

ment, but on each element in the domain and range separately. The 

same mapping element can be "similar" to one element and equal to 



another. This also frees the mapping elements from showing "how 

related". The mapping elements are the same as normal elements in 

a model and can exist in a mapping model without any mapping re

lationships linked. It makes more sense to the 0 0 design. In this 

way, "similarity" mapping relationships can be easily identified from 

"equality" mapping relationships at the relationship level. 

For example, Figure 2.3 shows a mapping between the original product 

schema (partial) and the version of group A . The domain model is the orig

inal product schema and the range model is the product schema of version 

A . The map includes ModelMapping elements that are used to match the 

elements in model domain and range. Each ModelMapping element has a 

M odelM apping-Relationship to one of elements in the domain and range 

models. The relation may be equality, meaning they are exactly the same; 

or similarity, meaning that they are similar but have differences. There may 

also be existing elements in the mapping model that are not model map

ping elements, but normal model elements to express some structure of the 

mapping. 

In summary, a mapping defines how the domain and range models are 

related to each other. The ability to name both mapping relationships and 

all other relationships in the mapping means that each element in the map

ping is not required to be the origin of a mapping relationship. However, 

the mapping must be a model. To do this, it must be adhere to the inclusion 

rules that follow in section 2.1.3. 



Domain (original) Mapping Range (version A) 

Figure 2.4: Illegal Model 

2.1.3 T h e Inclusion Rules 

In order for the operators to be composable, the result of any operator must 

be a model. To be a model, all elements must be connected by relationships 

showing that the elements are members of the model. It is not always true 

that al l relationships among a number of elements result in a valid model. 

For example, Figure 2.4 shows an example that even though all the three 

elements are connected by relationships, they do not construct a legal model. 

If an invalid model is used as the input of some operators, the result may 

be unpredictable and error-prone. In model management, the completeness 

can be verified using inclusion rules [14]. B y saying legal, it means that al l 



the elements and relationships can be covered using the inclusion rules and 

there is no dangling element or relationship. 

The inclusion rules are based on the relationship types in the model. 

Each model has a unique root element, eR, and all the other elements, E L , 

have direct or indirect relationships, Re, to the root element. The rules 

include: 

• The root element, CR, is always in the model. 

• I(p, q),p G EL —• q G EL- If p has a Is-a relationship to q, and p is an 

element of Model , then q is also in the Model . 

• H(p,q),p G EL —> q G EL- If p has a Contains relationship to q, and 

p is an element of Model , then q is also in the Model . 

• T(p,q),p G EL —> q G EL- If p has a Type-of relationship to q, and p 

is an element of Model , then q is also in the Model . 

• p G EL,q G EL —> R{p,q) G ReL- If P , 9 are al l elements of Model , 

then all the relationships between p and q are in the Model . 

• M(p,q),p G EL -> M{p,q) G i ? e L : If V is an element of Model , then 

all the model mapping relationships that have p as the origin are in 

the model. 

Because the inclusion rules determine when an element is in a model by 

the relationships we need find all the relationships in a given model, includ

ing those relationships that can be deducted implicitly. The implications 



include those relationship types that are transitive and the cross — kind — 

relationship implications. 

Transitive relationship types include Contains, Has —a and Is —a. The 

cross — kind — relationship implications are: 

• If p (Type-of) q and q (Is-a) r =» p (Type-of) r 

• lip (Is-a) q and q (Has-a) r =*> p (Has-a) r 

• If p (Is-a) q and q (Contains) r => p (Contains) r 

• If p (Contains) q and q (Is-a) r ==> p (Contains) r 

• If p (Has-a) q and q (Is-a) r => p (Has-a) r 

Using these rules, we can find al l the explicit or implicit relationships in 

the model and then we can determine if a given model is legal or not. The 

inclusion rules can also be used to remove the redundant relationships that 

can be implied using existing relationships. 

We say element X is inclusion — implied by a relationship R (denoted 

II(R, X) if: (1) R(X, Y) and the inclusion rules state that if R(X, Y) and 

Y is in a model, then X is in the model, or, (2) R(Z,X) and the inclusion 

rules state that if R(Z, X) and Z is in a model then X is in the model. 



2.1 A Generic M o d e l Management Operators 

There axe several operators in model management, such as Diff, Delete, 

Match , Extract , Domain, Range, Compose, Invert, Apply , Copy, and M o d -

elGen [11] [14] [3]. These operators give a programmatic way to transform 

models in abstract levels. Here we briefly introduce the functionality of 

these operators, which wi l l be used to implement our generic schema rein

tegration. v 

• Diff - Dif f(x, y) = z: Takes two models, x and y, as input and returns 

model z, which contains the elements that are in x but not in y. Diff 

wil l be discussed in more detail in Section 3.2. 

• Delete - Delete(x,y) = z: Takes one model x and a set of elements y, 

and deletes elements y from x and returns the result model z. 

• Match - Match(x,y) — Mapz: Takes two models x and y and finds 

the mapping relationships between two given models and returns the 

mapping model Mapz. Match w i l l be discussed in more detail in 

Section 3.5. 

• Extract - Extract(x, y) = z: Takes one model x and a set of elements 

y, which contains partial elements of x, and selects those elements in 

y from x and relationships related to y and returns the result model 

• Domain - Domain(x,ymap) = z: Takes a model x and a mapping 

model y that has x as the domain of the mapping, and returns a 



partial model z of x that contains only the elements having mapping 

relationships in y. 

• Range - Range(x,ymap) — z: Takes a model x and a mapping model 

y that has x as the range of the mapping, and returns a partial model 

z of x that contains only the elements having mapping relationships 

in y. Range w i l l be discussed in more detail in Section 3.3. 

• Compose - Compose(Mi(x,y), M2{y,z)) = Ms(x,z): Takes two map

ping models M\ and M2, which are mappings between model x and y, 

and between y and z respectively. The operator Compose generates a 

new mapping model M3 between x and z. Whi le quite complicated in 

some cases, it is not complicated in our schema reintegration. More 

information on composition can be found in [3]. 

• Invert - Invert(Map(Mi,M2)) = Map'(M2,Mi): Takes a mapping 

model Map between domain model M\ and range model M2, swaps 

the domain and range roles in the mapping and returns a new mapping 

model Map' that has M2 as domain and M\ as range. 

• Apply - Apply(x) = y: Takes a model x and applies a function to each 

element in x to make changes according to the function and returns 

the modified model M'. Apply w i l l be discussed in more detail in 

Section 3.4. 

• Copy - Copy{x) = y: Takes a model x and return a new model y that 

has the same elements and relationships as x. 



• ModelGen - ModelGen(x) = y: Takes a type of model x and generates 

a new type of model y from x. For example, generate a relational 

schema from an X M L schema. 

2.2 Generic Merge 

Given two models and the mapping between them, the generic merge gen

erates the model that includes al l the information from the two input models. 

There are several algorithms and implementations [14] [11] describing 

generic merge. The general steps are: 

First , generate the necessary elements. Basically, the elements are the 

set union of the two input models, where the mapped elements are treated as 

the same principle and are only represented using one element in the result. 

Each such representative element includes all the properties of the elements 

that it represents. Then, the relationships are merged. One key factor is that 

any relationships in the domain/range and the mapping should not be lost. 

A l l the elements, whether they are in the domain/range or the mapping, 

have representatives in the result model. A l l the relationships are between 

elements in the domain/range and mapping, so all the relationships can be 

preserved in the mapping result. However, if all the relationships are simply 

added to the final result, there may be conflicts existing, such as cycles or 

multiple types for an element. There may also be some existing redundant 

relationships that can be implied and induced from other relationships. So 



the final step is to check and fix these kinds of conflicts. 

2.2.1 R o n d o 

Rondo [11] is the first complete prototype of generic model management sys

tem. Rondo systematically defines the key model management operators, 

such as Domain, Invert, Compose, etc, and suggests several new generic 

operators, such as Extract, Delete, etc. It also shows a schema integration 

system that can be used for relational database Schemas or X M L Schemas. 

The differences of our approach to Rondo's lie on the data structure. 

Rondo uses a new data structure to represent the mapping. It is called 

a morphism. A morphism is a binary relationship between two models. 

Figure 2.5 is an example from Rondo that shows a morphism between a 

relational schema and an X M L schema. In implementations, a morphism is 

a pair of elements. This is a convenient way to represent mapping relation

ships. 

However, in our framework, we have everything existing as first-class 

objects. The idea of a morphism violates the 0 0 principle. The existing of 

mapping relies on the models and cannot be presented by itself. Therefore, 

.we use a mapping model to present the mapping relationships. Furthermore, 

in our system, every step gives an output of a complete model, which is easy 

to maintain and extend. A l l of our operators have first-class objects as input 

and output. These operators can be easily used in any other generic model 



CREATE TABLE PRODUCTS( 
PID int, 
Pname varchar 

) 

<schema xmlns = "..."> 
<complexTvpe name - "product"> 

<element name = "ProdudlD" type = "xs:int" /> 
<element name = "ProductName" type = 

"xs:string" /> 
•̂ ftlpment name = "ProductType" type = 

"xs:string" /> 
</complexType> 

</schema> 

Figure 2.5: Morphism in Rondo 

management tasks. 

2.3 T h r e e - W a y - M e r g e 

In this section, we review the Three-Way-Merge algorithm discussed in [14], 

which is the basic algorithm used in this thesis. 

The Three-Way-Merge algorithm merges a given model and two different 

modified versions of it into one model. For example, Figure 2.6 shows the 

example used in [14]. There is the original model O and two different modi

fied versions, model A and model B. The goal is to create a final model, L, 

that captures all of the changes in A and B. The modification of model A 

is that the element d changed its parent from the root to element b, while 

in Model B, the element c was deleted. 

When these models are to be merged, because element c is deleted in 

Model B, the final version should capture the deletion and exclude c. E l 

ement d is modified in Model A; therefore, the final version should also 



Model A Model 0 

C D C D C D 
\ / \ • v • 

C D C D 

Figure 2.6: Three-Way-Merge Example [14] 

Model L 

Figure 2.7: Three-Way-Merge Result 

capture the modification and change the parent element of d to b from a. 

The merged result model is shown in Figure 2.7. 

There are several rules targeting the different changes made to each 

modified version. Let A, B denote the two modified versions, O denote the 

original version, and L be the final merged version. The rules are shown in 

Table 2.1. It defines different situations that different versions may have and 

how the final version should be with regard to the element. For example, i n 

row 4, it means if the element is in O, it is deleted in one model (A here) 

and modified in the other model (B here), then in the final result L, the 

modified version should be kept, it is in the final model. 

Based on these rules, the three-way merge algorithm in [14] w i l l do the 



# ' O A B L 
1 0 add add © 
2 0 unmodified unmodified 0 
3 O deleted unmodified 0 
4 O deleted modified O 
5 O modified unmodified O 
6 O modified modified O 

Table 2.1: Three-Way-Merge Rules 
0: element in model 

0: element not in model 

following steps to merge models A, B and O. The result is the same as 

shown in Figure 2.7. Note that because we are only demonstrating a simple 

example, some steps may generate empty models. 



Step Operation Figure 

MapoA = Match(0, A) 
Mapping 

Cp ( p Cp (7^L (~p fP 

B y History Property 

» \ X 1 

Mapcu 

' V if' 

MapoB = Match(0, B) 
Mapping 

Gp CD Cp C p ^ C p CD f D 

\ s \ 0 * 

B y History Property Mapa 

MapoA' = Apply(MapoA) 

CD cp 

if e E MapoA and domain(e) 

is identical to range(e), then 

delete e 

Mapping 

f a 3 

MapoB' = Apply(MapoB) 

He £ MapoB anddomain(e) 

is identical to range(e), then 

delete e 

0 



5 ChangedA = range(MapoA') 
ChangedA 

the things changed in A 

6 Changeds = range(MapoB') 

the things changed in B 0 

7 MapchA-ChB = 

Match(ChangedA,ChangedB) 

0 

8 MapchBJOhA = 

Match(Changeds, Changed A) 

0 

9 A' = Dif f (ChangedA, 

ChangedB, MapChA.ChB) 
A' 

CO 
( a ) 

10 B' = Diff(Changeds, 

Changed A , MapchB-ChA) 

0 



11 MapA_B = Match(A,B) 

According to OIDs 

Modal A Mapping M ^ B 

CD C D C D C p C p CD 

~ - - Map»* 

Model G 

12 G = Merge(A, MapA_B, B) 

C p CD 
CD 

13 MapG_A' = Match(G, A') 

Model G Mapping 

C p CD C p Cjb 

CD / \ CD 
Mao % 

14 GA 

Merge(G, MapG_A',A') 
Model G A 

with preference for A ' 

C p CD 

CD 
15 MapGA'-B> = 

Match(GA',B') 

0 



16 GAB = Merge(GA',MapCA>-B',B') 

with preference for B ' 

Mode! GAB 

CD 

17 DeletedA = Diff(0,A,Map0A) 0 

Deleted B 

C O 

18 Deleteds = Diff(0, B, MapoB) 

19 MapDeletedA-ChangedB = 

Match{D el eted A , ChangedB) 

0 

20 MapDeletedB-ChangedA = 

Match(Deleteds, Changed A) 

0 

21 ShouldDeleteA = 

Dif/(DeletedA, ChangedB, 

MaprjeletedA-ChangedB) 

0 

SltouWDalBled G 

C D 
v 

22 ShouldDeleteB = 

Dif f (Deleteds, ChangedA, 

MaprjeletedB.ChangedA) 

cb 

23 MapGAB^DA = 

Match(GAB, ShouldDeleteA) 

0 



24 GABSDA 
Di f f(GAB, ShouldDeleteA, MapcABs 

Model GABSDA ShouldDtMoted B 

C p CEX & > s £ D 
T s / \ / 
CD 

DA) 

25 MapcABSDASDB = 
Match(GABSDA, ShouldDeleteB) 

Model GABSDA ShouldDelated B 

c^c^x cb. c L 
cL - ^ 

26 Fina l result — 
Diff {GABSDA, ShouldDeleteB, 
MapGABSDASDB) 

Model L 

Table 2.2: Three-Way-Merge Example 



In the original algorithm, it does not mention how to deal with the 

completeness problem of models. For example, in step 5, the range operator 

wi l l only keep the element d in the result. It is desirable to keep the result 

not being a simple element, but st i l l a model. Here the elements a and b are 

added to keep the structure of the model. In order to distinguish them from 

the result elements, they are marked as support elements. Not only could 

the operator range generate an incomplete model, other operators could 

also have the same problem and need support elements to help in the result 

model. A key factor is that because Rondo considers only morphisms, it does 

not use support elements. Support elements are discussed briefly in [3], but 

one contribution of this thesis is a fuller understanding of support elements. 

We discuss them more fully and describe our conclusions in Chapter 4. 

2.4 S u m m a r y 

Model Management gives an abstract way to solve meta-data management 

problems. B y using graph theories, models can be programmatically ma

nipulated by the model management operators. 

The mapping between two models is important and used very often in 

most operators and applications. However, the presentation of mapping 

varies a lot in different systems. It can be a first-class object - a model; 

it can be a morphism that uses direct links between model elements; or it 

can be just some pairs without data structure support. Some have been re

searched deeply, such as match and merge. The other operators have been 



introduced and discussed, but few have details on the algorithm and few 

have been researched for the behavior of the operator and how they interact 

with each other. These operators are st i l l in an abstract level. Even if the 

idea is clear, the actual implementation varies depending on different k ind 

of applications that the operators use. In this thesis, we only use first-class 

objects (models) and the operators are implemented based on the require

ment of schema reintegration and functionality. 



Chapter 3 

Operators 

In this chapter, we discuss the generic model management operators that 

are used in our reintegration system. As described Section 2.3, there are 

five operators used: Merge, Diff, Range, Apply, and Match. 

In Section 3.1, we briefly review Merge. We have fully analyzed and 

implemented the other four operators, which are discussed in this chapter. 

We discuss Diff in Section 3.2, Range in Section 3.3, Apply in Section 3.4 

and Match in Section 3.5. 

3.1 Operator Merge 

Merge has been fully described and implemented in [14] as discussed in Sec

tion 2.2. Because it is a generic model management operator, it can directly 

fit into our schema reintegration system as one of the operators. 

Merge works as follows: Given two models, M\ and M2, and the map

ping, map, showing their relationships, Merge generates a new model, MQ, 

that unions the two models without any duplicates and conflicts. For ex

ample, Figure 3.1 shows an input of Merge and Figure 3.2 shows the result 



Modal A Mapping Modei B 

q £ (V) Op C p 
v - — • •—flu. 
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"** Map*s 

Figure 3.1: Mapping between Model A and Model B 

Model G 

Figure 3.2: Merge result of Model A , Model B and Mapping 

model of Merge operation. 

3.1.1 Input 

The Merge operator has three input models, M\, M2 and the mapping be

tween them, Map. Map defines how M\ and Mo. are related as described in 

section 2.1.2. One of M\ or M2 can be designated as the preferred model. 

When there are conflicts between M\ and Mj j , Merge w i l l follow the behav

ior of the preferred model to break the conflicts. 



3.1.2 O u t p u t 

The Merge operator generates a model as output, which contains al l the 

information in Mi, Mo. and Map, but has duplicates eliminated and conflicts 

resolved. The duplicates are from the Map, which shows the relationship of 

elements in M\ and M2. 

3.1.3 T h e M e r g e A l g o r i t h m 

The Merge algorithm [14] includes the following steps: 

1. Initialize: Create a new empty model G as the result. 

2. Elements: Group the elements from M\, M2 and Map based on the 

mapping relationships. If there is a mapping relationship R(ei,em), 

where G M i UM2 and em € Map, then and e m belong to the same 

group. In the original paper, em must be an Equality mapping element 

for ej and e m to be grouped together. The difference between Equality 

and Similarity is in the mapping elements. In this thesis, mapping 

elements are all the same; the relationship R differentiates between 

Equality and Similarity. Therefore, rather than requiring e m to be an 

Equality element, Merge requires that R is an Equality type mapping 

relationship. A l l the elements in M i , M2 and Map are divided into 

each group. Then for each group, create a corresponding element in 

G. 

3. Element Properties: Intuitively, each element e created in G has a cor-



responding group of element(s) Em from M\, M2 and Map. Element 

e has the union of the properties that all the elements in Em have, ex

cluding the History, ID and HowRelated properties. When the same 

property p is contained in multiple elements in Em, its value in e is 

determined following the order of Map, Preferred Model, Any Model. 

Formally, for a group of elements Em, a property p, and some elements 

e m £ Em have the property p, if there is an element emap 6 Map n Em 

that has property p, then the value, of p in e is same as the value of 

p in emap. If e m a p does not exist, it tries the same rule but from the 

preferred model, then the other model. Whenever p is included in more 

than one element in the same model, its value is chosen arbitrarily. 

For example, Figure 3.3 shows a simple mapping between model A 

and B, where model A is designated as the preferred model. Elements 

EA and E' of model A both map to the same mapping element EM of 

Map, which also maps to element EB in model B. Suppose elements 

E A , E' and EB contains the same property p, but different values, VA, 

v' and Vb respectively. When the two models are merged, elements 

E A , E', EM and EB belong to the same group. The corresponding 

element EG € G also contains property p. To decide the value of p, 

the algorithm first checks the mapping. Since the mapping does not 

have the property p, the algorithm wi l l further check the elements in 

model A, which is the preferred model. Because both element E and 

E' are in model A and contain property p, the algorithm w i l l arbi

trari ly choose one from them. Therefore, the resulting element Eg w i l l 

have a property p, whose value is either VA or v'.. 



Model A Mapping Model B 

L L 

Figure 3.3: A Mapping between Model A and Model B, Model A is the 
Preferred Model . 

The ID property is set to a new number assigned by the system. The 

History property is set to the value of "Merge(IDS)", where IDS 

includes all the IDs of the elements in the group Em. This gives the 

traceability of the elements in G to the original elements that it merges. 

If M i or M2 is a mapping, the element e is a mapping element given 

the corresponding elements in group Em, M i or M2, are also mapping 

elements. If e is a mapping element, its How — Related property is 

determined following the same selection order as the other properties. 

4. Relationships: Each element in G has a corresponding group of el

ements in M i , M2 and Map. If there exists a relationship R(e,f), 

where e and / are from different groups, a same type of relationship 

R'(e', / ' ) is created in G, where e' and / ' are elements in G and cor

respond to e and / . Mapping relationships wi l l not be created in G 

since if element e\ and e2 have a mapping relationship, they would 

have been in the same group and the mapping relationship between 



them would not be copied to G. Since there is no "similarity mapping 

element" any more in the system, the steps to process the similarity 

mapping elements are ignored. Finally, the relationships that can be 

applied from other relationships in G are removed. 

5. Fundamental conflict resolution: The previous steps generate a model 

G that includes the duplicate-free union of the input models. How

ever, there may be some conflicts existing in G at the meta-meta-model 

level. This step resolves the conflicts according to the rules and strate

gies that have been specified. 

For example: in Figure 3.1, Mapping shows how Model A and Model 

B are related. Basically, the elements are matched by names shown in the 

figure. Figure 3.2 shows the result after the algorithm is executed upon the 

mapping. Note that there was a has-a relationship between element a and d 

after all relationships are added based on the input models. However, since 

the has-a relationship from a to d can be implied from a to 6 and b to d, 

this relationship is deleted in the final result. 

To build the reintegration system, we must extend the algorithm to 

take into consideration the use of support elements mentioned in Chapter 

4. The Merge operation usually does not need extra support elements for 

the merged result elements if the input models have no support elements. 

However, if the input models have support elements, they need to be taken 

care of in the result model. 



According to the merge algorithm, each element e in the result model G 

has a corresponding group of elements Em which are from the input models. 

If al l the elements in Em are support element, the element e may act as a 

support element in G as well. It may not be necessary and may need to<be 

deleted. Therefore, it w i l l be marked as "delete" by creating a property of 

"delete=true" and then when the model is passed to the "Support Elements 

Engine" mentioned in Chapter 4, the engine wi l l decide if it wi l l be a support 

element or be deleted. 

3.2 Operator Diff 

The Diff operator is used to compute the difference between two models, 

given the mapping between the two models. Intuitively, it w i l l find all the 

objects in the first model, that we refer to as the base model, that do not 

have corresponding matching in the second model. As in Merge, the map

ping should have been created by some other operators, such as match, and 

is assumed to be given. 

In previous works, such as [11] [3] [5], the Diff operator is either men

tioned as a combination of other operators, or using extra mapping to show 

which elements are the Diff result and which are not. In this thesis, we give 

a detailed definition of Diff and the algorithm to compute it . We.also use 

the support elements to make the result a self-contained model. 

Diff works as follows: suppose there, are two models M i and M2. The 



Model O Mapping 
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Figure 3.4: Mapping between Model O and Model B. Element c is not 
mapped 

relation between them is also provided, which is presented as a mapping 

map. Formally, Dif f(M\,Map,M2) — Md finds the elements that appear 

in the base model M i but not in model M2 based on map. The result wi l l 

be a new model named Md-

3.2.1 Input 

The Diff operator has two input models, M\, and M2, one of which has 

been denoted as the "base" model (say, M i ) , i.e., the model which the re

sult model is based on, and the Mapping map . 

The mapping map tells how the model M i is related to M2. Without 

knowing map, the computation wi l l be meaningless. The format of the 

mapping is covered in depth in section 2.1.2 

To see how Diff works, we present an example in Figure 3.4. Figure 3.4 



Deleted B 

Figure 3.5: Diff result from Figure 3.4, assuming that O is the base model. 
Element a is shaded as support element 

shows a mapping between two models, Model O and Model A, where we 

assume that Model O has been designated as the base model. Note that ele

ments b and d of Model O are matched to corresponding elements in Model 

A w i th the "Equal i ty" mapping relationship. Therefore, these two elements 

should not be part of the result model, since both elements appear both 

in the base model and in the other model. The element c has no mapping 

relationship, and it w i l l be part of the result model. Sometimes, elements 

may have a mapping relationship with some elements in the mapping, but 

do not match to any other elements in the other model. These elements 

should also be included in the result model. The result is shown in Figure 

3.5. 

A "Similarity" Model Mapping Relationship means that the Model Ele 

ment e\ is similar to the corresponding element based on the mapping. Such 

elements need to be kept in the result model to show the difference. 



3.2.2 O u t p u t 

The expected output result wi l l be a model Md , which includes all the 

elements that are in the model M i , but not involved in any "Equal i ty" 

type Model Mapping Relationships with any Model Mapping Element in 

the mapping map that has Model Mapping Relationship wi th elements in 

the other model. 

Therefore, intuitively, the result model Md is a sub-model of the input 

base model M\. Each Model Element Ed in Md is generated from some 

element E\ in M i . Therefore, Ed has the same properties of E\ and those 

relationships of E\ such that the other elements of the relationships are also 

in Md. 

Furthermore, because the result model Md contains Model Elements 

and Relationships that correspond to only some elements and relationships 

in M i , the init ial result may not be a complete model. As described in the 

[14], al l the elements and relationships in a model must conform to the i n 

clusion constraint: an element or relationship is included in the base model 

if and only if there is a path of containment from the root to that element 

or relationship. Therefore, some elements may not be included in Md af

ter applying all the inclusion rules (i.e., searching for a containment path). 

Clearly, we would like our result, M ^ , to be a valid model, both from the 

perspective of wanting to make sure that the operators are composable and 

from the perspective of wanting to make sure that there is enough informa-



tion to solve future problems using Md- To solve the integrity problem, the 

model is processed to "Support Element Engine" as described in chapter 4. 

Algorithmically, this means that we have several phases to the algorithm. 

To compute the different elements in Md, we first delete all the elements 

that have matching element in map; this corresponds to the elements (and 

relationships) that are truly in the difference of the models, but this result 

is not a model. Then we add back some elements and relationships as the 

support elements. However, because our model is not a tree (i.e., there can 

be more than one containment path from the root to a given node), we have 

to decide which deleted elements should be added to model Md as the sup

port elements. This can be done using the algorithms described in Chapter 4. 

To summarize, the result model Md includes the following: 

1. Elements: For each element e\ G M\ s.t. there is no ei G M2 and 

BM G map s.t. Me(eM,ei), Me(eM,e-2), 3 a new element e<i G Md, s.t. 

ed has a new ID, and inherits the name and al l the properties except 

the History property of e\ . Give the new History property of as 

r > i / / ( d ) . 

• History property. Each result element w i l l have a new History 

property, wi th the value Dif f(ID(e\)) Because the new History 

has the original element ID, we can easily trace back to the orig

inal and find the history of this element. 



2. Relationships: For each relationship Rd{&\^2) € M\, e\,e'2 G Md, s.t. 

ID (History (e\)) = ID(ex) and ID(History(e'2)) = ID(e2), 3R'd G 

Md and R'd conform to the inclusion rules. The relationships of 

the result model Md are all inherited from M i , which means each 

relationship R'd G Md must have a corresponding relationship Rd G 

M\ and the origin/destination element of R'd corresponds to the ori-

gin/destionation element of Rd- However, not all the relationships of 

M\ have corresponding relationships in Md- Only those corresponding 

relationships of Mi that have both its origin elements and destination 

elements (including different elements and support elements) included 

in Md and conform to the inclusion rules are included in the result 

model Md-

3. Supporting elements: As described above, supporting elements are 

those nodes added to support the model integrity of the result ele

ments. These elements wi l l include an extra property, named "Sup

port" with value true, to indicate that they are support elements, but 

not part of the real result elements. They are added as described in 

Chapter 4. 

3.2.3 A l g o r i t h m 

To compute the Diff result, the algorithm includes the following steps: 

1. Duplicate: Make a full copy of model M i , including all its elements 

and all relationships in M i (i.e., we do not include relationships that 



are incident on elements in M\ but are not in M\ according to the 

inclusion rules). Note that the mapping relationships in Map are not 

part of M\, and therefore they are not copied. However, it is st i l l 

necessary to keep the information about which elements correspond 

to those elements e € Mi that have mapping relationships Me(x,e), 

where x e Map and there exists some element e2 S M2 s . t .M e (x ,e 2 ) . 

Let the set of such e elements = Eremave, which are the elements set 

to be deleted. To show which elements have mapping relationships, a 

list, L, is built to include all the elements in E r e m o v e . The new model 

is called Mc. 

2. Marking: For each element e € E r e m o v e , e is marked as "delete". 

These elements are not in the result elements set, but may appear in 

the model as support elements. 

3. Support Elements: G iv ing the model Mc to the support element en

gine to check which elements should be added as support elements. 

Those support elements that are decided by the support element en

gine are marked "support" and do not have the "delete" mark any 

more. 

4. Delete: For each element e 6 Mc that has the "delete" mark, e is 

deleted from Mc and all the relationships that have e as either an 

origin or a destination are also deleted. 

5. Finally, return Mc. 



3.2.4 Related W o r k 

There axe several papers that mention the diff operation. They are summa

rized as follows: 

• Rondo[ l l ] : There is no explicit definition of diff , but it uses All(sl) — 

Domain(sls2) to do the same job as diff if the two models are s i 

and s2. This is described as: al l elements of s\ without the matched 

(and thus not deleted) element. The result is a new schema and a 

mapping between the result schema and the original schema, which 

describes how these two are related. In Rondo, modules are mapped 

using Morphisms, which are just binary relations. 

For example, the following shows two schemas: 

sl.Orders(Oid, OrderDate, Employee, Customer, PONum, SalesTaxRate) 

s2.0rders(Oid, OrderDate, Customer, PONum, SalesTaxRate, ShipDate 

FreightCharge, Rebate) 

In Rondo, the mapping is represented using the following morphism: 

s i s2 

O i d O i d 

OrderDate OrderDate 

Customer Customer 

P O N u m P O N u m 

SalesTaxRate SalesTaxRate 

Then the operation combination All(sl) - Domain(sls2) would be the 

whole elements set in s i , which include al l the attributes of s i , minus 



the left part of the morphism, and the result is simply computed by 

set operations. This result elements set itself cannot represent the 

data structure. The result elements set has to be combined with the 

original schema to show a meaningful result, so that it can be used in 

other operators. 

Rondo does not mention how the "-" operator is implemented. It 

does not mention support nodes either. It uses mapping (morphisms) 

indicating how the deleted result module is related to the original 

module. Our method is more self-contained. 

• Vision[5]: Difference is believed to be basically the same as matching, 

except that the answer needs to highlight the differences. The diff 

operation is said to be a Fu l l OuterMatch. In Vision, it treats diff 

as a contrast of match. It does not explicitly describe the input and 

output of the diff. However, the desired result can be computed from 

some hints: In Vis ion, schemas are represented as first class objects; 

Mapping is also a first class object. In the description of Match , it tries 

to find how the domain and the range objects are related. Therefore, 

in the Differencing, it should be assumed that the main task is to find 

how the domain and the range objects differ. It is different from what 

we have described about diff, where we assume the mapping is in hand, 

but Vis ion somehow tries to find the mapping (and difference). 

• Apply ing Model Management to Classical M e t a Data Problems [3]: 

In this paper, the input is the model and the mapping. (M\,map\) 

and the result also include two parts, the objects that are not refer-



enced in the mapping and a new mapping between the result model 

and the original model: (M[,map2)-

Three problems are considered in this paper. 1. Root is always in 

cluded in the result object. 2. To ensure the result model is a well-

formed model, all the objects on the path of has-a relationships from 

the root to the result objects are also included. These added objects 

are support objects. 3. Use a new mapping between the original model 

and the diff result to mark the support objects. 

Mark ing support objects in the result is treated as introducing another 

structure (the marked model) and is avoided. Their paper defines the 

desired input and output of diff in detail. However, in our diff, we wi l l 

have different methods to add support elements, which wi l l ensure 

least elements are added. Moreover, we wi l l consider all the inclusion 

constraints rather than only the "hasA" relationships. Because in our 

system, we have created the structure of "property", we can utilize 

this structure to mark the support elements. Therefore, we do not 

need to add another mapping, which may otherwise make the system 

more complex. 

In the Diff operator of this thesis, we keep all the input models and out

put models as first-class models and we use "Support Elements" to keep the 

integrity of these models. Our Diff allows "Support Elements" appearing 

in both input models and output models. 



3.3 Operator range 

Given two models, one being the range model and the other being the 

domain model, and the mapping between them, the Range operator finds 

the elements that appear in the range model of a mapping that have cor

responding mapped elements in the domain model. The mapping itself is 

presented as a model, which contains elements that correspond to the do

main model (Md), the range model (Mr) and other mapping elements (Em). 

The range model here is not the same as the result model (Mrange) by the 

Range operator. The Range result model Mrange only contains elements 

that refer to part of the range model Mr. A l l the elements in Mr that are 

referred by elements in Mrange must be associated in a mapping relationship 

with some elements in the domain model. We w i l l give more details when 

discussing the output part. 

3.3.1 Input 

The map model includes the domain model, the range model and the map

ping elements, which describe the relationships between elements in the 

domain and the range. Therefore, the map model itself provides enough 

information for the range operator. It is the only input for the operator 

range. 

3.3.2 O u t p u t 

The output result would be a new model that copies the range model in 

the input map model, but only those elements that have been "mapped" to 



some elements in the domain model are the result elements and the result 

elements would have new ID's. In order to keep the result as a complete 

model, some unnecessary elements are also needed to act as support ele

ments. 

Formally, for each element e € Mr, there is a corresponding element 

Grange G Mrange such that 3e0 G Mmap (the Mapping) , and 3ed G Mdomain 

(the domain model), and there exists model mapping relationships r\ and 

r2 such that r\ is between e0 and erange and r2 is between eQ and edomain-

The relationships and support elements would be added in the same way 

as for operator diff. 

In each element, range(id(erange)) w i l l be added to the history property. 

3.3.3 A l g o r i t h m 

The algorithm is very similar to the algorithm in the operator diff in that 

it also selects part of the model in map, but it selects the contrary part to 

what Diff selects. 

The range operator includes the following steps: 

1. Duplicate: Extract the range model from the input mapping. Make 

a new model, Mr, which copies all the elements (with new ID's) and 



relationships of model range. 

2. Mark : First ly , iterate al l the elements in Mr and mark them as "delete". 

For each element e G MT, find the corresponding element erange G 

range, such that e is generated by copying erange. If 3em G Mmap 

and ed G Mdomain such that there exists Model Mapping relationship 

r i (e 

m,&domain <md r2(em, e r a n o e ) , remove the delete mark of e. In 

this step, all the elements that should be in the result model are se

lected and al l the other elements are marked as "delete". 

3. A d d Support Elements: Give the model MT to the "Support Element 

Engine" to check which elements should be added as support elements. 

Those support elements that are decided by the "Support Element 

Engine" are marked "support" and do not have the "delete" mark any 

more. 

4. Delete: For each element e G Mr that has the "delete" mark, e is 

deleted from MT and all the relationships that have e as either an 

origin or a destination are also deleted. 

5. Return: Final ly return model Mr. 

3.3.4 Re lated W o r k 

Operator range was only previously discussed in Rondo[ l l ] . In Rondo, 

range is defined as Domain(Invert(map)). It firstly reverse the role of 

domain and range in the input map and then return the domain model. It 

is because the operator Domain is defined as a primitive operator and the 



operator range can be generated using existing primitive operators. 

Because the map in Rondo uses morphisms, in other words, the map

pings are element pairs between domain and range, the domain or range 

operator can then simply extract the needed half in the morphism. It is a 

straight-forward operation. 

The range in this thesis uses first-class models, so it needs to extract 

some elements that are really acting in the mapping. Here we also show 

the detailed algorithm and use "Support Elements" to make the result self-

contained. The domain operator wi l l be exactly the same and only care 

about the schema in the other side of the mapping. 

3.4 Operator Apply 

The operator Apply is different than the other operators. It is a generic 

method that takes effect on each element in the input Model . 

There is no specific target on how Apply affects each element. Instead, 

Apply provides a generic template for a function which affects the elements 

of some model. When Apply is used, it must bind to some real function, T, 

to perform the expected functionality. Therefore, operator Apply is like a 

delegate function that has T as a internal function pointer. 



In this section, we discuss both Apply and function T used in the rein

tegration system. 

3.4.1 Apply 

3.4.1.1 Input 

The input of Apply includes the following: 

• A Model , M, which contains the elements that are to be affected by 

the operator. 

• A n internal function, F, which is the real function that wi l l take effect 

on the elements in M. 

3.4.1.2 Output 

The output of Apply is a Model , which is generated from model M, but al l 

the elements have been processed with function T. 

Formally, MA = Apply(M), and for each element eA € MA, 3eM G M 

such that eA = Y(eM)-

3.4.1.3 Algorithm 

The algorithm for Apply includes the following steps: 

1. Duplicate: Create a new model, MA, which copies all the elements, EQ 

(with new ID's) and relationships of model M. Update the History 

property of element e € MA as Apply(e0). 



2. Execute: For each element e G MA, execute function T(e). Note that 

because the functionality of T is not unique, the result element may 

be changed in one of several ways. For example, it may be deleted. 

However, because the system always guarantees the integrity of the 

model, if the element is to be deleted by function T, it is marked as 

"delete" and w i l l be processed with the Support Element Engine to 

decide if it should be deleted or act as a support element. 

3. A d d Support Elements: process the model MA with the Support Ele 

ment Engine. The elements that are marked as "delete" but need to 

exist as support elements wi l l be marked as "support". 

4. Delete: For each element e G MA that has a "delete" mark, e is deleted 

from MA and al l the relationships that have e as either an origin or a 

destination are also deleted. If MA is a mapping, the model mapping 

relationships of "support" elements are also deleted. 

5. Return model MA-

3.4.2 F u n c t i o n T in Reintegrat ion 

The function T that is created to be used by Apply in our Reintegration 

system only has one target: it checks the input mapping element e to see if 

the elements that e links to in the domain and range are identical. If they 

are the same, element e is deleted. 

Two elements, a G domain and b G range, are believed to be identical 

if: 



• They are mapped by a mapping element and "equality" mapping re

lationships (i.e., 3 an element m G Map, s.t. Me(m,a) and Me(m,b)). 

• They have all the same properties (both the name and the value), 

except for the "history" property. If each property p{X) of a and X is 

not ID or History, there is a property p'{X) of b and p{X) — p'(X). 

• Element a and 6 should have same kind of relationships, of which a 

and b are the destinations, and the origins should match each other. 

For each non-mapping relationship r(x, a) in the domain, there exists 

a relationship r'(y,b) in the range, where r' has the same type as r , 

and there exists a mapping element e in map, such that there exists 

mapping relationships Me(e,x) and Me(e,y). Then a and b are be

lieved to be identical. Here it only considers the relationships from 

the "parent", and if a child changed, it wi l l only be considered when 

the child element is inspected. Otherwise, if both the origins and des

tinations are checked, one change wi l l be caught in two places and be 

redundant. 

3.4.2.1 Input 

The input is an element e of a Mapping Model M. It can be a normal 

element or a mapping element. 

3.4.2.2 Output 

Strictly, the function does not have Output. Instead, it modifies the input 

element e and updates e with the proper action. If the function needs to 
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delete e, it only mark it as "delete". 

3.4.2.3 Algorithm 

The algorithm includes the following steps: 

1. From the given model mapping model M, extract the domain and 

range in M - Md and MT respectively. For the given mapping element 

e, find the elements ed £ Md and e r £ Mr. 

2. Comparison: 

• First ly , for each property pd £ e ,̂ such that Name(pd) ^ "His

tory" , if 3 property pr £ er such that Name(pT) = Name(pd) and 

Value(pr) — Value(pd), continue; otherwise, mark e as "delete" 

and return. 

• Secondly, for each non-mapping relationship rd £ Md, such that 

destination(rd) = and origin(rd) = e0d {eod £ Md), check that 

3 r r £ Mr and destination(rT) — er , origin(rr) = eor (eor £ Mr), 

such that 3em £ M and 3 model mapping relationship r\,r2 £ 

M, and destination[r{) = eQd, destionation[ri) — e^. If so, 

continue; otherwise, mark e as "delete" and return. 

3.4.3 Re lated W o r k 

The operator Apply was first discussed in [3], where it gives the formal 

definition. The purpose of this operator is to reduce the need for application 



programs to navigate a model. The input function can define a purpose 

and the Apply operator defines the rules and algorithms to traverse the 

model. However, it does not have any implementation details. Here we 

have discussed the input, output and algorithms in detail, and the need to 

involve support elements. 

3.5 Operator Match 

Match finds the mapping relationships between the elements in two input 

models. In this thesis, we do not try to solve the general matching problem, 

which is the subject of many other papers such as [15] [11] [3] [5]. The 

mapped elements are based on History properties of the elements in the 

input models. It is assumed that only the model management operators 

appear in the History properties. If two elements in two different models 

can be tracked to the same element from the History properties, the two 

elements match to each other. The details of tracking from the History 

properties based on different operators are discussed in the algorithm part. 

3.5.1 Input 

The Match operator takes two models as input. The ID of each element in 

the models wi l l be used to track which elements are derived from the same 

element and can be matched. Here, it is assumed that the History properties 

of all the elements are available, so that each element can be tracked based 

on the full history information. 



3.5.2 O u t p u t 

The Match operator returns a mapping model. This mapping model con

tains the two input models as domain and range, the model mapping ele

ments E, and the model mapping relationships Rmap that present the match

ing relationships. It also contains relationships Rmodel that connect these 

model mapping elements E. These relationships are based on one of the 

two input models. The purpose of these relationships is to link the mapping 

model elements and they should not create any additional information for 

the input models. Because the output model would not include more ele

ments than any of the input models, the model relationships of the output 

model can be created based on any of them. Sometimes, only part of the in 

put elements could have been matched. In this case, some mapping elements 

might have been created with no mapping relationships to any other model 

elements. They are only used to connect the mapped mapping elements to 

the root based on the relationship given in the input models. These elements 

would act as support elements. 

3.5.3 A l g o r i t h m 

The mapping model includes elements and relationships. 



1. Elements: 

• Create a new Mapping Mode l M, and make the input domain 

and range the internal domain and range respectively. Create a 

model mapping element em for each element ed £ domain. 

• B u i l d the element correspondences, Coru. The matched elements 

in domain and range may not be generated from an element d i 

rectly. They may have been manipulated by several operators in 

multiple steps. Therefore, the only available source of all the el

ements is the whole space, which is called the universe, U, here. 

In order to create the element correspondences, for each element 

e £ U, extract its History property Ph- Ph usually has the format 

of OPERA TOR (IDs), where OPERA TOR is one of the operators: 

Match, Diff, Merge, Compose, Apply, ModelGen, Select, Range, 

Domain and Delete. The history with any of these operators ex

cept Match provide tracing information. The ID of e and IDs 

can be put into one correspondence. For example, if ID(e) — 

300008 and the History property is Mer#e(300001,300002), the 

created correspondence wi l l be {300008, 300001, 300002}. The 

number of IDs in OPERATOR(IDs) depends on different oper

ators, which is summarized in Table 3.1: 

If either ID(e) £ correspondence c o r l or IDs £ cor2 before, 

then the corresponding IDs in c o r l and cor2 are combined and 

we generate a new correspondence which includes all the related 

IDs. 



Operator Created Correspondence 
x = Match(y, z) N / A 
x = Diff(y,z) {x, y} 

x = Merge(y,z,w) {x,y,z,w} 
x = Compose(y,z) {x,y,z} 

x = Apply (y) {x, y} 
x = Copy(y) {x, y} 

x = ModelGen(y) {x, y} 
x — Select(y) {x, y} 

x = Range(y, z) {x, y} 
x — Domain(y, z) {x, y} 
x — Delete(y, z) {x, y} 

Table 3.1: Element Correspondence for Each Operator 

• Locate the Matched Elements: M has the same number of el

ements as domain. Therefore, for each element e<i G domain, 

3em G M, such that e m is generated from e .̂ If 3er G range, 

core G Coru, such that ID{ed) G core and ID(er) G core, then em 

is marked with a new History property as Match(ID(ed),ID(er)); 

otherwise, e m is marked as "delete". 

2. Create Relationships: M has the same corresponding relationships to 

the ones in domain. For each non-mapping relationship r^ G domain, 

let Origin(rd) = eod, Destination(rd) = edd\ F i n d the elements e ^ , 

edm G M, which are corresponding elements of,e0d and edd , create 

relationship r m G M, such that Origin(rm) = e ^ , Destination(rm) = 

edm and the relationship type is same as r^. 

3. P u t M into the Support Element Engine to find the necessary support 

elements. 



4. Remove elements in M that are marked as delete and return M. 

In the above algorithm, it is assumed that the matched elements in 

domain and range are one-to-one. However, it may happen that the match

ing is one-tc-many or many-to-many. In this case, the above algorithm only 

need a small modification: l imit the usage of correspondence to one time. 

The "Locate the Matched Elements" step w i l l be changed to: 

• Each element ed £ domain, 3em £ M, such that e m is generated from 

ed- F i n d the correspondence core £ Coru, such that £ core; F i n d al l 

the elements Ec = {ec\ec £ core such that e c £ domain or e c £ range; 

Mark the History property of em as Match(ID(EC)); Remove core 

from Coru. If the correspondence core cannot be found, mark the 

element e<j as "delete". 

In this way, if elements ei,e2 £ domain match to the same group of 

elements Er £ range, when e\ is processed, the history property of the 

corresponding element em w i l l include all the elements,ei, e2 and al l Er. 

Then, this corresponding tuple wi l l be deleted. When e2 is processed, it 

cannot find the corresponding elements. Therefore, the element em2 £ M 

that is generated from e2 w i l l be marked as "delete" and wi l l probably be 

deleted or act as a "support element", but not have mapping relationships 

to any elements in domain or range. This guarantees that each group of 

matched elements only have one mapping element in M. 



3.5.4 Re lated W o r k 

The Match operator has been widely discussed,(e.g., [15] [11] [3] [5]). Generic 

Match is not discussed in this thesis. The Match operator in this thesis is 

used for the Reintegration system environment and the matching process is 

done with the help of the History properties. 

3.6 S u m m a r y 

In this chapter, we have discussed the five operators that are used in the 

Reintegration system. Four of them have not been discussed in such detailed 

level before. We have formally defined the input, output and algorithms to 

be used for each operator. Moreover, we have used the idea of Support 

Elements on al l the operators, which features heavily in each operator, and 

has not previously been described in detail. To handle support elements, 

we designed and implemented the Support Elements Engine, which wi l l be 

discussed in Chapter 4. It is a generic engine that can be used by any 

operator. This method makes the input and output of each operator more 

self-contained and more generic. 



Chapter 4 

Support Elements 

In Model Management, most operators generate new models. It is valuable 

to ensure that all outputs of operators are composable For this to be true, 

the output of each operator must be a valid model. Here the term valid model 

means that al l the elements and relationships in the output must conform 

to the inclusion rules mentioned in chapter 2.1.3. However, some operations 

wi l l delete some elements or relationships from a model and this may make 

some elements "unconnected", and thus not included in the model. C o n 

sider the example shown in Figure 4.1. It is a mapping between Productl 

and Product2. If we apply the Diff operation on it to compute the differ

ence between them, the result only includes the Product element (the root) 

and the Pid element. They are not connected and it is hard to say what 

relationships they should have between them. 

Domain Range 

Figure 4.1: Support Elements Mapping Example 



In order to keep the result sti l l as a complete model, some elements are 

added to the result model to support the structural integrity of the model. 

They are originally in the model, but may have been deleted. However, 

because these elements should not be included in the result, they must be 

identified from the other elements in the model. Here they are called support 

elements. 

The support elements idea was first proposed in [3]. To identify the sup

port elements, it uses a mapping between the result model and the original 

model. Only the result elements have mapping relationships to the original 

model elements, and those support elements are not mapped. This way has 

its benefits. It does not require a new data structure to mark the sup

port element and it only uses available structures, model and mapping, to 

identify the result. However, the result of the operators that need support 

elements wi l l then become a pair < M, mapping >. When the results are 

further used as input for other operators, it w i l l make the process complex. 

The operators cannot always expect a simple model as input, but sometimes 

the input is a pair, which is actually a new data structure. If there are a 

number of such steps, the result model wi l l become more complex and hard 

to follow or trace. 

Another method to mark the support elements is also mentioned in [3], 

which is to simply mark the elements as support. The disadvantage of 

this method is that it introduces another structure, the marked model. 

This method is not recommended. In our framework, we have the property 



attributes in each element. We can simply use the property as a marker to 

identify if the element is a support element. 

4.1 Definition 

In model management, Support Elements are those elements that are i n 

cluded in the model only for model completeness and integrity purposes. 

They are included in the model, but except for l inking other elements to

gether, they do not have any other functionalities." If any of the support 

elements are not included, the rest of the elements would not be a complete 

model anymore. If elements that need support are deleted, those support 

elements that only support the deleted elements should also be deleted. 

Formally, for a model M with elements EM , we divide EM into the sets 

ES
M, where ES

M contains al l support elements, and EM, where Ee
M contains 

al l elements in the model that appear as normal, non-support elements. 

These sets are disjoint and completely partition EM- That is EMC\EM — 0 

andEs
MUEM = EM. 

Additionally, let M' be the attempt at inducing a model from the ele

ments of Ee
M. That is, M' is built by ( l )adding Ee

M to M', and (2) adding 

to M' each relationship r , s.t. origin(r) G M' and dest(r) G M'. Then 

based on the inclusion rules M' is not a model. Similarly, all elements in 

EM are required for the result to be a model. That is, let M" be any model 

M — E's, where E's is a non-empty subset of ES
M. Then by the inclusion 
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Figure 4.2: The Diff result in Figure 4.1 wi th the support elements needed 
to make it a valid model. Support elements are visualized as shaded nodes 
throughout this thesis. 

rules, M" is not a model. 

To visualize the difference, we shade the elements to identify the support 

elements. For example, the Diff result from the example in Figure 4.1 would 

be the model shown in Figure 4.2. Note that the element Pid is acting as 

a support element and is shaded. In the underlying representation, this is 

represented by adding a property support = true to the Pid element to 

show that it is now a support element. 

4.2 Usabil ity of Support Elements 

Though originally motivated as a requirement for Diff [3], we show that a l 

most all the other operators may also need support elements. For example, 

in the range operator, only the elements in the range model that have map

ping relationships wi l l be in the result. This means that only some elements 

of the original model wi l l be in the final result. In the operator match, 



two models may have a leaf element matched, but not on their ancestors. 

To make the mapping be a first-class object, we need make their ancestors 

support elements. In order to keep the result as a model, we have to use 

support elements to help. If we have support elements existing in the result 

model, the result may be further used in other operators. This means that 

support elements may be quite common in both input and output models. 

It is valuable to keep all our input and output as full models. In this way, 

we can make our operators more generic, composable, and easy to maintain. 

The output of one operator can be used as the input of another operator. 

If we are expecting a kind of model, we can always assume that it is a full 

completed model that conforms to the inclusion rules. It w i l l be trouble

some if the Diff operation only generated a set of discrete elements without 

structure and cannot be used in those operators that need models as input. 

Our purpose is to keep the result model complete. However, we should 

not add any extra information to the result and we should not lose any 

information either. For example, in Figure 4.2, we cannot just add in a 

type-of relationship, or any relationship between the element product and 

int that would make it a model. This addition may make the operation not 

accurate. B y adding the support element pid, as shown in Figure 4.2, we 

can keep the original structure and mark those elements that do not belong 

to the result model. We can achieve the goal of not adding any extra i n 

formation or losing anything essential. Moreover, the support elements also 

help in improving the traceability of operations. If a model is manipulated 



Mapping 

Figure 4.3: Mapping between a Model with a Support Element and a Normal 
Element 

by a series of operations, some support elements may become not supported 

anymore in the final result; but, we can st i l l trace the generation of the ele

ments from the history property. Suppose the model in Figure 4.2 is used in 

a merge operator with another model as shown in Figure 4.3. In the result 

model, Pid w i l l be a normal element (non-support) with a history property 

of merge(ID(pid\),ID(pid^)). 

4.3 Support Elements A d d i n g Algor i thms 

In this section, we discuss the engine for adding support elements that the 

algorithms use to determine which support elements to add. 

We consider as input to the problem of adding support elements a model 

M , and a set of elements EM C EM that are required elements in our result: 

the model M'. Our goal is to find the support elements set E3 to add to M'. 

B y adding the set E S , the partial graph M' of M includes only elements in 



ES and E M , and the relationships whose origin and destination are all in 

E S \ J E M . The partial graph M' is then our return result. 

Because our model is a graph, not a tree, for a given element that needs 

support elements, there may exist several paths to the root. We have to 

select a proper path based on some expectations or rules and add the ele

ments in the path but not in E M . 

First we determine which elements need support, EENS, in Section 4.3.1. 

Then we determine which elements EENSR, EENSR £ DENS, can represent 

all the elements in EENS hi Section 4.3.2. We only need consider EENSR 

when we look for support elements. Finally, we discuss the different algo

rithms used to find the support elements for EENSR m Section 4.3.3. 

4.3.1 A l g o r i t h m to F i n d W h i c h Elements N e e d S u p p o r t 

Firstly , we need find our target elements set that need support, which is 

called Elements Need-Support (EENS)- Basically, any graph search algo

r i thm can be used to recursively include the elements by the inclusion rules 

starting from the root, which is always in the model by definition. Here 

a breadth-first search method is used. A queue can be used to keep track 

of which elements to explore next. It is also necessary to avoid cycles by 

remembering which elements have been used in the queue. 

The algorithm takes a model M' as input. Model M' can be any valid 

model, including a mapping. There are two categories of elements of M'. 



One is the normal elements, E M , which are the elements that the result 

model must contain and some of which need support elements. The other 

category is the elements, E M , that can be deleted and which may need to 

be support elements. These elements are different from EM in that they 

have a property delete w i th value true, meaning that they are to be deleted 

if they are not support elements. Note that this input is also the input of 

the whole "Support Element Engine" . 

The expected result of this part of algorithm is a set of elements, EENSU 

E M , that cannot be included in the model without the support of some el

ements, ES U E M . 

The algorithm details are as follows: 

1. Define element set ECMIERED — 0 , EQUEUE '= 0 ; 

2. P u t the root element of M' into Ecovered and E Q U E U E ; 

3. While( E Q U E U E IS not Empty) Do: 

L E T e = Dequeue(EQUEUE); 

I F e has been visited, N E X T ; 

F I N D the corresponding element e' G M that corresponds to e; 

F O R E A C H inclusion-rule relationship R 

I F e' is the origin of a relationship R ; 

L E T ed be the corresponding destination; 

I F ed £ EE
M 

P U T ed into Ecmiered\ 



Figure 4.4: Elements Need Support & Representatives 

P U T ed into E Q U E U E ; 

E N D W H I L E 

4. R E T U R N EENS = E- E ^ ^ 

4.3.2 E N S R e p r e s e n t a t i v e s 

Not all the elements in EENS need to be considered when adding support 

elements. In the example shown in Figure 4.4, elements B and C are not 

in E E
M . EENS includes elements D,E,F. However, it is not necessary to 

consider element F when adding support elements, because if either D or 

E is included in the model by adding proper support elements (B, C here), 

F wi l l automatically be included in the model. Although D,E,F are con

nected together, it is st i l l necessary to consider both D and E as the E N S R , 

because they do not have ancestor- descendant relationships, and adding D 

wil l not ensure that e is in the model, and vice-versa. 

Therefore, if relationship r is between elements A and B, A G EENS, B £ 

EENS and II(r, B) (i.e., r implies inclusion of B, see Section 2.1.3), by which 



it can induced that if A is in the model then B is also in the model, then it is 

only necessary to consider adding A as a support element, and not B, since 

adding A would also include B . Therefore, in this step, only some elements 

from the EENS set are selected as representatives. Only these E N S Rep

resentatives ( E N S R ) are considered to add support elements. Each E N S R 

element may represent a set of elements in EENS- This may reduce the 

number of elements to be considered and speed up the overall process. 

This step takes the following as input: the model M' and the output 

elements set EENS from previous step in section 4.3.1. The algorithm is: 

Iterate each element e G EENS and test if 3ep G EENS, such that if ep G M 

then e G M by inclusion rules. If so, we delete e from EENS- Finally, we 

get the set EENSR, the representative elements set. 

4.3.3 Support Elements A d d i n g E n g i n e a n d A l g o r i t h m s 

Because support elements are used in almost al l the operators in the rein

tegration system, the adding process wi l l be a separate, reusable engine, so 

that al l the operators can share the process and algorithms. 

The Engine has the following input and output: 

1. Input: The input includes the original model M, the current uncom

pleted result model M', whose elements set as E M . The whole el-



ements set of M as E. Here M' is a copy of M, except that the 

elements which are not in the result set E E
M are marked as delete by 

adding the property delete = true. If these elements are marked as 

support later by adding the property support — true, they wi l l be kept 

as support elements. For those elements in EM that are not marked 

as support, they wi l l be deleted in the final step. In this way, the 

algorithm can operate on one model and avoid the frequent steps to 

locate the corresponding element in the original model. 

2. Output: Updated model M' such that al l the elements of ENS are 

included by inclusion rules. 

To find the support elements set, there are many different ways. Here 

we list three methods. Each of them has different advantages and disad

vantages. Section 4.3.3.1 discusses the "Shortest Path A lgor i thm" , which 

is a fast algorithm and the most straightforward way: we consider each el

ement in ENSR separately. Section 4.3.3.2 discusses the "Least Support 

Elements" algorithm, which is valuable when the number of support ele

ments is desired to be as small as possible. For example, when support 

elements are costly for storage reasons, it wi l l be better to add as few sup

port elements as possible. Section 4.3.3.3 discusses the "Greedy A lgor i thm" , 

which is useful when the model structures are complicated and the elements 

interact with each other a lot. 



4.3.3.1 Shortest Path Algorithm 

One straightforward method is to find the shortest path for each E N S R el

ement. For each E N S R element, the algorithm uses a reverse breadth-first 

search to track its ancestors. The ending condition is the tracing process 

reaches to either the root element, or any element that is already included 

in the model, or an element that has been marked as a support element by 

using the inclusion rules. Then al l the elements in the found path that did 

not belong to the result elements set are included in the result model as sup

port elements. Furthermore, because the path is found with breadth-first 

search, it is guaranteed that it is the shortest path. The detailed algorithm 

is as follows: 

1. For each element e m G ENSR, put em into the processing queue Q. 

2. Whi le the queue is not empty and there is no path found, let eq be 

the first element in Q , use reverse breadth-first search method. For 

each relationship r that is in the inclusion rules and for which eq is the 

destination, find the elements E 0 , such that for each element e0 G E0 

there exists a relationship r between e0 and eq and II(r,eq). 

3. For each element e0 G E 0 , if e0 G EENS, put it into Q and record the 

corresponding path; otherwise, if eD G E M , or e0 G EENS and e0 has 

a property of "support — true", then the shortest path for element e 

has been found. 

4. F i n d out the whole path from e to e0. In this path, if any element 



is marked as delete, change its property to support. For each such 

element, recursively apply the inclusion rules again to find its descen

dant. If any of its descendant is in the EENSR, remove it from EENSR-

5. When al l the elements in EENSR have been covered, the algorithm is 

done. Final ly remove those elements from M' if they st i l l sti l l marked 

as delete by having the property of udelete=truev. 

The advantage of this algorithm is the speed. Even to reach the root, 

the average case complexity for this algorithm is 0(log(n)). However, since 

we need to keep track of each level, the space usage is very high. 

4.3.3.2 Least Support Elements Algorithm (LSE) 

In some applications, it may be valuable to use as few support elements as 

possible. This algorithm can minimize the number of support elements to be 

added overall. This means if n support elements are added to the model and 

make up all the elements in E N S R included in the model by the inclusion 

rules, it would be impossible to find any other better combination with fewer 

than n support elements that could also include all the elements of E N S R in 

the model. To determine the least support elements, it is necessary to find 

all the possible paths that all the E N S R elements may use to be included in 

the model. The steps are as follows: 

1. The first step is very similar to the Shortest Path Algor i thm in that it 

also uses the reverse breadth-first search for each element e G EENSR-

It also keeps an elements tracing queue Q for the breadth-first search 



similar to that for the Shortest Path Algorithm. The difference is that 

it does not stop when it finds the first element that is already in the 

model. Instead, it wi l l only record this path (but not trace this path), 

and it wi l l continue with other possible paths. When all the possible 

paths have been found, which means Q is empty, we terminate the 

tracing process. We record al l the possible paths, but do not delete 

elements from E N S R when we find all the paths, because we are not 

sure yet which path wi l l be used in the final result. 

2. Repeat the above step for each element in E N S R . Then we have all 

the paths set for ej € EENSR- For example, the following may be the 

final result of the paths to be considered: 

path(eo)[0] = { e n , e i 2 , e i 3 } 

path(e0)[l] = { e n , e i 5 } 

path(e\)[0] = { e n , e i 2 , e i 7 , e i 8 } 

path(e\)[l] = { e i 9 , e 2 o , e 2 i } 

path(e2)[0] = {e 22} 

path(en)[k} = {e2i,e26,e27} 

The paths may have intersections. Each element can choose one of 

the available paths to add support elements. Different combinations 

of paths chosen by each element in E N S R have different number of 

elements by union the elements of selected paths. 



3. Compute the total number of elements of each path combination by 

selecting a path from each element's path set. For the above example, 

we have: 

count(path(eo)[0] Upath(ei)[0] Upath(e2)[0)) = 6, (counting elements 

e n , ei2, e i 3 , e i 7 , e i 8 , e20) 

count(path(eo)[0} U Path(ei)[l] Upath(e2)[0]) — 7, (counting elements 

e n , ei2, e i3 , e ig , e2o, 621,22) 

4. Pick up a combination of paths with the minimal count and mark all 

the elements in the selected paths that are not in the model (marked 

as delete) and mark them as support. 

LSE guarantees that only minimum support elements are selected. How

ever, the complexity of this algorithm is relatively high. 

4.3.3.3 Greedy Algorithm 

The idea of the Greedy Algor i thm is to select the element that can cover 

most of the E N S R elements to be a support element in each step. The de

tailed algorithm is as follows: 

1. F i n d al l the elements Edp, such that for each element edp € Edp, 3e e 

ENSR and a relationship r between edp and e, and II(r,e). 

2. For each element in Edp, compute the out degree: the relationship r 



that is included in the inclusion — rule and II(r, e) for some element 

e € ENSR. 

3. Select the one with highest out degree, e^, and mark it as a support 

element by adding property "Support = true". 

4. P u t eh into E N S R . 

5. Remove those elements in E N S R that can be covered by e/i. 

6. F i n d the direct parents of and put them into Edp. 

7. Repeat from step 2, unti l E N S R is empty. 

The Greedy Algor i thm cannot guarantee an optimal result (i.e., the least 

support elements). For example, Figure 4.5 shows an example of using 

the Greedy Algor i thm. The algorithm may choose Do...Dn as the support 

elements, because Dn has the highest out degree. However, we know that the 

least support elements should be only B and C. This example demonstrates 

that in some cases, the Greedy Algor i thm may generate a worse selection 

of support elements. However, it can generate a "better than naive" result 

and has an acceptable complexity. In practice, since database schemas are 

mostly well structured and the depth of the model graph is small , the Greedy 

Algor i thm can often find the "important" elements to be added as support 

elements first. These elements can play a good role on supporting elements 

in ENSR. 

Redundancy in the Greedy Algorithm 
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Figure 4.5: Greedy Algorithm Example 

Figure 4.6: Redundancy in Greedy Algorithm: B - E are candidate support 
elements. The Greedy Algorithm wi l l add al l of them as support elements, 
but D is not necessary. 

The Greedy Algorithm that it cannot always produce the optimum result 

(the least support elements). Moreover, sometimes elements are included as 

support elements, but the model could sti l l be completed even if those ele

ments are not support elements. For example, Figure 4.6 shows an example 

of adding support elements using the Greedy Algorithm. 

The model shows that elements F to O are result elements and elements 

B,C,D,E are not in the model and are candidates for support elements. 



Following the Greedy Algor i thm, the steps axe: 

• E N S R s are elements F to 0 , and the out-degree D for the direct 

parents are: D(C) = 5, D(D) = 6, and D(E) = 5 

• Element D is firstly selected as the support element, and it covers 

elements H to M. 

• The updated E N S R s are elements F,G,D,N,0, and the out-degrees 

are: D(C) = 2, D{B) = 1 and D(E) = 2 

• Then, the element with highest degree, C, is selected as the support 

element, then E is selected. 

• Finally, B is selected as the support element and we are done. 

• The support elements are B, C, D, E. 

However, notice that element D is redundant. If D is not a support 

element, all the E N S R s can st i l l be covered by C and E. 

In our Schema Reintegration system, all three algorithms have been im

plemented and tested; In practice, we have used the Shortest Path A l 

gorithm the most, because most models that represent database schemas 

are trees. In such cases, the Shortest Path Algorithm can correctly, effi

ciently, and optimally solve the problem. However, if the model structure 

is a complex structured graph, and it is necessary to consider the cost of 

the total number of added support elements, the other two algorithms can 



help. When the number of added support elements is really" critical, for 

example, adding a support element wi l l cost several gigabytes of disk space, 

then the "Least Support Elements" gives the optimal solution. When the 

model structure is very broad (high out-degree on most elements) and has 

complex relationships between elements, the "Least Support Elements" is 

very costly. It needs to find all the paths to some elements already included 

in the model. In such cases, the "Greedy Algor i thm" gives a good solution 

to quickly find the support elements. 

4.4 Discussion 

4.4.1 T h e R o o t Element 

In Model Management, each Model is required to have a unique root ele

ment. In a mapping, it is also assumed that the root elements of the domain 

and range match each other. When the models are manipulated by opera

tors the root element may not be deleted from the model. For example, in 

the Diff operator, if the root elements of the domain and range are matched 

in the mapping, the root of the result model wi l l be a support element. 

However, in the support elements adding algorithms, one of the conditions 

to stop tracking each path is when the path reaches the root. Therefore, 

the root element must be processed separately. In any operator, if support 

elements are to be added, it is necessary to guarantee that the root element 

is included in the model first. If not, it should be marked as a support 

element at the beginning of any operations. 



4.4.2 Support Elements in Input 

Most operators need support elements in their result model. These results 

can be further used as input to other operators. Therefore, each operator 

needs to consider how to deal wi th the support elements in their input. 

Moreover, it should also be considered when such models (which already 

have support elements) need to add more support elements. These issues 

wi l l be addressed in Section 5.2.2. 

In this chapter, we discussed in detail the support elements used in model 

management. Support elements are helpful to maintain the integrity of mod

els during model management operations without adding extra information 

or losing information. We gave an algorithm to locate the support elements 

and we gave three support elements adding algorithms that could be used 

in different situations. 



Chapter 5 

Reintegration System 

Having developed all the operators needed for the reintegration algorithm, 

in this chapter, we discuss the details of the reintegration system (Section 

5.1) and some complicated problems that have to be solved (Section 5.2). 

5.1 Reintegration (Three -Way-Merge) A l g o r i t h m 

As shown in the example in Table 2.2 in Chapter 2, the reintegration algo

r i thm can be done in 26 steps using the operators described in Chapter 3. 

The input of the algorithm is one original model O and two different mod

ified versions O, Model A and Mode l B. In model A and B, each element 

e has a History property indicating which element eQ G O e is derived 

from. Again, since each Model Management operator provides the history 

property, this information would be easy to derive even if there were more 

intervening operators. 

The output of the algorithm is a single model Mresuit, which is generated 

conforming to the rules mentioned in Table 2.1. 

A t the highest level, the reintegration steps include the following: 



1. Merge the two modified versions, Model A and Model B, into Mode l 

MQ- This includes all the existing elements in both versions (steps 

10-11). When two elements from two models are merged, sometimes, 

there are conflicts. For example, one element may have the property 

"minOccur = 5" and in the other model, the matched corresponding 

element may have the same property with a different value, such as 

"minOccur = 5". In the merge theory, there is usually a preferred 

model to break the conflict. If the preferred model does not include 

the latest modification, it may override the latest version. Therefore, 

the merged version need check whether the modified part in Model A 

and the modified part in Model B are included. This is done by using 

merge again between Model MQ and the changed parts of A and B. 

Steps 1 to 9 find the elements that are changed in A or B but not 

both. Steps 12 to 16 merge the changes wi th MQ- However, MQ may 

also include those elements that should be deleted. 

2. F i n d the deleted elements in Model A and Model B separately, namely 

MoeletedA and MoeletedB, which may need to be deleted from the 

merged version MQ- Steps 17 to 18 find these deleted elements. How

ever, these deleted elements may have been modified in the other ver

sion. Therefore, not all the elements in MrjeietedA a n d MrjeietedB c a n 

be deleted from MG-

3. F i n d the those elements that are deleted in one model but not modified 

in the other. These elements are those that can be really removed 

from the wholly merged version. Steps 19 to 26 find those elements 



and delete them from the merged model MQ-

5.2 Discussion of Problems in Reintegration 

System 

We have implemented the reintegration system, including all the operators 

discussed in Chapter 3 and the reintegration algorithm [14] shown as an 

example in Chapter 2 and summarized in Section 5.1. The system was 

tested with several test samples, from very simple ones to very complicated 

ones. We discovered some interesting problems that have not been previ

ously studied. 

5.2.1 N u l l M o d e l 

Our experiments started with the simple example shown in Chapter 2. 

Though this example is simple, it can raise some unexpected results. For 

example, many operations generate a resulting model that is NULL, i.e., 

the result model includes no element or relationships. Previous work had 

not identified this as a possibility, but is clearly a special case that must be 

handled properly. We treat the N U L L model as a special type of model. 

The Null model is necessary. M a n y operators take a pair of models as 

input, such as Diff, match, range, and match. Also, the map can be an 

input. Without the Null model, these operators would not be able to han

dle the cases where input models have no elements. But intuitively, the 

existence of the null model makes sense to real problems. For example, in 



the example in Table 2.2, Step 7, models changed^ and changeds have no 

common elements. Their mapping wi l l result in a null model. We need to 

define the behavior of each operators when one or more input models are 

null . 

• In Diff, if the domain model is a null model, then the result model 

is null too. If the range model or the map is a null model, then the 

result model is exactly the same as the domain model. 

• In merge if any of domain or range is a null model, the result w i l l 

be the same as the other model (range or domain). In merge it is 

assumed that the two root elements of the domain and range are 

mapped to each other if neither of them is null . Therefore, the map 

cannot be null . 

• In range, if the domain model is nul l , the map w i l l be null too. There

fore, the result model w i l l be same as the range model. If the range 

itself is null , the result wi l l be null too. 

• In match, if any of the domain or range is nul l , the result mapping 

wi l l be null too. 

• In Apply, if the input model is null , obviously a nul l model wi l l be 

returned. 

Furthermore, if all the elements in a result model are support elements, 

this model wi l l be a null model, instead of a model that includes al l support 



elements. 

5.2.2 S u p p o r t Elements in Input 

As we have mentioned in Section 4.4.2, support elements may appear in the 

input models of each operator. While the Reintegration system is composed 

of the operators and the result of one operator w i l l be used in future oper

ators as input, the support elements wi l l be more likely to appear in input 

models. They need to be handled with clear rules. Here is how they are 

handled in the system. 

The first step is that al l the support elements in input models are marked 

as "delete" candidates. More specifically, if an element in the input mod

els has a property of "p(support) = true", this property is deleted and we 

add a new property as "p(delete) = true". This means that these elements 

may be deleted after the operator finishes. Because the "support elements" 

may not useful in the result model, i.e., it is not necessary to "support" any 

elements. For example, Figure 5.1 (a) shows a mapping between model A 

and model B, which includes a support element c to support the element d 

to be included in the model. The merge result is shown in (b). Obviously, 

element d is now included in the model because of the existence of element 

b, and support element c is not necessary any more. 

The second step is that the model with elements marked as "delete" 

is processed by each operator normally as input. The elements marked as 



Model A Map Model B Merge(A, B, Map) 

Figure 5.1: Support element c in Input model, which is not needed in Merge 
result. 

"delete" are treated as normal elements in the algorithms. However, each 

operator needs to handle the delete property in the input element differently. 

• In Merge, each element in the result model represents a group of 

corresponding elements. If any element in the group does not have the 

"delete" property, the corresponding result element wi l l not have the 

"delete" property. 

• In Diff, if the domain model contains elements that have the "delete" 

property , the corresponding elements in the result model also have 

the "delete" property. 

• In Range, if the range model contains elements that have the "delete" 

property, the corresponding elements in the result model also contain 

the "delete" property. 

• In Apply, the "delete" property of the elements in input model w i l l 

be kept in the corresponding elements in the result model, unless the 

Apply function modifies this property on purpose. 



• In Match, each model mapping element in the result map represents 

a group of elements. Only when all the elements in the group have the 

"delete" property, the corresponding element in the result map also 

has the "delete" property. Otherwise, the elements in the result map 

do not have the "delete" property. 

In the third step, the result model w i l l be processed by the "Support 

Elements Engine" as usual and if the elements that are marked as "delete" 

are st i l l essential to support some other elements, they w i l l be marked as 

"support" by the engine. If the elements are st i l l marked as "delete", they 

wi l l be deleted from the result. 

The specific handling of "Support Elements" enables the Reintegration 

system to work for any cases with full "Support Elements" functionality 

support. The "Support Elements" can appear in any place. The Support 

Element Engine has been fully discussed in Chapter 4. 

5.2.3 M o d e l V a l i d a t i o n 

A l l the operators in the Reintegration system assume that the input models 

are valid. A l l the algorithms in each operator also rely on valid models. 

However, this assumption may be challenged when the input models are 

complex. 

During system testing, we tried some complex examples that include hun

dreds of elements. Some human errors may make the input models invalid. 

For example, some elements are supposed to be in a model, but cannot be 



inclusion-implied, or the relationships have cycles. If the input models have 

such kinds of invalid problems, the performance and result of each operation 

can hardly be guaranteed. This may lead to system instability. Therefore, 

all the input models need to be validated before being used. The model val 

idation procedure includes validating the elements and relationships. The 

rules used are the "Inclusion Rules" shown in Section 2.1.3. Starting from 

the root, if al l the elements and relationship can be included by using the 

inclusion rules, then the model is valid. If the model is mapping, we also 

check if the two roots of the domain and range are mapped. The correctness 

of logic of the input models is not validated in this system. It depends on 

the user to make sure the logic in the model is correct. Invalid input models 

are rejected from proceeding further during Reintegration. 

In this way, the system becomes more stable and could be used on com

plex models, which are more general, and hence the system is more valuable. 

5.3 S u m m a r y 

The Reintegration system integrates all the operators that are required for 

Reintegration. Because all the operators are designed in a way that they 

can consume the output models from other operators, they can be easily, 

incorporated into the system to accomplish the integration task. The "Sup

port Element Engine" is designed to support all the operators, so that each 

operator can focus on its functional algorithm. 



This kind of design makes the system more flexible and extensible. It 

is suitable for future model management operators development and other 

relevant model management topics. The system also includes a graphic pre

sentation that enables the models and algorithm procedures to be visualized. 

This makes the system easier to be validated and observed for discovering 

interesting issues. 

We have made the system stable in a sense that it always checks the 

validation of input models, and during each algorithm. From our exper

iments, we have also discovered the corner cases in the system that need 

to be considered to make the system more general and compatible. These 

corner cases are not usually discussed but they are st i l l technically essential 

to make everything stable in the system. 

A l l these efforts make the system ready to accomplish the schema rein

tegration. Now that the system is ready, we describe the experiments on 

the system in Chapter 6. 



Chapter 6 

Experiment 

The implementation of the Model Reintegration System is based on the 

previous work of Merge in [14]. The system is written in C # and includes the 

classes for the basic data structures, such as Element, Model , Relationship, 

Mapping, and operators. We built each operator as a class, so that the class 

can be decoupled from other operators, and is easy to extend. We also built 

a class that integrates al l the operators and follows the Three-Way-Merge 

algorithm. In order to make the system more transparent and clear, the 

result models in the steps are al l visualized using Visua l Studio . N E T 2003 

and the FlowChart . N E T component [8]. A l l the elements are displayed 

using an automatic tree-structure arrangement plan. This is a good way for 

observing the elements and relationships for demonstration purpose. Figure 

6.1 shows a mapping in the Model Reintegration System interface that we 

used for demoing the reintegration procedure. 

The system includes the following main parts: 

• Model Display 

• Model Selection 

• Support tools. 
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Figure 6.1: Model Reintegration System 



After a demo is loaded, the user can select any model in the steps by 

clicking the related item in the left bar, and the selected model wi l l be dis

played in the main area. There are some functionalities to make the system 

more convenient for the users. For example, there are two modes in which 

to view the model: the simple mode only shows the name of each element, 

and the full mode shows all the details of each element, including all the 

properties. There is also a zoom bar to view the model in different sizes. 

6.1 Operator Experiments 

While we developed each operator, we performed numerous experiments 

to ensure the correct behavior of each operator. These experiments are 

designed to cover different situations that may happen in the input. For 

example, the following are part of the experiment cases that were used for 

testing Diff: 

• Element in domain and has a valid match to some elements in the 

range 

• Element in domain but has no mapping relationship 

• Element in domain and has a mapping relationship with some element 

in the map, which has no mapping relationships wi th elements in range 

• Mult iple elements in domain match to the same element in range 

• One element in domain matches multiple elements in range 



# Operator # of experiment cases 
1 Merge 25 
2 Diff 6 
3 Range 6 
4 Apply 2 
5 Match 4 

Table 6.1: Experiments Performed for Each Operator 

• A l l the elements in domain have valid matched elements in range 

We have designed different test cases for different operators. We have 

covered different rules in each operator, including some special scenarios 

that have been mentioned. In each operator and some basic modules, there 

are also some functionalities that accomplish a single task. For example, we 

have a function to verify if a model is valid. Table 6.1 shows the experiments 

that we have performed for the operators, not including the test on basic 

functions, support elements and the whole system. 

From these experiments, we learned a lot of corner cases that we must 

cover for a complete system, such as how to deal wi th the root element in 

each operator. These observations are helpful when using these operators in 

the reintegration system. 

6.2 Support Element Engine Experiments 

The "Support Element Engine" described in Chapter 4 is an assistant mod

ule that all the other operators rely on. Because its input is only a model 



and its output is the same model with support elements found and marked, 

the experiments on this module were performed in both single module sce

narios and integration scenarios wi th other operators. We have designed 

18 test cases to covered different scenarios. We also tested the engine with 

mappings models. The engine is expected to be able to support any kind of 

model. 

Moreover, because we have three different support elements adding al 

gorithms (See Sections 4.3.3.1 4.3.3.2 and 4.3.3.3), al l of the experiments 

were performed using all the algorithms separately. We have also designed 

cases to show that different algorithms would generate different results on 

the selection of support elements. 

We also tested the performance of the engine. We have designed test 

cases that include elements arranged in a wide structure, for example, one 

level contains more than 10 elements, and in a deep structure, for example, 

the model contains more than 5 levels. These models have very complex 

relationships between elements in each level and in different levels. The 

result shows that al l three algorithms can finish in less than one second, even 

for large models, which is acceptable speed. Among the three algorithms, 

the shortest path algorithm is a little bit faster than the other two. This is 

because this algorithm searches support elements in a direct way, which is 

less than the height of the graph from the root. The support elements adding 

step for each element is independent from each element. However, in the 

other two algorithms, the correlation of each element that needs support has 



to be considered. This increased the complexity of the algorithms. Therefore 

the Shortest P a t h Algorithm is the one that we recommend if the number 

of support elements added is not very small. 

6.3 Reintegration System Experiments 

We designed four experiments to test the reintegration system. Because the 

system is composed of only the five operators mentioned in this thesis, these 

tests are also a way to further test each operator. In the experiments, we 

primarily used the shortest path algorithm in the Support Element Engine. 

However, in the last two more complex experiments, we have randomly 

chosen one of the three support element adding algorithms in each step 

of the reintegration system. This ensures that all three algorithms work 

properly. 

In order to quickly create models for testing, we also designed functions 

to automatically add elements to models and find and add history prop

erties to match to corresponding elements in another model (usually the 

original model). This gives us a quick way of adding elements and building 

the structure of models and the relationships between elements in different 

models, so that we can put more of our focus on the reintegration system 

itself. 

Our first experiment is a simple one mentioned in [14] (Merging Models 

Based on Given Correspondences). The original model includes four ele

ments. The derived models contain two scenarios: one element is modified 



in one model and not changed in the other; one element is deleted in one 

model and not changed in the other. Even from this simple experiment, we 

found many improvements that the system needed in order to be more sta

ble. For example, the simpler the models are, the more likely there are null 

models appearing in the result of operators, which may be used by other op

erators as input. From Table 2.2, we can see that there are 11 results among 

the total 26 steps are that null models. This brought our attention to han

dling null models for each operator and it is necessary to define the correct 

behavior when the input has null models, as discussed in Section 5.2.1. We 

have attached screen shots of all the steps of this experiment in Appendix A . 

The rules mentioned in Table 2.1 are the principle cases that our system 

should cover. Therefore, our second experiment was designed to include 

elements that can cover al l the scenarios in the rules. The original model in 

cludes eight elements which are arranged in three levels. One derived model 

contains eight elements and the other contains seven elements. These ele

ments are arranged in a designed hierarchy to cover each scenario that we 

are going to test. 

Furthermore, we also performed experiments on the cases that Rondo 

[11] uses. This includes a relational schema case and an X M L schema case. 

Both schemas are translated into models that can be used in our system and 

run the Reintegration algorithm on them. 

In the first of these two experiments, we created a four-level parent-child 



hierarchy data model. The first level is the root for the whole database; the 

second level includes one element for each schema in the database; the third 

level includes one element for each attribute; and the last level includes the 

type of each attribute and if it is a primary key, there is also a child element 

of primary key. The translated models contain the following information: 

• Model O: 37 elements, in 4 levels 

• Model A : 49 elements, in 4 levels 

• Mode l B : 45 elements, in 4 levels 

• Mapping relationships between O and A : 33 

• Mapping relationships between O and B : 29 

• Mapping relationships between A and B : 31 

• F i n a l result model contains 57 elements 

In the second example, we translate each X M L node of the example as an 

element in the each model. The translated models contain the following 

information: 

• Model O: 27 elements in 5 levels 

• Model A : 32 elements in 5 levels 

• Model B : 26 elements in 5 levels 

• Mapping relationships between O and A : 19 

• Mapping relationships between O and B: 20 



• Mapping relationships between A and B : 16 

• F ina l result model contains 37 elements 

The overall test results showed that our system achieves the correct out

put. The first two experiments resulted in the results dictated by three-way 

merge. The last two cases got the same results as Rondo. These were the 

results that were dictated by the rules of three-way merge, and is the be

havior that make sense to most people. 

From these two more complex examples, we observed that it is very i m 

portant to always keep the input model and output model valid. Sometimes, 

a dangling relationship or element is a human mistake while the model is 

created. Therefore, we added a validation step to make sure that all the 

input models are valid, that is, they are compatible with the inclusion rules. 

This extra step makes the system more reliable. 



Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this thesis, we discussed the details of the Model Management operators: 

Diff (Section 3.2), Range(Section 3.3), Apply(Section 3.4) and Ma£c/t(Section 

3.5) . We formally defined each operator and gave algorithms after analyz

ing them in detail. We showed that these operators always need support 

elements to maintain integrity. 

We developed a model reintegration framework that integrates al l the 

operators and accomplishes the Reintegration task, which is the essential 

algorithm for schema reintegration purposes. The model reintegration sys

tem demonstrated how the original schema can help when merging different 

versions of modified schemas correctly. 

The schema reintegration system can be used in many areas, such as for 

relational schemas, X M L schemas, U M L , and ontologies. When the circum

stance happens that there are one original schema and two or more different 

modified versions of the schema, the schema reintegration can facilitate the 

automation of the reintegration steps. 



We discovered the need for, and also discussed the "Support Element 

Engine" in detail. This engine is designed and developed in a generic way, 

so that al l other operators can simply rely on it to select the appropriate 

elements as the support elements. This method does not add any extra 

information to the result of each operator and does not lose any existing 

information either. It is also a way to keep tracking the history of the 

evolvement of each element. W i t h this engine assisting of model manage

ment, all the other operators can now focus on their own algorithms and 

leave the structure problem of their result models to the engine in the final 

step. 

Our experiments have shown that these generic model management op

erators indeed can be used for schema reintegration purposes. This system 

can be used for different kind of schemas and generate good result. The rules 

implemented in each operator can be customized to be compatible wi th dif

ferent utilizations in the real world. We always keep "generic" in mind when 

we design our system. This system can be easily extended to other relevant 

applications. 

7.2 Future W o r k 

In this thesis, we focused on analyzing and implementing the operators Diff, 

Range, Apply, and Match (based on History property), which are for rein-



tegration. There are st i l l many other operators in model management to be 

explored, such as compose and modelGen. These operators can be useful 

for other model management purposes. 

In our reintegration system, models are created manually. This is only 

for demo purposes. The transformation from a schema to our model is slow 

if it is done manually. It wi l l be very helpful if there are interpreters that 

can transfer each kind of schemas to our models. 

The Match operator in the system is based on the "History" property. 

This works fine and is reliable in the middle of the algorithm after the models 

are built. However, in the first step, when we create the input models, 

we have used the element names to automatically build the corresponding 

"History" properties. This is because we do not discuss other automatic 

matching methods. The automatic matching in model management has 

been discussed widely, for example, [11] [15] [6] [7] [10] [9]. If a reliable matcher 

can be integrated into the system and build the init ia l relationships between 

the input models and elements, the system wi l l be more complete and have 

better usability. 
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Appendix A 

Reintegration System 

Example 

Here we list the screen shots of the first experiment that we did on the Rein

tegration System. 

Figure A . l shows the original model and Figures A .2 and A .3 are the two 

different modified versions. Figures A .4 through A.29 list al l the steps that 

correspond to the procedures shown in Table 2.2. 
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Figure A.19: The Merged Model GAB from Models GA' and B ' 
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