
cl
ANISIM: AN ANIMATED INTERACTIVE SIMULATION MONITORING SYSTEM

by

WARD WALKER, JR.

B.A.(Honors), Washington State University, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n the Department

of

COMPUTER SCIENCE

We accept t h i s thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

A p r i l 1974

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements f o r

an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that

the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study.

I fur ther agree that permission f o r extensive copying of t h i s thesis

f o r s c h o l a r l y purposes may be granted by the Head of my Department or

by h i s representat ives . It i s understood that copying or p u b l i c a t i o n

of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my

wri t ten permission.

Department

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver 8, Canada

Date

X I

ABSTRACT

An int e r a c t i v e system i s described which allows for the

graphic construction, simulation, and simultaneous animation of

an a r b i t r a r y network of queues. A method i s proposed and

implemented for representing the events of a discrete simulation

by a continuous animation on a graphics terminal. Techniques

are presented f o r the display of p a r a l l e l animation "sequences,"

and a non-trival mapping of simulation time into animation time

i s described which preserves the r e l a t i v e order and time

relationships between events. The program implemented combines

t h i s animation f a c i l i t y with other simulation monitoring and

control features. The usefulness of thi s type of approach i s

discussed with respect to computer-aided design applications,

educational tools, and research tools. An i n t e r a c t i v e dialogue

which makes use of the lightpen and a menu of commands i s

implemented for the construction and modification of the queuing

network. Certain relevent aspects of man-machine inte r a c t i o n

are discussed. Also, some prospects are considered for applying

the animation techniques developed i n thi s implementation to

other discrete event processes.

T A B L E O F C O N T E N T S

INTRODUCTION

0.1 Animating Simulations

0.2 Scope

0.3 Queuing Networks

0.4 Simulation States And Events

I. INTERACTIVE GRAPHICS FOR COMPUTER-AIDED MODELLING1

1.1 Types Of Systems 1

1.2. ANISIM 1

1.3 Important P r i n c i p l e s 1

1.4 Model Representation ...1

I I . ANIMATION TECHNIQUES 1;

2.1 Computer Animation .1c

2.2 Representing Events . .1

2.3 Animation Time Frame ...2

2. 3 . 1 -Types Of Sequences 2

2 . 3 . 2 Internal Cycles 2

2 . 3 . 3 Editing The Event L i s t 3

2.4 The Display Process 3

2.4 . 1 The Display Buffer . i . 3

2 . 4 . 2 Compiling Sequences Into Display Programs 3

2 . 4 . 3 Double Buffering .4

2.5 The Overall Visual E f f e c t 4

I I I . INTERACTIVE FEATURES 4

3.1 Simulation Monitoring And Control .4

i v

3.1.1 System Control 47

3.1.2 Simulation Monitoring 50

3.2 Model Design and Modification57

3.2.1 Network Construction .57

3.2.2 Model V e r i f i c a t i o n ...65

IV UTILITY OF ANIMATION 70

4.1 Simulation Tool70

4.2 Educational Tool 73

4.3 Research Tool ...77

V CONCLUSIONS, PROSPECTS, AND EXTENSIONS 81

5.1 Analysis .81

5.2 Limitations ...82

5.3 Extensions 85

5.4 Prospects For Further Work .88

BIBLIOGRAPHY .92

APPENDIX A — PROGRAM DESIGN 94

APPENDIX B — DATA STRUCTURE104

APPENDIX C — USER'S GUIDE 106

V

LIST OF FIGURES

1. A Simple Queuing Network »6.
2. Modelling Abstractions10

3. Animation Sequences For Display Of A Departure Event ...21

4. Simple Time Expansion 23

5. Mapping Events Into Sequences 23

6. The Internal Cycle 28

7. Display Program To Alter The State Of A Queue 37

8. Display Program Timer Words 39

9. Buffer Co-Ordination , 42
10. Commands Available , 4 9 '
1 1 . Labelled E n t i t i e s52
1 2 . Display Of Blocked Items56
1 3 . Menu For Network Design .59

14 . Specifying Queues -> 62

1 5 . Buffer Sketching ..63

16. Dialogue For Specifying Service Times ..66

17. Queuing Theory Comparison 76

1 8 . Simple Deadlock 78 ;

19. A P a r t i a l l y Deadlocked Network 79

2 0 . Transaction Grouping .T.. .-84

2 1 . System Configuration •••• • » » 9 4
2 2 . The NODE Record 104

2 3 . Data Structure For Queues 106

2 4 . The EVENT Record •••107

ACKNOWLEDGEMENT

I would l i k e to acknowledge Dhirendra Chheda and Miguel

Alemparte f o r th e i r s i g n i f i c a n t part in the programming and

formulation of the o r i g i n a l system. I would also l i k e to thank

Dr. Doug Seeley for his help and guidance, and Drs. Jim Varah

and Dean Uyeno for th e i r suggestions. I would esp e c i a l l y l i k e

to express my appreciation to Karen Hartley for her moral

support and assistance i n f i n i s h i n g t h i s thesis.

1

INTRODU CTION

0 . 1 Animating Simulations

Discrete event simulation has become an important t o o l in

the analysis and design of complex systems. Conclusions about

the performance of a system can be drawn from the s t a t i s t i c s

produced by simulating a model of that system with various

parameters and s p e c i f i c a t i o n s . When analyzing the output of

such a simulation, the modeller must f i r s t of a l l be aware of

the inherent assumptions of the model, as well as the values of

the parameters. Secondly, he may need to know more about

c e r t a i n c h a r a c t e r i s t i c s of the model that may be masked by

s t a t i s t i c a l averages or extremes. Determining just how to a l t e r

a model i n order to improve i t s performance can be a d i f f i c u l t

or even counterintuitive process. If only the modeller could

"step inside" his model and "watch" i t perform as the r e a l

system might perform.

This thesis describes the implementation of a system that

brings the modeller to a closer understanding of h i s model by

providing a graphical animation of i t s simulation. The

animation f a c i l i t y i s the main feature of a complete i n t e r a c t i v e

package which allows an on-line graphical d e f i n i t i o n of the

model and extensive monitoring of i t s simulation. Considerable

emphasis has been placed on providing f o r a reasonably smooth

and meaningful dialogue between the user and the system.

2

One p a r t i c u l a r use of t h i s system, t h a t o f s t u d y i n g i n

g e n e r a l t h e b e h a v i o r known as " d e a d l o c k " , w i l l be d i s c u s s e d , as

w e l l a s a p p l i c a t i o n s t o computer a i d e d d e s i g n and t o computer

a n i m a t i o n as an e d u c a t i o n a l t o o l . A g e n e r a l t e c h n i q u e i s

devel o p e d f o r t h e mapping of s i m u l a t i o n " e v e n t s " i n t o a s e t o f

c o - o r d i n a t e d a n i m a t i o n "sequences" f o r d i s p l a y . A l s o , some

i m p l i c a t i o n s a r e drawn c o n c e r n i n g the use o f s i m i l a r a n i m a t i o n

t e c h n i q u e s f o r m o n i t o r i n g o t h e r , perhaps r e a l - t i m e , p r o c e s s e s .

B a e c k e r [1] sums up the u t i l i t y o f computer a n i m a t i o n i n

v i s u a l i z i n g dynamic phenomena o f mathematics, s c i e n c e , and

e n g i n e e r i n g :

"The computer has proved p a r t i c u l a r l y u s e f u l because
o f i t s a b i l i t y t o c o n s t r u c t p r e c i s e , m a t h e m a t i c a l l y
determined images, because o f i t s a b i l i t y t o s i m u l a t e
h y p o t h e t i c a l w o r l d s , because of i t s a b i l i t y t o expand
or c o n t r a c t space and t i m e , and because o f i t s a b i l i t y
t o p o r t r a y complex s p a t i a l phenomena, p a r t i c u l a r l y
t hose i n t h r e e d i m e n s i o n s . "

2i2_Sco£e

When c o n s i d e r i n g the o b j e c t i v e o f a n i m a t i n g s i m u l a t i o n s ,

perhaps t h e u l t i m a t e g o a l would be t o d e v e l o p a system t h a t

c o u l d animate any a r b i t r a r y s i m u l a t i o n program. T h i s was not

a t t e m p t e d , and i s p r o b a b l y not even p o s s i b l e . Baecker and h i s

s t u d e n t s [1] a r e d e v e l o p i n g a v a r i e t y of s y s t e m a t i c t e c h n i q u e s

f o r r e p r e s e n t i n g computer p r o c e s s e s w i t h dynamic images. T h e i r

emphasis, so f a r , has been on a n i m a t i n g computer £ro<jrams,

r a t h e r than p r o c e s s e s which a r e d e s c r i b e d by s i m u l a t i o n

3

programs. One conclusion they have already reached, i s that i t

i s impossible to build a system which could produce a good

animation of any program i n any language running on a s p e c i f i c

machine. Instead, they want to build a variety of powerful

special-purpose tools, each suited to the animation of a

p a r t i c u l a r class of programs. an animation of a simulation must

manipulate graphical symbols i n such a way that they resemble

the objects and processes being modelled. Even a very

i n t e l l i g e n t program could not create meaningful symbols and

motions by scanning the code of a simulation program. After

a l l , the model i t s e l f i s only an abstraction of r e a l i t y . The

animation must create a vi s u a l image of a r e a l s i t u a t i o n ; a task

which requires information often not available from, or

important to, the model. In f a c t , in the case of a discrete

event simulation (described i n Section 0.4), the animation must

appropriately " f i l l i n " the time between simulated events i n

order to provide a continuous display.

A lesser goal, therefore, might be to animate programs

written i n a s p e c i f i c simulation language, such as Simscript

[21] or GPSS [9] . I t may be possible to provide a limited set

of pre-defined, or e a s i l y defined, graphic primitives (both

symbols and motions), and a set of function c a l l s to be inserted

into the simulation where required to produce the desired

animation e f f e c t s . This method would be d i f f i c u l t to implement

and would place an overwhelming burden on the user to create a

well-defined program with a l l of the necessary information

a v a i l a b l e for the animation routines.

Thus, the system which has been implemented, hereafter

referred to as ANISIH, does not attempt to animate an exis t i n g

simulation, but contains i t s own spe c i a l simulation program

designed to handle a subclass of models known as queuing network

models. This s t i l l involves a large variety of possible models,

but the system i s now able to help the user formulate a well-

defined model at the graphics terminal while i t creates the data

structures necessary for the simulation and animation programs.

It w i l l be shown l a t e r , how the techniques used i n ANISIM could

be applied to certain other models or classes of models. The

concept of a b u i l t - i n simulation means that the user works with

a command language rather than a programming language. The

trade-off i s between using a simple and convenient command

language and having the a b i l i t y to t a i l o r the power of the

simulation to handle s p e c i f i c needs.

0 i3_2ueuin3_Networks

Before proceeding to further discussion of ANISIH, i t w i l l

be useful to describe what i s meant by queuing networks and by

simulation states and events.

A queuing network model consists b a s i c a l l y of items

t r a v e l l i n g along l o g i c a l paths of a network of "queues" and

"servers". A queue represents a waiting l i n e of items (or

"transactions") trying to get into one of the servers of the

5

"queue/server system". A server represents a delay of the item

occupying i t before the item can move on to the next

queue/server system or e x i t from the network. In c l a s s i c a l

queuing theory, the "movement" of an item between any two nodes

i n the network i s assumed to occur instantaneously. Items enter

the network from a "source" and leave the network by going to a

"sink". Figure 1 shows a queue/server system with ten items,

s i x of them waiting to be served and four being served (the

small squares). The symbols i n Figure 1 are those used by

ANISIM and do not represent any queuing theory conventions.

Certain f a i r l y simple queuing networks can be "solved"

a n a l y t i c a l l y — t h a t i s , average queue lengths and waiting times

can be found, mathematically, for the gueuing system when i t i s

i n steady state [1 1] . Networks which can be solved i n t h i s

manner are largely r e s t r i c t e d to those with i n f i n i t e queues and

s p e c i a l constraints on a r r i v a l and service time d i s t r i b u t i o n s .

Also, no information i s available regarding the performance of

the system during more transient or time-dependent states. When

a n a l y t i c a l solutions are inadequate or unavailable, simulation

must be used to analyze the system. Like any other model, a

queuing network i s an abstraction of r e a l i t y , although perhaps a

more formal one than some. Thus any conclusions drawn about the

behaviour of the queuing model can only be considered as

approximations of the behavior of the r e a l system being

modelled.

6

FIGUBE 1: A Simple Queuing Network
From L e f t to B i g h t : Source, Queue, S e r v e r s , and Sink.

7

imul a t j o n g t a t eg_and

The type of simulation involved here i s known as a discrete

event simulation. This means that the model can be

characterized by i t s "state" at any p a r t i c u l a r time and by a set

of "events", or state changes, which occur at discrete time

instants. Events can be exogenous (generated outside the

system) or endogenous (generated within the system as a result

of a previous event or s t a t e) . There are a limited number of

general types or "classes" of events that can occur, and each

event i s an instance of an event class.

Consider the following example of a discrete event model

fo r a one-car f e r r y across a r i v e r , an observer on a nearby

h i l l , sees an " a r r i v a l " as a car appearing at the l a s t bend of

the road and moving to the end of the lineup. He sees a

"service" as the loading of the f i r s t car into the fe r r y plus

the actual crossing, the unloading, and perhaps the return t r i p

of the f e r r y . F i n a l l y he sees a "departure" as the car moving

on the other bank u n t i l i t disappears. A t y p i c a l discrete event

model of t h i s s i t u a t i o n i s the so-called "single server f i r s t - i n

f i r s t - o u t queue." The state of the system i s merely the number

of cars in the lineup plus the one being served by the f e r r y .

An " a r r i v a l " i s the instantaneous exogenous event that adds one

to the state and a "departure" i s the instantaneous endogenous

event that subtracts one from the state. The actual crossing or

"service" i s the abstract concept of wait or delay between two

8

departures. Completely i r r e l e v a n t in t h i s p a r t i c u l a r model

abstraction are the actions defined by the movement of the cars

or the f e r r y (or the f a c t that they are cars at a l l) .

Of course, one could model a variety of s i t u a t i o n s using

only these basic concepts. The modelling power may be increased

by defining additional primitives while s t i l l maintaining the

structure of a gueuing network. For example, at an early stage

of development i t was decided that ANISIM should allow a

"buffer" e n t i t y that imposes a f i n i t e common storage l i m i t on

two or more queues. (e.g. I f the f e r r y terminal had two one-

car f e r r i e s , each with t h e i r own waiting l i n e , but the two l i n e s

had to share the same limited parking area.) I f the number of

features added to the system to increase modelling power were

allowed to become very large, (approaching, say, the

c a p a b i l i t i e s of GPSS [9]) , then two things might happen. F i r s t ,

the programming system, which i s large to begin with, may become

too c o s t l y to use and awkward to maintain (as many large

programming systems tend to be). More importantly, the

graphical primitives would i n a l l probability f a i l to keep up

with the much wider variety of modelling abstractions, each of

which require v i s u a l aids to restore some r e a l i t y to the model

being monitored.

One of the main objectives of ANISIM i s to make i t possible

for a human at the display terminal to monitor a simulation and

to do i t as e a s i l y and accurately as possible. However, for

9

even a moderately complex system where the state of the system

cannot be accurately represented by a simple number as i n the

f e r r y example, but by a vector with many components, monitoring

the simulation i s not a t r i v i a l task. What to display and how

to display i t becomes the main problem. Solutions range from

the display of the state vector i t s e l f every time i t changes

(i.e. Display numbers or other symbols), to a sophisticated

animation where sequences of moving elements are added as visual

aids. ANISIM uses the l a t t e r , under the assumption that the

mecessary abstractions which were, indeed, so useful for

a n a l y t i c a l and computational purposes, hinder the process of

monitoring the system (see figure 2) .

Rea'l
S y 5 tern

10

R e s t o r e R e a l i t y
(V i s u a ! A i d s)

D i s p l a y

l I
The M o n i t o r i n g Human

A b s t r a c t i on
o f R e a l i t y

S i m u l a t i on

C a l c u l a t i o n s

S t a t i s t i c s

I t
The A n a l y z i n g Human

FIGURE 2 : Modelling Abstractions

11

I. INTERACTIVE GRAPHICS FOR COMPUTER-AIDED MODELLING

iiJ_Tv£gs_of_Svsterns

A number of graphics systems have been developed i n the

l a s t few years that provide a c a p a b i l i t y to model a process or

s p a t i a l configuration in order to learn more about i t and,

hopefully, improve i t s design. (Several of these are mentioned

below. Further discussion and references may be found in Prince

[18], Smith [23], and Newman and Sproull [16].) In many cases,

the information available from such a model can be considerably

enhanced by allowing the viewer to interact with the system that

generates or displays the model, even i f t h i s interaction i s

simply, say, the rotation about an axis of a 3-D model of a

molecule [17]. Some systems use the graphics terminal as a

sophisticated sketchpad, while others re l y on the terminal for

input to, and output from, a non-graphics processing program.

In almost a l l systems, a s u f f i c i e n t data structure must be

created by the program to allow, at l e a s t , the saving and l a t e r

restoring of models generated. Also, in even the simplest

system, some thought must be given to the manner in which the

user and the program communicate with each other (see Chapter

III) .

Consider the following two examples: a) an i n t e r a c t i v e

program to design the s p a t i a l layout of integrated c i r c u i t s

[19], and b) and a r c h i t e c t u r a l l y oriented program for generating

12

perspective drawings of three-dimensional polyhedra [14], In

each case, the user can quickly sketch preliminary "models", at

a convenient scale, of something he may l a t e r construct or

design i n more d e t a i l . The processing program i s confined

mostly to graphical techniques which help the designer create a

well-defined model and then observe as much as possible about

the model that he has just created.

Another type of computer-aided modelling allows the user to

see, and thus further comprehend, the results produced by a non-

graphics processing program. For example, a number of

int e r a c t i v e systems have been developed to aid i n c u r v e - f i t t i n g

and other mathematical approximation techniques [15,23,12]. The

user s p e c i f i e s input data, parameters and options, any of which

he may wish to a l t e r a f t e r viewing graphical representations of

the output (or of intermediate steps). Such systems usually

must also make available more detailed printed information for

la t e r study. ANISIM i s p a r t i a l l y t h i s type of system, as i t

allows the user to quickly analyze the e f f e c t s of simulation

parameters by displaying the r e s u l t s of the simulation. The

int e r a c t i v e features which f a c i l i t a t e t h i s c a p a b i l i t y are also

discussed i n Chapter III.

On the other hand, there are cases when an in t e r a c t i v e

graphics c a p a b i l i t y provides for a more natural ingut medium to

a non-graphics program i n terms of speed, convenience, or

possibly r e l i a b i l i t y [24], For example, Forrester [8], has

13

found i t necessary to d e s c r i b e complex dynamic s i m u l a t i o n models

g r a p h i c a l l y , i n order to f o l l o w the i n t e r - r e l a t i o n s h i p s between

the v a r i a b l e s , and then code the s i m u l a t i o n i n a programming

language. Chheda [4] has developed an i n t e r a c t i v e system f o r

c r e a t i n g t h i s g r a p h i c a l r e p r e s e n t a t i o n of a dynamic model on a

g r a p h i c s t e r m i n a l i n such a way t h a t the program statements f o r

the a c t u a l s i m u l a t i o n are a u t o m a t i c a l l y generated. Of course,

t h i s type of system may r e q u i r e the user to enter a l a r g e amount

of d e t a i l e d i n f o r m a t i o n at the g r a p h i c s t e r m i n a l . The q u a l i t y

of the d i a l o g u e between the system and the user t h e r e f o r e ,

becomes of paramount importance to the success of t h i s approach

t o model desi g n .

1. 2_ANISIM

ANISIM i s a l s o , i n p a r t , t h i s l a t t e r type of system. In

Chapter I I I we see how the program guides the model b u i l d e r

through the necessary steps r e q u i r e d to b u i l d a w e l l - d e f i n e d

queuing network, while c o n s t r u c t i n g the necessary data base f o r

the s i m u l a t i o n (and animation). The advantages of g r a p h i c a l

i n p u t , i n the case of network d e s i g n , a l s o i n c l u d e the immediate

v i s u a l feedback t h a t the modeller can u t i l i z e i n order to help

v e r i f y t h a t the intended model i s being p r o p e r l y c r e a t e d .

Thus we see t h a t ANISIM combines the advantages of

g r a p h i c a l i n p u t to a p r o c e s s i n g program with those of a

g r a p h i c a l d i s p l a y of the r e s u l t s . In the case of s i m u l a t i o n

14

however, i t i s sometimes desirable to display not just the

representation of a " f i n a l state", but a detailed animation of

the model as the simulation progresses. In other words, the

processing of the simulation and the display of i t s events must

occur almost simultaneously i n order to enable the model

designer to actually interact with the simulation (the "almost"

i s explained i n Chapter I I) . k user of AHISIM, once he has

created a network, may decide to monitor an animation of i t s

simulation for a while, interrupt the simulation when he i s not

s a t i s f i e d with the model ,s performance, and possibly display

some s t a t i s t i c s for further appraisal. He may then wish to edit

one or more parameters or even the model structure, and resume

monitoring the simulation (after reseting the s t a t i s t i c s and

clock, i f necessary).

1 :3_Im£ortant_Princi£les

There are then, three main p r i n c i p l e s that seem to be

present i n most i n t e r a c t i v e graphics modelling systems: a) the

system provides a means of testing model design that i s fa s t e r ,

e a s i e r , more r e l i a b l e , or otherwise more convenient than other

possible methods, b) the system allows the modeller to proceed,

with a r e l a t i v e l y short turn-around time, through the cycle of

design, study, and re-design i n his attempt to optimize the

model (or otherwise t e s t v a r i a t i o n s) , and c) the system makes

use of the graphics terminal as an additional I/O medium to

augment the information that may be presented by other media.

15

In f a c t , i n some cases, the graphics terminal i s the only

reasonable device on which the above two p r i n c i p l e s can be

observed (such as i n the architecture program mentioned

e a r l i e r) . Furthermore, the int e r a c t i v e aspect of the system

allows the user to s e l e c t i v e l y provide, display, or watch only

that information which he fe e l s to be most pertinent.

J i 4 _ H o del_Bej>r esent at ion

One problem associated with monitoring the animation of a

queuing network model in order to aid i n the design of a r e a l

system l i e s i n the formulation of that system in the queuing

network terms. The animation c e r t a i n l y aids i n the

understanding of the queuing network, but i n some cases, the

model i s formulated in such a way that i t does not v i s u a l l y

resemble the real system that much. The formulation may be a

very accurate approximation to the system, and the s t a t i s t i c s

produced may provide important information about the system, but

the animation i s of more value towards system design i f the

modeller can mentally translate what he sees into what i t means

i n the r e a l system. A simple example of thi s phenomenon i s that

of an object which trav e l s between two service f a c i l i t i e s (say,

a ship between two ports). The t r a n s i t time i s important to the

model and cannot ea s i l y be combined with the delay of the f i r s t

service f a c i l i t y (e.g. the loading times at the f i r s t port are

assumed to be exponentially distributed and the travel times are

uniformly d i s t r i b u t e d) . The queuing network model of t h i s

16

s i t u a t i o n thus requires one server for each service f a c i l i t y and

a t h i r d server to approximate the delay associated with the

route. Of course the animation then shows the object en route

as a box inside a server symbol. (We s h a l l see i n the next

chapter how the animation shows the box moving between servers

merely to display, smoothly, state changes which are assumed to

be instantaneous in the model.) In a f a i r l y complex system,

several occurrences of t h i s problem may multiply the complexity

of the network, further reducing the usefulness of the o v e r a l l

animation (although the modeller may s t i l l f i nd s p e c i f i c

portions of the animation in s t r u c t i v e to watch).

There are two ways of combating t h i s representation

problem. A user of ANISIH, with some practice, soon learns to

position the symbols of the network so that the animation most

c l o s e l y resembles, i n a l o g i c a l sense, the processes being

modelled. With a l i t t l e more practice he becomes more adept at

thinking of things in terms of s t r i c t queuing network

representations. A l t e r n a t i v e l y , ANISIH could be expanded to

include optional features (such as t r a n s i t times) that would

allow a wider range of models to resemble the r e a l systems. To

a cert a i n extent t h i s can and should be done. The drawback i s

that the model d e f i n i t i o n phase (Chapter III) would become

increasingly tedious for the user and i t would be more d i f f i c u l t

f o r the program to help insure that the model created was well-

defined. Chapter V contains further discussion of potential

extensions to ANISIH.

17

Additional comments on the u t i l i t y of animated monitoring

as a simulation tool are i n Chapter IV.

18

I I . ANIMATION TECHNIQUES

2. 1, gomputer_Animation

Combining computer animation with simulation as a design or

education tool i s not new. This seems p a r t i c u l a r l y true in

f i e l d s such as physics, chemistry, e l e c t r i c a l engineering, and

medicine, where laboratory experiments are being replaced by

graphic simulation systems. An example i s a system which allows

a medical student to observe the e f f e c t s of d i f f e r e n t stimuli on

a diagram of a l i v i n g , moving organ [13]. However, most such

systems involve continuous simulation rather than discrete event

simulation. The model consists of a set of mathematical

relationships which determine the value of each variable at

every time unit as the simulation proceeds. Thus, at each time

increment, the position, s i z e , length, or whatever, of each

ent i t y i n the animation i s recomputed and the display i s

updated. There i s no problem with p a r a l l e l processes. On the

other hand, an event-oriented model changes state by discrete

steps at i r r e g u l a r time i n t e r v a l s . It i s usually necessary to

invent short, meaningful animation sequences to portray the

state change of each component of the model. Most of t h i s

chapter describes how ANISIM accomplishes t h i s task while

maintaining the time relationships of the simulation.

One example of an animated continuous simulation system

that otherwise contains some s t r i k i n g p a r a l l e l s to ANISIM i s the

19

DYNIS program at the University of Waterloo [2 0] . DYNIS

simulates and displays the response of three-dimensional

mechanical systems (composed of masses, springs, dampers, force

drivers and position d r i v e r s) . Like ANISIM, i n t e r a c t i v e control

of the simulation i s provided and a standard set of

representative symbols i s used. Both programs have a " f i r s t

stage" which leads the user through a s e r i e s of systematic

decisions by the use of "menus" offering c e r t a i n possible

choices. The use of a closed set of simulation e n t i t i e s (and,

therefore, animation primitives), i n each case, allows t h i s

f i r s t stage to create a well-defined model without carrying out

an overly tedious dialogue. Like ANISIM, the symbols used are

abstractions representing a wide variety of possible real-world

objects. On the surface, then, these systems perform i n much

the same way when used i n an i n t e r a c t i v e , system design

environment. The s i g n i f i c a n t difference LIES IN THE INTERFACE

BETWEEN THE SIMULATION AND THE ANIMATION.

2«^.Representing_ Events

As mentioned e a r l i e r , simulation events, or state changes,

are assumed to happen instantaneously at discrete points i n

time. However, such a change of state i s normally a modelling

abstraction which corresponds to a real-world process that has

some r e l a t i v e l y short duration. In the f e r r y terminal example

of Chapter I, an a r r i v a l to the queue corresponds to a car

dr i v i n g up to the parking area. In order to graphically monitor

20

a f e r r y terminal simulation, every time an a r r i v a l event

occurred, one should see a symbol of a car moving to a symbol of

the waiting area. Likewise, three common visual aids for events

i n ANISIM are 1) an item moving from a source to a queue

(a r r i v a l event), 2) an item moving from a server to a new queue

(departure event), and 3) an item moving from a server to a sink

(departure-from-system event). These, and other v i s u a l aids for

events w i l l be referred to henceforth as "animation sequences",

although they are single components of the ov e r a l l network

animation. (We s h a l l see in Section 2.4.2 how each animation

sequence i s compiled into a small display program.) Some

sequences have no duration, such as the sequence that displays

one more or one less item i n a queue. Also, not a l l events

require a sequence, such as a blocked departure which must be

rescheduled again (i . e . the next queue or buffer i s s t i l l f u l l) .

F i n a l l y , a single event may trigger o f f more than one sequence.

This i s true of a departure event, which requires a sequence to

update the state of the losing queue/server system, a moving

sequence (with a duration), and a sequence to update the state

of the gaining queue/server system (see Figure 3). If either

queue i s in a "buffer", then a fourth of f i f t h sequence may be

required to update the bar graphs that show how f u l l the buffers

are. Additional sequences currently i n ANISIM use arrows and

blinking to i d e n t i f y blocked items and blocking gueues or

buffers.

a,. S t a t e o f System B e f o r e D e p a r t u r e Event.

21

fc. A n i m a t i o n - T i m e = T: I n s t a n t a n e o u s Seguence Updates
Queue/Server Systera; Moving Sequence B e g i n s .

c. A n i m a t i o n Time = T+50: Moving Sequence i n
P r o g r e s s .

d. A n i m a t i o n Time = T+100: Moving Sequence Ends;
I n s t a n t a n e o u s Sequence Updates Second Cueue/Server
System.

FIGURE 3: A n i m a t i o n Sequences f o r D i s p l a y c f a D e p a r t u r e "Event

22

2 ^ 3_A Q i m a t i o n_T i me_ F rame

A r e q u i r e m e n t o f a n i m a t i n g a d i s c r e t e s i m u l a t i o n i s t o

p r e s e r v e t h e r e l a t i v e p r e c e d e n c e o f e v e n t s a n d t o p r e s e r v e t h e

r e l a t i v e t i m e b e t w e e n e v e n t s . T h u s t h e q u e s t i o n a r i s e s a s t o

how a n d when t o d i s p l a y s e q u e n c e s w h i c h we c h o o s e t o g i v e a

p o s i t i v e d u r a t i o n . The m a p p i n g o f s i m u l a t i o n t i m e i n t o

a n i m a t i o n t i m e r e q u i r e s some f o r m a l i z a t i o n .

2a3.1_Typ.es ° f S e q u e n c e s

O n e , p e r h a p s t r i v i a l , way o f a d d i n g s e q u e n c e s w o u l d be t o

e x p a n d t h e s i m u l a t e d t i m e s c a l e b y t h e d u r a t i o n o f t h e s e q u e n c e

e v e r y t i m e a n e v e n t o c c u r s (s e e F i g u r e 4).

T h i s m e t h o d , h o w e v e r , h a s o n e s e r i o u s d r a w b a c k w h i c h i s

t h a t i t s t o p s o r " b i n d s " t h e o n g o i n g s i m u l a t i o n t i m e e v e r y t i m e

a n e v e n t o c c u r s . A l s o , t h e d i s p l a y i s c o m p l e t e l y s e q u e n t i a l ,

l e a v i n g no p r o v i s i o n f o r p a r a l l e l s e g u e n c e s . F o r e x a m p l e , t a k e

t h e c a s e w h e r e t w o c a r s a p p r o a c h t h e l i n e up f o r t h e f e r r y . A

s m a l l d i s t a n c e s e p a r a t e s t h e m , a n d t h e y a r e g o i n g a t t h e same

s p e e d . A l l o u r s i m u l a t i o n m o d e l k n o w s i s t h a t c a r " a " a r r i v e s

a t t h e q u e u e a t t i m e " t (a) n , a n d t h a t c a r " b " a r r i v e s a t t i m e

" t (b) " , w h e r e t h e d i f f e r e n c e b e t w e e n t h e t w o t i m e s i s a

r e l a t i v e l y s m a l l p o s i t i v e n u m b e r . H o w e v e r , s i n c e t h e t w o

" a r r i v a l s " a r e t w o s i m u l a t i o n e v e n t s i n s e r i e s , t h e t w o

a n i m a t i o n s e q u e n c e s w i l l b e i n s e r i e s . C a r " b " w i l l n o t b e g i n

m o v i n g t o w a r d s t h e q u e u e u n t i l a f t e r c a r " a " h a s a r r i v e d a n d

http://2a3.1_Typ.es

23

Event Event
1 2

Event
3

S imulat i on
Output

Sequence Sequence
1- 2

Sequence Expanded
3 Time Seale

FIGURE 4 : Simple Time Expansion

Event Event
1 2 •

Event Event
3 k

Event Event
5 .6

S imulat i on
T i me

—

i sht-S i d
ounded.

fcequence .
UnVoundea
Sequence

PTwo-S i de
Bounded
Sequence

B l a d i n g
Sequence

£ert-Sice*
Bounded
Sequence

An imat ion
T i me

FIGURE 5: Mapping Events i n t o Sequences

24

stayed i n the queue for t(a)-t(b) time units. We are not

conveying the parallelism of the two a r r i v a l sequences;

something that i s desirable for monitoring purposes. In general

t h i s approach does not restore much r e a l i t y to the model.

The display of p a r a l l e l sequences can, however, be achieved

i f a few simulation events are somehow buffered before

displaying. These buffers of events, or "event l i s t s " , can thus

be manipulated so that a r r i v a l sequences for example, can s t a r t

their motion on the screen ahead of time and arri v e at the

correct spot i n the queue exactly at the time the a r r i v a l event

i s to take place. Display sequences, which may overlap i n time,

can be compiled from one event l i s t and displayed by the

graphics computer while subsequent event l i s t s are being

generated. The problem, then, becomes one of editing the event

l i s t s so that the order and time relationships between events

are preserved. To simplify t h i s problem, i t i s useful to group

display sequences into certain classes. For the following

d e f i n i t i o n s , consider an animation sequence on a horizontal time

axis (as i n Figures 4 and 5). The l e f t side and right side

refer to the sequence's s t a r t i n g time and f i n i s h time,

respectively.

Binding_Seg_uencej^ This i s the type discribed above where the

simulation time i s expanded by the inse r t i o n of the sequence.

&n example i s a departure of an item from a server to a new

queue.

25

Rlaz§id.§_B_2y.Hd_e_d_Seguences__ This type of sequence must end

exactly with a simulation event, but i t can be started at any

time before that. The time scale i s not expanded. An a r r i v a l

event can be represented by a r i g h t - s i d e bounded sequence.

Left-side_Bounded_Se£uence_. This type must s t a r t with an event,

but can end at any time. An example i s a departure to a sink.

£Ui>i§£i§2§2i2S_Se3uence_^ Hot a l l "sequences" require a duration.

Certain events can be represented p a r t i a l l y , or sometimes

completely, by merely changing the representation of the state.

The a r r i v a l to a queue requires a right-side bounded sequence

for the moving item and an instantaneous sequence (at the time

the event happens) which changes the queue symbol to show one

more item. A blocked-departure event i s represented only by two

instantaneous sequences which "switch on" the blinking of the

f u l l queue and the blinking of an arrow pointing from the

blocked item to the f u l l queue.

The sequence types defined above are used to represent

events only. Two further types of animation sequences, which

are not required in AUISIM at present, may also be useful i n

order to properly animate an event-oriented simulation.

Hn.b°"BJg^-§.§2,ugB£,gi. A sequence (for example, an error or warning

message) triggered by some process other than the simulation

i t s e l f can be regarded as an unbounded sequence.

26

Twoz§i^5_l2U£Seguence^. This type of sequence must star t and

end with simulation events. I t does not expand the time scale,

but i t can be used to further elaborate on a component of the

state of the system. For example, i f we wanted to animate the

process that takes place during that abstract concept of a

"service", we would have to co-ordinate the sequence with the

event that started the service and with the event that

terminated the service (e.g. a departure). In the ferry

terminal simulation, a two-side bounded sequence could be used

to i l l u s t r a t e the round t r i p of the f e r r y . Such a sequence

would give the modeller no useful information and would probably

provide more d i s t r a c t i o n than r e a l i t y . An example of a more

useful two-side bounded sequence would occur i f ANISIM were

extended to allow t r a n s i t times between servers and queues. As

pointed out in section 1.5, t h i s extension would considerably

ease the representation problem. As f a r as the simulation i s

concerned, the t r a v e l l i n g item has entered into a delay or

service of a s p e c i f i e d duration (i . e . the state of that part of

the system i s s t a t i c between the two events). But the viewer

sees that service as a moving sequence which, of course, does

not bind the other events (expand the time s c a l e) .

Figure 5 i l l u s t r a t e s the mapping of simulation events into

animation sequences. I t should be noted that an instance of an

event from an event class generates an instance of a sequence of

a certain type. For example, an a r r i v a l event always generates

a r i g h t - s i d e bounded . sequence. However, due p a r t i c u l a r l y to

27

sequences which change the graphical representation of the state

of the system, the animation routines require c e r t a i n

information about the system which was available i n the data

base at the time the simulation routine processed the event.

For example, a sequence which displays the new state of a queue

due to an a r r i v a l requires knowing what the state of the queue

was before the a r r i v a l event occurred.

The simulation may provide t h i s information in one of two

ways: 1) Record, along with the event c l a s s , one or more

subclass designators, or modifiers. For example, the state of a

queue must be passed to the animation routines along with an

event that causes an addition to or deletion from the queue. 2)

P a r t i t i o n the event c l a s s i n t o two or more d i s t i n c t event

classes. For example, i n ANISIM a departure from a server which

has been blocked must turn o f f the blinking of the arrow

pointing from the no-longer-blocked item. It turned out to be

more convenient to handle t h i s kind of departure as a separate

event class, d i s t i n c t from a normal departure, due to the

presence of the s p e c i a l , or " c r i t i c a l " state.

No c l e a r generalization has become apparent as to which

method requires le s s modification to the simulation when

additional animation d e t a i l i s desired.

Chapter V contains further discussion of sequence types as

they r e l a t e to the modelling of processes other than queuing

network simulations.

28

2.3.2 Internal Cycles

As explained i n the previous section, i t i s not possible

f o r the animation routines to process an event at the time i t

occurs i n the simulation. Instead, the simulation routine must

proceed u n t i l a s u f f i c i e n t number of events have happened, and

then step and pass centre! to an " E d i t " routine, The E d i t

r o u t i n e e d i t s the event l i s t produced by the simulation,

c a l c u l a t i n g the animation time and duration for each event, and

passes what i s now c a l l e d the "sequence l i s t " to a t h i r d routine

which a c t u a l l y compiles the display programs and sends them to

the graphics computer over a high speed channel. This.three-

step process, c a l l e d the " i n t e r n a l c y c l e " , then repeats i t s e l f

by returning c o n t r o l to the simulation routine (see figure 6).

The i n t e r n a l cycle approach i s f e a s i b l e only because the display

r 1
I

r

G r a p h i c s
ConDute r

SIMULATE
I

E v e n t '
L i s t j

D i s p l a y I P r o g r a m ^
L _ _ _ J L

•COMP I LE E D I T
S e a u e n c e] L i s t

M a i n C o m p u t e r

FIG08E 6: The Internal Cycle

29

of seguences by the graphics computer proceeds independently of

the computation i n the main computer (Section 2.4.2). Of

course, the problem of co-ordinating the timing of the seguences

i n order to provide a smooth, accurate display i s s t i l l a

d i f f i c u l t one. He see below how t h i s problem i s related to the

l e v e l of user i n t e r a c t i o n with the simulation.

There are two ways in which the simulation can terminate.

&n upper l i m i t i s imposed by the user on certain simulation

variables such as the clock, the number of a r r i v a l s , and the

number of terminations (departures from the system). If the

user chooses to simulate without the animation, the simulation

w i l l proceed u n t i l i t reaches one of these l i m i t s . at that

point i t w i l l terminate, and a s p e c i a l routine i s c a l l e d to scan

the data base and display the current state. However, i f the

user i s monitoring an animation, he may wish to interrupt the

simulation a f t e r he has seen enough. This interrupt i s

discovered by the program between i n t e r n a l cycles, suggesting

that the number of events processed i n one cycle be kept as

small as possible. In t h i s way, the user w i l l achieve a

response to his interrupt within a reasonable time and the lag

between the simulation and the animation w i l l be kept to a

minimum.

The "length" of the int e r n a l cycle must not be too short,

however, or the continuity of the display w i l l be disrupted.

B a s i c a l l y , the simulation must generate enough animation

30

sequences i n order to provide a display which l a s t s long enough

on the screen to allow the next cycle time to prepare the

subsequent display. Several factors influence the length of the

display. For a given i n t e r n a l cycle length, the duration of the

display depends b a s i c a l l y on the proportion of binding sequences

generated, the user-controlled duration parameters (for each

type of sequence), and a time conversion factor described in

Section 2.4.2. Oser control of these parameters, and of the

length of the i n t e r n a l cycle, i s discussed i n Section 3.1.2.

(The simulation routine measures the cycle length by estimating

the number of sequences that w i l l be generated from the event

l i s t being produced.)

2» 3«3_|diting_thg_|Yent_List

The Edit routine must accomplish two things. F i r s t , as

mentioned e a r l i e r , i t must create a sequence l i s t with animation

times from an event l i s t with simulation times. Second,

together with the Compile routine, i t must coordinate the timing

of the new sequence l i s t with that of the previous sequence l i s t

and the following sequence l i s t .

The f i r s t objective i s a matter of analyzing each event in

order to determine whether i t i s a bound of a sequence and to

determine the type of the sequence. Whenever the event that

bounds a ri g h t - s i d e bounded sequence i s found, the time of the

event i s moved up and a duration a t t r i b u t e i s assigned in such a

31

way that the sequence w i l l end exactly when i t i s supposed to,

i . e . at the bound. Left-side bounded sequences only have a

duration assigned. Two-side bounded sequences could be handled

by deleting the ri g h t - s i d e bound and assigning to the l e f t - s i d e

bound a duration equal to the time delay between the two events.

In t h i s way, the event l i s t i s transformed into a sequence l i s t

where each sequence has two time att r i b u t e s , i t s starting time

and i t s duration. The Compile routine uses t h i s information

both to compile the moving sequences and also to compile any

necessary instantaneous sequences which must occur at the

beginning or at the end of a moving sequence.

Several problems are encountered in the process of edit i n g

the event l i s t . The f i r s t one has to do with the in s e r t i o n of

binding sequences and th e i r e f f e c t on the timing of the rest of

the sequences. The solution requires the Edit routine to make

two main passes through the event l i s t . The f i r s t pass takes

care of events which do not reguire binding sequences (as

described above) . When the second pass encounters an event that

does require a binding sequence, two things must be done. The

st a r t i n g times of a l l sequences which begin a f t e r the s t a r t of

the binding sequence must be incremented by the duration of the

binding sequence. In other words, the time scale i s expanded by

the i n s e r t i o n of the binding sequence. Secondly, sequences

which begin before the star t of the binding sequence, and

overlap i t due to the i r duration a t t r i b u t e s , must be processed

as follows: right-side bounded sequences must have t h e i r

32

s t a r t i n g times incremented by the duration of the binding

sequence, and two-side bounded sequences must have t h e i r

durations extended by the duration of the binding sequence.

This procedure allows the display of an instantaneous event as a

moving seguence while preserving a l l time relationships between

i t and the other events.

A second problem with the editing process involves

coordination between i n t e r n a l cycles. If an event which

requires an rig h t - s i d e bounded seguence i s found very near the

beginning of the cycle, the edit procedure may assign i t a

s t a r t i n g time i n the range already processed by the previous

cycle. Hore seriously, the right-side bound of a two-side

bounded sequence may very l i k e l y not be i n the same cycle as the

l e f t - s i d e bound. The general coordination problem i s handled by

dividing the edited sequences into two l i s t s : one i s composed of

a l l of the sequences which s t a r t in the time range which has

been completely resolved, and the other, referred to as the

" t a i l " of the sequence l i s t , or " t a i l l i s t " , i s composed of

those sequences starting i n the time range which could be

affected by the next cycle or s t a r t i n g after the l e f t bound of

an unresolved two-side bounded sequence. The f i r s t l i s t i s the

sequence l i s t that i s sent on to the Compile routine and

displayed. The t a i l l i s t i s saved and processed with the next

cycle's event l i s t . Thus i t i s a c t u a l l y possible for a cycle to

produce no displayable sequences (i . e . a l l t a i l) , increasing the

chances of a v i s i b l e lag i n the animation. It has been found in

33

ANISIM however, that the cycle lengths and durations normally

used produce a t a i l l i s t of manageable porportions.

If any two-side bounded seguences were to be implemented,

the problem may become more complex, depending on the nature of

the seguences. If the durations of such sequences are known to

be r e l a t i v e l y short, then the edit process described above would

be suitable. To prevent a two-side bounded sequence from

requiring more than two cycles to be resolved, the cycle length

would be s p e c i f i e d long enough so that the sequences generated

i n any one cycle normally span a range of time that i s longer

than the duration of the two-side bounded seguence. If t h i s

duration i s long, however, then some other technique i s

required. For example, i t may be possible to break up the

sequence into two or more sequences such that the f i r s t

components can be displayed before the remainder of the time

span i s resolved. This method i s very dependent on the

pa r t i c u l a r graphics of the sequence, and would be generally

awkward for the Edit and Compile routines to process. If the

duration of the sequence i s not known u n t i l the ri g h t - s i d e bound

i s found, then chances are the sequence can be re-formulated to

be a s p e c i a l representation of a state, which can be switched on

and o f f with instantaneous sequences (e.g. blinking a blocked

item u n t i l i t i s able to depart). In the case of ANISIM, the

two-side bounded sequences required to implement t r a n s i t times

(discussed e a r l i e r) would probably be short enough that the

entire sequence could be displayed in one cycle (i . e . the t a i l

34

i s not resolved u n t i l the rig h t - s i d e bound i s found).

2 i4_The_Dis£lay_Process

Appendix A describes the system architecture on which

ANISIM was implemented. Some general discussion of display

methods used however, i s necessary for f u l l y understanding the

animation technique.

24,_1_The_Display Buffer

B r i e f l y , the processing program, written mostly in ALGOLW

and run on an IBM 370/168, makes use of a basic graphics

subroutine package [6] in order to communicate with a monitor

program [14] i n the Adage Graphics Computer. This graphics

computer has a 6000 word buffer where a word may contain either

a display vector, or a control i n s t r u c t i o n . The monitor

continually scans t h i s buffer to generate a display on the Adage

Model 10 Graphics Display Scope. The s i g n i f i c a n t feature of

th i s graphics monitor i s that i t scans the entire display buffer

at a fixed rate (40 scans per second), allowing the accurate

control of the timing of animation seguences. In ANISIM, the

instructions f o r the display of the network structure, and most

potent i a l state representations, are contained i n a region at

the top of the buffer, and thus are continuously scanned and

displayed. The remainder of the buffer, during the animation

phase, i s free to contain the in d i v i d u a l display £rogj:ams

35

necessary f o r each animation sequence (see next section). The

dynamic loading of these display programs into the buffer i s

described in Section 2.4.3. Note that t h i s scheme avoids the

necessity of sending a series of "frames" (as i n movie frames)

to the graphics computer, each containing an entire description

of the display. Once the network has been constructed, only the

descriptions of the changing components need be sent to the

display buffer. Thus a much longer sequence of apparent frames

may be displayed with considerably l e s s time and space required

f o r the transfer. also, the c a p a b i l i t y of updating the display

40 times per second allows moving sequences of very high

resolution.

2.4.2,Compiling Sequences into.Display Programs

The display buffer may contain a combination of vector

words and control words. One or more contiguous buffer words

(properly formated by the basic graphics subroutines) may be

sent to the Adage i n any one t r a n s f e r . The Compile routine thus

constructs a l l the displayable sequences for a cycle i n an array

and sends t h i s entire batch of small display programs to the

Adage, where they are e f f e c t i v e l y executed in p a r a l l e l , much in

the manner described by Baecker [2].

Several buffer control words are c r i t i c a l in making t h i s

scheme work. For example, control of the scan i n any one pass

i s achieved through r e l a t i v e and absolute jump i n s t r u c t i o n s .

36

Thus, the number of items appearing i n a queue i s altered merely

by changing a single r e l a t i v e jump in s t r u c t i o n i n the s t a t i c

region at the top of the buffer (see Figure 7). This type of

instantaneous sequence can be achieved by an animation display

program containing a buffer command word which moves the

following buffer word (the new jump command) to a spec i f i e d

location in the buffer. It i s desirable then to compile such a

program that executes the move in s t r u c t i o n at exactly the ri g h t

time, and only once. A l t e r n a t i v e l y , a moving sequence consists

of buffer words which must begin being scanned at the proper

time and continue to be scanned for a specified number of scans

before they are f i n a l l y skipped again. (To move a box in a

straight l i n e , the vectors f o r the box are preceded by a set of

two control words for each dimension. These control words

consist of a command that adjusts, by a small amount each scan,

the value of the following word, which w i l l be the control word

that displaces the vectors along an axis.)

Therefore, either type of display program must s t a r t with a

set of "timer words" which are keyed to the scan. In addition,

these timer words are a l l compiled with times r e l a t i v e to the

sta r t i n g time of the f i r s t sequence i n that batch to begin

displaying (i.e. the e a r l i e s t sequence in the cycle). The two

key control words used i n the timers each have an integer

counter which i s tested at each scan and decremented i f not

already zero. In one case, the following word i s skipped only

i f the counter i s zero, and i n the other case i t i s skipped only

37

Buffer V/ords for
One Queue (Create*
When the Queue
wa s Defined) 1 tern

*-

— 1 tern
1

—

r

Sequence to Display^
Owe I tern in Queue

, I! I?..-; D
I tern
20

111

I tern
19

T i me r
Words

1QVE to QJ
JUMP 5 9

} Network
St ructu re

J

Display
Programs

FIGURE 7: Display Program tc A l t e r the State of a Queue

38

i f the counter i s not yet zero. In the former case, i f the

following word i s a jump r e l a t i v e , the counter becomes the

number of scans before a seguence begins (figure 8a). Likewise,

in the l a t t e r case, the counter becomes the duration of the

sequence. An instantaneous seguence (i . e . completed i n one pass

of the scanner), once i t i s allowed to execute, moves a jump

r e l a t i v e on top of the f i r s t timer word in order to prohibit any

subsequent execution (figure 8b).

The basic animation time u n i t , then, i s always a single

scan of the display buffer. This brings up one additional

requirement of the Edit routine. When mapping simulation time

into animation time, the speed of the display can be controlled

by multiplying a l l times by a suitable "factor." This factor i s

available as a system variable for both user and program

control. For example, i f the factor i s set to ten, then an

i n t e r v a l of eight simulation time units w i l l l a s t 80 animation

time units (scans), or two seconds.

The manner i n which the Compile routine procedes through

the seguence l i s t , compiling each display program into an array,

leads to an additional problem in the Edit routine. An e a r l i e r

version of ANISIM, when editing the event l i s t , actually moved

the event records around i n order to always maintain the l i s t in

animation time order. In t h i s way, the t a i l could be e a s i l y

determined and designated by a single pointer to the s t a r t of

the t a i l . However, i t i s not uncommon for two instantaneous

S t a r t i n g T i me

Du r a t i o n

A c t u a l
S e o u e n c e

S K I P n e x t w o r d a f t e r
c o u n t e r r e a c h e s z e r o

JUMP

SKIP- n e x t w o r d un t ? 1
c o u n t e r r e a c h e s z e r o

JUMP

a. Timer for a Sequence With a Duration,

S t a r t i n g T i m e

A c t u a l
S e q u e n c e

SK!P nekt word a f t e r
c o u n t e r r e a c h e s z e r o

JUMP

MOVE t h e f o i l O K i n g wo r d
t c t h e S K I P w o r d l o c a t i o n

JUMP

b. Timer for an Instantaneous Sequence,

FIGURE 8: Display Program Timer Words

40

sequences to occur at the same animation time a fact which,

i n the general case, requires them to appear in the display

buffer in exactly the same order as their associated events were

processed i n the simulation. For example, consider a

gueue/server system with a state of ten. The simulation

processes both a departure from and an a r r i v a l to the system at

the same time and i n that order. The state of the system should

remain ten. But, due to the rig h t - s i d e bounded sequence, the

Compile routine w i l l process the a r r i v a l f i r s t . The

instantaneous sequence that changes the state to ten precedes in

the buffer the sequence that changes the state to nine. Thus,

a f t e r the scan, the state w i l l appear to be nine. The only

reasonable solution was to re-write the Edit routine in order

that the simulation order of events i s always maintained and

only the time parameters are edited. Two passes through the

l i s t are required i n order to i d e n t i f y and separate the t a i l

l i s t from the sequence l i s t .

2. _.3_Dquble_ Buff er ing

Once the t a i l i s determined, and the display sequences are

compiled into an array, the problem remains of how to send the

array to the Adage buffer and s t a r t displaying the new sequences

i n perfect co-ordination with the sequences of the previous

cycle.

F i r s t of a l l , the available buffer space i s divided into

41

two buffers of equal length. The basic scheme i s to send up a

new set of sequences as soon as the older of the two buffers

f i n i s h e s i t s display. Again, t h i s scheme i s possible due to a

very useful buffer control word, c a l l e d a '•Notify", which works

as follows. When the Compile routine has fini s h e d preparing the

new sequences i t issues a Bead operation to the Adage computer.

Each buffer in the Adage has one addit i o n a l timer sequence i n i t

that executes a Notify after the duration of that cycle has

expired. The Notify causes the graphics monitor to issue an I/O

interrupt which i n effect cancels the pending Bead from the 370.

The program i s then allowed to proceed with sending the new

sequences up to the Adage. I f , for some reason, the 370 had not

yet issued a Bead when the Notify i s executed, the control words

are set up so that the fi n i s h e d buffer w i l l continue to be

scanned and thus keep issuing a Notify u n t i l i t i s successful.

Now this newly loaded buffer must be co-ordinated with the

sequences i n the currently displaying buffer. Consider the

simple example in figure 9. The in t e r n a l cycle length i s

assumed to be f i v e sequences. Suppose that cycle n i s

displaying i n buffer one and cycle n+1 has just been loaded into

buffer two. I n i t i a l l y , the scanner i s unconditionally branching

around buffer two. Note that when the t a i l of the sequence l i s t

of cycle n was determined, i t was composed of a l l sequences

whose s t a r t i n g times were i n the region which might contain

sequences from cycle n+1 (i . e . sequences e and f) . Other

sequences may s t a r t before that t a i l region but overlap with i t

42

Cycle n
S i mu 1 atj^on Range
r ~~~ Cycl e n

Ed i t Range

— i —
500

- 4 -
1001

An i ma t i on
T I me

600]
. t.30

>
900

Cycle n+1
Edi t Range

Cyc le n+1
S i m u l a t i o n Range

Cyc le n

Cyc le n+1

Sequence L i s t

a , b , c

d,e,z,f,h, i

T a i l L i s t

. d / C / f .

j , k

FIGURE 9 : B u f f e r C o - o r d i n a t i c n

43

due to t h e i r durations (seguence d). In other words, i t i s

necessary for the two buffers to be displaying simultanegusly

f o r a short period. This i s handled by actually including i n

the t a i l the l a s t sequence which st a r t s before the " r e a l " t a i l

(seguence d) . The maximum length of cycle n*s display i s

assigned as i f seguence d were to be displayed in buffer one.

But instead of that sequence, another seguence i s compiled to be

executed at that time (time 630 i n figure 9). This special

seguence removes the branch around buffer two and allows i t to

begin displaying. Of course, the sequence in buffer two with a

r e l a t i v e s t a r t i n g time of zero i s simply that pseudo-tail

seguence (sequence d) from cycle n. Thus, buffer one and buffer

two are displaying simultaneously from time 630 to time 730. At

time 730, cycle n executes the Notify command, allowing the 370

to send up cycle n+2 to buffer one. The co-ordination between

cycles i s now complete. The fact that the old cycle expects the

new cycle to be loaded and ready to s t a r t as soon as the branch

i s removed i s , i n f a c t , the reason why a lag i n the animation

w i l l be seen i f the old cycle has a very short display.

2i5_The_Overall_Visual_Effect

It has been shown i n t h i s chapter why i n t e r n a l cycles are

necessary and how the edit procedure transforms the event l i s t

into a seguence l i s t and a t a i l l i s t . The mapping of simulation

time into animation time has been described, and the d e t a i l s of

a c a r e f u l l y co-ordinated double buffering scheme have been

44

e x p l a i n e d f o r t h e l o a d i n g i n t o t h e g r a p h i c s computer, o f d i s p l a y

programs c o m p i l e d from the sequence l i s t . The t e c h n i q u e s

d e s c r i b e d i n t h i s c h a p t e r were somewhat p a i n f u l t o d e v e l o p and

implement, but they a r e a c t u a l l y q u i t e l o g i c a l . The

c l a s s i f i c a t i o n o f sequences and t h e e d i t p r o c e d u r e s a r e g e n e r a l

enough f o r o t h e r a p p l i c a t i o n s . Many of the d i s p l a y t e c h n i q u e s

a r e q u i t e dependent on t h e s p e c i f i c hardware and s o f t w a r e

a v a i l a b l e , but make e f f i c i e n t use o f t h e s e r e s o u r c e s . The r e a l

t e s t i s i n t h e q u a l i t y o f the a n i m a t i o n . The o v e r a l l v i s u a l

e f f e c t i s q u i t e i m p r e s s i v e . The a n i m a t i o n proceeds i n a smooth,

c o n t i n u o u s manner and the v i s u a l a i d s , f o r t h e most p a r t ,

s u c c e e d i n add i n g enough r e a l i t y t o make the s i m u l a t i o n easy and

i n f o r m a t i v e t o watch (see Chapter IV) .

Some problems do s t i l l e x i s t , however, w i t h t h e s e

t e c h n i q u e s . C o n s i d e r the sequences g e n e r a t e d by ANISIM when a

d e p a r t u r e event o c c u r s . The event i s pr o c e s s e d i n E d i t as a

b i n d i n g sequence, due t o t h e d e s i r e d move from the s e r v e r t o t h e

new que u e / s e r v e r system. The Compile r o u t i n e g e n e r a t e s t h a t

move sequence and i f t h e queue i s not empty, i t a l s o g e n e r a t e s

an i n s t a n t a n e o u s sequence to d i s p l a y the new s t a t e of the queue.

T h i s method i s an a r b i t r a r y s i m p l i f i c a t i o n t h a t was d e c i d e d on

e a r l y i n t h e development of t h e program. The f l o w of t h e

a n i m a t i o n would l o o k even smoother and more r e a l i s t i c i f an

a d d i t i o n a l b i n d i n g sequence, a move from t h e queue t o the

s e r v e r , were added such t h a t i t s t a r t e d a t the same time as t h e

d e p a r t u r e move s t a r t e d . Two a d d i t i o n a l i n s t a n t a n e o u s sequences

4 5

would be required to switch o f f , then on, the symbol of the item

i n the server. In general, i t seems that when one event

generates two moving sequences, the Ed i t routine should make a

separate copy of the event record so that both the seguences can

be edited independently. In t h i s case, a better solution would

be to always assign a duration to the new sequence that i s less

than or equal to that of the departure sequence and l e t the

Compile program use the information in the single event record

to generate both binding sequences at the same time. In t h i s

way, the Ed i t routine can treat a l l event classes which generate

binding sequences the same. This leaves the p e c u l i a r i t i e s of

certa i n events to the Compile routine, which must examine the

various parameters of the event record anyway.

The r e a l problem i s more basic than the above si t u a t i o n

indicates. In a way, the animation does c e r t a i n l y d i s t o r t the

time frame of the simulation. Two events which occur within a

short time of each other i n the simulation may or may not do so

i n the animation, depending on how many binding seguences come

between them. The time between every pair of (timewise)

adjacent events remains accurate, as does the actual progression

of states of the network. This type of •»distortion" r e a l l y

seems to be i n s i g n i f i c a n t , then, as long as one remembers that

the beginning of a binding sequence i s the "same time" as the

end. It would be nice to try to reduce t h i s d i s t o r t i o n by

allowing two binding sequences to have the same s t a r t i n g time i f

they correspond to the same event time i n the simulation. It i s

46

easy to f i n d c e r t a i n examples, however, of s i t u a t i o n s which

r e q u i r e that the E d i t r o u t i n e increment the s t a r t i n g times even

of b i n d i n g seguences whose events are simultaneous with that of

the b i n d i n g sequence being processed.

47

I I I . INTERACTIVE FEATURES

An interactive modelling system i s of l i t t l e p r a c t i c a l use

unless s p e c i a l attention i s paid to the design of the dialogue

between the user and the system. According to Newman and

Sproull [16], the three main q u a l i t i e s that the programmer

should attempt to optimize are 1) si m p l i c i t y of operation of the

program, 2) consistency, i n the o v e r a l l construction of the

command language and error recovery, and 3) economy from both

the user's and program*s standpoint. The following discussion

of these q u a l i t i e s , and other important features of the

dialogue, distinguishes between the ove r a l l system and

simulation control and the actual model construction and

modification.

3 1_S i m u 1 a t i o n_M o n i torina_and_Control

3» j|»l_S;stem_control

ANISIM provides a simple, but effect i v e , command language

for top l e v e l i n t e r a c t i o n with the system. A l l commands at t h i s

l e v e l are entered on the IBM 3270 Display Terminal which i s

located next to the graphics terminal. Each command i s defined

e x p l i c i t l y , rather than being i m p l i c i t i n the sequence of

inputs. Furthermore, i t i s easy for the programmer to add new

commands to the system, although no e x t e n s i b i l i t y i s provided to

the user. The objective throughout the system has been to allow

48

the user maximum freedom of control of the sequence of

operations, wherever f e a s i b l e . This f l e x i b i l i t y reduces the

reliance on f r u s t r a t i n g questions which must be answered by the

user, but places more emphasis on error recovery when he

attempts to enter inappropriate commands or data. Also, in the

i n t e r e s t of s i m p l i c i t y , a minimum of information about the

system or the simulation i s displayed (on either terminal)

unless otherwise requested.

In order to aid in achieving these objectives, the program

must help keep the user aware of what operations are available

and what responses are required. The HELP and MOBHELP commands,

shown in figure 10, l i s t a l l available commands along with a

b r i e f reminder of t h e i r use. (MOBHELP l i s t s the less frequently

used commands.) In addition, default values are used whenever

applicable. This i s useful i n cases where the user does not yet

know what value i s appropriate (e.g. display parameters), and

keeps the number of mandatory inputs to a minimum. The current

value (and thus the default value) of a system or display

parameter can be found by entering the appropriate command

without specifying any arguments. For example, entering "CYCLE"

w i l l r e s u l t i n a print out of the current values of the four

l i m i t s on the simulation. The command "CYCLE * * * 100" w i l l

change the l i m i t on the number of terminations to 100 and print

out the four values. The PBIHT command allows a selection of 17

options f o r printing out f u l l or s p e c i f i c d e t a i l s about the

state and the s t a t i s t i c s of the simulation. The TBACK command

49

$run walk:anisim.o+dhir:camadd+agt:basic par=size=150k
EXECUTION BEGINS

ARE YOU USING THE ADAGE? TRUE OR FALSE
fa l s e

ENTER COMMAND OR HELP
help
BUILD TO BUILD OR MODIFY THE ACTIVE NETWORK
NEWNET TO BUILD A NEW NETWORK
EDITNET TO USE BUILD FOR SMALL CHANGES TO A NETWORK
GO N TO SIMULATE AND TO DISPLAY THE ACTIVE NETWORK

FOR N TIME UNITS FROM CURRENT TIME
FASTER TO SPEED UP THE DISPLAY
SLOWER TO SLOW DOWN THE DISPLAY
SCAN TO INHIBIT MOVING SEQUENCES
DESPEED TO RESTORE THE DEFAULT SPEED
NODISP TO INHIBIT DISPLAY UNTIL NEXT GO COMMAND
RESET TO RESET SIMULATION CLOCK AND STATS
SAVE TO SAVE THE NETWORK
RESTORE TO RESTORE A SAVED NETWORK
LABEL TO DISPLAY LABELS AT EACH NODE
CYCLE TO CHANGE SIMULATION LIMITS

#OF TIME UNITS, #OF GEN,#OF ENTRIES,#OF TERM
PRINT I TO DUMP RESULTS, FOR CODES SEE DOCUMENT

20 GIVES STATE, 1 STATS, 13 PARAMS, 7 QSTATS, ETC
MORHELP ADDITIONAL COMMANDS
STOP OR END TO TERMINATE EXECUTION

ENTER COMMAND OR HELP
morhelp
UNLABEL TO REMOVE ALL NODE LABELS
FACTOR DEFAULT=10; INCREASE TO SLOW DISPLAY

DECREASE ONLY IF USE RESET
INTERCY DEFAULT=15; INCREASE WHEN DISPLAY IS FAST
SCALE TO CHANGE THE SCALE AND 'SCALER'
DUR TO CHANGE THE 4 SEQUENCE DURATIONS
TRACK I TO SET DEBUG FLAGS ON. 0=<I<7, SEE DOCUMENT
PLOT S TO GET A HARDCOPY OF ADAGE DISPLAY

S IS MAXIMUM PLOT SIZE, IN INCHES
STOP OR END TO TERMINATE EXECUTION

ENTER COMMAND OR HELP
stop

000.03 SECONDS IN EXECUTION
EXECUTION TERMINATED

FIGURE 10: Commands Available

50

turns on one of six debug fl a g s i n the program, providing

detailed traces of the simulation, edit, and compile routines.

In the case of both PRINT and TRACK, an optional second argument

can be used to route the output to a disk f i l e of the user's

choice.

Most top-level commands reguire no further response from

the user. The exceptions to t h i s are the BUILD, NEWNET, and

EDITNET commands, which envoke an e n t i r e l y new dialogue (section

3.2), and the SAVE, RESTORE, PRINT, and TRACK commands, which

may require further c l a r i f i c a t i o n of f i l e - h a n d l i n g operations.

For example, i f the user t e l l s the program to "SAVE NET1", and

the f i l e NET1 already exists, then the program must ask the user

i f i t i s a l r i g h t to empty the f i l e and store the current network

on i t . The user may also return temporarily to the MTS

operating system by issuing an attention interrupt. At t h i s

point he has f u l l access to any disk f i l e s created by the

program, as well as run-time s t a t i s t i c s . The ANISIM program may

then be re-entered, using the MTS SRESTART command.

S»j»2_Simulation_Monitoring

Two of the most important advantages of an i n t e r a c t i v e

graphics system are the f a s t turnaround and the immediate

graphical display of complex information. Smith [22] l i s t s as

an equally important advantage the c a p a b i l i t y to allow the user

to try "various attacks" on a p a r t i c u l a r problem during a single

51

session with the computer, with ANISIM, thi s can be interpreted

i n two ways. The user should be able to quickly simulate

several versions of a model, and he should be able to view the

r e s u l t s of a simulation in several d i f f e r e n t ways.

The f i r s t goal requires not only the c a p a b i l i t y to e d i t the

model structure and parameters, but also quick access to the

description of such information. It may be possible to display

a l l of the d e t a i l s of the model on the screen, including rates,

capacities, and routing data. This, however, would not be

desirable, both from a s i m p l i c i t y and an economy point of view.

It i s instead desirable to keep a minimum of information on the

screen and make other data available on demand. For example,

f o r each symbol i n the network, a l a b e l i s created i n t e r n a l l y .

At present, a l l s t a t i s t i c s are printed on the 3270 terminal and

the labels are used to reference s p e c i f i c simulation e n t i t i e s .

The user, i n order to interpret these s t a t i s t i c s , can use the

LABEL command to actually display the labels at each symbol (see

figure 11). The labels are automatically removed during the

building or animating of the model, to save space in the Adage

buffer. Other information available on demand includes the rate

and capacity parameters, obtained by the PRINT 13 command. The

display of routing assignments poses some d i f f i c u l t problems and

has not yet been attempted. The user should try to construct

the network so that i t s graphical representation conveys much of

the routing information. Section 3.2 describes an additional

access to current parameters while actually e d i t i n g the network.

S03 502

501 •SV3J

FIGURE 11: Labelled E n t i t i e s

53

The second goal cited above—that of providing several ways

of analysing the output of the simulation—has been met to a

c e r t a i n extent. A NODISP command, given before st a r t i n g the

simulation (with the GO command), allows the simulation to

proceed quickly with no animation. This i s useful when i t i s

desired to watch the animation a f t e r the model has advanced to a

more steady state. The user i s not required i n t h i s case to

watch the animation from the beginning. Whenever the simulation

stops, the current state i s displayed and the PRINT command may

be used to find certain standard s t a t i s t i c s such as the average

and maximum gueue lengths and buffer sizes, the average time-in-

system of items between source-sink pairs, and the number of

a r r i v a l s and terminations at each source and sink. Blocked

items are an important aspect of gueuing networks. An extended

version of ANISIM might allow several options for the handling

of blocked a r r i v a l s and departures. The e x i s t i n g protocol i s

that blocked a r r i v a l s are l o s t (they move halfway to the gueue

and disappear) and blocked departures remain i n the server and

attempt to depart again after waiting the user-defined "re-send

time". Thus, s t a t i s t i c s must also be available giving the

number of l o s t a r r i v a l s and the number of blocked departures.

The RESET command i s used to set the clock to zero, reset a l l

s t a t i s t i c s , and restore the i n i t i a l random number seeds.

If NODISP i s not s p e c i f i e d , then the animation w i l l

automatically accompany the simulation, providing additional

valuable information about the model. Two areas of in t e r a c t i o n

54

are e s s e n t i a l i n order to help the user monitor the animation:

specifying how much to display, and how long to display i t .

From any p a r t i c u l a r state, the length of the simulation can be

controlled i n one of three ways. I f the GO command i s given

without the argument, the simulation w i l l proceed either u n t i l

one of the l i m i t s i n the CYCLE command i s exceeded or u n t i l the

user h i t s the attention i n t e r r u p t . If the argument i s given,

then i t s value i s the number of time units for which the

simulation i s to proceed, provided no cycle l i m i t i s exceeded or

interrupt issued.

If the user wishes to monitor the simulation, not in

d e t a i l , but to get a general f e e l for the progression of states

of the model, then he may use the SCAN command. This command

i n h i b i t s moving seguences by making a l l durations zero. Thus,

the animation time frame i s not expanded by binding seguences,

res u l t i n g i n a considerably faster display of events. (The

factor i s also decreased and the i n t e r n a l cycle i s made longer,

as discussed i n Chapter II.) The SCAN mode i s s l i g h t l y less

pleasing to watch, but provides a quick, clear way of observing

the general trends of the model. I t i s esp e c i a l l y useful i n a

model that would, otherwise, slowly build up to a congested

state. The following special state representations are also

envoked by instantaneous sequences and thus appear in SCAN mode:

the blinking of a f u l l queue or buffer due to an item attempting

to get i n , and the blinking of a blocked item with an arrow

attached which points to the f u l l queue or buffer (see figure

55

12} .

Moving sequences, although a r t i f i c i a l , provide valuable

v i s u a l continuity between states. The user has access to the

basic variables which control the speed of the display and of

each sequence. B r i e f l y , the DDR command controls the duration

of each type of sequence, the FACTOR command controls the time

conversion factor explained i n section 2.4.2, and the INTERCY

command controls the length of the in t e r n a l cycle (i.e. the

number of seguences generated each c y c l e) . For example, the DUR

command may be used to shorten the duration of binding sequences

with respect to the other sequences. The inexperienced user

should not have to use FACTOR to control the speed of the

animation, for two reasons: 1) i t i s not always clear how to

adjust the int e r n a l cycle length (INTERCY) to compensate for the

change i n speed, and 2) i f the simulation i s not RESET, the t a i l

of the sequence l i s t using the old factor w i l l no longer be

coordinated with the new sequence l i s t . Thus, ANISIM provides a

set of "speed" commands which make the necessary changes for a

smooth t r a n s i t i o n to a faster or slower speed. Ba s i c a l l y , a set

of seven standard speeds are available, three slower than the

default and three f a s t e r .

No provision has been made to store animation sequences on

disk for l a t e r viewing without simulating, as in DYNIS [20].

This would probably be more expensive than re-simulating the

saved model. One feature that can aid in the quick re-creation

56

-o

FIGURE 12: Display cf Blocked Items

57

of a previously displayed sequence, as well as provide a

powerful design t o o l , i s the a b i l i t y to save and restore a

simulation state. In th i s way, the modeller can simulate

forward from a given state several times, experimenting with

various parameter values.

Extensions which would provide additional ways of analysing

simulation r e s u l t s are discussed i n Chapter V.

3.2 Model Design and Modification

The BUILD, NEWNET, and EDITNET commands a l l cause the

program to enter a d i s t i n c t phase with a dialogue of i t s own for

constructing or modifying a network. A l l three commands envoke

the same routine, although EDITNET appears somewhat d i f f e r e n t to

the user, due to the setting of an "edi t f l a g " i n the program.

Only NEWNET w i l l destroy any exist i n g active network (i.e. a

RESTORE* d or newly constructed network) before proceeding.

Otherwise, BUILD and NEWNET are i d e n t i c a l .

A considerable amount of information must be provided to

the system i n the network d e f i n i t i o n phase. It i s here that the

quality of the dialogue becomes very important. The task of

entering input must not become awkward and tedious and a trade

o f f must be made between allowing the user to decide what to

input or leading him through a fixed sequence of inputs to

58

ensure a properly defined mode. Also, i t i s important to

provide feedback to the user i n order that he may v e r i f y what

has been entered.

Opon entry into the build phase, then, a l i s t of possible

commands, or "modes", are displayed on the graphics scope in the

recommended order of use (when building a new network). This

l i s t (see figure 13) i s cal l e d a "MENU", and the prompting

message "MODE?" i s actually blinking in order to indicate to the

user that i t i s time to select a mode by pointing to i t s name

with the lightpen. At t h i s point the user s t i l l has freedom of

control . He may enter or re-enter any mode at any time. Smith

[22] c a l l s t h i s " i n t e r a c t i o n by an t i c i p a t i o n " , i n the sense that

a l l possible desires of a user are anticipated. These

p o s s i b i l i t i e s are presented as choices for the user to select

rather than specify;, thereby allowing a simple lightpen h i t

rather than reguiring a c o r r e c t l y spelled alphabetic command.

On any given entry into the build phase, the program helps the

user remember which modes he has already entered by displaying

these names at a di f f e r e n t i ntensity. A further convenience i s

that the user may position the menu anywhere on the screen,

using a pair of d i a l s . The important thing i s that the modes

break up a lengthy task into easier, d i s t i n c t subtasks.

In his book, Design of Man-Computer Dialogues , Martin [13]

states that short-term memory i s heavily u t i l i z e d i n complex

problem solving and creation. He further states that humans

SYMBOLS

LINKS

ASSIGNQ

FIRST QUEUES

ASSIGN BUFF

ROUTES

CAPACITIES

FLOW

SERVICE TIMES

DONE

FIGURE 13: Menu for Network Design

60

tend to organize a c t i v i t y into "clumps" that can be ea s i l y

completed. Thus, the modes i n ANISIM are designed so that the

user need only worry about a f a i r l y simple or d i s t i n c t aspect of

the network at one time. In f a c t , when building a new network,

the modes act as a se r i e s of Martin's "conversational

checkpoints". The termination of a mode can be regarded as

providing "mental c l o s u r e " — i . e . the user can assure himself

that he has completed that phase of the input. If he gets

confused or makes a mistake, he need only re-enter the current

mode and s t a r t over from that point.

When working i n a p a r t i c u l a r mode, the user s t i l l might

forget what i s expected of him next,- or even which mode he i s

i n , i f he i s at a l l distracted. To avoid t h i s s i t u a t i o n , the

program always prompts the user with some kind of mental cue

whenever a response i s expected. This prompt, often a one or

two word message displayed at the bottom of the screen, serves

only as a reminder rather than a detailed explanation. The

blinking of symbols i s used to s i g n i f y which p a r t i c u l a r e n t i t i e s

of the network are in question.

Proceeding through the menu, then, a t y p i c a l dialogue would

begin by entering the SYMBOLS mode. The menu disappears (as in

a l l modes) and crosshairs appear. The crosshairs and a set of

function buttons are used to position and select any one of the

f i v e available symbols. An entry (ALGOLW record) i s created in

the data base for the corresponding simulation entity. Two

61

symbols require in t e r a c t i o n beyond the i n i t i a l s e l e c t i o n : queues

require a second crosshair s e t t i n g to define the orientation

(angle) of the t a i l of the queue (see figure 14), and buffers

are usually sketched, although a default i s available. Figure

15 shows a buffer symbol being sketched around two queues which

w i l l l a t e r be assigned to the buffer entity. The lightpen may

be used i n SYMBOLS mode in order to delete a symbol or a " l i n k "

from the screen and the data base. A s p e c i a l function button

terminates SYMBOLS mode, causing the re-appearance of the menu.

LINKS mode allows the user to use the lightpen to connect pairs

of symbols. These l i n e s are v i s u a l aids to help portray the

network structure, but no entry i s made i n the data base. Also,

the i n t e n s i t y of the l i n k s i s separate from the rest of the

network and can be turned down by the twist of a d i a l . The mode

i s terminated by a lightpen h i t on the prompting message.

The next four modes (ASSIGNQ, FIRST QUEUES, ASSIGN BUFF,

and ROUTES) are necessary to make a series of assignments of

simulation e n t i t i e s that define the structure of the network.

In each case, both the programmer and the user distinguish these

e n t i t i e s graphically, rather than try i n g to refer to them by

labels or entering numbers in matrix form. The advantage of

t h i s approach i s that the user can actually "see what he i s

doing." There i s no problem of i d e n t i f y i n g labels or numbers

with symbols. For example, i n ASSIGNQ, the program goes through

the l i s t of servers that has been created and for each server,

blinks the symbol and prompts the user to designate a gueue.

o

62

o

T A I L ORIENTATION ?
FIGUfils 14: Specifying Queues

FIGURE 15: Buffer Sketching

64

The user need only point with the lightpen to the gueue he

wishes to be assigned to the blinking server. Clearly at t h i s

point i t i s advantageous to lead the user through a l l possible

assignments i n order that none are l e f t out. This policy i s

followed i n a l l the remaining modes as well. when the edit f l a g

i s set, however, i t i s assumed that a l l assignments have been

made once already, and that the user wishes to change one or two

assignments only. In t h i s case, he must select with the

lightpen a server, i n the example of ASSIGNQ, before the program

w i l l prompt for a gueue. He may proceed to s e l e c t other servers

or terminate the mode by h i t t i n g the prompting message.

In the same manner, FIRST QUEUES i s used to assign a unique

queue/server system to each source, and ASSIGN BUFF i s used to

assign buffers to queues. ANISIM currently provides one form of

r o u t i n g — a fixed routing scheme, although other schemes are

possible (see Chapter V). Each item i s assigned a destination

sink when i t i s generated at the source. At any p a r t i c u l a r

queue/server system, the next queue/server system (or sink) i n

the route i s dependent only upon t h i s destination. Thus, i n

ROUTES mode, the user f i l l s an i n t e r n a l routing matrix by

pointing to the next queue (or the sink) for each blinking

queue-sink pai r .

The f i n a l three modes require user input on the 3270

terminal. Newman and Sproull [16] advise that, i n general, a

single-device approach often leads to simpler, more e a s i l y

65

learned command languages. However, in t h i s case i t was decided

that i t would be easier for the user to switch from the lightpen

to the keyboard than i t would be to enter numerical data at the

graphics terminal. also, the 3270 screen o f f e r s the opportunity

to e a s i l y display more detailed prompting messages, whereas the

graphics approach would require valuable Adage buffer space.

Figure 16 shows an example of the dialogue on the 3270. Of

course, the program s t i l l designates e n t i t i e s by blinking

symbols on the Adage display. The Adage scope prompt message of

"TO 3270—>" reminds the user that his next response w i l l be at

the keyboard. CAPACITIES mode allows the assignment of queue

and buffer capacities other than the defaults. In FLOW mode,

for each source, the i n t e r - a r r i v a l time d i s t r i b u t i o n i s

sp e c i f i e d (similar to the service times dialogue), and also the

percentage of a r r i v a l s from that source that are destined for

each sink must be given, in order to f i l l i n an in t e r n a l "flow"

matrix.

In any mode requesting parameters, i f the edi t f l a g i s on,

the current value of the parameter i s f i r s t printed on the 3270.

If the edi t f l a g i s not on, the current value i s printed only

for those parameters which are i n i t i a l l y assigned default values

(e.g. queue c a p a c i t i e s) .

3i2_.2_Model_Verif i c a t i o n

The network construction dialogue, as mentioned e a r l i e r .

FOR THE BLINKING SERVER, ASSIGN THE SERVICE
DISTRIBUTION CODE:

1= EXPONENTIAL, 2 = DNIFOR M
1
ENTER MEAN TIME (> 1) FOR EXP. DSTBN

ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS NODE
ELSE DEFAULT VALUE IS 4

2

DISTRIBUTION CODE (1 OR 2):
1
ENTER MEAN TIME (> 1) FOR EXP. DSTBN
7
ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS NODE

ELSE DEFAULT VALUE IS 7
1

DISTRIBUTION CODE (1 OR 2):
2
ENTER MEAN TIME (>1) AND DEVIATION FOR UNIFORM DISTR.
*» 5
DEVIATION IS TOO LARGE. TRY AGAIN.
ENTER MEAN TIME (>1) AND DEVIATION FOR UNIFORM DISTR.
4 2
ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS NODE

ELSE DEFAULT VALUE IS 4

BACK TO ADAGE

FIGURE 16: Dialogue f o r Specifying Service Times

67

uses a menu to guide the user through the necessary steps of

making a well-defined model, while allowing him s u f f i c i e n t

freedom of con t r o l . In other words, i t i s s t i l l quite possible

to create a network with missing assignments and parameters—

e s p e c i a l l y after editing the network. This problem i s attacked

i n several ways, F i r s t of a l l , when the user f a i l s to h i t the

proper type of symbol with the lightpen, the message "NO

ASSIGNMENT" appears on the screen b r i e f l y . Also, the user i s

asked to re-enter any numerical information that i s not in the

proper range such as a deviation that i s greater than the mean

f o r the uniform d i s t r i b u t i o n . After exit i n g from the build

phase and before a new simulation i s allowed to begin, a l l

servers and sources are checked to make sure then have been

assigned a queue (in order to prevent a terminating error in the

simulation program). The routing assignments are not checked at

this time, but any undefined routes w i l l be caught i n the

simulation. In that case, the item i s sent to i t s destination

sink, a message i s printed on the 3270, and the simulation i s

allowed to continue. The DYNIS system [20] makes use of yet

another method of reducing errors due to careless modification

of the o r i g i n a l model. I t s editing phase i s divided into two

commands: REVISE and MODIFY. Their related functions in ANISIM

might be as follows: REVISE would allow the user to add or

delete symbols, analyze the e f f e c t s of t h i s change, and then

prompt him to re-enter any modes necessary i n order to make the

network well-defined again. MODIFY on the other hand, would

68

allow only the a l t e r i n g of parameter values, none of which could

make the network i l l - d e f i n e d . MODIFY would be more economical

for the user (quick, safe changes; minimal dialogue), and also

f o r the program (abbreviated menu; less checking and prompting.)

This approach would in f a c t be f e a s i b l e i n AHISIM, using the

basic BUILD-EDITNET structure.

Once we have insured that the model i s well-defined, there

s t i l l remains the p o s s i b i l i t y that a mistake has been made in

the model design, i . e . the model b u i l t i s not exactly the model

intended. However, compared to any non-graphical simulation

environment, t h i s p o s s i b i l i t y i s minimal. F i r s t of a l l , the

modeller can see on the screen the effects of much of what he

does. Also, he i s less l i k e l y to specify a wrong entity when he

can actually point to i t s representation on the screen.

Furthermore, assignment and parameter information can be

v e r i f i e d by using the PRINT command, and the animation i t s e l f

should expose most unintended routing s p e c i f i c a t i o n s . On the

other hand, anyone who has written a non-trival simulation

program i n a language such as GPSS [9] knows that the structrue

of the model may e a s i l y become obscured i n the program

statements and matrices. The input data i s l a r g e l y numerical

and highly subject to mistakes as well.

A second side e f f e c t of a graphically described a model,

especially i n an i n t e r a c t i v e environment that helps the modeller

create a well-defined model, i s that the process of building the

69

network may very well force the modeller to re-evaluate his

conception of the model. To some extent he may more quickly see

the inadequacies of his i n i t i a l formulation as a v a l i d

abstraction of the real-world s i t u a t i o n .

Bracchi and Somalvico [3] emphasize that a software system

for computer-aided design should provide both a strong

computational c a p a b i l i t y and a f l e x i b l e i n t e r a c t i o n with the

designer during the design process. Likewise, ANISIM's

usefulness as a simulation t o o l depends both on the power of the

simulation routine and the quality of the user dialogue. The

f i r s t part of t h i s chapter described the techniques used to

provide simple, yet f l e x i b l e control over the simulation and the

presentation of i t s r e s u l t s . Moreover, experience with users

during the development of the preliminary versions of ANISIH has

indicated that the quality of the network d e f i n i t i o n dialoque i s

c r i t i c a l to insuring that the user w i l l have a successful

session with the system. It i s t h i s phase where a large amount

of information must be supplied to the system by a person who

may be nervous, confused, or intimidated by conversations with

machines. If the dialogue i s awkward or otherwise inadequate,

the user i s not free to concentrate on such things as evaluating

the conceptual v a l i d i t y of his model or v e r i f y i n g the accuracy

of the network he i s building. There w i l l always be room for

improvements i n the dialogue, but the current version of ANISIM

seems to meet most of the c r i t e r i a for a smooth and e f f e c t i v e

i n t e r a c t i o n .

70

IV UTILITY OF ANIMATION

One of the points that Martin [13] makes about graphic

systems, i s that the use of moving or changing images can

c l a r i f y c e r t a i n ideas. Animation, l i k e color, i s a type of

encoding that can increase the amount of information the limited

human mind can grasp and ponder at one time. A reasonable

guestion to ask, then, i s when and how should we use animation

i n order to best take advantage of t h i s c a p a b i l i t y .

4 J_S imulation_Tool

T r a d i t i o n a l simulation programs generally produce output in

the form of s t a t i s t i c a l averages, variances, maxima, etc. They

are generally expensive to execute and are often run i n a batch

environment. Model design and testing i s done by analyzing the

s t a t i s t i c s , a l t e r i n g the model or i t s parameters, re-compiling

i f necessary, and then running the program again. Clearly, an

i n t e r a c t i v e simulation program could improve t h i s turn-around

time by producing r e s u l t s quickly (while the modeller s t i l l

remembers what he was trying to do) and by providing convenient

means f o r a l t e r i n g the model. This i s true, provided that the

modeller can also analyze the simulation output quickly. I f he

i s looking for the changes that appear i n a few simple

s t a t i s t i c s , the improved turn-around may be s u f f i c i e n t for his

purpose. However, i f he i s trying to understand the

significance of the s t a t i s t i c s with respect to a f a i r l y complex

71

model, the program must provide him with additional aids.

One such aid avai l a b l e i n an interactive environment i s a

monitoring c a p a b i l i t y . The modeller not only gets the f i n a l

r e s u l t s , but he sees some sort of representation of the state of

the model while the simulation i s progressing. This may allow

the modeller to quickly zero-in on the time range or parameter

range that he i s interested i n , as well as providing information

about the starting conditions and other transient e f f e c t s .

Alos, monitoring i s l i k e l y to provide more information about the

behavior of the model when i t reaches certain c r i t i c a l states.

One simulation monitor system that has proven quite useful

f o r e c o l o g i c a l models i s SIHCON—a Simulation Control Command

Language [1 0] , SIMCON allows the user to plot during execution

selected variables of a simulation program written i n FORTRAN.

He may interrupt the simulation and display or a l t e r variables,

and he may r e s t a r t the simulation from several states. Thus, i n

many cases, a model can be adequately represented, for

monitoring purposes, by l i n e plots of the le v e l s of certa i n

e n t i t i e s (such as populations). In other cases, however, the

r e a l understanding of the model l i e s not i n monitoring the value

of a variable (or the length of a queue), but monitoring a

process or rel a t i o n s h i p that determines the value of the

variable. An example of a continuous simulation model where

t h i s would be true might be a study of changing boundaries

between several t e r r i t o r i a l populations. The simulation

72

s t a t i s t i c s may begin to make sense i f the modeller can a c t u a l l y

see on a graphics screen a population being crowded out of

existance by neighboring populations. S i m i l a r l y , a gueue that

becomes too long may be analyzed by monitoring an animation

showing just where the items are a r r i v i n g from and where (and

when) they are going next. Without some movement of items

between e n t i t i e s , the viewer, i n Martin's terminology, i s unable

to keep enough information about the r e l a t i v e states of these

e n t i t i e s i n the 'foreground* of his mind a l l at the same time.

This issue of movement brings up an i n t e r e s t i n g point about

ANISIM. When we think of the system being modelled as a gueuing

network, then animating with moving sequences can be thought of

as d i s t o r t i n g the m o d e l — p a r t i c u l a r l y with respect to the

expansion of time caused by binding seguences. But i f we think

of the system being modelled as some real-world system that i s

only approximated by a queuing network, then animating with

moving sequences can be thought of as restoring some r e a l i t y to

the model. The user of ANISIM can use the SCAN mode for a true

representation of the gueuing network, but he does not have the

benefit of that extra information provided by movement. Or, he

can se l e c t varying degrees of d i s t o r t i o n / r e a l i t y by c o n t r o l l i n g

the durations of the moving sequences. In either case,

animation techniques can at least be used to represent the

progression of states, to show the changing i n t e r r e l a t i o n s h i p s

amongst model components, and to signal the occurrence of

c r i t i c a l states.

73

The concept of allowing the model designer optional degrees

of " r e a l i t y " i s not unique to ANISIM. An i n t e r a c t i v e graphics

system developed at IBM for designing and testing l o g i c c i r c u i t s

allows the user to specify one of three modelling abstractions

regarding the timing of pulses [13], The trade-off i s between a

fa s t approximation and a slower, more r e a l i s t i c simulation. In

t h i s case, however, i t i s the actual simulation that i s

affected, not just the graphic representation, as in ANISIM.

The ATOPPS system [5] discussed in the next section, i s an

example of a discrete event simulation monitor which makes i t s

point graphically without making any attempt to r e a l i s t i c a l l y

model the timing between events.

ii2_Educational_Tool

I f the use of animation provides additional insight into

the understanding of a complex process, then c e r t a i n l y i t i s

desirable to apply t h i s c a p a b i l i t y toward educational purposes.

This generally means placing less of the emphasis in the

graphics system on a f l e x i b l e design optimization approach and

placing more emphasis on c a r e f u l l y i l l u s t r a t i n g the process or

reaction that i s of inte r e s t . In f a c t , i t may be reasonable i n

some cases to exaggerate the more d i f f i c u l t features at the

expense of the o v e r a l l accuracy of the animation.

For example, the ATOPPS system [14] at Pennsylvania State

74

University i s presented as a "Computer Graphic Simulation of a

Discrete Time Operating System for Introducing Elementary

Concepts". Films have been made of the system, which displays

the contents of the memory, active hardware, and major gueues of

a t h e o r e t i c a l operating system. The objective i s to watch the

flow of information from one job step to another in the discrete

time simulation of d i f f e r e n t operating system configurations.

The model appears to be f a i r l y simple, but allows enough

s t r u c t u r a l and parameter options to demonstrate many of the

important p r i n c i p l e s of operating system strategies. The

graphic technigue does not involve animation i n the sense of

elements moving on the screen. Instead, arrows and intensity

are used to c a l l the viewer's attention to (and to further

explain) each change of state. The state of each entity (e.g. a

queue) i s described by a number rather than a symbol. The most

signigicant difference between ATOPPS and ANISIM i s the manner

i n which they graphically represent the timing of discrete

events. ATOPPS makes no attempt to depict p a r a l l e l processes or

the elapsed time between successive events. Instead, the clock

time i s always shown and when an event has been displayed the

clock i s updated to the time of the next event, which i s

immediately displayed. In other words, a l l state changes bind

the display, while they are represented i n some d e t a i l . To help

the viewer understand the i n t e r - r e l a t i o n s h i p of events, the

future events gueue i s displayed on the screen, allowing one to

see exactly when and why each event i s scheduled during the

75

processing of the current event. This approach seems guite

reasonable for the stated objective of understanding basic

operating system p r i n c i p l e s . The emphasis i s on the detailed

display of each event rather than an accurate o v e r a l l display of

the performance of the model.

ANISIH, on the other hand, has considerable potential as an

educational t o o l , but in a s l i g h t l y d i f f e r e n t sense. I t would

not be p a r t i c u l a r l y i n s t r u c t i v e to show how an a r r i v a l event

causes a new a r r i v a l event to be scheduled and put i n the future

events queue. It would, however, be useful i n demonstrating

certa i n concepts of queuing theory which are based heavily on

timing parameters. For example, a student trying to understand

how the rela t i o n s h i p between the a r r i v a l rate and the service

rate affect the queue length might benefit by watching an

animation of a simple queue with various parameters. Another

simple example would be the comparison of two one-server queues

with one two-server queue (see Figure 17). If the service

d i s t r i b u t i o n s have a large variance, the student can see how

items tend to t r a v e l faster through the two-server system. one

problem with demonstrating t h e o r e t i c a l r e s u l t s i s that they are

based on steady state p r o b a b i l i t i e s . Monitoring the simulation

at any particular period of time (especially the beginning)

provides no guarantee that the state w i l l be anywhere near that

s p e c i f i e d by the long term p r o b a b i l i t i e s . Of course the

s t a t i s t i c a l summary i s s t i l l available a f t e r stopping the

simulation.

76

FIGURE .17: Queuing Theory Comparison

77

i i J_Research_Tool

One of the o r i g i n a l motivations for developing ANISIM was

to study, i n a general way, the processes or conditions which

lead to network congestion and system deadlock. It has already

been pointed out how ANISIM can be used to design or optimize a

s p e c i f i c model to avoid undesirable states. S p e c i f i c a l l y , the

animation allows the modeller to watch the chain of events

leading up to the c r i t i c a l state. However, perhaps the

animation can add a d d i t i o n a l i n s i g h t to current research on the

t h e o r e t i c a l aspects of deadlock. ANISIM can be used to

construct and modify networks which, when simulated, a) lead to

blocking conditions (see Figure 12 in Chapter I I I) , b) become

congested (gueues or buffers f i l l up from time to time but

always eventually unblock), or c) reach deadlock (two or more

items are mutually permanently blocked). One example of a

simple two-node deadlock appears i n Figure 18. The more

complicated network shown in Figure 19 i s deadlocked between the

f i r s t two buffers, causing congestion i n the rest of the

network.

Time has not permitted the experimentation necessary in

order to investigate the p r i n c i p l e s behind deadlock. A survey

by Coffman, et a l [5], describes various strategies for dealing

with the prevention, detection (and recovery), and avoidance of

deadlocks. The discussion i s oriented towards operating systems

design, dealing i n terms of tasks and resources, but would

I H H U ' I I I I H I I

imiiuii

FIGURE 18: Simple Deadlock

FIGURE 19: A P a r t i a l l y Deadlocked Network

80

p r o v i d e an e x c e l l e n t s t a r t i n g p o i n t on w h i c h t o b a s e

e x p e r i m e n t a t i o n w i t h A N I S I M .

8 1

V CONCLUSIONS, PROSPECTS, AND EXTENSIONS

5 i l _ A n a l _ ; s i s

I t must be emphasized at t h i s p o i n t t h a t ANISIM, i n i t s

c u r r e n t form, can o n l y be thought of as a r e s e a r c h t o o l , and not

as a f i n i s h e d p r o d u c t . I t has c l e a r l y demonstrated t h a t

a n i m a t i o n can p l a y a v e r y p o w e r f u l and u s e f u l p a r t i n d i s c r e t e

event s i m u l a t i o n m o d e l l i n g . H o p e f u l l y , f u t u r e a t t e m p t s a t such

systems can b e n e f i t p a r t i c u l a r l y from t h e c l a s s i f i c a t i o n of

sequences and from t h e event e d i t i n g p r o c e d u r e s of Chapter I I .

Much o f t h e i n i t i a l e f f o r t i n implementing ANISIM went i n t o

d e v e l o p i n g the s i m u l a t i o n and a n i m a t i o n t e c h n i q u e s . The system

more or l e s s e v o l v e d as i t s c a p a b i l i t i e s became ap p a r e n t ,

r e s u l t i n g i n two g e n e r a l problems. The f i r s t problem c o n c e r n s

t h e i d e a l o g u e . M a r t i n [13], i n h i s s u r v e y o f methods, f e a t u r e s ,

and p s y c h o l o g i c a l c o n s i d e r a t i o n s o f man-machine d i a l o g u e ,

emphasizes t h e need f o r comprehensive p l a n n i n g o f the d i a l o g u e

b e f o r e programming b e g i n s . Such p l a n n i n g , i n t h e case of

ANISIM, c o u l d have eased t h e programming t a s k , p a r t i c u l a r l y w i t h

r e s p e c t t o p r o v i d i n g s i m p l e , u n i f o r m e r r o r r e c o v e r y p r o c e d u r e s .

The second problem w i t h t h e l a c k of o v e r a l l p l a n a t t h e

b e g i n n i n g i s t h a t not enough p r o v i s i o n can be made to e a s i l y

handle e x t e n s i o n s and r e f i n e m e n t s . For example, i n ANISIM, as

i n most g r a p h i c s systems, the d a t a s t r u c t u r e i s a c c e s s e d from

j u s t about every phase of t h e program. R e p e r c u s s i o n s of any

82

changes to the structure or to the information stored i n i t tend

to r i p p l e throughout the program. In concentrating on the needs

of the animation routines while coding the simulation routine,

some basic features were overlooked, such as the gathering of

c e r t a i n s t a t i s t i c s and the allowance for more transaction

parameters (i.e. i n addition to the destination sink and the

time of a r r i v a l to the system). Adding these features, as well

as further extensions (section 5.3), represent a rather tedious

programming chore.

Even i n l i g h t of what i t does not do, however, the current

system i s s u r p r i s i n g l y inexpensive to use, considering the f a c t

that i t i s a simulation program, i t i s i n t e r a c t i v e , and i t

involves extensive I/O for graphics and for saving and restoring

data on disk f i l e s . Furthermore, any attempt to re-write the

program in a more modular fashion to perform more general tasks

would be constrained by both the need for a f a s t , e f f i c i e n t

simulation routine and the limited capacity of the Adage display

buffer.

5«2_ Limitations

One important conclusion, born out by this and the

following sections, i s that animation i s mainly useful as an

addit ionajL technique for analyzing simulations, not as a

substitute for c l a s s i c a l technigues. When one gets down to

ac t u a l l y using ANISIM to study a r e a l problem he finds that

83

1} he s t i l l needs to have certain s t a t i s t i c s available to

summarize or validate when he saw (or didn*t see), and 2) most

models require at least one or two simulation features that are

not available i n a s t r i c t queuing network formulation. This

second d i f f i c u l t y i s compounded by the l i m i t s on problem size

imposed by the representation of the network. As already

pointed out in the example of t r a n s i t times, the a v a i l a b i l i t y of

additional simulation power tends to simplify the required

network structure, allowing a more complex s i t u a t i o n to be

represented on the screen.

In discussing potential models f o r ANISIM with people

f a m i l i a r with discrete simulations, a pattern began to emerge i n

the simulation features reguired i n order to enable many models

to be formulated. A few of the most important recommendations

a r i s i n g from (or confirmed by) these discussions are mentioned

here.

In many queuing models, i n d i v i d u a l items must group

together as they t r a v e l through the network. This i s true of

ra i l r o a d cars, cargo on ships, and words i n a telecommunications

network. To accomodate t h i s type of model in ANISIM, the

concept of multiple servers must be changed to allow one server

symbol to represent a server of unlimited (user specified)

capacity. Also groups of items should be able to tr a v e l between

nodes using one symbol (and generating single events). Figure

20 shows one way of animating t h i s . In the case of trains or

84

'FIGURE 20: T r a n s a c t i o n Grouping

s h i p s , i t would a l s o be d e s i r a b l e to allow some f l e x i b i l i t y i n

depa r t u r e p r o t o c o l s . F c r example, there i s c u r r e n t l y no way of

s p e c i f y i n g p e r i o d i c or otherwise scheduled departures c f a s e t

number of items (i . e . dep a r t u r e s independent of when s e r v i c e

begins) .

Another necessary c a p a b i l i t y of many gueuing models i s to

measure the average delay of items t r a v e l l i n g between a r b i t r a r y

p o i n t s of the network; The c u r r e n t system only measure^ the

delay between s o u r c e - s i n k p a i r s . The only drawback of adding

t r a n s a c t i o n parameters (as t h i s would) i s the i n c r e a s e d s t o r a g e

requirement f o r the ALGOLS r e c o r d s which c o n t a i n the i n f o r m a t i o n

f o r each t r a n s a c t i o n i n a gueue.

Two a d d i t i d n a l f e a t u r e s which would c o n s i d e r a b l y widen the

c l a s s of models t h a t c o u l d be simulated are t r a n s i t times

(d i s c u s s e d e a r l i e r) and l o g i c s w i t c h e s , or ga t e s . The l a t t e r

would i n v o l v e t e s t i n g on u s e r - s p e c i f i e d t r a n s a c t i o n parameters

and would c o n s i d e r a b l y complicate the di a l o g u e f o r d e f i n i n g the

network.

85

5 i3_Extensions

In addition to those discussed i n the previous section, the

following potential extensions to AHISIH merit consideration.

1) As pointed out e a r l i e r , the animation f a c i l i t y does not

preclude the need f o r s t a t i s t i c a l summaries. S t a t i s t i c s which

should be added include the mean and variance of the delay at

each gueue and buffer, as well as the variance of the gueue

lengths and buffer contents. Of course, the animation then

allows the viewer to watch the variations happening, i n order to

get a better f e e l for the nature of the fluctuations and the

relevance of the averages. Furthermore, the animation together

with the s t a t i s t i c s on blocking, provides a better understanding

of how occasional blocking (congestion) may d i s t o r t the

signigicance of the other s t a t i s t i c s .

2) It may be possible to provide more meaningful ways of

presenting s t a t i s t i c s to the user. One suggestion i s to provide

a " t h i r d l e v e l " of information using a command which allows the

modeller to view a plot of a s t a t i s t i c , such as queue length,

over time. Another suggestion i s to provide a command which

displays the average state of each entity rather than just the

f i n a l state in which the simulation stopped. A more d i f f i c u l t

to implement feature would be some type of continuous display

during the animation of, for example, the average gueue length.

(This would involve a separate symbol, or number, displayed near

86

the queue symbol.) It would also be helpful to display the

simulation clock time during the animation.

3) Currently, only two p r o b a b i l i t y d i s t r i b u t i o n s have been

implemented for a r r i v a l and service rates. Others, such as

Erlang d i s t r i b u t i o n , must be added, as well as the a b i l i t y to

create a d i s t r i b u t i o n from user-specified empirical data. Also,

more f l e x i b i l i t y with the random number seeds would allow the

user to st a r t two or more streams with the same seed, for

comparison purposes.

A further type of a r r i v a l rate that would be very useful

f o r modelling closed systems i s a f i n i t e c a l l i n g population. A

l i m i t e d number of a r r i v a l s are generated, possibly a l l at once,

and new a r r i v a l s appear at sources only when items depart to

sinks.

4) The routing mechanism used i n ANISIM represents one type of

route s e l e c t i o n . Other possible types include a pre-defined

routing scheme, where an item's route i s f u l l y s p e c i f i e d at the

source, and a stochastic routing scheme, where the next node

from any given node i s determined from a p r o b a b i l i t y

d i s t r i b u t i o n . Other possible features than control routing are

the transaction s p l i t t i n g and logic switching features of GPSS

[9].

5) As well as allowing a r r i v a l and service time options, ANISIM

87

should provide optional p o l i c i e s for queue d i s c i p l i n e s and

blocked transactions. P r i o r i t y queues (i . e . allow the

generation of d i f f e r e n t types of transactions) would be somewhat

d i f f i c u l t to i l l u s t r a t e , however, given the current

representation. An example of an alternate blocked transaction

policy i s that a blocked item go back to the end of i t s own

queue, instead of waiting in the server.

6) Some t y p i c a l network configurations occur often enough that

i t might be useful to provide a "network macro" f a c i l i t y for the

automatic creation of previously defined sub-networks. Even

better, there may be some models which can be suitable

represented with entire sub-networks of the model replaced i n

the animation by s p e c i a l , or user created, macro symobls. For

example, i n Figure 19 i f each buffer (with i t s associated gueues

and servers) were replaced by a network macro symbol, or i n t h i s

case by a small version of the buffer symbol, the representation

of the model would be considerably s i m p l i f i e d . Of course t h i s

technique would allow ANISIM to handle larger models, since the

main constraint on problem siz e i s the number of Adage buffer

words used to represent the network. Also for t h i s reason, and

for viewing s i m p l i c i t y , i t may be worthwhile to attempt a

"windowing" c a p a b i l i t y , where only one portion of a large

network i s displayed at one time. Windowing may not prove to be

of too much value i n t h i s case however, since the modeller would

never be able to view the entire network at once.

88

7) One problem with the animation of a non-trival network i s

that a l l of the moving items look a l i k e . I t i s d i f f i c u l t , at

times to follow the progress of an item through the network,

e s p e c i a l l y i f i t spends time i n queues. A p a r t i a l solution to

t h i s problem would be to shade, or otherwise mark, ce r t a i n items

so that they can be distinguished from the others as they t r a v e l

through the network. The drawback i s the space required by the

additional transaction parameter f i e l d . Two methods of using

t h i s shading feature are a) mark a l l items a r r i v i n g from a

sp e c i f i e d source, and b) mark every tenth item, or whatever ,

generated by the system.

5 r o s p e c t s for Further Work

Although i t i s possible to formulate a f a i r l y large number

of models in terms of networks of queues, the guestion arises as

to what other types of discrete models or r e a l processes might

be animated using the techniques described i n Chapter II.

It seems that most descrete event simulation models can

make use of the i n t e r n a l cycle concept, the c l a s s i f i c a t i o n of

sequences, and the editing procedure. The deciding f a c t o r s ,

then, f o r animation f e a s i b i l i t y , would be whether the model

structure can be suitable represented on a graphics scope and

whether meaningful animation seguences can be compiled and

displayed using the graphics software available. (The length of

any two-side bounded sequences might be a problem in some cases.

89

as noted i n Chapter II.) One type of simulation with a s l i g h t l y

d i f f e r e n t emphasis from that used i n ANISIM would u t i l i z e the

graphics c a p a b i l i t i e s to study models involving s p a t i a l layout

problems. Consider, for example, a model of a warehouse

operation, where the cost associated with an item t r a v e l l i n g

between two points in the model i s derived i n t e r n a l l y from the

physical distance between symbols on the screen. The user i s

able to optimize the model, with respect to cost and space, by

simulating and animating i t with various s p a t i a l arrangements.

This type of model would also reguire queuing f a c i l i t i e s , only

the representation of the length of the queue would now become

important.

The question of animating r e a l processes rather than

simulations i s a more d i f f i c u l t one. For example, assume i t i s

desirable to monitor an animation of some sort of i n d u s t r i a l or

s c i e n t i f i c process which cannot be d i r e c t l y observed (e.g. due

to the location or size of the components of the process).

Further assume that the process must be monitored in terms of

discrete events, rather than continuous updating. This may be

due to the method of measuring i t s progress, or perhaps only the

general stages of the process are important to the observer. I f

the events are merely being recorded for l a t e r study (say the

process happens too f a s t or too slow for real-time monitoring),

then there i s no problem. The events can be edited and compiled

as done for simulations. I f , however, i t i s desirable to

display the animation simultaneously with the ongoing process.

90

then two basic problems arise. For one thing, the process can't

be stopped every few events i n order to wait for the editing and

compiling of sequences. Furthermore, the time expansion due "to

binding sequences would result i n a continually increasing lag

between the time of the event and the time i t i s displayed.

F i r s t of a l l , the problem of time expansion may not be a

problem at a l l . Recall that binding sequences were required i n

order to add some sort of r e a l i t y to the modelling abstraction

of an instantaneous movement. I t seems l i k e l y , however, that

most r e a l processes monitored i n r e a l time w i l l require two-side

bounded sequences rather than binding sequences to properly

animate movements. Let us assume then, that we wish to animate

a real-time process requiring no binding sequences and no two-

side bounded sequences of unmanageable length. A system

configuration that would probably make thi s task f e a s i b l e

reguires three p a r a l l e l operations instead of the current two

(370 program and Adage monitor). The f i r s t processor would

continuously record the events of the ongoing process and make

the event l i s t available to the second processor, which would

then be able to use the i n t e r n a l cycle approach to edit events

and compile sequences for the graphics computer to display. The

animation would of course lag behind the actual events by a

fixed start-up time, but the speed of the display could be made

equal to that of the r e a l process.

This discussion i s quite abstract and there would c e r t a i n l y

91

be bugs t o work out i n t h i s approach. The p o i n t i s t h a t t h e

p o t e n t i a l e x i s t s f o r a p p l y i n g t h e g e n e r a l t e c h n i q u e s of C h a p t e r

II t o t h e a n i m a t i o n o f systems o t h e r than s i m u l a t i o n s .

92

BIBLIOGRAPHY

1. Baecker, R.M.
"Toward Animating Computer Programs: A F i r s t Progress
Report," Proceedings of the Third Man-Computer
Communications Seminar, NRC, Ottawa, Canada, May 1973.

2. Baecker, R. m.
Interactive Computer-Mediated Animation, MAC-TR-61
(THESIS) 7"une~ 1969,"Project MAC, MIT.

3. Brocchi, G.; Somalvico, M.
"An Interactive Software System f o r Computer-Aided Design:
An Application to C i r c u i t Project," CACM, Vol.13, No.9,
September 1970.

4. Chheda, D.P.
"CAM, A Computer-Aided Modelling Program f o r Systems
Dynamics Models," Master's Thesis, Department of Computer
Science, U.B.C., 1974.

5. Coffman, E.G.; Elphick, M.J. ; and Shoshani, A.
"System Deadlock," Computing Surveys, Vol. 3, No. 2,
June 1971.

6. Coulthard, W.J.; Dekleer, J.
"UBC:AGTBASIC - Basic Communication Package for the Adage
Graphics Terminal," Computing Centre, U.B.C, 1973.

7. Coulthard, W.J.
"UBC:GRAPH - A Simple Interactive Graphics Package,"
Computing Centre, U.B.C, 1973.

8. Forrester, J.W.
World Dynamics, Wright Allen Press, 1971.

9. General Purpose Simulation System V tjser*_s Manual,
IBM Publication~No7~~SH20-0851.

10. Hilborn, R.
Simulation Control Command Language—SIMCON, Institute of
Animal Resource Ecology, U.B.C, October 1972.

11. H i l l i e r , F.S.; Lieberman, G.J.
JfiiE2JS£tion to Operations Research, Holden-Day 1967.

12. Lafata, P.; Rosen, J.B.
"An Interactive Display for Approximation by Linear
Programming," CACM, Vol. 13, No. 11, November 1970.

93

13. Martin, James
Desicjn of Man^Computer Dialogues, Prentice-Hall, 1973.

14. Mcintosh, J.F.
"GRAPHIC," Computing Centre, O.B.C., 1973.

15. Merchant, M.
"Interactive Spline Approximation," Master's Thesis,
Department of Computer Science, D.B.C., 1974.

16. Newman, W. M. ; Sproull, H.F.
Pri n c i p l e s of Interactive Computer Graphics, McGraw-Hill,
1973.

17. Okaya, Y.
"Interactive Aspects of Cr y s t a l Structure Analysis," IBM
Systems Journal, Vol.7, Nos. 3 and 4, 1968.

18. Prince, M.D.
Interactive Graphics for Computer-Aided Desicjn, Addison-
Wesley,~1971.

19. Richardson, F.K.; Oestreicher, D.R.
"Computer Assisted Integrated C i r c u i t Photomask Layout,"
in Pertinent Concepts i n Computer Graphics, Faiman, M.,
Nievergelt, J , , eds.. University of I l l i n o i s Press, 1969.

20. Savage, G. J. ; Andrews, G.C.
"DYNIS: A Dynamic Interactive Simulation Program For
Three-Dimensional Mechanical Systems," Proceedings of the
Third Man-Computer Communications Seminar, NRC, Ottawa,
Canada, May 1973.

21. The SIM SCRIPT II_.5 Reference Handbook,
Consolidated Analysis Centers Inc., 1971.

22. Smith, L.B.
"The Use of Interactive Graphics To Solve Numerical
Problems," CACM, Vol. 13, No. 10, October 1970.

23. Smith, L.B.
"A Survey of Interactive Graphical Systems for
Mathematics," Computing Surveys, Vol. 2, No. 4, December
1970.

24. Sutherland, W. R.
"On-Line Graphical S p e c i f i c a t i o n of Computer Procedures,"
MIT Lincoln Laboratory, TR 405, May 1966.

9n

APPENDIX A — PROGRAM DESIGN

ANISIH i s implemented cn an IEH 370/168 using the HIS

(Michigan Terminal System) operating system, and an Adage

Corporation Graphics Computer, as shown in Figure 21.

ADAGE
Model 10
G r a p h i c s
D i s p l a y
S c o p e — *

.Fu'nct i ori
But tons

IBM 370/168

4.

* 12 0 00 0 h i t s / s e c

IBM 3270
D i s p l a y
T e r m i n a l

• 2.

I T

. ADAGE
G r a p h i c s .Computer

T e l e
t y p e .

O p e r a t o r >s
Cont r o l
P a n e l

FIGURE 21: S y s t e a C o n f i g u r a t i o n

The program i s written c h i e f l y i n AIGCIW, with a few I/O

operations i n. FORTRAN. Software provided by the

D.E.C. Computing Centre consists of the HTS f i l e handling

routines, the basic subroutine package f o r communicating with

the Adage [6] , and the graphics monitor which resides in the

Adage Computer £7]. Following i s a b r i e f d escription of the

95

major procedures in the ALGOLW program.

MAIN: The main body of the program i s b a s i c a l l y the command

monitor. Upon i n i t i a l execution, the procedure INITMAIN i s

ca l l e d to i n i t i a l i z e various system variables, and the procedure

SETUP i s c a l l e d to generate the Adage buffer words for the

crosshairs, menu, messages, and symbols. The monitor then asks

the user to enter a command, as shown i n Figure 10. The input

s t r i n g i s compared to each possible command u n t i l a match i s

found. Commands which allow parameters for changing the value

of system variables always print out the new values of the

variables. Thus, i f the parameters are ommited, the current

values w i l l be printed. Simple commands are executed in li n e by

the command processor, while other commands are executed by

c a l l i n g one or more procedures.

BUILD: The BUILD procedure monitors a l l network construction and

modification. Upon entry, i t loads the words for the menu and

prompting messages into the display buffer. The main loop

consists of turning on the display of the menu, issuing a

lightpen read, turning off the menu, and executing a procedure

(depending on the location of the lightpen h i t) . Also, upon

termination of the procedure executed, control of the mode name

in the menu i s switched from d i a l two to d i a l f i v e .

NODES: This procedure i s c a l l e d when the SYMBOLS command i n the

96

menu i s h i t . Its main loop, after turning on the crosshairs,

consists of issuing a read to the function buttons and executing

the appropriate code. The buttons are used to create sources,

servers, sinks, gueues, and buffers. For each such entity, the

symbol i s displayed at the location of the crosshairs, the

buffer words fo r the l a b e l are created, and a record i s created

and added to the l i s t of records for that entity. Further use

of the buttons i s required i n order to position a gueue or to

sketch a buffer. A s p e c i a l button terminates the SYMBOLS mode.

If a lightpen h i t i s read instead of a button, the symbol or

l i n k pointed to i s no longer displayed. I f a symbol i s pointed

to, i t s associated record i s also deleted from the data base.

JtOKS: T ^ e LINKS mode makes use of the lightpen i n order to draw

connecting l i n e s between pairs of symbols. No entry i s made in

the simulation data base. The i n t e n s i t y of the l i n k s i s

controlled by d i a l E, while the i n t e n s i t y of the symbols i s

controlled by d i a l B.

ASSIGNQ: This procedure i s c a l l e d , with d i f f e r e n t arguments, for

the ASSIGNQ, FIRST QUEUES, and ASSIGN BUFF modes. For example,

i f the arguments are the l i s t of queues and the l i s t of servers

(ASSIGNQ mode), then the process i s as follows: a server i s made

to b l ink; a prompting message asking for a queue i s displayed,

and the lightpen i s read. If a gueue symbol was h i t , then a

pointer to the queue record i s placed i n the server record,

97

otherwise the message "NO ASSIGNMENT" i s displayed. If the edit

f l a g i s not on, then the process starts over with the next

server i n the l i s t u n t i l a l l servers have been processed. If

the e d i t f l a g i s on, then the user i s f i r s t prompted to point to

the server he i s interested i n .

ROOTING: The ROOTING mode requires a procedure s i m i l a r to that

used i n ASSIGNQ i n order to f i l l a matrix of pointers to queue

or sink records. Each entity i s assigned a number (unique

within the e n t i t y type) when created in SYMBOLS mode. The

number i s used to form the la b e l and to reference the entity

whenever a pointer to i t s record i s not appropriate. In the

case of the routing matrix, the f i r s t dimension i s indexed by

queue numbers, and the second dimension i s indexed by sink

numbers. Thus for each blinking queue-sink pair, the user i s

asked to point to the next queue i n the route, or to the sink.

This i s done by stepping through the l i s t of sinks and, f o r each

sink, stepping through the l i s t of queues. If the edit f l a g i s

set, the user i s asked for a sink but every queue i s processed

for than sink.

2MACI2IJS: This procedure steps through the l i s t of queues and

then the l i s t of buffers, blinking each i n turn and prompting on

the 3270 for the capacity. Each queue and buffer i s given a

default capacity (20 and 100, respectively) i n SYMBOLS mode.

The default or otherwise current capacity i s printed with the

9 8

prompt. If a n u l l l i n e i s entered by the user, the f i e l d i n the

queue or buffer record remains unchanged. If something other

than a number i s entered, the capacity i s set at 1,000,000 and

the gueue symbol i s altered to represent an i n f i n i t e gueue. I f

a gueue capacity less than twenty i s entered, the gueue symbol

i s shortened proportionately.

SOORCEFLOW: The SOURCEFLOW procedure i s used for both FLOW and

SERVICE TIMES modes, where the a r r i v a l and service d i s t r i b u t i o n

parameters, respectively, are entered into t h e i r appropriate

f i e l d s i n the source and server records (actually the DIS

rec o r d s — s e e Appendix B). The method of blinking each symbol

under consideration i s used here as well. Since defaults are

not assigned, the current parameters are only printed with the

prompt i f the edit f l a g i s on. In SERVICE TIMES mode the re-

send time parameter i s also requested for each server. In FLOW

mode the flow matrix, indexed by source number and sink number,

i s f i l l e d i n the same manner as the routing matrix. If the

fra c t i o n s of flow to each sink from a source do not add up to

one, a message i s printed and that step i s repeated.

This completes the major procedures within the BUILD

procedure.

SAVEgET: This procedure i s invoked by the SAVE command and

allows a complete d e f i n i t i o n of a network model to be written

onto an MTS f i l e of the user's choice. The filename i s prompted

99

f o r i f i t was not entered as a parameter to the command. MTS

subroutines are used to create or empty the f i l e and to open i t .

The information saved consists of 1) the buffer words for the

network display, 2) an encoded description of the relevant

f i e l d s of the records f o r each e n t i t y , 3) an encoded description

of the routing matrix, and 4) the flow matrix.

RESTORE: The inverse of SAVENET, thi s procedure reads i n and

decodes the saved information, re-creating the data base and

display. The restored network replaces any currently active

network that may e x i s t , and the simulation s t a t i s t i c s are

i n i t i a l i z e d to zero.

LABEL: The LABEL procedure i s used to display or remove the

labels at each symbol in the network. The buffer words for a l l

of the labels are kept i n an array and only loaded into the

buffer when required for display. This routine i s automatically

c a l l e d to remove the labels before entering BOILD or s t a r t i n g

the simulation.

GO: GO i s a small procedure which monitors the Simulate-Edit-

Compile cycle. It i s envoked by the GO command to s t a r t or re

start the simulation. Hhen st a r t i n g a simulation, GO f i r s t

checks the data base i n order to make sure each source and each

server has been assigned a queue. Between i n t e r n a l cycles, GO

checks to see i f an attention interrupt has been issued or one

100

of the simulation l i m i t s has been exceeded. I f not, the

SIMULATE procedure i s c a l l e d . The EDIT and COMPILE procedures

are then c a l l e d , unless a HODISP command was issued before the

current GO.

SIMULATE: The main body of SIMULATE checks between the

processing of each event to see i f a simulation l i m i t has been

exceeded, an attention interrupt has been issued, or the

required number of potential seguences for the i n t e r n a l cycle

has been achieved. If none of these conditions hold, the

GETEVENT procedure i s c a l l e d , otherwise control i s returned to

the GO procedure.

GETEVEHT: The c o l l e c t i o n of routines comprising the simulation

program maintain two l i s t s of event records: the future events

l i s t (or gueue) and the l i s t of processed events to be passed on

to the EDIT procedure. GETEVENT processes the event at the head

of the future events gueue and puts the altered record i n the

output event l i s t . (If there are no future events scheduled,

then GETEVENT f i r s t c a l l s GENABB.) The event record i s described

in Appendix B. B a s i c a l l y , i t contains the event c l a s s , the time

of the event, and various parameters further defining the

s p e c i f i c simulation e n t i t i e s involved. The record also contains

f i e l d s l a t e r used f o r the animation time and duration.

GETEVENT begins by updating the clock to the time of the

new event. It then tests on the event class and uses the more

101

s p e c i f i c information to appropriately update the state and

s t a t i s t i c s of the model i n the data base. For each future event

that must be scheduled as a r e s u l t of the current event, the

procedure GETEVENT i s c a l l e d i n order to create the proper event

record i n the future events queue. The aspects of the current

state of the simulation that w i l l be required by the COMPILE

procedure are then added to the current event record and i t i s

placed i n the output event l i s t .

3ENABB: This procedure generates one a r r i v a l event at each

source to i n i t i a l i z e the simulation. (An a r r i v a l event always

causes the scheduling of the next a r r i v a l event at that source.)

A pseudo-random number generator i s used to derive independent

random number streams f o r each source (and each server). Thus

the time of a r r i v a l i s determined by the stream and the user-

specified probability d i s t r i b u t i o n for that source. GENABB must

also use the flow matrix and a separate random number stream in

order to determine the destination sink f o r the new a r r i v a l .

GENEVENT: GEN EVENT i s c a l l e d from GETEVENT with an argument

specifying the event class desired f o r the new event. GENEVENT

then uses the information i n the current event record and in the

data base to create the new event record. This record i s placed

i n the future events queue.

SENDSTATE: When the simulation stops, the data base contains the

1 0 2

current state of the model. SENDSTATE i s automatically c a l l e d

at t h i s time to scan the relevant records and display the

current state of each queue, buffer, and server. (This i s

desirable since either NODISP was s p e c i f i e d , or the t a i l of the

l a s t i n t e r n a l cycle was not displayed.)

EDIT: The EDIT procedure edits the l i s t of event records output

by the simulation. These same records are used to form the

sequence l i s t and t a i l l i s t . Chapter II describes the editing

process i n d e t a i l .

COMPILE: The operations performed by the COMPILE procedure are

also described i n Chapter II. The f i r s t part of the procedure

steps through each record i n the sequence l i s t . Depending on

the event c l a s s , selected smaller procedures are c a l l e d to

ac t u a l l y compile the display programs for each sequence. The

second part of the routine then compiles the buffer timer words

and sends the completed array to the Adage.

RESET: The RESET routine goes through the data base and, for

each e n t i t y , changes the state and s t a t i s t i c s to t h e i r i n i t i a l

value. It also displays a fresh copy of the network, restores

the random number seeds, eliminates any remaining event or

sequence l i s t s , and resets the simulation clock.

SPEED: The SPEED procedure uses a small array of pre-defined

103

settings for the animation time conversion factor and the length

of the i n t e r n a l cycle. The argument to the procedure s p e c i f i e s

whether to assign the values for the next fa s t e r display, the

next slower display, the default speed display, or the scan mode

display (which also requires setting the sequence durations to

zero). Also, i f a t a i l l i s t e x i s t s , the SPEED procedure w i l l go

back and adjust the animation times i n the t a i l according to the

new factor (see sections 2.3.3 and 2.4.2).

104

APPENDIX B — DATA STRUCTURE

The b a s i c r e c o r d d e s c r i b i n g each model e n t i t y i s the NODE

r e c o r d (see f i g u r e 2 2) . These r e c o r d s a r e grouped i n t o f i v e

s e p a r a t e l i s t s o f s o u r c e s , s e r v e r s , s i n k s , queues, and b u f f e r s .

S t a r t i n g
B u f f e r
L o c a t i o n

E n d i n g I C u r r e n t
B u f f e r \ S t a t e
L o c a t i o n

I d e n t i f y i n g
N u m b e r

Y - C o o r d i n a t e .
o f S y m b o l

X - c o o r c i n a t e
o f S y m b o l

Po i n t e r t o
Q u e u e NODE
i f a S e r v e r
o r S o u r c e
a n d t o B u f f e r
NODE i f a
Q u e u e

P o i n t e r t o
n e x t NODE
i n L i s t

P o i n t e r t o
S t a t i s t i c s
R e c o r d i f
n o t a S i n k

P o i n t e r t o
M U L T S E R V i f
a Q u e u e a n d
t o D I S i f a
S e r v e r , S o u r c e
o r B u f f e r

FIGURE 2 2 : The NODE Record

The NODE r e c o r d i s augmented, when n e c e s s a r y , by t h e BIS,

HULTSERV, and STATISTICS r e c o r d s . The DIS r e c o r d has t h r e e

f i e l d s and c o n t a i n s t h e a r r i v a l o r s e r v i c e time d i s t r i b u t i o n

code and p a r a m e t e r s , o r the b u f f e r c a p a c i t y . The STATISTICS

r e c o r d a l s o has t h r e e f i e l d s . For queues and b u f f e r s , i t

c o n t a i n s t h e s t a t i s t i c s f o r computing the average and maximum

queue l e n g t h o r b u f f e r occupancy. For s o u r c e s i t c o n t a i n s the

number o f l o s t a r r i v a l s and an i n t e g e r i d e n t i f y i n g t he random

105

number stream. For servers i t contains the stream i d e n t i f i e r ,

the re-send time, and the number of times found f u l l . Figure 23

shows the use of the MULTSER V record and the associated TRANPAR

and HSPTR records. For each queue, there i s one TRANPAR record

for every item i n the queue (not including items being served).

Future transaction parameters would require expansion of thi s

record. Also, f o r every server using the queue, there i s one

HSPTR record.

The network d e f i n i t i o n i s completed by the ROUTE matrix

consisting of pointers to NODE records (queues or sinks), and

the FLOW matrix of r e a l numbers.

The EVENT record contains several f i e l d s which take on

various meanings at d i f f e r e n t points in the processing. Figure

24 summarizes t h i s record.

106

MODE (Q u e u e)

P o i n t e r S o u r c e N u m b e r
. t o NODE . a n d A r r i v a l
(D e s t i n a t i o n T i m e
S i n k .)

FIGURE 23: Data Structure for Queues

107

t
E v e n t
C l a s s
C o d e

P o i n t e r t o
MODE R e c o r d s
a s " S u b c l a s s
D e s i e n a t o r s "

S e q u e n c e
D u r a t i o n

S i m u l a t i o n
I i me

Q u e u e a n d B u f f e r
S t a t e P a r a m e t e r s
f o r C o m p i l e R o u t i n e

P o i n t e r t o
P r e v i o u s
EVENT
R e c o r d

F
Po i n t e r t o

NODE
(D e s t i n a t i o n

S i n k)

P o i n t e r t o
n e x t EVENT
R e c o r d

F I G U R E 2 4 : T h e EVENT R e c o r d

108

APPENDIX C — USER'S GUIDE

Purpose

ANISIM provides a command language for creating,

simulating, and animating a r b i t r a r y queuing network models.

There are two main phases of execution: the normal command mode

at the 3270, and the menu dialogue for network d e f i n i t i o n and

modification using the Adage and the 3270.

Running the Program

Before attempting to run ANISIM, make sure that the

graphics monitor has been loaded into the Adage computer. See

the Computing Centre writeup UBC GRAPH for d e t a i l s . The

following command may then be used to st a r t execution of ANISIM:

$S0URCE WALK:ANISIM

The program w i l l f i r s t ask the question "ARE YOU USING THE

ADAGE—TRUE OR FALSE," which should be replied to by s p e l l i n g

out the word "TRUE" (or "FALSE"). The program w i l l then clear

the Adage screen and enter the command mode with the message

"ENTER COMMAND OR HELP." On entering "HELP," a l i s t of

available commands w i l l be presented along with a b r i e f reminder

of t h e i r purpose.

109

Adage Input

The six d i a l s connected to the Adage are used i n the

following way:

DIAL A DIAL D

the horizontal crosshair the v e r t i c a l crosshair

DIAL B

in t e n s i t y of symbols and

names of un-entered modes

DIAL C

X-co-ordinate of menu

DIAL E
in t e n s i t y of l i n k s and labels

and names of entered modes

DIAL F

Y-co-ordinate of menu

To use the function buttons (required during SYMBOLS mode

of the menu dialogue) the yellow overlay card marked "ANISIM"

should be used. If t h i s card cannot be located, the function of

each button i s as follows:

BUTTON 1: Creates a source.

BUTTON 2: Creates a server.

BUTTON 3: Creates a sink.

BUTTON 5: Creates a queue.

Orients the t a i l of the queue symbol.

110

BUTTON 6: Creates a buffer.
Sketches the buffer symbol.

BUTTON 7: Terminates buffer sketching.

Terminates SYMBOLS mode.

BUTTON Hz Selects the default buffer symbol.

BUTTON 8: Allows a sketched buffer symbol.

Bhen using the lightpen, the display w i l l blink when a h i t

has been accepted, and the button should then be released to

avoid an unintended second h i t . Also, as a general rule i n the

menu dialogue, a lightpen h i t on the prompting message i s used

to terminate a mode or avoid an assignment.

Av a i l able Commands ^brackets denote optional parameters},!

BUILD X NEWNETX or EDITNET

Each causes the program to enter the menu dialogue phase.

NEWNET f i r s t destroys any active network, and EDITNET should be

used f o r small changes to the active network. The menu dialogue

phase i s described l a t e r in more d e t a i l .

C Y C L E _ n J J L s 2 J Ls^j [_MJ

Changes the l i m i t s on the simulation and prints the resulting

values. If any parameter i s missing or given as an asterisk

(position holder), the current value i s retained and printed.

The parameters are 1) the simulation clock time l i m i t , 2) the

maximum number of a r r i v a l s generated, 3) the maximum number of

entries into gueue/server systems, 4) the maximum number of

111

terminations (departures to s i n k s) . Default values are 1000,

200, 200, and 50, respectively.

DESPEED

Returns to the default speed for subsequent animations.

DOR LSiJ LS2J LRU LRU

Alters the sequence durations (in simulation time) to the new

values i f s p e c i f i e d , and prints the values. The sequences are

1) a r r i v a l s , 2) l o s t a r r i v a l s , 3) departures (binding), and 4)

departures to sinks. A l l default durations are 10 simulation

time units, except during SCAH mode when they are zero.

EDITNET

See BUILD.

END

Terminates the program. An attention interrupt also returns

control to MTS but the program can be resumed with a $RESTART

command.

FACTOR LHJ

Alters the animation time conversion factor to the new value i f

sp e c i f i e d , and prints the value. The smaller the factor, the

faster the display. The default factor i s set to 10.

FASTER

Increases the speed of subseguent animations, unless the current

speed i s the f a s t e s t , and prints the new factor and cycle length

values.

30 In J
Simulates the active network for n time units from the current

112

state or u n t i l interrupted, or u n t i l a simulation l i m i t i s

exceeded (see the CYCLE command). The animation accompanies the

simulation unless a NODISP command i s f i r s t issued.

INTERCY £nj

Alte r s the length of the i n t e r n a l cycle to the new value i f

sp e c i f i e d , and prints the value. For fast displays, the

i n t e r n a l cycle should be made larger to avoid delays in the

animation between cycles. Default value i s 15 sequences.

LABEL

Displays unique labels at each symbol. These labels allow

reference to s p e c i f i c network e n t i t i e s by information available

from the PRINT command. The inte n s i t y of the labels i s

controlled by d i a l E.

MORHELP

Prints additional commands not l i s t e d by HELP.

NEWNET

See BUILD.

NOJDISP

Turns off the animation for the duration of the next GO command.

PLOT [_sj

Provides a hardcopy plot of the display. The maximum dimension

i s 10 inches unless the parameter otherwise s p e c i f i e s . PL0T:Q

must be run a f t e r termination ANISIH.

PRINT ni |_n2J

Prints the following information, according to the f i r s t

argument. The second argument, i f not zero, w i l l cause the

113

program to ask f o r the name of an MTS f i l e on which to print the

information. The codes are:

0) A l l of the information available from codes 2-8 and

16.

1) A l l of the information available from codes 3-8 and

16 (i . e . a l l s t a t i s t i c s) .

2) A description of the future events l i s t .

3) A l l of the information available from codes 4-8.

4) Source numbers and s t a t i s t i c s .

5) Sink numbers and s t a t i s t i c s .

6) Server numbers and s t a t i s t i c s .

7) Queue numbers and s t a t i s t i c s .

8) Buffer numbers and s t a t i s t i c s .

11) A description of the current seguence l i s t .

12) The most recently compiled animation buffer (for

debugging) .

13) A summary of the current model e n t i t i e s and

parameters.

14) The current value of each random number stream (for

debugging).

15) The entire Adage display buffer (for debugging).

16) The average time-in-system s t a t i s t i c s by source-

sink pairs.

Any other number w i l l result i n the printing of the current

status of the simulation.

111

RESET

Resets the simulation variables, the s t a t i s t i c s , the model

state, the random number seeds, and the display to the i r i n i t i a l

status.

RESTORE [_filenamej

Destroys the current active network and makes active the network

saved on the MTS f i l e s p ecified.

SAVE j_filenamej

Saves the active network on the MTS f i l e s p e c i f i e d . If the f i l e

does not already e x i s t , i t w i l l be created.

SCALE _xj

Alte r s the scale of the display to the new value i f s p e c i f i e d ,

and p r i n t s the value. The default i s 0.6.

SCAN

Allows the animation to be displayed at an increased speed with

no moving items (i . e . a l l "seguence durations" are zero). The

new factor and cycle length values are printed out.

SLOWER

Reduces the speed of subsequent animations, unless the current

speed i s the slowest, and prints the new factor and cycle length

va lues.

STOP

Same as END.

TRACK n l [_n2J

Sets debug f l a g s for the programmer. The second argument causes

the program to ask for the name of an MTS f i l e on which to print

115

the output. The flags are 0) PRINTCYC, 1) PRINTSTEPOUTP, 2)

LITDUMP, 3) TRACE, 4) DUMPER, 5) COMPTRACE, 6) COMTRACE, and 7)

BUFTRACE. Flag 3 may also be of value to the user, as i t

provides a detailed trace of the simulation.

UNLABEL

Removes the labels from the screen. (This i s done automatically

before simulating and before entering the menu dialogue.)

The Menu Dialogue

Once t h i s phase of the program i s entered, commands are entered

by pointing with the lightpen to a mode name i n the menu. The

menu should be positioned by d i a l s C and F to a convenient

location on the screen. It w i l l disappear during the execution

of each mode. Also, Dials B and E should be adjusted such that

un-entered modes are at normal i n t e n s i t y and entered modes are

at a reduced i n t e n s i t y . A mode may be re-entered by turning the

in t e n s i t y back up i n order that the lightpen h i t w i l l take.

When building a new network, a recommended order of execution i s

the order i n which the mode names are l i s t e d . The purpose of

each mode i s outlined below, along with any inst r u c t i o n s for use

not obvious from the dialogue.

SYMBOLS: This mode i s used to create model e n t i t i e s with the

function buttons and position t h e i r symbols at the locations

defined by the crosshairs. Button 7 i s used to terminate the

mode. When creating a gueue, a second button h i t i s reguested.

116

The head of the gueue w i l l be located at the f i r s t crosshair

location and the t a i l w i l l be oriented i n the dire c t i o n of the

second crosshair location. Buffer symbols may be sketched i n

any shape. Upon selecting a buffer (button 6), the bargraph

appears at the crosshairs location and the user i s asked whether

he wants to sketch (button 8) or use the default shape (button

4). If i t i s sketch, button 6 i s used with the crosshairs to

specify li n e endpoints. No l i n e w i l l be drawn to the f i r s t

point s p e c i f i e d . Button 7 terminates the sketching, The

lightpen may be used i n thi s mode to delete a symbol or l i n k by

pointing to i t . A maximum of 19 gueues, 19 servers, 10 sources,

10 sinks, and 6 buffers are currently allowed, including any

deleted ones,

LINKS: This mode i s used to connect any pair of symbols with a

li n e by pointing to the symbols with the lightpen. The

in t e n s i t y of the l i n k s i s controlled by d i a l E.

ASSIGNQ: Every server must be assigned a unigue gueue. These,

and other assignments, are made by pointing to the symbol with

the lightpen. The assignment i s made to the server that i s

blin k i n g .

FIRST QUEUES: Every source must be assigned a unigue queue to

designate the f i r s t queue/server system i n the route for items

generated at that source.

ASSIGN BUF: This mode i s required i n order to t e l l the program

where to send an item next, given that i t i s at a gueue/server

system (blinking queue) and i s destined for the blinking sink.

117

The user should point to the next queue or to the sink.

CAPACITIES: This mode i s required i f the default capacities of

20 f o r queues and 100 for buffers are not appropriate. The

capacity of a queue does not include the servers, although the

state of a queue refers to the queue/server system.

FLOW: This mode i s required i n order to define the i n t e r - a r r i v a l

time d i s t r i b u t i o n type and parameters. (Currently, the

exponential and uniform d i s t r i b u t i o n s are available.) The mode

i s also used to define the flow of items generated at each

source, by entering the f r a c t i o n (decimal f r a c t i o n between 0.0

and 1.0, inclusive) of those items to be destined for each sink.

I f the f r a c t i o n s do not add up to 1.0 for each source, the user

w i l l be asked to try again.

SERVICE TIMES: This mode i s required i n order to specify the

d i s t r i b u t i o n and parameters of the service time for each server.

It i s also used to specify the (constant) time a blocked item

must wait i n the server before attempting to depart again. (An

item i s blocked by either the next queue or i t s buffer being

f i l l e d to capacity.)

DONE: This i s not ac t u a l l y a mode, but causes the menu to

disappear and control to be returned to the normal command phase

at the 3270. Since there may s t i l l be bugs in ANISIM which

could cause an unexpected termination of the program, any newly

created or modified network should be saved at t h i s time using

the SAVE command.

This user's guide i s not intended to provide a thorough

118

understanding of the uses and c a p a b i l i t i e s of ANISIM. The

interested user i s referred to the main body of t h i s thesis f o r

further d e t a i l s .

