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ABSTRACT 

An int e r a c t i v e system i s described which allows for the 

graphic construction, simulation, and simultaneous animation of 

an a r b i t r a r y network of queues. A method i s proposed and 

implemented for representing the events of a discrete simulation 

by a continuous animation on a graphics terminal. Techniques 

are presented f o r the display of p a r a l l e l animation "sequences," 

and a non-trival mapping of simulation time into animation time 

i s described which preserves the r e l a t i v e order and time 

relationships between events. The program implemented combines 

t h i s animation f a c i l i t y with other simulation monitoring and 

control features. The usefulness of thi s type of approach i s 

discussed with respect to computer-aided design applications, 

educational tools, and research tools. An i n t e r a c t i v e dialogue 

which makes use of the lightpen and a menu of commands i s 

implemented for the construction and modification of the queuing 

network. Certain relevent aspects of man-machine inte r a c t i o n 

are discussed. Also, some prospects are considered for applying 

the animation techniques developed i n thi s implementation to 

other discrete event processes. 
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INTRODU CTION 

0 . 1 Animating Simulations 

Discrete event simulation has become an important t o o l in 

the analysis and design of complex systems. Conclusions about 

the performance of a system can be drawn from the s t a t i s t i c s 

produced by simulating a model of that system with various 

parameters and s p e c i f i c a t i o n s . When analyzing the output of 

such a simulation, the modeller must f i r s t of a l l be aware of 

the inherent assumptions of the model, as well as the values of 

the parameters. Secondly, he may need to know more about 

c e r t a i n c h a r a c t e r i s t i c s of the model that may be masked by 

s t a t i s t i c a l averages or extremes. Determining just how to a l t e r 

a model i n order to improve i t s performance can be a d i f f i c u l t 

or even counterintuitive process. If only the modeller could 

"step inside" his model and "watch" i t perform as the r e a l 

system might perform. 

This thesis describes the implementation of a system that 

brings the modeller to a closer understanding of h i s model by 

providing a graphical animation of i t s simulation. The 

animation f a c i l i t y i s the main feature of a complete i n t e r a c t i v e 

package which allows an on-line graphical d e f i n i t i o n of the 

model and extensive monitoring of i t s simulation. Considerable 

emphasis has been placed on providing f o r a reasonably smooth 

and meaningful dialogue between the user and the system. 
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One p a r t i c u l a r use of t h i s system, t h a t o f s t u d y i n g i n 

g e n e r a l t h e b e h a v i o r known as " d e a d l o c k " , w i l l be d i s c u s s e d , as 

w e l l a s a p p l i c a t i o n s t o computer a i d e d d e s i g n and t o computer 

a n i m a t i o n as an e d u c a t i o n a l t o o l . A g e n e r a l t e c h n i q u e i s 

devel o p e d f o r t h e mapping of s i m u l a t i o n " e v e n t s " i n t o a s e t o f 

c o - o r d i n a t e d a n i m a t i o n "sequences" f o r d i s p l a y . A l s o , some 

i m p l i c a t i o n s a r e drawn c o n c e r n i n g the use o f s i m i l a r a n i m a t i o n 

t e c h n i q u e s f o r m o n i t o r i n g o t h e r , perhaps r e a l - t i m e , p r o c e s s e s . 

B a e c k e r [ 1 ] sums up the u t i l i t y o f computer a n i m a t i o n i n 

v i s u a l i z i n g dynamic phenomena o f mathematics, s c i e n c e , and 

e n g i n e e r i n g : 

"The computer has proved p a r t i c u l a r l y u s e f u l because 
o f i t s a b i l i t y t o c o n s t r u c t p r e c i s e , m a t h e m a t i c a l l y 
determined images, because o f i t s a b i l i t y t o s i m u l a t e 
h y p o t h e t i c a l w o r l d s , because of i t s a b i l i t y t o expand 
or c o n t r a c t space and t i m e , and because o f i t s a b i l i t y 
t o p o r t r a y complex s p a t i a l phenomena, p a r t i c u l a r l y 
t hose i n t h r e e d i m e n s i o n s . " 

2i2_Sco£e 

When c o n s i d e r i n g the o b j e c t i v e o f a n i m a t i n g s i m u l a t i o n s , 

perhaps t h e u l t i m a t e g o a l would be t o d e v e l o p a system t h a t 

c o u l d animate any a r b i t r a r y s i m u l a t i o n program. T h i s was not 

a t t e m p t e d , and i s p r o b a b l y not even p o s s i b l e . Baecker and h i s 

s t u d e n t s [ 1 ] a r e d e v e l o p i n g a v a r i e t y of s y s t e m a t i c t e c h n i q u e s 

f o r r e p r e s e n t i n g computer p r o c e s s e s w i t h dynamic images. T h e i r 

emphasis, so f a r , has been on a n i m a t i n g computer £ro<jrams, 

r a t h e r than p r o c e s s e s which a r e d e s c r i b e d by s i m u l a t i o n 
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programs. One conclusion they have already reached, i s that i t 

i s impossible to build a system which could produce a good 

animation of any program i n any language running on a s p e c i f i c 

machine. Instead, they want to build a variety of powerful 

special-purpose tools, each suited to the animation of a 

p a r t i c u l a r class of programs. an animation of a simulation must 

manipulate graphical symbols i n such a way that they resemble 

the objects and processes being modelled. Even a very 

i n t e l l i g e n t program could not create meaningful symbols and 

motions by scanning the code of a simulation program. After 

a l l , the model i t s e l f i s only an abstraction of r e a l i t y . The 

animation must create a vi s u a l image of a r e a l s i t u a t i o n ; a task 

which requires information often not available from, or 

important to, the model. In f a c t , in the case of a discrete 

event simulation (described i n Section 0.4), the animation must 

appropriately " f i l l i n " the time between simulated events i n 

order to provide a continuous display. 

A lesser goal, therefore, might be to animate programs 

written i n a s p e c i f i c simulation language, such as Simscript 

[21] or GPSS [ 9 ] . I t may be possible to provide a limited set 

of pre-defined, or e a s i l y defined, graphic primitives (both 

symbols and motions), and a set of function c a l l s to be inserted 

into the simulation where required to produce the desired 

animation e f f e c t s . This method would be d i f f i c u l t to implement 

and would place an overwhelming burden on the user to create a 

well-defined program with a l l of the necessary information 



a v a i l a b l e for the animation routines. 

Thus, the system which has been implemented, hereafter 

referred to as ANISIH, does not attempt to animate an exis t i n g 

simulation, but contains i t s own spe c i a l simulation program 

designed to handle a subclass of models known as queuing network 

models. This s t i l l involves a large variety of possible models, 

but the system i s now able to help the user formulate a well-

defined model at the graphics terminal while i t creates the data 

structures necessary for the simulation and animation programs. 

It w i l l be shown l a t e r , how the techniques used i n ANISIM could 

be applied to certain other models or classes of models. The 

concept of a b u i l t - i n simulation means that the user works with 

a command language rather than a programming language. The 

trade-off i s between using a simple and convenient command 

language and having the a b i l i t y to t a i l o r the power of the 

simulation to handle s p e c i f i c needs. 

0 i3_2ueuin3_Networks 

Before proceeding to further discussion of ANISIH, i t w i l l 

be useful to describe what i s meant by queuing networks and by 

simulation states and events. 

A queuing network model consists b a s i c a l l y of items 

t r a v e l l i n g along l o g i c a l paths of a network of "queues" and 

"servers". A queue represents a waiting l i n e of items (or 

"transactions") trying to get into one of the servers of the 
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"queue/server system". A server represents a delay of the item 

occupying i t before the item can move on to the next 

queue/server system or e x i t from the network. In c l a s s i c a l 

queuing theory, the "movement" of an item between any two nodes 

i n the network i s assumed to occur instantaneously. Items enter 

the network from a "source" and leave the network by going to a 

"sink". Figure 1 shows a queue/server system with ten items, 

s i x of them waiting to be served and four being served (the 

small squares). The symbols i n Figure 1 are those used by 

ANISIM and do not represent any queuing theory conventions. 

Certain f a i r l y simple queuing networks can be "solved" 

a n a l y t i c a l l y — t h a t i s , average queue lengths and waiting times 

can be found, mathematically, for the gueuing system when i t i s 

i n steady state [ 1 1 ] . Networks which can be solved i n t h i s 

manner are largely r e s t r i c t e d to those with i n f i n i t e queues and 

s p e c i a l constraints on a r r i v a l and service time d i s t r i b u t i o n s . 

Also, no information i s available regarding the performance of 

the system during more transient or time-dependent states. When 

a n a l y t i c a l solutions are inadequate or unavailable, simulation 

must be used to analyze the system. Like any other model, a 

queuing network i s an abstraction of r e a l i t y , although perhaps a 

more formal one than some. Thus any conclusions drawn about the 

behaviour of the queuing model can only be considered as 

approximations of the behavior of the r e a l system being 

modelled. 
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FIGUBE 1: A Simple Queuing Network 
From L e f t to B i g h t : Source, Queue, S e r v e r s , and Sink. 
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imul a t j o n g t a t eg_and 

The type of simulation involved here i s known as a discrete 

event simulation. This means that the model can be 

characterized by i t s "state" at any p a r t i c u l a r time and by a set 

of "events", or state changes, which occur at discrete time 

instants. Events can be exogenous (generated outside the 

system) or endogenous (generated within the system as a result 

of a previous event or s t a t e ) . There are a limited number of 

general types or "classes" of events that can occur, and each 

event i s an instance of an event class. 

Consider the following example of a discrete event model 

fo r a one-car f e r r y across a r i v e r , an observer on a nearby 

h i l l , sees an " a r r i v a l " as a car appearing at the l a s t bend of 

the road and moving to the end of the lineup. He sees a 

"service" as the loading of the f i r s t car into the fe r r y plus 

the actual crossing, the unloading, and perhaps the return t r i p 

of the f e r r y . F i n a l l y he sees a "departure" as the car moving 

on the other bank u n t i l i t disappears. A t y p i c a l discrete event 

model of t h i s s i t u a t i o n i s the so-called "single server f i r s t - i n 

f i r s t - o u t queue." The state of the system i s merely the number 

of cars in the lineup plus the one being served by the f e r r y . 

An " a r r i v a l " i s the instantaneous exogenous event that adds one 

to the state and a "departure" i s the instantaneous endogenous 

event that subtracts one from the state. The actual crossing or 

"service" i s the abstract concept of wait or delay between two 



8 

departures. Completely i r r e l e v a n t in t h i s p a r t i c u l a r model 

abstraction are the actions defined by the movement of the cars 

or the f e r r y (or the f a c t that they are cars at a l l ) . 

Of course, one could model a variety of s i t u a t i o n s using 

only these basic concepts. The modelling power may be increased 

by defining additional primitives while s t i l l maintaining the 

structure of a gueuing network. For example, at an early stage 

of development i t was decided that ANISIM should allow a 

"buffer" e n t i t y that imposes a f i n i t e common storage l i m i t on 

two or more queues. (e.g. I f the f e r r y terminal had two one-

car f e r r i e s , each with t h e i r own waiting l i n e , but the two l i n e s 

had to share the same limited parking area.) I f the number of 

features added to the system to increase modelling power were 

allowed to become very large, (approaching, say, the 

c a p a b i l i t i e s of GPSS [ 9 ] ) , then two things might happen. F i r s t , 

the programming system, which i s large to begin with, may become 

too c o s t l y to use and awkward to maintain (as many large 

programming systems tend to be). More importantly, the 

graphical primitives would i n a l l probability f a i l to keep up 

with the much wider variety of modelling abstractions, each of 

which require v i s u a l aids to restore some r e a l i t y to the model 

being monitored. 

One of the main objectives of ANISIM i s to make i t possible 

for a human at the display terminal to monitor a simulation and 

to do i t as e a s i l y and accurately as possible. However, for 
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even a moderately complex system where the state of the system 

cannot be accurately represented by a simple number as i n the 

f e r r y example, but by a vector with many components, monitoring 

the simulation i s not a t r i v i a l task. What to display and how 

to display i t becomes the main problem. Solutions range from 

the display of the state vector i t s e l f every time i t changes 

(i.e. Display numbers or other symbols), to a sophisticated 

animation where sequences of moving elements are added as visual 

aids. ANISIM uses the l a t t e r , under the assumption that the 

mecessary abstractions which were, indeed, so useful for 

a n a l y t i c a l and computational purposes, hinder the process of 

monitoring the system (see figure 2 ) . 



Rea'l 
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R e s t o r e R e a l i t y 
( V i s u a ! A i d s ) 

D i s p l a y 

l I 
The M o n i t o r i n g Human 

A b s t r a c t i on 
o f R e a l i t y 

S i m u l a t i on 

C a l c u l a t i o n s 

S t a t i s t i c s 

I t 
The A n a l y z i n g Human 

FIGURE 2 : Modelling Abstractions 
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I. INTERACTIVE GRAPHICS FOR COMPUTER-AIDED MODELLING 

iiJ_Tv£gs_of_Svsterns 

A number of graphics systems have been developed i n the 

l a s t few years that provide a c a p a b i l i t y to model a process or 

s p a t i a l configuration in order to learn more about i t and, 

hopefully, improve i t s design. (Several of these are mentioned 

below. Further discussion and references may be found in Prince 

[18], Smith [23], and Newman and Sproull [16].) In many cases, 

the information available from such a model can be considerably 

enhanced by allowing the viewer to interact with the system that 

generates or displays the model, even i f t h i s interaction i s 

simply, say, the rotation about an axis of a 3-D model of a 

molecule [17]. Some systems use the graphics terminal as a 

sophisticated sketchpad, while others re l y on the terminal for 

input to, and output from, a non-graphics processing program. 

In almost a l l systems, a s u f f i c i e n t data structure must be 

created by the program to allow, at l e a s t , the saving and l a t e r 

restoring of models generated. Also, in even the simplest 

system, some thought must be given to the manner in which the 

user and the program communicate with each other (see Chapter 

III) . 

Consider the following two examples: a) an i n t e r a c t i v e 

program to design the s p a t i a l layout of integrated c i r c u i t s 

[19], and b) and a r c h i t e c t u r a l l y oriented program for generating 
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perspective drawings of three-dimensional polyhedra [14], In 

each case, the user can quickly sketch preliminary "models", at 

a convenient scale, of something he may l a t e r construct or 

design i n more d e t a i l . The processing program i s confined 

mostly to graphical techniques which help the designer create a 

well-defined model and then observe as much as possible about 

the model that he has just created. 

Another type of computer-aided modelling allows the user to 

see, and thus further comprehend, the results produced by a non-

graphics processing program. For example, a number of 

int e r a c t i v e systems have been developed to aid i n c u r v e - f i t t i n g 

and other mathematical approximation techniques [15,23,12]. The 

user s p e c i f i e s input data, parameters and options, any of which 

he may wish to a l t e r a f t e r viewing graphical representations of 

the output (or of intermediate steps). Such systems usually 

must also make available more detailed printed information for 

la t e r study. ANISIM i s p a r t i a l l y t h i s type of system, as i t 

allows the user to quickly analyze the e f f e c t s of simulation 

parameters by displaying the r e s u l t s of the simulation. The 

int e r a c t i v e features which f a c i l i t a t e t h i s c a p a b i l i t y are also 

discussed i n Chapter III. 

On the other hand, there are cases when an in t e r a c t i v e 

graphics c a p a b i l i t y provides for a more natural ingut medium to 

a non-graphics program i n terms of speed, convenience, or 

possibly r e l i a b i l i t y [24], For example, Forrester [8], has 
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found i t necessary to d e s c r i b e complex dynamic s i m u l a t i o n models 

g r a p h i c a l l y , i n order to f o l l o w the i n t e r - r e l a t i o n s h i p s between 

the v a r i a b l e s , and then code the s i m u l a t i o n i n a programming 

language. Chheda [ 4 ] has developed an i n t e r a c t i v e system f o r 

c r e a t i n g t h i s g r a p h i c a l r e p r e s e n t a t i o n of a dynamic model on a 

g r a p h i c s t e r m i n a l i n such a way t h a t the program statements f o r 

the a c t u a l s i m u l a t i o n are a u t o m a t i c a l l y generated. Of course, 

t h i s type of system may r e q u i r e the user to enter a l a r g e amount 

of d e t a i l e d i n f o r m a t i o n at the g r a p h i c s t e r m i n a l . The q u a l i t y 

of the d i a l o g u e between the system and the user t h e r e f o r e , 

becomes of paramount importance to the success of t h i s approach 

t o model desi g n . 

1. 2_ANISIM 

ANISIM i s a l s o , i n p a r t , t h i s l a t t e r type of system. In 

Chapter I I I we see how the program guides the model b u i l d e r 

through the necessary steps r e q u i r e d to b u i l d a w e l l - d e f i n e d 

queuing network, while c o n s t r u c t i n g the necessary data base f o r 

the s i m u l a t i o n (and animation). The advantages of g r a p h i c a l 

i n p u t , i n the case of network d e s i g n , a l s o i n c l u d e the immediate 

v i s u a l feedback t h a t the modeller can u t i l i z e i n order to help 

v e r i f y t h a t the intended model i s being p r o p e r l y c r e a t e d . 

Thus we see t h a t ANISIM combines the advantages of 

g r a p h i c a l i n p u t to a p r o c e s s i n g program with those of a 

g r a p h i c a l d i s p l a y of the r e s u l t s . In the case of s i m u l a t i o n 
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however, i t i s sometimes desirable to display not just the 

representation of a " f i n a l state", but a detailed animation of 

the model as the simulation progresses. In other words, the 

processing of the simulation and the display of i t s events must 

occur almost simultaneously i n order to enable the model 

designer to actually interact with the simulation (the "almost" 

i s explained i n Chapter I I ) . k user of AHISIM, once he has 

created a network, may decide to monitor an animation of i t s 

simulation for a while, interrupt the simulation when he i s not 

s a t i s f i e d with the model ,s performance, and possibly display 

some s t a t i s t i c s for further appraisal. He may then wish to edit 

one or more parameters or even the model structure, and resume 

monitoring the simulation (after reseting the s t a t i s t i c s and 

clock, i f necessary). 

1 :3_Im£ortant_Princi£les 

There are then, three main p r i n c i p l e s that seem to be 

present i n most i n t e r a c t i v e graphics modelling systems: a) the 

system provides a means of testing model design that i s fa s t e r , 

e a s i e r , more r e l i a b l e , or otherwise more convenient than other 

possible methods, b) the system allows the modeller to proceed, 

with a r e l a t i v e l y short turn-around time, through the cycle of 

design, study, and re-design i n his attempt to optimize the 

model (or otherwise t e s t v a r i a t i o n s ) , and c) the system makes 

use of the graphics terminal as an additional I/O medium to 

augment the information that may be presented by other media. 



15 

In f a c t , i n some cases, the graphics terminal i s the only 

reasonable device on which the above two p r i n c i p l e s can be 

observed (such as i n the architecture program mentioned 

e a r l i e r ) . Furthermore, the int e r a c t i v e aspect of the system 

allows the user to s e l e c t i v e l y provide, display, or watch only 

that information which he fe e l s to be most pertinent. 

J i 4 _ H o del_Bej>r esent at ion 

One problem associated with monitoring the animation of a 

queuing network model in order to aid i n the design of a r e a l 

system l i e s i n the formulation of that system in the queuing 

network terms. The animation c e r t a i n l y aids i n the 

understanding of the queuing network, but i n some cases, the 

model i s formulated in such a way that i t does not v i s u a l l y 

resemble the real system that much. The formulation may be a 

very accurate approximation to the system, and the s t a t i s t i c s 

produced may provide important information about the system, but 

the animation i s of more value towards system design i f the 

modeller can mentally translate what he sees into what i t means 

i n the r e a l system. A simple example of thi s phenomenon i s that 

of an object which trav e l s between two service f a c i l i t i e s (say, 

a ship between two ports). The t r a n s i t time i s important to the 

model and cannot ea s i l y be combined with the delay of the f i r s t 

service f a c i l i t y (e.g. the loading times at the f i r s t port are 

assumed to be exponentially distributed and the travel times are 

uniformly d i s t r i b u t e d ) . The queuing network model of t h i s 
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s i t u a t i o n thus requires one server for each service f a c i l i t y and 

a t h i r d server to approximate the delay associated with the 

route. Of course the animation then shows the object en route 

as a box inside a server symbol. (We s h a l l see i n the next 

chapter how the animation shows the box moving between servers 

merely to display, smoothly, state changes which are assumed to 

be instantaneous in the model.) In a f a i r l y complex system, 

several occurrences of t h i s problem may multiply the complexity 

of the network, further reducing the usefulness of the o v e r a l l 

animation (although the modeller may s t i l l f i nd s p e c i f i c 

portions of the animation in s t r u c t i v e to watch). 

There are two ways of combating t h i s representation 

problem. A user of ANISIH, with some practice, soon learns to 

position the symbols of the network so that the animation most 

c l o s e l y resembles, i n a l o g i c a l sense, the processes being 

modelled. With a l i t t l e more practice he becomes more adept at 

thinking of things in terms of s t r i c t queuing network 

representations. A l t e r n a t i v e l y , ANISIH could be expanded to 

include optional features (such as t r a n s i t times) that would 

allow a wider range of models to resemble the r e a l systems. To 

a cert a i n extent t h i s can and should be done. The drawback i s 

that the model d e f i n i t i o n phase (Chapter III) would become 

increasingly tedious for the user and i t would be more d i f f i c u l t 

f o r the program to help insure that the model created was well-

defined. Chapter V contains further discussion of potential 

extensions to ANISIH. 
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Additional comments on the u t i l i t y of animated monitoring 

as a simulation tool are i n Chapter IV. 
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I I . ANIMATION TECHNIQUES 

2. 1, gomputer_Animation 

Combining computer animation with simulation as a design or 

education tool i s not new. This seems p a r t i c u l a r l y true in 

f i e l d s such as physics, chemistry, e l e c t r i c a l engineering, and 

medicine, where laboratory experiments are being replaced by 

graphic simulation systems. An example i s a system which allows 

a medical student to observe the e f f e c t s of d i f f e r e n t stimuli on 

a diagram of a l i v i n g , moving organ [13]. However, most such 

systems involve continuous simulation rather than discrete event 

simulation. The model consists of a set of mathematical 

relationships which determine the value of each variable at 

every time unit as the simulation proceeds. Thus, at each time 

increment, the position, s i z e , length, or whatever, of each 

ent i t y i n the animation i s recomputed and the display i s 

updated. There i s no problem with p a r a l l e l processes. On the 

other hand, an event-oriented model changes state by discrete 

steps at i r r e g u l a r time i n t e r v a l s . It i s usually necessary to 

invent short, meaningful animation sequences to portray the 

state change of each component of the model. Most of t h i s 

chapter describes how ANISIM accomplishes t h i s task while 

maintaining the time relationships of the simulation. 

One example of an animated continuous simulation system 

that otherwise contains some s t r i k i n g p a r a l l e l s to ANISIM i s the 
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DYNIS program at the University of Waterloo [ 2 0 ] . DYNIS 

simulates and displays the response of three-dimensional 

mechanical systems (composed of masses, springs, dampers, force 

drivers and position d r i v e r s ) . Like ANISIM, i n t e r a c t i v e control 

of the simulation i s provided and a standard set of 

representative symbols i s used. Both programs have a " f i r s t 

stage" which leads the user through a s e r i e s of systematic 

decisions by the use of "menus" offering c e r t a i n possible 

choices. The use of a closed set of simulation e n t i t i e s (and, 

therefore, animation primitives), i n each case, allows t h i s 

f i r s t stage to create a well-defined model without carrying out 

an overly tedious dialogue. Like ANISIM, the symbols used are 

abstractions representing a wide variety of possible real-world 

objects. On the surface, then, these systems perform i n much 

the same way when used i n an i n t e r a c t i v e , system design 

environment. The s i g n i f i c a n t difference LIES IN THE INTERFACE 

BETWEEN THE SIMULATION AND THE ANIMATION. 

2«^.Representing_ Events 

As mentioned e a r l i e r , simulation events, or state changes, 

are assumed to happen instantaneously at discrete points i n 

time. However, such a change of state i s normally a modelling 

abstraction which corresponds to a real-world process that has 

some r e l a t i v e l y short duration. In the f e r r y terminal example 

of Chapter I, an a r r i v a l to the queue corresponds to a car 

dr i v i n g up to the parking area. In order to graphically monitor 
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a f e r r y terminal simulation, every time an a r r i v a l event 

occurred, one should see a symbol of a car moving to a symbol of 

the waiting area. Likewise, three common visual aids for events 

i n ANISIM are 1) an item moving from a source to a queue 

( a r r i v a l event), 2) an item moving from a server to a new queue 

(departure event), and 3) an item moving from a server to a sink 

(departure-from-system event). These, and other v i s u a l aids for 

events w i l l be referred to henceforth as "animation sequences", 

although they are single components of the ov e r a l l network 

animation. (We s h a l l see in Section 2.4.2 how each animation 

sequence i s compiled into a small display program.) Some 

sequences have no duration, such as the sequence that displays 

one more or one less item i n a queue. Also, not a l l events 

require a sequence, such as a blocked departure which must be 

rescheduled again ( i . e . the next queue or buffer i s s t i l l f u l l ) . 

F i n a l l y , a single event may trigger o f f more than one sequence. 

This i s true of a departure event, which requires a sequence to 

update the state of the losing queue/server system, a moving 

sequence (with a duration), and a sequence to update the state 

of the gaining queue/server system (see Figure 3). If either 

queue i s in a "buffer", then a fourth of f i f t h sequence may be 

required to update the bar graphs that show how f u l l the buffers 

are. Additional sequences currently i n ANISIM use arrows and 

blinking to i d e n t i f y blocked items and blocking gueues or 

buffers. 
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fc. A n i m a t i o n - T i m e = T: I n s t a n t a n e o u s Seguence Updates 
Queue/Server Systera; Moving Sequence B e g i n s . 

c. A n i m a t i o n Time = T+50: Moving Sequence i n 
P r o g r e s s . 

d. A n i m a t i o n Time = T+100: Moving Sequence Ends; 
I n s t a n t a n e o u s Sequence Updates Second Cueue/Server 
System. 

FIGURE 3: A n i m a t i o n Sequences f o r D i s p l a y c f a D e p a r t u r e "Event 



22 

2 ^ 3_A Q i m a t i o n_T i me_ F rame 

A r e q u i r e m e n t o f a n i m a t i n g a d i s c r e t e s i m u l a t i o n i s t o 

p r e s e r v e t h e r e l a t i v e p r e c e d e n c e o f e v e n t s a n d t o p r e s e r v e t h e 

r e l a t i v e t i m e b e t w e e n e v e n t s . T h u s t h e q u e s t i o n a r i s e s a s t o 

how a n d when t o d i s p l a y s e q u e n c e s w h i c h we c h o o s e t o g i v e a 

p o s i t i v e d u r a t i o n . The m a p p i n g o f s i m u l a t i o n t i m e i n t o 

a n i m a t i o n t i m e r e q u i r e s some f o r m a l i z a t i o n . 

2a3.1_Typ.es ° f S e q u e n c e s 

O n e , p e r h a p s t r i v i a l , way o f a d d i n g s e q u e n c e s w o u l d be t o 

e x p a n d t h e s i m u l a t e d t i m e s c a l e b y t h e d u r a t i o n o f t h e s e q u e n c e 

e v e r y t i m e a n e v e n t o c c u r s ( s e e F i g u r e 4). 

T h i s m e t h o d , h o w e v e r , h a s o n e s e r i o u s d r a w b a c k w h i c h i s 

t h a t i t s t o p s o r " b i n d s " t h e o n g o i n g s i m u l a t i o n t i m e e v e r y t i m e 

a n e v e n t o c c u r s . A l s o , t h e d i s p l a y i s c o m p l e t e l y s e q u e n t i a l , 

l e a v i n g no p r o v i s i o n f o r p a r a l l e l s e g u e n c e s . F o r e x a m p l e , t a k e 

t h e c a s e w h e r e t w o c a r s a p p r o a c h t h e l i n e up f o r t h e f e r r y . A 

s m a l l d i s t a n c e s e p a r a t e s t h e m , a n d t h e y a r e g o i n g a t t h e same 

s p e e d . A l l o u r s i m u l a t i o n m o d e l k n o w s i s t h a t c a r " a " a r r i v e s 

a t t h e q u e u e a t t i m e " t ( a ) n , a n d t h a t c a r " b " a r r i v e s a t t i m e 

" t ( b ) " , w h e r e t h e d i f f e r e n c e b e t w e e n t h e t w o t i m e s i s a 

r e l a t i v e l y s m a l l p o s i t i v e n u m b e r . H o w e v e r , s i n c e t h e t w o 

" a r r i v a l s " a r e t w o s i m u l a t i o n e v e n t s i n s e r i e s , t h e t w o 

a n i m a t i o n s e q u e n c e s w i l l b e i n s e r i e s . C a r " b " w i l l n o t b e g i n 

m o v i n g t o w a r d s t h e q u e u e u n t i l a f t e r c a r " a " h a s a r r i v e d a n d 

http://2a3.1_Typ.es
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stayed i n the queue for t(a)-t(b) time units. We are not 

conveying the parallelism of the two a r r i v a l sequences; 

something that i s desirable for monitoring purposes. In general 

t h i s approach does not restore much r e a l i t y to the model. 

The display of p a r a l l e l sequences can, however, be achieved 

i f a few simulation events are somehow buffered before 

displaying. These buffers of events, or "event l i s t s " , can thus 

be manipulated so that a r r i v a l sequences for example, can s t a r t 

their motion on the screen ahead of time and arri v e at the 

correct spot i n the queue exactly at the time the a r r i v a l event 

i s to take place. Display sequences, which may overlap i n time, 

can be compiled from one event l i s t and displayed by the 

graphics computer while subsequent event l i s t s are being 

generated. The problem, then, becomes one of editing the event 

l i s t s so that the order and time relationships between events 

are preserved. To simplify t h i s problem, i t i s useful to group 

display sequences into certain classes. For the following 

d e f i n i t i o n s , consider an animation sequence on a horizontal time 

axis (as i n Figures 4 and 5). The l e f t side and right side 

refer to the sequence's s t a r t i n g time and f i n i s h time, 

respectively. 

Binding_Seg_uencej^ This i s the type discribed above where the 

simulation time i s expanded by the inse r t i o n of the sequence. 

&n example i s a departure of an item from a server to a new 

queue. 
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Rlaz§id.§_B_2y.Hd_e_d_Seguences__ This type of sequence must end 

exactly with a simulation event, but i t can be started at any 

time before that. The time scale i s not expanded. An a r r i v a l 

event can be represented by a r i g h t - s i d e bounded sequence. 

Left-side_Bounded_Se£uence_. This type must s t a r t with an event, 

but can end at any time. An example i s a departure to a sink. 

£Ui>i§£i§2§2i2S_Se3uence_^ Hot a l l "sequences" require a duration. 

Certain events can be represented p a r t i a l l y , or sometimes 

completely, by merely changing the representation of the state. 

The a r r i v a l to a queue requires a right-side bounded sequence 

for the moving item and an instantaneous sequence (at the time 

the event happens) which changes the queue symbol to show one 

more item. A blocked-departure event i s represented only by two 

instantaneous sequences which "switch on" the blinking of the 

f u l l queue and the blinking of an arrow pointing from the 

blocked item to the f u l l queue. 

The sequence types defined above are used to represent 

events only. Two further types of animation sequences, which 

are not required in AUISIM at present, may also be useful i n 

order to properly animate an event-oriented simulation. 

Hn.b°"BJg^-§.§2,ugB£,gi. A sequence (for example, an error or warning 

message) triggered by some process other than the simulation 

i t s e l f can be regarded as an unbounded sequence. 
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Twoz§i^5_l2U£Seguence^. This type of sequence must star t and 

end with simulation events. I t does not expand the time scale, 

but i t can be used to further elaborate on a component of the 

state of the system. For example, i f we wanted to animate the 

process that takes place during that abstract concept of a 

"service", we would have to co-ordinate the sequence with the 

event that started the service and with the event that 

terminated the service (e.g. a departure). In the ferry 

terminal simulation, a two-side bounded sequence could be used 

to i l l u s t r a t e the round t r i p of the f e r r y . Such a sequence 

would give the modeller no useful information and would probably 

provide more d i s t r a c t i o n than r e a l i t y . An example of a more 

useful two-side bounded sequence would occur i f ANISIM were 

extended to allow t r a n s i t times between servers and queues. As 

pointed out in section 1.5, t h i s extension would considerably 

ease the representation problem. As f a r as the simulation i s 

concerned, the t r a v e l l i n g item has entered into a delay or 

service of a s p e c i f i e d duration ( i . e . the state of that part of 

the system i s s t a t i c between the two events). But the viewer 

sees that service as a moving sequence which, of course, does 

not bind the other events (expand the time s c a l e ) . 

Figure 5 i l l u s t r a t e s the mapping of simulation events into 

animation sequences. I t should be noted that an instance of an 

event from an event class generates an instance of a sequence of 

a certain type. For example, an a r r i v a l event always generates 

a r i g h t - s i d e bounded . sequence. However, due p a r t i c u l a r l y to 
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sequences which change the graphical representation of the state 

of the system, the animation routines require c e r t a i n 

information about the system which was available i n the data 

base at the time the simulation routine processed the event. 

For example, a sequence which displays the new state of a queue 

due to an a r r i v a l requires knowing what the state of the queue 

was before the a r r i v a l event occurred. 

The simulation may provide t h i s information in one of two 

ways: 1) Record, along with the event c l a s s , one or more 

subclass designators, or modifiers. For example, the state of a 

queue must be passed to the animation routines along with an 

event that causes an addition to or deletion from the queue. 2) 

P a r t i t i o n the event c l a s s i n t o two or more d i s t i n c t event 

classes. For example, i n ANISIM a departure from a server which 

has been blocked must turn o f f the blinking of the arrow 

pointing from the no-longer-blocked item. It turned out to be 

more convenient to handle t h i s kind of departure as a separate 

event class, d i s t i n c t from a normal departure, due to the 

presence of the s p e c i a l , or " c r i t i c a l " state. 

No c l e a r generalization has become apparent as to which 

method requires le s s modification to the simulation when 

additional animation d e t a i l i s desired. 

Chapter V contains further discussion of sequence types as 

they r e l a t e to the modelling of processes other than queuing 

network simulations. 
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2.3.2 Internal Cycles 

As explained i n the previous section, i t i s not possible 

f o r the animation routines to process an event at the time i t 

occurs i n the simulation. Instead, the simulation routine must 

proceed u n t i l a s u f f i c i e n t number of events have happened, and 

then step and pass centre! to an " E d i t " routine, The E d i t 

r o u t i n e e d i t s the event l i s t produced by the simulation, 

c a l c u l a t i n g the animation time and duration for each event, and 

passes what i s now c a l l e d the "sequence l i s t " to a t h i r d routine 

which a c t u a l l y compiles the display programs and sends them to 

the graphics computer over a high speed channel. This.three-

step process, c a l l e d the " i n t e r n a l c y c l e " , then repeats i t s e l f 

by returning c o n t r o l to the simulation routine (see figure 6). 

The i n t e r n a l cycle approach i s f e a s i b l e only because the display 

r 1 
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L i s t j 
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FIG08E 6: The Internal Cycle 
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of seguences by the graphics computer proceeds independently of 

the computation i n the main computer (Section 2.4.2). Of 

course, the problem of co-ordinating the timing of the seguences 

i n order to provide a smooth, accurate display i s s t i l l a 

d i f f i c u l t one. He see below how t h i s problem i s related to the 

l e v e l of user i n t e r a c t i o n with the simulation. 

There are two ways in which the simulation can terminate. 

&n upper l i m i t i s imposed by the user on certain simulation 

variables such as the clock, the number of a r r i v a l s , and the 

number of terminations (departures from the system). If the 

user chooses to simulate without the animation, the simulation 

w i l l proceed u n t i l i t reaches one of these l i m i t s . at that 

point i t w i l l terminate, and a s p e c i a l routine i s c a l l e d to scan 

the data base and display the current state. However, i f the 

user i s monitoring an animation, he may wish to interrupt the 

simulation a f t e r he has seen enough. This interrupt i s 

discovered by the program between i n t e r n a l cycles, suggesting 

that the number of events processed i n one cycle be kept as 

small as possible. In t h i s way, the user w i l l achieve a 

response to his interrupt within a reasonable time and the lag 

between the simulation and the animation w i l l be kept to a 

minimum. 

The "length" of the int e r n a l cycle must not be too short, 

however, or the continuity of the display w i l l be disrupted. 

B a s i c a l l y , the simulation must generate enough animation 



30 

sequences i n order to provide a display which l a s t s long enough 

on the screen to allow the next cycle time to prepare the 

subsequent display. Several factors influence the length of the 

display. For a given i n t e r n a l cycle length, the duration of the 

display depends b a s i c a l l y on the proportion of binding sequences 

generated, the user-controlled duration parameters (for each 

type of sequence), and a time conversion factor described in 

Section 2.4.2. Oser control of these parameters, and of the 

length of the i n t e r n a l cycle, i s discussed i n Section 3.1.2. 

(The simulation routine measures the cycle length by estimating 

the number of sequences that w i l l be generated from the event 

l i s t being produced.) 

2» 3«3_|diting_thg_|Yent_List 

The Edit routine must accomplish two things. F i r s t , as 

mentioned e a r l i e r , i t must create a sequence l i s t with animation 

times from an event l i s t with simulation times. Second, 

together with the Compile routine, i t must coordinate the timing 

of the new sequence l i s t with that of the previous sequence l i s t 

and the following sequence l i s t . 

The f i r s t objective i s a matter of analyzing each event in 

order to determine whether i t i s a bound of a sequence and to 

determine the type of the sequence. Whenever the event that 

bounds a ri g h t - s i d e bounded sequence i s found, the time of the 

event i s moved up and a duration a t t r i b u t e i s assigned in such a 
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way that the sequence w i l l end exactly when i t i s supposed to, 

i . e . at the bound. Left-side bounded sequences only have a 

duration assigned. Two-side bounded sequences could be handled 

by deleting the ri g h t - s i d e bound and assigning to the l e f t - s i d e 

bound a duration equal to the time delay between the two events. 

In t h i s way, the event l i s t i s transformed into a sequence l i s t 

where each sequence has two time att r i b u t e s , i t s starting time 

and i t s duration. The Compile routine uses t h i s information 

both to compile the moving sequences and also to compile any 

necessary instantaneous sequences which must occur at the 

beginning or at the end of a moving sequence. 

Several problems are encountered in the process of edit i n g 

the event l i s t . The f i r s t one has to do with the in s e r t i o n of 

binding sequences and th e i r e f f e c t on the timing of the rest of 

the sequences. The solution requires the Edit routine to make 

two main passes through the event l i s t . The f i r s t pass takes 

care of events which do not reguire binding sequences (as 

described above) . When the second pass encounters an event that 

does require a binding sequence, two things must be done. The 

st a r t i n g times of a l l sequences which begin a f t e r the s t a r t of 

the binding sequence must be incremented by the duration of the 

binding sequence. In other words, the time scale i s expanded by 

the i n s e r t i o n of the binding sequence. Secondly, sequences 

which begin before the star t of the binding sequence, and 

overlap i t due to the i r duration a t t r i b u t e s , must be processed 

as follows: right-side bounded sequences must have t h e i r 
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s t a r t i n g times incremented by the duration of the binding 

sequence, and two-side bounded sequences must have t h e i r 

durations extended by the duration of the binding sequence. 

This procedure allows the display of an instantaneous event as a 

moving seguence while preserving a l l time relationships between 

i t and the other events. 

A second problem with the editing process involves 

coordination between i n t e r n a l cycles. If an event which 

requires an rig h t - s i d e bounded seguence i s found very near the 

beginning of the cycle, the edit procedure may assign i t a 

s t a r t i n g time i n the range already processed by the previous 

cycle. Hore seriously, the right-side bound of a two-side 

bounded sequence may very l i k e l y not be i n the same cycle as the 

l e f t - s i d e bound. The general coordination problem i s handled by 

dividing the edited sequences into two l i s t s : one i s composed of 

a l l of the sequences which s t a r t in the time range which has 

been completely resolved, and the other, referred to as the 

" t a i l " of the sequence l i s t , or " t a i l l i s t " , i s composed of 

those sequences starting i n the time range which could be 

affected by the next cycle or s t a r t i n g after the l e f t bound of 

an unresolved two-side bounded sequence. The f i r s t l i s t i s the 

sequence l i s t that i s sent on to the Compile routine and 

displayed. The t a i l l i s t i s saved and processed with the next 

cycle's event l i s t . Thus i t i s a c t u a l l y possible for a cycle to 

produce no displayable sequences ( i . e . a l l t a i l ) , increasing the 

chances of a v i s i b l e lag i n the animation. It has been found in 



33 

ANISIM however, that the cycle lengths and durations normally 

used produce a t a i l l i s t of manageable porportions. 

If any two-side bounded seguences were to be implemented, 

the problem may become more complex, depending on the nature of 

the seguences. If the durations of such sequences are known to 

be r e l a t i v e l y short, then the edit process described above would 

be suitable. To prevent a two-side bounded sequence from 

requiring more than two cycles to be resolved, the cycle length 

would be s p e c i f i e d long enough so that the sequences generated 

i n any one cycle normally span a range of time that i s longer 

than the duration of the two-side bounded seguence. If t h i s 

duration i s long, however, then some other technique i s 

required. For example, i t may be possible to break up the 

sequence into two or more sequences such that the f i r s t 

components can be displayed before the remainder of the time 

span i s resolved. This method i s very dependent on the 

pa r t i c u l a r graphics of the sequence, and would be generally 

awkward for the Edit and Compile routines to process. If the 

duration of the sequence i s not known u n t i l the ri g h t - s i d e bound 

i s found, then chances are the sequence can be re-formulated to 

be a s p e c i a l representation of a state, which can be switched on 

and o f f with instantaneous sequences (e.g. blinking a blocked 

item u n t i l i t i s able to depart). In the case of ANISIM, the 

two-side bounded sequences required to implement t r a n s i t times 

(discussed e a r l i e r ) would probably be short enough that the 

entire sequence could be displayed in one cycle ( i . e . the t a i l 
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i s not resolved u n t i l the rig h t - s i d e bound i s found). 

2 i4_The_Dis£lay_Process 

Appendix A describes the system architecture on which 

ANISIM was implemented. Some general discussion of display 

methods used however, i s necessary for f u l l y understanding the 

animation technique. 

24,_1_The_Display Buffer 

B r i e f l y , the processing program, written mostly in ALGOLW 

and run on an IBM 370/168, makes use of a basic graphics 

subroutine package [6] in order to communicate with a monitor 

program [14] i n the Adage Graphics Computer. This graphics 

computer has a 6000 word buffer where a word may contain either 

a display vector, or a control i n s t r u c t i o n . The monitor 

continually scans t h i s buffer to generate a display on the Adage 

Model 10 Graphics Display Scope. The s i g n i f i c a n t feature of 

th i s graphics monitor i s that i t scans the entire display buffer 

at a fixed rate (40 scans per second), allowing the accurate 

control of the timing of animation seguences. In ANISIM, the 

instructions f o r the display of the network structure, and most 

potent i a l state representations, are contained i n a region at 

the top of the buffer, and thus are continuously scanned and 

displayed. The remainder of the buffer, during the animation 

phase, i s free to contain the in d i v i d u a l display £rogj:ams 
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necessary f o r each animation sequence (see next section). The 

dynamic loading of these display programs into the buffer i s 

described in Section 2.4.3. Note that t h i s scheme avoids the 

necessity of sending a series of "frames" (as i n movie frames) 

to the graphics computer, each containing an entire description 

of the display. Once the network has been constructed, only the 

descriptions of the changing components need be sent to the 

display buffer. Thus a much longer sequence of apparent frames 

may be displayed with considerably l e s s time and space required 

f o r the transfer. also, the c a p a b i l i t y of updating the display 

40 times per second allows moving sequences of very high 

resolution. 

2.4.2,Compiling Sequences into.Display Programs 

The display buffer may contain a combination of vector 

words and control words. One or more contiguous buffer words 

(properly formated by the basic graphics subroutines) may be 

sent to the Adage i n any one t r a n s f e r . The Compile routine thus 

constructs a l l the displayable sequences for a cycle i n an array 

and sends t h i s entire batch of small display programs to the 

Adage, where they are e f f e c t i v e l y executed in p a r a l l e l , much in 

the manner described by Baecker [ 2 ]. 

Several buffer control words are c r i t i c a l in making t h i s 

scheme work. For example, control of the scan i n any one pass 

i s achieved through r e l a t i v e and absolute jump i n s t r u c t i o n s . 
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Thus, the number of items appearing i n a queue i s altered merely 

by changing a single r e l a t i v e jump in s t r u c t i o n i n the s t a t i c 

region at the top of the buffer (see Figure 7). This type of 

instantaneous sequence can be achieved by an animation display 

program containing a buffer command word which moves the 

following buffer word (the new jump command) to a spec i f i e d 

location in the buffer. It i s desirable then to compile such a 

program that executes the move in s t r u c t i o n at exactly the ri g h t 

time, and only once. A l t e r n a t i v e l y , a moving sequence consists 

of buffer words which must begin being scanned at the proper 

time and continue to be scanned for a specified number of scans 

before they are f i n a l l y skipped again. (To move a box in a 

straight l i n e , the vectors f o r the box are preceded by a set of 

two control words for each dimension. These control words 

consist of a command that adjusts, by a small amount each scan, 

the value of the following word, which w i l l be the control word 

that displaces the vectors along an axis.) 

Therefore, either type of display program must s t a r t with a 

set of "timer words" which are keyed to the scan. In addition, 

these timer words are a l l compiled with times r e l a t i v e to the 

sta r t i n g time of the f i r s t sequence i n that batch to begin 

displaying (i.e. the e a r l i e s t sequence in the cycle). The two 

key control words used i n the timers each have an integer 

counter which i s tested at each scan and decremented i f not 

already zero. In one case, the following word i s skipped only 

i f the counter i s zero, and i n the other case i t i s skipped only 
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i f the counter i s not yet zero. In the former case, i f the 

following word i s a jump r e l a t i v e , the counter becomes the 

number of scans before a seguence begins (figure 8a). Likewise, 

in the l a t t e r case, the counter becomes the duration of the 

sequence. An instantaneous seguence ( i . e . completed i n one pass 

of the scanner), once i t i s allowed to execute, moves a jump 

r e l a t i v e on top of the f i r s t timer word in order to prohibit any 

subsequent execution (figure 8b). 

The basic animation time u n i t , then, i s always a single 

scan of the display buffer. This brings up one additional 

requirement of the Edit routine. When mapping simulation time 

into animation time, the speed of the display can be controlled 

by multiplying a l l times by a suitable "factor." This factor i s 

available as a system variable for both user and program 

control. For example, i f the factor i s set to ten, then an 

i n t e r v a l of eight simulation time units w i l l l a s t 80 animation 

time units (scans), or two seconds. 

The manner i n which the Compile routine procedes through 

the seguence l i s t , compiling each display program into an array, 

leads to an additional problem in the Edit routine. An e a r l i e r 

version of ANISIM, when editing the event l i s t , actually moved 

the event records around i n order to always maintain the l i s t in 

animation time order. In t h i s way, the t a i l could be e a s i l y 

determined and designated by a single pointer to the s t a r t of 

the t a i l . However, i t i s not uncommon for two instantaneous 



S t a r t i n g T i me 

Du r a t i o n 

A c t u a l 
S e o u e n c e 

S K I P n e x t w o r d a f t e r 
c o u n t e r r e a c h e s z e r o 

JUMP 

SKIP- n e x t w o r d un t ? 1 
c o u n t e r r e a c h e s z e r o 

JUMP 

a. Timer for a Sequence With a Duration, 

S t a r t i n g T i m e 

A c t u a l 
S e q u e n c e 

SK!P nekt word a f t e r 
c o u n t e r r e a c h e s z e r o 

JUMP 

MOVE t h e f o i l O K i n g wo r d 
t c t h e S K I P w o r d l o c a t i o n 

JUMP 

b. Timer for an Instantaneous Sequence, 

FIGURE 8: Display Program Timer Words 



40 

sequences to occur at the same animation time a fact which, 

i n the general case, requires them to appear in the display 

buffer in exactly the same order as their associated events were 

processed i n the simulation. For example, consider a 

gueue/server system with a state of ten. The simulation 

processes both a departure from and an a r r i v a l to the system at 

the same time and i n that order. The state of the system should 

remain ten. But, due to the rig h t - s i d e bounded sequence, the 

Compile routine w i l l process the a r r i v a l f i r s t . The 

instantaneous sequence that changes the state to ten precedes in 

the buffer the sequence that changes the state to nine. Thus, 

a f t e r the scan, the state w i l l appear to be nine. The only 

reasonable solution was to re-write the Edit routine in order 

that the simulation order of events i s always maintained and 

only the time parameters are edited. Two passes through the 

l i s t are required i n order to i d e n t i f y and separate the t a i l 

l i s t from the sequence l i s t . 

2. _.3_Dquble_ Buff er ing 

Once the t a i l i s determined, and the display sequences are 

compiled into an array, the problem remains of how to send the 

array to the Adage buffer and s t a r t displaying the new sequences 

i n perfect co-ordination with the sequences of the previous 

cycle. 

F i r s t of a l l , the available buffer space i s divided into 
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two buffers of equal length. The basic scheme i s to send up a 

new set of sequences as soon as the older of the two buffers 

f i n i s h e s i t s display. Again, t h i s scheme i s possible due to a 

very useful buffer control word, c a l l e d a '•Notify", which works 

as follows. When the Compile routine has fini s h e d preparing the 

new sequences i t issues a Bead operation to the Adage computer. 

Each buffer in the Adage has one addit i o n a l timer sequence i n i t 

that executes a Notify after the duration of that cycle has 

expired. The Notify causes the graphics monitor to issue an I/O 

interrupt which i n effect cancels the pending Bead from the 370. 

The program i s then allowed to proceed with sending the new 

sequences up to the Adage. I f , for some reason, the 370 had not 

yet issued a Bead when the Notify i s executed, the control words 

are set up so that the fi n i s h e d buffer w i l l continue to be 

scanned and thus keep issuing a Notify u n t i l i t i s successful. 

Now this newly loaded buffer must be co-ordinated with the 

sequences i n the currently displaying buffer. Consider the 

simple example in figure 9. The in t e r n a l cycle length i s 

assumed to be f i v e sequences. Suppose that cycle n i s 

displaying i n buffer one and cycle n+1 has just been loaded into 

buffer two. I n i t i a l l y , the scanner i s unconditionally branching 

around buffer two. Note that when the t a i l of the sequence l i s t 

of cycle n was determined, i t was composed of a l l sequences 

whose s t a r t i n g times were i n the region which might contain 

sequences from cycle n+1 ( i . e . sequences e and f ) . Other 

sequences may s t a r t before that t a i l region but overlap with i t 
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due to t h e i r durations (seguence d). In other words, i t i s 

necessary for the two buffers to be displaying simultanegusly 

f o r a short period. This i s handled by actually including i n 

the t a i l the l a s t sequence which st a r t s before the " r e a l " t a i l 

(seguence d) . The maximum length of cycle n*s display i s 

assigned as i f seguence d were to be displayed in buffer one. 

But instead of that sequence, another seguence i s compiled to be 

executed at that time (time 630 i n figure 9). This special 

seguence removes the branch around buffer two and allows i t to 

begin displaying. Of course, the sequence in buffer two with a 

r e l a t i v e s t a r t i n g time of zero i s simply that pseudo-tail 

seguence (sequence d) from cycle n. Thus, buffer one and buffer 

two are displaying simultaneously from time 630 to time 730. At 

time 730, cycle n executes the Notify command, allowing the 370 

to send up cycle n+2 to buffer one. The co-ordination between 

cycles i s now complete. The fact that the old cycle expects the 

new cycle to be loaded and ready to s t a r t as soon as the branch 

i s removed i s , i n f a c t , the reason why a lag i n the animation 

w i l l be seen i f the old cycle has a very short display. 

2i5_The_Overall_Visual_Effect 

It has been shown i n t h i s chapter why i n t e r n a l cycles are 

necessary and how the edit procedure transforms the event l i s t 

into a seguence l i s t and a t a i l l i s t . The mapping of simulation 

time into animation time has been described, and the d e t a i l s of 

a c a r e f u l l y co-ordinated double buffering scheme have been 
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e x p l a i n e d f o r t h e l o a d i n g i n t o t h e g r a p h i c s computer, o f d i s p l a y 

programs c o m p i l e d from the sequence l i s t . The t e c h n i q u e s 

d e s c r i b e d i n t h i s c h a p t e r were somewhat p a i n f u l t o d e v e l o p and 

implement, but they a r e a c t u a l l y q u i t e l o g i c a l . The 

c l a s s i f i c a t i o n o f sequences and t h e e d i t p r o c e d u r e s a r e g e n e r a l 

enough f o r o t h e r a p p l i c a t i o n s . Many of the d i s p l a y t e c h n i q u e s 

a r e q u i t e dependent on t h e s p e c i f i c hardware and s o f t w a r e 

a v a i l a b l e , but make e f f i c i e n t use o f t h e s e r e s o u r c e s . The r e a l 

t e s t i s i n t h e q u a l i t y o f the a n i m a t i o n . The o v e r a l l v i s u a l 

e f f e c t i s q u i t e i m p r e s s i v e . The a n i m a t i o n proceeds i n a smooth, 

c o n t i n u o u s manner and the v i s u a l a i d s , f o r t h e most p a r t , 

s u c c e e d i n add i n g enough r e a l i t y t o make the s i m u l a t i o n easy and 

i n f o r m a t i v e t o watch (see Chapter IV) . 

Some problems do s t i l l e x i s t , however, w i t h t h e s e 

t e c h n i q u e s . C o n s i d e r the sequences g e n e r a t e d by ANISIM when a 

d e p a r t u r e event o c c u r s . The event i s pr o c e s s e d i n E d i t as a 

b i n d i n g sequence, due t o t h e d e s i r e d move from the s e r v e r t o t h e 

new que u e / s e r v e r system. The Compile r o u t i n e g e n e r a t e s t h a t 

move sequence and i f t h e queue i s not empty, i t a l s o g e n e r a t e s 

an i n s t a n t a n e o u s sequence to d i s p l a y the new s t a t e of the queue. 

T h i s method i s an a r b i t r a r y s i m p l i f i c a t i o n t h a t was d e c i d e d on 

e a r l y i n t h e development of t h e program. The f l o w of t h e 

a n i m a t i o n would l o o k even smoother and more r e a l i s t i c i f an 

a d d i t i o n a l b i n d i n g sequence, a move from t h e queue t o the 

s e r v e r , were added such t h a t i t s t a r t e d a t the same time as t h e 

d e p a r t u r e move s t a r t e d . Two a d d i t i o n a l i n s t a n t a n e o u s sequences 
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would be required to switch o f f , then on, the symbol of the item 

i n the server. In general, i t seems that when one event 

generates two moving sequences, the Ed i t routine should make a 

separate copy of the event record so that both the seguences can 

be edited independently. In t h i s case, a better solution would 

be to always assign a duration to the new sequence that i s less 

than or equal to that of the departure sequence and l e t the 

Compile program use the information in the single event record 

to generate both binding sequences at the same time. In t h i s 

way, the Ed i t routine can treat a l l event classes which generate 

binding sequences the same. This leaves the p e c u l i a r i t i e s of 

certa i n events to the Compile routine, which must examine the 

various parameters of the event record anyway. 

The r e a l problem i s more basic than the above si t u a t i o n 

indicates. In a way, the animation does c e r t a i n l y d i s t o r t the 

time frame of the simulation. Two events which occur within a 

short time of each other i n the simulation may or may not do so 

i n the animation, depending on how many binding seguences come 

between them. The time between every pair of (timewise) 

adjacent events remains accurate, as does the actual progression 

of states of the network. This type of •»distortion" r e a l l y 

seems to be i n s i g n i f i c a n t , then, as long as one remembers that 

the beginning of a binding sequence i s the "same time" as the 

end. It would be nice to try to reduce t h i s d i s t o r t i o n by 

allowing two binding sequences to have the same s t a r t i n g time i f 

they correspond to the same event time i n the simulation. It i s 
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easy to f i n d c e r t a i n examples, however, of s i t u a t i o n s which 

r e q u i r e that the E d i t r o u t i n e increment the s t a r t i n g times even 

of b i n d i n g seguences whose events are simultaneous with that of 

the b i n d i n g sequence being processed. 
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I I I . INTERACTIVE FEATURES 

An interactive modelling system i s of l i t t l e p r a c t i c a l use 

unless s p e c i a l attention i s paid to the design of the dialogue 

between the user and the system. According to Newman and 

Sproull [16], the three main q u a l i t i e s that the programmer 

should attempt to optimize are 1) si m p l i c i t y of operation of the 

program, 2) consistency, i n the o v e r a l l construction of the 

command language and error recovery, and 3) economy from both 

the user's and program*s standpoint. The following discussion 

of these q u a l i t i e s , and other important features of the 

dialogue, distinguishes between the ove r a l l system and 

simulation control and the actual model construction and 

modification. 

3 1_S i m u 1 a t i o n_M o n i torina_and_Control 

3» j|»l_S;stem_control 

ANISIM provides a simple, but effect i v e , command language 

for top l e v e l i n t e r a c t i o n with the system. A l l commands at t h i s 

l e v e l are entered on the IBM 3270 Display Terminal which i s 

located next to the graphics terminal. Each command i s defined 

e x p l i c i t l y , rather than being i m p l i c i t i n the sequence of 

inputs. Furthermore, i t i s easy for the programmer to add new 

commands to the system, although no e x t e n s i b i l i t y i s provided to 

the user. The objective throughout the system has been to allow 



48 

the user maximum freedom of control of the sequence of 

operations, wherever f e a s i b l e . This f l e x i b i l i t y reduces the 

reliance on f r u s t r a t i n g questions which must be answered by the 

user, but places more emphasis on error recovery when he 

attempts to enter inappropriate commands or data. Also, in the 

i n t e r e s t of s i m p l i c i t y , a minimum of information about the 

system or the simulation i s displayed (on either terminal) 

unless otherwise requested. 

In order to aid in achieving these objectives, the program 

must help keep the user aware of what operations are available 

and what responses are required. The HELP and MOBHELP commands, 

shown in figure 10, l i s t a l l available commands along with a 

b r i e f reminder of t h e i r use. (MOBHELP l i s t s the less frequently 

used commands.) In addition, default values are used whenever 

applicable. This i s useful i n cases where the user does not yet 

know what value i s appropriate (e.g. display parameters), and 

keeps the number of mandatory inputs to a minimum. The current 

value (and thus the default value) of a system or display 

parameter can be found by entering the appropriate command 

without specifying any arguments. For example, entering "CYCLE" 

w i l l r e s u l t i n a print out of the current values of the four 

l i m i t s on the simulation. The command "CYCLE * * * 100" w i l l 

change the l i m i t on the number of terminations to 100 and print 

out the four values. The PBIHT command allows a selection of 17 

options f o r printing out f u l l or s p e c i f i c d e t a i l s about the 

state and the s t a t i s t i c s of the simulation. The TBACK command 
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# $run walk:anisim.o+dhir:camadd+agt:basic par=size=150k 
# EXECUTION BEGINS 

ARE YOU USING THE ADAGE? TRUE OR FALSE 
fa l s e 

ENTER COMMAND OR HELP 
help 
BUILD TO BUILD OR MODIFY THE ACTIVE NETWORK 
NEWNET TO BUILD A NEW NETWORK 
EDITNET TO USE BUILD FOR SMALL CHANGES TO A NETWORK 
GO N TO SIMULATE AND TO DISPLAY THE ACTIVE NETWORK 

FOR N TIME UNITS FROM CURRENT TIME 
FASTER TO SPEED UP THE DISPLAY 
SLOWER TO SLOW DOWN THE DISPLAY 
SCAN TO INHIBIT MOVING SEQUENCES 
DESPEED TO RESTORE THE DEFAULT SPEED 
NODISP TO INHIBIT DISPLAY UNTIL NEXT GO COMMAND 
RESET TO RESET SIMULATION CLOCK AND STATS 
SAVE TO SAVE THE NETWORK 
RESTORE TO RESTORE A SAVED NETWORK 
LABEL TO DISPLAY LABELS AT EACH NODE 
CYCLE TO CHANGE SIMULATION LIMITS 

#OF TIME UNITS, #OF GEN,#OF ENTRIES,#OF TERM 
PRINT I TO DUMP RESULTS, FOR CODES SEE DOCUMENT 

20 GIVES STATE, 1 STATS, 13 PARAMS, 7 QSTATS, ETC 
MORHELP ADDITIONAL COMMANDS 
STOP OR END TO TERMINATE EXECUTION 

ENTER COMMAND OR HELP 
morhelp 
UNLABEL TO REMOVE ALL NODE LABELS 
FACTOR DEFAULT=10; INCREASE TO SLOW DISPLAY 

DECREASE ONLY IF USE RESET 
INTERCY DEFAULT=15; INCREASE WHEN DISPLAY IS FAST 
SCALE TO CHANGE THE SCALE AND 'SCALER' 
DUR TO CHANGE THE 4 SEQUENCE DURATIONS 
TRACK I TO SET DEBUG FLAGS ON. 0=<I<7, SEE DOCUMENT 
PLOT S TO GET A HARDCOPY OF ADAGE DISPLAY 

S IS MAXIMUM PLOT SIZE, IN INCHES 
STOP OR END TO TERMINATE EXECUTION 

ENTER COMMAND OR HELP 
stop 

000.03 SECONDS IN EXECUTION 
# EXECUTION TERMINATED 

FIGURE 10: Commands Available 
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turns on one of six debug fl a g s i n the program, providing 

detailed traces of the simulation, edit, and compile routines. 

In the case of both PRINT and TRACK, an optional second argument 

can be used to route the output to a disk f i l e of the user's 

choice. 

Most top-level commands reguire no further response from 

the user. The exceptions to t h i s are the BUILD, NEWNET, and 

EDITNET commands, which envoke an e n t i r e l y new dialogue (section 

3.2), and the SAVE, RESTORE, PRINT, and TRACK commands, which 

may require further c l a r i f i c a t i o n of f i l e - h a n d l i n g operations. 

For example, i f the user t e l l s the program to "SAVE NET1", and 

the f i l e NET1 already exists, then the program must ask the user 

i f i t i s a l r i g h t to empty the f i l e and store the current network 

on i t . The user may also return temporarily to the MTS 

operating system by issuing an attention interrupt. At t h i s 

point he has f u l l access to any disk f i l e s created by the 

program, as well as run-time s t a t i s t i c s . The ANISIM program may 

then be re-entered, using the MTS SRESTART command. 

S»j»2_Simulation_Monitoring 

Two of the most important advantages of an i n t e r a c t i v e 

graphics system are the f a s t turnaround and the immediate 

graphical display of complex information. Smith [22] l i s t s as 

an equally important advantage the c a p a b i l i t y to allow the user 

to try "various attacks" on a p a r t i c u l a r problem during a single 
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session with the computer, with ANISIM, thi s can be interpreted 

i n two ways. The user should be able to quickly simulate 

several versions of a model, and he should be able to view the 

r e s u l t s of a simulation in several d i f f e r e n t ways. 

The f i r s t goal requires not only the c a p a b i l i t y to e d i t the 

model structure and parameters, but also quick access to the 

description of such information. It may be possible to display 

a l l of the d e t a i l s of the model on the screen, including rates, 

capacities, and routing data. This, however, would not be 

desirable, both from a s i m p l i c i t y and an economy point of view. 

It i s instead desirable to keep a minimum of information on the 

screen and make other data available on demand. For example, 

f o r each symbol i n the network, a l a b e l i s created i n t e r n a l l y . 

At present, a l l s t a t i s t i c s are printed on the 3270 terminal and 

the labels are used to reference s p e c i f i c simulation e n t i t i e s . 

The user, i n order to interpret these s t a t i s t i c s , can use the 

LABEL command to actually display the labels at each symbol (see 

figure 11). The labels are automatically removed during the 

building or animating of the model, to save space in the Adage 

buffer. Other information available on demand includes the rate 

and capacity parameters, obtained by the PRINT 13 command. The 

display of routing assignments poses some d i f f i c u l t problems and 

has not yet been attempted. The user should try to construct 

the network so that i t s graphical representation conveys much of 

the routing information. Section 3.2 describes an additional 

access to current parameters while actually e d i t i n g the network. 
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FIGURE 11: Labelled E n t i t i e s 
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The second goal cited above—that of providing several ways 

of analysing the output of the simulation—has been met to a 

c e r t a i n extent. A NODISP command, given before st a r t i n g the 

simulation (with the GO command), allows the simulation to 

proceed quickly with no animation. This i s useful when i t i s 

desired to watch the animation a f t e r the model has advanced to a 

more steady state. The user i s not required i n t h i s case to 

watch the animation from the beginning. Whenever the simulation 

stops, the current state i s displayed and the PRINT command may 

be used to find certain standard s t a t i s t i c s such as the average 

and maximum gueue lengths and buffer sizes, the average time-in-

system of items between source-sink pairs, and the number of 

a r r i v a l s and terminations at each source and sink. Blocked 

items are an important aspect of gueuing networks. An extended 

version of ANISIM might allow several options for the handling 

of blocked a r r i v a l s and departures. The e x i s t i n g protocol i s 

that blocked a r r i v a l s are l o s t (they move halfway to the gueue 

and disappear) and blocked departures remain i n the server and 

attempt to depart again after waiting the user-defined "re-send 

time". Thus, s t a t i s t i c s must also be available giving the 

number of l o s t a r r i v a l s and the number of blocked departures. 

The RESET command i s used to set the clock to zero, reset a l l 

s t a t i s t i c s , and restore the i n i t i a l random number seeds. 

If NODISP i s not s p e c i f i e d , then the animation w i l l 

automatically accompany the simulation, providing additional 

valuable information about the model. Two areas of in t e r a c t i o n 
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are e s s e n t i a l i n order to help the user monitor the animation: 

specifying how much to display, and how long to display i t . 

From any p a r t i c u l a r state, the length of the simulation can be 

controlled i n one of three ways. I f the GO command i s given 

without the argument, the simulation w i l l proceed either u n t i l 

one of the l i m i t s i n the CYCLE command i s exceeded or u n t i l the 

user h i t s the attention i n t e r r u p t . If the argument i s given, 

then i t s value i s the number of time units for which the 

simulation i s to proceed, provided no cycle l i m i t i s exceeded or 

interrupt issued. 

If the user wishes to monitor the simulation, not in 

d e t a i l , but to get a general f e e l for the progression of states 

of the model, then he may use the SCAN command. This command 

i n h i b i t s moving seguences by making a l l durations zero. Thus, 

the animation time frame i s not expanded by binding seguences, 

res u l t i n g i n a considerably faster display of events. (The 

factor i s also decreased and the i n t e r n a l cycle i s made longer, 

as discussed i n Chapter II.) The SCAN mode i s s l i g h t l y less 

pleasing to watch, but provides a quick, clear way of observing 

the general trends of the model. I t i s esp e c i a l l y useful i n a 

model that would, otherwise, slowly build up to a congested 

state. The following special state representations are also 

envoked by instantaneous sequences and thus appear in SCAN mode: 

the blinking of a f u l l queue or buffer due to an item attempting 

to get i n , and the blinking of a blocked item with an arrow 

attached which points to the f u l l queue or buffer (see figure 
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12} . 

Moving sequences, although a r t i f i c i a l , provide valuable 

v i s u a l continuity between states. The user has access to the 

basic variables which control the speed of the display and of 

each sequence. B r i e f l y , the DDR command controls the duration 

of each type of sequence, the FACTOR command controls the time 

conversion factor explained i n section 2.4.2, and the INTERCY 

command controls the length of the in t e r n a l cycle (i.e. the 

number of seguences generated each c y c l e ) . For example, the DUR 

command may be used to shorten the duration of binding sequences 

with respect to the other sequences. The inexperienced user 

should not have to use FACTOR to control the speed of the 

animation, for two reasons: 1) i t i s not always clear how to 

adjust the int e r n a l cycle length (INTERCY) to compensate for the 

change i n speed, and 2) i f the simulation i s not RESET, the t a i l 

of the sequence l i s t using the old factor w i l l no longer be 

coordinated with the new sequence l i s t . Thus, ANISIM provides a 

set of "speed" commands which make the necessary changes for a 

smooth t r a n s i t i o n to a faster or slower speed. Ba s i c a l l y , a set 

of seven standard speeds are available, three slower than the 

default and three f a s t e r . 

No provision has been made to store animation sequences on 

disk for l a t e r viewing without simulating, as in DYNIS [20]. 

This would probably be more expensive than re-simulating the 

saved model. One feature that can aid in the quick re-creation 
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FIGURE 12: Display cf Blocked Items 
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of a previously displayed sequence, as well as provide a 

powerful design t o o l , i s the a b i l i t y to save and restore a 

simulation state. In th i s way, the modeller can simulate 

forward from a given state several times, experimenting with 

various parameter values. 

Extensions which would provide additional ways of analysing 

simulation r e s u l t s are discussed i n Chapter V. 

3.2 Model Design and Modification 

The BUILD, NEWNET, and EDITNET commands a l l cause the 

program to enter a d i s t i n c t phase with a dialogue of i t s own for 

constructing or modifying a network. A l l three commands envoke 

the same routine, although EDITNET appears somewhat d i f f e r e n t to 

the user, due to the setting of an "edi t f l a g " i n the program. 

Only NEWNET w i l l destroy any exist i n g active network (i.e. a 

RESTORE* d or newly constructed network) before proceeding. 

Otherwise, BUILD and NEWNET are i d e n t i c a l . 

A considerable amount of information must be provided to 

the system i n the network d e f i n i t i o n phase. It i s here that the 

quality of the dialogue becomes very important. The task of 

entering input must not become awkward and tedious and a trade

o f f must be made between allowing the user to decide what to 

input or leading him through a fixed sequence of inputs to 
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ensure a properly defined mode. Also, i t i s important to 

provide feedback to the user i n order that he may v e r i f y what 

has been entered. 

Opon entry into the build phase, then, a l i s t of possible 

commands, or "modes", are displayed on the graphics scope in the 

recommended order of use (when building a new network). This 

l i s t (see figure 13) i s cal l e d a "MENU", and the prompting 

message "MODE?" i s actually blinking in order to indicate to the 

user that i t i s time to select a mode by pointing to i t s name 

with the lightpen. At t h i s point the user s t i l l has freedom of 

control . He may enter or re-enter any mode at any time. Smith 

[22] c a l l s t h i s " i n t e r a c t i o n by an t i c i p a t i o n " , i n the sense that 

a l l possible desires of a user are anticipated. These 

p o s s i b i l i t i e s are presented as choices for the user to select 

rather than specify;, thereby allowing a simple lightpen h i t 

rather than reguiring a c o r r e c t l y spelled alphabetic command. 

On any given entry into the build phase, the program helps the 

user remember which modes he has already entered by displaying 

these names at a di f f e r e n t i ntensity. A further convenience i s 

that the user may position the menu anywhere on the screen, 

using a pair of d i a l s . The important thing i s that the modes 

break up a lengthy task into easier, d i s t i n c t subtasks. 

In his book, Design of Man-Computer Dialogues , Martin [13] 

states that short-term memory i s heavily u t i l i z e d i n complex 

problem solving and creation. He further states that humans 
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FIGURE 13: Menu for Network Design 



60 

tend to organize a c t i v i t y into "clumps" that can be ea s i l y 

completed. Thus, the modes i n ANISIM are designed so that the 

user need only worry about a f a i r l y simple or d i s t i n c t aspect of 

the network at one time. In f a c t , when building a new network, 

the modes act as a se r i e s of Martin's "conversational 

checkpoints". The termination of a mode can be regarded as 

providing "mental c l o s u r e " — i . e . the user can assure himself 

that he has completed that phase of the input. If he gets 

confused or makes a mistake, he need only re-enter the current 

mode and s t a r t over from that point. 

When working i n a p a r t i c u l a r mode, the user s t i l l might 

forget what i s expected of him next,- or even which mode he i s 

i n , i f he i s at a l l distracted. To avoid t h i s s i t u a t i o n , the 

program always prompts the user with some kind of mental cue 

whenever a response i s expected. This prompt, often a one or 

two word message displayed at the bottom of the screen, serves 

only as a reminder rather than a detailed explanation. The 

blinking of symbols i s used to s i g n i f y which p a r t i c u l a r e n t i t i e s 

of the network are in question. 

Proceeding through the menu, then, a t y p i c a l dialogue would 

begin by entering the SYMBOLS mode. The menu disappears (as in 

a l l modes) and crosshairs appear. The crosshairs and a set of 

function buttons are used to position and select any one of the 

f i v e available symbols. An entry (ALGOLW record) i s created in 

the data base for the corresponding simulation entity. Two 
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symbols require in t e r a c t i o n beyond the i n i t i a l s e l e c t i o n : queues 

require a second crosshair s e t t i n g to define the orientation 

(angle) of the t a i l of the queue (see figure 14), and buffers 

are usually sketched, although a default i s available. Figure 

15 shows a buffer symbol being sketched around two queues which 

w i l l l a t e r be assigned to the buffer entity. The lightpen may 

be used i n SYMBOLS mode in order to delete a symbol or a " l i n k " 

from the screen and the data base. A s p e c i a l function button 

terminates SYMBOLS mode, causing the re-appearance of the menu. 

LINKS mode allows the user to use the lightpen to connect pairs 

of symbols. These l i n e s are v i s u a l aids to help portray the 

network structure, but no entry i s made i n the data base. Also, 

the i n t e n s i t y of the l i n k s i s separate from the rest of the 

network and can be turned down by the twist of a d i a l . The mode 

i s terminated by a lightpen h i t on the prompting message. 

The next four modes (ASSIGNQ, FIRST QUEUES, ASSIGN BUFF, 

and ROUTES) are necessary to make a series of assignments of 

simulation e n t i t i e s that define the structure of the network. 

In each case, both the programmer and the user distinguish these 

e n t i t i e s graphically, rather than try i n g to refer to them by 

labels or entering numbers in matrix form. The advantage of 

t h i s approach i s that the user can actually "see what he i s 

doing." There i s no problem of i d e n t i f y i n g labels or numbers 

with symbols. For example, i n ASSIGNQ, the program goes through 

the l i s t of servers that has been created and for each server, 

blinks the symbol and prompts the user to designate a gueue. 
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T A I L ORIENTATION ? 
FIGUfils 14: Specifying Queues 



FIGURE 15: Buffer Sketching 
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The user need only point with the lightpen to the gueue he 

wishes to be assigned to the blinking server. Clearly at t h i s 

point i t i s advantageous to lead the user through a l l possible 

assignments i n order that none are l e f t out. This policy i s 

followed i n a l l the remaining modes as well. when the edit f l a g 

i s set, however, i t i s assumed that a l l assignments have been 

made once already, and that the user wishes to change one or two 

assignments only. In t h i s case, he must select with the 

lightpen a server, i n the example of ASSIGNQ, before the program 

w i l l prompt for a gueue. He may proceed to s e l e c t other servers 

or terminate the mode by h i t t i n g the prompting message. 

In the same manner, FIRST QUEUES i s used to assign a unique 

queue/server system to each source, and ASSIGN BUFF i s used to 

assign buffers to queues. ANISIM currently provides one form of 

r o u t i n g — a fixed routing scheme, although other schemes are 

possible (see Chapter V). Each item i s assigned a destination 

sink when i t i s generated at the source. At any p a r t i c u l a r 

queue/server system, the next queue/server system (or sink) i n 

the route i s dependent only upon t h i s destination. Thus, i n 

ROUTES mode, the user f i l l s an i n t e r n a l routing matrix by 

pointing to the next queue (or the sink) for each blinking 

queue-sink pai r . 

The f i n a l three modes require user input on the 3270 

terminal. Newman and Sproull [16] advise that, i n general, a 

single-device approach often leads to simpler, more e a s i l y 
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learned command languages. However, in t h i s case i t was decided 

that i t would be easier for the user to switch from the lightpen 

to the keyboard than i t would be to enter numerical data at the 

graphics terminal. also, the 3270 screen o f f e r s the opportunity 

to e a s i l y display more detailed prompting messages, whereas the 

graphics approach would require valuable Adage buffer space. 

Figure 16 shows an example of the dialogue on the 3270. Of 

course, the program s t i l l designates e n t i t i e s by blinking 

symbols on the Adage display. The Adage scope prompt message of 

"TO 3270—>" reminds the user that his next response w i l l be at 

the keyboard. CAPACITIES mode allows the assignment of queue 

and buffer capacities other than the defaults. In FLOW mode, 

for each source, the i n t e r - a r r i v a l time d i s t r i b u t i o n i s 

sp e c i f i e d (similar to the service times dialogue), and also the 

percentage of a r r i v a l s from that source that are destined for 

each sink must be given, in order to f i l l i n an in t e r n a l "flow" 

matrix. 

In any mode requesting parameters, i f the edi t f l a g i s on, 

the current value of the parameter i s f i r s t printed on the 3270. 

If the edi t f l a g i s not on, the current value i s printed only 

for those parameters which are i n i t i a l l y assigned default values 

(e.g. queue c a p a c i t i e s ) . 

3i2_.2_Model_Verif i c a t i o n 

The network construction dialogue, as mentioned e a r l i e r . 



FOR THE BLINKING SERVER, ASSIGN THE SERVICE 
DISTRIBUTION CODE: 

1= EXPONENTIAL, 2 = DNIFOR M 
1 
ENTER MEAN TIME ( > 1) FOR EXP. DSTBN 

ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS NODE 
ELSE DEFAULT VALUE IS 4 

2 

DISTRIBUTION CODE (1 OR 2): 
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ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS NODE 

ELSE DEFAULT VALUE IS 4 

BACK TO ADAGE 

FIGURE 16: Dialogue f o r Specifying Service Times 
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uses a menu to guide the user through the necessary steps of 

making a well-defined model, while allowing him s u f f i c i e n t 

freedom of con t r o l . In other words, i t i s s t i l l quite possible 

to create a network with missing assignments and parameters— 

e s p e c i a l l y after editing the network. This problem i s attacked 

i n several ways, F i r s t of a l l , when the user f a i l s to h i t the 

proper type of symbol with the lightpen, the message "NO 

ASSIGNMENT" appears on the screen b r i e f l y . Also, the user i s 

asked to re-enter any numerical information that i s not in the 

proper range such as a deviation that i s greater than the mean 

f o r the uniform d i s t r i b u t i o n . After exit i n g from the build 

phase and before a new simulation i s allowed to begin, a l l 

servers and sources are checked to make sure then have been 

assigned a queue (in order to prevent a terminating error in the 

simulation program). The routing assignments are not checked at 

this time, but any undefined routes w i l l be caught i n the 

simulation. In that case, the item i s sent to i t s destination 

sink, a message i s printed on the 3270, and the simulation i s 

allowed to continue. The DYNIS system [20] makes use of yet 

another method of reducing errors due to careless modification 

of the o r i g i n a l model. I t s editing phase i s divided into two 

commands: REVISE and MODIFY. Their related functions in ANISIM 

might be as follows: REVISE would allow the user to add or 

delete symbols, analyze the e f f e c t s of t h i s change, and then 

prompt him to re-enter any modes necessary i n order to make the 

network well-defined again. MODIFY on the other hand, would 



68 

allow only the a l t e r i n g of parameter values, none of which could 

make the network i l l - d e f i n e d . MODIFY would be more economical 

for the user (quick, safe changes; minimal dialogue), and also 

f o r the program (abbreviated menu; less checking and prompting.) 

This approach would in f a c t be f e a s i b l e i n AHISIM, using the 

basic BUILD-EDITNET structure. 

Once we have insured that the model i s well-defined, there 

s t i l l remains the p o s s i b i l i t y that a mistake has been made in 

the model design, i . e . the model b u i l t i s not exactly the model 

intended. However, compared to any non-graphical simulation 

environment, t h i s p o s s i b i l i t y i s minimal. F i r s t of a l l , the 

modeller can see on the screen the effects of much of what he 

does. Also, he i s less l i k e l y to specify a wrong entity when he 

can actually point to i t s representation on the screen. 

Furthermore, assignment and parameter information can be 

v e r i f i e d by using the PRINT command, and the animation i t s e l f 

should expose most unintended routing s p e c i f i c a t i o n s . On the 

other hand, anyone who has written a non-trival simulation 

program i n a language such as GPSS [ 9 ] knows that the structrue 

of the model may e a s i l y become obscured i n the program 

statements and matrices. The input data i s l a r g e l y numerical 

and highly subject to mistakes as well. 

A second side e f f e c t of a graphically described a model, 

especially i n an i n t e r a c t i v e environment that helps the modeller 

create a well-defined model, i s that the process of building the 
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network may very well force the modeller to re-evaluate his 

conception of the model. To some extent he may more quickly see 

the inadequacies of his i n i t i a l formulation as a v a l i d 

abstraction of the real-world s i t u a t i o n . 

Bracchi and Somalvico [3] emphasize that a software system 

for computer-aided design should provide both a strong 

computational c a p a b i l i t y and a f l e x i b l e i n t e r a c t i o n with the 

designer during the design process. Likewise, ANISIM's 

usefulness as a simulation t o o l depends both on the power of the 

simulation routine and the quality of the user dialogue. The 

f i r s t part of t h i s chapter described the techniques used to 

provide simple, yet f l e x i b l e control over the simulation and the 

presentation of i t s r e s u l t s . Moreover, experience with users 

during the development of the preliminary versions of ANISIH has 

indicated that the quality of the network d e f i n i t i o n dialoque i s 

c r i t i c a l to insuring that the user w i l l have a successful 

session with the system. It i s t h i s phase where a large amount 

of information must be supplied to the system by a person who 

may be nervous, confused, or intimidated by conversations with 

machines. If the dialogue i s awkward or otherwise inadequate, 

the user i s not free to concentrate on such things as evaluating 

the conceptual v a l i d i t y of his model or v e r i f y i n g the accuracy 

of the network he i s building. There w i l l always be room for 

improvements i n the dialogue, but the current version of ANISIM 

seems to meet most of the c r i t e r i a for a smooth and e f f e c t i v e 

i n t e r a c t i o n . 
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IV UTILITY OF ANIMATION 

One of the points that Martin [13] makes about graphic 

systems, i s that the use of moving or changing images can 

c l a r i f y c e r t a i n ideas. Animation, l i k e color, i s a type of 

encoding that can increase the amount of information the limited 

human mind can grasp and ponder at one time. A reasonable 

guestion to ask, then, i s when and how should we use animation 

i n order to best take advantage of t h i s c a p a b i l i t y . 

4 J_S imulation_Tool 

T r a d i t i o n a l simulation programs generally produce output in 

the form of s t a t i s t i c a l averages, variances, maxima, etc. They 

are generally expensive to execute and are often run i n a batch 

environment. Model design and testing i s done by analyzing the 

s t a t i s t i c s , a l t e r i n g the model or i t s parameters, re-compiling 

i f necessary, and then running the program again. Clearly, an 

i n t e r a c t i v e simulation program could improve t h i s turn-around 

time by producing r e s u l t s quickly (while the modeller s t i l l 

remembers what he was trying to do) and by providing convenient 

means f o r a l t e r i n g the model. This i s true, provided that the 

modeller can also analyze the simulation output quickly. I f he 

i s looking for the changes that appear i n a few simple 

s t a t i s t i c s , the improved turn-around may be s u f f i c i e n t for his 

purpose. However, i f he i s trying to understand the 

significance of the s t a t i s t i c s with respect to a f a i r l y complex 
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model, the program must provide him with additional aids. 

One such aid avai l a b l e i n an interactive environment i s a 

monitoring c a p a b i l i t y . The modeller not only gets the f i n a l 

r e s u l t s , but he sees some sort of representation of the state of 

the model while the simulation i s progressing. This may allow 

the modeller to quickly zero-in on the time range or parameter 

range that he i s interested i n , as well as providing information 

about the starting conditions and other transient e f f e c t s . 

Alos, monitoring i s l i k e l y to provide more information about the 

behavior of the model when i t reaches certain c r i t i c a l states. 

One simulation monitor system that has proven quite useful 

f o r e c o l o g i c a l models i s SIHCON—a Simulation Control Command 

Language [ 1 0 ] , SIMCON allows the user to plot during execution 

selected variables of a simulation program written i n FORTRAN. 

He may interrupt the simulation and display or a l t e r variables, 

and he may r e s t a r t the simulation from several states. Thus, i n 

many cases, a model can be adequately represented, for 

monitoring purposes, by l i n e plots of the le v e l s of certa i n 

e n t i t i e s (such as populations). In other cases, however, the 

r e a l understanding of the model l i e s not i n monitoring the value 

of a variable (or the length of a queue), but monitoring a 

process or rel a t i o n s h i p that determines the value of the 

variable. An example of a continuous simulation model where 

t h i s would be true might be a study of changing boundaries 

between several t e r r i t o r i a l populations. The simulation 
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s t a t i s t i c s may begin to make sense i f the modeller can a c t u a l l y 

see on a graphics screen a population being crowded out of 

existance by neighboring populations. S i m i l a r l y , a gueue that 

becomes too long may be analyzed by monitoring an animation 

showing just where the items are a r r i v i n g from and where (and 

when) they are going next. Without some movement of items 

between e n t i t i e s , the viewer, i n Martin's terminology, i s unable 

to keep enough information about the r e l a t i v e states of these 

e n t i t i e s i n the 'foreground* of his mind a l l at the same time. 

This issue of movement brings up an i n t e r e s t i n g point about 

ANISIM. When we think of the system being modelled as a gueuing 

network, then animating with moving sequences can be thought of 

as d i s t o r t i n g the m o d e l — p a r t i c u l a r l y with respect to the 

expansion of time caused by binding seguences. But i f we think 

of the system being modelled as some real-world system that i s 

only approximated by a queuing network, then animating with 

moving sequences can be thought of as restoring some r e a l i t y to 

the model. The user of ANISIM can use the SCAN mode for a true 

representation of the gueuing network, but he does not have the 

benefit of that extra information provided by movement. Or, he 

can se l e c t varying degrees of d i s t o r t i o n / r e a l i t y by c o n t r o l l i n g 

the durations of the moving sequences. In either case, 

animation techniques can at least be used to represent the 

progression of states, to show the changing i n t e r r e l a t i o n s h i p s 

amongst model components, and to signal the occurrence of 

c r i t i c a l states. 
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The concept of allowing the model designer optional degrees 

of " r e a l i t y " i s not unique to ANISIM. An i n t e r a c t i v e graphics 

system developed at IBM for designing and testing l o g i c c i r c u i t s 

allows the user to specify one of three modelling abstractions 

regarding the timing of pulses [13], The trade-off i s between a 

fa s t approximation and a slower, more r e a l i s t i c simulation. In 

t h i s case, however, i t i s the actual simulation that i s 

affected, not just the graphic representation, as in ANISIM. 

The ATOPPS system [5] discussed in the next section, i s an 

example of a discrete event simulation monitor which makes i t s 

point graphically without making any attempt to r e a l i s t i c a l l y 

model the timing between events. 

ii2_Educational_Tool 

I f the use of animation provides additional insight into 

the understanding of a complex process, then c e r t a i n l y i t i s 

desirable to apply t h i s c a p a b i l i t y toward educational purposes. 

This generally means placing less of the emphasis in the 

graphics system on a f l e x i b l e design optimization approach and 

placing more emphasis on c a r e f u l l y i l l u s t r a t i n g the process or 

reaction that i s of inte r e s t . In f a c t , i t may be reasonable i n 

some cases to exaggerate the more d i f f i c u l t features at the 

expense of the o v e r a l l accuracy of the animation. 

For example, the ATOPPS system [14] at Pennsylvania State 
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University i s presented as a "Computer Graphic Simulation of a 

Discrete Time Operating System for Introducing Elementary 

Concepts". Films have been made of the system, which displays 

the contents of the memory, active hardware, and major gueues of 

a t h e o r e t i c a l operating system. The objective i s to watch the 

flow of information from one job step to another in the discrete 

time simulation of d i f f e r e n t operating system configurations. 

The model appears to be f a i r l y simple, but allows enough 

s t r u c t u r a l and parameter options to demonstrate many of the 

important p r i n c i p l e s of operating system strategies. The 

graphic technigue does not involve animation i n the sense of 

elements moving on the screen. Instead, arrows and intensity 

are used to c a l l the viewer's attention to (and to further 

explain) each change of state. The state of each entity (e.g. a 

queue) i s described by a number rather than a symbol. The most 

signigicant difference between ATOPPS and ANISIM i s the manner 

i n which they graphically represent the timing of discrete 

events. ATOPPS makes no attempt to depict p a r a l l e l processes or 

the elapsed time between successive events. Instead, the clock 

time i s always shown and when an event has been displayed the 

clock i s updated to the time of the next event, which i s 

immediately displayed. In other words, a l l state changes bind 

the display, while they are represented i n some d e t a i l . To help 

the viewer understand the i n t e r - r e l a t i o n s h i p of events, the 

future events gueue i s displayed on the screen, allowing one to 

see exactly when and why each event i s scheduled during the 



75 

processing of the current event. This approach seems guite 

reasonable for the stated objective of understanding basic 

operating system p r i n c i p l e s . The emphasis i s on the detailed 

display of each event rather than an accurate o v e r a l l display of 

the performance of the model. 

ANISIH, on the other hand, has considerable potential as an 

educational t o o l , but in a s l i g h t l y d i f f e r e n t sense. I t would 

not be p a r t i c u l a r l y i n s t r u c t i v e to show how an a r r i v a l event 

causes a new a r r i v a l event to be scheduled and put i n the future 

events queue. It would, however, be useful i n demonstrating 

certa i n concepts of queuing theory which are based heavily on 

timing parameters. For example, a student trying to understand 

how the rela t i o n s h i p between the a r r i v a l rate and the service 

rate affect the queue length might benefit by watching an 

animation of a simple queue with various parameters. Another 

simple example would be the comparison of two one-server queues 

with one two-server queue (see Figure 17). If the service 

d i s t r i b u t i o n s have a large variance, the student can see how 

items tend to t r a v e l faster through the two-server system. one 

problem with demonstrating t h e o r e t i c a l r e s u l t s i s that they are 

based on steady state p r o b a b i l i t i e s . Monitoring the simulation 

at any particular period of time (especially the beginning) 

provides no guarantee that the state w i l l be anywhere near that 

s p e c i f i e d by the long term p r o b a b i l i t i e s . Of course the 

s t a t i s t i c a l summary i s s t i l l available a f t e r stopping the 

simulation. 
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FIGURE .17: Queuing Theory Comparison 
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i i J_Research_Tool 

One of the o r i g i n a l motivations for developing ANISIM was 

to study, i n a general way, the processes or conditions which 

lead to network congestion and system deadlock. It has already 

been pointed out how ANISIM can be used to design or optimize a 

s p e c i f i c model to avoid undesirable states. S p e c i f i c a l l y , the 

animation allows the modeller to watch the chain of events 

leading up to the c r i t i c a l state. However, perhaps the 

animation can add a d d i t i o n a l i n s i g h t to current research on the 

t h e o r e t i c a l aspects of deadlock. ANISIM can be used to 

construct and modify networks which, when simulated, a) lead to 

blocking conditions (see Figure 12 in Chapter I I I ) , b) become 

congested (gueues or buffers f i l l up from time to time but 

always eventually unblock), or c) reach deadlock (two or more 

items are mutually permanently blocked). One example of a 

simple two-node deadlock appears i n Figure 18. The more 

complicated network shown in Figure 19 i s deadlocked between the 

f i r s t two buffers, causing congestion i n the rest of the 

network. 

Time has not permitted the experimentation necessary in 

order to investigate the p r i n c i p l e s behind deadlock. A survey 

by Coffman, et a l [5], describes various strategies for dealing 

with the prevention, detection (and recovery), and avoidance of 

deadlocks. The discussion i s oriented towards operating systems 

design, dealing i n terms of tasks and resources, but would 
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FIGURE 18: Simple Deadlock 



FIGURE 19: A P a r t i a l l y Deadlocked Network 
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p r o v i d e an e x c e l l e n t s t a r t i n g p o i n t on w h i c h t o b a s e 

e x p e r i m e n t a t i o n w i t h A N I S I M . 
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V CONCLUSIONS, PROSPECTS, AND EXTENSIONS 

5 i l _ A n a l _ ; s i s 

I t must be emphasized at t h i s p o i n t t h a t ANISIM, i n i t s 

c u r r e n t form, can o n l y be thought of as a r e s e a r c h t o o l , and not 

as a f i n i s h e d p r o d u c t . I t has c l e a r l y demonstrated t h a t 

a n i m a t i o n can p l a y a v e r y p o w e r f u l and u s e f u l p a r t i n d i s c r e t e 

event s i m u l a t i o n m o d e l l i n g . H o p e f u l l y , f u t u r e a t t e m p t s a t such 

systems can b e n e f i t p a r t i c u l a r l y from t h e c l a s s i f i c a t i o n of 

sequences and from t h e event e d i t i n g p r o c e d u r e s of Chapter I I . 

Much o f t h e i n i t i a l e f f o r t i n implementing ANISIM went i n t o 

d e v e l o p i n g the s i m u l a t i o n and a n i m a t i o n t e c h n i q u e s . The system 

more or l e s s e v o l v e d as i t s c a p a b i l i t i e s became ap p a r e n t , 

r e s u l t i n g i n two g e n e r a l problems. The f i r s t problem c o n c e r n s 

t h e i d e a l o g u e . M a r t i n [13], i n h i s s u r v e y o f methods, f e a t u r e s , 

and p s y c h o l o g i c a l c o n s i d e r a t i o n s o f man-machine d i a l o g u e , 

emphasizes t h e need f o r comprehensive p l a n n i n g o f the d i a l o g u e 

b e f o r e programming b e g i n s . Such p l a n n i n g , i n t h e case of 

ANISIM, c o u l d have eased t h e programming t a s k , p a r t i c u l a r l y w i t h 

r e s p e c t t o p r o v i d i n g s i m p l e , u n i f o r m e r r o r r e c o v e r y p r o c e d u r e s . 

The second problem w i t h t h e l a c k of o v e r a l l p l a n a t t h e 

b e g i n n i n g i s t h a t not enough p r o v i s i o n can be made to e a s i l y 

handle e x t e n s i o n s and r e f i n e m e n t s . For example, i n ANISIM, as 

i n most g r a p h i c s systems, the d a t a s t r u c t u r e i s a c c e s s e d from 

j u s t about every phase of t h e program. R e p e r c u s s i o n s of any 
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changes to the structure or to the information stored i n i t tend 

to r i p p l e throughout the program. In concentrating on the needs 

of the animation routines while coding the simulation routine, 

some basic features were overlooked, such as the gathering of 

c e r t a i n s t a t i s t i c s and the allowance for more transaction 

parameters (i.e. i n addition to the destination sink and the 

time of a r r i v a l to the system). Adding these features, as well 

as further extensions (section 5.3), represent a rather tedious 

programming chore. 

Even i n l i g h t of what i t does not do, however, the current 

system i s s u r p r i s i n g l y inexpensive to use, considering the f a c t 

that i t i s a simulation program, i t i s i n t e r a c t i v e , and i t 

involves extensive I/O for graphics and for saving and restoring 

data on disk f i l e s . Furthermore, any attempt to re-write the 

program in a more modular fashion to perform more general tasks 

would be constrained by both the need for a f a s t , e f f i c i e n t 

simulation routine and the limited capacity of the Adage display 

buffer. 

5«2_ Limitations 

One important conclusion, born out by this and the 

following sections, i s that animation i s mainly useful as an 

addit ionajL technique for analyzing simulations, not as a 

substitute for c l a s s i c a l technigues. When one gets down to 

ac t u a l l y using ANISIM to study a r e a l problem he finds that 
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1} he s t i l l needs to have certain s t a t i s t i c s available to 

summarize or validate when he saw (or didn*t see), and 2) most 

models require at least one or two simulation features that are 

not available i n a s t r i c t queuing network formulation. This 

second d i f f i c u l t y i s compounded by the l i m i t s on problem size 

imposed by the representation of the network. As already 

pointed out in the example of t r a n s i t times, the a v a i l a b i l i t y of 

additional simulation power tends to simplify the required 

network structure, allowing a more complex s i t u a t i o n to be 

represented on the screen. 

In discussing potential models f o r ANISIM with people 

f a m i l i a r with discrete simulations, a pattern began to emerge i n 

the simulation features reguired i n order to enable many models 

to be formulated. A few of the most important recommendations 

a r i s i n g from (or confirmed by) these discussions are mentioned 

here. 

In many queuing models, i n d i v i d u a l items must group 

together as they t r a v e l through the network. This i s true of 

ra i l r o a d cars, cargo on ships, and words i n a telecommunications 

network. To accomodate t h i s type of model in ANISIM, the 

concept of multiple servers must be changed to allow one server 

symbol to represent a server of unlimited (user specified) 

capacity. Also groups of items should be able to tr a v e l between 

nodes using one symbol (and generating single events). Figure 

20 shows one way of animating t h i s . In the case of trains or 
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'FIGURE 20: T r a n s a c t i o n Grouping 

s h i p s , i t would a l s o be d e s i r a b l e to allow some f l e x i b i l i t y i n 

depa r t u r e p r o t o c o l s . F c r example, there i s c u r r e n t l y no way of 

s p e c i f y i n g p e r i o d i c or otherwise scheduled departures c f a s e t 

number of items ( i . e . dep a r t u r e s independent of when s e r v i c e 

begins) . 

Another necessary c a p a b i l i t y of many gueuing models i s to 

measure the average delay of items t r a v e l l i n g between a r b i t r a r y 

p o i n t s of the network; The c u r r e n t system only measure^ the 

delay between s o u r c e - s i n k p a i r s . The only drawback of adding 

t r a n s a c t i o n parameters (as t h i s would) i s the i n c r e a s e d s t o r a g e 

requirement f o r the ALGOLS r e c o r d s which c o n t a i n the i n f o r m a t i o n 

f o r each t r a n s a c t i o n i n a gueue. 

Two a d d i t i d n a l f e a t u r e s which would c o n s i d e r a b l y widen the 

c l a s s of models t h a t c o u l d be simulated are t r a n s i t times 

( d i s c u s s e d e a r l i e r ) and l o g i c s w i t c h e s , or ga t e s . The l a t t e r 

would i n v o l v e t e s t i n g on u s e r - s p e c i f i e d t r a n s a c t i o n parameters 

and would c o n s i d e r a b l y complicate the di a l o g u e f o r d e f i n i n g the 

network. 
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5 i3_Extensions 

In addition to those discussed i n the previous section, the 

following potential extensions to AHISIH merit consideration. 

1) As pointed out e a r l i e r , the animation f a c i l i t y does not 

preclude the need f o r s t a t i s t i c a l summaries. S t a t i s t i c s which 

should be added include the mean and variance of the delay at 

each gueue and buffer, as well as the variance of the gueue 

lengths and buffer contents. Of course, the animation then 

allows the viewer to watch the variations happening, i n order to 

get a better f e e l for the nature of the fluctuations and the 

relevance of the averages. Furthermore, the animation together 

with the s t a t i s t i c s on blocking, provides a better understanding 

of how occasional blocking (congestion) may d i s t o r t the 

signigicance of the other s t a t i s t i c s . 

2) It may be possible to provide more meaningful ways of 

presenting s t a t i s t i c s to the user. One suggestion i s to provide 

a " t h i r d l e v e l " of information using a command which allows the 

modeller to view a plot of a s t a t i s t i c , such as queue length, 

over time. Another suggestion i s to provide a command which 

displays the average state of each entity rather than just the 

f i n a l state in which the simulation stopped. A more d i f f i c u l t 

to implement feature would be some type of continuous display 

during the animation of, for example, the average gueue length. 

(This would involve a separate symbol, or number, displayed near 
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the queue symbol.) It would also be helpful to display the 

simulation clock time during the animation. 

3) Currently, only two p r o b a b i l i t y d i s t r i b u t i o n s have been 

implemented for a r r i v a l and service rates. Others, such as 

Erlang d i s t r i b u t i o n , must be added, as well as the a b i l i t y to 

create a d i s t r i b u t i o n from user-specified empirical data. Also, 

more f l e x i b i l i t y with the random number seeds would allow the 

user to st a r t two or more streams with the same seed, for 

comparison purposes. 

A further type of a r r i v a l rate that would be very useful 

f o r modelling closed systems i s a f i n i t e c a l l i n g population. A 

l i m i t e d number of a r r i v a l s are generated, possibly a l l at once, 

and new a r r i v a l s appear at sources only when items depart to 

sinks. 

4) The routing mechanism used i n ANISIM represents one type of 

route s e l e c t i o n . Other possible types include a pre-defined 

routing scheme, where an item's route i s f u l l y s p e c i f i e d at the 

source, and a stochastic routing scheme, where the next node 

from any given node i s determined from a p r o b a b i l i t y 

d i s t r i b u t i o n . Other possible features than control routing are 

the transaction s p l i t t i n g and logic switching features of GPSS 

[9]. 

5) As well as allowing a r r i v a l and service time options, ANISIM 
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should provide optional p o l i c i e s for queue d i s c i p l i n e s and 

blocked transactions. P r i o r i t y queues ( i . e . allow the 

generation of d i f f e r e n t types of transactions) would be somewhat 

d i f f i c u l t to i l l u s t r a t e , however, given the current 

representation. An example of an alternate blocked transaction 

policy i s that a blocked item go back to the end of i t s own 

queue, instead of waiting in the server. 

6) Some t y p i c a l network configurations occur often enough that 

i t might be useful to provide a "network macro" f a c i l i t y for the 

automatic creation of previously defined sub-networks. Even 

better, there may be some models which can be suitable 

represented with entire sub-networks of the model replaced i n 

the animation by s p e c i a l , or user created, macro symobls. For 

example, i n Figure 19 i f each buffer (with i t s associated gueues 

and servers) were replaced by a network macro symbol, or i n t h i s 

case by a small version of the buffer symbol, the representation 

of the model would be considerably s i m p l i f i e d . Of course t h i s 

technique would allow ANISIM to handle larger models, since the 

main constraint on problem siz e i s the number of Adage buffer 

words used to represent the network. Also for t h i s reason, and 

for viewing s i m p l i c i t y , i t may be worthwhile to attempt a 

"windowing" c a p a b i l i t y , where only one portion of a large 

network i s displayed at one time. Windowing may not prove to be 

of too much value i n t h i s case however, since the modeller would 

never be able to view the entire network at once. 
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7) One problem with the animation of a non-trival network i s 

that a l l of the moving items look a l i k e . I t i s d i f f i c u l t , at 

times to follow the progress of an item through the network, 

e s p e c i a l l y i f i t spends time i n queues. A p a r t i a l solution to 

t h i s problem would be to shade, or otherwise mark, ce r t a i n items 

so that they can be distinguished from the others as they t r a v e l 

through the network. The drawback i s the space required by the 

additional transaction parameter f i e l d . Two methods of using 

t h i s shading feature are a) mark a l l items a r r i v i n g from a 

sp e c i f i e d source, and b) mark every tenth item, or whatever , 

generated by the system. 

5 r o s p e c t s for Further Work 

Although i t i s possible to formulate a f a i r l y large number 

of models in terms of networks of queues, the guestion arises as 

to what other types of discrete models or r e a l processes might 

be animated using the techniques described i n Chapter II. 

It seems that most descrete event simulation models can 

make use of the i n t e r n a l cycle concept, the c l a s s i f i c a t i o n of 

sequences, and the editing procedure. The deciding f a c t o r s , 

then, f o r animation f e a s i b i l i t y , would be whether the model 

structure can be suitable represented on a graphics scope and 

whether meaningful animation seguences can be compiled and 

displayed using the graphics software available. (The length of 

any two-side bounded sequences might be a problem in some cases. 
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as noted i n Chapter II.) One type of simulation with a s l i g h t l y 

d i f f e r e n t emphasis from that used i n ANISIM would u t i l i z e the 

graphics c a p a b i l i t i e s to study models involving s p a t i a l layout 

problems. Consider, for example, a model of a warehouse 

operation, where the cost associated with an item t r a v e l l i n g 

between two points in the model i s derived i n t e r n a l l y from the 

physical distance between symbols on the screen. The user i s 

able to optimize the model, with respect to cost and space, by 

simulating and animating i t with various s p a t i a l arrangements. 

This type of model would also reguire queuing f a c i l i t i e s , only 

the representation of the length of the queue would now become 

important. 

The question of animating r e a l processes rather than 

simulations i s a more d i f f i c u l t one. For example, assume i t i s 

desirable to monitor an animation of some sort of i n d u s t r i a l or 

s c i e n t i f i c process which cannot be d i r e c t l y observed (e.g. due 

to the location or size of the components of the process). 

Further assume that the process must be monitored in terms of 

discrete events, rather than continuous updating. This may be 

due to the method of measuring i t s progress, or perhaps only the 

general stages of the process are important to the observer. I f 

the events are merely being recorded for l a t e r study (say the 

process happens too f a s t or too slow for real-time monitoring), 

then there i s no problem. The events can be edited and compiled 

as done for simulations. I f , however, i t i s desirable to 

display the animation simultaneously with the ongoing process. 
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then two basic problems arise. For one thing, the process can't 

be stopped every few events i n order to wait for the editing and 

compiling of sequences. Furthermore, the time expansion due "to 

binding sequences would result i n a continually increasing lag 

between the time of the event and the time i t i s displayed. 

F i r s t of a l l , the problem of time expansion may not be a 

problem at a l l . Recall that binding sequences were required i n 

order to add some sort of r e a l i t y to the modelling abstraction 

of an instantaneous movement. I t seems l i k e l y , however, that 

most r e a l processes monitored i n r e a l time w i l l require two-side 

bounded sequences rather than binding sequences to properly 

animate movements. Let us assume then, that we wish to animate 

a real-time process requiring no binding sequences and no two-

side bounded sequences of unmanageable length. A system 

configuration that would probably make thi s task f e a s i b l e 

reguires three p a r a l l e l operations instead of the current two 

(370 program and Adage monitor). The f i r s t processor would 

continuously record the events of the ongoing process and make 

the event l i s t available to the second processor, which would 

then be able to use the i n t e r n a l cycle approach to edit events 

and compile sequences for the graphics computer to display. The 

animation would of course lag behind the actual events by a 

fixed start-up time, but the speed of the display could be made 

equal to that of the r e a l process. 

This discussion i s quite abstract and there would c e r t a i n l y 
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be bugs t o work out i n t h i s approach. The p o i n t i s t h a t t h e 

p o t e n t i a l e x i s t s f o r a p p l y i n g t h e g e n e r a l t e c h n i q u e s of C h a p t e r 

II t o t h e a n i m a t i o n o f systems o t h e r than s i m u l a t i o n s . 
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APPENDIX A — PROGRAM DESIGN 

ANISIH i s implemented cn an IEH 370/168 using the HIS 

(Michigan Terminal System) operating system, and an Adage 

Corporation Graphics Computer, as shown in Figure 21. 

ADAGE 
Model 10 
G r a p h i c s 
D i s p l a y 
S c o p e — * 

.Fu'nct i ori 
But tons 

IBM 370/168 

4. 

* 12 0 00 0 h i t s / s e c 

IBM 3270 
D i s p l a y 
T e r m i n a l 

• 2. 

I T 

. ADAGE 
G r a p h i c s .Computer 

T e l e 
t y p e . 

O p e r a t o r >s 
Cont r o l 
P a n e l 

FIGURE 21: S y s t e a C o n f i g u r a t i o n 

The program i s written c h i e f l y i n AIGCIW, with a few I/O 

operations i n. FORTRAN. Software provided by the 

D.E.C. Computing Centre consists of the HTS f i l e handling 

routines, the basic subroutine package f o r communicating with 

the Adage [ 6 ] , and the graphics monitor which resides in the 

Adage Computer £7]. Following i s a b r i e f d escription of the 
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major procedures in the ALGOLW program. 

MAIN: The main body of the program i s b a s i c a l l y the command 

monitor. Upon i n i t i a l execution, the procedure INITMAIN i s 

ca l l e d to i n i t i a l i z e various system variables, and the procedure 

SETUP i s c a l l e d to generate the Adage buffer words for the 

crosshairs, menu, messages, and symbols. The monitor then asks 

the user to enter a command, as shown i n Figure 10. The input 

s t r i n g i s compared to each possible command u n t i l a match i s 

found. Commands which allow parameters for changing the value 

of system variables always print out the new values of the 

variables. Thus, i f the parameters are ommited, the current 

values w i l l be printed. Simple commands are executed in li n e by 

the command processor, while other commands are executed by 

c a l l i n g one or more procedures. 

BUILD: The BUILD procedure monitors a l l network construction and 

modification. Upon entry, i t loads the words for the menu and 

prompting messages into the display buffer. The main loop 

consists of turning on the display of the menu, issuing a 

lightpen read, turning off the menu, and executing a procedure 

(depending on the location of the lightpen h i t ) . Also, upon 

termination of the procedure executed, control of the mode name 

in the menu i s switched from d i a l two to d i a l f i v e . 

NODES: This procedure i s c a l l e d when the SYMBOLS command i n the 
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menu i s h i t . Its main loop, after turning on the crosshairs, 

consists of issuing a read to the function buttons and executing 

the appropriate code. The buttons are used to create sources, 

servers, sinks, gueues, and buffers. For each such entity, the 

symbol i s displayed at the location of the crosshairs, the 

buffer words fo r the l a b e l are created, and a record i s created 

and added to the l i s t of records for that entity. Further use 

of the buttons i s required i n order to position a gueue or to 

sketch a buffer. A s p e c i a l button terminates the SYMBOLS mode. 

If a lightpen h i t i s read instead of a button, the symbol or 

l i n k pointed to i s no longer displayed. I f a symbol i s pointed 

to, i t s associated record i s also deleted from the data base. 

JtOKS: T ^ e LINKS mode makes use of the lightpen i n order to draw 

connecting l i n e s between pairs of symbols. No entry i s made in 

the simulation data base. The i n t e n s i t y of the l i n k s i s 

controlled by d i a l E, while the i n t e n s i t y of the symbols i s 

controlled by d i a l B. 

ASSIGNQ: This procedure i s c a l l e d , with d i f f e r e n t arguments, for 

the ASSIGNQ, FIRST QUEUES, and ASSIGN BUFF modes. For example, 

i f the arguments are the l i s t of queues and the l i s t of servers 

(ASSIGNQ mode), then the process i s as follows: a server i s made 

to b l ink; a prompting message asking for a queue i s displayed, 

and the lightpen i s read. If a gueue symbol was h i t , then a 

pointer to the queue record i s placed i n the server record, 
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otherwise the message "NO ASSIGNMENT" i s displayed. If the edit 

f l a g i s not on, then the process starts over with the next 

server i n the l i s t u n t i l a l l servers have been processed. If 

the e d i t f l a g i s on, then the user i s f i r s t prompted to point to 

the server he i s interested i n . 

ROOTING: The ROOTING mode requires a procedure s i m i l a r to that 

used i n ASSIGNQ i n order to f i l l a matrix of pointers to queue 

or sink records. Each entity i s assigned a number (unique 

within the e n t i t y type) when created in SYMBOLS mode. The 

number i s used to form the la b e l and to reference the entity 

whenever a pointer to i t s record i s not appropriate. In the 

case of the routing matrix, the f i r s t dimension i s indexed by 

queue numbers, and the second dimension i s indexed by sink 

numbers. Thus for each blinking queue-sink pair, the user i s 

asked to point to the next queue i n the route, or to the sink. 

This i s done by stepping through the l i s t of sinks and, f o r each 

sink, stepping through the l i s t of queues. If the edit f l a g i s 

set, the user i s asked for a sink but every queue i s processed 

for than sink. 

2MACI2IJS: This procedure steps through the l i s t of queues and 

then the l i s t of buffers, blinking each i n turn and prompting on 

the 3270 for the capacity. Each queue and buffer i s given a 

default capacity (20 and 100, respectively) i n SYMBOLS mode. 

The default or otherwise current capacity i s printed with the 
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prompt. If a n u l l l i n e i s entered by the user, the f i e l d i n the 

queue or buffer record remains unchanged. If something other 

than a number i s entered, the capacity i s set at 1,000,000 and 

the gueue symbol i s altered to represent an i n f i n i t e gueue. I f 

a gueue capacity less than twenty i s entered, the gueue symbol 

i s shortened proportionately. 

SOORCEFLOW: The SOURCEFLOW procedure i s used for both FLOW and 

SERVICE TIMES modes, where the a r r i v a l and service d i s t r i b u t i o n 

parameters, respectively, are entered into t h e i r appropriate 

f i e l d s i n the source and server records (actually the DIS 

rec o r d s — s e e Appendix B). The method of blinking each symbol 

under consideration i s used here as well. Since defaults are 

not assigned, the current parameters are only printed with the 

prompt i f the edit f l a g i s on. In SERVICE TIMES mode the re-

send time parameter i s also requested for each server. In FLOW 

mode the flow matrix, indexed by source number and sink number, 

i s f i l l e d i n the same manner as the routing matrix. If the 

fra c t i o n s of flow to each sink from a source do not add up to 

one, a message i s printed and that step i s repeated. 

This completes the major procedures within the BUILD 

procedure. 

SAVEgET: This procedure i s invoked by the SAVE command and 

allows a complete d e f i n i t i o n of a network model to be written 

onto an MTS f i l e of the user's choice. The filename i s prompted 
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f o r i f i t was not entered as a parameter to the command. MTS 

subroutines are used to create or empty the f i l e and to open i t . 

The information saved consists of 1) the buffer words for the 

network display, 2) an encoded description of the relevant 

f i e l d s of the records f o r each e n t i t y , 3) an encoded description 

of the routing matrix, and 4) the flow matrix. 

RESTORE: The inverse of SAVENET, thi s procedure reads i n and 

decodes the saved information, re-creating the data base and 

display. The restored network replaces any currently active 

network that may e x i s t , and the simulation s t a t i s t i c s are 

i n i t i a l i z e d to zero. 

LABEL: The LABEL procedure i s used to display or remove the 

labels at each symbol in the network. The buffer words for a l l 

of the labels are kept i n an array and only loaded into the 

buffer when required for display. This routine i s automatically 

c a l l e d to remove the labels before entering BOILD or s t a r t i n g 

the simulation. 

GO: GO i s a small procedure which monitors the Simulate-Edit-

Compile cycle. It i s envoked by the GO command to s t a r t or re

start the simulation. Hhen st a r t i n g a simulation, GO f i r s t 

checks the data base i n order to make sure each source and each 

server has been assigned a queue. Between i n t e r n a l cycles, GO 

checks to see i f an attention interrupt has been issued or one 
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of the simulation l i m i t s has been exceeded. I f not, the 

SIMULATE procedure i s c a l l e d . The EDIT and COMPILE procedures 

are then c a l l e d , unless a HODISP command was issued before the 

current GO. 

SIMULATE: The main body of SIMULATE checks between the 

processing of each event to see i f a simulation l i m i t has been 

exceeded, an attention interrupt has been issued, or the 

required number of potential seguences for the i n t e r n a l cycle 

has been achieved. If none of these conditions hold, the 

GETEVENT procedure i s c a l l e d , otherwise control i s returned to 

the GO procedure. 

GETEVEHT: The c o l l e c t i o n of routines comprising the simulation 

program maintain two l i s t s of event records: the future events 

l i s t (or gueue) and the l i s t of processed events to be passed on 

to the EDIT procedure. GETEVENT processes the event at the head 

of the future events gueue and puts the altered record i n the 

output event l i s t . (If there are no future events scheduled, 

then GETEVENT f i r s t c a l l s GENABB.) The event record i s described 

in Appendix B. B a s i c a l l y , i t contains the event c l a s s , the time 

of the event, and various parameters further defining the 

s p e c i f i c simulation e n t i t i e s involved. The record also contains 

f i e l d s l a t e r used f o r the animation time and duration. 

GETEVENT begins by updating the clock to the time of the 

new event. It then tests on the event class and uses the more 
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s p e c i f i c information to appropriately update the state and 

s t a t i s t i c s of the model i n the data base. For each future event 

that must be scheduled as a r e s u l t of the current event, the 

procedure GETEVENT i s c a l l e d i n order to create the proper event 

record i n the future events queue. The aspects of the current 

state of the simulation that w i l l be required by the COMPILE 

procedure are then added to the current event record and i t i s 

placed i n the output event l i s t . 

3ENABB: This procedure generates one a r r i v a l event at each 

source to i n i t i a l i z e the simulation. (An a r r i v a l event always 

causes the scheduling of the next a r r i v a l event at that source.) 

A pseudo-random number generator i s used to derive independent 

random number streams f o r each source (and each server). Thus 

the time of a r r i v a l i s determined by the stream and the user-

specified probability d i s t r i b u t i o n for that source. GENABB must 

also use the flow matrix and a separate random number stream in 

order to determine the destination sink f o r the new a r r i v a l . 

GENEVENT: GEN EVENT i s c a l l e d from GETEVENT with an argument 

specifying the event class desired f o r the new event. GENEVENT 

then uses the information i n the current event record and in the 

data base to create the new event record. This record i s placed 

i n the future events queue. 

SENDSTATE: When the simulation stops, the data base contains the 
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current state of the model. SENDSTATE i s automatically c a l l e d 

at t h i s time to scan the relevant records and display the 

current state of each queue, buffer, and server. (This i s 

desirable since either NODISP was s p e c i f i e d , or the t a i l of the 

l a s t i n t e r n a l cycle was not displayed.) 

EDIT: The EDIT procedure edits the l i s t of event records output 

by the simulation. These same records are used to form the 

sequence l i s t and t a i l l i s t . Chapter II describes the editing 

process i n d e t a i l . 

COMPILE: The operations performed by the COMPILE procedure are 

also described i n Chapter II. The f i r s t part of the procedure 

steps through each record i n the sequence l i s t . Depending on 

the event c l a s s , selected smaller procedures are c a l l e d to 

ac t u a l l y compile the display programs for each sequence. The 

second part of the routine then compiles the buffer timer words 

and sends the completed array to the Adage. 

RESET: The RESET routine goes through the data base and, for 

each e n t i t y , changes the state and s t a t i s t i c s to t h e i r i n i t i a l 

value. It also displays a fresh copy of the network, restores 

the random number seeds, eliminates any remaining event or 

sequence l i s t s , and resets the simulation clock. 

SPEED: The SPEED procedure uses a small array of pre-defined 
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settings for the animation time conversion factor and the length 

of the i n t e r n a l cycle. The argument to the procedure s p e c i f i e s 

whether to assign the values for the next fa s t e r display, the 

next slower display, the default speed display, or the scan mode 

display (which also requires setting the sequence durations to 

zero). Also, i f a t a i l l i s t e x i s t s , the SPEED procedure w i l l go 

back and adjust the animation times i n the t a i l according to the 

new factor (see sections 2.3.3 and 2.4.2). 
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APPENDIX B — DATA STRUCTURE 

The b a s i c r e c o r d d e s c r i b i n g each model e n t i t y i s the NODE 

r e c o r d (see f i g u r e 2 2 ) . These r e c o r d s a r e grouped i n t o f i v e 

s e p a r a t e l i s t s o f s o u r c e s , s e r v e r s , s i n k s , queues, and b u f f e r s . 

S t a r t i n g 
B u f f e r 
L o c a t i o n 

E n d i n g I C u r r e n t 
B u f f e r \ S t a t e 
L o c a t i o n 

I d e n t i f y i n g 
N u m b e r 

Y - C o o r d i n a t e . 
o f S y m b o l 

X - c o o r c i n a t e 
o f S y m b o l 

Po i n t e r t o 
Q u e u e NODE 
i f a S e r v e r 
o r S o u r c e 
a n d t o B u f f e r 
NODE i f a 
Q u e u e 

P o i n t e r t o 
n e x t NODE 
i n L i s t 

P o i n t e r t o 
S t a t i s t i c s 
R e c o r d i f 
n o t a S i n k 

P o i n t e r t o 
M U L T S E R V i f 
a Q u e u e a n d 
t o D I S i f a 
S e r v e r , S o u r c e 
o r B u f f e r 

FIGURE 2 2 : The NODE Record 

The NODE r e c o r d i s augmented, when n e c e s s a r y , by t h e BIS, 

HULTSERV, and STATISTICS r e c o r d s . The DIS r e c o r d has t h r e e 

f i e l d s and c o n t a i n s t h e a r r i v a l o r s e r v i c e time d i s t r i b u t i o n 

code and p a r a m e t e r s , o r the b u f f e r c a p a c i t y . The STATISTICS 

r e c o r d a l s o has t h r e e f i e l d s . For queues and b u f f e r s , i t 

c o n t a i n s t h e s t a t i s t i c s f o r computing the average and maximum 

queue l e n g t h o r b u f f e r occupancy. For s o u r c e s i t c o n t a i n s the 

number o f l o s t a r r i v a l s and an i n t e g e r i d e n t i f y i n g t he random 
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number stream. For servers i t contains the stream i d e n t i f i e r , 

the re-send time, and the number of times found f u l l . Figure 23 

shows the use of the MULTSER V record and the associated TRANPAR 

and HSPTR records. For each queue, there i s one TRANPAR record 

for every item i n the queue (not including items being served). 

Future transaction parameters would require expansion of thi s 

record. Also, f o r every server using the queue, there i s one 

HSPTR record. 

The network d e f i n i t i o n i s completed by the ROUTE matrix 

consisting of pointers to NODE records (queues or sinks), and 

the FLOW matrix of r e a l numbers. 

The EVENT record contains several f i e l d s which take on 

various meanings at d i f f e r e n t points in the processing. Figure 

24 summarizes t h i s record. 
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MODE ( Q u e u e ) 

P o i n t e r S o u r c e N u m b e r 
. t o NODE . a n d A r r i v a l 
( D e s t i n a t i o n T i m e 
S i n k . ) 

FIGURE 23: Data Structure for Queues 
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t 
E v e n t 
C l a s s 
C o d e 

P o i n t e r t o 
MODE R e c o r d s 
a s " S u b c l a s s 
D e s i e n a t o r s " 

S e q u e n c e 
D u r a t i o n 

S i m u l a t i o n 
I i me 

Q u e u e a n d B u f f e r 
S t a t e P a r a m e t e r s 
f o r C o m p i l e R o u t i n e 

P o i n t e r t o 
P r e v i o u s 
EVENT 
R e c o r d 

F 
Po i n t e r t o 

NODE 
( D e s t i n a t i o n 

S i n k ) 

P o i n t e r t o 
n e x t EVENT 
R e c o r d 

F I G U R E 2 4 : T h e EVENT R e c o r d 
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APPENDIX C — USER'S GUIDE 

Purpose 

ANISIM provides a command language for creating, 

simulating, and animating a r b i t r a r y queuing network models. 

There are two main phases of execution: the normal command mode 

at the 3270, and the menu dialogue for network d e f i n i t i o n and 

modification using the Adage and the 3270. 

Running the Program 

Before attempting to run ANISIM, make sure that the 

graphics monitor has been loaded into the Adage computer. See 

the Computing Centre writeup UBC GRAPH for d e t a i l s . The 

following command may then be used to st a r t execution of ANISIM: 

$S0URCE WALK:ANISIM 

The program w i l l f i r s t ask the question "ARE YOU USING THE 

ADAGE—TRUE OR FALSE," which should be replied to by s p e l l i n g 

out the word "TRUE" (or "FALSE"). The program w i l l then clear 

the Adage screen and enter the command mode with the message 

"ENTER COMMAND OR HELP." On entering "HELP," a l i s t of 

available commands w i l l be presented along with a b r i e f reminder 

of t h e i r purpose. 
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Adage Input 

The six d i a l s connected to the Adage are used i n the 

following way: 

DIAL A DIAL D 

the horizontal crosshair the v e r t i c a l crosshair 

DIAL B 

in t e n s i t y of symbols and 

names of un-entered modes 

DIAL C 

X-co-ordinate of menu 

DIAL E 
in t e n s i t y of l i n k s and labels 

and names of entered modes 

DIAL F 

Y-co-ordinate of menu 

To use the function buttons (required during SYMBOLS mode 

of the menu dialogue) the yellow overlay card marked "ANISIM" 

should be used. If t h i s card cannot be located, the function of 

each button i s as follows: 

BUTTON 1: Creates a source. 

BUTTON 2: Creates a server. 

BUTTON 3: Creates a sink. 

BUTTON 5: Creates a queue. 

Orients the t a i l of the queue symbol. 



110 

BUTTON 6: Creates a buffer. 
Sketches the buffer symbol. 

BUTTON 7: Terminates buffer sketching. 

Terminates SYMBOLS mode. 

BUTTON Hz Selects the default buffer symbol. 

BUTTON 8: Allows a sketched buffer symbol. 

Bhen using the lightpen, the display w i l l blink when a h i t 

has been accepted, and the button should then be released to 

avoid an unintended second h i t . Also, as a general rule i n the 

menu dialogue, a lightpen h i t on the prompting message i s used 

to terminate a mode or avoid an assignment. 

Av a i l able Commands ^brackets denote optional parameters},! 

BUILD X NEWNETX or EDITNET 

Each causes the program to enter the menu dialogue phase. 

NEWNET f i r s t destroys any active network, and EDITNET should be 

used f o r small changes to the active network. The menu dialogue 

phase i s described l a t e r in more d e t a i l . 

C Y C L E _ n J J L s 2 J Ls^j [_MJ 

Changes the l i m i t s on the simulation and prints the resulting 

values. If any parameter i s missing or given as an asterisk 

(position holder), the current value i s retained and printed. 

The parameters are 1) the simulation clock time l i m i t , 2) the 

maximum number of a r r i v a l s generated, 3) the maximum number of 

entries into gueue/server systems, 4) the maximum number of 
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terminations (departures to s i n k s ) . Default values are 1000, 

200, 200, and 50, respectively. 

DESPEED 

Returns to the default speed for subsequent animations. 

DOR LSiJ LS2J LRU LRU 

Alters the sequence durations (in simulation time) to the new 

values i f s p e c i f i e d , and prints the values. The sequences are 

1) a r r i v a l s , 2) l o s t a r r i v a l s , 3) departures (binding), and 4) 

departures to sinks. A l l default durations are 10 simulation 

time units, except during SCAH mode when they are zero. 

EDITNET 

See BUILD. 

END 

Terminates the program. An attention interrupt also returns 

control to MTS but the program can be resumed with a $RESTART 

command. 

FACTOR LHJ 

Alters the animation time conversion factor to the new value i f 

sp e c i f i e d , and prints the value. The smaller the factor, the 

faster the display. The default factor i s set to 10. 

FASTER 

Increases the speed of subseguent animations, unless the current 

speed i s the f a s t e s t , and prints the new factor and cycle length 

values. 

30 In J 
Simulates the active network for n time units from the current 
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state or u n t i l interrupted, or u n t i l a simulation l i m i t i s 

exceeded (see the CYCLE command). The animation accompanies the 

simulation unless a NODISP command i s f i r s t issued. 

INTERCY £nj 

Alte r s the length of the i n t e r n a l cycle to the new value i f 

sp e c i f i e d , and prints the value. For fast displays, the 

i n t e r n a l cycle should be made larger to avoid delays in the 

animation between cycles. Default value i s 15 sequences. 

LABEL 

Displays unique labels at each symbol. These labels allow 

reference to s p e c i f i c network e n t i t i e s by information available 

from the PRINT command. The inte n s i t y of the labels i s 

controlled by d i a l E. 

MORHELP 

Prints additional commands not l i s t e d by HELP. 

NEWNET 

See BUILD. 

NOJDISP 

Turns off the animation for the duration of the next GO command. 

PLOT [_sj 

Provides a hardcopy plot of the display. The maximum dimension 

i s 10 inches unless the parameter otherwise s p e c i f i e s . PL0T:Q 

must be run a f t e r termination ANISIH. 

PRINT ni |_n2J 

Prints the following information, according to the f i r s t 

argument. The second argument, i f not zero, w i l l cause the 
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program to ask f o r the name of an MTS f i l e on which to print the 

information. The codes are: 

0) A l l of the information available from codes 2-8 and 

16. 

1) A l l of the information available from codes 3-8 and 

16 ( i . e . a l l s t a t i s t i c s ) . 

2) A description of the future events l i s t . 

3) A l l of the information available from codes 4-8. 

4) Source numbers and s t a t i s t i c s . 

5) Sink numbers and s t a t i s t i c s . 

6) Server numbers and s t a t i s t i c s . 

7) Queue numbers and s t a t i s t i c s . 

8) Buffer numbers and s t a t i s t i c s . 

11) A description of the current seguence l i s t . 

12) The most recently compiled animation buffer (for 

debugging) . 

13) A summary of the current model e n t i t i e s and 

parameters. 

14) The current value of each random number stream (for 

debugging). 

15) The entire Adage display buffer (for debugging). 

16) The average time-in-system s t a t i s t i c s by source-

sink pairs. 

Any other number w i l l result i n the printing of the current 

status of the simulation. 
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RESET 

Resets the simulation variables, the s t a t i s t i c s , the model 

state, the random number seeds, and the display to the i r i n i t i a l 

status. 

RESTORE [_filenamej 

Destroys the current active network and makes active the network 

saved on the MTS f i l e s p ecified. 

SAVE j_filenamej 

Saves the active network on the MTS f i l e s p e c i f i e d . If the f i l e 

does not already e x i s t , i t w i l l be created. 

SCALE _xj 

Alte r s the scale of the display to the new value i f s p e c i f i e d , 

and p r i n t s the value. The default i s 0.6. 

SCAN 

Allows the animation to be displayed at an increased speed with 

no moving items ( i . e . a l l "seguence durations" are zero). The 

new factor and cycle length values are printed out. 

SLOWER 

Reduces the speed of subsequent animations, unless the current 

speed i s the slowest, and prints the new factor and cycle length 

va lues. 

STOP 

Same as END. 

TRACK n l [_n2J 

Sets debug f l a g s for the programmer. The second argument causes 

the program to ask for the name of an MTS f i l e on which to print 
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the output. The flags are 0) PRINTCYC, 1) PRINTSTEPOUTP, 2) 

LITDUMP, 3) TRACE, 4) DUMPER, 5) COMPTRACE, 6) COMTRACE, and 7) 

BUFTRACE. Flag 3 may also be of value to the user, as i t 

provides a detailed trace of the simulation. 

UNLABEL 

Removes the labels from the screen. (This i s done automatically 

before simulating and before entering the menu dialogue.) 

The Menu Dialogue 

Once t h i s phase of the program i s entered, commands are entered 

by pointing with the lightpen to a mode name i n the menu. The 

menu should be positioned by d i a l s C and F to a convenient 

location on the screen. It w i l l disappear during the execution 

of each mode. Also, Dials B and E should be adjusted such that 

un-entered modes are at normal i n t e n s i t y and entered modes are 

at a reduced i n t e n s i t y . A mode may be re-entered by turning the 

in t e n s i t y back up i n order that the lightpen h i t w i l l take. 

When building a new network, a recommended order of execution i s 

the order i n which the mode names are l i s t e d . The purpose of 

each mode i s outlined below, along with any inst r u c t i o n s for use 

not obvious from the dialogue. 

SYMBOLS: This mode i s used to create model e n t i t i e s with the 

function buttons and position t h e i r symbols at the locations 

defined by the crosshairs. Button 7 i s used to terminate the 

mode. When creating a gueue, a second button h i t i s reguested. 
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The head of the gueue w i l l be located at the f i r s t crosshair 

location and the t a i l w i l l be oriented i n the dire c t i o n of the 

second crosshair location. Buffer symbols may be sketched i n 

any shape. Upon selecting a buffer (button 6), the bargraph 

appears at the crosshairs location and the user i s asked whether 

he wants to sketch (button 8) or use the default shape (button 

4). If i t i s sketch, button 6 i s used with the crosshairs to 

specify li n e endpoints. No l i n e w i l l be drawn to the f i r s t 

point s p e c i f i e d . Button 7 terminates the sketching, The 

lightpen may be used i n thi s mode to delete a symbol or l i n k by 

pointing to i t . A maximum of 19 gueues, 19 servers, 10 sources, 

10 sinks, and 6 buffers are currently allowed, including any 

deleted ones, 

LINKS: This mode i s used to connect any pair of symbols with a 

li n e by pointing to the symbols with the lightpen. The 

in t e n s i t y of the l i n k s i s controlled by d i a l E. 

ASSIGNQ: Every server must be assigned a unigue gueue. These, 

and other assignments, are made by pointing to the symbol with 

the lightpen. The assignment i s made to the server that i s 

blin k i n g . 

FIRST QUEUES: Every source must be assigned a unigue queue to 

designate the f i r s t queue/server system i n the route for items 

generated at that source. 

ASSIGN BUF: This mode i s required i n order to t e l l the program 

where to send an item next, given that i t i s at a gueue/server 

system (blinking queue) and i s destined for the blinking sink. 
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The user should point to the next queue or to the sink. 

CAPACITIES: This mode i s required i f the default capacities of 

20 f o r queues and 100 for buffers are not appropriate. The 

capacity of a queue does not include the servers, although the 

state of a queue refers to the queue/server system. 

FLOW: This mode i s required i n order to define the i n t e r - a r r i v a l 

time d i s t r i b u t i o n type and parameters. (Currently, the 

exponential and uniform d i s t r i b u t i o n s are available.) The mode 

i s also used to define the flow of items generated at each 

source, by entering the f r a c t i o n (decimal f r a c t i o n between 0.0 

and 1.0, inclusive) of those items to be destined for each sink. 

I f the f r a c t i o n s do not add up to 1.0 for each source, the user 

w i l l be asked to try again. 

SERVICE TIMES: This mode i s required i n order to specify the 

d i s t r i b u t i o n and parameters of the service time for each server. 

It i s also used to specify the (constant) time a blocked item 

must wait i n the server before attempting to depart again. (An 

item i s blocked by either the next queue or i t s buffer being 

f i l l e d to capacity.) 

DONE: This i s not ac t u a l l y a mode, but causes the menu to 

disappear and control to be returned to the normal command phase 

at the 3270. Since there may s t i l l be bugs in ANISIM which 

could cause an unexpected termination of the program, any newly 

created or modified network should be saved at t h i s time using 

the SAVE command. 

This user's guide i s not intended to provide a thorough 
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understanding of the uses and c a p a b i l i t i e s of ANISIM. The 

interested user i s referred to the main body of t h i s thesis f o r 

further d e t a i l s . 


