¢
ANISIM: AN ANIMATED INTERACTIVE SIMULATION MONITORING SYSTEHNM

'by
WARD WALKER, JR.

B.A. (Honors), Washington State University, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming to the

required standard

THE UNIVBERSITY OF BRITISH COLUMBIA

April 1974

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Coluﬁbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of Oo/p}pu.%&gr\ S\C-/'%ce,.

The University of British Columbia
Vancouver 8, Canada

bare /Ty /3)974
7 7 '

ii

ABSTRACT

An interactive system 1is described which allows for the
graphic construction, simulation, and simultaneous animation of
an arbitrary network of queues. A method is proposed and
implemented for representing the events of a discrete simulation
by a continuous animation on a graphics terminal. Techniques
are presented for the display of parallel animation "sequences,"
and a non-trival mapping of simulation time into animation time
is described which preserves the relative order and tinme
relationships between events. The program implemented combines
this animation facility with other simulation monitoring and
control features. The wusefulness of this type of approach is
discussed with respect to computer-aided design applications,
educational tools, and research tcols. An interactive dialogue
which makes use of the 1lightpen and a wmenu of commands is
implemented for the construction and modification of the queuing
network. Certain relevent aspects of man-machine interaction
are discussed. Also, some prospects are considered for applying
the animation techniques developed in this implementation to

other discrete event processes.

iii

TABLE OF CONTENTS
INTRODUCTION e suvnsnnsesnnsnensnnsensssscsnssosencnsnaenanaad
0.1>Animating Simulations;......,;.;......;;1_
0.2 SCOPE seevesevessssesessacescsasscsnssesssassssascnnasesl
6.3 Queuing Networks;.........;;......,.......UA
0.4 Simulation States And Events{................7
I. INTERACTIVE_GRAPHICS FOR COﬂPUTER‘AIDED ﬁODELLING .;.;..lli
1.1'Types_0f Systenms ;...;.,..................,.;..;.....;j1
1.2VANISIM'......Q..........................;.,.;........,13
~ 1.3 Iasportant Principles ..,...........,...;;.............1u.
1.4 Model Represéntation'.;...;.........;.......Q.;....Z..15
| Ii, vAﬁIﬂATiCN'TECHNIQUESV;..,......r;......;.;..;...;.....;18
| 2.1 Comphﬁer‘Animation ..;..,..,,........;..;;,...;.,..f,;18
2.2 Representing»ﬁ§é£ts .;...................;..Q...,...i,19
Av2.§ Animatioh.Timé Ftamev...;...............;.......;.,...22
' 2;3;1~Types of Seguénces.........;..,........;;..s......22
2;3.2>Interhavaycles;...;.-.....,,.....;..........28
'2.3.3 Editing The Event List ..,............;..;.....;..30'
2.4 The Display Process;.....................;..3u

2.“.1 The DiSplay Buffer .‘.--o-.bncof'i_c01000-00000000-000314

-
-

Z;R.Z'Cbméiling Sequences Into Display Pfog;ams ..}a.,..3$
2.4.3 Double Buffering,...;;...,............QHO-

2.5 The Overall Visuwal Effect;.;....;.........43
'III; INTERACTIVE FEATURES}.........;.;f..........;.u?

3.1 Simulation Monitoring And CODRETOLl teeeeeecosooncnoeanalt?

3.1.1 System Control seeecscecscsosccscccsncscnssosnsssscscsealt?
3.1.2 simulation Monitoring ..eseececsccessccccscscccnsasd0

3.2 Model Design And ModificatioN .eeeccsscsccccsscscssseseced?
3.2.1 Network ConstruCtion ..ceececssesessscsscccsscassesd?
3.2.2 Model Verification e.eceescecssscccscssnscscscnssnasbb

IV UTILITY OF ANIMATION cveesosesssnscscacsccscccnssencecansell
4.1 Simulation TOOl .eecossccscnssoscosscessssassssssssccsell
4,2 Educational Tool,.......,...,,.,..73
4.3 BesearCh TOOl ..cccsescceoscscsnsossnesssssssassassscncaell

V CONCLUSIONS, PROSPECTS, AND EXTENSIONS sessssescecscscsnsesneil
5¢1 ANAlYS1S eseesscscescsescssscscsssssasscssssssssssssssccsceld]l
5.2 LimitationNsS ecesseocncccecssescssssscscsassssascsconcssnssB?l
5.3 EXtENSiONS cecevsnesccsonsccnasscsccasosnsosssncssssssssnesdd
5.4 Prospects For Further WOLK ..csceccccccccccscscaseccsseslB
BIBLIOGRAPHY csccecesoscosncncscssssosssccnsossscsnesssnscscsasend?
APPENDIX A ~—~ PROGRAIN DESIGN .cecsssocanscsnsacsesssnasscssnsassdll
APPENDIX B =- DATA STRUCTURE ceesevecccsessscscssnesassanssse 0l

APPENDIX C-- USER’S GUIDE ...‘O...’....O‘...O.......C’._.._._.106

iv

Te

10,
'11;
712.
13.

1“.

15.

i6.

17.

18,

19.

20.

21.

22.

23.

24.

LIST OF FIGURES

A Simple QueUing Network ."..l'..c.ﬂ..'l‘.-O-DODQQ)'.O..O.DOvG:;

Modelling Abstractions .0......0..'..’..O.I..Q‘..B......lo

Animation Sequences For Display Of A Departure Event ...?1‘

SlmPle Tlme EXP&nSlon o-.o'....-..o.‘-t000'000000000050023:

Mapplng Events Into Sequences;....23
lIhe Internal Cycleo......................28;
:Dlsplay Program To Alter The State Of A Queue37
lnlsplay Program_Tlmer Words;.......39'l

,BufferlCo-OrdinationQué

_Commands Avallable}.......;.ugﬂ
vLabelled Entltles;52'
Dlsplay Of Blocked Itenms56
,Henu For Network‘De81gn ...;...........................59
.Speclfylng Queues ;.;......................;......,...;Bzg
BUEFEr SKEtCRING weesesenonnnesosansecsannssesnseannnsb’
Dialogue For Specifying Sefvioe Times ..;.....;......,;65
Queulng Theory Comparison;..Q;;..;7éh
Slmple Deadlock;.7&

1

A Partlally Deadlocked Network,..;....79
Transaction Grouping ,.........,...................f...85:
System Configuration;.}......,.....,...;...94
The NODE Record SR 1117

Data Structure FOT QUEUES sasesesveccccsossssccasssoensl(f

The EVENT ReCora ooooo-ogo.o.oo-oo-oooo.ooo--o-oooooov-o10‘7

vi

ACKNOWLEDGEMENT

I would 1like to acknowledge Dhirendra Chheda and Miguel
Alemparte for their significant part in the programming and
formulation of the original system. I would also like to thank
Dr. Doug Seeley for his help and guidance, and Drs. Jim Varah
and Dean Uyeno for their suggestions., I would especially like
to express my appreciation to Karen Hartley for her moral

support and assistance in finishing this thesis.

INTRODUCT ION

0.1 Animating Simulations

Discrete event simulation has become an important tool in
the analysis and design of complex systems., Conclusions about
the performance of a system can be drawn from the statistics
produced by simulating a model of that system with various
parameters and specifications., Wwhen analyzing the output of
such a simulation, the modeller must first of all be aware of
the inherent assumptions of the model, as well as the values of
the parameters. Secondly, he may need to know more about
certain characteristics of the model +that mpay be masked by
statistical averages or extremes. Determining just how to alter
a model in order to improve its performance can be a difficult
or even counterintuitive process. If only the mwmodeller could
"step inside™ his model and *"watch" it perform as the real

system might perform,

This thesis describes the implementation of a system that
brings the modeller to a closer understanding of his model by
providing a graphical animation of its simulation. . The
animation facility is the main feature of a complete interactive
package which allows an on-line graphical definition of the
model and extensive monitoring of its simulation. Considerable
emphasis has been placed on providing for a reasonably smooth

and meaningful dialogue between the user and the system.

One particular use of this system, that of studying in
general the behavior known as "deadlock", will be discussed, as
well as applications to computer aided design and to computer
animation as an educational tool, B general technique is
developed for the mapping of simulation "events"™ into a set of
.co-ordinated animation "sequences" for display. Also, some
implications are drawn concerning the use of similar animation
techniques for nmonitoring other, perhaps real-time, processes.
Baecker {1] sums up the utility of computer animation in
visualizing dynamic phenomena of mathematics, science, and
engineering:

"The computer has proved particularly useful because

of its ability to construct precise, mathematically

determined images, because of its ability to simulate

hypothetical worlds, because of its ability to expand

or contract space and time, and because of its ability

to portray complex spatial phenomena, particularly
those in three dimensions,"

———— — ———

When considering the objective of animating simulations,
perhaps the ultimate goal would be to develop a system that
could animate any arbitrafy simulation program. This was not
attempted, and is probably not even possible. Baecker and his
students [1] are developing a variety of systematic techniques
for representing computer processes with dynamic images. Their
emphasis, so far, has been on animating computer prograns,

rather than processes which are described by simulation

programs, One conclusion they have already reached, is that it
is impossible to build a system which could produce a good
animation of any program in any language running on a specific
machine. 1Instead, they want to build a variety of powerful
special-purpose tools, each suited to the animaticn of a
particular class of programs. An animation of a gimulation must
manipulate graphical symbols in such a way that they resenmble
the objects and processes being modelled. Even a very
intelligent program could not create meaningful symbols .and
motions by scanning the code of a simulation program. After
all, the model itself is only an abstraction of reality.. The
animation must create a visual image of a real situation; a task
which requires information often not available from, or
important to, the model. 1In fact, in the case of a discrete
event simulation (described in Section 0.4), the animation must

appropriately "fill in" the time between simulated events in

order to provide a continuous display.

A lesser goal, therefore, might be to animate progranms
written in a specific simulation language, such as Simscript
[21] or GPSS [9]. It may be possible to provide a limited set
of pre-defined, or easily defined, graphic primitives (both
symbols and motions), and a set of function calls to be inserted
into the simulation where regquired to produce the desired
animation effects. This method would be difficult to implement
and would place an overwhelming burden on the user to create a

well-defined program with all of the necessary information

available for the animation routines.

Thus, the sysfem which has been implemented, hereafter
referred to as ANISIM, does not attempt to animate an existing
simu;ation, but contains 1its own special simulation progranm
designed to handle a subclass of models known as gqueuing network
models. This still involves a large variety of possible models,
but the system is now able to help the user formulate a well-
defined model at the graphics terminal while it creates the data
structures necessary for the simulation and animation programs.
It will be shown later, how the techniques used in ANISIM could
be applied to <certain other models or classes of models. The
concept of a built-in simulation means that the user works with
a command language rather than a programming language. The
trade-off is between using a simple and convenient command
language and having the ability to tailor the power of the

simulation to handle specific needs. .

0.3 Queuing Networks

Before proceeding to further discussion of ANISIMN, it will
be useful to describe what is meant by queuing networks and by

sinulation states and events,

A queuing network model consists basically of itenms
travelling along 1logical paths of a network of "queues" and
"servers", A queue represents a waiting line of items (or

"transactions") trying to get into one of the servers of the

"queue/server system"., A server represents a delay of the itenm
occupying it before the item can move on to the next
queue/server system or exit from the network. In classical
gueuing theory, the "movement® of an item between any two nodes
in the network is assumed to occur instantaneously. Items enter
the network from a "source" and leave the network by going to a
"sink®,. Figure 1 shows a queue/server system with ten itenms,
six of them waiting to be served and four being served (the
small sgquares). The symbols in Figure 1 are those used by
ANISIM and do not represent any queuing theory conventions.
Certain fairly simple queuing networks can be "solved”
analytically--that is, average gqueue lengths and waiting times
can be found, mathematically, for the queuing system when it is
in steady state [11]. Networks which can be solved in this
manner are largely restricted to those with infinite queues and
special constraints on arrival and service time distributions.
Also, no information is available regarding the performance of
the system during more transient or time-dependent states. When
analytical solutions are inadequate or unavailable, simulaﬁion
nust be wused to analyze the system. Like any other model, a
queuing network is an abstraction of reality, although perhaps a
more formal one than some., Thus any conclusions drawn about the
~behaviour of the queuing model can only be considered as
aprroximations of the behavior of the real system being

modelled.

FIGURE 1: A Simple Queuing Network
From Left to Right: Source, Queue, Servers, and Sink..

0.4 Simulation States and_Events

The type of simulation involved here is known as a discrete
event simulation. This means that the model can be
characterized by its "state™ at any particular time and by a set
of m"events", or state <changes, which occur at discrete time
instants, Events can be exogenous (generated éutside the
system) or endogenous (generated within the system as a result
of a previous event or state). There are a 1limited number of
general types or “®classes" of events that can occur, and each

event is an instance of an event class.

Consider the following example of a discrete event model
for a one-car ferry across a river. An observer on a nearby
hill, sees an "arrival" as a car appearing at the last bend of
the road and moving to the end of the lineup. He sees a
"service" as the loading of the first car into the ferry plus
the actual crossing, the unloading, and perhaps the return trip
of the ferry., Finally he sees a "departure” as the car moving
on the other bank until it disappears. A typical discrete event
model of this situation is the so-called "single server first-in
first-out queue."™ The state of the system is merely the number
of cars in the lineup plus the one being served by the ferry.
An T"arrival" is the instantaneous exogenous event that adds one
to the state and a "departure" is the instantaneous endogenous
event that subtracts one from the state. The actual crossing or

"service"™ 1is the abstract concept of wait or delay between two

departures. Completely irrelevant in this particular mocdel
abstraction are the actions defined by the movement of the cars

or the ferry (or the fact that they are cars at all).

0of course, one could model a variety of situations using
only these basic concepts. The modelling power may be increased
by defining additional primitiﬁes while still maintaining the
structure of a queuing network. For example, at an early stage
of development it was decided that ANISIM should allow a
"buffer” entity that imposes a finite common storage 1limit on
two or more queues. (e.g. If the ferry terminal had two one-
car ferries, each with their own waiting line, but the two lines
had to share the same limited parking area.) If the number of
features added to the system to increase modelling power were
allowed to Dbecone very large, (approaching, say, the
capabilities of GPSS [9]), then two things might happen. First,
the programming system, which is large to begin with, may become
too costly to use and awkward to maintain (as many large
programning systems tend to be). WMore importantly, the
graphical primitives would in all probability fail to keep up
with the much wider variety of modelling abstractions, each of
which require visual aids to restore some reality to the model

being monitored.

One of the main objectives of ANISIM is to make it possible
for a human at the display terminal to monitor a simulation and

to do it as easily and accurately as possible. However, for

even a moderately complex system where the state of the system
cannot be accurately represented by a simple number as in the
ferry example, but by a vector with many components, mcnitoring
the simulatidn is not a trivial task. What to display and how
to display it becomes the main problemn. Solutions range from
the display of the state vector itself every time it changes
(i.e. Display numbers or other symbols), to a sophisticated
animation where sequences of moving elements are added as visual
aids, ANISIM uses the 1latter, under the assumption that the
mecessary abstractions which were, indeed, so useful for
analytical and computational purposes, hinder the process of

monitoring the system (see figure 2).

10

Rea'l
Svystem

Abstraction
of Reality

- Model

Simulation

Event
List

Restore Reality o Calculations
(Visual Aids) : : -

-

,Disblay - ' : N Statistics
A S | A
L . | | |
The Monitoring Human ' _ ~.The Analyzing Human

FIGURE 2: Mcdelling Abstracticns

11

I. INTERACTIVE GRAPHICS FOR COMPUTER-AIDED MODELLING

1.1 Types_of -Systems

A number of graphics systems have bheen developed in the
last - few years that provide a capability to model a process or
spatial configuration in order to 1learn wore about it and,
hopefully, improve its design. (Several of these are mentioned
below., Further discussion and references may be found in Prince
[18], Smith [23], and Newman and Sproull [16].) In many cases,
the information available from such a model can be considerably
enhanced by allowing the viewer to interact with the system that
generates or displays the model, even 1if this interaction is
simply, say, the rotation about an axis of a 3-D model of a
molecule [17].. Some systems use the graphics terminal as a
sophisticated sketchpad, while others rely on the terminal for
input to, and output from, a non-graphics processing progranm.
In almost all systems, a sufficient data structure must be
created by the program to allow, at least, the saving and 1later
restoring of models generated. Also, in even the simplest
system, some thought must be given to the manner in which the
user and the program communicate with each other (see Chapter

I11)..

Consider the following two examples: a) an interactive
program to design the spatial layout of integrated circuits

[19], and b) and architecturally oriented program for generating

12

perspective drawings of three-dimensional polyhedra [14]. In
each case, the user can quickly sketch preliminary "models", at
a conveniént scale, of something he may later construct or
design 1in npore detail,. The processing 'program is confined
mostly to graphical techniques which help the designer create a

well-defined model and then observe as much as possible about

the model that he has Jjust created.

Another type of computer-aided modelling allows the user to
see, and thus further comprehend, the results produced by a non-
graphics processing program. For exanmple, a number of
interactive systems have been developed to aid in curve-fitting
and other mathematical approximation techniques [15,23,12). The
user specifies input data, parameters and opticns, any of which
he may wish to alter after viewing graphical representations of
the output (or of intermediate steps). Such systems usually
pust also make available more detailed printed information for
later study. ANISIM is partially this type of system, as it
allows the user to gquickly analyze the effects of simulation
parameters by displaying the results of the simulation. The
interactive features which facilitate this capability are also

discussed in Chapter III.

On the other hand, there are cases when an interactive
graphics capability provides for a more natural ‘input medium to
a non-graphics program in terms of speed, convenience, or

possibly reliability [241]. For example, Forrester [8], has

13

found it necessary to describe complex dynamic simulation models
graphically, in order to follow the inter-relationships between
the variables, and‘ then code the simulation in a programming
language. Chheda [4] has developed an interactive system for
creating this graphical representation of a dynawmic model on a
graphics terminal in such a way that the program statements for
the actuval simulation are automatically generated. Of course,
this type of system may require the user to enter a large amount
of detailed information at the graphics terminal. The quality
of the dialogue between the system and the user therefore,
becomes of paramount importance to the success of this approach

to model design.

ANISIM 1is also, 1in part, this latter type of system. 1In
Chapter IITI we see how the program guides the model builder
through the necessary steps required to build a well-defined
gqueuing network, while constructing the necessary data base for
the simulation (and animation). £ The advantages of graphical
input, in the case of network design, also include the immediate
visual feedback that the modeller can utilize in order ¢to help

verify that the intended model is being properly created.

Thus we see that ANISIM combines the advantages of
graphical input to a processing program with those of a

graphical display of the results. In the case of simulation

14

however, it is sometimes desirable to display not Jjust the
representation of a *final state®, but a detailed animation of
the model as the simulation progresses., In other words, the
processing of the simulation and the display of its events must
occur almost simultaneously in order to enable the model
designer to actually interact with the simulation (the "almost"®
is explained in Chapter II). A user of ANISIM, once he has
created a network, may decide to monitor an animation of its
simulation for a while, interrupt the simulation when he is not
satisfied with the @wmodel's performance, and possibly display
some statistics for further appraisal. He may then wish to edit
one or more parameters or even the model structure, and resume
monitoring the simulation (after reseting the statistics and

clock, if necessary).

1.3 Important Principles

There are then, three main principles that seem to be
present in most interactive graphics modelling systems: a) the
system provides a means of testing model design that is faster,
easier, more reliable, or otherwise more convenient than other
possible methods, b) the system allows the modeller to' proceed,
with a relatively short turn-around time, through the cycle of
design, study, and re-design in his attempt to optimize the
model - (or otherwise test variations), and c) the system makes
use of the graphics terminal as an additional I/0 medium to

augment the information that may be presented by other media.

15

In fact, in some <cases, the graphics terminal is the only
reasonable device on which the above two principles can be
observed (such as in the architecture progran mentioned

earlier). Furthermore, the 1interactive aspect of the systenm

allows the user to éelectively provide, display, or watch only

that information which he feels to be most pertinent.

1.4 Model Representation

One problem associated with monitoring the animation of a
queuing network model in order to aid in the design of a real
system lies in the formulation of that system in the gqueuing
network terms, . The animation certainly aids in the
understanding of the gueuing network, but in some cases, the
mnodel is formulated in such a way that it does not visuvally
resemble the real system that much, The formulation may be a
very accurate approximation to the system, and the statistics
produced may provide important information about the system, but
the animation is of wmore value towards system design if the
modeller can mentally translate what he sees into what it nmeans
in the real system. A simple example of this phenomenon is that
of an object which travels between two service facilities (say,
a ship between two ports). The transit time is important to the
model and cannot easily be combined with the delay of the first
service facility (e.g. the loading times at the first port are
assumed to be exponentially distributed and the travel times are

uniformly distributed). = The queuing network model of this

16

situation thus requires one server for each service facility and
a third server to approximate the delay associated with the_
route. Of course the animation then shows the object en rToute
as a box inside a server symbol. (We shall see in the next
chapter how the animation shows the box moving between servers
merely to display, smoothly, state changes which are assumed to
be instantaneous in the model.) 1In a fairly complex systen,
several occurrences of this problem may multiply the complexity
of the network, further reducing the usefulness of the overall
animation (although - the modeller may still find specific

portions of the animation instructive to watch).

There are two ways of combating this representation
problemn. A user of ANISINM, with some practice, soon learns to
position the symbols of the network so that the animation most
closely resembles, 1in a 1logical sense, the processes being
modelled., With a little more practice he becomes more adept at
thinking of things in terms of strict queuing network
representations, Alternatively, ANISIM could be expanded to
include optional features (such as transit times) that would
allow a wider range of models to resemble the real systems. To
a. certain extent this can and should be done. The drawback is
that the model definition phase (Chapter TIII) would beconme
increasingly tedious for the user and it would be more difficult
for the program to help-insure that the model created was well-
defined. Chapter V contains further discussion of potential

extensions to ANISIM,

17

Additional comments on the utility of animated monitoring

as a simulation tool are in Chapter 1IV.

18

II. ANIMATION TECHRIQUES

2.1 Computer_ Animation

Combining computer animation with simulatibn as a design or
education tool is not new. This seems particularly true in
fields such as physics, chemistry, electrical engineering, and
medicine, where laboratory experiments are being replaced by
graphic simulation systems. An example is a system which allows
a medical student to observe the effects of different stimuli on
a diagram of a living, moving organ [13]. However, most such
systems involve continuous simulafion rather than discrete event
simulation. The model consists of a set of mathematical
relationships which determine the value of each variable at
every time unit as the simulation proceeds. Thus, at each time
increment, the position, size, 1length, or whatever, of each
entity in the animation 1is recomputed and the display is
updated. There 1is no problem with parallel processes. On the
other hand, an event-oriented model changes state by discrete
steps at irregular time intervals, It is usually necessary to
invent short, meaningful animation sequences to portray the
state change of each component of the model. Most of this
chapter describes how ANISIM accomplishes this task while

maintaining the time relationships of the simulation. .

One example of an animated continuous simulation systenm

that othervise contains some striking parallels to ANISIM is the

19

DYNIS program at the University of Waterloo [20]. DYNIS
simulates and displays the response of three-dimensional
mechanical systems (composed of masses, springs, dampers, force
drivers and position drivers). Like ANISINM, interactive control
of the simulation is provided and a standard set of
representative symbols is used., Both programs have a "first
stage” which leads the wuser through a series of systematic
decisions by the use of "menus" offering certain possible
choices, The wuse of a closed set of simulation entities {(and,
therefore, animation primitives), in each case, allows this
first stage to create a well-defined model without carrying out
an overly tedious dialogue. Like ANISIM, the éymbols . used are
abstractions representing a wide variety of possible real-world
objects. On the surface, then, these systems perform 1in much
the same way when wused 1in an interactive, system design
environment. The significant difference LIES IN THE INTERFACE
BETWEEN THE SIMULATION AND THE ANIMATION, |

2.2 _Representing_Events

As mentioned earlier, simulation events, or state changes,
are assumed to happen instantaneously at discrete points in
time. However, such a change of state is normally a modelling
abstraction which corresponds to a real-world process that has
some relatively short duration, In the ferry terminal example
of Chapter I, an arrival to the gqueue corresponds to a car

driving up to the parking area. In order to graphically monitor

20

a ferry terminal simulation, every time an arrival event
occurred, one should see a symbol of a car moving to a symbol.of
the waiting area. Likewise, three common visual aids for events
in ANISIN are 1) an item moving from a source to a queue
(arrival wevent), 2) an item moving from a server to a new queue
(departure event), and 3) an item moving from a server to a sink
(departure-from-system eavent). These, and other visual aids for

events will be referred to henceforth as "animation sequences",

although they are single components of the overall network
animation. (We shall see in Section 2.4.2 how each animation
sequence 1is compiled into a small display program.) Some
sequences have no duration, such as the sequence that displays
one more or one less item in a queue., Also, not all events
require a sequence, such as a blocked departure which must be
rescheduled again (i.e. the next queue or buffer is still full).
Finaily, a single event may trigger off more than one sequence,
This is true of a departure event, which requires a sequence to
update the state of the losing queue/server system, a moving
sequence (with a duration), and a sequence to update the state
of the gaining queue/server system (see Figure 3)., If either
queue 1is in a "buffer", then a fourth of fifth sequence may be
required to update the bar graphs that show how full the buffers
are. Additional sequences currently in ANISIM use arrows and
blinking to identify blocked items and blocking gqueues or

buffers.

a. State of System Befcre Departure Event.

]l:l’
"~ t. Animation-Time = T: Instantanecus Sequence Updates
- Queue/Server System; Moving Sequence Begins.

=
-

" C. Animation Time = T+50: Moving Segduence in

Progress.

d. Animation Tiwme = T+100: MHoving - Sequehce Ends;
Instantanesous Sequence Updates Seccnd Cueue/Server
System.

FIGURE 3: Anipmaticn Sequences.for Display cf a Beﬁartute Event

21

22

2.3 Animation_Time Franme

A requirement of animating a discrete simulation is to
preserve the relative precedence of events and to preserve the
relative time between events. Thus the question arises as to
how and when to display sequences which we choose to give a
positive duration. The mapping of simulation time into

animation time requires some formalization.

One, perhaps trivial, way of adding sequences would be to
expand the simulated time scale by the duration of the sequence

every time an event occurs (see Figure 4).

This method, however, has one serious drawback which is
that it stops or "binds" the ongoing simulation time every tinme
an event occurs. Also, the display is completely sequential,
leaving no provision for parallel sequences. For example, take
the case where two cars approach the line up for the ferry. A
small distance separates them, and they are going at the same
speed. All our simulation model knows is that car "a" arrives
at the queue at time "t(a)", and that car ¥b" arrives at tinme
n¢g (by", where the difference between the two times 1is a
relatively small positive number. However, since the two
"arrivals"® are two simulation events in series, the two
animation sequences will be in series. Car "b" will not begin

moving towards the gqueue wuntil after car "a" has arrived and

http://2a3.1_Typ.es

23

Event Event Event SR - Simulation
1 2 : 3 . : Output .
. > -
Sequence. Sequence = . S ‘Sequence = Expanded
| 2 S5 Time Scale
- PIGURE 4: Simple Time Expansion
Event Event Event Event - Event Event Simulaticn‘,
1 2 -3 L. 5 6 - Time
B Pight-Sidg:
bounded
«v. . Peauence . ..
_ .
.. . g N . . ’ '-
wo=-Side. R dingg keFt—ché Y. Animation
Bounded - Sequence . Bounded . . Time
Sequence : . Sequence’ ‘ :

FPIGURE 5: Mapping Events into Seguences’

24

stayed in the queue for t(a)-t(b) time units. We are not
conveying the- parallelism of the two arrival sequences;
somet hing that is desirable for monitoring purposes. 1In general

this approach does not restore much reality to the model.

The display of parallel sequences can, however, be achiesved
if a few simulation events are somehow buffered before
displaying. These buffers of events, or "event lists", can thus
be manipulated so that arrival sequences for example, can start
their motion on the screen ahead of time and arrive at the
correct spot in the queue exactly at the time the arrival event
is to take place. Display sequences, which may overlap in tinme,
can be compiled from one event 1list and displayed by the
graphics computer while subsequent event 1lists are being
generated. The problem, then, becomes one of editing the event
lists so that the order and time relationships between events
are preserved. To simplify this problem, it is useful to group
display sequences 1into «certain classes, For the following
definitions, consider an animation sequence on a horizontal time
axXxis (as in Figures 4 and 5). The 1left side and right side
refer to the sequence's starting time and finish tinme,

respectively.

Binding_Sequence: This is the type discribed above where the

simulation time 1is expanded by the insertion of the sequence.
An example is a departure of an item from a server to a new

Jueue.

25

Right-side Bounded Sequences: This type of sequence must end

exactly with a simulation event, but it can be started at any
time before that. The time scale is not expanded. An arrival

event can be represented by a right-side bounded sequence.

Left-side Bounded_Sequence: This type must start with an event,

but can end at any time. An example is a departure to a sink.

Instantaneous_Segquence: Not all "sequences" require a duration,

Certain events can be represented partially, or sometimes
completely, by merely changing the representation of the state.
The arrival to a queue requires a right-side bounded sequence
for the moving item and an instantaneous sequence (at the time
the event happens) vwhich changes the queue symbol to show one
more item, A blocked-departure esvent is represented only by two
instantaneous sequences which "switch on" the blinking of the
full queue and the blinking of an arrow pointing from the

blocked item to the full queue.

The sequence types defined above are used to represent
events only. Two further types of animation sequences, which
are not required 1in ANISIM at present, may also be useful in

order to properly animate an event-oriented simulation.

Unbounded Sequence: A sequence (for example, an error or warning

message) triggered by some process other than the simulation

itself can be regarded as an unbounded sequence.

26

Twoc-side_Bounded Sequence: This type of sequence must start and

end with simulation events. It does not expand the time scale,
but it can be used to further elaborate on a component of the
state of the system. For example, if we wanted to animate the
process that takes place dufing that abstract concept of a
"service®", we would have to co-ordinate the sequence with the
event that started the service and with the event that
terminated the service (e.g. a departure). In the ferry
terminal simulation, a two-side hounded sequence could be used
to illustrate the/round trip of the ferry. Such a sequence
would give the modeller no useful information and would probably
provide more distraction than reality. An example of a more
useful two-side bounded sequence would occur if ANISIM were
extended to allow transit times between servers and queues., As
pointed out in section 1.5, this extension would considerably
ease the representation problem. As far as the simulation is
concerned, the travelling item has entered into a delay or
service of a specified duration (i.e. the state of that part of
the system is static between the two events). But the viewer
sees that service as a moving sequence which, of course, does

not bind the other events (expand the time scale).

Figure 5 illustrates the mapping of simulation events 1into
animation sequences., It should be noted that an instance of an
event from an event class generates an instance of a sequence of
a certain type.. For example, an arrival event always generates

a right-side bounded . sequence, However, due particularly to

27

sequences which change the graphical representation of the state
of the system, the animation routines require certain
information about the system which was available in the data
base at the time the simulation routine processed the event.
For example, a sequence which displays the new state of a gqueue
due to an arrival requires knowing what the state of the queue

was before the arrival event occurred.

The simulation may provide this information in one of two
ways: 1) Record, along with the event class, one or more
subclass designators, or modifiers. For example, the state of a
queue must be passed to the animation routines along with an
event that causes an addition to or deletion from the gueue. 2)
Partition the event class into two or more distinct évent
classes., For example, in ANISIM a departure from a server which
has been blocked must turn off the blinking of the arrow
pointing from the no-longer-blocked item. It turned out to be
more convenient to handle this kind of departure as a separate
event class, distinct from a normal departure, due to the

presence of the special, or ®critical®" state.

No clear generalization has become apparent as to which
method requires 1less modification to the simulation when

additional animation detail is desired.

Chapter V contains further discussion of sequence types as
they relate to the modelling of processes other than queuing

network simulations.

. 28 .

As expléinéd in the previcus secticn, it_ié-ﬁot péséihle
for the animation routines to probess.an.eveﬁf at the timé Sit
occﬁrs»_in_fhelsimqlation. Instéad; thé.simulatioh routing hﬁét
proéeed nntil'a sufficient ﬁumber.ofAevents haQé " haprened, jéndf
ithép stép and pass bccntrcl tq‘ian‘"Edit" routiné.A Thé‘ﬁdit
quﬁtipe .édifs 'ghe event list'.piodﬁcéd .by'bthe‘_siﬁuléﬁibh;
- calculating the animation time and duraticn for each éﬁent,lénd

passes what is now.called the "sequence 1ist" to a third rcutine

:ghich actuallf compiles the disgplay programé and sends them to'_‘
ihe‘fgraphiCs computér cver a high speed_chahnel;_‘This:thfee-_
step process, called the "internal cycle", then rereats 'itsélf
by returning conirol'to the'simuiation rcutine (see figure_ﬁ)._
The'iﬁternal cydle»approach is feasible only because the display
e
IGrapﬁics s
I Computer |

SIMULATE S
Event

I

|

|
List |
B 1

I

i

—— v o— a— m—

! L I |

| 1(——COMPILE = - - EDIT.

: »Displayl ‘ _ N S

Vo I Programy , Sequenced
_ : . ' o List -

L,.; - -4 L - R

Main'Computer

PIGURE 6: The Internal Cycle

29

.of sequences by the graphics computer proceeds independently of
the computation in the main computer (Section 2.4.2). Of
céurse, the problem of co-ordinating the timing of the sequences
in order to provide a smooth, accurate display is still a
difficult one. We see below how this problem is related to the

level of user interaction with the simulation.

i

There are two ways in which the simulation can terminate.
An wupper 1limit is imposed by the user on certain simulaticn
va:iables such as the clock, the pumber of arrivals, and the
number of terminations (departures from the system)., If the
user chooses to simulate without the animation, the simulaticn
will proceed until it reaches one of these limits., At that
poiﬁt it will terminate, and a special routine is called to scan
the data base and display the current state: However, if the
aser is monitoring an animation, he may wish to interrupt the
simulation after he has seen enough. This interrupt is
discovered by the program between internal cycles, suggesting
that the number of events processed in one cycle be kept as
small as possible. In this way, the user willvachieve a
response to his interrupt within a reasonable time and the 1lag
between the simulation and the animation will be kept to a

minimum,

The "length® of the internal cycle must not be too short,
however, or the continuity of the display will be disrupted,

'Basically, the simulation must generate enough animation

30

sequences 1in order to provide a display which lasts long enough
on the screen to allow the next cycle time to prepare the
subsequent display. - Several factors influence the length of the
display. For a given internal cycle length, the duration of the
displaf depends basically on the proportion of binding sequences
generated, "the user-controlled duration parameters (for each
type of sequence), and a time conversion factor described in
Section 2.4.,2. User control of these parameters, and of the
length of the internal cycle, is discussed in Section 3.1.2.
(The simulation routine measures the cycle length by estimating
the number of sequences that will be generated from the event

list being produced.)

3_Editing _the Event List

-
—— —

The Edit routine must accomplish two things. First, as
mentioned earlier, it must create a sequence list with animation
times from an event 1list with simulation times. Second,
together with the Compile routine, it must coordinate the timing
of the new sequence list with that of the previous sequence list

and the following sequence list.

The first objective is a matter of analyzing each event in
order to determine whether it is a bound of a sequence and to
determine the type of +the sequence. Whenever the event that
bounds a right-side bounded sequence is found, the time of the

event is moved up and a duration attribute is assigned in such a

31

way that the sequence will end exactly when it is supposed to,
i.e. at the bound. Left-side bounded sequences only have a
duration assigned. Two-side bounded sequences could be handled
by deleting the right-side bound and assigning to the left-side
bound a duration equal to the time delay between the two events.
In this way, the event list is transformed into a sequence list
where each sequence has two time attributes, its starting time
and its duration. The Compile routine uses this information
both to compile the moving sequences and also to compile any
necessary instantaneous sequences which must occur at the

beginning or at the end of a moving sequence.

Several problems are encountered in the process of editing
the event 1list. The first one has to do with the insertion of
binding sequences and their effect on the timing of the rest of
the sequences, The solution requires the Edit routine to make
two main passes through the event list., The first pass takes
care of events which do not require binding sequences (as
described above). When the second pass encounters an event that
does require a binding sequence, two things must be done. The
starting times of all sequences which begin after the start of
the binding sequence must be incrementedvby the duration of the
binding sequence. 1In other words, the time scale is expanded by
the insertion of the binding sequence, Secondly, sequences
which begin before the start of the binding sequence, and

overlap it due to their duration attributes, must be processed

as follows: right-side bounded sequences must have their

32

starting times incremented by the duration of the binding
sequence, and two-side bounded sequences must have their
durations extended by the duration of the binding sequence.
This procedure allows the display of an instantaneous event as a
moving sequence while preserving all time relationships between

it and the other events.

A second problem with the editing process involves
coordination between internal cycles. If an event which
requires an right-side bounded sequence is found very near the
beginning of the cycle, the edit procedure may assign it a
starting time in the range already processed by the previous
cycle. More seriously, the right-side bound of a two-side
bounded sequence may very likely not be in the same cycle as the
left-side bound. The general coordination problem is handled fy
dividing the edited sequences into two lists: one is composed of
all of the sequences vwhich start in the time range which has
been completely resolved, and the other,. referred to as the
"tail®™ of +the sequence 1list, or "tail list", is composed of
those sequences starting in the time range which «could be
affected by the next cycle or starting after the left bound of
an unresolved two-side bounded sequence. The first list is the
sequence 1list that is sent on to ‘the Compile routine and
displayed. The tail list is saved and processed with the next
cycle's event list. Thus it is actually possible for a cycle to
produce no displayable sequences (i.e. all tail), increasing the

chances of a visible lag in the animation. It has been found in

33

ANISIM however, that the cycle lengths and durations normally

used produce a tail list of manageable porportions,

If any two-side bounded sequences were to be implemented,
the problem may become more complex, depending on the nature of
the sequences, If the durations of such sequences are known to
be relatively short, then the edit process described above would
be suitable. To prevent a two-side bounded segquence from
requiring more than two cycles to be resolved, the cycle 1length
would be specified long enough so that the sequences generated
in any one cycle normally span a range of time that is' longer
than the duration of the two-side bounded seguence; If this
duration is long, however, then some other technique is
required. For example, it may be possible to break up the
sequence into two or more sequences such that the first
components can be displayed before the remainder of the time
span 1is resolved. This method 1is very dependent on the
particular graphics of the sequence, and would be generally
awkward for the Edit and Compile routines to process, If the
duration of the sequence is not known until the right-side bound
is found, then chances are the sequence can be ré—formulated to
be a special representation of a state, which can be switched on
and off with instantaneous sequences (e.g. blinking a blocked
item wuntil it is able to depart). In the case of ANISIM, the
two-side bounded sequences required to implement transit times
(discussed earlier) would probably be short enough that the

entire sequence could be displayed in one cycle (i.e. the tail

34

is not resolved until the right-side bound is found).

2.4 The Display Process

Appendix A describes the system architecture on which
ANISIM was implemented. Some general discussion of display
methods used however, is necessary for fully understanding the

animation technique.

2.4.1 The Display Buffer

Briefly, the piocessing program, written mostly in ALGOLW
and run on an IBM 370,168, makes use of a basic graphics
subroutine package [6] in order to communicate with a monitor
program [14] in the Adage Graphics Computer. This graphics
computer has a 6000 word buffer where a word may contain either
a display vector, or a control instruction. The monitor
continually scans this buffer to generate a display on the Adage
Model 10 Graphics Display Scope. The significant feature of
this graphics monitor is that it scans the entire display buffer
at a fixed rate (40 scané per second), allowing the accurate
control of the timing of animation sequences. In ANISINM, the
instructions for the display of the network structure, and most
potential state representations, are contained in a region at
the top of the buffer, and thus are continuously scanned and
displayed. The remainder of the buffer, during the animation

phase, is free to contain the individuval display programs

35

necessary for each animation sequence (see next section). The
dynamic loading of these display programs into the buffer is
described in Section 2.4.3. VNote that this scheme avoids the
necessity of sending a series of "frames" (as in movie frames)
to the graphics computer, each containing an entire description
of the display. Once the network has been constructed, only the
descriptions of +the <changing components need be sent to the
display buffer, Thus a much longer sequence of apparent frames
may be displayed with considerably less time and space required
for the transfer, Also, the capability of updating the display
40 times per second allows moving sequences of very high

resolution.

2.4.2 Compiling_Sequences into Display Prograams

The display buffer may contain a combination of vector
words and control words. One or more contiguous buffer words
(properly formated by the basic graphics subroutines) may be
sent to the Adage in any one transfer. The Compile routine thus
constructs all the displayable sequences for a cycle in an array
and sends this entire batch of small display programs to the
Adage, where they are effectively executed in parallel, much in

the manner described by Baecker [2].

Several buffer control vwords are critical in making this
scheme work, For example, control of the scan in any one pass

is achieved through relative and absolute jump instructions.

36

Thus, the number of items appearing in a queue is altered merely
by changing a single relative jump instruction in the static
region at the top of the buffer (see Figure 7). This type of
instantaneous sequence can be achieved by an animation display
program containing a buffer command word which noves the
following buffer word (the new jump command) to a specified
location in the buffer. It is desirable then to compile such a
program that executes the move instruction at exactly the right
time, and only once, Alternatively, a moving sequence consists
of buffer words which must begin being scanned at the proper
time and continue to be scanned for a specified number of scans
before they are finally skipped again. (To move a box in a
straight 1line, the vectors for the box are preceded by a set of
two control words for each dimension,. These control words
consist of a command that adjusts, by a small amount each scan,
the value of the following word, which will be the control word

that displaces the vectors along an axis.)

Therefore, either type of display program must start with a
set of "timer words"™ which are keyed to the scan. 1In addition,
these timer words are all compiled with times relative to the
starting time of the first sequence in that batch to begin
displaying (i.e. the earliest sequence in the cycle). The tvwo
key confrol words used 1in the timers each have an integer
counter which is tested at each scan and decremented if not
already zero. In one case, the following word is skipped only

if the counter is zero, and in the other case it is skipped only

" Buffer YWords For{
One Queue (Createf
“When the Queue
was Defined)

JUP 4
ltem
20
ltem
= - "
vy
I3
[ltem _
f)
“
ltem
1
- Timer .
Words _

Sequence to Display {
due ltem in Oueue

MOVE to 0J

JUMP 39

37

Metwork
Structure

FIGURE 7: Display Program tc Alter the State of a Queue

38

if the counter is not yet zero., In the former «case, if the
following word 1is a Jjump relative, the counter becomes the
number of scans before a sequence begins (figure 8a). Likewise,
in the latter case, the counter becomes the duration of the
sequence. An instantaneous sequence (i.e. completed in one pass
of the scanner), once it is allowed to execute, moves a jump
relative on top of the first timer word in order to prohibit any

subsequent execution (figure 8b).

The basic animation time unit, then, 1is always a single
scan of the display buffer. This brings up one additional
requirement of the Edit routine., When mapping simulation time
into animation time, the speed of the display can be controlled
by multiplying all times by a suitable ®"factor.,® This factor is
available as a system variable for both user and program
control.f For exanmple, if the factor is set to ten, then an
interval of eight simulation time units will last 80 animation

time units (scans), or two seconds.

The wmanner in which the Compile routine procedes through
the sequence list, compiling each display program into an array,
leads to an additional problem in the Edit routine. An earlier
version of ANISIM, when editing the event list, actually moved
the event records around in order to always maintain the list in
animation time order. 1In this way, the tail could be easily
determined and designated by a single pointer to the start of

the tail. However, it is not uncommon for two instantaneous

Starting Time SKIP next word after
AN

7 counter reaches zero

JUMP .W
" Duration SKIP next word until
S counter reaches zero

JUMP
Actual . _ . .

Seaquence N ' S
" - : 7

~a. Timer for a Sequence With a Curation.

o SKIP nest-word after
'Startgngvnlme § counter reaches zero
gﬁ 4
“JUMP
MCVE the follewing word
te the SKIP word location
JUMPp ' 7
Actual . o
‘Sequence .
. 7/

b. Timer for an Instantaneocus Sequence.

FIGURE 8: Display Program Timer Words

40

sequences to occur at the same animation time --- a fact which,
in the general case, requires them to appear in the display
buffer in exactly the same order as their associated events were
precessed in the simulation. For example, consider a
gqueue/server system with a state of ten. The simulation
processes both a departure from and an arrival to the system at
the same time and in that order. The state of the system should
remain ten. But, due to the right-side bounded sequence, the
Compile routine will process the arrival first. The
instantaneous sequence that changes the state to ten precedes in
the buffer the sequence that changes the state to nine. Thus,
after the scan, the state will appear to be nine. The only
reasonable solution was to re-write the Edit routine in order
that the simulation order of events is always maintained and
only the time parameters are edited. Tvo passes through the

list are required 1in order to identify and separate the tail

list from the sequence list.

2.4.3 Double Buffering

Once the tail is determined, and the display segquences are
compiled into an array, the problem remains of how to send the
array to the Adage buffer and start displaying the new seguences
in perfect co-ordination with the sequences of the previous

cycle.

Pirst of all, the available buffer space is divided into

41

two buffers of equal length., The basic scheme is to send up a
new set of sequences as soon as the older of the two buffers
finishes its display. Again, this scheme is possible due to a
very useful buffer control word, called a "Notify", which works
as follows., When the Compile routine has finished preparing the
new sequences it issues a Read operation to the Adage computer.
Each buffer in the Adage has one additional timer sequence in it
that executes a Notify after the duration of that cycle has
expired. The Notify causes the graphiés monitor to issue an I/0
interrupt which in effect cancels the pending Read from the 370.
The program is then allowed to proceed with sending the new
sequences up to the Adage; I1f, for some reason, the 370 had not
yet issued a Read when the Notify is executed, the control words
are set up so that the finished buffer will continue to be

scanned and thus keep issuing a Notify until it is successful,.

Now this newly loaded buffer must be co-ordigateﬂ with the
sequences in the currently displaying buffer. Consider the
simple example in figqgure 9, The internal cycle 1length is
assumed to be five sequences, Suppose that cycle n is
displaying in buffer one and cycle n+1 has just been loaded into
buffer two. 1Initially, the scanner is unconditionally branching
around buffer two. Note that when the tail of the sequence list
of cycle n was determined, it was composed of all sequences
whose starting times were in the region which might contain

sequences from cycle n+1 (i.e, sequences e and f). Other

sequences may start before that tail region but overlap with it

y2

Cycle n '
Simulatjon Range
. g $ail Cycle n
| ' veyien B Edfibﬁanve S
] Oy . A ge) . .

o ' ' ! o Animation
e e 4, LA ' . ' ‘Time .
¥ T " ¥ L |:] v }
30" 400 500 - eoo[7ga| 820 P00 '

. ! 1 -
e 93? :7.35e .
v "
}
'
L
v
t
'
} o
' o
o Yafl o) o
. oo ~ region Cycle n+l1 ..
S g - : —— Edit Range
L e———y o R
d 4) K
——n f————} ——)] 3 '
-) + Y Y
' 600 7200 o 1% 900, w00, woo |00 1300 ‘
~ 2 Y 0 .
L4 4 v 7
Cycle n+l .
-Simulation Range
Sequence List Tail List
‘Cycle n o a,b,c . - d,e,f
'Cycle n+l - d,e,z,f,h,i R D

FIGURE 9: Buffer Co—ordinaficn

43

due to their durations (sequence 4d). In other words, it is
necessary for the two buffers to be displaying simultaneously
for a short period. This is handled by actually including in
the tail the last segqguence which starts before the "real" tail
(sequence d). The paximum length of cycle n's display is
assigned as if sequence d were to be displayed in buffer one.
But instead of that sequence, another sequence is compiled to be
executed at that time (time 630 in <figure 9). This special
sequence removes the branch around buffer two and allows it to
begin displaying, Of course, the sequence in buffer two with a
relative starting time of 2zeroc 1is simply that pseudo-tail
sequence (sequence d) from cycle n. Thus, buffer one and buffer
two are displaying sinultaneously from time 630 to time 730. At
time 730, cycle n executes the Notify command, allowing the 370
to send up cycle n+2 to buffer one. The co-ordination between
cycles is now complete. The fact that the o0ld cycle expects the
new cycle to be loaded and ready to start as socon as the branch
is removed is, in fact, the feason why a lag in the animation

will be seen if the o0ld cycle has a very short display.

2.5 The Overall Visual Effect

It has been shown in this chapter why internal cycles are
necessary and how the edit procedure transforms the event list
into a sequence list and a tail list. The mapping of simulation
time into animation time has been described, and the details of

a carefully co-ordinated double buffering scheme have been

uy

explained for the loading into the graphics computer, of display
programs compiled from the sequence list, The techniques
described in this chapter were somewhat painful to develop and
implement, but they are actually quite logical. The
classification of sequenées and the edit procedures are general
enough for other applications. Many of the display techniques
are dquite dependent on the specific hardware and software
available, but make efficient use of these resources. The real
test is in the quality of the animation. The overall visual
effect is quite impressive. The animation proceeds in a smooth,
continuéus manner and the visual aids, for the most part,
succeed in adding enough reality to make the simulation easy and

informative to watch (see Chapter 1IV).

Some problems do still exist, however, with these
techniques., Consider the sequences generated by ANISIM when a
departure event occurs.. The event is processed in Edit as a
binding sequence, due to the desired move from the server to the
new queue/serﬁer system. . The Compile routine generates that
move sequence and if the queue is not empty, it also generates
an instantaneous sequence to display the new state of the queue.
This method is an arbitrary simplification that was decided on
early in the development of the progran, The flow of the
animation would look even smoother and more realistic if an
additional binding sequence, a move from the dueue to the
server, were added such that it started at the same time as the

departure move started., Two additional instantaneous sequences

45

would be required to switch off, then on, the symbol of the itenm
in the server, In general, it seems that when one event
generates two moving sequences, the Bdit routine should make a
separate copy of the event record so that both the sequences can
be edited independently. In this case, a better solution would
be to always assign a duration to the new seguence that is less
than or equal to that of the departure sequence and 1let the
Cormpile program use the information in the single event record
to generate both binding sequences at the same time. In this
way, the Edit routine can treat all event classes which generate
binding sequences the same. This leaves the peculiarities of
certain events to the Compile routine, which must examine the

various parameters of the event record anyway. .

The real 'problem is more basic than the above situation
indicates. In a way, the animation does certainly distort the
time frame of the simulation. Two events which occur within a
short time of each other in the simulation may or may not 4o so
in the aniwmation, depending on how many binding seguences come
between then, The time between every pair of (timewise)
adjacent events remains accurate, as does the actual progression
of states of the network. This type of "distortion" really
seens to be insignificant, then, as long as one remembers that
the beéinning of a binding sequence is the "same time" as the
end. It would be nice to try to reduce this distortion by
allowing two binding sequences to have the same starting time if

they correspond to the same event time in the simulation. It is

46

easy to find certain examples, however, of situations which
require that the Edit routine increment the starting times even
of binding segquences whose events are simultaneous with that of

the binding sequence being processed.

u7
IXII. INTERACTIVE FEATURES

An interactive modelling system is of little practical use
unless special attention is paid to the design of the dialogue
between the user and the systen. According to VNewman 'and
Sproull ([16]), the three main qualities that the programmer
should attempt to optimize are 1) simplicity of operation of the

program, 2) consistency in the overall construction of the

_the user's and program's standpoint. The following discussion
of these qualities, and other important features of the
dialogué, distinguishes between the overall system and
simulation control and the actual model construction and

podification.

3.1 Simulation Monitoring_and Control

3.1.1 System_control

ANISIN provides a simple, but effective, command ianguage
for top level interaction with the system. BAll commands at this
level are entered on the 1IBHM 3270 Display Terminal which is
located next to the graphicé termiﬁal. Each command is defined
expliciily, rather than being implicit in the sequence of
inputs., PFurthermore, it is easy for the programmer to add new
comménds to the system, although no extensibility is provided to

the user. The objective throughout the system has been to allow

48

the user maximum freedom of control of the sequence of
operations, wherever feasible, This flexibility reduces the
reliance on frustrating questioné which must be answered by the
user, but places more emphasis on error recovery when he
attempts to enter inappropriate commands or data. Also, in the
interest of simplicity, a minimum .of information about the
system . or the simulation is displayed (on either terminal)

unless otherwise requested.

"In order to aid in achieving these objectives, the progranm
must help keep the user aware of what operations are available
and what responses are requiréd. Tﬁe HELP and MORHELP commands,
shown in figure 10, list all available commands along with a
brief réminder of their use, (MORHELP lists the less frequently
used commandé.) In addition, default values are used whenever
applicable, Thié is useful in cases where the user does hot yet
know what value is appropriate (e.q. display pérametersf, and
keeps the number of mandatory inputs to a miniwmum. The current
value (and thus the default value) of a system or display
parameter can be found by entering the appropriate command
without specifying any arguments, For example, entering “"CYCLE"
will result in a print out of the current values of the four
limits on the simulation. The command "CYCLE * * * 100" will
change the limit on the numbervof terminations to 100 and print
out the four values. The PRINT command allows a selectibn of 17

options for printing out full or specific details about the

state and the statistics of the simulation. The TRACK command

$run walk:anisim.o+dhir:camadd+agt:basic par=size=150k
EXECUTION BEGINS

ARE YOU USING THE ADAGE? TRUE OR FALSE
fa lse

ENTER COMMAND OR HELP

help

BUILD TO BUILD OR MODIFY THE ACTIVE NETWORK

NEWNET TO BUILD A NEW NETWORK

EDITNET TO USE BUILD FOR SMALL CHANGES TO A NETWORK

GO N TO SIMULATE AND TO DISPLAY THE ACTIVE NETWORK
FOR N TIME UONITS FROM CURRENT TIME

FASTER TO SPEED UOP THE DISPLAY

SLOWER TO SLOW DOWN THE DISPLAY

SCAN TO INHIBIT MOVING SEQUENCES

DESPEED TO RESTORE THE DEFAULT SPEED

NODISP TO INHIBIT DISPLAY UNTIL NEXT GO COMMAND

RESET TO RESET SIMULATION CLOCK AND STATS
SAVE TO SAVE THE NETWORK

RESTORE TO RESTORE A SAVED NETWORK

LABEL TO DISPLAY LABELS AT EACH NODE

CYCLE TO CHANGE SIMULATION LIMITS

#OF TIME UNITS, #OF GEN,#OF ENTRIES,#0F TERHM
PRINT I TO DUMP RESULTS, FOR CODES SEE DOCUMENT

20 GIVES STATE, 1 STATS, 13 PARAMS, 7 QSTATS, ETC
MORHELP ADDITIONAL COMMANDS
STOP OR END TO TERMINATE EXECUTION

ENTER COMMAND OR HELP

morhelp
UNLABEL TO RENMNOVE ALL NODE LABELS
FACTOR DEFAULT=10; INCREASE TO SLOW DISPLAY

DECREASE ONWLY IF USE RESET
INTERCY DEFAULT=15; INCREASE WHEN DISPLAY IS FAST
SCALE TO CHANGE THE SCALE AND *SCALER'

DUR TO CHANGE THE 4 SEQUENCE DURATIONS
TRACK I TO SET DEBUG FLAGS ON. 0=<I<7, SEE DOCUMENT
PLOT S TO GET A HARDCOPY OF ADAGE DISPLAY

S IS MAXINUM PLOT SIZE, IN INCHES
STOP OR END TO TERMINATE EXECUTION

ENTER COMMAND OR HELP
stop

000.03 SECONDS IN EXECUTION
EXECUTION TERMINATED

FIGURE 10: Commands Available

50

turns on one of six debug flags in the program, providing
detailed traces of the simulation, edit, and compile routines.
In the case of both PRINT and TRACK, an optional second argument
can be used to route the output to a disk file of the user's

choice.

Host top-level commands require no further response from
the user. The exceptions to this are the BUILD, NEWNET, and
EDITNET commands, which envoke an entirely new dialogue (section
3.2), and the SAVE, RESTORE, PRINT, and TRACK commands, which
may require further clarification of file-handling operations.
For example, if the user tells the program to "SAVE NET1", and
the file NET1 already exists, then the program must ask the user
if it is alright to empty the file and store the current netwvork
on 1it. The user may also return temporarily to the HMTS
operating system by issuing an attention interrupt. At this
point he has full access to any disk files created by the
program, as well as run-time statistics. The ANISIM progran may

then be re-entered, using the MTS BRESTART command.

3.1.2_simulation Monitoring

Two of the most important advantages of an interactive
graphics system are the fast turnaround and the immediate
graphical display of complex information. Smith [22] 1lists as
an equally important advantage the capability to allow the user

to try "various attacks" on a particular problem during a single

51

session with the computer. With ANISIM, this can be interpreted
in two ways. The user should be able to quickly simulate
several versions of a model, and he should be able to view the

results of a simulation in several different ways. .

The first goal requires not only the capability to edit the
model structure and parameters, but also gquick access to the
description of such information., It may be possible to display
all of the details of the model on the screen, including rates,
capacities, and routing data. This, however, would not be
desirable, both from a simplicity and an economy point of view.
It is instead desirable to keep a minimum of information omn the
screen and make other data available cn demand, For example,
for each symbol in the network, a label is created internally.
At present, ail statistics are printed on the 3270 terminal and
the 1labels are used to reference specific simulation entities,
The user, in ofder to interpret these statistics, can use the
LABEL command to actually display the labels at each symbol (see
figure 11). The labels are automatically removed during the
building or animating of the model, to save space in the Adage
buffer. Other information available on demand includes the rate
and capacity parameters, obtained by the PRINT 13 command. The
display of routing assignments poses some difficult problems and
has not yet been attempted. The user should +try to construct
the network so that its graphical representation conveys much of
the routing information. Section 3.2 describes an additional

access to current parameters while actually editing the network.

S03

502|

L s o= @:@

FIGURE 11: Labelled Entitiszss

SV3

¢

52 R

53

The second goal cited above--that of providing several ways
of analysing the output of the simulation~~has been met to a
certain extent. A VNODISP command, given before starting the
simulation (with the GO command), allows the simulation to
proceed quickly with no animation, This is useful when it is
desired to watch the animation after the model has advanced to a
more steady state., The user is not required in this case to
watch the animation from the beginning. Whenever the simulation
stops, the current state is displayed and the PRINT command may
be used to find certain standard statistics such as the average
and maximum queue lengths and buffer sizes, the average time-in-
system of items between source-sink pairs, and the number of
arrivals and terminations at each source and sink. Blocked
items are an important aspect of queuing networks. An extended
version of ANISIM might allow several options for <the handling
of blocked arrivals and departures., The existing protocol is
that blocked arrivals are lost (they move halfway to the queue
and disappear) and blocked departures remain in the server and
attempt to depart again after waiting the user-defined "re-send
time", Thus, statistics must also be available giving the
number of lost arrivals and the number of blocked departures. .
The RESET command is used to set the clock to zero, reset all

statistics, and restore the initial random number seeds.

If NODISP is not specified, then the animation will
automatically accompany the simulation, providing additional

valuable information about the model. Two areas of interaction

54

are essential in order to help the user monitor the animation:
specifying how much to display, and how 1long to display it.
From any particular state, the lenqgth of the simulation can be
controlled in one of three ways. If the GO command 1is given
without the argument, the simulation will proceed either until
one of the limits in the CYICLE command is exceeded or until the
user hits the attention interrupt. If the argument is given,
then its value is the number of time wunits for which the
simalation is to proceed, provided no cycle limit is exceeded or

interrupt issued.

If the wuser wishes to monitor the simulation, not in
detail, but to get a general feel for the progression of states
of the modei, then he may use the SCAN command. This command
inhibits moving sequences by making all durations. =zero. Thus,
the animation time frame is not expanded by binding sequences,
resulting in a considerably faster display of events. . {(The
factor is also decreased and the internal cycle is made longer,
as discussed in Chapter II.) The SCAN mode 1is slightly less
pleasing to watch, but provides a guick, clear way of observing
the general trends of the model. It is especially useful 1in a
model that would, otherwise, slowly build up to a congested
state. The following special state representations are also
envoked by instantaneous sequences and thus appear in SCAN mode:
the blinking of a full gueue or buffer due to an item attempting
to get in, and- the blinking of a blocked item with an arrow

attached which points to the full queue or buffer (see figure

55

12).

Moving sequences, although artificial, provide valuable
visual continuity between states. The user has access to the
basic variables which control the speed of the display and of
each sequence, Briefly, the DUR command controls the duration
of each type of sequence, the FACTOR command controls the tine
conversion factor explained in section 2.4.2, and the INTERCY
comnand controls the 1length of the internal cycle (i.e. the
number of sequences generated each cycle). For example, the DUR
conmand may be used to shorten the duration of binding sequences
with respect to the other sequences. The inexperienced user
Should not have to use FACTOR to <control the speed of the
animation, for two reasons: 1) it is not always clear how to
adjust the internal cycle length (INTERCY) to compensate for the
change in speed, and 2) if the simulation is not RESET, the tail
"of the sequence 1list using the old factor will no longer be
coordinated with the new sequence list, Thus, ANISIM provides a
set of "speed" commands which make the necessary changes for a
smooth transition to a faster or slower speed. Basically, a set
of seven standard speeds are available, three slower than the

default and three faster,

No provision has been made to store animation sequences on
disk for 1later viewing without simulating, as in DYNIS [20]..
This would probably be more expensive than re-simulating the

saved model. One feature that can aid in the quick re-creation

jmz
\

FIGURE 12: Dispiay cf Blccked Itenms

56

57

of a previously displayed sequence, as well as provide a
power ful design tool, 1is the ability to save and restore a
simulation State. In this way, the modeller can simulate
forward from a given state several times, experimenting with

various parameter values,

Extensions which would provide additional ways of analysing

simulation results are discussed in Chapter V.

3.2 Model Design_and Modification

The BUILD, NEWNET, and EDITNET commands all cause the
program to enter a distinct phase with a dialogue of its own for
constructing or modifying a network. All three commands envoke
the same routine, although EDITNET appears somewhat different to
the user, due to the setting of an "edit flag" in the progranm.
Only NEWNET will destroy any existing active network (i.e. a
RESTORE'd or newly constructed network) before proceeding.

Otherwise, BUILD and NEWNET are identical.

3.2.1_Network constructioen

A considerable amount of information must be provided to
the system in the network definition phase. It is here that the
guality of the dialogue becomes very important. The task of
entering input must not become awkward and tédious and a trade-
off must be made between allowing the user to decide what to

input or 1leading him through a fixed sequence of inputs to

58

ensure a properly defined mode. Also, it 1is important to
provide feedback to the user in order that he may verify what

has been entered,

Upon entry into the build phase, then, a list of possible
conmands, or "modes®, are displayed on the graphics scope in the
reconmended order of wuse (when building a new network). This
list (see figure 13) is called a “MENU®, and the prompting
nessage "MODE?" is actually blinking in order to indicate to the
user that it is time to select a mode by pointing to its name
with the lightpen. At this point the user still has freedom of
control, He may enter or re-enter any mode at any time. Smith
[22] calls this "interaction by anticipation®, in the sense that
all possible desires of a user are anticipated. These
possibilities are presented as choices for the user to select
rather than specify, thereby allcwing a simple 1lightpen hit
rather than requiring a correctly spelled alphabetic command. .
On any given entry into the build phase, the program helps the
user remember which modes he has already entered by displaying
these names at a different intensity. 1A further convenience is
that the wuser may position the menu anywhere on the screen,
using a pair of dials. The important thing is that the nmodes

break up a lengthy task into easier, distinct subtasks.

In his book, Design of Man-Computer Dialoques , Martin [13]
states that short-term memory 1is heavily utilized in complex

problem solving and creation. He further states that humans

MUOUE

SYMBOLS

LINKS
ASSIGNQ
FIRST QUEUES
ASSIGN BUFF
RUUTES
-‘ CHPHCiTIE$>

‘FLDWL .

" SERVICE TIMES

 DONE

FIGURE 13: Menu for Netwcrk Design

g

60

tend to organize activity into “clumps" that can be easily
completed. Thus, the modes in ANISIM are designed so that the
user need only worry about a fairly simple or distinct aspect of
the network at one time. In fact, when building a new netwvork,
the modes act as a series of Martin's "conversational
checkpoints". The termination of a mode can be regarded as
providing "mental closure"--i.,e, the user can assure himself
that he has conpleted that phase of the input. If he gets
confused or makes a mistake, he need only re-enter the current

mode and start over from that point.

When working in a particular mode, the user still might
forget what is expected of him next,. or even which mode he 1is
in, if he 1is at all distracted. To avoid this situation, the
program always prompts the user with some kind of mental cue
wvhenever a response 1is expected. This prompt, often a one or
two word message displayed at the bottom of the screen, serves
only as a reminder rather than a detailed explanation. The
blinking of symbols is used to signify which particular entities

of the network are in question.

Proceeding through the menu, then, a typical dialogue would
begin by entering the SYMBOLS mode. The menu disappears (as in
all modes) and crosshairs appear. The crosshairs and a set of
function buttons are used to position and select any one of the
five available symbols, An eﬁtry (ALGOLW record) is created in

the data base for the corresponding simulation entity. Two

61

symbols require interaction beyond the initial selection: queues
require a second crosshair setting to define the orientation
(angle) of the tail of the queue (see figure 14), and buffers
are usually sketched, although a default is available. Figure
15 shows a buffer symbol being sketched around two gueues which
will 1later be assigned to the buffer entity. The lightpen nay
be used in SYMBOLS mode in order to delete a symbol or a "link"
from the screen and the data base. A special function button
terminates SYMBOLS mode, causing the re-appearance of the menu.
LINKS mode allows the user to use the lightpen to connect pairs
of symbols, These lines are visual aids to help portray the
network structure, but no entry is made in the data base. Also,
the 1intensity of the 1links 1is separate from the rest of the
network and can be turned down by the twist of a dial. The mode

is terminated by a lightpen hit on the prompting message,

The next four modes (ASSIGNQ, FIRST QUEUES, ASSIGN BUFF,
and ROUTES) are necessary to make a series of assignments of
simulation entities that define the structure of the network.
In each case, both the programmer and the user distinguish these
entities graphically, rather than trying to refer to them by
labels or entering numbers in matrix form. The advantage of
this approach is that the wuser can actually "see what he is
doing." There is no problem of identifying labels or numbers
with symbols. For example, in ASSIGNQ, the prcgram goes through
the 1list of servers that has been created and for each server,

blinks the symbol and prompts the user to designate a queue.

62

TRIL BRIENTF

 PIGURE 14: Specifying Queues

TIoN 7

63

SKETCH

FIGURE 15: Buffer Skefching |

64

The user need only point with the lightpen to the gueue he
vishes to be assigned to the blinking server. Clearly at this
point it is advantageous to lead the user through all possible
assignments in order that none are left out. This policy is
followed in all the remaining modes as well, W®When the edit flag
is set, however, it is assumed that all assignments have been
made once already, and that the user wishes to change cne or two
assignments only. In this <case, he mpust select with the
lightpen a server, in the example of ASSIGNQ, before the progran
will prompt for a queue. He may proceed to select other servers

or terminate the mode by hitting the prompting message.

In the same manner, FIRST QUEUES is used to assign a unique
gueue/server system to each source, and ASSIGN BUFF is used to
assign buffers to gqueues, ANISIM currently provides one form of
routing--a fixed routing scheme, although other schemes are
possible (see Chapter V). Each item is assigned a destination
sink when it is generated at the source, At any particular
Jueue/server systen, the next queue/server system (or sink) in
the route is dependent only upon this destinatiocon. Thus, in
"ROUTES node, the user fills an internal routing matrix by
pointing to the next queue (or the sink) for each blinking

queue-sink pair.

The final three modes require user input on the 3270
terminal. Newman and Sproull [16] advise that, 1in general, a

single-device approach often 1leads to simpler, more easily

65

learned command languages., However, in this case it was decided
that it would be easier for the user to switch from the lightpen
to the keyboard than it would be to enter numerical data at the
graphics terminal. Also, the 3270 screen offers the opportunity
to easily display more detailed prompting messages, whereas the
gréphics approach would require valuable Adage buffer space..
Figure 16 shows an example of the dialogue on the 3270. Of
course, the program still designates entities by blinking
symbols on the Adage display. The Adage scope prompt message of
"TQ 3270-->" reminds the user that his next response will be at
the keyboard. CAPACITIES mode allows the assignment of queune
and buffer capacities other than the defaults. In FLOW mode,
for each source, the inter-arrival tinme distribution is
specified (similar to the service times dialogue), and also the
percentage of arrivals from that source that are destined for
each sink must be given, in order to fill in an internal "flow"

matrix.

In any mode requesting parameters, if the edit flag is on,
the current value of the parameter is first printed on the 3270,
If the edit flag is not on, the current value is printed only
for those parameters which are initially assigned default values

(e.g. gqueue capacities).

3.2.2 Model Verification

- ———— — — " ——— ———— —— — " T T — > S—r—

The network construction dialogue, as mentioned earlier,

FOR THE BLINKING SERVER, ASSIGN THE SERVICE

DISTRIBUTION CODE:

1=EXPONENTIAL, 2=UNIFORH

1

ENTER MEAN TIME (> 1) FOR EXP. DSTBN

4

ENTER RE-SEND TIME FOR BLOCKED ITENMS FROM THIS
ELSE DEFAULT VALUE IS 4

2

DISTRIBUTION CODE (1 OR 2):.

1

ENTER MEAN TIME (> 1) FOR EXP, DSTBN

7

ENTER RE~-SEND TIME FOR BLOCKED ITEMS FROM THIS
ELSE DEFAULT VALUE IS 7

1

DISTRIBUTION CODE (1 OR 2):

2

ENTER MEAN TIME (>1) AND DEVIATION POR UNIFORM

4 5

DEVIATION IS TOO LARGE. TRY AGAIN.

ENTER MEAN TIME (>1) AND DEVIATION FOR UNIFORM

4 2 ,

ENTER RE-SEND TIME FOR BLOCKED ITEMS FROM THIS
ELSE DEFAULT VALUE IS 4

BACK TO ADAGE

FIGURE 16: Dialogue for Specifying Service Times

NODE

NODE

DISTR.

DISTR.

NODE

66

67

uses a menu to guide the user through the necessary steps of
making a well-defined model, wbile allowing him sufficient
freedom of control. 1In other words, it is still quite possible
to create a network with missing assignments and parameters--
especially after editing the network. This problem is attacked
in several ways., First of all, when the user fails to hit the
proper type of symbol with the 1lightpen, the message "NO
ASSIGNMENT" appears on the screen briefly. Also, the user 1is
asked to re-enter any numerical information that is not in the
proper range such as a deviation that is greater than the nmean
for the uniform distribution. After exiting from the build
phase and before a new simulation is allowed to begin, all
servers and sources are checked to make sure then have bheen
assigned a queue (in order to prevent a terminating error in the
simulation program). The routing assignments are not checked at
this time, but any undefined routes will be caught in the
simulation, In that case, the item is sent to its destination
sink, a message is printed on the 3270, and the simulation is
allowed to continue, The DYNIS system [20] makes use of yet
another method of reducing eirors due to careless modification
of the original model. 1Its editing phase is divided into two
cormands: REVISE and MODIPY., Their related functions in ANISIHM
might be as follows: REVISE would allow the user to add or
delete symbols, analyze the effects of this change, and then
prompt him to re-enter any modes necessary in order to make the

network well-defined again. MODIFY on the other hand, would

68

allow only the altering of parameter values, ncne of which could
make the network ill-defined. MODIFY would be more economical
for the user (gquick, safe changes; minimal dialogue), and also
for the program (abbreviated menu; less checking and prompting.)
This approach would in fact be feasible in ANISIM, using the

basic BUILD-EDITNET structure.

Once we have insured that the model is well-defined, there
still rTemains the possibility that a mistake has been made in
the model design, i.e. the model built is not exactly the nmodel
intended. However, compared to any non-graphical simulation
environment, this possibility is minimal. First of all, the
modeller can see on the screen the effects of much of what he
does. Also, he is less likely to specify a wrong entity when he
can actually point +to 1its representation on the screen.,
Furthermore, assignment and parameter information can be
verified by using the PRINT command, and the animation itself
should expose mnost unintended routing specifications. On the
other hand, anyone who has written a non-trival simulation
program in a language such as GPSS [9] knows that the structrue
of the model may easily become obscured in the progran
statements and matrices. The input data is largely numerical

and highly subject to mistakes as well.

A second side effect of a graphically described a model,
especially in an interactive environment that helps the modeller

create a well-defined model, is that the process of building the

69

network may very well force the modeller to re-evaluate his
conception of the model. To some extent he may more gquickly see
the 1inadequacies of his initial formulation as a valid

abstraction of the real-world situation.

Bracchi and Somalvico [3] emphasize that a software systen
for computer-aided design should provide both~ a strong
computational capability and a flexible interaction with the
designer during the design process., Likewise, ANISIN's
usefulness as a simulation tool depends both on the power of the
simulation routine and the quality of the user dialogue. The
first part of this chapter described the techniques used to
provide simple, yet flexible control over the simulation and the
presentation of 1its results. Moreover, experience with users
during the development of the preliminary versions of ANISIM has
indicated that the quality of the network definition dialoque is
critical to insuring that the wuser will have a successful
session with the system. It is this phase where a large amount
of information must be supplied to the system by a person who
may be nervous, confused, or intimidated by conversations with
machines, If the dialogue is awkward or otherwise inadequate,
the user is not free to concentrate on such things as evaluating
the conceptual validity of his model or verifying the accuracy
of the network he is building. There will always be room for
improvements in the dialogue, but the current version of ANISIM
seens to meet most of the criteria for a smooth and effective

interaction.

70
IV OTILITY OF ANIMATION

One of the points that Martin [13] makes about graphic
systems, is that the use of moving or changing @ images can
clarify certain ideas. Animation, like <color, is a type of
encoding that can increase the amount of information the limited
human mind can grasp and ponder. at one tine, A Treaschable
jJuestion to ask, then, is when and how should we use animation

in order to best take advantage of this capability.

4.1 Simulation_ Tool

Traditional simulation programs generally produce output in
the form of statistical averages, variances, maxima, etc. They
are dgenerally expensive to execute and are often run in a batch
environment., MNodel design and testing is done by analyzing the
statistics, altering the model or its parameters, re-compiling
if necessary, and then running the program again. Clearly, an
interactive simulation program could improve this turn-around
time by producing results quickly (while the modeller still
remembers what he was trying to do) and by providing convenient
means for altering the model. This is true, provided that the
modeller can also analyze the simulation output quickly. If he
is 1looking for the <changes that appear in a few simple
statistics, the improved turn-around may be éufficient for his
purpose, However, 1if he is trying to understand the

significance of the statistics with respect to a fairly complex

71
model, the program must provide him with additional aids.

One such aid available in an interactive environment is a
monitoring capability. The ‘modeller not only gets the final
results, but he sees some sort of representation of the state of
the model while the simulation is progressing. This may allow
the modeller to quickly zero-in on the time range or parameter
range that he is interested in, as well as providing information
about the starting conditions and other transient effects.
Alos, monitoring is likely to provide more information about the

behavior of the model when it reaches certain critical states.

One simulation monitor system that has proven quite useful
for ecological models is SIMCON--a Simulation Control Command
Language [10]. SIMCON allows the user té plot during execution
selected variables of a simulation program written in FORTRAN.
He may interrupt the simulation and display or alter variables,
and he may restart the simulation from several states. Thus, in
many cases, a model can be adequately represented, for
monitoring purposes, by 1line plots of the levels of certain
entities (such as populations). In other cases, however, the
real understanding of the model lies not in monitoring the value
of a variable (or the 1length of a queue), but monitoring a
process or relationship that determines the value of the
variable, An exanmple of a continuous simulation model where
this would be true might be a study of changing boundaries

between several territcrial populaticns. The simulation

12

statistics may begin to make sense if the modeller can actually
see oh a graphics screen a population being crowded out of
existance by neighboring populations. Similarly, a gqueue that
becomes too 1long may be analyzed by monitoring an animation
showing just where the items are arriving from and where (and
when) they are going next. Without some movement of items
between entities, the viewer, in Martin's terminology, is unable
to keep enough information about the relative states of these

entities in the 'foreground* of his mind all at the same time.

This issue of movement brings up an interesting point about
ANISIM. When we think of the system being modelled as a gueuing
network, then animating with wmoving sequences can be thought of
as distorting the model--particularly with respect to the
expansion of time caused by binding sequences, But if we think
of the system being modelled as some real-world system that is
only approximated by a §ueuing network, then animating with
moving sequences can be thought of as restoring some reality to
the model, The user of ANISIM can use the SCAN mode for a true
representation of the queuing network, but he does not have the
benefit of that extra information provided by movement. Or, he
can select varying degrees of distortion/reality by controlling
the durations of the moving segquences. In either case,
animation techniques can at least be wused to represent the
progression of states, to show the changing interrelationships

amongst model components, and to signal the occurrence of

critical states.

73

The concept of allowing the model designer optionai degrees
of "reality" is not unique to ANISIM. An interactive graphics
system developed at IBM for designing and testing logic circuits
allows the user to specify one of three modelling abstractions
regarding the timing of pulses [13]. The trade-off is between a
fast approximation and a slower, more realistic simulation. 1In
this case, however, it 1is the actual simulation that is

affected, not just the graphic representation, as in ANISIM.

The ATOPPS system [5] discussed in the next section, is an
exanple of a discrete event simulation monitor which makes its
point graphically without making any attempt to realistically

model the timing between events,

4.2 Edqucational Tool

If the use of animation provides additional 1insight into
the understanding of a complex process, then certainly it is
desirable to apply this capability toward educational purposes.
This - generally means placing 1less of the emphasis in the
graphics system on a flexible design optimization approach and
placing more emphasis on carefully illustrating the process or
reaction that is of interest. 1In fact, it may be reasonable 1in
some cases to exaggerate the more difficult features at the

expense of the overall accuracy of the animation.

For example, the ATOPPS system [14] at Pennsylvania State

74

University is presented as a “Computer Graphic Simulation of a
Discrete Time Operating System for Introducing Elementary
Concepts"y, Films have been made of the system, which displays
the contents of the memory, active hardware, and major queues of
a theoretical operating system. The objective is to watch the
flow of information from one job step to another in the discrete
time simulation of different operating system configurations.
The model appears to be fairly simple, but allows enough
structural and parameter options to demonstrate many of the
important principles of operating system strategies. The
graphic technique does not involve animation in the sense of
elements moving on the screen. Instead, arrows and intensity
are useg to call the viewer's attention to (and to further
explain) each change of state. The state of each entity (e.g. a
queue) is described by a number rather than a symbol. The most
signigicant difference between ATOPPS and ANISIM is the manner
in which they graphically represent the timing of discrete
events. ATOPPS makes no attempt to depict parallel processes or
the elapsed time between successive events. Instead, the clock
time is always shown and when an event has been displayed the
clock is wupdated to the time of the next event, which is
immediately displayed.. In other words, all state changes bind
the display, while they are represented in some detail. To help
the viewer understand the inter-relationship of events, the
future events queue is displayed on the screen, allowing one to

see exactly when and why each event is scheduled during the

75

processing of the current event. This approach seems quite
reasonable for the stated objective of understanding basic
operating system principles. The emphasis is on the detailed
display of each event rather than an accurate overall display of

the performance of the model,

ANISIM, on the other hand, has considerable potential as an
educational tool, but in a slightly different sense, AIt would
not be particularly instructive to show how an arrival event
causes a new arrival event to be scheduled and put in the future
events gqueue. It would, however, be useful in demonstrating
certain concepts of queuing theory which are based heavily on
timing parameters. For example, a student trying to understand
how the relationship between the arrival rate and the service
rate affect the gqueue 1length wmight benefit by watching an
animation of a simplé queue with various parameters. Another
simple example would be the comparison of two one-server queues
with one two-server queue (see Figure 17). If the service
distributions have a large variance, the student can see how
items tend to travel faster through the two-server systen. One
problem with demonstrating theoretical results is that they are
based on steady state probabilities. Monitoring the simulation
at any particular' period of timeN(especially the beginning)
provides no guarantee that fhe state will be anywhere near that
specified by the long term probabilities. 0f course the
statistical summary is still available after stopping the

simulation.

76

L LTI O

|

FIGURE 17: Qﬁeuing Theory Comparison

77

4.3 _Research_Tool

One of the original motivations for developing ANISIM was
to study, in a general way, the processes or conditions which
lead to network congestion and system deadlock. It has already
been pointed out how ANISINM can be used to design or optimize a
specific model to avoid undesirable states, Specifically, the
animation allows the modeller to watch the chain of evenfs
leading up to the critical state. However, perhaps the
animation can add additional insight to current research on the
theoretical aspects of deadlock. ANISIM can be used to
construct and modify networks which, when simulated, a) lead to
blocking conditions (see Figure 12 in Chapter 1II), b) becone
congested (queues or buffers fill wup from time to time but
always eventually unblock), or c) reach deadlock (two or more
items are mutually permanently blocked). One example of a
simple two-node deadlock appears in Figure 18. The more
complicated network shown in Figure 19 is deadlocked between the
first two buffers, causing congestion in the Test of the

network.

Time has not permitted the experimentation necessary in
order to invgstigate the principles behind deadlock. A survey
by Coffman, et al [5], describes various strategies for dealing
with the prevention, detection (and recovery), and avoidance of
deadlocks. The discussion is oriented towards operating systens

design, dealing in terms of +tasks and resources, but would

78

FIGURE 18: Simple Deadlock

FIGURE 19: A Partially Deadlocked Network .

80

provide an excellent starting point on which to base

experimentation with ANISIHN.

81

V CONCLUSIONS, PROSPECTS, AND EXTENSIONS

It must be emphasized at this point that ANISIWM, in its
current form, can only be thought of as a research tool, and not
as a finished ©product. It has clearly demonstrated that
animation can play a very powerful and useful part in discrete
event simulation modelling. Hopefully, future attempts at such
systemns can benefit particularly from the classification of

sequences and from the event editing procedures of Chapter II.

Much of the initial effort in implementing ANISIM went into
developing the simulation and animation techniques. The systen
more or less evolved as 1its «capabilities became apparent,
resulting in two general problems, The first problem concerns
the idéalogue. Martin [13], in his survey of methods, features,
and psychological considerations of man-machine dialogue,
emphasizes the need for comprehensive planning of the dialogue
before programmin§ begins. Such planning, in the case of
ANISIM, could have eased the programming task, particularly with
respect to providing simple, uniform error recovery procedures.
The second problem with the 1lack of overall plan at the
beginning is that not enough provision can be made to easily
handle extensions and refinementé. For example, in ANISIM, as
in most graphics systems, the data structure 1is accessed fron

just about every phase of the program. Repercussions of any

82

changes to the structure or to the information stored in it tend
to ripple throughout the program., In concentrating on the needs
of the animation routines while coding the simulation routine,
some basic features were overlooked, such as the gathering of
certain statistics and the allowance for more transaction
parameters (i.e. in addition to the destination sink and the
time of arrival to the system). Adding these features, as well
as further extensions (section 5.3), represent a rather tedious

programming chore.

Even in light of what it does not do, however, the current
system 1is surprisingly inexpensive to use, considering the fact
that it is a simulation program, it 1is 1interactive, and it
involves extensive I/0 for graphics and for saving and restoring
data on disk files. PFurthermore, any éttempt to re-write the
program in a more modular fashion to perform more general tasks
would be constrained by both the need for a fast, efficient
simulation routine and the limited capacity of the Adage display

buffer.

5.2 Limitations

One important conclusion, born out by this and the
. following sections, 1is that animation is mainly useful as an

additional technique for analyzing simulations, not as a

v i ————

substitute for classical techniques. when one gets down to

actually using ANISIM to study a real problem he finds that

83

1) he still needs to have certain statisiics available to
summarize or validate when he saw (or didn*'t see), and 2) most
models require at least one or two simulation features that are
not available in a strict gqueuing network formulation, This
second difficulty 1is compounded by the limits on problem size
imposed by the representation of the network. As already
pointed out in the example of transit times, the availability of
additional simulation ©power tends to simplify the required
network structure, allowing a more complex situation to be

represented on the screen.

In discussing potential models for ANISIM with people
familiar with discrete simulations, a pattern began to emerge in
the simulation features required in order to enable many models
to be formulated., A few of the most important recommendations
arising from (or confirmed by) these discussions are mentioned

here.,

In many gqueuing models, individual items must group
together as they travel through the network. This is true of
railroad cars, cargo on ships, and words in a telecommunications
network, To accomodate this ‘type of model in ANISIM, the
concept of multiple servers must be changed to allow one server
symbol to represent a server of unlimited (user specified)
capacity. Also groups of items should be able to travel between
nodes using one symbol (and generating single events). Figure

20 shows one way of animating this., 1In the case of trains or

84

e —r @) <&

“FIGURE 20: Transaction Grouping

'ships, it would alsc be desirable to allow sonme flekibility ‘in

~ departure protocols. Fer example, there is currently no way of
speéifying periodic or otherwise scheduled departures cf a set
humhéf of itgms a(i;e; derartures indeéendent of when serviée

/beginS).

,ﬂﬁnother.ﬁecessary capahility df mény gueuing models is to
- measﬁre thebavefage delay pf'itemS'travelling-fetween arbitréry'
points»gf'the netwdrk; The current systen only measuieg the
delay }hetwéeh scurce;sink péirs.’ The only drawktack of adding
tﬁansacticn»barameters'(as this ﬁould) is the increased storage

 réguireﬁent for tbe ALGOLW records which ccntain the information

‘for ‘each transaction in a queue,

'Two: additicnal features which-would'considerablf widen the
class of models; that could be _simuiated‘ are transit times
(diécussed 'eérlief) énd lcgic switches, or éates.:‘The latter'
would involve testing on user—speéified transaction. parameters

“and would considetably complicate the diaiogue fot définiﬁg the

network.

85

In addition to those discussed in the previous section, the

following potential extensions to ANISIM merit consideration.

1) As pointed out earlier, tﬁe animation facility does not
preclude the need for statistical summaries. . Statistics which
should be added include the mean and variance of the delay at
each queue and buffer, as well as the variance of the gqueue
lengths and buffer contents, 0f course, the animation then
allows the viewer to watch the variations happening, in order to
get a better feel for the nature of the fluctuations and the
relevance of the averages, Furthermore, the animation together
with the statistics on blocking, provides a better understanding
of how occasional blocking (congestion) may distort the

signigicance of the other statistics.

2) It may be possible to provide more meaningful ways of
presenting statistics to the user. One suggestion is to provide
a "third level" of information using a command which allows the
modeller to view a plot of a statistic, such as queue lenéth,
over tinme. Another suggestion 1is to provide a command which
displays the average state of each entity rathet than just the
final state in which the sipulation stopped. A more difficult
to implement feature would be some type of continuous display
during the animation of, for example, the average queue length,

(This would involve a separate symbol, or number, displayed near

86

the queue symbol.) It would also be helpful to display the

simulation clock time during the animation,

3) Currently, only two probability distributions have been
implemented for arrival and service rates. Others, such as
Erlang distribution, must be added, as well as the ability to
create a distribution from user-specified empirical data. Also,
more flexibility with the random number seeds would allow the
user to start two or more streams with the same seed, for

comparison purposes,

A further type of arrival rate that would be very useful
for modelling closed systems is a finite calling population. A
limited number of arrivals are generated, possibly all at once,
and new arrivals appear at sources only when items depart to

sinks.

4) The routing mechanism used in ANISIM represents one type of
route selection. Other possible types include a pre-defined
routing scheme, where an item's route is fully specified at the
source, and a stochastic routing scheme, where the next node
 from any given node is determined from a probability
distribution, Other possible features than control routing are

the transaction splitting and logic switching features of GPSS

(91

5) As vell as allowing arrival and service time options, ANISIM

87

should provide optional policies for queue disciplines and
blocked transactions, Priority gueues (i.e. allow the
generation of different types of transactions) would be somewhat
difficult to illustrate, however, given the current
representation, An example of an alternate blocked transaction
policy is that a blocked item go back to the end of its own

gueue, instead of waiting in the server,

6) Some typical network configurations occur often enough that
it might be useful to provide a "network macro® facility for the
automatic creation of previously defined sub-networks. Even
better, there may be some mwmodels which can be suitable
represented with entire sub-networks of the model replaced in
the animation by special; or user created, macro symobls. For
example, in Figure 19 if each buffer (with its associated queues
and servers) were replaced by a network macro symbol, or in this
case by a small version of the buffer symbol, the representation
of the model would be considerably simplified., Of course this
technique would allow ANISIM to handle larger models, since the
main constraint on problem size is the number of Adage ©buffer
words wused to represent the network. Also for this reason, and
for viewing simplicity, it may be worthwhile to attempt a
wyindowing" capability, where only one portion of a large
network is displayed at one time. Windowing may not prove fo be
of too much value in this case however, since the modeller would

never be able to view the entire network at once,

88

7) One problem with the animation of a non-trival network is
that all of the moving items look alike, It is difficult, at
times to follow the progress of an item through the network,
especially if it spends time in queues. A partial solution to
this problem would be to shade, or otherwise mark, certain itenms
so that they can be distinguished from the others as they travel
through the network. The drawback is the space required by the
additional transaction parameter field. Two methods of using
this shading feature are a) mark all items arriving from a
specified source, and Db) mark every tenth item, or whatever ,

generated by the systen.

5.4 Prospects_for Further Hork

Although it is possible to formulate a fairly large number
of models in terms of networks of queues, the question arises as
to what other types of discrete models or real processes might

be animated using the techniques described in Chapter II.

It seens that most descrete event simulation models can
make use of the internal cycle concept, the classification of
sequences, and the editing procedure. The deciding factors,
then, for animation feasibility, would be whether the model
structufe can be suitable represented on a graphics scope and
whether meaningful animation sequences can be compiled and
displayed using the graphics software available. (The length of

any two-side bounded sequences might be a problem in some cases,

89

as noted in Chapter II.) One type of simulatién with a slightly
different emphasis from that used in ANISIM would utilize the
graphics capabilities to study models involving spatial 1layout
problems, Consider, for exanple, a nodel of a warehouse
operation, where the cost associated with an item travelling
between two points in the model is derived internally from the
physical distance between symbols on the screen., The user is
able to optimize the model, with respect to cost and space, by
simulating and animating it with various spatial arrangements,
This type of model would also require queuing facilities, only
the representation of the length of the queue would now beconme

important,

The gquestion of animating real processes rather than
simulations is a more difficult one. For example, assume it is
desirable to monitor an animation of some sort of industrial or
scientific process which cannot be directly observed (e.g. due
to the 1location or size of the components of the process).
Further assume that the process must be monitored in terms of
discrete events, rather than continuous updating. This may be
due to the method of measuring its progress, or perhaps only the
general stages of the process are important to the observer, If
the events are merely being recorded for later study (say the
process happens too fast or too slow for real-time monitoring),
then there is no problem., The events can be edited and compiled
as done for simulations. If, however, it 1is desirable to

display the animation simultaneously with the ongoing process,

90

then two basic problems arise., For one thing, the process can't
be stopped every few events in order to wait for the editing and
compiling of sequences. Furthermore, the time expansion due ‘to
binding sequences would result in a continually increasing 1lag

between the time of the event and the time it is displayed.

First of all, the problem of time expansion may not be a
problem at all. Recall that binding sequences were required in
order to add some sort of reality to the modelling abstractidn
of an instantaneous movement., It seems likely, however, that
most real processes monitored in feal time will require two-side
bounded sequences rather than binding sequences to properly
animate movements. Let us assume then, that we wish to animate
a real-time process requiring no binding sequences and no two-
side bounded sequences of unmanageable 1length, A systen
configuration that would probably make this task feasible
requires three ©parallel operations instead of the current two
(370 program and Adage monitor). The first processor wbuld
continuously record the events of the ongoing process and make
the event list available to the second processor, which would
then be able to use the internal cycle approach to edit events
and compile sequences for the graphics computer to display. The
animation would of course lag behind the actual events by a
fixed start-up time, but the speed of the display could be made

equal to that of the real process.

This discussion is quite abstract and there would certainly

91

be bugs to work out in this approach. The point is that the
potential exists for applying the general techniques of Chapter

ITI to the animation of systems other than simulations.

5.

10.

11.

12.

92

BIBLIOGRAPHY

Baecker, R.M.
"Toward Animating Computer Programs: A First Progress
Report," Proceedings of the Third Man-Computer
Communications Seminar, NRC, Ottawa, Canada, May 1973.

Baecker, R.nm. \
Interactive Computer-Mediated Apnimation, MAC-TR-61

(THESIS), June 1969, Project MAC, MIT.

Brocchi, G.; Somalvico, M.
"An Interactive Software Systen for Computer-Aided Design:
An Application to Circuit Project,™ CACM, Vol.13, No.9,
September 1970.

Chheda, D.P. :
“"CAM, A Computer-Aided Modelling Program for Systems
Dynamics Models," Master's Thesis, Department of Computer
Science, U.B.C., 1974.

Coffman, E.G.; Elphick, #.J.; and Shoshani, A.
wSystem Deadlock," Computing Surveys, Vol. 3, No.. 2,
June 1971.

Coulthard, W.J.; Dekleer, J, .
"JBC:AGTBASIC - Basic Communication Package for the Adage
Graphics Terminal,™ Computing Centre, U.B.C., 1973,

Coulthard, W.J.
"UBC:GRAPH ~ A Simple 1Interactive Graphics Package,"
Computing Centre, U.B.C., 1973.

Forrester, J.¥W.
World Dynamics, Wright Allen Press, 1971.

General Purpose Simulation System V User's Manual,

ner
IBN Publication No., SH20-0851.

Hilborn, R,
Simulation- Control Command Language--SIMCON, Institute of
Animal Resource Ecology, U.B.C., October 1972,

Hillier, F. S.. Lieberman, G.J.

Lafata, P.; Rosen, J.B.
"An Interactive Display for Approximation by Linear
Programming,” CACHM, Vol. 13, ¥No. 11, November 1970.

13.

14.

15.

16.

17.

18. .

19.

21.

22.

23.

24,

93

Martin, James
Design of Man-Computer Dialogues, Prentice-Hall, 1973.

McIntosh, J.F.
“GRAPHIC," Computing Centre, U.B.C., 1973,

Merchant, M.
"Interactive Spline Approximation,™ Master's Thesis,
Department of Computer Science, U.B.C., 1974,

Newman, W.M.; Sproull, R.F.
Principles of Interactive Computer Graphics, MNcGraw-Hill,
1973.

Okaya, Y.
"Interactive Aspects of Crystal Structure Analysis," IBHM
Systems Journal, Vvol.7, Nos. 3 and 4, 1968.

Prince, M.D.
Interactive Graphics for Computer-Aided Design, Addison-
Wesley, 1971.

Richardson, PF.K.: Oestreicher, D.R.
"Computer Assisted Integrated Circuit Photomask Layout,"
in Pertinent Concepts in Computer Graphics, Faiman, M.,
Nievergelt, J., eds., University of Illinois Press, 1969.

Savage, G.J.; Andrews, G.C.

"DYNIS: A Dynamic Interactive Simulation Program For
Three-Dimensional Mechanical Systems," Proceedings of the
Third Man-Computer Communications Seminar, NRC, Ottawa,
Canada, May 1973.

The SIMSCRIPT 1I.5 Reference Handbook,
Consolidated Analysis Centers Inc., 1971.

Smithl L.B.
"The Use of Interactive Graphics To Solve Numerical
Problems," CACM, Vol. 13, No. 10, October 1970.

Smith, L.B.
A Survey of Interactive Graphical Systems for
Mathematics," Computing Surveys, Vol, 2, No. 4, December
1970. v

Sutherland, W.R.
won-Line Graphical Specification of Computer Procedures,"
MIT Lincoln Laboratory, TR 405, May 1966,

94 . -
APPE¥DIX A -- PROGRAM DESIGH

ANISIN is implemented ocn am IBM 37C/168 wusing the - MHIS
(Yichigan Terminal Systenm) operating systen, ‘and an Adage

Corporation Graphics Computer, as showun in ‘Figure 21.

,120000 bits/sec.

IBM 370/168

B | . 138 3270
CADAGE —_— _ _ NDisplay S
Model 10 { } o lTermina] e - FDAGE
Graphics § }- oo S A A . 4 Graphics.Compyter
MNisnlay S] ’ , \ :
- Scepe — o o | o
, _ — : S A R Tele-
Dinls f==s o 1A 9 ‘ B —_— . type ..
& e} Lightped ~} == At . ' . - '
&S <o A v T A :
Mb /q . B . . &A R .
N : . R - o e '
- ~Function . . ; . = i o Operator's
Buttons ‘ , - . ' . "~ Control -
o ’ " Panel
FIGURE 21i: System Configuration
The. -~ program 1is. written «chiefly in ALGCLW, with a few 1I/0
operations in. FORTRAN, Software previded by the

U.B.C. Computing Centre ccnsists of the MIS file handling
routines, the basic subroutine package <for cormunicating with
the Adage [6], and the graphics mcpniter which resides in the

Adage Computér {7]. Follcwing is a brief description of the

95

major procedures in the ALGOLW progran.

MAIN: The main body of the program is basically the command
monitor. Upon initial execution, the éroceﬁure INITMAIN is
called to initialize various system variables, and the procedure
SETUP is called to generate +the Adage buffer words for the
cresshairs, menu, messages, and symbols., The monitor then asks
the user to enter a command, as shown in Figure 10, The input
string 1is compared to each possible command until a match is
found. Commands uhigh allow parameters for changing the value
of system variables always print out the new values of the
variables. Thus, if the parameters are ommited, the current
values will be printed. Simple commands are executed in line by
the command processor, while other compands are executed by

calling one or more procedures.

ggggg: The BUILD procedure monitors all network construction and
modification. Upon entry, it loadé the words for the menu and
prompting messages into the display buffer. The main loop
consists of turning on the display of the menu, issuing a
lightpen read, turning off the menu, and executing a procedure
(depending on the location of the 1lightpen hit). Also, upon
termination of the procedure executed, control of the mode nanme

in the menu is switched from dial two to dial five.

NODES: This procedure is called when the SYMBOLS command in the

96

menu is hit, Its main loop, after turning on the crosshairs,
consists of issuing a read to the function buttons and executing
the appropriate code. The buttons are used to create sources,
servers, sinks, queues, and buffers. For each such entity, the
symbol is displayed at the 1location of the crosshairs, the
buffer words for the label are created, and a record is created
and added to the list of records for that entity. Further use
of the buttons 1is required in order to position a gqueue or to
sketch a buffer. A special button terminates the SYMBOLS nmode.
If a lightpen hit is read instead of a button, the symbol or
link pointed to is no longer displayed. If a symbol is pointed

to, its associated record is also deleted from the data base.

LINKS: The LINKS mode makés use of the lightpen in order to draw
connecting 1lines between pairs of symbols. No entry is made in
the simulation data base. The intensity of the 1links is
controlled by dial €, while the intensity of the symbols is
controlled by dial B.

ASSIGNQ: This procedure is called, with different arguments, for
the ASSiGNQ, FIRST QUEUES, and ASSIGN BUFF modes. For example,
if the arguments are the list of queues and the list of servers
(ASSIGNQ mode), then the process is as follows: a server is made
to blink; a prompting message asking for a queue is displayed,
and the 1lightpen is read. If a queue symbol was hit, then a

pointer to the gqueue record is placed in the server record,

97

otherwise the message "NO ASSIGNMENT" is displayed. If the edit
flag is not on, then the process starts over with the next
server in the list until all servers have been processed. If
the edit flag is on, then the user is first prompted to point to

the server he is interested in.

ROUTING: The ROUTING mode requires a procedure similar to that
used in ASSIGNQ in order to fill a matrix of pointers to queue
or sink records. Each entity 1is assigned a number (unique
within the entity type) when created in SYMBOLS mode. The
number 1is used to form the label and to reference the entity
whenever a pointer to its record is not appropriate. In the
case of the routing matrix, the first dimension is indexed by
gueue numbers, and the second dimension is indexed by sink
nunbers. Thus for each blinking queue-sink pair, the user is
asked to point to the next queue in the route, or to the sink.
This is done by stepping through the list of sinks and, for each
sink, stegping through the list of queues. If the edit flag is

set, the user is asked for a sink but every queue is processed

for than sink.

CAPACITIES: This procedure steps through the list of queues and
then the list of buffers, blinking each in turn and prompting on
the 3270 for the capacity. Each guene and buffer is given a
default capacity (20 and 100, respectively) in SYMBOLS mode.

The default or otherwise current capacity is printed with the

98

prompt. If a null line is entered by the user, the field in the
jueue or buffer record remains unchanged. If something other
than a number is entered, the capacity is set at 1,000,000 and
the queue symbol is altered to represent an infinite queue. If
a queue capacity less than twenty is entered, the gqueue symbol

is shortened proportionately.

SOURCEFLOW: The SOURCEPLOW procedure is used for both FLOW and
SERVICE TIMES modes, where the arrival and service distribution
parameters, respectively, are entered into their appropriate
fields in the source and server records (actually the DIS
records--see Appendix B). The method of blinking each symboi
under consideration is used here as well, Since defaults are
not assigned, the current parameters are only printed with the
prompt if the edit flag is on. In SERVICE TIMES mode the re-
send time parameter is also requested for each server. In FLOW
mode the flow matrix, indexed by source number and sink number,
is filled in the same manner as the routing matrix. If the

fractions of flow to each sink from a source do not add up to

one, a message is printed and that step is repeated.

This completes the major procedures within the BUILD

procedure.

SAVENET: This procedure is invoked by the SAVE command and

allows a complete definition of a network model to be written

onto an NMTS file of the user?'s choice. The filename is prompted

99

for if it was not entered as a parameter to the command. MTS
subroutines are used to create or empty the file'and to open it.
"The information saved consists of 1) the buffer words for the
network display, 2) an encoded description of +the relevant
fields of the records for each entity, 3) an encoded description

of the routing matrix, and 4) the flow matrix.

RESTORE: The inverse of SAVENET, this procedure reads in and
decodes the saved information, re-creating the data base and
display. The restored network replaces any currently active
network that may exist, and the simulation statistics are

initialized to zero.

LABEL

The LABEL procedure is used to display or remove the
labels at each symbol in the network. The buffer words for all
of the 1labels are kept in an array and only loaded into the
buffer when required for display. This routine is automatically
called to remove the labels before entering BUILD or starting

the simulation.

G0: GO 1is a small précedure which monitors the Simulate-Edit-
Compile cycle. It is envoked by the GO command to start or re-
start the simulation. when starting a simulation, GO firét
checks the data.base in order to make sure each source and each
server has been assigned a queue. Between internal cycles, GO

checks to see if an attention .interrupt has been issued or one

100

of the simulation 1limits has been exceeded. If not, the
SINULATE procedure is called, The EDIT and COMPILE procedures
are then called, unless a NODISP command was issued before the

current GO,

SIMULATE: The main body of SIMULATE checks between the
processing of each event to see if a simulation limit has been
exceeded, an attention interrupt has been 1issued, or the
required number of potential sequences for the internal cycle
has been achieved. If none of these conditions hold, the

GETEVENT procedure is called, otherwise control is returned to

the GO procedure.

GETEVENT: The collection of routines comprising the simulation
pregram maintain two lists of event records: the future events
list (or queue) and the list of processed events to be passed on
to the EDIT procedure. GETEVENT processes the event at the head
of the future events queue and puts the altered record in the
output event 1list, (If there are no future events scheduled,
then GETEVENT first calls GENARR.) The event record is.described
in Appendix B. Basically, it contains the event class, the tinme
of the event, and various parameters further defining the

specific simulation entities involved. The record also contains

fields later used for the animation time and duration.

GETEVENT begins by updating the clock to the time of the

new event. It then tests on the event class and uses the more

101

specific information +to appropriately wupdate the state aﬁd
statistics of the model in the data base. For each future event
that must be scheduled as a result of the current event, the
procedure GETEVENT is called in order to create the proper event
record 1in the future events queue. The aspects of the current
state of the simulation that will be required by the COMPILE
procedure are then added to the current event record and it is

placed in the output event list.

GENARR: This procedure generates one arrival event at each
source to initialize the simulation. (An arrival event always
causes the scheduling of the next arrival event at that source.)
A pseudo-random number generator is used to derive independent
random number streams for each source (and each server). Thus
the time of arrival is determined by the stream and the user-
specified probabiljity distribution for that source. GENARR must

also use the flow matrix and a separate randomr number streanm in

order to determine the destination sink for the new arrival.

GENEVENT: GENEVENT is called from GETEVENT with an argument
specifying the event class desired for the new event. GENEVENT
then uses the information in the current event record and in the
data base to create the new event record., This record is placed

in the future events queue.

SENDSTATE: When the simulation stops, the data base contains the

—— o —— " - —

102

current state of the model. SENDSTATE is automatically called
at this time to scan the relevant records and display the
current state of each queue, buffer, and server. (This is
desirable since either NODISP was specified, or the tail of the

last internal cycle was not displayed.)

EDIT: The EDIT procedure edits the list of event records output
by the simulation., These same records are used to form the
sequence list and tail list. Chapter II describes the editing

process in detail,

COMPILE

The operations performed by the COMPILE procedure are
also described in Chapter II. The first part of the procedure
steps through each record in the sequence list. Depending on
the event class, selected smaller procedures are called to
actually compile the display programs for each sequence. The
second part of the routine then compiles the buffer timer words

and sends the completed array to the Adage.

RESET: The RESET routine goes through the data base and, for
each entity, changes the state and statistics to their initial
value. It also displays a fresh copy of the network, restores

the random number seeds, eliminates any remaining event or

sequence lists, and resets the simulation clock.

SPEED: The SPEED procedure uses a small array of pre-defined

103

settings for the animation time conversion factor and the length
of the internal cycle. The argument to the procedure specifies
whether to assign the values for the next faster display, the
next slower display, the default speed display, 6r the scan mode
display (which also requires setting the sequence durations to
zero). Also, if a tail list exists, the SPEED procedure will go
back and adjust the animation times in the tail according to the

new factor (see sections 2;3.3 and 2.4,.2).

104,
APPENDIX B -- DATA STRUCTURE

" The basic record describing.each nodel entity is the NODE
record (see figure 22). These records are grouped intc five

separate lists of sources, servers, sinks, queues, and tuffers,

F

3 K
Ending Current | Y-Coordinate 1 Pointer :;N\\\v~'
Buffer State of Symbol Nueue MIODE
Location ' if a Server
: L or Source
Starting ldentiftying and to Ruffer
‘Buffer o HNumber NODE if a
“Location L Queue
X~-coordinate Pointer to Pointer to
of Symbol next MODE Statistics
- in List Record if
not a Sink

Pointer to
MULTSERY i f
a Queue and
to DIS if a
~ Server, Source .
or Buffer

_PIGUQE,zé: The NODE Record
" The NODE_'recdrd is augmehtéd, when necessary, by the LIS,
N EULTSEEV; and STATfSTICS records. The_‘Dls: record has three
fields.'and'4contains the arrival or‘sérvice'time aisfribution
code aﬁd'fardmeiersi or the buffer capacity. The STATISTICS
reéord-.aisov has three fields. For queues and buffers, it
contains thebstatistics for computing the average and ~maximun
queue 1en§th or buffer occupancy. For sources it éontains the

number of lost arrivals and an integer identifying the randcn

105

number strean. For servers it contains the stream identifier,
the re-send time, and the number of times found full., Figure 23
shows the use of the MULTSERV record and the associated TRANPAR
and #MSPTR records. For each queue, there is one TRANPAR record
for every item in the queue (not including items being served).
Future transaction parameters would require expansion of this
record. Also, for every server using the gueue, there is one

MSPTR record.

The network definition is completed by the ROUTE matrix
consisting of pointers to NODE records (queues or sinks), and

the FLOW matrix of real numbers.

The EVENT record contains several fields which take on
various meanings at different points in the processing. Figure

24 sammarizes this record.

106 .

NODE (Queue)

. Queue- " Quede
Discipline - | - Capacity

“Angle of . Number

Queue Symbol of Servers | ,- B \, MSPTR - 'ﬁ%A“

- Server - Pointer
Occupancy o NODE
Flag (Server)

[o e B

Pointer =~ = Source Number
- to HNORE .. = and Arrival
(Bestination . Time

Sink) S

FIGURE 23: Data‘Structute for Queues

107

TN &\f
Animation ™ Sequen

. Event Peointer to ce
Class MODE Records. ~Time - . Duraticn’
Code as "Subclass. _ S
.. Designators". Simulation
' : Time .
- DI S
e —— ointer to Pointer to
ST Previous . _NGDE
.Queue and Buffer EVENT (Destination
State Parameters - Record Sink)

"for Compile Routine I DR

: T - E -~ Pointer to
‘next EVENT
Record

FPIGURE 24: The EVENT Record

108

APPENDIX C -- USER'S GUIDE

Purpose

ANISIN provides a command language for creating,
sipulating, and animating arbitrary queuing network models.
There are two main phases of execution: the normal command mode
at the 3270, and the menu dialogue fbr network definition and

modification using the Adage and the 3270.

Before attempting to run ANISIﬁ, make sure that the
graphics monitor has been loaded into the Adage computer. See
the Computing Centre writeup UBC GRAPH for details. The
following command may then be used to start execution of ANISIM:

$SOURCE WALK:ANISIH
The program will first ask the guestion "ARE YOU USING THE
ADAGE--TRUE OR FALSE," which should be replied to by spelling
out the word "TRUE"™ (or "FALSE"). The program will then clear
the Adage screen and enter the command mode with the message
WENTER COMMAND OR HELP.® On entering “HELP," a list of
available commands will be presented along with a brief reminder

of their purpose.

Adage Input

109

The six dials connected to the Adage are used in the

following way:

DIAL &

the horizontal crosshair

DIAL B
intensity of symbols and

nases of un-entered nmodes

DIaL C

X-co-ordinate of menu

DIAL D

the vertical crosshair

DIAL E
intensity of links and labels

and names of entered modes

DIAL F

Y-co-ordinate of menu

To use the function buttons (required during SYMBOLS mode

of the menu dialogue) the yellow overlay card marked "ANISIMY

should be used., If this card cannot be located, the function of

each button is as follows:

BUTTON 1: Creates
BUTTON 2: Creates
BUTTON 3: Creates

BUTTON 5: Creates

a

a

source,
server.
sink,.

queue,

Orients the tail of the queue symbol.

110

BUTTON 6: Creates a buffer.
Sketches the buffer symbol.

BUTTON 7: Terminates buffer sketching.
Terminates SYMBOLS mode,

BUTTON U4: Selects the default buffer symbol,

BUTTON 8: Allows a sketched buffer symbol,

When using the lightpen, the display will blink when a hit
has been accepted, and the button should then be released to
avoid an unintended second hit. Also, as a general rule in the
menu dialogue, a lightpen hit on the prompting message is used

to terminate a mode or avoid an assignment.

Each causes the program to enter 'the menu dialogue phase,
NEWNET first destroys any active network, and EDITNET should be
used for small changes to the active network. The menu dialogue

phase is described later in more detail.

Changes the limits on the simulation and prints the resulting
values. If any parameter is missing or given as an asterisk
(position holder), the current value is retained and printed.
The parameters are 1) the simulation clock time 1limit, 2) the
maximum number of arrivals generated, 3) the maximum number of

entries into queue/server systems, 4) the maximum number of

11

terminations (departures to sinks). Default values are 1000,
200, 200, and 50, respectively.

DESPEED

Returns to the default speed for subsequent animations.

DUR [01] [02] (03] [n4] | |

Alters the sequence durations (in simulation time) to the new
values if specified, and prints the values. The segquences are
1) arrivals, 2) lost arrivals, 3) departures (binding), and 4)
departures to sinks. All default durations are 10 simulation

time units, except during SCAN¥ mode when they are zero.

Terminates the progranm. An attention interrupt also returns
control to MTS but the program can be resumed with a $RESTART
command.

Alters the animation time conversion factor to the new value if
specified, and prints the value. The smaller the factor, the
faster the display. The default factor is set to 10.

EASTER-

Increases the speed 6f subsequent animations, unless the current
speed is the fastest, and prints the new factor and cycle length
values. |

30 [n)]

Simulates the active network for n time units from the current

112

state 6: until interrupted, or until a simulation 1limit is
exceeded (see the CYCLE command). The animation accompanies the
simulation unless a NODISP command is first issued.

Alters the length of the internal cycle to the new value if
specified, and prints the value, For fast displays, the
internal cycle should be made larger to avoid delays in the
animation between cycles. Default value is 15 sequences.

LABEL

Displays unique labels at each symbol. These 1labels allow
reference to specific network entities by information available
from the PRINT command. The intensity of the labels is

controlled by dial E.

Provides a hardcopy plot of the display. The maximum dimension
is 10 inches unless the parameter otherwise specifies, PLOT:Q
must be run after termination ANISIHN.

Prints the following information, according to the first:

argument. The second argument, if not =zero, will <cause the

113

program to ask for the name of an MTS file on which to print the

information,

0)

1)

2)
3)
4)
5)
6)
7

8)

)

12)

13)

14)

15)

16)

The codes are:

All of the information available from codes 2-8 and
16.

All of the information available from codes 3-8 and
16 (i.e. all statistics).

A description of the future events list,

All of the information available from codes u-8.
Source numbers and statistics.

Sink numbers and statistics.

Server numbers and statistics,

Queue numbers and statistics,

Buffer numbers and statistics.

A description of the current sequence list,

The most recently compiled animation buffer (for
debugging).

A summafy of the current model entities and
parameters,

The current value of each random number stream (for
debugging).)

The entire Adage display buffer (for debugging)..
The average time-in-system statistics by source-

sink pairs.

Any other number will result in the printing of the current

status of the simulation,

114

RESET

Resets the simulation variables, the statistics, the model
state, the random number seeds, and the display to their initial
status,

RESTORE [filename]

Destroys the current active network and makes active the network
saved on the MTS file specified.

Saves the active network on the MNTS file specified. If the file
does not alreadf exist, it will be created.

SCALE [x]

Alters the scale of the displaj to the new value if specified,
and prints the value, The default is 0.6,

SCAN

Allows the animation to be displayed at an increased speed with
no moving items (i.e. all "sequence durations" are zero). The
new factor and cycle length values are printed out.

SLOWER

Reduces the speed of subsequent animations, unless the current
speed is the slowest, and prints the new factor and cycle length
values.

STOP

Same as END,

Sets debug flags for the programmer. The second argument causes

the program to ask for the name of an MTS file on which to print

115

the output. The flags are 0) PRINTCYC, 1) PRINTSTEPOUTP, 2)
LITDUMP, 3) TRACE, 4) DUMPER, 5) COMPTRACE, 6) COMTRACE, and 7)
BUFTRACE., Flag 3 may also be of value to the user, as it
provides a detailed trace of the simulation.

UNLABEL

Removes the labels from the screen, (This is done automatically

before simulating and before entering the menu dialogue.)

The Menu Dialogue

Once this phase of the progrém is entered, commands are entered
by pointing with the lightpen tc a mode name in the menu. The
menu should be positioned by dials C and F to a convenient
location on the screen, It will disappear during the execution
of each mode. Also, Dials B and E should be adjusted such that
un-entered modes are at normal intensity and entered modes are
at a reduced intensity. A mode may be re-entered by turning the
intensity back up in order that the 1lightpen hit will take..
When building a new network, a recommended order of execution is
the order in which the mode names are listed. The purpose of
each mode is outlined below, along with any instructions for use
not obvious from the dialogue.

SYMBOLS: This mode is used to create model entities with the
function buttons and position their symbols at the locations
defined by the crosshairs, Button 7 is used to terminate the

pmode. When creating a queue, a second button hit is requested.

116

The head of the queue will be located at the first crosshair
location and the tail will be oriented in the direction of the
second crosshair location. Buffer symbols may be sketched 1in
any shape. Upon selecting a buffer (button 6), the bargraph
appears at the crosshairs location and the user is asked whether
he wants to sketch (button 8) or use the default shape (button
4y . If it is sketch, button 6 is used with the crosshairs to
specify line endpoints. No line will be drawn to. the first
point - specified. Button 7 terminates the sketching, ‘The
lightpen may be used in this mode to delete a symbol or link by
pointing to it., A maximum of 19 queues, 19 servers, 10 sources,
10 sinks, and 6 Dbuffers are currently allowed, including any
deleted ones,

LINKS: This mode is used to connect any pair of symbols with a
line by pointing to the symbols with the 1lightpen. The
intehsity of the links is controlled by dial E.

ASSIGEQ: Every server must be assigned a unique queue. These,
and other assignments, are made by pointing to the symbol with
the lightpen., The assignment is made to the server that is

blinking.

FIRST QUEUES: Every source mnust be assigned a unique queue to

designate the first queue/server system in the route for itenms
generated at that source.

ASSIGN BUF: This mode is required in order to tell the progran
where to send an item next, given that it is at a dqueue/server

system (blinking queue) and is destined for the blinking sink.

117

The user should point to the next queue or to the sink.

(@]

APACITIES: This mode is required if the default capacities of

0 for queues and 100 for buffers are not appropriate., The

[8]

capacity of a queue does not include the servers, althoughf the
state of a gqueue refers to the queue/server system.

FLOW: This mode is required in order to define the inter-arrival
time distribution type and parameters, (Currently, the
exponential and uniform distributions are available.) The mode
is also used to define the flow of items generated at each
source, by entering the fraction (decimal fraction between 0.0
and 1,0, inclusive) of those items to be destined for each sink.
If the fractions do not add up to 1.0 for each source, the user

will be asked to try again.

SERVICE TIMES: This mode is required in order to specify the

distribution and parameters of the service time for each server.
It is also used to specify the (constant) time a blocked item
must wait in the server before attempting to depart again. (An
item 1is blocked by either the next gueue or its buffer being

filled to capacity.)

o

ONE: This is not actually a mode, but causes the menu to
disappear and control to be returned to the normal command phase
at the 3270. Since there may still be bugs in ANISIM which
could cause an unexpected termination of the program, any newly
created or modified network should be saved at this time using

the SAVE command,

This user's guide is not intended to provide a thorough

118

understanding of the uses and capabilities of ANISIM. The
interested user is referred to the main body of this thesis for

further details.

