¢l
AN INFORMATION THEORETIC MEASURE OF ALGORITHMIC COMPLEXITY
by
Lois Wright

Hon. B.Sc., University of Western Ontario, 1972

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of :

Computer Science

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April 1974

In presenting this thesis in partial fulfilment of the requirements faor
an advanced degree at the University of British Columbia, | agree that
the Library shall make it freely available for reference and study.
I.further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives, It is understood that copying or publication
of this thesis for financial gafn shall not be allowed without my

written pemission,

Com/éu.llbf \gCé.‘Q/ICZ,

Department of

The University of British Columbia
Vancouver 8, Canada

pate X4 &/,r;/ £974

ii

This work is a study of an information theoretic model
which is used to develop a complexity measure of an algorithm,
The measure is defined to reflect the computaticnal <cost and
structure of the given algorithm. In this study computational
costs are exrressed as the execution times of the algorithm,
where the algorithm 1is coded as a program 1in a machine
independent language, and analysed in terms of its
representation as a pseudogqraph. It is shown that this measure
aids in deciding which sections of the algorithm should te
optimized, segmented or expressed as subprograms. The mcdel
proposed is designed to yield a measure which reflects both the
program flow and computational cost. Such a measure allows an
tortimal' algorithm to be selected from a set of algecrithms, all
of which solve the given problem. This selection is made with a
more meaningful <criterion for decision than simply execution
cost, The measure can also be used to further analyse a given
algorithm and point to where code optimization techniques should
be applied. However it does not yield a method of generating

equivalent algorithms.

CHAPTER I: RECENT STUDIES IN ALGORITHMIC COMPLEXITY

1.1

1.2

Introduction

Related Work

1.2.1 Studies Without the Use of Graphs

14242 Graph Theoretic Approach

1.2.3 Information Theoretic Approach

CHAPTER II:

2.1

2.2

Constituents of an Information Theoretic Model

Basic Terminology

2.2.1 Graph Theory Definitions

2.2.2 Model Definitions

2.3
2.4
2.5
2.6

2,7

Definition of the Information Model
Definiton of Probabilities
Definiton of Information Measure
Uses of the Information Value
Information Value -

A Complexity and Efficiency Measure

CHAPTER III: AN INFORMATION THEORETIC ANALYSIS

3.0
3.1

3.2

OF ALGORITHMIC COMPLEXITY
Introduction
Procedure for Flow-Sequence Construction

Flow-subsequences; Weight Assignment

AN INFORMATION THEORETIC MODEL OF ALGORITHMS

iii

Page

10
12
12
13
18
18
22

24

26

29
29
29

30

3.3 Hierarchy of Isomorphic Flow-Sequences
3.4 Reduction and Isomorphism of Flow-Sequences
3.5 Entropy, Conitional Entropy, Information Value
3.6 Further Analysis of the Information Value
3.6.1 Selecting an Algorithm
3.6.2 Selecting'the Algorithm Implementation
3.7 Exanmples
3.7.0 The Form and Purpose of the Examples
3.7.1 Comparison of Two Algorithms for the Same Task
3.7.2 Analysis of Heap Algorithm
3.7.3 Summary of the Examples

3.8 Summary
BIBLIOGRAPHY
APPERDIX A

APPENDIX B

iv

31
32
33
33
33
35
38
38
41
43
50

51

53

55

57

LIST OF TABLES

Table Page
I Example 1 42
I1 Examples 2 and 3 42
III Example & yy
Iv Exanple 5 46
v Example 6 47

VI Example 7 49

vi

LIST OF FIGURES

Figure Page

1 Information Channel 10

vii

ACKNOWLEGEMENTS

I wish to express ny sincere appreciation to
Dr. Abbe Mowshcwitz for his continued guidance and invaluatle

advice.

I would also like to thank Dr. D. Seeley for his several

suggestions.

Financial assistance was received from both the National

Research Council and the Department of Computer Science.

CHAPTER I: RECENT STUDIES IN ALGORITHMIC COMPLEXITY

1.1 Introduction

The following ié a study of an information theoretic model
which is used to develop a complexity measure of an algorithum.
The measure is defined to reflect the computaticnal cost and
structure of the'given algorithm. 1In this study computational
costs are expressed as the execution times of the algorithn,
where the algorithm is coded as a program in a machine
independent language. For purposes of analysis, the algorithm
is represented by a pseudograph. It will be shown that this
measure of complexity aids in deciding which sections of the
algorithnm should be. optimized, segmented or expressed as
subprograms. The model proposed is designed to yield a measure
which reflects both the ©program flow and computational cost.
Such a measure allcws an 'optimal®' algorithm to be selected from
a set of algcrithms, all of which solve the given ptoblem., This
selection is made with a more meaningful criterion for decision
than simply execution cost. The measure can also be used to
further analyse a given algorithm and point to where code
optimization techniques should be applied. However it does not

yield a methcd of generating equivalent algorithams.

Before a definition of the model is given, a brief summary
will be presented of the problem under study and of related
research in this area. The main objectives in the study of

algorithms have been to generate 'equivalent?! algorithms, to

optimize compiler code through an analysis of the algorithm and,
through a measure of efficiency, to compare, rank and then
select, an algorithm which is in some sense optimal for a given
task. Studies in the first area have often been quite
theoretical and have avoided the problem of obtaining a measure
of optimality. The second area, being concerned with compilers,
has tended tc concentrate on improvements in particular types of
code rTather than evaluations of the program as a whole.
Investigations of the third type have often focused on only a
single facet of complexity rather than the overall complexity of
the algorithm. The discussion of some of the relevant studies
is given in three parts. First those which have not included
graphs in their analyses, then those that have used graphs, and
finally those that have defined an information measure on graphs

and/or algorithms are presented.

1.2 Related Work

1. 2.1 Studies Without The Use Of Graphs

An early, quite theoretical evaluation of algorithms is
given in a study by TIanov [17,18]. The notion of ‘'progranm
schemata' is introduced to represent abstract algorithms or
prograns, where programs are represented in a linear notation
and also as matrices. Using program schemata, a formalism which
allows for transforming these schemata into equivalent ones, a
decisicn procedure for determining equivalence, and a method of
generating all equivalent schemata are developed. Rutledge { 28]

simplifies ZIanov's [17,18] formalism by interpreting it in such

a way that the equivalence question is seen to be the
equivalence problem of finite automata, for which a soluticn
exists, even though it is rather impractical. furthermore, a
method for generating all program schemata equivalent to a given
progranm schemata is presented. These studies are more concerned
with the formalisms introduced than with an evaluation of the
algorithms. But since these procedures do yield all egquivalent
prcgram schemata, an efficiency measure defined on then would
allow for the optimum of all equivalent programs to be
determined. — However, such an abstract measure cannot reveal
much about code implementation or program evaluation, Thus,
such studies remain strictly theoretical and very 1little
practical work has followed from them., One exception to this is
Paterson's [25)] work on program schemata. He discusses the
possibility of applying complexity consideraticns in progranm

cptimization but dces not develop ‘the necessary machinery.

In a more restricted study, Beus [9] evaluates sort
algorithms by defining an efficiency measure on the number of
comparisons nmade. However, this measure lacks sufficient
generality by neglecting other cost inducing factors such as

memory accesses, index calculations etc.

At a less theoretical level, Nievergelt [24] considers the
problem of optimizing a program.. As motiviation for his study
he discusses the application of ortimizing in areas where
syntactic improvements would be ﬁseful, leaving semantic

considerations to the ©prcgrammer. His study gives several

specific practical transformations that can be applied to any
program. These yield definite improvements in execution cost
units. Yet the advantage gained is questionable considering the
expense involved in applying such improvements to sections of
the program that are seldom executed. An improvement on
Nievergelt's [24] analysis appears in a much referenced paper by
Allen [4], where topological properties of the program are used
to obtain prcgram modules, The most frequently exécuted of
these are considered for optimization. Hopkins [16], using a
similar approach, presents a series of transformations for
optimizing fgrograms, and the overall implementaticn of such

techniques.

Many other papers [7,15,22] written during the 1960's and
early 1970's study the problem of optimization; however, their
approach is even more specialized than thcse npentioned above,
These studies give techniques for optimizing general code, but
fail to consider program flow, algorithmic implementation etc..
This approach does not attempt tc evaluate the program as a
whecle, but is concerned with improving particular sections of
code. In the following section, we ccnsider papers which take a

glcbal view of programs and algorithms.

1.2.2 Graph Theoretic Approach

One of the first graph theoretic approaches to the
evaluation of algorithms is the one developed by. Karp [19] in

1960. Karg notes that previously the seemingly natural

relationship between program flow and graphs had been ignored.
In this paper an algorithm is expressed as a flow chart, an
execution of the algorithm defines a path through the flow chart
and this path is considered as a graph consisting of operational
elements (sequences of instructions without a transfer) and
decision elements. The graphic representaticn facilitates the
identification of some =simple progranm improvenents. The
pregrams are analysed in . terms of subprograms, and a Markov
model is introduced for investigating the frequency of execution
of parts of the program. Schurmann [29] uses the graphic
representation to study the problem of program segmentation.
This is also an optimization problem since in order to insure
fast execution, a minimum amount cf paging is required. The
locps in the graphic representation of the algorithm are
analysed wusing the adjacency matrix of a partial graph based on
the cycles (loops of the algorithm). The cut having the minimum
nunber of program lcops spanning it is found and this defines
the optimal cut. Berztiss [8] improves on the method of

construction of this matrix.

In a more recent paper, Aho and Ullpan [1] introduce cost
considerations into algorithmic optimzation. An algerithm is
represented as directed acyclic graphs, and four transformations
applicable to this representation are defined. Properties of
the programns equivalent under the transformations are discussed,
as well as possible extensions of this representation to further

program optimizations.

Bachmann [6] recently has assessed the problem of program
efficiency using an abstract calculus based on a directed graph
representatiocn of the program. Several transformaticnal rules
are given together with a measure of efficiency defined on the
probabilitigs and the cost of all operations executed on a given
rath. However this is assumed to be a theoretical criterion
only, since determination cf probabilities is difficult and the
nugber of distinct paths often quite large. As well, the
formalism needed tc apply the transformations is not nmentioned,

but would presumably be quite cumbersone.

Allen [3], wusing a graphic representation of an algorithm,
prcposes a useful method of analysing its control flow. 1In his
paper, Allen defines dominance relations among nodes and from
these obtains intervals (subgraphs with single entry point *h
such that each closed path passes through h) which are used to
partition the graph and toc give a partial ordering of the
intervals, Mention is made of how these constructs can be used
in analyses involving searches for redundant instructioas,
variable definitions and wuse relationships etc. Applying the
flow anlysis methods given by Allen [3], Cocke [10] defines a
set of Boolean variables on computaticns. This set yields a
system of equations, which, when solved, point to those
expressions which should be eliminated. Also included in this
paper is the notion of node splitting when a cycle 1is entered
from more than one node, a procedure often very useful in the

cptimization of cycles,

1.2.3 Information Theoretic Approcach

Information theory, although applied to diverse problens,
has not been used widely in the area of algorithmic complexity
and optimization. In a 1973 paper, Green [13] defines an
entropy function tc measure the complexity of paths in rooted
trees. Let T. be a tree with n terminal nodes V, eV, seee,V, and

m non-terminal nodes Ug sU seeesll and

m7

P. = P(vo,vl) = P(v,su;

i vu,:zv'--rugkvvi)!

L
a path of nodes from v 2 to V. Let od (u) denote the outdegree
of node u. Then the path entropy E is given by
R
E(P,) = Slog od(u,) + log od(v,);
j=1 J
and the entrcpy of the tree is defined by
n
E(T,) = S E(P;).
i=1

Finally, the ncrmalized entropy of T, is given by

H(T,) = (/D) E(T,)..

A 1969 paper by Warshall [31] analyses the prcblem of
algorithmic complexity using information theory, under the
constraint that the algorithms studied are viewed as arrays of
choice-making elements, Thus, a sequence of states or Boolean
expressions cver states cannot be evaluated using this model.
TheA finite dinput set consists of the set of data inputs {Il}'
each of which determines a sequence of states from entry to
exit. An algorithm A is a function from the input values to the

set of E-sequences (finite sequence cf at least three elements,

beginning and ending with E, the entry or. exit state). The
states of A consist of the unicn of the elements occurring in
the E-sequences., To each 1input 13 there corresponds a
probability P(Ib)' The cost associated with state s is

-p(s—>t) log p (s—>t)
wvhere p(s—>t) is the probability that t is the next state,
.The total indeterminancy of algorithm A, i.e. the choice among
paths ¢, is given by

H(c) = -2 p(c) (log P(c)), Plc) = Zp(I).

Then letting TTJs) be the number of occurrences of states s 1in
c, the mean number of occurrences of s per path is

TT(s) = Z P (A)TTS)
and per execution cost of algorithm A is

c(p) = -& TT(s) & p(s—»t)log p(s—>t).

Thus, H(A) is the algorithm cost assuming free bookkeeping, C (1)
the ccst (in the 1information theoretic sense) without this
assumption. Based on the above, Warshall evaluates those
algorithms which consist only of decision elements and develops
some properties of this representation, Rather than present a
general analysis of algorithms, this paper selects a subset of
algorithms and fits it to an information theoretic model. To be
of more general use, this model will have to be extended to
include a wider class of algorithms, node executicn costs, types

of loops etc.

Mowshowitz [23] defines the structural information content
of a graph using the orbits of its automcrphism group. This

measure is structural in the sense that it gives the information

content of a particular graph relative to a system of
transformaticns for which it is invariant. Using finite
undirected graphs and digraphs and a particular type of infinite
graph, properties of this measure are investigated and the
effect of several graph theoretic operations on the measure
examined., It 1is suggested that an information measure on the
structure of the graph of an algorithm might be wuseful in
characterizing the relative complexity of the algorithm.

Consideration cf that proposal is the basis of this thesis.,

In the fcllowing, an information value will be defined co¢n
an algorithm, methods of obtaining +this value given and its

usefulness as a measure of efficiency and complexity discussed.

In Chapter II definitions of necessary terminology, the
cost probabilities and the information value will be given. A
general explanation of the concepts related to this rparticular

measure is also included.

In Chapter I1I, a procedure will be presented for computing
the non-isomorphic, reduced sequences of the algorithm being
studied. In addition, the chapter elaborates on the usefulness
of this measure through extensive examples and possible

extensions of the work.

10
CHAPTER II: AN INFORMATION THEORETIC MODEL OF ALGORITHHS

2.1 Constituents of an Information Theoretic MNodel

In order to define an information theoretic model, one must
identify a channel with inputs and outputs, and input and
channel protatilities (see, for example, Ash [5]). The basic
channel model defines the input as members of some finite set
{bl'bz""'bj}' and the output as members of the same or a
different set, say {aL,az,...,aK}. Each oufput a, is
statistically dependent only on the corresponding input bj'
Such dependence is determined by a fixed conditional probability
assignment P(aKlbs), defined for each input bi and output a,.
The set of these conditional probabilities defines the channel.

Probabilities are also given for each input bj. Such a model

can be depicted by the flow diagram shown in Figure 1.

Noise

L

Source Encoder Channel 3 pecoder Destination

Figure 1: Information Channel

This system describes the flow of information from a source
to a destination in probabilistic terms. The source message is
associated with some object which can be sent cver the channel.

This channel is considered as the medium over which the coded

11

message is transmitted. The decoder operates on the <channel
cutput in an attempt to obtain the original message. In our
model, the source message will be the basic steps of the
algorithm; and the received message, the ccllection of these
steps resulting from the transmission of the source message over
the channel (i.e. the result of the algorithm being executed).
Kncwing the cutput, we will attempt to extract information‘
concerning the source message which will indicate how a @more

efficient algorithm can be obtained.

The fundamental notion of infcrmation provided about the
event X by the occurrence of the event y is defined on the model
by

I(x5y) = log (P (x]Y)/P (X))
where the base of the logarithm is usually taken to be 2. The
self-information of the event x is defined by

I(x) = -log P{(x)

and the conditional self-information of x given y by

I(xly) = -log P(x1Y).
The average values of these are defined as the entropy of the
ensemble X and conditional entropy of the ensemble X,A given Y,
respectively, and are given by

H(X) = - P(x)1log P (x)

and H(X|Y) = -2 P(x,y7)1log P(x}y).

The average informaticn between X and Y is the entropy of X less
the conditiconal entropy of X given Y, i.e.
I(X;Y) = H(X) - H(XI|Y).

Ssuch a model will be wused in the following study. The

12

underlying probabilities of the model derive from two different
sources: data items (relative fregquencies), and a structural
decomposition. The latter arise in the following way. Let n;

for 1< i < kX be non-negative integers associated with an

algorithm, and let n= n,+ ... + n,. A probability schenme is

1 W
constructed by taking P, = (/0. The entropy
H(P s eser B) = -Zp;log p. of the probability scheme then

serves as a measure of the structure cf the algorithm. The Tole
of the relative frequencies of data items will become clear in

the detailed development which follows.

2.2 Basic Terminoclogy

2.2.1 Graph Theory Definitions

Certain graph theoretic concepts are of use in defining
this model. The following definitions are taken fron
Harary [14]. A graph G is a finite ncn-empty set V of p points
together with a set X of g unordered pairs of distinct points of
v. Each pair x = {u,v} of points in X is a line of G. A graph
G is directed if the set X is ordered. The elements of X are

directed lines or arcs. A loop of a graph is a line which joins

a point to itself; if more than one line joins two points, such

lines are called multiple lines. A directed graph which allocws

both loops and wmultiple 1lines is called a pseudograph. A

subgraph of G is a graph baving all its points and lines in G.
A walk of a graph 6 is an alternating sequence of points and
lines vo,xL,vL,.,.,vNL;xh,vn, beginning and ending with points,

in which each line is incident with the two points immediately

13

preceding and follecwing it. Such a walk joins v, and v and may

be denoted by V,,V, seeesV, The walk is closed if v, ,=v,. It is
a trail if all the lines are distinct, and a path if all the
points and hence, all the lines, are distinct. If a walk is

closed and its n > 3 points distinct, then it is a cycle.

2.2.2 Mcdel Definitions

Before defining the model precisely, we will discuss the
interpretation of the term algorithm, as used in this study. An
algorithm X can be represented, gquite naturally, as a
pseudograph G(X). Interpreted in this way, the bkasic elenments
or steps of the algorithm become the nodes, {vj}, of a graph.
Each node of the graph is called a calculation node or a
decision and calculation node, depending on the type of the
equivalent step in the algorithm. An arc joins two nodes in the
graph if the corresponding steps are sequential in the
algorithm. Each execution of the algorithm then defines a walk
in G(X); these walks are, in fact, pseudographs. In any
algorithm there are distinguished nodes, at which any necessary

initialization of values is done., The next node, v marks the

s'
beginning of the non-initialization steps of the algorithm. We

give special attention to certain walks of G(X). A walk in G(X)

beginning with LA and up to but not including the next

occurrence c¢f v

. 1s called a flow-seguence a of G (X). The set

{aK} of flow-sequences in G(X) will be denoted by A(X), or

simply A. If vy is the first decisijion node of a flow-sequence
a, = v, ,%w,...“%fwj,...,vxpthen a flow-subsequence b of aK is

14

defined as (1) any subwalk of a,, beginning with a decision node
v?', and up to, but not including, the next occurrence cf either
vt or Vg s or {(2) the subwalk vs,vKL,...,v“i. The introduction of
flcw-subsequences into the model is a structural consideration.
For a given node, each of the flow-subsequences containing it
provides a distinct structural context in which it may be
analysed. We dencte the set of all flow-subsequences o¢f flow-
sequences in G (X) by B(X) or B. The set of flow-subsequences of
a flow-sequence a is denoted by B(a). In the following, we
assume the total number of flow-sequences and fiow-subseguences

to be m and n, repectively. The notion of flow-subsequence is

somewhat similar to that of interval, given by Allen [4].

Before defining reduction and isomorphism of flow-

sequences, we introduce some further terminology.

In order to provide a weight function for the model, a
hypothetical assembly language is defined. The language is
simple sc as not to incorporate any instructions dependent on
the confiquration of some machine. The actual instruction set
is given in Appendix A. Each node v of the graph is assigned a
weight, w(v), which 1is the cost in execution units,
(i.e. machine cycles), of the assembly lanquage instructions
necessary to compute this step., The weight of a walk is the sunm
of the costs of its constituent nodes. For this study, we
equate an increase in efficiency with a decrease in these

execution costse.

Next we define the process of structuring to include

15

alterations to the program code which depend on flow
relationships among certain nodes of the graph. A structuring
is considered beneficial if the efficiency of the program is
increased. Writing a section of the algorithm as a subroutine,
or as a form that reflects a fixed order among certain nodes are
exanples of structuring. Structural complexity is identified
with the flow of control of the algorithm,. For example, we
regard - as simple, a structure with simple linear flow, and as

complex, one with imbedded looping and branching.

We now continue with the model definitions. An

implementation M(X) of algcrithe X, is a coding of the algorithm

as a progranm in the assembly language. The standard
implementation, M(X), is the initial coding of the algorithn.
For i > 1, M(X) will denote an implementation which has been
structured in an attempt to decrease overall execution costs.
We next make precise the terms reduction and isomorphism. A
flow-sequence may contain several copies of a given flow-
subsequence, as is the case, for example, when a loop is
repeated several times., Noting this, we define a', the reduced
flow-sequence of flow-sequence a, as the walk consisting of the
distinct flow-subsequences occuring in a. We define the weight
of a flow-sequence as the weight of the corresponding reduced
flow-sequence, Thus, w(a) is to be interpreted throughout as
w(a')., The set of all reduced flow-sequences will be denoted by
A'* (X) or simply A'. A flow-sequence a,. is isomorphic to flow-
sequence ag if,

a) B(a)) = B(a), i.e. the order of flcw-subsequences within

16

flcw-sequences is not important, or
b) B(al) C B(al), and there is no a; such that

B(a) € B(az) and

wa) X w(az) < w(a;).
That is, the flow-subsequences of a! are also in the set of
flow-subsequences of a/, and the cost in execution units of a!
is closer to the cost of al than to any other reduced flow-

sequence.

Reducticn and isomorphism are present in the model in order
to include structure in the measure of complexity. If the flow-
sequences are such that flow-subsequencés are not repeated,
i.e. no reduction is possible, then within these flow-sequences,
structuring of the program so that some inner loor is made very
efficient is unlikely to decrease the execution times
significantly. This follcws since nc single part of the flow-
sequence 1is repeated often. However if @much reduction is
possible, i.e. inner loops are repeated many times, structuring
the program to reflect this, or coding these 1lccps more

efficiently, decreases the overall execution time.

similarly, when analysing isomorphism, if the same basic
structure is repeated, i.e. one flcw-sequence is simply a subset
of another, then the complexity of the total graph is decreased,
while the «cost remains constant, Emphasis on such a flow-
sequence, when attempting to optimize the code, is 1likely to
decrease overall cost to a greater extent than a flow-sequence

which has no corresponding isomorphic flow-sequences. Also, if

17

there are no iscmorphic flow-sequences, then there 1is no
particular flow-sequence which should be studied for more
efficient cocding, and the cost is unlikely to be significantly
reduced by considering the structure alone. That 1is, assuming
the unstructured program has Dbeen ccded efficiently,‘ no
structuring will markedly reduce the overall cost. This will

become more evident when the information value is defined below.

One can associate with an algorithm X the set of data C (X)
on which the algorithm X operates, For example, if S 1is an
algorithm to sort n numbers into order, then D(S) is the set of
all n factorial possible orderings of n numbers. If D(X) is not
finite, then fcr this analysis a finite subset D' (X) of D (X) is
selected which 1is representative of the data on which X
executes. By representative we mean that for each possible
flow-sequence of G (X), there is an element of D' (X) which yields
that flow-sequence. Since a finite data set can be obtained for
any algorithm, we will assume that D(X) is finite in what
follows, With each element 4 of D(X), there is an associated
relative frequency, R(d), which denotes how frequently the
algorithm executes on this element. For each 4, let QJX) denote
the pseudograph resulting from the execution of the algorithm on
datum d. We then define Ay to be the set cf flow-sequences of
QJX). %; is the subset of Ay consisting of the reduced, non-
isomorphic flow-sequences cf A;. The union of all AJ over D (X)
is the set A', defined above. B, is the corresponding set for

flcw~subsequences.

18

2.3 pefinition of the Information Model,

The model used will follow the description given in section
2.1, altered to include a probability scheme defined on the cost
and structural properties of the algorithm. With the flow-
subsequences as the source message and the resulting flow-
sequences as the received message, this model becomes
peaningful. The execution of the algorithm on D(X) produces as
cutput, flow-sequences; an analysis of these yields information
abcut the input which <can point to a more efficient
implementation of the algorithm. Thus, by transmitting the
input cver the channel, the algorithm can be characterized by
the resulting flow-sequences, and an information value defined

to reflect its cost and structure.

Given an algorithm X, its graph G(X), and 1its data set

D(X), the model is characterized briefly as follows.

The channel is defined by the conditional probabilities
inducgd by D{(X). The 1input, {bS}' is the set B of flow-
subsequences of G (X). The output is given by A'= {a!}, the set
of reduced, non-isomorphic flow~sequences obtained by

transmitting B over the channel.

2. 4 Definition Of Probabilities

The input, channel and output probabilities will now be
defined, conpleting the formulation of the model, The

probabilties are defined as a function of execution cost units

19

in order that the the model will in fact be a function of cost,.
Relative frequencies are assumed tc be defined on [(X) and hence
are incorporated in the definition of the information value.

Given that the execution cost of flow-subsequence b, is defined

J
by

N:‘ = W(b:)),

and the total cost of the n flow-subsequences by
N=2Nj,
then the input probabilities are defined by

P(b‘-!) = Ny/N.

This gives the <cost frequency of flow-subsequence b, with

3

respect to the total cost of the flow-subsequences. Defining
a = {a | bl is in B(a) },
and the weight of al as

(@) = Su(),
where the sum 1is over those a in aJ, then the channel
prcbabilities are

w(al)/w(as) if bbis in B(a,)

P(aklbs) =
0 otherwise

i.e., the cost frequency of flow-sequence a, with respect to

thcse flcocw-sequences containing flow-subsequence Qj' We denote

the output probabilities by

n
P (ay) ..—.jiZ;'P(aKlbj)P(bJ),

i.e. the <cost probability of flow-sequence a, averaged cost

K

wise over all flow-subsequences in flovw-sequence a For each

K*®-

element d of D(X), R(d) is the relative frequency of datum 4.

20

e now show that these definitions do in fact yield

probabilities.

Obviously

P(bi) 1 since,

[¥8
uDﬂ:
-

n
2P =N+ Mot eeo + M| =N =1
i=1 N N N

Alsc

m m n
51?(&“) =2 2P(a,Iby)P(b;)

k=1 j=1
i n .
= (1/N) 2 2 (u(a,) /v @)V
k=1 =1 J
= djw, Ny + W, N, + ... 4+ w, N
N| T w(a‘) " w (at) T w(an)
+ W N + sen t Wn Nn
T w(ar) W (@)
* * - L]

21

=1\ _Ny (w.\,k + Vas teeo # wm,x)
N jw {(a*) ’

+ ... # Ny (W * »00 wm,n)}
v{an)

1]

(1/N) (N, + N, + ... + N)

2
= 1
w(aK) if bj is in B(au)
vhere w‘. =
’3 0 cthervise

. i . .
and (1/w(a‘)) S:wk- = (w(a‘“)/w(at)) = 1 .
3
k=1 "
In defining the model probabilities as cost measures, the
concepts of cost and complexity are strengthened within the
nodel. If a flow-sequence a, has high probability, then this

indicates one or more of the following. First, a, consists of

K
seldom repeated flow-subsequences, i.e. the flow-subsequences of
ay do not appear in many other flow-sequences, so structuring of
the program around their occurrence in a, will not greatly
impede the execution of the other flow-sequences, and should

decrease the execution time of a Also, if the flow-

K.
subsequences in a; are costly in relation to those in other
flow-sequences, high probability results. This is cocnsistent
with the notion that a very costly flow-sequence should receive

considerable analysis, since it necesssarily will be a large

contributor tc¢ overall cost (assuming uniform relative

22

frequencies) . If the above occur, a higher cost probability
will result, and hence, as will be shown, a larger information

value.

2.5 Cefinition Of Information Measure

Using the infcrmation theoretic relation
I(X;Y) = H(Y) - H(YIX),
the information value of an algcrithmic implementation will be
defined in terms of the entropy H(A(X)) of the ouput flow-
sequences, and the conditional entropy H(A(X)|B(X)), of the
flow-sequences given the 1input flow-subsequences. For each
possible datum 4 in D(X), with relative frequency R (4d), Hd(A(X))

and Hd(A(X)lB(X)) are calculated as

By (A (X)) —E:(w(aK)P(aK)log Play))

where the .sum is over the set df reduced flow-sequences Ai, and
H (A(X)IB(X)) = —E(NJP(bS)P(an;\)log P(a, lb;)),

the sum taken over the set of flow-sequences AJ, and flow-

subsequences B,. The costs, and hence probabilities, are those

determined by the given implementation, M(X). Where no

confusion will arise, we will write A and B for A(X) and B(X),

respectively.

We interprét the entropy as a nmeasure of the cost and
structural complexity of the algorithm. A lower entropy occurs
if there are only a few flow-segquences in A; compared to the
number possiktle, i.e. there were many isomorphic flow-sequences.

Thus, proper structuring should decrease the overall cost.

23

Also, 1if the same flow-subsequence occurs in many different
flow-sequences, the entropy is lower, indicating that this flow-
subsequence should be coded more efficiently, with emphasis on
its flow pattern. However, entropy is higher when either the
flow-subsequences within certain flow-sequences are costly
relative to other flow-subsequences, cr flow-sequences are long
and structurally complex relative to other flow-sequences.
Attention shculd be given to such flow-sequences when attempting
to optimize the code of a given algorithm, since overall cost is

dorinated by them.

This measure then, points to flow-sequences or flow-
subsequences which should be considered for possible

optimization.

The weighted conditional entropy, H (R|B), is a refinement
of the entropy measure. It considers the amount of cost and
structural complexity preference that is, 1in a sense,
duplicated. If the same flow-subsequence b appears in many
different flow-sequences, then, although the code of b can be
optimized, only one of the flow-sequences containing b can be
structured so as to optimize on b's relative position among
other flow-subsequences of the flow-sequence. This follows from
the observation that if more than one of +these flow-sequences
has the sanme general structure, then they are isomorphic. But
if they are isomorphic, then o¢nly one copy is present.
Necessarily then, the structures in the non-isomorphic seqguences

are distinct, verifying the above remark, Hence, by subtracting

24
the conditional from the unconditional entropy, a correction is
pade for the amount of ‘'structural information' which is
repeated. Also of note is the fact that if the conditional
entropy measure is low, then the flow-subsequences are generally
not repeated in many flow-sequences. This indicates a fairly
simple structure which yields a substantial cost decrease when
it is properly structured and efficiently coded. However, a
high conditional entropy denotes a more ccmplex structure, with
the same flow-subseguences occurfing in many structurally
different flov-sequences. In a sense the conditional entropy
accounts for the intersection of flow-sequences, through common

flow-subsequences.

The abcve discussion is concerned with only a single
element d of C(X). To complete the mcdel, the input must be
transmitted through the channel, i.e. the algorithm must be
executed on all data. Thus the entropy and conditional entropy
are defined as

H(R) = S R(d)H (A) and

H(AIB) = 2 R(3)Hq(AIB),
where the sum is over all 4 in D(X). Then the information value
of the implementation of algorithm X is given by

I(A;B) = H(A) - H(AIB).

2.6 Uses of The Information Value

The term cost comparable is used here to describe those

algorithms which, in their standard implementations, have within

25

a few per cent the same execution cost per node, total number of
nddes, and exXecution cost per datunm. The maximum value of
I(A;B) over a set {Z} of cost comparable algorithms which solve
the same proklem, is obtained from the most efficient algorithm.
A higher informaticn value on this set is more 'informative', in
that it indicates any of the following. First, the program can
be structured to take advantage of a dominant flow-sequence
which is structurally simple. Secondly, certain flow-
subksequences can be considered for optimization of ccde since
they are dominant throughout tge program. And lastly, certain
flcw-sequences, consisting of costly flow-subsequences, are
making the program expensive to execute. In the set {Z}, an
algorithm such that no structuring is beneficial to it, must
consist of many distinct flow-sequences, since there are no
isomorphic flow-sequences. Furthermore, no reduction is
possible and some flow-subsequences appear in many different
flcw-sequences, ﬁence, both the conditional and flow-sequence
probability will be low, and thus, also the information value.
But an algorithm where this is not the case, i.e. many dominant

flcws, will have a higher information value.

On the other hand, restricting our attention to a
particular algorithm X of {Z}, the best implementation M (X) is
the one having the lowest information value. This follows by
observing that the 1implementaticn to which consideration of
structure has Lbeen most beneficial, will have the lowest cost,
and hence information value. 1Intially the information value is

calculated relative to the standard algorithm implementation

26

MLX) .. Then, upon structuring, if the information value
increases, such a structuring does not reflect the flow of the
algorithm, But if the information value décreases, the given
inplementation included structuring and optimizing which
decrease the <cost significantly. A further discussion and
verification of this fact is given in Chapter III, where it is
shown that the information value can be used to select that

implementation which is most appropriate in a given situation,

2.7 Information Value - A Complexity and Efficiency Measure

In order to analyse an algorithm, a means of ranking it
relative to other algorithms for the same task must be
available. This measure should include the cost of executing
the algorithm, and reflect its flow pattern. Measures which are
a function of a single cost contributor, although helpful when
éomparing algorithms relative to this factor, are necessarily,
as a general measure of cost or complexity, conly partially
effective. Similarly, measures which consider flow only are
post helpful in analysing the problem of whether and how code
can be optimized, but in such study, relative costs are often
disregarded, again leaving the measure, in some sense,

incomplete.

A measure then, that is useful in a general sense should
reflect both of these factors. In the measure given above, an
attempt has been made to incorporate cost and sone notion of

structural complexity. An information thecretic measure seemed

217

to be a most natural means of combining the two entities.
Through the definition of isomorphism and reduction, and of the
prcbabilities, this model of the ‘execution of an algorithnm
becones a function of structural complexity and ccst,
respectively. As desired, an algorithm which is more suitable
for structuring will have a higher information content than an
algorithm with comparable cost, but for which it 1is not
practical tc attempt to establish an efficient structure. If
algorithms are 'structurally equivalent!' in the sense that the
flow pattern of both indicates +that the same amount of
"structuring is applicable, then the information value will rank
the algorithms according to cost, the more expensive one having
a higher informaticn value. Thus, when comparing different
implementations of some algorithm X, that one with the smallest
information vélue will be the nmost éfficient in terms of
execution costs, Structural egquivalence is indicated by the
conditional entropy, which, when analysing a given algorithn,
partitions the data set into blocks, where each block responds
in aprroximately the same manner to proper structuring. If the
conditional entropies are equal for elements d1 and d2 of L(X),
then their walks through the algorithm are the sanme. This
concept is useful when selecting the most costly of those
sections of code that respond similarly to given code
cptimization. lThus, the measure achieves the goal of
establishing a complexity measure which is a function of both
cost and structure, This measure, by analysing the cutput of

flow-sequences, provides information about the constituent flow-

28

subsequences; such information then points to ways in which the
algorithm can be made wpore efficient. Further discussion of
this observation follows in Chapter III, where several exangples

of how this measure has been applied are given.

29

CHAPTER III: AN INFORMATION THEORETIC ANALYSIS
OF ALGORITHMIC COMNPLEXITY

3.0 Introduction

In this Chapter, we present a more detailed study of the
model. We describe the processes used to obtain its components,
investigate certain properfies ‘of the defined measure, and
finally, demonstrate, through vexamples, sone of its

applications.

Let X be an arbitrary algorithm. Throughout the following

discussion, the nodes v_,v,

 seseeV. OF G(X) will be numbered to

follow the directed flow, depth first. Each node is either a
decision and calculation node, or simply a <calculation node.
Using the prccedures given below, the input, output, and input
and channel probabilities can be obtained, and hence, the model

made ocperaticnal,

3.1 Procedure for Flow-Sequence Construction

In the statement of the procedure, j is used as the index
on the nodes of X. The first non-initialization step of the

algorithm is \Ar

and the terminal node is v, . Here we assune
that no decision node occurs in the initialization process. A
stack 1is used to store that porticn cf a flow sequence that has
been ccnstructed prior to the occurrence of the present decision
node. Also stored on the stack 1is the number of branches

exiting from this decision node {(and hence the number of flow-

sequences that will be created).

30

Step 1: Initialization step.
Initialize k to 1, j to 0.

Step 2: Intitialization Nodes.
If j§<s, increment j and return to step 2. If j=s, set ay
to A and 1if Vs is a decision node, stack j and a,;
increment j, and go toc step 3.

Step 3: Main Flow-Sequence Construction.
If j>r, go to step 4, Adjoin VJ to a,. If j#t, and vs is

a decision node, stack j, a if j=t, and the stack is not

K
empty, increment k, remove a,, j from the stack; increment
i; go to step 3.

Step U: Terminate.

3.2 Flow-Subsequences; Weight Assignment.

The set B of flow-subsequences is formed from A in the
following manner, where initially the set B is empty. For each
flow-sequence a, of A, add to B any of a's flow-subsequences
not already in B. To allow the analysis programs to manipulate
the flow-suksequences more easily, we associate a set of
nurbers, g;, with each node vj, one value for each of the flow-
subsequences in which vj appears (see Appendix B and the
following examples). To accomplish this, initialize i to 1 and
repeat the fcllowing procedure for each node v.. For each flow-

J
subsequence b of B, if Yi is a node of b, include i in gi and
increment i. Using the results of this process, the flow-
subsequences are expressed as sets of numbers. Next, the nodes

are allotted weights determined by the current implementation of

31

the algorithm. Each flow-subsequence and flow-sequence is then
assigned a weight which is the sum of the weights of its
constituent flow-subsequences. Once this assignment has bLeen

made, the cost protabilities can be calculated.

3.3 Hierarchy Of Isomorphic Flow-Sequences

The flow-sequences are now ordered as a hierarchy of
families of flow—sequences, FL' where b(Fi) is the 1lowest, by
weight, member of the family Fl’ q the number of families

constructed so far, and s the index of the family to which the

current flow-sequence will be adjoined.

Step 0: Initializaticn Step
Set gq to 1, and F to the flow-sequence of highest weight,
ties resolved arbitrarily.

Step 1: If any flow-sequences remain, set h to the one of
highest weight, set i to 1 and go to step 2. Otherwise,
go to step 5.

Step 2: If B(h) is a subset of B(b(F;)), then set diff to
H(b(FL))-ﬁ(h), set s to i, increment i and go to step 3.,
If B(h) 4is not a subset of B(b(FL)), increment i; if i>q,
set s to 1 and go to step 4; otherwise go to step 2.

Step 3: If i<q, if B(h) is a subset of B(b(F,))., and diff is
greater than w(b(F,))-w(h), then set diff to this new
difference, and set s to i; if i¥q, increment i and go to
step 3; otherwise, step 4.

Step 4: Adjoin h to E , set g to i and return to step 1.

32

Step 5: Terminate.

The above procedure establishes families of isomorphic
flow-sequences, where such flow-sequences are reduced. In each
family, the flow-sequences are ordered by weight, the nmost
costly being assigned the highest order (see Appendix B). The
use of the hierarchy makes the removal of iscmorphic copies of

flow-sequences a simple process.

3.4 Reduction and Isomorphism of Flow-sequences

For each d, the pseudograph QJX) is produced, and Ay
computed. Then, the following processes are applied so that the
flow-sequences can be reduced and isomorphic copies removed.
First, Ay is considered for reduction. Within each flowuw-
sequence, if any flow-subsequence appears more than once, only a
single copy is retained in the walk; however, the total weight
of the flow-sequence remains unchanged. Next, the reduced flow-
sequences are checked for isomorphisnm. Each reduced flow-
sequence, a', has an associated family, F', in the hierarchy.
1f there is a flow-sequence in both F' and Ay which has a higher
order than a' in F', or a' occurs more than once in A,, remove a
copy of a' from A;. Then, add w(a') to that flow-sequence in
both A, and F! which has the least order greater than or equal
to the order of a'. This process yields the subset Q; of Ay
consisting of only reduced, non-isomorphic flow-sequences (see

Appendix B and the examples in section 3.7).

33

3.5 Entropy, Conditional Entropy, Information Value

Using AJ, the entropy, conditional entropy and information
value are calculated for each fixed d in D(X). Then,
associating a relative frequency with each d, the entropy,
conditional entropy and infcrmation value are obtained by
averaging over D(X). Each distinct implementation of the
algorithm yields another set of costs for B and hence, defines a
new input prcbability distribution., The evaluation and analysis

of the algorithm which 1is npow possible, 1is discussed with

examples, in the remaining sections.

3.6 Further Analysis of the Information vValue

In this study, the information value has been used for‘ two
purposes. First, tc select from a set of algorithms, that one
which is, in a cost sense, the most suitable for the given task,
and secondly, to choose an implementation of that algorithm
which is most appropriate in such a situation. 1In the following
analysis, we assume that the flow-sequences have been reduced,
and isomorphic copies remoﬁed., Also, we define an index set on
the flow-subsequences bj of a flow-sequence a Dby

I(a) = {jlhj is in B(a) }.

3.6.1 Selecting An Algorithm

First, we assume that the algorithms are cost ccmparable
within three or four per cent. For such algorithms, since the

costs are more or less the same, the flow structure is the

34

dominant component of the informaticn value; we obtain the
largest information value from the structdrally optimum
algorithm. Specifically, let X and Y be two cost comparable
algorithms, Furthermore, suppose that algorithm X has a
distinctly better flow structure than algorithm ¥, in the sense
that each flow-sequence c¢ of X consists of flow-subsequences
not occuring in other flow-sequences of X. Then the informaticn
value indicates that algorithm X has a flow structure which can
be used to point to a more efficient coding of the algorithm.
To see this, ;e study each algorithm's information value. First
analysing algorithm X, we note that in most «cases the flow-
subsequences Lt; of a flow-sequence: c

J
other flow-sequences, so the conditional probakility

« do not appear in many
P (ciIby) = w(cK)/w(CJ).

is close to unity and, thus, over I (c P(c,) is approximately

W) e
equal to EZP(bS); this shows that the walk probabilities are
fairly uniformly distributed. However in the second algorithm
this does not held. Most flow-subsequences u; of flow-
sequence e, of ¥, occur in other flow-sequences. As a result,
there are more flow—sequencés for Y than for X. Thus, when
calculating |)
Ple; lu,) = w(e,)/vie),
its value 1is considerably less than unity and hence the
resulting flow-sequence probabilities
Ple,) = X P(eflu)B(u;),

as well as correspcending entropy, are 1less than those for

algorithm X. Hence, since the flow-sequence weights are nearly

35

the same, the information value for algorithm X is greater than
that of algorithm Y, Thus, when comparing unstructured
algorithms, the one with the higher information value is
selected, and an implementation of it which reflects the flow
structure, coded. To summarize, when the costs for algorithms
are comparable, the maximum informaticn value indicates which

algorithm is optimal relative to this factor.

3.6.2 Selecting the Algorithm Implewmentation

Having chosen the algorithm most suitable for the given
task, an analysis of it, based on cost, is mnade. In this
instance, the implementation with m®minimum cost is desirable;
accordingly the minimum of the information values points to such
an implementation. To see this, we consider the two ways 1in

which the algorithm costs can be decreased.

Cas

1: Some flow-sequence a* is made more efficient by applying
optimizing techniques to its flow-subsequences. For sinmplicity,
we assume that a# consists of flcuw-subsequences bS which do not
appear in any other flow-sequence of the algorithm, and that
P{a*) < 0.5. Then, if ax is coded more efficiently,

i.e. w(a*) decreases, the information value also decreases. The

prcof followus.

Under the assumptions given above, let 2z: be the the

J

decrease in Ny (23 is zero if Ej is not in B(a¥*)), 2z = Ekj, and

36

Nae= Ehi, wher;’ the sums are over I(a¥). Recall that ¥ is
defined by E&(bj), where the sum is taken over B. Then the
following equality holds for those j in I (a¥*).

w(a¥*)/w(a’)

P(a*|b.
(aIJ)

W (a¥) /v (a¥)
=1.
Also, Sb(bi) over 1I(a*) decreases, for if Eb(bj) Wwere to
increase, then
& (8y-z))/ (N-2) > /M.
This implies (R*-2)/ (N=-2) > N*/N, and hence N < N*, a
contradiction, So Sb(bl) over I(a*) decreases, which implies
P (a*) decreases, and hence, that -P(a*)log P(a*) decreases.
Now w (a*) decreases by assumption, so
w (a*) (-P (a*)1log P (a¥)),

the information value of a*, decreases. Qed.

Now we examine the effect of decreasing the cost of sonme
flow-subsequence b* which appears in many flow-sequences, This

situation can be examined as two subcases.

j in I(a and let z be the decrease in w(b*). Now P(bj)=N3/N

increases for bl in B(a,) since Nj is fixed and N Jdecreases.

Also P(aK'hl) = w(au)/w(aj) is fixed, =ince both w(ay) and
w(aJ) are constant. Thus,
n
P (a,) =j§p (aylby) P(b;)

increases, and hence -P(ak)log P (a increases. This

)

37

implies -w(a“)P(aK)log P(a,) increases, since P(aK) < 0.5 and
a(aK) is fixed. That is, the information value increases.

Now, assume that b* is in B(aj), for scme j in I(ay), but b*
is not in B(ay). Thus w(as) decreases, P(aulbj) = w(a“)/w(dl)
increases, and, as above P(bS) increases. Hence, P(a,), and

thus the information value of a,, increases.

Thus, when b* is not in B(a,), the information value
indicates that the change made was not beneficial to the flow-

sequence a If this is true for most flow-sequences, the

k.
overall informaticn value increases, indicating that such a

change should not be nade.

Case 2-2: b* is in B(a,) . Again let z be the decrease in w(b¥*).

let p' be the new P(a), F the old P(a,), and w'(a = wlay)~-z.

)
If p?' < p, then —w'(aK)(p'log p') is less than -w(a,) (p log p).
Thus, the information value decreases.

On the other hand, if p' > p, the infcrmation value still
decreases for most =z, The difference, p'-p, must be small,
since even large z implies only small increases in P(aKlbj) and
small changes in P(by), i in I(ay). We ‘observe that the
information value decreases

iff w'(a,) (-p'log p') < w(a,) (-p log p),

iff w(ay)[(-p'log p")-(-p log p)] < =z(p'log p')

iff w(aK)(log(p'w/gY)) < z(p'log p").

And, since for most z, 1og<p'w/ép) is approximately 0, this
inequality is satisfied. That 1is, the information value

decreases.

38

The usefulness of the information measure for selecting the
most appropriate implementation of an algofithm is thus evident.
when the implementation is an improvement, the corresponding
information value decreases, and when this is not the case, the

information value increases.

Some of the applications of such a measure are now given,
First, if the probability of a flow-sequence is relatively
large, but its weight is comparable to other flow-sequences,
then the algorithm can be coded to reflect this flow, and hence
to decrease execution costs. Alsc, when attempting to partition
a program into segments, a flow-sequence with high probability
can be informative. . Such probability indicates that the flow-
sequence has little interaction with other parts of the program,
a major factor in a segmentation problen. Thirdly, if the
conditional probatilities on the flow-sequences, relative to
some flow-subsequence b, are consistently low, then such a flow-
subsequence appears many times, and making it more efficient is

reflected throughout the progranm.

To illustrate the two purposes the informaticn measure is

used for in this study, the following examples are included.

3.7 Examples

3.7.0 The Form and Purpose of the Examples

In order to analyse the selected algorithms, certain
pPregrams are necessary to produce and evaluate the cutput and

calculate the information value. The language in which these

39

routines are Wwritten is ALGOLW, However, the ©progranms
representing the algorithms are expressed in the hypothetical

assembly language, described in Appendix A.

To apply the measure, a task and algorithms to compute the
task, are selected. The sorting of n numbers (equivalently the
indices of n records) into order is chosen since several well
documented alqorithms for sorting exist, and the corresponding
data sets are well defined (i.e. all possible orderings of n
numbers). The two sort algorithms, 'heap' and 'merge' [21], are
used as the possible candidates for the task of placing in order
five numbers. 1In the following discussion, the five factorial
elements of the data set are arbitrarily numbered from 1 to 120;
we will refer to certain of these data in the examples given
kelow. On this data set, the merge algdrithm is not amenable to
structuring since no reduction of flow-subseguences is possible.
Although this 1latter point ordinarily implies that code
optimization of the flow-sequences would be beneficial, the
simplicity of fhe calculations, and ¢the 1lack of interaction
among the nodes within a flow-subsequence allow for no noticatle
improvements. As a contrast, the heap algorithm is studied. 1In
this case, the *'shortcomings' of the merge algorithm are absent,
and hence, both structuring and code optimizaiion can be

aprlied.

The task evaluated here is obviously somewhat trivial, so
the concept of structuring is not as dominant as it would be in

a more complex situation. For a task involving more

40

calculations and decisions, the use of subroutines as structures
would be effective, However, the simplicity of the examples
still allows the usefulness of this measure to be illustrated,
both as a cost and structural complexity standard, and as an

improvement on a measure based on execution costs alone.

When analysing an algorithm, the standard implementation is
coded first. So at this time, no attempt is made to optinmize
any particular area of the program. Both the merge and heap
algorithms are implemented in this manner. 1In addition, based
on the results of an analysis of the information values, another
implementation of the heap algorithm is given. 1In the examples,
the execution costs associated with each implementation are
included with the information value, so that a comparison can be
nade with the conventional measure. Table entries 1listed as
costs, are in execution units, while the information value and

conditional entropy are unitless.

The measure is first applied to the problem of deciding
which of two algorithms should be used for a given task. The
information value points to the algorithm vhich is more suitable
for the sitvation. Moreover, once the algorithm has been
selected, the measure further analyses it by providing
information cn its overall cost and structure, which indicates
where attention should be focused in order to produce a nmore

efficient implementation of the algorithm.

41

3.7.1 Comparison of Two Algorithms for the Same Task

In this section the first application of the measure |is
discussed. The heap algorithm, (H-I), as mentioned above, is
amenable to structuring, while metge, My, is not. The standard
implementations are compared and consequently H-II, an
implementation resulting from a structuring which improves the

efficiency of heap, is included in the study.

In the first example, assuming the relative frequencies of
the orderings are equal, the average costs of the algorithms are
compared (see Table I). Merge is seen to be cheaper; however,
removing the extreme cases (i.e. those with very high or very
low costs), the costs are relatively comparable. Also, the
number of nodes and cost per node are very close, Thus the
information value can be used to evaluate the two algorithuams,
indicating that heap is more informative, 1i.e. given proper
structuring the overall cost of heap, for this situation, would
be less costly. The implementation of a single structural
improvement (optimization of a flow-subsequence), reduces the
average cost of heap below that of merge. Using the measure .of
average cost, it is unlikely that the heap algorithm wculd have
been given further ccnsideration for this particular
~application. In the next section a further analysis of hear is

given.

42

Alg Ay Cost Info Val
merge 198,75 35.195
heap-1 228.31 38.365
heap-II 198. 18 37.608
Table I: Example 1
The next two examples involve particular data and their
resulting output from the +two algorithms. Such analysis is
useful if a particular datum or type of datum is highly
probable, In such a case, the algorithm that performs in the

best way for the given datum is the one selected.

Datus Iy B-I Iy B M cost BH-I gcost H-1I cost
45 31.495 34.940 200.1 206.5 202.7
69 33.480 33.328 202.9 205.9 201.9
4y 40.420 40.075 199.5 200.6 195.7

Tatle I1: Examples 2 and 3

As shown in Table II in the entry for datum 45, the information

value of merge is higher, indicating that even with proper
structuring' and optimizing it is unlikely that the heap
algorithm will perform better than merge. The costs of H-I and

H-II confirm this.,

43

For each of data 69 and 44 the information values of the
twe algorithms are vrelatively close, bLut heap is slightly
higher. This indicates that optimization methods should reduce
the cost of the heap algorithm. Again the costs associated with

H-I and H-I1I support this cbservation.

3.7.2 Analysis of Heap Algorithm

In the remaining examples, the flow-subsequences are
exprressed as sequences of numbers, corresponding tc nodes,
separated by dashes; rparentheses indicate repeated flow-
subsequences which are eliminated in the reduction process.
Execution over each datum d generates five flow-sequences; those
marked with an .asterisk are isomorphic to others in the list.
only the set of non-isomorphic flow-sequences are considered in
computing the information value. The lists of flow-subsequences
and flow-sequences are given in Appendix B. The initialization
nodes are omitted, since no optimization techniques are applied

to these nodes.

The following example illustrates the use of the
conditional entropy as a means of partitioning the data set
according toc structure, Within *partitions', the improvements
in cost resulting from a given change in the implementation of
the algorithm are fairly close. When the conditional entropies
differ, this indicates that the corresponding structures of the
outputs do also. The smaller the conditional entropy, the more

amenable to node or flow-subsequence improvements are the

sections

the data pairs shown in Table III.

Datunm Info Val Cond Ent H-I cost
33 564325 1.374 229.1
36 54,939 1.731 219.0
19 42.802 2.095 218.4
20 44,188 1.731 228.5

Table III: Example U4

The output flow-sequences for the above da
33
1% 1-3 7-11-16-21 27-28
1 1-3 7-11-16-21 (7-11-16-21) 27
2 2-4-3 7-11-16-21 9-15-23 27-28
2% 2-4-3 7-11-16-21 27-28
2% 2-4-3 9-15-23 27-28
(36)
1 -3 7-11-16-21 27-28
2 1-3 7-11-16-21 5-12-19-25
3 2-4-3 7-11-16-21 9-15-23 27-28
3% 2-4-3 7-11-16-21 27-28
3% 2-4-3 9-15-23 27-28

of the algorithm associated with this datum.

213. 4

222.3

ta are:

-28

uy

Consider

45

(19)

1 -3 7-11-16-21 27-28
2 -3 7-11-16-21 5-12-19-25
3 2-4-3 7-11-16-21 9-15-23 27-28

y 2-4-3 8-13-17-22 27-28

3% 2-4-3 9-15-23 27-28

(20)
1% 1-3 7-11-16-21 27-28
1 1-3 7-11-16-21 (7-11-16-21) 27-28
2 2-4-3 7-11-16-21 9-15-23 27-28
3 2-4-3 8-13-17-22 27-28

2% 2-4-3 9-15-23 27-28

The information value of (33) is slightly higher than . that
of (36) due to the simpler structure and more costly flow-
sequences of (33). This same observation holds for the second
pair of .data, with (20) having the higher information value. 1In
toth pairs, the lower conditional entropy indicates which datum
has the simpler structure in 1its output. An implementation
which reflects such a structure yields greater cost savings for
the datum with the lower ccnditional entropy. Such an analysis
is useful if it is known that a high portion of the data is of
the form of either (19) or (20) say, and it is desirable to know
whether optimization methods should be applied to the path
followed by (19) or by (20). This measure indicates that by

concentrating on (20) more overall savings can be obtained.

46

In the next example, the notion of partition and the effect
of costs on the measure are discussed. The conditioral entropy
of both (3) and (5) are <close (see Table 1IV), ©but their
information values differ. PFrom this, it is known that their
structures are similar, but that (3) either has more costly
flow-subsequences, or has flow-sequences which can be ccded more
efficiently to reflect their wunigue flow structures, This
example illustrates that within ‘*partitions' the informaticn
value ranks the data according to the corresponding costs

i.e. the higher the cost, the higher the information value.

Datum Info val Cond Ent H-I cost

3 53.334 1.610 228.5

5 35.287 1.611 204.7

Table IV: Example 5

The associated flouw-sequences are:

(3)

1 1-3 8-13-17-22 27-28

2 1-3 7-11-16-21 (7-11-16-21) 27-28
3 2-4-3 7-11-16-21 9-15-23 27-28

3% 2-4-3 7-11-16-21 27-28

3% 2-4-3 9-15-23 27-28

47

(5)

1 1-3 8-13-17-22 27-28

2 1-3 7-11-16-21 (7-11-16-21) 27-28
3 2-4-3 7-11-16-21 10-18-26

4 2-4-3 7-11-16-21 27-28

3% 2-4-3 10-18-26

The third example of this section (see Table V) shows that
if a datum has a much higher information value than another, and
its conditional entropy is lower, then this datum, as well as
consisting of more costly flow-subsequences, is more amenable to
node or flow-subsequence improvement. Thus, by selecting the
more informative of equally prcbable data, and applying
optimizing techniques to its flow path, greater cecst reductions

result than if such processes were applied to the other datun.

Datum Info Val Cond Ent H-I cost H-II cost |I-I1}
11 54,291 1.887 216.3 211.6 4.7
12 67.106 1.715 228.2 222.3 5.9

Table V: Example 6

48

The corresponding flow-sequences are listed below.

(1)
1% 1-3 7-11-16-21 27-28
1 -3 7-11-16-21 8-13-17-22 27-28
2 2-4-3 7-11-16-21 9-15-23 27-28
2% 2-4-3 7-11-16-21 27-28
3 2-4-3 10-18-26

(12)
1% 1-3 7-11-16-21 27-28
1 -3 7-11-16-21 8-13-17-22 27-28
2 2-4-3 7-11-16-21 9-15-23 27-28

2% 2-4-3 7-11-16-21 27-28

2% 2-4-3 9-15-23 27-28

In this instance (12) is seen to have the simpler
. structure, lacking the extra flow-sequence 10-18-26 which

appears in (11). Here flow-subsequence 27-28 was optimized.

In the last example a case where the conditional entropies
are approximately the same is considered. This implies that the
outputs corresponding to the two data have nearly the same
structure., . Sémple (49) has a somewhat costlier ocutput, a fact
reflected in the information value given in Table VI. However,
since the conditional entropies indicate similar structures, the

marginal difference in costs will not cause marked

49

dissimilarities in the cost savings., That is, the flowu-
sequences of either datum can be structured to increase the
efficiency, and the resulting cost decreases for both cases will
be néarly the same. Due to the simplicity of the sample task,
the flow-subsequences of (49) and (57) are fairly similar;
however, this 1is not necessary in order that the ccnditional

entropies be the sane,

Datun Info Val Cond Ept H-I cost BH-II cost 11-11|
49 36.686 1.820 198.1 193.1 5.0
57 35.450 1.828 195.1" 189.7 5.4

Table VI: Example 7

The flow-sequences associated with the table entries are given

below.
(49)
1 1-3 7-11-16-21 27-28
2 -3 5-12-19-25
3 2-4-3 7-11-16-21 9-15-23 27-28
4 2-4-3 8-13-17-22 27-28

3% 2-4-3 9-15-23 27-28

50 -

(57)
1% 1-3 8-13-17-22 27-28
1 1-3 8-13-17-22 27-28
2 2-4-3 7-11-16-21 10-18-26
3 2-4-3 8-13-17-22 27-28
4y 2-4-3 9-15-23 27-28

3.7.3 Summary Cf The Examples

The above examples are intended to demonstarate how the
information value, together with the conditional entropy, can be
used to aid in the analysis of an algorithm. The measure can
point to expensive data (i.e. costly for algorithms to execute),
but as well, can indicate which paths through the algorithm
shculd be considered for code optimization in an attempt to
obtain the maximum cost saving. In wmore complex examples,
improvements on nodes or flow-sequences rather than Jjust flow-

subsequences wculd be in order.

The advantages of wusing the information value as a

complexity measure are evident from these exanmples.

51

3.8 Summary

In this thesis, an attempt was made to define a cost and
structural complexity measure for an algorithm. To accomplish
this, we defined an information theoretic model of the execution
of an algorithm, in which the input is a set of subwalks, and
the output certain walks, of a graph theoretic representation of
the algorithm. Cost is included in the model through the
definition of a cost probability scheme, and structure through
the concepts of reduction and isomorphism. An information value
for each implementation of the algorithm is calculated. It is
shown that this value provides all the information that the
conventional measure of cost alone does. Moreover, it presents
structural information which indicates the amount of interaciion
between program sections, and points to dominant, repeated and
independent flow patterns, and to structural similarities.
Undar the assumption of comparable costs, the maximum
information value points to a structurally optimum algorithnm;
when the structure is fixed, i.e. analysing a given algorithnm,
the minimum cost implementation has the smallest information
value., The appropriateness of. these considerations 1in the
analysis of an algorithm has been demonstrated in Chapter III.
More generally, this study has demonstrated the feasibility of
using information theory to measure the complexity of an

algorithm,

We conclude with some suggestions for improving the model

treated here. First, the introduction of more structural

52

parameters may improve the model. Presently, reduction and
isémorphism have proved beneficial in evaluating an algorithm;
howaver, a redefinition or expansion of these may yield a more
informative measure. The model obtains the information value
from the weighted average of the entropy 1less the conditional
entropy. Without the inclusion of these weights, the measure
becomes much more responsive to structural information, and less
sensitive to costs. 1In certain instances this may yield a more
valuable measure than the one defined in this study. Of note,
when using the %unweighted!' measure, is the fact that the most
appropriate implementation has the largest information value.
The inclusion of other parameters in the model might also érove
useful, but this would increase the cost of applying the measure
when this cost may already seem prohibitive, However, as with
most studies concerned with the complexity of algorithms, this
analysis 1is based on the following assumption. The task which
the algorithm or algorithms under consideration will be
computing is central to some process that is to be repeated many
timas. (for ‘instance in a business application, some procedure
which must be calculated daily). Thus, the cost in performing a
complexity analysis for such a task may well be neglible
relative to the overall savings incurred through the use of the

appropriate algorithm and its optimal implementation.

10.

1.

12.

13.

4.

15.

16.

53

BIBLIOGRAPHY

ABO, A. and ULLMAN, J., Optimizatiocn of Straight Line
Programs, SIAM Journal Comp. 1, (1972) pp. 1-19

ALEKSEEV, V.E., Sorting Algorithms with Minimum Memory,
Cybernetics, 5, (1969), pp. 642-648.

ALLEN, F.E., Control Flow Analysis, Proc. of a Symposium on
Ccmpiler Optimization, SIGPLAN Notlces, ACM, New York, July
1970, pp. 1-19.

ALLEN, F.E., Program Optimization, din: Apnpual Review in

Automatic Programming YVol. 5, Pergamon Press, WNew York,

1969.

ASH, R. Information Theory, Wiley Interscience, WNew York,
1965.

BACHMAN, P., A Contribution to the Problems of the
Optimization cf Programs, Inform. Processing 71 ©North-
Holland, Amsterdam, 1972, pp. 397-401,

BAKU, S. Cn Reduction of Program Schemes, SIAM J. Comp, 16,
(1968) pp. 328-339,

BERZTISS, A., A Note on Segmentation of Computer Progranms,
Inform. Control 12, (1968) pp. 21-22.

BEUS, H., The Use of Information in Sorting J.A.C.M. 17,
(1970), pp. W482-u495,

COCKE, Jey Global Common Subexpression Elimination,
Proceedings of a Symp. onb Compiler Optimization, SIGPLAN
Notices, ACM, New York, July 1970, pp. 20-24.

o s s St i

FRAZER, W.E., Analysis of Combinatory Algorithms - A Sample
of Current MNethodolcgy, AFIPS Conf. Proceedings, Spring
Joint Computer Conference AFIPS Press, MWMontvale, N.J.,
1972, pr. 483-491

GALLAGER, R., Information Theory and Reliable

Communication, Wiley, New York, 1968.

GREEN, C., A Path Entropy Function PFor Rooted Trees,

JsA.C.M. 20, (1973), pp. 378-384.

HARARY, F., Graph Theory, Addison-Wesley, Reading MHMass.,
1969,

HARTMANIS, J., Computational Complexity of Randcm Access
Stored Program Machines, Math. Systems Theory 5, (1971)
PP- 232'2“5. .

HOPKINS, Me o An. Optimizing Compiler Design, Inform.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28,

29.

30.

31.

32.

54

Processing '71, North-Holland, Anmsterdam, 1972, pp. 391~
396.

IANOV, I., On the Egquivalence and Transformation of Progran
Schemes, Comm. R.C.M. 1, (1958), pp. 8-12.

IANOV, I., On Matrix Program Schemes, Comm., A

KARP, R., A Note on the Application of Graph Theory to
Digital Programming, Inform, Ccntrel 3, (1960), pp. 179-
190. :

KARREMAN, G., Topological Information Content and Cherical
Reactions, Bull. Math. Biophys. 17 (1955), pp. 279-285.

KNUTH, D., Sorting and- Searching, The Art of Computer
Programming, Vol. 3, Addison-Wesley, Reading, Mass., 1973.

KRIDER, L., A Flow Analysis Algorithm, J.A.C.M. 11, (1964),
ppo '429-‘436.

MOWSHOWITZ, A., Entropy ané the Complexity of Graphs,
Doctoral Lissertation, University of Michigan, 1967.

NIEVERGELT, J., On the Automatic Simplification of Computer
Programs, Comm, A.C.M. 8, (1965), pp. 366-370.

PATERSON, M., Program Schemata in: Machine Intelligence
Vol. 3, (C. Michie, editor), American Elsevier, ©New York,
1968.

PICARD, C., Theorie des Questionnaires, Gauthier-villars,
Paris, 1965.

RASHEVSKY, N., Life, 1Informaticn Theory, and Topology,
Bull, Math, Biophys. 17 (1955), pp. 229-235.

RUTLEDGE, J., On Ianov's Program Schemata, J.A.C.M. 11,
(196”’)' ppo 1-9’

SCHURMANN, A., The Application of Graphs to the Analysis of
Distribution of Loops in a Program, Inform. Ccntrcl 17,
pp. 275-282,

TRUCCO, E., A Note on the Information Content of Graphs,

— 2. o

WARSHALL, S., On Computational Cost, in: Annual Reviuew in
Automatic Prograsming Vol. 5, Pergamon Press, New York,
1969.

WOODGER, M., On Semantic Levels in Prcgramnming, in:
Info., Processing 71, North-Holland, Amsterdam, 1972,
ppo '402—“:07;

55

Appendix A

Here we give the instruction set of the hypothetical
aééémhly language in which the algorithms are t*written'. These
instructions are very basic to insure they remain machine
independent. The execution costs are based on the MIX [21], PDP-
10, and cpc assembler language timings., The following
assumptions about this language are made.

(1) there are 8 registers, which are in fast memory and can be
used for indexing.

{2) there is one accumulator,

(3) input and output are ignored.
The costs listed are in execution units; costs 1in parentheses
are in effect if indexing is used., In the statement of the
instruction, capital letters refer to memory 1locations, small
letters to registers., C(x) 1is the contents of location or

register x; Acc refers to the accumulator.

INSTRUCTION COST
JUMP- unconditional jump 1.2 (1.3)
JUMPE jump if Acc = 0
JUMPLE jump if Acc < O
JUMPL jump if Acc < 0
JUMPG jump if Acc> 0
JUNMPGE jump 1if Acc > 0

JUMPNE jump if Acc = 0

SETZH

SETZR

SETR

SETIR

SETMR

SETRH

SETNHM

SETNR

ADD)R
SU0B |1

MR

DIVI

CMPZN

CHMPZR

CMPR

CMPI

cHpPH -

BLT

PRI

S 4

A

set C(A) to O
set C(i) to O

set C(j) to C (1)

.set C(i) tonn

set C(i) to C(A)
set C(A) to C(i)
set C(A) to -C(A)

set C(i) to -C (1)
add C (i) to C(3)
add n to C(1)

add C(A) to C(1)

divide Acc by n

C(A) - 0; set flag
C(i) - 0; set flag
C(i) - C(j); set flag

C(Acc) - n; set flag

C(Acc) - C{r); set flag

move n contiguous

words of memory

1.7(1.8)
1.0 (1. 1)
1.4

1.0 (1. 1)
1.6(1.8)
1.8(1.9)

1.7 (1.9)

1-5(1.7) :

1.6(1.8)
1.2(1.3)

2.2 (2.3)

11.3

1.7(1.9)
1.5(1.7)
1.6 (1.8)
1.2 (1.3)

1.9(2.0)

0.8+{(2.1)n

56

57

Appendix B

In order to illustrate some of the concepts introduced in
this thesis, we will present a partiallanalysis of H, the heap
algorithm [21]. We first give the algorithm in its textual form.
Based on this, we produce G(H), the graph of H. Then, so that
the analysis programs have use of a numeric representation, the
sets Pj are established. Finally we obtain the numeric
representation of the flow-subsequences and flow-sequences,

where the latter is listed in family notation (see procedure in

section 3.3).

Heapsort: A file of numbers Ry ¢RyseeesRy is a theap!' if

B2 By for 1< [3/2) <3 <N,
where [x] is the greatest integer in x. Thus, R 2R,, R, 2R,,
R, 2 R, etc., and this implies that the largest number appears
‘on top of the heap?,

R = max(RL,Rz,...,RN).
If an arbitrary input file is transformed into a heap, a 'top-

down' selection procedure can be used to sort.

Algorithm H. Numbers R,,...,Ry are rearranged so that after
sorting is complete, they will be in order. First the file is
rearranged so that it forms a heap, then the top of the heap is
repeatedly removed and transferred to its proper final position.

Assume that N > 2.

58

H1.[Initialize] Set 4 to [N¥/2] + 1, r to N.

H2.[Decrease d or r.] 1If d>1, set d to d4-1, and R to R, . (If
d>1, the file is being made into a heap; if d=1 then the
file is already a heap.)

H2b. Otherwise set R to R., R.to R, and r to r-1; if this

makes r=1, set R, to R and terminate.

B3.[Prepare for 'sift-up'] Set j to d. (At this point we have
R. > R. for d <€ 21 < j £ r;
w2 B [3/21 <3 <

and R, is in its final position for r < k £ N.

H4,{ Advance downward.] Set i to j and j to 2j. (In the
fcllowing steps we have i = [{j/2]).) If j<r, go to step H5;
if j=r, go to step H6; and if j>r, go to HSB

B5.[Find 'larger? son.] If R3< R then

wLe
H5b: set §j to j plus 1.

H6.[Larger than R] If RZRS, then go tc¢ step HS8.

H7.[{Move it up.] Set R; to RS' and go back to step HH4.

B8.[Store R.] Set R; to R. (This terminates the ‘t'sift-up?

algorithm initiated in step H3.) Return to step H2,

Vg=V,

V¢ = V1o

G (H)

59

J of Node ZS
1

2

Flow-Subsequences

1-3
8-13-17-22
27-28
7-11-16-21
10-18-26
2-4-3
9-15-23

6- 14-20-24

5-12-19-25

Ej

1,2 [t=10]

3

5,6,7,8,9,10,27
11,12

15, 16, 17, 18, 19, 20

21,22,23

' 24,25,26,28

13,14

4

60 -

Fampilies of Flow-Sequences:

F,: 2-4-3 7-11-16-21 10-18-26
2-4-3 10-18-26
1
F,: -3 7-11-16-21 8-13-17-22 27-28

1-3 7-11-16-21 27-28

1-3 8-13-17-22 27-28

F.: -3 7-11-16-21 6-14-20-24

1-3 6-14-20-24
F : 2-4-3 7-11-16-21 9-15-23 27-28
2-4-3 7-11-16-21 27-28

2-4-3 9-15-23 27-28

Fgz 1-3 7-11-16-21 5-12-19-25

-3 5-12-19-25

F : 2-4-3 8-13-17-22 27-28

61

44,7

24.4

56.6
37.2

36.6

46.8

26.5

56.6

41.5

36.3

47,4

27+ 1

40.9

