
INFORMATION THEORETIC MEASURE OF ALGORITHMIC COMPLEXITY

by

L o i s Wright

Hon. B . S c , U n i v e r s i t y of Western O n t a r i o , 1972

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n the Department

of

Computer Science

We accept t h i s t h e s i s as conforming to the

r e q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA

A p r i l 1974

In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r

an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t

the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y .

I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s

f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Depar tment or

by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n

o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my

w r i t t e n p e r m i s s i o n .

Depa rtment

The U n i v e r s i t y o f B r i t i s h Columbia
Vancouver 8, Canada

i i

ABSTRACT

T h i s work i s a study of an i n f o r m a t i o n t h e o r e t i c model

which i s used to develop a complexity measure of an a l g o r i t h m .

The measure i s d e f i n e d to r e f l e c t the computational c o s t and

s t r u c t u r e of the given a l g o r i t h m . In t h i s study computational

c o s t s are expressed as the execution times of the a l g o r i t h m ,

where the algorithm i s coded as a program i n a machine

independent language, and analysed i n terms of i t s

r e p r e s e n t a t i o n as a pseudograph. I t i s shown t h a t t h i s measure

aids i n d e c i d i n g which s e c t i o n s of the a l g o r i t h m should be

optimized, segmented or expressed as subprograms. The model

proposed i s designed to y i e l d a measure which r e f l e c t s both the

program flow and computational c o s t . Such a measure allows an

•optimal' a l g o r i t h m to be s e l e c t e d from a set of a l g o r i t h m s , a l l

of which s o l v e the given problem. T h i s s e l e c t i o n i s made with a

more meaningful c r i t e r i o n f o r d e c i s i o n than simply execution

c o s t . The measure can a l s o be used to f u r t h e r analyse a given

algorithm and p o i n t to where code o p t i m i z a t i o n techniques should

be a p p l i e d . However i t does not y i e l d a method of generating

e q u i v a l e n t a l g o r i t h m s .

i i i

TABLE OF CONTENTS

Page

CHAPTER I: RECENT STUDIES IN ALGORITHMIC COMPLEXITY 1

1.1 Introduction 1

1.2 Related Work 2

1.2.1 Studies Without the Use of Graphs 2

1.2.2 Graph Theoretic Approach 4

1.2.3 Information Theoretic Approach 7

CHAPTER I I : AN INFORMATION THEORETIC MODEL OF ALGORITHMS 10

2.1 Constituents of an Information Theoretic Model 10

2.2 Basic Terminology 12

2.2.1 Graph Theory De f i n i t i o n s 12

2.2.2 Model Definitions 13

2.3 D e f i n i t i o n of the Information Model 18

2.1 Definiton of P r o b a b i l i t i e s 18

2.5 Definiton of Information Measure 22

2.6 Uses of the Information Value 24

2.7 Information Value -

A Complexity and E f f i c i e n c y Measure 26

CHAPTER I I I : AN INFORMATION THEORETIC ANALYSIS

OF ALGORITHMIC COMPLEXITY 29

3.0 Introduction 29

3.1 Procedure for Flow-Sequence Construction 29

3.2 Flow-subsequences; Weight Assignment 30

i v

3 . 3 H i e r a r c h y o f I s o m o r p h i c F l o w - S e q u e n c e s 31

3 . 4 R e d u c t i o n a n d I s o m o r p h i s m o f F l o w - S e q u e n c e s 32

3 . 5 E n t r o p y , C o n i t i o n a l E n t r o p y , I n f o r m a t i o n V a l u e 33

3 . 6 F u r t h e r A n a l y s i s o f t h e I n f o r m a t i o n V a l u e 33

3 . 6 . 1 S e l e c t i n g a n A l g o r i t h m 33

3 . 6 . 2 S e l e c t i n g t h e A l g o r i t h m I m p l e m e n t a t i o n 3 5

3 . 7 E x a m p l e s 38

3 . 7 . 0 The F o r m a n d P u r p o s e o f t h e E x a m p l e s 38

3 . 7 . 1 C o m p a r i s o n o f Two A l g o r i t h m s f o r t h e Same T a s k 41

3 . 7 . 2 A n a l y s i s o f Heap A l g o r i t h m 4 3

3 . 7 . 3 Summary o f t h e E x a m p l e s 50

3 . 8 Summary 51

B I B L I O G R A P H Y 5 3

APPENDIX A 5 5

A P P E N D I X B 57

V

LIST OF TABLES

Table Page

I Example 1 42

I I Examples 2 and 3 42

I I I Example 4 44

IV Example 5 46

V Example 6 47

VI Example 7 4 9

v i

LIST OF FIGURES

F i g u r e Page

1 Information Channel 10

c

v i i

RCKNORLEGEMENTS

I wish to express my sincere appreciation to

Dr. abbe Mowshcwitz for his continued guidance and invaluable

advice.

I would also l i k e to thank Dr. D. Seeley for his several

suggestions.

F i n a n c i a l assistance was received from both the National

Research Council and the Department of Computer Science.

1

CHAPTER I: RECENT STUDIES IN ALGORITHMIC COMPLEXITY

1.1 Introduction

The following i s a study of an information theoretic model

which i s used to develop a complexity measure of an algorithm.

The measure is defined to r e f l e c t the computational cost and

structure of the given algorithm. In t h i s study computational

costs are expressed as the execution times of the algorithm,

where the algorithm i s coded as a program in a machine

independent language. For purposes of analysis, the algorithm

i s represented by a pseudograph. I t w i l l be shown that t h i s

measure of complexity aids i n deciding which sections of the

algorithm should be optimized, segmented or expressed as

subprograms. The model proposed i s designed to y i e l d a measure

which r e f l e c t s both the program flow and computational cost.

Such a measure allows an •optimal 1 algorithm to be selected from

a set of algorithms, a l l of which solve the given problem. This

selection i s made with a more meaningful c r i t e r i o n for decision

than simply execution cost. The measure can also be used to

further analyse a given algorithm and point to where code

optimization techniques should be applied. However i t does not

y i e l d a method of generating equivalent algorithms.

Before a d e f i n i t i o n of the model i s given, a brief summary

w i l l be presented of the problem under study and of related

research i n this area. The main objectives i n the study of

algorithms have been to generate •equivalent* algorithms, to

2

optimize compiler code through an analysis of the algorithm and,

through a measure of e f f i c i e n c y , to compare, rank and then

s e l e c t , an algorithm which i s i n some sense optimal for a given

task. Studies in the f i r s t area have often been quite

theoret i c a l and have avoided the problem of obtaining a measure

of optimality. The second area, being concerned with compilers,

has tended tc concentrate on improvements in p a r t i c u l a r types of

code rather than evaluations of the program as a whole.

Investigations of the t h i r d type have often focused on only a

single facet of complexity rather than the o v e r a l l complexity of

the algorithm. The discussion of some of the relevant studies

i s given i n three parts. F i r s t those which have not included

graphs i n t h e i r analyses, then those that have used graphs, and

f i n a l l y those that have defined an information measure on graphs

and/or algorithms are presented.

1.2 Belated Work

1.2. 1 Studies Without The Use Of Graphs

An early, quite theore t i c a l evaluation of algorithms i s

given i n a study by Ianov [17,18]. The notion of 'program

schemata* i s introduced to represent abstract algorithms or

programs, where programs are represented in a li n e a r notation

and also as matrices. Using program schemata, a formalism which

allows f o r transforming these schemata into equivalent ones, a

decision procedure for determining equivalence, and a method of

generating a l l equivalent schemata are developed. Rutledge [28]

si m p l i f i e s Ianov's [17,18] formalism by interpreting i t in such

3

a way that the equivalence question i s seen to be the

equivalence problem of f i n i t e automata, for which a solution

e x i s t s , even though i t i s rather impractical. Furthermore, a

method for generating a l l program schemata equivalent to a given

program schemata i s presented. These studies are more concerned

with the formalisms introduced than with an evaluation of the

algorithms. But since these procedures do y i e l d a l l eguivalent

program schemata, an e f f i c i e n c y measure defined on them would

allow for the optimum of a l l equivalent programs to he

determined. However, such an abstract measure cannot reveal

much about code implementation or program evaluation. Thus,

such studies remain s t r i c t l y t h e o r e t i c a l and very l i t t l e

p r a c t i c a l work has followed from them, one exception to t h i s i s

Paterson's [25] work on program schemata. He discusses the

p o s s i b i l i t y of applying complexity considerations i n program

optimization but does not develop the necessary machinery.

In a more r e s t r i c t e d study, Beus [9] evaluates sort

algorithms by defining an e f f i c i e n c y measure on the number of

comparisons made. However, t h i s measure lacks s u f f i c i e n t

generality ty neglecting other cost inducing factors such as

memory accesses, index c a l c u l a t i o n s etc.

At a less t h e o r e t i c a l l e v e l , Hievergelt [24] considers the

problem of optimizing a program. As motiviation for his study

he discusses the application of optimizing i n areas where

syntactic improvements would be useful, leaving semantic

considerations to the programmer. His study gives several

s p e c i f i c p r a c t i c a l transformations that can be applied to any

program. These y i e l d d e f i n i t e improvements i n execution cost

units. Yet the advantage gained i s questionable considering the

expense involved i n applying such improvements to sections of

the program that are seldom executed. An improvement on

Nievergelt*s [24] analysis appears i n a much referenced paper by

Allen [4], where topological properties of the program are used

to obtain program modules. The most frequently executed of

these are considered for optimization. Hopkins [16], using a

similar approach, presents a s e r i e s of transformations for

optimizing programs, and the o v e r a l l implementation of such

techniques.

Many other papers [7,15,22] written during the 1960*s and

early 1970's study the problem of optimization; however, their

approach i s even more sp e c i a l i z e d than those mentioned above.

These studies give techniques f o r optimizing general code, but

f a i l to consider program flow, algorithmic implementation etc.

This approach does not attempt tc evaluate the program as a

whole, but i s concerned with improving p a r t i c u l a r sections of

code. In the following section, we consider papers which take a

global view of programs and algorithms.

1.2.2 Graph Theoretic Approach

One of the f i r s t graph theoretic approaches to the

evaluation of algorithms i s the one developed by Karp [19] in

1960. Karp notes that previously the seemingly natural

5

r e l a t i o n s h i p between program flow and graphs had been ignored.

In t h i s paper an algorithm i s expressed as a flow chart, an

execution of the algorithm defines a path through the flow chart

and t h i s path i s considered as a graph consisting of operational

elements (seguences of instructions without a transfer) and

decision elements. The graphic representation f a c i l i t a t e s the

i d e n t i f i c a t i o n of some simple program improvements. The

programs are analysed i n . terms of subprograms, and a Markov

model i s introduced for investigating the frequency of execution

of parts of the program. Schurmann [29] uses the graphic

representation to study the problem of program segmentation.

This i s also an optimization problem since in order to insure

fast execution, a minimum amount cf paging i s reguired. The

loops i n the graphic representation of the algorithm are

analysed using the adjacency matrix of a p a r t i a l graph based on

the cycles (loops of the algorithm). The cut having the minimum

number of program loops spanning i t i s found and t h i s defines

the optimal cut. Berztiss [8] improves on the method of

construction of t h i s matrix.

In a more recent paper, Aho and Oilman [1] introduce cost

considerations into algorithmic optimzation. An algorithm i s

represented as directed a c y c l i c graphs, and four transformations

applicable to t h i s representation are defined. Properties of

the programs equivalent under the transformations are discussed,

as well as possible extensions of t h i s representation to further

program optimizations.

6

Bachmann [6] recently has assessed the problem of program

e f f i c i e n c y using an abstract calculus based on a directed graph

representation of the program. Several transformational rules

are given together with a measure of e f f i c i e n c y defined on the

p r o b a b i l i t i e s and the cost of a l l operations executed on a given

path. However th i s i s assumed to be a t h e o r e t i c a l c r i t e r i o n

only, since determination cf p r o b a b i l i t i e s i s d i f f i c u l t and the

number of d i s t i n c t paths often quite large. As well, the

formalism needed to apply the transformations i s not mentioned,

but would presumably be quite cumbersome.

Allen [3] , using a graphic representation of an algorithm,

proposes a useful method of analysing i t s control flow. In his

paper, alien defines dominance relations among nodes and from

these obtains i n t e r v a l s (subgraphs with single entry point h

such that each closed path passes through h) which are used to

p a r t i t i o n the graph and tc give a p a r t i a l ordering of the

i n t e r v a l s . Mention i s made of how these constructs can be used

in analyses involving searches for redundant instructions,

variable d e f i n i t i o n s and use relationships etc. Applying the

flow a n l y s i s methods given by Allen £3], Cocke [10] defines a

set of Boolean variables on computations. This set yields a

system of eguations, which, when solved, point to those

expressions which should be eliminated. Also included i n t h i s

paper i s the notion of node s p l i t t i n g when a cycle i s entered

from more than one node, a procedure often very useful i n the

optimization of cycles.

7

1.2.3 Information Theoretic Approach

Information theory, although applied to diverse problems,

has not been used widely i n the area of algorithmic complexity

and optimization. In a 1973 paper. Green [13] defines an

entropy function to measure the complexity of paths in rooted

trees. Let T„ be a tree with n terminal nodes v^ , va , . . ., v n and

m non-terminal nodes u t, u^,. .. , u m, and

PL = P(v 0,v. t) = P f v ^ u ^ u ^ , . . . , ^ ^ .) ,
a path of nodes from vo to v-. Let od (u) denote the outdegree

of node u. Then the path entropy E i s given by
K I (P.) = Slog od (u,) + log od (v) ;

L j = 1 J

and the entropy of the tree i s defined by

n
E(T n) = 2 E(P.) .

i=1

F i n a l l y , the normalized entropy of T n i s given by

H(T n) = (1/n)E(T r t).

A 1969 paper by Warshall [3 1] analyses the problem of

algorithmic complexity using information theory, under the

constraint that the algorithms studied are viewed as arrays of

choice-making elements. Thus, a sequence of states or Boolean

expressions ever states cannot be evaluated using t h i s model.

The f i n i t e input set consists of the set of data inputs { I } ,

each of which determines a sequence of states from entry to

ex i t . An algorithm A i s a function from the input values to the

set of E-sequences (f i n i t e sequence of at least three elements.

8

beginning and ending with E, the entry or exit s t a t e) . The

states of A consist of the union of the elements occurring i n

the E-seguences. To each input 1^ there corresponds a

probability P (I) . The cost associated with state s i s

-p(s-»t) log p (s-»t)

where p(s—>t) i s the probability that t i s the next state.

The t o t a l in determinancy of algorithm A, i . e . the choice among

paths c, i s given by

H (c) = - S p (c) (log p (c)) , p (c) = 2 p (j) .

Then l e t t i n g TT t(s) be the number of occurrences of states s i n

c, the mean number of occurrences of s per path i s

TT(s) = S p (c)TTc(s)

and per execution cost of algorithm A i s

C(A) = - S T T (s) £p(s-^t)log p(s-»t).

Thus, H(A) i s the algorithm cost assuming free bookkeeping, C (A)

the cost (in the information theoretic sense) without t h i s

assumption. Eased on the above, Marshall evaluates those

algorithms which consist only of decision elements and develops

some properties of t h i s representation. Rather than present a

general analysis of algorithms, t h i s paper selects a subset of

algorithms and f i t s i t to an information theoretic model. To be

of more general use, t h i s model w i l l have to be extended to

include a wider class of algorithms, node execution costs, types

of loops etc.

Mowshowitz [23] defines the s t r u c t u r a l information content

of a graph using the o r b i t s of i t s automorphism group. This

measure i s s t r u c t u r a l in the sense that i t gives the information

9

content of a p a r t i c u l a r graph r e l a t i v e to a system of

transformations f o r which i t i s invariant. Using f i n i t e

undirected graphs and digraphs and a particular type of i n f i n i t e

graph, properties of t h i s measure are investigated and the

effect of several graph theoretic operations on the measure

examined. It i s suggested that an information measure on the

structure of the graph of an algorithm might be useful in

characterizing the r e l a t i v e complexity of the algorithm.

Consideration cf that proposal i s the basis of t h i s t h e s i s .

In the following, an information value w i l l be defined on

an algorithm, methods of obtaining t h i s value given and i t s

usefulness as a measure of e f f i c i e n c y and complexity discussed.

In Chapter II d e f i n i t i o n s of necessary terminology, the

cost p r o b a b i l i t i e s and the information value w i l l be given. A

general explanation of the concepts related to t h i s p a r t i c u l a r

measure i s also included.

In Chapter I I I , a procedure w i l l be presented for computing

the non-isomorphic, reduced seguences of the algorithm being

studied. In addition, the chapter elaborates on the usefulness

of t h i s measure through extensive examples and possible

extensions of the work.

10

CHAPTER I I : AN INFORMATION THEORETIC MODEL OF ALGORITHMS

2. 1 Constituents of an Information Theoretic Model

In order to define an information theoretic model, one must

i d e n t i f y a channel with inputs and outputs, and input and

channel p r o b a b i l i t i e s (see, for example. Ash [5]) . The basic

channel model defines the input as members of some f i n i t e set

{b^,b z,...,b J } , and the output as members of the same or a

dif f e r e n t set, say {a , a ,.. . , a K]. Each output a^ i s

s t a t i s t i c a l l y dependent only on the corresponding input bj.

Such dependence i s determined by a fixed conditional p r o b a b i l i t y

assignment P (a K | b-) , defined for each input b- and output a^.

The set of these conditional p r o b a b i l i t i e s defines the channel.

P r o b a b i l i t i e s are also given f o r each input b-. Such a model

can be depicted by the flow diagram shown in Figure 1.

Noise

Source Encoder Channel -V Decoder > Source Encoder > Channel /
Decoder

Figure 1: Information Channel

This system describes the flow of information from a source

to a destination i n p r o b a b i l i s t i c terms. The source message i s

associated with some object which can be sent over the channel.

This channel i s considered as the medium over which the coded

11

message i s transmitted. The decoder operates on the channel

output in an attempt to obtain the o r i g i n a l message. In our

model, the source message w i l l be the basic steps of the

algorithm; and the received message, the c o l l e c t i o n of these

steps r e s u l t i n g from the transmission of the source message over

the channel (i.e. the r e s u l t of the algorithm being executed).

Kncwing the output, we w i l l attempt to extract information

concerning the source message which w i l l indicate how a more

e f f i c i e n t algorithm can be obtained.

The fundamental notion of information provided about the

event x by the occurrence of the event y i s defined on the model

by

I(x;y) = log (P (x|y)/P (x))

where the base of the logarithm i s usually taken to be 2. The

self-information of the event x i s defined by

I (x) = -log P (x)

and the conditional self-information of x given y by

I (x|y) = -log P (x|y) .

The average values of these are defined as the entropy of the

ensemble X and conditional entropy of the ensemble X, given Y,

respectively, and are given by

H (X) = - S P (x) log P (x)

and H(X|Y) •= - S p (x , y) l o g P(x|y).

The average information between X and Y i s the entropy of X less

the conditional entropy of X given Y, i . e .

I(X;Y) = H(X) - H(X|Y).

Such a model w i l l be used i n the following study. The

12

underlying p r o b a b i l i t i e s of the model derive from two d i f f e r e n t

sources: data items (rela t i v e frequencies), and a s t r u c t u r a l

decomposition. The l a t t e r arise i n the following way. Let n^

for 1 < i < k be non-negative integers associated with an

algorithm, and l e t n = ni+ ... + n^. A probability scheme i s

constructed by taking p^ = n^/n. The entropy

H(P L, .».# P̂) = -Epilog of the probability scheme then

serves as a measure of the structure of the algorithm. The role

of the r e l a t i v e freguencies of data items w i l l become clear i n

the detailed development which follows.

2.2 Basic Terminology

2.2.1 Graph Theory Definitions

Certain graph theoretic concepts are of use in defining

this model. The following d e f i n i t i o n s are taken from

Harary [11]. A 3£a£h G i s a f i n i t e non-empty set V of p points

together with a set X of q unordered pairs of d i s t i n c t points of

V. Each pair x = {u,v} of points i n X i s a l i n e of G. A graph

G i s directed i f the set X i s ordered. The elements of X are

directed l i n e s or arcs. A loop of a graph i s a l i n e which joins

a point to i t s e l f ; i f more than one l i n e joins two points, such

l i n e s are c a l l e d multiple l i n e s . A directed graph which allows

both loops and multiple l i n e s i s c a l l e d a Pgeudograph. A

subgraph of G is a graph having a l l i t s points and l i n e s in G.
A °f a graph G i s an alternating sequence of points and

l i n e s ,x^ , vL ,... ,vn j_ ,xri, v^ , beginning and ending with points,

in which each l i n e i s incident with the two points immediately

13

preceding and following i t . Such a walk joins v o and v n and may

be denoted by v f l,v ,...,v n. The walk i s closed i f v0=vrt. It i s

a t r a i l i f a l l the lines are d i s t i n c t , and a JEath i f a l l the

points and hence, a l l the l i n e s , are d i s t i n c t . If a walk i s

closed and i t s n > 3 points d i s t i n c t , then i t i s a cycle.

2.2.2 Model Definitions

Before defining the model precisely, we w i l l discuss the

interpretation of the term algorithm, as used in t h i s study. An

algorithm X can be represented, quite naturally, as a

pseudograph G (X). Interpreted i n t h i s way, the basic elements

or steps of the algorithm become the nodes, {v,), of a graph.

Each node of the graph i s c a l l e d a c a l c u l a t i o n node or a

decision and c a l c u l a t i o n node, depending on the type of the

eguivalent step in the algorithm. An arc joins two nodes i n the

graph i f the corresponding steps are sequential i n the

algorithm. Each execution of the algorithm then defines a walk

in G (X) ; these walks are, i n f a c t , pseudographs. In any

algorithm there are distinguished nodes, at which any necessary

i n i t i a l i z a t i o n of values i s done. The next node, v ?, marks the

beginning of the n o n - i n i t i a l i z a t i o n steps of the algorithm. We

give s p e c i a l attention to certain walks of G(X). A walk in G(X)

beginning with vg and up to but not including the next

occurrence of v& i s c a l l e d a flow-seguence a of G(X). The set

{a K } of flow-sequences i n G(X) w i l l be denoted by A(X), or

simply A. I f v^ i s the f i r s t decision node of a flow-sequence
a w = v e >\ ' • * * vu 'v<4 ' • • •» V i / t h e n a f low-subsegugnce b of a i s

14

defined as (1) any subwalk of a K , beginning with a decision node

v', and up to, but not including, the next occurrence cf either

v 1 or v, , or (2) the subwalk v , v ,.. . , vL/. The introduction of
S S ^

flow-subseguences into the model i s a s t r u c t u r a l consideration.

For a given node, each of the flow-subsequences containing i t

provides a d i s t i n c t s t r u c t u r a l context i n which i t may be

analysed. We denote the set of a l l flow-subsequences of flow-

sequences in G (X) by B (X) or B. The set of flow-subsequences of

a flow-sequence a i s denoted by B (a). In the following, we

assume the t o t a l number of flow-sequences and flow-subsequences

to be m and n, repectively. The notion of flow-subsequence i s

somewhat si m i l a r to that of i n t e r v a l , given by Allen [4],

Before defining reduction and isomorphism of flow-

seguences, we introduce some further terminology.

In order to provide a weight function for the model, a

hypothetical assembly language i s defined. The language i s

simple so as not to incorporate any instructions dependent on

the configuration of some machine. The actual in s t r u c t i o n set

i s given in Appendix A. Each node v of the graph i s assigned a

weight, w(v), which i s the cost in execution units,

(i . e . machine c y c l e s) , of the assembly language instructions

necessary to compute t h i s step. The weight of a walk i s the sum

of the costs of i t s constituent nodes. For this study, we

equate an increase i n e f f i c i e n c y with a decrease i n these

execution costs.

Next we define the process of structuring to include

15

a l t e r a t i o n s to the program code which depend on flow

relationships among certain nodes of the graph. A structuring

i s considered b e n e f i c i a l i f the e f f i c i e n c y of the program i s

increased. writing a section of the algorithm as a subroutine,

or as a form that r e f l e c t s a fixed order among certain nodes are

examples of structuring. Structural complexity i s i d e n t i f i e d

with the flow of control of the algorithm. For example, we

regard as simple, a structure with simple l i n e a r flow, and as

complex, one with imbedded looping and branching.

we now continue with the model d e f i n i t i o n s . An

implementation M (X) of algorithm X, i s a coding of the algorithm

as a program i n the assembly language. The standard

implementation, M0(X) , i s the i n i t i a l coding of the algorithm.

For i > 1, M-(X) w i l l denote an implementation which has been

structured in an attempt to decrease o v e r a l l execution costs.

We next make precise the terms reduction and isomorphism. A

flcw-seguence may contain several copies of a given flow-

subseguence, as i s the case, for example, when a loop i s

repeated several times. Noting t h i s , we define a', the reduced

flow-sequence of flow-sequence a, as the walk consisting of the

d i s t i n c t flow-subsequences occuring in a. We define the weight

of a flow-sequence as the weight of the corresponding reduced

flow-sequence. Thus, w(a) i s to be interpreted throughout as

w(a'). The set of a l l reduced flow-sequences w i l l be denoted by

A* (X) or simply A'. A flow-sequence a r i s isomorphic to flow-

sequence a s i f ,

a) B(ar') = B(a s'), i . e . the order of flow-subsequences within

16

flew-sequences i s not important, or

b) Bfa,?) C B {a*), and there i s no a 1 such that

B(ar') C B(a«) and

«(ar') < w(at«) < w(a6») .

That i s , the flow-subsequences of ar' are also i n the set of

f lew-subsequences of a&', and the cost in execution units of a,?

i s closer to the cost of a$' than to any other reduced flow-

sequence.

Reduction and isomorphism are present in the model i n order

to include structure i n the measure of complexity. If the flow-

sequences are such that flow-subsequences are not repeated,

i . e . no reduction i s possible, then within these flow-sequences,

structuring of the program so that some inner loop i s made very

e f f i c i e n t i s unlikely to decrease the execution times

s i g n i f i c a n t l y . This follows since no single part of the flow-

sequence i s repeated often. However i f much reduction i s

possible, i . e . inner loops are repeated many times, structuring

the program to r e f l e c t t h i s , or coding these lccps more

e f f i c i e n t l y , decreases the o v e r a l l execution time.

S i m i l a r l y , when analysing isomorphism, i f the same basic

structure i s repeated, i . e . one flew-sequence i s simply a subset

of another, then the complexity of the t o t a l graph i s decreased,

while the cost remains constant. Emphasis on such a flow-

sequence, when attempting to optimize the code, i s l i k e l y to

decrease o v e r a l l cost to a greater extent than a flow-seguence

which has no corresponding isomorphic flow-sequences. also, i f

17

there are no isomorphic flow-sequences, then there i s no

par t i c u l a r flow-sequence which should be studied for more

e f f i c i e n t ceding, and the cost i s u n l i k e l y to be s i g n i f i c a n t l y

reduced by considering the structure alone. That i s , assuming

the unstructured program has been coded e f f i c i e n t l y , no

structuring w i l l markedly reduce the o v e r a l l cost. This w i l l

become more evident when the information value i s defined below.

One can associate with an algorithm X the set of data D(X)

on which the algorithm X operates. For example, i f S i s an

algorithm to sort n numbers into order, then D(S) i s the set of

a l l n f a c t o r i a l possible orderings of n numbers. If D(X) i s not

f i n i t e , then for this analysis a f i n i t e subset D' (X) of D (X) i s

selected which i s representative of the data on which X

executes. By representative we mean that for each possible

flow-sequence of G(X), there i s an element of D*(X) which y i e l d s

that flow-sequence. Since a f i n i t e data set can be obtained for

any algorithm, we w i l l assume that D(X) i s f i n i t e i n what

follows. With each element d of D (X) , there i s an associated

r e l a t i v e frequency, '8(d), which denotes how frequently the

algorithm executes on t h i s element. For each d, l e t GJX) denote

the pseudograph resulting from the execution of the algorithm on

datum d, We then define to be the set cf flow-sequences of

Gd(X) . Â ' i s the subset of consisting of the reduced, non-

isomorphic flow-sequences of A , . The union of a l l A* over D(X)

i s the set A*, defined above. Bd i s the corresponding set for

flow-subsequences.

18

2.3 Definition of the Information Hodel.

The model used w i l l follow the description given i n section

2 . 1 , altered to include a probability scheme defined on the cost

and s t r u c t u r a l properties of the algorithm. With the flow-

subseguences as the source message and the resulting flow-

sequences as the received message, t h i s model becomes

meaningful. The execution of the algorithm on D(X) produces as

output, flow-seguences; an analysis of these yi e l d s information

about the input which can point to a more e f f i c i e n t

implementation of the algorithm. Thus, by transmitting the

input ever the channel, the algorithm can be characterized by

the resulting flow-sequences, and an information value defined

to r e f l e c t i t s cost and structure.

Given an algorithm X, i t s graph G (X) , and i t s data set

D (X), the model i s characterized b r i e f l y as follows.

The channel i s defined by the conditional p r o b a b i l i t i e s

induced by D(X). The ijvput, {b - }, i s the set B of flow-

subseguences of G (X). The output i s qiven by A *= [a^* }, the set

of reduced, non-isomorphic flow-sequences obtained by

transmitting B over the channel.

2.4 Definition Of P r o b a b i l i t i e s

The input, channel and output p r o b a b i l i t i e s w i l l now be

defined, completing the formulation of the model. The

probabilties are defined as a function of execution cost units

19

in order that the the model w i l l i n fact be a function of cost.

Relative frequencies are assumed tc be defined on D(X) and hence

are incorporated i n the d e f i n i t i o n of the information value.

Given that the execution cost of flow-subsequence b" i s defined
0

by

and the t o t a l cost of the n flow-subsequences by

H = 2Mj ,

then the input p r o b a b i l i t i e s are defined by

Pfbj) = B j / * .

This gives the cost frequency of flow-subsequence b̂ with

respect to the t o t a l cost of the flow-subsequences. Defining

aJ = { a | b- i s i n B (a) },

and the weight of a-* as

w(aJ) = 2w(a) ,

where the sum i s over those a in a^, then the channel

p r o b a b i l i t i e s are

[w(a„)/w(a'i) i f b- i s i n B (a u)

0 otherwise

i . e . the cost frequency of flow-sequence with respect to

those flow-sequences containing flow-subsequence b:. We denote
J

the output p r o b a b i l i t i e s by

n
P{aK) = 2,P(a K|b-)P(bj) ,

i . e . the cost probability of flow-sequence a^ averaged cost

wise over a l l flow-subsequences i n flow-sequence a K . For each

element d of D (X), R(d) i s the r e l a t i v e frequency of datum d.

20

We now show t h a t these d e f i n i t i o n s do i n f a c t y i e l d

p r o b a b i l i t i e s .

Obviously

i=1 *
= 1 s i n c e ,

2 P (b ;) =

i=1 N N
• + I r l = I ~ 1

N J 8

A l s o

2 P (a J
k=1

m n
= S S P (a l b ,) P (b :) k=1 j=1

m n
= (1/N) 2 2 (w(a)/w(a J))N ;

k=1 j=1 J

[' w (a1-) v (a*) ' w(a")

+ *Al „ & * w (a"1)

y v (a L) w (a n)

21

+ . . . + 8^ (H t „ + . . . +

w (a*)

= <1/N) (H t + N x + . . . + N „)

= 1

f w (a K) i f b- i s in B (a K)
where w = j

'•J 0 otherwise

m
and <1/w(aL)) = (w (aL)/w (a L)) = 1 •

k=l *'L

In defining the model p r o b a b i l i t i e s as cost measures, the

concepts of cost and complexity are strengthened within the

model. If a flow-sequence a^ has high p r o b a b i l i t y , then t h i s

indicates one or more of the following. F i r s t , a K consists of

seldom repeated flow-subsequences, i . e . the flow-subsequences of

a^ do not appear i n many other flow-sequences, so structuring of

the program around t h e i r occurrence in a^ w i l l not greatly

impede the execution of the other flow-seguences, and should

decrease the execution time of a k . Also, i f the flow-

sufcseguences i n a^ are costly i n r e l a t i o n to those in other

flow-sequences, high probability r e s u l t s . This i s consistent

with the notion that a very costly flow-sequence should receive

considerable analysis, since i t necesssarily .will be a large

contributor tc overall cost (assuming uniform r e l a t i v e

22

frequencies). If the above occur, a higher cost p r o b a b i l i t y

w i l l r e s u l t , and hence, as w i l l be shown, a larger information

value.

2.5 Definition Of Information Measure

Using the information theoretic r e l a t i o n

I (X;Y) = H (¥) - H (YjX) ,

the information value of an algorithmic implementation w i l l be

defined in terms of the entropy H(A(X)) of the ouput flow-

sequences, and the conditional entropy H (A (X) | B (X)), of the

flow-sequences given the input flow-subsequences. For each

possible datum d i n D(X), with r e l a t i v e frequency B(d), H d(A(X))

and H d (A (X) | B (X)) are calculated as

H d(A(X)) = -2 (w(a y)P(a K)log P(a K))

where the sum i s over the set of reduced flow-seguences A^, and

H d(A (X) |B (X)) = -£(N-P(b- J P f a J b ^ l o g P (a u | b j)) ,

the sum taken over the set of flow-sequences A', and flow-

subsequences B^. The costs, and hence p r o b a b i l i t i e s , are those

determined by the given implementation, M (X). Where no

confusion w i l l a r i s e , we w i l l write A and B f o r A(X) and B(X),

respectively.

We interpret the entropy as a measure of the cost and

s t r u c t u r a l complexity of the algorithm. A lower entropy occurs

i f there are only a few flow-sequences in A* compared to the

number possible, i . e . there were many isomorphic flow-sequences.

Thus, proper structuring should decrease the o v e r a l l cost.

23

Also, i f the same flow-subsequence occurs i n many di f f e r e n t

flow-sequences, the entropy i s lower, indicating that this flow-

subsequence should be coded more e f f i c i e n t l y , with emphasis on

i t s flow pattern. However, entropy i s higher when either the

f low-subseguences within c e r t a i n flow-sequences are costly

r e l a t i v e to other flow-subsequences, or flow-sequences are long

and s t r u c t u r a l l y complex r e l a t i v e to other flow-seguences.

Attention should be given to such flow-sequences when attempting

to optimize the code of a given algorithm, since overa l l cost i s

dominated by them.

This measure then, points to flow-sequences or flow-

subsequences which should be considered for possible

optimization.

The weighted conditional entropy, H^(A|B), i s a refinement

of the entropy measure. It considers the amount of cost and

st r u c t u r a l complexity preference that i s , i n a sense,

duplicated. If the same flow-subsequence b appears i n many

di f f e r e n t flow-sequences, then, although the code of b can be

optimized, only one of the flow-sequences containing b can be

structured so as to optimize on b's r e l a t i v e position among

other flow-subseguences of the flow-sequence. This follows from

the observation that i f more than one of these flow-sequences

has the same general structure, then they are isomorphic. But

i f they are isomorphic, then only one copy i s present.

Necessarily then, the structures i n the non-isomorphic sequences

are d i s t i n c t , verifying the above remark. Hence, by subtracting

24

the conditional from the unconditional entropy, a correction i s

made for the amount of 'structural information' which i s

repeated. Also of note i s the fact that i f the conditional

entropy measure i s low, then the flow-subsequences are generally

not repeated in many flow-seguences. This indicates a f a i r l y

simple structure which yields a substantial cost decrease when

i t i s properly structured and e f f i c i e n t l y coded. However, a

high conditional entropy denotes a more complex structure, with

the same flow-subsequences occurring i n many s t r u c t u r a l l y

d i f f e r e n t flow-sequences. In a sense the conditional entropy

accounts for the inters e c t i o n of flow-sequences, through common

flow-subseguences.

The above discussion i s concerned with only a single

element d of D (X). To complete the model, the input must be

transmitted through the channel, i . e . the algorithm must be

executed on a l l data. Thus the entropy and conditional entropy

are defined as

H (A) = 2 8 (d) H^ (A) and

H(A|B) = S B(d)H d(A|B),

where the sum is over a l l d i n D (X). Then the information value

of the implementation of algorithm X i s given by

I (A; B) = H (A) - H (A | B) .

2.6 Uses of The Information Value

The term cost comparable i s used here to describe those

algorithms which, i n their standard implementations, have within

25

a few per cent the same execution cost per node, t o t a l number of

nodes, and execution cost per datum. The maximum value of

I(A;B) over a set {Z} of cost comparable algorithms which solve

the same problem, i s obtained from the most e f f i c i e n t algorithm.

A higher information value on t h i s set i s more 'informative 1, in

that i t indicates any of the following. F i r s t , the program can

be structured to take advantage of a dominant flow-seguence

which i s s t r u c t u r a l l y simple. Secondly, certain flow-

subsequences can be considered for optimization of cede since

they are dominant throughout the program. And l a s t l y , c ertain

flew-sequences, consisting of c o s t l y flow-subsequences, are

making the program expensive to execute. In the set {Z}, an

algorithm such that no structuring i s b e n e f i c i a l to i t , must

consist of many d i s t i n c t flow-sequences, since there are no

isomorphic flow-sequences. Furthermore, no reduction i s

possible and some flow-subsequences appear i n many di f f e r e n t

flow-sequences. Hence, both the conditional and flow-sequence

probability w i l l be low, and thus, also the information value.

But an algorithm where t h i s i s not the case, i . e . many dominant

flews, w i l l have a higher information value.

On the other hand, r e s t r i c t i n g our attention to a

particular algorithm X of {Z}, the best implementation M (X) i s

the one having the lowest information value. This follows by

observing that the implementation to which consideration of

structure has been most b e n e f i c i a l , w i l l have the lowest cost,

and hence information value. I n t i a l l y the information value i s

calculated r e l a t i v e to the standard algorithm implementation

26

M^X). Then, upon st r u c t u r i n g , i f the information value

increases, such a structuring does not r e f l e c t the flow of the

algorithm. But i f the information value decreases, the given

implementation included structuring and optimizing which

decrease the cost s i g n i f i c a n t l y . A further discussion and

v e r i f i c a t i o n of t h i s fact i s given i n Chapter II I , where i t i s

shown that the information value can be used to select that

implementation which i s most appropriate in a given s i t u a t i o n .

2.7 Information Value - A Complexity and E f f i c i e n c y Measure

In order to analyse an algorithm, a means of ranking i t

r e l a t i v e to other algorithms for the same task must be

available. This measure should include the cost of executing

the algorithm, and r e f l e c t i t s flew pattern. Measures which are

a function of a single cost contributor, although helpful when

comparing algorithms r e l a t i v e to t h i s factor, are necessarily,

as a general measure of cost or complexity, only p a r t i a l l y

e f f e c t i v e . S i m i l a r l y , measures which consider flow only are

most helpful i n analysing the problem of whether and how code

can be optimized, but in such study, r e l a t i v e costs are often

disregarded, again leaving the measure, in some sense,

incomplete.

A measure then, that i s useful i n a general sense should

r e f l e c t both of these f a c t o r s . In the measure given above, an

attempt has been made to incorporate cost and some notion of

st r u c t u r a l complexity. An information theoretic measure seemed

27

to be a most natural means of combining the two e n t i t i e s ,

Through the d e f i n i t i o n of isomorphism and reduction, and of the

p r o b a b i l i t i e s , t h i s model of the execution of an algorithm

becomes a function of s t r u c t u r a l complexity and cost,

respectively. As desired, an algorithm which i s more suitable

for structuring w i l l have a higher information content than an

algorithm with comparable cost, but for which i t i s not

p r a c t i c a l tc attempt to e s t a b l i s h an e f f i c i e n t structure. I f

algorithms are ' s t r u c t u r a l l y eguivalent* in the sense that, the

flow pattern of both indicates that the same amount of

structuring i s applicable, then the information value w i l l rank

the algorithms according to cost, the more expensive one having

a higher information value. Thus, when comparing d i f f e r e n t

implementations of some algorithm X, that one with the smallest

information value w i l l be the most e f f i c i e n t i n terms of

execution costs. Structural equivalence i s indicated by the

conditional entropy, which, when analysing a given algorithm,

pa r t i t i o n s the data set into blocks, where each block responds

in approximately the same manner to proper structuring. If the

conditional entropies are equal for elements d1 and d2 of D(X),

then their walks through the algorithm are the same. This

concept i s useful when selecting the most costly of those

sections of code that respond s i m i l a r l y to given code

optimization. Thus, the measure achieves the goal of

establishing a complexity measure which i s a function of both

cost and structure. This measure, by analysing the output of

flow-seguences, provides information about the constituent flow-

28

subsequences; such information then points to ways in which the

algorithm can be made more e f f i c i e n t . Further discussion of

thi s observation follows i n Chapter I I I , where several examples

of how t h i s measure has been applied are given.

29

CHAPTER I I I : AN INFORMATION THEORETIC ANALYSIS

OF ALGORITHMIC COMPLEXITY

3.0 Introduction

In t h i s Chapter, we present a more detailed study of the

model, He describe the processes used to obtain i t s components,

investigate c e r t a i n properties of the defined measure, and

f i n a l l y , demonstrate, through examples, some of i t s

applications.

Let X be an a r b i t r a r y algorithm. Throughout the following

discussion, the nodes v Q,v t,...,v r of G (X) w i l l be numbered to

follow the directed flow, depth f i r s t . Each node i s either a

decision and c a l c u l a t i o n node, or simply a ca l c u l a t i o n node.

Using the procedures given below, the input, output, and input

and channel p r o b a b i l i t i e s can be obtained, and hence, the model

made operational.

3.1 Procedure for Flow-Sequence Construction

In the statement of the procedure, j i s used as the index

on the nodes of X. The f i r s t n o n - i n i t i a l i z a t i o n step of the

algorithm i s v. , and the terminal node i s v . Here we assume

that no decision node occurs i n the i n i t i a l i z a t i o n process. A

stack i s used to store that portion of a flow sequence that has

been constructed prior to the occurrence of the present decision

node. Also stored on the stack i s the number of branches

exiting from th i s decision node (and hence the number of flow-

sequences that w i l l be created).

30

Step 1: I n i t i a l i z a t i o n step.
I n i t i a l i z e k to 1, j to 0.

Step 2: I n i t i a l i z a t i o n Nodes.

I f j<s, increment j and return to step 2. I f j=s, set a^

to v, , and i f v_ i s a decision node, stack j and a,,;

increment j , and go tc step 3.

Step 3: Main Flow-Sequence Construction.

If j>r, go to step 4. Adjoin V j to a K» If j ^ t , and v- i s

a decision node, stack j , a R ; i f j=t, and the stack i s not

empty, increment k, remove a K , j from the stack; increment

j ; go to step 3.

Step 4: Terminate.

3.2 Flow-Subsequences; Weight Assignment.

The set B of flow-subsequences i s formed from A in the

following manner, where i n i t i a l l y the set B i s empty. For each

flow-sequence a, of A, add to B any of a's flow-subsequences

not already in B. To allow the analysis programs to manipulate

the flow-sutsequences more e a s i l y , we associate a set of

numbers, P. , with each node v,- , one value for each of the f low-j J
subsequences in which v. appears (see Appendix B and the

following examples). To accomplish t h i s , i n i t i a l i z e i to 1 and

repeat the following procedure for each node v. . For each flow-
O

subseguence b of B, i f v. i s a node of b, include i in P- and

increment i . Using the results of this process, the flow-

subseguences are expressed as sets of numbers. Next, the nodes

are a l l o t t e d weights determined by the current implementation of

31

the algorithm. Each flow-subsequence and flow-sequence i s then

assigned a weight which i s the sum of the weights of i t s

constituent flow-subsequences. Once th i s assignment has been

made, the cost p r o b a b i l i t i e s can be calculated.

3.3 Hierarchy Of Isomorphic Flow-Sequences

The flow-sequences are now ordered as a hierarchy of

families of flow-sequences, F^ , where b (F.) i s the lowest, by

weight, member of the family F-L , q the number of families

constructed so f a r , and s the index of the family to which the

current flow-sequence w i l l be adjoined.

Step 0: I n i t i a l i z a t i o n Step

Set q to 1, and F^ to the flow-sequence of highest weight,

t i e s resolved a r b i t r a r i l y .

Step 1: If any flow-sequences remain, set h to the one of

highest weight, set i to 1 and go to step 2. Otherwise,

go to step 5.

Step 2: If B (h) i s a subset of B (b (FL)) , then set d i f f to

w (b (F.))-w(h) , set s to i , increment i and go to step 3.

If B (h) i s not a subset of B (b (F^)) , increment i ; i f i>q,

set s to i and go to step 4; otherwise go to step 2.

Step 3: I f i<q, i f B (h) i s a subset of B (b (F.)) , ana d i f f i s

greater than w (b (F-)) - w (h) , then set d i f f to t h i s new

difference, and set s to i ; i f i ^ g , increment i and go to

step 3; otherwise, step 4.

Step 4: Adjoin h to F„ , set q to i and return to step 1.
5

32

Step 5: Terminate.

The above procedure establishes families of isomorphic

flow-sequences, where such flow-sequences are reduced. In each

family, the flow-sequences are ordered by weight, the most

costly being assigned the highest order (see Appendix B) . The

use of the hierarchy makes the removal of isomorphic copies of

flow-seguences a simple process.

3.4 Reduction and Isomorphism of Flow-sequences

For each d, the pseudograph G (X) i s produced, and AJ
d

computed. Then, the following processes are applied so that the

flow-seguences can be reduced and isomorphic copies removed.

F i r s t , A^ i s considered for reduction. Within each flow-

sequence, i f any flow-subsequence appears more than once, only a

single copy i s retained i n the walk; however, the t o t a l weight

of the flow-sequence remains unchanged. Next, the reduced flow-

seguences are checked for isomorphism. Each reduced flow-

seguence, a', has an associated family, F*, in the hierarchy.

If there i s a flow-sequence i n both F' and A^ which has a higher

order than a' in F', or a* occurs more than once i n A d, remove a

copy of a' from A^. Then, add wfa 1) to that flow-sequence in

both A^ and F» which has the least order greater than or equal

to the order of a'. This process yie l d s the subset A * of A.-

consisting of only reduced, non-isomorphic flow-seguences (see

Appendix B and the examples i n section 3 . 7) .

33

3 . 5 Entropy, Conditional Entropy, Information Value

Using A', the entropy, conditional entropy and information
d

value are calculated for each fixed d i n D(X). Then,

associating a r e l a t i v e frequency with each d, the entropy,

conditional entropy and information value are obtained by

averaging over D(X). Each d i s t i n c t implementation of the

algorithm yi e l d s another set of costs for B and hence, defines a

new input probability d i s t r i b u t i o n . The evaluation and analysis

of the algorithm which i s now possible, i s discussed with

examples, in the remaining sections.

3 . 6 Further Analysis of the Information Value

In t h i s study, the information value has been used for two

purposes. F i r s t , to s e l e c t from a set of algorithms, that one

which i s , i n a cost sense, the most suitable for the given task,

and secondly, to choose an implementation of that algorithm

which i s most appropriate in such a s i t u a t i o n . In the following

analysis, we assume that the flow-sequences have been reduced,

and isomorphic copies removed. Also, we define an index set on

the flow-subsequences bj of a flow-sequence a by

I (a) = { j i b - i s in B (a) }.

3.6.1 Selecting An Algorithm

F i r s t , we assume that the algorithms are cost comparable

within three or four per cent. For such algorithms, since the

costs are more or less the same, the flow structure i s the

34

dominant component of the information value; we obtain the

largest information value from the s t r u c t u r a l l y optimum

algorithm. S p e c i f i c a l l y , l e t X and Y be two cost comparable

algorithms. Furthermore, suppose that algorithm X has a

d i s t i n c t l y better flow structure than algorithm Y, i n the sense

that each flow-sequence c of X consists of flow-subsequences

not occuring i n other flow-seguences of X. Then the information

value indicates that algorithm X has a flow structure which can

be used to point to a more e f f i c i e n t coding of the algorithm.

To see t h i s , we study each algorithm's information value. F i r s t

analysing algorithm X, we note that in most cases the flow-

subsequences bj of a flow-sequence cK do not appear i n many

other flow-sequences, so the conditional p r o b a b i l i t y

P (c j b ^) = w(c K)/w(c J) ,

i s close to unity and, thus, over I (c^) , P(c K) i s approximately

equal to S p (b -) ; t h i s shows that the walk p r o b a b i l i t i e s are

f a i r l y uniformly distributed. However in the second algorithm

this does not hold. Most flow-subsequences xt • of flow-

sequence e^ of Y, occur i n other flow-sequences. As a r e s u l t ,

there are more flow-sequences for Y than for X. Thus, when

calcula t i n g j

P<ej |ut.) = w (e^)/w (e L) ,

i t s value i s considerably less than unity and hence the

r e s u l t i n g flow-sequence p r o b a b i l i t i e s

P(e) = £p(e^|u L)P(u.) ,

as well as corresponding entropy, are less than those for

algorithm X. Hence, since the flow-sequence weights are nearly

35

the same, the information value for algorithm x i s greater than

that of algorithm Y. Thus, when comparing unstructured

algorithms, the one with the higher information value i s

selected, and an implementation of i t which r e f l e c t s the flow

structure, coded. To summarize, when the costs for algorithms

are comparable, the maximum information value indicates which

algorithm i s optimal r e l a t i v e to t h i s factor.

3.6.2 Selecting the Algorithm Implementation

Having chosen the algorithm most suitable for the given

task, an analysis of i t , based on cost, i s made. In t h i s

instance, the implementation with minimum cost i s desirable;

accordingly the minimum of the information values points to such

an implementation. To see t h i s , we consider the two ways in

which the algorithm costs can be decreased.

Case Jl: Some flow-seguence a* i s made more e f f i c i e n t by applying

optimizing techniques to i t s flow-subsequences. For s i m p l i c i t y ,

we assume that a* consists of flow-subsequences b̂ which do not

appear i n any other flow-sequence of the algorithm, and that

P(a*) < 0.5. Then, i f a* i s coded more e f f i c i e n t l y ,

i . e . w (a*) decreases, the information value also decreases. The

proof follows.

Under the assumptions given above, l e t Z j be the the

decrease in N; , (z; i s zero i f b%- i s not in B (a*)) , z = S Z J , and

36

N*= 2N - , where the sums are over I (a*). Recall that N i s

defined by 2w (bj), where the sum i s taken over B. Then the

following equality holds f o r those j in I (a*).

P (a * | b ,) = « (a*)/w (a^)

= w(a*)/w(a*)

= 1 .

Also, 2 P (b^) over I (a*) decreases, for i f SP(bj) were to

increase, then

2 (N-j-2-)/(N-Z) >

This implies (N*-z)/(N-z) > N*/N, and hence N < N *, a

contradiction. So 2 P(b^) over I (a*) decreases, which implies

P (a*) decreases, and hence, that -P(a*)log P (a*) decreases.

Now w(a*) decreases by assumption, so

w (a*) (-P (a*) log P (a*)) ,

the information value of a*, decreases. Qed.

Now we examine the ef f e c t of decreasing the cost of some

flow-subsequence b* which appears in many flow-sequences. This

sit u a t i o n can be examined as two subcases.

Case 2-J: F i r s t suppose that b* i s not in either B (a^) or B (aJ),

j i n I(a^), and l e t z be the decrease in w(b*). Now P (b) = N-/N

increases for b-, i n B(a u) since N- i s fixed and N decreases.

Also P(a^|b-j) = w(a^)/w(aJ) i s fixed, since both and

w(aJ) are constant. Thus,

n
P (a) = S P (a |b-) P (b ;)

j = 1 J J

increases, and hence -P (a k) l o g P (a u) increases. This

37

implies -w(au) P(a^)log P (a u) increases, since P(a^) < 0.5 and

w(aK) i s f i x e d . That i s , the information value increases.

Now, assume that b* i s i n B (a J) , for seme j i n I(a^), but b*

i s not i n B(a K). Thus w(aJ) decreases, Pta^Jbj) = wta^J/wta1*)

increases, and, as above P (b.) increases. Hence, P (a K) , and

thus the information value of a^, increases.

Thus, when b* i s not in B (a K) , the information value

indicates that the change made was not b e n e f i c i a l to the flow-

sequence a^. If this i s true for most flow-sequences, the

o v e r a l l information value increases, indicating that such a

change should not be made.

Case 2-2: b* i s i n Bfa^). Again l e t z be the decrease in w(b*).

l e t p' be the new P(a K) , p the old Pfa^), and w'(a^) = w(a K)~z.

If p» < p, then -w«(a K) (p'log p») i s less than -w(a K) (p log p).

Thus, the information value decreases.

On the other hand, i f p' > p, the information value s t i l l

decreases for most z. The difference, p*-p, must be small,

since even large z implies only small increases in P(a w|bj) and

small changes in P (b) , j i n I(a). We observe that the

information value decreases

i f f w« (a K) (-p'log p') < w(a K)(-p log p) ,

i f f w(aK) [(-p'log p»)-(-p log p)] < z (p'log p')

i f f w (a K) (log (p «P /p?)) < z(p»log p').

And, since for most z, log^p'^/p^j i s approximately 0, t h i s

ineguality i s s a t i s f i e d . That i s , the information value

decreases.

38

The usefulness of the information measure f o r selecting the

most appropriate implementation of an algorithm i s thus evident.

When the implementation i s an improvement, the corresponding

information value decreases, and when this i s not the case, the

information value increases.

Some of the applications of such a measure are now given.

F i r s t , i f the probability of a flow-seguence i s r e l a t i v e l y

large, but i t s weight i s comparable to other flow-seguences,

then the algorithm can be coded to r e f l e c t t h i s flow, and hence

to decrease execution costs. Also, when attempting to p a r t i t i o n

a program into segments, a flow-sequence with high p r o b a b i l i t y

can be informative. Such probability indicates that the flow-

sequence has l i t t l e i n t e r a c t i o n with other parts of the program,

a major factor i n a segmentation problem. Thirdly, i f the

conditional p r o b a b i l i t i e s on the flow-sequences, r e l a t i v e to

some flow-subsequence b, are consistently low, then such a flow-

subsequence appears many times, and makinq i t more e f f i c i e n t i s

ref l e c t e d throughout the program.

To i l l u s t r a t e the two purposes the information measure i s

used for i n this study, the following examples are included.

3.7 Examples

3.7.0 The Form and Purpose of the Examples

In order to analyse the selected algorithms, certain

programs are necessary to produce and evaluate the output and

calculate the information value. The language i n which these

39

routines are written i s ALGOLW. However, the programs

representing the algorithms are expressed in the hypothetical

assembly language, described i n Appendix A.

To apply the measure, a task and algorithms to compute the

task, are selected. The sorting of n numbers (eguivalently the

indices of n records)' into order i s chosen since several well

documented algorithms for sorting exist, and the corresponding

data sets are well defined (i . e . a l l possible orderings of n

numbers). The two sort algorithms, 'heap' and •merge* [21], are

used as the possible candidates for the task of placing i n order

f i v e numbers. In the following discussion, the f i v e f a c t o r i a l

elements of the data set are a r b i t r a r i l y numbered from 1 to 120;

we w i l l r e f e r to certain of these data in the examples given

below. On t h i s data set, the merge algorithm i s not amenable to

structuring since no reduction of flow-subsequences i s possible.

Although t h i s l a t t e r point o r d i n a r i l y implies that code

optimization of the flow-sequences would be b e n e f i c i a l , the

s i m p l i c i t y of the calculations, and the lack of interaction

among the nodes within a flow-subsequence allow for no noticahle

improvements. As a contrast, the heap algorithm i s studied. In

t h i s case, the •shortcomings* of the merge algorithm are absent,

and hence, both structuring and code optimization can be

applied.

The task evaluated here i s obviously somewhat t r i v i a l , so

the concept of structuring i s not as dominant as i t would be in

a more complex s i t u a t i o n . For a task involving more

40

calculations and decisions, the use of subroutines as structures

would be e f f e c t i v e . However, the s i m p l i c i t y of the examples

s t i l l allows the usefulness of t h i s measure to be i l l u s t r a t e d ,

both as a cost and st r u c t u r a l complexity standard, and as an

improvement on a measure based on execution costs alone.

When analysing an algorithm, the standard implementation i s

coded f i r s t . So at t h i s time, no attempt i s made to optimize

any p a r t i c u l a r area of the program. Both the merge and heap

algorithms are implemented i n this manner. In addition, based

on the res u l t s of an analysis of the information values, another

implementation of the heap algorithm i s given. In the examples,

the execution costs associated with each implementation are

included with the information value, so that a comparison can be

made with the conventional measure. Table entries l i s t e d as

costs, are i n execution units, while the information value and

conditional entropy are un i t l e s s .

The measure i s f i r s t applied to the problem of deciding

which of two algorithms should be used for a given task. The

information value points to the algorithm which i s more suitable

for the si t u a t i o n . Moreover, once the algorithm has been

selected, the measure further analyses i t by providing

information cn i t s o v e r a l l cost and structure, which indicates

where attention should be focused i n order to produce a more

e f f i c i e n t implementation of the algorithm.

41

3.7.1 Comparison of Two algorithms for the Same Task

In t h i s section the f i r s t a pplication of the measure i s

discussed. The heap algorithm, (H-I), as mentioned above, i s

amenable to structuring, while merge, (M), i s not. The standard

implementations are compared and consequently B-II, an

implementation r e s u l t i n g from a structuring which improves the

e f f i c i e n c y of heap, i s included i n the study.

In the f i r s t example, assuming the r e l a t i v e freguencies of

the orderings are equal, the average costs of the algorithms are

compared (see Table I) . Merge i s seen to be cheaper; however,

removing the extreme cases (i.e. those with very high or very

low costs), the costs are r e l a t i v e l y comparable. Also, the

number of nodes and cost per node are very close. Thus the

information value can be used to evaluate the two algorithms,

indicating that heap i s more informative, i . e . given proper

structuring the overa l l cost of heap, for t h i s s i t u a t i o n , would

be less c o s t l y . The implementation of a single s t r u c t u r a l

improvement (optimization of a flow-subseguence), reduces the

average cost of heap below that of merge. Using the measure of

average cost, i t i s unlikely that the heap algorithm would have

been given further consideration f o r t h i s p a r t i c u l a r

application. In the next section a further analysis of heap i s

given.

42

Ala
m e r g e

heap-I

heap-II

Av Cost

198.75

228.31

198. 18

info Val

35. 195

38.365

37.608

Table I: Example 1

The next two examples involve p a r t i c u l a r data and t h e i r

r e s u l t i n g output from the two algorithms. Such analysis i s

useful i f a p a r t i c u l a r datum or type of datum i s highly

probable. In such a case, the algorithm that performs in the

best way for the given datum i s the one selected.

Datum IV H-I IV W M cost H-I cost H-II cost

45 31.495 34.940 200.1 206.5 202.7

69 33.480 33.328 202.9 205.9 201.9

44 40.420 40.075 199.5 200.6 195.7

Table I I : Examples 2 and 3

As shown in Table II in the entry for datum 45, the information

value of merge i s higher, i n d i c a t i n g that even with proper

structuring and optimizing i t i s unlikely that the heap

algorithm w i l l perform better than merge. The costs of H-I and

H-II confirm t h i s .

43

For each of data 69 and 44 the information values of the

two algorithms are r e l a t i v e l y close, but heap i s s l i g h t l y

higher. This indicates that optimization methods should reduce

the cost of the heap algorithm. Again the costs associated with

H-I and H-II support t h i s observation.

3.7.2 Analysis of Heap Algorithm

In the remaining examples, the flow-subsequences are

expressed as sequences of numbers, corresponding tc nodes,

separated by dashes; parentheses indicate repeated flow-

subseguences which are eliminated i n the reduction process.

Execution over each datum d generates f i v e flow-sequences; those

marked with an asterisk are isomorphic to others i n the l i s t .

Only the set of non-isomorphic flow-sequences are considered in

computing the information value. The l i s t s of flow-subsequences

and flow-sequences are given i n Appendix B. The i n i t i a l i z a t i o n

nodes are omitted, since no optimization techniques are applied

to these nodes.

The following example i l l u s t r a t e s the use of the

conditional entropy as a means of partitioning the data set

according tc structure. Within • p a r t i t i o n s ' , the improvements

in cost r e s u l t i n g from a given change in the implementation of

the algorithm are f a i r l y close. When the conditional entropies

d i f f e r , t h i s indicates that the corresponding structures of the

outputs do also. The smaller the conditional entropy, the more

amenable to node or flow-subsequence improvements are the

44

sections of the algorithm associated with th i s datum. Consider

the data pairs shown i n Table I I I .

Datum Info Val

33 56.325

36 54.939

Cond Ent H-J. cost

1.374 229.1

1.731 219.0

H-II cost |I - I I |

223.1 6.0

214.2 4.8

19 42.802 2.095 218.4 213. 4 5.0

20 44.188 1.731 228.5 222.3 6.2

Table I I I : Example 4

The output flow-seguences for the above data are:

(33)

1* 1-3 7- 11 -16-21 27-28

1 1-3 7-11 -16-21 (7-11-16-21) 27

2 2-4 -3 7- 11-16-21 9-15-23 27-28

2* 2-4 -3 7- 11-16-21 27-28

2* 2-4 -3 9- 15-23 27-28

(36)

1 1-3 7- 11 -16-21 27-28

2 1-3 7-11 -16-21 5-12-19-25

3 2-4-3 7- 11-16-21 9-15-23

3* 2-4-3 7- 11-16-21 27-28

3* 2-4-3 9- 15-23 27-28

45

(19)

1 1-3 7-11 -16-21 27-28

2 1-3 7- 1 1 -16-21 5-12-19-25

3 2-4-3 7- 11-16-21 9-15-23 27-28

4 2-4-3 8- 13-17-22 27-28

3* 2-4-3 9- 15-23 27-28

(20)

1* 1-3 7- 11 -16-21 27-28

1 1-3 7- 11 -16-21 (7-11-16-21) 27

2 2-4-3 7- 11-16-21 9-15-23 27-28

3 2-4-3 8- 13-17-22 27-28

2* 2-4-3 9- 15-23 27-28

The information value of (33) i s s l i g h t l y higher than that

of (36) due to the simpler structure and more costly flow-

seguences of (33). This same observation holds for the second

pair of data, with (20) having the higher information value. In

both pairs, the lower conditional entropy indicates which datum

has the simpler structure in i t s output. An implementation

which r e f l e c t s such a structure yields greater cost savings for

the datum with the lower conditional entropy. Such an analysis

i s useful i f i t i s known that a high portion of the data i s of

the form of either (19) or (20) say, and i t i s desirable to know

whether optimization methods should be applied to the path

followed by (19) or by (20). This measure indicates that by

concentrating on (20) more o v e r a l l savings can be obtained.

46

In the next example, the notion of p a r t i t i o n and the eff e c t

of costs on the measure are discussed. The conditional entropy

of both (3) and (5) are close (see Table IV), but the i r

information values d i f f e r . From t h i s , i t i s known that their

structures are s i m i l a r , but that (3) either has more costly

flow-subsequences, or has flow-sequences which can be coded more

e f f i c i e n t l y to r e f l e c t their unique flow structures. This

example i l l u s t r a t e s that within •partitions' the information

value ranks the data according to the corresponding costs

i . e . the higher the cost, the higher the information value.

Datum Info I s i
3 53. 334

5 35.287

Cond Ent H-I cost

1.610 228.5

1.611 204.7

Table IV: Example 5

The associated flow-sequences are:

(3)

1 1-3 8-13-17-22 27-28

2 1-3 7-11-16-21 (7-11-16-21) 27-28

3 2-4-3 7-11-16-21 9-15-23 27-28

3* 2-4-3 7- 11-16-21 27-28

3* 2-4-3 9-15-23 27-28

47

(5)

1 1-3 8-13-17-22 27-28

2 1-3 7-11-16-21 (7-11-16-21) 27-28

3 2-4-3 7-11-16-21 10-18-26

4 2-4-3 7-11-16-21 27-28

3* 2-4-3 10-18-26

The th i r d example of t h i s section (see Table V) shows that

i f a datum has a much higher information value than another, and

i t s conditional entropy i s lower, then this datum, as well as

consisting of more costly flow-subsequences, i s more amenable to

node or flow-subsequence improvement. Thus, by selecting the

more informative of equally probable data, and applying

optimizing technigues to i t s flow path, greater cost reductions

resu l t than i f such processes were applied to the other datum.

Datum Info Val Cond Ent H-I cost H-II cost | I - I I |

1 1 54.291 1.887 216.3 21 1. 6 4.7

12 67.106 1.715 228.2 222.3 5.9

Table V: Example 6

48

The corresponding flow-seguences are l i s t e d below.

(11)
1* 1-3 7-11-16-21 27-28

1 1-3 7-11-16-21 8-13-17-22 27-28

2 2-4-3 7-11-16-21 9-15-23 27-28

2* 2-4-3 7-11-16-21 27-28

3 2-4-3 10-18-26

(12)

1* 1-3 7-11-16-21 27-28

1 1-3 7-11-16-21 8-13-17-22 27-28

2 2-4-3 7-11-16-21 9-15-23 27-28

2* 2-4-3 7- 11- 16-21 27-28

2* 2-4-3 9-15-23 27-28

In t h i s instance (12) i s seen to have the simpler

structure, lacking the extra flow-sequence 10-18-26 which

appears in (11). Here flow-subsequence 27-28 was optimized.

In the l a s t example a case where the conditional entropies

are approximately the same i s considered. This implies that the

outputs corresponding to the two data have nearly the same

structure. Sample (49) has a somewhat c o s t l i e r output, a fa c t

r e f l e c t e d i n the information value given i n Table VI. However,

since the conditional entropies indicate similar structures, the

marginal difference in costs w i l l not cause marked

49

d i s s i m i l a r i t i e s i n the cost savings. That i s , the flow-

sequences of either datum can be structured to increase the

e f f i c i e n c y , and the resultinq cost decreases for both cases w i l l

be nearly the same. Due to the s i m p l i c i t y of the sample task,

the flow-subsequences of (49) and (57) are f a i r l y s i m i l a r ;

however, this i s not necessary i n order that the conditional

entropies be the same.

Datum I n f o Val Cond Ent H-I cost H-II cost |I-II I

49 36.686 1.820 198. 1 193. 1 5.0

57 35.450 1.828 195.1 189.7 5.4

Table VI: Example 7

The flow-sequences associated with the table entries are given

below.

(49)

1 1-3 7-11-16-21 27-28

2 1-3 5-12-19-25

3 2-4-3 7-11-16-21 9-15-23 27-28

4 2-4-3 8- 13-17-22 27-28

3* 2-4-3 9-15-23 27-28

50

(57)

1* 1-3 8-13-17-22 27-28

1 1-3 8-13-17-22 27-28

2 2-4-3 7- 1 1-16-21 10-18-26

3 2-4-3 8-13-17-22 27-28

4 2-4-3 9- 15-23 27-28

3.7.3 Summary Cf The Examples

The above examples are intended to demonstarate how the

information value, together with the conditional entropy, can be

used to aid in the analysis of an algorithm. The measure can

point to expensive data (i . e . c o s t l y for algorithms to execute),

but as well, can indicate which paths through the algorithm

should be considered for code optimization in an attempt to

obtain the maximum cost saving. In more complex examples,

improvements on nodes or flow-sequences rather than just flow-

subsequences would be in order.

The advantages of using the information value as a

complexity measure are evident from these examples.

51

3.8 Summary

In t h i s thesis, an attempt was made to define a cost and

s t r u c t u r a l complexity measure f o r an algorithm. To accomplish

t h i s , we defined an information theoretic model of the execution

of an algorithm, i n which the input i s a set of subwalks, and

the output certain walks, of a graph theoretic representation of

the algorithm. Cost i s included in the model through the

d e f i n i t i o n of a cost p r o b a b i l i t y scheme, and structure through

the concepts of reduction and isomorphism. An information value

f o r each implementation of the algorithm i s calculated. I t i s

shown that t h i s value provides a l l the information that the

conventional measure of cost alone does. Moreover, i t presents

s t r u c t u r a l information which indicates the amount of i n t e r a c t i o n

between program sections, and points to dominant, repeated and

independent flow patterns, and to s t r u c t u r a l s i m i l a r i t i e s .

Under the assumption of comparable costs, the maximum

information value points to a s t r u c t u r a l l y optimum algorithm;

when the structure i s fixed, i . e . analysing a given algorithm,

the minimum cost implementation has the smallest information

value. The appropriateness of these considerations i n the

analysis of an algorithm has been demonstrated i n Chapter I I I .

More generally, t h i s study has demonstrated the f e a s i b i l i t y of

using information theory to measure the complexity of an

algorithm.

We conclude with some suggestions f o r improving the model

treated here. F i r s t , the introduction of more s t r u c t u r a l

52

parameters may improve the model. Presently, reduction and

isomorphism have proved b e n e f i c i a l i n evaluating an algorithm;

however, a r e d e f i n i t i o n or expansion of these may y i e l d a more

informative measure. The model obtains the information value

from the weighted average of the entropy less the conditional

entropy. Without the i n c l u s i o n of these weights, the measure

becomes much more responsive to s t r u c t u r a l information, and l e s s

sensitive to costs. In certain instances t h i s may y i e l d a more

valuable measure than the one defined i n t h i s study. Of note,

when using the 'unweighted' measure, i s the fact that the most

appropriate implementation has the largest information value.

The i n c l u s i o n of other parameters in the model might also prove

useful, but t h i s would increase the cost of applying the measure

when this cost may already seem pro h i b i t i v e . However, as with

most studies concerned with the complexity of algorithms, t h i s

analysis i s based on the following assumption. The task which

the algorithm or algorithms under consideration w i l l be

computing i s c e n t r a l to some process that i s to be repeated many

times (for instance i n a business application, some procedure

which must be calculated d a i l y) . Thus, the cost i n performing a

complexity analysis for such a task may well be neglible

r e l a t i v e to the o v e r a l l savings incurred through the use of the

appropriate algorithm and i t s optimal implementation.

53

BIBLIOGRAPHY

1. AHO, A, and ULLMAN, J . , Optimization of Straight Line
Programs, SIAM Journal Comju y, (1972) pp. 1-19

2. ALEKSEEV, V.E. , Sorting Algorithms with Minimum Memory,
Cybernetics^ 5, (1969), pp. 642-648.

3. ALLEN, F.E., Control Flow Analysis, Proc. of a Symposium on
Compiler Optimization, SIGPLAN Notices, ACM, New York, July
"1970, pp. 1-19.

4. ALLEN, F. E. , Program Optimization, i n : Annual Review in
Automatic Programming VoJU 5, Pergamon Press, New York,
7 9 6 9 .

5. ASH, R. Information Theory, Wiley Interscience, New York,
1965.

6. BACHMAN, P., A Contribution to the Problems of the
Optimization of Programs, Inform. Processing 2.11 North-
Holland, Amsterdam, 1972, pp7~397-40l7

7. BAKU, S. On Reduction of Program Schemes, SIAM J . Comp.. 16,
(1968) pp. 328-339.

8. BERZTISS, A., A Note on Segmentation of Computer Programs,
Inform.. Control 12, (1968) pp. 21-22.

9. BEUS, H., The Use of Information i n Sorting JAJUC.M.. 17,
(1970), pp. 482-495.

10. COCKE, J., Global Common Subexpression Elimination,
2£oceedings of a Symp^ on Compiler Optimization^ SIGPLAN
Notices,"ACM, New~York, July"19707~pp. 20-24*7

11. FSAZER, W.E., Analysis of Combinatory Algorithms - A Sample
of Current Methodology, AFIPS Coirf. Proceedings, Spring
Joint Computer Conference AFIPS Press, Montvale, N.J.,
19727 pp. 4 83-491

12. GALLAGER, R., Information Theory and Reliable
Communication, Wiley, New York, 1968.

13. GREEN, C , A Path Entropy Function For Rooted Trees,
Jj,A^C^M^. 20, (1973), pp. 378-384.

14. HARARY, F., Grap_h Theory, Addison-Wesley, Reading Mass.,
1969.

15. HARTMANIS, J . , Computational Complexity of Random Access
Stored Program Machines, Math_. Systems Theory 5, (1971)
pp. 232-245.

16. HOPKINS, M., An Optimizing Compiler Design, Inform.

54

Processing *7J, North-Holland, Amsterdam, 1972, pp. 391-
396.

17. IANOV, I., On the Equivalence and Transformation of Program
Schemes, Comm. ,&.C.g. J[, (1958), pp. 8-12.

18. IANOV, I., On Matrix Program Schemes, C O M . 1 ^ , ^ . 1,
(1958), pp. 3-6.

19. KARP, R., A Note on the Application of Graph Theory to
D i g i t a l Programming, Inform. Control 3, (1960), pp. 179-
190.

20. KARREMAN, G., Topological Information Content and Chemical
Reactions, B u l l . Math.. Bio^hjs^ 17 (1955), pp. 279-285.

21. KNUTH, D., Sorting and Searching!, The Art of Computer
Programmingj. Vol. 3, Addison-Wesley, Reading, Mass., 1973.

22. KRIDER, L., A Flow Analysis Algorithm, J.A.C.E1. J1, (1964),
pp. 429-436.

23. MOWSHOWITZ, A., Entropy and the Complexity of Graphs,
Doctoral Dissertation, University of Michigan, 1967.

24. NIEVERGELT, J . , On the Automatic S i m p l i f i c a t i o n of Computer
Programs, Comju jUC. EU 8, (1965), pp. 366-370.

25. PATERSON, M., Program Schemata i n : Machine Intelligence
Vol. 3, (D. Michie, e d i t o r) , American Else v i e r , New York,
1968."

26. PICARD, C., Theorie des Questionnaires, G a u t h i e r - V i l l a r s ,
Paris, 1965.

27. RASBEVSKY, N., L i f e , Information Theory, and Topology,
B u l l i Hath. Biopjrys^ 17 (1955), pp. 229-235.

28. RUTLEDGE, J. , On Ianov's Program Schemata, J.A.CAM. IJ,
(1964) , pp. 1-9.

29. SCHORMANN, A., The Application of Graphs to the Analysis of
Dist r i b u t i o n of Loops in a Program, Inform. Control 7,
pp. 275-282.

30. TRUCCO, E., A Note on the Information Content of Graphs,
B u l l i Math. Bio^hys^ 1.8 (1956), pp. 129-135.

31. MARSHALL, S., On Computational Cost, i n : Annual Reyiuew in
Automatic Programming Vol. 5, Pergamon Press, New York,
19697"

32. WOODGER, M., On Semantic Levels i n Programming, i n :
I n f o i processing Ul, North-Holland, Amsterdam, 1972,
pp."402-407.

55

appendix A

Here we give the in s t r u c t i o n set of the hypothetical

assembly language in which the algorithms are •written 1. These

inst r u c t i o n s are very basic to insure they remain machine

independent. The execution costs are based on the MIX [2 1] , PDP-

10, and CDC assembler language timings. The following

assumptions about this language are made.

(1) there are 8 r e g i s t e r s , which are i n fast memory and can be

used f o r indexing.

(2) there i s one accumulator.

(3) input and output are ignored.

The costs l i s t e d are i n execution units; costs i n parentheses

are i n e f f e c t i f indexing i s used. In the statement of the

ins t r u c t i o n , c a p i t a l l e t t e r s refer to memory locations, small

l e t t e r s to r e g i s t e r s . C(x) i s the contents of location or

register x; Acc re f e r s to the accumulator.

INSTRUCTION COST

JUHP- unconditional jump 1 .2 (1 .3)

JUMPE jump i f Acc = 0

JUMPLE jump i f Acc < 0

JUMPL jump i f Acc < 0

JUMPG jump i f Acc> 0

JUMPGE jump i f Acc > 0

JOMPNE jump i f Acc = 0

SETZM A set C(A) to 0

SETZR » i set C(i) to 0

SETR i set C(j) to C(i)

SE TI R i# n set C{i) to n

SETMR A, i set C (i) to C(A)

SETRM A, i set C(A) to C(i)

SETNM A set C (A) to -C (A)

SETUR i i set C (i) to -C(i)

ADD' R i# j add C (i) to C(j)
SUB I A, n add n to C(i)

J
HR A, i add C(A) to C(i)

1 . 7 , (1 . 8)

1.0(1. 1)

1.4

1.0 (1. 1)

1.6(1.8)

1 .8 (1.9)

1.7 (1.9)

1.5(1.7)

1.6(1.8)

1.2 (1.3)

2.2 (2.3)

DIvT ,n divide Acc by n 11.3

CMPZM A

CHPZR

CMPR

CM PI

CMPH

#1

i» j

A

C(A) - 0; set f l a g

C (i) - 0; set f l a g

C(i) - C(j) ; set f l a g

C(Acc) - n; set f l a g

C(Acc) - C (A); set fl a g

1.7 (1.9)

1.5(1.7)

1.6 (1.8)

1.2 (1.3)

1.9(2.0)

BLT n move n contiguous

words of memory

0.8+(2.1)

57

Appendix B

In order to i l l u s t r a t e some of the concepts in t r o d u c e d i n

t h i s t h e s i s , we w i l l present a p a r t i a l a n a l y s i s of H, the heap

a l g o r i t h m [21]. We f i r s t g i v e the al g o r i t h m i n i t s t e x t u a l form.

Based on t h i s , we produce G (H), the graph of H. Then, so th a t

the a n a l y s i s programs have use of a numeric r e p r e s e n t a t i o n , the

se t s are e s t a b l i s h e d . F i n a l l y we o b t a i n the numeric

r e p r e s e n t a t i o n of the flow-subsequences and flow-sequences,

where the l a t t e r i s l i s t e d i n f a m i l y n o t a t i o n (see procedure i n

s e c t i o n 3.3).

fleapsort: A f i l e of numbers R^,Ra,... ,RN i s a 'heap* i f

R~ M > R̂ f o r 1 < [j / 2] < j <N,

where [x] i s the g r e a t e s t i n t e g e r i n x. Thus, R̂ >BX , R^>R3 ,
fi4- R4-' e t c » » a n d t h i s i m p l i e s t h a t the l a r g e s t number appears

•on top of the heap 1,

R L = max(R l #B i,... , R J .

I f an a r b i t r a r y input f i l e i s transformed i n t o a heap, a 'top-

down* s e l e c t i o n procedure can be used to s o r t .

Algorithm H. Numbers R^,...,RN are rearranged so th a t a f t e r

s o r t i n g i s complete, they w i l l be i n or d e r . F i r s t the f i l e i s

rearranged so that i t forms a heap, then the top of the heap i s

re p e a t e d l y removed and t r a n s f e r r e d to i t s proper f i n a l p o s i t i o n .

Assume that N > 2.

58

B1 . [' I n i t i a l i z e] S e t d t o [H/2] + 1 , r t o i . .

H 2 . [D e c r e a s e d o r r .] I f d > 1 , s e t d t o d - 1 , a n d B t o B d . (I f

d > 1 , t h e f i l e i s b e i n g made i n t o a h e a p ; i f d=1 t h e n t h e

f i l e i s a l r e a d y a h e a p .)

H 2 b . O t h e r w i s e s e t R t o R r , R r t o R^, a n d r t o r - 1 ; i f t h i s

m a k e s r = 1 , s e t R^ t o R a n d t e r m i n a t e .

H 3 . [P r e p a r e f o r ' s i f t - u p '] S e t j t o d . (A t t h i s p o i n t we h a v e

R r . ^ > B- f o r d < [j / 2] < j < r ;

a n d R K i s i n i t s f i n a l p o s i t i o n f o r r < k < N.

H 4 . [A d v a n c e d o w n w a r d .] S e t i t o j a n d j t o 2 j . (I n t h e

f o l l o w i n g s t e p s we h a v e i = [j / 2] .) I f j < r , go t o s t e p H 5 ;

i f j = r , go t o s t e p H 6 ; a n d i f j > r , go t o H8

B 5 . [F i n d ' l a r g e r 1 s o n .] I f R^< R^ + L , t h e n

H 5 b : s e t j t o j p l u s 1 .

H 6 . [L a r g e r t h a n R] I f R>R- , t h e n go t c s t e p H 8 .

H 7 . [M o v e i t u p .] S e t R^ t o R j , a n d go b a c k t o s t e p H*».

B 8 . [S t o r e R.] S e t R^ t o R . (T h i s t e r m i n a t e s t h e * s i f t - u p «

a l g o r i t h m i n i t i a t e d i n s t e p H 3 .) R e t u r n t o s t e p H 2 .

59

60

2 2.1 IMS X- P •

1 1,2 [t=10]

2 3

3 5 , 6 , 7 , 8 , 9 , 1 0 , 2 7

4 11,12

5 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0

6 2 1 , 2 2 , 2 3

7 2 4 , 2 5 , 2 6 , 2 8

8 13,14

9 4

Flow-Subseguences

1- 3

8 - 13 -17-22

27-28

7 - 1 1 - 1 6 - 2 1

10-18-26

2 - 4 -3

9 - 15-23

6 - 1 4 - 2 0 - 2 4

5 - 1 2 - 1 9 - 2 5

61

Families of Flow-Seguences Costs

F^: 2-4-3 7-11-16-21 10-18-26 44.7

2-4-3 10- 18-26 24.4

i

F A : 1-3 7-11-16-21 8-13-17-22 27-28 56.6

1-3 7-11-16-21 27-28 37.2

1-3 8-13-17-22 27-28 36.6

F 3: 1-3 7-11-16-21 6-14-20-24 46.8

1- 3 6-14-20-24 26.5

F. : 2-4-3 7-11-16-21 9-15-23 27-28 56.6

2- 4-3 7-11-16-21 27-28 41.5

2-4-3 9-15-23 27-28 36.3

F s: 1-3 7-11-16-21 5-12-19-25 47.4

1-3 5-12-19-25 27.1

F : 2-4-3 8-13-17-22 27-28 40.9

