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ABSTRACT 

T h i s work i s a study of an i n f o r m a t i o n t h e o r e t i c model 

which i s used to develop a complexity measure of an a l g o r i t h m . 

The measure i s d e f i n e d to r e f l e c t the computational c o s t and 

s t r u c t u r e of the given a l g o r i t h m . In t h i s study computational 

c o s t s are expressed as the execution times of the a l g o r i t h m , 

where the algorithm i s coded as a program i n a machine 

independent language, and analysed i n terms of i t s 

r e p r e s e n t a t i o n as a pseudograph. I t i s shown t h a t t h i s measure 

aids i n d e c i d i n g which s e c t i o n s of the a l g o r i t h m should be 

optimized, segmented or expressed as subprograms. The model 

proposed i s designed to y i e l d a measure which r e f l e c t s both the 

program flow and computational c o s t . Such a measure allows an 

•optimal' a l g o r i t h m to be s e l e c t e d from a set of a l g o r i t h m s , a l l 

of which s o l v e the given problem. T h i s s e l e c t i o n i s made with a 

more meaningful c r i t e r i o n f o r d e c i s i o n than simply execution 

c o s t . The measure can a l s o be used to f u r t h e r analyse a given 

algorithm and p o i n t to where code o p t i m i z a t i o n techniques should 

be a p p l i e d . However i t does not y i e l d a method of generating 

e q u i v a l e n t a l g o r i t h m s . 
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CHAPTER I: RECENT STUDIES IN ALGORITHMIC COMPLEXITY 

1.1 Introduction 

The following i s a study of an information theoretic model 

which i s used to develop a complexity measure of an algorithm. 

The measure is defined to r e f l e c t the computational cost and 

structure of the given algorithm. In t h i s study computational 

costs are expressed as the execution times of the algorithm, 

where the algorithm i s coded as a program in a machine 

independent language. For purposes of analysis, the algorithm 

i s represented by a pseudograph. I t w i l l be shown that t h i s 

measure of complexity aids i n deciding which sections of the 

algorithm should be optimized, segmented or expressed as 

subprograms. The model proposed i s designed to y i e l d a measure 

which r e f l e c t s both the program flow and computational cost. 

Such a measure allows an •optimal 1 algorithm to be selected from 

a set of algorithms, a l l of which solve the given problem. This 

selection i s made with a more meaningful c r i t e r i o n for decision 

than simply execution cost. The measure can also be used to 

further analyse a given algorithm and point to where code 

optimization techniques should be applied. However i t does not 

y i e l d a method of generating equivalent algorithms. 

Before a d e f i n i t i o n of the model i s given, a brief summary 

w i l l be presented of the problem under study and of related 

research i n this area. The main objectives i n the study of 

algorithms have been to generate •equivalent* algorithms, to 
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optimize compiler code through an analysis of the algorithm and, 

through a measure of e f f i c i e n c y , to compare, rank and then 

s e l e c t , an algorithm which i s i n some sense optimal for a given 

task. Studies in the f i r s t area have often been quite 

theoret i c a l and have avoided the problem of obtaining a measure 

of optimality. The second area, being concerned with compilers, 

has tended tc concentrate on improvements in p a r t i c u l a r types of 

code rather than evaluations of the program as a whole. 

Investigations of the t h i r d type have often focused on only a 

single facet of complexity rather than the o v e r a l l complexity of 

the algorithm. The discussion of some of the relevant studies 

i s given i n three parts. F i r s t those which have not included 

graphs i n t h e i r analyses, then those that have used graphs, and 

f i n a l l y those that have defined an information measure on graphs 

and/or algorithms are presented. 

1.2 Belated Work 

1.2. 1 Studies Without The Use Of Graphs 

An early, quite theore t i c a l evaluation of algorithms i s 

given i n a study by Ianov [17,18]. The notion of 'program 

schemata* i s introduced to represent abstract algorithms or 

programs, where programs are represented in a li n e a r notation 

and also as matrices. Using program schemata, a formalism which 

allows f o r transforming these schemata into equivalent ones, a 

decision procedure for determining equivalence, and a method of 

generating a l l equivalent schemata are developed. Rutledge [28] 

si m p l i f i e s Ianov's [17,18] formalism by interpreting i t in such 
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a way that the equivalence question i s seen to be the 

equivalence problem of f i n i t e automata, for which a solution 

e x i s t s , even though i t i s rather impractical. Furthermore, a 

method for generating a l l program schemata equivalent to a given 

program schemata i s presented. These studies are more concerned 

with the formalisms introduced than with an evaluation of the 

algorithms. But since these procedures do y i e l d a l l eguivalent 

program schemata, an e f f i c i e n c y measure defined on them would 

allow for the optimum of a l l equivalent programs to he 

determined. However, such an abstract measure cannot reveal 

much about code implementation or program evaluation. Thus, 

such studies remain s t r i c t l y t h e o r e t i c a l and very l i t t l e 

p r a c t i c a l work has followed from them, one exception to t h i s i s 

Paterson's [25] work on program schemata. He discusses the 

p o s s i b i l i t y of applying complexity considerations i n program 

optimization but does not develop the necessary machinery. 

In a more r e s t r i c t e d study, Beus [9] evaluates sort 

algorithms by defining an e f f i c i e n c y measure on the number of 

comparisons made. However, t h i s measure lacks s u f f i c i e n t 

generality ty neglecting other cost inducing factors such as 

memory accesses, index c a l c u l a t i o n s etc. 

At a less t h e o r e t i c a l l e v e l , Hievergelt [24 ] considers the 

problem of optimizing a program. As motiviation for his study 

he discusses the application of optimizing i n areas where 

syntactic improvements would be useful, leaving semantic 

considerations to the programmer. His study gives several 



s p e c i f i c p r a c t i c a l transformations that can be applied to any 

program. These y i e l d d e f i n i t e improvements i n execution cost 

units. Yet the advantage gained i s questionable considering the 

expense involved i n applying such improvements to sections of 

the program that are seldom executed. An improvement on 

Nievergelt*s [24] analysis appears i n a much referenced paper by 

Allen [4], where topological properties of the program are used 

to obtain program modules. The most frequently executed of 

these are considered for optimization. Hopkins [16], using a 

similar approach, presents a s e r i e s of transformations for 

optimizing programs, and the o v e r a l l implementation of such 

techniques. 

Many other papers [7,15,22] written during the 1960*s and 

early 1970's study the problem of optimization; however, their 

approach i s even more sp e c i a l i z e d than those mentioned above. 

These studies give techniques f o r optimizing general code, but 

f a i l to consider program flow, algorithmic implementation etc. 

This approach does not attempt tc evaluate the program as a 

whole, but i s concerned with improving p a r t i c u l a r sections of 

code. In the following section, we consider papers which take a 

global view of programs and algorithms. 

1.2.2 Graph Theoretic Approach 

One of the f i r s t graph theoretic approaches to the 

evaluation of algorithms i s the one developed by Karp [19] in 

1960. Karp notes that previously the seemingly natural 
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r e l a t i o n s h i p between program flow and graphs had been ignored. 

In t h i s paper an algorithm i s expressed as a flow chart, an 

execution of the algorithm defines a path through the flow chart 

and t h i s path i s considered as a graph consisting of operational 

elements (seguences of instructions without a transfer) and 

decision elements. The graphic representation f a c i l i t a t e s the 

i d e n t i f i c a t i o n of some simple program improvements. The 

programs are analysed i n . terms of subprograms, and a Markov 

model i s introduced for investigating the frequency of execution 

of parts of the program. Schurmann [29] uses the graphic 

representation to study the problem of program segmentation. 

This i s also an optimization problem since in order to insure 

fast execution, a minimum amount cf paging i s reguired. The 

loops i n the graphic representation of the algorithm are 

analysed using the adjacency matrix of a p a r t i a l graph based on 

the cycles (loops of the algorithm). The cut having the minimum 

number of program loops spanning i t i s found and t h i s defines 

the optimal cut. Berztiss [8] improves on the method of 

construction of t h i s matrix. 

In a more recent paper, Aho and Oilman [ 1 ] introduce cost 

considerations into algorithmic optimzation. An algorithm i s 

represented as directed a c y c l i c graphs, and four transformations 

applicable to t h i s representation are defined. Properties of 

the programs equivalent under the transformations are discussed, 

as well as possible extensions of t h i s representation to further 

program optimizations. 
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Bachmann [6] recently has assessed the problem of program 

e f f i c i e n c y using an abstract calculus based on a directed graph 

representation of the program. Several transformational rules 

are given together with a measure of e f f i c i e n c y defined on the 

p r o b a b i l i t i e s and the cost of a l l operations executed on a given 

path. However th i s i s assumed to be a t h e o r e t i c a l c r i t e r i o n 

only, since determination cf p r o b a b i l i t i e s i s d i f f i c u l t and the 

number of d i s t i n c t paths often quite large. As well, the 

formalism needed to apply the transformations i s not mentioned, 

but would presumably be quite cumbersome. 

Allen [ 3 ] , using a graphic representation of an algorithm, 

proposes a useful method of analysing i t s control flow. In his 

paper, alien defines dominance relations among nodes and from 

these obtains i n t e r v a l s (subgraphs with single entry point h 

such that each closed path passes through h) which are used to 

p a r t i t i o n the graph and tc give a p a r t i a l ordering of the 

i n t e r v a l s . Mention i s made of how these constructs can be used 

in analyses involving searches for redundant instructions, 

variable d e f i n i t i o n s and use relationships etc. Applying the 

flow a n l y s i s methods given by Allen £3], Cocke [10] defines a 

set of Boolean variables on computations. This set yields a 

system of eguations, which, when solved, point to those 

expressions which should be eliminated. Also included i n t h i s 

paper i s the notion of node s p l i t t i n g when a cycle i s entered 

from more than one node, a procedure often very useful i n the 

optimization of cycles. 
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1.2.3 Information Theoretic Approach 

Information theory, although applied to diverse problems, 

has not been used widely i n the area of algorithmic complexity 

and optimization. In a 1973 paper. Green [13] defines an 

entropy function to measure the complexity of paths in rooted 

trees. Let T„ be a tree with n terminal nodes v^ , va , . . ., v n and 

m non-terminal nodes u t, u^,. .. , u m, and 

PL = P(v 0,v. t) = P f v ^ u ^ u ^ , . . . , ^ ^ . ) , 
a path of nodes from vo to v-. Let od (u) denote the outdegree 

of node u. Then the path entropy E i s given by 
K I (P.) = Slog od (u, ) + log od (v ) ; 

L j = 1 J 

and the entropy of the tree i s defined by 

n 
E(T n) = 2 E(P. ) . 

i=1 

F i n a l l y , the normalized entropy of T n i s given by 

H(T n) = (1/n)E(T r t). 

A 1969 paper by Warshall [3 1] analyses the problem of 

algorithmic complexity using information theory, under the 

constraint that the algorithms studied are viewed as arrays of 

choice-making elements. Thus, a sequence of states or Boolean 

expressions ever states cannot be evaluated using t h i s model. 

The f i n i t e input set consists of the set of data inputs { I } , 

each of which determines a sequence of states from entry to 

ex i t . An algorithm A i s a function from the input values to the 

set of E-sequences ( f i n i t e sequence of at least three elements. 
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beginning and ending with E, the entry or exit s t a t e ) . The 

states of A consist of the union of the elements occurring i n 

the E-seguences. To each input 1^ there corresponds a 

probability P ( I ) . The cost associated with state s i s 

-p(s-»t) log p (s-»t) 

where p(s—>t) i s the probability that t i s the next state. 

The t o t a l in determinancy of algorithm A, i . e . the choice among 

paths c, i s given by 

H (c) = - S p (c) (log p (c)) , p (c) = 2 p ( j ) . 

Then l e t t i n g TT t(s) be the number of occurrences of states s i n 

c, the mean number of occurrences of s per path i s 

TT(s) = S p (c)TTc(s) 

and per execution cost of algorithm A i s 

C(A) = - S T T ( s ) £p(s-^t)log p(s-»t). 

Thus, H(A) i s the algorithm cost assuming free bookkeeping, C (A) 

the cost (in the information theoretic sense) without t h i s 

assumption. Eased on the above, Marshall evaluates those 

algorithms which consist only of decision elements and develops 

some properties of t h i s representation. Rather than present a 

general analysis of algorithms, t h i s paper selects a subset of 

algorithms and f i t s i t to an information theoretic model. To be 

of more general use, t h i s model w i l l have to be extended to 

include a wider class of algorithms, node execution costs, types 

of loops etc. 

Mowshowitz [23] defines the s t r u c t u r a l information content 

of a graph using the o r b i t s of i t s automorphism group. This 

measure i s s t r u c t u r a l in the sense that i t gives the information 
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content of a p a r t i c u l a r graph r e l a t i v e to a system of 

transformations f o r which i t i s invariant. Using f i n i t e 

undirected graphs and digraphs and a particular type of i n f i n i t e 

graph, properties of t h i s measure are investigated and the 

effect of several graph theoretic operations on the measure 

examined. It i s suggested that an information measure on the 

structure of the graph of an algorithm might be useful in 

characterizing the r e l a t i v e complexity of the algorithm. 

Consideration cf that proposal i s the basis of t h i s t h e s i s . 

In the following, an information value w i l l be defined on 

an algorithm, methods of obtaining t h i s value given and i t s 

usefulness as a measure of e f f i c i e n c y and complexity discussed. 

In Chapter II d e f i n i t i o n s of necessary terminology, the 

cost p r o b a b i l i t i e s and the information value w i l l be given. A 

general explanation of the concepts related to t h i s p a r t i c u l a r 

measure i s also included. 

In Chapter I I I , a procedure w i l l be presented for computing 

the non-isomorphic, reduced seguences of the algorithm being 

studied. In addition, the chapter elaborates on the usefulness 

of t h i s measure through extensive examples and possible 

extensions of the work. 



10 

CHAPTER I I : AN INFORMATION THEORETIC MODEL OF ALGORITHMS 

2. 1 Constituents of an Information Theoretic Model 

In order to define an information theoretic model, one must 

i d e n t i f y a channel with inputs and outputs, and input and 

channel p r o b a b i l i t i e s (see, for example. Ash [ 5 ] ) . The basic 

channel model defines the input as members of some f i n i t e set 

{b^,b z,...,b J } , and the output as members of the same or a 

dif f e r e n t set, say {a , a ,.. . , a K ]. Each output a^ i s 

s t a t i s t i c a l l y dependent only on the corresponding input bj. 

Such dependence i s determined by a fixed conditional p r o b a b i l i t y 

assignment P (a K | b- ) , defined for each input b- and output a^. 

The set of these conditional p r o b a b i l i t i e s defines the channel. 

P r o b a b i l i t i e s are also given f o r each input b-. Such a model 

can be depicted by the flow diagram shown in Figure 1. 

Noise 

Source Encoder Channel -V Decoder > Source Encoder > Channel / 
Decoder 

Figure 1: Information Channel 

This system describes the flow of information from a source 

to a destination i n p r o b a b i l i s t i c terms. The source message i s 

associated with some object which can be sent over the channel. 

This channel i s considered as the medium over which the coded 
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message i s transmitted. The decoder operates on the channel 

output in an attempt to obtain the o r i g i n a l message. In our 

model, the source message w i l l be the basic steps of the 

algorithm; and the received message, the c o l l e c t i o n of these 

steps r e s u l t i n g from the transmission of the source message over 

the channel (i.e. the r e s u l t of the algorithm being executed). 

Kncwing the output, we w i l l attempt to extract information 

concerning the source message which w i l l indicate how a more 

e f f i c i e n t algorithm can be obtained. 

The fundamental notion of information provided about the 

event x by the occurrence of the event y i s defined on the model 

by 

I(x;y) = log (P (x|y)/P (x)) 

where the base of the logarithm i s usually taken to be 2. The 

self-information of the event x i s defined by 

I (x) = -log P (x) 

and the conditional self-information of x given y by 

I (x|y) = -log P (x|y) . 

The average values of these are defined as the entropy of the 

ensemble X and conditional entropy of the ensemble X, given Y, 

respectively, and are given by 

H (X) = - S P (x) log P (x) 

and H(X|Y) •= - S p ( x , y ) l o g P(x|y). 

The average information between X and Y i s the entropy of X less 

the conditional entropy of X given Y, i . e . 

I(X;Y) = H(X) - H(X|Y). 

Such a model w i l l be used i n the following study. The 
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underlying p r o b a b i l i t i e s of the model derive from two d i f f e r e n t 

sources: data items (rela t i v e frequencies), and a s t r u c t u r a l 

decomposition. The l a t t e r arise i n the following way. Let n^ 

for 1 < i < k be non-negative integers associated with an 

algorithm, and l e t n = ni+ ... + n^. A probability scheme i s 

constructed by taking p^ = n^/n. The entropy 

H(P L, .».# P̂ ) = -Epilog of the probability scheme then 

serves as a measure of the structure of the algorithm. The role 

of the r e l a t i v e freguencies of data items w i l l become clear i n 

the detailed development which follows. 

2.2 Basic Terminology 

2.2.1 Graph Theory Definitions 

Certain graph theoretic concepts are of use in defining 

this model. The following d e f i n i t i o n s are taken from 

Harary [11]. A 3£a£h G i s a f i n i t e non-empty set V of p points 

together with a set X of q unordered pairs of d i s t i n c t points of 

V. Each pair x = {u,v} of points i n X i s a l i n e of G. A graph 

G i s directed i f the set X i s ordered. The elements of X are 

directed l i n e s or arcs. A loop of a graph i s a l i n e which joins 

a point to i t s e l f ; i f more than one l i n e joins two points, such 

l i n e s are c a l l e d multiple l i n e s . A directed graph which allows 

both loops and multiple l i n e s i s c a l l e d a Pgeudograph. A 

subgraph of G is a graph having a l l i t s points and l i n e s in G. 
A °f a graph G i s an alternating sequence of points and 

l i n e s ,x^ , vL ,... ,vn j_ ,xri, v^ , beginning and ending with points, 

in which each l i n e i s incident with the two points immediately 
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preceding and following i t . Such a walk joins v o and v n and may 

be denoted by v f l,v ,...,v n. The walk i s closed i f v0=vrt. It i s 

a t r a i l i f a l l the lines are d i s t i n c t , and a JEath i f a l l the 

points and hence, a l l the l i n e s , are d i s t i n c t . If a walk i s 

closed and i t s n > 3 points d i s t i n c t , then i t i s a cycle. 

2.2.2 Model Definitions 

Before defining the model precisely, we w i l l discuss the 

interpretation of the term algorithm, as used in t h i s study. An 

algorithm X can be represented, quite naturally, as a 

pseudograph G (X). Interpreted i n t h i s way, the basic elements 

or steps of the algorithm become the nodes, {v, ), of a graph. 

Each node of the graph i s c a l l e d a c a l c u l a t i o n node or a 

decision and c a l c u l a t i o n node, depending on the type of the 

eguivalent step in the algorithm. An arc joins two nodes i n the 

graph i f the corresponding steps are sequential i n the 

algorithm. Each execution of the algorithm then defines a walk 

in G (X) ; these walks are, i n f a c t , pseudographs. In any 

algorithm there are distinguished nodes, at which any necessary 

i n i t i a l i z a t i o n of values i s done. The next node, v ?, marks the 

beginning of the n o n - i n i t i a l i z a t i o n steps of the algorithm. We 

give s p e c i a l attention to certain walks of G(X). A walk in G(X) 

beginning with vg and up to but not including the next 

occurrence of v& i s c a l l e d a flow-seguence a of G(X). The set 

{a K } of flow-sequences i n G(X) w i l l be denoted by A(X), or 

simply A. I f v^ i s the f i r s t decision node of a flow-sequence 
a w = v e >\ ' • * * vu 'v<4 ' • • •» V i / t h e n a f low-subsegugnce b of a i s 
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defined as (1) any subwalk of a K , beginning with a decision node 

v', and up to, but not including, the next occurrence cf either 

v 1 or v, , or (2) the subwalk v , v ,.. . , vL/. The introduction of 
S S ^ 

flow-subseguences into the model i s a s t r u c t u r a l consideration. 

For a given node, each of the flow-subsequences containing i t 

provides a d i s t i n c t s t r u c t u r a l context i n which i t may be 

analysed. We denote the set of a l l flow-subsequences of flow-

sequences in G (X) by B (X) or B. The set of flow-subsequences of 

a flow-sequence a i s denoted by B (a). In the following, we 

assume the t o t a l number of flow-sequences and flow-subsequences 

to be m and n, repectively. The notion of flow-subsequence i s 

somewhat si m i l a r to that of i n t e r v a l , given by Allen [4], 

Before defining reduction and isomorphism of flow-

seguences, we introduce some further terminology. 

In order to provide a weight function for the model, a 

hypothetical assembly language i s defined. The language i s 

simple so as not to incorporate any instructions dependent on 

the configuration of some machine. The actual in s t r u c t i o n set 

i s given in Appendix A. Each node v of the graph i s assigned a 

weight, w(v), which i s the cost in execution units, 

( i . e . machine c y c l e s ) , of the assembly language instructions 

necessary to compute t h i s step. The weight of a walk i s the sum 

of the costs of i t s constituent nodes. For this study, we 

equate an increase i n e f f i c i e n c y with a decrease i n these 

execution costs. 

Next we define the process of structuring to include 
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a l t e r a t i o n s to the program code which depend on flow 

relationships among certain nodes of the graph. A structuring 

i s considered b e n e f i c i a l i f the e f f i c i e n c y of the program i s 

increased. writing a section of the algorithm as a subroutine, 

or as a form that r e f l e c t s a fixed order among certain nodes are 

examples of structuring. Structural complexity i s i d e n t i f i e d 

with the flow of control of the algorithm. For example, we 

regard as simple, a structure with simple l i n e a r flow, and as 

complex, one with imbedded looping and branching. 

we now continue with the model d e f i n i t i o n s . An 

implementation M (X) of algorithm X, i s a coding of the algorithm 

as a program i n the assembly language. The standard 

implementation, M0(X) , i s the i n i t i a l coding of the algorithm. 

For i > 1, M-(X) w i l l denote an implementation which has been 

structured in an attempt to decrease o v e r a l l execution costs. 

We next make precise the terms reduction and isomorphism. A 

flcw-seguence may contain several copies of a given flow-

subseguence, as i s the case, for example, when a loop i s 

repeated several times. Noting t h i s , we define a', the reduced 

flow-sequence of flow-sequence a, as the walk consisting of the 

d i s t i n c t flow-subsequences occuring in a. We define the weight 

of a flow-sequence as the weight of the corresponding reduced 

flow-sequence. Thus, w(a) i s to be interpreted throughout as 

w(a'). The set of a l l reduced flow-sequences w i l l be denoted by 

A* (X) or simply A'. A flow-sequence a r i s isomorphic to flow-

sequence a s i f , 

a) B(ar') = B(a s'), i . e . the order of flow-subsequences within 
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flew-sequences i s not important, or 

b) Bfa,?) C B {a*), and there i s no a 1 such that 

B(ar') C B(a«) and 

«(ar') < w(at«) < w(a6») . 

That i s , the flow-subsequences of ar' are also i n the set of 

f lew-subsequences of a&', and the cost in execution units of a,? 

i s closer to the cost of a$' than to any other reduced flow-

sequence. 

Reduction and isomorphism are present in the model i n order 

to include structure i n the measure of complexity. If the flow-

sequences are such that flow-subsequences are not repeated, 

i . e . no reduction i s possible, then within these flow-sequences, 

structuring of the program so that some inner loop i s made very 

e f f i c i e n t i s unlikely to decrease the execution times 

s i g n i f i c a n t l y . This follows since no single part of the flow-

sequence i s repeated often. However i f much reduction i s 

possible, i . e . inner loops are repeated many times, structuring 

the program to r e f l e c t t h i s , or coding these lccps more 

e f f i c i e n t l y , decreases the o v e r a l l execution time. 

S i m i l a r l y , when analysing isomorphism, i f the same basic 

structure i s repeated, i . e . one flew-sequence i s simply a subset 

of another, then the complexity of the t o t a l graph i s decreased, 

while the cost remains constant. Emphasis on such a flow-

sequence, when attempting to optimize the code, i s l i k e l y to 

decrease o v e r a l l cost to a greater extent than a flow-seguence 

which has no corresponding isomorphic flow-sequences. also, i f 
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there are no isomorphic flow-sequences, then there i s no 

par t i c u l a r flow-sequence which should be studied for more 

e f f i c i e n t ceding, and the cost i s u n l i k e l y to be s i g n i f i c a n t l y 

reduced by considering the structure alone. That i s , assuming 

the unstructured program has been coded e f f i c i e n t l y , no 

structuring w i l l markedly reduce the o v e r a l l cost. This w i l l 

become more evident when the information value i s defined below. 

One can associate with an algorithm X the set of data D(X) 

on which the algorithm X operates. For example, i f S i s an 

algorithm to sort n numbers into order, then D(S) i s the set of 

a l l n f a c t o r i a l possible orderings of n numbers. If D(X) i s not 

f i n i t e , then for this analysis a f i n i t e subset D' (X) of D (X) i s 

selected which i s representative of the data on which X 

executes. By representative we mean that for each possible 

flow-sequence of G(X), there i s an element of D*(X) which y i e l d s 

that flow-sequence. Since a f i n i t e data set can be obtained for 

any algorithm, we w i l l assume that D(X) i s f i n i t e i n what 

follows. With each element d of D (X) , there i s an associated 

r e l a t i v e frequency, '8(d), which denotes how frequently the 

algorithm executes on t h i s element. For each d, l e t GJX) denote 

the pseudograph resulting from the execution of the algorithm on 

datum d, We then define to be the set cf flow-sequences of 

Gd(X) . Â ' i s the subset of consisting of the reduced, non-

isomorphic flow-sequences of A , . The union of a l l A* over D(X) 

i s the set A*, defined above. Bd i s the corresponding set for 

flow-subsequences. 
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2.3 Definition of the Information Hodel. 

The model used w i l l follow the description given i n section 

2 . 1 , altered to include a probability scheme defined on the cost 

and s t r u c t u r a l properties of the algorithm. With the flow-

subseguences as the source message and the resulting flow-

sequences as the received message, t h i s model becomes 

meaningful. The execution of the algorithm on D(X) produces as 

output, flow-seguences; an analysis of these yi e l d s information 

about the input which can point to a more e f f i c i e n t 

implementation of the algorithm. Thus, by transmitting the 

input ever the channel, the algorithm can be characterized by 

the resulting flow-sequences, and an information value defined 

to r e f l e c t i t s cost and structure. 

Given an algorithm X, i t s graph G (X) , and i t s data set 

D (X), the model i s characterized b r i e f l y as follows. 

The channel i s defined by the conditional p r o b a b i l i t i e s 

induced by D(X). The ijvput, {b - }, i s the set B of flow-

subseguences of G (X). The output i s qiven by A *= [a^* }, the set 

of reduced, non-isomorphic flow-sequences obtained by 

transmitting B over the channel. 

2.4 Definition Of P r o b a b i l i t i e s 

The input, channel and output p r o b a b i l i t i e s w i l l now be 

defined, completing the formulation of the model. The 

probabilties are defined as a function of execution cost units 
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in order that the the model w i l l i n fact be a function of cost. 

Relative frequencies are assumed tc be defined on D(X) and hence 

are incorporated i n the d e f i n i t i o n of the information value. 

Given that the execution cost of flow-subsequence b" i s defined 
0 

by 

and the t o t a l cost of the n flow-subsequences by 

H = 2Mj , 

then the input p r o b a b i l i t i e s are defined by 

Pfbj) = B j / * . 

This gives the cost frequency of flow-subsequence b̂  with 

respect to the t o t a l cost of the flow-subsequences. Defining 

aJ = { a | b- i s i n B (a) }, 

and the weight of a-* as 

w(aJ ) = 2w(a) , 

where the sum i s over those a in a^, then the channel 

p r o b a b i l i t i e s are 

[ w(a„)/w(a'i) i f b- i s i n B (a u) 

0 otherwise 

i . e . the cost frequency of flow-sequence with respect to 

those flow-sequences containing flow-subsequence b:. We denote 
J 

the output p r o b a b i l i t i e s by 

n 
P{aK) = 2,P(a K|b-)P(bj) , 

i . e . the cost probability of flow-sequence a^ averaged cost 

wise over a l l flow-subsequences i n flow-sequence a K . For each 

element d of D (X), R(d) i s the r e l a t i v e frequency of datum d. 
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We now show t h a t these d e f i n i t i o n s do i n f a c t y i e l d 

p r o b a b i l i t i e s . 

Obviously 

i=1 * 
= 1 s i n c e , 

2 P ( b ; ) = 

i=1 N N 
• + I r l = I ~ 1 

N J 8 

A l s o 

2 P ( a J 
k=1 

m n 
= S S P ( a l b , ) P ( b : ) k=1 j=1 

m n 
= (1/N) 2 2 (w(a )/w(a J))N ; 

k=1 j=1 J 

[ ' w (a1-) v (a*) ' w(a") 

+ *Al „ & * w (a"1 ) 

y v (a L ) w (a n) 
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+ . . . + 8^ ( H t „ + . . . + 

w (a* ) 

= <1/N) ( H t + N x + . . . + N „ ) 

= 1 

f w (a K) i f b- i s in B (a K) 
where w = j 

'•J 0 otherwise 

m 
and <1/w(aL)) = (w (aL)/w (a L)) = 1 • 

k=l *'L 

In defining the model p r o b a b i l i t i e s as cost measures, the 

concepts of cost and complexity are strengthened within the 

model. If a flow-sequence a^ has high p r o b a b i l i t y , then t h i s 

indicates one or more of the following. F i r s t , a K consists of 

seldom repeated flow-subsequences, i . e . the flow-subsequences of 

a^ do not appear i n many other flow-sequences, so structuring of 

the program around t h e i r occurrence in a^ w i l l not greatly 

impede the execution of the other flow-seguences, and should 

decrease the execution time of a k . Also, i f the flow-

sufcseguences i n a^ are costly i n r e l a t i o n to those in other 

flow-sequences, high probability r e s u l t s . This i s consistent 

with the notion that a very costly flow-sequence should receive 

considerable analysis, since i t necesssarily .will be a large 

contributor tc overall cost (assuming uniform r e l a t i v e 
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frequencies). If the above occur, a higher cost p r o b a b i l i t y 

w i l l r e s u l t , and hence, as w i l l be shown, a larger information 

value. 

2.5 Definition Of Information Measure 

Using the information theoretic r e l a t i o n 

I (X;Y) = H (¥) - H (YjX) , 

the information value of an algorithmic implementation w i l l be 

defined in terms of the entropy H(A(X)) of the ouput flow-

sequences, and the conditional entropy H (A (X) | B (X)), of the 

flow-sequences given the input flow-subsequences. For each 

possible datum d i n D(X), with r e l a t i v e frequency B(d), H d(A(X)) 

and H d (A (X) | B (X)) are calculated as 

H d(A(X)) = -2 (w(a y)P(a K)log P(a K)) 

where the sum i s over the set of reduced flow-seguences A^, and 

H d(A (X) |B (X)) = -£(N-P(b- J P f a J b ^ l o g P ( a u | b j ) ) , 

the sum taken over the set of flow-sequences A', and flow-

subsequences B^. The costs, and hence p r o b a b i l i t i e s , are those 

determined by the given implementation, M (X). Where no 

confusion w i l l a r i s e , we w i l l write A and B f o r A(X) and B(X), 

respectively. 

We interpret the entropy as a measure of the cost and 

s t r u c t u r a l complexity of the algorithm. A lower entropy occurs 

i f there are only a few flow-sequences in A* compared to the 

number possible, i . e . there were many isomorphic flow-sequences. 

Thus, proper structuring should decrease the o v e r a l l cost. 
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Also, i f the same flow-subsequence occurs i n many di f f e r e n t 

flow-sequences, the entropy i s lower, indicating that this flow-

subsequence should be coded more e f f i c i e n t l y , with emphasis on 

i t s flow pattern. However, entropy i s higher when either the 

f low-subseguences within c e r t a i n flow-sequences are costly 

r e l a t i v e to other flow-subsequences, or flow-sequences are long 

and s t r u c t u r a l l y complex r e l a t i v e to other flow-seguences. 

Attention should be given to such flow-sequences when attempting 

to optimize the code of a given algorithm, since overa l l cost i s 

dominated by them. 

This measure then, points to flow-sequences or flow-

subsequences which should be considered for possible 

optimization. 

The weighted conditional entropy, H^(A|B), i s a refinement 

of the entropy measure. It considers the amount of cost and 

st r u c t u r a l complexity preference that i s , i n a sense, 

duplicated. If the same flow-subsequence b appears i n many 

di f f e r e n t flow-sequences, then, although the code of b can be 

optimized, only one of the flow-sequences containing b can be 

structured so as to optimize on b's r e l a t i v e position among 

other flow-subseguences of the flow-sequence. This follows from 

the observation that i f more than one of these flow-sequences 

has the same general structure, then they are isomorphic. But 

i f they are isomorphic, then only one copy i s present. 

Necessarily then, the structures i n the non-isomorphic sequences 

are d i s t i n c t , verifying the above remark. Hence, by subtracting 
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the conditional from the unconditional entropy, a correction i s 

made for the amount of 'structural information' which i s 

repeated. Also of note i s the fact that i f the conditional 

entropy measure i s low, then the flow-subsequences are generally 

not repeated in many flow-seguences. This indicates a f a i r l y 

simple structure which yields a substantial cost decrease when 

i t i s properly structured and e f f i c i e n t l y coded. However, a 

high conditional entropy denotes a more complex structure, with 

the same flow-subsequences occurring i n many s t r u c t u r a l l y 

d i f f e r e n t flow-sequences. In a sense the conditional entropy 

accounts for the inters e c t i o n of flow-sequences, through common 

flow-subseguences. 

The above discussion i s concerned with only a single 

element d of D (X). To complete the model, the input must be 

transmitted through the channel, i . e . the algorithm must be 

executed on a l l data. Thus the entropy and conditional entropy 

are defined as 

H (A) = 2 8 (d) H^ (A) and 

H(A|B) = S B(d)H d(A|B), 

where the sum is over a l l d i n D (X). Then the information value 

of the implementation of algorithm X i s given by 

I (A; B) = H (A) - H (A | B) . 

2.6 Uses of The Information Value 

The term cost comparable i s used here to describe those 

algorithms which, i n their standard implementations, have within 
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a few per cent the same execution cost per node, t o t a l number of 

nodes, and execution cost per datum. The maximum value of 

I(A;B) over a set {Z} of cost comparable algorithms which solve 

the same problem, i s obtained from the most e f f i c i e n t algorithm. 

A higher information value on t h i s set i s more 'informative 1, in 

that i t indicates any of the following. F i r s t , the program can 

be structured to take advantage of a dominant flow-seguence 

which i s s t r u c t u r a l l y simple. Secondly, certain flow-

subsequences can be considered for optimization of cede since 

they are dominant throughout the program. And l a s t l y , c ertain 

flew-sequences, consisting of c o s t l y flow-subsequences, are 

making the program expensive to execute. In the set {Z}, an 

algorithm such that no structuring i s b e n e f i c i a l to i t , must 

consist of many d i s t i n c t flow-sequences, since there are no 

isomorphic flow-sequences. Furthermore, no reduction i s 

possible and some flow-subsequences appear i n many di f f e r e n t 

flow-sequences. Hence, both the conditional and flow-sequence 

probability w i l l be low, and thus, also the information value. 

But an algorithm where t h i s i s not the case, i . e . many dominant 

flews, w i l l have a higher information value. 

On the other hand, r e s t r i c t i n g our attention to a 

particular algorithm X of {Z}, the best implementation M (X) i s 

the one having the lowest information value. This follows by 

observing that the implementation to which consideration of 

structure has been most b e n e f i c i a l , w i l l have the lowest cost, 

and hence information value. I n t i a l l y the information value i s 

calculated r e l a t i v e to the standard algorithm implementation 
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M^X). Then, upon st r u c t u r i n g , i f the information value 

increases, such a structuring does not r e f l e c t the flow of the 

algorithm. But i f the information value decreases, the given 

implementation included structuring and optimizing which 

decrease the cost s i g n i f i c a n t l y . A further discussion and 

v e r i f i c a t i o n of t h i s fact i s given i n Chapter II I , where i t i s 

shown that the information value can be used to select that 

implementation which i s most appropriate in a given s i t u a t i o n . 

2.7 Information Value - A Complexity and E f f i c i e n c y Measure 

In order to analyse an algorithm, a means of ranking i t 

r e l a t i v e to other algorithms for the same task must be 

available. This measure should include the cost of executing 

the algorithm, and r e f l e c t i t s flew pattern. Measures which are 

a function of a single cost contributor, although helpful when 

comparing algorithms r e l a t i v e to t h i s factor, are necessarily, 

as a general measure of cost or complexity, only p a r t i a l l y 

e f f e c t i v e . S i m i l a r l y , measures which consider flow only are 

most helpful i n analysing the problem of whether and how code 

can be optimized, but in such study, r e l a t i v e costs are often 

disregarded, again leaving the measure, in some sense, 

incomplete. 

A measure then, that i s useful i n a general sense should 

r e f l e c t both of these f a c t o r s . In the measure given above, an 

attempt has been made to incorporate cost and some notion of 

st r u c t u r a l complexity. An information theoretic measure seemed 
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to be a most natural means of combining the two e n t i t i e s , 

Through the d e f i n i t i o n of isomorphism and reduction, and of the 

p r o b a b i l i t i e s , t h i s model of the execution of an algorithm 

becomes a function of s t r u c t u r a l complexity and cost, 

respectively. As desired, an algorithm which i s more suitable 

for structuring w i l l have a higher information content than an 

algorithm with comparable cost, but for which i t i s not 

p r a c t i c a l tc attempt to e s t a b l i s h an e f f i c i e n t structure. I f 

algorithms are ' s t r u c t u r a l l y eguivalent* in the sense that, the 

flow pattern of both indicates that the same amount of 

structuring i s applicable, then the information value w i l l rank 

the algorithms according to cost, the more expensive one having 

a higher information value. Thus, when comparing d i f f e r e n t 

implementations of some algorithm X, that one with the smallest 

information value w i l l be the most e f f i c i e n t i n terms of 

execution costs. Structural equivalence i s indicated by the 

conditional entropy, which, when analysing a given algorithm, 

pa r t i t i o n s the data set into blocks, where each block responds 

in approximately the same manner to proper structuring. If the 

conditional entropies are equal for elements d1 and d2 of D(X), 

then their walks through the algorithm are the same. This 

concept i s useful when selecting the most costly of those 

sections of code that respond s i m i l a r l y to given code 

optimization. Thus, the measure achieves the goal of 

establishing a complexity measure which i s a function of both 

cost and structure. This measure, by analysing the output of 

flow-seguences, provides information about the constituent flow-
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subsequences; such information then points to ways in which the 

algorithm can be made more e f f i c i e n t . Further discussion of 

thi s observation follows i n Chapter I I I , where several examples 

of how t h i s measure has been applied are given. 
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CHAPTER I I I : AN INFORMATION THEORETIC ANALYSIS 

OF ALGORITHMIC COMPLEXITY 

3.0 Introduction 

In t h i s Chapter, we present a more detailed study of the 

model, He describe the processes used to obtain i t s components, 

investigate c e r t a i n properties of the defined measure, and 

f i n a l l y , demonstrate, through examples, some of i t s 

applications. 

Let X be an a r b i t r a r y algorithm. Throughout the following 

discussion, the nodes v Q,v t,...,v r of G ( X ) w i l l be numbered to 

follow the directed flow, depth f i r s t . Each node i s either a 

decision and c a l c u l a t i o n node, or simply a ca l c u l a t i o n node. 

Using the procedures given below, the input, output, and input 

and channel p r o b a b i l i t i e s can be obtained, and hence, the model 

made operational. 

3.1 Procedure for Flow-Sequence Construction 

In the statement of the procedure, j i s used as the index 

on the nodes of X. The f i r s t n o n - i n i t i a l i z a t i o n step of the 

algorithm i s v. , and the terminal node i s v . Here we assume 

that no decision node occurs i n the i n i t i a l i z a t i o n process. A 

stack i s used to store that portion of a flow sequence that has 

been constructed prior to the occurrence of the present decision 

node. Also stored on the stack i s the number of branches 

exiting from th i s decision node (and hence the number of flow-

sequences that w i l l be created). 
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Step 1: I n i t i a l i z a t i o n step. 
I n i t i a l i z e k to 1, j to 0. 

Step 2: I n i t i a l i z a t i o n Nodes. 

I f j<s, increment j and return to step 2. I f j=s, set a^ 

to v, , and i f v_ i s a decision node, stack j and a,,; 

increment j , and go tc step 3. 

Step 3: Main Flow-Sequence Construction. 

If j>r, go to step 4. Adjoin V j to a K» If j ^ t , and v- i s 

a decision node, stack j , a R ; i f j=t, and the stack i s not 

empty, increment k, remove a K , j from the stack; increment 

j ; go to step 3. 

Step 4: Terminate. 

3.2 Flow-Subsequences; Weight Assignment. 

The set B of flow-subsequences i s formed from A in the 

following manner, where i n i t i a l l y the set B i s empty. For each 

flow-sequence a, of A, add to B any of a's flow-subsequences 

not already in B. To allow the analysis programs to manipulate 

the flow-sutsequences more e a s i l y , we associate a set of 

numbers, P. , with each node v,- , one value for each of the f low-j J 
subsequences in which v. appears (see Appendix B and the 

following examples). To accomplish t h i s , i n i t i a l i z e i to 1 and 

repeat the following procedure for each node v. . For each flow-
O 

subseguence b of B, i f v. i s a node of b, include i in P- and 

increment i . Using the results of this process, the flow-

subseguences are expressed as sets of numbers. Next, the nodes 

are a l l o t t e d weights determined by the current implementation of 
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the algorithm. Each flow-subsequence and flow-sequence i s then 

assigned a weight which i s the sum of the weights of i t s 

constituent flow-subsequences. Once th i s assignment has been 

made, the cost p r o b a b i l i t i e s can be calculated. 

3.3 Hierarchy Of Isomorphic Flow-Sequences 

The flow-sequences are now ordered as a hierarchy of 

families of flow-sequences, F^ , where b (F. ) i s the lowest, by 

weight, member of the family F-L , q the number of families 

constructed so f a r , and s the index of the family to which the 

current flow-sequence w i l l be adjoined. 

Step 0: I n i t i a l i z a t i o n Step 

Set q to 1, and F^ to the flow-sequence of highest weight, 

t i e s resolved a r b i t r a r i l y . 

Step 1: If any flow-sequences remain, set h to the one of 

highest weight, set i to 1 and go to step 2. Otherwise, 

go to step 5. 

Step 2: If B (h) i s a subset of B (b (FL )) , then set d i f f to 

w (b (F. ) )-w(h) , set s to i , increment i and go to step 3. 

If B (h) i s not a subset of B (b (F^)) , increment i ; i f i>q, 

set s to i and go to step 4; otherwise go to step 2. 

Step 3: I f i<q, i f B (h) i s a subset of B (b (F. ) ) , ana d i f f i s 

greater than w (b (F- ) ) - w (h) , then set d i f f to t h i s new 

difference, and set s to i ; i f i ^ g , increment i and go to 

step 3; otherwise, step 4. 

Step 4: Adjoin h to F„ , set q to i and return to step 1. 
5 
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Step 5: Terminate. 

The above procedure establishes families of isomorphic 

flow-sequences, where such flow-sequences are reduced. In each 

family, the flow-sequences are ordered by weight, the most 

costly being assigned the highest order (see Appendix B) . The 

use of the hierarchy makes the removal of isomorphic copies of 

flow-seguences a simple process. 

3.4 Reduction and Isomorphism of Flow-sequences 

For each d, the pseudograph G (X) i s produced, and AJ 
d 

computed. Then, the following processes are applied so that the 

flow-seguences can be reduced and isomorphic copies removed. 

F i r s t , A^ i s considered for reduction. Within each flow-

sequence, i f any flow-subsequence appears more than once, only a 

single copy i s retained i n the walk; however, the t o t a l weight 

of the flow-sequence remains unchanged. Next, the reduced flow-

seguences are checked for isomorphism. Each reduced flow-

seguence, a', has an associated family, F*, in the hierarchy. 

If there i s a flow-sequence i n both F' and A^ which has a higher 

order than a' in F', or a* occurs more than once i n A d, remove a 

copy of a' from A^. Then, add wfa 1) to that flow-sequence in 

both A^ and F» which has the least order greater than or equal 

to the order of a'. This process yie l d s the subset A * of A.-

consisting of only reduced, non-isomorphic flow-seguences (see 

Appendix B and the examples i n section 3 . 7 ) . 
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3 . 5 Entropy, Conditional Entropy, Information Value 

Using A', the entropy, conditional entropy and information 
d 

value are calculated for each fixed d i n D(X). Then, 

associating a r e l a t i v e frequency with each d, the entropy, 

conditional entropy and information value are obtained by 

averaging over D(X). Each d i s t i n c t implementation of the 

algorithm yi e l d s another set of costs for B and hence, defines a 

new input probability d i s t r i b u t i o n . The evaluation and analysis 

of the algorithm which i s now possible, i s discussed with 

examples, in the remaining sections. 

3 . 6 Further Analysis of the Information Value 

In t h i s study, the information value has been used for two 

purposes. F i r s t , to s e l e c t from a set of algorithms, that one 

which i s , i n a cost sense, the most suitable for the given task, 

and secondly, to choose an implementation of that algorithm 

which i s most appropriate in such a s i t u a t i o n . In the following 

analysis, we assume that the flow-sequences have been reduced, 

and isomorphic copies removed. Also, we define an index set on 

the flow-subsequences bj of a flow-sequence a by 

I (a) = { j i b - i s in B (a) }. 

3.6.1 Selecting An Algorithm 

F i r s t , we assume that the algorithms are cost comparable 

within three or four per cent. For such algorithms, since the 

costs are more or less the same, the flow structure i s the 
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dominant component of the information value; we obtain the 

largest information value from the s t r u c t u r a l l y optimum 

algorithm. S p e c i f i c a l l y , l e t X and Y be two cost comparable 

algorithms. Furthermore, suppose that algorithm X has a 

d i s t i n c t l y better flow structure than algorithm Y, i n the sense 

that each flow-sequence c of X consists of flow-subsequences 

not occuring i n other flow-seguences of X. Then the information 

value indicates that algorithm X has a flow structure which can 

be used to point to a more e f f i c i e n t coding of the algorithm. 

To see t h i s , we study each algorithm's information value. F i r s t 

analysing algorithm X, we note that in most cases the flow-

subsequences bj of a flow-sequence cK do not appear i n many 

other flow-sequences, so the conditional p r o b a b i l i t y 

P ( c j b ^ ) = w(c K)/w(c J) , 

i s close to unity and, thus, over I (c^) , P(c K) i s approximately 

equal to S p ( b - ) ; t h i s shows that the walk p r o b a b i l i t i e s are 

f a i r l y uniformly distributed. However in the second algorithm 

this does not hold. Most flow-subsequences xt • of flow-

sequence e^ of Y, occur i n other flow-sequences. As a r e s u l t , 

there are more flow-sequences for Y than for X. Thus, when 

calcula t i n g j 

P<ej |ut.) = w (e^)/w (e L) , 

i t s value i s considerably less than unity and hence the 

r e s u l t i n g flow-sequence p r o b a b i l i t i e s 

P(e ) = £p(e^|u L)P(u.) , 

as well as corresponding entropy, are less than those for 

algorithm X. Hence, since the flow-sequence weights are nearly 
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the same, the information value for algorithm x i s greater than 

that of algorithm Y. Thus, when comparing unstructured 

algorithms, the one with the higher information value i s 

selected, and an implementation of i t which r e f l e c t s the flow 

structure, coded. To summarize, when the costs for algorithms 

are comparable, the maximum information value indicates which 

algorithm i s optimal r e l a t i v e to t h i s factor. 

3.6.2 Selecting the Algorithm Implementation 

Having chosen the algorithm most suitable for the given 

task, an analysis of i t , based on cost, i s made. In t h i s 

instance, the implementation with minimum cost i s desirable; 

accordingly the minimum of the information values points to such 

an implementation. To see t h i s , we consider the two ways in 

which the algorithm costs can be decreased. 

Case Jl: Some flow-seguence a* i s made more e f f i c i e n t by applying 

optimizing techniques to i t s flow-subsequences. For s i m p l i c i t y , 

we assume that a* consists of flow-subsequences b̂  which do not 

appear i n any other flow-sequence of the algorithm, and that 

P(a*) < 0.5. Then, i f a* i s coded more e f f i c i e n t l y , 

i . e . w (a*) decreases, the information value also decreases. The 

proof follows. 

Under the assumptions given above, l e t Z j be the the 

decrease in N; , (z; i s zero i f b%- i s not in B (a*)) , z = S Z J , and 
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N*= 2N - , where the sums are over I (a*). Recall that N i s 

defined by 2w (bj), where the sum i s taken over B. Then the 

following equality holds f o r those j in I (a*). 

P ( a * | b , ) = « (a*)/w (a^ ) 

= w(a*)/w(a*) 

= 1 . 

Also, 2 P (b^) over I (a*) decreases, for i f SP(bj) were to 

increase, then 

2 (N-j-2-)/(N-Z) > 

This implies (N*-z)/(N-z) > N*/N, and hence N < N *, a 

contradiction. So 2 P(b^) over I (a*) decreases, which implies 

P (a*) decreases, and hence, that -P(a*)log P (a*) decreases. 

Now w(a*) decreases by assumption, so 

w (a*) (-P (a*) log P (a*)) , 

the information value of a*, decreases. Qed. 

Now we examine the ef f e c t of decreasing the cost of some 

flow-subsequence b* which appears in many flow-sequences. This 

sit u a t i o n can be examined as two subcases. 

Case 2-J: F i r s t suppose that b* i s not in either B (a^) or B (aJ ), 

j i n I(a^), and l e t z be the decrease in w(b*). Now P ( b ) = N-/N 

increases for b-, i n B(a u) since N- i s fixed and N decreases. 

Also P(a^|b-j) = w(a^)/w(aJ) i s fixed, since both and 

w(aJ) are constant. Thus, 

n 
P (a ) = S P (a |b- ) P (b ;) 

j = 1 J J 

increases, and hence -P ( a k ) l o g P (a u) increases. This 



37 

implies -w(au) P(a^)log P (a u) increases, since P(a^) < 0.5 and 

w(aK) i s f i x e d . That i s , the information value increases. 

Now, assume that b* i s i n B ( a J ) , for seme j i n I(a^), but b* 

i s not i n B(a K). Thus w(aJ) decreases, Pta^Jbj) = wta^J/wta1*) 

increases, and, as above P (b. ) increases. Hence, P ( a K ) , and 

thus the information value of a^, increases. 

Thus, when b* i s not in B ( a K ) , the information value 

indicates that the change made was not b e n e f i c i a l to the flow-

sequence a^. If this i s true for most flow-sequences, the 

o v e r a l l information value increases, indicating that such a 

change should not be made. 

Case 2-2: b* i s i n Bfa^). Again l e t z be the decrease in w(b*). 

l e t p' be the new P(a K) , p the old Pfa^), and w'(a^) = w(a K)~z. 

If p» < p, then -w«(a K) (p'log p») i s less than -w(a K) (p log p). 

Thus, the information value decreases. 

On the other hand, i f p' > p, the information value s t i l l 

decreases for most z. The difference, p*-p, must be small, 

since even large z implies only small increases in P(a w|bj) and 

small changes in P ( b ) , j i n I(a ). We observe that the 

information value decreases 

i f f w« (a K) (-p'log p') < w(a K)(-p log p) , 

i f f w(aK) [ (-p'log p»)-(-p log p) ] < z (p'log p') 

i f f w (a K) (log (p «P /p?) ) < z(p»log p'). 

And, since for most z, log^p'^/p^j i s approximately 0, t h i s 

ineguality i s s a t i s f i e d . That i s , the information value 

decreases. 
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The usefulness of the information measure f o r selecting the 

most appropriate implementation of an algorithm i s thus evident. 

When the implementation i s an improvement, the corresponding 

information value decreases, and when this i s not the case, the 

information value increases. 

Some of the applications of such a measure are now given. 

F i r s t , i f the probability of a flow-seguence i s r e l a t i v e l y 

large, but i t s weight i s comparable to other flow-seguences, 

then the algorithm can be coded to r e f l e c t t h i s flow, and hence 

to decrease execution costs. Also, when attempting to p a r t i t i o n 

a program into segments, a flow-sequence with high p r o b a b i l i t y 

can be informative. Such probability indicates that the flow-

sequence has l i t t l e i n t e r a c t i o n with other parts of the program, 

a major factor i n a segmentation problem. Thirdly, i f the 

conditional p r o b a b i l i t i e s on the flow-sequences, r e l a t i v e to 

some flow-subsequence b, are consistently low, then such a flow-

subsequence appears many times, and makinq i t more e f f i c i e n t i s 

ref l e c t e d throughout the program. 

To i l l u s t r a t e the two purposes the information measure i s 

used for i n this study, the following examples are included. 

3.7 Examples 

3.7.0 The Form and Purpose of the Examples 

In order to analyse the selected algorithms, certain 

programs are necessary to produce and evaluate the output and 

calculate the information value. The language i n which these 
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routines are written i s ALGOLW. However, the programs 

representing the algorithms are expressed in the hypothetical 

assembly language, described i n Appendix A. 

To apply the measure, a task and algorithms to compute the 

task, are selected. The sorting of n numbers (eguivalently the 

indices of n records)' into order i s chosen since several well 

documented algorithms for sorting exist, and the corresponding 

data sets are well defined ( i . e . a l l possible orderings of n 

numbers). The two sort algorithms, 'heap' and •merge* [21], are 

used as the possible candidates for the task of placing i n order 

f i v e numbers. In the following discussion, the f i v e f a c t o r i a l 

elements of the data set are a r b i t r a r i l y numbered from 1 to 120; 

we w i l l r e f e r to certain of these data in the examples given 

below. On t h i s data set, the merge algorithm i s not amenable to 

structuring since no reduction of flow-subsequences i s possible. 

Although t h i s l a t t e r point o r d i n a r i l y implies that code 

optimization of the flow-sequences would be b e n e f i c i a l , the 

s i m p l i c i t y of the calculations, and the lack of interaction 

among the nodes within a flow-subsequence allow for no noticahle 

improvements. As a contrast, the heap algorithm i s studied. In 

t h i s case, the •shortcomings* of the merge algorithm are absent, 

and hence, both structuring and code optimization can be 

applied. 

The task evaluated here i s obviously somewhat t r i v i a l , so 

the concept of structuring i s not as dominant as i t would be in 

a more complex s i t u a t i o n . For a task involving more 
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calculations and decisions, the use of subroutines as structures 

would be e f f e c t i v e . However, the s i m p l i c i t y of the examples 

s t i l l allows the usefulness of t h i s measure to be i l l u s t r a t e d , 

both as a cost and st r u c t u r a l complexity standard, and as an 

improvement on a measure based on execution costs alone. 

When analysing an algorithm, the standard implementation i s 

coded f i r s t . So at t h i s time, no attempt i s made to optimize 

any p a r t i c u l a r area of the program. Both the merge and heap 

algorithms are implemented i n this manner. In addition, based 

on the res u l t s of an analysis of the information values, another 

implementation of the heap algorithm i s given. In the examples, 

the execution costs associated with each implementation are 

included with the information value, so that a comparison can be 

made with the conventional measure. Table entries l i s t e d as 

costs, are i n execution units, while the information value and 

conditional entropy are un i t l e s s . 

The measure i s f i r s t applied to the problem of deciding 

which of two algorithms should be used for a given task. The 

information value points to the algorithm which i s more suitable 

for the si t u a t i o n . Moreover, once the algorithm has been 

selected, the measure further analyses i t by providing 

information cn i t s o v e r a l l cost and structure, which indicates 

where attention should be focused i n order to produce a more 

e f f i c i e n t implementation of the algorithm. 
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3.7.1 Comparison of Two algorithms for the Same Task 

In t h i s section the f i r s t a pplication of the measure i s 

discussed. The heap algorithm, (H-I), as mentioned above, i s 

amenable to structuring, while merge, (M), i s not. The standard 

implementations are compared and consequently B-II, an 

implementation r e s u l t i n g from a structuring which improves the 

e f f i c i e n c y of heap, i s included i n the study. 

In the f i r s t example, assuming the r e l a t i v e freguencies of 

the orderings are equal, the average costs of the algorithms are 

compared (see Table I ) . Merge i s seen to be cheaper; however, 

removing the extreme cases (i.e. those with very high or very 

low costs), the costs are r e l a t i v e l y comparable. Also, the 

number of nodes and cost per node are very close. Thus the 

information value can be used to evaluate the two algorithms, 

indicating that heap i s more informative, i . e . given proper 

structuring the overa l l cost of heap, for t h i s s i t u a t i o n , would 

be less c o s t l y . The implementation of a single s t r u c t u r a l 

improvement (optimization of a flow-subseguence), reduces the 

average cost of heap below that of merge. Using the measure of 

average cost, i t i s unlikely that the heap algorithm would have 

been given further consideration f o r t h i s p a r t i c u l a r 

application. In the next section a further analysis of heap i s 

given. 
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Ala 
m e r g e 

heap-I 

heap-II 

Av Cost 

198.75 

228.31 

198. 18 

info Val 

35. 195 

38.365 

37.608 

Table I: Example 1 

The next two examples involve p a r t i c u l a r data and t h e i r 

r e s u l t i n g output from the two algorithms. Such analysis i s 

useful i f a p a r t i c u l a r datum or type of datum i s highly 

probable. In such a case, the algorithm that performs in the 

best way for the given datum i s the one selected. 

Datum IV H-I IV W M cost H-I cost H-II cost 

45 31.495 34.940 200.1 206.5 202.7 

69 33.480 33.328 202.9 205.9 201.9 

44 40.420 40.075 199.5 200.6 195.7 

Table I I : Examples 2 and 3 

As shown in Table II in the entry for datum 45, the information 

value of merge i s higher, i n d i c a t i n g that even with proper 

structuring and optimizing i t i s unlikely that the heap 

algorithm w i l l perform better than merge. The costs of H-I and 

H-II confirm t h i s . 
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For each of data 69 and 44 the information values of the 

two algorithms are r e l a t i v e l y close, but heap i s s l i g h t l y 

higher. This indicates that optimization methods should reduce 

the cost of the heap algorithm. Again the costs associated with 

H-I and H-II support t h i s observation. 

3.7.2 Analysis of Heap Algorithm 

In the remaining examples, the flow-subsequences are 

expressed as sequences of numbers, corresponding tc nodes, 

separated by dashes; parentheses indicate repeated flow-

subseguences which are eliminated i n the reduction process. 

Execution over each datum d generates f i v e flow-sequences; those 

marked with an asterisk are isomorphic to others i n the l i s t . 

Only the set of non-isomorphic flow-sequences are considered in 

computing the information value. The l i s t s of flow-subsequences 

and flow-sequences are given i n Appendix B. The i n i t i a l i z a t i o n 

nodes are omitted, since no optimization techniques are applied 

to these nodes. 

The following example i l l u s t r a t e s the use of the 

conditional entropy as a means of partitioning the data set 

according tc structure. Within • p a r t i t i o n s ' , the improvements 

in cost r e s u l t i n g from a given change in the implementation of 

the algorithm are f a i r l y close. When the conditional entropies 

d i f f e r , t h i s indicates that the corresponding structures of the 

outputs do also. The smaller the conditional entropy, the more 

amenable to node or flow-subsequence improvements are the 
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sections of the algorithm associated with th i s datum. Consider 

the data pairs shown i n Table I I I . 

Datum Info Val 

33 56.325 

36 54.939 

Cond Ent H-J. cost 

1.374 229.1 

1.731 219.0 

H-II cost |I - I I | 

223.1 6.0 

214.2 4.8 

19 42.802 2.095 218.4 213. 4 5.0 

20 44.188 1.731 228.5 222.3 6.2 

Table I I I : Example 4 

The output flow-seguences for the above data are: 

(33) 

1* 1-3 7- 11 -16-21 27-28 

1 1-3 7-11 -16-21 (7-11-16-21) 27 

2 2-4 -3 7- 11-16-21 9-15-23 27-28 

2* 2-4 -3 7- 11-16-21 27-28 

2* 2-4 -3 9- 15-23 27-28 

(36) 

1 1-3 7- 11 -16-21 27-28 

2 1-3 7-11 -16-21 5-12-19-25 

3 2-4-3 7- 11-16-21 9-15-23 

3* 2-4-3 7- 11-16-21 27-28 

3* 2-4-3 9- 15-23 27-28 
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(19) 

1 1-3 7-11 -16-21 27-28 

2 1-3 7- 1 1 -16-21 5-12-19-25 

3 2-4-3 7- 11-16-21 9-15-23 27-28 

4 2-4-3 8- 13-17-22 27-28 

3* 2-4-3 9- 15-23 27-28 

(20) 

1* 1-3 7- 11 -16-21 27-28 

1 1-3 7- 11 -16-21 (7-11-16-21) 27 

2 2-4-3 7- 11-16-21 9-15-23 27-28 

3 2-4-3 8- 13-17-22 27-28 

2* 2-4-3 9- 15-23 27-28 

The information value of (33) i s s l i g h t l y higher than that 

of (36) due to the simpler structure and more costly flow-

seguences of (33). This same observation holds for the second 

pair of data, with (20) having the higher information value. In 

both pairs, the lower conditional entropy indicates which datum 

has the simpler structure in i t s output. An implementation 

which r e f l e c t s such a structure yields greater cost savings for 

the datum with the lower conditional entropy. Such an analysis 

i s useful i f i t i s known that a high portion of the data i s of 

the form of either (19) or (20) say, and i t i s desirable to know 

whether optimization methods should be applied to the path 

followed by (19) or by (20). This measure indicates that by 

concentrating on (20) more o v e r a l l savings can be obtained. 
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In the next example, the notion of p a r t i t i o n and the eff e c t 

of costs on the measure are discussed. The conditional entropy 

of both (3) and (5) are close (see Table IV), but the i r 

information values d i f f e r . From t h i s , i t i s known that their 

structures are s i m i l a r , but that (3) either has more costly 

flow-subsequences, or has flow-sequences which can be coded more 

e f f i c i e n t l y to r e f l e c t their unique flow structures. This 

example i l l u s t r a t e s that within •partitions' the information 

value ranks the data according to the corresponding costs 

i . e . the higher the cost, the higher the information value. 

Datum Info I s i 
3 53. 334 

5 35.287 

Cond Ent H-I cost 

1.610 228.5 

1.611 204.7 

Table IV: Example 5 

The associated flow-sequences are: 

(3) 

1 1-3 8-13-17-22 27-28 

2 1-3 7-11-16-21 (7-11-16-21) 27-28 

3 2-4-3 7-11-16-21 9-15-23 27-28 

3* 2-4-3 7- 11-16-21 27-28 

3* 2-4-3 9-15-23 27-28 
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(5) 

1 1-3 8-13-17-22 27-28 

2 1-3 7-11-16-21 (7-11-16-21) 27-28 

3 2-4-3 7-11-16-21 10-18-26 

4 2-4-3 7-11-16-21 27-28 

3* 2-4-3 10-18-26 

The th i r d example of t h i s section (see Table V) shows that 

i f a datum has a much higher information value than another, and 

i t s conditional entropy i s lower, then this datum, as well as 

consisting of more costly flow-subsequences, i s more amenable to 

node or flow-subsequence improvement. Thus, by selecting the 

more informative of equally probable data, and applying 

optimizing technigues to i t s flow path, greater cost reductions 

resu l t than i f such processes were applied to the other datum. 

Datum Info Val Cond Ent H-I cost H-II cost | I - I I | 

1 1 54.291 1.887 216.3 21 1. 6 4.7 

12 67.106 1.715 228.2 222.3 5.9 

Table V: Example 6 
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The corresponding flow-seguences are l i s t e d below. 

(11) 
1* 1-3 7-11-16-21 27-28 

1 1-3 7-11-16-21 8-13-17-22 27-28 

2 2-4-3 7-11-16-21 9-15-23 27-28 

2* 2-4-3 7-11-16-21 27-28 

3 2-4-3 10-18-26 

(12) 

1* 1-3 7-11-16-21 27-28 

1 1-3 7-11-16-21 8-13-17-22 27-28 

2 2-4-3 7-11-16-21 9-15-23 27-28 

2* 2-4-3 7- 11- 16-21 27-28 

2* 2-4-3 9-15-23 27-28 

In t h i s instance (12) i s seen to have the simpler 

structure, lacking the extra flow-sequence 10-18-26 which 

appears in (11). Here flow-subsequence 27-28 was optimized. 

In the l a s t example a case where the conditional entropies 

are approximately the same i s considered. This implies that the 

outputs corresponding to the two data have nearly the same 

structure. Sample (49) has a somewhat c o s t l i e r output, a fa c t 

r e f l e c t e d i n the information value given i n Table VI. However, 

since the conditional entropies indicate similar structures, the 

marginal difference in costs w i l l not cause marked 
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d i s s i m i l a r i t i e s i n the cost savings. That i s , the flow-

sequences of either datum can be structured to increase the 

e f f i c i e n c y , and the resultinq cost decreases for both cases w i l l 

be nearly the same. Due to the s i m p l i c i t y of the sample task, 

the flow-subsequences of (49) and (57) are f a i r l y s i m i l a r ; 

however, this i s not necessary i n order that the conditional 

entropies be the same. 

Datum I n f o Val Cond Ent H-I cost H-II cost |I-II I 

49 36.686 1.820 198. 1 193. 1 5.0 

57 35.450 1.828 195.1 189.7 5.4 

Table VI: Example 7 

The flow-sequences associated with the table entries are given 

below. 

(49) 

1 1-3 7-11-16-21 27-28 

2 1-3 5-12-19-25 

3 2-4-3 7-11-16-21 9-15-23 27-28 

4 2-4-3 8- 13-17-22 27-28 

3* 2-4-3 9-15-23 27-28 
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(57) 

1* 1-3 8-13-17-22 27-28 

1 1-3 8-13-17-22 27-28 

2 2-4-3 7- 1 1-16-21 10-18-26 

3 2-4-3 8-13-17-22 27-28 

4 2-4-3 9- 15-23 27-28 

3.7.3 Summary Cf The Examples 

The above examples are intended to demonstarate how the 

information value, together with the conditional entropy, can be 

used to aid in the analysis of an algorithm. The measure can 

point to expensive data ( i . e . c o s t l y for algorithms to execute), 

but as well, can indicate which paths through the algorithm 

should be considered for code optimization in an attempt to 

obtain the maximum cost saving. In more complex examples, 

improvements on nodes or flow-sequences rather than just flow-

subsequences would be in order. 

The advantages of using the information value as a 

complexity measure are evident from these examples. 
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3.8 Summary 

In t h i s thesis, an attempt was made to define a cost and 

s t r u c t u r a l complexity measure f o r an algorithm. To accomplish 

t h i s , we defined an information theoretic model of the execution 

of an algorithm, i n which the input i s a set of subwalks, and 

the output certain walks, of a graph theoretic representation of 

the algorithm. Cost i s included in the model through the 

d e f i n i t i o n of a cost p r o b a b i l i t y scheme, and structure through 

the concepts of reduction and isomorphism. An information value 

f o r each implementation of the algorithm i s calculated. I t i s 

shown that t h i s value provides a l l the information that the 

conventional measure of cost alone does. Moreover, i t presents 

s t r u c t u r a l information which indicates the amount of i n t e r a c t i o n 

between program sections, and points to dominant, repeated and 

independent flow patterns, and to s t r u c t u r a l s i m i l a r i t i e s . 

Under the assumption of comparable costs, the maximum 

information value points to a s t r u c t u r a l l y optimum algorithm; 

when the structure i s fixed, i . e . analysing a given algorithm, 

the minimum cost implementation has the smallest information 

value. The appropriateness of these considerations i n the 

analysis of an algorithm has been demonstrated i n Chapter I I I . 

More generally, t h i s study has demonstrated the f e a s i b i l i t y of 

using information theory to measure the complexity of an 

algorithm. 

We conclude with some suggestions f o r improving the model 

treated here. F i r s t , the introduction of more s t r u c t u r a l 
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parameters may improve the model. Presently, reduction and 

isomorphism have proved b e n e f i c i a l i n evaluating an algorithm; 

however, a r e d e f i n i t i o n or expansion of these may y i e l d a more 

informative measure. The model obtains the information value 

from the weighted average of the entropy less the conditional 

entropy. Without the i n c l u s i o n of these weights, the measure 

becomes much more responsive to s t r u c t u r a l information, and l e s s 

sensitive to costs. In certain instances t h i s may y i e l d a more 

valuable measure than the one defined i n t h i s study. Of note, 

when using the 'unweighted' measure, i s the fact that the most 

appropriate implementation has the largest information value. 

The i n c l u s i o n of other parameters in the model might also prove 

useful, but t h i s would increase the cost of applying the measure 

when this cost may already seem pro h i b i t i v e . However, as with 

most studies concerned with the complexity of algorithms, t h i s 

analysis i s based on the following assumption. The task which 

the algorithm or algorithms under consideration w i l l be 

computing i s c e n t r a l to some process that i s to be repeated many 

times (for instance i n a business application, some procedure 

which must be calculated d a i l y ) . Thus, the cost i n performing a 

complexity analysis for such a task may well be neglible 

r e l a t i v e to the o v e r a l l savings incurred through the use of the 

appropriate algorithm and i t s optimal implementation. 
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appendix A 

Here we give the in s t r u c t i o n set of the hypothetical 

assembly language in which the algorithms are •written 1. These 

inst r u c t i o n s are very basic to insure they remain machine 

independent. The execution costs are based on the MIX [ 2 1 ] , PDP-

10, and CDC assembler language timings. The following 

assumptions about this language are made. 

(1) there are 8 r e g i s t e r s , which are i n fast memory and can be 

used f o r indexing. 

(2) there i s one accumulator. 

(3) input and output are ignored. 

The costs l i s t e d are i n execution units; costs i n parentheses 

are i n e f f e c t i f indexing i s used. In the statement of the 

ins t r u c t i o n , c a p i t a l l e t t e r s refer to memory locations, small 

l e t t e r s to r e g i s t e r s . C(x) i s the contents of location or 

register x; Acc re f e r s to the accumulator. 

INSTRUCTION COST 

JUHP- unconditional jump 1 .2 (1 .3 ) 

JUMPE jump i f Acc = 0 

JUMPLE jump i f Acc < 0 

JUMPL jump i f Acc < 0 

JUMPG jump i f Acc> 0 

JUMPGE jump i f Acc > 0 

JOMPNE jump i f Acc = 0 



SETZM A set C(A) to 0 

SETZR » i set C(i) to 0 

SETR i set C(j) to C(i) 

SE TI R i# n set C{i) to n 

SETMR A, i set C (i) to C(A) 

SETRM A, i set C(A) to C(i) 

SETNM A set C (A) to -C (A) 

SETUR i i set C (i) to -C(i) 

ADD' R i# j add C (i) to C(j) 
SUB I A, n add n to C(i) 

J 
HR A, i add C(A) to C(i) 

1 . 7 , ( 1 . 8 ) 

1.0(1. 1) 

1.4 

1.0 (1. 1) 

1.6(1.8) 

1 .8 (1.9) 

1.7 (1.9) 

1.5(1.7) 

1.6(1.8) 

1.2 (1.3) 

2.2 (2.3) 

DIvT ,n divide Acc by n 11.3 

CMPZM A 

CHPZR 

CMPR 

CM PI 

CMPH 

#1 

i» j 

A 

C(A) - 0; set f l a g 

C (i) - 0; set f l a g 

C(i) - C(j) ; set f l a g 

C(Acc) - n; set f l a g 

C(Acc) - C (A); set fl a g 

1.7 (1.9) 

1.5(1.7) 

1.6 (1.8) 

1.2 (1.3) 

1.9(2.0) 

BLT n move n contiguous 

words of memory 

0.8+(2.1) 
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Appendix B 

In order to i l l u s t r a t e some of the concepts in t r o d u c e d i n 

t h i s t h e s i s , we w i l l present a p a r t i a l a n a l y s i s of H, the heap 

a l g o r i t h m [21]. We f i r s t g i v e the al g o r i t h m i n i t s t e x t u a l form. 

Based on t h i s , we produce G (H), the graph of H. Then, so th a t 

the a n a l y s i s programs have use of a numeric r e p r e s e n t a t i o n , the 

se t s are e s t a b l i s h e d . F i n a l l y we o b t a i n the numeric 

r e p r e s e n t a t i o n of the flow-subsequences and flow-sequences, 

where the l a t t e r i s l i s t e d i n f a m i l y n o t a t i o n (see procedure i n 

s e c t i o n 3.3). 

fleapsort: A f i l e of numbers R^,Ra,... ,RN i s a 'heap* i f 

R~ M > R̂  f o r 1 < [ j / 2 ] < j <N, 

where [ x ] i s the g r e a t e s t i n t e g e r i n x. Thus, R̂  >BX , R^>R3 , 
fi4- R4-' e t c » » a n d t h i s i m p l i e s t h a t the l a r g e s t number appears 

•on top of the heap 1, 

R L = max(R l #B i,... , R J . 

I f an a r b i t r a r y input f i l e i s transformed i n t o a heap, a 'top-

down* s e l e c t i o n procedure can be used to s o r t . 

Algorithm H. Numbers R^,...,RN are rearranged so th a t a f t e r 

s o r t i n g i s complete, they w i l l be i n or d e r . F i r s t the f i l e i s 

rearranged so that i t forms a heap, then the top of the heap i s 

re p e a t e d l y removed and t r a n s f e r r e d to i t s proper f i n a l p o s i t i o n . 

Assume that N > 2. 
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B1 . [ ' I n i t i a l i z e ] S e t d t o [ H/2 ] + 1 , r t o i . . 

H 2 . [ D e c r e a s e d o r r . ] I f d > 1 , s e t d t o d - 1 , a n d B t o B d . ( I f 

d > 1 , t h e f i l e i s b e i n g made i n t o a h e a p ; i f d=1 t h e n t h e 

f i l e i s a l r e a d y a h e a p . ) 

H 2 b . O t h e r w i s e s e t R t o R r , R r t o R^, a n d r t o r - 1 ; i f t h i s 

m a k e s r = 1 , s e t R^ t o R a n d t e r m i n a t e . 

H 3 . [ P r e p a r e f o r ' s i f t - u p ' ] S e t j t o d . (A t t h i s p o i n t we h a v e 

R r . ^ > B- f o r d < [ j / 2 ] < j < r ; 

a n d R K i s i n i t s f i n a l p o s i t i o n f o r r < k < N. 

H 4 . [ A d v a n c e d o w n w a r d . ] S e t i t o j a n d j t o 2 j . ( I n t h e 

f o l l o w i n g s t e p s we h a v e i = [ j / 2 ] . ) I f j < r , go t o s t e p H 5 ; 

i f j = r , go t o s t e p H 6 ; a n d i f j > r , go t o H8 

B 5 . [ F i n d ' l a r g e r 1 s o n . ] I f R^< R^ + L , t h e n 

H 5 b : s e t j t o j p l u s 1 . 

H 6 . [ L a r g e r t h a n R ] I f R>R- , t h e n go t c s t e p H 8 . 

H 7 . [ M o v e i t u p . ] S e t R^ t o R j , a n d go b a c k t o s t e p H*». 

B 8 . [ S t o r e R. ] S e t R^ t o R . ( T h i s t e r m i n a t e s t h e * s i f t - u p « 

a l g o r i t h m i n i t i a t e d i n s t e p H 3 . ) R e t u r n t o s t e p H 2 . 
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2 2.1 IMS X- P • 

1 1,2 [ t=10] 

2 3 

3 5 , 6 , 7 , 8 , 9 , 1 0 , 2 7 

4 11,12 

5 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 

6 2 1 , 2 2 , 2 3 

7 2 4 , 2 5 , 2 6 , 2 8 

8 13,14 

9 4 

Flow-Subseguences 

1- 3 

8 - 13 -17-22 

27-28 

7 - 1 1 - 1 6 - 2 1 

10-18-26 

2 - 4 -3 

9 - 15-23 

6 - 1 4 - 2 0 - 2 4 

5 - 1 2 - 1 9 - 2 5 
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Families of Flow-Seguences Costs 

F^: 2-4-3 7-11-16-21 10-18-26 44.7 

2-4-3 10- 18-26 24.4 

i 

F A : 1-3 7-11-16-21 8-13-17-22 27-28 56.6 

1-3 7-11-16-21 27-28 37.2 

1-3 8-13-17-22 27-28 36.6 

F 3: 1-3 7-11-16-21 6-14-20-24 46.8 

1- 3 6-14-20-24 26.5 

F. : 2-4-3 7-11-16-21 9-15-23 27-28 56.6 

2- 4-3 7-11-16-21 27-28 41.5 

2-4-3 9-15-23 27-28 36.3 

F s: 1-3 7-11-16-21 5-12-19-25 47.4 

1-3 5-12-19-25 27.1 

F : 2-4-3 8-13-17-22 27-28 40.9 


