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Abstract 

Communication in the face of intermittent, short-lived and possibly unreliable 
connectivity can be difficult when relying solely on Internet protocols, such as 
IP and TCP, which have an implicit assumption of well-connectedness. Fur­
thermore, use of these protocols is impossible when there is no fully connected 
end-to-end path between hosts. 

We present Euonym, an architecture that uses a layer of persistent names to 
identify hosts, networks and services, and allows arbitrary intermediate helper 
hosts to be interposed between endpoints on-the-fly. These helper hosts can 
provide routing, buffering and other support services to help relieve reliance 
on end-to-end paths. They can be placed to take advantage of intermittent 
connectivity when and as it arises and be used to supplement connectivity with 
untraditional networking and transport mechanisms, such as data mules and the 
postal network, without any additional support at the end hosts. We show that 
simple disconnection tolerance and use of intermediate hosts facilitates commu­
nication and promotes connectivity in intermittently-connected networks. 
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Chapter 1 

i 

Introduction 

We usually expect a connection in the Internet to exist at the time of, and for the 
duration of, its use; we do not attempt to visit a website half an hour before we 
connect to the Internet, or expect a file transfer to resume after more than a few 
minutes of our wireless connection being lost. Synchronous communication in 
the Internet requires that both hosts be online at the same time. Some networks, 
however, lack such luxuries and these expectations become unreasonable. 

Networks in remote or inaccessible areas and parts of the developing world 
lack the infrastructure that is taken for granted in the well-connected Inter­
net. As a result, they are only occasionally connected to other networks, or the 
connection may be irregular or unreliable. In these environments, it is impor­
tant to reduce the impact of disruptions and make as much use of connections, 
when they arise, as possible. This is especially important if a device has limited 
power, transmission range or lifetime. It may also be necessary to augment 
Internet-style connectivity with more unconventional data transmission mecha­
nisms, especially when they are the only feasible connection options. 

This thesis presents Euonym,1 an application-agnostic architecture that ad­
dresses these issues by allowing intermediate hosts to be explicitly interposed on 
the path between two endpoints. The architecture helps support communication 
in heterogeneous, intermittently-connected networks that lack connected end-
to-end paths and preserves connections across link failures and network address 
changes. 

1 euonym: a name well-suited to the person, place or thing named. 
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1.1 Overview 

While we often take ubiquitous, high-quality Internet connections for granted, 
many parts of the world are not so well connected. Schools in outlying re­
gions of South Africa, for example, often cannot afford the long-distance phone 
calls required for dialup Internet [30], and nomadic reindeer herders in northern 
Scandinavia must rely on intermittent long-distance radio and traditional mail 
to provide contact with other herders and larger towns [23]. Network connec­
tions can be limited, short-lived and far-between. To compound the problem, 
transport protocols like TCP and UDP fail in the face of excessive delay or, 
more generally, the lack of an immediately available end-to-end path. This 
makes them unsuitable for use in networks where such a path doesn't exist or 
doesn't exist for the duration of a connection. 

• Given the possible rarity of connection availability, we would like applications 
to be able to make the most of connection opportunities whenever they arise, 
without necessarily having to know about them in advance. We would like to 
remove the dependence on end-to-end paths and allow new links and network 
types to be added to an existing connection, even if they are unsupported by 
the end hosts. 

The Euonym architecture uses intermediate hosts to help achieve these goals. 
Intermediate hosts can perform a number of support functions—such as buffer­
ing, routing and acting as rendezvous points—and help to bridge heterogeneous 
network elements and allow novel transport mechanisms to be used in conjunc­
tion with traditional ones. 

In this thesis we describe the problems associated with intermittently con­
nected networks and outline ways that intermediate hosts can help mitigate 
them. The architecture we present uses a layer of names above IP addresses to 
persistently identify hosts and allow intermediate hosts to be explicitly involved 
in a connection. We demonstrate that it improves use of existing, intermittent 
connectivity and allows connections to be established where none would have 
been possible before. 
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The contributions of the work are twofold, namely that 

1. intermediate hosts can be explicitly included in a path between two end-

points to facilitate communication in intermittently-connected networks; 

and 

2. the separation of network address and host identity allows end hosts to 

delegate responsibility and operations to intermediary hosts that are bet­

ter equipped to make use of, or improve upon, connectivity. 

1.2 Outline 

The rest of the thesis takes the following form. In Chapter 2 we discuss inter­

mittently connected networks and the challenges they pose, and describe using 

intermediate hosts to support communication. The Euonym architecture and 

implementation are described in Chapter 3, and example uses of it are detailed 

in Chapter 4. Chapter 5 discusses related work and in Chapter 6 we briefly 

outline future directions for our work and conclude. 
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Chapter 2 

Intermittently-Connected 

Networks 

The idea for our work has its origins in the nascent field of the interplanetary In­

ternet 1. The IRTF's now-historical Interplanetary Internet Research Group was 

created to investigate the technical aspects of extending the terrestrial Internet 

into space. The expansive distances and delays involved in interplanetary and 

deep-space communication present significant challenges to this movement, one 

of them being that widespread Internet protocols like T C P perform extremely 

poorly (if at all) in the face of such delays. The group's work formed the 

foundation for the Delay Tolerant Networking Research Group [3] , which is in­

vestigating an architecture for bridging and traversing heterogeneous networks, 

including those with long delays and intermittent connectivity. The solutions 

and approaches formulated by these groups have many applications back here 

on Earth where, even on much more human scales, there are challenges to con­

necting disparate and far-flung networks. 

In this chapter we describe some of these challenges and ways of tackling 

them. We begin with a discussion of the networks and the characteristics that 

make them difficult to work with. Next, we describe approaches to making them 

usable, focusing on intermediate helper hosts and ways of involving them in a 

connection. 
1See the Interplanetary Internet Special Interest Group at www.ipnsig.org. 

http://www.ipnsig.org
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2.1 Intermittently-Connected Networks 
The growth of the Internet and our reliance on the services it provides has 

prompted its expansion into areas and situations that do not support its archi­

tectural models. From deep space networks [12] and isolated nomadic commu­

nity networks [23], to school LANs in remote areas [30] and use of the postal 

network as part of the Internet [29], all these networks break some of the In­

ternet's (implicit) performance and architectural assumptions. Specifically, the 

communication model of the Internet relies upon 

• low network latency, on the order of milliseconds; 

• continuous connectivity over the period of communication; 

• bidirectional communication; and 

• connected end-to-end paths. 

These requirements are often unstated but protocols like TCP and UDP, as 

well as those that rely on them, fail when they are not met. Fall [5, 6] calls 

the class of networks and inter-networks that do not support these assumptions 

challenged networks. 
To illustrate, consider the following scenario. The Sami Network Connectiv­

ity Project [23] is working on providing Internet connectivity to reindeer herders 

in the Sami region of northern Scandinavia. The herders are nomadic, following 

their reindeer's yearly migration cycle, and the region in which they move is re­

mote and isolated and lacks reliable wired, wireless or satellite communication. 

Members of the community have access to their own local network but getting 

beyond it is difficult. The community-wide network and its connection to the 

Internet are an example of a challenged network. 

Opportunistic use of periodic connectivity would greatly increase their inter­

action with other herders and the outside world. Potential contact opportunities 

include brief satellite and long-range radio connection windows, people and ve­

hicles that journey between the communities and larger towns that have better 
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infrastructure, and postal services that transport traditional mail. A number 
of these could also be used in combination to connect extremely remote herders 
with their home community and then the Internet. 

There is more than just a physical difference between these connection op­
tions. They cover a significant range in bandwidth and delay and each may 
require a different transport protocol as well as physical and link-layer proto­
cols. Different link technologies must be sewn together and routes chosen based 
on current connections, as well as upcoming opportunities, and their associated 
economic costs. 

, This example highlights three causes of difficulty when working with chal­
lenged networks which conflict with the assumptions stated above: 

• connection interruptions, 

• lack of infrastructure, and 

• heterogeneity. 

The first two result in intermittent connectivity and the third makes interop-
eration difficult. They may exacerbate each other, too; a fragile heterogeneous 
infrastructure can result in service interruptions. Consider these from the per­
spective of a TCP-based application that must traverse a link in a challenged 
network to contact a remote host. At the transport level, all three result in de­
livery failures which finally lead to a TCP timeout and disconnection, producing 
an error at the application level. 

In general, we characterise disconnections as breaks in the transmission of 
data of sufficient duration that they cannot be overcome by the transport pro­
tocol. The result is usually transport- and application-level errors. In addition, 
TCP requires a connected end-to-end path between the hosts for the duration 
of the connection. This is a path between two endpoints that experiences no 
disconnections across its entire length. 

These two concepts are our focus points for supporting communication in 
intermittently-connected networks. We wish to reduce the impact of disconnec-
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tions on applications and establish connected end-to-end paths or remove the 

reliance on them. In doing so, we aim to overcome the three causes of difficulty 

by 

• tolerating and working around connection interruptions, 

• providing a general means of using new, possibly unconventional infras­
tructure to create or augment a network, and 

• helping heterogeneous elements in the network to cooperate. 

The rest of this chapter discusses approaches to achieving these goals by 
focusing on disconnections and end-to-end paths, and how they relate to each 
other. 

2.2 Disconnection 
A disconnection is usually seen as a binary absolute: either there is a connec­
tion to a remote host and it can be communicated with, or, to all intents and 
purposes, the host does not exist. Instead, we view lack of connectivity as a 
continuum and divide it into three broad types. We discuss them in order of 
increasing complexity, as characterised by the responses required of the user, 
the application and the network itself. 

Intermittent disconnection Disconnections are infrequent and short-lived, 
on the order of minutes or a few hours. For example, a host losing contact 
with one wireless access point before entering the range of another, or a laptop 
entering a low power mode over night. Overcoming these disconnections is com­
paratively straightforward: increase the transport protocol's timeout period or 
introduce a method for resuming connections. They are transient and relatively 
brief and there is no need for either the user or the application to be involved 
when they occur; they should be handled entirely at the network level. 

Managing this form of disconnection is an area of active research and is not 
a focus of this thesis. We briefly describe the work, insofar as it relates to ours, 
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in Chapter 5 . The thesis focuses instead on the next two categories which are 

only beginning to be investigated. 

Long-lived disconnection This category involves networks that are predom­

inantly disconnected. Connections are brief, few, and far between, and hosts 

must make as much use of them as possible. When available, though, they are 

readily usable: the delay and bandwidth are such that regular Internet proto­

cols can be used effectively. An example of this category is a remote community 

that has an Internet connection for only a few hours every week. 

Applications must be aware of these disconnections and should provide users 

with feedback on long-lived operations. They must be ready to use connectivity 

when it arises and be able to work around long delays and periods of discon­

nection. Lower-level protocols should support them in this by tolerating discon­

nections and delays and allowing old connections to be resumed, possibly even 

across application and system restarts. 

Systemic disconnection The path between two hosts has many disconnected 

components and periodic links, and there is no guarantee of a connected end-

to-end path. For example, it may be hindered by a component that experiences 

extreme delay or is even missing completely.2 Both end hosts and hosts along 

the way must overcome their own separate disconnections—possibly in entirely 

different ways—and each has its own period of visibility. In contrast with the 

second category, even when a connected path exists it may not support Internet 

protocols. If the two hosts do not have overlapping connection windows, or a link 

has excessive delay, Internet-style synchronous communication is impossible. 

Applications, users and the network must all respond to this form of dis­

connection. In addition to the requirements for long-lived disconnections, ap­

plications should favour batch operations and protocols over chatty, interactive, 

round-trip dependent ones. The user may need to make complex routing deci-
2 Lack of a network link is, after all, simply a long-lived disconnection waiting for a suitable 

physical transport to bridge it. 
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sions that use local as well as global information such as upcoming connection 
windows. Applications should allow users to provide not just the names of re­
mote hosts but also rendezvous points or routing information in order to make 
use of these possibly distant connections. The network must support disconnec­
tions as per the previous two categories, as well as allow adjacent, heterogeneous 
networks to interoperate. 

2.3 Example Scenario: Remote Community 

We exemplify these three categories with a detailed example scenario, that of a 
student working in a remote community. The example is inspired by the Wizzy 
Digital Courier project [30]. The project provides intermittent connectivity to 
isolated schools in South Africa by buffering web and email requests until off-
peak hours when a dialup Internet connection is cost-effective. 

• • • Potential link 
— Existing intermittent link 

^ ^ ^ ^ Isolated Communities 

(^^j 0 Student 

Figure 2.1: Student in a remote community with intermittent connections to 
the Internet. There are potential inter-community links that may rely on un-
traditional transport methods. 

Consider a student doing research in an isolated community, Figure 2.1. The 
student's laptop is connected to the community's small LAN, centred at the lo­
cal school. Long-distance phone call costs are such that a dialup connection to 
the ISP in the closest town is practical only over the weekends; the network re­
mains isolated during the week. The student periodically makes trips to nearby 

k Internet. 
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communities where other students are performing related work and have similar 
networking setups. He is disconnected while in between communities and, even 
when in them, he is largely isolated from the Internet. On longer, data-gathering 
field trips into the countryside he is disconnected from all networks. 

Whenever a connection is available, the student streams his data back to a 
server at his university where computationally expensive processing is performed 
and the results sent back to him. He also remotely runs interactive applications 
on the local LAN server and on the university server and needs to keep in contact 
with other students in the nearby communities. 

The student's task is an unenviable one when relying on applications de­
pendent on Internet protocols and end-to-end paths, such as ftp, scp and ssh. 
Every weekend when the Internet connection is available he must restart his 
applications and re-establish his outside connections, each in an application-
specific manner. Incomplete ftp transfers must be resumed, aborted scp trans­
fers restarted from scratch, ssh connections re-established and applications re­
lying on ssh-tunneled data restarted. Late every Sunday night his connections 
are ungracefully terminated, remote interactive applications are disconnected 
and local applications produce an error when their ssh tunnels are destroyed. 
The same problems occur with his local connections when he leaves the com­
munity LAN. Despite being physically near to each other, the two communities 
are isolated during the week and remaining in contact with the other students 
is equally troublesome. They are forced to rely on a third party network (the 
Internet) in order to communicate. 

This scenario has elements of both long-lived disconnections and systemic 
disconnections. The community experiences periods of long-lived disconnection 
but, when their Internet connection is available, it supports Internet protocols 
and synchronous communication. If the student is within the community during 
these times, he is equally well connected and can operate as just another host 
in the Internet. If he is away, however, the disconnections become systemic. 
He is now disconnected from both the community and the rest of the Internet. 
The periods during which the community is connected may not coincide with 
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p e r i o d s w h e n h e i s c o n n e c t e d t o t h e L A N . D i r e c t i n t e r - c o m m u n i t y c o n n e c t i o n s 

a r e n o t p o s s i b l e a t a l l . 

A s w i t h t h e S a m i c o m m u n i t y n e t w o r k , t h e r e a r e a n u m b e r o f p o t e n t i a l , u n -

e x p l o i t e d c o n n e c t i o n o p p o r t u n i t i e s . T h e r e a r e r e g u l a r c o m m u t e r s a n d b u s e s 

t r a v e l l i n g b e t w e e n t h e t w o c o m m u n i t i e s a n d t h e t o w n . T h e r e i s a r e g u l a r p o s t a l 

s e r v i c e i n t h e r e g i o n a n d , a l t h o u g h e x p e n s i v e , a p e r i o d i c h i g h - b a n d w i d t h s a t e l ­

l i t e l i n k i s a l s o a v a i l a b l e . W e w o u l d l i k e t h e s t u d e n t ( a n d t h e r e s t o f t h e c o m ­

m u n i t y ) t o b e a b l e t o t a k e a d v a n t a g e o f t h e s e o p t i o n s , d e s p i t e d i f f e r e n c e s i n 

b a n d w i d t h , d e l a y a n d a v a i l a b i l i t y . 

2.4 Making Use of Intermittent Connectivity 

W e n o w d i s c u s s t w o a s p e c t s o f s u p p o r t i n g c o n n e c t i v i t y i n c h a l l e n g e d n e t w o r k s : 

t o l e r a t i n g d i s c o n n e c t i o n s , a n d u s i n g i n t e r m e d i a t e h o s t s t o s u p p o r t c o m m u n i c a ­

t i o n w h e n d i s c o n n e c t i o n s p r e v e n t c o n n e c t e d e n d - t o - e n d p a t h s . 

2.4.1 Managing Disconnections 

M a k i n g a p p l i c a t i o n s a n d n e t w o r k s d i s c o n n e c t i o n - t o l e r a n t i s a n a s p e c t o f h a n ­

d l i n g i n t e r m i t t e n t d i s c o n n e c t i o n s w h i c h , a s w e s t a t e d p r e v i o u s l y , i s a l r e a d y a 

w e l l - r e s e a r c h e d a r e a . W e o u t l i n e t h e g e n e r a l c o n c e p t s h e r e a n d b r i e f l y d i s c u s s 

r e l a t e d w o r k i n C h a p t e r 5 . 

T o l e r a t i n g d i s r u p t i o n s m i d - w a y t h r o u g h a c o n v e r s a t i o n r e q u i r e s t h a t t h e 

c o m m u n i c a t i o n a b s t r a c t i o n m e e t s t w o r e q u i r e m e n t s : a b r e a k m i d - w a y m u s t n o t 

b e f a t a l , a n d i t m u s t b e p o s s i b l e t o r e s u m e t h e c o n v e r s a t i o n w h e n t h e d i s r u p t i o n 

p a s s e s . I n o t h e r w o r d s , t r e a t t h e d i s c o n n e c t i o n a s a t r a n s i e n t f a i l u r e , r a t h e r t h a n 

a p e r m a n e n t o n e . 

S o m e a p p l i c a t i o n s s u p p o r t c o n n e c t i o n r e s u m p t i o n a t a l o g i c a l o r o p e r a t i o n a l 

l e v e l . F T P [ 2 1 ] , f o r i n s t a n c e , c a n r e s u m e a f i l e t r a n s f e r p a r t w a y . S M T P [ 1 5 ] 

i s s p e c i f i c a l l y d e s i g n e d a r o u n d a d i s c o n n e c t i o n - t o l e r a n t s t o r e - a n d - f o r w a r d a r ­

c h i t e c t u r e . T h e s e a p p r o a c h e s a r e a p p l i c a t i o n - s p e c i f i c , p l a c e t h e b u r d e n o n t h e 
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a p p l i c a t i o n a n d g e n e r a l l y t r e a t t h e d i s r u p t i o n a s a n e x c e p t i o n . T h e r e a r e t r a d e ­

o f f s i n v o l v e d w h e n c h o o s i n g w h e r e t o m a n a g e d i s c o n n e c t i o n s , h o w e v e r . T h e 

c l o s e r m a n a g e m e n t i s m o v e d t o t h e n e t w o r k t h e l e s s c o n t r o l a n d i n p u t t h e a p ­

p l i c a t i o n h a s o v e r t h e m a n a g e m e n t . M o v i n g i t c l o s e r t o t h e a p p l i c a t i o n c a n 

c o m p l i c a t e t h e a p p l i c a t i o n u n n e c e s s a r i l y a n d d u p l i c a t e c o d e a n d f u n c t i o n a l i t y . 

T h e s e t r a d e o f f s a r e r e l a t e d t o t h e t h r e e t y p e s o f d i s c o n n e c t i o n s d i s c u s s e d i n 

S e c t i o n 2 . 2 a n d e m p h a s i s e t h e d i f f e r e n c e s b e t w e e n t h e m . S h o r t , i n t e r m i t t e n t 

d i s c o n n e c t i o n s t h a t c a n b e r e a d i l y m a n a g e d a t t h e n e t w o r k l e v e l w i t h o u t t h e 

a p p l i c a t i o n ' s i n v o l v e m e n t s h o u l d b e , e s p e c i a l l y i f t h e a p p l i c a t i o n d o e s n o t n e e d 

t o a d j u s t i t s b e h a v i o u r i n r e s p o n s e t o t h e d i s c o n n e c t i o n . I n c o n t r a s t , l o n g -

l i v e d a n d s y s t e m i c d i s c o n n e c t i o n s s h o u l d n o t b e a b s t r a c t e d o u t e n t i r e l y . T h e 

a p p l i c a t i o n a n d u s e r o f t e n k n o w m o r e i n t h e s e c a s e s t h a n i t i s r e a s o n a b l e f o r t h e 

n e t w o r k t o k n o w , a n d s h o u l d b e i n v o l v e d i n t h e h a n d l i n g o f t h e d i s c o n n e c t i o n . 

A s e s s i o n l a y e r c a n b e u s e d t o f i l l t h e m i d d l e g r o u n d b e t w e e n t h e s e o p t i o n s , 

p r o v i d i n g a r a n g e o f f u n c t i o n a l i t y t o t h e a p p l i c a t i o n w i t h s u p p o r t f r o m t h e 

t r a n s p o r t a n d n e t w o r k l e v e l s . C o m p l e x d i s c o n n e c t i o n s o f t e n g o b e y o n d t h e 

a b i l i t i e s o f t h e n e t w o r k a n d t r a n s p o r t l e v e l t o h a n d l e i n d e p e n d e n t l y i n a n y c a s e . 

I n v o l v i n g t h e a p p l i c a t i o n a l s o m a k e s i t e a s i e r t o r e s u m e c o n v e r s a t i o n s a c r o s s 

a p p l i c a t i o n a n d s y s t e m r e s t a r t s s i n c e i t h a s m o r e c o n t r o l o v e r w h a t s e s s i o n 

s t a t e i s s a v e d . 

W h e n c o n n e c t i o n i n f o r m a t i o n i s a s s o c i a t e d w i t h a h o s t ' s n e t w o r k a d d r e s s , a s 

i s t h e c a s e w i t h T C P a n d U D P , m a n a g i n g d i s c o n n e c t i o n s i s c o m p l i c a t e d f u r t h e r 

w h e n a n a d d r e s s c h a n g e i s i n v o l v e d . A s s o c i a t i n g t h e i n f o r m a t i o n w i t h a p e r s i s ­

t e n t h o s t i d e n t i t y i n s t e a d h e l p s m a k e l o w - l e v e l a d d r e s s c h a n g e s t r a n s p a r e n t . 

T h e i s s u e o f s e p a r a t i n g h o s t i d e n t i t y f r o m a d d r e s s h a s b e e n r a i s e d p e r i o d i ­

c a l l y o v e r t h e l a s t f e w d e c a d e s , b u t o n l y r e c e n t l y h a s i t b e c o m e a f o c u s o f t h e 

r e s e a r c h c o m m u n i t y a s t h e d e m a n d f o r m o b i l e c o m m u n i c a t i o n g r o w s ; w o r k o n 

s e r v i c e s l i k e M o b i l e I P [ 2 0 ] a n d M o b i l e I P v 6 [ 1 4 ] a i m t o m i t i g a t e t h e e f f e c t s o f 

t h e s e c h a n g e s i n T C P / I P n e t w o r k s . T h e s e i s s u e s m u s t b e t a k e n i n t o a c c o u n t 

i n i n t e r m i t t e n t l y - c o n n e c t e d n e t w o r k s w h e r e a d d r e s s c h a n g e s c a n b e b o t h c a u s e s 

a n d s i d e e f f e c t s o f n e t w o r k d i s r u p t i o n s . 
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Gracefully handling disconnections is only the first step towards communi­

cating using intermittent connectivity. We must still reconsider the reliance on 

end-to-end paths. 

2.4.2 End-to-End Paths and Intermediate Hosts 

Hosts require a connected end-to-end path only when they must take all respon­
sibility for the data they send. In a well-connected network, this is a reason­
able expectation and is the basis for the Internet's end-to-end argument [24]. 
Connected end-to-end paths and disconnections are two conflicting concepts, 
however. Reliance on end-to-end paths becomes problematic when data reaches 
a disconnection in the network and the end host does not have sufficient in­
formation (or control) to work around the disruption. Moreover, those hosts 
closer to the disconnection that are better informed and able to handle it are 
not in a position to do so. If responsibility for the data can be passed to these 
intermediate hosts, the reliance on end-to-end paths can be relaxed. 

Consider the heterogeneity of the infrastructure in intermittently-connected 
networks. Trying to formulate a one-size-fits-all transport protocol is an exer­
cise in futility; different links and networks have different characteristics which 
should determine the behaviour and design of their protocols. It is difficult for 
an end host to switch to a different transport or network protocol if it is dis­
tanced from the link that needs it. It is even more difficult if the data must 
traverse a series of heterogeneous links. By allowing each network and link to 
choose its own protocol and using intermediate hosts to sew the links together at 
their edges, we can tackle a diverse range of link types and technologies without 
relying on a single, all-encompassing transport. 

Intermediate hosts can do more than act as translators and remove the re­
liance on end-to-end paths. Explicitly including them in a connection makes 
them a very powerful and flexible means of providing services useful in chal­
lenged networks, especially those that are location-dependent. We can use them 
to provide functionality on a per-need basis, rather than attempting to engineer 
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a one-size-fits-all service model for such greatly varied networks. This function­

ality includes: 

Routing An intermediate host can make high-level routing decisions when 
there are multiple connection opportunities. A network may have a relatively 
cheap but slow dialup Internet connection; a fast, expensive, high-bandwidth 
satellite link; and a free, high-bandwidth, high-delay data courier all available 
at different times. Routing decisions can be complex and must take into account 
current as well as up-coming connections and their throughput and cost, and it 
is likely that they will be made by a human operator rather than automatically. 
Where possible, unexpected connections should be used opportunistically as 
they arise. Making these decisions at a single point is much simpler than at 
multiple end hosts. 

Forwarding points Intermediate hosts can act on behalf of end hosts when 
the latter are unavailable. In our example network, while the student is out 
in the field and disconnected, he can use an intermediate host in the commu­
nity LAN as temporary storage point for incoming data. Upon his return, the 
intermediate host can forward the buffered data to him. A host can be simi­
larly interposed as a forwarding point for outgoing data, performing buffering 
in the opposite direction. The student can send data in expectation of an up­
coming connection and then disconnect from the network. When a connection 
between the intermediate host and the next downstream host (possibly another 
forwarding point) is established, the data can be sent without the student being 
involved. 

Rendezvous points In situations where an intermediate host cannot actively 
connect to an endpoint (or another intermediate host) due to network config­
uration, firewalls etc., it can act as a rendezvous point instead of a forwarding 
point. The intermediate host buffers data in either direction and passively waits 
for an end host to contact it and establish a connection along which to forward 
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data. The result is a put/get communication model that naturally does not rely 

on a connected end-to-end path. 

Message consolidation It can be useful to group multiple streams into a 
single stream that is then transported en masse. This is important if a link is 
only cost effective above a certain utilisation level. Rather than fitfully sending 
data as it becomes available, a host can buffer data from multiple sources until 
a critical mass is reached and then pass it on to the intermediate host respon­
sible for the link. On the far side, the streams are separated and continue their 
separate journeys. 

In general, intermediate hosts allow responsibility for data to be delegated 
to other hosts in the network. This allows the end host to take advantage of 
connections and services that it would not normally have access to, and naturally 
supports cooperation of heterogeneous network elements. 

2.4.3 The End-to-End Argument 

Intermediate hosts are certainly not new in the Internet. Middleboxes such as 
NAT devices, web caches and proxies are also aimed at providing services, such 
as performance improvements and address translation, to end hosts at specific 
points in the network. They have been widely criticised for violating the end-
to-end argument and fate sharing principle to the detriment of the network [2]. 
They complicate network management and protocols and can have unforeseen 
effects on network services. These problems are mainly due to their attempts to 
be transparent. They intercept and modify data which is not addressed to them 
and operate without the end host's knowledge or cooperation. For instance, 
NAT devices adjust the IP addresses of packets they intercept, interfering with 
the identity semantics associated with addresses (issues of identity and address 
are discussed further in the next chapter). 

It is desirable that we involve intermediate hosts without falling into the same 
trap. Work such as [8, 28, 7] has explored the possibility of making middleboxes 
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first-class objects in the network in an attempt to reinstate the argument. We 
take a similar approach and argue that because the end hosts explicitly invoke 
the intermediate hosts, they do not violate the argument. Both hosts are aware 
of each other and end hosts have control over which intermediate hosts are 
involved in a connection and when. Furthermore, our intermediate hosts are not 
trying to "trick" the end hosts or modify transport- or application-level data. As 
we discuss in Chapter 3, our architecture explicitly terminates transport-level 
connections at intermediate hosts and application data must arrive unmodified 
at its destination. It is permissible for intermediate hosts to establish state 
because they are so involved in a connection. As a result, they share the fate of 
the connection and the end hosts. 

2.5 Summary 

The class of challenged networks, are those that do not support all of the architec­
tural assumptions of the internet. They may lack end-to-end paths, experience 
frequent disruptions, have excessive delay and bandwidth limitations, and in­
volve heterogeneous network elements. To facilitate communication in these 
networks and simplify application development two issues must be addressed: 
disconnections and lack of a connected end-to-end path between hosts. 

Intermediate hosts can help address these issues. By explicitly including 
them on a path, they remain in accord with the end-to-end argument and share 
the fate of the endpoints and the application-level flow. They are useful tools 
for providing functionality to the network and the end hosts without an over-
engineered architecture that provides' an exhaustive suite of services. 

In the next chapter we describe the Euonym architecture and its implementa­
tion. The architecture supports connection resumption and explicit involvement 
of arbitrary intermediate hosts on the path between endpoints. 
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Chapter 3 

Euonym 

The Euonym architecture uses intermediate hosts to provide services to end 
hosts in challenged networks. We use a layer of persistent names to identify 
hosts and services in the network and provide a basic form of disconnection 
tolerance. End hosts can use source and destination-specified routing to include 
intermediate hosts in a connection, invoking their services only when needed. 
The architecture supports arbitrary network address formats without unneces­
sary complexity at the end hosts and, by using late binding, delays the inter­
pretation of names and addresses until they can be done at a suitable point in 
the network. The architecture describes how intermediate hosts are named and 
should participate in a connection, but does not impose a specific set of services 
or assumptions on them or the end applications. 

In this chapter, we describe the Euonym architecture in general and the 
specifics of our example implementation. 

3.1 Architecture 

Euonym lies between the application and the transport layer (or session layer, 
if present)—Figure 3.1. We term a logical connection between the source and 
final destination hosts a flow, and the transport-level connections between these 
hosts and intermediate hosts connections. Connections are always explicitly ter­
minated at intermediate hosts.1 A flow is always one-way while the underlying 
connections may be two-way. To establish bi-directional communication, the 

1In other words, we are not proposing a transport protocol that involves intermediate hosts. 
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Application 
Application 

Application^ 

• Euonym Euonym Euonym 

Transport -. Tran sport Transport 

.Network Netw ork .Network 

End Host Intermediate Host E n d Host 

Figure 3.1: Layering in the Euonym architecture. Transport and network con­
nections terminate at an intermediate host, while Euonym flows and application-
level connections span them. An intermediate host generally has a helper ap­
plication which is not associated with the end host applications. 

end host applications must each initiate their own flow to the other party. The 
architecture is depicted in Figure 3.2. 

3.1.1 Names 

Every Euonym host has one or more names: flat (non-aggregable), opaque, 
globally unique identifiers, based on the endpoint identifiers described by Bal-
akrishnan et al. [1]. When necessary, a host's name is translated into an address 

for use by the transport and network layers, such as an IP address. 
As we describe in the next few sections, a Euonym name can identify more 

than just a single host. It can identify a path that data must take, a service 
provided by an intermediate host, a group of hosts, or even an entire network. 
The meaning of name is dependent on where it is resolved and how it is used. 
For instance, an application can identify a host in a remote network simply using 
the host's name. Initially, the name corresponds to a gateway to use or a route 
to follow to reach the remote network. Once in that network, it corresponds to 
the services needed in order to reach the end host and, finally, the local address 
of the end host, whatever form that may take. 

This flexibility of interpretation is an important aspect of the architecture. 
We do not wish to encumber a name with semantics such as location, admin-
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Logical 
application-level 
connection 

Transport- level 
connections 

Network-level 
connections 

Euonym flow 
(one-way) 

Figure 3.2: Flows and connections in the Euonym architecture, with end hosts 
A and B and intermediate host P. Euonym flows are one way and transport-level 
connections are usually two-way. 

istrative domain, network membership or host type. For instance, given that 
our challenged networks are often divided into isolated regions, it is tempting to 
identify a host using its region name along with its network address. This sim­
plifies routing but complicates management, especially since regions are likely 
to be ephemeral and hosts may move frequently between them. Any aspect of a 
host that changes during its lifetime without affecting its identity should not re­
quire a change of name. The dynamic nature of challenged networks also means 
that we must avoid any form of hierarchy, be it implicit or explicit: hosts are 
likely to move within any hierarchy as the network changes, and name lookup 
and storage must be done in a distributed manner because centralised services 
(such as DNS) do not lend themselves to these networks. 

The alternative to opaque names requires that we identify namespaces by 
separating a host identifier into a {type, identifier} pair and use the type portion 
to determine the identifier's interpretation. This has two major drawbacks: it 
imposes the overhead of managing a type namespace, and it prevents context-
dependent interpretation of a name. Instead, we use a single common namespace 
and let the context and use of a name determine its interpretation. 
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Security 

Separating a host's identity from its network address introduces security issues 
that are beyond the scope of this thesis. Briefly, naming a host with its address 
implicitly provides a degree of security because data is routed using the name, 
and a third party must be on the route in order to intercept it. This security is 
lost when data is routed based on address alone and identity must be verified 
separately. Nikander et al. [19] discuss these and related security concerns in the 
context of the Host Identity Protocol [18]. The HIP architecture uses similarly 
flat hostnames and, by embedding the cryptographic hash of a host's public key 
in its name,.they make the name self-certifying. This allows the identity of a 
remote host to be verified relatively easily. A similar approach could be taken 
to secure the Euonym architecture. 

3.1.2 Name Stacks and Name Resolution 

In addition to an address, a name can also map to a name stack: an ordered 
list of names and addresses. Name stacks are an essential part of the Euonym 
architecture. They give it the power of source- and destination-specified routing, 
late binding, and are used to involve intermediate hosts in a flow. 

Before connecting to a remote host, an application must resolve the remote 
name into an address suitable for the transport layer. It does this by resolving 
a name into a name stack using the R E S O L V E N A M E function (Table 3.1). The 
L O O K U P operation simply finds the mapping between a name and its value: 
either an address, another name, a (possibly empty) name stack, or null if 
no mapping exists. The lookup is performed by a naming service specific to 
the local network, such as a DHT, in which hosts have published their name 
mappings. 

An empty result stack and a stack with null at the top indicate errors. Note 
that when the mapping of a name is pushed onto the stack, it is pushed above 
the name itself. Thus, a record of the path taken to resolve a name to its 
eventual address (or error) is preserved within the result. Additionally, a name 
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function R,ESOLVENAME(name n) 
push n onto a new stack s 
return R E S O L V E ( S ) 

end function 

function RESOLVE(stack s) 

set c to peek(s) 
if c is an address or null then return s 
set m to L O O K U P ( C ) 

if m is empty then pop(s) > An empty stack pops the name 
else push m onto s end if 
return R E S O L V E ( S ) 

end function 

Table 3 . 1 : The R E S O L V E and R E S O L V E N A M E algorithms for name resolution. 

that maps to an empty stack is treated differently: the name is popped and the 
resulting stack is resolved. This allows a name to be removed from the stack 
when it is no longer needed. For instance, a network's name resolves to an 
empty stack within the network itself as nothing needs to be done to reach it. 

Names and addresses can be mixed in a name stack and we must be able 
to distinguish between them without imposing limitations on the format of 
network-dependent addresses. We could explicitly separate them into Euonym 
and non-Euonym namespaces but, given that an address should only be used 
in networks and by hosts that can understand it, this seems overly complex. 
Instead, we separate them implicitly and simply require that a host that uses a 
certain type of address can distinguish it from a Euonym name. 

3.1.3 Establishing a Flow 

We now describe how a Euonym host initiates a flow to another host and invokes 
the services of intermediaries. We start with a basic scenario involving the stu-
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A, 142.103.19.89 P, 192.26.2.2 

B, 196.27.1.1 

Internet Community — Intermittent link 

Figure 3.3: Example scenario: A is the university server, B is the student's 

laptop and P is the intermediate host that buffers data destined for B. 

dent working in a remote community, as described in Chapter 2 . For simplicity, 

we assume that all endpoints use IP addresses and T C P as a transport, but the 

general case follows easily. The configuration is shown in Figure 3.3. 

The student wishes to interpose host P2 on any flow destined for his lap­

top, B. He does this by making JB 'S name map to the stack {P, 1 9 6 . 2 7 . 1 . 1 } 3 . 

The names A and P each map to their host's IP address. When A initiates a 

flow to B, it recursively resolves B using R E S O L V E N A M E to produce the stack 

{ 1 9 6 . 2 6 . 2 . 2 , P, 1 9 6 . 2 7 . 1 . 1 , B}. A pops the top entry ( 1 9 6 . 2 6 . 2 . 2 ) and opens a 

T C P connection to it. As part of the connection handshake, A sends the name 

of the flow's origin (itself) and the modified stack to P. When P receives the 

stack, it pops off the first entry and verifies that it matches its own name. Since 

there are additional entries on the stack it knows that it is an intermediate host 

and must forward the data onward. It may also check the remainder of the 

stack and ensure that it is willing to forward data toward the final host. 

P then performs a similar operation to complete the flow, with only a slight 

modification. Since it already has a stack of names to work with—namely 

{ 1 9 6 . 2 7 . 1 . 1 , B}—it can bootstrap the resolution process. It calls R E S O L V E with 

this stack as an argument and, since the top is an IP address, the call returns 

without modifying it. P pops the top entry and connects to it, sending the 

origin host (A) and the modified stack (now just {B}) in the handshake. As 

before, B pops the top off the stack and confirms that it is the appropriate 
2 For readability, we use these names instead of Euonym's 64-bit identifiers. 
3Stacks are written with the top at the left and the bottom on the right. 
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target for the connection. Furthermore, since the stack is now empty, B knows 
that it is the final endpoint for the flow. 

If B needs to send data to A, it establishes a new flow with A as the des­
tination using the process described above. Recall that while each individual 
connection may be two-way, a flow is one-way. Depending on how A maps its 
name, the return path from B to A may differ from that followed from A to B. 
Different routes, services and intermediate hosts may be needed on the reverse 
path. This may be the case if flow components are naturally asymmetrical or 
one-way (e.g., a link served by a data courier on a circular route) or if the return 
flow is established some time after the initial flow, when the network topology 
and connectivity situation has changed. Both parts of a two-way connection 
can be utilised if the hosts are in a position to do so, but in general we allow 
the asymmetry of flows so as not to limit the use of the architecture. 

3.1.4 Flow Identification 

At both intermediate and end hosts, a flow is identified by its origin (a name) and 
its destination (a name stack), as received from the upstream host or specified by 
the application. In the above example, the flow is identified at A by <A, {B}>, 
at P by <A, {P, 196.27.1.1, B}> and at B by <A, {B}>. 

Note that there is no impact on downstream hosts, including the destination, 
if a non-originating upstream host changes. That is, if a connection goes from 
A to B via P, then the same connection state at B is used if P is removed 
or replaced, or another host is interposed on either side of P. Since names 
are removed from the stack as it progresses along the components of the flow, 
downstream hosts are ignorant of any components (and hence any changes) 
upstream of them. Thus, a host can easily receive data for the same flow from 
multiple upstream hosts. 

Consider the impact of this naming scheme on a flow's final endpoint (at the 
risk of being repetitive, let us call it B). If hosts are added, replaced or removed 
upstream, there should be no change at B; it still sees a flow from A to B. If 
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hosts are added after B, however, it becomes an intermediate host for that flow 
and not a destination, even if the origin remains the same. New connections to 
B that have this new name stack are multiplexed separately from the original 
flow's connections. The result is that B now sees two separate flows. 

End hosts can be seen as a degenerate form of intermediate host. Each 
intermediate host has an incoming half and an outgoing half. The incoming half 
waits for connections from upstream hosts and passes the flow origin and name 
stack to the outgoing half, which connects to downstream hosts. A flow's origin 
host is simply an intermediate host with only an outgoing half that receives 
the destination name from the application. Similarly, the final end host is an 
intermediary with only an incoming half. This suggests that an origin host 
could specify a name stack as a destination, instead of just a name. This gives 
us source-specified routing, which we discuss next. 

3.1.5 Source-Specified Routing 

We have seen how a destination host can invoke an intermediate host on incom­
ing flows—destination-specified routing, which applies equally well to interme­
diate hosts. 

An origin host can use source-specified routing to invoke services on outgoing 
flows. Instead of specifying just a destination name, it specifies a name stack 
that identifies the services to use. For example, to include service Q on a flow 
from A to B, the application at A specifies {Q, B] as the flow destination. 
Name resolution and flow establishment proceed as before, with the exception 
that B will be resolved by Q instead of A. This can also be performed on a 
per-host, rather than a per-application basis, by storing custom bindings locally 
on a host. In this case, to interpose Q on all flows destined for B, host A locally 
maps B to {Q}. 

Again, intermediate hosts are no exception. They can push names onto the 
stack used by their outgoing half before the resolution stage. This does not 
interfere with flow multiplexing, which is performed by the incoming half before 
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1. {T, B) => {p, P, T, B) 

2. {T, B} =• {q, Q, T, B} 

B f \ 3. {T, B} => {b, B} 

T 

S 

Figure 3.4: Source-specified routing, late binding and re-binding, and name 

interpretation. A in network R contacts B in network T via network S and 

intermediate services P and Q. Host X has address x. 

the stack is changed. In addition, flow identification at those downstream hosts 

already on the stack is unaffected. 

3.1.6 Late Binding and Re-binding 

A host might wish to specify two successive intermediate hosts but delay the 

binding of the second one's name until after the first has been invoked. Often, 

this is because a name is location dependent. If the first name is a service that 

links two isolated networks, resolving the second name in the flow origin's local 

network may produce an empty result. Instead, resolution of the name must be 

delayed until it can be done inside the second network. 

Alternatively, a single name with different mappings can be used. In the first 

network, the name resolves to the path required to reach the second network. 

Once there, it resolves to the end host itself. 

The next example (Figure 3.4) demonstrates source-specified routing, late 

binding and re-binding of names, and interpretation of names as hosts, services, 

paths and networks, depending on the location. 

Host A in network R wants to contact host B in network T. To do so, it 

must go via network S using the services P and Q. The flow destination is 

specified by the application as {T, B}. The name T is interpreted not as a 

network name but as a path to follow to reach the network: service P which 
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joins R and S. The destination is resolved by A to produce {p, P, T, B) (where 
p is the network address of P). Once in network S, the name T is re-interpreted 
as a method to reach T using service Q. So {T, B} is resolved to {q, Q, T, B} 
and network T is reached. Within T itself, the name T maps to an empty stack 
and so is popped. Finally, the resulting stack {B} is resolved to {b, B} and the 
flow is completed. 

3.1.7 Intermediate Hosts 

Failures and Fate Sharing 

Interposing hosts into a flow introduces a degree of complexity and poses some 
challenging issues. As discussed in Chapter 2, we feel that since these hosts 
are explicitly involved in the flow they do not violate the end-to-end argument. 
Even though their inclusion is transparent to the application, the end hosts are 
still aware of them. They are not hosts that perform operations on arbitrary 
connections without control, but rather are knowingly invoked by a host that is 
involved in the flow. 

The issue of fate sharing and just how involved the intermediate hosts are is 
somewhat less clear. If an intermediate host fails, should the entire flow fail? In 
some cases such a failure may result in unrecoverable data loss which prevents 
the connection from continuing or being recovered. In other cases, it is possible 
that the end hosts can resend lost data and recover gracefully. Either way, 
it seems prudent to relegate this decision to upstream hosts and, eventually, 
the origin host itself. That is, if an intermediate host detects an unrecoverable 
failure on a connection, it should cascade the failure upstream, possibly after a 
brief attempt at local recovery. For example, while the end host might be willing 
to wait indefinitely for a broken link to be restored, an intermediate host may 
prefer to re-attempt a connection for some finite amount of time before giving up 
and cascading the failure backwards. Each intermediate host along the way may 
make its own attempt at recovery (choosing a different path, perhaps) before, 
in turn, passing the failure backwards. Eventually, the origin host receives the 
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failure and makes the final decision. 
Because end hosts at least partially share the fate of the intermediate hosts, 

we do not always expect an end host to be able to recover from a failure at an 
o 

intermediate host. Some situations may be fatal, such as when an intermediate 
host knows the next hop is permanently unreachable. 

Data at Intermediate Hosts 

Intermediate hosts should only provide services that support communication 
in intermittently-connected networks. In particular, they should not modify 
application-level data and their services should be idempotent and deterministic. 
That is, if the same data reaches an intermediate host more than once, the data 
that the host passes on to the next hop should always be the same. The services 
described in Chapter 2 (rendezvous points, data forwarding etc.) are examples 
of services that meet these requirements, while a service like stateful packet 
inspection and modification is not. 

3.2 Implementation 

We have implemented a prototype of the Euonym architecture in Java 1.5 and 
use it to demonstrate the architecture using both Euonym-enabled applications 
as well as regular applications that interface with Euonym through proxies. In 
this section we describe our example implementation. Results from using it are 
presented in Chapter 4. 

3.2.1 API 

Euonym provides the application with a socket-like, stream-oriented abstraction 
of the network. The API is similar to the Java Socket API with some additional 
support for intermediate hosts. We have developed two transport-layer inter­
faces, one that uses TCP sockets and one that supports file-based transfer. The 
latter is suitable for use with any batch transport such as data couriers or the 
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postal system. 
The two primary classes are NamedSocket and NamedServerSocket, which are 

analogous to the Java Socket and ServerSocket classes. They tie in closely with 
the TCP interface which is described in Section 3.2.2. Tables 3.2 and 3.3 show 
basic use of these two classes. 

Outgoing Flows . . " 

The NamedSocket class acts as the outgoing half of a Euonym host, at both the 
origin host and at intermediate hosts. To establish a flow, an application creates 
an instance of the class and calls, the connect 0 method, giving it a destination 
name or name stack to connect to. The class does the work of resolving the 
name, establishing a TCP connection, negotiating name stacks, etc. It provides 
an OutputStream object that the application uses to write data to the flow. The 
application signals the end of the flow either by closing the stream or by calling 
the close () method on the socket. The class then signals the end of the flow to 
downstream hosts and terminates the transport-level connection. 

The same class also aids the application by listening for an incoming flow 
from the destination host that appears to be the mirror of the outgoing flow. 
That is, it watches for flows that originate at the outgoing flow's final destination 
host and have a final destination of the local host. The incoming flow is not 
automatically created and must be established independently of the outgoing 
flow by the remote host. The class provides, an InputStream object that the 
application can read incoming data from. 

Incoming Flows 

The NamedServerSocket class comprises the incoming half of a host and is used 
at intermediate hosts and final end hosts. The class operates in much the same 
way as a regular ServerSocket. The application creates an instance of the class, 
binds it to a name and, because our implementation is TCP-oriented, provides 
a port number on which to listen for incoming connections. The application 
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import euonym.net.*; 
import euonym.naming.*; 
import java.io.*; 

p u b l i c class C l i e n t { 
publ i c s t a t i c void main(String[] args) { 

t r y { 
NamedSocket socket = new NamedSocket(); 

// name stack, top on l e f t 
Names remote = Names.parseString( 

"aOOOOOOOOOOOOOOO bOOOOOOOOOOOOOOO 1000000010000000"); 

// connect to remote host on port 1234 
socket.connect(new NamedSocketAddress(remote, 1234)); 

// send a single l i n e 
socket.getOutputStream0.write("hello\n".getBytes 0 ) ; 

socket.close(); 
} catch (IOException e) { e.printStackTraceO; } 

} 

} 

Table 3.2: Example client code that uses a name stack to provide source-
specified routing. 
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import java.io.*; 
import euonym.net.*; 

public class Server { 
public static void main(String[] args) { 

try { 
/ / bind to localhost (1000000010000000) on port 1234 
NamedServerSocket server = new NamedSeryerSocket(1234); 

/ / wait for a single incoming flow 
NamedSocket socket = (NamedSocket) server.accept(); 
server.close(); 

/ / read a line and print i t to the screen 
BufferedReader r = new BufferedReader( 

new InputStreamReader (socket. getlnputStreamO ) ) ; 
System.out.println(r.readLine()); 

socket.close(); 
catch (IOException e) { e.printStackTraceO ; } 

Table 3.3: Example server code that waits for incoming flows destined for 
1000000010000000. 

http://euonym.net.*
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then calls accept () which blocks until an incoming flow is available. When a 
new incoming flow arrives, a corresponding NamedSocket object is created and 
passed up to the application via accept 0. The server socket multiplexes new 
incoming transport connections such that if they correspond to an existing flow, 
they are added to it, otherwise a new NamedSocket object is created and returned 
by accept(). 

As before, the new NamedSocket object passes incoming data up to the appli­
cation through an InputStream object. It also helps the application by automat­
ing the creation of the mirror, outgoing flow if needed. When the application 
writes to the provided OutputStream object for the first time, the outgoing flow is 
created with the local host as the origin and the origin host of the incoming flow 
as the destination. If the application never writes to the socket, the outgoing 
flow is never created. 

When the application closes the NamedSocket, the transport connection for 
the incoming flow is also closed and any subsequent connections are ignored. The 
incoming flow itself is not actually closed: since it is one-way only the originating 
host can close it. If the origin continues sending data, any intermediate hosts 
will eventually stop trying to connect and pass the error back to the origin where 
it causes an exception. 

3.2.2 TCP Interface 

Our implementation uses TCP as its primary transport mechanism and provides 
basic but effective support for connection resumption across disconnections and 
address changes. An overview of the interaction between TCP and Euonym is 
shown in Figure 3.5. 

When establishing a flow, the host resolves the destination name stack until 
it finds an IP address. The address can include a port number so that a name 
can identify a service on a host (names cannot include port numbers). A TCP 
connection is established with the next hop, the relevant stacks and names are 
exchanged, and flow data is sent. Because flows are one-way, data is never read 
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Figure 3.5: Overview of the Euonym API and its interaction with TCP. The 
client uses a NamedSocket object as the endpoint for an outgoing flow and the 
mirror incoming flow. The outgoing flow uses a client TCP socket to connect to 
the remote host and a listening TCP server socket accepts connections for the 
incoming flow. The server uses a NamedServerSocket to listen for incoming flows 
and create corresponding NamedSocket objects. 

from the next hop—which corresponds to a separate flow—using the same TCP 
connection. That is, after the handshake, only one half of the connection is 
used. In a full implementation this could be optimised by using both halves 
if two different flows happen to use the same two intermediate hosts, but in 
opposite directions. 

To support the return flow, if any, an outgoing flow causes a listening TCP 
socket to be opened. The socket waits for incoming connections that appear to 
be the mirror of the outgoing flow. When one arrives, any existing incoming 
connection for the flow is terminated and data from the new connection is passed 
up to the application when it reads from the NamedSocket's InputStream object. 

Disconnection Tolerance 

The implementation hides non-fatal TCP failures from the application. If a 
host is unreachable, it waits for an application-controlled period (5 seconds 
by default) before re-resolving the name and attempting the connection again. 
The application has control over how many times this cycle is repeated before 
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an exception is raised, possibly less for intermediate hosts than for end hosts, 
which may try indefinitely. If an outgoing connection has been terminated 
then subsequent writes to the flow block until a new connection is established. 
Conversely, if an incoming connection has been lost then subsequent reads block 
until a new incoming connection for the incoming flow is established. 

Failures related to the hosts rather than the network—such as rejection of a 
connection by the remote host or failure to bind to a local port—cause exceptions 
immediately. 

Byte Numbering 

Euonym hosts use byte numbering to identify their position in a flow's data 
stream and to prevent out of order or duplicate data. When a connection is 
established or resumed, the two hosts must first agree on their positions in 
the stream. Since a flow is one-way, there is always a sending host and a 
receiving host. The sending host buffers the most recent x bytes to be written 
to the flow and informs the receiving host of the range of bytes it is able to 
provide. The receiving host keeps track of the last byte number that was read 
by its application. If the host is the flow's final endpoint it knows exactly 
what byte should be delivered to its application next. An intermediate host is 
generally not so knowledgeable and will request as much data as possible from 
its upstream host, in an effort to meet the potential requirements of the next 
hop. If possible, the two. agree on a byte to resume from and the data can begin 
to flow. Otherwise the receiving host rejects the sending host's connection. Like 
any other failure, this may be cascaded back to the start of the flow. 

The remaining issue is how much data a host must buffer—the value of x. 
TCP must solve the same problem, but because of the connectivity assumptions 
of the Internet, it can place a reasonably small upper bound on the amount of 
unacknowledged data it sends. Our architecture does not have this luxury and 
passes the decision on to the application. Conceptually, it depends on how far 
back in the "past" the application is willing to go to get the data it must re-send. 
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For a file transfer, this may simply be the start of the file. For an interactive 
application, it may only be a few minutes worth of buffered interaction. Unlike 
TCP which hides buffered in-flight data from the application, Euonym gives the 
application full control over the buffering process. By default, the most recent 
128KB of data are buffered. We have found this to be large enough to cover 
unacknowledged TCP data as well as data buffered on the local and remote 
sockets but not yet read by the application. 

3.2.3 File Interface 

We have also implemented a file interface that is used for preparing flow data 
for batch transport. For an incoming flow, the origin name, the name stack, and 
byte number are written to a file, followed by the flow data. The file can then 
be transported by any means to another host where it is injected back into the 
network. For an outgoing flow, the name stack and byte number are read from 
the file and used to establish the flow. The data is then read and streamed into 
the flow. 

3.2.4 Names: Format, Storage and Lookup 

Names in our implementation are 64-bit random numbers, displayed in hexadec­
imal. We have a single special name, 1000000010000000, which always corre­
sponds to the local host and is analogous to the IP address 127.0.0.1. Having 
this address makes using Euonym on a single host much simpler. 

Name Storage 

Because Euonym names are non-aggregable, we cannot use an existing name 
storage system such as the Domain Name System (DNS). Instead, Euonym uses 
FreePastry 1.4 [9], an implementation of the Pastry [22] Distributed Hash Table 
(DHT) to store and lookup name mappings. A complete discussion of FreePastry 
and DHTs is beyond the scope of this thesis and we refer the interested reader to 
[22] and related work. Briefly, they work as follows. Every node in the network 
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has a name in a 6-bit wide circular address space (a common value for b is 128), 
generally chosen randomly. An item to be stored in the hash table is given a. 
identifier i taken from the same address space. The item is then stored at the 
node with name n such that some distance metric between n and i is minimal 
for all the nodes currently in the network. DHTs are naturally suitable to flat 
identifiers and Pastry provides scalable, efficient lookups and is resilient to node 
failures. 

Each Euonym host runs a name server process which performs name res­
olution for the host and acts as a node in the Pastry DHT. Together, these 
hosts form a Pastry overlay and cooperate in the storage and lookup of names. 
A host's Pastry ID is unrelated to its Euonym names and is chosen randomly. 
Euonym names are mapped to Pastry's 128-bit IDs simply by padding the name 
with zeros. Name mappings are stored redundantly at k nodes in the overlay to 
help prevent losses when the overlay is partitioned or a node leaves, and Pastry 
ensures that mappings are re-distributed as nodes join and leave the network. 
In a full implementation, a host could periodically do a lookup of its own names 
and re-insert the bindings if it found they were missing or out of date. Addi­
tionally, a host might register a name callback with the DHT node that stores 
the name and be notified when the name's mapping changes. 

Regions 

Intermittent and disconnected links form natural borders around well-connected 
hosts and divide the larger network into separate regions. Because Pastry is re­
liant on a well-connected TCP network, the result is a single DHT per region. 
This allows a name to have different mappings in different networks which is 
necessary for late binding and re-binding (Section 3.1.6). Conversely, if two net­
works are sufficiently well-connected to form a single DHT, they are sufficiently 
well-connected to be considered a single network. 

Gateway nodes that span regions can participate in each region's DHT in two 
ways. Either they can run separate DHT node applications, each bound to the 
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network interface for that region, or, if they span only two regions (a common 
case), they can participate only in the region in which they make lookups. For 
example, a host that unidirectionally bridges region R to region S need only 
participate in the latter's DHT, provided its name resolves to its address in R's 
DHT. 

3.2.5 Limitations 

Providing disconnection tolerance using TCP is more complex than it should 
be, mainly because TCP sockets do not provide much information for recovering 
from a connection error. For example, an application could make a better guess 
at what data to resend to a host if it knew the last byte that it acknowledged. 
Additionally, Java's socket implementation does not provide useful information 
about why a disconnection occurred or why connection setup failed, even if 
the underlying system provides it. All disconnections raise a SocketException 

exception and any connection setup error raises a ConnectException exception. 
Both may be raised for a number of reasons. 

Completely out-of-order data delivery is not supported by our implementa­
tion. It would be useful to allow a host to accept any and all data from multiple 
upstream hosts and piece it together as necessary, passing the resulting con­
tiguous stream up to the application. This could be a service performed by an 
intermediate host, particularly if there is a point in the network where multiple 
data paths converge. 

3.3 Summary 

In this chapter we described the Euonym architecture and our example imple­
mentation. 

The Euonym architecture uses a layer of flat names above IP addresses 
to identify hosts and services in the network. Through name stacks, which 
contain both names and transport-layer addresses, it allows intermediate hosts 
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to be explicitly interposed on a flow between two endpoints. Name stacks also 
provide late binding and source- and destination-specified routing. The flexible 
interpretation of names allows them to identify hosts, services, networks and 
network paths, depending on where and how they are used. 

Our prototype implementation of the architecture lies between the applica­
tion and the transport layer and provides a socket-based stream abstraction of 
the network. It uses TCP as its primary transport protocol and tolerates net­
work address changes and disconnections of arbitrary length. We use the Pastry 
Distributed Hash Table (DHT) to provide scalable, robust lookup of names in 
the network. Separating DHTs based on connectivity boundaries partitions the 
network into regions, allowing a name to have different mappings in different 
parts of the network. 

In the next chapter we demonstrate the use of the implementation. 
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Using Euonym 

In this chapter we demonstrate the use of the Euonym implementation. Our 

experiments illustrate its applicability to both batch and round-trip dependent 

communication, as well as with legacy and Euonym-enabled applications. We 

show that it meets the architectural goals identified in Section 2.1 and, in doing 

so, the research goals in Chapter 1. 

We performed these experiments by running all programs on the same host 

and simulating link availability. Unmodified applications work with the archi­

tecture through proxies and link speeds are simulated by limiting the rate at 

which applications can write data to their sockets. Each separate network region 

has its own DHT and hence naming domain. 

4.1 Batch Communication 

In this experiment we transfer 116 340KB of data across two intermittent links 

using the support of intermediate hosts. The experiment demonstrates use of 

the architecture by unmodified applications, tolerance of disconnections that 

exceed the limitations of the transport layer (TCP), interposition of arbitrary 

intermediate hosts mid-flow, and the use of intermediaries for data forwarding 

and to bridge heterogeneous network elements. 

We model our experiment after the community example from Section 2.3. 

The network and link availability is shown in Figure 4.1. Two isolated commu­

nity networks, G and H, are connected to the Internet (I) by 16KBps intermit­

tent links. G's link is up for 20 minutes every 30 minutes and H's link for 20 

minutes every 40 minutes. Host A in G uses scp to copy a file from host B in 
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Figure 4.1: Network layout and link availability for the batch experiment. G-I 

and H-I are 16KBps intermittent links, Q is a high-bandwidth, high-delay data 

courier. 

H using host P in the Internet as a forwarding point. Part of the transfer is 

performed by a high-bandwidth data courier moving directly from H to G. 

The name mappings are shown in Table 4.1. The lack of name stacks in the 

mappings is deceptive; they are built and consumed as data moves through the 

network, rather than being explicitly included from the start. For instance, at 

A the name B resolves to {p,P,H,B} and when B invokes Q, it resolves the 

name A to {q, Q, G, A}. 

The current version of the ssh and scp protocols (version 2 [32]) rate lim­

its connections and requires application-level acknowledgement of a window of 

data (by default 16KB) before further data is sent. This limits the ability of 

forwarding points to buffer data when the end host is unavailable. Instead, we 

use version 1 of the protocol [31] which does not use rate limiting. Another 

approach would be to use a sufficiently large window, although deciding what 

constitutes "sufficiently large" is difficult. 

The flow of data during the experiment is shown in Figure 4.2, which should 

be read from the bottom upwards. Initially, both links are up and after the 

initial scp handshake data flows from B to A, via P, at 16KBps. After 20 

minutes, both links go down. At 30 minutes, the G-I link comes up again and 

remains idle until the H-I link comes up. When the G-I link goes down again 

at 50 minutes, data from B continues and is buffered at P . At 60 minutes, 
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Mappings in G Mappings in H Mappings in I 

[a] A^{G} A =• {a} 

B^{b) B^{b} 

G=>{} G^{P} P^{p} 

H^{} 

P^{p} 

Q^{q} 

Table 4.1: Name mappings for the batch experiment, with transport4evel ad­

dresses in lowercase.. When invoking Q in H, the mapping for G becomes 

G^{Q}. 

when H-I goes down and G-I comes up, the data buffered at P is sent to A 

for the next 10 minutes. We deliberately prevent the H-I link from coming up 

at 80 minutes. Instead, at 74 minutes another intermediary Q in network H. 

is invoked that reads 71 677KB of data from B at 512KBps and writes it to 

a file. A few minutes later, the data is injected back into network G. Finally, 

both links are up again at 90 minutes and the file transfer is completed at 98 

minutes. 

The transfer averages a rate of 19.8KBps over the entire 98 minutes. The two 

links are up simultaneously for only 40 minutes, and at 16KBps would regularly 

only be able to transfer 38 400KB (assuming that they resume the file transfer 

mid-way—not possible using scp—and ignoring the connection setup overhead). 

4.2 Interactive Communication 

In this experiment we retrieve a collection of webpages across a series of inter­

mittent links. It demonstrates the use of round-trip dependent communication 

in the architecture, support for communication without a connected end-to-end 

path, and asymmetrical flows. 

The experiment is loosely modelled on the Wizzy project described in Sec-
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Figure 4.2: Flow of data from B to A in the batch experiment. The figure can 
be read from the bottom upwards, following the data from B to P (or Q) and 
finally to A. Data is sent in the opposite direction only at connection setup and 
teardown and is not shown. 
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Figure 4.3: Network layout and link availability. Requests are made by A and 
passed onto the Internet by a proxy at B. 

tion 2.3, the scenario being a student wishing to use Google to find information 
on a topic without requiring an internet connection. We use the Google API 
to search for the phrase "south africa" on en.wikipedia.org and the top three 
results are retrieved, along with any embedded images, using the wget tool. 
The transfers are performed across a series of intermittent connections and the 
student can then browse the results locally, offline. 

The network setup is shown in Figure 4.3. Host A issues all requests, includ­
ing the Google search which uses HTTP-based RPC, through a simple Euonym-
enabled HTTP proxy at the Internet host B. The requests go from A to B via 
host P and the responses from B to A via host Q. Non-internet links are lim­
ited to 16KBps. Links are up for 1 minute and down for 2 minutes, with the 
Q-A and A-P links starting with their up cycle and the P-B and B-Q links 
with their down cycle. Hence, there is never a fully connected path between A 
and B in either direction. From A's perspective, B maps to {P, B} and from 
B's perspective, A maps to {Q,A}. Otherwise, all host names map to their 
transport addresses. 

The flow of data is shown in Figure 4.4. The first request (at time 0) is the 
Google search and the result arrives at A just after 3 minutes. The next three 
requests are for the HTML content of the webpages and have reasonably large 
responses. The subsequent requests are for the images in the webpages. Every 
round trip takes approximately 3 minutes and, because wget waits for one item 
to be retrieved before requesting the next, progress is slow. Clearly, parallelising 

http://en.wikipedia.org
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Figure 4.4: Flow of data in the interactive experiment. Reading upwards, a 

request travels from A to P to B and the response from B to Q to A. 
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the retrieval and reducing round trip dependence by moving the program issuing 

requests closer to B would improve performance hugely. Nevertheless, the pages 

and their images are successfully retrieved despite no connected end-to-end path 

and multiple disconnections. 

A total of 217KB (or 15 requests) are downloaded in 47 minutes, an average 

rate of 79bps. This is significantly lower than the links' 16KBps limit because 

of the dependence on lengthy, serial round trips. However, even this speed is an 

improvement over ordinary circumstances in which no transfer at all is possible 

due to the lack of an end-to-end path. 

4.3 Remote Service 

This experiment is similar to the previous one but. pushes the request logic into 

the Internet itself, reducing round trip dependence and improving performance. 

It shows the use of explicit source-specified routing and both the client and server 

are completely Euonym-enabled and do not require proxies. It also illustrates 

how the location of a service can affect its performance. 

The network setup and link availability are the same as for the previous 

experiment. As before, we use the Google API to download the webpages and 

related images for the first three results in a search for the phrase "south africa" 

on en.wikipedia.org. In this experiment, though, the client at A sends only 

the search string and the required number of results to the server at B . B 

performs the search, retrieves the results using wget, and sends the downloaded 

data back to A. We therefore reduce the communication to one round trip 

and make much better use of the available bandwidth. A uses source-specified 

routing to contact B by specifying {P, B} as the destination name stack. All 

other name mappings are as before. 

The flow of data is shown in Figure 4.5. At time 0, A sends its request 

(via P) which reaches B at 100 seconds. At 120 seconds, after performing the 

search and web retrievals, B begins sending the data back to A. It is buffered 

at Q until the Q-A link comes up at 200 seconds. The transfer of 330KB is 

http://en.wikipedia.org
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Figure 4.5: Flow of data in the remote service experiment. Reading upwards, 

the request travels from A to P to B and the response from B to Q to A. 
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complete after 223 seconds. A change in the top 3 search results increased 

the amount of data transferred, but an average throughput of 1.4KBps and an 

order of magnitude improvement in transfer time are great improvements over 

the previous experiment. Again, with no end-to-end path, no transfer would 

normally be possible at all. 

Note that we could couple the retrieval service at B with the HTTP proxy 

from the previous experiment and move the service anywhere between the client 

and the Internet. Clearly, the fewer round-trip dependencies the better. 

4.4 Additional Discussion 
There are two additional aspects of Euonym that do not lend themselves to 

network traces or bandwidth measurements and are instead simply described 

below. The first is mobility and the second is support for on-the-fly changes in 

communication paradigm. 

4.4.1 M o b i l i t y 

Mobility support is inherent in the Euonym architecture and implementation. 

Flows are established between hosts themselves, not network locations, and 

arbitrary-length disconnections are tolerated by default. We have used Euonym 

to preserve ssh connections from a mobile laptop to a server for weeks at a 

time. Euonym successfully handles multiple address changes, NAT devices and 

firewalls, NIC changes, periodic network disconnections1, and system suspension 

(hibernation). Furthermore, because ssh provides anti-replay security, there are 

no dangers of man-in-the-middle attacks or in resuming connections while on 

untrusted networks. 

From a personal standpoint, once one becomes used to ones connections 

withstanding both minor and major interruptions, it is frustrating to go back 

to the original situation, especially when operating in a mobile environment. 
:Such as those brief but frequent interruptions that seem to plague wireless networks. 
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We long for the day when support for mobility and disconnection tolerance is 

widespread. 

4.4.2 Switching to a Rendezvous Paradigm 

We have also used Euonym to allow a transition from a regular, sender/recipient 

communication paradigm to a rendezvous-style put/get paradigm. During an 

established interactive ssh session, we adjust names to introduce two new servers 

into the client-server flow. These two servers form a rendezvous pair: the down­

stream host connects backwards to the upstream host to ask for data, rather 

than the reverse. The downstream host then uses the associated name stack to 

continue sending the data along the flow. The setup at the end hosts is identical 

to that in the interactive communication experiment in Section 4.2. 

This example illustrates how even a fundamental communication paradigm 

change can be handled easily by the architecture simply by pushing the logic 

into the intermediate hosts. Such a paradigm is useful when the upstream 

host is unable to contact the downstream host directly, possibly because ingress 

connections cannot be established directly (as in the case of a blocking firewall 

between the hosts). 

4.5 Summary 

In this chapter we present experiments performed using Euonym to demonstrate 

the feasibility of the architecture. The first experiment demonstrates batch-style 

communication using legacy applications, communication in the face of discon­

nections and the use of atypical transport mechanisms to improve connectiv­

ity. The second shows round-trip dependent communication using a mixture 

of legacy and Euonym-enabled applications and demonstrates communication 

without a fully connected end-to-end path. The third experiment uses only 

Euonym-enabled applications and shows how the location of a service in the net­

work can affect its performance. We also discuss how Euonym provides simple 
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but effective mobility support and allows an ad-hoc change to a rendezvous-style 

communication paradigm. 

The experiments and usage experience show that the architecture meets the 

goals set out in Chapter 1. To wit, we have shown that 

1. explicitly including proxies and other intermediary hosts in a path between 

two endpoints facilitates communication in intermittently-connected net­

works; and 

2. the separation of network address and host identity allows end hosts to 

delegate responsibility and operations to intermediary hosts that are bet­

ter equipped to make use of, or improve upon, connectivity. 

In the next chapter we discuss related work. 
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Related Work 

In this, the penultimate chapter of the thesis, we discuss related work. We begin 

with work related to disconnection tolerance, then cover work on intermittently-

connected networks, and finally work on host identity and addressing. 

5.1 Disconnection Tolerance 

With the abundance of connectivity we have today, few new applications are 

designed with disconnection in mind. However, a variety of projects have focused 

on tolerating disconnections at the transport layer, generally from a mobility 

perspective. Some lie between the application and the transport and let the 

application take control of mobility and disconnections, leaving the lower layers 

intact. Others modify the network or transport layers and attempt to hide 

disconnections from the application entirely. 

Zhang and Dao [34] propose a persistent connection model for continuing 

connections across process migration and host crashes. They place a session 

layer above the transport layer and separate identity from network address by 

using a portion of the IP address space to assign identifiers to processes (rather 

than hosts). Their focus is on host failure and so they do not address the 

possibility of losing data in the network, which Euonym must consider. 

Zandy and Miller [33] describe rocks and racks, reliable sockets and pack­

ets that support connection mobility and disconnections of arbitrary (but pre-

specified) length through a user-level library. It is aimed at allowing existing 

applications to work unmodified and hides disconnections entirely. Endpoints 
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negotiate support for enhanced sockets during TCP connection setup1 and per­
form a key exchange to identify each other later. 

Snoeren and Balakrishnan [26] advocate an approach where the host takes 
responsibility for mobility, rather than the network. They add a new TCP 
migrate option, negotiated at connection setup along with a key exchange, and 
a corresponding state to the TCP state transition diagram. They use DNS to 
map between host identity and address and the focus is on mobility, rather than 
disconnection tolerance: only disconnections within the TCP timeout period are 
tolerated. 

The robust TCP connections described in [4] are a session layer approach that 
tolerates arbitrary-length disconnections. Reconnecting a broken connection 
involves re-negotiating byte numbers and must be initiated by the client host. 
They use UDP to send out-of-band control packets to avoid the problem of 
embedding control data in the application data flow. The concept is similar to 
that used by Euonym, although we use in-band control data and whichever host 
writes to a flow can trigger a reconnection. 

Maintaining connections across address changes in support of mobility, if not 
specifically disconnections, has been proposed at a much lower level in both IPv4 
[20] and IPv6 [14]. Long-lived disconnections are not supported and connections 
are resumed based on the ability of a host at a new address to affirm that 
it is indeed the "old" host. That is, the end-to-end connections are between 
addresses, not persistent host identifiers; there is no separation of host identity 
and network address. 

5.2 Intermittently-Connected Networks 

The Delay Tolerant Network [5, 6] architecture bridges heterogeneous and inter­
mittently connected networks using a store-and-forward model with a bundle, 
rather than a stream, abstraction. Bundles are forwarded by agents placed 

'The negotiation involves a certain amount of "trickery" to make it backwards-compatible, 

including open a socket and then closing it immediately. 



Chapter 5. Related Work 51 

at network boundaries that are intended to make routing decisions based on 

present and upcoming connectivity and are also used to bridge heterogeneous 

link layers. They use a two-level {name, region) naming hierarchy to achieve 

late binding and guide the bundle through the network. This is a more specific 

approach than we take with Euonym, in that our intermediate hosts can pro­

vide arbitrary support services, not just hop-by-hop forwarding in the greater 

network. In addition, we avoid the complexity of a name and region hierarchy. 

A potential function of intermediate hosts is routing, an entire area of re­

search in its own right. The problem is interesting in that network connectivity 

is time-varying but may be known a priori. Jain et al. [13] formulate the problem 

in detail and discuss possible approaches. An example of a protocol targeted at 

intermittently-connected networks is PRoPHET [17, 16], which performs rout­

ing based on the probability of a node encountering other nodes, either due 

to mobility or intermittent connectivity. An evaluation of different flooding 

protocols and their use in these networks is given in [10]. 

Wang et al. [29] motivate the use of the postal system as a digital com­

munication mechanism. Arguing that it is widespread, well understood and 

reaches even extremely remote areas, they suggest using it to supplement or 

provide connectivity to remote and low-income areas, noting that it can provide 

very high bandwidth with reasonable delay. Euonym provides simple, effective 

support for such a system by using intermediate hosts as proxies to the postal 

network, relieving the applications of the burden of supporting such an atypical 

communication mechanism. 

The Wizzy Digital Courier project [30] provides Internet access to isolated 

schools in South Africa. They use application-specific methods to delay web 

queries, emails and other traffic until an Internet connection is available. This 

connection is made either during off-peak hours when a dialup connection is cost-

effective, or by transporting the cached queries on a USB drive to an Internet-

enabled host, waiting for the replies, and then transporting them back. 

The Sami Network Connectivity (SNC) project [23] provides connectivity to 

isolated communities of reindeer herders in northern Scandinavia. The commu-
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nities are nomadic and intermittently connected to each other and the outside 

world by satellite, long-range radio and the postal service. 

The Euonym architecture has direct applications in both these environments, 

our aim being to make these types of project much easier to implement. 

5.3 Identity and Addressing 

The following projects all address the need to separate host identity from net­

work address and location. 

Balakrishnan et al. [1] draw on the literature to argue for an additional 

naming layer above the existing IP layer. They argue that it will help resolve 

mobility and multi-homing issues in the current Internet and mitigate the effects 

of middleboxes by making them first-class citizens in the network. In addition, 

they suggest using opaque, non-aggregable, globally-unique identifiers not just 

to name hosts but also objects and data in the network. 

The Host Identity Protocol [18, 11] uses cryptographic key-based hostnames 

to separate network address and identity. The architecture lies between the 

transport and the IP layers and as a result transport protocols are bound to 

endpoint names, rather than addresses. The use of both the DNS and DHTs as 

name storage mechanics is being investigated. The architecture is in the early 

stages yet and the infrastructure required to support experimental use of it is 

under development. Shiitz et al. [25] describe a modification to TCP to support 

user-specified arbitrary-length disconnections and mobility using HIP. 

The Unmanaged Internet Protocol [7] describes an identity-based naming 

and routing overlay that allows groups of devices to form unmanaged, ad-hoc 

networks that operate equally well on the periphery of larger networks, as well 

as in isolation. Hosts are identified in a manner similar to HIP and routing is 

DHT-based. Nodes essentially form an overlay network and cooperate to negate 

hassles usually associated with NATs and firewalls. 

Walfish et al. [28] describe a delegation-oriented'architecture that makes mid­

dleboxes (firewalls, NAT devices etc.) first-class network citizens through the 
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use of persistent identifiers. The architecture lies between the IP and transport 

layer and does not address mobility or multi-homing. In addition, an end host 

cannot control which intermediaries are invoked based on who is communicat­

ing with it. Because the transport protocol becomes bound to host identifiers, 

the behaviour of intermediate hosts is limited; they cannot terminate an incom­

ing connection and use an entirely different one on the outgoing portion, and 

they are unable to span disconnections that are not tolerated by the transport 

protocol. 

The Internet Indirection Infrastructure (i3) [27] uses lists of host identifiers 

to support multicast and any cast in a DHT-based overlay network. It provides 

put/get rendezvous-style communication to separate the sender and receiver, 

resulting in a form of disconnection tolerance. They use opaque, aggregable 

names called triggers to identify hosts within their overlay network: Zhuang et 

al. [35] describe a mobility system based on i3. End hosts are responsible for 

their own mobility and since they control the triggers they place in the overlay, 

they can control the efficiency of routing and handoff. 
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Conclusion 

In this chapter we conclude the thesis and discuss possible lines of future work. 
The apparent ubiquity of the Internet and reliance on it for every-day work 

has led to an exploration of ways to provide Internet-like connectivity in areas 
either previously lacking it or dominated by alternative, domain-specific net­
works. Such a move provides many challenges, such as overcoming a reliance 
on reasonable-bandwidth, low-latency connectivity and connected end-to-end 
paths. Implicit in the design of the Internet family of protocols, these require­
ments are often hard to meet in the class of so-called challenged networks. 

This thesis describes an architecture that aims to promote Internet-style 
connectivity in these environments by allowing intermediate helper hosts to be 
explicitly involved on a flow between two hosts. These intermediate hosts can be 
included on the fly and provide a wide range of support services. These include 
buffering data until it can be passed to the next downstream host, performing 
routing to select that host, bridging heterogeneous network elements, and acting 
as rendezvous points when a regular send/receive communication paradigm is 
inappropriate. Through experimental demonstration we have shown how such 
services promote connectivity in difficult network environments without putting 
a burden on the application to support multiple networking technologies, routing 
methods etc. 

Our architecture's persistent, flat naming layer provides the flexibility of 
source- and destination-specified routing and can be easily used to identify hosts, 
networks, services and routing paths. They are a key component in providing 
applications with transparent tolerance of arbitrary-length disconnections. 
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6.1 Future Work 

This thesis shows that intermediate hosts are a viable way of exploiting inter­
mittent connectivity. Here we describe a few ideas for further exploration. 

The use of DHTs as a storage and lookup mechanism is a relatively new 
development in general, and needs to be explored further. It would be useful for 
applications to be able to push updates to their own names to remote networks, 
possibly through Euonym itself. It would also be interesting to investigate how 
a mobile node or data mule could "advertise" its services by updating bindings 
in networks it arrives at in order to divert traffic to itself. 

Euonym used a custom naming solution to identify hosts, mainly because of 
the requirement for name stacks. Investigating how an architecture like Euonym 
could rest upon a separate naming system like HIP—which provides robust 
security, disconnection tolerance, support for the legacy Internet etc.—may be 
fruitful to both the challenged network community as well as the naming and 
HIP communities. 

Euonym potentially allows data to arrive out of sequence at the end host, 
possibly from separate sources. The end host should ideally be able to piece the 
data together as it arrives rather than expect it to arrive in-order. Consequently, 
it could be useful for an end host to request retransmission of an outstanding 
chunk of data if it is not received within some (possibly application-defined) 
time period. The request could go either to the origin host directly or to the 
previous upstream hop and slowly be passed back towards the origin. These 
operations could also be performed by an intermediate host on behalf of the 
end host. 

Involving intermediate hosts introduces challenges in its own right, such as 
the understanding and handling of failures and how intermediate hosts affect 
end hosts. In particular, a suite of protocols for interacting and managing 
intermediate hosts, along the lines of the ICMP, would be useful, although it 
need not be part of Euonym itself. This could help routing hosts to make routing 
decisions, advertise link availability, request missing data, etc. 
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