
Communication in Intermittently-Connected Networks
by

Gregory Kempe

B.Sc, The University of the Witwatersrand, 2001
B.Sc. (Honours), The University of the Witwatersrand, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
T H E REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

September 2005

@ Gregory Kempe 2005

11

Abstract

Communication in the face of intermittent, short-lived and possibly unreliable
connectivity can be difficult when relying solely on Internet protocols, such as
IP and TCP, which have an implicit assumption of well-connectedness. Fur­
thermore, use of these protocols is impossible when there is no fully connected
end-to-end path between hosts.

We present Euonym, an architecture that uses a layer of persistent names to
identify hosts, networks and services, and allows arbitrary intermediate helper
hosts to be interposed between endpoints on-the-fly. These helper hosts can
provide routing, buffering and other support services to help relieve reliance
on end-to-end paths. They can be placed to take advantage of intermittent
connectivity when and as it arises and be used to supplement connectivity with
untraditional networking and transport mechanisms, such as data mules and the
postal network, without any additional support at the end hosts. We show that
simple disconnection tolerance and use of intermediate hosts facilitates commu­
nication and promotes connectivity in intermittently-connected networks.

Ill

Contents

Abstract i i

Contents . . i i i

List of Tables v i

List of Figures v i i

Acknowledgements v i i i

Dedication i x

1 Introduction 1
1 . 1 O v e r v i e w 2

1 . 2 O u t l i n e 3

2 Intermittently-Connected Networks 4

2 . 1 I n t e r m i t t e n t l y - C o n n e c t e d N e t w o r k s . . 5

2 . 2 D i s c o n n e c t i o n • 7

2 . 3 E x a m p l e S c e n a r i o : R e m o t e C o m m u n i t y 9

2 . 4 M a k i n g U s e o f I n t e r m i t t e n t C o n n e c t i v i t y 1 1

2 . 4 . 1 M a n a g i n g D i s c o n n e c t i o n s . : 1 1

2 . 4 . 2 E n d - t o - E n d P a t h s a n d I n t e r m e d i a t e H o s t s 1 3

2 . 4 . 3 T h e E n d - t o - E n d A r g u m e n t 1 5

2 . 5 S u m m a r y 1 6

Contents iv

3 Euonym 17
3.1 Architecture 17

3.1.1 Names 18

3.1.2 Name Stacks and Name Resolution 20

3.1.3 Establishing a Flow . . . 21

3.1.4 Flow Identification 23

3.1.5 Source-Specified Routing 24

3.1.6 Late Binding and Re-binding 25

3.1.7 Intermediate Hosts 26

3.2 Implementation 27

3.2.1 API 27

3.2.2 TCP Interface 31

3.2.3 File Interface 34

3.2.4 Names: Format, Storage and Lookup 34

3.2.5 Limitations 36

3.3 Summary • 36

4 Using Euonym 38
4.1 Batch Communication 38

4.2 Interactive Communication 40

4.3 Remote Service 44

4.4 Additional Discussion 46

4.4.1 Mobility 46

4.4.2 Switching to a Rendezvous Paradigm 47

4.5 Summary 47

5 R e l a t e d Work 49

5.1 Disconnection Tolerance 49

5.2 Intermittently-Connected Networks 50

5.3 Identity and Addressing 52

Contents v

6 Conclusion 54

6.1 Future Work 55

Bibliography 56

vi

List of Tables

3 . 1 R E S O L V E and R E S O L V E N A M E algorithms 2 1

3 . 2 Example client code 2 9
3 . 3 Example server code 3 0

4 . 1 Name mappings for the batch communication experiment 4 0

v i i

List of Figures

2 . 1 E x a m p l e n e t w o r k : r e m o t e c o m m u n i t y 9

3 . 1 L a y e r i n g i n E u o n y m 1 8

3 . 2 F l o w s a n d c o n n e c t i o n s i n E u o n y m 1 9

3 . 3 B a s i c e x a m p l e s c e n a r i o 2 2

3 . 4 N a m e s t a c k s e x a m p l e 2 5

3 . 5 T C P a n d t h e E u o n y m A P I 3 2

4 . 1 N e t w o r k l a y o u t a n d l i n k a v a i l a b i l i t y f o r t h e b a t c h c o m m u n i c a t i o n

e x p e r i m e n t 3 9

4 . 2 D a t a flow i n t h e b a t c h c o m m u n i c a t i o n e x p e r i m e n t . 4 1

4 . 3 N e t w o r k l a y o u t a n d l i n k a v a i l a b i l i t y f o r t h e i n t e r a c t i v e c o m m u ­

n i c a t i o n e x p e r i m e n t 4 2

4 . 4 D a t a flow i n t h e i n t e r a c t i v e c o m m u n i c a t i o n e x p e r i m e n t 4 3

4 . 5 D a t a flow i n t h e r e m o t e s e r v i c e e x p e r i m e n t 4 5

vm

Acknowledgements

I am indebted to my supervisor, Norm Hutchinson. His encouragement, support,

insight and faith in my abilities are immensely appreciated and have taught me

a great deal.

I am deeply thankful to my parents and brother, for their unquestioning love

and support, and for coming half way around the world to visit me. The weekly

games group provided many an entertaining evening and were willing victims

of my culinary ventures. The Orphanage took me in and made me an honorary

Orphan, a great privilege.

Thank you to Dustin, Micheline and Sarah for making such an indelible

mark upon my life and showing me how to appreciate the simple things.

GREG KEMPE

The University of British Columbia

September 2005

For the Three Blind Mice, and Tina, Ben and Leo.

Tea, though ridiculed by those who are naturally

coarse in their nervous sensibilities . . . will always

be the favourite beverage of the intellectual.
Thomas De Quincey (1785-1859)

Send three and fourpence, we're going to a dance.

Unknown

Chapter 1

i

Introduction

We usually expect a connection in the Internet to exist at the time of, and for the
duration of, its use; we do not attempt to visit a website half an hour before we
connect to the Internet, or expect a file transfer to resume after more than a few
minutes of our wireless connection being lost. Synchronous communication in
the Internet requires that both hosts be online at the same time. Some networks,
however, lack such luxuries and these expectations become unreasonable.

Networks in remote or inaccessible areas and parts of the developing world
lack the infrastructure that is taken for granted in the well-connected Inter­
net. As a result, they are only occasionally connected to other networks, or the
connection may be irregular or unreliable. In these environments, it is impor­
tant to reduce the impact of disruptions and make as much use of connections,
when they arise, as possible. This is especially important if a device has limited
power, transmission range or lifetime. It may also be necessary to augment
Internet-style connectivity with more unconventional data transmission mecha­
nisms, especially when they are the only feasible connection options.

This thesis presents Euonym,1 an application-agnostic architecture that ad­
dresses these issues by allowing intermediate hosts to be explicitly interposed on
the path between two endpoints. The architecture helps support communication
in heterogeneous, intermittently-connected networks that lack connected end-
to-end paths and preserves connections across link failures and network address
changes.

1 euonym: a name well-suited to the person, place or thing named.

Chapter 1. Introduction 2

1.1 Overview

While we often take ubiquitous, high-quality Internet connections for granted,
many parts of the world are not so well connected. Schools in outlying re­
gions of South Africa, for example, often cannot afford the long-distance phone
calls required for dialup Internet [30], and nomadic reindeer herders in northern
Scandinavia must rely on intermittent long-distance radio and traditional mail
to provide contact with other herders and larger towns [23]. Network connec­
tions can be limited, short-lived and far-between. To compound the problem,
transport protocols like TCP and UDP fail in the face of excessive delay or,
more generally, the lack of an immediately available end-to-end path. This
makes them unsuitable for use in networks where such a path doesn't exist or
doesn't exist for the duration of a connection.

• Given the possible rarity of connection availability, we would like applications
to be able to make the most of connection opportunities whenever they arise,
without necessarily having to know about them in advance. We would like to
remove the dependence on end-to-end paths and allow new links and network
types to be added to an existing connection, even if they are unsupported by
the end hosts.

The Euonym architecture uses intermediate hosts to help achieve these goals.
Intermediate hosts can perform a number of support functions—such as buffer­
ing, routing and acting as rendezvous points—and help to bridge heterogeneous
network elements and allow novel transport mechanisms to be used in conjunc­
tion with traditional ones.

In this thesis we describe the problems associated with intermittently con­
nected networks and outline ways that intermediate hosts can help mitigate
them. The architecture we present uses a layer of names above IP addresses to
persistently identify hosts and allow intermediate hosts to be explicitly involved
in a connection. We demonstrate that it improves use of existing, intermittent
connectivity and allows connections to be established where none would have
been possible before.

Chapter 1. Introduction 3

The contributions of the work are twofold, namely that

1. intermediate hosts can be explicitly included in a path between two end-

points to facilitate communication in intermittently-connected networks;

and

2. the separation of network address and host identity allows end hosts to

delegate responsibility and operations to intermediary hosts that are bet­

ter equipped to make use of, or improve upon, connectivity.

1.2 Outline

The rest of the thesis takes the following form. In Chapter 2 we discuss inter­

mittently connected networks and the challenges they pose, and describe using

intermediate hosts to support communication. The Euonym architecture and

implementation are described in Chapter 3, and example uses of it are detailed

in Chapter 4. Chapter 5 discusses related work and in Chapter 6 we briefly

outline future directions for our work and conclude.

4

Chapter 2

Intermittently-Connected

Networks

The idea for our work has its origins in the nascent field of the interplanetary In­

ternet 1. The IRTF's now-historical Interplanetary Internet Research Group was

created to investigate the technical aspects of extending the terrestrial Internet

into space. The expansive distances and delays involved in interplanetary and

deep-space communication present significant challenges to this movement, one

of them being that widespread Internet protocols like T C P perform extremely

poorly (if at all) in the face of such delays. The group's work formed the

foundation for the Delay Tolerant Networking Research Group [3] , which is in­

vestigating an architecture for bridging and traversing heterogeneous networks,

including those with long delays and intermittent connectivity. The solutions

and approaches formulated by these groups have many applications back here

on Earth where, even on much more human scales, there are challenges to con­

necting disparate and far-flung networks.

In this chapter we describe some of these challenges and ways of tackling

them. We begin with a discussion of the networks and the characteristics that

make them difficult to work with. Next, we describe approaches to making them

usable, focusing on intermediate helper hosts and ways of involving them in a

connection.
1See the Interplanetary Internet Special Interest Group at www.ipnsig.org.

http://www.ipnsig.org

Chapter 2. Intermittently-Connected Networks 5

2.1 Intermittently-Connected Networks
The growth of the Internet and our reliance on the services it provides has

prompted its expansion into areas and situations that do not support its archi­

tectural models. From deep space networks [12] and isolated nomadic commu­

nity networks [23], to school LANs in remote areas [30] and use of the postal

network as part of the Internet [29], all these networks break some of the In­

ternet's (implicit) performance and architectural assumptions. Specifically, the

communication model of the Internet relies upon

• low network latency, on the order of milliseconds;

• continuous connectivity over the period of communication;

• bidirectional communication; and

• connected end-to-end paths.

These requirements are often unstated but protocols like TCP and UDP, as

well as those that rely on them, fail when they are not met. Fall [5, 6] calls

the class of networks and inter-networks that do not support these assumptions

challenged networks.
To illustrate, consider the following scenario. The Sami Network Connectiv­

ity Project [23] is working on providing Internet connectivity to reindeer herders

in the Sami region of northern Scandinavia. The herders are nomadic, following

their reindeer's yearly migration cycle, and the region in which they move is re­

mote and isolated and lacks reliable wired, wireless or satellite communication.

Members of the community have access to their own local network but getting

beyond it is difficult. The community-wide network and its connection to the

Internet are an example of a challenged network.

Opportunistic use of periodic connectivity would greatly increase their inter­

action with other herders and the outside world. Potential contact opportunities

include brief satellite and long-range radio connection windows, people and ve­

hicles that journey between the communities and larger towns that have better

Chapter 2. Intermittently-Connected Networks 6

infrastructure, and postal services that transport traditional mail. A number
of these could also be used in combination to connect extremely remote herders
with their home community and then the Internet.

There is more than just a physical difference between these connection op­
tions. They cover a significant range in bandwidth and delay and each may
require a different transport protocol as well as physical and link-layer proto­
cols. Different link technologies must be sewn together and routes chosen based
on current connections, as well as upcoming opportunities, and their associated
economic costs.

, This example highlights three causes of difficulty when working with chal­
lenged networks which conflict with the assumptions stated above:

• connection interruptions,

• lack of infrastructure, and

• heterogeneity.

The first two result in intermittent connectivity and the third makes interop-
eration difficult. They may exacerbate each other, too; a fragile heterogeneous
infrastructure can result in service interruptions. Consider these from the per­
spective of a TCP-based application that must traverse a link in a challenged
network to contact a remote host. At the transport level, all three result in de­
livery failures which finally lead to a TCP timeout and disconnection, producing
an error at the application level.

In general, we characterise disconnections as breaks in the transmission of
data of sufficient duration that they cannot be overcome by the transport pro­
tocol. The result is usually transport- and application-level errors. In addition,
TCP requires a connected end-to-end path between the hosts for the duration
of the connection. This is a path between two endpoints that experiences no
disconnections across its entire length.

These two concepts are our focus points for supporting communication in
intermittently-connected networks. We wish to reduce the impact of disconnec-

Chapter 2. Intermittently-Connected Networks 7

tions on applications and establish connected end-to-end paths or remove the

reliance on them. In doing so, we aim to overcome the three causes of difficulty

by

• tolerating and working around connection interruptions,

• providing a general means of using new, possibly unconventional infras­
tructure to create or augment a network, and

• helping heterogeneous elements in the network to cooperate.

The rest of this chapter discusses approaches to achieving these goals by
focusing on disconnections and end-to-end paths, and how they relate to each
other.

2.2 Disconnection
A disconnection is usually seen as a binary absolute: either there is a connec­
tion to a remote host and it can be communicated with, or, to all intents and
purposes, the host does not exist. Instead, we view lack of connectivity as a
continuum and divide it into three broad types. We discuss them in order of
increasing complexity, as characterised by the responses required of the user,
the application and the network itself.

Intermittent disconnection Disconnections are infrequent and short-lived,
on the order of minutes or a few hours. For example, a host losing contact
with one wireless access point before entering the range of another, or a laptop
entering a low power mode over night. Overcoming these disconnections is com­
paratively straightforward: increase the transport protocol's timeout period or
introduce a method for resuming connections. They are transient and relatively
brief and there is no need for either the user or the application to be involved
when they occur; they should be handled entirely at the network level.

Managing this form of disconnection is an area of active research and is not
a focus of this thesis. We briefly describe the work, insofar as it relates to ours,

Chapter 2. Intermittently-Connected Networks 8

in Chapter 5 . The thesis focuses instead on the next two categories which are

only beginning to be investigated.

Long-lived disconnection This category involves networks that are predom­

inantly disconnected. Connections are brief, few, and far between, and hosts

must make as much use of them as possible. When available, though, they are

readily usable: the delay and bandwidth are such that regular Internet proto­

cols can be used effectively. An example of this category is a remote community

that has an Internet connection for only a few hours every week.

Applications must be aware of these disconnections and should provide users

with feedback on long-lived operations. They must be ready to use connectivity

when it arises and be able to work around long delays and periods of discon­

nection. Lower-level protocols should support them in this by tolerating discon­

nections and delays and allowing old connections to be resumed, possibly even

across application and system restarts.

Systemic disconnection The path between two hosts has many disconnected

components and periodic links, and there is no guarantee of a connected end-

to-end path. For example, it may be hindered by a component that experiences

extreme delay or is even missing completely.2 Both end hosts and hosts along

the way must overcome their own separate disconnections—possibly in entirely

different ways—and each has its own period of visibility. In contrast with the

second category, even when a connected path exists it may not support Internet

protocols. If the two hosts do not have overlapping connection windows, or a link

has excessive delay, Internet-style synchronous communication is impossible.

Applications, users and the network must all respond to this form of dis­

connection. In addition to the requirements for long-lived disconnections, ap­

plications should favour batch operations and protocols over chatty, interactive,

round-trip dependent ones. The user may need to make complex routing deci-
2 Lack of a network link is, after all, simply a long-lived disconnection waiting for a suitable

physical transport to bridge it.

Chapter 2. Intermittently-Connected Networks 9

sions that use local as well as global information such as upcoming connection
windows. Applications should allow users to provide not just the names of re­
mote hosts but also rendezvous points or routing information in order to make
use of these possibly distant connections. The network must support disconnec­
tions as per the previous two categories, as well as allow adjacent, heterogeneous
networks to interoperate.

2.3 Example Scenario: Remote Community

We exemplify these three categories with a detailed example scenario, that of a
student working in a remote community. The example is inspired by the Wizzy
Digital Courier project [30]. The project provides intermittent connectivity to
isolated schools in South Africa by buffering web and email requests until off-
peak hours when a dialup Internet connection is cost-effective.

• • • Potential link
— Existing intermittent link

^ ^ ^ ^ Isolated Communities

(^^j 0 Student

Figure 2.1: Student in a remote community with intermittent connections to
the Internet. There are potential inter-community links that may rely on un-
traditional transport methods.

Consider a student doing research in an isolated community, Figure 2.1. The
student's laptop is connected to the community's small LAN, centred at the lo­
cal school. Long-distance phone call costs are such that a dialup connection to
the ISP in the closest town is practical only over the weekends; the network re­
mains isolated during the week. The student periodically makes trips to nearby

k Internet.

Chapter 2. Intermittently-Connected Networks 10

communities where other students are performing related work and have similar
networking setups. He is disconnected while in between communities and, even
when in them, he is largely isolated from the Internet. On longer, data-gathering
field trips into the countryside he is disconnected from all networks.

Whenever a connection is available, the student streams his data back to a
server at his university where computationally expensive processing is performed
and the results sent back to him. He also remotely runs interactive applications
on the local LAN server and on the university server and needs to keep in contact
with other students in the nearby communities.

The student's task is an unenviable one when relying on applications de­
pendent on Internet protocols and end-to-end paths, such as ftp, scp and ssh.
Every weekend when the Internet connection is available he must restart his
applications and re-establish his outside connections, each in an application-
specific manner. Incomplete ftp transfers must be resumed, aborted scp trans­
fers restarted from scratch, ssh connections re-established and applications re­
lying on ssh-tunneled data restarted. Late every Sunday night his connections
are ungracefully terminated, remote interactive applications are disconnected
and local applications produce an error when their ssh tunnels are destroyed.
The same problems occur with his local connections when he leaves the com­
munity LAN. Despite being physically near to each other, the two communities
are isolated during the week and remaining in contact with the other students
is equally troublesome. They are forced to rely on a third party network (the
Internet) in order to communicate.

This scenario has elements of both long-lived disconnections and systemic
disconnections. The community experiences periods of long-lived disconnection
but, when their Internet connection is available, it supports Internet protocols
and synchronous communication. If the student is within the community during
these times, he is equally well connected and can operate as just another host
in the Internet. If he is away, however, the disconnections become systemic.
He is now disconnected from both the community and the rest of the Internet.
The periods during which the community is connected may not coincide with

Chapter 2. Intermittently-Connected Networks 1 1

p e r i o d s w h e n h e i s c o n n e c t e d t o t h e L A N . D i r e c t i n t e r - c o m m u n i t y c o n n e c t i o n s

a r e n o t p o s s i b l e a t a l l .

A s w i t h t h e S a m i c o m m u n i t y n e t w o r k , t h e r e a r e a n u m b e r o f p o t e n t i a l , u n -

e x p l o i t e d c o n n e c t i o n o p p o r t u n i t i e s . T h e r e a r e r e g u l a r c o m m u t e r s a n d b u s e s

t r a v e l l i n g b e t w e e n t h e t w o c o m m u n i t i e s a n d t h e t o w n . T h e r e i s a r e g u l a r p o s t a l

s e r v i c e i n t h e r e g i o n a n d , a l t h o u g h e x p e n s i v e , a p e r i o d i c h i g h - b a n d w i d t h s a t e l ­

l i t e l i n k i s a l s o a v a i l a b l e . W e w o u l d l i k e t h e s t u d e n t (a n d t h e r e s t o f t h e c o m ­

m u n i t y) t o b e a b l e t o t a k e a d v a n t a g e o f t h e s e o p t i o n s , d e s p i t e d i f f e r e n c e s i n

b a n d w i d t h , d e l a y a n d a v a i l a b i l i t y .

2.4 Making Use of Intermittent Connectivity

W e n o w d i s c u s s t w o a s p e c t s o f s u p p o r t i n g c o n n e c t i v i t y i n c h a l l e n g e d n e t w o r k s :

t o l e r a t i n g d i s c o n n e c t i o n s , a n d u s i n g i n t e r m e d i a t e h o s t s t o s u p p o r t c o m m u n i c a ­

t i o n w h e n d i s c o n n e c t i o n s p r e v e n t c o n n e c t e d e n d - t o - e n d p a t h s .

2.4.1 Managing Disconnections

M a k i n g a p p l i c a t i o n s a n d n e t w o r k s d i s c o n n e c t i o n - t o l e r a n t i s a n a s p e c t o f h a n ­

d l i n g i n t e r m i t t e n t d i s c o n n e c t i o n s w h i c h , a s w e s t a t e d p r e v i o u s l y , i s a l r e a d y a

w e l l - r e s e a r c h e d a r e a . W e o u t l i n e t h e g e n e r a l c o n c e p t s h e r e a n d b r i e f l y d i s c u s s

r e l a t e d w o r k i n C h a p t e r 5 .

T o l e r a t i n g d i s r u p t i o n s m i d - w a y t h r o u g h a c o n v e r s a t i o n r e q u i r e s t h a t t h e

c o m m u n i c a t i o n a b s t r a c t i o n m e e t s t w o r e q u i r e m e n t s : a b r e a k m i d - w a y m u s t n o t

b e f a t a l , a n d i t m u s t b e p o s s i b l e t o r e s u m e t h e c o n v e r s a t i o n w h e n t h e d i s r u p t i o n

p a s s e s . I n o t h e r w o r d s , t r e a t t h e d i s c o n n e c t i o n a s a t r a n s i e n t f a i l u r e , r a t h e r t h a n

a p e r m a n e n t o n e .

S o m e a p p l i c a t i o n s s u p p o r t c o n n e c t i o n r e s u m p t i o n a t a l o g i c a l o r o p e r a t i o n a l

l e v e l . F T P [2 1] , f o r i n s t a n c e , c a n r e s u m e a f i l e t r a n s f e r p a r t w a y . S M T P [1 5]

i s s p e c i f i c a l l y d e s i g n e d a r o u n d a d i s c o n n e c t i o n - t o l e r a n t s t o r e - a n d - f o r w a r d a r ­

c h i t e c t u r e . T h e s e a p p r o a c h e s a r e a p p l i c a t i o n - s p e c i f i c , p l a c e t h e b u r d e n o n t h e

Chapter 2. Intermittently-Connected Networks 1 2

a p p l i c a t i o n a n d g e n e r a l l y t r e a t t h e d i s r u p t i o n a s a n e x c e p t i o n . T h e r e a r e t r a d e ­

o f f s i n v o l v e d w h e n c h o o s i n g w h e r e t o m a n a g e d i s c o n n e c t i o n s , h o w e v e r . T h e

c l o s e r m a n a g e m e n t i s m o v e d t o t h e n e t w o r k t h e l e s s c o n t r o l a n d i n p u t t h e a p ­

p l i c a t i o n h a s o v e r t h e m a n a g e m e n t . M o v i n g i t c l o s e r t o t h e a p p l i c a t i o n c a n

c o m p l i c a t e t h e a p p l i c a t i o n u n n e c e s s a r i l y a n d d u p l i c a t e c o d e a n d f u n c t i o n a l i t y .

T h e s e t r a d e o f f s a r e r e l a t e d t o t h e t h r e e t y p e s o f d i s c o n n e c t i o n s d i s c u s s e d i n

S e c t i o n 2 . 2 a n d e m p h a s i s e t h e d i f f e r e n c e s b e t w e e n t h e m . S h o r t , i n t e r m i t t e n t

d i s c o n n e c t i o n s t h a t c a n b e r e a d i l y m a n a g e d a t t h e n e t w o r k l e v e l w i t h o u t t h e

a p p l i c a t i o n ' s i n v o l v e m e n t s h o u l d b e , e s p e c i a l l y i f t h e a p p l i c a t i o n d o e s n o t n e e d

t o a d j u s t i t s b e h a v i o u r i n r e s p o n s e t o t h e d i s c o n n e c t i o n . I n c o n t r a s t , l o n g -

l i v e d a n d s y s t e m i c d i s c o n n e c t i o n s s h o u l d n o t b e a b s t r a c t e d o u t e n t i r e l y . T h e

a p p l i c a t i o n a n d u s e r o f t e n k n o w m o r e i n t h e s e c a s e s t h a n i t i s r e a s o n a b l e f o r t h e

n e t w o r k t o k n o w , a n d s h o u l d b e i n v o l v e d i n t h e h a n d l i n g o f t h e d i s c o n n e c t i o n .

A s e s s i o n l a y e r c a n b e u s e d t o f i l l t h e m i d d l e g r o u n d b e t w e e n t h e s e o p t i o n s ,

p r o v i d i n g a r a n g e o f f u n c t i o n a l i t y t o t h e a p p l i c a t i o n w i t h s u p p o r t f r o m t h e

t r a n s p o r t a n d n e t w o r k l e v e l s . C o m p l e x d i s c o n n e c t i o n s o f t e n g o b e y o n d t h e

a b i l i t i e s o f t h e n e t w o r k a n d t r a n s p o r t l e v e l t o h a n d l e i n d e p e n d e n t l y i n a n y c a s e .

I n v o l v i n g t h e a p p l i c a t i o n a l s o m a k e s i t e a s i e r t o r e s u m e c o n v e r s a t i o n s a c r o s s

a p p l i c a t i o n a n d s y s t e m r e s t a r t s s i n c e i t h a s m o r e c o n t r o l o v e r w h a t s e s s i o n

s t a t e i s s a v e d .

W h e n c o n n e c t i o n i n f o r m a t i o n i s a s s o c i a t e d w i t h a h o s t ' s n e t w o r k a d d r e s s , a s

i s t h e c a s e w i t h T C P a n d U D P , m a n a g i n g d i s c o n n e c t i o n s i s c o m p l i c a t e d f u r t h e r

w h e n a n a d d r e s s c h a n g e i s i n v o l v e d . A s s o c i a t i n g t h e i n f o r m a t i o n w i t h a p e r s i s ­

t e n t h o s t i d e n t i t y i n s t e a d h e l p s m a k e l o w - l e v e l a d d r e s s c h a n g e s t r a n s p a r e n t .

T h e i s s u e o f s e p a r a t i n g h o s t i d e n t i t y f r o m a d d r e s s h a s b e e n r a i s e d p e r i o d i ­

c a l l y o v e r t h e l a s t f e w d e c a d e s , b u t o n l y r e c e n t l y h a s i t b e c o m e a f o c u s o f t h e

r e s e a r c h c o m m u n i t y a s t h e d e m a n d f o r m o b i l e c o m m u n i c a t i o n g r o w s ; w o r k o n

s e r v i c e s l i k e M o b i l e I P [2 0] a n d M o b i l e I P v 6 [1 4] a i m t o m i t i g a t e t h e e f f e c t s o f

t h e s e c h a n g e s i n T C P / I P n e t w o r k s . T h e s e i s s u e s m u s t b e t a k e n i n t o a c c o u n t

i n i n t e r m i t t e n t l y - c o n n e c t e d n e t w o r k s w h e r e a d d r e s s c h a n g e s c a n b e b o t h c a u s e s

a n d s i d e e f f e c t s o f n e t w o r k d i s r u p t i o n s .

Chapter 2. Intermittently-Connected Networks 13

Gracefully handling disconnections is only the first step towards communi­

cating using intermittent connectivity. We must still reconsider the reliance on

end-to-end paths.

2.4.2 End-to-End Paths and Intermediate Hosts

Hosts require a connected end-to-end path only when they must take all respon­
sibility for the data they send. In a well-connected network, this is a reason­
able expectation and is the basis for the Internet's end-to-end argument [24].
Connected end-to-end paths and disconnections are two conflicting concepts,
however. Reliance on end-to-end paths becomes problematic when data reaches
a disconnection in the network and the end host does not have sufficient in­
formation (or control) to work around the disruption. Moreover, those hosts
closer to the disconnection that are better informed and able to handle it are
not in a position to do so. If responsibility for the data can be passed to these
intermediate hosts, the reliance on end-to-end paths can be relaxed.

Consider the heterogeneity of the infrastructure in intermittently-connected
networks. Trying to formulate a one-size-fits-all transport protocol is an exer­
cise in futility; different links and networks have different characteristics which
should determine the behaviour and design of their protocols. It is difficult for
an end host to switch to a different transport or network protocol if it is dis­
tanced from the link that needs it. It is even more difficult if the data must
traverse a series of heterogeneous links. By allowing each network and link to
choose its own protocol and using intermediate hosts to sew the links together at
their edges, we can tackle a diverse range of link types and technologies without
relying on a single, all-encompassing transport.

Intermediate hosts can do more than act as translators and remove the re­
liance on end-to-end paths. Explicitly including them in a connection makes
them a very powerful and flexible means of providing services useful in chal­
lenged networks, especially those that are location-dependent. We can use them
to provide functionality on a per-need basis, rather than attempting to engineer

Chapter 2. Intermittently-Connected Networks 14

a one-size-fits-all service model for such greatly varied networks. This function­

ality includes:

Routing An intermediate host can make high-level routing decisions when
there are multiple connection opportunities. A network may have a relatively
cheap but slow dialup Internet connection; a fast, expensive, high-bandwidth
satellite link; and a free, high-bandwidth, high-delay data courier all available
at different times. Routing decisions can be complex and must take into account
current as well as up-coming connections and their throughput and cost, and it
is likely that they will be made by a human operator rather than automatically.
Where possible, unexpected connections should be used opportunistically as
they arise. Making these decisions at a single point is much simpler than at
multiple end hosts.

Forwarding points Intermediate hosts can act on behalf of end hosts when
the latter are unavailable. In our example network, while the student is out
in the field and disconnected, he can use an intermediate host in the commu­
nity LAN as temporary storage point for incoming data. Upon his return, the
intermediate host can forward the buffered data to him. A host can be simi­
larly interposed as a forwarding point for outgoing data, performing buffering
in the opposite direction. The student can send data in expectation of an up­
coming connection and then disconnect from the network. When a connection
between the intermediate host and the next downstream host (possibly another
forwarding point) is established, the data can be sent without the student being
involved.

Rendezvous points In situations where an intermediate host cannot actively
connect to an endpoint (or another intermediate host) due to network config­
uration, firewalls etc., it can act as a rendezvous point instead of a forwarding
point. The intermediate host buffers data in either direction and passively waits
for an end host to contact it and establish a connection along which to forward

Chapter 2. Intermittently-Connected Networks 15

data. The result is a put/get communication model that naturally does not rely

on a connected end-to-end path.

Message consolidation It can be useful to group multiple streams into a
single stream that is then transported en masse. This is important if a link is
only cost effective above a certain utilisation level. Rather than fitfully sending
data as it becomes available, a host can buffer data from multiple sources until
a critical mass is reached and then pass it on to the intermediate host respon­
sible for the link. On the far side, the streams are separated and continue their
separate journeys.

In general, intermediate hosts allow responsibility for data to be delegated
to other hosts in the network. This allows the end host to take advantage of
connections and services that it would not normally have access to, and naturally
supports cooperation of heterogeneous network elements.

2.4.3 The End-to-End Argument

Intermediate hosts are certainly not new in the Internet. Middleboxes such as
NAT devices, web caches and proxies are also aimed at providing services, such
as performance improvements and address translation, to end hosts at specific
points in the network. They have been widely criticised for violating the end-
to-end argument and fate sharing principle to the detriment of the network [2].
They complicate network management and protocols and can have unforeseen
effects on network services. These problems are mainly due to their attempts to
be transparent. They intercept and modify data which is not addressed to them
and operate without the end host's knowledge or cooperation. For instance,
NAT devices adjust the IP addresses of packets they intercept, interfering with
the identity semantics associated with addresses (issues of identity and address
are discussed further in the next chapter).

It is desirable that we involve intermediate hosts without falling into the same
trap. Work such as [8, 28, 7] has explored the possibility of making middleboxes

Chapter 2. Intermittently-Connected Networks 16

first-class objects in the network in an attempt to reinstate the argument. We
take a similar approach and argue that because the end hosts explicitly invoke
the intermediate hosts, they do not violate the argument. Both hosts are aware
of each other and end hosts have control over which intermediate hosts are
involved in a connection and when. Furthermore, our intermediate hosts are not
trying to "trick" the end hosts or modify transport- or application-level data. As
we discuss in Chapter 3, our architecture explicitly terminates transport-level
connections at intermediate hosts and application data must arrive unmodified
at its destination. It is permissible for intermediate hosts to establish state
because they are so involved in a connection. As a result, they share the fate of
the connection and the end hosts.

2.5 Summary

The class of challenged networks, are those that do not support all of the architec­
tural assumptions of the internet. They may lack end-to-end paths, experience
frequent disruptions, have excessive delay and bandwidth limitations, and in­
volve heterogeneous network elements. To facilitate communication in these
networks and simplify application development two issues must be addressed:
disconnections and lack of a connected end-to-end path between hosts.

Intermediate hosts can help address these issues. By explicitly including
them on a path, they remain in accord with the end-to-end argument and share
the fate of the endpoints and the application-level flow. They are useful tools
for providing functionality to the network and the end hosts without an over-
engineered architecture that provides' an exhaustive suite of services.

In the next chapter we describe the Euonym architecture and its implementa­
tion. The architecture supports connection resumption and explicit involvement
of arbitrary intermediate hosts on the path between endpoints.

17

Chapter 3

Euonym

The Euonym architecture uses intermediate hosts to provide services to end
hosts in challenged networks. We use a layer of persistent names to identify
hosts and services in the network and provide a basic form of disconnection
tolerance. End hosts can use source and destination-specified routing to include
intermediate hosts in a connection, invoking their services only when needed.
The architecture supports arbitrary network address formats without unneces­
sary complexity at the end hosts and, by using late binding, delays the inter­
pretation of names and addresses until they can be done at a suitable point in
the network. The architecture describes how intermediate hosts are named and
should participate in a connection, but does not impose a specific set of services
or assumptions on them or the end applications.

In this chapter, we describe the Euonym architecture in general and the
specifics of our example implementation.

3.1 Architecture

Euonym lies between the application and the transport layer (or session layer,
if present)—Figure 3.1. We term a logical connection between the source and
final destination hosts a flow, and the transport-level connections between these
hosts and intermediate hosts connections. Connections are always explicitly ter­
minated at intermediate hosts.1 A flow is always one-way while the underlying
connections may be two-way. To establish bi-directional communication, the

1In other words, we are not proposing a transport protocol that involves intermediate hosts.

Chapter 3. Euonym 18

Application
Application

Application^

• Euonym Euonym Euonym

Transport -. Tran sport Transport

.Network Netw ork .Network

End Host Intermediate Host E n d Host

Figure 3.1: Layering in the Euonym architecture. Transport and network con­
nections terminate at an intermediate host, while Euonym flows and application-
level connections span them. An intermediate host generally has a helper ap­
plication which is not associated with the end host applications.

end host applications must each initiate their own flow to the other party. The
architecture is depicted in Figure 3.2.

3.1.1 Names

Every Euonym host has one or more names: flat (non-aggregable), opaque,
globally unique identifiers, based on the endpoint identifiers described by Bal-
akrishnan et al. [1]. When necessary, a host's name is translated into an address

for use by the transport and network layers, such as an IP address.
As we describe in the next few sections, a Euonym name can identify more

than just a single host. It can identify a path that data must take, a service
provided by an intermediate host, a group of hosts, or even an entire network.
The meaning of name is dependent on where it is resolved and how it is used.
For instance, an application can identify a host in a remote network simply using
the host's name. Initially, the name corresponds to a gateway to use or a route
to follow to reach the remote network. Once in that network, it corresponds to
the services needed in order to reach the end host and, finally, the local address
of the end host, whatever form that may take.

This flexibility of interpretation is an important aspect of the architecture.
We do not wish to encumber a name with semantics such as location, admin-

Chapter 3. Euonym 19

Logical
application-level
connection

Transport- level
connections

Network-level
connections

Euonym flow
(one-way)

Figure 3.2: Flows and connections in the Euonym architecture, with end hosts
A and B and intermediate host P. Euonym flows are one way and transport-level
connections are usually two-way.

istrative domain, network membership or host type. For instance, given that
our challenged networks are often divided into isolated regions, it is tempting to
identify a host using its region name along with its network address. This sim­
plifies routing but complicates management, especially since regions are likely
to be ephemeral and hosts may move frequently between them. Any aspect of a
host that changes during its lifetime without affecting its identity should not re­
quire a change of name. The dynamic nature of challenged networks also means
that we must avoid any form of hierarchy, be it implicit or explicit: hosts are
likely to move within any hierarchy as the network changes, and name lookup
and storage must be done in a distributed manner because centralised services
(such as DNS) do not lend themselves to these networks.

The alternative to opaque names requires that we identify namespaces by
separating a host identifier into a {type, identifier} pair and use the type portion
to determine the identifier's interpretation. This has two major drawbacks: it
imposes the overhead of managing a type namespace, and it prevents context-
dependent interpretation of a name. Instead, we use a single common namespace
and let the context and use of a name determine its interpretation.

Chapter 3. Euonym 20

Security

Separating a host's identity from its network address introduces security issues
that are beyond the scope of this thesis. Briefly, naming a host with its address
implicitly provides a degree of security because data is routed using the name,
and a third party must be on the route in order to intercept it. This security is
lost when data is routed based on address alone and identity must be verified
separately. Nikander et al. [19] discuss these and related security concerns in the
context of the Host Identity Protocol [18]. The HIP architecture uses similarly
flat hostnames and, by embedding the cryptographic hash of a host's public key
in its name,.they make the name self-certifying. This allows the identity of a
remote host to be verified relatively easily. A similar approach could be taken
to secure the Euonym architecture.

3.1.2 Name Stacks and Name Resolution

In addition to an address, a name can also map to a name stack: an ordered
list of names and addresses. Name stacks are an essential part of the Euonym
architecture. They give it the power of source- and destination-specified routing,
late binding, and are used to involve intermediate hosts in a flow.

Before connecting to a remote host, an application must resolve the remote
name into an address suitable for the transport layer. It does this by resolving
a name into a name stack using the R E S O L V E N A M E function (Table 3.1). The
L O O K U P operation simply finds the mapping between a name and its value:
either an address, another name, a (possibly empty) name stack, or null if
no mapping exists. The lookup is performed by a naming service specific to
the local network, such as a DHT, in which hosts have published their name
mappings.

An empty result stack and a stack with null at the top indicate errors. Note
that when the mapping of a name is pushed onto the stack, it is pushed above
the name itself. Thus, a record of the path taken to resolve a name to its
eventual address (or error) is preserved within the result. Additionally, a name

Chapter 3. Euonym 2 1

function R,ESOLVENAME(name n)
push n onto a new stack s
return R E S O L V E (S)

end function

function RESOLVE(stack s)

set c to peek(s)
if c is an address or null then return s
set m to L O O K U P (C)

if m is empty then pop(s) > An empty stack pops the name
else push m onto s end if
return R E S O L V E (S)

end function

Table 3 . 1 : The R E S O L V E and R E S O L V E N A M E algorithms for name resolution.

that maps to an empty stack is treated differently: the name is popped and the
resulting stack is resolved. This allows a name to be removed from the stack
when it is no longer needed. For instance, a network's name resolves to an
empty stack within the network itself as nothing needs to be done to reach it.

Names and addresses can be mixed in a name stack and we must be able
to distinguish between them without imposing limitations on the format of
network-dependent addresses. We could explicitly separate them into Euonym
and non-Euonym namespaces but, given that an address should only be used
in networks and by hosts that can understand it, this seems overly complex.
Instead, we separate them implicitly and simply require that a host that uses a
certain type of address can distinguish it from a Euonym name.

3.1.3 Establishing a Flow

We now describe how a Euonym host initiates a flow to another host and invokes
the services of intermediaries. We start with a basic scenario involving the stu-

Chapter 3. Euonym 2 2

A, 142.103.19.89 P, 192.26.2.2

B, 196.27.1.1

Internet Community — Intermittent link

Figure 3.3: Example scenario: A is the university server, B is the student's

laptop and P is the intermediate host that buffers data destined for B.

dent working in a remote community, as described in Chapter 2 . For simplicity,

we assume that all endpoints use IP addresses and T C P as a transport, but the

general case follows easily. The configuration is shown in Figure 3.3.

The student wishes to interpose host P2 on any flow destined for his lap­

top, B. He does this by making JB 'S name map to the stack {P, 1 9 6 . 2 7 . 1 . 1 } 3 .

The names A and P each map to their host's IP address. When A initiates a

flow to B, it recursively resolves B using R E S O L V E N A M E to produce the stack

{ 1 9 6 . 2 6 . 2 . 2 , P, 1 9 6 . 2 7 . 1 . 1 , B}. A pops the top entry (1 9 6 . 2 6 . 2 . 2) and opens a

T C P connection to it. As part of the connection handshake, A sends the name

of the flow's origin (itself) and the modified stack to P. When P receives the

stack, it pops off the first entry and verifies that it matches its own name. Since

there are additional entries on the stack it knows that it is an intermediate host

and must forward the data onward. It may also check the remainder of the

stack and ensure that it is willing to forward data toward the final host.

P then performs a similar operation to complete the flow, with only a slight

modification. Since it already has a stack of names to work with—namely

{ 1 9 6 . 2 7 . 1 . 1 , B}—it can bootstrap the resolution process. It calls R E S O L V E with

this stack as an argument and, since the top is an IP address, the call returns

without modifying it. P pops the top entry and connects to it, sending the

origin host (A) and the modified stack (now just {B}) in the handshake. As

before, B pops the top off the stack and confirms that it is the appropriate
2 For readability, we use these names instead of Euonym's 64-bit identifiers.
3Stacks are written with the top at the left and the bottom on the right.

Chapter 3. Euonym 23

target for the connection. Furthermore, since the stack is now empty, B knows
that it is the final endpoint for the flow.

If B needs to send data to A, it establishes a new flow with A as the des­
tination using the process described above. Recall that while each individual
connection may be two-way, a flow is one-way. Depending on how A maps its
name, the return path from B to A may differ from that followed from A to B.
Different routes, services and intermediate hosts may be needed on the reverse
path. This may be the case if flow components are naturally asymmetrical or
one-way (e.g., a link served by a data courier on a circular route) or if the return
flow is established some time after the initial flow, when the network topology
and connectivity situation has changed. Both parts of a two-way connection
can be utilised if the hosts are in a position to do so, but in general we allow
the asymmetry of flows so as not to limit the use of the architecture.

3.1.4 Flow Identification

At both intermediate and end hosts, a flow is identified by its origin (a name) and
its destination (a name stack), as received from the upstream host or specified by
the application. In the above example, the flow is identified at A by <A, {B}>,
at P by <A, {P, 196.27.1.1, B}> and at B by <A, {B}>.

Note that there is no impact on downstream hosts, including the destination,
if a non-originating upstream host changes. That is, if a connection goes from
A to B via P, then the same connection state at B is used if P is removed
or replaced, or another host is interposed on either side of P. Since names
are removed from the stack as it progresses along the components of the flow,
downstream hosts are ignorant of any components (and hence any changes)
upstream of them. Thus, a host can easily receive data for the same flow from
multiple upstream hosts.

Consider the impact of this naming scheme on a flow's final endpoint (at the
risk of being repetitive, let us call it B). If hosts are added, replaced or removed
upstream, there should be no change at B; it still sees a flow from A to B. If

Chapter 3. Euonym 24

hosts are added after B, however, it becomes an intermediate host for that flow
and not a destination, even if the origin remains the same. New connections to
B that have this new name stack are multiplexed separately from the original
flow's connections. The result is that B now sees two separate flows.

End hosts can be seen as a degenerate form of intermediate host. Each
intermediate host has an incoming half and an outgoing half. The incoming half
waits for connections from upstream hosts and passes the flow origin and name
stack to the outgoing half, which connects to downstream hosts. A flow's origin
host is simply an intermediate host with only an outgoing half that receives
the destination name from the application. Similarly, the final end host is an
intermediary with only an incoming half. This suggests that an origin host
could specify a name stack as a destination, instead of just a name. This gives
us source-specified routing, which we discuss next.

3.1.5 Source-Specified Routing

We have seen how a destination host can invoke an intermediate host on incom­
ing flows—destination-specified routing, which applies equally well to interme­
diate hosts.

An origin host can use source-specified routing to invoke services on outgoing
flows. Instead of specifying just a destination name, it specifies a name stack
that identifies the services to use. For example, to include service Q on a flow
from A to B, the application at A specifies {Q, B] as the flow destination.
Name resolution and flow establishment proceed as before, with the exception
that B will be resolved by Q instead of A. This can also be performed on a
per-host, rather than a per-application basis, by storing custom bindings locally
on a host. In this case, to interpose Q on all flows destined for B, host A locally
maps B to {Q}.

Again, intermediate hosts are no exception. They can push names onto the
stack used by their outgoing half before the resolution stage. This does not
interfere with flow multiplexing, which is performed by the incoming half before

Chapter 3. Euonym 25

1. {T, B) => {p, P, T, B)

2. {T, B} =• {q, Q, T, B}

B f \ 3. {T, B} => {b, B}

T

S

Figure 3.4: Source-specified routing, late binding and re-binding, and name

interpretation. A in network R contacts B in network T via network S and

intermediate services P and Q. Host X has address x.

the stack is changed. In addition, flow identification at those downstream hosts

already on the stack is unaffected.

3.1.6 Late Binding and Re-binding

A host might wish to specify two successive intermediate hosts but delay the

binding of the second one's name until after the first has been invoked. Often,

this is because a name is location dependent. If the first name is a service that

links two isolated networks, resolving the second name in the flow origin's local

network may produce an empty result. Instead, resolution of the name must be

delayed until it can be done inside the second network.

Alternatively, a single name with different mappings can be used. In the first

network, the name resolves to the path required to reach the second network.

Once there, it resolves to the end host itself.

The next example (Figure 3.4) demonstrates source-specified routing, late

binding and re-binding of names, and interpretation of names as hosts, services,

paths and networks, depending on the location.

Host A in network R wants to contact host B in network T. To do so, it

must go via network S using the services P and Q. The flow destination is

specified by the application as {T, B}. The name T is interpreted not as a

network name but as a path to follow to reach the network: service P which

Chapter 3. Euonym 26

joins R and S. The destination is resolved by A to produce {p, P, T, B) (where
p is the network address of P). Once in network S, the name T is re-interpreted
as a method to reach T using service Q. So {T, B} is resolved to {q, Q, T, B}
and network T is reached. Within T itself, the name T maps to an empty stack
and so is popped. Finally, the resulting stack {B} is resolved to {b, B} and the
flow is completed.

3.1.7 Intermediate Hosts

Failures and Fate Sharing

Interposing hosts into a flow introduces a degree of complexity and poses some
challenging issues. As discussed in Chapter 2, we feel that since these hosts
are explicitly involved in the flow they do not violate the end-to-end argument.
Even though their inclusion is transparent to the application, the end hosts are
still aware of them. They are not hosts that perform operations on arbitrary
connections without control, but rather are knowingly invoked by a host that is
involved in the flow.

The issue of fate sharing and just how involved the intermediate hosts are is
somewhat less clear. If an intermediate host fails, should the entire flow fail? In
some cases such a failure may result in unrecoverable data loss which prevents
the connection from continuing or being recovered. In other cases, it is possible
that the end hosts can resend lost data and recover gracefully. Either way,
it seems prudent to relegate this decision to upstream hosts and, eventually,
the origin host itself. That is, if an intermediate host detects an unrecoverable
failure on a connection, it should cascade the failure upstream, possibly after a
brief attempt at local recovery. For example, while the end host might be willing
to wait indefinitely for a broken link to be restored, an intermediate host may
prefer to re-attempt a connection for some finite amount of time before giving up
and cascading the failure backwards. Each intermediate host along the way may
make its own attempt at recovery (choosing a different path, perhaps) before,
in turn, passing the failure backwards. Eventually, the origin host receives the

Chapter 3. Euonym 27

failure and makes the final decision.
Because end hosts at least partially share the fate of the intermediate hosts,

we do not always expect an end host to be able to recover from a failure at an
o

intermediate host. Some situations may be fatal, such as when an intermediate
host knows the next hop is permanently unreachable.

Data at Intermediate Hosts

Intermediate hosts should only provide services that support communication
in intermittently-connected networks. In particular, they should not modify
application-level data and their services should be idempotent and deterministic.
That is, if the same data reaches an intermediate host more than once, the data
that the host passes on to the next hop should always be the same. The services
described in Chapter 2 (rendezvous points, data forwarding etc.) are examples
of services that meet these requirements, while a service like stateful packet
inspection and modification is not.

3.2 Implementation

We have implemented a prototype of the Euonym architecture in Java 1.5 and
use it to demonstrate the architecture using both Euonym-enabled applications
as well as regular applications that interface with Euonym through proxies. In
this section we describe our example implementation. Results from using it are
presented in Chapter 4.

3.2.1 API

Euonym provides the application with a socket-like, stream-oriented abstraction
of the network. The API is similar to the Java Socket API with some additional
support for intermediate hosts. We have developed two transport-layer inter­
faces, one that uses TCP sockets and one that supports file-based transfer. The
latter is suitable for use with any batch transport such as data couriers or the

Chapter 3. Euonym 28

postal system.
The two primary classes are NamedSocket and NamedServerSocket, which are

analogous to the Java Socket and ServerSocket classes. They tie in closely with
the TCP interface which is described in Section 3.2.2. Tables 3.2 and 3.3 show
basic use of these two classes.

Outgoing Flows . . "

The NamedSocket class acts as the outgoing half of a Euonym host, at both the
origin host and at intermediate hosts. To establish a flow, an application creates
an instance of the class and calls, the connect 0 method, giving it a destination
name or name stack to connect to. The class does the work of resolving the
name, establishing a TCP connection, negotiating name stacks, etc. It provides
an OutputStream object that the application uses to write data to the flow. The
application signals the end of the flow either by closing the stream or by calling
the close () method on the socket. The class then signals the end of the flow to
downstream hosts and terminates the transport-level connection.

The same class also aids the application by listening for an incoming flow
from the destination host that appears to be the mirror of the outgoing flow.
That is, it watches for flows that originate at the outgoing flow's final destination
host and have a final destination of the local host. The incoming flow is not
automatically created and must be established independently of the outgoing
flow by the remote host. The class provides, an InputStream object that the
application can read incoming data from.

Incoming Flows

The NamedServerSocket class comprises the incoming half of a host and is used
at intermediate hosts and final end hosts. The class operates in much the same
way as a regular ServerSocket. The application creates an instance of the class,
binds it to a name and, because our implementation is TCP-oriented, provides
a port number on which to listen for incoming connections. The application

Chapter 3. Euonym 29

import euonym.net.*;
import euonym.naming.*;
import java.io.*;

p u b l i c class C l i e n t {
publ i c s t a t i c void main(String[] args) {

t r y {
NamedSocket socket = new NamedSocket();

// name stack, top on l e f t
Names remote = Names.parseString(

"aOOOOOOOOOOOOOOO bOOOOOOOOOOOOOOO 1000000010000000");

// connect to remote host on port 1234
socket.connect(new NamedSocketAddress(remote, 1234));

// send a single l i n e
socket.getOutputStream0.write("hello\n".getBytes 0) ;

socket.close();
} catch (IOException e) { e.printStackTraceO; }

}

}

Table 3.2: Example client code that uses a name stack to provide source-
specified routing.

Chapter 3. Euonym 30

import java.io.*;
import euonym.net.*;

public class Server {
public static void main(String[] args) {

try {
/ / bind to localhost (1000000010000000) on port 1234
NamedServerSocket server = new NamedSeryerSocket(1234);

/ / wait for a single incoming flow
NamedSocket socket = (NamedSocket) server.accept();
server.close();

/ / read a line and print i t to the screen
BufferedReader r = new BufferedReader(

new InputStreamReader (socket. getlnputStreamO)) ;
System.out.println(r.readLine());

socket.close();
catch (IOException e) { e.printStackTraceO ; }

Table 3.3: Example server code that waits for incoming flows destined for
1000000010000000.

http://euonym.net.*

Chapter 3. Euonym 31

then calls accept () which blocks until an incoming flow is available. When a
new incoming flow arrives, a corresponding NamedSocket object is created and
passed up to the application via accept 0. The server socket multiplexes new
incoming transport connections such that if they correspond to an existing flow,
they are added to it, otherwise a new NamedSocket object is created and returned
by accept().

As before, the new NamedSocket object passes incoming data up to the appli­
cation through an InputStream object. It also helps the application by automat­
ing the creation of the mirror, outgoing flow if needed. When the application
writes to the provided OutputStream object for the first time, the outgoing flow is
created with the local host as the origin and the origin host of the incoming flow
as the destination. If the application never writes to the socket, the outgoing
flow is never created.

When the application closes the NamedSocket, the transport connection for
the incoming flow is also closed and any subsequent connections are ignored. The
incoming flow itself is not actually closed: since it is one-way only the originating
host can close it. If the origin continues sending data, any intermediate hosts
will eventually stop trying to connect and pass the error back to the origin where
it causes an exception.

3.2.2 TCP Interface

Our implementation uses TCP as its primary transport mechanism and provides
basic but effective support for connection resumption across disconnections and
address changes. An overview of the interaction between TCP and Euonym is
shown in Figure 3.5.

When establishing a flow, the host resolves the destination name stack until
it finds an IP address. The address can include a port number so that a name
can identify a service on a host (names cannot include port numbers). A TCP
connection is established with the next hop, the relevant stacks and names are
exchanged, and flow data is sent. Because flows are one-way, data is never read

Chapter 3. Euonym 32

Client Application

write read lEuonym';

NamedSocket II

Socket

TCP

Socket accept Server
Socket

Server Application

acceptf ' l 1 , write

M NamedSocket

lead ELon/mii
_create I'Named- "|

> ServerSocketJj

mm Socket

~J ̂ create ^

listen TCP

Socket ' accept Server
Socket

Figure 3.5: Overview of the Euonym API and its interaction with TCP. The
client uses a NamedSocket object as the endpoint for an outgoing flow and the
mirror incoming flow. The outgoing flow uses a client TCP socket to connect to
the remote host and a listening TCP server socket accepts connections for the
incoming flow. The server uses a NamedServerSocket to listen for incoming flows
and create corresponding NamedSocket objects.

from the next hop—which corresponds to a separate flow—using the same TCP
connection. That is, after the handshake, only one half of the connection is
used. In a full implementation this could be optimised by using both halves
if two different flows happen to use the same two intermediate hosts, but in
opposite directions.

To support the return flow, if any, an outgoing flow causes a listening TCP
socket to be opened. The socket waits for incoming connections that appear to
be the mirror of the outgoing flow. When one arrives, any existing incoming
connection for the flow is terminated and data from the new connection is passed
up to the application when it reads from the NamedSocket's InputStream object.

Disconnection Tolerance

The implementation hides non-fatal TCP failures from the application. If a
host is unreachable, it waits for an application-controlled period (5 seconds
by default) before re-resolving the name and attempting the connection again.
The application has control over how many times this cycle is repeated before

Chapter 3. Euonym 33

an exception is raised, possibly less for intermediate hosts than for end hosts,
which may try indefinitely. If an outgoing connection has been terminated
then subsequent writes to the flow block until a new connection is established.
Conversely, if an incoming connection has been lost then subsequent reads block
until a new incoming connection for the incoming flow is established.

Failures related to the hosts rather than the network—such as rejection of a
connection by the remote host or failure to bind to a local port—cause exceptions
immediately.

Byte Numbering

Euonym hosts use byte numbering to identify their position in a flow's data
stream and to prevent out of order or duplicate data. When a connection is
established or resumed, the two hosts must first agree on their positions in
the stream. Since a flow is one-way, there is always a sending host and a
receiving host. The sending host buffers the most recent x bytes to be written
to the flow and informs the receiving host of the range of bytes it is able to
provide. The receiving host keeps track of the last byte number that was read
by its application. If the host is the flow's final endpoint it knows exactly
what byte should be delivered to its application next. An intermediate host is
generally not so knowledgeable and will request as much data as possible from
its upstream host, in an effort to meet the potential requirements of the next
hop. If possible, the two. agree on a byte to resume from and the data can begin
to flow. Otherwise the receiving host rejects the sending host's connection. Like
any other failure, this may be cascaded back to the start of the flow.

The remaining issue is how much data a host must buffer—the value of x.
TCP must solve the same problem, but because of the connectivity assumptions
of the Internet, it can place a reasonably small upper bound on the amount of
unacknowledged data it sends. Our architecture does not have this luxury and
passes the decision on to the application. Conceptually, it depends on how far
back in the "past" the application is willing to go to get the data it must re-send.

Chapter 3. Euonym 34

For a file transfer, this may simply be the start of the file. For an interactive
application, it may only be a few minutes worth of buffered interaction. Unlike
TCP which hides buffered in-flight data from the application, Euonym gives the
application full control over the buffering process. By default, the most recent
128KB of data are buffered. We have found this to be large enough to cover
unacknowledged TCP data as well as data buffered on the local and remote
sockets but not yet read by the application.

3.2.3 File Interface

We have also implemented a file interface that is used for preparing flow data
for batch transport. For an incoming flow, the origin name, the name stack, and
byte number are written to a file, followed by the flow data. The file can then
be transported by any means to another host where it is injected back into the
network. For an outgoing flow, the name stack and byte number are read from
the file and used to establish the flow. The data is then read and streamed into
the flow.

3.2.4 Names: Format, Storage and Lookup

Names in our implementation are 64-bit random numbers, displayed in hexadec­
imal. We have a single special name, 1000000010000000, which always corre­
sponds to the local host and is analogous to the IP address 127.0.0.1. Having
this address makes using Euonym on a single host much simpler.

Name Storage

Because Euonym names are non-aggregable, we cannot use an existing name
storage system such as the Domain Name System (DNS). Instead, Euonym uses
FreePastry 1.4 [9], an implementation of the Pastry [22] Distributed Hash Table
(DHT) to store and lookup name mappings. A complete discussion of FreePastry
and DHTs is beyond the scope of this thesis and we refer the interested reader to
[22] and related work. Briefly, they work as follows. Every node in the network

Chapter 3. Euonym 35

has a name in a 6-bit wide circular address space (a common value for b is 128),
generally chosen randomly. An item to be stored in the hash table is given a.
identifier i taken from the same address space. The item is then stored at the
node with name n such that some distance metric between n and i is minimal
for all the nodes currently in the network. DHTs are naturally suitable to flat
identifiers and Pastry provides scalable, efficient lookups and is resilient to node
failures.

Each Euonym host runs a name server process which performs name res­
olution for the host and acts as a node in the Pastry DHT. Together, these
hosts form a Pastry overlay and cooperate in the storage and lookup of names.
A host's Pastry ID is unrelated to its Euonym names and is chosen randomly.
Euonym names are mapped to Pastry's 128-bit IDs simply by padding the name
with zeros. Name mappings are stored redundantly at k nodes in the overlay to
help prevent losses when the overlay is partitioned or a node leaves, and Pastry
ensures that mappings are re-distributed as nodes join and leave the network.
In a full implementation, a host could periodically do a lookup of its own names
and re-insert the bindings if it found they were missing or out of date. Addi­
tionally, a host might register a name callback with the DHT node that stores
the name and be notified when the name's mapping changes.

Regions

Intermittent and disconnected links form natural borders around well-connected
hosts and divide the larger network into separate regions. Because Pastry is re­
liant on a well-connected TCP network, the result is a single DHT per region.
This allows a name to have different mappings in different networks which is
necessary for late binding and re-binding (Section 3.1.6). Conversely, if two net­
works are sufficiently well-connected to form a single DHT, they are sufficiently
well-connected to be considered a single network.

Gateway nodes that span regions can participate in each region's DHT in two
ways. Either they can run separate DHT node applications, each bound to the

Chapter 3. Euonym 36

network interface for that region, or, if they span only two regions (a common
case), they can participate only in the region in which they make lookups. For
example, a host that unidirectionally bridges region R to region S need only
participate in the latter's DHT, provided its name resolves to its address in R's
DHT.

3.2.5 Limitations

Providing disconnection tolerance using TCP is more complex than it should
be, mainly because TCP sockets do not provide much information for recovering
from a connection error. For example, an application could make a better guess
at what data to resend to a host if it knew the last byte that it acknowledged.
Additionally, Java's socket implementation does not provide useful information
about why a disconnection occurred or why connection setup failed, even if
the underlying system provides it. All disconnections raise a SocketException

exception and any connection setup error raises a ConnectException exception.
Both may be raised for a number of reasons.

Completely out-of-order data delivery is not supported by our implementa­
tion. It would be useful to allow a host to accept any and all data from multiple
upstream hosts and piece it together as necessary, passing the resulting con­
tiguous stream up to the application. This could be a service performed by an
intermediate host, particularly if there is a point in the network where multiple
data paths converge.

3.3 Summary

In this chapter we described the Euonym architecture and our example imple­
mentation.

The Euonym architecture uses a layer of flat names above IP addresses
to identify hosts and services in the network. Through name stacks, which
contain both names and transport-layer addresses, it allows intermediate hosts

Chapter 3. Euonym 37

to be explicitly interposed on a flow between two endpoints. Name stacks also
provide late binding and source- and destination-specified routing. The flexible
interpretation of names allows them to identify hosts, services, networks and
network paths, depending on where and how they are used.

Our prototype implementation of the architecture lies between the applica­
tion and the transport layer and provides a socket-based stream abstraction of
the network. It uses TCP as its primary transport protocol and tolerates net­
work address changes and disconnections of arbitrary length. We use the Pastry
Distributed Hash Table (DHT) to provide scalable, robust lookup of names in
the network. Separating DHTs based on connectivity boundaries partitions the
network into regions, allowing a name to have different mappings in different
parts of the network.

In the next chapter we demonstrate the use of the implementation.

Chapter 4

38

Using Euonym

In this chapter we demonstrate the use of the Euonym implementation. Our

experiments illustrate its applicability to both batch and round-trip dependent

communication, as well as with legacy and Euonym-enabled applications. We

show that it meets the architectural goals identified in Section 2.1 and, in doing

so, the research goals in Chapter 1.

We performed these experiments by running all programs on the same host

and simulating link availability. Unmodified applications work with the archi­

tecture through proxies and link speeds are simulated by limiting the rate at

which applications can write data to their sockets. Each separate network region

has its own DHT and hence naming domain.

4.1 Batch Communication

In this experiment we transfer 116 340KB of data across two intermittent links

using the support of intermediate hosts. The experiment demonstrates use of

the architecture by unmodified applications, tolerance of disconnections that

exceed the limitations of the transport layer (TCP), interposition of arbitrary

intermediate hosts mid-flow, and the use of intermediaries for data forwarding

and to bridge heterogeneous network elements.

We model our experiment after the community example from Section 2.3.

The network and link availability is shown in Figure 4.1. Two isolated commu­

nity networks, G and H, are connected to the Internet (I) by 16KBps intermit­

tent links. G's link is up for 20 minutes every 30 minutes and H's link for 20

minutes every 40 minutes. Host A in G uses scp to copy a file from host B in

Chapter 4. Using Euonym 39

Figure 4.1: Network layout and link availability for the batch experiment. G-I

and H-I are 16KBps intermittent links, Q is a high-bandwidth, high-delay data

courier.

H using host P in the Internet as a forwarding point. Part of the transfer is

performed by a high-bandwidth data courier moving directly from H to G.

The name mappings are shown in Table 4.1. The lack of name stacks in the

mappings is deceptive; they are built and consumed as data moves through the

network, rather than being explicitly included from the start. For instance, at

A the name B resolves to {p,P,H,B} and when B invokes Q, it resolves the

name A to {q, Q, G, A}.

The current version of the ssh and scp protocols (version 2 [32]) rate lim­

its connections and requires application-level acknowledgement of a window of

data (by default 16KB) before further data is sent. This limits the ability of

forwarding points to buffer data when the end host is unavailable. Instead, we

use version 1 of the protocol [31] which does not use rate limiting. Another

approach would be to use a sufficiently large window, although deciding what

constitutes "sufficiently large" is difficult.

The flow of data during the experiment is shown in Figure 4.2, which should

be read from the bottom upwards. Initially, both links are up and after the

initial scp handshake data flows from B to A, via P, at 16KBps. After 20

minutes, both links go down. At 30 minutes, the G-I link comes up again and

remains idle until the H-I link comes up. When the G-I link goes down again

at 50 minutes, data from B continues and is buffered at P . At 60 minutes,

Chapter 4. Using Euonym 40

Mappings in G Mappings in H Mappings in I

[a] A^{G} A =• {a}

B^{b) B^{b}

G=>{} G^{P} P^{p}

H^{}

P^{p}

Q^{q}

Table 4.1: Name mappings for the batch experiment, with transport4evel ad­

dresses in lowercase.. When invoking Q in H, the mapping for G becomes

G^{Q}.

when H-I goes down and G-I comes up, the data buffered at P is sent to A

for the next 10 minutes. We deliberately prevent the H-I link from coming up

at 80 minutes. Instead, at 74 minutes another intermediary Q in network H.

is invoked that reads 71 677KB of data from B at 512KBps and writes it to

a file. A few minutes later, the data is injected back into network G. Finally,

both links are up again at 90 minutes and the file transfer is completed at 98

minutes.

The transfer averages a rate of 19.8KBps over the entire 98 minutes. The two

links are up simultaneously for only 40 minutes, and at 16KBps would regularly

only be able to transfer 38 400KB (assuming that they resume the file transfer

mid-way—not possible using scp—and ignoring the connection setup overhead).

4.2 Interactive Communication

In this experiment we retrieve a collection of webpages across a series of inter­

mittent links. It demonstrates the use of round-trip dependent communication

in the architecture, support for communication without a connected end-to-end

path, and asymmetrical flows.

The experiment is loosely modelled on the Wizzy project described in Sec-

Chapter 4. Using Euonym 41

122880
112640
102400
92160

u 81920
•S 71680
iT 61440
M 51200
* 40960

30720
20480
10240

0
122880
112640
102400
92160

u 81920
£ 71680
a 61440
=i 51200
* 40960

30720
20480
10240

0
122880
112640
102400
92160

co 81920
•2 71680
Ja 61440
M 51200
* 40960

30720
20480
10240

0
122880
112640
102400
92160

u> 81920
S 71680
S 61440 h
M 51200
* 40960

30720
20480
10240

0

A reads
-i 1 1 1 1 r

Q reads B
Q writes A

P reads B
P writes A

I B writes • i r

i L

i i

_i i i i u

H 1 1 1 1 r

- i 1 1 1 1 r

30 40 50 60 70 80 90 100
Time (minutes)

Figure 4.2: Flow of data from B to A in the batch experiment. The figure can
be read from the bottom upwards, following the data from B to P (or Q) and
finally to A. Data is sent in the opposite direction only at connection setup and
teardown and is not shown.

Chapter 4. Using Euonym 42

Time
0 2 4

A - P _ _ 1 _ _ L
Q - A

Figure 4.3: Network layout and link availability. Requests are made by A and
passed onto the Internet by a proxy at B.

tion 2.3, the scenario being a student wishing to use Google to find information
on a topic without requiring an internet connection. We use the Google API
to search for the phrase "south africa" on en.wikipedia.org and the top three
results are retrieved, along with any embedded images, using the wget tool.
The transfers are performed across a series of intermittent connections and the
student can then browse the results locally, offline.

The network setup is shown in Figure 4.3. Host A issues all requests, includ­
ing the Google search which uses HTTP-based RPC, through a simple Euonym-
enabled HTTP proxy at the Internet host B. The requests go from A to B via
host P and the responses from B to A via host Q. Non-internet links are lim­
ited to 16KBps. Links are up for 1 minute and down for 2 minutes, with the
Q-A and A-P links starting with their up cycle and the P-B and B-Q links
with their down cycle. Hence, there is never a fully connected path between A
and B in either direction. From A's perspective, B maps to {P, B} and from
B's perspective, A maps to {Q,A}. Otherwise, all host names map to their
transport addresses.

The flow of data is shown in Figure 4.4. The first request (at time 0) is the
Google search and the result arrives at A just after 3 minutes. The next three
requests are for the HTML content of the webpages and have reasonably large
responses. The subsequent requests are for the images in the webpages. Every
round trip takes approximately 3 minutes and, because wget waits for one item
to be retrieved before requesting the next, progress is slow. Clearly, parallelising

http://en.wikipedia.org

Chapter 4. Using Euonym 43

100 h

S 8 0

a 60 o

* 40

20

0

100

S 8 0

It 60 o

* 40

20

0

100

8 80

§ 6 0 o

2 40

20

0
1000

800

I 600
m

400

200

1000

800

I 600
m

400

200

1000

800

I 600
m

400

200

i ' • ' 1 i • 1 1 • i 1 • 1 1 i 1 1 1 • i 1 1 1 1 i
A reads Q

Q reads B +
Q writes A •

t. B
B writes Q

P reads A +
P writes B •

• + B + •
I • • i i I • i i • I i i • • I i • ' i I

I A writes P •

Q U G r j u s o n n :
. . i i i i i i i

0 5 10 15 20 25 30 35 40 45
Time (minutes)

Figure 4.4: Flow of data in the interactive experiment. Reading upwards, a

request travels from A to P to B and the response from B to Q to A.

Chapter 4. Using Euonym 44

the retrieval and reducing round trip dependence by moving the program issuing

requests closer to B would improve performance hugely. Nevertheless, the pages

and their images are successfully retrieved despite no connected end-to-end path

and multiple disconnections.

A total of 217KB (or 15 requests) are downloaded in 47 minutes, an average

rate of 79bps. This is significantly lower than the links' 16KBps limit because

of the dependence on lengthy, serial round trips. However, even this speed is an

improvement over ordinary circumstances in which no transfer at all is possible

due to the lack of an end-to-end path.

4.3 Remote Service

This experiment is similar to the previous one but. pushes the request logic into

the Internet itself, reducing round trip dependence and improving performance.

It shows the use of explicit source-specified routing and both the client and server

are completely Euonym-enabled and do not require proxies. It also illustrates

how the location of a service can affect its performance.

The network setup and link availability are the same as for the previous

experiment. As before, we use the Google API to download the webpages and

related images for the first three results in a search for the phrase "south africa"

on en.wikipedia.org. In this experiment, though, the client at A sends only

the search string and the required number of results to the server at B . B

performs the search, retrieves the results using wget, and sends the downloaded

data back to A. We therefore reduce the communication to one round trip

and make much better use of the available bandwidth. A uses source-specified

routing to contact B by specifying {P, B} as the destination name stack. All

other name mappings are as before.

The flow of data is shown in Figure 4.5. At time 0, A sends its request

(via P) which reaches B at 100 seconds. At 120 seconds, after performing the

search and web retrievals, B begins sending the data back to A. It is buffered

at Q until the Q-A link comes up at 200 seconds. The transfer of 330KB is

http://en.wikipedia.org

Chapter 4. Using Euonym 45

A reads Q
-i—•—1—r

~i ' 1 r
Q reads B +
Q writes A •

_i i , u
~i—1 ' r B writes Q o

~i 1 • — r
B reads P

P reads A
P writes B

30 60 90 120 150 180 210 240
Time (seconds)

Figure 4.5: Flow of data in the remote service experiment. Reading upwards,

the request travels from A to P to B and the response from B to Q to A.

Chapter 4. Using Euonym 46

complete after 223 seconds. A change in the top 3 search results increased

the amount of data transferred, but an average throughput of 1.4KBps and an

order of magnitude improvement in transfer time are great improvements over

the previous experiment. Again, with no end-to-end path, no transfer would

normally be possible at all.

Note that we could couple the retrieval service at B with the HTTP proxy

from the previous experiment and move the service anywhere between the client

and the Internet. Clearly, the fewer round-trip dependencies the better.

4.4 Additional Discussion
There are two additional aspects of Euonym that do not lend themselves to

network traces or bandwidth measurements and are instead simply described

below. The first is mobility and the second is support for on-the-fly changes in

communication paradigm.

4.4.1 M o b i l i t y

Mobility support is inherent in the Euonym architecture and implementation.

Flows are established between hosts themselves, not network locations, and

arbitrary-length disconnections are tolerated by default. We have used Euonym

to preserve ssh connections from a mobile laptop to a server for weeks at a

time. Euonym successfully handles multiple address changes, NAT devices and

firewalls, NIC changes, periodic network disconnections1, and system suspension

(hibernation). Furthermore, because ssh provides anti-replay security, there are

no dangers of man-in-the-middle attacks or in resuming connections while on

untrusted networks.

From a personal standpoint, once one becomes used to ones connections

withstanding both minor and major interruptions, it is frustrating to go back

to the original situation, especially when operating in a mobile environment.
:Such as those brief but frequent interruptions that seem to plague wireless networks.

Chapter 4. Using Euonym 47

We long for the day when support for mobility and disconnection tolerance is

widespread.

4.4.2 Switching to a Rendezvous Paradigm

We have also used Euonym to allow a transition from a regular, sender/recipient

communication paradigm to a rendezvous-style put/get paradigm. During an

established interactive ssh session, we adjust names to introduce two new servers

into the client-server flow. These two servers form a rendezvous pair: the down­

stream host connects backwards to the upstream host to ask for data, rather

than the reverse. The downstream host then uses the associated name stack to

continue sending the data along the flow. The setup at the end hosts is identical

to that in the interactive communication experiment in Section 4.2.

This example illustrates how even a fundamental communication paradigm

change can be handled easily by the architecture simply by pushing the logic

into the intermediate hosts. Such a paradigm is useful when the upstream

host is unable to contact the downstream host directly, possibly because ingress

connections cannot be established directly (as in the case of a blocking firewall

between the hosts).

4.5 Summary

In this chapter we present experiments performed using Euonym to demonstrate

the feasibility of the architecture. The first experiment demonstrates batch-style

communication using legacy applications, communication in the face of discon­

nections and the use of atypical transport mechanisms to improve connectiv­

ity. The second shows round-trip dependent communication using a mixture

of legacy and Euonym-enabled applications and demonstrates communication

without a fully connected end-to-end path. The third experiment uses only

Euonym-enabled applications and shows how the location of a service in the net­

work can affect its performance. We also discuss how Euonym provides simple

Chapter 4. Using Euonym 48

but effective mobility support and allows an ad-hoc change to a rendezvous-style

communication paradigm.

The experiments and usage experience show that the architecture meets the

goals set out in Chapter 1. To wit, we have shown that

1. explicitly including proxies and other intermediary hosts in a path between

two endpoints facilitates communication in intermittently-connected net­

works; and

2. the separation of network address and host identity allows end hosts to

delegate responsibility and operations to intermediary hosts that are bet­

ter equipped to make use of, or improve upon, connectivity.

In the next chapter we discuss related work.

Chapter 5

49

Related Work

In this, the penultimate chapter of the thesis, we discuss related work. We begin

with work related to disconnection tolerance, then cover work on intermittently-

connected networks, and finally work on host identity and addressing.

5.1 Disconnection Tolerance

With the abundance of connectivity we have today, few new applications are

designed with disconnection in mind. However, a variety of projects have focused

on tolerating disconnections at the transport layer, generally from a mobility

perspective. Some lie between the application and the transport and let the

application take control of mobility and disconnections, leaving the lower layers

intact. Others modify the network or transport layers and attempt to hide

disconnections from the application entirely.

Zhang and Dao [34] propose a persistent connection model for continuing

connections across process migration and host crashes. They place a session

layer above the transport layer and separate identity from network address by

using a portion of the IP address space to assign identifiers to processes (rather

than hosts). Their focus is on host failure and so they do not address the

possibility of losing data in the network, which Euonym must consider.

Zandy and Miller [33] describe rocks and racks, reliable sockets and pack­

ets that support connection mobility and disconnections of arbitrary (but pre-

specified) length through a user-level library. It is aimed at allowing existing

applications to work unmodified and hides disconnections entirely. Endpoints

Chapter 5. Related Work 50

negotiate support for enhanced sockets during TCP connection setup1 and per­
form a key exchange to identify each other later.

Snoeren and Balakrishnan [26] advocate an approach where the host takes
responsibility for mobility, rather than the network. They add a new TCP
migrate option, negotiated at connection setup along with a key exchange, and
a corresponding state to the TCP state transition diagram. They use DNS to
map between host identity and address and the focus is on mobility, rather than
disconnection tolerance: only disconnections within the TCP timeout period are
tolerated.

The robust TCP connections described in [4] are a session layer approach that
tolerates arbitrary-length disconnections. Reconnecting a broken connection
involves re-negotiating byte numbers and must be initiated by the client host.
They use UDP to send out-of-band control packets to avoid the problem of
embedding control data in the application data flow. The concept is similar to
that used by Euonym, although we use in-band control data and whichever host
writes to a flow can trigger a reconnection.

Maintaining connections across address changes in support of mobility, if not
specifically disconnections, has been proposed at a much lower level in both IPv4
[20] and IPv6 [14]. Long-lived disconnections are not supported and connections
are resumed based on the ability of a host at a new address to affirm that
it is indeed the "old" host. That is, the end-to-end connections are between
addresses, not persistent host identifiers; there is no separation of host identity
and network address.

5.2 Intermittently-Connected Networks

The Delay Tolerant Network [5, 6] architecture bridges heterogeneous and inter­
mittently connected networks using a store-and-forward model with a bundle,
rather than a stream, abstraction. Bundles are forwarded by agents placed

'The negotiation involves a certain amount of "trickery" to make it backwards-compatible,

including open a socket and then closing it immediately.

Chapter 5. Related Work 51

at network boundaries that are intended to make routing decisions based on

present and upcoming connectivity and are also used to bridge heterogeneous

link layers. They use a two-level {name, region) naming hierarchy to achieve

late binding and guide the bundle through the network. This is a more specific

approach than we take with Euonym, in that our intermediate hosts can pro­

vide arbitrary support services, not just hop-by-hop forwarding in the greater

network. In addition, we avoid the complexity of a name and region hierarchy.

A potential function of intermediate hosts is routing, an entire area of re­

search in its own right. The problem is interesting in that network connectivity

is time-varying but may be known a priori. Jain et al. [13] formulate the problem

in detail and discuss possible approaches. An example of a protocol targeted at

intermittently-connected networks is PRoPHET [17, 16], which performs rout­

ing based on the probability of a node encountering other nodes, either due

to mobility or intermittent connectivity. An evaluation of different flooding

protocols and their use in these networks is given in [10].

Wang et al. [29] motivate the use of the postal system as a digital com­

munication mechanism. Arguing that it is widespread, well understood and

reaches even extremely remote areas, they suggest using it to supplement or

provide connectivity to remote and low-income areas, noting that it can provide

very high bandwidth with reasonable delay. Euonym provides simple, effective

support for such a system by using intermediate hosts as proxies to the postal

network, relieving the applications of the burden of supporting such an atypical

communication mechanism.

The Wizzy Digital Courier project [30] provides Internet access to isolated

schools in South Africa. They use application-specific methods to delay web

queries, emails and other traffic until an Internet connection is available. This

connection is made either during off-peak hours when a dialup connection is cost-

effective, or by transporting the cached queries on a USB drive to an Internet-

enabled host, waiting for the replies, and then transporting them back.

The Sami Network Connectivity (SNC) project [23] provides connectivity to

isolated communities of reindeer herders in northern Scandinavia. The commu-

Chapter 5. Related Work 52

nities are nomadic and intermittently connected to each other and the outside

world by satellite, long-range radio and the postal service.

The Euonym architecture has direct applications in both these environments,

our aim being to make these types of project much easier to implement.

5.3 Identity and Addressing

The following projects all address the need to separate host identity from net­

work address and location.

Balakrishnan et al. [1] draw on the literature to argue for an additional

naming layer above the existing IP layer. They argue that it will help resolve

mobility and multi-homing issues in the current Internet and mitigate the effects

of middleboxes by making them first-class citizens in the network. In addition,

they suggest using opaque, non-aggregable, globally-unique identifiers not just

to name hosts but also objects and data in the network.

The Host Identity Protocol [18, 11] uses cryptographic key-based hostnames

to separate network address and identity. The architecture lies between the

transport and the IP layers and as a result transport protocols are bound to

endpoint names, rather than addresses. The use of both the DNS and DHTs as

name storage mechanics is being investigated. The architecture is in the early

stages yet and the infrastructure required to support experimental use of it is

under development. Shiitz et al. [25] describe a modification to TCP to support

user-specified arbitrary-length disconnections and mobility using HIP.

The Unmanaged Internet Protocol [7] describes an identity-based naming

and routing overlay that allows groups of devices to form unmanaged, ad-hoc

networks that operate equally well on the periphery of larger networks, as well

as in isolation. Hosts are identified in a manner similar to HIP and routing is

DHT-based. Nodes essentially form an overlay network and cooperate to negate

hassles usually associated with NATs and firewalls.

Walfish et al. [28] describe a delegation-oriented'architecture that makes mid­

dleboxes (firewalls, NAT devices etc.) first-class network citizens through the

Chapter 5. Related Work 53

use of persistent identifiers. The architecture lies between the IP and transport

layer and does not address mobility or multi-homing. In addition, an end host

cannot control which intermediaries are invoked based on who is communicat­

ing with it. Because the transport protocol becomes bound to host identifiers,

the behaviour of intermediate hosts is limited; they cannot terminate an incom­

ing connection and use an entirely different one on the outgoing portion, and

they are unable to span disconnections that are not tolerated by the transport

protocol.

The Internet Indirection Infrastructure (i3) [27] uses lists of host identifiers

to support multicast and any cast in a DHT-based overlay network. It provides

put/get rendezvous-style communication to separate the sender and receiver,

resulting in a form of disconnection tolerance. They use opaque, aggregable

names called triggers to identify hosts within their overlay network: Zhuang et

al. [35] describe a mobility system based on i3. End hosts are responsible for

their own mobility and since they control the triggers they place in the overlay,

they can control the efficiency of routing and handoff.

Chapter 6

54

Conclusion

In this chapter we conclude the thesis and discuss possible lines of future work.
The apparent ubiquity of the Internet and reliance on it for every-day work

has led to an exploration of ways to provide Internet-like connectivity in areas
either previously lacking it or dominated by alternative, domain-specific net­
works. Such a move provides many challenges, such as overcoming a reliance
on reasonable-bandwidth, low-latency connectivity and connected end-to-end
paths. Implicit in the design of the Internet family of protocols, these require­
ments are often hard to meet in the class of so-called challenged networks.

This thesis describes an architecture that aims to promote Internet-style
connectivity in these environments by allowing intermediate helper hosts to be
explicitly involved on a flow between two hosts. These intermediate hosts can be
included on the fly and provide a wide range of support services. These include
buffering data until it can be passed to the next downstream host, performing
routing to select that host, bridging heterogeneous network elements, and acting
as rendezvous points when a regular send/receive communication paradigm is
inappropriate. Through experimental demonstration we have shown how such
services promote connectivity in difficult network environments without putting
a burden on the application to support multiple networking technologies, routing
methods etc.

Our architecture's persistent, flat naming layer provides the flexibility of
source- and destination-specified routing and can be easily used to identify hosts,
networks, services and routing paths. They are a key component in providing
applications with transparent tolerance of arbitrary-length disconnections.

Chapter 6. Conclusion 55

6.1 Future Work

This thesis shows that intermediate hosts are a viable way of exploiting inter­
mittent connectivity. Here we describe a few ideas for further exploration.

The use of DHTs as a storage and lookup mechanism is a relatively new
development in general, and needs to be explored further. It would be useful for
applications to be able to push updates to their own names to remote networks,
possibly through Euonym itself. It would also be interesting to investigate how
a mobile node or data mule could "advertise" its services by updating bindings
in networks it arrives at in order to divert traffic to itself.

Euonym used a custom naming solution to identify hosts, mainly because of
the requirement for name stacks. Investigating how an architecture like Euonym
could rest upon a separate naming system like HIP—which provides robust
security, disconnection tolerance, support for the legacy Internet etc.—may be
fruitful to both the challenged network community as well as the naming and
HIP communities.

Euonym potentially allows data to arrive out of sequence at the end host,
possibly from separate sources. The end host should ideally be able to piece the
data together as it arrives rather than expect it to arrive in-order. Consequently,
it could be useful for an end host to request retransmission of an outstanding
chunk of data if it is not received within some (possibly application-defined)
time period. The request could go either to the origin host directly or to the
previous upstream hop and slowly be passed back towards the origin. These
operations could also be performed by an intermediate host on behalf of the
end host.

Involving intermediate hosts introduces challenges in its own right, such as
the understanding and handling of failures and how intermediate hosts affect
end hosts. In particular, a suite of protocols for interacting and managing
intermediate hosts, along the lines of the ICMP, would be useful, although it
need not be part of Euonym itself. This could help routing hosts to make routing
decisions, advertise link availability, request missing data, etc.

Bibliography

56

[1] B A L A K R I S H N A N , H . , L A K S H M I N A R A Y A N A N , K . , R A T N A S A M Y , S.,

S H E N K E R , S., S T O I C A , I., A N D W A L F I S H , M . A layered naming archi­

tecture for the internet. In ACM SIGCOMM (Sept. 2004), A C M Press,

pp. 343-352.

[2] C A R P E N T E R , B . , A N D B R I M , S. Middleboxes: Taxonomy and issues. RFC

3234, Feb. 2002.

[3] The IRTF Delay Tolerant Network Research Group (DTNRG), Aug. 2005.

http://www.dtnrg.org/.

[4] E K W A L L , R., U R B A N , P. , A N D S C H I P E R , A . Robust TCP connections for

fault tolerant computing. In Proc. 9th International Conference on Parallel

and Distributed Systems (ICPADS) (Dec. 2002).

[5] F A L L , K . A delay-tolerant network architecture for challenged internets.

In ACM SIGCOMM (2003), A C M Press, pp. 27-34.

[6] F A L L , K . Messaging in difficult environments. Intel Research Berkeley,

Technical Report IRB-TR-04-019, Dec. 2004.

[7] F O R D , B . Unmanaged Internet Protocol: Taming the edge network man­

agement crisis. In 2nd ACM Workshop on Hot Topics in Networks (HotNets

II) (Nov. 2003).

[8] F R A N C I S , P. , A N D G U M M A D I , R. IPNL: A NAT-extended internet archi­

tecture. In ACM SIGCOMM (Aug. 2001), A C M Press, pp. 69-80.

[9] FreePastry 1.4, Mar. 2005. ht tp: / / freepastry.r ice.edu/ .

http://www.dtnrg.org/
http://freepastry.rice.edu/

Bibliography 57

[10] H A R R A S , K . , A L M E R O T H , K . , A N D B E L D I N G - R O Y E R , E . Delay tolerant

mobile networks (DTMNs): Controlled flooding schemes in sparse mobile

networks. In IFIP Networking (May 2005).

[11] The IETF Host Identity Protocol (HIP) Working Group, Aug. 2005. http:

/ /hip.piuha.net / .

[12] The IRTF Interplanetary Internet Special Interest Group (IPNSIG), Mar.

2004. h t t p : / /www . i pns ig .o rg / .

[13] J A I N , S., F A L L , K . , A N D P A T R A , R. Routing in a delay tolerant network.

In ACM SIGCOMM (Sept. 2004), A C M Press.

[14] J O H N S O N , D . , P E R K I N S , C , A N D A R K K O , J . Mobility Support in IPv6.

RFC 3775, June 2004.

[15] K L E N S I N , J . Simple Mail Transport Protocol (SMTP). RFC 2821, Apr.

2001.

[16] L l N D G R E N , A . , A N D D O R I A , A . Probabilistic routing pro­

tocol for intermittently connected networks. Work in progress,

Internet Draft, July 2005. http : / /www .dtnrg.org/docs/specs/

draft-lindgren-dtnrg-prophet-01.txt.

[17] L I N D G R E N , A . , D O R I A , A . , A N D S C H E L E N , O. Probabilistic routing in

intermittently connected networks. In Proceedings of the First International

Workshop on Service Assurance with Partial and Intermittent Resources

(SAPIR) (Aug. 2004), pp. 239-254.

[18] M O S K O W I T Z , R., A N D N I K A N D E R , P. Host Identity Protocol.

Work in progress, Internet Draft, Aug. 2005. h t t p : / / w w w . i e t f . o r g /

internet-draf ts /draf t- ietf-hip-arch-03. txt .

[19] N I K A N D E R , P. , Y L I T A L O , Y . , A N D W A L L , J . Integrating security, mobil­

ity, and multi-homing in a HIP way. In NDSS '03 (Feb. 2003), pp. 87-99.

[20] P E R K I N S , C. IP Mobility Support for IPv4. RFC 3344, Aug. 2002.

http://www.ipnsig.org/
http://www.dtnrg.org/docs/specs/
http://www.ietf.org/

Bibliography 58

[21] P O S T E L , J . , A N D R E Y N O L D S , J . File Transfer Protocol (FTP). RFC 2821,

Oct. 1985.

[22] R O W S T R O N , A . , A N D D R U S C H E L , P. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. In IFIP/ACM

International Conference on Distributed Systems Platforms (Middleware)

(Nov. 2001), pp. 329-350.

[23] Sami Network Connectivity (SNC) Project, Aug. 2005.

http://www.snc.sapmi.net/.

[24] S A L T Z E R , J . H . , R E E D , D. P., A N D C L A R K , D. D. End-to-end arguments

in system design. ACM Transactions on Computer Systems 2, 4 (1984),

277-288.

[25] S C H U T Z , S., E G G E R T , L . , S C H M I D , S., A N D B R U N N E R , M . Protocol

enhancements for intermittently connected hosts. SIGCOMM Computer

Communication Review 35, 3 (2005), 5-18.

[26] S N O E R E N , A . C , A N D B A L A K R I S H N A N , H. An end-to-end approach to

host mobility. In ACM MOBICOM (Aug. 2000), pp. 155-166.

[27] S T O I C A , I., A D K I N S , D., Z H U A N G , S., S H E N K E R , S., A N D S U R A N A , S. In­

ternet indirection infrastructure. In ACM SIGCOMM (Aug. 2002), pp. 73-

86.

[28] W A L F I S H , M . , S T R I B L I N G , J . , K R O H N , M . , B A L A K R I S H N A N , H . , M O R R I S ,

R., A N D S H E N K E R , S. Middleboxes no longer considered harmful. In

USENIX OSDI (Dec. 2004), pp. 215-230.

[29] W A N G , R. Y . , S O B T I , S., G A R G , N. , Z I S K I N D , E . , L A I , J . , A N D K R I S H -

N A M U R T H Y , A . Turning the postal system into a generic digital commu­

nication mechanism. SIGCOMM Computer Communication Review 34, 4

(2004), 159-166.

[30] Wizzy Digital Courier, Apr. 2005. http://www.wizzy.org.za/.

http://www.snc.sapmi.net/
http://www.wizzy.org.za/

Bibliography 5 9

[31] Y L O N E N , T. The SSH (Secure Shell) remote login protocol. Work in
progress, Internet Draft (expired), May 1 9 9 5 . http://www.snailbook.
com/docs/protocol-1.5.txt.

[32] Y L O N E N , T., A N D L O N V I C K , C. SSH connection protocol. Work in
progress, Internet Draft (expired), Mar. 2 0 0 4 . http://www.ietf.org/
internet-drafts/draft-ietf-secsh-connect-25.txt.

[33] Z A N D Y , V. C , A N D M I L L E R , B. P. Reliable network connections. In
ACM MobiCom (Sept. 2 0 0 2) , ACM Press, pp. 9 5 - 1 0 6 .

[34] Z H A N G , Y . , A N D D A O , S. A "persistent connection" model for mobile and
distributed systems. In Proc. of the 4th International Conference on Com­
puter Communications and Networks (ICCCN '95) (1 9 9 5) , IEEE Computer
Society, p. 3 0 0 .

[35] Z H U A N G , S., L A I , K . , S T O I C A , I., A N D K A T Z , R. Host mobility using an

internet indirection infrastructure. In USENIX MOBISYS (May 2 0 0 3) .

http://www.snailbook
http://www.ietf.org/

