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Abstract 

On-demand media streaming has recently gained intensive consideration due to its 

promising usage in a rich set of Internet-based services such as video on demand, 

distance learning, media distribution, etc. However, there are still many challenges 

towards building efficient, scalable, on-demand streaming systems, in this thesis, we 

propose a novel cost-effective on-demand media streaming architecture for 

heterogeneous peer-to-peer networks, named BitVampire. The key idea of BitVampire is 

to aggregate peers' storage and bandwidths to facilitate on-demand media streaming. To 

achieve this goal, we split published videos into segments and distribute them to different 

peers. When watching a video, a peer searches the corresponding segments, and then 

aggregates bandwidths from multiple supplying peers to stream the video. To deploy this 

architecture in a dynamic heterogeneous peer-to-peer network, three key techniques are 

used: (1) Given that peers offer different resources and may leave at any time, a media 

segments distributing algorithm and a caching scheme are proposed, which achieve fast 

system streaming capacity amplification. (2) An application-level overlay, called 

Category Overlay, is chosen as the underlying search infrastructure to efficiently find the 

desired segments. (3) A scheduling algorithm is proposed to aggregate bandwidths from 

multiple supplying peers and coordinate them to serve one streaming request. We 

demonstrate the effectiveness of this proposed architecture through extensive simulation 

experiments on large, Internet-like topologies. 
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Chapter 1 

Introduction 

1.1 Motivation 

With the proliferation of high bandwidth networks, on-demand media streaming has 

recently gained intensive consideration due to its promising usage in a rich set of 

Internet-based services such as video on demand, distance learning, media distribution, 

etc. However, there are still many challenges towards building efficient, scalable, on-

demand streaming systems due to the high bandwidth and delay requirements for media 

streaming. 

The conventional design of on-demand media streaming systems follows the 

Client-Server model, in which a set of centralized servers store all the video files. Clients 

directly contact servers and request streaming content from servers. Obviously, this 

architecture is not scalable since servers become the bottleneck as the requests increase. 

To alleviate servers' traffic load, several proxy-based architectures have been proposed, 
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in which a set of proxies are deployed in the network. Clients can request the cached 

portion of videos from the proxies. 

However, in both server-based and proxy-based architectures, servers and proxies 

are expected to deliver a high-quality streaming service to a large number of clients. 

Therefore, servers and proxies should be very powerful in terms of computing power, 

outbound bandwidth, storage, etc., which makes deployment and maintenance very 

expensive. On the other hand, recent research and experiments reveal that the current 

Internet has enough resources to support large-scale media streaming in a peer-to-peer 

fashion [47][37]. Inspired by this fact, we propose BitVampire, a low-cost on-demand 

media streaming architecture, which exploits the often-underutilized peers' resources to 

support large-scale on-demand media streaming. Since this architecture does not need 

powerful servers/proxies, it is much more cost-effective compared to other approaches. 

The basic idea of BitVampire is to split published videos into segments and 

distribute them to different peers. When watching a video, the requesting peer (or 

receiver) first searches the corresponding segments, then aggregates bandwidths from 

multiple supplying peers to stream the video. To deploy this architecture in a dynamic 

heterogeneous peer-to-peer network, three problems need to be addressed: (1) How to 

distribute and cache segments, taking into consideration that peers offer different 

resources and may leave at any time. (2) How to efficiently find the desired segments. (3) 

How to aggregate bandwidths from multiple peers and coordinate them to serve one 

streaming request. In this thesis, we present the design, implementation, and evaluation of 

BitVampire, with the emphasis on addressing the three problems mentioned above. 
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1.2 Thesis Contributions 

This thesis proposes BitVampire, a novel architecture that exploits the often-

underutilized peers' storage and bandwidths to support cost-effective on-demand media • 

streaming in dynamic heterogeneous peer-to-peer networks. We have implemented a 

prototype based on the proposed architecture and evaluated the architecture through an 

extensive simulation study. The simulation results verified the effectiveness of the 

proposed architecture. The following are the main contributions of this thesis': 

• To efficiently find the desired media segments, we choose Category Overlay 

[26][43] as the underlying search infrastructure. The simulation study in 

[26][43] shows that Category Overlay can provide an efficient search service in 

a dynamic peer-to-peer network. However, BitVampire operations are 

independent of the underlying search infrastructure. Therefore, BitVampire can 

also be deployed on top of other search infrastructures, as long as these 

infrastructures provide efficient, keyword-based search services. 

• We propose a Media Segments Distributing (MSD) algorithm to distribute 

segments to peers. Given that peers offer different resources and may leave at 

any time, MSD tries to distribute media segments to the peers that are more 

stable, have higher available outbound bandwidth and lower streaming serve 

frequency, which results in fast system streaming capacity amplification 

(system streaming capacity is defined as the number of video watching sessions 

that can be served concurrently). 

• We propose a Multiple Suppliers Scheduling (MSS) algorithm to aggregate 

1 Parts of this work have been recently accepted for publication [24][25], 
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bandwidths from multiple supplying peers and coordinate them to serve one 

streaming request, which results in a small initial buffering time. 

• We developed a general purpose P2P application framework, which separates 

system architecture from specific service implementation. 

• To demonstrate the feasibility of the proposed architecture, we implemented a 

prototype based on it. The prototype is implemented based on our general 

purpose P2P application framework, using Java and JMF [17]. 

• We evaluated our proposed architecture through an extensive simulation study 

on large, Internet-like topologies. 

1.3 Thesis Organization 

This thesis consists of six chapters. Chapter 2 provides the background to P2P computing, 

as well as a detailed description of related work. In Chapter 3, we present the system 

design. We first introduce Category Overlay, which is chosen as the underlying search 

infrastructure. We then present and discuss our approaches to distribute, search, and 

cache media segments, as well as the scheduling algorithm to aggregate bandwidths from 

multiple supplying peers. Chapter 4 presents details regarding our application framework 

and prototype implementation. Chapter 5 presents the simulation setup and performance 

evaluation results. We conclude the thesis and discuss potential directions for future 

research in Chapter 6. 
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Chapter 2 

Background and Related Work 

This chapter introduces background information on Peer-to-Peer (P2P) technology, with 

the emphasis on P2P content search and P2P media streaming. Then we provide a survey 

of the related work. 

2.1 Peer-to-Peer Computing 

Since the success of Napster [28], Peer-to-Peer technology has been receiving intensive 

attention. It is increasingly becoming an important technique in various areas, such as 

distributed and collaborative computing both on the Web and in ad-hoc networks. There 

are lots of industrial efforts in P2P technology, including the P2P Working Group, led by 

many industrial partners such as Intel, Sun, HP, and a number of startup companies; and 

JXTA, an open-source effort led by Sun. There are also a number of academic events 

dedicated to P2P technology. However, the fundamental idea of organizing computers as 

peers is not new. Actually, the original Internet was designed in a Peer-to-Peer manner. It 
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encourages sharing information on research and development in scientific and military 

fields by sending data packets between any two computers. Hence, the current popular 

P2P computing model, since the first appearance of Napster [28] in May 1999, can be 

seen as "a renaissance of the original Internet model" [2]. 

There are several of the definitions of P2P that are being used by the community. 

The Peer-to-Peer Working Group defines P2P as "the sharing of computer resources and 

services by direct exchange between systems" [31]. Clay Shirkey from the Accelerator 

Group defines P2P as "a class of applications that takes advantage of resources - storage, 

cycles, content, human presence - available at the edges of the Internet" and "peer-to-peer 

nodes must operate outside the DNS and have significant or total autonomy of central 

servers". However, we can conclude that a typical P2P application should possess some 

basic properties: dual identities (client and server), resource sharing, and cooperation. 

Peer nodes are usually connected and they cooperate with each other in providing 

resource sharing services: a node acts as client when it is requesting resources, while acts 

as server when it is providing resources. 

Dejan S. Milojicic, etc. [27] summarizes the properties that the P2P computing 

model is able to provide: (1) cost sharing - cost can be shared and distributed to all peer 

nodes. (2) scalability and reliability - services are provided by many autonomous peer 

nodes rather than few central servers. (3) resource aggregation - many types of resources, 

which were originally available only on local machines, can now be shared among peer 

nodes. (4) increased autonomy - resource and computation locality can be better enforced. 

(5) anonymity and privacy - users are able to prevent their information from being 

collected by a particular entity. (6) ad-hoc connectivity - peer is not tied to any particular 

location in the system. 
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2.1.1 Peer-to-Peer Content Search 

Currently there are mainly two P2P search schemes in the literature. Unstructured P2P 

systems such as Gnutella [11] and Kazaa [21] use flooding as their essential search 

techniques. Although flooding is simple and works well in a highly dynamic network 

environment, it will inevitably generate a huge amount of redundant messages, which 

makes it not scalable. Structured P2P systems such as Chord [39], CAN [33], and 

Tapestry [46] use Distributed Hash Table (DHT) based search techniques, which can 

guarantee to locate content within a bounded number of hops. But these techniques 

tightly control both the placement of data and the topology of the network, which results 

in high maintenance costs. Furthermore, they can only support search by identifier and 

lack the flexibility of keyword searching. 

The emergence of recent work on hybrid infrastructures, such as YAPPERS [12] 

and [23], reveal the possibility of creating a P2P system that combines both the 

advantages of unstructured P2P and DHT. Inspired by these works, Category Overlay is 

proposed as the joint research work of this thesis, which can provide an efficient search 

service with a relatively low maintenance overhead. Section 3.2 covers the details of 

Category Overlay. 

2.1.2 Peer-to-Peer Media Streaming 

The first P2P technique for streaming applications was introduced by [38]. This early 

design, however, did not address the stability of the system under network dynamics. [9] 

proposed Spreadlt, which builds a single distribution tree of the peers. A new receiver 

joins the streaming session by traversing the tree nodes downward from the source until 
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finding one with unsaturated bandwidth. Spreadlt has to get the source involved 

whenever a failure occurs, thus vulnerable to disruptions due to the severe bottleneck at 

the source. Additionally, orphaned peers reconnect by using the join algorithm, resulting 

in a long blocking time before the service can resume. 

CoopNet [30] uses a multi-description coding method for the media content. In this 

method, a media signal is encoded into several separate streams, or descriptions, such that 

every subset of them is decodable. CoopNet builds multiple distribution trees spanning 

the source and all the receivers, each tree transmitting a separate description of the media 

signal. Therefore, a receiver can receive all the descriptions in the best case. A peer 

failure only causes its descendant peers to lose a few descriptions. The orphaned are still 

able to continue their service without burdening the source. However, this is done with a 

quality sacrifice. Furthermore, CoopNet puts a heavy control overhead on the source 

since the source must maintain full knowledge of all distribution trees. 

Narada [7] [8] focuses on multi-sender multi-receiver streaming applications, 

maintains a mesh among the peers, and establishes a tree whenever a sender wants to 

transmit content to a set of receivers. Narada only emphasizes on small P2P networks. Its 

extension to work with large-scale networks was proposed in [16] using a two-layer 

hierarchical topology. To better reduce cluster size, thereby reducing the control 

overhead at a peer, the scheme NICE [3] and ZIGZAG [41] focus on large P2P networks 

by using the multi-layer hierarchical clustering idea. 
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2.2 Related Work 

In the following sections, we present the previous work related to our proposed 

architecture. We start from the conventional central server-based on-demand media 

streaming systems. Then we describe several proxy-based systems. Finally, an existing 

P2P-based system is presented, as well as its difference between our proposed 

architecture. 

2.2.1 Central Server-based Systems 

A majority of the existing on-demand media streaming systems follows Client-Server 

model, in which a set of centralised servers store all of the video files and respond to all 

of clients' requests. However, this architecture is not scalable since servers will become 

the bottleneck as the requests increase. To save servers' resources and alleviate servers' 

traffic loads, multicast has been applied and different solutions have been proposed. 

Batching [44] aggregates multiple client requests into one multicast session. However, 

the users have to suffer long playback delay since their requests are enforced to be 

synchronized. Patching [14][5] tries to address this problem by allowing the client to 

catch up with an on-going multicast session and patch the missing starting portion 

through server unicast. In merging [10], a client can repeatedly merge into a larger and 

larger multicast session using the same way as patching. However, in order to ensure 

smooth playback, these two approaches need the client to be capable of receiving 

multiple streams simultaneously and buffering large amount of data. In periodic 

broadcasting [15][42], the server separates a media stream into segments and periodically 

broadcasts them through different multicast channels, from which a client can choose to 
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join in. Although more efficient in saving server bandwidth, it shares the same limitations 

as the approaches mentioned above. 

2.2.2 Proxy-based Systems 

Another major category of on-demand media streaming systems employs the cooperative 

proxy caching technique. Existing work in this area includes prefix-based caching 

[40][35] and segment-based caching [1][6]. In prefix-based caching, proxies store the 

initial frames of popular clips. Upon receiving a request for the stream, the proxy initiates 

transmission to the client and simultaneously requests the remaining frames from the 

server. As the proxy is generally closer to the clients than the origin server, the start-up 

delay for a playback can be remarkably reduced. In segment-based caching, parts of 

media content are cached on different proxies in the network and the stream is 

coordinated to playback from these independent caches. 

2.2.3 P2P-based Systems 

Mohamed M. Hefeeda, etc. proposed a P2P on-demand media streaming architecture in 

their work [13]. This is probably the system most like ours by far. However, our 

architecture is different from theirs in the following ways: (1) They cluster peers into 

two-level clusters, and cluster super peers are selected from cluster members. Then they 

rely on these super peers to search the media content. In our architecture, we rely on 

Category Overlay to search the desired media segments, which can provide an efficient 

keyword search service. (2) In their architecture, a seed peer introduces a media file into 

the system. Initially the seed peer holds all of the segments. As the streaming requests 

come in, the accessed segments will be cached in requesters. However, in our architecture, 
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once the video is published, it will be split into segments and these segments will be 

distributed to different peers. The segments distributing process improves the service 

availability, since the published video is belonging to the whole network, not the single 

publisher peer. (3) In their work, they do not consider the user behaviour when watching 

video. Thus, their architecture requires that all the segments of a video be found before 

the streaming starts. However, this is not a reasonable restriction because most streaming 

sessions lasts only for a short period. Our architecture removes this restriction, where 

users can watch any segments if there is enough available resources currently in the 

network. (4) To aggregate bandwidths from multiple supplying peers, their architecture 

simply assigns a different portion of the segment to peers proportional to their 

bandwidths. In our architecture, a more complicated schedule algorithm is proposed to 

coordinate multiple supplying peers to stream the segment. (5) In their simulation study, 

the system contains only one video. While in our simulation experiments, the system has 

500 videos published, and we also take into consideration the videos' popularity and the 

user behaviour pattern when watching the video. 
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Chapter 3 

System Design 

In this chapter, we present BitVampire system design. We first give an overview of the 

whole architecture, then present and discuss each key component, including Category 

Overlay, media segments distributing, searching and caching, and the scheduling 

algorithm to coordinate multiple supplying peers to serve one streaming session. 

3.1 System Overview 

This section provides an overview of the proposed architecture. We first identify all 

entities in the system. Then, we explain how the system works and how the entities 

interact with each other. 

3.1.1 System Entities 

Following are the entities in our proposed architecture: 
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• Peers. This is a set of nodes currently participating in the system. Typically these 

are the computers of clients who are interested in some of the media files offered 

by the system. We denote {Pl} P2, P„) as the set of peers in the system and P, as 

the i t h peer. To participate in the system, peers contribute some of their storage and 

outbound bandwidths. The target environment of our proposed architecture is P2P 

networks, and it has been known that peers in P2P networks are quite 

heterogeneous [36]. Thus, we model the peers' heterogeneity as follows. (1) Bw, (in 

kbps), the outbound bandwidth peer P, is willing to contribute to the system and 

Bw"vc"'i (in kbps), the available outbound bandwidth peer P, can provide to the 

system at a specific time. (2) St, (in bytes), the storage peer Pt is willing to 

contribute to the system and Sfm''j (in bytes), the available storage peer P, can 

provide to the system at a specific time. Initially, Bwm","i = Bwh Sf™", = Si, and 

BwavaU, < Bwh Sfvai'i < St, hold at any time. 

• Seed Peers. To handle the situation in which all the hosting peers of a specific 

segment leave the system, we introduce seed peers into the architecture. Seed peers 

always stay in the system, and each segment of published videos has a replica 

stored in seed peers. Seed peers serve the streaming request only when the request 

cannot be satisfied by regular peers. Seed peers are almost the same as regular 

peers, except that they are stable and have large storage capacity. However, in the 

case of a media centre distributing contents, the seed peers can be dedicated 

machines with reasonable capacity. 

• Statistical Server. To provide the popularity of videos, we introduce statistical 

server into the architecture. Statistical server is a dedicated, well-known server 

whose responsibility is to gather statistical information on video access and provide 
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videos' popularity to peers. For a specific video k, if its access count is Ck, and the 

access count for the most popular video is Cmca, video k's popularity is defined as 

CklCmax. Although the video access information can be gathered in a distributed 

manner, we choose statistical server for the following reasons: (1) The messages 

exchanged between the statistical server and peers are very small, and the 

computation the statistical server needs to perform when receiving a message is 

quite small too. Thus, the traffic load and computation overhead in the statistical 

server are within a reasonable range. (2) Gathering video access information in a 

distributed manner will increase the system's complexity and introduce extra traffic 

due to the consistency problem. (3) Furthermore, to alleviate traffic load on a single 

server and to avoid single point of failure, we can deploy multiple statistical servers 

in the system. 

• Media Files. This is a set of videos currently available in the system. Every 

video is assigned a unique ID, called videolD, which is generated when the video is 

published. Every video belongs to a predefined type, such as Action video, Sports 

video, Comedy video, etc, and is associated with a list of keywords provided by the 

publishers. We assume each video is encoded with a constant bit rate Br (in kbps). 

A video is split into equal sized segments, and segment is the minimum unit that a 

peer can cache. 

3.1.2 System Operations 

In our proposed architecture, when a peer publishes a video, the video will be split into 

equal sized segments, and these segments will be distributed to peers according to our 

media segments distributing algorithm (Section 3.3). Once peers receive segments, they 
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will publish the received segments to the Category Overlay (Section 3.2). Note that 

during the segments distributing process, every segment will have a replica distributed to 

one of the seed peers. 

When a peer (called a receiver) wants to watch a video, it first searches (Section 

3.4) the 1st segment. Then it determines if the streaming request can be satisfied by the 

peers contained in the search results (including seed peers). If the answer is yes, it sends a 

message to the statistical server to notify it the requested video has been accessed (this 

only occurrs for the 1st segment), and then selfishly determines the best subset of 

supplying peers (Section 3.6.1) and applies the proposed multiple suppliers scheduling 

algorithm (Section 3.6.2) to aggregate bandwidths from the selected supplying peers and 

coordinate them to stream the 1st segment; otherwise, the request is rejected. When the 

streaming of the l s l segment is almost over, the receiver will do the same thing with the 

2n d segment, the 3rd segment, and so on. Figure 3-1 shows an example. Suppose peer P6 

wants to watch a video whose playback bit rate is 500kbps. It searches for segment #0 

and finds that Ph P2, P3 have segment #0; it then selects P,, P2, P3 as the supplying peers 

and aggregates bandwidths from them to stream segment #0. Segment #1 and #2 are 

streamed in the same way. 

ay. P1 ( S e g #0) 

x 1 \ ' . 

P 3 ( S e g # 0 , # 1 ) 

\ 2 5 0 k b p s . ,'200kbps 

3 0 0 k b p s 

P 4 ( S e g #1, #2) 

P 5 ( S e g #2) 

P 6 (Rece i ve r ) 

P l a y b a c k rate: 5 0 0 k b p s 

F i g u r e 3-1 E x a m p l e o f w a t c h i n g a v i d e o 
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After the streaming of a segment is over, the receiver will cache the segment in its 

contributed storage (Section 3.5). For popular segments, as more and more requests come 

in, more segments will be cached on peers, thus more streaming requests can be 

supported. While for non-popular segments, since only a few peers may cache the 

segments, thus it is likely that there not exist peers with enough available outbound 

bandwidth to support the streaming. In this case, seed peers can offer their bandwidths to 

help the streaming session (recall that all the segments have a replica distributed to seed 

peers). Thus, in our architecture, the streaming requests for popular segments are more 

likely supported by regular peers, while the seed peers will more likely support the 

requests for non-popular segments. Since the requests for non-popular segments are rare, 

the traffic load in seed peers is within a reasonable range, which is verified by our 

simulation study (Section 5.2.2) 

The following sections present the key components of our proposed architecture, 

including Category Overlay, segments distributing, searching and caching, and the 

multiple suppliers scheduling algorithm. 

3.2 Category Overlay 

In this section, we briefly introduce Category Overlay, which is chosen as the underlying 

search infrastructure in our architecture. 

The basic idea of Category Overlay is to construct multiple category specific 

overlays on the unstructured peer-to-peer system and restrict a specific search within the 

corresponding overlay. In more detail, we first cluster the whole peer group into clusters. 

Then in each cluster, nodes2 (called Agent Nodes) are selected to take charge of 

2 In this thesis, node and peer are used interchangeably. 
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predefined categories. The Agent Node is responsible for maintaining a keyword table 

(called Content Index Table) for all the content belonging to the categories it is in charge 

of. For a specific category, all of its Agent Nodes (in different clusters) are connected to 

form a category overlay. Thus, multiple category overlays can be constructed over the 

clusters. 

Figure 3-2 shows an example of Category Overlay. As the figure shows, peers are 

clustered into three clusters: C,, C2, and C3. In each cluster, nodes are selected to take 

charge of three predefined categories: Ca,, Ca2, and Ca3. For example, in cluster Ch node 

Ni is in charge of category Ca3, in cluster C2, node N2 is in charge of category Cay, and in 

cluster C3, node N3 is in charge of category Ca3. Since nodes N,, N2, and N3 are all Agent 

Nodes for category Ca3, they are connected to form the category overlay 03. Category 

overlay O, (for category Ca,) and 02 (for category Ca2) can be formed in the same way. 

Thus we have three category overlays sitting on top of the clusters. Note that a node can 

take charge of more than one category. For instance, in the figure, Node Nt takes charge 

of both category Ca2 and Ca3, so it participates in both category overlay 02 and 03. 

Cluster C1 Cluster Cluster C3 0 Cal's Agent Node 

C2 e CVj2's Agent Node 

• Ca3's Agent Node 

Figure 3-2 Example of Category Overlay 
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In Category Overlay, every cluster member node maintains a Category Table, 

which stores the Category-to-Agent mappings. It looks like a hash table in which the key 

is a category and the value is that category's Agent Node. When a node publishes content 

belonging to a specific category, it first looks up its Category Table to find that 

category's Agent Node, then it sends a "publish content" message to the found Agent 

Node, along with the keyword list (while the content is still in the owner's storage). Upon 

receiving this message, the Agent Node will store the keyword list in its Content Index 

Table. When a node unpublishes content belonging to a specific category, it first finds the 

category's Agent Node. Then it notifies the Agent Node to delete the corresponding 

record entry in the Content Index Table. 

When a node issues a query, it should specify a category, as well as a list of 

keywords. The query will go to the Agent Node, which is in charge of that specified 

category. Then the corresponding Agent Node looks up its Content Index Table to find 

the content with the matched keywords, and returns the results to the query initiator. In 

addition, the Agent Node also needs to propagate the query within the corresponding 

overlay. Each Agent Node in this overlay will look up its Content Index Table and return 

the results to the query initiator. Compared to Gnutella [11], in which queries need to go 

through all the nodes, a query in Category Overlay just needs to be propagated within the 

corresponding overlay, which is much more efficient. 

Note that in Category Overlay, each cluster is tree-based. The links between two 

cluster members are called Cluster Links (tree branches). Two neighbour clusters in 

Category Overlay are connected through Inter-Cluster Links. 

To make this thesis self-contained, we briefly describe cluster construction and 

maintenance, as well as category overlay construction and maintenance in the following 
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sections. However, more detailed information about Category Overlay and its 

maintenance mechanisms, as well as the simulation-based performance evaluation, can be 

found in [26][43]. 

3.2.1 Cluster Construction 

In Category Overlay, the cluster is tree-based, which has a central node (called Core 

Node), and all other member nodes are within N hops distance3 from the Core Node. We 

call this N hops distance as the Cluster_Range_Limit and the hops distance from each 

member node to the Core Node as the node's Range. The simulation study in [26][43] 

shows that Cluster_Range_Limit = 2 results in a reasonable cluster size in a typical 

Power-Law topology network. Therefore, in this thesis, we discuss our clustering 

algorithm, assuming that Cluster_Range_Limit is set to 2. To describe our algorithm 

more clearly, we define the following technical terms: 

Table 3-1 Definitions used in clustering algorithm 

Terminology Description 

Core Node Root of cluster tree (central node of cluster). 

Master Node Child oi Core Node. 

Slave Node Child of Master Node. 

Range The hops distance from current node to Core Node. 

Cluster_Range_Limit The maximum hops distance from cluster member to Core 
Node. 

Cluster Link Tree branch, either connecting Core Node and Master Node 
or connecting Master Node and Slave Node. 

Inter-Cluster Link The link connecting different clusters. 

Peers are clustered into clusters when they join in the system. Figure 3-3 illustrates 

3 In this thesis, all the hops distances are in the application level. 
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/* The first node of the whole peer group will become the Core Node for the 
first cluster. */ 
/* When a node Nx wants to join the group, it will contact a node Ny, which 
is already in the peer group. */ 

1: join (Nx, Ny) { 
2: if (Ny's Range < Cluster _Range_Limii) { 
3: Adjoins in Ny's cluster, Ny will be Nx's parent; 
4: link (Nx, Ny) will be a Cluster Link; 
5: } 
6: else { //Ny's Range >= Cluster_Range_Limit 
7: if (A^ knows other nodes in peer group) { 
8: Nx tries to contact other node to join; 
9: } 
10: else { 
11: create new cluster, Nx will be the Core Node; 
12: link (Nx, Ny) will be an Inter-Cluster Link; 
13: } 
14: } 

15:} 

Figure 3-3 Basic clustering algorithm 

the pseudo code of our basic clustering algorithm. Furthermore, to ensure that the 

generated clusters have a reasonable and similar size, we use the following optimizations: 

• Cluster_Size_Limit: cluster has a size limit. Once a cluster reaches this limit, it 

will reject any join request until some members leave. With this parameter, we can 

restrict the cluster size within a reasonable up-bound. 

• Cluster Size Full_Fraction: when a node wants to join in a cluster but only 

knows boundary nodes (Slave Nodes), instead of being forced to create a new 

cluster, a boundary node can forward this request to its parent. If the cluster size is 

less than the Full_ Fraction, the node can join in this cluster. With this parameter, 

we increase the probability of a node joining in the existing cluster, thus decreasing 

the possibility of generating a small cluster. Our simulation result suggests that 0.9 

is a good setting for Full_Fraction. 

• Core_Qualification: a node that wants to be a Core Node should satisfy some 
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qualifications, such as powerful computing ability, high bandwidth, long stay 

period in the system, etc. 

The simulation study in [26][43] shows that with the optimizations mentioned 

above, our clustering algorithm can produce reasonable and similar sized clusters. 

3.2.2 Cluster Maintenance 

When a participating peer of a cluster leaves or fails, the cluster is maintained as follows: 

• Peer Leave. Leaving of a node Ny may or may not affect other nodes, depending 

on its role in the cluster. If Ny is a Slave Node, it can leave by only notifying its 

parent node. If Ny is a Master Node, it should notify its parent node as well as all its 

children nodes. Upon receiving the notification, every child node picks up another 

Master Node in the cluster as its new Master Node. In each cluster, Core Node has 

several backup nodes. If the leaving node Ny is a Core Node, it has to select a 

successor from the backup nodes before it leaves. The successor then notifies all 

the Master Nodes and confirms its new role. It also notifies its children nodes and 

converts them to Master Nodes. 

• Peer Failure. To detect peer failure, every node in the cluster (except Core Node) 

periodically sends "alive" messages to its parent. If a parent node does not receive 

"alive" messages from its child for a period Taiive, that child node is identified as 

failure. The Core Node periodically sends "alive" messages to the backup nodes. If 

the backup nodes do not receive "alive" messages from the Core Node for a period 

Tanve, the Core Node is identified as failure. Once the peer failure is detected, the 

same actions as described in peer leave are performed, except that it is now the 
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parent node's duty to do the notification. 

3.2.3 Category Overlay Construction 

Before we discuss Category Overlay construction, we describe some of the technical 

terms and data structures used in Category Overlay as follows: 

Table 3-2 Definitions used in Category Overlay 

Terminology Description 

Category Agent Node Node in charge of a certain category. It maintains the Content 
Index Table and Neighbour Agents List for that category. In 
this thesis, we simply call it Agent Node. 

Category Overlay Overlay network that consists of all the Agent Nodes of a 
certain category, as well as links among them. 

Table 3-3 Data structures used in Category Overlay 

Data Structures Description 

Content Index Table Data structure that stores the keyword lists for all the contents 
of certain categories, within a cluster. Each entry in this table 
is a tuple: 

<Category, Keyword list, Owner node>. 
An entry <CA, KL, Nx> means that node Nx has the content 
with the keyword list KL belonging to the category CA. 
Content Index Table is only maintained at Agent Nodes. 

Category Table Local table that maps categories to their Agent Nodes. Each 
entry in this table is a tuple: 

<Category, Agent Node, Timestamp>. 
An entry <CA, Nx, T,> means that at time Th node Nx is 
believed to take charge of category CA. Note that every 
category has a corresponding entry in this table and every 
node has this table. 

Neighbour Agents List For a specific category, this list stores all the neighbour 
clusters' Agent Nodes. An Agent Node and all the nodes 
contained in its Neighbour Agents List forms a category 
overlay. Each entry in this table is a tuple: 

<Category, Agent Node List>. 
An entry <CA, {N,, N2, ... , N,„}> means that nodes N,, 
N2, ... , Nm are the neighbour clusters' Agent Nodes for 
category CA. Neighbour Agents List is only maintained at 
Agent Nodes. 
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Category Overlay is constructed as nodes joining in the system. When a node Nx 

wants to join in the system, it first performs the clustering algorithm (described in Section 

3.2.1) to find the cluster and parent to join in. There are three cases: (1) Nx is the first 

node of the system. In this case, a new cluster is created. Nx will be the Core Node and 

take charge of all of the categories. (2) Nx contacts node Ny (in cluster CV), and finally it 

creates its own cluster Cx. As the case 1, node Nx will be the Core Node and it will take 

charge of all of the categories. Furthermore, Nx and NY will exchange their Category 

Tables through the Inter-Cluster Link. These two Category Tables will be propagated in 

cluster CY and Cx respectively. In more detail, Category Table from 7v>will be propagated 

to all the Agent Nodes in cluster CY- Category Table from A^will be propagated to all the 

Agent Nodes in cluster Cx. Thus the Agent Nodes in cluster CY and Cx can update their 

Neighbour Agents Lists according to the propagated Category Tables. (3) Adjoins in an 

existing cluster. Once Adjoins in the cluster, the parent node will send back its Category 

Table to Nx. Nx will use this Category Table as its own Category Table. Furthermore, 

Nx's parent node will determine if it should migrate some of its categories to Nx (based 

on its current traffic load and Nx' bandwidth, computing power, etc.). If yes, Nx's parent 

node will migrate some of its categories to Nx, which means that Nx takes charge of these 

categories. 

3.2.4 Category Overlay Maintenance 

In Category Overlay, when the Agent Node of a specific category leaves or fails, the 

Category Overlay is maintained as follows: 

• Agent Node Leave. Before leaving, the leaving Agent Node selects a stable yet 

under-loaded cluster member node as the successor and migrates all of its 
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categories to that node. Then, the leaving Agent Node follows the steps described in 

Section 3.2.2 to leave. 

• Agent Node Failure. In Category Overlay, the Agent Node maintains Content 

Index Table and Neighbour Agents List, which are crucial data structures for a 

search. If an Agent Node fails, these data structures are lost, which decreases search 

efficiency. To cope with this, each Agent Node selects a cluster member node as its 

backup node. The data structures on backup node are updated based on the 

frequency of contents publishing. When the failure oi an Agent Node is detected, its 

backup node takes over the responsibility and selects another node to be the backup 

node. 

Besides Agent Node leave and failure, another issue to be addressed in Category 

Overlay is the Category Table inconsistency problem. Recall that in Category Overlay, 

when a node joins in the system or an Agent Node leaves the system, category migration 

will occur. However, only the nodes participating in the migration know the change, 

while all other cluster members do not know. Thus, inconsistency between nodes' 

Category Tables is inevitable. If the environment is very dynamic, then the inconsistency 

level could quickly rise to a point where looking up Category Table may even slow down 

the searching. 

To solve this inconsistency, we introduce a periodical aggregation report scheme, 

in which each node periodically sends a category update report to its randomly selected 

neighbour. This report contains the latest N updates (or category migration events) known 

to the reporter, as well as M random entries in the reporter's Category Table. Upon 

receiving the report, a node needs to update its own Category Table, based on the 

accompanied timestamps. The time interval between two reports is a local decision and 
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depends on the updating frequency. The simulation study in [26][43] shows that this 

periodical aggregation report scheme can maintain the Category Table consistency at a 

relatively high level with an acceptable overhead. 

3.3 Media Segments Distributing 

In BitVampire, when a peer publishes a video, the video will be split into equal-sized 

segments and distributed to different peers. Distributing segments to different peers has 

several advantages, including: (1) After segments are distributed to peers, the published 

video is stored by the network, not the single publisher peer. Thus if the publisher peer or 

some hosting peers of segments leave or fail, the rest of the segments can still be 

accessed, which increases service availability. (2) Since the segments of a published 

video are hosted by different peers, the streaming request of a video is supported by 

different peers at different stages, which reduces the streaming burden on a single peer. 

As mentioned in Section 3.1.1, the target environment of our proposed architecture 

is P2P networks, which are quite heterogeneous. Typically, participating peers offer 

different resources and may leave at any time. Taking all of these into consideration, we 

propose a Media Segments Distributing (MSD) algorithm to distribute segments to peers. 

In the following sections, we first present and discuss our media segments distributing 

algorithm in detail, then describe a design improvement. 

3.3.1 Media Segments Distributing Algorithm 

In our proposed architecture, every participating peer contributes some of its outbound 

bandwidth and storage to the system. The outbound bandwidth and storage peer P, 
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contributes are denoted as Bw, and St„ and the available outbound bandwidth and storage 

peer Pt can provide at a specific time are denoted as Bwavadj and Sfvm'i. Initially, Bwam,lj = 

Bw„ Sraili = Sti and Bwamil, < Bwh Sfva'7,- < St, hold at any time. In addition, peer P, 

estimates its stay time in the system by computing the smoothed weighted average as 

follows and uses this value to represent its stability. 

EstimatedS tayj = a x EstimatedS tayi + ji x CurrentStayt (3-1) 

where EstimatedStay, is the estimated stay time of peer P-„ taking into account all the stay 

history of P-„ and CurrentStay, is the time period peer Pt participated in the system since 

its last leave or failure, a + ft = 1, a is between 0.8 and 0.9, and /? is between 0.1 and 0.2. 

Besides, peer P, also maintains the average usage ratio of its contributed bandwidth since 

it participated in the system, called R"sa8e

h and the frequency it serves streaming requests 

in the recent period, called Freqservei. 

When a peer wants to publish a video, it will split the video into equal-sized 

segments. The workload analysis of today's enterprise media server [14] found that most 

clients only watch the first several minutes of media files. To benefit from this fact, we 

let the first segment have several replicas. The reasons why we choose only the first 

segment to be replicated are as follows: (1) In our simulation, the length of a segment is 

set to 5 minutes (We believe 5 minutes or longer is a reasonable setting for the length of 

segment, because too small segments will result in too many contents published to the 

Category Overlay, thus increasing the maintenance overhead and search traffic of the 

system), and the analysis study in [4] reported that more than 60% of streaming sessions 

last less than 5 minutes. Therefore, the possibility of peers requesting the rest of segments 

(except the first segment) is small. (2) Recall that every segment of published videos has 
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a replica being distributed to seed peers; thus we can always find a specific segment even 

if this segment does not have replicas and its hosting peer leaves or fails. 

Suppose the video is split into Ns segments, and the first segment has Nf replicas, 

then in total Ns+N/ segments need to be distributed to peers. The publisher will broadcast 

a "publish video" message to its cluster members through Cluster Links, and this message 

will be propagated to other clusters through Inter-Cluster Links. After receiving this 

message, the peer will send an "accept segment" message back to the publisher, along 

with its EstimatedStay, Bw, R"s"s\ and Freqserve. The publisher waits for Timeoutp to 

collect the sent-back "accept segment" messages. After receiving such a message, it 

marks the sender as a candidate and collects information contained in the message. After 

Timeoutp, the publisher will assign segments to candidates. 

Before discussing our media segments distributing algorithm, we define Gs'h the 

goodness of candidate peer P, to store a segment/replica as a function of its 

EstimatedStayh Bwh Rusase

h and Freqserve

i. Suppose there are m candidate peers: {P,, 

P2, P,„}, Gs'i is defined as follows: 

EstimatedStay, „ Bw: x (1 -R"s"se) Freqservei r 

G i =aSl x , ^ — , + p x p ! — ^ ! —t-Ys, x r-2 r (3-2, 
maxlEstimatedStay.} max \Bw. x (1 - Rf*) max \Freqserve A • 
\<i<m I S i S m 1 ' \<i<m  v ' 

where as„ /?.„, ysl are the factors to give EstimatedStay,, BwiX(l-R"sasc,), Freqscnei different 

weights and as,+fls,+ysl=\. The values of ash Bsh and ys, depend on the application 

environment. If the P2P networks are quite unreliable, with peers leaving or failing very 

frequently, then a bigger value should be assigned to asl; if every peer contributes only a 

few of its outbound bandwidth, thus the total bandwidth capacity of the system is limited, 

then assigning a bigger value to Bsl would be appropriate; finally, if the streaming 

requests are frequent, it should be better to set ys, to a bigger value. In our simulation, as, 

27 



is set to 0.35, fis, is set to 0.25, and ysl is set to 0.4. Given this formulation, the more stable 

candidate peer with a higher average available bandwidth and lower streaming serve 

frequency will have a greater GSl. 

Figure 3-4 is the pseudo code of our Media Segments Distributing (MSD) 

algorithm. We first compute each candidate's GSl, then sort the candidates by GSl in 

descending order and store the results in the candidateList. The media segments 

distributing algorithm will take this list as its input. Note that the algorithm tends to 

assign media segments to the candidate peers that have higher GSl, which means these 

peers will take more responsibility to serve streaming requests. However, their Freqserve 

will increase as the streaming requests come in, thus decreasing their GSl. When another 

video is published, it is likely that their GSl will be exceeded by others, so that video's 

/* In this algorithm, we do not differentiate between the original segment and 
its replica; they are referred same as segment. */ 

Input: 
candidateList: the candidate list sorted by Gs' in descending order; 
num_candidates : number of candidates; 
num_segs : number of segments; 
num_replicas : number of replicas for the first segment; 

Assigning: 
1: j I: 
2: for (i = 0; i < numjsegs + mtm_replicas; i++) { 
3: select j " 1 node in candidateList, suppose the selected node is A^; 
4: 
5: if (i < num_replicas + 1) 
6: assign segment 0 to node A^; 
7: else 
8: assign segment (i - num_replicas) to node Nf, 
9: 
10: if (j == num_candidates) 
11: j = l ; 
12: else 
13: j++; 
14:} 

Figure 3-4 Media segments distributing (MSD) algorithm 
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segments will be distributed to other peers. In the long term, this could result in load 

balance in peers to some extent. 

Once the segments assignment is done, the publisher will send segments (in the rest 

of this thesis, we do not differentiate between the original segment and its replica; they 

are referred same as segment) to peers. When a peer receives a segment, it checks if there 

is enough storage available (Sfv"'' > seg_size, where seg_size is the size of a segment). If 

yes, it stores the received segment and decreases its Sfvail as follows: Sfva" = Sfva" -

seg_size;- otherwise, it uses L R U (Least Recently Used) algorithm to select a victim 

segment to replace. 

3.3.2 Distributing Algorithm Analysis 

This section gives a time analysis of our media segments distributing algorithm. As 

illustrated in Figure 3-4, the algorithm has a loop (line 2) and the loop body (line 3-13) 

will be executed (Ns+Nj) times, where Ns denotes the number of segments and Nj denotes 

the number of replicas for the first segment. Within the loop body, the j t h node in the 

candidateList is selected. Since the candidateList is sorted and j is always less than or 

equal to (Ns+Nj), the time for selecting the j t h node from the candidateList is bounded by 

0(Ns+NJ). Thus the time for assigning segments to candidate peers is bounded by 

0((Ns+Nj)2). The algorithm needs the candidateList to be sorted. Suppose that there are 

totally m candidate peers and quick sort is used to sort them by their GSl; the time for 

sorting is O(wlogm). Thus the total time of our media segments distributing algorithm is 

0(m-\ogm +(NS+N/)2), where m is the number of the candidate peers, Ns is the number of 

segments of the publishing video, and Nj is the number of the first segment's replicas. 
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3.3.3 Design Improvement 

The algorithm analysis in the previous section does not consider the communication cost. 

However, during the video publishing process, the communication cost could be high. 

Because the "publish video" messages will be broadcasted to every cluster member and 

be propagated to other clusters, and every node receiving this message will send back an 

"accept segment" message, which (1) imposes lots of communication traffic on the 

system; (2) requires the publisher to wait a long period to receive enough "accept 

segment" messages and collect information of candidate peers; and (3) increases the 

traffic load on the publisher, since it will receive a large number of messages sent back 

by candidate peers. To cope with this, we revise our approach to collect information of 

candidate peers. 

Recall that in the cluster maintenance (Section 3.2.2), to detect peer failure, every 

peer periodically sends "alive" messages to its parent. We let every peer send its 

EstimatedStay, Bw, R"sa^c

> and Freq™'™ along with the "alive" message. The parent 

collects information contained in the received "alive" messages and periodically sends an 

aggregate report to its parent, along with the "alive" message. Thus, eventually, Core 

Node will have recent information of every cluster member. Core Node sorts the cluster 

members by their GSl in descending order and stores the result in a sorted candidates list. 

Core Node periodically maintains the sorted candidates list based on the renewed 

information of cluster members. When a peer publishes a video, it sends a "publish 

video" message to its cluster's Core Node, and this message will be propagated to the 

Core Nodes of other clusters. After receiving this message, the Core Node will select the 

first Nc (NC>NS+NJ) peers from the sorted candidates list and send the information of these 

peers back to the publisher. The publisher waits for Timeoutp to receive the messages sent 
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back by the Core Nodes and collects information of the candidate peers. Then it follows 

the steps mentioned in Section 3.3.1 to distribute segments to peers. 

Our revised approach assigns more responsibilities to Core Nodes during the video 

publishing process. However, Core Nodes are typically the most powerful and stable 

nodes in the clusters; thus it is appropriate to assign more responsibilities to them. 

3.4 Media Segments Searching 

After segments are distributed to peers, those peers will publish received segments to 

Category Overlay. As mentioned in Section 3.2, to publish content in Category Overlay, 

a node should specify the category the content belongs to, as well as a keyword list. In 

our proposed architecture, we define the categories as follows: (1) we first predefine the 

video types, such as Action video, Sports video, Comedy video, etc; (2) then we combine 

the video type and segment number as the category, such as Action-0, Action-1, Sports-0, 

etc. So all the first segments of the Action videos belong to the Action-0 category; all the 

second segments of the Action videos belong to the Action-1 category, and so on. 

Note that when a peer publishes a video, it should specify the video type and 

provide a list of keywords. When the publisher distributes segments to peers, the 

specified video type and keyword list will be sent to peers as well. When a peer publishes 

the received segment, it will use the combination of video type and segment number as 

the segment's category, and use the received keyword list as the publishing keywords. In 

addition, each published segment has a videolD to specify which video it comes from 

(Recall that every video has a unique videolD); thus, when searching, we can use this 

videolD to ensure that the found segments come from the same video. After the segments 
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have been published, we can search the desired segments in the same way described in 

Section 3.2. 

3.5 Media Segments Caching and Seed Re-

Distributing Mechanism 

In BitVampire, once a peer finishes watching a segment, it will cache this segment in its 

contributed storage. We use this cache policy because we believe that the possibility of a 

peer re-watching this segment is relatively higher than others. However, the storage 

contributed by a peer is limited, so we adopt LRU (Least Recently Used) as the cache 

replacement algorithm, in which the least recently used segment will be chosen as the 

victim if there is not enough available storage for the new cached segment. Note that 

when a segment is cached in peer Ph peer Pt will publish the cached segment into the 

Category Overlay, while when a segment is chosen as the cache replacement victim, its 

hosting peer will unpublish it from the Category Overlay. 

As mentioned in Section 3.1.1, when the streaming requests cannot be satisfied by 

regular peers, seed peers will offer their bandwidths to help serve the streaming session. 

To alleviate the streaming traffic load on seed peers, we propose a Seed Re-Distributing 

(SRD) mechanism, in which when the seed peer offers help to stream a segment, it will 

distribute a replica of that segment to peers, thus decreasing the future demand on seed 

peers. However, two issues need to be addressed to make this mechanism feasible: (1) 

Which segment served by seed peers should be re-distributed to peers? Should all the 

segments served by seed peers be re-distributed, or should it be selective? (2) Which peer 

should the segment be re-distributed to? 
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For the first issue, the simplest solution is to re-distribute all the segments served 

by seed peers. However, this is not a good approach. As discussed in Section 3.1.2, most 

of the segments served by seed peers are non-popular segments. The possibility of peers 

re-watching these segments is small. If these segments are re-distributed to peers, it does 

not provide much help to increase the streaming capability of the whole system, but 

wastes lots of seed peer bandwidth. To cope with this, we classify the segments by their 

importance. If a segment's importance exceeds a threshold Thdisl, that segment will be re­

distributed to peers by seed peer. For a segment that belongs to video k, suppose its 

segment number is / (the (/+l)th segment of the video), its importance Impk-, is defined as 

follows: 

Impk,=Popkx\/a£ (3-3) 

where Popk is the popularity of video k, which can be acquired from the statistical server. 

a,„, is the factor to give segment different weight based on its position in the video. In our 

simulation, a / m is set to 1.5. Given this formulation, the segment that comes from the 

popular video and is split from the initial portion of the video will have a bigger 

importance, which means it is more likely to be re-distributed to peers. The value for 

threshold Thdisl could be pre-set or dynamically adapted based on the load on seed peers. 

In our simulation, we use pre-set and the threshold Thdisl is set at 0.6. 

For the second issue, we use our proposed media segments distributing (MSD) 

algorithm (Section 3.3.1) to re-distribute the segment, if that segment is decided to be re­

distributed. Our simulation study (Section 5.2.2) verified the effectiveness of this 

mechanism, which can reduce traffic load on seed peers. 
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3.6 Media Segments Streaming 

In BitVampire, when a peer (called receiver) wants to watch a video, it will search the 1st 

segment, then aggregate bandwidths from the selected supplying peers and coordinate 

them to stream the 1st segment. When the streaming of the 1st segment is almost over 

(enough time should be left for searching and generating schedule for next segment), the 

receiver will do the same thing with the 2nd segment, the 3rd segment, and so on. 

Aggregating bandwidths from multiple supplying peers has several advantages, including: 

(1) Since peers are quite heterogeneous, a single peer may not have enough bandwidth to 

support a streaming session. In this case, aggregating bandwidths from multiple 

supplying peers is necessary. (2) Aggregating bandwidths from multiple supplying peers 

increases the robustness of a streaming session, since if some of supplying peers leave or 

fail, other supplying peers still contribute their bandwidths to the session. 

In the following sections, we first describe how to select supplying peers from the 

candidates that are returned by searching. Then, we present and discuss our multiple 

suppliers scheduling algorithm in detail. 

3.6.1 Supplying Peers Selection 

When a peer (receiver) searches the desired segments for watching, the size of the results 

could be large. Thus we need a scheme to select supplying peers from the search results. 

We let the receiver selfishly determine the best subset of supplying peers. Details of our 

scheme are presented below. 

After receiving the search results, the receiver will send an enquiry message to each 

peer contained in the results. Upon receiving this message, a peer will send a reply 
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message back to the receiver, along with its Bwaval! and EstimatedRTT, where 

EstimatedRTT is the estimated round trip time between the peer and the receiver. The 

receiver waits Timeout,, to get the reply messages and collect information contained in the 

messages. After Timeoute, the receiver will select the subset of supplying peers based on 

their GSp, the goodness of the peer to become supplier. Suppose there are m candidate 

peers: {Ph P2, ..., Pm}, the GSp

i for a peer P, is defined as follows: 

Sp Bw™', EstimatedRTT\ 
G ' = aSo * 1 Tl ~ Psn X ( 7 V'4' p maxlew"""",- * m&xiEstimatedRTT.) 

\<i<m K ' \<i<m 

where aSp, fiSp are the factors to give Bwava'',, EstimatedRTT, different weights. Setting a 

bigger value to aSp gives preferences to peers which have higher available bandwidth, 

while setting a bigger value to pSp tends to bias selection towards nearby peers. We 

believe giving a bigger weight to EstimatedRTT, is more appropriate. Because usually 

EstimatedRTT, reflects the distance between the receiver and the candidate peer; a smaller 

EstimatedRTT, indicates savings in the backbone bandwidth and less susceptibility to 

network congestion, since traffic passes through fewer routers. Therefore, in our 

simulation, aSp is set to 0.4, and RSp is set to 0.6. Given this formulation, candidate peer 

which is nearer to the receiver, has a higher available bandwidth will have a greater GSp. 

The receiver will select M (in our simulation, M= 3) candidate peers that have the 

greatest GSp as the suppliers, as long as the aggregated available bandwidth from these 

peers is bigger than or equal to the video playback bit rate. Otherwise, more than M peers 

will be selected to meet the playback bit rate requirement. The unselected candidate peers 

will be kept in a standby set, from which substitute peers can be selected in case suppliers 

leave or failure. If the aggregated available bandwidth from all of the candidate peers is 

less than the playback bit rate, the segment watching request will be rejected. 
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After supplying peers have been selected, the receiver will reserve bandwidths 

from them. Suppose M supplying peers (PH P2, PM) are selected, and the video 

playback bit rate is Br. The receiver will reserve bandwidth Bwr, (the reserved bandwidth 

should be in multiple of bandwidth reservation unit Bwr„. In our simulation, Bwr

u is set to 

64kbps.) from supplier PT in proportion to its GSP, and satisfy the following condition: 

M 

J^Bw',=Br (3-5) 

Then the receiver will send a "reserve bandwidth" message to each supplier. After 

receiving this message, supplying peer P, will decrease its Bwavml by Bvf-,. When the 

streaming session supplied by peer P, is over, P, will increase its Bw"ve"' by Bv/,. 

Note that by "reserve bandwidth", we do not mean that the bandwidth Bwr, from 

peer P, is actually reserved and can not used by other applications. The current Internet 

does not provide resource reservation service, thus the bandwidth contributed by 

supplying peer P, may fluctuate during the streaming session. In our architecture, a 

receiver reserves bandwidth BW i from supplying peer PH it only means that peer />, 

decreases its Bwaval! by BwIn another word, bandwidth reservation process in our 

architecture only controls whether and how much a peer contributes to a streaming 

session, it does not guarantee that the bandwidth is actually reserved. 

3.6.2 Multiple Suppliers Scheduling Algorithm 

To fully use the aggregated bandwidths from multiple supplying peers, we want different 

suppliers to send different portion of a segment to the receiver at the same time. So we 

further divide each segment into equal sized blocks, in which each block contains Thlk 
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seconds of video content. Thus the receiver can parallel download different blocks from 

different supplying peers in real-time model. The value for Tm depends on the bit rate at 

which the video is encoded. For a video which is encoded at bitrate 512 kbps, Tblk = 1 is 

an appropriate seeting, since 1 second vidoe content has about 64KB data, which can be 

sent by a few of UDP packets. In our simulation, Tm is set to 1. 

Given a set of supplying peers {PH P2, PM) and the reserved bandwidths from 

these peers {Bwr

h Bv/2, Bv/M), the problem is how to assign blocks to these 

supplying peers to send. A possible solution is Round Robin (RR), where blocks are 

assigned to suppliers in a round robin fashion. However, RR treats each supplier equally, 

no matter how much bandwidth it contributes to the streaming session. Thus some 

bandwidth contributed from the powerful peers could be wasted. To cope with this, 

another possible solution is assigning blocks to suppliers in proportion to their 

contributed bandwidths. Thus supplier P, sends BwrJBr blocks, starting from whatever PT. 

i ends. This approach fully used the bandwidth from each supplier. However, for the 

blocks at the beginning of-a segment, only P, contributes its bandwidth, which inevitably 

results in a long initial buffering time. Taking all of these into consideration, a good 

schedule should be the one in which blocks are assigned to suppliers in a roughly round 

robin manner, and also in proportion to the bandwidths contributed by suppliers. 

Based on the discussion above, we propose a Multiple Suppliers Scheduling (MSS) 

algorithm, which assigns blocks to different suppliers to send. The algorithm is executed 

by the receiver to generate the schedule. Figure 3-5 illustrates the pseudo code of the 

algorithm. The suppliers are sorted by their Bwr in descending order. For a supplier 

supplier fi], timejeftfij indicates the time left for it to send blocks. Initially, time_left[i] 

is set to the deadline for suppliers to cooperate to finish sending all of the blocks. We 
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assign blocks to suppliers starting from the last block to the first block. To assign a block 

blocks [currJblk], we first find the maximum timejeft value across all the suppliers and 

store it in a variable maxj. Then we iterate through the suppliers in the sorted order and 

check if current supplier supplierfij's time_left[i] is equal to maxj. If yes, 

blocks [curr_blk] is assigned to supplier [i] and we subtract blk_sizdBw',• (the time for 

supplier[i] to finish sending a block) from timejeft[i\. At this point, blocks [curr_blk] is 

assigned. We repeat the same procedure to assign blocks [curr_blk-1]', blocks [curr_blk-2], 

and so on, until we finish assigning the first block. 

Figure 3-6 illustrates an example of assigning 8 blocks to suppliers using MSS. 

Input: 
mimjsuplliers : number of suppliers; 
supplierfi] : the suppliers sorted by BW in descending order; 
BW [i] : reserved bandwidth at supplierfi]; 
mim_blks : number of blocks; 
blocksfi] : blocks; 
blk_size : block size; 
deadline : deadline for suppliers to cooperate to finish sending all of the blocks; 

Scheduling: 
1 :• for (i = 1; i < num_suppliers; i++) { 
2: timejeflfi] = deadline; II limejeftfi]: time left for supplierfi] to send blocks; 
3: } 
4: curr_blk = mim_blks-1; 
5: while (curr_blk > 0) { 
6: maxj = max {timejeftfl], ... , timejeft[num_suppliers]}; 
7: for (i = 1; i < num_suppliers; i++) { 
8: if {timejeft[i] = maxj) { 
9: assign blocks[curr_blkJ to supplierfi]; 

timejeflfi] = timejeflfi] - blk_size I Bw' 
currj>lk —; 

} 
if (curr_blk< 0) 

break; 

} 

Figure 3-5 Multiple suppliers scheduling (MSS) algorithm 
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Suppose Br (the playback bit rate of the video) is 512kbps and Tbik is 1 (a block contains 

I second of the video content). There are 3 suppliers contribute their bandwidths, in 

which P, contributes 320kbps (5/S-Br), P2 contributes 128kbps (IIA-Br), and P3 

contributes 64kbps (1/8 Br). The deadline for suppliers to finish sending blocks is set to 

II second (how to set the deadline is detailed in next section). 
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Figure 3-6 Example of assigning 8 blocks to suppliers using MSS 
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As the figure shows, using MSS, blocks are assigned to suppliers in proportion to 

their contributed bandwidths (5 blocks are assigned to Pi, 2 blocks are assigned to P2, and 

1 block is assigned to P3), thus the bandwidth from each supplier is fully used. Totally it 

takes 8 seconds for the suppliers to cooperate to finish sending all of the 8 blocks. 

Compared to this, RR takes 16 seconds to finish sending the blocks (illustrated in Figure 

3-7). RR treats each supplier equally, thus P, gets 3 blocks to send, P2 gets 3, and P3 gets 

2. Obviously, some of the bandwidth contributed from P, is wasted and P3 should take 

less blocks. 
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3.6.3 Scheduling Algorithm 

Optimization 

Discussion and 

In this section, we first discuss how to set the deadline for suppliers to finish sending 

blocks. Then, we explain why we assign blocks starting from the last block to the first 

block. Finally, we describe an optimization on MSS algorithm, which results in small 

finish time for sending blocks in some scenarios. 
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Before discussing the approach to set the deadline, we first describe the concept of 

initial buffering. During the streaming session, some of the suppliers may leave or fail at 

any time, and the incoming streaming rates from the suppliers may decrease due to the 

network congestion. In these cases, the receiver will select a substitute supplying peer 

from the standby set to replace the leaving/failing supplier or the supplier whose sending 

rate is decreasing. We call this supplier switching. During the supplier switching period, 

the aggregate received rate is less than the required playback bit rate, thus the receiver 

may experience buffer underflow. To cope with this, we require the receiver to buffer at 

least SjnjiBufjblocks before the playback starts. This is called initial buffering. Given Si„i,Bl,jf, 

the deadline is set as follows: 

deadline = ( S M l B u f f + num _ blks) x Thlk (3-6) 

where num_blks is the number of blocks needed to be assigned to suppliers to send. 

As illustrated in Figure 3-5, MSS algorithm assigns blocks to suppliers starting 

from the last block to the first block. Another possible approach is to assign blocks 

starting from the first block, which is illustrated in Figure 3-8. However, if the blocks are 

assigned starting from the first block, some initial blocks may be assigned to the suppliers 

that contribute little bandwidths, thus inevitably increases the initial buffering time 

(defined as the time to finish downloading the initial S^^y/blocks). Figure 3-9 shows the 

example of assigning blocks starting from the first block. As shown in the figure, block 2 

is assigned to supplier^, which contributes only 64kbps bandwidth. Suppose Sini,Bl,ffis 3, 

then the initial buffering time is 8 seconds. However, as shown in Figure 3-6, if the 

blocks are assigned starting from the last block, the initial buffering time is only 4 

seconds. Reducing initial buffering time is important, because long initial buffering time 

means that the receiver will suffer long waiting period before the video playback starts. 
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Input: 
num_suplliers : number of suppliers; 
supplierfi] : the suppliers sorted by BW in descending order; 
BWfi] : reserved bandwidth at supplierfi]; 
num_blks: number of blocks; 
blocksfi] : blocks; 
blk size : block size; 

Scheduling: 
1: for (i = 1; i < num_suppliers; i++) { 
2: lime_start[i] = 0; // time_start[i]: the time at which supplierfi] can start sending blocks; 
3: } 
4: curr_blk = 0; 
5: while (curr_bik < num_blks) { 
6: minj = min \lime_startfl], ... , time_start[num_suppliers]}; 
7: for (i = 1; i < num_suppliers; i++) { 
8: if (time_startfi] = min_t) { 
9: . assign blocks[curr_blk] to supplierfi]; 
10: time_start[i] = time_slart[i] + blk_size I BWfi]; 
11: curr_b/k++; 
12: _} 
13: if (curr_blk > num_blks) 
14: break; 
15: } 
16:} 

Figure 3-8 Algorithm for assigning blocks starting from the first block 

Bandwidth (kbps) 

320 

128 

64 

Wmm •Hill (1 § j M J j IBI ( 3 - ' 

1 

• I B Z3/ 

0s 8s Time (second) 

Figure 3-9 Example of assigning 8 blocks starting from the first block 
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Consider the following schedule scenario, in which 11 blocks need to be assigned 

to suppliers and the deadline for suppliers to finish sending blocks is set to 17 second 

{SinitBuffis set to 6). Other settings are same as the example in Section 3.6.2. Figure 3-10 

shows the schedule generated from MSS algorithm. 
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Figure 3-10 Example of assigning 11 blocks to suppliers using MSS 
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Obviously, if block 0 is assigned to Ph the total sending time will be reduced from 

16 seconds to 12 seconds, which is illustrated in Figure 3-11. Based on this observation, 

we revised our MSS algorithm. Figure 3-12 illustrates the pseudo code of the revised 

algorithm. We add an optimization stage, at which the algorithm checks whether moving 

a block from the supplier that contributes less bandwidth to the supplier that contributes 

Bandwidth (kbps) 

• 

(second"! 

deadline for sending blocks 

Bandwidth (kbps) 
A 

1 i§pii IJjjjjjjJ 

320 
(1 2 4 

pliplij 
-

••SPSS 
i n 

SSI Pi 

flllll̂ SlBlllllfê  
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Fiqure 3-11 Example of assigning 11 blocks to suppliers using revised MSS 
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more bandwidth will reduce the sending time. If yes, the block is assigned to the supplier 

that contributes more bandwidth. 

Input: 
num_suplliers : number of suppliers; 
supplierfi] : the suppliers sorted by Bw' in descending order; 
Bw' [i] : reserved bandwidth at supplierfi]; 
mtm_blks : number of blocks; 
blocks[i]: blocks; 
blk_size : block size; 
deadline : deadline for suppliers to cooperate to finish sending all of the blocks; 

Scheduling: 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

|Opti 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

for (i = 1; i < num_suppliers; i++) { 
lime_left[i] = deadline; II timejeftfi]: time left for supplier[i] to send blocks; 

( 
curr_blk = num_blks-\; 
while (curr_blk > 0) { 

max_l = max {lime_lefl[l], ... , time_left[num_suppliers]}\ 
for (i = 1; i < num_suppliers; i++) { 

if (timejeftfi] == maxj) { 
assign blocks[curr_blk] to supplierfi]; 
time_left[i] = lime_lefl[i] - blkjize I BW[i]; 
curr_blk —; 

} 
if (curr_blk < 0) 

break; 
} 

( 

imizing: 
touched = true; 
while (touched) { 

touched = false; 
mi«_/ = min {time_left[I], ... , time_left[num_suppliers]}; 
min_pos = k; suppose time_left[k] is the min timejeft across all the suppliers. 
maxjadj = min_t; 
maxj}os = min _pos; 
for (i = 1; i < num_suppliers; i++) { 

if (i = min_pos) 
continue; 

tmp_l = time_left[i] - blk_size I Bwr[i]; 
if (tmp_t > maxjadj) { 

maxjadj = tmpj; 
maxj?oi' = i; 

} 
i 

if (max_pos \=minJJOS) { 
touched = true; 
assign supplier[minjiosj's first block to supplierfmaxJiosj; 
timejeft[minj>os] = limejeftfmin JJOSJ + blkjize /Bw'[min jms]; 
timejeftfmaxj>os] = timejeft [maxJJOS] - blk_size / BW[maxJJOSJ; 

Figure 3-12 Revised multiple suppliers scheduling (MSS) algorithm 
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3.6.4 Scheduling Algorithm Analysis 

This section gives a time analysis or our multiple suppliers scheduling (MSS) algorithm. 

In the scheduling stage, loop (line 1-3) will be executed Mtime, where Mis the number 

of suppliers. For the nested loop (line 5-16), each round of the outer loop will assign a 

block to a supplier, thus the outer loop will be executed Nb times, where Nb is the number 

of blocks. Within the outer loop, finding the maximum timejeft value across all the 

suppliers needs Mtime, and the inner loop (line 7-15) runs at most M times. Thus the 

time for scheduling is 0(M+7V6-2M), which is bounded by 0(/VyM). The scheduling needs 

suppliers sorted by their Bwr. Suppose quick sort is used, then the sorting time is 

O(MTogM). Thus, the total time for scheduling is bounded by 0(M-\ogM+Nb-M). 

In the optimizing stage, the outer loop (line 18-39) runs at most M times. Within 

the outer loop, finding the minimum timejeft across all the suppliers needs M time, and 

the inner loop (line 24-32) runs M times. Thus the time for optimization is bounded by 

0(M 2). in total, the running time of our MSS algorithm is bounded by 

0 ( M logM+AVM+M2), where M is the number of suppliers and Nb is the number of 

blocks. 

3.6.5 Streaming Session 

Once the receiver generates the schedule, it will send the schedule to the suppliers. When 

a supplying peer receives the schedule, it will send the assigned blocks to the receiver in 

order using UDP and perform TCP-friendly congestion control over the UDP connection 

(e.g., RAP [34] or TFRC [29]). As mentioned in Section 3.6.3, during the streaming 

session, some of the suppliers may leave or fail at any time, and the incoming streaming 
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rates from the suppliers may decrease due to the network congestion. In these cases, the 

supplier switching will happen, in which the receiver selects a substitute supplying peer 

from the standby set to replace the leaving/failing supplier or the supplier whose sending 

rate is decreasing. After that, the receiver will generate a new schedule to assign the rest 

not-received blocks to the new set of suppliers. Taking this into consideration, generating 

schedule for all of the blocks contained in a segment at the same time is not a good 

approach, since the schedule may change during the session. Thus, we divide a segment 

into several equal length schedule sections, in which each schedule section contains Nsche 

blocks. During the streaming session of a segment, the receiver first generates the 

schedule for the 1st schedule section and coordinates the suppliers to stream the blocks 

contained in the 1st schedule section. Once the receiver almost receiving all of the blocks 

contained in the 1st schedule section (enough time should be left for the receiver to 

generate and send schedule for the next schedule section), it will do the same thing with 

the next schedule section, and so on. Choosing the value for Nsche (which specifies the 

length of a schedule section) is a trade-off. If Nscbe is too small, the computation overhead 

and communication traffic will increase, since the schedules will be generated frequently. 

If Nsche is too big, most portion of a schedule is useless, since it is very likely that the 

schedule will be changed latter. In our simulation, Nsche is set to 60, thus a segment has 5 

schedule sections. 

In the client side, the receiver maintains a ring buffer. The size of the ring buffer is 

o-bujfNsche*blk_size, where abujj>\ (in our simulation, abuff\% set to 1.5) and blk_size is the 

size of a block (in bytes). Once the receiver receives a block, it will write this block to the 

right position of the ring buffer. As mentioned in Section 3.6.3 and above, to absorb all 

transient effects because of streaming packets arriving late, selecting new suppliers in 
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case of suppliers leave or fail, we require the receiver to buffer at least SinitBuff blocks 

before the playback starts {initial buffering). After the initial buffering time, the receiver 

will continuously read data from the ring buffer and render video frames on the player 

window. 

During the streaming session, the receiver monitors the incoming rate from each 

supplier. If the receiver detects that the incoming rate from a supplier is decreasing for an 

enough long period Tdec, or it is notified or detects the leave or failure of a supplier, 

supplier switching will happen. The receiver will select substitute supplying peers from 

the standby set and reserve bandwidths from them (the total new reserved bandwidth 

should be bigger than or equal to the bandwidth provided by the supplier which is 

substituted). Then it will generate a new schedule to assign the rest not-received blocks to 

the new set of suppliers, and sends the schedule to the suppliers. Once receiving the 

schedule, the suppliers will send the assigned blocks to the receiver in order. 

The receiver also monitors the status of the ring buffer and tracks the received 

blocks during the streaming session. Every block should be received by the receiver Tadv 

seconds before the playback. Otherwise, the block is identified' as lost, and the receiver 

will ask the corresponding supplier to re-send it. 
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Chapter 4 

Prototype Implementation 

To demonstrate the feasibility of BitVampire, a prototype has been implemented using 

Java and Java Media Framework (JMF) [17]. This chapter discusses the methodology and 

details of the prototype implementation. We first describe a general Peer-to-Peer 

Application Framework, based on which the prototype was developed. Then we present 

the prototype's system architecture, its core classes, and GUI design. 

4.1 Implementation Methodology 

BitVampire relies on Category Overlay to search media segments; thus, to implement it, 

a prototype of Category Overlay, called CoolSearch, has been implemented first. As a 

joint research project of this work, Jun employed a general Peer-to-Peer Application 

Framework to implement the prototype of Category Overlay [43]. We have followed his 

approach during the prototype implementation. The next section briefly introduces that 

framework. 
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4.1.1 A General Peer-to-Peer Application Framework 

Probably the most widely used general Peer-to-Peer Application Framework is JXTA [20] 

(Figure 4-1). JXTA focuses on providing a network computing platform and a set of open 

protocols to allow any connected device on the network to communicate and collaborate 

in a P2P manner [19]. Its goal is to develop the basic building blocks and services to 

enable innovative applications for peer groups. 
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Services 
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Core 

-JXTA Community Applications ' 
Sun 
JXTA 
Applications 
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JXTA ' Searching 
Services ~~ F l l e Shanng 
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Shell 

Peer 
Commands 

Peer Groups • Peer Pipes •Peer Monitoring 

•: Security 

Any Peer on the" Expanded Web 

Figure 4-1 JXTA layers [18] 

However, JXTA architecture also includes some specific components to provide 

various features such as security, ubiquity, and platform independence, which are beyond 

our focus in the prototype implementation. Therefore, we need a lightweight P2P 

application framework, which provides system level support, as well as a few basic 

building blocks and services, to ease the task of creating a single application with 

different peer connection schemes. 

Inspired by JXTA, a general Peer-to-Peer Application Framework, called RTG 

(Ready-To-Go) [43] was designed, which can be easily customized for different 

application domains. The design goals of RTG are as follows: (1) Simplify service 

algorithm replacement and extension, (2) Separate peer architecture from system services 
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and application logics. Figure 4-2 illustrates the architecture of RTG, and Table 4-1 

describes the basic functionalities for each layer in RTG. 
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Figure 4-2 RTG (Ready-to-Go) layers [43] 

Table 4-1 RTG layer descriptions [43] 

Layer Description 

Application The application layer is where application specific 
components should be placed, such as user interface (UI) 
and application logic. 

Abstraction (Controller) This layer separates the application domain from the system 
architecture. Specifically, abstractions and adaptors are 
used to decouple application logic from any specific service 
or peer group implementation. A controller provides 3-way 
coordination (among services, peer groups, and logics). 

Service The service layer contains various service modules, such as 
searching and indexing. Different service algorithms can be 
implemented here to influence system performance. 

Core This layer finalizes the actual P2P model as applied to the 
current system. 

Communication A Peer-to-Peer specific communication model is provided 
at this layer, with the purpose of removing the necessity to 
implement this low-level component for most P2P systems. 
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The controller in the RTG Abstraction layer is the key to the decoupling of 

application logics, services, and peer architecture. More specifically, it not only controls 

how an application uses various services to achieve a certain goal but also bridges the gap 

between service components and peer architecture. Under this design, either service 

algorithms or peer architecture can be replaced without generating many modification 

requirements to other parts of the system. 

4.1.2 System Architecture 

Based on RTG framework, we present our prototype's system architecture in Figure 4 - 3 . 
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As Figure 4-3 shows, in the core layer, peers are grouped into clusters according to 

our clustering algorithm (Section 3.2.1), and Category Overlay is constructed over the 

clusters. In the service layer, Category Overlay Search Service Component provides 

media segments search service, and Media Service Component provides a set of services 

related to media processing, including publishing media, distributing media segments, 

caching media segments, watching media, etc. In the application layer, the application 

logic is divided into two parts: (1) Streaming Receiver Component, which includes 

scheduler, streaming packets receiver, buffer manager, and media frame render; and (2) 

Streaming Supplier Component, which includes steaming packets sender and packets 

sending rate controller. 

Table 4-2 provides a summary description of Java packages in our prototype 

implementation. 

Table 4-2 Packages for prototype implementation 

Package Description 
communication Classes in this package provide basic implementation for 

Communication Component in Figure 5-3, including 
message formatting, marshalling and unmarshalling, 
communication channel creation, message delivery, and 
message processing. 

communication.coolsearch Customized to provide CoolSearch specific message types 
and to satisfy special delivery requirements. 

comin unication. bitvampire Customized to provide BitVampire specific message types 
and to satisfy special delivery requirements. 

service Service abstraction layer. 
service, coolsearch This package contains classes that implement various 

services, including category overlay search. Other classes in 
this package implement construction and maintenance 
algorithms for clusters and Category Overlay. 

service, bitvampire This package contains classes that implement various 
services related to media processing, including publishing 
media, distributing media segments, caching media 
segments, watching media, etc. 

kernel This package includes classes that implement the controller 
component, a generic P2P structure layer (peer abstraction 
layer) as well as a system processing model. 
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kernel, coolsearch It provides CoolSearch specific extensions to generic classes 
in kernel package, such as peer node identification, peer 
adaptor, and message processing scheme. 

kernel, bitvampire • It provides BitVampire specific extensions to generic classes 
in kernel package, such as peer resource representation, peer 
adaptor, and message processing scheme. 

vod. bitvampire. receiver This package contains classes that implement various 
application logics of the Streaming Receiver Component, 
including scheduler, streaming packets receiver, and media 
frame render. 

vod. bitvampire.supplier This package contains classes that implement the various 
application logics of the Streaming Supplier Component, 
including steaming packets sender and packets sending rate 
controller. 

ui.coohearch GUI implementation for CoolSearch. 
ui.bitvampire GUI implementation for BitVampire. 
resource Resource package provides an abstract layer for resource 

storage, maintenance, and sharing. Implementation is given 
for a generic resource type. 

resource.coolsearch Implementation for a CoolSearch based resource. 
resource, bitvampire Implementation for a BitVampire based resource. 
util.coolsearch Utility package that contains general purpose data structure, 

constants, and other utility functions related to CoolSearch. 
util. bitvampire Utility package that contains general purpose data structure, 

constants, and other utility functions related to BitVampire. 
property This package stores and maintains generic system 

parameters. 
property, coolsearch Stores and maintains CoolSearch specific parameters, such 

as clustering parameters, predefined categories, etc. 
property, bitvampire Stores and maintains BitVampire specific parameters, such 

as segment length, timeout settings, etc. 

4.2 Implementation Details 

As mentioned before, BitVampire is implemented using Java and Java Media Framework 

(JMF) [17]. In the prototype, control packets are sent using TCP, and streaming packets 

are sent using UDP. To ensure TCP-friendly congestion control over the UDP connection, 

RAP protocol [34] is used to adjust the UDP packets sending rate. To provide some 

details of the prototype implementation, we list the core Java classes and present Graphic 

User Interface (GUI) design in the following sections. 
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4.2.1 Core Classes 

Our prototype implementation consists in total of 109 Java files, 21 packages, 133 classes, 

and about 20,000 lines code. Thus, we only list some of the core classes that provide 

important functionalities to the prototype as follows. Each entry is composed of a full 

class name and a description. 

T a b l e 4-3 C o r e c l a s s e s fo r p r o t o t y p e i m p l e m e n t a t i o n 

Class Description 
communication.Messagelmpl Providing generic marshalling and unmarshalling services. 
communication.coolsearch.C 
oolSearch Client 

Providing a communication layer interface for peers at core 
layer to deliver CoolSearch specific messages. 

co mm un ication. bitvampire. Bi 
t VampireClient 

Providing a communication layer interface for peers at core 
layer to deliver BitVampire control messages. 

service, coolsearch. CoolSearc 
hStrategy 

CoolSearch Service Abstraction to decouple controller from 
specific service implementations. Combined with Peer 
Abstraction, they provide common interfaces to facilitate the 
3-way communication among controller, peers, and various 
services. 

service.coolsearch. GroupMan 
ager 

Implementing clustering algorithm and cluster maintenance 
mechanisms. 

service, coolsearch. Contentln 
dex 

Providing Content Index Table management and indexing 
service. 

service, coolsearch. CategoryM 
anager 

Constructing and maintaining Category Overlay. 

service.coolsearch.SearchSer 
vice 

Providing categoiy overlay search service. 

service.coolsearch.RetrieveSe 
rvice 

Providing file sharing service. 

service, bitvampire. Bit Vampir 
e Strategy 

BitVampire Service Abstraction to decouple controller from 
specific service implementations. Combined with Peer 
Abstraction, they provide common interfaces to facilitate the 
3-way communication among controller, peers, and various 
services. 

service, bitvampire. MediaMan 
ager 

Managing and maintaining peer's contributed resources, 
including storage, outbound bandwidth, etc. 

service, bitvampire. MediaServ 
ice 

Implementing a set of media services, including publishing 
media, distributing media segments, caching media 
segments, etc. 

service. bitvampire.Media View 
Servant 

A servant thread to view a specified media. 

service, bitvampire. MediaSeg 
ViewProcessor 

Implementing the logic to view a specified media segment. 
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kernel.LocalController Implementing core functionalities in controller component at 
abstraction layer. 

kernel. LocalNode Peer Abstraction representing node object on current peer, 
providing a common interface to controller for 
functionalities and services available to local peer. 

kerneLRemoteNode Peer Abstraction representing node object on remote peer, 
providing marshalling and unmarshalling services to 
controller. 

kernel. IncomingMsgServant Dispatching various incoming requests to different parts of 
the system. 

vod. bitvampire. receiver. Sched 
uleProducer 

Implementing multiple suppliers scheduling algorithm. 

vod.bitvampire.receiver. UDP 
Receiver 

Receiving UDP stream packets, tracking packets receiving 
status, and reporting lost packets. 

vod.bitvampire.receiver.Buffe 
rManager 

Managing and maintaining the ring buffer. 

vod.bitvampire.receiver.Medi 
aPlayer 

Rendering the media frames in the player window. 

vod. bitvampire.supplier. UDP 
Sender 

Sending UDP steam packets according to the schedule. 

vod. bitvampire. supplier.Sendi 
ngRateController 

Implementing RAP protocol [34] to control the UPD packets 
sending rate. 

ui. coolsearch. CoolSearch UI Graphic user interface for CoolSearch. 
ui.bitvampire.BitVampireUI Graphic user interface for BitVampire. 
resource.ResourceDBManage 
r 

Managing local content database. 

resource, coolsearch. CoolSear 
chGeneralResource 

Representing a generic CoolSearch resource type, providing 
resource specific marshalling and unmarshalling services. 

resource.bitvampire.MediaSe 
gmentResource 

Representing a BitVampire media segment resource type, 
providing resource specific marshalling and unmarshalling 
services. 

4.2.2 Graphic User Interface 

This section presents the Graphic User Interface (GUI) of our prototype. Figure 4-4 

shows the GUI for publishing videos in BitVampire, and Figure 4-5 shows the GUI for 

watching videos in BitVampire. When publishing a video, the user should specify the 

local path of the video file (Figure 4-4(a)), then specify the video's type, provide a list of 

keywords, and specify the video's playback bit rate (Figure 4-4(b)). When watching a 

video, the user should specify the video type and provide keywords (Figure 4-5(a)). After 

56 



the initial buffering period, a media player window (Figure 4-5(b)) will show up and the 

video frames will be rendered in the window. Figure 4-6 shows a snapshot of a more 

complicated running scenario of our prototype, in which three nodes are running and two 

of them are watching videos. 
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Figure 4-4 GUI for publishing video 
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Chapter 5 

Evaluation 

In this section, we evaluate the performance of our proposed architecture through 

extensive simulation experiments. We first describe the simulation setup and then present 

the results. 

5.1 S i m u l a t i o n S e t u p 

5.1.1 Simulation Topologies 

In all of the simulations, we use large hierarchical, Internet-like topologies. All of the 

topologies have three levels. The top level consists of several Transit domains, which 

represent large Internet Service Providers (ISPs). The middle level contains several Stub 

domains, which represent small ISPs, campus networks, moderately sized enterprise 

networks, etc. (Each Stub domain is connected to one of the Transit domains). At the 

bottom level, end hosts (peers) are connected to Stub domains. Figure 5-1 shows a part of 
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the topology used in the simulation. The first two levels (router-level) contain transit 

routers and stub routers, which are generated using the GT-ITM tool [45]. We then 

randomly attach end hosts (peers) to stub routers with uniformed probability. Each 

experiment was run on 10 different topologies, and the results presented in this thesis are 

the average results of experiments running in these 10 topologies. Unless otherwise 

specified, the topologies used in the simulations consist of averagely 10 transit domains, 

200 stub domains, 2050 routers, and a total of 3010 end hosts (peers), in which 6 hosts 

are selected as seed peers. 

5.1.2 Simulation Parameters 

All of the experiments use the following parameter settings, unless otherwise specified. 

During the simulation, there are totally 500 videos published in the network, each 

with 512 kbps constant playback bit rate (CBR) and 1 hour length. Each video is split 

into 12 segments. The length of each segment is 5 minutes, and the size is about 19 MB. 

Figure 5-1 Part of the topology used in the simulation 
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We let the first segments have 2 replicas (Ny = 2), and by default, the receiver will select 

3 (M= 3) supplying peers, if these peers have enough available outbound bandwidths. 

We assign bandwidths and delays to the network links as follows: (1) Each link 

between two routers has a bandwidth ranging from 6 Mbps to 20 Mbps, and a delay 

ranging from 5 ms to 40 ms. (2) Each link between end hosts (peers) to routers has a 

bandwidth ranging from 512 kbps to 2 Mbps, and a delay ranging from 4 ms to 10 ms. 

The routing between two routers in the network follows the shortest path. 

The contributed outbound bandwidths and storage from peers are configured as 

follows: (1) Each peer contributes an outbound bandwidth ranging from 128 kbps to 1 

Mbps, and storage ranging from 2 segments (38 MB) to 5 segments (95 MB). (2) Each 

seed peer contributes an outbound bandwidth ranging from 1 Mbps to 2 Mbps (on the 

average, each seed peer contributes 1.472Mbps bandwidth in the simulations), and 

storage ranging from 1000 segments (19 GB) to 3000 segments (57 GB). Note that the 

configuration of peers in the experiments represents a typical equipment setting for 

current desktop PCs connected to the Internet. From the simulation results presented in 

the following sections, we can see that based on these usual, low-cost PCs, our proposed 

architecture can support large-scale on-demand media streaming service. 

To reflect the dynamic nature of peer-to-peer networks, we let 20 peers leave the 

system per minute. Each leaving peer will stay off-line for a period ranging from 15 

minutes to 3 hours, and then rejoin the system. We evaluate the performance of the 

system under 3 different video request arrival patterns: (1) Constant arrival, where every 

3 seconds, a peer initiates a video watching request (request rate: 20 requests/min). (2) 

Flash crowd arrival, where at the beginning, peers request videos at the rate of 20 

requests/min, and then suddenly increase to the rate of 120 requests/min. Figure 5-2 
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shows this arrival pattern. (3) Periodic flash crowd arrival, where the flash crowd 

requests (request rate: 120 requests/min) occur periodically. Between two flash crowd 

arrivals, the video requests arrive at a low and constant rate (20 requests/min). Figure 5-3 

130 
120 
I 10 
100 

I 9 0 

3 80 
I 70 

10 -| 
0 J , , , , , , , , , , , L 

0 10 20 30 40 50 60 70 80 90 100 110 120 

Time (minutes) 

Figure 5-2 Flash crowd arrival pattern 

130 T 

120 -
110 
100 -

1 90 -

y 80 -
cr 70 -
o 

70 -
60 -60 -

2 50 -
40 -

D 
O " 30 -
3. 20 -

10-
0 J 

0 10 20 30 40 50 60 70 80 90 100 110 120 

Time (minutes) 

Figure 5-3 Periodic flash crowd arrival pattern 

shows this arrival pattern. 

The popularity of videos follow Zipf-like distribution, where the popularity of the 

i t h most popular video is proportional to 1/i". The authors of [4] reported that in a long 
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period (in months), the video file access frequencies in HP corporate media solutions 

server and HPLabs media server follow Zipf-like distribution, with a ranging from 1.4 to 

1.6. Therefore, in our simulation, we set a to 1.4. 

The final parameter setting is the length of the video watching sessions. Again, 

based on the reports from [4], we let 50% of the sessions last 5 — 10 minutes (watching 1 

~ 2 segments), 30% of the sessions last 10 ~ 30 minutes (watching 2 ~ 6 segments), and 

20% of the sessions last 30 ~ 60 minutes (watching 6—12 segments). 

5.2 Simulation Results 

This section presents the results of our simulations. We first evaluate the effectiveness of 

our media segments distributing (MSD) algorithm and seed re-distributing (SRD) 

mechanism. Then, we evaluate our multiple suppliers scheduling (MSS) algorithm, 

showing that it can result in a small initial buffering time. Finally, we study the behaviour 

of our proposed architecture under different parameter settings and conditions. 

5.2.1 System Streaming Capacity Amplification 

In this set of experiments, we show that our media segments distributing (MSD) 

algorithm plus seed re-distributing (SRD) mechanism can result in fast system streaming 

capacity amplification. We define the system streaming capacity as the number of video 

watching sessions that can be served concurrently, and use the simple random segments 

distributing algorithm as the comparison base. In our simulation, each video watching 

session may have a different length, in another word, each session may contain a different 

number of segment requests. Thus, we use the segment requests rejection ratio as our 
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measurement metric. A lower segment requests rejection ratio means that more segment 

requests can be accepted at a specific time, which results in higher system streaming 

capacity. ' ' . 

Figure 5-4 shows the simulation result for the constant video requests arrival 

pattern; Figure 5-5 shows the result for the flash crowd arrival pattern; and Figure 5-6 

shows the result for the periodic flash crowd arrival pattern. We ran 10 round simulations 

on each of the 10 topologies, thus in total 100 rounds of simulations were performed. 

Each simulation lasts for 2 hours, and every minute, we compute the average segment 

requests rejection ratio. The results presented in the figures are the average results of the 

100 simulation rounds. From all of these three figures, we can see that compared to the 
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Figure 5-4 Average rejection ratio for constant arrival pattern 
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Figure 5-5 Average rejection ratio for flash crowd arrival pattern 
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Figure 5-6 Average rejection ratio for periodic flash crowd arrival pattern 

random segments distributing, our MSD algorithm quickly decreases the rejection ratio, 

and if the seed re-distributing (SRD) mechanism is applied, the decrease is faster. 

5.2.2 Seed Peers Load 

Our next set of experiments evaluates the load on seed peers. As in the previous 

experiments, we ran 10 round simulations on each of the 10 topologies. Each simulation 

lasts for 2 hours, and every minute, we compute the average load on seed peers. The 

results presented in the following figures are the average results of the 100 simulation 

rounds. Figure 5-7 shows the simulation result for the constant video requests arrival 

pattern; Figure 5-8 shows the result for the flash crowd arrival pattern; and Figure 5-9 

shows the result for the periodic flash crowd arrival pattern. As all of the figures show, 

the average seeds load with MSD algorithm is less than the load with random segments 

distributing. And if the seed re-distributing (SRD) mechanism is applied, the seeds load 

will decrease further. The reason for this result is that MSD tries to distribute segments to 

the peers that are more stable and have more available outbound bandwidth, thus 

decreasing the demand for seed peers. If SRD is applied, the segments that cannot be 

served by regular peers will be distributed to peers by seeds. Thus next time, requests for 
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Figure 5-8 Average seeds load for flash crowd arrival pattern 

these segments can be served by regular peers, therefore further reducing the seed 

peers' load. 

Reducing the load on seed peers is an important feature of the proposed 

architecture. Because it means that the seed peers need not be powerful machines with 

high outbound bandwidth; they just need to be stable and have large storage capacity, 

which is very cheap nowadays. 
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Figure 5-9 Average seeds load for periodic flash crowd arrival pattern 

5.2.3 Receiver Initial Buffering 

In this set of experiments, we evaluate the effects of choosing different settings for initial 

buffering. Unless otherwise specified, all of the simulation settings are same as Section 

5.2.1. In the simulation, the packet size is set to 32KB, thus a block needs 2 packets to 

send. We vary SimlBujf from 0 to 16 blocks. For each simulated initial buffering, we 

measure the average number of times the receiver experiences buffer underflow. Every 

buffer underflow causes a pause in the playback until sufficient data packets arrive. These 

pauses are mainly due to supplier switching, which happens if the incoming rate from a 

supplier decreases due to peer leave/failure or network congestion. When supplier 

switching happens, we delay sending packets from the replacement supplier(s) by a 

random time between 0 and 1 second. This is called switching time, during which the 

degraded peer is detected and a replacement is notified. 

To simulate playback of the video, an independent playback process is scheduled at 

regular times. The first call of this process is after receiving the initial Sj„ilBujf blocks. Then, 
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it is called every 1 second (the block length in this experiment). When the playback 

process is invoked to play block i, it checks the ring buffer for all packets belonging to 

block /. These packets are identified through their sequence numbers. If all packets are 

available, the playback of block / is successful and the playback process is scheduled for 

block i+\ after 1 second from the current simulation time. If any packet is missing, a 

pause is encountered. The playback process is scheduled for the same block after the 

pause time, which is 1 second in this experiment. 

We simulate the following scenario. A value for Sj„nBujj is set. A receiver is chosen 

at random. Then the receiver initiates a video watching request and the streaming starts. 

Supplier switching happens at random times and replacement suppliers are chosen from 

the standby set. On average, 16 switching events occur during each video watching 

session. After the initial buffering time, the first invocation of the playback process is 

scheduled. We count the number of pauses encountered throughout the session. After the 

streaming session is over, the experiment is repeated for another randomly chosen 

receiver. We simulate 10 different sessions. We compute the minimum, maximum, 

average number of pauses over these 10 sessions. Then another value for Smi,Bujj\s, set and 
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Figure 5-10 Effects of different initial buffering settings 
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the whole scenario is repeated again. 

Figure 5-10 shows the simulation result. Note that in the figure, mid-point is the 

average number of pauses, while the bottom, and the top points are the minimum and 

maximum number of pauses, respectively. For a small initial buffering of 2 blocks, we 

expect an average of 8.5 pauses and a maximum of 10 pauses. A buffer size of 10 blocks 

or more will absorb all transient effects during the supplier switching. 

5.2.4 Initial Buffering Time 

The next set of experiments evaluates the multiple suppliers scheduling (MSS) algorithm. 

We compare MSS algorithm with Round Robin (RR), showing that MSS can achieve a 

smaller initial buffering time. We generate 5,000 video requests, in constant arrival 

pattern, flash crowd pattern, and periodic flash crowd pattern respectively. We then 

record the initial buffering times for each accepted request using RR and MSS 

respectively. In our simulation, the initial buffering length is set to 8 blocks (SinilBlljf= 8) 
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Figure 5-11 Initial buffering time using different scheduling algorithm 
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and the bandwidth reservation unit is set to 64kbps (Bwr

u = 64kbps). Figure 5-11 shows 

the simulation results. The results presented in the figures are the average results of the 

experiments on the three request arrival patterns. It is clear that MSS always achieves an 

equal or smaller initial buffering time compared to RR. Figure 5-12 shows the initial 

buffering time gain using MSS, where gain is defined as follows: 

InitialBufferingTimeGain = InitialBufferingTimeRR - InitialBufferingTimeMSS (5-1) 

As the figure shows, the gain is always bigger than or equal to 0, and can be as 

large as more than 14 seconds. 

1 501 1001 1501 2001 2501 3001 3501 4001 4501 
Requests 

Figure 5-12 Initial buffering time gain using MSS scheduling algorithm 

5.2.5 Varying Network Size 

In this set of experiments, we evaluate the performance of our proposed 

architecture in different sized networks. We measure the average segment requests 

rejection ratio for 3 different sized peer-to-peer networks: (1) 3000 peers network 
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(consists of 2050 routers and 3000 peers), (2) 6000 peers network (consists of 2050 

routers and 6000 peers), and (3) 9000 peers network (consists of 2050 routers and 9000 

peers). The video requests arrive in flash crowd pattern. Other simulation settings are 

same as 5.2.1. 

Figure 5-13 shows the simulation results. From the figure, we can see that since the 

network size increases, more segment requests will be issued by peers at the same time, 

thus at the beginning, the rejection ratio for 6000 peers network is bigger than the one for 

3000 peers network and the rejection ratio for 9000 peers network is bigger than the one 

for 6000 peers network. However, the rejection ratios decrease fast. After about 25 

minutes, the rejection ratio for 6000 peers network is almost same as the one for 3000 

peers network. And after about 35 minutes, the rejection ratio for 9000 peers network is 

almost same as the one for 3000 peers network. The simulation results verified our 

hypothesis that as more peers participating in the system, more segment requests can be 

supported at the same time, since more resources are contributed to the system by peers. 

The simulation results also imply that our proposed architecture is scalable, as long as the 

participating peers contribute some of their resources to the system. 
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Figure 5-13 Average rejection ratio for various sized network 
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5.2.6 Varying Peers' Cooperation Level 

Our final set of experiments evaluates system performance under different peers' 

cooperation level. We measure the average segment requests rejection ratio for 3 

different peers' cooperation level: (1) Low cooperation level, where peers contribute their 

bandwidths ranging from 64kbps to 512kbps and storage ranging from 1 segment (19MB) 

to 3 segments (57MB); (2) Medium cooperation level, where peers contribute their 

bandwidths ranging from 128kbps to 1Mbps and storage ranging from 3 segments (57MB) 

to 6 segments (114MB); (3) High cooperation level, where peers contribute their 

bandwidths ranging from 1Mbps to 2Mbps and storage ranging from 5 segment (95MB) 

to 10 segments (190MB). The video requests arrive in flash crowd pattern. Other 

simulation settings are the same as 5.2.1. 

Figure 5-14 shows the simulation results. From the figure, we can see that as the 

peers' cooperation level increases, the segment requests rejection ratio decreases faster, 

which means that the system streaming capacity is amplified faster. The reason for this is 

that if peers contribute more resources to the system, there will be more storage to cache 

segments and more bandwidth to support streaming requests; thus, the system streaming 

capacity increases faster. 
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Figure 5-14 Average rejection ratio for various peers cooperation level 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, we propose BitVampire, a novel low-cost on-demand media streaming 

architecture for heterogeneous peer-to-peer networks. In this architecture, published 

videos are split into segments and distributed to peers; thus outbound bandwidths form 

multiple peers can be aggregated to serve a single video streaming request. Instead of 

relying on powerful servers/proxies, our architecture exploits the often underutilized 

peers' resources, which makes it cost-effective. To deploy this architecture in the 

dynamic heterogeneous peer-to-peer networks, three key techniques are used: (1) A 

media segments distributing (MSD) algorithm, a seed re-distributing (SRD) mechanism, 

and a caching scheme are proposed to distribute and cache media segments. (2) An 

application-level overlay, called Category Overlay is chosen as the underlying search 

infrastructure to efficiently find the desired media segments. (3) To parallel download 
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streaming content from multiple supplying peers in real-time mode, we further divide 

segments into blocks and propose a multiple suppliers scheduling (MSS) algorithm to 

assign blocks to different supplying peers to send. 

Based on our proposed architecture, a prototype has been implemented using Java 

and JMF. We designed a general purpose P2P application framework, RTG, to facilitate 

the implementation procedure. To evaluate the performance of our proposed architecture, 

we conducted extensive simulation experiments on large, Internet-like topologies. The 

simulation results show that the proposed architecture can support large-scale on-demand 

media streaming service in the dynamic heterogeneous peer-to-peer networks. It also 

demonstrates that our media segments distributing (MSD) algorithm can achieve fast 

system streaming capacity amplification, and our multiple suppliers scheduling (MSS) 

algorithm can achieve a small initial buffering time. 

6.2 Future Work 

There are five major directions call for further investigation. First, our simulator models 

the bandwidth limit and propagation delay on the physical links, but it does not model 

queuing delay and packet losses because modelling these would prevent large-scale 

network simulations. Therefore, to learn more about BitVampire and its behaviour in 

various real network conditions, a set of experiments on the Internet is necessary. We 

plan to improve our prototype and deploy it on PlanetLab [32] to evaluate its 

performance in the near future. 

Second, currently we use L R U as the cache replacement algorithm to find the 

victim segment if a peer does not have enough available storage to hold the new cached 
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segment. However, LRU could reduce the system streaming capacity under some special 

cases. For instance, if most of the streaming sessions last for a long period, many of the 

segments at the beginning portion of the video would be replaced, which would decrease 

the system streaming capacity. Therefore, a more intelligent cache scheme could be part 

of our future work. 

Third, our scheduling algorithm can aggregate bandwidths from multiple supplying 

peers and achieve a small initial buffering time. However, a more aggressive scheduling 

algorithm could be proposed, in which the blocks are assigned to suppliers in a roughly 

round robin manner and also in proportion to their contributed bandwidths. Furthermore, 

the blocks with small sequence numbers should be assigned to the suppliers that 

contribute more bandwidths, since these blocks are more time constrained and these 

suppliers are more powerful. For example, in Figure 3-6, a more aggressive scheduling 

algorithm would assign block 5 to P, and block 7 to P3, instead of assigning block 7 to Pi 

and block 5 to P3. 

Fourth, in our current architecture, we deliver the video in full quality. If full 

quality media delivering could not be achieved due to peer leaving/failure or network 

congestion, we simply pause the playback until all of the desired streaming packets arrive. 

However, adaptive streaming could be used to improve the quality of service. One 

possible approach is to use layered coding, in which a video is encoded into multiple 

layers. The receiver decides how many layers it can receive based on the current 

bandwidths from the supplying peers. If network congestion happens, the receiver can 

ask supplying peers to send fewer layers, which results in a smooth quality adaptation. 

Another approach is to use the priority drop technique [22], in which the supplying peers 

can drop some less important packets if they detect network congestion. 
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Finally, to encourage peers to contribute their storage and outbound bandwidths, an 

incentive mechanism should be proposed. With the incentive mechanism, the peers that 

contribute more resources should obtain a better service, while the ones that contribute 

little resources will encounter poorer service quality if others compete for the resources 

with them. Since our architecture relies on peers' resources to support on-demand media 

streaming, as more and more resources contributed to the system, better services could be 

achieved for all of the participating peers. 
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