
BitVampire: A Cost-Effective Architecture for On-Demand
Media Streaming in Heterogeneous P2P Networks

by

Xin Liu

M.Sc, Peking University, 2002

B.Eng., Tsinghua University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE F A C U L T Y OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

September 2005

© Xin Liu, 2005

Abstract

On-demand media streaming has recently gained intensive consideration due to its

promising usage in a rich set of Internet-based services such as video on demand,

distance learning, media distribution, etc. However, there are still many challenges

towards building efficient, scalable, on-demand streaming systems, in this thesis, we

propose a novel cost-effective on-demand media streaming architecture for

heterogeneous peer-to-peer networks, named BitVampire. The key idea of BitVampire is

to aggregate peers' storage and bandwidths to facilitate on-demand media streaming. To

achieve this goal, we split published videos into segments and distribute them to different

peers. When watching a video, a peer searches the corresponding segments, and then

aggregates bandwidths from multiple supplying peers to stream the video. To deploy this

architecture in a dynamic heterogeneous peer-to-peer network, three key techniques are

used: (1) Given that peers offer different resources and may leave at any time, a media

segments distributing algorithm and a caching scheme are proposed, which achieve fast

system streaming capacity amplification. (2) An application-level overlay, called

Category Overlay, is chosen as the underlying search infrastructure to efficiently find the

desired segments. (3) A scheduling algorithm is proposed to aggregate bandwidths from

multiple supplying peers and coordinate them to serve one streaming request. We

demonstrate the effectiveness of this proposed architecture through extensive simulation

experiments on large, Internet-like topologies.

ii

Contents
Abstract 1 1

Contents n i

List of Tables v i

List of Figures • v n

Acknowledgements 1 X

Chapter 1 Introduction I

1.1 Motivation 1

1.2 Thesis Contributions 3

1.3 Thesis Organization 4

Chapter 2 Background and Related Work 5

2.1 Peer-to-Peer Computing 5

2.1.1 Peer-to-Peer Content Search 7

2.1.2 Peer-to-Peer Media Streaming 7

2.2 Related Work 9

2.2.1 Central Server-based Systems 9

2.2.2 Proxy-based Systems 10

2.2.3 P2P-based Systems 10

Chapter 3 System Design 12

3.1 System Overview 12

3.1.1 System Entities 12

3.1.2 System Operations 14

iii

3.2 Category Overlay 16

3.2.1 Cluster Construction 19

3.2.2 Cluster Maintenance 21

3.2.3 Category Overlay Construction 22

3.2.4 Category Overlay Maintenance 23

3.3 Media Segments Distributing 25

3.3.1 Media Segments Distributing Algorithm 25

3.3.2 Distributing Algorithm Analysis 29

3.3.3 Design Improvement 30

3.4 Media Segments Searching 31

3.5 Media Segments Caching and Seed Re-Distributing Mechanism 32

3.6 Media Segments Streaming 34

3.6.1 Supplying Peers Selection 34

3.6.2 Multiple Suppliers Scheduling Algorithm 36

3.6.3 Scheduling Algorithm Discussion and Optimization 40

3.6.4 Scheduling Algorithm Analysis 46

3.6.5 Streaming Session 46

Chapter 4 Prototype Implementation 49

4.1 Implementation Methodology : 49

4.1.1 A General Peer-to-Peer Application Framework 50

4.1.2 System Architecture 52

4.2 Implementation Details 54

4.2.1 Core Classes 55

iv

4.2.2 Graphic User Interface 56

Chapter 5 Evaluation 59

5.1 Simulation Setup 59

5.1.1 Simulation Topologies 59

5.1.2 Simulation Parameters 60

5.2 Simulation Results 63

5.2.1 System Streaming Capacity Amplification 63

5.2.2 Seed Peers Load 65

5.2.3 Receiver Initial Buffering 67

5.2.4 Initial Buffering Time 69

5.2.5 Varying Network Size 70

5.2.6 Varying Peers' Cooperation Level 72

Chapter 6 Conclusions and Future Work 73

6.1 Conclusions 73

6.2 Future Work 74

Bibliography 77

v

List of Tables
Table 3-1 Definitions used in clustering algorithm 19

Table 3-2 Definitions used in Category Overlay 22

Table 3-3 Data structures used in Category Overlay 22

Table 4-1 RTG layer descriptions 51

Table 4-2 Packages for prototype implementation 53

Table 4-3 Core classes for prototype implementation 55

vi

List of Figures
Figure 3-1 Example of watching a video 15

Figure 3-2 Example of Category Overlay 17

Figure 3-3 Basic clustering algorithm 20

Figure 3-4 Media segments distributing (MSD) algorithm 28

Figure 3-5 Multiple suppliers scheduling (MSS) algorithm 38

Figure 3-6 Example of assigning 8 blocks to suppliers using MSS 39

Figure 3-7 Example of assigning 8 blocks to suppliers using RR 40

Figure 3-8 Algorithm for assigning blocks starting from the first block 42

Figure 3-9 Example of assigning 8 blocks starting from the first block 42

Figure 3-10 Example of assigning 11 blocks to suppliers using MSS 43

Figure 3-11 Example of assigning 11 blocks to suppliers using revised MSS 44

Figure 3-12 Revised multiple suppliers scheduling (MSS) algorithm 45

Figure 4-1 JXTA layers 50

Figure 4-2 RTG (Ready-to-Go) layers 51

Figure 4-3 Prototype's system architecture 52

Figure 4-4 GUI for publishing video 57

Figure 4-5 GUI for watching video 58

Figure 4-6 Snapshot of the prototype running 58

Figure 5-1 Part of the topology used in the simulation 60

Figure 5-2 Flash crowd arrival pattern 62

Figure 5-3 Periodic flash crowd arrival pattern 62

vii

Figure 5-4 Average rejection ratio for constant arrival pattern 64

Figure 5-5 Average rejection ratio for flash crowd arrival pattern 64

Figure 5-6 Average rejection ratio for periodic flash crowd arrival pattern 65

Figure 5-7 Average seeds load for constant arrival pattern 66

Figure 5-8 Average seeds load for flash crowd arrival pattern 66

Figure 5-9 Average seeds load for periodic flash crowd arrival pattern 67

Figure 5-10 Effects of different initial buffering settings 68

Figure 5-11 Initial buffering time using different scheduling algorithm 69

Figure 5-12 Initial buffering time gain using MSS scheduling algorithm 70

Figure 5-13 Average rejection ratio for various sized network 71

Figure 5-14 Average rejection ratio for various peers cooperation level 72

vm

Acknowledgements

First, I would like to thank my supervisor, Dr. Son T. Vuong, for his guidance,

inspiration, and encouragement. I am also grateful to Dr. Charles Krasic for being my

second reader and for his useful comments that have improved this thesis.

Thanks to the members in NIC lab, who I was pleasant to work with. In

particular, 1 want to thank Jun Wang. Without his collaboration, this thesis could not be

accomplished. Thanks to my lab mates - Juan Li, Mohammad Alam, Anthony Yu, Gary

Huang, Kamran Malik, Christian Chita, Sukanta Pramanik, Sergio G. Valenzuela, Ying

Su, and Wei Li.

Finally, I'd like to thank my parents and my wife, Bin Zhang, for their endless

love and support.

XIN LIU

The University of British Columbia

September 2005

ix

Chapter 1

Introduction

1.1 Motivation

With the proliferation of high bandwidth networks, on-demand media streaming has

recently gained intensive consideration due to its promising usage in a rich set of

Internet-based services such as video on demand, distance learning, media distribution,

etc. However, there are still many challenges towards building efficient, scalable, on-

demand streaming systems due to the high bandwidth and delay requirements for media

streaming.

The conventional design of on-demand media streaming systems follows the

Client-Server model, in which a set of centralized servers store all the video files. Clients

directly contact servers and request streaming content from servers. Obviously, this

architecture is not scalable since servers become the bottleneck as the requests increase.

To alleviate servers' traffic load, several proxy-based architectures have been proposed,

1

in which a set of proxies are deployed in the network. Clients can request the cached

portion of videos from the proxies.

However, in both server-based and proxy-based architectures, servers and proxies

are expected to deliver a high-quality streaming service to a large number of clients.

Therefore, servers and proxies should be very powerful in terms of computing power,

outbound bandwidth, storage, etc., which makes deployment and maintenance very

expensive. On the other hand, recent research and experiments reveal that the current

Internet has enough resources to support large-scale media streaming in a peer-to-peer

fashion [47][37]. Inspired by this fact, we propose BitVampire, a low-cost on-demand

media streaming architecture, which exploits the often-underutilized peers' resources to

support large-scale on-demand media streaming. Since this architecture does not need

powerful servers/proxies, it is much more cost-effective compared to other approaches.

The basic idea of BitVampire is to split published videos into segments and

distribute them to different peers. When watching a video, the requesting peer (or

receiver) first searches the corresponding segments, then aggregates bandwidths from

multiple supplying peers to stream the video. To deploy this architecture in a dynamic

heterogeneous peer-to-peer network, three problems need to be addressed: (1) How to

distribute and cache segments, taking into consideration that peers offer different

resources and may leave at any time. (2) How to efficiently find the desired segments. (3)

How to aggregate bandwidths from multiple peers and coordinate them to serve one

streaming request. In this thesis, we present the design, implementation, and evaluation of

BitVampire, with the emphasis on addressing the three problems mentioned above.

2

1.2 Thesis Contributions

This thesis proposes BitVampire, a novel architecture that exploits the often-

underutilized peers' storage and bandwidths to support cost-effective on-demand media •

streaming in dynamic heterogeneous peer-to-peer networks. We have implemented a

prototype based on the proposed architecture and evaluated the architecture through an

extensive simulation study. The simulation results verified the effectiveness of the

proposed architecture. The following are the main contributions of this thesis':

• To efficiently find the desired media segments, we choose Category Overlay

[26][43] as the underlying search infrastructure. The simulation study in

[26][43] shows that Category Overlay can provide an efficient search service in

a dynamic peer-to-peer network. However, BitVampire operations are

independent of the underlying search infrastructure. Therefore, BitVampire can

also be deployed on top of other search infrastructures, as long as these

infrastructures provide efficient, keyword-based search services.

• We propose a Media Segments Distributing (MSD) algorithm to distribute

segments to peers. Given that peers offer different resources and may leave at

any time, MSD tries to distribute media segments to the peers that are more

stable, have higher available outbound bandwidth and lower streaming serve

frequency, which results in fast system streaming capacity amplification

(system streaming capacity is defined as the number of video watching sessions

that can be served concurrently).

• We propose a Multiple Suppliers Scheduling (MSS) algorithm to aggregate

1 Parts of this work have been recently accepted for publication [24][25],

3

bandwidths from multiple supplying peers and coordinate them to serve one

streaming request, which results in a small initial buffering time.

• We developed a general purpose P2P application framework, which separates

system architecture from specific service implementation.

• To demonstrate the feasibility of the proposed architecture, we implemented a

prototype based on it. The prototype is implemented based on our general

purpose P2P application framework, using Java and JMF [17].

• We evaluated our proposed architecture through an extensive simulation study

on large, Internet-like topologies.

1.3 Thesis Organization

This thesis consists of six chapters. Chapter 2 provides the background to P2P computing,

as well as a detailed description of related work. In Chapter 3, we present the system

design. We first introduce Category Overlay, which is chosen as the underlying search

infrastructure. We then present and discuss our approaches to distribute, search, and

cache media segments, as well as the scheduling algorithm to aggregate bandwidths from

multiple supplying peers. Chapter 4 presents details regarding our application framework

and prototype implementation. Chapter 5 presents the simulation setup and performance

evaluation results. We conclude the thesis and discuss potential directions for future

research in Chapter 6.

4

Chapter 2

Background and Related Work

This chapter introduces background information on Peer-to-Peer (P2P) technology, with

the emphasis on P2P content search and P2P media streaming. Then we provide a survey

of the related work.

2.1 Peer-to-Peer Computing

Since the success of Napster [28], Peer-to-Peer technology has been receiving intensive

attention. It is increasingly becoming an important technique in various areas, such as

distributed and collaborative computing both on the Web and in ad-hoc networks. There

are lots of industrial efforts in P2P technology, including the P2P Working Group, led by

many industrial partners such as Intel, Sun, HP, and a number of startup companies; and

JXTA, an open-source effort led by Sun. There are also a number of academic events

dedicated to P2P technology. However, the fundamental idea of organizing computers as

peers is not new. Actually, the original Internet was designed in a Peer-to-Peer manner. It

5

encourages sharing information on research and development in scientific and military

fields by sending data packets between any two computers. Hence, the current popular

P2P computing model, since the first appearance of Napster [28] in May 1999, can be

seen as "a renaissance of the original Internet model" [2].

There are several of the definitions of P2P that are being used by the community.

The Peer-to-Peer Working Group defines P2P as "the sharing of computer resources and

services by direct exchange between systems" [31]. Clay Shirkey from the Accelerator

Group defines P2P as "a class of applications that takes advantage of resources - storage,

cycles, content, human presence - available at the edges of the Internet" and "peer-to-peer

nodes must operate outside the DNS and have significant or total autonomy of central

servers". However, we can conclude that a typical P2P application should possess some

basic properties: dual identities (client and server), resource sharing, and cooperation.

Peer nodes are usually connected and they cooperate with each other in providing

resource sharing services: a node acts as client when it is requesting resources, while acts

as server when it is providing resources.

Dejan S. Milojicic, etc. [27] summarizes the properties that the P2P computing

model is able to provide: (1) cost sharing - cost can be shared and distributed to all peer

nodes. (2) scalability and reliability - services are provided by many autonomous peer

nodes rather than few central servers. (3) resource aggregation - many types of resources,

which were originally available only on local machines, can now be shared among peer

nodes. (4) increased autonomy - resource and computation locality can be better enforced.

(5) anonymity and privacy - users are able to prevent their information from being

collected by a particular entity. (6) ad-hoc connectivity - peer is not tied to any particular

location in the system.

6

2.1.1 Peer-to-Peer Content Search

Currently there are mainly two P2P search schemes in the literature. Unstructured P2P

systems such as Gnutella [11] and Kazaa [21] use flooding as their essential search

techniques. Although flooding is simple and works well in a highly dynamic network

environment, it will inevitably generate a huge amount of redundant messages, which

makes it not scalable. Structured P2P systems such as Chord [39], CAN [33], and

Tapestry [46] use Distributed Hash Table (DHT) based search techniques, which can

guarantee to locate content within a bounded number of hops. But these techniques

tightly control both the placement of data and the topology of the network, which results

in high maintenance costs. Furthermore, they can only support search by identifier and

lack the flexibility of keyword searching.

The emergence of recent work on hybrid infrastructures, such as YAPPERS [12]

and [23], reveal the possibility of creating a P2P system that combines both the

advantages of unstructured P2P and DHT. Inspired by these works, Category Overlay is

proposed as the joint research work of this thesis, which can provide an efficient search

service with a relatively low maintenance overhead. Section 3.2 covers the details of

Category Overlay.

2.1.2 Peer-to-Peer Media Streaming

The first P2P technique for streaming applications was introduced by [38]. This early

design, however, did not address the stability of the system under network dynamics. [9]

proposed Spreadlt, which builds a single distribution tree of the peers. A new receiver

joins the streaming session by traversing the tree nodes downward from the source until

7

finding one with unsaturated bandwidth. Spreadlt has to get the source involved

whenever a failure occurs, thus vulnerable to disruptions due to the severe bottleneck at

the source. Additionally, orphaned peers reconnect by using the join algorithm, resulting

in a long blocking time before the service can resume.

CoopNet [30] uses a multi-description coding method for the media content. In this

method, a media signal is encoded into several separate streams, or descriptions, such that

every subset of them is decodable. CoopNet builds multiple distribution trees spanning

the source and all the receivers, each tree transmitting a separate description of the media

signal. Therefore, a receiver can receive all the descriptions in the best case. A peer

failure only causes its descendant peers to lose a few descriptions. The orphaned are still

able to continue their service without burdening the source. However, this is done with a

quality sacrifice. Furthermore, CoopNet puts a heavy control overhead on the source

since the source must maintain full knowledge of all distribution trees.

Narada [7] [8] focuses on multi-sender multi-receiver streaming applications,

maintains a mesh among the peers, and establishes a tree whenever a sender wants to

transmit content to a set of receivers. Narada only emphasizes on small P2P networks. Its

extension to work with large-scale networks was proposed in [16] using a two-layer

hierarchical topology. To better reduce cluster size, thereby reducing the control

overhead at a peer, the scheme NICE [3] and ZIGZAG [41] focus on large P2P networks

by using the multi-layer hierarchical clustering idea.

8

2.2 Related Work

In the following sections, we present the previous work related to our proposed

architecture. We start from the conventional central server-based on-demand media

streaming systems. Then we describe several proxy-based systems. Finally, an existing

P2P-based system is presented, as well as its difference between our proposed

architecture.

2.2.1 Central Server-based Systems

A majority of the existing on-demand media streaming systems follows Client-Server

model, in which a set of centralised servers store all of the video files and respond to all

of clients' requests. However, this architecture is not scalable since servers will become

the bottleneck as the requests increase. To save servers' resources and alleviate servers'

traffic loads, multicast has been applied and different solutions have been proposed.

Batching [44] aggregates multiple client requests into one multicast session. However,

the users have to suffer long playback delay since their requests are enforced to be

synchronized. Patching [14][5] tries to address this problem by allowing the client to

catch up with an on-going multicast session and patch the missing starting portion

through server unicast. In merging [10], a client can repeatedly merge into a larger and

larger multicast session using the same way as patching. However, in order to ensure

smooth playback, these two approaches need the client to be capable of receiving

multiple streams simultaneously and buffering large amount of data. In periodic

broadcasting [15][42], the server separates a media stream into segments and periodically

broadcasts them through different multicast channels, from which a client can choose to

9

join in. Although more efficient in saving server bandwidth, it shares the same limitations

as the approaches mentioned above.

2.2.2 Proxy-based Systems

Another major category of on-demand media streaming systems employs the cooperative

proxy caching technique. Existing work in this area includes prefix-based caching

[40][35] and segment-based caching [1][6]. In prefix-based caching, proxies store the

initial frames of popular clips. Upon receiving a request for the stream, the proxy initiates

transmission to the client and simultaneously requests the remaining frames from the

server. As the proxy is generally closer to the clients than the origin server, the start-up

delay for a playback can be remarkably reduced. In segment-based caching, parts of

media content are cached on different proxies in the network and the stream is

coordinated to playback from these independent caches.

2.2.3 P2P-based Systems

Mohamed M. Hefeeda, etc. proposed a P2P on-demand media streaming architecture in

their work [13]. This is probably the system most like ours by far. However, our

architecture is different from theirs in the following ways: (1) They cluster peers into

two-level clusters, and cluster super peers are selected from cluster members. Then they

rely on these super peers to search the media content. In our architecture, we rely on

Category Overlay to search the desired media segments, which can provide an efficient

keyword search service. (2) In their architecture, a seed peer introduces a media file into

the system. Initially the seed peer holds all of the segments. As the streaming requests

come in, the accessed segments will be cached in requesters. However, in our architecture,

10

once the video is published, it will be split into segments and these segments will be

distributed to different peers. The segments distributing process improves the service

availability, since the published video is belonging to the whole network, not the single

publisher peer. (3) In their work, they do not consider the user behaviour when watching

video. Thus, their architecture requires that all the segments of a video be found before

the streaming starts. However, this is not a reasonable restriction because most streaming

sessions lasts only for a short period. Our architecture removes this restriction, where

users can watch any segments if there is enough available resources currently in the

network. (4) To aggregate bandwidths from multiple supplying peers, their architecture

simply assigns a different portion of the segment to peers proportional to their

bandwidths. In our architecture, a more complicated schedule algorithm is proposed to

coordinate multiple supplying peers to stream the segment. (5) In their simulation study,

the system contains only one video. While in our simulation experiments, the system has

500 videos published, and we also take into consideration the videos' popularity and the

user behaviour pattern when watching the video.

11

Chapter 3

System Design

In this chapter, we present BitVampire system design. We first give an overview of the

whole architecture, then present and discuss each key component, including Category

Overlay, media segments distributing, searching and caching, and the scheduling

algorithm to coordinate multiple supplying peers to serve one streaming session.

3.1 System Overview

This section provides an overview of the proposed architecture. We first identify all

entities in the system. Then, we explain how the system works and how the entities

interact with each other.

3.1.1 System Entities

Following are the entities in our proposed architecture:

12

• Peers. This is a set of nodes currently participating in the system. Typically these

are the computers of clients who are interested in some of the media files offered

by the system. We denote {Pl} P2, P„) as the set of peers in the system and P, as

the i t h peer. To participate in the system, peers contribute some of their storage and

outbound bandwidths. The target environment of our proposed architecture is P2P

networks, and it has been known that peers in P2P networks are quite

heterogeneous [36]. Thus, we model the peers' heterogeneity as follows. (1) Bw, (in

kbps), the outbound bandwidth peer P, is willing to contribute to the system and

Bw"vc"'i (in kbps), the available outbound bandwidth peer P, can provide to the

system at a specific time. (2) St, (in bytes), the storage peer Pt is willing to

contribute to the system and Sfm''j (in bytes), the available storage peer P, can

provide to the system at a specific time. Initially, Bwm","i = Bwh Sf™", = Si, and

BwavaU, < Bwh Sfvai'i < St, hold at any time.

• Seed Peers. To handle the situation in which all the hosting peers of a specific

segment leave the system, we introduce seed peers into the architecture. Seed peers

always stay in the system, and each segment of published videos has a replica

stored in seed peers. Seed peers serve the streaming request only when the request

cannot be satisfied by regular peers. Seed peers are almost the same as regular

peers, except that they are stable and have large storage capacity. However, in the

case of a media centre distributing contents, the seed peers can be dedicated

machines with reasonable capacity.

• Statistical Server. To provide the popularity of videos, we introduce statistical

server into the architecture. Statistical server is a dedicated, well-known server

whose responsibility is to gather statistical information on video access and provide

13

videos' popularity to peers. For a specific video k, if its access count is Ck, and the

access count for the most popular video is Cmca, video k's popularity is defined as

CklCmax. Although the video access information can be gathered in a distributed

manner, we choose statistical server for the following reasons: (1) The messages

exchanged between the statistical server and peers are very small, and the

computation the statistical server needs to perform when receiving a message is

quite small too. Thus, the traffic load and computation overhead in the statistical

server are within a reasonable range. (2) Gathering video access information in a

distributed manner will increase the system's complexity and introduce extra traffic

due to the consistency problem. (3) Furthermore, to alleviate traffic load on a single

server and to avoid single point of failure, we can deploy multiple statistical servers

in the system.

• Media Files. This is a set of videos currently available in the system. Every

video is assigned a unique ID, called videolD, which is generated when the video is

published. Every video belongs to a predefined type, such as Action video, Sports

video, Comedy video, etc, and is associated with a list of keywords provided by the

publishers. We assume each video is encoded with a constant bit rate Br (in kbps).

A video is split into equal sized segments, and segment is the minimum unit that a

peer can cache.

3.1.2 System Operations

In our proposed architecture, when a peer publishes a video, the video will be split into

equal sized segments, and these segments will be distributed to peers according to our

media segments distributing algorithm (Section 3.3). Once peers receive segments, they

14

will publish the received segments to the Category Overlay (Section 3.2). Note that

during the segments distributing process, every segment will have a replica distributed to

one of the seed peers.

When a peer (called a receiver) wants to watch a video, it first searches (Section

3.4) the 1st segment. Then it determines if the streaming request can be satisfied by the

peers contained in the search results (including seed peers). If the answer is yes, it sends a

message to the statistical server to notify it the requested video has been accessed (this

only occurrs for the 1st segment), and then selfishly determines the best subset of

supplying peers (Section 3.6.1) and applies the proposed multiple suppliers scheduling

algorithm (Section 3.6.2) to aggregate bandwidths from the selected supplying peers and

coordinate them to stream the 1st segment; otherwise, the request is rejected. When the

streaming of the l s l segment is almost over, the receiver will do the same thing with the

2n d segment, the 3rd segment, and so on. Figure 3-1 shows an example. Suppose peer P6

wants to watch a video whose playback bit rate is 500kbps. It searches for segment #0

and finds that Ph P2, P3 have segment #0; it then selects P,, P2, P3 as the supplying peers

and aggregates bandwidths from them to stream segment #0. Segment #1 and #2 are

streamed in the same way.

ay. P1 (S e g #0)

x 1 \ ' .

P 3 (S e g # 0 , # 1)

\ 2 5 0 k b p s . ,'200kbps

3 0 0 k b p s

P 4 (S e g #1, #2)

P 5 (S e g #2)

P 6 (Rece i ve r)

P l a y b a c k rate: 5 0 0 k b p s

F i g u r e 3-1 E x a m p l e o f w a t c h i n g a v i d e o

15

After the streaming of a segment is over, the receiver will cache the segment in its

contributed storage (Section 3.5). For popular segments, as more and more requests come

in, more segments will be cached on peers, thus more streaming requests can be

supported. While for non-popular segments, since only a few peers may cache the

segments, thus it is likely that there not exist peers with enough available outbound

bandwidth to support the streaming. In this case, seed peers can offer their bandwidths to

help the streaming session (recall that all the segments have a replica distributed to seed

peers). Thus, in our architecture, the streaming requests for popular segments are more

likely supported by regular peers, while the seed peers will more likely support the

requests for non-popular segments. Since the requests for non-popular segments are rare,

the traffic load in seed peers is within a reasonable range, which is verified by our

simulation study (Section 5.2.2)

The following sections present the key components of our proposed architecture,

including Category Overlay, segments distributing, searching and caching, and the

multiple suppliers scheduling algorithm.

3.2 Category Overlay

In this section, we briefly introduce Category Overlay, which is chosen as the underlying

search infrastructure in our architecture.

The basic idea of Category Overlay is to construct multiple category specific

overlays on the unstructured peer-to-peer system and restrict a specific search within the

corresponding overlay. In more detail, we first cluster the whole peer group into clusters.

Then in each cluster, nodes2 (called Agent Nodes) are selected to take charge of

2 In this thesis, node and peer are used interchangeably.

16

predefined categories. The Agent Node is responsible for maintaining a keyword table

(called Content Index Table) for all the content belonging to the categories it is in charge

of. For a specific category, all of its Agent Nodes (in different clusters) are connected to

form a category overlay. Thus, multiple category overlays can be constructed over the

clusters.

Figure 3-2 shows an example of Category Overlay. As the figure shows, peers are

clustered into three clusters: C,, C2, and C3. In each cluster, nodes are selected to take

charge of three predefined categories: Ca,, Ca2, and Ca3. For example, in cluster Ch node

Ni is in charge of category Ca3, in cluster C2, node N2 is in charge of category Cay, and in

cluster C3, node N3 is in charge of category Ca3. Since nodes N,, N2, and N3 are all Agent

Nodes for category Ca3, they are connected to form the category overlay 03. Category

overlay O, (for category Ca,) and 02 (for category Ca2) can be formed in the same way.

Thus we have three category overlays sitting on top of the clusters. Note that a node can

take charge of more than one category. For instance, in the figure, Node Nt takes charge

of both category Ca2 and Ca3, so it participates in both category overlay 02 and 03.

Cluster C1 Cluster Cluster C3 0 Cal's Agent Node

C2 e CVj2's Agent Node

• Ca3's Agent Node

Figure 3-2 Example of Category Overlay

17

In Category Overlay, every cluster member node maintains a Category Table,

which stores the Category-to-Agent mappings. It looks like a hash table in which the key

is a category and the value is that category's Agent Node. When a node publishes content

belonging to a specific category, it first looks up its Category Table to find that

category's Agent Node, then it sends a "publish content" message to the found Agent

Node, along with the keyword list (while the content is still in the owner's storage). Upon

receiving this message, the Agent Node will store the keyword list in its Content Index

Table. When a node unpublishes content belonging to a specific category, it first finds the

category's Agent Node. Then it notifies the Agent Node to delete the corresponding

record entry in the Content Index Table.

When a node issues a query, it should specify a category, as well as a list of

keywords. The query will go to the Agent Node, which is in charge of that specified

category. Then the corresponding Agent Node looks up its Content Index Table to find

the content with the matched keywords, and returns the results to the query initiator. In

addition, the Agent Node also needs to propagate the query within the corresponding

overlay. Each Agent Node in this overlay will look up its Content Index Table and return

the results to the query initiator. Compared to Gnutella [11], in which queries need to go

through all the nodes, a query in Category Overlay just needs to be propagated within the

corresponding overlay, which is much more efficient.

Note that in Category Overlay, each cluster is tree-based. The links between two

cluster members are called Cluster Links (tree branches). Two neighbour clusters in

Category Overlay are connected through Inter-Cluster Links.

To make this thesis self-contained, we briefly describe cluster construction and

maintenance, as well as category overlay construction and maintenance in the following

18

sections. However, more detailed information about Category Overlay and its

maintenance mechanisms, as well as the simulation-based performance evaluation, can be

found in [26][43].

3.2.1 Cluster Construction

In Category Overlay, the cluster is tree-based, which has a central node (called Core

Node), and all other member nodes are within N hops distance3 from the Core Node. We

call this N hops distance as the Cluster_Range_Limit and the hops distance from each

member node to the Core Node as the node's Range. The simulation study in [26][43]

shows that Cluster_Range_Limit = 2 results in a reasonable cluster size in a typical

Power-Law topology network. Therefore, in this thesis, we discuss our clustering

algorithm, assuming that Cluster_Range_Limit is set to 2. To describe our algorithm

more clearly, we define the following technical terms:

Table 3-1 Definitions used in clustering algorithm

Terminology Description

Core Node Root of cluster tree (central node of cluster).

Master Node Child oi Core Node.

Slave Node Child of Master Node.

Range The hops distance from current node to Core Node.

Cluster_Range_Limit The maximum hops distance from cluster member to Core
Node.

Cluster Link Tree branch, either connecting Core Node and Master Node
or connecting Master Node and Slave Node.

Inter-Cluster Link The link connecting different clusters.

Peers are clustered into clusters when they join in the system. Figure 3-3 illustrates

3 In this thesis, all the hops distances are in the application level.

• 19

/* The first node of the whole peer group will become the Core Node for the
first cluster. */
/* When a node Nx wants to join the group, it will contact a node Ny, which
is already in the peer group. */

1: join (Nx, Ny) {
2: if (Ny's Range < Cluster _Range_Limii) {
3: Adjoins in Ny's cluster, Ny will be Nx's parent;
4: link (Nx, Ny) will be a Cluster Link;
5: }
6: else { //Ny's Range >= Cluster_Range_Limit
7: if (A^ knows other nodes in peer group) {
8: Nx tries to contact other node to join;
9: }
10: else {
11: create new cluster, Nx will be the Core Node;
12: link (Nx, Ny) will be an Inter-Cluster Link;
13: }
14: }

15:}

Figure 3-3 Basic clustering algorithm

the pseudo code of our basic clustering algorithm. Furthermore, to ensure that the

generated clusters have a reasonable and similar size, we use the following optimizations:

• Cluster_Size_Limit: cluster has a size limit. Once a cluster reaches this limit, it

will reject any join request until some members leave. With this parameter, we can

restrict the cluster size within a reasonable up-bound.

• Cluster Size Full_Fraction: when a node wants to join in a cluster but only

knows boundary nodes (Slave Nodes), instead of being forced to create a new

cluster, a boundary node can forward this request to its parent. If the cluster size is

less than the Full_ Fraction, the node can join in this cluster. With this parameter,

we increase the probability of a node joining in the existing cluster, thus decreasing

the possibility of generating a small cluster. Our simulation result suggests that 0.9

is a good setting for Full_Fraction.

• Core_Qualification: a node that wants to be a Core Node should satisfy some

20

qualifications, such as powerful computing ability, high bandwidth, long stay

period in the system, etc.

The simulation study in [26][43] shows that with the optimizations mentioned

above, our clustering algorithm can produce reasonable and similar sized clusters.

3.2.2 Cluster Maintenance

When a participating peer of a cluster leaves or fails, the cluster is maintained as follows:

• Peer Leave. Leaving of a node Ny may or may not affect other nodes, depending

on its role in the cluster. If Ny is a Slave Node, it can leave by only notifying its

parent node. If Ny is a Master Node, it should notify its parent node as well as all its

children nodes. Upon receiving the notification, every child node picks up another

Master Node in the cluster as its new Master Node. In each cluster, Core Node has

several backup nodes. If the leaving node Ny is a Core Node, it has to select a

successor from the backup nodes before it leaves. The successor then notifies all

the Master Nodes and confirms its new role. It also notifies its children nodes and

converts them to Master Nodes.

• Peer Failure. To detect peer failure, every node in the cluster (except Core Node)

periodically sends "alive" messages to its parent. If a parent node does not receive

"alive" messages from its child for a period Taiive, that child node is identified as

failure. The Core Node periodically sends "alive" messages to the backup nodes. If

the backup nodes do not receive "alive" messages from the Core Node for a period

Tanve, the Core Node is identified as failure. Once the peer failure is detected, the

same actions as described in peer leave are performed, except that it is now the

2 1

parent node's duty to do the notification.

3.2.3 Category Overlay Construction

Before we discuss Category Overlay construction, we describe some of the technical

terms and data structures used in Category Overlay as follows:

Table 3-2 Definitions used in Category Overlay

Terminology Description

Category Agent Node Node in charge of a certain category. It maintains the Content
Index Table and Neighbour Agents List for that category. In
this thesis, we simply call it Agent Node.

Category Overlay Overlay network that consists of all the Agent Nodes of a
certain category, as well as links among them.

Table 3-3 Data structures used in Category Overlay

Data Structures Description

Content Index Table Data structure that stores the keyword lists for all the contents
of certain categories, within a cluster. Each entry in this table
is a tuple:

<Category, Keyword list, Owner node>.
An entry <CA, KL, Nx> means that node Nx has the content
with the keyword list KL belonging to the category CA.
Content Index Table is only maintained at Agent Nodes.

Category Table Local table that maps categories to their Agent Nodes. Each
entry in this table is a tuple:

<Category, Agent Node, Timestamp>.
An entry <CA, Nx, T,> means that at time Th node Nx is
believed to take charge of category CA. Note that every
category has a corresponding entry in this table and every
node has this table.

Neighbour Agents List For a specific category, this list stores all the neighbour
clusters' Agent Nodes. An Agent Node and all the nodes
contained in its Neighbour Agents List forms a category
overlay. Each entry in this table is a tuple:

<Category, Agent Node List>.
An entry <CA, {N,, N2, ... , N,„}> means that nodes N,,
N2, ... , Nm are the neighbour clusters' Agent Nodes for
category CA. Neighbour Agents List is only maintained at
Agent Nodes.

22

Category Overlay is constructed as nodes joining in the system. When a node Nx

wants to join in the system, it first performs the clustering algorithm (described in Section

3.2.1) to find the cluster and parent to join in. There are three cases: (1) Nx is the first

node of the system. In this case, a new cluster is created. Nx will be the Core Node and

take charge of all of the categories. (2) Nx contacts node Ny (in cluster CV), and finally it

creates its own cluster Cx. As the case 1, node Nx will be the Core Node and it will take

charge of all of the categories. Furthermore, Nx and NY will exchange their Category

Tables through the Inter-Cluster Link. These two Category Tables will be propagated in

cluster CY and Cx respectively. In more detail, Category Table from 7v>will be propagated

to all the Agent Nodes in cluster CY- Category Table from A^will be propagated to all the

Agent Nodes in cluster Cx. Thus the Agent Nodes in cluster CY and Cx can update their

Neighbour Agents Lists according to the propagated Category Tables. (3) Adjoins in an

existing cluster. Once Adjoins in the cluster, the parent node will send back its Category

Table to Nx. Nx will use this Category Table as its own Category Table. Furthermore,

Nx's parent node will determine if it should migrate some of its categories to Nx (based

on its current traffic load and Nx' bandwidth, computing power, etc.). If yes, Nx's parent

node will migrate some of its categories to Nx, which means that Nx takes charge of these

categories.

3.2.4 Category Overlay Maintenance

In Category Overlay, when the Agent Node of a specific category leaves or fails, the

Category Overlay is maintained as follows:

• Agent Node Leave. Before leaving, the leaving Agent Node selects a stable yet

under-loaded cluster member node as the successor and migrates all of its

23

categories to that node. Then, the leaving Agent Node follows the steps described in

Section 3.2.2 to leave.

• Agent Node Failure. In Category Overlay, the Agent Node maintains Content

Index Table and Neighbour Agents List, which are crucial data structures for a

search. If an Agent Node fails, these data structures are lost, which decreases search

efficiency. To cope with this, each Agent Node selects a cluster member node as its

backup node. The data structures on backup node are updated based on the

frequency of contents publishing. When the failure oi an Agent Node is detected, its

backup node takes over the responsibility and selects another node to be the backup

node.

Besides Agent Node leave and failure, another issue to be addressed in Category

Overlay is the Category Table inconsistency problem. Recall that in Category Overlay,

when a node joins in the system or an Agent Node leaves the system, category migration

will occur. However, only the nodes participating in the migration know the change,

while all other cluster members do not know. Thus, inconsistency between nodes'

Category Tables is inevitable. If the environment is very dynamic, then the inconsistency

level could quickly rise to a point where looking up Category Table may even slow down

the searching.

To solve this inconsistency, we introduce a periodical aggregation report scheme,

in which each node periodically sends a category update report to its randomly selected

neighbour. This report contains the latest N updates (or category migration events) known

to the reporter, as well as M random entries in the reporter's Category Table. Upon

receiving the report, a node needs to update its own Category Table, based on the

accompanied timestamps. The time interval between two reports is a local decision and

24

depends on the updating frequency. The simulation study in [26][43] shows that this

periodical aggregation report scheme can maintain the Category Table consistency at a

relatively high level with an acceptable overhead.

3.3 Media Segments Distributing

In BitVampire, when a peer publishes a video, the video will be split into equal-sized

segments and distributed to different peers. Distributing segments to different peers has

several advantages, including: (1) After segments are distributed to peers, the published

video is stored by the network, not the single publisher peer. Thus if the publisher peer or

some hosting peers of segments leave or fail, the rest of the segments can still be

accessed, which increases service availability. (2) Since the segments of a published

video are hosted by different peers, the streaming request of a video is supported by

different peers at different stages, which reduces the streaming burden on a single peer.

As mentioned in Section 3.1.1, the target environment of our proposed architecture

is P2P networks, which are quite heterogeneous. Typically, participating peers offer

different resources and may leave at any time. Taking all of these into consideration, we

propose a Media Segments Distributing (MSD) algorithm to distribute segments to peers.

In the following sections, we first present and discuss our media segments distributing

algorithm in detail, then describe a design improvement.

3.3.1 Media Segments Distributing Algorithm

In our proposed architecture, every participating peer contributes some of its outbound

bandwidth and storage to the system. The outbound bandwidth and storage peer P,

2 5

contributes are denoted as Bw, and St„ and the available outbound bandwidth and storage

peer Pt can provide at a specific time are denoted as Bwavadj and Sfvm'i. Initially, Bwam,lj =

Bw„ Sraili = Sti and Bwamil, < Bwh Sfva'7,- < St, hold at any time. In addition, peer P,

estimates its stay time in the system by computing the smoothed weighted average as

follows and uses this value to represent its stability.

EstimatedS tayj = a x EstimatedS tayi + ji x CurrentStayt (3-1)

where EstimatedStay, is the estimated stay time of peer P-„ taking into account all the stay

history of P-„ and CurrentStay, is the time period peer Pt participated in the system since

its last leave or failure, a + ft = 1, a is between 0.8 and 0.9, and /? is between 0.1 and 0.2.

Besides, peer P, also maintains the average usage ratio of its contributed bandwidth since

it participated in the system, called R"sa8e

h and the frequency it serves streaming requests

in the recent period, called Freqservei.

When a peer wants to publish a video, it will split the video into equal-sized

segments. The workload analysis of today's enterprise media server [14] found that most

clients only watch the first several minutes of media files. To benefit from this fact, we

let the first segment have several replicas. The reasons why we choose only the first

segment to be replicated are as follows: (1) In our simulation, the length of a segment is

set to 5 minutes (We believe 5 minutes or longer is a reasonable setting for the length of

segment, because too small segments will result in too many contents published to the

Category Overlay, thus increasing the maintenance overhead and search traffic of the

system), and the analysis study in [4] reported that more than 60% of streaming sessions

last less than 5 minutes. Therefore, the possibility of peers requesting the rest of segments

(except the first segment) is small. (2) Recall that every segment of published videos has

26

a replica being distributed to seed peers; thus we can always find a specific segment even

if this segment does not have replicas and its hosting peer leaves or fails.

Suppose the video is split into Ns segments, and the first segment has Nf replicas,

then in total Ns+N/ segments need to be distributed to peers. The publisher will broadcast

a "publish video" message to its cluster members through Cluster Links, and this message

will be propagated to other clusters through Inter-Cluster Links. After receiving this

message, the peer will send an "accept segment" message back to the publisher, along

with its EstimatedStay, Bw, R"s"s\ and Freqserve. The publisher waits for Timeoutp to

collect the sent-back "accept segment" messages. After receiving such a message, it

marks the sender as a candidate and collects information contained in the message. After

Timeoutp, the publisher will assign segments to candidates.

Before discussing our media segments distributing algorithm, we define Gs'h the

goodness of candidate peer P, to store a segment/replica as a function of its

EstimatedStayh Bwh Rusase

h and Freqserve

i. Suppose there are m candidate peers: {P,,

P2, P,„}, Gs'i is defined as follows:

EstimatedStay, „ Bw: x (1 -R"s"se) Freqservei r

G i =aSl x , ^ — , + p x p ! — ^ ! —t-Ys, x r-2 r (3-2,
maxlEstimatedStay.} max \Bw. x (1 - Rf*) max \Freqserve A •
\<i<m I S i S m 1 ' \<i<m v '

where as„ /?.„, ysl are the factors to give EstimatedStay,, BwiX(l-R"sasc,), Freqscnei different

weights and as,+fls,+ysl=\. The values of ash Bsh and ys, depend on the application

environment. If the P2P networks are quite unreliable, with peers leaving or failing very

frequently, then a bigger value should be assigned to asl; if every peer contributes only a

few of its outbound bandwidth, thus the total bandwidth capacity of the system is limited,

then assigning a bigger value to Bsl would be appropriate; finally, if the streaming

requests are frequent, it should be better to set ys, to a bigger value. In our simulation, as,

27

is set to 0.35, fis, is set to 0.25, and ysl is set to 0.4. Given this formulation, the more stable

candidate peer with a higher average available bandwidth and lower streaming serve

frequency will have a greater GSl.

Figure 3-4 is the pseudo code of our Media Segments Distributing (MSD)

algorithm. We first compute each candidate's GSl, then sort the candidates by GSl in

descending order and store the results in the candidateList. The media segments

distributing algorithm will take this list as its input. Note that the algorithm tends to

assign media segments to the candidate peers that have higher GSl, which means these

peers will take more responsibility to serve streaming requests. However, their Freqserve

will increase as the streaming requests come in, thus decreasing their GSl. When another

video is published, it is likely that their GSl will be exceeded by others, so that video's

/* In this algorithm, we do not differentiate between the original segment and
its replica; they are referred same as segment. */

Input:
candidateList: the candidate list sorted by Gs' in descending order;
num_candidates : number of candidates;
num_segs : number of segments;
num_replicas : number of replicas for the first segment;

Assigning:
1: j I:
2: for (i = 0; i < numjsegs + mtm_replicas; i++) {
3: select j " 1 node in candidateList, suppose the selected node is A^;
4:
5: if (i < num_replicas + 1)
6: assign segment 0 to node A^;
7: else
8: assign segment (i - num_replicas) to node Nf,
9:
10: if (j == num_candidates)
11: j = l ;
12: else
13: j++;
14:}

Figure 3-4 Media segments distributing (MSD) algorithm

28

segments will be distributed to other peers. In the long term, this could result in load

balance in peers to some extent.

Once the segments assignment is done, the publisher will send segments (in the rest

of this thesis, we do not differentiate between the original segment and its replica; they

are referred same as segment) to peers. When a peer receives a segment, it checks if there

is enough storage available (Sfv"'' > seg_size, where seg_size is the size of a segment). If

yes, it stores the received segment and decreases its Sfvail as follows: Sfva" = Sfva" -

seg_size;- otherwise, it uses L R U (Least Recently Used) algorithm to select a victim

segment to replace.

3.3.2 Distributing Algorithm Analysis

This section gives a time analysis of our media segments distributing algorithm. As

illustrated in Figure 3-4, the algorithm has a loop (line 2) and the loop body (line 3-13)

will be executed (Ns+Nj) times, where Ns denotes the number of segments and Nj denotes

the number of replicas for the first segment. Within the loop body, the j t h node in the

candidateList is selected. Since the candidateList is sorted and j is always less than or

equal to (Ns+Nj), the time for selecting the j t h node from the candidateList is bounded by

0(Ns+NJ). Thus the time for assigning segments to candidate peers is bounded by

0((Ns+Nj)2). The algorithm needs the candidateList to be sorted. Suppose that there are

totally m candidate peers and quick sort is used to sort them by their GSl; the time for

sorting is O(wlogm). Thus the total time of our media segments distributing algorithm is

0(m-\ogm +(NS+N/)2), where m is the number of the candidate peers, Ns is the number of

segments of the publishing video, and Nj is the number of the first segment's replicas.

29

3.3.3 Design Improvement

The algorithm analysis in the previous section does not consider the communication cost.

However, during the video publishing process, the communication cost could be high.

Because the "publish video" messages will be broadcasted to every cluster member and

be propagated to other clusters, and every node receiving this message will send back an

"accept segment" message, which (1) imposes lots of communication traffic on the

system; (2) requires the publisher to wait a long period to receive enough "accept

segment" messages and collect information of candidate peers; and (3) increases the

traffic load on the publisher, since it will receive a large number of messages sent back

by candidate peers. To cope with this, we revise our approach to collect information of

candidate peers.

Recall that in the cluster maintenance (Section 3.2.2), to detect peer failure, every

peer periodically sends "alive" messages to its parent. We let every peer send its

EstimatedStay, Bw, R"sa^c

> and Freq™'™ along with the "alive" message. The parent

collects information contained in the received "alive" messages and periodically sends an

aggregate report to its parent, along with the "alive" message. Thus, eventually, Core

Node will have recent information of every cluster member. Core Node sorts the cluster

members by their GSl in descending order and stores the result in a sorted candidates list.

Core Node periodically maintains the sorted candidates list based on the renewed

information of cluster members. When a peer publishes a video, it sends a "publish

video" message to its cluster's Core Node, and this message will be propagated to the

Core Nodes of other clusters. After receiving this message, the Core Node will select the

first Nc (NC>NS+NJ) peers from the sorted candidates list and send the information of these

peers back to the publisher. The publisher waits for Timeoutp to receive the messages sent

30

back by the Core Nodes and collects information of the candidate peers. Then it follows

the steps mentioned in Section 3.3.1 to distribute segments to peers.

Our revised approach assigns more responsibilities to Core Nodes during the video

publishing process. However, Core Nodes are typically the most powerful and stable

nodes in the clusters; thus it is appropriate to assign more responsibilities to them.

3.4 Media Segments Searching

After segments are distributed to peers, those peers will publish received segments to

Category Overlay. As mentioned in Section 3.2, to publish content in Category Overlay,

a node should specify the category the content belongs to, as well as a keyword list. In

our proposed architecture, we define the categories as follows: (1) we first predefine the

video types, such as Action video, Sports video, Comedy video, etc; (2) then we combine

the video type and segment number as the category, such as Action-0, Action-1, Sports-0,

etc. So all the first segments of the Action videos belong to the Action-0 category; all the

second segments of the Action videos belong to the Action-1 category, and so on.

Note that when a peer publishes a video, it should specify the video type and

provide a list of keywords. When the publisher distributes segments to peers, the

specified video type and keyword list will be sent to peers as well. When a peer publishes

the received segment, it will use the combination of video type and segment number as

the segment's category, and use the received keyword list as the publishing keywords. In

addition, each published segment has a videolD to specify which video it comes from

(Recall that every video has a unique videolD); thus, when searching, we can use this

videolD to ensure that the found segments come from the same video. After the segments

31

have been published, we can search the desired segments in the same way described in

Section 3.2.

3.5 Media Segments Caching and Seed Re-

Distributing Mechanism

In BitVampire, once a peer finishes watching a segment, it will cache this segment in its

contributed storage. We use this cache policy because we believe that the possibility of a

peer re-watching this segment is relatively higher than others. However, the storage

contributed by a peer is limited, so we adopt LRU (Least Recently Used) as the cache

replacement algorithm, in which the least recently used segment will be chosen as the

victim if there is not enough available storage for the new cached segment. Note that

when a segment is cached in peer Ph peer Pt will publish the cached segment into the

Category Overlay, while when a segment is chosen as the cache replacement victim, its

hosting peer will unpublish it from the Category Overlay.

As mentioned in Section 3.1.1, when the streaming requests cannot be satisfied by

regular peers, seed peers will offer their bandwidths to help serve the streaming session.

To alleviate the streaming traffic load on seed peers, we propose a Seed Re-Distributing

(SRD) mechanism, in which when the seed peer offers help to stream a segment, it will

distribute a replica of that segment to peers, thus decreasing the future demand on seed

peers. However, two issues need to be addressed to make this mechanism feasible: (1)

Which segment served by seed peers should be re-distributed to peers? Should all the

segments served by seed peers be re-distributed, or should it be selective? (2) Which peer

should the segment be re-distributed to?

32

For the first issue, the simplest solution is to re-distribute all the segments served

by seed peers. However, this is not a good approach. As discussed in Section 3.1.2, most

of the segments served by seed peers are non-popular segments. The possibility of peers

re-watching these segments is small. If these segments are re-distributed to peers, it does

not provide much help to increase the streaming capability of the whole system, but

wastes lots of seed peer bandwidth. To cope with this, we classify the segments by their

importance. If a segment's importance exceeds a threshold Thdisl, that segment will be re­

distributed to peers by seed peer. For a segment that belongs to video k, suppose its

segment number is / (the (/+l)th segment of the video), its importance Impk-, is defined as

follows:

Impk,=Popkx\/a£ (3-3)

where Popk is the popularity of video k, which can be acquired from the statistical server.

a,„, is the factor to give segment different weight based on its position in the video. In our

simulation, a / m is set to 1.5. Given this formulation, the segment that comes from the

popular video and is split from the initial portion of the video will have a bigger

importance, which means it is more likely to be re-distributed to peers. The value for

threshold Thdisl could be pre-set or dynamically adapted based on the load on seed peers.

In our simulation, we use pre-set and the threshold Thdisl is set at 0.6.

For the second issue, we use our proposed media segments distributing (MSD)

algorithm (Section 3.3.1) to re-distribute the segment, if that segment is decided to be re­

distributed. Our simulation study (Section 5.2.2) verified the effectiveness of this

mechanism, which can reduce traffic load on seed peers.

33

3.6 Media Segments Streaming

In BitVampire, when a peer (called receiver) wants to watch a video, it will search the 1st

segment, then aggregate bandwidths from the selected supplying peers and coordinate

them to stream the 1st segment. When the streaming of the 1st segment is almost over

(enough time should be left for searching and generating schedule for next segment), the

receiver will do the same thing with the 2nd segment, the 3rd segment, and so on.

Aggregating bandwidths from multiple supplying peers has several advantages, including:

(1) Since peers are quite heterogeneous, a single peer may not have enough bandwidth to

support a streaming session. In this case, aggregating bandwidths from multiple

supplying peers is necessary. (2) Aggregating bandwidths from multiple supplying peers

increases the robustness of a streaming session, since if some of supplying peers leave or

fail, other supplying peers still contribute their bandwidths to the session.

In the following sections, we first describe how to select supplying peers from the

candidates that are returned by searching. Then, we present and discuss our multiple

suppliers scheduling algorithm in detail.

3.6.1 Supplying Peers Selection

When a peer (receiver) searches the desired segments for watching, the size of the results

could be large. Thus we need a scheme to select supplying peers from the search results.

We let the receiver selfishly determine the best subset of supplying peers. Details of our

scheme are presented below.

After receiving the search results, the receiver will send an enquiry message to each

peer contained in the results. Upon receiving this message, a peer will send a reply

34

message back to the receiver, along with its Bwaval! and EstimatedRTT, where

EstimatedRTT is the estimated round trip time between the peer and the receiver. The

receiver waits Timeout,, to get the reply messages and collect information contained in the

messages. After Timeoute, the receiver will select the subset of supplying peers based on

their GSp, the goodness of the peer to become supplier. Suppose there are m candidate

peers: {Ph P2, ..., Pm}, the GSp

i for a peer P, is defined as follows:

Sp Bw™', EstimatedRTT\
G ' = aSo * 1 Tl ~ Psn X (7 V'4' p maxlew"""",- * m&xiEstimatedRTT.)

\<i<m K ' \<i<m

where aSp, fiSp are the factors to give Bwava'',, EstimatedRTT, different weights. Setting a

bigger value to aSp gives preferences to peers which have higher available bandwidth,

while setting a bigger value to pSp tends to bias selection towards nearby peers. We

believe giving a bigger weight to EstimatedRTT, is more appropriate. Because usually

EstimatedRTT, reflects the distance between the receiver and the candidate peer; a smaller

EstimatedRTT, indicates savings in the backbone bandwidth and less susceptibility to

network congestion, since traffic passes through fewer routers. Therefore, in our

simulation, aSp is set to 0.4, and RSp is set to 0.6. Given this formulation, candidate peer

which is nearer to the receiver, has a higher available bandwidth will have a greater GSp.

The receiver will select M (in our simulation, M= 3) candidate peers that have the

greatest GSp as the suppliers, as long as the aggregated available bandwidth from these

peers is bigger than or equal to the video playback bit rate. Otherwise, more than M peers

will be selected to meet the playback bit rate requirement. The unselected candidate peers

will be kept in a standby set, from which substitute peers can be selected in case suppliers

leave or failure. If the aggregated available bandwidth from all of the candidate peers is

less than the playback bit rate, the segment watching request will be rejected.

35

After supplying peers have been selected, the receiver will reserve bandwidths

from them. Suppose M supplying peers (PH P2, PM) are selected, and the video

playback bit rate is Br. The receiver will reserve bandwidth Bwr, (the reserved bandwidth

should be in multiple of bandwidth reservation unit Bwr„. In our simulation, Bwr

u is set to

64kbps.) from supplier PT in proportion to its GSP, and satisfy the following condition:

M

J^Bw',=Br (3-5)

Then the receiver will send a "reserve bandwidth" message to each supplier. After

receiving this message, supplying peer P, will decrease its Bwavml by Bvf-,. When the

streaming session supplied by peer P, is over, P, will increase its Bw"ve"' by Bv/,.

Note that by "reserve bandwidth", we do not mean that the bandwidth Bwr, from

peer P, is actually reserved and can not used by other applications. The current Internet

does not provide resource reservation service, thus the bandwidth contributed by

supplying peer P, may fluctuate during the streaming session. In our architecture, a

receiver reserves bandwidth BW i from supplying peer PH it only means that peer />,

decreases its Bwaval! by BwIn another word, bandwidth reservation process in our

architecture only controls whether and how much a peer contributes to a streaming

session, it does not guarantee that the bandwidth is actually reserved.

3.6.2 Multiple Suppliers Scheduling Algorithm

To fully use the aggregated bandwidths from multiple supplying peers, we want different

suppliers to send different portion of a segment to the receiver at the same time. So we

further divide each segment into equal sized blocks, in which each block contains Thlk

36

seconds of video content. Thus the receiver can parallel download different blocks from

different supplying peers in real-time model. The value for Tm depends on the bit rate at

which the video is encoded. For a video which is encoded at bitrate 512 kbps, Tblk = 1 is

an appropriate seeting, since 1 second vidoe content has about 64KB data, which can be

sent by a few of UDP packets. In our simulation, Tm is set to 1.

Given a set of supplying peers {PH P2, PM) and the reserved bandwidths from

these peers {Bwr

h Bv/2, Bv/M), the problem is how to assign blocks to these

supplying peers to send. A possible solution is Round Robin (RR), where blocks are

assigned to suppliers in a round robin fashion. However, RR treats each supplier equally,

no matter how much bandwidth it contributes to the streaming session. Thus some

bandwidth contributed from the powerful peers could be wasted. To cope with this,

another possible solution is assigning blocks to suppliers in proportion to their

contributed bandwidths. Thus supplier P, sends BwrJBr blocks, starting from whatever PT.

i ends. This approach fully used the bandwidth from each supplier. However, for the

blocks at the beginning of-a segment, only P, contributes its bandwidth, which inevitably

results in a long initial buffering time. Taking all of these into consideration, a good

schedule should be the one in which blocks are assigned to suppliers in a roughly round

robin manner, and also in proportion to the bandwidths contributed by suppliers.

Based on the discussion above, we propose a Multiple Suppliers Scheduling (MSS)

algorithm, which assigns blocks to different suppliers to send. The algorithm is executed

by the receiver to generate the schedule. Figure 3-5 illustrates the pseudo code of the

algorithm. The suppliers are sorted by their Bwr in descending order. For a supplier

supplier fi], timejeftfij indicates the time left for it to send blocks. Initially, time_left[i]

is set to the deadline for suppliers to cooperate to finish sending all of the blocks. We

37

assign blocks to suppliers starting from the last block to the first block. To assign a block

blocks [currJblk], we first find the maximum timejeft value across all the suppliers and

store it in a variable maxj. Then we iterate through the suppliers in the sorted order and

check if current supplier supplierfij's time_left[i] is equal to maxj. If yes,

blocks [curr_blk] is assigned to supplier [i] and we subtract blk_sizdBw',• (the time for

supplier[i] to finish sending a block) from timejeft[i\. At this point, blocks [curr_blk] is

assigned. We repeat the same procedure to assign blocks [curr_blk-1]', blocks [curr_blk-2],

and so on, until we finish assigning the first block.

Figure 3-6 illustrates an example of assigning 8 blocks to suppliers using MSS.

Input:
mimjsuplliers : number of suppliers;
supplierfi] : the suppliers sorted by BW in descending order;
BW [i] : reserved bandwidth at supplierfi];
mim_blks : number of blocks;
blocksfi] : blocks;
blk_size : block size;
deadline : deadline for suppliers to cooperate to finish sending all of the blocks;

Scheduling:
1 :• for (i = 1; i < num_suppliers; i++) {
2: timejeflfi] = deadline; II limejeftfi]: time left for supplierfi] to send blocks;
3: }
4: curr_blk = mim_blks-1;
5: while (curr_blk > 0) {
6: maxj = max {timejeftfl], ... , timejeft[num_suppliers]};
7: for (i = 1; i < num_suppliers; i++) {
8: if {timejeft[i] = maxj) {
9: assign blocks[curr_blkJ to supplierfi];

timejeflfi] = timejeflfi] - blk_size I Bw'
currj>lk —;

}
if (curr_blk< 0)

break;

}

Figure 3-5 Multiple suppliers scheduling (MSS) algorithm

38

Suppose Br (the playback bit rate of the video) is 512kbps and Tbik is 1 (a block contains

I second of the video content). There are 3 suppliers contribute their bandwidths, in

which P, contributes 320kbps (5/S-Br), P2 contributes 128kbps (IIA-Br), and P3

contributes 64kbps (1/8 Br). The deadline for suppliers to finish sending blocks is set to

II second (how to set the deadline is detailed in next section).

Bandwidth (kbps)

320

128

64

2 P,

P3

4

lis

1.
Time (second)

deadline for sending blocks

Bandwidth (kbps)

320

128

64

111

r 2

i l t l l l P,

p,

P3

0s 4s 8s Time (second)

Figure 3-6 Example of assigning 8 blocks to suppliers using MSS

39

As the figure shows, using MSS, blocks are assigned to suppliers in proportion to

their contributed bandwidths (5 blocks are assigned to Pi, 2 blocks are assigned to P2, and

1 block is assigned to P3), thus the bandwidth from each supplier is fully used. Totally it

takes 8 seconds for the suppliers to cooperate to finish sending all of the 8 blocks.

Compared to this, RR takes 16 seconds to finish sending the blocks (illustrated in Figure

3-7). RR treats each supplier equally, thus P, gets 3 blocks to send, P2 gets 3, and P3 gets

2. Obviously, some of the bandwidth contributed from P, is wasted and P3 should take

less blocks.

Bandwidth (kbps)

320

128

64

IMP lillll JllllliiilK J! t!it§|(§|
iilSjjllll

ilfjjj ^Biifiiiliii
p

HP• •llt#S|"l|
. 1

• 1 ' - ;- P2

P,

0s 8s 16s Time (second)

F i g u r e 3-7 E x a m p l e o f a s s i g n i n g 8 b l o c k s to s u p p l i e r s u s i n g R R

3.6.3 Scheduling Algorithm

Optimization

Discussion and

In this section, we first discuss how to set the deadline for suppliers to finish sending

blocks. Then, we explain why we assign blocks starting from the last block to the first

block. Finally, we describe an optimization on MSS algorithm, which results in small

finish time for sending blocks in some scenarios.

40

Before discussing the approach to set the deadline, we first describe the concept of

initial buffering. During the streaming session, some of the suppliers may leave or fail at

any time, and the incoming streaming rates from the suppliers may decrease due to the

network congestion. In these cases, the receiver will select a substitute supplying peer

from the standby set to replace the leaving/failing supplier or the supplier whose sending

rate is decreasing. We call this supplier switching. During the supplier switching period,

the aggregate received rate is less than the required playback bit rate, thus the receiver

may experience buffer underflow. To cope with this, we require the receiver to buffer at

least SjnjiBufjblocks before the playback starts. This is called initial buffering. Given Si„i,Bl,jf,

the deadline is set as follows:

deadline = (S M l B u f f + num _ blks) x Thlk (3-6)

where num_blks is the number of blocks needed to be assigned to suppliers to send.

As illustrated in Figure 3-5, MSS algorithm assigns blocks to suppliers starting

from the last block to the first block. Another possible approach is to assign blocks

starting from the first block, which is illustrated in Figure 3-8. However, if the blocks are

assigned starting from the first block, some initial blocks may be assigned to the suppliers

that contribute little bandwidths, thus inevitably increases the initial buffering time

(defined as the time to finish downloading the initial S^^y/blocks). Figure 3-9 shows the

example of assigning blocks starting from the first block. As shown in the figure, block 2

is assigned to supplier^, which contributes only 64kbps bandwidth. Suppose Sini,Bl,ffis 3,

then the initial buffering time is 8 seconds. However, as shown in Figure 3-6, if the

blocks are assigned starting from the last block, the initial buffering time is only 4

seconds. Reducing initial buffering time is important, because long initial buffering time

means that the receiver will suffer long waiting period before the video playback starts.

41

Input:
num_suplliers : number of suppliers;
supplierfi] : the suppliers sorted by BW in descending order;
BWfi] : reserved bandwidth at supplierfi];
num_blks: number of blocks;
blocksfi] : blocks;
blk size : block size;

Scheduling:
1: for (i = 1; i < num_suppliers; i++) {
2: lime_start[i] = 0; // time_start[i]: the time at which supplierfi] can start sending blocks;
3: }
4: curr_blk = 0;
5: while (curr_bik < num_blks) {
6: minj = min \lime_startfl], ... , time_start[num_suppliers]};
7: for (i = 1; i < num_suppliers; i++) {
8: if (time_startfi] = min_t) {
9: . assign blocks[curr_blk] to supplierfi];
10: time_start[i] = time_slart[i] + blk_size I BWfi];
11: curr_b/k++;
12: _}
13: if (curr_blk > num_blks)
14: break;
15: }
16:}

Figure 3-8 Algorithm for assigning blocks starting from the first block

Bandwidth (kbps)

320

128

64

Wmm •Hill (1 § j M J j IBI (3 - '

1

• I B Z3/

0s 8s Time (second)

Figure 3-9 Example of assigning 8 blocks starting from the first block

42

file:///lime_startfl

Consider the following schedule scenario, in which 11 blocks need to be assigned

to suppliers and the deadline for suppliers to finish sending blocks is set to 17 second

{SinitBuffis set to 6). Other settings are same as the example in Section 3.6.2. Figure 3-10

shows the schedule generated from MSS algorithm.

Bandwidth (kbps)

t

Bandwidth (kbps)
A

320

128

64

2 (i

5

1(1

Pi

0s 16s
Time

("second"!

Figure 3-10 Example of assigning 11 blocks to suppliers using MSS

43

Obviously, if block 0 is assigned to Ph the total sending time will be reduced from

16 seconds to 12 seconds, which is illustrated in Figure 3-11. Based on this observation,

we revised our MSS algorithm. Figure 3-12 illustrates the pseudo code of the revised

algorithm. We add an optimization stage, at which the algorithm checks whether moving

a block from the supplier that contributes less bandwidth to the supplier that contributes

Bandwidth (kbps)

•

(second"!

deadline for sending blocks

Bandwidth (kbps)
A

1 i§pii IJjjjjjjJ

320
(1 2 4

pliplij
-

••SPSS
i n

SSI Pi

flllll̂ SlBlllllfê
128 11111? m === - . , — P,

64 8 A •
Time

12s (second"!

Fiqure 3-11 Example of assigning 11 blocks to suppliers using revised MSS

44

more bandwidth will reduce the sending time. If yes, the block is assigned to the supplier

that contributes more bandwidth.

Input:
num_suplliers : number of suppliers;
supplierfi] : the suppliers sorted by Bw' in descending order;
Bw' [i] : reserved bandwidth at supplierfi];
mtm_blks : number of blocks;
blocks[i]: blocks;
blk_size : block size;
deadline : deadline for suppliers to cooperate to finish sending all of the blocks;

Scheduling:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

|Opti
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

for (i = 1; i < num_suppliers; i++) {
lime_left[i] = deadline; II timejeftfi]: time left for supplier[i] to send blocks;

(
curr_blk = num_blks-\;
while (curr_blk > 0) {

max_l = max {lime_lefl[l], ... , time_left[num_suppliers]}\
for (i = 1; i < num_suppliers; i++) {

if (timejeftfi] == maxj) {
assign blocks[curr_blk] to supplierfi];
time_left[i] = lime_lefl[i] - blkjize I BW[i];
curr_blk —;

}
if (curr_blk < 0)

break;
}

(

imizing:
touched = true;
while (touched) {

touched = false;
mi«_/ = min {time_left[I], ... , time_left[num_suppliers]};
min_pos = k; suppose time_left[k] is the min timejeft across all the suppliers.
maxjadj = min_t;
maxj}os = min _pos;
for (i = 1; i < num_suppliers; i++) {

if (i = min_pos)
continue;

tmp_l = time_left[i] - blk_size I Bwr[i];
if (tmp_t > maxjadj) {

maxjadj = tmpj;
maxj?oi' = i;

}
i

if (max_pos \=minJJOS) {
touched = true;
assign supplier[minjiosj's first block to supplierfmaxJiosj;
timejeft[minj>os] = limejeftfmin JJOSJ + blkjize /Bw'[min jms];
timejeftfmaxj>os] = timejeft [maxJJOS] - blk_size / BW[maxJJOSJ;

Figure 3-12 Revised multiple suppliers scheduling (MSS) algorithm

45

3.6.4 Scheduling Algorithm Analysis

This section gives a time analysis or our multiple suppliers scheduling (MSS) algorithm.

In the scheduling stage, loop (line 1-3) will be executed Mtime, where Mis the number

of suppliers. For the nested loop (line 5-16), each round of the outer loop will assign a

block to a supplier, thus the outer loop will be executed Nb times, where Nb is the number

of blocks. Within the outer loop, finding the maximum timejeft value across all the

suppliers needs Mtime, and the inner loop (line 7-15) runs at most M times. Thus the

time for scheduling is 0(M+7V6-2M), which is bounded by 0(/VyM). The scheduling needs

suppliers sorted by their Bwr. Suppose quick sort is used, then the sorting time is

O(MTogM). Thus, the total time for scheduling is bounded by 0(M-\ogM+Nb-M).

In the optimizing stage, the outer loop (line 18-39) runs at most M times. Within

the outer loop, finding the minimum timejeft across all the suppliers needs M time, and

the inner loop (line 24-32) runs M times. Thus the time for optimization is bounded by

0(M 2). in total, the running time of our MSS algorithm is bounded by

0 (M logM+AVM+M2), where M is the number of suppliers and Nb is the number of

blocks.

3.6.5 Streaming Session

Once the receiver generates the schedule, it will send the schedule to the suppliers. When

a supplying peer receives the schedule, it will send the assigned blocks to the receiver in

order using UDP and perform TCP-friendly congestion control over the UDP connection

(e.g., RAP [34] or TFRC [29]). As mentioned in Section 3.6.3, during the streaming

session, some of the suppliers may leave or fail at any time, and the incoming streaming

46

rates from the suppliers may decrease due to the network congestion. In these cases, the

supplier switching will happen, in which the receiver selects a substitute supplying peer

from the standby set to replace the leaving/failing supplier or the supplier whose sending

rate is decreasing. After that, the receiver will generate a new schedule to assign the rest

not-received blocks to the new set of suppliers. Taking this into consideration, generating

schedule for all of the blocks contained in a segment at the same time is not a good

approach, since the schedule may change during the session. Thus, we divide a segment

into several equal length schedule sections, in which each schedule section contains Nsche

blocks. During the streaming session of a segment, the receiver first generates the

schedule for the 1st schedule section and coordinates the suppliers to stream the blocks

contained in the 1st schedule section. Once the receiver almost receiving all of the blocks

contained in the 1st schedule section (enough time should be left for the receiver to

generate and send schedule for the next schedule section), it will do the same thing with

the next schedule section, and so on. Choosing the value for Nsche (which specifies the

length of a schedule section) is a trade-off. If Nscbe is too small, the computation overhead

and communication traffic will increase, since the schedules will be generated frequently.

If Nsche is too big, most portion of a schedule is useless, since it is very likely that the

schedule will be changed latter. In our simulation, Nsche is set to 60, thus a segment has 5

schedule sections.

In the client side, the receiver maintains a ring buffer. The size of the ring buffer is

o-bujfNsche*blk_size, where abujj>\ (in our simulation, abuff\% set to 1.5) and blk_size is the

size of a block (in bytes). Once the receiver receives a block, it will write this block to the

right position of the ring buffer. As mentioned in Section 3.6.3 and above, to absorb all

transient effects because of streaming packets arriving late, selecting new suppliers in

47

case of suppliers leave or fail, we require the receiver to buffer at least SinitBuff blocks

before the playback starts {initial buffering). After the initial buffering time, the receiver

will continuously read data from the ring buffer and render video frames on the player

window.

During the streaming session, the receiver monitors the incoming rate from each

supplier. If the receiver detects that the incoming rate from a supplier is decreasing for an

enough long period Tdec, or it is notified or detects the leave or failure of a supplier,

supplier switching will happen. The receiver will select substitute supplying peers from

the standby set and reserve bandwidths from them (the total new reserved bandwidth

should be bigger than or equal to the bandwidth provided by the supplier which is

substituted). Then it will generate a new schedule to assign the rest not-received blocks to

the new set of suppliers, and sends the schedule to the suppliers. Once receiving the

schedule, the suppliers will send the assigned blocks to the receiver in order.

The receiver also monitors the status of the ring buffer and tracks the received

blocks during the streaming session. Every block should be received by the receiver Tadv

seconds before the playback. Otherwise, the block is identified' as lost, and the receiver

will ask the corresponding supplier to re-send it.

48

Chapter 4

Prototype Implementation

To demonstrate the feasibility of BitVampire, a prototype has been implemented using

Java and Java Media Framework (JMF) [17]. This chapter discusses the methodology and

details of the prototype implementation. We first describe a general Peer-to-Peer

Application Framework, based on which the prototype was developed. Then we present

the prototype's system architecture, its core classes, and GUI design.

4.1 Implementation Methodology

BitVampire relies on Category Overlay to search media segments; thus, to implement it,

a prototype of Category Overlay, called CoolSearch, has been implemented first. As a

joint research project of this work, Jun employed a general Peer-to-Peer Application

Framework to implement the prototype of Category Overlay [43]. We have followed his

approach during the prototype implementation. The next section briefly introduces that

framework.

49

4.1.1 A General Peer-to-Peer Application Framework

Probably the most widely used general Peer-to-Peer Application Framework is JXTA [20]

(Figure 4-1). JXTA focuses on providing a network computing platform and a set of open

protocols to allow any connected device on the network to communicate and collaborate

in a P2P manner [19]. Its goal is to develop the basic building blocks and services to

enable innovative applications for peer groups.

JXTA
Applications

JXTA
Services

JXTA
Core

-JXTA Community Applications '
Sun
JXTA
Applications

fe-:.JXTA'-Community.Services;
S u n -Indexing
JXTA ' Searching
Services ~~ F l l e Shanng

JXTA
Shell

Peer
Commands

Peer Groups • Peer Pipes •Peer Monitoring

•: Security

Any Peer on the" Expanded Web

Figure 4-1 JXTA layers [18]

However, JXTA architecture also includes some specific components to provide

various features such as security, ubiquity, and platform independence, which are beyond

our focus in the prototype implementation. Therefore, we need a lightweight P2P

application framework, which provides system level support, as well as a few basic

building blocks and services, to ease the task of creating a single application with

different peer connection schemes.

Inspired by JXTA, a general Peer-to-Peer Application Framework, called RTG

(Ready-To-Go) [43] was designed, which can be easily customized for different

application domains. The design goals of RTG are as follows: (1) Simplify service

algorithm replacement and extension, (2) Separate peer architecture from system services

50

and application logics. Figure 4-2 illustrates the architecture of RTG, and Table 4-1

describes the basic functionalities for each layer in RTG.

Application
layer

Abstraction
layer

Service
layer

Core
layer

RTG Applications: Ul, Logic

Controller

Service Abstraction I'eer Abstraction

Indexing,
RTG Services: Searching

Kile Sharing

I'eer Adaptor

- - 'RTG Group / Group Architecture', .." I'eer Groups; Peer Monitoring

Communication Component

Peers on Network

Figure 4-2 RTG (Ready-to-Go) layers [43]

Table 4-1 RTG layer descriptions [43]

Layer Description

Application The application layer is where application specific
components should be placed, such as user interface (UI)
and application logic.

Abstraction (Controller) This layer separates the application domain from the system
architecture. Specifically, abstractions and adaptors are
used to decouple application logic from any specific service
or peer group implementation. A controller provides 3-way
coordination (among services, peer groups, and logics).

Service The service layer contains various service modules, such as
searching and indexing. Different service algorithms can be
implemented here to influence system performance.

Core This layer finalizes the actual P2P model as applied to the
current system.

Communication A Peer-to-Peer specific communication model is provided
at this layer, with the purpose of removing the necessity to
implement this low-level component for most P2P systems.

51

The controller in the RTG Abstraction layer is the key to the decoupling of

application logics, services, and peer architecture. More specifically, it not only controls

how an application uses various services to achieve a certain goal but also bridges the gap

between service components and peer architecture. Under this design, either service

algorithms or peer architecture can be replaced without generating many modification

requirements to other parts of the system.

4.1.2 System Architecture

Based on RTG framework, we present our prototype's system architecture in Figure 4 - 3 .

Application
layer

Abstraction
layer

Service
layer

Core
layer

Media
Service

GUI

Streaming Receiver Streaming Supplier

Controller

Service Abstraction I'eer Abstraction

Category Overlay
Search Service

Indexing Service Peer Adaptor

Category Overlay

Category Table
Content Index Table

Neighbour Agents List

Peer Clusters

1 Communication Component 1
Peers on Network

F i g u r e 4 - 3 P r o t o t y p e ' s s y s t e m a r c h i t e c t u r e

52

As Figure 4-3 shows, in the core layer, peers are grouped into clusters according to

our clustering algorithm (Section 3.2.1), and Category Overlay is constructed over the

clusters. In the service layer, Category Overlay Search Service Component provides

media segments search service, and Media Service Component provides a set of services

related to media processing, including publishing media, distributing media segments,

caching media segments, watching media, etc. In the application layer, the application

logic is divided into two parts: (1) Streaming Receiver Component, which includes

scheduler, streaming packets receiver, buffer manager, and media frame render; and (2)

Streaming Supplier Component, which includes steaming packets sender and packets

sending rate controller.

Table 4-2 provides a summary description of Java packages in our prototype

implementation.

Table 4-2 Packages for prototype implementation

Package Description
communication Classes in this package provide basic implementation for

Communication Component in Figure 5-3, including
message formatting, marshalling and unmarshalling,
communication channel creation, message delivery, and
message processing.

communication.coolsearch Customized to provide CoolSearch specific message types
and to satisfy special delivery requirements.

comin unication. bitvampire Customized to provide BitVampire specific message types
and to satisfy special delivery requirements.

service Service abstraction layer.
service, coolsearch This package contains classes that implement various

services, including category overlay search. Other classes in
this package implement construction and maintenance
algorithms for clusters and Category Overlay.

service, bitvampire This package contains classes that implement various
services related to media processing, including publishing
media, distributing media segments, caching media
segments, watching media, etc.

kernel This package includes classes that implement the controller
component, a generic P2P structure layer (peer abstraction
layer) as well as a system processing model.

53

kernel, coolsearch It provides CoolSearch specific extensions to generic classes
in kernel package, such as peer node identification, peer
adaptor, and message processing scheme.

kernel, bitvampire • It provides BitVampire specific extensions to generic classes
in kernel package, such as peer resource representation, peer
adaptor, and message processing scheme.

vod. bitvampire. receiver This package contains classes that implement various
application logics of the Streaming Receiver Component,
including scheduler, streaming packets receiver, and media
frame render.

vod. bitvampire.supplier This package contains classes that implement the various
application logics of the Streaming Supplier Component,
including steaming packets sender and packets sending rate
controller.

ui.coohearch GUI implementation for CoolSearch.
ui.bitvampire GUI implementation for BitVampire.
resource Resource package provides an abstract layer for resource

storage, maintenance, and sharing. Implementation is given
for a generic resource type.

resource.coolsearch Implementation for a CoolSearch based resource.
resource, bitvampire Implementation for a BitVampire based resource.
util.coolsearch Utility package that contains general purpose data structure,

constants, and other utility functions related to CoolSearch.
util. bitvampire Utility package that contains general purpose data structure,

constants, and other utility functions related to BitVampire.
property This package stores and maintains generic system

parameters.
property, coolsearch Stores and maintains CoolSearch specific parameters, such

as clustering parameters, predefined categories, etc.
property, bitvampire Stores and maintains BitVampire specific parameters, such

as segment length, timeout settings, etc.

4.2 Implementation Details

As mentioned before, BitVampire is implemented using Java and Java Media Framework

(JMF) [17]. In the prototype, control packets are sent using TCP, and streaming packets

are sent using UDP. To ensure TCP-friendly congestion control over the UDP connection,

RAP protocol [34] is used to adjust the UDP packets sending rate. To provide some

details of the prototype implementation, we list the core Java classes and present Graphic

User Interface (GUI) design in the following sections.

54

4.2.1 Core Classes

Our prototype implementation consists in total of 109 Java files, 21 packages, 133 classes,

and about 20,000 lines code. Thus, we only list some of the core classes that provide

important functionalities to the prototype as follows. Each entry is composed of a full

class name and a description.

T a b l e 4-3 C o r e c l a s s e s fo r p r o t o t y p e i m p l e m e n t a t i o n

Class Description
communication.Messagelmpl Providing generic marshalling and unmarshalling services.
communication.coolsearch.C
oolSearch Client

Providing a communication layer interface for peers at core
layer to deliver CoolSearch specific messages.

co mm un ication. bitvampire. Bi
t VampireClient

Providing a communication layer interface for peers at core
layer to deliver BitVampire control messages.

service, coolsearch. CoolSearc
hStrategy

CoolSearch Service Abstraction to decouple controller from
specific service implementations. Combined with Peer
Abstraction, they provide common interfaces to facilitate the
3-way communication among controller, peers, and various
services.

service.coolsearch. GroupMan
ager

Implementing clustering algorithm and cluster maintenance
mechanisms.

service, coolsearch. Contentln
dex

Providing Content Index Table management and indexing
service.

service, coolsearch. CategoryM
anager

Constructing and maintaining Category Overlay.

service.coolsearch.SearchSer
vice

Providing categoiy overlay search service.

service.coolsearch.RetrieveSe
rvice

Providing file sharing service.

service, bitvampire. Bit Vampir
e Strategy

BitVampire Service Abstraction to decouple controller from
specific service implementations. Combined with Peer
Abstraction, they provide common interfaces to facilitate the
3-way communication among controller, peers, and various
services.

service, bitvampire. MediaMan
ager

Managing and maintaining peer's contributed resources,
including storage, outbound bandwidth, etc.

service, bitvampire. MediaServ
ice

Implementing a set of media services, including publishing
media, distributing media segments, caching media
segments, etc.

service. bitvampire.Media View
Servant

A servant thread to view a specified media.

service, bitvampire. MediaSeg
ViewProcessor

Implementing the logic to view a specified media segment.

55

kernel.LocalController Implementing core functionalities in controller component at
abstraction layer.

kernel. LocalNode Peer Abstraction representing node object on current peer,
providing a common interface to controller for
functionalities and services available to local peer.

kerneLRemoteNode Peer Abstraction representing node object on remote peer,
providing marshalling and unmarshalling services to
controller.

kernel. IncomingMsgServant Dispatching various incoming requests to different parts of
the system.

vod. bitvampire. receiver. Sched
uleProducer

Implementing multiple suppliers scheduling algorithm.

vod.bitvampire.receiver. UDP
Receiver

Receiving UDP stream packets, tracking packets receiving
status, and reporting lost packets.

vod.bitvampire.receiver.Buffe
rManager

Managing and maintaining the ring buffer.

vod.bitvampire.receiver.Medi
aPlayer

Rendering the media frames in the player window.

vod. bitvampire.supplier. UDP
Sender

Sending UDP steam packets according to the schedule.

vod. bitvampire. supplier.Sendi
ngRateController

Implementing RAP protocol [34] to control the UPD packets
sending rate.

ui. coolsearch. CoolSearch UI Graphic user interface for CoolSearch.
ui.bitvampire.BitVampireUI Graphic user interface for BitVampire.
resource.ResourceDBManage
r

Managing local content database.

resource, coolsearch. CoolSear
chGeneralResource

Representing a generic CoolSearch resource type, providing
resource specific marshalling and unmarshalling services.

resource.bitvampire.MediaSe
gmentResource

Representing a BitVampire media segment resource type,
providing resource specific marshalling and unmarshalling
services.

4.2.2 Graphic User Interface

This section presents the Graphic User Interface (GUI) of our prototype. Figure 4-4

shows the GUI for publishing videos in BitVampire, and Figure 4-5 shows the GUI for

watching videos in BitVampire. When publishing a video, the user should specify the

local path of the video file (Figure 4-4(a)), then specify the video's type, provide a list of

keywords, and specify the video's playback bit rate (Figure 4-4(b)). When watching a

video, the user should specify the video type and provide keywords (Figure 4-5(a)). After

56

the initial buffering period, a media player window (Figure 4-5(b)) will show up and the

video frames will be rendered in the window. Figure 4-6 shows a snapshot of a more

complicated running scenario of our prototype, in which three nodes are running and two

of them are watching videos.

: join ! leave ;| puf

j publishVideo

M l . w e l c o m e !

n o parent

P2P service is read;

• N o d e (N l) is act ive

Look lr»: p j B r t V a m | i i r e _ 0 7

G3 .settings

\~~*] communicalion

C3 jmr-iib
*C3 kernel

'•3 pionerties

^ resource

hue i±ame:
Files of Type: [All Files

r*1 service

C3ui

(3 users

G3util
G3vod
Q .classpath

Q .project

Q CateBorySpecificatiori

Q Conflaiire.xml

Q liiieCoimter.sli

Q run-linux

(a) Specifying local path of the publishing video file

i join j In.ive puhl

i.iililishVKirn wd

NI, welcome!

no-parent

P2P service is ready

Node(Ml) is active

VideoType: Action

Koywiiids:

MediaName:

MetliaTyije:

BttRate(kbps):

StarWar-

S t a r W a r T h e P h a n t o m M e n a c e

MPEG1(CBR)?.MdedJmiJe(j:i

1374

ok; cancel

(b) Specifying the publishing details of the video

Figure 4-4 GUI for publishing video

57

: publishVideo j

N I , welcome!

n o parent

P2P service is ready a
N o d < N l) i s active

fi V i d e o D e t a i l s . . . •

VklBoTypB: Action

Keywords: ;SiarWar|

ok cancel

I n d i a Proper

> H | M M ;P«-in
Content Type:

Position:

yldeompeg
00.02 3318
00OO-3SB6

Close

(a) Specifying searching details (b) Media player

Figure 4-5 GUI for watching video

te 1 publish search i download ji Into ti 11 Vaajit rs {vim 0) ~ S-J - X
i join leave \ publish search download {; initiate j ileo j watchVideo | quit i join leave publish search r download | Initiate \

publishVideo j watchVideo ii quit j
510677J28.1S9.142.5818CllN2starv 1 publishVideo ji watchVideo quit

Confirmed bandwidth reservation:
I. Reserve 1056kbps from N3 is Successedl
2 Reserve ?52kbps from N2 is Successed1

Medialt>128 18V 142 582912N!DNMBitVampire\Movie\
Generating schedule
Sending schedules
1. N3: 40 4] 43 44 45 47 48 49 51 52 53 55 56 57 59 60

040765J28 189.142 581801N2nba_
joined group
510rj9'i_128 189 142 5818QlN2starv
plodded successfully
477709J28 189 142 5SI80lH2tlbb.
477 0 21,128 189 142 58180IN2tlbb_
[039750_12S 189 142 58180IN2nba_

2 Reserve 480kbps from HI is Successed!
3 Reserve fjOSkbps from N2 is Successed!
MedialD-128.189.142 582912NlD'\ta\Movie\nba mpg; M
Generating schedule. .
Sending schedules..
1 N3: 81 84 85 88 90 93 95 97 99 102 104 10? 108 111
2 NI: 80 83 86 89 92 94 98 101 103 106 110 112 115 11

2. N2; 42 46 50 54 58 62 66 70 74 78

2 Reserve 480kbps from HI is Successed!
3 Reserve fjOSkbps from N2 is Successed!
MedialD-128.189.142 582912NlD'\ta\Movie\nba mpg; M
Generating schedule. .
Sending schedules..
1 N3: 81 84 85 88 90 93 95 97 99 102 104 10? 108 111
2 NI: 80 83 86 89 92 94 98 101 103 106 110 112 115 11

2. N2; 42 46 50 54 58 62 66 70 74 78 3. N2: 82 87 91 96 100 105 109 114 117
XLutJ J !.•.] <l". .«. . . .] !•

Figure 4-6 Snapshot of the prototype running

58

Chapter 5

Evaluation

In this section, we evaluate the performance of our proposed architecture through

extensive simulation experiments. We first describe the simulation setup and then present

the results.

5.1 S i m u l a t i o n S e t u p

5.1.1 Simulation Topologies

In all of the simulations, we use large hierarchical, Internet-like topologies. All of the

topologies have three levels. The top level consists of several Transit domains, which

represent large Internet Service Providers (ISPs). The middle level contains several Stub

domains, which represent small ISPs, campus networks, moderately sized enterprise

networks, etc. (Each Stub domain is connected to one of the Transit domains). At the

bottom level, end hosts (peers) are connected to Stub domains. Figure 5-1 shows a part of

59

the topology used in the simulation. The first two levels (router-level) contain transit

routers and stub routers, which are generated using the GT-ITM tool [45]. We then

randomly attach end hosts (peers) to stub routers with uniformed probability. Each

experiment was run on 10 different topologies, and the results presented in this thesis are

the average results of experiments running in these 10 topologies. Unless otherwise

specified, the topologies used in the simulations consist of averagely 10 transit domains,

200 stub domains, 2050 routers, and a total of 3010 end hosts (peers), in which 6 hosts

are selected as seed peers.

5.1.2 Simulation Parameters

All of the experiments use the following parameter settings, unless otherwise specified.

During the simulation, there are totally 500 videos published in the network, each

with 512 kbps constant playback bit rate (CBR) and 1 hour length. Each video is split

into 12 segments. The length of each segment is 5 minutes, and the size is about 19 MB.

Figure 5-1 Part of the topology used in the simulation

60

We let the first segments have 2 replicas (Ny = 2), and by default, the receiver will select

3 (M= 3) supplying peers, if these peers have enough available outbound bandwidths.

We assign bandwidths and delays to the network links as follows: (1) Each link

between two routers has a bandwidth ranging from 6 Mbps to 20 Mbps, and a delay

ranging from 5 ms to 40 ms. (2) Each link between end hosts (peers) to routers has a

bandwidth ranging from 512 kbps to 2 Mbps, and a delay ranging from 4 ms to 10 ms.

The routing between two routers in the network follows the shortest path.

The contributed outbound bandwidths and storage from peers are configured as

follows: (1) Each peer contributes an outbound bandwidth ranging from 128 kbps to 1

Mbps, and storage ranging from 2 segments (38 MB) to 5 segments (95 MB). (2) Each

seed peer contributes an outbound bandwidth ranging from 1 Mbps to 2 Mbps (on the

average, each seed peer contributes 1.472Mbps bandwidth in the simulations), and

storage ranging from 1000 segments (19 GB) to 3000 segments (57 GB). Note that the

configuration of peers in the experiments represents a typical equipment setting for

current desktop PCs connected to the Internet. From the simulation results presented in

the following sections, we can see that based on these usual, low-cost PCs, our proposed

architecture can support large-scale on-demand media streaming service.

To reflect the dynamic nature of peer-to-peer networks, we let 20 peers leave the

system per minute. Each leaving peer will stay off-line for a period ranging from 15

minutes to 3 hours, and then rejoin the system. We evaluate the performance of the

system under 3 different video request arrival patterns: (1) Constant arrival, where every

3 seconds, a peer initiates a video watching request (request rate: 20 requests/min). (2)

Flash crowd arrival, where at the beginning, peers request videos at the rate of 20

requests/min, and then suddenly increase to the rate of 120 requests/min. Figure 5-2

61

shows this arrival pattern. (3) Periodic flash crowd arrival, where the flash crowd

requests (request rate: 120 requests/min) occur periodically. Between two flash crowd

arrivals, the video requests arrive at a low and constant rate (20 requests/min). Figure 5-3

130
120
I 10
100

I 9 0

3 80
I 70

10 -|
0 J , , , , , , , , , , , L

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (minutes)

Figure 5-2 Flash crowd arrival pattern

130 T

120 -
110
100 -

1 90 -

y 80 -
cr 70 -
o

70 -
60 -60 -

2 50 -
40 -

D
O " 30 -
3. 20 -

10-
0 J

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (minutes)

Figure 5-3 Periodic flash crowd arrival pattern

shows this arrival pattern.

The popularity of videos follow Zipf-like distribution, where the popularity of the

i t h most popular video is proportional to 1/i". The authors of [4] reported that in a long

62

period (in months), the video file access frequencies in HP corporate media solutions

server and HPLabs media server follow Zipf-like distribution, with a ranging from 1.4 to

1.6. Therefore, in our simulation, we set a to 1.4.

The final parameter setting is the length of the video watching sessions. Again,

based on the reports from [4], we let 50% of the sessions last 5 — 10 minutes (watching 1

~ 2 segments), 30% of the sessions last 10 ~ 30 minutes (watching 2 ~ 6 segments), and

20% of the sessions last 30 ~ 60 minutes (watching 6—12 segments).

5.2 Simulation Results

This section presents the results of our simulations. We first evaluate the effectiveness of

our media segments distributing (MSD) algorithm and seed re-distributing (SRD)

mechanism. Then, we evaluate our multiple suppliers scheduling (MSS) algorithm,

showing that it can result in a small initial buffering time. Finally, we study the behaviour

of our proposed architecture under different parameter settings and conditions.

5.2.1 System Streaming Capacity Amplification

In this set of experiments, we show that our media segments distributing (MSD)

algorithm plus seed re-distributing (SRD) mechanism can result in fast system streaming

capacity amplification. We define the system streaming capacity as the number of video

watching sessions that can be served concurrently, and use the simple random segments

distributing algorithm as the comparison base. In our simulation, each video watching

session may have a different length, in another word, each session may contain a different

number of segment requests. Thus, we use the segment requests rejection ratio as our

63

measurement metric. A lower segment requests rejection ratio means that more segment

requests can be accepted at a specific time, which results in higher system streaming

capacity. ' ' .

Figure 5-4 shows the simulation result for the constant video requests arrival

pattern; Figure 5-5 shows the result for the flash crowd arrival pattern; and Figure 5-6

shows the result for the periodic flash crowd arrival pattern. We ran 10 round simulations

on each of the 10 topologies, thus in total 100 rounds of simulations were performed.

Each simulation lasts for 2 hours, and every minute, we compute the average segment

requests rejection ratio. The results presented in the figures are the average results of the

100 simulation rounds. From all of these three figures, we can see that compared to the

0.7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 1 10 115 120
Time (minutes)

Figure 5-4 Average rejection ratio for constant arrival pattern

0.7

Time (minutes)

Figure 5-5 Average rejection ratio for flash crowd arrival pattern

64

0.7

Time (minutes)

Figure 5-6 Average rejection ratio for periodic flash crowd arrival pattern

random segments distributing, our MSD algorithm quickly decreases the rejection ratio,

and if the seed re-distributing (SRD) mechanism is applied, the decrease is faster.

5.2.2 Seed Peers Load

Our next set of experiments evaluates the load on seed peers. As in the previous

experiments, we ran 10 round simulations on each of the 10 topologies. Each simulation

lasts for 2 hours, and every minute, we compute the average load on seed peers. The

results presented in the following figures are the average results of the 100 simulation

rounds. Figure 5-7 shows the simulation result for the constant video requests arrival

pattern; Figure 5-8 shows the result for the flash crowd arrival pattern; and Figure 5-9

shows the result for the periodic flash crowd arrival pattern. As all of the figures show,

the average seeds load with MSD algorithm is less than the load with random segments

distributing. And if the seed re-distributing (SRD) mechanism is applied, the seeds load

will decrease further. The reason for this result is that MSD tries to distribute segments to

the peers that are more stable and have more available outbound bandwidth, thus

decreasing the demand for seed peers. If SRD is applied, the segments that cannot be

served by regular peers will be distributed to peers by seeds. Thus next time, requests for

65

- Random
- M S D

M S D + S R D

0 10 20 30 40 50 60 70 80 90 100 1 10 120
Time (minutes)

Figure 5-7 Average seeds load for constant arrival pattern

- Random
-MSD
MSD+SRD

0 10 20 30 40 50 60 70 80 90 100 110 120
Time (minutes)

Figure 5-8 Average seeds load for flash crowd arrival pattern

these segments can be served by regular peers, therefore further reducing the seed

peers' load.

Reducing the load on seed peers is an important feature of the proposed

architecture. Because it means that the seed peers need not be powerful machines with

high outbound bandwidth; they just need to be stable and have large storage capacity,

which is very cheap nowadays.

66

1300 -r

1200 -

1100 -
£ 1000 -

£ 900 -

i" 8 0 0 -
2 700 -
I 600 - Random

M S D

M S D + S R D g> 400 -

t 300 -
< 200 -

100 -|

o i
0 10 20 30 40 50 60 70 80 90 100 1 10 120

T i m e (minutes)

Figure 5-9 Average seeds load for periodic flash crowd arrival pattern

5.2.3 Receiver Initial Buffering

In this set of experiments, we evaluate the effects of choosing different settings for initial

buffering. Unless otherwise specified, all of the simulation settings are same as Section

5.2.1. In the simulation, the packet size is set to 32KB, thus a block needs 2 packets to

send. We vary SimlBujf from 0 to 16 blocks. For each simulated initial buffering, we

measure the average number of times the receiver experiences buffer underflow. Every

buffer underflow causes a pause in the playback until sufficient data packets arrive. These

pauses are mainly due to supplier switching, which happens if the incoming rate from a

supplier decreases due to peer leave/failure or network congestion. When supplier

switching happens, we delay sending packets from the replacement supplier(s) by a

random time between 0 and 1 second. This is called switching time, during which the

degraded peer is detected and a replacement is notified.

To simulate playback of the video, an independent playback process is scheduled at

regular times. The first call of this process is after receiving the initial Sj„ilBujf blocks. Then,

6 7

it is called every 1 second (the block length in this experiment). When the playback

process is invoked to play block i, it checks the ring buffer for all packets belonging to

block /. These packets are identified through their sequence numbers. If all packets are

available, the playback of block / is successful and the playback process is scheduled for

block i+\ after 1 second from the current simulation time. If any packet is missing, a

pause is encountered. The playback process is scheduled for the same block after the

pause time, which is 1 second in this experiment.

We simulate the following scenario. A value for Sj„nBujj is set. A receiver is chosen

at random. Then the receiver initiates a video watching request and the streaming starts.

Supplier switching happens at random times and replacement suppliers are chosen from

the standby set. On average, 16 switching events occur during each video watching

session. After the initial buffering time, the first invocation of the playback process is

scheduled. We count the number of pauses encountered throughout the session. After the

streaming session is over, the experiment is repeated for another randomly chosen

receiver. We simulate 10 different sessions. We compute the minimum, maximum,

average number of pauses over these 10 sessions. Then another value for Smi,Bujj\s, set and

14

12

3

CL
10

o
8

E
6

a
o
>

4

2

0
2 4 6 7 8 9 10 11 12 13 14 15 16

Initial buffering (blocks)

Figure 5-10 Effects of different initial buffering settings

68

the whole scenario is repeated again.

Figure 5-10 shows the simulation result. Note that in the figure, mid-point is the

average number of pauses, while the bottom, and the top points are the minimum and

maximum number of pauses, respectively. For a small initial buffering of 2 blocks, we

expect an average of 8.5 pauses and a maximum of 10 pauses. A buffer size of 10 blocks

or more will absorb all transient effects during the supplier switching.

5.2.4 Initial Buffering Time

The next set of experiments evaluates the multiple suppliers scheduling (MSS) algorithm.

We compare MSS algorithm with Round Robin (RR), showing that MSS can achieve a

smaller initial buffering time. We generate 5,000 video requests, in constant arrival

pattern, flash crowd pattern, and periodic flash crowd pattern respectively. We then

record the initial buffering times for each accepted request using RR and MSS

respectively. In our simulation, the initial buffering length is set to 8 blocks (SinilBlljf= 8)

-

Hi I P 111 III mill u i II
RR
MSS

1 501 1001 1501 2001 2501 3001 3501 4001 4501
Requests

Figure 5-11 Initial buffering time using different scheduling algorithm

69

and the bandwidth reservation unit is set to 64kbps (Bwr

u = 64kbps). Figure 5-11 shows

the simulation results. The results presented in the figures are the average results of the

experiments on the three request arrival patterns. It is clear that MSS always achieves an

equal or smaller initial buffering time compared to RR. Figure 5-12 shows the initial

buffering time gain using MSS, where gain is defined as follows:

InitialBufferingTimeGain = InitialBufferingTimeRR - InitialBufferingTimeMSS (5-1)

As the figure shows, the gain is always bigger than or equal to 0, and can be as

large as more than 14 seconds.

1 501 1001 1501 2001 2501 3001 3501 4001 4501
Requests

Figure 5-12 Initial buffering time gain using MSS scheduling algorithm

5.2.5 Varying Network Size

In this set of experiments, we evaluate the performance of our proposed

architecture in different sized networks. We measure the average segment requests

rejection ratio for 3 different sized peer-to-peer networks: (1) 3000 peers network

70

(consists of 2050 routers and 3000 peers), (2) 6000 peers network (consists of 2050

routers and 6000 peers), and (3) 9000 peers network (consists of 2050 routers and 9000

peers). The video requests arrive in flash crowd pattern. Other simulation settings are

same as 5.2.1.

Figure 5-13 shows the simulation results. From the figure, we can see that since the

network size increases, more segment requests will be issued by peers at the same time,

thus at the beginning, the rejection ratio for 6000 peers network is bigger than the one for

3000 peers network and the rejection ratio for 9000 peers network is bigger than the one

for 6000 peers network. However, the rejection ratios decrease fast. After about 25

minutes, the rejection ratio for 6000 peers network is almost same as the one for 3000

peers network. And after about 35 minutes, the rejection ratio for 9000 peers network is

almost same as the one for 3000 peers network. The simulation results verified our

hypothesis that as more peers participating in the system, more segment requests can be

supported at the same time, since more resources are contributed to the system by peers.

The simulation results also imply that our proposed architecture is scalable, as long as the

participating peers contribute some of their resources to the system.

0.8

0.7

o 3000
0.6 -1 6000

— — 9000

<

0
0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 1 10 115 120

Time (minutes)

Figure 5-13 Average rejection ratio for various sized network

71

5.2.6 Varying Peers' Cooperation Level

Our final set of experiments evaluates system performance under different peers'

cooperation level. We measure the average segment requests rejection ratio for 3

different peers' cooperation level: (1) Low cooperation level, where peers contribute their

bandwidths ranging from 64kbps to 512kbps and storage ranging from 1 segment (19MB)

to 3 segments (57MB); (2) Medium cooperation level, where peers contribute their

bandwidths ranging from 128kbps to 1Mbps and storage ranging from 3 segments (57MB)

to 6 segments (114MB); (3) High cooperation level, where peers contribute their

bandwidths ranging from 1Mbps to 2Mbps and storage ranging from 5 segment (95MB)

to 10 segments (190MB). The video requests arrive in flash crowd pattern. Other

simulation settings are the same as 5.2.1.

Figure 5-14 shows the simulation results. From the figure, we can see that as the

peers' cooperation level increases, the segment requests rejection ratio decreases faster,

which means that the system streaming capacity is amplified faster. The reason for this is

that if peers contribute more resources to the system, there will be more storage to cache

segments and more bandwidth to support streaming requests; thus, the system streaming

capacity increases faster.

0.6

Time (minutes)

Figure 5-14 Average rejection ratio for various peers cooperation level

72

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we propose BitVampire, a novel low-cost on-demand media streaming

architecture for heterogeneous peer-to-peer networks. In this architecture, published

videos are split into segments and distributed to peers; thus outbound bandwidths form

multiple peers can be aggregated to serve a single video streaming request. Instead of

relying on powerful servers/proxies, our architecture exploits the often underutilized

peers' resources, which makes it cost-effective. To deploy this architecture in the

dynamic heterogeneous peer-to-peer networks, three key techniques are used: (1) A

media segments distributing (MSD) algorithm, a seed re-distributing (SRD) mechanism,

and a caching scheme are proposed to distribute and cache media segments. (2) An

application-level overlay, called Category Overlay is chosen as the underlying search

infrastructure to efficiently find the desired media segments. (3) To parallel download

73

streaming content from multiple supplying peers in real-time mode, we further divide

segments into blocks and propose a multiple suppliers scheduling (MSS) algorithm to

assign blocks to different supplying peers to send.

Based on our proposed architecture, a prototype has been implemented using Java

and JMF. We designed a general purpose P2P application framework, RTG, to facilitate

the implementation procedure. To evaluate the performance of our proposed architecture,

we conducted extensive simulation experiments on large, Internet-like topologies. The

simulation results show that the proposed architecture can support large-scale on-demand

media streaming service in the dynamic heterogeneous peer-to-peer networks. It also

demonstrates that our media segments distributing (MSD) algorithm can achieve fast

system streaming capacity amplification, and our multiple suppliers scheduling (MSS)

algorithm can achieve a small initial buffering time.

6.2 Future Work

There are five major directions call for further investigation. First, our simulator models

the bandwidth limit and propagation delay on the physical links, but it does not model

queuing delay and packet losses because modelling these would prevent large-scale

network simulations. Therefore, to learn more about BitVampire and its behaviour in

various real network conditions, a set of experiments on the Internet is necessary. We

plan to improve our prototype and deploy it on PlanetLab [32] to evaluate its

performance in the near future.

Second, currently we use L R U as the cache replacement algorithm to find the

victim segment if a peer does not have enough available storage to hold the new cached

74

segment. However, LRU could reduce the system streaming capacity under some special

cases. For instance, if most of the streaming sessions last for a long period, many of the

segments at the beginning portion of the video would be replaced, which would decrease

the system streaming capacity. Therefore, a more intelligent cache scheme could be part

of our future work.

Third, our scheduling algorithm can aggregate bandwidths from multiple supplying

peers and achieve a small initial buffering time. However, a more aggressive scheduling

algorithm could be proposed, in which the blocks are assigned to suppliers in a roughly

round robin manner and also in proportion to their contributed bandwidths. Furthermore,

the blocks with small sequence numbers should be assigned to the suppliers that

contribute more bandwidths, since these blocks are more time constrained and these

suppliers are more powerful. For example, in Figure 3-6, a more aggressive scheduling

algorithm would assign block 5 to P, and block 7 to P3, instead of assigning block 7 to Pi

and block 5 to P3.

Fourth, in our current architecture, we deliver the video in full quality. If full

quality media delivering could not be achieved due to peer leaving/failure or network

congestion, we simply pause the playback until all of the desired streaming packets arrive.

However, adaptive streaming could be used to improve the quality of service. One

possible approach is to use layered coding, in which a video is encoded into multiple

layers. The receiver decides how many layers it can receive based on the current

bandwidths from the supplying peers. If network congestion happens, the receiver can

ask supplying peers to send fewer layers, which results in a smooth quality adaptation.

Another approach is to use the priority drop technique [22], in which the supplying peers

can drop some less important packets if they detect network congestion.

75

Finally, to encourage peers to contribute their storage and outbound bandwidths, an

incentive mechanism should be proposed. With the incentive mechanism, the peers that

contribute more resources should obtain a better service, while the ones that contribute

little resources will encounter poorer service quality if others compete for the resources

with them. Since our architecture relies on peers' resources to support on-demand media

streaming, as more and more resources contributed to the system, better services could be

achieved for all of the participating peers.

76

Bibliography

[1] S. Acharya and B. Smith, "MiddleMan: A Video Caching Proxy Server", in

Proceedings of NOSSDAV '00, 2000.

[2] K. Aberer, M. Hauswirth, "Peer-to-Peer Information Systems: Concepts and Models,

State-of-the-Art and Future Systems", in Proceedings ofICDE'02, 2002.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, "Scalable Application Layer

Multicast", in Proceedings of ACM SIGCOMM'02, Pittsburgh, PA, 2002.

[4] L. Cherkasova, M. Gupta, "Charactering Locality, Evolution, and Life Span of

Accesses in Enterprise Media Server Workloads", in Proceedings of NOSSDA V'02,

2002.

[5] Y. Cai, K. Hua and K. Vu, "Optimzed Patching Performance", in Proceedings of

ACM/SPIE Multimedia Computing and Networking (MMCN '99), 1999.

[6] Y. Chae, K. Guo, M . Buddhikot, S. Suri and E. Zegura, "Silo, Tokens, and Rain-bow:

Schemes for Fault Tolerant Stream Caching", Special Issue of IEEE JSAC on

Internet Proxy Services, 2002.

77

[7] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, "Enabling Conferencing Applications

on the Internet Using An Overlay Multicast Architecture", in Proceedings of ACM

SIGCOMM'01, San Diego, CA, August 2001.

[8] Y. H. Chu, S. G. Rao, and H. Zhang, "A Case for End System Multicast", in

Proceedings of A CM SIG METRICS '00, 2000, pp. 1-12.

[9] H. Deshpande, M. Bawa, and H. Garcia-Molina, "Streaming Live Media over A Peer-

to-Peer Network", in Submitted for publication, 2002.

[10] D. Eager, M . Vernon and J. Zahorjan, "Minimizing Bandwidth Requirements for

On-Demand Data Delivery", IEEE Transactions on Knowledge and Data

Engineering 13(5), 2001.

[11] Gnutella. Website: http://www.gnutella.com

[12] P. Ganesan, Q. Sun, H. Molina, "YAPPERS: A Peer-to-Peer Lookup Service Over

Arbitrary Topology", in Proceedings, of IEEE INFOCOM '03, 2003.

[13] M. M. Hefeeda, B. K. Bhargava, D. K. Y. Yau, "A Hybrid Architecture for Cost-

Effective On-Demand Media Streaming", Computer Networks 44 (2004).

[14] K.A. Hua, Y. Cai and S. Sheu, "Patching: A Multicast Technique for True On-

Demand Services", in Proceedings of ACM Multimedia '98, 1998.

[15] K.A. Hua and S. Sheu, "Skyscraper Broadcasting: A new Broadcasting Scheme for

Metropolitan VOD systems", in Proceedings of ACM SIGCOMM '97, 1997.

[16] S. Jain, R. Mahajan, D. Wetherall, and G. Borriello, "Scalable Selforganizing

Overlays", Technical Report, University of Washington, 2000.

78

http://www.gnutella.com

[17] Java Media Framework (JMF). Website: http://java.sun.com/products/java-

media/jmf/

[18] JXTA Technical Document. Project JXTA: An Open, Innovative Collaboration.

[19] JXTA v.2.3.x: Java™Programmer's Guide, April, 2005.

[20] JXTA. Website: http://www.jxta.org

[21] KaZaa. Website: http://www.kazaa.com/us/index.htm

[22] C. Krasic, J.Walpole, W.C. Feng, "Quality-Adaptive Media Streaming by Priority

Drop", in Proceedings ofNOSSDAV03, Monterey, CA, June 2003.

[23] B. T. Loo, R. Huebsch, I. Stoica, J. M. Hellerstein, "The Case for a Hybrid P2P

Search Infrastructure", in Proceedings. oflPTPS '04, 2004.

[24] X. Liu, S. T. Vuong, "Supporting Low-Cost Video-on-Demand in Heterogeneous

Peer-to-Peer Networks", to appear in Proceedings of Seventh IEEE International

Symposium on Multimedia (ISM'05), Irvine, CA, December 2005.

[25] X. Liu, J. Wang, S. T. Vuong, "A Peer-to-Peer Framework for Cost-Effective On-

Demand Media Streaming", to appear in Proceedings of 3rd IEEE Consumer

Communications and Networking Conference (CCNC'06), Las Vegas, NV, January

2006.

[26] X. Liu, J. Wang and S. T. Vuong, "A Category Overlay Infrastructure for Peer-to-

Peer Content Search", in Proceedings of APDCM'05 (in conjunction with

IPDPS'05), Denver, Colorado, USA, 2005.

79

http://java.sun.com/products/java-
http://www.jxta.org
http://www.kazaa.com/us/index.htm

[27] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.

Rollins, Z. Xu, "Peer-to-Peer computing", Technical Report HPL-2002-57, HP

Laboratories, Palo Alto.

[28] Napster. Website: http://www.napster.com

[29] Padhye, J. Kurose, D. Towsley, and R. Koodli, "A Model-based TCP-friendly Rate

Control Protocol", in Proceedings ofNOSSDAV'99, 1999.

[30] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, "Distributing

Streaming Media Content using Cooperative Networking", in Proceedings of

A CM/IEEE NOSSDA V '02, Miami, FL, USA, May 12-14 2002.

[31] Peer-to-Peer Working Group Website: http://www.P2Pwg.org

[32] PlanteLab. Website: http://www.planet-lab.org/

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, "A Scalable Content-

Addressable Network", in Proceedings, of ACM SIGCOMM '03, 2003.

[34] R. Rejaie, M . Handley, and D. Estrin, "RAP: An End-to-End Rate-based Congestion

Control Mechanism for Realtime Streams in the Internet", in Proceedings of IEEE

INFOCOM'99, 1999.

[35] S. Ramesh, I. Rhee and K. Guo, "Multicast with Cache(mCache): An Adaptive

Zero-delay Video-on-Demand Service", in Proceedings ofINFOCOM'01, 2001.

[36] S. Saroiu, P. Gummadi, S. Gribble, "A Measurement Study of Peer-to-Peer File

Sharing System", in Proceedings of Multimedia Computing and Networking

(MMCN'02), San Jose, CA, USA, January 2002.

80

http://www.napster.com
http://www.P2Pwg.org
http://www.planet-lab.org/

[37] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, "The Feasibility of

Supporting Large-Scale Live Streaming Applications with Dynamic Application

End-Points", in Proceedings ofSIGCOMM'04, 2004.

[38] S. Sheu, K. A. Hua, and W. Tavanapong, "Chaining: A generalized batching

technique for video-on-demand", in Proceedings of the IEEE Int'I Conf. On

Multimedia Computing and System, Ottawa, Ontario, Canada, June 1997, pp. 110-

117.

[39] 1. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, "Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications", in Proceedings, of ACM

SIGCOMM '07,2001.

[40] S. Sen, J. Rexford, and D. Towsley, "Proxy Prefix Caching for Multimedia Streams",

in Proceedings ofIEEEINFOCOM'99, 1999.

[41] D. A. Tran, K. A. Hua, T. Do, "ZIGZAG: An Efficient Peer-to-Peer Scheme for

Media Streaming", in Proceedings ofINFOCOM'03, 2003.

[42] S. Viswanathan and T. Imielinski, "Metropolitan Area Video-on-Demand Service

using Pyramid Broadcasting", Multimedia Systems 4, 1996.

[43] J. Wang, "Efficient Content Locating in Dynamic Peer-to-Peer Networks", Master

Thesis, Department of Computer Science, The University of British Columbia, 2005.

[44] G. O. Young, C.C. Aggarwal, J.L. Wolf and P.S. Yu, "On Optimal Batching Policies

for Video-on-Demand Storage Servers", in Proceedings oflCMCS '96, 1996.

[45] E. Zegura, K. Calvert, and S. Bhattacharjee, "How to Model An Internetwork", in

Proceedings ofIEEEINFOCOM'96, 1996.

81

[46] B. Zhao, J. Kubiatowicz, Jeseph, Anthony, "Tapestry: An Infrastructure for Fault-

tolerant Wide-area Location and Routing", U.C. Berkeley Technical Report

UCB/CDS-01-1141, April, 2001.

[47] X. Zhang, J. Liu, B. Li , and T. P. Yum, "CoolStreaming/DONet: A Data-driven

Overlay Network for Peer-to-Peer Live Media Streaming", in Proceedings of

INFOCOM'05, 2005.

82

