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Abstract

. P2P Data Management Systems (PDMSs) allow the efficient sharing of data
between peers with overlapping sources of information. These sources share
data through semantic mappings between peers. In current systems, queries
are asked over each peer’s local schema and then translated using the se-
mantic mappings between peérs. In this thesis we propose that a mediated
schema can benefit PDMSs by allowing access to more data and by making
that access comprehensible. We présent our system - MePSys, which uses
the mediated schema as a media for query translation in relational PDMSs.
We show how to create a mediated schema in PDMSs automatically using
the semantics of the existing mappings provided to translate queries. We
further discuss how to update the mediated schema in a stable state, i.e.,
after the system setup period.
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Chapter 1
Introduction

1.1 Overview

A peer-to-peer (P2P) network is a network in which every participating
node in the network provides power, bandwidth and other resources rather
than only relying on a small number of servers. It is a decentralized and dis-
tributed system. Compared to a client-server architecture where the number
of servers are fixed, P2P.is more flexible and extensible because when new
nodes arrive, the total capacity of the system increases accordingly while
in client-server environment, the adding'of new clients means the slowing
down of the whole system. P2P systems are very useful and famous nowa-
days among users who want to share files while users are everywhere across
the world. For example, Napster [3] is a successful system for music sharing
using P2P infrastructure.

A Peer Data Management System (PDMS) (e.g.- [7, 8, 14, 24]) is the
result of blending the benefits of peer-to-peer (P2P) networks, such as lack
of a centralized authority, with the richer semantics of a database. Peer
Data Management System (PDMS) is a Data Management System using
P2P architecture. Each peer in the system holds a database. It can be
extensively used for data exchanging, query answering, information sharing,
etc. In the areas of scientific research, the idea of setting up a PDMS for
research in the related area to share data among peers has already been
widely discussed and admitted. '

A PDMS, as a P2P system itself, keeps the properties of all P2P systems:
Every peer may join and leave the network at any time. All peérs are

autonomously created and managed. However, A PDMS also requires that

each peer, upon entering the network, publishes its database schema so that
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it can be seen by other peers in the network, and the entering peer must
create a mapping between itself and one or more neighbors. We call peers
between which there exists a direct mapping acquaintances. These inter-peer
mappings allow query translation schemes [8, 24, 26] which allow users to
easily, semantically query data from sources that are not their own. PDMSs
are a data management architecture where not all nodes in the system need
to be there constantly.

PDMSs are often compared with a Data Integration System (DIS) which
uses a client-server architecture. A major differences between a DIS and
PDMS is the centralized control. In a traditional DIS, there is always one or
more central servers to store a global view for all clients’ database schemas.
Queries are typically posed over the global schema and then translated to
local schemas. All the query processing work such as query translation,
query forwarding, receiving answers, and translating answers entirely relies
on those servers. Thus, if the servers break down, or become unavailable, the
whole system will fail. Considering the workload of the whole system, the
centralized control definitely results in a severe bottleneck. On the other
side, a PDMS is a dynamic and loosely-coupled environment. There are
no central servers in the PDMS. Every peer is both a server and a client.
Even though, some nodes might take more responsibilities, e.g., super-peer-
structured P2P system, these nodes are still not taking the responsibilities of -
controlling all nodes, and the resulting architecture is more decentralized. In
most current PDMSs, a query is posed over a local peer schema, and answers
will be computed in this peer database. The query will also be forwarded
and reformulated to other peers in the network, and query results will be
sent back. The final result set returning to the user will be answers from
the local peer as well as those from other peer databases. -

The goal of this thesis is to study the properties of a PDMS, comparé
and survey existing PDMSs, and look for more opportunities to improve
the current PDMS design to let the users have a better understanding of

the query processing result and to speed up the query reformulation process

among peers.
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1.2 A Motivating Example of PDMS

Given the above properties of flexibility and decentralization, a PDMS is
very suitable for scientific research data sharing and exchange [21]. There
are many scenarios where a PDMS would be useful. In bioinformatics this
has already been studied from both the data management approach 17, 21]
and also from the bioinformatics approach [25]. Imagine that the Biology
labs from different universities are doing research in similar areas. Some
might have a partial gene sequence data of a sparrow, and some might have
another partial gene sequence data of a sparrow. Researchers from either
lab wants more data for further experiment. Even though their results
have been published, the data still need-some way to be shared by others.
Thus a PDMS where each peer comes from a biology lab doing similar gene
expression research can handle such a task well. In general, the types of
scenarios that we.can imagine that would benefit the most from a PDMS
are those scenarios where people have overlapping structured data, and they
want to access other sources’ additional structured information.

Rather than relyihg on readers having an understanding of the intrica-
cies of biological data, we present a scenario which is familiar to readers of
Computer Science area: bibliography management in Example 1.

Example 1 Assume that there are two database servers of bibliography in-
formation: UBC and UW, and that they have the following relations storing

information about conference papers:

UW.conf-paper(title, venue, year, pages)
UBC.conf-paper(title, conference, year, url)

As in this example, it is very likely that each database server only stores
part of the record about conference papers, e.g., only UW has page infor-
mation and only UBC has url. Additionally, even though they may have
overlapped record for the same paper, the content might still be different.
For instance,(“Data Management for Peer-to-Peer Computing: A Vision”,
“Madison, Wisconsin, USA”, 20027, /6) is one data entry in UW.conf-paper;

3




Chapter 1. Introduction

(“Data Management for Peer-to-Peer Computing: A Vision”,“WebDB”,
“2002”, “citeseer.ist.psu.edu/bernstein02data.html”) is the data entry for
the same paper in UBC.conf-paper. Given the similarity of relations above,
along with the difference in available data, it would be beneficial for users

of the two databases to be able to share their data on conference papers.
a

uery, Reformulation

QUEN: Qui

Figure 1.1: Query Processing in traditional PDMS

Figure 1.1 is a picture to explain how queries are propagated and trans-
lated back in the P2P systems. In most PDMSs (see figure 1.1) a user at
peer UBC will ask a query posed over UBC’s schema. Answers are com-
p'uted at UBC, and the query is also reformulated and forwarded to other
peers through mapping paths in the network. For example, assume UBC
has a mapping Mapypc.yw to UW. Using Mapusc.uw, a query Qusc
will be asked over UBC and then reformulated to Quw, a query over UW’s
schema. Quw will be processed at‘peer UW. UW will reformulate Quw to
query over any additional acquaintances’ schemas in the same way. Thus
queries can be forwarded as far along the mapping path as possible, subject
to system constraints. Query results will be sent back to the peer UBC after

a similar series of reformulations. Thus, the user at UBC will get answers

not only from local database but from other peer database as well.
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1.3 Challenges and Contributions

The methods in Example 1 have been well studied and allow translation and
answering of a large class of queries [26]. However, when the full context
is looked at, there are additional opportunities for improving the usefulness
and comprehensibility of query translation in PDMSs, which we tackle in
this thesis. 4

First, we get rid of the restrictive query format. In previous methods,
only information supported by the local schema can be queried. Further, a
user at a peer cannot know what other information is available in the net-
work. The user can only see the local schema, despite the fact that actually
there is much more information in the PDMS. This is clearly suboptimal;
since the information is present, users should be able to fully utilize these
resources and not be restricted by the format of local schemas. For example,
in Example i, users at UBC would be unable to access the page information
at UW because they can only ask quefies over. their own schema.

Second, we improve the comprehensibility of the PDMS. Current sys-
tems can either fail to take into account some expressiveness available to the
system, or result in systems that are difficult to understand, as is shown in

Example 2:

Example 2 Consider the following mappings, where (2.1) relates source A -
to target B, and (2.2) relates source B to target C. C means the left-hand
side is a subset of the right-hand side. Attributes in different sources that

can be mapped to each other are using the same variable names.

A.grandpa(z, y) C B.father(z, z;), B.father(zy, y) S (2)
B.father(z, z1),B.father(z1, z3), B.father(zs, y)
C C.greatgrandpa(z, y) (2.2)

This is isomorphic to a mapping in [20]. (2.1) says that if z is the
grandpa of y, then there is some z; such that x is x’s father, and z; is y’s

father. Mapping (2.2) says that if 2 and z;, z; and 3, 2o and 3 all have

father relationship, then z and y will be the great grandpa of y. Using the
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algorithm described in Piazza [20], composing mappings (2.1) and (2.2) to

map source A to source C results in:

A.grandpa(z, x2), A.grandpa(zs, y) C C.greatgrandpa(z, y1) | (2.3)

(2.3) says that if z is zo’s grandpa and z2 is y’s grandpa, then z is
sbmebody’s great grandpa. However, (2.3) does not express any constraint
on y1: from the given information, it is clear that y; is the father of y
and zy is the father of y,; Piazza is not expressive enough to express that
restriction. While the mapping language used by Fagin et al. [10] has
enough expressive power to handle the same example, the final results using
[10)’s algorithm are difficult to comprehend. The reason for this is that [10]
uses second-order logic dependencies to express their mappings. Thus for
all those mappings with unbound attributes (attributes that appear in the
target but do not appear in the source) in the first-order logic, e.g. z; in
(2.1), [10]’s mapping language can use J and V to explain the constraints
for these attributes. However, when there are too many constraints in the
mapping, the readability of the mapping itself will be decreased.

O

In our system, we make the system more comprehensible by providing
a comprehensible mediated schema, and each local schema will be related
to the mediated schema so that users of both the local schema and the
mediated schema can easily understand the system. '
Third, we provide more semantic query processing. In traditional P2P
file systems, copies of the same file on different peers can be viewed as
grouped into the same file; each may contain different parts of the original
file. Consider the scenario of a PDMS. Data of the same topic (which is
expressed as “Concept” in this thesis) are dispersed among peers. When
data are grouped according to the topic in advance, it will be very easy to
help the peers exchange data and make the query processing fast.
Fourth, we reconsider the difficulties and complexity raised by map-

ping composition, and see whether such complexity can be avoided in real

systems.
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Fifth, we make good use of indirect mapping information. We call the
information found in the composed mapping that is not included in the direct
mapping indirect mapping information. Previous methods tend to reformu-
late queries based on single sources of mapping information. However, in
real systems, it is very likely that different mapping routes can complement
each other for query reformulation. Query answers will be improved a lot if
we consider different mapping routes and indirect mapping information.

Taking into consideration of all these opportunities, this thesis only con-
siders the mappings that can group data into topics, and proposes automat-
ically creating and maintaining a mediated schema to take advantage of the
above insights to improve functionality for PDMSs. For other mappings, the
same method proposed in Piazza is adopted in our system. This has many
advantages. First and foremost, users are able to access more information
residing in the network than in previous systems. Second, we create the
mediated schema using the pre-existing mappings, thus users have the flex-
ibility to use either the mediated schema or use their local schema as they
use previously existing methods, (e.g., those in Piazza [26]). Third, using
our method, the translation of queries over the mediated schema into the
sources is simple and effective. Finally, as will be shown in the experiment,
our query processing method using a mediated schema is much faster than
other methods, which won’t slow down the whole system but will ensure a

A comprehensible PDMS. -

However, creating a mediated schema in a PDMS setting requires an-

swering difficult questions such as:

- How can the mediated schema be created without a centralized au-
thority?

- How can an automatically created mediated schema be comprehensible

to users?

- Since the system is dynamic, the maintenance of a mediated schema

must be automatic and adaptive; how can human intervention be min-

imized?
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- Where is the mediated schema stored, and how is it updated?

In this thesis, we begin to answer the above problems. We make the
following specific contributions: '

- We describe our PDMS system, MePSys (Mediation supported Peer
Data Management System), in which a mediated schema can be cre-
ated dynamically and any information in the network can be queried
without requiring any additional global services in the network.

- We outline our Peer Schema Mediation algorithm (PSM algorithm)
which is used to efficiently cfeate the mediated schema representing all
schemas in the network, and introduce MappingTables as a mechanism
for relating the mediated schema to the sources.

- We study the semantics of mappings and introduce the idea of auto-
matically detecting specific Concepts in mappings. A mediated schema
based on Concepts is much easier for users to understand.

- We study how mapping composition impacts query reformulation and
how to discover common Concepts in composed mappings to ensure
_.comprehensible query results.

- We study how to solve the problem of updating the mediated schema

in our infrastructure.

- ‘We design experiments to test the efficiency and scalability of MePSys.

This thesis is organized as follows. In Chapter 2, we introduce back-
ground knowledge related to this thesis. We discuss related works in Chap-
ter 3. In Chapter 4, we define and analyze the semantic information that
can be presented in a conjunctive mappings. We present our approach to
creating a mediated schema in a PDMS and creating the mappings from
the mediated schema to local sources in Chapter 5, including algorithms

and examples. We further describe how to update the mediated schema in

Chapter 6. We show our system implementation setup and the experimental
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N

results in Chapter 8. We then study the mapping composition problem that
can impact the correctness and capability of query translation in the system

in Chapter 7. Chapter 9 concludes and discusses future work.




Chapter 2

Preliminaries

2.1 Definitions w.r.t. Mediated schema creation

Definitions in this section are related to the mediated schema creation.

2.1.1 Datalog

Datalog, a subset of Prolog, is a query and rule based language. It is a
logic-based query language for the relational model.
Take the following clause as an example:

Example 3 grandpa(x, z) :- father(x,.y), father(y, z)

. O
Each clause in Datalog is composed of two parts: head and body, which are
separated by “-”. In Example 3, grandpa(x, z) is the head, and father(x, y),
father(y, z) are collectively the body. The body can be viewed as conditions
known, and the head can be regarded as the query. The above clause can be
interpreted as: if x is y’s father and y is z's father, then x is z’s grandpa. Each
relation (e.g. father) is called a predicate. Each term in the predicate (e.g.,
x and y) can either be a variable or a constant. For safety, only variables

that appear in the body can appear in the head.

2.1.2 Mediated Schema, LAV, GAV and GLAV

A data integration system is a system that combines data r‘esiding at dif-
ferent sources and provides the user with a unified view of these data. A
mediated schema, also called a global schema, is usually provided'in a Data
Integration System. Every local source has its own database schema, which

is called the local schema. A médiated schema is a unified view of all these

10
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local databases so that through the mediated schema, users can query over
only the mediated schema and get results from all local sourées. .

There are two basic ‘approaches in a data integration system to specify

" mappings between the mediated schema and the local schemas: Local-As-

View (LAV) and Global-As-View (GAV). In LAV, the content of each lo-

cal source s.should be characterized in terms of a view gg over the global

schema; in GAV, the content of each element g of the global schema should

be characterized in terms of a view gg over the local sources [19].

Example 4 To explain these definitions, consider Example 1 again. Two
. local databases UW and UBC are presented with the database relations as
below.

UW database:
UW.conf-paper(title, venue, year, pages)

- UBC database:
UBC.conf-paper(title, conference, year, url)

A mediated schema M is manually created as:
M.conf-paper(title, conference, venue, year)

Using LAV, UW.conf-paper and UBC.conf-paper will be explained as a
view of the mediated schema:

UW.conf-paper(title, venﬁe, year, pages) :-
M.conf-paper(title, conference, venue, year)
UBC.conf-paper(title, conference, year, url) : -
M.conf-paper(title, conference, venue, year)
Using GAV, M.conf-paper can be expressed as. the view of all local

schemas.

M.conf-paper(title, conference, venue,'year) -
UW.conf-paper(title, venue, year, pages)

M.conf-paper(title, conference, venue, year) :-
UBC.conf-paper(title, conference, year, url)

11
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g
GLAYV, ﬁrstiy introduced in [12], is a more generalized approach to specify
mappings between sources.” GLAV mapping language adopts both GAV
and LAV in its presentation, which allows a flexible schema definition and

combines the expressive power of both GAV and LAV. Example 5 shows an
example of GLAV mapping relating different schemas.

Example 5 Assume UW and UBC have the following schemas.

UW database:
UW .research-area(area, groupleader, department)
UW .grad-student(stu-name, area, advisor)

UBC database:
UBC faculty(name, office; department)

A mediated schema M is manually created as:
M.people(name, department)

Using GLAV, relationship between the source schema and the mediated

schema can be freely expressed.

GLAV mapping between UBC and M
UBC faculty(name, office, department)
— M.people(name, department)
GLAV mapping between UW and M
UW grad-student(stu-name, area, advisor),
UW.research—area(area, gl,' department)
— M.people(name, department)

The above GLAV mappings can also be rewritten in conjunctive map-

pings.

12
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GLAV mapping between UBC and M

LAV: ‘
Q1(name, department):-M.people(name, department)

GAV: : .

Q1(name, department):-UBC.faculty(name, office, department)

GLAV mapping between UW and M
LAV:
Q2(name, department):-M.people(name, department)
GAV:
Q2(name, department):-UW.grad-student(name, area, advisor),
' UW.research-area(area, gl, department)

O

2.1.3 Query and Mapping

A mapping is the medium for exchanging data and reformulating queries
among different schemas; in particular, the mapping defines the overlapping
parts of acquaintances’ schemas. As such, it is the most basic and impor-
tant part of the system. We use conjunctive mappings [27] as our mapping
language. These are the same mappings as in [22] and [20]. We choose
conjunctive mappings as our input mapping because they can easily express
commonality among different schemas and allow the use of existing algo-
rithms if the mediated schema is not used, e.g., through the methods in [26]
which just compose the mappings between peers. A conjunctive mapping is
a set of conjunctive queries relating a pair of local schemas: i.e., a set of
simple Datalog queries. We briefly review the syntax of conjunctive queries
in Example 6. In a conjunctive mapping, if a set of conjunctive queries has
the same IDB name (i.e., name of the answer relation), that set expresses
the overlapping information in the sources. Note that we still use mapping
to refer to the general sense of correspondences between schemas. Each con-
junctive query in the conjunctive mapping is also called a component, which

relates to one schema for that mapping. In a conjunctive query, variables

13 .
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that appear in both the head and the body are called distinguished variables;
variables that appear only in the body are called ezistential variables.

Example 6 Consider the following conjunctive mapping on the schemas in

Example 4:

conf-paper(title,venue,yr):-UW.conf-paper(title,venue,yr,pages)
conf-paper(title venue,yr):-U BC.conf-paper(title,venue,yr,url)

This mapping shows how UBC and UW can share information about
conference papers through the reuse of the IDB name conf-paper. Each
line is a conjunctive query. conf-paper(title,venue,yr) is the head of both
queries, and title, venue, and yr are head variables, indicating that these
are the common attributes in the two schemas. As in general Datalog,
the semantics imply that conf-paper information can be found by taking
the union of title, venue, and yr attributes found from the bodies of the two
queries. The bodies express the conditions required to form an answer tuple,
and reuse of a variable indicates that those values must be the same. Each
relation in the body of a query is referred to as a subgoal. Together, the
conjunctive queries show that information about conf-papers can be found
through either UW.conf-paper or UBC.conf-paper, and all information that
can be obtained from the topic conf-paper are titlé, venue, yr, page and url
information. Note that the IDB name of a subgoal is the subgoal name. O

2.2' Definitions w.r.t. PDMS

2.2.1 Query Reformulation and Result Reformulation

Query reformulation is the process of translating a query over database
schema A to that over database schema B so that queries over A can be
understood by schema B. The reformulation process follows the mappings
between these two schemas. Accordingly, result reformulation is the process
of translating the results using database schema A to those over database
schema B so that results obtained at schema A can be understood by schema
B.
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2.2.2 Mapping Composition

Mapping composition is a hard problem which draws much attention re-
cently.’ Intuitively, when given semantic mappings Mjz from schema A to
B, and Ms3 from B to C, we hope we could compute a direct‘mapping M3
from A to C which is equivalent to the composition of mappings M2 and
Mos. .

Halevy et al. provided a formal definition of mapping composition: “The
mapping M a_c is a composition of the mappings M4_,p and M B—».C w.r.t.
a query. language Q if for all databases D 4 for R4, and for all queries g over
Rc such that g is in the language Q, the certain answers for ¢ w.r.t. Ma_.c
are the same as the certain answers w.r.t. Ma_p and Mp_.c.” [20]

Fagin et al. defined the mapping composition in more logical sense: “Let
Mz =(S1, S2, £12) and Moz =(S2, S3, £23) be two schema mappings such
that the schemas 51, S2, S3 have no relation symbol in common pairwise.
A schema mapping M = (57, S3, X13) is a composition of Mjp and Moz if
Inst(M) = Inst(Ma2) o Inst(Mps), which means that Inst(M) = {<I1; I3> |
‘there exists I such that <Iy; I,> € Inst(M2) and <Ip; Is> € Inst(Maz3)}.”
“A schema mapping is a triple M = (S, T, ¥4), where S and T are schemas
. with no relation symbols in common and X is a set of formulas of some
logical formalism over <S, T'>.” [11]

Mapping composition is a problem that costs high complexity when con-
sidering all classes of mappings. In Chapter 5, we explore and analyze map-

ping composition problem in more depth.
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Chapter 3
Related Work

3.1 Peer Data Management Systems

For a long time, P2P computing and Database research groups were very
independent. The idea of incorporating the database research into P2P was
proposed and discussed early this century by Gribble et al. [13] in 2001,
Bernstein et al. [7] in 2002. The paper by Bernstein et al. introduces the
Local Relational Model (LRM) as a data model specifically designed for
P2P applications. Most research projects in PDMS build their architecture
" by extending LRM, (i.e. Piazza [14], HePToX [8], Hyperion [24]). LRM
assumes that the set of all data in a P2P network consists of local (relational) -
databases, each with a set of acquaintances, which define the P2P network
topology. For each acquaintance link, translation rules between data items
and semantic dependencies between the two databases are predefined [7].
Our system also uses such a'model.

Piazza [14, 15, 20] is a well-known prototype for Peer Data Management
System. Piazza uses GAV/LAV style mappings to describe the semantic
relat'ionships between two peers. Our mapping is based on the Piazza map-
ping, but changed into conjunctive mapping for better understanding. Pi-
azza also provides a query reformulation algorithm [26] based on XQuery
to translate the queries among peers using different schemas. Unlike our
solution, they do not support a mediated schema in their prototype, which
is flexible for query translation. Our solution uses the similar initial setup -
but ensures a better understanding of the system, access to more informa-
tion and a faster query reformulation. However, since our system uses the
same mappings as Piazza, users of our system could choose to use either our

query answering system or translate their queries using Piazza’s system.
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HePToX [8, 9] is a P2P XML database system. A novel query translation
algorithm has been developed for a simple but a significant fragment of
XQuery. Both Pidzza and HePToX assume that all queries are asked over
a local schema; they focus on finding a query reformulation algorithm to
‘translate a query over one peer schema to a query over its acquaintance.

The works of Fagin et al.-[10, 11] mainly consider how to process data
exchange and mapping composition without information loss using mappings
under second-order logic dependencies. They provide a nice solution for
mapping composition which they uses for their query translation.

Hyperion [5, 24] is also a Peer Data Management System which uses
both data-level and schema-level mappings to specify the correspondenceé
between acquainted peer databases and process query reformulation based
on these mappings. Mapping tables are used to specify correspondences
between data values of acquainted databases. This is the key difference
between Hyperion and all other systems.

In PeerDB [21], local peer schemas are not published. Instead, local
users input keywords from relation name, attributes, and records for each
peer database, and such information is used to match relations.

As in previous PDMSs: a new peer entering the network chooses one or
more acquaintances and provides mappings to one or more a,cduaintances,
either created by hand, or through some schema matching tool (see [23] for
a survey). Our system has the following minimal features:

Peer: each peer stores both its local schema and one or more versions
of mediated schema that local peer has an application built on. Only the
mappings from mediated schema to its local schema will be stored at this
local peer, which is used for query answering. Each peer will also store
MappingTables, which help create the mediated schema and determine how
to.relate the mediated schema to the peer’s schema.

Query answering: users can either query the local schema (as in previous
systems) or use the automatically-created mediated schema, which provides
additional information. In either case, user queries are automatically refor-

mulated and forwarded to the peers’ acquaintances.
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3.2 Mediated Schema Creation

Another aspect of our research is mediated schema creation (MSC). MSC
has been studied in data integration area. Batini, Lenzerini, and Navathe
[6] conducted a survey for database schema integration early in 1986. In
[6], methodologies for schema integration and a comparison of all available
methodologies are provided. Later, Lenzerini.[19] and Ullman [28] both
discussed data integration techniques in very theoretical perspective. How-
ever, most early work ignores creating the mappings between the mediated
schema and the sources.

Pottinger provided‘ a method for creating a mediated schema and map-
pings from the mediated schema to sources [22]. However, [22] does not
consider the complications of the PDMS situation, including the fact that
mappings can exist between any pairs of schemas, rather than those dictated
by a centralized authority. Our schema mediation method is based on [22].
However, we have the following improvements: our MSC method can handle
any numbers of local schemas, while the one in [22] can only handle a limited
number of local sources. In our approach, any ordering of mediating local
schemas will get an equivalent Tesult while in [22], different ordering of local
schemas might get totally different mediated schema and mappings to local
sources. This is let’s assume that we use a different approach from theirs.
For example, when we have three peers A, B, C mapping Mapa_p between
A and B, and mapping Mapg_¢ between B and C. Pottinger’s approach to
create a mediated schema M 4p is firstly based on schema A, B and mapping
Maps_p. Then mappings M apAB B and Mapg ¢ are composed to get the
mapping Mapap_c. Using schemas M4p, C and mapping Mapag_c, the
mediated schema of ABC can be created. Using our approach, we create
the intermediate mediated schemas M4p and Mpc first. Then we create
a mapping Mapap_pc based on the overlapped subgoals in the mappings
Mg and Mpc, and create the final mediated schema and mappings to local

sources.
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Chapter 4

Introducing Concept into
Conjunctive Mappings

Before we delve into the PSM algorithm, we start by studying two related
problems: what are the things that can be represented by the same relation
in the mediated schema, and what is the complexity of mapping composition
in such a system. We explore the first problem in this chapter, and explore
the second one in chapter 7.

The definitions of Conjuncti\?e Mapping and Conjunctive Query have
been introduced and explained in section 2.1.3. In this chapter, we explore
how to support semantics in the conjunctive mapping by applying some
restrictions on the conjunctive mappings. We first present the motivation of
introducing the idea of “Concept” into conjunctive mappings in section 4.1.’
We then use some examples to analyze what kind of restrictions should be
applied to the mappings in order to let the mapplngs have a C’oncept We
give the formal definition of a Concept in section 4.2.°

4.1 Motivation

One of our contributions is to introduce the notion of Concept into con-
- junctive mappings. Previous work either ignores the semantics that the
mappings might contain [11, 20] or simply assumed that if the IDB name
of the queries were the same, then they described the same Concept [22].
The later view, though using the semantic information that is embedded in
the mappings, is overly simplistic. However, reusing the same IDB name
inside a conjunctive mapping likely indicates the cases that (1) the seman-
tics of the mapping may make it impossible to construct an understandable
mediated schema if this is the only information taken into account and (2)
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consistency of IDB names cannot be assumed between mappings - there is
no guarantee that the creator of Map4 g will use the same IDB name in
the same way as the creator of Mapc_p to represent the same Concept. In
this thesis we begin to understand the semantic issues entailed by Concept.
However, as an introductory step, throughout this thesis we assume that
when more than one conjunctive mappings express the same Concept, their
IDB names are the same.

Intuitively, a Concept describes the common object among different
schemas. This is different from a mapping which expresses the overlapped
attributes across schemas. When a mapping is said to have a Concept,
the mapping should have a clear object, which might have some aspects
to describe it in detail. In Example 6, clearly the mapping describes the
object “conf-paper”, which uses five aspects, title, venue, yr, pages and url,
to describe this object. However, even though there are common relation
names (e.g., father) and attributes (e.g., x, x1) occurred in Example 2, these
two mappings together do not express a common object or an idea because
mapping (2.1) explains the Concept grandpa and mapping (2.2) explains the
Concept greatgrandpa. '

Deciding whether or not one mapping can express a Concept evolves
much Al research topics such as natural language processing, ontology, etc,
and thus is not our focus in this thesis. However, deciding whether two
mappings with the same IDB name together can express the same Concept is
very useful, especially when we want to mediate local schemas and propagate
queries along the mapping path. There are two reasons. First, users tend
to provide incomplete or wrong mapping information when two mappings
between two pairs of peer schemas are considered. Second, we want to
know whether the pre-defined mappings are truly relating identical parts
from different schemas. In this thesis, we only discuss this Concept problem
based on two or more mappings.

Throughout this thesis, the input mappings for MePSys are required to
be conjunctive mappings with the same concept (Definition 3) without self-
joins in each component. The PSM algorithm is sound and complete for

such input mappings.
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4.2 Definitions and Analysis

In Chapter 2, we introduced conjunctive mappings, including Example 6,
which defines one Concept: conf-paper. However, in many cases determinihg
a Concept from the mapping is not straightforward. Consider Example 7

(originally from [11] but rewritten in the form of a conjunctive mapping).

Example 7 Assume the following conjunctive mappings:
Conjunctive Mapping 1: between A and B

Manager(x, y) - A.Mgr(x, y) ‘ (7.1a)
Manager(x, y) :- B.Mgrl(x, y) , (7.1b)

Conjunctive Mapping 2: between B and C

Manager(x) :- B.Mgrl(x, x) (7.2a)
Manager(x) :- C.SelfMgr(x) (7.2b)

Both conjunctive mappings use the IDB name Manager. However, while
the first conjunctive mapping defines the Manager relationship, the second
does not. Though the relation Mgrl appears in both conjunctive mappings,
in the second mapping, it has more restrictions on its attributes: x must
manage itself. Thus, Mgrl(x, x) can no longer represents the idea of Manager
but Self-Management instead. Therefore, Example 7 has two Concepts:
Manager and Self-Management rather than only one. We call the attributes
in B.Mgrl(x, x) in (7.2a) a self-restrictive attribute, which is defined to be an
attribute that is in a subgoal that appears in two conjunctive mappings with
the same IDB name but has more restrictions than the same attribute in
the other mapping. Correspondingly, component (7.2a)’is a self-restrictive
component (Definition 6). O

Example 7 shows that it is hard to judge whether two mappings describe
the same idea. This thesis provides the first pass at understanding a Concept
which is some common topic or idea that can help make the mediated schema

‘more comprehensible. But what is a Concept in the conjunctive mappings?
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We begin with the following definition of a 'Concept in conjunctive mappings,
which allows a careful analysis of the cases that are clear-cut. There are
additional issues to consider, but in this thesis we focus-on these cases that
are clear and essential for deciding a Concept.

A Concept is defined by a set of aspects. As in relations in relational
databases, the aspects of a Concept are referred to as attributes. For exam-
ple, the concept of flight includes the attributes flightNo, date, time, depar-
ture, destination, crew, etc, which are the aspects that are used to describe
the Concept flight. In a conjunctive mapping, the name of each aspect is the
corresponding variable name in the mapping, which represents one aspect
of the Concept that the mapping describes.

Definition 1 (Concept in Conjunctive Mappings): A C’oncepi in conjunc-
tive mappings is defined as an idea, notion or entity that is common in all
schemas that the conjunctive mappings are relating. Formally, a Concept C
is expressed by a set of aspects S. O

For ease of discussion, we provide the following terms and definitions.

Definition 2 (Component): Each conjunctive query Q in the conjunctive
mapping is a component [22]. O

Definition 3 (Same Concept): We say that two conjunctive mappings
CM; and CM, define the same concept if the overlapped subgoals in C'M;
and C M, are equivalent subgoal sets, which can be checked as follows:

1. Assume YV component ¢ € CM; U CMa, A ¢ s.t. (1) c=¢ (e, cC
d & ¢ C c) and (2) |subgoals(c)| > |subgoal(c')l;

Assume the overlapped schema of CM; and CM; is X
Let C; be a component from CM; over X;

Let C5 be a cbmponent from C'M; over X.

2. Let name(sg) be the relation name of the subgoal sg;

Let sg_-names(Q) be the names of all of the relations in query @;

+
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Let overlap-names = {name(sg) | name(sg) € sg-names(C;) and
name(sg) € sg-names(C2)};

Let Cloveriap = {89 | name(sg) € overlap.names and sg € body(Ch)};

Coovertap = {89 | name(sg) € overlapnames and sg € body(Cz)}.

3. We now create new queries @1 and @ that describe the overlapping
parts of C1 and C; respectively. The goal is to see if the overlapping
parts are equivalent:

Let IDB(Q;) be IDB(CM;), and let IDB(Q3) be IDB(CMs,);
Let SUbgoals(Ql) = Cloverlapv and SUbgoalS(Q2) = CZoverlap;

Let all variables in Q; and @, be distinguished. That is let vars(head(Q1))
= vars(subgoals(@Q)) and let vars(head(Q2)) = vars(subgoals(Q2)).

Then the following conditions should hold:

1. IDB(CM,) = IDB(CM,) (which, by the above requirement, is also
equal to IDB(Q;) and IDB(Q52));

2. overlap-namés # @,
3. Q1 contains Q2, and @2 contains @1 (i.e., they are equivalent).

a

Additionally, condition (1) is actually the assumption we have made at
the beginning. This condition can be removed for further study in the future.

Condition (2) says that if schema X exists in two conjunctive mappings of
the same Concept, at least one relation r should appear in both conjunctive
mappings. This ensures that the Concept is compatible in the representation
of schema X. '

Condition (3) ensures that if one subgoal name appears in different con-
junctive mappings for the same concept, these two subgoals should be ex-

actly the same after a substitution of variable names.

23



http://overlap.nam.es

Chapter 4. Introducing Concept into Conjunctive Mappings

(2%

Example 8 There are other cases when two conjunctive mappings follow
the definition of same concept but still are not representing the same Con-
cept. Consider the following conjunctive mappings.

Conjunctive Mapping 1 between A and B
student(sid, name) - A.stu(sid, name)  (8.1a)
student(sid, name) :- B.stu(sid, name, program) (8.1b)
Conjunctive Mapping 2: between A and C '
student(sid, name, advisor) :- A.stu(sid, name),
' A .advisor(sid, advisor) . (8.2a)
student(sid, name, advisor) :- C.student(sid, name, advisor),
C.student(sid1, advisor, name) (8.2b)

Conjunctive mapping 1 and conjunctive mapping 2 together do not vio-
late property 1 and 2, but if only consider conjunctive mapping 2, it is easy
to find out that C.student(sid, name, advisor), C.student(sid1, advisor, name)
is not talking about the Concept “student”. This component is actually ex-
pressing the Concept of a student that has an advisor and the student is also
his advisor’s advisor. However, in this thesis, we only deal with whether two
conjunctive mappings can describe the same Concept, rather than deciding
whether the given conjunctive mapping itself is correct. oo
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Chapter 5

Creating a Mediated Schema
in PDMS

In our scenario, a mediated schema of all.peer schemas and the mappings
from the mediated schema to local sources are necessary for query propa-
gation and translation. We presented the preliminary knowledge of schema
mediation in Section 2.1 and Section 2.2. We also discussed Concept which
can be represented as the semantic information in mappings in Chapter 4. In
this chapter, we present the definition of schema mediation in P2P settings,
and present our approach of creating a mediated schema for a PDMS.

5.1 Pottinger’s Schema Mediation Algorithm for
DIS o

Pottinger [22] provides a novel approach for the data integration system
to automatically create a mediated schema M based on two local schemas
E and F, and a mapping Mapg_r between them. Using her algorithm,
not only a mediated schema M but the mappings from M to both local
sources F and F, Mapps_g and Mapy_r, will also be generated [22]. In this
section we describe Pottinger’s algorithms of creating a mediated schema
and mappings to local sources in a data integration system. The algorithm
of translation queries is also discussed in this section. .

Figure 5.1 shows Pottinger’s mediated schema creation algorithm. There
are mainly two categories of relations that will be generated in the mediated
schema M: One is directly from local relations. They are not sharing a
' Conéept with other schemas so that those relations do not appear:in any of
' the mappings. The other is created from mappings. If there is a mapping
between E and F which expresses something that £ and F bear in common,
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Procedure CreateMediatedSchema(E, F, Mapg_r)
/* E,F are schemas, and Mapg_r is a conjunctive mapping between them. */
cC=0
§=0
Let R={re€ EUF | r ¢ a projection-only component }
For each relationr € R
Let m be a new relation
name(m) = name(r)
attributes(m) = attributes(r)
Add &(r, m) to &
Add mto M
For each IDB name q € IDB(Mapg_r)
Let m be a new relation
Let vars, be the duplicate-free union of variables
of queries that define q in Mapg_r
name(m) = name(q)
attributes(m) = vars,
Add é(q, m) to €
Add m to M
Return M and £

Figure 5.1: The CreateMediatedSchema Algorithm from [22]

there will be a relation in the mediated schema representing this common
idea across the schemas. .

A simple subset of GLAV mappings [12] is used to express the mapping
from M to F U F. The heads of queries in Mapps_gur can be treated as
an intermediate schema, .9, which is used to indicate how each mediated
schema relation relates to each particular source. Each component (defined
in Section 2.1.3) ¢ from Mapg_g creates two views in Mapy_gur. The first
view, lv, is called a local view for c. It is a conjunctive query from M to IS.
LVjs consists of all such local view definitions for M. The second view, gu.,
is called a global view for c¢. gu. is a query from E to IS, and is included in
GV, the global view definitions for M. Figure 5.2 shows the algorithm of
creating the mapping Mapgyr.

Given M and Mapps_gur, any query that is over M can be reformulated
to local sources simply following LV)s and GV)s. The query reformulation

algorithm is shown in Figure 5.3.
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Procedure CreateMapping(E, F, Mapg_r, M)
/* E and F are schemas, Mapg_r is a conjunctive mapping between them,
and M and ¢ are the outputs from CreateMediatedSchema(E, F, Mapg_r) */
LVy =10 ' ’ )
GV =10
For each relation m € M
If e € EU F and £(e, m)
Let q be a fresh IDB name
Let (v, = q(attributes(m)) :- m(attributes(m))
Let gv,, = q(attributes(m)) :- e(attributes(e))
Add lv, to LV '
Add gv,, to GV
For each component ¢ € Mapg_r
Let cname = IDB(c)
Let m be the relation in M s.t. £(cname, m)
Let g be a fresh IDB name ‘
lv, = q(vars{c)) :- m(attributes(m))
gve = q(vars(c)) :- body(c)
Add lv,, to LVy
Add gv,, to GV
Return LVas and GV

~

Figure 5.2: The CreateMapping Algorithm from [22]

Formal definitions of a mediated schema in Data Integration System and
mapping from mediated schema to local sources, as well as the mediated

schema criteria are provided in [22].

5.2 Problem Definition

Just as we have discussed in Chapter 1, a mediated schema which can be used
to improve the comprehensibility of query translation will be very desirable
in a PDMS. To make this idea more clear, look at Example 9. /

Example 9 Assume that UW, UBC and UT are the three peers with
databases storing the following information about conference papers shown

in Figure 5.4:

UW.conf-paper(title, authbor, conference, venue, pages)
UBC.conf-paper(title, conference, year)
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Procedure RewriteQuery(M, Mapym_gur, Q)
Q’ = maximally-contained rewriting for Q using LVjs
/* Q’ is over intermediate schema IS x/
Q" = expansion of Q' using GV
/* Q" isover EUF x/
Return Q”

Figure 5.3: Query Rewriting Algorithm from [22]

UT .conf-paper(title, author, abstract, area)
The mappings between UBC and UW, UW and UT are given as follows:

Mapping Mapypc uw:
conf-paper(title,conference}:-
UBC.conf-paper(title,conference,year) |
. ' conf-paper(title,conference):-
UW.conf-paper(title,author,conference,venue, pages)

Mapping Mapyw ur:
conf-paper(title,author):-
UW.conf-paper(title,author,conference,venue,pages)
. conf-paper(title,author):-
UT.conf—paper(title,author,abstract,area)

Assume that a mediated schema M is created for all three peers using

the above information:
M.conf-paper(title,conference,year,author,venue, pages,abstract,area)

We further assume that the Mappings from M to each local peer can be
obtained using GLAV mappings:

Mapping Mapm uBc:
LAV:

conf-paper(title,conference,year):-
M.conf-paper(title,conference,year,author,ven ue,pages,abstract,area)
GAV: :
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Figure 5.4: Query Processing in MePSys

conf-paper(title,conference,year):-
UBC.conf—paper(title,conference,year)

Mapping Mapjr yw:
LAV: .
conf-paper(title,author,conference,venue,pages):-
M.conf—paper(title,conference,year,author,venue,pageé,abstract,area)
GAV:
conf—paper(title,author,conference,venue,pagés):-
UW.conf-paper(title,author,conference,venue, pages)

Mapping Mapy uT:
LAV: ‘
conf-pa per(title,author,abstract,area):-
“M.conf-paper(title,conference,year,author,venue,pages,abstract,area)
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GAV:
conf-paper(title,author,abstract,area):-
UT .conf-paper(title,author,abstract,area)

Now, using these GLAV mappings, queries can be easily translated from .
over M to any local schema or from any local schema to M.

A user at UBC can ask a query in UBC’s own schema:
q(title):-UBC.conf-paper(title,conference,year)
This query is first translated to that over M using Mapym vBc:

q(title):-M.conf-paper(title,conference,year,author venue,pages,abstract,
area) '

Then peer UBC broadcasts this query to all of this acquaintances, and ac-
quaintances to acquaintances. For example, UW receives this query. Using
the Mapping Mapy;_uw, this query can be translated to that over UW:

q(title):-UW.conf-paper(title, author,conference,venue, pages)

In the same way, answers can be reformulated and passed back to UBC.
Thus, UBC can get not only answers from its.bwn peer database but also
from other peer database. ' '

Users at UBC can also pose their query directly over the mediated
schema, by using which users are able to query more information in the
network. . O

Since Pottinger has already provided the related algorithm in [22] (de-
scribed in Section 5.1), are these algorithms already enough to create a
mediated schema in a PDMS setting? Unfortunately, the answer is no. In a
PDMS, any peer can join and leaves the network at any time, so the schema
mediation algorithm needs to be commutative and associative and satisfy all
the requirement of a P2P system. Though [22] considers to mediate more
than two schemas, when the order of local schemas changes, the final medi-
ated schema might also change. Furthermore, [22] requires that to include

a new local schema E into the previously created mediated schema M, a
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mapping from M to E should be specified. This could be achieved in a data
integration systefn. However, in a P2P system, nobody can be expected to
take the responsibility for this task. Also, in a PDMS, it is very likely that
two different versions of mediated schema (containing information of differ-
ent sets of peer schemas) might meet at some point, a merging operation to
merge the two mediated schemas would be inevitable. Such an instance is
never expected in a data integration system, nor in [22]. Thus, these new
tasks will be tackled in MePSys.

The algorithms of how to create a mediated schema and mappings to
local sources in a PDMS setting as shown in Example 9 will be described in
the following sections of this chapter.

To create a mediated schema, we extend the algorithms in Section 5.1.
This includes (1) using Concepts to create a more comprehensible mediated
schema, (2) ensuring that the algorithm is commutative and associative
(since any peer can enter or leave the network at any time). Here we provide
the formal definitions of schema mediation in P2P environment. We begin
by informally defining Concept Mediation, and then formally define it in
Definition 4. We use the definition of Concept Mediation to formalize our
definition of Mediated Schema In P2P in Definition 5.

Informally, concept mediation can be explained as the following: Assume
that a set of peer schemas S = {P;, P, ... , Px} and a set of mappings M
between some pairs of the schemas are given. Each mapping may contain
several conjunctive mappings. Each conjunctive mapping only specifies one
aspect of the commonality between the pairs of peers. We assume that all
conjunctive mappings with the same IDB name in the set M are talking
about the same thing, i.e., more formally they refer to the same concept
(Definition 3). We put all the information provided by these conjunctive -
mappings (defined in Section 2.1.3) together and form a global relation for
this concept. '

Definition 4 (Concept Mediation): given a set of peer schemas S = {p,
'p2, ... , P} and a set of mappings M between some pairs of the schemas, a
Concept Mediation is the process of creating a representation (i.e., relation

31




Chapter 5. Creating a Mediated Schema in PDMS

and mapping to sources) in the mediated schema that corresponds to those

conjunctive mappings in the set M with the same IDB name. (|

Informally, the mediated schema in P2P can be defined as the union of
~ all concepts of its peers. Note that if every concept is calculated by using
Concept Mediation, then the Mediated Schema is the union of all mediated
concepts. A Mediated Schema should also follow the Information Capacity
criteria: all queries that can be asked over the source schemas can be asked

over the mediated schema and the same results are returned [22].

Definition 5 (Mediated Schema in P2P): given a set of peer schemas S
= {P, P, ... , P;} and a set of mappings M between some pairs of the
schemas, a Mediated Schema is the union of all resulting relations from
Concept Mediation (commonalities between schemas) and those relations
existing in S but not existing in any of the subgoals of the mappings in set

M (specialities for local peer schema). a

‘ Further, a mapping Mapps_g from the mediated schema M to each local

source E, i.e. the GLAV mapping between M and UBC in Example 5, is
necessary so that a query over M can be reformulated to that over E. In
our algorithm, the mapping Mapys_g is in the form of GLAV, and each peer
E maintains their own GLAV mapping Mapy_E.

To make the mediation process easier, we introduced a construct Map-
pingTable. A MappingTable contains all local information about a specific
Concept. With the use of MappingTable, the presence of indirect mappings
that identify additional information about relationships betweens schemas

can be fully used. Consider Example 10.

Example 10 : Consider the indirect mapping information in the following
mappings: ’ '
Conjunctive Mapping A_B:

author(name) :- A.auth(name, affiliation, contactinfo)

author(name) :- B.author_paper(name, paper)

Conjunctive Mapping B_C:
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author(name) :- B.author paper(name, paper)
author(name) :- C.author(name, affiliation, title)

Conjunctive Mapping A_C:

author(affiliation) - A.auth(name, affiliation, contactInfo)
author(affiliation) :- C.author(auth-name, affiliation, title)

O

For mapping A_B and mapping B_C, it is clear that the first attributes
in A.auth, B.author and C.author are the same since they are mapped to the
same variable: name. In mapping A_C, the first attributes of A.auth and
C.author are not mapped to the same variable, so by A_C only, it is impossi-
ble to tell that they represent the same information. However, by composing
AB and B_C, it is clear that in the first attributes of A.auth and C.author
represent the same information. We call the information found in the com-
posed mapping that is not included in the direct mapping indirect mapping
information. One advantage of our work is that such indirect information
can complement information in the original mappings. Previous work tends
to focus on translating queries on a single source of information, either from
the original mapping or from the composed mapping. Since users are likely
to provide incorrect or incomplete mapping information, our system helps
users check whether their mappings are correct, and the system will auto-
matically combine all mapping information together, regardless of where the
information comes from.

In Section 5.3, we introduce the use of a MappingTable to merge all
mapping information, not just the direct information. In Section 5.4 we
introduce the idea and the algorithm of a mapping compatible check to
ensure that those relations in the mediated schema are concept-based. We

present the schema mediation algorithm for P2P in Section 5.5.
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5.3 MappingTable Creation
5.3.1 Intuitions

A MappingTable both helps create the mediated schema, and is used to
create the mediated schema to source mappings. Each MappingTable rep-
resents a single concept, including both the direct and indirect mapping
information in relating a concept. As shown in Example 11, each source
relation is given a row, and each attribute is represented by a column. Each

column represents one aspect of that concept.

Example 11 : The MappingTable created: for the mapping in Example 6

is shown in Figure 5.5:

Relation: M1.conf-paper(title, venue, year, url, pages)

M1.conf-paper 1 2 3 4 5
UBC.conf-paper 1 2 3 4
UW.conf-paper 1 2 3 4

Figure 5.5: MappingTable for Example 6

Each entry in the table refers to the location of the attribute in the
source (e.g., the fourth attribute in UW.conf-paper gives information about
the attribute pages in the mediated schema relation). : a

As the mediated schema grows to encompass more peers and more map-
pings, sometimes a new MappingTable will be created to represent the same
concept as one created for the previously-existing mediated schema. Let’s
assume that conf-paper is an existing concept represented by the Map-
pingTable MTold. Let the new MappingTable representing conf-paper be
MTnew. MTold and MTnew need to be merged to form one concept for |
conf-paper in the mediated schema. Example 12 gives the intuition of merg-

ing two MappingTables of the same concept.
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Example 12 : Let MTold be the MappingTable in Example 11. Let MT-
new be the MappingTable shown in Figure 5.6. :

Relation: M2.conf-paper(title, venue, year, url, author)

M2.conf-paper 1 2 3 4 b)
UBC.conf-paper 1 2 3 4
UT.conf-paper 1 2 3 4

Figure 5.6: MappingTable for Example 12(a)

Since MTold and MTnew are both about “conf-paper”, they can be
merged to be one MappingTable, shown in Figure 5.7.

Relation: M3.conf-paper(title, venue, year, url, pages, author)

Ma3.conf-paper 1 12 3 4 5 6
: M1.conf-paper 1 2 3 4 5

UBC.conf-paper 1 2 3 4

UW.conf-paper 1 2 3. 4

M2.conf-paper 1 2 3 4 5

UBC.conf-paper 1 2 3 4

UT.conf-paper 1 2 3 4

Figure 5.7: MappingTable for Example 12(b)

Both “UBC.conf-paper” in line 3 and 6 are kept for clarity. However, in
real implementation and after optimization, only one of them needs to be

kept.
g

5.3.2 Algorithm

Figure 5.8 shows how to create a MappingTable for each relation that is
constructed from a mapping Mapg_r in the mediated schema. Procedure
createMediatedSchema(E, F, Mapg_r)-in Figure 5.1 will first be called.
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Given Mapg r and Mgp, the MappingTables will be constructed for each
concept in Mapg_p. '

When a peer have two different versions of mediated schema M; and M,
maintaining different information, if both M; and M3 contain concept ¢, in
order to merge r; and T3, corresponding MappingTable MT}(g) and MTx(q).
needs to be merged. (r; and 7o are the corrésponding relations in M and
M, representing ?he concept q.)

The MappingTable merging process follows the same general principles:

1. Related attributes should be positioned in the same column;
2. Un-related attributes are in different columns;

3. .Overlapping local relations in the two MappingTables are used to de-
termine each column in one MappingTable corresponds to that in the
other MappingTable.

Procedure mergeMappingTable(htl, 1, mta, T2) in Figure 5.9 merges
any two MappingTable of the same concept mt; and mty, and returns a
merged MappingTable. It is required that there be overlapped relations
in mt; and mte; otherwise, they cannot be merged. Since it is likely that
each MappingTable contains indirect mapping information that the other
- one does not have, the first step for merging two MappingTable is to update
such information for each MappingTable shown in Figure 5.10.

5.3.3 Section Summary

In this section, we presented by examples the motivation of introducing a
MappingTable for each relation in the mediated schema that comes from a
mapping. We also discussed the case of merging two MappingTables. We
further gave three algorithms that are related to operating MappingTables.
They are creating a MappingTable, merging MappingTables and updat-
ing current MappingTable using additional mapping information in another
MappingTable. '
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Procedure CreateMappingTable(Mapg_r, MEF)

/* Mgp is the mediated schema created from Mapg_r */

MT =

For each relation m € M constructed from IDB(Mapg_r)
Let mt be a new MappingTable with #attr(m)+1 columns
/* The next three lines add m into mt */
mt(0, 0) = name(m)
For i = 1 to # attr(m)

mt(0, ) =1

Let qg be component from Mapg_g over schema E
Let g be component from Mapg_r over schema F
/* call Procedure Add(gg, mt) to add .all subgoals of gg to mt */
Add(gr, mt)
/* call Procedure Add(gr, mt) to add all subgoals of gr to ms */
Add mt to MTg_r

Return MTg r

Procedure Add(g, mt)
/* Add all subgoals of ¢ to MappingTable mt */
Let m be the first relation in mt
Let j be # next row to insert in mt
For each subgoal g of ¢
mt(j, 0) = name(g)
For each attribute z of g
Let x be the ith attr of g
Find k s.t. var(g.attr(:)) = var(m.attr(k))
mt(j, k) =1
j=j+1 //move to the next row

Figure 5.8: Create MappingTable Algorithm

5.4 Mapping Compétible Check

Two mappings that are created at different peers by different users might
have the same IDB name, indicating that these two mappings represent the
same concept. However, as is discussed in Section 4.2, two mappings having
the same concept should follow Definition 3 (i.e. these two mappings should
have the same IDB name, they have overlapped subgoal names and their
overlapped subgoal sets are equivalent). The module of Mapping Compatible

Check is to make sure that the mappings are really representing the same
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Procedure MergeMappingTable(mt,, ry, mta, r2)

/* mt; and mty are two MappingTables with the same concept;
r; and 7o are the corresponding relations in the mediated schema for
mt; and miy x/
/* First update each MappingTables using indirect mapping information
specified in the other %/
UpdateMappingTable(mt, mtz) //see Figure 5. 10
/* Second, merge the MappingTables*/
Let S be the set of overlapped relation names in mt; and mit;
Let overlappedCol = # column(S)
newMTCol = # column(mt;) + # column(miz) + 1 - overlappedCol
/* Construct a new MappingTable mtye,, of newMTCol columnsx/
hash; = 0
/* how columns in mt; map t0 mipey */
For V column i of mt;
hashi (i) = new(k)
/* k is a column in mipe, that has not been assigned */
hashy = 0
/* how columns in mtz map to Mipew */
For V column 7 of mts
If 3 row j s.t. mta(g, 0) € S and mta(j, ©)# blank
Find k, | s.t. mt1(k, 0) = mta(j, 0) and mti(k, 1) = mitz(J, 1)
hashz (i) = hash (1)
Else
hasha(i) = new(k)
/* Add the first row t0 mitnew */
Mitnew (0, 0) = name(r;)
For i = 1 to newMTCol
Minew(0, 1) =1
/* Add mt; to mipeyw */
For each row i of mty
Let p be the next row in miney
For each column j of mt;
If mt1 (4, 7) is not blank
Minew(p, hashi () = mt1(3, j)
/* Add mty to mipey */
For each row ¢ of mty
Let p be the next row in minew
For each column j of mt,
If mt2(i, 7) is not blank
Minew(p, hasha(j)) = mt2(i, j)
Return mtpew

Figure 5.9: Merge MappingTable Algorithm

38



Chapter 5. Creating a Mediated Schema in PDMS

Procedure UpdateMappingTable(mt;, mtz)
V relation name z; and z2 from mit;
. If 1 and z2 both have attributes in column j of mt;, but in mtz, the
corresponding attributes of 1 and z2 are in different columns & and !
Combine column k and ! of mts
Y relation name z; and zg from mtg
If 1 and z both have attributes in column j of mts but in mt;, the
corresponding attributes of z; and z2 are in different columns k and !
Combine column k and ! of mt;.

Figure 5.10: Update MappingTable Algorithm

concept when merging the information contained by two mappings.

Since every peer only maintains its own mappings and does not know
other peers’ mapping; the mapping compatible check needs to rely on the
MappingTaBle that can infer the original mappings.. The algorithm in Fig-
ure 5.11 inputs the original MappingTable of concept ¢ for the mediated
schema, MT,,(q), and a new mapping of the concept g, Mapg _p(q)f The
algorithm first checks whether there exists a case when two attributes of a
certain subgoal or two attributes of different subgoals in Mapg_r(q) have
the same value but have different value in a previous mapping, which is rep-
resented by a row or a set of rows in MT,,(g). The algorithm further checks
if there exists a case when in Mapg_r(q), two attributes in one subgoal or in
two subgoals from one component have the same value, but in MT;,(q), the
_ corresponding attributes have different values. If either of the above case
is trué, the new mapping of concept ¢ is not compatible with a previous
existing mapping of concept ¢. The mapping needs to be modified by the
user.

We assume that at least one subgoal should be in common if one schema

is involved in several conjunctive mappings with the same IDB name.

5.5 Peer Schema Mediation

We have briefly described MePSys in Section 5.2. In this section, we de-
scribe our Peer Schema Mediation algorithm (short for PSM algorithm),
which is composed of three small algorithms, schema mediation, computing
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Procedure MappingCompatibleCheck(Mapg_r(q), MTrn(q))
/* Mapg_r(q) is a new mapping of concept ¢;
MT,, is the MappingTable of concept ¢ for the mediated schema */
/* check whether Self-Restrictive component exists */
/* Return True when compatible; False when incompatible »/
Divide all rows in MT,,(q) into several sets s.t. all consecutive rows from
one peer are in one set
For each set S of MTy,,(q)
If 3 values vy, v9 in the same column from rows i, j which belong to S
Find subgoal sg1 in Mapg_r(q) s.t. name(sg1) = MT(g)(i, 0)
Find subgoal sg2 in Mapg_r(g) s.t. name(sgz) = MT,,(g)(7, 0)
If sgl.attr(vy) # sg2.attr(vg)
Return False
For V subgoal sg;, sg2 from the same component of Mapg_r(q)
If 3z and y s.t. sg;.attr(z) = sga.attr(y)
Find row ¢, j in MTp,(q) s.t. MT,,(g)(i,0) = name(sg1),
MT.(q)(j,0) = name(sgz)
If z in row ¢ and y in row j are not in the same column
Return False :
. Return True

Figure 5.11: Mapping Compatib/le Check Algorithm

GLAYV mapping and query reformulation. In Chapter 6, there will be more
discussion on how to handle the case when new peers join the network after
database application has been built upon the earlier mediated schema, and
how to handle the case when some peer leaves the network, or some local

database schema evolves as time goes by.

5.5.1 System Setup Phase - Schema Mediation
System Work

For ease of discussion, we assume there is a setup phase for MePSys: several
peers have joined the network, found their acquaintances and created map-
pingé to the acquaintances but no mediation has been started. The system
setup phase starts from a first peer starting mediation to a time point when
all peers in the system get the most updated mediated schema of the whole
network.

We assume that, at any time, each peer P maintains all of the following
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information:
1. P’s local database schema
2. A list L of mappings with P’s acquaintances
3. A current ve?sion of mediated schema M

4. MappingTable set corresponds to M

5. GLAV mappings from M to P

X'broadcasts Mis:and-

coriésponding MappingTable; . .B,.Mapi.e, Maps:c, Mapd’o

Peger.X: 7
X. M8 8, Mapxs

C-checks:and updé?es-i&hca[ relation.
: ‘information:in Miv:based.on:C:

Figure 5.12: Schema Mediation Start-up

As shown in Figure 5.12, when mediation starts from peer X, X gets
mappings from L one by one. At time t;, X mediates information based on
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each mapping mapx_y. However, as is described in Section 5.1, there afe
two kinds of relations in the mediated schema: one is from local sources and
another is from the mapping. Since in a PDMS, every peer does not know
its acquaintance’s schema, the mediated schema Mj; that X first creates is
only composed of two pa.rts: local relations from X and relations from the
mappings. Information of Y’s local relation is missing from Mj;;. At time ¢,
X sends My, to each acquaintance, Y and asks Y to confirm or update My;.
At time t3, each acquaintance confirms M;; and updates M;; based on its
local schema information, i.e. adding those local schema information that
X does not know. At t4, X receives all confirmation from its acquaintances,
X will compute a new mediated schema, say My4, which contains all schema
information of X and all of its acquaintances as well as the mappings between
X and its acquaintances. X further computes the GLAV mapping from My
" to X. X also updates MappingTables and let the mediated schema to be
My in its list. At time t5, X sends My and corresponding MappingTables
to all of its acquaintances.

When a peer E upon receiving a mediated schema M;,, first checks
whether it already has a mediated schema. If it has not, E will do the same
as X does. Otherwise, merge the two mediated schemas. If the mediated
schema that E maintains changed after this step, £ sends out this new
mediated schema M,y and corresponding MappingTables to all of its
acquaintances; otherwise, no message will be sent out. F also computes the
new GLAV mapping and maintains the updated information in his list L.

After a period when every peer E has received the most updated medi-
ated schema M,y and computed the GLAV mapping from M, to E,
the system setup finishes. The algorithm of creating the mediated schema

in the setup phase is shown in Figure 5.13."

Theorem 1 The time of creating a mediated schema using the above algo-
rithm has an upper bound.

Proof Sketch: Assume there are n peers in the network. Let t be the time
for one hop in the network. Two kinds of messages need to be considered:
sending out, the partial mediated schema and receiving confirmation of local
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Algorithm SystemSetUp
/* to be processed at éach peer E when receiving a mediation message from
other peer */
Input: 1. mediation message containing a partially created mediated schema
‘ Mimp of previous peers, a MappingTable M T}, corresponding to Mimy

2. local schema mapping list

Output: ‘A new mediated schema and MappingTable which will be sent out to
all of E’s acquaintances

If previously there is no mediated schema at peer E
Mediate schemas Mg, mp based on E and all its mappings to acquaintances
Send out check message with Mg, mp and wait for confirmation from the
acquaintances ’ : .
Received updated mediated schema Mgp from each acquaintance F' with
F’s local schema information in it
Compute a local mediated schema Mg for E and all its acquaintances
based on all Mgr (F € E’s acquaintance list)
Merge Mg and Myn, to be Mg
Else (there exists previous version of mediated schema Mg at F)
Merge Mg and Mymp to be M
- | If M, does not equal to Mg
Send Mg and its corresponding MappingTable to all the acquaintances
Else '

No message to be sent

Figure 5.13: System Setup Algorithm

relations, and sending out the mediated schema. The upper bound for the
first part is 2nt. So we only consider the second part. Each peer maintains
the mapping information with its acquaintances. We can model this prob-
lem to the following graph problem: when does each node get all the edge
information? Since each node knows its edge information, this problem can
further be transferred to the problem: When does each node get all the node
information? A node E knows the information of node F, either from F'
directly, or from F’s neighbor. The maximum time difference between these
two is one hop t. We drop this one hop difference temporarily. So in order to
let E get a full set of node information, E should receive a message from all
other nodes. E receives the earliest message from F after (shortestPath(A,
F) + shortestPath(F, E)) hops. So E receives all nodes information at hop
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hopg:
hopg = mgx{shortestPath(A, F) + shortestPath(F, E)}

Thus the number of hops for all nodes receiving all other node information
is hopay:

hopay = max hopg = mgx{mﬁ@x{shortestPath(A, F)+shortestPath(F,E)}}

Considering the messages to confirm local relations, the total time before

every peer gets the ultimate mediated schema is Thy:
Ton = (hopall + 27’L) *1

Considering the fact that information about F' can be obtained from F’s

neighbor, T,;; can sometimes be
Ton = (hopay +2n — 2) * t
This is the upper bound for the whole mediation process. 0

Merging Two Mediated Schemas

In a PDMS, different versions of mediated schemas are broadcasted in the

network before a final mediated schema for all peers in the network has

been built. At any time in the setup phase, a peer E that already maintains

a mediated schema M; can receive a different mediated schema Mj that

contains non-overlapped information with Mj;. In this case, M; and M,

need to be merged before E sends any of them to other acquainted peers.
Our mediation process follows the following strategy:

1. When FE gets a mapping Er, a mediated schema Mgp will be created
first. This can use algorithm in Figure 5.1.

2. Then consider previous existing mediated schema Mg, merge Mgr
and Mg to get My, and update Mg to be M.
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3. When FE originally has a mediated schema M and receives a new me-
diated schema My, M and My, will be merged.

Figure 5.14 shows the algorithm of how to merge two mediated schema.

Algorithm MergingTwoMediatedSchema(M;, M2, MTy, MT3)
/* M1, M are the two mediated schemas, MT), MT; are the corresponding
MappingTables */ »
Mpew = 0
For Vmt, € MTy .
If 3 mt, € MT3 s.t. name(mt1(0, 0)) = name(mt2(0, O)) =gq
/* both mt, and mty are about concept g */
Find the corresponding relation m; and r2 from M, and M,
Mipew =MergeMappingTable(mt, r1, mig, T2)
Create a new relation ryeq
name(rpew) = ¢
Let n be column size of mt,eq
Let the first row number of mt; in mt, ., be indexl
Let the first row number of mty in mi, e be index?2
Fort=0ton
If mitnew (indexl, 1) contains value
Tnew-attr(i) = ry.attr(z)
Else (mtpew(index2, ©) contains value x)
Tnew-attr(i) = rq.attr(z)
Add Thew t0 Mpeyw
ForVr € M;
If r; hasn’t been merged or added to Mnew
Add r; to Mnew
ForV ro € My
If 72 hasn’t been merged or added to Mnew
Add T2 to Mnew
Return M,ey

Figure 5.14: Merge Two Mediated Schema Algorithm

Compute GLAV Mapping for Each Local Peer

Next, having created the mediated schema, we need to be able to create
the GLAV mapping from the mediated schema to the local peer schema in
order to allow for queries to be translated. With the mediated schema and
the corresponding MappingTables, computing the GLAV mapping is easy.
Figure 5.15 shows an algorithm of computing the GLAV mapping for local
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schema E. Example 13 gives an example of computing GLAV Mapping for
local peer.

Algorithm ComputeGLAVMapping(M, MT, E)
/* M is the mediated schema, MT is the corresponding MappingTable for M,
E is the local schema */
LVy = ]
GVy =10
For eachm € M
If m does not have a corresponding mt € MT
If 3 e € E s.t. name(e) = name(m)
Let lv,, = q(attributes(e)) :- m(attributes(m))
Let gum, = g(attributes(e)) :- e(attributes(e))
Add lvy, to LV
Add gvy, to GV
Else //m has a corresponding mt € MT
Let body be the subgoal set for local peer, body =0
For each row i of mt
If 37 € E s.t. name(r) = mt(i, 0)
Construct subgoal sg s.t. name(sg) = name(r), using m’'s
attribute value as the corresponding attribute value for sg
Add sg to body
If A s € E s.t. name(s) = mt(i + 1, 0)
Let lv,, = q(var(body)) :- m(attributes(m))
Let gvn,, = q(var(body)) :- body
Add lv, to LV
Add gv,, to GV
body = 9
Return LV, GV

Figure 5.15: Compute GLAV Mapping Algorithm

Exémple 13 Given schema B, mediated schema M and MappingTable
MT, the GLAV mapping from M to B can be computed.

Schema B:
B_flight(date, company, flightNo, service)
B_schedule(date, flightNo, depart, arrival, numLeft)

Schema M:
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flight(date, flightNo, company, service, class, 1D,

discount, depart, arrival, numLeft)

MappingTable: flight

M Aflight 1 (23174 (5|67 |81]9]10
B_flight 13|24 ,

B_schedule |1 |2 31415
Cschedule |2 |3 1 '

C_price 21113

The GLAV mapping for Mapps_g can be obtained.

Mapping Mapar _B:
LAV:
Q1(date, company, flightNo, service):-
M flight(date, flightNo, company, service, class,
ID, discount, depart, arrival, numLeft)
GAV: V -
Q1(date, company, flightNo, service):-
B.Bﬂight(date, company, flightNo, service),
B.schedule(date, flightNo, depart, arrival, numLeft)

Query Reformulation Algorithm

With the GLAV mapping computed for each local peer E, any quéry posed
over the mediated schema M can be easily reformulated to that over £ and
vice versa. This enables a fast translation for queries between any local
schema and M, which can be used for query processing in the PDMS as
discussed in Section 5.2. Figure 5.16 gives the algorithm of query refor-
mulation. Example 14 shows an 'example of query reformulation using this

algorithm.

Example 14 Reformulate Query @ to that over local schema B using the
GLAV ‘mapping computed in Example 13
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Algorithm QueryReformulation(q, Mapy_g), M, E
/* q is the query posed by the user; Mapp_g is the GLAV mapping between M
and E; M is the mediated schema; E is the local schema %/
Let reform@ be the reformulated query of ¢
Let head(reform@) = head(q)
If any subgoal sg of ¢ € M ‘ |
For each subgoal sg of ¢ ’
Find in LAV a view lv s.t. sg € body(lv)
For each variable v in lv
Let pos be the position of v in body(lv)
Change v to the variable v’ in sg s.t. pos is the position of v in sg
Find in GAV a view gv s.t. head(gv) = head(lv)
For each variable v in head(gv) o
Change v to v/ with the same position in the head of [v
Append body(gv) to the body of reform@
Else //sg € E
For each subgoal sg of ¢
Find in GAV a view gv s.t. sg € body(gv)
For each variable v in gv
Let pos be the position of v in body(gv)
Change v to the variable v/ in sg s.t. pos is the position of v’ in sg
Find in LAV a view lv s.t. head(lv) = head(gv)
For each variable v in head(lv)
Change v to v' with the same position in the head of gv
Append body(lv) to the body of reform@
Return reform@

Figure 5.16: Query Reformulation Algorithm

Q = q(d, f) :- M.flight(d, f, price, company, service, class, ID, discount,
depart, arrival, numLeft)
Using the algorithm in Figure 5.16, @ is reformulated to Q' over B
Q' = q(d, f) :- B.Bflight(d, company, f, service),
‘ B.B_schedule(d, f, depart, arrival, numLeft)
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5.5.2 Section Summary

In this section, we discussed the system setup phase - creating a mediated
schema for the PDMS from the beginning. We presented PSM algorithm
which includes schema mediation, computing GLAV mapping and query
reformulation algorithms. For each step, we give examples to illustrate
_our idea. MePSys provides the first prototype to automatically create a
mediated schema in PDMSs. With PSM algorithm, queries can be easily
processed among different peers in a PDMS.
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Updating the Mediated
Schema

Some of the peers might build up a database application using the mediated
schema after the system set-up phase. For those peers having applications
over the mediated schema, if the mediated schema changes, the already-built
applications might need to be re-built, which takes quite a lot of redundant
work. On the other hand, if a peer leaves, that peer schema information
needs to be dropped from the mediated schema. However, no existing al-
gorithm has been proposed to deal with such a case. In this Chapter, we
discuss how to update the mediated schema in the steady state - i.e., after
the system setup phase. In particular, we determine both how to update
the mediated schema and mappings if a new peer joins the PDMS network
(Section 6.1) or an old one leaves the network (Section 6.2), and how the me-
diated schema and associated mappings change if some peer’s local database

schema evolves (Section 6.3).

6.1 Adding a New Peer to the System

" After the system setup phase, every peer maintains an up-to-date mediated
schema M. If a new peer P decides to enter the network, the mediated
schema M needs to be updated to a new mediated schema M’ which also
include P’s schema information. However, since after the system setup
phase, some peer has already built up an application over M. A naive
approach is to compute a new mediated schema M’, and rebuild all those
already-built applications, which takes quite a lot of redundant work. Since
the mediated schema can change periodically during the life cycle of such
a PDMS, it is not realistic to ask the user of each peer to build a new
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database application every time the mediated schema is updated. A good
strategy is to let the peer maintain its already-built application APPp(M)
and maintain a mapping from M’ to M. Since the mapping from M’ to
P can easily be calculated by using the MappingTable that corresponds to
M', any query over M passed from other peer can be reformulated to that
over P. P’s user can also use its local schema or the mediated schema M

on which APPp is built. Below is an concrete example of such a scenario.

Example 15 An example of a new peer joining the network

There are three peers in the current system: A, B and C. Mappings are
created between A and B, and B and C as Maps g and Mapp ¢ respec-
tively. We only consider relations that can represent a Concept (in the form
of a mapping) for the mediated schema because they are the core part of
our discussion.

Consider the situation shown in Figure 6.1(a): after the setup phase, a
mediated schema MS; has been built and maintained at each peer. The
mappings from MS; to A, B and C and the MappingTables also have been
built. -

(MS2).

(a) initial system (b) after peer D joins

Figure 6.1: Adding a New Peer to the System

After building the mediated schema MS; and the fnappings to local

sources, user at peer B built a database application APPp using the medi-
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ated schema M S;. So the information stored at each peer can be summa-

rized as follows.

- Peer A: schema A, Mapa g, MS1, Mapms,_ a, MT1.

- Peer B: schema B, Mapa g, Maps.c, MS1, Mapms, 5, MTh,
APP3(MS)). | -

- Peer C: schema C, Mapp.c, MS), Mapus, c, MT1.

Sometime later, a new peer D decides to join in the network. It creates
a mapping Mapc_p to peer C, as shown in Figure 6.1(b).

Using the algorithms described in Chapter 5, a new mediated schema
M S;, MappingTable MT; and GLAV mappings can be computed at peer
C.

C passed M Sy, MT, to D. D computes Mapyss,_p. C further computes
the GLAV mapping from M S to C using Mapums,_ ms, and Mapuys, ¢ and
get the new GLAV mapping Maps, ¢ for itself.

C also passes M Sy, MTs, Mapys, ms, to its acquaintance B. B com-
putes Mapprso B using Mapys, ms, and Mappyrsi . B also passes MSs,
MT,, Mapps, ms, toits acquaintance A. Using Mapprs, ms, and Mapps, 4,
a mapping from mediated schema M .S, to local schema A can be computed.

At the end, all the peers get the most ‘updated information about M Ss.
Each peer also knows how to map its local schema to MS;. Information

_ stored at each peer can be summarized as follows.

- Peer A: schema A, Mapa g, MSs, Mapys, 4, MT5.

Peer B: schema B, Mapa g, Maps.c, MS1, Mapms, B,
APPB(MSI)a MapMSz_MSp MapMSz.B, MS?) MTZ

Peer C: schema C, MapB;clv, Mapc_p, MSy, Mapps, .c, MTs.

Peer D: schema D, Mapc_p,-MSa, Mapys, p, MT5.

For peer B, MS; and Mappys, B are kept in its database application
APPg(MS;). Mapums, ms, is kept because query over the new mediated
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schema M S5 can be translated to M S; and further be used by application
APPg(MS).

Thus, every peer can keep the updated mediated schema and maintain a
mapping’from the mediated schema to local schema. Compared to the naive
approach, no burden has been added to the local peer users. Additionally,
all the previously created database applications over previous versions of
mediated schema can still be used. New applications can also be created
over the new versions of the mediated schema.

Details of this example is shown in the Appendix A. |

6.1.1 Algorithm

Figure 6.2 shows the algorithm of updating the mediated information for
the case of adding a peer. In this algorithm, we consider how to get a new
mediated schema, and how to maintain the mapping from the new mediated
schema to the old one on which an application might have been built.

Algorithm Update Mediated Information (Adding a Peer E)
Let M be the original mediated schema
Let MT be the corresponding MappingTable set.
1. E creates a mapping to F which is already in the network
2. E creates a mediated schema Mgp using the Procedure in Figure 5.1
3. F creates a new mediated schema M’ using Mgr and M using
the Procedure in Figure 5.14
F computes GLAV mapping Mapn_p and Mappy r
F updates its maintained information: M — M', MT — MT’ and
Mapy r — Mapy_r
F send M, corresponding MT" to E
F broadcast M’, corresponding MT’ and Mapps_pm to all other
acquaintances .
F computes Mappy_r for itself ,
4. E maintains MT’, M’, and computes Mapyy_g using MT’
5. For any other peer G that received the message originally from F
If there are applications built over M
G maintains the following information: M', MT', Mapm'_m, M,
Mapp_p, Mapm G
Else G simply updates M — M', MT — MT’' and Mapp.g — MapM/
G further broadcasts all mediated schema information to its acquaintances

Figure 6.2: Update mediated information when new peer joins the network
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6.2 Dropping a Peer from the System

In this section, we explore four possible approaches to update the mediated
schema after dropping one peer schema. We compare the advantages and
disadvantages of each strategy. Comparably, Strategy One and Two are the

naive solutions. Strategy Three is better than One and Two. However, in
 the worst case, it faces the same problem as Strategy One and Two. Strat-
egy Four, though poses additional requirement for the leaving peer, can keep
the system much more stable and does not require more time. We think this
is the best approach among all.

Strategy One: Once a peer decides to leave the network, the peer needs to
notify any other node in the network, which triggers the schema mediation
process from the very beginning. Every node in the network is regarded as
a new peer.

Advantages: The setup for such a system is very easy. No additional algo-
rithm for removal operation needs to be designed. Only schema mediation
algorithm will be involved.

Disadvantage: Basically, this strategy is not realistic. First, the schema
- mediation process will be too frequent. If peers leave the network frequently
in a short period, theré will be too much system work assigned for schema
mediation only.‘—Resources can not be used wisely. Second, the previously-
created mediated schema cannot be fully used of in the process of creating
the new one. ‘The new mediated schema might not change dramatically from
the old one but this strategy requires that the new version of the mediated
schema should be created from the beginning.

In conclusion, this strategy is not at all satisfactory. .

Strategy Two: Re-do the schema mediation once every assigned period.
If in one period, one péer is leaving the network, the system needs to do the
schema mediation again from the beginning. There are two ways to know
-whether a peer X is leaving the network. (1) Peer X notifies any other
node before its departure. (2) Other peer, usually X’s acquaintance, PINs
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or communicates with peer X. If it gets no response, X can be assumed
to have left the network. X’s information needs to be removed from the
mediated schema and triggers a new schema mediation from the beginning.
Advantages: Better than Strategy one because the frequency of the schema
mediation process is decreased. Algorithms involved are still simple.
Disadvantages: The previously-created mediated schema cannot be fully
used of in the process of creating the new one.

Strategy Three: ‘The leaving peer X will not notify other peers when it
leaves the network. X’s acquaintance Y will recognize X’s leaving by PINing
X or communicating with X but getting no response. Y once realizes X'’s
absence, it will try to compute the new mediated schema without knowing
the schema of X. However, this requires that peer Y be able to recognize
which relation in the MappingTables comes from X. - .

Advantages: (1) Updating of the mediated schema is timely. (2) Peer can
leave the network at any time without notifying any other. (3) The calcu-
lation is based on the previous mediated schema, so the process will not be
time-consuming. Old versions of the mediated schema can be fully used of.
Disadvantages: (1) Every peer would be able to know other peers schema
from the MappingTables, which is not ideal for the sake of safety and privacy
reason. (2) For peers that lost connection because other peers’ leave, such
peers need to re-join the network, which costs additional schema mediation

work after the deletion work. We use Example 16 to explain this idea.

Example 16 Consider the example proposed in Example 15 (details in Ap-
pendix A), and assume the status of the network is when MS; has been
created and all mediated information has been stored at every peer, as is

shown in Figure 6.1(b).

Case 1: B recognizes that A has left the network.

Once B recognizes that A has left the network, it checks A’s information
in the MappingTable MT5. A is only involved in the mapping with B and
has no other acquaintances, so the deletion will be easy:
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" 1. remove from MappingTable set MT; all rows originally from schema

A and remove from MT all columns only from schema A — MTj

2. for every relation a in M Sy, if a is originally from schema A, remove a
from M S, and update each relation a in M .Sy corresponding to MT5;

3. delete Mapa g from B’s information set;
4. create the a mapping Mapms, MS,;
5. broadcast M S3, MT3, and Mapps, ms, to the other peers.

Case 2: B Recognizes that C has left the network. This is a more general
case when the leaving peer has more than one acquaintance and acts as a
bridge connecting other peers. '

B first checks MT5. From the two intermediate mediated schemas IMpc
and IM¢p, B knows that C originally had connection with B and D. So B
will first update the mediated schema and the MappingTable. Update the

mediated information:

1. Delete from the mediated schema all relations that originally come
from schema B. Following the details in Appendix A, delete “B_flight(date,
- company, flightNo, service)” and “B_price(flightNo, class, price)” from
M Ss.

2. Delete from the MappingTable rows that represent relations from schema
B and all intermediate relations which involves schema B. In this ex-
ample, delete from M T, the rows “B_flight”, “B_price”, “IMpc flight”,
“IMgp flight” and “M S flight”.

3. Check all columns of the MappingTable whether there are columns not
useful any more. Delete all such columns. Delete “ID” and “discount”
from MT3 in this example.

4. Update the relation in the mediated schema that comes from a map-
ping. In this example, “flight(date, flightNo, price,” company, service,
class, ID, discount, depart, arrival, numLeft)” is now updated to “flight(date,
flightNo, price, company, service, class, depart, arrival, numLeft)” .
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5. Since D is lost connection with'any other node in the network, B can
assume that D needs to re-join the network. B do the same deletion
for D.

6. Get new mediated schema MS3 and corresponding MappingTables
MT3. Create a mapping Mapprs, ms,-

7. Broadcast MS3, MT; and Mapps,_ms, to all the other peers.

All peers that lost connection need to re-enter the network. For the
worst case, e.g. the topology shown in Figure 6.3, all nodes need to re-join .
the network if B leaves.

sy

Figure 6.3: Peer Leaving (Bad Topology)

O

Strategy Four: A peer X cannot leave until X calculates the new mediated
schema. The idea is that given the original mediated schema M and local
schema X that is to be removed, compute the remaining part. In order to
do this, a “removal” operator needs to be designed to remove part of the
mediated schema using X’s local schema and mappings to get the updated
mediated schema. The removal operation ¢an remove some relations, or
some attributes in the relations. Further, X helps each of its acquaintances
find another acquaintance in X’s acquaintance list to make sure that when
X leaves, the network is still connected. X does not need to build a mapping
for them since the mapping can be inferred from the existing MappingTables.
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Advantage: This is a better decision than the previous two strategies. First,
it is not necessary to re-build the mediated schema from the very beginning
every time. The original mediated schema can be fully used when building
the new one. Second, the calculation time for removing part of the mediated
schema is far less than re-building the whole mediated schema.
Disadvantages: The only disadvantage is that the leaving peer needs to do
additional work and notify other nodes before it leaves the network.

In this strategy, peefs cannot leave without notifying the other nodes.
However, some existing P2P database systems also requires that some peer
needs to do extra tasks before leaving the network. For example, [16] requires
that only leaf nodes in their network structure can voluntarily leave the
network while other nodes must find a replacement to store their information
first before leaving., So this is acceptable if we require that a node need to -
trigger a removal operation before it leaves the network.

The removal algorithm is shown in Figure 6.4

Procedure RemoveLocalSchema (MS, MT, X MapMs_x)
/* MS is the mediated schema, MT is the corresponding MappmgTable set,
X is the local peer schema, Mappg_x is the mapping from MS to X */
For every mapping mapys.x € Mapms_x
Let R be body(LAV(mapms_x))
Let mt € MT be the MappingTable with R as the first relation
If mt doesn’t exist
/* R is a direct copy of local peer relation */
Mark R in M S for later deletion
Else
Let r be body(GAV (mapms_x))
Let h be head(mapms_x)
For each attribute attr in h
Let SG be the subgoals in r containing attr
If in mt, no other relations except those in SG have corresponding
attributes for attr
Mark attr in M S for later deletion v
Delete all attributes and relations with deletion marks from M S to M S’
Update MT to MT'
Create a mapping Mapars:_ms from MS’ to MS
Return M S/, MT', Mappys'_ms

Figure 6.4: Update mediated information when a peer leaves the network -
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The results MS', MT' and Mapyrs'_ms need to be broadcasted to all

other peers in the network.

Example 17 Consider the example proposed in Example 15 (details in Ap-
pendix A), and assume that mediated schema for A, B, C and D has been
created. Peer D would like to leave the network, so D does the calculation of
the new mediated schema. Figure 6.5, 6.6 and 6.7 show the network status

before D’s leaving.

Mediated schema M Sz = {
flight(date, flightNo, price, company, service, class, ID, discount, depart,
arrival, numLeft) : :

y

Figure 6.5: Example 17. Input Information (a)

MappingTable flight:

MS flight |1 (2 |3 |45 |6 |7 ({89 |10 |11
MSyflight |1 (2 |3 |4 |5 |67 |8
IMapflight |1 {2 [3 {4 |5 |6 ‘
A flight 11213
B flight 113 2 14
B_price 113 2
IMpcflight |1 |2 [3 |4 |5 (6 |78
B flight 113 2 |4
B_price 113 2
| Cschedule |2 |3 1
C_price ' : 211 |3
IMcpflight | 1 | 2 31415 |6 7
C_schedule |. 3 1
C_price : _ 1213
D_schedule |1 |2 ' 3 |4 5

Figure 6.6: Example 17 Input Information (b)

According to the algorithm in Figure 6.4, D checks every conjunctive
mapping in Mapysa_p, if the LAV part is directly from a relation r €
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Mapums,.p: :
LV =/{ ‘
M S2_D(date, flightNo, depart, arrival, numLeft) :-
M S, flight(date, flightNo, price, company, service, class, ID, discount,
depart, arrival, numLeft)

}
GV = { ,
M S3_D; (date, flightNo, depart, arrival, numLeft) :-
D .D_schedule(date, flightNo, depart, arrival, numLeft)

Figure 6.7: Example 17 Input Information (c)

D, delete r from the mediated schema M S, and the MappingTable MT5.
In this example, there’s no such mapping. If the conjunctive mapping is
obtained from a mapping between a pair of peers, let the LAV part be
lav and let the GAV part be gav. Delete from the MT; all relations in
. gav and the intermediate relation related with gav. So in this example,
delete “D_schedule” and “IMcp.flight” from MT,. Delete from MT; all
columns that don’t contain any values. In this example, delete the columns
“depart”, “arrival” and “numlLeft”. Update the relation in the mediated
schema that represents lav according to the updated MappingTable. In this
example, “flight(date, flightNo, price, company, service, class, ID, discount,
depart; arrival, numLeft)” is updated to “flight(date, flightNo, price, company,
service, class, ID, discount)”.

So a new MappingTable M T3, shown in Figure 6.8, can be obtained. A
new mediated schema M S5 can also be obtained, shown in Figure 6.9. D
also creates a mapping from M S; to M .Ss, shown in Figure 6.10.

D passes M Ss, MT3 and Mapms, ms, to all the other peers in the
network and leaves the network.

i
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MappingTable flight:
MS flight |1 (2 |3 |4 |5 |6 |7 |8
MS flight |1 |2 |3 |4 |5 |6 |7|8
IMapflight |1 |2 [3|4 |5 |6
A flight 112 (3]
B_flight 113 2 |4
B_price 113 2
IMpcflight {1 |2 |3 {4 (|5 16 |7 |8
B flight 1 (3 2 14
B.price 113 2
Cschedule |2 |3 1
C_price 21113

Figure 6.8: Example 17 Output (a)

Mediated schema M S5 = {
ﬂlght(date flightNo, price, company, service, class, 1D, dlscount)

Figure 6.9: Example 17 Output (b)

6.2.1 Section Summary

In this section, we have explored four possible ways of updating the me-
diated schema when a peer leaves the network. We have also illustrated
the advantages and disadvantages of each approach with examples. We fi-
nally presented an algorithm to remove a peer schema’s information from
.the mediated schema based on the fourth approach. The fourth approach
outperforms all other approaches because with the support of the removal -
operation, all previously constructed applications can still be available, all
the peers are still connected, and no redundant work will be resulted.

6.3 Evolution of a Peer Local Schema

If peer E’s local database schema evolves from Sg to S} after the systerﬁ

setup phase, the mediated schema M needs to be changed accordingly. A
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Mapnrrss ms,:
LV ={
M §3.M Sz, (date, flightNo, price, company, service, class, ID, discount) :-
M S5 flight(date, flightNo, price, company, service, class, ID, discount)

}
GV ={
M 83.M S5, (date, flightNo, price, company, service, class, ID, discount) :-
M S, flight(date, flightNo, price, company, service, class, 1D,
discount, depart, arrival, numLeft)

Figure 6.10: Example 17 Output (c)

simple, however effective, solution to this case is to first treat E as leaving

the network (removing Sg from M), then joining the network with S’.



http://MS3.MS21ida.te
http://MS3.MS21ida.te

Chapter 7

A Study of Mappmg
Composition

We have presented our algorithms of creating a mediated schema and map-
pings to local sources in a PDMS in Chapter 5. We further discussed how
to update the mediated schema in Chapter 6. In a PDMS dealing with
query processing, mapping composition is always a main issue to consider.
How well the mapping Mapa_¢ keeps the information of mappings Mapa s
and Mapp ¢ largely decides how well the PDMS can transfer information
among different peers. Thus, we make a study of mapping composition in
this chaplter. 4

Note that our focus in this thesis is to understand the fundamentals of
mapping composition in this context. As such, our algorithm is not designed
to handle all possible patterns, but rather to focus on those that are the most
common. In particular, we only consider input mappings to be mappings
with the same Concept (Definition 3), ignoring such complicated factors as -
~ self-join and self-restrictive component (Definition 6). On the other hand,
using MePSys is actually transferring the problem of mapping composition
into another: using the mediated schema, to relate different schemas, which
is more comprehensible. However, we make a general comparison here to
see how well each algorithm works in different circumstances.

Section 7.1 presents four examples with the intuition of where the com-

plexity comes from. Section 7.2 shows the analysis results.

7.1 Complexity: Where Difficulties Come From

In section 2.2, we have presented the definition of mapping composition and

briefly introduced the complexity of mapping composition in first order logic
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language. In this section, we presént several examples to show where diffi-
culties come from for the problem of mapping composition. These examples
are well-studied in [20] and [11]. We quote them here using their original
mapping language. The translation to conjunctive mappings are trivial.
Madhavan et al’s work (20] introduced the complexity of rhapping com-
position by analyzing the number of composed mappings. Take a look at
the following two exambles. '

Example 18 Assume the following mappings from [20]:

Ma_p = {a(z,y) C b(z,1),b(z1,9)}
MB—C = {b(xyxl)’b(xlvz2)>b(x27y) - c(m,y)}

The final composed mapping set M 4. involves more than one formulas:

a(:r’ 231), a(x1a$2) c c(:l:, yl) (18.3,)
a(z1,22),a(z2,z) C c(y1,) (18.b)
a(z, z1), a(z1,22), a(x2,y) C c(z,y1), c(¥1,Y) (18.c)

]

Example 18 shows that the number of composed mappings does not de-
pend on the number of the input mappings.

To analyze Example 18, [20] illustrates relation a, b and c using path
length. Suppose b encodes all the edges of a graph G. Relation b(z,y)
means there’s a path from z to y whose path length is one. Relation a(z,y)
means there’s a path from z to y whose path length is two. Similarly,
relation ¢(z,y) means there’s a path from z to y whose path length is three.
So the mapping in M4_p means a is a subset of the node pairs with paths
of length two in G, and mapping in Mg_¢ means all node pairs in G with
path‘of length three are a subset of c. » ‘

(18.a) describes the fact that if there’s a path of length four starting
from z, then there is a path of length three starting from z. (18.b) shows

that if there’s a path of length four ending at z, then there’s a path of length
\
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three ending at z. (18.c) tells us if there’s a path of length three in a, then
_ there is a path of length two in ¢. All of the above three mappings can be
inferred from M4_g and Mp_c as the mapping from A to C.

Example 19 Assume the following mappings from [20]:
T(I;ml)y bg(z17y)
(zvxl)vbg(xl)y) }

g
MB—C = {br(IE,CCl),bg(.’El,.’L‘Q),bg((E2,y) g Crgg(a:ay)
bg(xaxl)abg(z‘l,y) - ng(iv,y)}

Ma_p = {a'rg(x, y)'

Chb
agg(w,y) Cb

This example is -also originally presented in [20] The final composed
mapping is an infinite set of mappings:

agg(Z,y) € Cg9(,y) (19.a)
arg(x7$1)’agg(xl;x2) c Crgg(x;yl) : (19.b)
arg(m’ xl)y a/gg(xlaxQ)) teey a'gg(xm xn+1) -

crgg(x: yl): Cgg (yl . yz)‘, vy Cgg (yn—l, yn) (19.11)

g

Example 19 tells us that the composition of finite mappings may result
in infinite set of composed mappings. v

To analyze Example 18, [20] uses colored edges to illustrate this example.
Informally, each above equation captures the fact that if there’s a path
starting from a red edge followed by 2n + 1 green edges, then there must be
a path starting from a red edge followed by 2n green edges. Each mapping
only encodes finite steps in a path. Each time, a red edge can be added to
‘the beginning of several green edges, which will cause a new mapping. All
of these mappings cannot be expressed by others. So an infinite mapping
set will become the result of mapping composition in Example 19.

In Fagin et al’s work [11], they analyzed mapping composition problem
by proving that it is NP-complete if the mapping is in a first-order logic
language. They further proved that using Second-Order Logic mapping

language, all composed mapping can be expressed.
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Example 20 Assume the following mappings from [11]:
Mapping from A to B:

- Ve (Emp(e) = Im Mgrl(e,m)')y : | (20.1)

Mapping from B to C:

VeVm (Mgri(e,m) — Mgr(e,m)) (20.2)
Ve (Mgri(e,e) — SelfMgr(e)) (20.3)

Fagin et al. proved that the composition of Mapping A-B and B-C is not
definable by any finite set of source-to-target tuple generated dependencies,
is not first-order-definable and is not definable in Datalog [11]. However,
this can be expressed using second-order logic.

Mapping from A to C:

3 f (Y e(Emp(e) — Mgr(e, f(e)) AV e(Emp(e)(e = f(e)) —
SelfMgr(e))).

-
Ezample 20 shows that the composed mapping of two mappings in first-
order logic might not be expressed by first-order logic. Intuitively, the dif-
ficulty in this example comes from the second attribute of Mgrl(e,m). In
mapping (20.1), m is an existential variable. It is not bound by any of the
variables appearing in the left-hand side. However, in (20.3), the right-hand
side is actually bound by the second attribute of Mgrl(e,m). m acts as
a selector which decides when Mgrl can be mapped to Mgr and when to
SelfMgr. As there is no information about m in Emp, such a selector is
lost in schema A. Thus mapping composition for this example will fail if it

is expressed in first-order logic.

7.2 Exploring Possible Patterns in Mapping
Composition o

Previous work [11, 20] defined when mappings would be difficult or impos-

sible in several ways. For example, Fagin et al.’s proved and analyzed when
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the definability and computatiohal complexity of the composition of two
schema mappings can be determined. They showed that “the composition
of a finite set of full source-to-target tuple-generating dependencies (source-
to-target tgds) with a finite set of source-to-target tgds is always definable
by a finite set of source-to-target tgds, but the composition of a finite set of
source-to-target tgds with a finite set 6f full source-to-target tgds may not
be definable by any (finite or infinite) of source-to-target tgds; furthermore,
it may not be definable by any formula of least fixed-point logic, and the as-
sociated composition query may be NP-complete” [11]. For clarity, Kolaitis

summarizes their results in Table 7.1.

Table 7.1: A Summary of Mapping Composition Complexity from {11, 18]
Mapap Mapp_ ¢ Mapac Composition

: Query
finite set of full | finite set of s-t | finite set of st | in P
s-t  tgds (z) | teds p(z) — Jy | teds p(z) — Ty
—(x) Y(z,y) Y(z,y)
finite set of s-t | finite set of (full) | may not be de- | in NP; can be
‘tgds @(z) — Jy | st tgds (z) | finable: by any | NP-complete

P(z,y) —P(x) set of st tgds;
in FO-logic; in
Datalog

In their analysis, they divided the mapping composition patterns in to
two main categories based on whether the first mapping is a finite set of
full s-t tgds or not. If the first mapping is a finite set of full s-t tgds, the
mapping composition complexity falls into P space. If not, the complexity
is likely to fall into NP.

Our work requires composition from a different angle: relating different
source schemas not by the composed mappings but by the mediated schema.
This causes us to want to explore when our algorithm is possible.

In this section, we make a study of the mapping composition problem
based on [11] and [20]. Rather than only focus on these two categories that
Fagin et al. adopted, we try to explore different factors that can cause the

complexity in mapping composition and come up with 36 patterns which can
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be included into the above two main categories, but in smaller granularity.

7.2.1 Different Patterns of Mapping Corﬁposition

We make a comparison with Piazza mapping composition algorithm and Fa-
gin et al’s Second-Order Logic mapping composition algorithm in Table 7.2
based on six criteria that form 36 mapping composition pattérns. The main
idea of this stildy is to see for all possible mapping composition patterns,
how well our approach of relating the local schemas using the mediated
schema can perform and whether the complexity that are raised in previ-
ous work would also make our approach difficult and impossible in certain
circumstances.

" The six criteria for the mapping composition comparison study are listed
as follows. It is possible that there exist other criteria for the problem of
mapping composition. The criteria below are those that we think essential

and clear.

o Whether each mapping is a 1-subgoal-to-1-subgoal mapping or a m-
subgoal-to-n-subgoal mapping.

o Whether the first mapping Map p is a full set of tgds or not.

e Whether the second mapping Mapp ¢ is a full set of tgds or not.

This criteria with the previous one are used to judge whether map-
ping composition is decidable for each specific case, which is proposed
by Fagin et al. in deciding the complexity of mapping composition
problem.

e Whether the existential attributes in the second schema B map to the
third schema C. '

This criteria is complementary to the previous two, and is very impor-
tant to decide whether the mapping composition will fall into NP. Just
as we show in Table 7.2, there are a large set of mapping composition
that can be easily processed without any complexity even though the
first mapping is not a full set of tgds. A simple explanation for this is
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that the existential attribute in the second schema is the one that hin-
ders the first mapping to be a full set of tgds, however, this attribute
do not act in the mapping composition. Thus such attributes will not -

cause any difficulty in computing a composed mapping.

e Whether there exists self-restrictive component for schema B. Self-
restrictive component is defined in Definition 6. Self-restrictive com-
ponent is a factor that causes conflict in Concept for two mappings.
On the other hand, self-restrictive component is a cause of complexity
in the mapping composition problem as is shown in Example 20.

Definition 6 (Self-Restrictive Component) We say that the component C;

is a self-restrictive component if: (1) C; satisfies the following condition:

- Cy is a component from CMy; .
Cs, is a component from CMo;
C7 and Cy are components over the same schema, and: IDB(C}) =
IDB(C») ' ‘

and (2) @; and Q; constructed below satisfy @1 C Q2 & @1 2 Q2.

- Let name(sg) be the relation name of the subgoal sg;
Let sg-names(Q) be the namies of all of the relations in query @Q;

Let overlap-names = {name(sg) | name(sg) € sg-names(Cy) and
name(sg) € sg-names(C2)};

Let Clovertap = {59 | name(sg) € overlap_names and sg € body(C1)};
Cooverlap = {89 | name(sg) € overldpnnames and sg € body(Cs)}.

- We now create new queries @1 and @2 that describe the overlapping
parts of C; and C, respectively:

Let IDB(Q1) and IDB(Q2) be IDB(CM;) (which, by the above re-
quirement, is also equal to /D B(C My);

Let SUbgOGlS(Ql) = Cloverlapa and subgoals(Qg) = CZoverlap;
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Let all variables in Q; and @ be distinguished. That is let vars(head(Q1))
= vars(subgoals(Q1)) and let vars(head(Q2)) = vars(subgoals(Q2)).

O

o Whether there are any composed non-identical self-join in the map-
pings.
Composed Non-identical Self-Join Components is defined in Defini-
tion 7. Composed non-identical self-join components are the main
cause for the complexity in mapping composition problem for map-
pings with self-join. For mappings with composed non-identical com-
ponents without self-join, there is no such complexity. This is because,
every subgoal in one component can either relate to exactly one sub-

_ goal in the other component or cannot find a subgoal in the other at
all. But when mappings with composed non-identical self-join com-
ponents, multiple choices will occur when relating subgoals from one
component to the other.

Definition 7 (Composed Non-identical Self-Join Components) Assume there
exists mappings A.B and B_C. Let a_b € A_B and b.c € B_C be intersec-
tions. Let a_b(b) be the b component of the intersection a_b. Let b_c(b)
be the b cémponent of the intersection b_c. a.b(b) and b_c(b) are composed
non-identical self-join Components if 1) a-b(b) # b_c(b) but 3 a relation r
s.t. 7 € body(a-b(b)) and r € body(b_c(b)), and 2) r appears at least twice

in at least one of a_b(b) and b_c(b). , O
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Table 7.2: Different Patterns for Mapping Composition

Pattern | 1-to-1 or | Mapa g | Mapgc | existential self- composed| Piazza MePSys | Second-

num m-to-n | full “full attr  in | restrictive| non- Order
B  map identical Logic
to C self-join algo

1 1:1 v v / X / v v R4

2 1:1 v v / v / v X v

3 1:1 v X / X / v v v

4 11 v X / v / v X v

5 111 X v X X / v v o v

6 1:1 X v X v / v X v

7 1:1 X v v X / notel v v

8 1:1 X v v v / notel X v

9 1:1 X X X X / v v v

10 11 X X X v / v X v

11 1:1 X X v X / notel v v

12 1:1 X X v v / notel X v

13 m:n v v / X X v v v

14 m:n v v / X v 4 X note2

15 m:mn v v / v X v X v

16 m:n - v v / v v v X note2

17 m:n v X / X X v v v

18 m:n v X / X v v X note2

uonrsodwoy) Surddepy jo Apnig v *4 J1eydeyn)
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Pattern | 1-to-1 or | Mapa p | Mapp ¢ | existential self- composed| Piazza MePSys | Second-

num m-to-n full full attr  in | restrictive| non- Order
' B  map identical Logic

to C self-join algo

19 m:n v X / v X v X v

20 m:n v X / v v v X note2

21 m:n X v X X X v v v

22 m:n X v X X v v X note2

23 m:n X v X v X v - X v

24 m:n X v X v v v X note2

25 m:mn X v v X X notel v v

26 m:n X v v X v notel X note2

27 m:n X v v v 1 X notel X v

28 m:n X v v v v notel X note2

29 m:n X X X X X v v v

30 m:n X X X X v v X note2

31 m:n X X X v X v X v

32 m:n X X X v v v X note2

33 m:n X X v X X notel v v

34 m:n X X v X v notel X note2

35 m:n X X v v X notel X v

36 m:n X X v v v notel X note2
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1. notel: Logically speaking, the Piazza method is not rigorous enough
to handle such cases. For example, just as what we have explained in
Example 2, constraint on y; is lost in the composed mapping. We call
the case that constraint specified in the o.riginal mappings but lost in
the composed mapping a constraint loss case.

2. note2: Results are logically correct, but are very complicated, not
meaningful and easy to understand. Take Example 21 as an example,

which is the same as Example 2 but all the variables are renamed.

Example 21 Use the Second-Order Logic Mapping Composition Algorithm
to process the following mappings. ' :
My B:

Ve Vy(a(z,y) — 3z1b(z, 71), (21, ¥))
Mg o
Vi \Vl.’lfl va Vy(b(xax1)7b(m1)$2)7b(m2)y) - C(I,y))

Using the Second-Order Logic Mapping Composition Algorithm, the re-
sult is a set of eight very complicated logic expression. Details and results
of this example are shown in Appendix B. Compared to the results given
by Piazza in Example 18, this result is much too complicated and hard to
read. ' g

' 7.22 An Andlysis of Mapping Composition Patterns
From Table 7.2, the following ruies can be concluded.

1. Whether Piazza method is expressive or not depends entirely on whether
existential attributes in the second schema are mapped to the third

schema.

2. The Second-Order Logic Mapping Composition algorithm can handle .
cases with composed non-identical self-join components. However, the
results do not contain any semantic information, only logically correct.
The representation is complicated and hard to understand.
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3. For 1:1 mappings, whether MePSys can handle the pattern depends
on whether self-restrictive c'omponent exists. If self-restrictive compo-

. nents exist, conflicts for the same concept will exist in the mappings
so that no relation in the mediated schema for a common concept can

be created.

4. For m:n mappings, whether MePSys can handle the pattern depends
on whether composed non-identical self-join components exist in the
pattern. For now, MePSys has yet to realize the mediation of schemas
if mappings contain composed non-identical self-join components. We

put this into our future work.

5. For the cases when Mapy g is a full set of tgds, mapping composition
can succeed using any of the three algorithm.

6. For the cases when Map4 g is a not a full set of tgds, it is not al-
ways the case that mapping composition will be undecidable. It will
‘depend on whether existential attributes in schema B can be mapped
to schema C.

Analyze the three approaches, especially MePSys, using the results of
Table 7.2. The two mapping composition algorithms, Piazza approach [20]
and the Second-Order Logic algorithm [11], can handle all of the patterns,
though in some cases, their composed mappings are not rigorous enough or
not comprehensible enough. MePSys will fail to handle mapping composi-
tion whenever self-restrictive components or composed non-identical self-join
components exist. However, self-restrictive components will cause a conflict
in the mappings to have the same Concept, and MePSys will only merge
schemas when mappings express the same Concept. Thus, mappings with
self-restrictive component are out of the consideration of MePSys.

Aside from these two special groups of mapping composition, the ap-
proach of using PSM algorithm to build a mediated schema and using the
mediated schema to relate different sources is decidable.

Comparatively, whenever Second-Order Logic algorithm has trouble in

presenting the results, our approach also has trouble of that pattern. This
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is because all such patterns contain self-joins. In our current approach, self-
join components are not considered for the input mappings. We have yet to
study and analyze when mappings with self-join components can represent
the same Concept and when cannot. This will be our future work. On
the other hand, when Piazza approach is weak in presentation, it is not
always the case that the MePSys will have trouble. This is because, Piazza
approach is weak in presentation when existential attributes in the second
schema map to the third one while our approach transfers the mapping
composition problein to the one that how each local schema relates to the

mediated schema.
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Chapter 8

System Implementation and
Experiment

In previous chapters, we discussed MePSys, a PDMS supporting a mediated
schema to help translate queries. We also presented our PSM algorithm of
building a mediated schema, creating mappings to local sources and trans-
lating queries among different peers. In this chapter, we study the perfor-
mance of MePSys in the case of creating a mediated schema and mappings,

updating the mediated schema and mappings, and query reformulation.

8.1 System Implementation and Setup

We choose FreePastry [2] as a provider of network layer to our MePSys.
FreePastry is a generic, scalable substrate for P2P applications. It uses effi-
cient routing strategy, and each node maintains a routing table which keeps
track of its immediate neighbors. FreePastry also provides the functionality
of notifying each peer application of message arrival, neighboring node fail-
ures, etc. The expected number of forwarding steps in FreePastry overlay
network is O(logN). We use FreePastry version 1.4.4 for the network layer.
All implementation is written in Java, which makes it cross-platform.
We setup our experiment in Emulab [1], a network emulation testbed, to
get the realistic P2P environment for our system. Emulab provides the abil-
ity to access a set of different machines to emulate nodes in a real network.
Network bands and message delays can also be set. Different numbers of
peer nodes (12, 16, 20 and 24) have been used for the performance of schema
mediation and query reformulation in MePSys. In total, we get 40 machines
from Emulab, including 15 used for network control and 1 for experiment
control, leaving us with a maximum of 24 different peers. Each Emulab
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machine that we get provides 900M memory with 2992.787 MHz processor.
The quality of such machines is similar to that of a peer in a P2P network
since each peer needs to act as both a server and a client. We choose 70ms
delay for each message and 50M bandwidth! to simulate a real network
environment. Although Emulab was only able to provide 24 peers for our
experiﬁ;ent, which is less than the hundreds or thousands of peers that may
exist in a P2P network, we believe this to be a reasonable number of peers
to test for a PDMS. In a PDMS, the system is relying on the translation
of semantics, and while our system does improve the semantics of query
translation through the introduction of Concept (Chapter 4), attempting to
semantically compose query rewrites across hundreds of peers with hetero-

geneous schemas will not result in a semantically meaningful result.

8.2 Imnput Schemas and Mappings

We based the relational schemas at each peer on the schemas in TPC-H (4],
where each schema.contains 8 relations, each with an average of 8 attributes.
We use this information to automatically generate a relational schema as a
local database schema for each peer in MePSys, making our peer schema
as realistic as possible. We further generate mappings between pairs of
acquainted nodes; as we will see, the mappings varied from experiment to
experiment, but we controlled (1) the average number of acquaintances per
peer (2) the average number of relations per peer schéma (3) the -average

number of attributes in a relation.

8.3 Experiment 1: Schema Mediation

The main purpose of this experiment is to see the performance of the al-
gorithms described in Chapter 5 and to compare the performance when
different numbers of peers are involved in the system setup phase.

- YThe bandwidth is not an important factor in MePSys. We ran the same experiment
using 1M bandwidth, and no significant difference in time occurred in the result.
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In Theorem 1, we gave an upper bound of time for system setup phase.
The time of schema mediation in the PDMS is decided by the number
of hops when the last node in the network received all node information:
_ maxg{maxp{shortestPath(A, F) + shortestPath(F,E)}}, where A is the
mediation starting node, E' and F represent all nodes in the network. Fig-
ure 8.1 shows the result of mediating 12, 16, 20 and 24 péers’ information
respeétively. When peer number is fixed, the time of completing a medi-
ated schema is linear and proportional to the number of hops. The time of
each hop is decided by two factors: delay time for each message and mes-
sage transferrihg time. In our scenario, the time of transferring a mediated
schema cannot be ignored. The time for transferring a mediated schema
is highly related to the size of the mediated schema. When the number of
peers gets larger, the mediated schema also increases, resulting the time of
each hop to increase as well. Thus the time of each hop for mediating 12, 16,
"20 and 24 peers are different. On the other hand, when the number of peers
in a network is fixed, the time for each hop is similar, because the messages
the nodes are passing each time are of similar size. Considering the case of
24 peers with 20 hops, the total time of mediating the 24 peer schemas only
costs 31 seconds, which is quite a satisfactory time cost for the system setup

phase.

8.4 Experiment 2: Query Reformulation

~In this experiment, we test the perforfnance of our query reformulation al-
gorithm and compare the local computation time with the whole query re-
formulation time in the network. Since the query reformulation algorithm
is very fast, for each query on each peer, the query is reformulated 10 times,
and this query reformulation is reported as local computing time. This way,
though the time was artificially inflated, it would not be subject to timing
errors caused by having to measure very small numbers.

Time of query reformulation and broadcasting in the whole network is
proportional to the topology depth when each query message size is similar.

We define Topology Depth as the maximum of the shortest path for all
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Time of building a mediated schema V.S. Number of Hops

[—w—12 peers —e— 16 peers - 20 peers —— 24 peers|

12 14 16 18 20
Num of Hops

Figure 8.1: Time of building a mediated schema V.S. Number of Hops
nodes from the node where query is initially posed.

TopologyDepth = max{shortestPath(A, E)}

where A is the node where query is posed, E is all other nodes in the network.

Topology depth takes an important role in deciding the total time for
query reformulation in the network. This is because queries will be sent to
all other acquaintances except the message source, and each node will not
process the same query twice. What’s more, in most cases, query messages
are small. Figure 8.2 shows the time results of completing the query reformu-
lation and broadcasting in the network. We posed a query with 2 subgoals
on one peer schema. For each topology depth from 4 to 9, we run experi-
ment on 12, 16, 20 and 24 peers respectively. Results show that for queries
(with relatively small size under 1k) sent to topologies of the same topology
depth, there is almost no time difference to reformulate the query among
the four different sets. On the other hand, results in Figure 8.2 show that
the time of query reformulation and broadcasting is exactly proportional to
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Time of Query Reformulation and Broadcasting
V.5.Topology Depth

[~+—12 peers —o— 16 peers —a—20 peers —— 24 peers|

Topology Depth

Figure 8.2: Time of Query Reformulation and Broadcasting V.S. Depth of
Topology

the topology depth of the network.

We further compared the quality of the query reformulation algorithm
when different queries are posed. We fixed the network topology and posed
ten different queries to a source peer. Each query contain subgoals ranging
from 1 to 10. For some peer when queries cannot be reformulated, the local
reformulation time will be very little. Thus for each query, we compare
the total reformulation and broadcasting time with the maximum local peer
computing time for 10 times query reformulation.

Figure 8.3 shows that as the number of subgoal grows, the time spent
on local reformulation time also increases. This is as anticipated since our
algorithm reformulates queries based on each subgoal. Another finding from
Figure 8.3 is that when the subgoal number increases, the time for complet-
ing the query in the whole network also increases. This is because when the
subgoal number increases, the size of the message containing that query also
increases, which causes the time of each hop to increase as well. However,
when processing queries with no more than 3 subgoals, the reformulation
and broadcasting such queries is still close to constant. From Figure 8.3, we
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can conclude that even for 10 times of query reformulation, maximum local
reformulation time is always less than 3% of the total network time.

Time of Query Reformulation and Broadcasting in the network
V.S. Max Local Computing Time (10 times query reformulation)

[ Time of Max Loc al Query Reformulation for 10 times @ Query Reformulation inthe Network|

Figure 8.3: Time of Query Reformulation in the network V.S. Max Local
Computing Time for 10 times Query Reformulation

8.5 Experiment 3: Updating the Mediated
Schema

Next, we tested the performance of updating the mediated schema in the
stable state, i.e., after the system setup period. This experiment is a follow-
up experiment of the first experiment, Schema Mediation (Section 8.3), and
is designed as follows: Assume all peers maintain the most updated me-
diated schema and GLAV mappings to local schema. A new peer Z joins
the network and creates a mapping to one of the peer, say A, which trig-
gers a new schema mediation process. After that, A broadcasts the new
mediated schema to all other peers, and then all peers, upon receiving an
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updating message, update their locally maintained mediated schema and
other information. ' '
Ten different experiments,\representing ten different topologies, are exe-

cuted in order to get the following time for each setting.
1. tl. = time of initial system setup phase
2. tg = time of computing the ne§v M at peer A
3. t3 = average time of updating M at each peer except A

4. t4 = total network time for updating M in the whole network after Z
joins the network L

Time t; is directly obtained from the statistics in Experiment 1. Thus,

it is possible to compare the time of updating the mediated schema with the
- initial system setup time for a fixed topology.

“Topology Depth”, which is defined in Experiment 2, is used to note
down the topology depth for each experiment. Since after updating the
mediated schema at A, the same updating message will only be processed
at each peer once, the time for the whole updatingv process to complete
depends on the topology depth.

Table 8.1: Updating the Mediated Schema for Adding a New Peer

Experiment Topology| t1(ms) | t2(ms) | ts(ms) | ta(ms) | t2/t4
Depth
16 peers 12 hops | 4 10733.86| 71.33 | 0.0099 | 5868.13 | 1.21%

13147.71] 71.10 | 0.0105 | 7325.73 | 0.97%
15542.58 69.16 | 0.0099 | 11477.08] 0.46%
17117.51} 71.49 " | 0.0105 | 12766.28| 0.56%
18376.80] 71.38 | 0.0106 | 13075.01] 0.54%

15160.07{ 91.50 | 0.01 5297.89 | 1.73%
17672.95| 90.57 | 0.0103 | 6616.83 | 1.37%
19693.76] 91.01 | 0.0105 | 7921.49-| 1.15%
21542.09| 87.99 | 0.009 | 9591.46 | 0.92%
23028.56| 90.27 | 0.009 | 7940.53 | 1.14%

16 peers 14 hops
16 peers 16 hops
16 peers 18 hops
16 peers 20 hops

‘| 20 peers 12 hops
20 peers 14 hops
20 peers 16 hops
20 peers 18 hops
20 peers 20 hops

~J| Co| O U W] ©f QO] =3} T

Table 8.1 shows the results of different time w.r.t. the ten topologies.

The computation of a new mediated schema at peer A, £;, is always around
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70 ms for 16 peers, and 90 ms for 20 peers, less than 2% of t4, the total time
for updating a mediated schema in the network. The time of updating local
mediated information in all other peers, t3, is always about 0.01 ms, which

can be ignored compared to the time spent for the network.
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Conclusion and Future Work

In this thesis, we presented MePSys, a relational peer data management

.system. Our key contributions are:

e We presented a mechanism to support a mediated schema in PDMS

which allows easier access to more information.

o We defined what a concept means in the case of conjunctive mapping
and how it impacts the understandability of the mapping and mediated
- schema. ’

e We introduced a construct MappingTable which helps us to trans-
form unstructured mapping information to structured forms and which
is easier to construct mappings from the mediated schema to local

sources.

e We also provided an approach to create mediated schema in PDMS
and get mappings to local sources.

- o We further explored how to update the mediated schema in the steady
state.

e We finally implemented the system and showed the experimental re-

sults.

In future work, we will extend this work to a more generic method. First,
reconsidering the definition of Concept, we want to figure out how to dis-
tinguish mappings with the same semantic information while using different
IDB namies. We also would like to explore the semantic issues when a broader
range of mappings are considered, e.g., mappings with self-joins. Second,

more optimization issues can be considered in the future system since in
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current MePSys, each mediated schema message passed among peers is still
large. There are many possible ways to decrease the size of the messages by
sharing information between different constructs. Good optimization can
significantly decrease the schema mediation time in the system setup phase.
Third, we would like to explore some better approaches for updating the

mediated schema when local schema evolves.
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Appendix A

Details for Example 15

Example 15: An example of a new peer joining the network

There are three peers in the current system: A, B and C. Mappings Map4_B
and Mapg ¢ are created as follows. We only consider the relations that are
created by mappings for the mediated schema and omit relations that do
not participate in the mappings because relations that represent a Concept
among different peers are the core part of our discussion.

Mapping Mapa_g:
flight(date, flightNo, price) :- A_flight(date, flightNo, price)
flight(date, flightNo, price) :-
B_flight(date, company,flightNo,service),
. B_price(flightNo, class, price)
Mapping Mapp c: » -
flight(date, flightNo, class, price) :-
B_flight(date, company, flightNo, service},
B_price(flightNo, class, price)
flight(date, flightNo, class, price) :-
C_schedule(ID, date, flightNo),
C_price(ID, class, price, discount)

Shown in in Figure 6.1(a), after the setup phase, a mediated schema
M S; has been built and maintained at each peer. The mappings from M S
to A, B and C and the MappingTable will also be built.

Mediated schema MS; = { ‘
flight(date, flightNo, price, company, service, class, ID, discount)

89




Appendix A. Details for Example 15

MappingTable flight:

MS, flight |1 2 3 4 5 6 7 8
IM g flight | 1 2 3 4 5 6

A flight 1 2 3

B_flight 1 3 2 4

B_price 1 3 2

IMpe flight | 1 2 3 4 5 6 7 8
B_flight 1 3 2 4

B_price 1 3 2
Csschedule (2 |3 1
C_price . 2 1 3

Mapping MapMSl_A:
LV ={
M 8;_A;(date, flightNo, price) :-
M S, flight(date, flightNo, price, company, service, class, ID, discount)

}
GV = {
M S; A, (date, flightNo, price) :- A.A_flight(date, flightNo, price)

}

Mapping Mapms, _B:
LV = {
M S;_B,(date, company, flightNo, service, class, price) :-
M S, flight(date, flightNo, price, company, service, class, ID, discount)

}
GV = { |
M S, _B;(date, company, flightNo, service, class, price) :-
B.B_flight(date, company, flightNo, service),
B.B_price(flightNo, class, price) .
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Mapping Mapums, c:
LV =/{
- MS,.C,(ID, date, flightNo, class, price, discount) :-
M S, flight(date, flightNo, price, company, service, class, ID, discount)

}
GV ={
MS:-C,(ID, date, flightNo, class, price, discount) :-
C.C_schedule(ID, date, flightNo),
C.C_price(ID, class, price, discount)

}
After building the mediated schema MS; and the mappings to local

sources, peer B also built a database application APPgp over M S;. So the

information stored at each peer is as follows.
- Peer A: schema A, Mapa g, MS1, Mapyms, 4, M.

- Peer B: schema B, Mapa g, Maps.c, MS1, Mapms, B, M1,
APPg(MS,). ’

- Peer C: schema C, Mapp ¢, M S, Mapums, ¢, M.

A new peer D joins in the network. It creates a mapping to peer C,

~

shown in Figure 6.1(b).

Mapping Mapc_p:
flight(date, flightNo) :- C_schedule(ID, date, flightNo),
C_price(ID, class, price, discount)
flight(date, flightNo) :-
D_schedule(date, flightNo, depart, arrival, numLeft)

_ Using algorithms described in Chapter 5, a new mediated schema M Sy,
MappingTable MT;.and GLAV mappings can be computed.

Mediated schema M S; = {
flight(date, flightNo, price, company, service, class, ID, discount,
depart, arrival, numLeft) )

}
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MappingTable flight:

MS flight |12 |3 {4 |5 |67 [819 |10 (11
MS flight |1 |2 314 |56 {7 |8

IMspflight |1 |2 [3 |4 |5 {6

A flight 11213

B_flight 1 (3 2 |4

B_price 113 2

IMpgcflight |1 12 |3 |4 |5 |6 |7 |8

B light 1 (3 2 |4

B_price 113 2

Cschedule [2 |3 | 1

C_price 21113

IMcep flight [ 1 | 2 31415 |6 7
C_schedule |2 |3 1

C_price 121113

D_schedule |1 |2 , 314 5

Two mappings will be created first.

Mapping Mapnms, ms;:
LV = {
Q1 (date, flightNo, price, company, service, class, ID, discount) :-
M S, flight(date, flightNo, price, company, service, class, ID,
discount, depart, arrival, numLeft)

}
GV = {
Q1(date, flightNo, price, company, service, class, ID, discount) :-
M S, flight(date, flightNo, price, company, service, class, ID,
discount)
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Mapping Mapums,.p
LV =/{
M S,_D,(date, flightNo, depart, arrival, numLeft) :-
M S, flight(date, flightNo, price, company, service, class, ID,
discount, depart, arrival, numLeft)

}
GV = {
.M S3_D, (date, flightNo, depart, arrival, numLeft) :-
D .D_schedule(date, flightNo, depart, arrival, numLeft)

-

C passed M Sy, MT; and Mappys, p to D. So the information that peer
D stores is: M Sy, MT5, Mappys,_p, schema D, Mapc_p.

C further computes the GLAV mappmg from M Sy to C using Mapms, ms,
and M apMsl_C

Mapping Mapms,.c
LV = {
MS>_C,(ID, date, flightNo,class, price, discount) :-
M S, flight(date, flightNo, price, company, service, class, ID,
discount, depart, arrival, numLeft)

}
GV ={
M S>.C1(ID, date, flightNo,class, price, discount) :-
C.C.schedule(ID, date, flightNo),
C.C_price(ID, class, price, discount)

.

C will keep the following information: M Sy, MTy, Mapums, ¢, schema
C, Mapc_p, Mapp_c.

C passes M Sy, MT>, Mappys, ms, to B. B computes Mapys2_p using
Mapps,-ms, and Mapysi - '
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Mapping Mapums,_B:
LV ={
M S>_B4(date, company, flightNo, service, class, price) :-
M S, fiight(date, flightNo, price, company, service, class, ID,
discount, depart, arrival, numLeft)

}
GV ={ . .
M S>.B, (date, company, flightNo, service, class, price) :-
B.B_flight(date, company, flightNo, service),
B.B_price(flightNo, class, price)

-

Since B has application AP Pg still using M S;, M S; and the mapping
- MS; to MSy need to be kept as well. So the information that B stored is
MS,, MSy, Mapms, ms,, Mapms, B, MTs, schema B, Mapp_c, Mapa_B.
B will pass M Sy, MT», Mappys, ms, to A.
Using Mapps, ms, and Mapms, 4, a mapping from mediated schema

M S5 to local schema A can be computed.

Mapping Mapums,_a:
LV = { '
M S,_A,(date, flightNo, price) :-
M S, flight(date, flightNo, price, company, service, class, ID, |
discount, depart, arrival, numLeft)

}
GV ={
M S,_A,(date, flightNo, price) :-
A.A flight(date, flightNo, price)

-

A will keep the following information: MS;, MT,, Mappse .4 and

Mapa . ‘

Thus, every peer can keep the updated mediated schema and maintain
a mapping from the mediated schema to local schema. Additionally, all
the previously created database applications over previous versions of the

mediated schema can still be used.
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Use the Second-Order Logic Mapping Composition Algorithm to process the
following mappings.
My B:
Vz Vy(a’(xa y) - 3$1b($, Il), b(xl s y))
b Mg o
Yz Va1 Ya Vy(b(z, 1), b(21, 22), b(22,¥) — c(z,¥))

A detailed process is as follows using the Second-Order Logic Mapping
Composition Algorithm. ‘ '
Step zero (change variable names):
My p:
Vz Vy(a(iﬂ,y) - 3mlb(l"a:81)7()(3317:’4))
Mp ¢

Vs Vsy sy VE(b(s, s1),b(s1,82),b(s2,t) — c(s,t))

Step one (split):
My g: '

3f (Vz Vy(a(z,y) — b(z, f(z,y)),b(f(z,),¥))
= { a(z,y)— b(z, f(z,y)), a(z,y) — b(f(z,¥),¥) }

Step two (compose):
Mg_c:
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(b(s, s1),b(s1,32),b(s2,t) — c(s,t))
= {
(a(z,y),b(s1,82),b(s2,8) A (z=5) A (f(=z,y) = s1)— c(s,1));
(a(z,y),b(s1,52),b(s2,t) A (f(2,y) = ) A (y = s1) — c(s,1))
} .
= { .
(a(z,y),a(z’,y'),b(s2,t) A (2= 8) A (f(z,9) = s1) A (2’ = 1)
A (F(@y) = s2)— c(s,1)); v |
(a(z,y),a(z’,y"),b(s2, ) A (2 = 8) A (f(z,y) = 1) A (f(2', 1) =
s1) A (¥ = s2) = (s, 1)); ,
(a(z,y),a(@’,y'),b(s2,t) A (f(z,y) = 8) A (y = 81) A (2 = 51)
A (f(@',y) = s2) = c(s,1)); '
(a(z,y),a(z’,y), b(s2, OA(f(z, ) = s) A (y = s1) A (2 = s1) A
(f(2'y) = s2) — c(s,1));
}
= { :
(a(z,y),a(z’,y"),alz",y") A (= 8) A (f(z,y) = s1) A (&' = 1)
A (f(&'y) = s2) A (fv = 82) A (f(2",y") =) — c(s,1));
(a(z,y), al@', ), a(z",y") A (z = 8) A (f(z,9) = 51) A (F(2',9)) =
51) A (Y = 82) A (3" = s2) (f(z", ") =1t) — c(s,1));
(a(z,y),a(z’,y'), alz",y") A (f(z,y) = s) A (y=s1) A (3" = 51)
A (f(&'y) = s2) A (2" = s2) A (f(2",y") =1) = c(s,1));
(az,y),a(z’,y'), a(z",y") A (f(z,9) = 8) A (y = s1) A (2’ = 51)
A (f(a,y) = s2) (3" = s2) A (f(2",y") =1) — c(s,1);
(a(z,y),a(z’,y'),a(z",y") A (z = s) A (f(z,y) = 51) A (3" = 51)
A (f(@sy) = s2) A (F(@" ") = s2) A (Y = 1) — c(s,8));
(a(z,9),a(@’,y"),a(z",y") A (@ = s) A (f(z,y) = s1) A (f(&', ) =
51) A (Y = s2) A (F(2",y") = s2) A (Y =1) — c(s,1));
(a(z,y),a(z’,y'), alz",y") A (f(z,y) = s) A (y = 51) A (&' = 51)
( (
(=,
(f

A (fELY) = s2) A (f(", Y1) = s2) A (Y =1t) A (s, t));

(a

y),a(z’, ), a(z",¥") A (flz,y) = 8) A (y = s1) A (2" = s1)
A t

(@', y') = s2) A (f( LY") = s2) (¥ =t) A c(s,))
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} .
Step three (add quantifiers):

= { :

JfVzVyVar' Vy Vz'Vy'VsVs1 VsVt (a(z,y),alz,y), alz",y")
Az =38) A (flz,y) =s1) A @ =) A (f@y) = s2) A
(&" =s2) A (f(2",9") = 1) — c(s,8));
IfVaVyVa' Vy Va'Vy'VsVs Vs Vi (alz,y),ax',y), alz”,y")
Az =8) A (flz,y) = s1) A (f(@Y) =81) AN = s2) A
(" = s2) A (f(2", ") = t) — c(s,1));
JfVaVyVa' VY Va'Vy'VsVs1 Vs Vi (alz,y),a(z’,y), a(z",y")
A (f(z,y) = 8) Ay =s1) A (= s1) A(f(,y) = s2) A
(2" = s2) A (f(2",9") =1) — c(s,1));
JfVaVyVa' Vy Vo' Vy'VsVs Vs Vi (alz,y), a2, y), alz”,y")
A (f(zy) = 8) Ay =) A (@ =s1) A (fl,y) = s2) A
(2" = s2) A (f(2";y") = t) — c(s,1));
JfVaVyVa' Vy Va'"Vy'VsVs VsVt (a(z,y),al@,y),alz",y")
A =s) A (fle,y) = s1) A = s1) A(f(@yY) = s2)
(f(=",y") = s2) A (¥ =t) — c(s,1));
IfVaVyVa' Vy Va"Vy'VsVs VsVt (a(z,y),al@,y),alz",y")
A(z=s) A (flzy) = s1) A (f(hy) =s1) Ay = s2) A
(f(z",y") = s2) A (¥ =1) — c(s,1));
IfVaVyVa' Vy' Va"Vy'VsVs Vs Vi (a(z,y),a(z,y),alz",y")
A (flz,y) = s) A (y = s1) A (3" = s1) A (f(@',y) = s2) A
(fa",y") = s2) A (¥ =1t) = c(s,1));

"I fVaVyVa' VY V" Vy"VsVs Vsa Vi (alz,y),a(d,y), alz’,y")
A(f@y) =9 Ay =s)AE =s)A(f@y) = s2) A
(fa",y") = s2) A (¥ =1) — c(s,1));

}

The whole set in step three is the result of the composed mapping
Mapsc of Mapa g and Mapp.c. Compared to the results given by Pi-

azza in Example 18, this result is much too complicated and hard to read.
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