
Ass is ted De tec t ion of Dupl ica te B u g Repor t s

by

Lyndon Hiew

B.Sc, The University of British Columbia, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

May 2006

© Lyndon Hiew 2006

II

Abstract

Duplicate bug reports, reports which describe problems or enhancements for

which there is already a report in a bug repository, consume time of bug triagers

and software developers that might better be spent working on reports that de­

scribe unique requests. For many open source projects, the number of duplicate

reports represents a significant percentage of the repository, numbering in the

thousands of reports for many projects. In this thesis, we introduce an approach

to suggest potential duplicate bug reports to a bug triager who is processing a

new report. We tested our approach on four popular open source projects,

achieving the best precision and recall rates of 29% and 50% respectively on re­

ports from the popular Firefox open source project. We report on a user study

in which we investigated whether our approach can help novice bug triagers

process reports from the Firefox repository. Despite the relatively low precision

and recall rates of our approach, we found that its use does increase the dupli­

cate detection accuracy of novice bug triagers, while significantly reducing the

number of searches they perform and slightly reducing the time they spend on

each report.

i i i

Contents

A b s t r a c t i i

C o n t e n t s i i i

L i s t o f Tables v

L i s t of F i g u r e s vi

A c k n o w l e d g e m e n t s vii

1 I n t r o d u c t i o n 1

2 B a c k g r o u n d 4

2.1 Reports and the Bug Repository 4

2.2 Duplicate Detection Today 6

2.3 Related Efforts 7

3 R e c o m m e n d i n g D u p l i c a t e s 9

3.1 Bug Report Representation 9

3.2 Comparing Bug Reports 10

3.3 Labelling Reports Unique or Duplicate 11

3.4 Incremental Updates 12

3.5 Performance 14

3.6 Implementation 14

3.6.1 hash Tables as Document and Centroid Vectors 16

3.6.2 Updating the Model 17

3.7 Performance Optimization 18

3.7.1 Sparse Vector Computation 18

3.7.2 Using the Top 20 Terms 19

Contents iv

4 A n a l y t i c E v a l u a t i o n 20

4.1 Method 20

4.2 Results: Information Retrieval Measures 23

4.3 Results: Detector Accuracy Measures 24

4.4 User Study 30

4.4.1 Method 31

4.4.2 Participants 34

4.4.3 Results 34

4.4.4 Accuracy 35

4.4.5 Workload 37

4.4.6 Time 38

4.5 Threats 40

4.5.1 A Firefox Study 40

4.5.2 Choice of Bugs 40

4.5.3 Previous Triage Experience 41

4.5.4 Measuring Triage Time : 41

5 D i s c u s s i o n 43

5.1 Why Duplicate Detection is Hard 43

5.2 Mistakes made by the Recommender 44

5.3 Improving the Approach 45

6 C o n c l u s i o n 47

B i b l i o g r a p h y 48

A B R E B C e r t i f i c a t e of A p p r o v a l 50
i

V

List of Tables

3.1 Top 7 Suggested Duplicates for Firefox Bug # 297150 12

4.1 Time Span of Bug Report Sets 21

4.2 Initial Bug Report Breakdown 23

4.3 Adjusted Bug Report Breakdown 23

4.4 Accuracy on Duplicate Bug Reports 24

4.5 Mapping of Bug Report Ids 33

vi

List of Figures

2.1 Example of a Bug Report from Firefox 5

3.1 Screenshot of Duplicate Bug Report Recommender 15

4.1 Unique/Duplicate Accuracy vs Threshold for Firefox 25

4.2 Unique/Duplicate Accuracy vs Threshold for Eclipse Platform . 26

4.3 Unique/Duplicate Accuracy vs Threshold for Fedora Core 26

4.4 Unique/Duplicate Accuracy vs Threshold for Apache 2.0 27

4.5 Running Accuracy with Top 7 Recommendations for Firefox . . . 28

4.6 Running Accuracy with Top 7 Recommendations for Eclipse Plat­

form 28

4.7 Running Accuracy with Top 7 Recommendations for Fedora Core 29

4.8 Running Accuracy with Top 7 Recommendations for Apache 2.0 29

4.9 D E T Curve for Varying Threshold Values 31

4.10 Distribution of Subject Scores 35

4.11 Subject Scores by Bug Report 36

4.12 Average # Searches Performed on Bug Reports 38

4.13 Triage Time Distribution 39

vii

Acknowledgements

First I would like to thank my supervisor, Gail Murphy, for helping me through­

out my research. She always had time to discuss things and gave priority to

reviewing my documents in a timely manner. Gail was flexible with the different

directions I took and gave me invaluable advice on the next step to take. When

I felt lost and did not know where my research was going; she help me see the

overall plan and helped me remain grounded. It was a great opportunity to

work with Gai l , who is an amazing supervisor and person.

I'd also like to thank John Anvik and Brian de Alwis for their helpful advice

on designing the study and the many pointers they gave me regarding my re­

search. They were always willing to help out with any problems I had. I would

also like to thank M i k Kersten for allowing me to use Mylar in the study for

data collection.

Finally I'd like to thank my family for supporting my educational goals, even

though they did not fully understand what I was doing and why I embarked on

this path.

1

C h a p t e r 1

Introduction

The reports submitted to a bug repository of an open source software devel­

opment project help drive the work performed on the project. Reports that

are submitted to the repository are assigned to a software developer who then

determines the order in which to work on assigned reports based upon such

information as a report's priority.

In practice, the process is not nearly this simple. For example, because

reports can be submitted simultaneously by both users and developers, not all

of the reports that enter the system are described in sufficient detail to become

a work item. Other reports describe problems that can not be reproduced. To

cope with the volume of less-than perfect reports, open source projects use bug

triagers, people who help'filter the reports down to those representing real issues

and who help in the assignment of reports to developers [13].

One of the filtering steps a bug triager performs is to attempt to identify if

a new report is a duplicate of an existing report. In other words, does the new

report represent a problem or modification that has already been entered into

the repository. When this duplicate detection process is performed well, it can

significantly decrease the number of reports that must be handled downstream

by developers. For instance, as of February 1, 2006, duplicate reports made up

36% of all reports in the Firefox repository,1 17% of Eclipse Platform reports, 2

14% of Apache 2.0 reports 3 and 13% of Fedora Core reports. 4 These percentages

correspond to large numbers of reports: 14159 for Firefox, 9181 for the Eclipse

platform, 422 for Apache 2.0 and 4792 for Fedora Core.

To determine duplicate reports, a triager must currently rely either on their

knowledge of the bug repository to know that they have seen the report before,

or they must perform a series of searches on the repository to try to find potential
1https://bugzilla.mozilla.org/, verified 02/01/06
2https://bugs.eclipse.org/bugs/, verified 02/01/06
3http://issues.apache.org/bugzilla/, verified 02/01/06
4https://bugzilla.redhat.com/bugzilla/, verified 02/01/06

https://bugzilla.mozilla.org/
https://bugs.eclipse.org/bugs/
http://issues.apache.org/bugzilla/
https://bugzilla.redhat.com/bugzilla/

Chapter 1. Introduction 2

duplicates. The former approach relies solely on expertise; the latter approach

also involves an investment of time that might be better spent on other aspects

of the project. The manual nature of these approaches also tends to result in

missed identifications of possible duplicates due to faulty memory or inadequate

searching. These false negatives have several undesirable ramifications: more

reports must be managed through the repository for a longer time increasing

work loads, developers may miss relevant information in an undetected duplicate

report as they are working on the problem, and priorities of reports may have

been different had it been clear that a number of people had reported a similar

problem.

To help the bug triager, we have developed an approach that recommends

for a newly submitted report, a set of potential duplicate reports that already

exist in the repository. Based on the textual information entered by a reporter

of a bug to describe a problem or enhancement, our approach builds a model

of previous reports by creating groups of duplicate reports. When a new report

arrives, its textual description is compared to this model to determine the most

similar reports, if any. Any reports recommended as duplicates of the new

report are returned to the triager who can then make a final decision about

whether the reports are indeed duplicates. Our approach is based on techniques

from topic detection and tracking research that considers the clustering of news

stories [18].

We have evaluated the accuracy of this approach analytically against the

Firefox, Eclipse, Fedora and Apache projects. Our best results are for the

Firefox project, for which we achieve a precision and recall of 29% and 50%

respectively when our tool recommends seven potential duplicate reports. To

investigate whether these precision and recall rates help a triager, we conducted

a user study in which we had 18 participants, equally split into control and

treatment groups, use our recommender on a set of 10 bugs from the Firefox

repository.

We found that the treatment group was able to more accurately identify du­

plicate bug reports, using fewer searches and in slightly less time than the con­

trol group, providing evidence that even relatively low precision recommenders

might help with this bug triaging task.

We begin by providing background information about bug repositories for

open source projects and the process by which duplicate detection occurs today

Chapter 1. Introduction 3

(Chapter 2). We then review other efforts in this area (Section 2.3) before pre­

senting our approach for recommending duplicates to a bug triager (Chapter 3).

We present the results of both an analytic and human-based evaluation of the

approach (Chapter 4) and discuss outstanding issues with the approach and our

evaluation (Chapter 5). We then summarize our findings (Chapter 6).

4

C h a p t e r 2

Background

To set the stage for a description of our approach, we provide an overview of
the format of bug reports and of the current approaches used by bug triagers to
perform duplicate detection. We also discuss some related work on bug reports
and duplicate detection research.

2.1 Reports and the Bug Repository

The various bug (or issue) repository systems used by open source projects (e.g.,
Bugzilla 1, J IRA 2 and CollabNet3) share many similarities. A report stored in
one of these repositories consists of a number of fields: some fields take free-form
text as values; others have pre-defined sets of values from which the reporter
of a bug report must choose.4 For example, a report submitted to a Bugzilla
repository has free-form summary and description fields, whereas the values for
platform and version fields come from a set of pre-defined values for the project.
An example of a bug report is shown in Figure 2.1

In addition to storing information about a specific problem or enhancement,
most repositories also support the specification of relationships between reports,
such as when one report is a duplicate of another and when one report is de­
pendent upon another. When using a Bugzilla repository, a triager can mark
one report as a duplicate of another by changing the status field of the report
to duplicate and indicating the id of the earlier report. These actions form a
symmetrical relationship indicating the duplication between both reports in the
repository [14]. This duplicate marking approach can lead to chains of dupli­
cates within the repository. Consider a report B that is marked as a duplicate

1http://wvw.bugzilla.org, verified 02/28/06
2http://www.atlassian.com/software/jira/, verified 02/28/06
3http://www.collab.net/, verified 02/28/06
4 In this thesis, we use the term report instead of bug to reflect the use of these repositories

for both problem reports and feature enhancement requests and discussions.

http://wvw.bugzilla.org
http://www.atlassian.com/software/jira/
http://www.collab.net/

Chapter 2. Background 5

Bugzilla Bug 297150
-r:-r <_ast Prov'fJoyt /V-

View.source text should be editable

zh re-suits available Search' page Enter new bug

297150 alias:
Dug#:

Product:I Firefox

Hardware: PC Reporter:
<s(3),net>

Component: View. Source:

Status: VERIFIED

OS: i Windows XP v Add CC:

Version:' unspecified 'vj CC: jos com

Priority: - , •i

Resolution: DUPLICATE of bug UZmj- Severity: normal
Assigned To: <nobody(3)mo2illa' org>" " Target ~

Milestone: -
0_A Contact: Iview.source®firefox;bugs.

URL: I

;::-Summary :|Viewjsource:!tex.tsshould;be:-edit able;

Status f! 1
Whiteboard:

Keywords:

' LI Remove'
Flags: -selected CCs

blockmgl 8 0 2 , v j

blocking 1.9a 1 [_ * \

blocking-firefox2 I *v]

Attachment lypi: Crccitud F Iciijs Actions

GreateMiNew:-Attachmentifproposed:patch,-:testcase,-etc.:> v,e--' l

Bug 297.150 depends on::

Bug 297150 blocks:
tShow":dependency-:tree;:::
1-Show.adependency:-graphs:

Votes: 0 , Show- •jotes for this bug , Vots for this bug

View Bug Activity | Format For Printing

Description: "[reply] .. . • Opened: 2005-06-03 20:50 PDT

The: :page-\source'-window has:,-,the:--tex-t:'-aS'::'.readonly^ •:
. (s p e c i a l l y : i f v>you:-::are t e s t i n g .a web^page: ̂ c r e a t e d by. you)' t c e d i t the t xc lr. thu
Page Zr.v.v.ze - j i : . : ! - : * ar:.: %hen save the flit*, as ' l HTHL :or. . to -de le te : ' the:-/ 'unwanted";
HTML tn-j* r.o fo-:us o:i th-^ s p e c i f i c i i ren c:f the page for.^debugging;.purpose.-;.:•:•:•.

R e p r o d u c i b l e : Always _

Steps to Reproduce:
1. .Browse"to" any ueb-page,
2 . C l i c k on'View->Page Source

A c t u a l R e s u l t s : . 1

Page Source has readon l y t e x t .

:E-xpected">-Results: .-•''••' : '• :v ! •
The tex t . . shou ld - . ' beeed i tab le .'• : • " ' . :

Advantages: - '
1. Less debugging l i a s f o r a deve loper •, vl:o uar.to to support:. Moz i ' l i a / :F ; i re fox f c r
h i s web a p p l i c a t i o n . ' ' '•

Comment #1_ From Josh'Birfib'aum 2005-06^08 21:52 POT 1 reply] - - - - —
Th i s bug has been marked as,"a d u p l i c a t e o f "173817 * * *

Figure 2.1: Example of a Bug Report from Firefox

Chapter 2. Background 6

of an earlier report A . Later, report C enters the repository and is subsequently

marked as a duplicate of report B . B y transitivity, report C is also a duplicate

of report A , although this is not recorded directly in report A or report C .

The presence of such duplicate chains in repositories affects how we apply and

validate our approach in Section 3.4 and Section 4.1 respectively.

In this thesis, we focus on reports stored in Bugzilla repositories. Because

of the similarities of the repositories used for open source projects, this choice

does not restrict the generality of our approach.

2.2 Duplicate Detection Today

In practice, there are two processes currently in use to prevent duplicates in bug

repositories.

The first process involves preventing the reporting of .duplicates. Many

projects ask reporters submitting a report to the bug repository to check if

the report being formed is a duplicate before submitting it. For instance, in the

Firefox project, the first step instructs reporters to review a posted list of the

most frequently occurring reports, and to search for whether a similar report

has been submitted in the last few weeks. This process is dependent upon the

reporter's motivation to perform extra steps during report submission. It is

difficult to assess for a project how many duplicates this prevents in the reposi­

tory. The number of duplicate reports that exist in open source bug repositories

(Chapter 1) suggests that this process is not sufficient.

The second process involves identifying duplicates as a report is being triaged.

A bug triager typically attempts this identification by perusing the project's

most frequently reported bugs list and by performing searches on the reports in

the repository. A commonly used search involves looking for words occurring in

the report's summary or its description. More advanced triagers use component

names and specialized keywords to aid their searches.

Each of these processes leaves the determination of what is a duplicate up

to the human reporter or triager. As a result, there is a wide range of what is

considered a duplicate report in open source bug repositories. Some duplicates

are obvious, such as a report that has been submitted multiple times. Many

duplicates are more subtle. As an example of subtle duplicate reports, consider

the Firefox reports #297150 and #269326 that describe feature enhancement

Chapter 2. Background 7

requests.

297150: The page source window has the text as readonly but at

times there is a need (specially if you are testing a web-page created

by you) to edit the txt in the Page Source window and then save the

file as a H T M L or to delete the "unwanted" H T M L tags to focus on

the specific area of the page for debugging purpose.

269326: Is it possible to have something like "Edit Source" feature

in addition to "View Source" feature. "Edit Source" feature can

allow users to change anything in web page source which can be

reparsed by Firefox layout engine and re-displayed.

The first report (#297150) asks for the ability to edit text in the page source

viewer, while the second report (#269326) asks for this functionality as a sepa­

rate feature. The first report is marked in the Firefox repository as a duplicate

of an earlier report #172817. A bug triager with the Firefox project suggested

that the second report, #269326, was also a duplicate of report #172817, but

in a conversation recorded on the report, the reporter disagreed, so it was left

as a unique bug report. The decision to mark a report as a duplicate or not is

not always clearly defined. Duplicate reports also do not always occur within a

short time period. A n analysis of all Firefox bug reports from project inception

until October 2005 shows that the average time between the reporting of the

original bug and its last duplicate is 177 days.

2.3 Related Efforts

Perhaps because of a lack of availability to bug repository data until the growth

of open source projects, there have been few efforts that have focused on iden­

tifying relationships between bug reports automatically. Fischer, Pinzger and

Gall [7] introduced an approach that discovers and visualizes dependencies be­

tween features in a software system using information stored in bug reports and

information about revisions to the code base. Cubranic and Murphy's Hipikat

project, which automatically builds a group memory from artifacts recorded

during a software development project, determines which reports in a reposi­

tory are similar to each other based on an information retrieval algorithm [17].

Chapter 2. Background 8

Sandusky and Gasser [14] present an approach that uses duplicate and depen­

dency relationships between reports along with informal references in a report

to other reports to extract Bug Report Networks (BRNs), to identify how large,

distributed open source projects are managed. Anvik, Hiew and Murphy [2] de­

scribe an approach that suggests which developer may be suitable for solving a

newly submitted report based on what it learns from assignments made to pre­

vious reports in the repository. Compared to these previous efforts, the problem

addressed in this thesis is most similar to the bug similarity addressed in the

Hipikat project. Duplicate detection differs from bug similarity in requiring a

more precise definition of similarity. More specifically, our approach differs from

that of Hipikat in that we return the earliest occurring duplicate of a similar

bug, if one exists, instead of the bug itself.

Automatic determination of duplicate documents has been considered in

other contexts. In large collections of documents, for instance, duplicates are

removed to maintain the speed and effectiveness of search engines [4]. In this

context, the corpus of documents is often relatively stable compared to a bug

repository in which new bugs are constantly being added.

As another example, Topic Detection and Tracking (TDT) research considers

the problem of grouping news stories about the same event together [5]. In one

formulation of this problem, online event detection [18], the task is to find the

first occurring story in a stream of stories seen that describes a new news event;

all subsequent stories about the same event are labelled old and ignored. For

example, these can be used on a news feed to highlight a new disaster event when

it occurs. Online event detection is very similar to our problem of duplicate

bug report detection. The approach we take builds on the T D T approach of

Yang, Pierce, and Carbonell [18], who use an incremental clustering approach

to process each news story as it is received. The main difference with our

approach is that we assign a new bug report to its correct centroid or group of

duplicates, instead of adding it to the most similar centroid found (Section 3.4).

We further extended their approach by adding the centroid and the incremental

update scheme used in MailCat [16], a tool for sorting incoming email into an

appropriate group of existing folders.

C h a p t e r 3

9

Recommending Duplicates

To help a bug triager identify more duplicate bug reports efficiently, our ap­

proach suggests to the triager whether a new report is UNIQUE or a potential

D U P L I C A T E . In the latter case, our approach produces a set of reports that may

be duplicates of the new report.

Our approach relies on building a model of reports in the repository. This

model groups similar reports into centroids. When a new report arrives, we

compare the report to each centroid, looking for occurrences of high similarity;

reports from highly similar groups are considered potential duplicates. We build

the model incrementally as reports arrive.

Our approach processes each report that arrives at the repository according

to four steps:

1. Represent the incoming report as a document vector (Section 3.1).

2. Compare the vector to each centroid in the model (Section 3.2).

3. If the similarity between the vector and a centroid exceeds a threshold,

mark the incoming report as a D U P L I C A T E ; recommend a report from each

of the top n ranked centroids (Section 3.3).

4. Optionally add the incoming bug report to a centroid (Section 3.4).

3.1 Bug Report Representation

We represent a report using the textual values of the report's summary and

description fields because these fields contain the most reliable description a new

report. The summary field corresponds to a short one-sentence description of

the bug. The description field is a longer description that typically includes

free-form text describing the problem or enhancement, and for problems, also

Chapter 3. Recommending Duplicates 10

includes the steps to reproduce it, the expected and actual behavior, and any

additional information.

We combine the values of these fields and preprocess the resulting text,

stemming each word with the Porter stemmer algorithm [11] and removing stop

words using the Cornell S M A R T stop list [3]. A l l words from the description field

template in the submission form, such as Steps to Reproduce:, Actual Results:

and the Build Identifier string, are also excluded. Finally, we delete any leading

and trailing non-alphanumeric characters from all words.

This preprocessed text is then converted into a document vector that is used

to represent the report. The vector consists of weighted values Wij for each term

j in the document (report) i. We represent the vector as di = (wn, Wi2,u>in),

where n is the number of different terms appearing in the current model. For the

term weights, ti)y, we use Term Frequency - Inverse Document Frequency [12],

(TF - IDF)jt where

(TF-IDF)j=tfj*idfj (3.1)

This weight attempts to capture, two characteristics in one value: the term

frequency tfp which is the number of occurrences of the term j in the docu­

ment and which favors highly occurring terms that are more likely to represent

the context of the document, and the inverse document frequency idfj, which

favours rare terms. The inverse document frequency is computed from the doc­

ument collection size and the number of documents containing term j.

, , # docs in collection . ,n „ .
idfj = log{ — — — :) (3.2)

docs containing term j

3.2 Comparing Bug Reports

Our approach maintains a model of previous reports processed and their group­

ings to allow for comparisons with incoming bug reports. The reports placed

within the same group are treated as one aggregate, called a centroid [16]. The

centroids in the model we form correspond either to groups of duplicate reports

or individual unique reports.

We represent each centroid with a vector, which requires us to compute the

weights (TF — IDF)-C for the terms j that appear in the centroid C. This

Chapter 3. Recommending Duplicates 11

corresponds to computing the weights for any term j that appears in any doc­

ument d in the centroid C. The tfjC for term j in the centroid C is computed

by summing the term's frequency in each document d within the centroid C:

tfJC = J2th (3-3)
dec

Similarly, idfjC is computed over centroids instead of over documents, using

the total count of centroids and the centroid frequency, the number of centroids

containing the term j.

.^j. ^ . # centroids in model . (3 4)
3 # centroids containing term j

To compare a vector representing an incoming report with the centroids
in the model, we use cosine similarity, which is a measure of how similar two
document vectors are to each other [12]. For two vectors a and b, the cosine is
computed as

n
cos = a • b = ^ ai * bi (3.5)

which is the cosine of the angle between the two vectors.

A vector for a report with a long description and a vector representing a

centroid with a large number of reports will have larger TF — IDF and cosine

values than other centroids. As these values can skew the cosine similarity

to favour highly populated centroids (those with many duplicate reports), we

normalize the cosine values to fall within the range [0,1]. This is achieved by

dividing by the product of the vector lengths of a and b.

COSnorm = . =: (3.6)
v / E i = i < v / E i = i ^

Wi th normalized values, we can fairly compare vectors for documents and cen­

troids. A similarity of 0 means two vectors have no words in common. A

similarity of 1.0 indicates the two vectors have identical proportions of the same

set of words and are very likely to represent two exact copies of the same report.

3.3 Labelling Reports Unique or Duplicate

Our approach compares the document vector representing a new report to every

centroid that is currently in the model, computing the similarity between each

Chapter 3. Recommending Duplicates 12

pair. We rank each centroid according to its computed similarity. We then

label the bug report as UNIQUE or DUPLICATE based on whether the top ranked

centroid is below or above a predefined threshold. If the similarity of the top

ranked centroid is below the threshold, the report is UNIQUE. Otherwise, if the

similarity is above the threshold, the bug report is labelled a DUPLICATE.

When the similarity between the incoming report and the top ranked cen­

troid exceeds the threshold, we label it a DUPLICATE and return a list of potential

duplicate reports to the bug triager. Because of the large variation in what con­

stitutes a true duplicate report, the list of potential duplicates we return is a

representation of the duplicates in the top n ranked centroids. For our evalua­

tion in Section 4.2, we used the values n = 3 and n = 7. When a top n ranked

centroid consists of more than one report, we present the information from the

earliest submitted report within the centroid as representative of the centroid.

We use the earliest submitted report as representative because the convention

in many projects is to mark duplicates with the bug id of the earliest report.

Table 3.1 shows a sample of the potential duplicates returned by our approach

for the report #297150 from the Firefox project, the report that we introduced

in Section 2.2.

Table 3.1: Top 7 Suggested Duplicates for Firefox Bug # 297150
Bug # Summary

221668 View Source is brokens

291603 View source doesn't show the correct source

245851 View Selection Source automatically converts upercase H T M L tags

to lower case

230693 Missing reload within view source window

279614 Should be able to open view source window in a new tab

172817 Allow external source viewer/editor

285560 a view-source windows should show the source of a streamed page

3.4 Incremental Updates

New reports are constantly being submitted to a bug repository. To fit into

this context, our approach must be able to add new reports to the model of

Chapter 3. Recommending Duplicates 13

duplicates incrementally. To achieve this goal, we have adapted the incremental

approach used in Mai lCat [16], a system which uses an incremental classifier to

predict into which existing folder a received email should be placed.

When a new report is received, and is determined by a triager (hopefully

with the help of our approach) to be a duplicate, it is added to the appropriate

centroid. Determining which centroid the report should be added to is compli­

cated by several issues. Duplicate reports are not always marked by triagers

with the bug id of the earliest duplicate. The report could be marked as a du­

plicate of a report occurring after it or the report could be part of a duplicate

chain (Section 2.1). When adding a report to the model, we can not simply rely

on the report's bug id or the marked duplicate bug id. Instead, for each report

within a centroid, we record its bug id and the duplicate bug id it is marked

with. Before a report is added to a new centroid, we first check if one already

exists for it. This is done by comparing the bug id of the report, and if a dupli­

cate, the bug id of the duplicate, to the recorded bug ids in each centroid. If a

match is found with an existing centroid, the report is added to that centroid.

If no match is found, a new centroid is created for the report. This ensures that

a report is added to its correct centroid, instead of being added to a new one.

The (TF — IDF)jC weights used in our cosine similarity values are com­

puted using the current values for term frequency (tfjc> the frequency of term

j in centroid C), centroid frequency (# of centroids containing term j) and the

total number of centroids. When a report is added to either an existing or new

centroid, these values must be updated. Term frequency is updated by adding

the term frequencies of the new report to its corresponding centroid. If any new

terms were added to the centroid, we update the centroid frequency for each

new term j. This is accomplished by incrementing the centroid frequency by 1

for each new term j. Similarly, if a new centroid was created for the report, the

total number of centroids is incremented by 1.

Updates in the bug repository can also be quickly updated in the model. If

a bug report is deleted or marked as being INVALID, all that needs to be done

is to subtract its term frequencies from the centroid, decrement the centroid

frequencies for words no longer appearing in the centroid, update the total

number of centroids, and delete the report's bug id and duplicate bug id from

its centroid. Changes to a bug report's summary and description can also be

updated in a similar fashion.

Chapter 3. Recommending Duplicates 14

3.5 Performance

We designed our duplicate detection system to be incremental, to handle the

dynamic nature of large, open source bug repositories. Reports are constantly

added to and updated in the repository. If desired, our detection approach can

be tuned to update the model of previous reports in batches, for example, after

every 50 reports, or every day at 2 A M . For a bug repository, the model can also

be populated with the existing reports, all in one large batch. This method was

used for our user study (Section 4.4) to build a model of all Firefox bug reports

submitted before June 9, 2005.

A n important factor to the usability of an approach is its speed. Updating

the model with a new report is quick with our incremental approach, requir­

ing less than a second of time. When the model was built for our user study

(Section 4.4), using approximately 18,000 reports, the process took about 30

minutes, which is about a 1/10 of a second for each report. This is an accept­

able speed, considering that we also preprocess the report's text before adding

it to the model. The amount of time needed to determine the recommendations

is also important. Although this largely depends on the number of reports in

the model, less than 2 seconds are needed to provide the recommendations for

a bug report in the user study.

3.6 Implementation

We have implemented our approach as a Java application. Figure 3.1 shows a

screen shot of the system used in the user study (Section 4.4). It displays the

recommendations for the current bug report being viewed. The triager can view

both the report and the recommendations without the need to switch back and

forth between the two. The triager can also double-click on a bug report from

the recommendations to open it in the current web browser window. We discuss

the implementation of the duplicate detection system along with details on how

the backend of the system was implemented.

Initially, the bug reports are stored in X M L files, chronologically ordered,

and are read into the system in the same order. As each bug report is read

into the system, we retrieve its bug id. We then scan the comments for any

indication that the report has been marked as a duplicate. In Bugzilla, when a

Chapter 3. Recommending Duplicates 15

j htfps://bugzilla.moziila.org/show_bug.cgi'id=297150

mozilila.org
Bugzilla Bug 297150 i View source text should be editable *•

, , " , Last modified 20C_
c » > (. * f 1 f t e i ' f ' . v v ,'u fired 'c-ut'i'asci! jhv Search page Fnter new br

597150
Buq#:

alias:

Product: [firefox

Hardware: PC

O S : I Windows XP

View Sources Component:

•• Status ^UNCONFIRMED. .

Resolution:

Nobody's working on this; feel

Version: lAjnspecified1

Priority:, --

Severity: inofmal-

Target; i*2 _
illlllllfe

\ Duplicatesof.Bug 297150 S3

Bug I... j Summary

221668 View Source is broken
291603 View source doesn't show the correct source
245851 View:5election Source automatically convertsupercaseHTMLtags totower case :
230693 Missing reload within view source window
279614* Should be able to open view source window.in a new tab
1 /2U17 Allow external source viewer/editor . . . : . . .
285560^ a view-source windows should show.the source of a streamed page

Figure 3.1: Screenshot of Duplicate Bug Report Recommender.

report is marked as a duplicate, a message is added with the following text: ***

This bug has been marked as a duplicate of bug <bugJd> ***, where <bugjd>

is the id of the duplicate report. When one such comment is found, we extract

the bug id of the duplicate using regular expressions.

We begin preprocessing the new bug report's text by removing any strings

in the bug report description that are added from Bugzilla's description field

template. For example, if a bug reporter left the description empty, the report's

description would appear as the following:

http://mozilila.org

Chapter 3. Recommending Duplicates 16

User-Agent: Mozilla/5.0 (Windows; U ; Windows N T 5.0; en-US;

rv:1.8.0.2) Gecko/20060308 Firefox/1.5.0.2

Bui ld Identifier: Mozilla/5.0 (Windows; U ; Windows N T 5.0; en-US;

rv:l.8.0.2) Gecko/20060308 Firefox/1.5.0.2

Reproducible:

Steps to Reproduce:

1.

2.

3.

Actual Results:

Expected Results:

Any strings from the above template that are found in the bug report de­

scription are removed. The User-Agent and B u i l d I d e n t i f i e r strings are

matched using regular expressions.

We concatenate the bug report summary with its description text to form a

string. A l l characters are converted to lowercase. Then the string is tokenized,

using any consecutive number of whitespaces as the delimiter. The resulting

tokens become the terms we process. To remove common stop words, we retrieve

the words contained in the S M A R T system's stop list [3]. As each stop word

is read from the stop list file, it is stored in a hash, for quick access. As we

view each term in the string, any term that exists in our hash of stop words

is removed. The remaining terms are stemmed, to change them into their root

form. Each term is stemmed using the Porter stemming algorithm [11]. The

processed terms are then used to build a document vector representation of the

bug report.

3 . 6 . 1 h a s h T a b l e s a s D o c u m e n t a n d C e n t r o i d V e c t o r s

The processed bug report text, which includes the summary and the description,

is stored as a hash table. The hash table represents the document vector for the

Chapter 3. Recommending Duplicates 17

report. In the hash table, each key and value entry represents a term and its

the number of occurrences of the term in the report. While adding each term

to the hash table, if an entry already exists for a term, we increment its existing

value by one. The hash table is used to represent the term frequencies for each

term in the bug report.

For the centroids, we maintain a count of the current number of centroids.

Each centroid is also represented by a hash table. Each hash table entry consists

of the term as the key and its frequency in the centroid as the value. In addition,

the centroid frequencies and the number of centroids containing some term j,

are also stored in a hash table. The term j is used as the key and the value is

the centroid frequency. The use of the hash table allows us to quickly retrieve

the term and centroid frequencies in order to compute the TF — IDFJC weights

for each term j. If the number of centroids is zero, we return a cosine of 0. To

allow for quick retrieval of a centroid's hash table, a reference to it is stored in

a hash table, using the centroid's first seen bug id as the key (explained in more

detail below).

To keep track of which bug ids have been seen so far, we store them in lists,

one for each centroid. Both the bug ids and the duplicate bug ids are stored.

When a new report is encountered, we retrieve its bug id and its duplicate id,

if one exists. Then, we scan each centroid's list of bug ids. If a match is found

between the report's bug or duplicate id and any id from the list, the new report

belongs to that centroid. Both the bug id and the duplicate bug id are then

added to the end of the centroid's list. To ensure the new report is added to the

correct centroid's hash table, its key, the first occurring bug id in its list of ids is

retrieved. On the other hand, if no matches are found for the new report's bug

or duplicate id, we create a new list for the new centroid and add the report's

bug id and duplicate id to the list.

Finally, we need to compute cosnorm, the normalized cosine value. This

requires computing the lengths of both the report's and the centroid's vector.

We then divide the cosine by the product of these vector lengths. If the product

is 0, we return a normalized cosine value of 0.

3 . 6 . 2 U p d a t i n g t h e M o d e l

Updating the model's hash tables is easily done. Retrieve the hash table value

for the given term, update the value and store it back in the hash table. This

Chapter 3. Recommending Duplicates 18

allows for efficient updating of term and centroid frequencies. When a new

report is added to the model, the hash table representing the term frequencies

of the bug report is used to update the centroid frequencies in the model. When

determining whether the centroid frequency for a term j should be incremented,

we check if the term already exists in the centroid's hash table. If it does not,

we increment the centroid frequency for that term, because another centroid

now contains the term j.

3.7 Performance Optimization

There are a few optimizations that can be made to increase the speed of the

recommender. The method we have used has a time complexity of 0 (n 2) . As the

number of reports contained in the model increases, the time required to find the

recommendations increases quadratically. Wi th our Firefox dataset containing

over 21,000 bug reports, about 10 hours on a 1 GHz machine was needed to

simulate the approach on the whole dataset. We present the optimizations we

used and their performance.

3 . 7 . 1 S p a r s e V e c t o r C o m p u t a t i o n

For our approach we use the full vocabulary of all terms seen so far by our

model. Even after a few thousand reports, the vocabulary can quickly grow to

over 10,000 terms. W i t h each term corresponding to a dimension in the vector,

computing the cosine with such large vectors is time consuming. Fortunately,

many terms do not occur in every report or centroid, making the TF — IDF

weights for these terms be 0. This creates a sparse vector for our reports and

centroids, where only a few values are non-zero. Because of this, we can take

advantage of the sparseness and compute the cosine using a faster method [15].

W i t h sparse vectors, only non-zero dimensions make a contribution to the

resulting cosine measure. The cosine measure is essentially the dot product of

the two vectors. Given two vectors a and b of equal dimensions, this is computed

by summing all values of a ,*^ , for each dimension i. For any dimension i where

a; or bi are 0, a, * bi wil l also be 0. For sparse vectors, we can reduce some of

the computation by only computing a, * 6, for dimensions i where both at and bi

are non-zero. This is implemented by scanning all the terms in the bug report's

Chapter 3. Recommending Duplicates 19

hash table and checking if it also exists in the centroid's hash table, before

computing the dot product.

Another performance optimization that can be done is when normalizing the

cosine value. The vector length of both the centroid and document vector must

be determined to normalize the dot product value. For a vector a, the length

is obtained by summing a 2 , for each dimension i. Similarly, we can avoid many

of the 0 values, by computing a? for only the non-zero values. Since both the

centroid and bug report hash tables only contain values for occurring terms, we

only need to compute of for terms occurring in the hash tables.

3 . 7 . 2 U s i n g t h e T o p 2 0 T e r m s

To speed up the time needed to compute the recommendations, especially when

the model contains 10,000 or more centroids, we only make comparisons with a

subset of centroids. Given a new report, we extracted the top 20 terms, ranked

by idf' - c (Section 3.2). We have used 20 terms because this was determined to

be an optimal number of terms to use [8]. We then fetch all centroids containing

at least one of the 20 terms, and compute the recommendations based on this

subset of centroids. This reduced the total computation time by approximately

30% for each project.

Chapter 4

20

Analyt ic Evaluation

As an objective evaluation of how well our approach can determine duplicate

reports, we applied it to data in the bug repositories of four open source projects:

Firefox, the Eclipse Platform, Apache 2.0 and Fedora Core.

We chose these four projects because they are mature and popular, cover

a diverse set of user communities, are implemented in different programming

languages and are built using different organizational processes.

For each of these projects, our evaluation consisted of replaying the sub­

mission of reports to these projects. For each report, we applied our approach

to recommend if the report was U N I Q U E or a D U P L I C A T E , evaluated our rec­

ommendation against the report's true identity, and then updated the model

used in our approach with the actual report. For our evaluation, a report's true

identity consists of its correct label of either U N I Q U E or D U P L I C A T E , and for a

D U P L I C A T E , includes the bug id of a previous duplicate report. This method

of evaluation simulates how our duplicate detection approach would be used

within a triaging environment. In this section, we detail our evaluation method

(Section 4.1), and assess the performance of our approach using standard in­

formation retrieval measures (Section 4.2) as well as measures from the Topic

Detection and Tracking (TDT) community (Section 4.3). Then we discuss the

user study of our approach (Section 4.4) and the threats to its validity (Sec­

tion 4.5)

4.1 Method

For each project, we used a selection of bug reports from the beginning of the

project until Sep. to Oct. 2005 (Table 4.1 lists the exact end dates used for

each project). We use a selection of reports because not all reports may pro­

ceed to be triaged for duplicates. For instance, bug reports with resolutions of

W0RKSF0RME, indicating a reported bug cannot be reproduced, INVALID, indi-

Chapter 4. Analytic Evaluation 21

eating the reported bug is not a bug, and WONTFIX, indicating the report will

not be attended to, may preempt any detection of duplication. The reports we

used are ones with resolutions of FIXED, DUPLICATE or OPEN1. The Fedora Core

project includes additional resolutions for fixed bugs which we also included,

namely RAWHIDE, CURRENTRELEASE and NEXTRELEASE; we considered all of these

resolutions as equivalent to FIXED.

Table 4.1: Time Span of Bug Report Sets
End Date of Report Set

Firefox Sep 1, 2005

Eclipse Platform Sep 29, 2005

Apache 2.0 Oct 14, 2005

Fedora Core Sep 29, 2005

Since bug report ids increase incrementally over time in the project repos­

itories, we process the reports for each project in order of their ids. For each

report (in order), we perform the following three steps:

1. Apply our approach to the report, labelling whether the report is UNIQUE

or DUPLICATE against a model formed from the reports processed to that

point.

2. Compare the label. If it is a DUPLICATE , also compare our recommenda­

tions to its actual identity to determine if they were appropriate.

3. Use the report's true identity (not our assigned label) to update the model

of reports used in applying our approach.

The decision to use the report's actual identity to update the model, rather

than the recommended label, is based on how bug triage is done. In the four

projects we used for evaluation, we looked at how many comments a bug report

received before being marked as a duplicate. In each of the projects, approxi­

mately 90% of duplicates were marked as DUPLICATE before any comments were

added. This data indicates that most duplicate reports are identified during

the first triage attempt by a triager. Since our approach is semi-automated, the

triager wil l make the final decision on a report's identity. We choose to rely on
xwe use the label OPEN for clarity; the actual value is a blank field

Chapter 4. Analytic Evaluation 22

the triager's decision because this information is available to the system during

the triaging process and ensures the model of past reports stays consistent with

the bug repository.

On the surface, it appears simple to determine if the label, and for duplicates,

the recommended bug ids, we assign to a report using our approach are correct;

simply check in the bug repository if the bug was recorded as a DUPLICATE.

Unfortunately, determining the true identity of a report is not this simple be­

cause of three situations that occur. First, a duplicate is sometimes marked

with the id of a future report, one that occurs after it in time. In this case, in

the chronological processing of reports, the current report effectively becomes

unique, because the future bug report has not yet been seen at that moment in

time. Also, the future report becomes a duplicate, because its bug id has been

referred to by a past report. Second, a duplicate can be marked with the id of a

report that does not appear in the range of data used in the evaluation. Third,

the previous duplicate bug id referred to by the report can be changed several

times, in which case we choose the last marked bug id as the correct bug id of

its duplicate.

To allow for a fair evaluation of our approach, we must handle these cases in

the evaluation. We thus base our determination of whether we consider a bug

report we are processing as an actual duplicate on the following steps. As we

process each report, we record its id. If the report is marked as a DUPLICATE

in the repository, we also consider the id of which it is marked to be a dupli­

cate, which we refer to as the duplicate-of id. Both of these ids are recorded

because future reports may refer to either of these ids 2 . For reports with a

DUPLICATE resolution, if the duplicate-of id is outside the range of data used in

the evaluation, we consider the report as unique. Otherwise we check if either

the bug id or duplicate-of id has been seen in our processing. If either produces

a match, we consider the report a duplicate, for the purposes of evaluation. If

no matches are found, the DUPLICATE report is considered unique, as the system

would not be able to correctly detect it as a duplicate. In our evaluation, for

a report we label as a D U P L I C A T E to be a correct duplicate, the report must be

an actual duplicate and either its bug id or its duplicate-of id in the repository

must match a bug id listed in one of the centroids returned within the top n

recommendations.
2See Section 2.2 for an example of 2 bugs both referring to a third.

Chapter 4. Analytic Evaluation 23

The initial number of unique and duplicate reports is listed in Table 4.2.

The adjustments reduce the actual number of duplicates that can be correctly

predicted by a system, and is shown under the Predictable Dupes column in

Table 4.3. These values list the number of reports and its percent of the total

reports.

Table 4.2: Initial Bug Report Breakdown
Unique Dupe Total

%

Firefox 11096 10819 49 21915

Eclipse Platform 29063 8653 23 37716

Apache 2.0 1370 412 23 1782

Fedora Core 17961 4115 19 22076

Table 4.3: Adjusted Bug Report Breakdown
Unique Predictable Dupes Total

%

Firefox 13845 8070 37 21915

Eclipse Platform 30354 7362 20 37716

Apache 2.0 1432 350 20 1782

Fedora Core 18846 3230 15 22076

4.2 Results: Information Retrieval Measures

One way to assess our approach is to use measures common in information

retrieval: precision, recall and the F i measure [15]. These are calculated with

respect to duplicate reports. We used the values of n = 3, following Mai lCat [16],

and an arbitrary value of n = 7 in our study. In this context, we define precision

as the fraction of correct duplicates (number of correct answers) out of the

number of reports recommended as D U P L I C A T E by our approach (Equation 4.1).

We define recall as the fraction of correct duplicates (number of correct answers)

out of the number of predictable duplicates (Equation 4.2). Since the labelling

of a report in our approach depends upon the threshold value for similarity, it

Chapter 4. Analytic Evaluation 24

can be varied to obtain higher recall with lower precision values or vice versa.

The F i measure is used to balance the inevitable tradeoff between precision and

recall (Equation 4.3).

„ . . # correct duplicates , A .
Precision = — — — (4.1)

reports recommended as duplicate

„ ,, # correct duplicates ,, „ .
Recall = ^ , , , f (4.2)

predictable duplicate reports

_ 2 * precision * recall
pi = —L—- rr (4-3

precision + recall

The precision and recall values for the highest F\ scores, obtained by varying

the threshold value, are show in Table 4.4. The precision (%) and recall(%) for

the top 3 and top 7 recommendations are shown, along with the threshold val­

ues. Compared to the state-of-the-art precision and recall values in Information

Retrieval (IR), our values are low, which is likely due to the difficulty of the

duplicate detection task (Section 5.1).

Table 4.4: Accuracy on Duplicate Bug Reports
Top 3 Top 7

prec. rec. thres. prec. rec. thres.

Firefox 27 36 0.4 29 50 0.35

Eclipse 12 17 0.5 14 20 0.5

Apache 23 30 0.35 24 32 0.35

Fedora 24 21 0.6 19 31 0.5

4.3 Results: Detector Accuracy Measures

There are many other measures that can be used to evaluate our approach. We

wish to not only correctly recommend duplicate bug reports, but to also predict

whether a report is unique. We can use the duplicate and unique detection accu­

racies to see how well the system handles both of these requirements. Duplicate

accuracy is the number of correctly detected duplicates out of all predictable

duplicates (Equation 4.4). Likewise, unique accuracy is defined as the number

of correctly labelled unique reports out of the total number of unique reports

Chapter 4. Analytic Evaluation 25

(Equation 4.5). Duplicate accuracy is equivalent to the recall value used in the

previous section (Section 4.2) because we prefer to have more duplicate reports

being correctly detected, rather than having high precision.

Duplicate Accuracy =
correct duplicates

predictable duplicates

Unique Accuracy =
correct unique reports

(4.4)

(4.5)
unique reports

B y varying the threshold value used, different duplicate and unique accura­

cies can be obtained. Figure 4.1 shows this tradeoff for the Firefox project. The

other 3 projects are displayed in Figures 4.2, 4.3 and 4.4. unique represents the

unique accuracy and top 7 and top 3 represent the duplicate accuracy for the top

7 and top 3 recommendations. We can vary the threshold value to obtain a high

accuracy duplicate or unique detection system to suit the application and the

preference of the triagers. If a high duplicate accuracy is desired, the threshold

can be set to a low value, while sacrificing unique detection performance. Vice

versa, if one wishes to have good unique accuracy, the threshold can be set to a

higher value, but duplicate accuracy will suffer.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

Figure 4.1: Unique/Duplicate Accuracy vs Threshold for Firefox

Chapter 4. Analytic Evaluation 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

Figure 4.2: Unique/Duplicate Accuracy vs Threshold for Eclipse Platform

Threshold

Figure 4.3: Unique/Duplicate Accuracy vs Threshold for Fedora Core

Chapter 4. Analytic Evaluation 27

0

unique
- - top7

top 3

0 0.1 0.2 0.3 0.4 0.5
Threshold

0.6 0.7 0.8 0.9

Figure 4.4: Unique/Duplicate Accuracy vs Threshold for Apache 2.0

A l l 4 projects display a similar tradeoff behavior, although there are some

differences between them. Apache has the quickest drop in duplicate accuracy

as the threshold value is increased, whereas the other projects show that the

tradeoff changes more gradually as the threshold is varied. Apache also achieves

the highest possible duplicate accuracy rate out of the 4 projects, with Fedora

following behind it.

Another aspect to examine is how the approach performs over time as more

bug reports are added to the model. This can be accomplished by looking at

the running accuracy of the system. For running accuracy, we simulate the

order of submission of the reports, and measure the duplicate accuracy for all

the bug reports seen up to that moment in time. The duplicate accuracy is

measured after every 50 bug reports. The running accuracy for each of the 4

bug repositories is displayed in F ig 4.5, 4.6, 4.7 and 4.8. The threshold was set

to 0.2 in all cases.

Each of the 4 bug repositories exhibit similar behaviors. Initially, they each

have a high accuracy for the first few thousand of bug reports. As addition

reports are added to the model, the duplicate accuracy decreases. Eventually,

Chapter 4. Analytic Evaluation 28

90 -r

80 -

70 -

60 -
o
ra 3 50 -
(J < 40 -
T5 u
Q. 3 30 -
Q

20 -

10 -

— Firefox

0 4—
50 5050 10050

of Bug Reports

15050 20050

Figure 4.5: Running Accuracy with Top 7 Recommendations for Firefox

50 5050 10050 15050 20050 25050

of Bug Reports

30050 35050

Figure 4.6: Running Accuracy with Top 7 Recommendations for Eclipse Plat­

form

Chapter 4. Analytic Evaluation 29

90

80

70

e 60
u

ro
= 50
o
o
<
& 40

30

20

10

— Fedora

150 2650 5150 7650 10150 12650 15150 17650 20150

of Bug Reports

Figure 4.7: Running Accuracy with Top 7 Recommendations for Fedora Core

100

90

80

70

S. 50
o>

| 40
Q.

Q 30

20

10

0

— A p a c h e

50 250 450 650 850 1050 1250 1450 1650

of Bug Reports

Figure 4.8: Running Accuracy with Top 7 Recommendations for Apache 2.0

Chapter 4. Analytic Evaluation 30

the accuracy appears to stabilize and level off. This seems to indicate that the

performance of the approach degrades gracefully as the number of reports in

the model increases.

Since our approach is similar to that used in event detection research (Sec­

tion 2.3), we also consider how well our approach performed according to a

standard measure in that field, a Detection Error Tradeoff (DET) curve [10]. A

D E T curve plots the miss versus the false alarm rate as the threshold is var­

ied. In terms of duplicate detection, a miss is a duplicate that was labelled

as UNIQUE (Equation 4.6), and a false alarm occurs when a unique report is

labelled a D U P L I C A T E (Equation 4.7).

„ , . # duplicates labelled unique . „.
Miss Rate = ,. — - — - — (4.6

predictable duplicates

_, , _ # unique reports labelled duplicate . .
False Alarm Rate = — „ (4.7)

unique reports
In the T D T setting, the miss and false alarm rates are computed on the news

stories concerning a set of news events. News stories not related to the set of

events are ignored and not included in the results. Likewise, our miss and false

alarm rates are based only on the groups of duplicate bug reports. The earliest

report in a group of duplicates is considered the unique or new event, with the

remaining reports being duplicates or old. Figure 4.9 shows the D E T curves

that result from applying our approach to the four projects. A n ideal system

would have a zero miss and false alarm rate, so the closer the D E T curve is to

the origin, the better the detection system.

The D E T curves for all the projects are similar, indicating our approach

performs similarly, when applied to each project. The curve also shows the

tradeoffs that can be made when optimizing our detection system for a particular

application. If a bug triager is only concerned about missing duplicates, the

system can be tuned to have a low miss rate, while producing many false alarms.

On the other hand, if one wants to minimize false alarms, this can be done at

the cost of increasing the number of missed duplicates.

4.4 User Study

Ideally, a duplicate detection system would achieve near 100% accuracy and

it would be possible to run the detection system as bugs are reported and

Chapter 4. Analytic Evaluation 31

% False Alarms

Figure 4.9: D E T Curve for Varying Threshold Values

to remove duplicate reports automatically without ever presenting them to a

triager. Any lower accuracy in the duplicate detection system means that it

is necessary to present the triager a list of possible duplicates from which they

might choose. The duplicate detection system thus serves as a recommender.

B y providing recommendations of duplicates, we would hope to increase the

duplicate identification accuracy of bug triagers and possibly reduce both the

number of searches performed and the time needed to find duplicates.

4 . 4 . 1 M e t h o d

Our study consisted of 18 subjects triaging 10 bugs from^the archives of the

Firefox project. Half of these subjects formed the control group, attempting to

detect duplicates through searches on the bug repository. The other half of the

subjects formed the treatment group; these subjects were asked to consider rec­

ommendations from our duplicate detection system before considering searching

Chapter 4. Analytic Evaluation 32

the repository.

The study was conducted remotely. Each subject was randomly assigned to

either the treatment or control group. Once assigned,,the subject was presented

a link to download the correct version of a Java application to use for the study.

Each subject was asked to go through a set of training web pages. Both

groups' training consisted of an instructional web page from the Mozil la project

on finding duplicates. The treatment group was given an additional tutorial

on using the duplicate detection tool. Each subject was then presented four

bugs on which to train (Firefox bug reports #297147, #297175, #297196 and

#297372). Being instructed to spending no more than 10 minutes per bug,

the subject was asked to determine if the bug was a duplicate, was possibly a

duplicate, or was unique. If the bug was a duplicate or a possible duplicate, the

subject was asked to provide the id of the (potentially) duplicated bug 3 . We

allowed a subject to label a report as a possible duplicate because bug triagers

are not always sure that the bug report they've found is a duplicate. In this

case, a triager wil l add a comment to the bug report with the bug id of the

possible duplicate, asking someone else with more experience for confirmation.

Of the four training bugs, three had duplicates in the repository and one was

unique. Each subject was provided with the answers for the training bugs and

a description of searches that could be used to find the duplicates.

Following the training, each subject was given a pre-test of two duplicate bug

reports (Firefox bug reports #297197 and #297380). Our criteria for passing

is to correctly label at least one of the two bug reports. 17 out of 18 subjects

passed the pre-test. On further examination, the subject that apparently failed

the pre-test had actually skipped it. Considering that all 4 training and 10

study bug reports had been completed, we decided to include their results in

our analysis, on the assumption that the pre-test had been accidently missed.

Each subject was then presented with a list of 10 Firefox bugs to triage for

duplicates. We refer to these reports as #1 to #10. The mapping between an

assigned number of 1 to 10 and its bug report number is provided in Table 4.5. 4

The subject was presented the list of bugs in random order to help reduce any

3 The subject was restricted to listing one bug as being the actual duplicate even though
there might be more than one duplicate in the repository. There was no limit on possible
duplicates

4These bug reports were submitted to the Firefox repository during June 9-10, 2005. Only
reports with resolutions of FIXED, DUPLICATE, or OPEN were used.

Chapter 4. Analytic Evaluation 33

effects of learning from a previous bug. Nine out of the ten bug reports were

duplicates. Subjects were not informed of the ratio of duplicate to unique reports

and were only told that "not all bugs are duplicates." To give the recommender

a duplicate accuracy close to maximum, as seen in the Firefox repository (see

Fig 4.1), we used a threshold of 0.2. The study matched this level of accuracy

with five of the nine duplicate bugs having correct recommendations. Correct

recommendations occurred at different ranks within the recommendation list;

some appeared as the first or second bug while others appeared at the sixth

position. As in training, subjects were told to limit themselves to ten minutes

of searching per bug report, in an effort to prevent them from spending too

much time on difficult reports.

Table .4.5: Mapping of Bug Report Ids
Assigned Bug Report # Actual Bug Report

1 297149

2 297150

3 297221

4 297276

5 297306

6 297181

7 297272

8 297307

9 297320

10 297321

A l l of a subject's actions were recorded as they worked on a bug, including

bug reports viewed and bug searches performed. When a subject completed the

study, the history of their actions was sent to a server at our university. During

the process of sending the history log, subjects were also given an opportunity

to answer a short questionnaire about their experience with triaging bugs and

with using the tool.

When searching the repository, the subjects used the live Firefox Bugzilla

web site from within our Java application. Since the bug reports used in the

study are old reports from Firefox, viewing the actual report would reveal the

actual duplicate/unique marking of the report. To emulate an environment

Chapter 4. Analytic Evaluation 34

where subjects would see only the information a bug triager would see in a newly

submitted reports, we filtered all bug reports and searches accessed through the

browser. For a bug report, any status and resolution fields were replaced with

initial values. Information about patches, dependencies, and any additional

comments occurring after June 9, 2005 were removed. The Bugzilla searches

were modified so only bug reports created before the June 9 cut off date were

returned.

4 . 4 . 2 P a r t i c i p a n t s

The ideal subject for our study would be familiar with the technology target

of the Firefox project and terms associated with browsers, but would have no

triage experience. We chose this profile because we wanted to test our system

with subjects who would be most comparable to new bug triagers. Bug triaging

is used as an initial activity to get people involved in an open source project, but

as they gain experience, they usually move on to other duties, such as testing

or programming.

To attempt to recruit ideal subjects, we advertised our study at several

Canadian universities, calling for participants who had completed a software

engineering course and an object-oriented programming course. This require­

ment was to ensure that subjects were able to comprehend short code snippets

and terminology found in some of the bug reports. We recruited seventeen

graduate students and one undergraduate student in this way. Subjects were

randomly assigned to either the control or treatment group, with nine subjects

in each group.

Each subject was informed that study would take about 1 to 2 hours to

complete. A reimbursement of a $20 coupon for a book or music e-commerce

site was provided to each subject who completed the study. Five of the 18

subjects indicated in the questionnaire that they had previously triaged bug

reports, with three being in the control and two in the treatment.

4 . 4 . 3 R e s u l t s

We had three hypotheses about the use of our duplicate recommender tool:

(1) it would lead to higher accuracy when determining duplicates, (2) it would

reduce the workload of the triager, and (3) it would reduce the time for the

Chapter 4. Analytic Evaluation 35

duplicate detection portion of triage activities. To investigate these hypotheses,

we analyzed the logged actions of the subjects when triaging the 10 bug reports

presented after the training and pre-test. Of the 18 subjects who uploaded data

to our server, we analyzed the data of 9 subjects from the control group and 9

from the treatment group.

Figure 4.10 shows the distribution of scores—correctly marked bug reports—

in the treatment and control groups. (Scores are described in more detail below.)

For each group, this plot shows that the distribution of scores is non-normal.

As a result, we rely on a qualitative analysis of the data.

•4

v>
o

:3 in
H —

o

• Control
H Treatment

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

S c o r e

Figure 4.10: Distribution of Subject Scores

4.4.4 Accuracy

The first hypothesis of interest is whether our tool can improve the accuracy of

triagers in finding duplicates. We scored each subject's results based on how

many reports they triaged correctly. One point was given if the report id spec­

ified as a duplicate was one of those marked as such in the repository. For a

unique report, a point was awarded only if no reports were marked as dupli­

cates. A duplicate report with an incorrectly marked duplicate, but with one

correct possible duplicate was awarded 0.5 points. No penalties were assigned

for incorrectly marked duplicate or possible duplicate reports.

Chapter 4. Analytic Evaluation 36

Figure 4.11 shows the accuracy for the control and study groups, for each

bug report. Each bar represents the group's accuracy (Equations 4.8) for each

bug report.

1* 2* 3* 4* 5* 6 7 8 9 10

Bug Report #

Figure 4.11: Subject Scores by Bug Report

Group's Total Score * 100 . .
Group Accuracy = — —— —— (4.8)

Group's Max Possible score

For example, if there are eight subjects in the control group, and five subjects

received one point and two subjects received 0.5 points, then the group's total

score is six. Thus the group's accuracy is (6 * 100)/8 or 75%. The five reports

for which our duplicate detection tool provided a correct recommendation are

marked with an asterisk (*) in F ig 4.11 and are grouped on the left.

For all reports for which our tool provided a correct recommendation (reports

#1 to #5), the treatment group was able to more accurately determine an

appropriate duplicate. In particular, for report #3, about four times as many

treatment group subjects were able to find the previous duplicate report. For

report #4, the treatment group was roughly twice as accurate as the control

group.

For the remaining five reports, our tool did not provide any correct recom-

Chapter 4. Analytic Evaluation 37

mendations for the treatment group subjects. Even though the tool is providing,

in each of these cases, seven incorrect recommendations, we see that the treat­

ment subjects were able to find appropriate duplicates or mark a bug appropri­

ately as unique despite having seen these recommendations. The only bug for

which the control group was more accurate than the treatment group was bug

#8, the only unique bug. None of the control group subjects marked this bug

as a duplicate, but two study group subjects marked the report as a duplicate

with the recommendations from the tool. For bug #6, no subjects in either the

control or the treatment group were able to find an appropriate duplicate. This

data shows promise that triagers are able to discern which recommendations

are correct and are not overly biased to use one of the recommendations all of

the time.

A n interesting observation was made when analyzing incorrectly identified

reports. Many of the searches by both control and treatment subjects had

actually returned one or more correct duplicates, but were missed. This occurred

in 61% and 48% of the control and treatment group's incorrect reports. About a

third of the control and treatment group's searches (31% and 29% respectively)

performed for these reports retrieved at least one correct duplicate. If both

groups could have identified the duplicates in their search results, the control and

treatment group accuracies could have increased by 27% and 15%, respectively.

Determining why the subjects missed these duplicates is left for future work.

4.4.5 Workload

The second hypothesis of interest is whether recommending possible duplicates

decreases the workload of a triager. A main contributor to the workload of a

triager attempting to find duplicate reports is forming searches over existing

repository reports and examining the results. Our tool would reduce triager

workload if it reduced the number of searches a triager must perform.

Subjects in both the control and treatment groups used searches to complete

the assigned triage tasks. In the control group, subjects were only provided the

Bugzilla search engine to locate duplicate reports. In the treatment group,

subjects were directed to first use the duplicate recommendation tool and if

that did not provide any duplicates, to then consider using the Bugzilla search

engine.

Figure 4.12 shows the average number of searches performed across subjects

Chapter 4. Analytic Evaluation 38

in each group for each bug report. As before, the bug reports for which our

duplicate recommender provided correct recommendations are marked with an

asterisk (*). A distinct feature in this graph is that the treatment group subjects

performed nearly zero searches for three of the five reports, #1, #3 and #4, for

which our tool provided appropriate recommendations. The graph also shows

that, on average, the subjects in the treatment group performed less searches

than the control subjects. These two features of the graph provide evidence to

support our hypothesis that providing recommendations for duplicates reduces

a triager's workload.

6

1* 2* 3* 4* 5* 6 7 8 9 10
Bug Report #

Figure 4.12: Average # Searches Performed on Bug Reports

4 . 4 . 6 T i m e

When human subjects are performing a task under observation, time is a com­

monly used metric. In our case, we hypothesize that our tool would reduce the

time triagers spent trying to identify duplicate reports. We define the time to

triage a report for duplicates in our study as the amount of time spent working

on the report. We start the timer when a subject first opens the bug report

and we stop when either the report is marked as completed or the subject has

opened the next bug report. Because some of our subjects did not complete

this remote study in one uninterrupted session, we accounted for breaks taken

Chapter 4. Analytic Evaluation 39

by a subject by identifying time differences of more than five minutes between

two chronologically logged actions. Times exceeding the 5 minute limit were

subtracted from the total computed triage time. Our definition of time spent

includes the amount of time the subject takes to read the report, to search for

duplicates and to mark the duplicates that are found.

Figure 4.13 shows the distribution of the total triage time spent (in seconds)

by each subject across all 10 bugs triaged. Each interval represents the range

of times starting from the time stated in the preceding interval to the current

interval's stated time. For example, the interval labelled with 2000 represents

the range of times from 1501 to 2000 seconds.

4 ^ in ' u o
I s
o
*

1

• Control
• Treatment

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Triage Time for 10 Bug Reports (sec)

Figure 4.13: Triage Time Distribution

On average, the treatment group spent slightly less time than the control

group on the ten reports. Considering that subjects in the treatment group

used the recommendations first, and that in half the cases, the provided rec­

ommendations did not include a correct answer, it appears that the overhead

introduced by perusing the recommendation list is not a liability in terms of the

time taken to process reports.

Chapter 4. Analytic Evaluation 40

4.5 Threats

A number of choices we made in our study setup threaten the validity of the

study results.

4 . 5 . 1 A F i r e f o x S t u d y

One could argue that the results of our study do not generalize beyond the

Firefox repository. In many ways, the reports in the Firefox repository are

representative of other projects. Firefox attracts a wide range of users, who

submit a diverse range of bug reports. The scope and size of the project, the

diversity of users and developers can also be comparable to other projects. It is

also an active project, with new reports being submitted daily.

On the other hand, the Firefox reports are not as technical as some other

projects, such as Eclipse or Apache. Firefox reports consists mainly of G U I de­

scriptions, whereas Eclipse reports contain more code snippets and stack traces.

Other projects may have bug reports submitted by more technical users or

developers and may be written in a more technical fashion that is not easily

understood by new bug triagers. Also, projects with a smaller group of users

can create repositories with reports of better consistent quality.

Even though the four projects to which we applied our approach resulted

in similar performance profiles, a user study may not produce the same results.

One area of future work is to carry out user studies on different types of open

source projects to see whether the results are similar to our study on Firefox.

4 . 5 . 2 C h o i c e o f B u g s

The bugs used in the study were chosen to be as representative as possible for

reports in the Firefox project. The four training bugs that were chosen ranged

from fairly easy to moderate difficulty, allowing subjects to become familiar

with Firefox reports and more easily learn how to look for duplicates. The 10

study bugs ranged from easy to difficult. A l l the reports were about different

parts of the Firefox project, ranging from a report about the tabbed browsing

feature to a report about Javascript code and X M L . The reports covered crashes,

unexpected behavior and feature requests to represent the range of reports a

Firefox bug triager would see.

Chapter 4. Analytic Evaluation 41

Reports were selected to produce a recommendation accuracy just below

the optimal duplicate accuracy shown in Fig 4.1 for a threshold value of 0.2.

The selection consisted of mainly duplicates, to investigate the effectiveness of

our approach on them. The report selection also varied the ranking of correct

recommendations, allowing us to see how well triagers were able to find them

among the incorrect recommendations.

4.5.3 Previous Triage Experience

Upon completion of the study, subjects were asked to complete a questionnaire

about themselves and their experience with the study. When asked if they

had triaged bugs reports before in a reasonable capacity (e.g., in a job position

or for an open source project), five subjects said yes. Three of these subjects

happened to have been placed in the control group and two were in the treatment

group. One would expect that having previous bug triage experience would be

an advantage in our study, but surprisingly, all of the five subjects had scores

comparable to their group's average score. The three experienced control group

subjects all have scores of five, where the average was 4.7, and the two treatment

group subjects has scores of 6.5 and 7 among the average score of 6.2. These

results would indicate that having previous triage experience had little influence

on the study results.

4.5.4 Measuring Triage Time

Although differences in reading speed can affect the measured triage time, the

metric is still important to show how much overhead is introduced by using the

tool. Time differences can also arise depending on how many bug reports are

read, the number of searches performed and how thoroughly a subject performed

the task. Despite all of these factors, Figure 4.13 shows that both the control and

treatment group time distributions are fairly close to each other and appears to

indicate that there is some consistency in both the inter-group and intra-group

times.

To account for large gaps of time in a subject's recorded history, we removed

any time gaps exceeding five minutes from the measured triage time. On further

analysis, we see that this heuristic has some merit. It identified 3 subjects

who took a break from the study. The duration of these breaks were more

Chapter 4. Analytic Evaluation 42

than 25 minutes, representing significant time gaps. On closer examination,

all of these breaks occur in between periods of frequent activity, where logged

events occurred less than one minute apart. This indicates that this method

of identifying time gaps is valid and necessary for obtaining a more accurate

measure of triage time.

43

C h a p t e r 5

Discussion

We discuss factors of the problem domain that complicate duplicate detection

and discuss future avenues of research.

5.1 Why Duplicate Detection is Hard

One might ask why no one in the study achieved a score of 10/10 and why

our approach has a low precision. There are many possible reasons for this

phenomenon. First, bug reports are written in natural language. Some people

will inherently describe the same bug using different words. On the other hand,

two reports using the same set of words can describe two very different bugs.

For example, the Firefox bug reports # 297150 and 269326 from Section 2.2,

discussed feature enhancements to add the ability to view the source of a web

page and edit it as well. The first report refers to the page source window but

the second calls it the View source feature. These are synonymous with each

other, but to our approach, they seem like two different features.

The complexity of a large project with a diverse set of features can also

add to the difficulty of finding duplicates. Such a project can create bugs that

present themselves in different ways. For example, a 32-bit network A P I in

Firefox limited downloads to 2GB in size, causing both the download manager

and F T P client to fail when downloading files larger than 2 G B . This illustrates

how one bug, a 32-bit A P I , can cause other bugs to occur, such as bugs in the

GUI , as well as causing multiple different bugs to occurs.

Deciding if a report is a duplicate is inherently subjective, and depends on

the bug triager, the reporter of the bug and the project's definition of a dupli­

cate. Our results are based on the assumption that the triager's UNIQUE and

DUPLICATE markings are correct. As such, the results are affected by incor­

rectly labelled UNIQUE and DUPLICATE reports, missed duplicates, and incor­

rectly marked duplicate-of ids.

Chapter 5. Discussion 44

In addition, when the number of bugs in the repository is large, the ability

to distinguish between reports becomes more difficult. In Figures 4.5, 4.6, 4.7

and 4.8 we see the duplicate accuracy for the first few thousand bug reports

remains high. However, this drops as more bug reports are added to the model.

When a detection system must choose between ten of thousands of reports, this

is made even more difficult when the majority of bug reports are either unique

or are small groups of duplicates. When there are many bug reports related

to a common feature, distinguishing between subtly different reports becomes a

challenging task.

In addition to describing a bug, reports also include other noisy features that

provide little help in identifying duplicates. Bug reporters sometimes discuss

what might be the cause of the problem and suggest how it might be fixed. The

description may also indicate which other bug it may be a duplicate of and why

they think this bug could be a duplicate. Some reports include a small test case

that demonstrates the unexpected behavior, such as a website address, Java

code, or an Apache configuration file. Although these test cases can be useful in

identifying similar bugs, they can sometimes be quite long and introduce large

amounts of noisy text.

5.2 Mistakes made by the Recommender

To fully analyze the reason for low performance of our approach, each recom­

mendation for a report would have to be examined in detail. Due to the time

involved in this task, only a sample of bug reports have been looked at. We

analyzed a sample of 100 duplicate bug reports from each project where none

of the top 7 recommendations were correct. We found that in approximately

40% of the cases, the recommended bug reports were related, affecting the same

feature, but were not duplicates. A n example is bug report # 297482:

When scrolling in page using the mouse's wheel or using the key­

board (arrows, PgUp, PgDn) onscroll event is not generated. If I use

the scrollbar's buttons or drag the scroller the event is generated. I

found this error while developing JavaScript which changes dinami-

cally the position of a H T M L element when scrolling'or esizing the

window.

Chapter 5. Discussion 45

The 5 closest bug reports, ranked by cosine similarity, all involve scrolling

the mouse wheel (Bug Reports # 287533, 212556, 231288, 259294 and 279117).

Unfortunately, none are these reports describe the same problem with generat­

ing an onscroll event. Another observation is that bug reports about common

features tends to have lower duplicate detection accuracy. When there are many

bugs about a common feature, attempting to distinguish between them becomes

more difficult.

5.3 Improving the Approach

Our work to date has focused on duplicate detection. The overall effectiveness

of our approach could be improved by considering the identification of unique

reports as these reports make up the largest percentage of the reports in our

four datasets. Unfortunately, proving that a report is unique requires showing

that no duplicates exist.

The approach could also be improved by analyzing the bug reports of differ­

ent repositories and looking for features that could be exploited. Event detection

systems detect new events in news streams, by identifying the first story that

describes a new event. These systems have used properties of news stories to

improve detection accuracy, such as patterns of occurrence and named entities

(e.g. people or places) [1]. Similar features could be used for bug reports to

distinguish between unique and duplicate instances.

To tackle the problems associated with natural language such as synonyms,

the use of a thesaurus of domain specific words may help. Creating such a

thesaurus would be specific to each project, but constructing one by hand would

be too time consuming. One possible approach is to use that of Crouch and

Yang [6] to automatically build a thesaurus using the existing bug reports as

input. Their approach uses statistical methods and clustering of documents.

Once created, the thesaurus could be rebuilt on a periodic basis to keep up to

date with changes in the project's language and its usage.

Another area of future work is to use a semantic based approach to duplicate

detection. Information extraction has been used to extract the relevant infor­

mation that one is interested in from text, such as which stocks went up today

in the business news. In the F A S T U S system [9], various linguistic features

are extracted from the text, such as tokens, phrases, events and entities. The

Chapter 5. Discussion 46

system then attempts to fill in a template with this information. A n example

of a completed template from [9] is shown below:

Incident: A T T A C K / B O M B I N G

Date: 14 Apr 89

Location: E l Salvador : San Salvador

Instr: "explosives"

Perp: "guerrillas"

PTarg: "Merino's home"

HTarg: "Merino"

The information in the template is extracted from a news article and is used

to fill in the specified fields. A bug report could be semantically analyzed in a

similar fashion to extract information relevant to bug reports. Information such

as the affected component, error messages and the faulty behavior produced,

could be identified from the bug report text. Understanding the bug report at

a finer resolution may allow duplicates to be identified more accurately.

Chapter 6

47

Conclusion

Bug reports play a critical role in an open source project. Bug fixes and enhance­

ments are all stored in the bug repository, a central place where bug triagers,

users and developers all interact together to improve the product. The presence

of duplicate reports in the repository can gum up this process; for instance, du­

plicate reports can cause duplicate work, at least at the step of triaging, to be

performed and can cause mis-communications, if separate discussions ensue on

unidentified duplicates. Current manual processes to prevent duplicates have

had limited success on reducing the number of duplicates that exist in open

source bug repositories.

We have presented a semi-automated duplicate detection approach to rec­

ommend possible duplicate reports to a bug triager. Given a new bug report,

previous reports are recommended as duplicates of the current report being

investigated. The bug triager can examine the top n recommendations from

our detection system to determine if any are actually duplicates. On a data

set of Firefox bug reports, our detection approach achieves 29% precision and

50% recall. In a user study where newcomer bug triagers processed ten reports

from the Firefox repository, we found our approach can increase the accuracy

of identifying duplicates, while reducing the number of searches executed and

reducing the time spent triaging.

48

Bibliography

[1] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection

and tracking. In Proc. of SIGIR '98, pages 37-45, 1998.

[2] J . Anvik, L . Hiew, and G . C. Murphy. Who should fix this bug? In Proc.

of ICSE 2006, 2006.

[3] C. Buckley, C. Cardie, S. Mardis, M . Mitra , D . Pierce, K . Wagstaff, and

J . Walz. The smart/empire tipster ir system. In Proc. of TIPSTER Phase

III, pages 107-121, 1999.

[4] Abdur Chowdhury, Ophir Frieder, David Grossman, and Mary Catherine

McCabe. Collection statistics for fast duplicate document detection. ACM

Trans. Inf. Syst, 20(2):171-191, 2002.

[5] Jack G . Conrad, X i S. Guo, and Cindy P. Schriber. Online duplicate doc­

ument detection: signature reliability in a dynamic retrieval environment.

In Proc. of CIKM '03, pages 443-452, 2003.

[6] Carolyn J . Crouch and Bokyung Yang. Experiments in automatic statistical

thesaurus construction. In Proc. SIGIR '92, pages 77-88, 1992.

[7] Michael Fischer, Martin Pinzger, and Harald Gal l . Analyzing and relating

bug report data for feature tracking. In Proc. of WCRE '03, page 90, 2003.

[8] Donna Harman. Relevance feedback revisited. In SIGIR '92: Proceedings

of the 15th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 1-10, New York, N Y , U S A ,

1992. A C M Press.

[9] Jerry R. Hobbs, Douglas Appelt, Mabry Tyson, John Bear, and David

Israel. Sri international: description of the fastus system used for muc-4.

In Proc. MUC4 '92, pages 268-275, 1992.

Bibliography 49

[10] A . Mart in, T. K . G . Doddington, M . Ordowski, and M . Przybocki. The

det curve in assessment of detection task performance. In Proc. of Eu-

roSpeech'97, pages 1895-1898, 1997.

[11] M . F . Porter. An algorithm for suffix stripping. Morgan Kaufmann Pub­

lishers Inc., San Francisco, C A , U S A , 1997.

[12] G . Salton and M . J . M c G i l l , Introduction to Modern Information Retrieval.

McGraw-Hil l , 1983.

[13] Robert J . Sandusky and Les Gasser. Negotiation and the coordination of

information and activity in distributed software problem management. In

Proc. of SIGGROUP '05, pages 187-196, 2005.

[14] Robert J . Sandusky, Les Gasser, and Gabriel Ripoche. Bug report networks:

Varieties, strategies, and impacts in an oss development community. In

Proc. of ICSE Workshop on Mining Software Repositories, 2004.

[15] Fabrizio Sebastiani. Machine learning in automated text categorization.

ACM Comput. Surv., 34(l): l-47, 2002.

[16] Richard B . Segal and Jeffrey O. Kephart. Mailcat: an intelligent assistant

for organizing e-mail. In Proc. of AAAI '99/1 A AI '99, pages 925-926, 1999.

[17] Davor Cubranic and Gail C. Murphy. Hipikat: recommending pertinent

software development artifacts. In Proc. of ICSE '03, pages 408-418, 2003.

[18] Yiming Yang, Tom Pierce, and Jaime Carbonell. A study of retrospective

and on-line event detection. In Proc. of SIGIR '98, pages 28-36, 1998.

A p p e n d i x A

B R E B Certificate
Approval

