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Abstract 

Volume Snapshots provide instantaneous checkpoints of a complete file-
system. Whereas previous work on developing snapshot utilities has focused 
on satiating the need for online backups, modern trends encourage their de
ployment in expedited clone construction scenarios. Unlike their read-only 
counterparts, these clones are expected to be mutable and to some extent 
independent of their base images. 

We present RSnap, a volume manager that allows users to create mu
table recursive snapshots of logical volumes. Storage is allocated to these 
snapshots in a Dedicate-on-Write fashion. Since unrestrained clone creation 
can quickly obscure sharing relationships between a set of volumes, RSnap 
includes an automatic garbage collector that can identify and reclaim un
referenced blocks. 

RSnap uses the radix tree data structure to implement recursive snap
shots. We capitalize on kernel infrastructure to overcome some of the per
formance and consistency problems in using the radix tree. Our evaluations 
show that an in kernel radix tree implementation gives satisfactory perfor
mance and scales with the number of snapshots. 
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Chapter 1 

Introduction 

Storage virtualization has always been a topic of immense interest. Typi
cally, it is defined as the process of coalescing many different physical stor
age networks and devices, and making them appear as one virtual entity for 
purposes of management and administration. From Petal[16] in the 90s to 
the more contemporary Parallax[28], researchers and vendors have contem
plated upon fascinating combinations of software and hardware techniques 
to virtualize the block layer. Some of these techniques are kernel based, 
whereas others are user space device drivers and some are even hardware 
implementations of the block layer [25]. 

A useful feature which usually comes gratis with block layer virtualiza
tion is the ability to take live snapshots of logical volumes. Volume snapshots 
can be described as instantaneous frozen images of a disk and are a natu
ral choice for taking backups, doing disaster recovery and even for setting 
up file-system agnostic versioning. Recently, the need to support snapshot 
writability has become imperative and classical logical volume management 
systems have been upgraded with limited copy-on-write implementations. 

Snapshots are particularly useful in environments running virtual ma
chines (VMs), wherein administrators prepare an initial golden root image 
and later export a writable snapshot to every newly instantiated guest oper
ating system. Not only does this cut down upon the time taken to prepare 
entire root file system images but is also a great way to conserve disk space. 
The task of implementing writable snapshots is further complicated with 
the availability of fork in popular V M technology. Forking a V M requires 
sophisticated copy-on-write mechanisms to replicate both incore memory 
and secondary storage. Whereas forking incore memory has been studied 
in depth under the Potemkin[27] project, one of our intentions through this 
work is to present a detailed analysis of forking complete logical volumes. 
It is likely that the V M fork facility will be soon extended into a recursive 
fork feature. A facility to recursively fork the file system will be of good 
advantage then. 

Network emulation environments such as Emulab can also benefit from 
writable recursive snapshots. In these setups, remote users create their 
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testbed environments for varying periods of time. One can imagine the incre
mental creation of test environments by always adding software to writable 
snapshots of some base image. The newly modified snapshots can then 
become future candidate base images. In this way, if some configuration 
becomes unusable, a user can start again by taking a writable snapshot of 
some intermediate snapshot of her choice. Also, unrelated users can rapidly 
construct their environments by taking writable snapshots of disk images 
prepared by their peers. Emulab's current mechanism for imaging disks[8] 
is quite brute force and can enjoy significant savings in storage and time if 
used in conjunction with RSnap. 

Mutable snapshots can also emulate thin provisioning technology. A re
cent Gartner report[18] suggests that applications are often allocated storage 
which is much higher than their actual needs, thus leading to underutilized 
storage. In these scenarios, a thin provisioning system provides a client with 
an illusion of large sized virtual volumes that have no physical storage allo
cated to them. Storage is physically allocated only when the client tries to 
write to these volumes. One can imagine a situation where an administra
tor prepares one fixed size null device image and then distributes arbitrarily 
sized snapshots of that image to satisfy application requests. Later, actual 
space gets allocated as writes are made to the snapshot. Major storage 
vendors such as Network Applicance, 3-Par and VMWare have incorporated 
such techniques in their popular products. 

A more recent use of snapshots has been observed in snapshotting live 
databases. Database snapshots facilitate the maintainance of multiple copies 
of the database for reporting or archival purposes with minimal storage 
overhead. The writability property of such snapshots can be useful to ad
ministrators in selectively dropping or adding users, adding new indexes for 
reporting, developing indexed views, changing stored procedures, or modify
ing the database in ways similar to the creation of a DSS/Reporting database 
out of an O L T P one. 

Snapshots are also useful in performing activities related to intrusion 
detection[14] and computer forensics[29]. The principle requirement there is 
to be able to capture and replay through the historical states of a system. 
Volume snapshots are used to checkpoint the storage state of the system 
under audit. Recent work on intrusion detection has also leveraged virtual 
machine cloning [27] to create large scale honey-farm environments. The rate 
of virtual machine deployment in these honeyfarms is expected to be as high 
as the rate of packet arrival over the network. Although the system proto
type in [27] capitalized on a R A M disk for fast virtual machine deployment, 
a utility for fast disk backed file-system cloning will be of immense value. 
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Chapter 1. Introduction 

Keeping the versatility of snapshots in perspective, we have developed 
RSnap, a block layer virtualization infrastructure designed specifically for 
supporting high performance writable recursive snapshots of some original 
volume. The keyword recursive implies that RSnap allows a user to create 
snapshots of snapshots, whereas, the keyword writable implies that snap
shots can be mutable. Most volume managers implement snapshots as a 
special read-only case, whereas, RSnap considers each snapshot as a dis
tinct first class logical volume. Treating each snapshot as a volume which 
happens to share copy-on-write blocks with its parent grants it considerable 
freedom with regard to growth and lifetime but results in an inflexible stor
age reclamation process. RSnap counters such inflexibility through a fast 
fault tolerant garbage collector that can continue in parallel to regular I /O 
operations on the system. 

The rest of this thesis is organized as follows: Chapter 2 is a survey 
of previous work and highlights our specific contributions. Chapter 3 is a 
detailed description of our design. Chapter 4 presents the implementation 
details of RSnap. Chapter 5 covers some interesting performance measure
ments and finally we conclude in Chapter 6. 
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C h a p t e r 2 

Related Work and 
Contributions 

This chapter is a brief survey of existing systems that implement snapshot 
technology. Broadly, they can be categorized into volume managers and file-
systems. Whereas volume managers checkpoint the instantaneous image of 
the whole disk, file-systems implement snapshots at the granularity of files. 
We explore how earlier systems used snapshots as a mechanism to support 
physical backups and file-system level undo operations, whereas, modern 
systems use it as a tool for quick file-system replication. Towards the end, 
we compare and contrast these systems with RSnap. 

2.1 Volume Managers 

Weibren et. al. first proposed the notion of a Logical Disk[2]. The moti
vation was to separate the responsibilities of managing files and disk blocks 
by introducing an interface between the two. Under this arrangement a file-
system can only address logical blocks of a virtual disk or a volume. Logical 
block numbers are transparently converted into physical block numbers by 
the storage management infrastructure. Other than adding modularity to 
the operating system code, an advantage of this mechanism is that the lay
out of blocks on the disk can be transparently reorganized to reduce disk 
access times. Although, their particular interest was in demonstrating how 
such a system can be used to provide LFS[21] equivalent write performance 
in a file-system agnostic manner, they set the stage for stackable file-systems 
research [7]. 

The Petal[16] system took the logical disk concept to the next level 
by implementing a distributed storage service. Petal servers comprise of 
multiple machines hosting several commodity disks which provide a client 
with sparse 64-bit byte volumes. Physical storage corresponding to a Petal 
virtual disk is resilient to single component failures and can be geographically 
distributed. These virtual disks can also be expanded in performance and 
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capacity as more servers and disks are added to the pool of resources. One 
of the distinguishing features of the Petal system was its ability to take live 
snapshots of virtual disks. The intent was to assist a client in automating 
the task of creating volume backups. 

In order to manage snapshots, Petal maintains an explicit epoch number 
in its data structures. The epoch-number is incremented on every snapshot 
event so as to distinguish between data written to the same virtual disk at 
different instances of time. After a snapshot is taken, all accesses to the 
virtual disk are translated by using tuples associated with the new epoch-
number, whereas the newly created snapshot uses the entries containing the 
older epoch-number. Copy-on-write is triggered whenever writes occur on 
the snapshotted virtual disk which results in entries containing the most 
recent epoch-number being added to the various data structures. Petal 
does not allow the modification of snapshots as their purpose is merely to 
facilitate backups. 

Peabody[12] is a prototype volume management system that proposes 
continuous versioning of disk state. The primary motivation behind Peabody 
was to develop an ability to "undo" any change to the file-system. The au
thors note that implementing such a facility in the file-system itself can 
be complex and must be thought out during the initial stages of its devel
opment. Therefore, it would be worthwhile to implement it at the block 
layer instead. They further state that even though equivalent facilities are 
available in several commercial volume managers most of them are only 
used at enterprise scale and are an overkill for common desktop environ
ments. Peabody is implemented by extending the Intel iSCSI target and is 
mountable by any iSCSI compatible initiator. The iSCSI protocol mandates 
synchronous completion of I /O requests before a response can be sent to the 
requestor. Since deploying Peabody entails updating additional metadata 
for every write, clients can expect some performance degradation. 

Whereas most volume managers involve an explicit snapshot creation 
operation, Peabody transparently maintains all versions of disk blocks by 
keeping a write log data structure. One of the problems in versioning all 
states of the disk is that several of them would be inconsistent. Hence, 
Peabody relies on the assumption that its host file-system will have a con
sistency restore mechanism. A secondary problem is that it puts tremendous 
pressure on storage resources and therefore the authors propose the use of 
MD5 based content hashing to silence duplicate writes. In this context the 
authors demonstrated that for some workloads up to 84% of disk writes were 
actually duplicates. 

Clotho[4] is another volume versioning system designed for desktop envi-
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ronments. Unlike Peabody, Clotho is not intended to manage multiple vol
umes and is targeted more towards single disk laptop environments. Also, 
Clotho does not automatically preserve all versions of a volume but instead 
allows the user to customize the frequency of snapshots. Users can configure 
Clotho to create a snapshot of the volume every hour, or whenever all files 
to the device are closed or on every single write to the device. Further, 
instead of using content hashing for coalescing duplicate requests, Clotho 
uses off-line differential compression to reduce the disk space overhead for 
archived versions of the volume. 

Clotho makes use of the Linux stackable file-system architecture and 
plugs itself below existing file-systems. Clients are provided with a block 
device interface and a set of primitives which can be used for various man
agement tasks such as snapshot creation, deletion, listings and compaction. 
Clotho operates by partitioning the disk into primary and backup data seg
ments. The primary data segment contains the data corresponding to the 
latest version of the volume whereas the backup data segment holds all the 
data of archived versions or snapshots. When the backup data segment is 
completely filled up, the user is expected to create more space by either 
deleting or compacting older versions. 

Clotho snapshots are read-only and are accessible through a virtual block 
device created in the file-system. Clotho uses a Logical Extent Table ( L X T ) 
to translate all virtual block numbers into physical addresses. The L X T 
is conceptually an array indexed by logical block numbers. Additionally, 
entries for previous versions of a block are chained to the most recent L X T 
entry, so as to form a linked list of versions. This minimizes the number 
of accesses required to translate the block addresses belonging to the most 
recent version of the volume. However, accessing earlier versions is expensive 
and might entail the traversal of the entire linked list. 

The Linux Volume Manager (LVM2)[26] is another volume management 
system, which is used extensively in both home and production environ
ments. L V M 2 allows a user to create a volume group by coalescing multiple 
physical devices together. These volume groups can be expanded by adding 
more physical devices later. Users can carve out individual logical volumes 
out of existing volume groups. Space within each volume group is managed 
with a set of user space utilities provided by L V M 2 . In addition to providing 
conventional volume management support, L V M 2 allows users to tag their 
volumes as encrypted, mirrored or redundant as well. 

For each logical volume, L V M 2 creates a virtual device in the user's file-
system. The driver corresponding to these virtual devices is the L V M 2 kernel 
component, which is also known as the device-mapper. The device-mapper 
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transparently redirects I /O requests on a virtual device to its corresponding 
physical device. In most cases, it is a simple 1-1 mapping between logical 
and physical sector numbers, however, if logical blocks in the volume traverse 
multiple physical devices, then a B-Tree is used to efficiently calculate the 
corresponding physical device and offset. 

L V M 2 implements snapshots by reserving a fixed amount of contiguous 
space within the volume group. After a snapshot of the volume is taken, 
L V M 2 maintains a table of exceptions corresponding to sectors overwritten 
either in the original volume or the snapshot. In case sectors are written 
on the original volume before they have been written in the snapshot, the 
device-mapper synchronously copies old sectors to the space reserved for the 
snapshot and then updates the table of sector exceptions. 

The Federated Array of Bricks (FAB) [22] project required a more so
phisticated snapshot implementation. F A B is an attempt to construct a 
distributed storage system using bricks-small rack-mounted computers built 
using commodity disks, C P U and NVRAM-connected over the ethernet. 
F A B capitalizes upon the economies of scale inherent in mass production. 
As an illustration, the authors cite the possibility of constructing a brick 
built out of 12 S A T A disks and 1GB of N V R A M for under $2000. Even 
with triple-replication the cost of such a system can be kept at 20-80% of 
modern enterprise scale solutions. The authors realize the fact that com
modity systems are much more prone to failure and hence suggest the use 
of voting based replication and erasure code schemes to provide reliability 
and continuity in service. Like most volume managers, F A B offers a block 
device interface based on the Intel iSCSI protocol. 

Since F A B replicates the physical blocks belonging to a volume over 
multiple bricks, the task of creating a snapshot is slightly more complicated. 
The snapshot process must ensure that distributed segments of the volume 
are in sync at the instant of snapshot creation. Typically, taking a snapshot 
involves suspending the applications using the volume for a brief interval of 
time. Due to clock skews and latency delays in a cluster environment, it 
is hard to keep this interval brief. F A B follows a two phase approach. In 
the first phase the system co-ordinator sends a snapshot creation request 
along with a recent time-stamp. Al l bricks respond to the request by cre
ating a new tentative mapping structure and sending a positive response. 
The co-ordinator then tries to establish a quorum based on these responses. 
Depending upon whether a quorum is established or not, the co-ordinator 
sends out a commit or rollback request in the second phase. 

Frisbee[8] is a disk imaging system, which forms an integral part of the 
Emulab software. Frisbee enables fast and convenient snapshot, transfer and 
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installation operations on entire disk images. The Emulab testbed provides 
experimenters with privileged access to remote machines. In such a scenario 
it is important to roll back the machine to a stable state after an experiment 
switch has been made. Also, in case the users corrupt their file-system or 
wish to install a customized file-system, Frisbee allows them to automatically 
reload their images at experiment initialization time. 

Frisbee's operations are divided into three phases: image creation, image 
distribution and image installation. When a user decides to create an image 
out of their existing file-system, their machine is rebooted with a R A M 
disk based version of UNIX. This satisfies the need for disk quiescence. 
Next, the file-system hosted upon a partition of interest is identified and a 
corresponding format-aware module is invoked to create a list of free blocks. 
In the second stage only allocated blocks are read and compressed to produce 
1MB chunks. Slicing the disk into chunks allows the distribution of the disk 
image out of order. Also, during the installation stage it allows overlap of 
decompression with disk I /O. Frisbee performs compression/decompression 
operations on the clients so as to reduce backend server load. Once created, 
images are stored as regular files on a Frisbee server and can be transferred 
over scp or NFS. However, since their application scenario is L A N based, 
they are able to ensure the scalability of the transfer using an U D P on 
IP-multicast protocol. Image installation is very similar to image creation, 
except for the fact that after decompression only selective blocks on the 
file-system may be written. The authors observe that this might result in 
data of previous users being leaked to current users and hence provide an 
alternate option to zero out free blocks in the file-system. 

With the exception of Frisbee, most of the systems discussed above have 
a snapshot feature to facilitate online backups. Most of them categorize 
snapshots as read-only volumes which will be removed from the system 
once a backup on tertiary storage has been taken. In other words, these 
systems handle snapshots as a special case. A growing class of industrial 
and academic volume managers seem to blur the line between a snapshot 
and a volume. These systems treat both snapshots and regular volumes as 
persistent virtual disks that are allocated storage on demand. This technol
ogy known as thin provisioning allocates storage to an application only when 
it writes to the file-system. Proponents of thin provisionining[10][15] claim 
that the conventional "Dedicate-on-Allocation" philosophy forces customers 
to buy storage upfront and are wasteful in terms of both maintenance and 
energy consumption. Snapshots based on thin provisioning are typically 
used for debugging, testing and intrusion detection scenarios where a mod
ifiable image of a file-system can be quite useful. 
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The 3PAR thin provisioning model partitions physical storage in to 
256MB chunks. These chunks are grouped together to make Logical Disks(LDs) 
with specific R A I D characteristics. LDs are organized into groups and then 
space is "Dedicated-on-Write" to a thin provisioned volume. Note that a 
thin provisioned volume can have an arbitrary size. However, storage is only 
allocated when the application really needs it. If storage within the group is 
exhausted then more LDs can be added on-demand. 3PAR's Virtual Copy 
software takes this even further by allowing the creation of writable snap
shots of a virtual volume. Just like regular volumes, snapshots can grow 
on-demand and can be recursively snapshotted. 

The 3PAR architects realize that at some point an application may not 
get its virtually guaranteed storage. In order to handle such situations 
they have implemented multiple categories of alerts to notify the system 
administrators. As an example, a user may specify the logical capacity 
threshold for a volume at the time of its creation. System administrators are 
notified when a volume's actual physical consumption is close to its logical 
threshold. This also protects against a "run away" application which is in 
an abnormal state and is continuously writing data to the storage device. 
Another type of alert can be set on the amount of physical capacity used 
across the volume management system. If the effective physical capacity 
gets exhausted then new write requests are failed until additional storage 
becomes available. 

The Parallax[28] system is built along the same lines. Parallax is a 
distributed storage manager designed to support millions of Xen[3] based 
virtual machines running in a cluster environment. Parallax runs as a user 
space device driver in an isolated Xen domain, thus providing security and 
commendable reductions in programming effort. Virtual machines, using 
Parallax as a backend, partition their local storage resources into two parts. 
One of these is used as a persistent cache for locally hosted virtual machines 
and the other is a contribution to a pool of distributed storage shared by its 
peers in the cluster. The shared pool is used for purposes of data redundancy 
and availability. Parallax provides each virtual machine with a virtual disk 
abstraction and transparently converts logical block requests into cluster 
wide physical block addresses. 

The primary motivation behind Parallax was to provide the ability to 
frequently snapshot a virtual machine's disk while keeping the infrastructure 
costs much lower than commercial S A N products. Parallax snapshots are 
designed to serve two distinct scenarios. The first scenario is one in which 
frequent checkpointing of system state is required for debugging purposes. 
Intrusion detection and sandboxing environments fall in to this category. 
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Secondly, snapshots can be used as backend file systems for newly instanti
ated virtual machines. Parallax designers realized this dual design goal by 
using a hierarchical tree data structure known as the radix tree. A radix 
tree allows for a very simple snapshot construction process and also facil
itates the on-demand growth of the snapshot. In contrast to Petal their 
scheme is much simpler, efficient and does not require distributed locking or 
lease-based persistent caching techniques. 

2.2 File-Systems 

Unlike volume managers, file-systems do not have an explicit snapshot mech
anism. As an alternative, some file-systems provide fine-grained mechanisms 
for versioning files. Although a complete file-system agnostic, file level, 
snapshot can be obtained by using the dump, cpio or tar utilities, timing 
constraints remain a hindrance. For example, in a scenario where files are 
frequently changing, the dump utility might fail to capture a file's instan
taneous state of interest. Whereas file-system versioning has been explored 
extensively in Elephant[23] and the more recent Ext3Cow[19] project, there 
happen to be a few intriguing examples which provide entire file-system 
snapshots. 

One of the earlier file-systems to do so was developed for the Plan 9 oper
ating system. This file-system known as the Cached W O R M file-system[20] 
used a write-once-read-many(WORM) optical disk to store read-only file-
system snapshots. These disks were popular backup media which had a 
price-per-bit similar to magnetic tapes. This provided users with an oppor
tunity to couple their secondary and tertiary storage. The benefits were that 
remote tapes were no longer required and the availability of local snapshot 
images allowed for greater sharing at block-level. For operational purposes, 
the system required that the logical address space of the file-system be much 
smaller than the W O R M disk's physical address space. 

The Plan 9 system operated by maintaining a normal magnetic disk 
as a cache for the W O R M device. This had a dual purpose: firstly, it 
allowed for a data block to be written several times before it was actually 
committed to the optical store and secondly, the cache served to hide the 
latency inherent in optical devices. Snapshots were created by executing the 
dump utility, as a result of which the file-system would pause all future I /O 
activity until the dump is completed. The dump operation involved flushing 
all dirty blocks from the magnetic disk cache to the W O R M device. The 
file-system maintained the state of each block in the cache which eventually 
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facilitated the process of identifying dirty blocks during the dump. Once a 
block was committed to the optical store, its state was changed to read-only 
and any future write attempts were served by allocating a new block. The 
entire dump activity could take up to 10 seconds and the author does not 
recommends its use during peak hours. 

In a similar vein, NetApp's WAFL(Write Anywhere File Layout)[9] file-
system provides both logical and physical backup[ll] utilities. The logical 
backup utility is similar to the conventional dump command with the excep
tion that it is built in to the kernel. The kernel level dump is optimized to 
take advantage of internal file-system data structures and backup oriented 
read-ahead policies. W A F L ' s physical backup utility is based on snapshot
ting the file-system at regular intervals. These intervals can be defined by 
the user with the restriction that only 20 snapshots can be maintained at any 
given instant. Like most backup systems, W A F L ' s snapshots are read-only. 

On a slightly different note, the XenFS project aims to provide file-
system sharing between multiple domains running on top of Xen. Although 
the project is still in its early stages, the proposal is to implement a N F S 
like file-system for guest domains. The file-system is not true N F S and is 
designed to work on a single physical machine only. Since guest domains 
execute in a tightly coupled virtualized environment, there are several opti
mizations that can be incorporated into the generic N F S design. One such 
optimization is the use of a universal interdomain page cache. This would 
serve the usual goals of reducing disk I /O and reducing memory footprint. 
Applications using XenFS will be able to take advantage of interdomain 
memory sharing using the standard mmap API . Additionally, XenFS allows 
copy-on-write file-system functionality enabling multiple domains to share a 
common base file-system. Al l of this will be supported by C o W mechanisms 
at the memory level. 

2.3 Contributions 

Volume snapshots in themselves are a classic topic. In the past snapshots 
were perceived as read-only ephemeral volumes maintained solely to facil
itate online backups and therefore not much attention was paid to their 
maintenance and access costs. However, contemporary snapshot utilities are 
targetted more towards an expedited clone construction mechanism where 
each clone of some base image might get exposed to any general purpose 
I / O operations. This shift in requirements demands a more sophisticated 
maintainance process and some predictability in I / O performance. RSnap is 
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an affordable and versatile volume manager which meets these requirements 
while maintaining efficiency in data access. In the following paragraphs we 
briefly highlight the similarities and differences between RSnap and previ
ously cited systems and conclude by summarizing our specific contributions. 

Unlike conventional volume managers, RSnap allows volume snapshots 
to be mutable. Additionally, it allows the creation of snapshots of snapshots, 
which in turn may be mutable. RSnap's kernel level implementation facili
tates performance and scalability, while avoiding expensive context switch
ing and redundant copying inherent in typical user space drivers. Further, 
RSnap's implementation extensively benefits from existing kernel infrastruc
ture such as the page cache and the journalling layer. Unlike Peabody, 
RSnap does not provide continuous preservation of a file-system's state. 
Like Clotho, RSnap allows a user to configure the frequency of snapshots. 

When used in conjunction with Xen, RSnap can be hosted in domain 0 
and serve as a backend storage manager for other guest domains. This is 
similar in effect to using XenFS except that instead of a file-system interface, 
RSnap provides the illusion of a physical device which can be imported by 
a guest domain. Further, RSnap's smart caching strategies expedite the 
process of logical to physical address translation and can potentially avoid 
duplicate read requests from peer domains. 

RSnap belongs to the class of systems which observe the on-demand 
allocation or "Dedicate-on-Write" philosophy. To this extent RSnap allows 
the creation of both static and sparse volumes. RSnap snapshots are not 
ephemeral and their lifetime can exceed that of the parent they were based 
upon. In order to keep snapshots light-weight and growable, RSnap uses 
Parallax's radix tree data structure. We realize that 3PAR and other vendors 
provide commercial products with similar characteristics but we believe that 
their cost/benefit ratio is best realized in environments requiring mass scale 
storage management based on SANs, whereas, RSnap shares the spirit of 
F A B and Parallax in being a common man's filer. 

RSnap's specific contributions can be summarized as follows: 

1. We improve upon LVM2's current snapshot functionality by allowing 
a user to create snapshots of snapshots. Previously such functionality 
was only available in commercial systems, whereas RSnap is envisioned 
to become an open source filer. 

2. Like Parallax, we use the radix tree data structure to provide light
weight mutable snapshots. However, due to our kernel space imple
mentation we are able to utilize a trusted and well scrutinized code 
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base for caching and operational consistency purposes and are there
fore able to present a much simpler implementation. 

3. We present evaluations to show that our journalled metadata approach 
outperforms LVM2's copy-on-write implementation by a factor of 6 to 
12 under heavy workloads and performs up to 55% better for realistic 
usage scenarios. 

4. Lastly, we motivate the need to reclaim unreferenced blocks out of 
snapshotted volumes without reclaiming their dependent children and 
present the design, implementation and evaluation of a suitable garbage 
collector. Our garbage collector checkpoints it state to survive failures 
and can run in parallel to regular I /O operations on the system. 
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System Design 

This chapter provides a detailed description of RSnap's design. We begin by 
enumerating the design goals and then describe salient aspects of the design 
together with a discussion of the motivation behind our choices. 

3.1 Design Goals 

Our primary motivation behind this work was to develop a high performance, 
functionally rich block layer virtualization infrastructure that allows a user 
to take recursive writable snapshots of logical volumes. The semantics of 
recursive writable snapshots can be observed from Figure 3.1. Here, Volume 
A is the first volume that was created in the system. The arrows indicate the 
dependency of a snapshot on its parent. Volumes B , C and D are writable 
snapshots of Volume A . Volumes E and F are writable snapshots of Volume 
B. Similarly, Volumes G and H are writable snapshots of volume D. Note 
that Volumes A , B and D are frozen images and cannot be modified anymore. 
One can use them only to create more writable snapshots. The system does 
allow them to be mounted as read-only. 

In some sense, the semantics of RSnap can be described as those of a 
volume versioning system. Typically, versioning systems allow modifications 
to the terminal nodes in a branch only, whereas RSnap can be perceived as 
a conscious effort to allow arbitrary branching within the version tree of 
a volume. Unlike some versioning systems, RSnap does not automatically 
preserve all possible versions of a volume. A user has to explicitly take a 
snapshot of some live device in order to create a point in time checkpoint. 
We have strived to keep the snapshot creation process simple and efficient 
so that a user may even automate it by creating a cron job. 

At a higher level, RSnap can also be thought of as a file-system for 
maintaining volumes. Each volume in RSnap can be considered as a file. 
The distinction is that statically created volumes have a fixed size, whereas, 
snapshots acquire data blocks on demand. Several issues which came up 
during the development of RSnap can be observed in any regular file-system. 
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Volume B Volume C Volume D 

Volume E Volume F Volume G Volume H 

Figure 3.1: Family tree for a set of volumes 

Another distinguishing feature of RSnap is that it allows deletion of any 
arbitrary volume from the system. Storage allocated to a leaf in a family 
tree of volumes can be immediately reclaimed, whereas, storage allocated 
to internal volumes is lazily reclaimed by a background garbage collector 
thread. Thus, in Figure 3.1, any of volumes C , E , F , G and H can be 
immediately reclaimed, whereas, the reclamation of A , B and D can be 
automated with assistance from the garbage collector. 

From the above discussion, RSnap's design goals can be summarized as 
follows: 

• Provide a simple interface for system administration. 

• Provide light-weight mutable snapshots. 

• Allow recursive snapshots. 

• Allocate storage to snapshots in a "Dedicate-on-write" fashion. 

• Allow reclamation of any arbitrary volume in the system. 

• Maintain efficiency in data and metadata access. 
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In the next section we discuss different aspects of RSnap's design which 
enable us to meet the above motioned objectives. In particular we focus on 
the following: 

1. Flexibility and Transparency: In this section, we describe RSnap's 
simple interface and its position within the kernel stack. 

2. Volume Metadata: In this section, we discuss RSnap's implementation 
of the radix tree data structure and show how it can be used to provide 
light-weight recursive snapshots. 

3. Consistency Maintenance: In this section, we describe how we provide 
consistency guarantees on RSnap's metadata. 

4. Block Reclamation: In this section we describe our block reclamation 
algorithms. 

3.2 Design Aspects 

3.2.1 F l e x i b i l i t y and Transparency 

The two entities of interest in RSnap are mutable volumes and read-only 
snapshots. Read-only Snapshots can be created out of mutable volumes and 
mutable volumes can be created out of Read-only snapshots. Each of these 
entities is a part of a larger entity called the blockstore which is a large 
collection of disk blocks. Each volume (or snapshot) within the blockstore 
is identified by a unique user defined 64-bit number. 

RSnap uses the Linux device-mapper interface for user interaction. The 
device mapper interface provides primitives for device creation, deletion and 
messaging. Messaging is a primitive for implementing arbitrary device func
tionality and is a direct analogue of the ioctlQ system call. RSnap extends 
these primitives in order to provide the following set of administrative op
erations: 

• Create () allows a user to construct an arbitrary sized volume within 
a blockstore. The process of volume creation involves recording of the 
volume's metadata to the blockstore. 

• CreateSnapshot-ROO creates an instantaneous frozen image or a 
read-only snapshot of a live device. Future writes to .a snapshotted 
device will result in the invocation of the copy of write process in or
der to preserve the snapshot. A read-only snapshot must be created 
before a user can create mutable snapshots. 
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• CreateSnapshot-RW() allows a user to create a new volume out of 
a read-only snapshot. Essentially the new volume is a clone of the 
read-only snapshot and is expected to diverge from it as writes are 
performed on it. 

• Remove () allows a user to temporarily disable the volume by removing 
its corresponding device file from the file-system. The volume lives 
passively in the blockstore and can be reinstated whenever necessary. 

• Reinstate () allows a user to instantiate a volume residing dormantly 
in the blockstore. This involves the creation of a device file correspond
ing to the volume. The operations Create (X and CreateSnapshot-RW() 
result in the automatic creation of the device file, whereas, 
CreateSnapshot-ROO results in the creation of a dormant read-only 
snapshot. The Re ins ta teO operation facilitates the mounts of these 
read-only snapshot volumes. Further, a reinstate is also useful in se
lectively instantiating volumes after a system reboot. 

• Reclaim () facilitates a user in reclaiming the space occupied by a live 
volume or a snapshot in the blockstore. A volume must be live during 
the reclamation process and is removed completely from the system 
after a subsequent Remove () operation. 

• Scan() provides a user with internal statistics on the volume. These 
statistics guide the user in volume maintenance. Typical statistics are 
the actual number of blocks occupied by the volume in the blockstore, 
the ancestor of the volume in its version tree, volume labels, creation 
times, etc. 

The above set of operations has been modeled after LVM2's primitives 
and are by no means exhaustive but provide a concrete base for implement
ing a wide range of administrative policies. Since, RSnap tracks individual 
volumes through a 64-bit id, it can be quite strenuous for a user to remember 
the identifiers for a large set of volumes. We overcome this by maintaining a 
configuration file that maps volume names to its identifiers within the block-
store. This scheme is implemented entirely in user space and is currently 
being used in L V M 2 as well. 

Implementing RSnap at the block layer was a natural choice. Due to this 
design decision, RSnap can be inserted arbitrarily in a system's layered block 
I / O hierarchy. This stackable driver concept can be observed in the design 
of other block I / O abstractions, such as software R A I D systems and various 
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volume managers[17][4]. RSnap can transparently accept I /O requests from 
a file-system as well as a similar block layer visualization system. Similarly, 
RSnap can forward I /O requests to an actual device driver or another block 
I /O system. 

At the time of their creation, volumes that are created through the op
eration CreateSnapshot-RWO are sparse. Although the file-system residing 
on top of the volume believes that its size is equal to the size of its base 
image, in reality, there might be no physical blocks allocated to the volume. 
Later, as write operations are made to the volume, new blocks are dynam
ically allocated from the blockstore. Obviously, for such a system to work 
the size of the blockstore should be much larger that the size of any volume 
hosted in it. Ideally, the blockstore should be extensible so that when all 
blocks in the blockstore are exhausted, new disks can be transparently added 
to create more space. As of now, RSnap does not support the extensibility 
of the blockstore but its simple design can accommodate that feature with 
minimal programmer effort. 

3.2.2 Vo lume M e t a d a t a 

While designing any volume management system, it is imperative to think 
about a good indexing scheme. The choice of an indexing structure influ
ences various design aspects such as address translation, block allocation, 
read/write performance, block reclamation and even snapshotting mecha
nisms. In order to settle upon a suitable indexing structure, we studied a 
variety of storage management schemes. In general, the data structures used 
by these systems are either linear or tree based. We discovered that linear 
structures are not ideal for systems exhibiting recursive properties. The 
problem is that whenever an attempt is made to deploy them in a recursive 
scenario they tend to degenerate into trees. 

RSnap uses the radix tree data structure. Figure 3.2 shows an example 
radix tree for a volume and its snapshot (Note that this example was first 
presented in the Parallax[28] work). The radix tree has been created for a 
hypothetical 6-bit address space. Solid arrows from one radix tree node to 
another represent writable links, whereas, read-only links are represented 
by dotted arrows. Whenever a user creates a volume, its corresponding 
radix tree is statically created in the blockstore. Each node of the radix tree 
contains writable pointers only. The radix tree acts as the metadata for the 
volume and is used to translate logical block numbers in to physical blocks of 
the volume. On the other hand snapshots are created by merely replicating 
the root of its parent's radix tree and marking all its pointers as read-only. 
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Figure 3.2: Radix Tree for a Volume and its Snapshot. 

Further, a snapshot's metadata is dynamically allocated in a "Dedicate-on-
write" fashion. As shown in Figure 3.2, a new branch was allocated to the 
snapshot after a write was made to its logical address 0x111111. The one 
concern with a radix tree based scheme is that address translation requires a 
traversal through multiple levels of indirection. However, we have observed 
that this problem can be easily mitigated with ample buffering. 

RSnap partitions both the data and metadata of a volume into fixed 
sized blocks. Each data or metadata block is equal in size to the block-
store's universal block size. The blockstore's universal block size can be any 
of IK, 2K or 4K. The motivation behind restricting the block size to the 
above mentioned values is in utilizing the buffer cache for caching metadata 
blocks during the logical to physical address translation process. Thus, the 
metadata overhead is in not just extra storage but it also consumes main 
memory during system execution. Our measurements show that the over
head of maintaining RSnap's metadata is reasonable for even very strenuous 
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workloads (refer to section 5.4). • 
The size of the metadata for a volume depends upon its total size, the 

blockstore's block size and the volume's type. The metadata is persistent 
and shares space with the data blocks of the volume within the blockstore. 
For a newly created 100GB volume, the metadata is around 100MB which 
is about 0.1% of the total size of the volume. The size of the metadata for 
a volume created out of a read-only snapshot depends upon the number of 
copy-on-write operations performed upon it. 

3.2.3 Consistency Maintenance 

RSnap's metadata is organized into simple but crash vulnerable data struc
tures. Given the unpredictability of system failures, a crash might occur 
during volume creation, volume snapshot, volume reclamation or while a 
copy-on-write operation is in progress. These are times when RSnap is ac
tively updating metadata. In order to maintain good performance RSnap 
does not perform synchronous updates of metadata; metadata is first up
dated in the page cache and corresponding buffers are left marked dirty. It 
is expected that the operating system will later flush the dirty buffers to 
disk. Thus, if a failure happens before the metadata is updated to disk, 
RSnap's data structures might become corrupted. Not only does this have 
the potential to make a volume's file-system inconsistent but it might also 
make a blockstore's block appear as falsely allocated. 

Naturally, recovery after a crash in RSnap will involve a two phase pro
cess. In the first phase, RSnap's metadata structures will need to be restored 
to a consistent state, and in the second phase any file-system specific recov
ery might have to be done. We considered multiple ways of ensuring RSnap's 
metadata consistency. Most noticeable were the B S D Soft Updates [5], and 
journaling[6]. 

Soft Updates attack the metadata update problem by guaranteeing that 
blocks are written to disk in their required order without using synchronous 
disk I/Os. In general, a Soft Updates system must maintain dependency 
information, or detailed information about the relationship between cached 
pieces of data. For example, when a file is created, the system must ensure 
that the new inode is written to disk before the directory that references it 
is. Such tracking of multiple dependencies at the block level can frequently 
lead to cyclic dependencies. Soft Updates resolve cyclic dependencies by 
doing a roll back on the data buffer to a previously consistent state before 
writing it to disk and then rolling it forward to its current value after the 
write has completed. Thus, with Soft Updates, applications always see the 
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most recent copies of metadata blocks and the disk always sees copies that 
are consistent with its other contents. 

Journaling file-systems solve the metadata-update problem by maintain
ing an auxiliary log that records all metadata before it is actually written 
to its location on disk. Usually, journaling consists of two phases: the com
mit phase and the checkpoint phase. In the commit phase all dirty buffers 
are flushed to the log and in the checkpoint phase they are written to their 
actual location on disk. In case of a crash, committed transactions from the 
log can be replayed to restore system consistency. Journaling is available in 
both synchronous and asynchronous flavours. 

Seltzer et al.[24] have performed a very comprehensive comparison be
tween journaling and soft updates. Their first observation is that both 
mechanisms perform acceptably only when higher layers do not require syn
chronous metadata updates. They demonstrate that the overall performance 
of both techniques is comparable in most cases. In some cases, Soft Updates 
exhibit certain side effects that result in a higher throughput whereas in 
others these very side effects can lower system performance. Citing the ex
ample of Log-structured file systems[21] they interestingly conclude that in 
certain cases a combination of the two techniques is required. 

The Linux community continues to remain divided over the issue of Soft 
Updates vs. Journaling. The one feature that seems to make journaling 
more popular is its ability to avoid an f sck() operation. Although, Soft 
Updates allow a file-system to be mounted immediately after a crash, it 
requires that f sck() be run in the background for restoring file-system con
sistency. A secondary reason hindering the adoption of Soft Updates is the 
complexity associated with its implementation. 

The Linux Journaling implementation is quite generic and exposes a set 
of APIs that can be used within any file-system. The code is optimized, 
reliable and is currently an integral part of the Ext3 file system. For these 
reasons, we chose to use the Linux journaling layer to provide consistency 
for RSnap's metadata structures. By default, RSnap reserves about 1% 
of the total space available in the blockstore to maintain the journal. For 
larger blockstores, a user can configure the journal size to be smaller. The 
journal tracks metadata updates for all of RSnap's operations such as volume 
creation, reclamation, copy-on-write etc. If a crash happens during system 
operation, the journal is transparently replayed upon the next creation or 
instantiation of a volume. 

Journalling is particularly interesting when a copy-on-write operation 
is in progress. This is because the new version of the data block must be 
written before we can commit its associated metadata. In this context, 

21 



Chapter 3. System Design 

RSnap allows a user to configure it in either writeback or ordered mode. In 
ordered mode the data block will be written to disk before jbd can commit 
metadata to the journal. 

3.2.4 B l o c k R e c l a m a t i o n 

M o t i v a t i o n 

A user can create free space in the blockstore by reclaiming blocks allocated 
to a volume. In RSnap it is possible to delete any volume at will. The 
motivation behind deleting leaf volumes is quite obvious but the motivation 
behind deleting non-leaf volumes is a little subtle. A non-leaf volume can be 
profitably deleted when its current snapshots have remapped a large number 
of its blocks. This means that most of the read only pointers in the children 
have become writable and do not refer to the parent's data blocks anymore. 
A second reason to delete a non-leaf volume arises when it has remapped 
very few data blocks of its parent. This means that it did not perform a 
large number of copy-on-writes before it was snapshotted and its presence 
is merely ornamental in the family. Note that once a non-leaf volume has 
been deleted it cannot be used to create new writable snapshots. 

When a leaf-volume is to be deleted then all one has to do is traverse its 
writable pointers to reclaim the space. However, deleting non-leaf volumes 
requires a more involved mechanism. The problem is that at any given time 
it is hard to establish which blocks are being used by any of its descendants. 
This is because when snapshots are taken, only the root of the radix tree 
is replicated and since internal nodes and leaves do not have back pointers 
to their parents, it is difficult to determine the exact number of metadata 
blocks that point to them. Intuitively, this appears to be a garbage collection 
problem. 

Garbage Col lect ion A p p r o a c h 

Most garbage collection problems can be solved by using either reference 
counting or a mark and sweep approach[30]. Garbage collectors based on 
reference counting have the advantage that they do not require multiple 
traversals over the data. Unreachable blocks can be immediately reclaimed 
without an explicit collection phase. Based on this observation, it was quite 
tempting to adopt a per-block reference counting approach for RSnap. How
ever, we realized that maintaining persistent reference counts in a system 
can be quite expensive in terms of both space and increased disk I /O . Fur
ther, reference counting structures have to be fault tolerant and require 
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reconstruction as part of system recovery[1]. On the other hand, mark and 
sweep algorithms keep very little metadata for tracking data liveness and do 
not entail transactional support. Therefore, RSnap uses a mark and sweep 
garbage collector, which performs a periodic blockstore wide scan to identify 
blocks that can be reclaimed. 

The algorithm behind our garbage collector is very simple. When a non-
leaf volume is reclaimed, all its writable blocks are marked as tentatively 
deleted but reachable. The garbage collector operates in four phases: 

1. In the first phase it marks all tentatively deleted blocks as unreachable. 

2. In the second phase it reads all metadata blocks which have read-only 
pointers in them. This includes the root blocks of radix trees belonging 
to snapshots. It then interprets the read-only pointers in these blocks 
to identify tentatively deleted blocks which are reachable. Note that 
in this phase tentatively deleted blocks are not read and hence if a 
tentatively deleted block is reachable from another tentatively deleted 
block only, then it will not be marked as reachable. 

3. In this phase reachable tentatively deleted metadata blocks are read 
and then their pointers are traversed to identify those tentatively 
deleted blocks which may be reachable only from them. This op
eration may have to be repeated several times corresponding to the 
height of the tallest radix tree present in the blockstore. 

4. In this phase tentatively deleted blocks which are not reachable are 
reclaimed. 

To ensure the garbage collector's progress in the event of a system crash, 
we journal every garbage collection operation along with a progress indica
tor in a single transaction. Progress is defined by the garbage collector's 
current phase number and the last block number it diagnosed. Intuitively, 
it is hard to continue with the garbage collector while normal I / O oper
ations are in progress. This is mainly because normal metadata updates 
might violate the garbage collector's invariants of block reachability. In the 
following paragraphs we discuss such metadata updates and show that by 
using appropriate journalling, the above algorithm can be run in parallel to 
any normal I /O operation on the blockstore. 

The first operation of interest is the copy-on-write on the radix tree. 
During a copy-on-write operation, read-only pointers in metadata blocks 
are replaced with writable pointers. If the garbage collector is in any of 
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Figure 3.3: Consistency Analysis during simultaneous execution of Copy-
on-Write and Garbage Collection. 

phases 1, 3 or 4 then its invariant is unaffected. If the garbage collector is 
in phase 2 then there are two possible scenarios (refer to Figure 3.3): 

In scenario A , the garbage collector read the read-only pointer in the 
metadata block before it was replaced with a writable pointer. Therefore, the 
tentatively deleted but unreachable block was marked as reachable. Now, if a 
crash happens and the update to the metadata block could not be committed 
to disk then the read-only pointer will persist upon reboot. This is not a 
problem because the block pointed to was already marked as reachable and 
therefore was not reclaimed by the garbage collector. 

On the other hand, in Scenario B the garbage collector read the metadata 
block after the copy-on-write operation was performed and could therefore 
mark the unreachable block as free. Now, if the read-only pointer persists 
across a crash and reboot then it might end up referencing a freed block. 

We discovered that a copy-on-write operation on a metadata block can 
safely continue even if it has not been diagnosed in phase 2. This is because 
we journal both the copy-on-write and garbage collection operations. If a 
copy-on-write happens before the garbage collector's scan then the changes 
to the metadata caused by the copy-on-write operation will be packed in 
a transaction preceeding the one containing decisions made by the garbage 
collector. Therefore, if the copy-on-write operation does not make it to the 
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disk then the garbage collection updates will be cancelled automatically. 
Orthogonally, if the copy-on-write was done after the garbage collector's 
scan then a read-only block may be incorrectly marked as reachable and 
will not be reclaimed until the next garbage collection cycle. 

The next operation of interest is volume delete. When a leaf volume 
is deleted all its writable blocks are marked as reclaimed. This does not 
affect the garbage collector's operations in phase 1, 3 or 4. However, if the 
garbage collector was in phase 2 then, once again, there are two possibile 
scenarios (refer to Figure 3.4): 
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Figure 3.4: Consistency Analysis during simultaneous execution of leaf Vol
ume Delete and Garbage Collection. 

In scenario A , the garbage collector read the read the read-only pointer 
before the metadata block containing it was marked as free. Hence, upon a 
subsequent crash and reboot even if the freeing of the metadata block could 
not be committed to disk then we do not run into an inconsistent state. 

In scenario B , the metadata block was marked as free before the garbage 
collector could diagnose it in phase 2 and therefore it is possible to reclaim 
the tentatively deleted unreachable block even before the freeing operation 
is committed to disk. Hence, upon reboot it is possible that the metadata 
block might be referencing a free block. 

Once again the journalling layer comes to our rescue. Metadata updates 
describing reclamation of writable blocks will be in the same or successive 
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transaction as the garbage collection updates made by either reading or 
ignoring these blocks in phase 2. Thus all updates will hit the disk in proper 
order. In case none of them gets committed then the garbage collector can 
restart from its last checkpointed progress indicator. 
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Figure 3.5: Consistency Analysis during simultaneous execution of internal 
Volume Delete and Garbage Collection. 

Journalling protects us even if an internal volume is deleted during any 
of the phases of garbage collection. When an internal volume is deleted then 
all its writable blocks are marked as tentatively deleted but reachable. This 
can cause problems if the garbage collector is in phase 1 and marks any 
of these blocks as unreachable. Figure 3.5 depicts a scenario in which an 
inconsistent system state might prevail. As shown in the figure, after phase 
1 of garbage collection the two blocks belonging to the internal volume are 
marked as unreachable. If there are no other references to these blocks then 
the garbage collector might mark them as free upon completion. Now, if a 
crash occurs and the free state of one of these blocks could not be committed 
to disk then upon reboot it might reference a freed block. 

We can avoid this conflict by journalling the updates caused by the delete 
operation and the garbage collector. In this way, if the delete happened be
fore the invocation of the garbage collection then transactions corresponding 
to the delete operation will preceed those corresponding to the garbage col-
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lection cycle. 
On the other hand, if the garbage collector had already completed phase 

1 when the delete happened then the tentatively deleted metadata block will 
be used in phase 3 to mark other tentatively deleted blocks it can reach. 

A l l other operations such as static volume creation, snapshot creation 
and reinstating volumes do not affect the garbage collector's invariants. The 
observation to be made here is that garbage collection updates will either be 
in the previous, same or next journallirig transaction which includes regular 
volume metadata operations. This preserves the garbage collection invariant 
at all times. 

Suitabi l i ty and Alternat ives 

Before settling upon an algorithm for garbage collection we explored a few 
other alternatives. Although most of them were rejected due to their asso
ciated costs we list them here for the sake of completeness. 

One of the first ideas was to compare a parent's radix tree to all its 
children and then reclaim blocks which have been remapped by all children. 
Additionally, if a child volume references a block then we could grant it 
exclusive ownership of that block. Permanent ownership can be granted if 
no other child is referencing that block and temporary ownership will be 
granted if other children reference that block as well. The problem with this 
approach is that an address based tree comparison can be quite expensive in 
terms of disk seeks. Secondly, if we were to assign temporary ownership of 
a block to a child then as soon as it performs a copy-on-write operation on 
that block, we will have to transfer the ownership to one of its sibling or one 
of its children. This can significantly slow down copy-on-write operations. 

Our second idea was to maintain a reference count per block in the block-
store. Thus, various operations such as volume creation,deletion and copy-
on-write would result in the increment and decrement of reference counts 
associated with the blocks they manipulate. We soon realized that given 
the structure of the radix tree and the kind of operations we intend to per
form on it, maintaining per-block reference counts is not a wise idea. As an 
example consider a radix tree with a 4K node size. This node can contain 
512 block addresses. Thus, whenever a new radix tree node is allocated or 
deallocated one must update a minimum of 512 reference counts. 
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Figure 3.6: Node sharing between two radix trees. 

The problem becomes worse when we begin to share radix tree nodes be
tween two volumes. In Figure 3.6 we instantiated a new radix tree root D 
by replicating an existing root A. In this case the reference counts for both 
nodes B and C would have to be incremented. This means that whenever we 
copy a radix tree node we must perform a depth first traversal to increment 
the reference counts for all nodes that form a part of its subtree. Clearly, 
this can be extremely expensive. 

Once reference counting was out of consideration we began to explore 
potential mark and sweep algorithms. One of our initial approach was to 
first mark all tentatively deleted blocks as unreachable and then scan the 
metadata of all volumes searching for read-only pointers which can be used to 
identify reachable tentatively deleted blocks. Later, all tentatively deleted 
blocks which are not reachable can be reclaimed in a single scan. The 
problem with this approach is that it involves depth first scanning of all radix 
trees. We realized that this could lead to a very randomized read workload 
on the disk and therefore decided to go with our multistage approach instead. 

Although the details of our garbage collector may appear to be involved, 
it has several interesting properties. One unique feature is that we do not 
read all metadata blocks. Since, we tag the blocks containing read-only 
pointers, we do not have to spend time diagnosing uninteresting metadata 
blocks. Secondly as compared to a reference count based scheme we require 
very little metadata. Thirdly, our phases have been designed to progress by 
linearly scanning the disk. It is possible that some phases might perform 
repetitive scans but overall the disk is never subjected to a burst of random 
activity. Finally, by designing the garbage collector as a background process 
modularized into multiple phases we can exert a much fine grained control 
over its execution. For example when the system is under heavy load we 
can lower its priority in favor of regular I/O operations. 
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3.3 Chapter Summary 

In this chapter we presented RSnap's high level design objectives and have 
dicussed various decisions we took for their realization. In particular, we 
have provided details on our core metadata structure and how we guaran
tee its consistency while ensuring high performance. Additionally, we have 
presented the algorithm behind our garbage collector and have compared it 
to other alternative approaches. 
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RSnap Implementation 

This chapter presents interesting aspects of RSnap's implementation. We 
begin with a brief introduction to the Linux device-mapper and the jour-
naling layer and describe how we utilize them to implement RSnap. Next, 
we illustrate how RSnap formats a device before use and then describe the 
implementation of our block allocator. We also provide implementation 
details behind operations such as volume creation, reclamation, snapshot 
creation and address translation and discuss how journaling affects block 
allocation/deallocation strategies during these operations. 

4.1 Kernel Infrastructure 
4.1.1 L i n u x device-mapper 

The Linux device-mapper is a simple device driver that redirects I /O re
quests from virtual devices to actual physical devices. Clients of the device-
mapper submit I /O requests in the form of a structure known as the bio 
vector, which contains an array of dirty pages that are to be written con
tiguously on a backend device. The bio vector also contains the first sector 
corresponding to the data and a pointer to the target device. When the 
device-mapper is in use both the sector number and the device are virtual. 
The basic task of the device-mapper is to replace these virtual entities with 
their physical counterparts and then forward the bio vector to a real driver's 
I /O queue. This virtual to physical transformation can be done in multi
ple ways and corresponding to each, there exists a separate target of the 
device-mapper. Example targets are linear, R A I D , snapshot, encrypt, etc. 

RSnap is implemented as a new target for the device-mapper. RSnap 
transforms a <virtual-device, logical sector number> pair into a <blockstore-
device, physical sector number> pair. For performing the transformation it 
consults the radix tree of the virtual-device, which is persistently maintained 
within the blockstore. 
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4.1.2 Linux journaling layer 

The Linux journaling layer (jbd) provides a set of APIs which can be used 
to initialize the journal and bundle various system operations into transac
tions. It is similar to the journaling implementations observed in regular 
databases but with one important distinction. Unlike databases, jbd does 
not allow users to create a new transaction for every operation. Instead, it 
automatically creates a new transaction when an existing one has become 
large enough. From a user's perspective an operation may comprise of mul
tiple updates which must occur atomically and the jbd guarantees that all 
of them will be bundled in a single transaction that might include other 
operations as well. 

Before starting an operation, a user calls j ournal_start () to specify the 
maximum number of buffers (also known as credits) that may have to be 
journalled in the running transaction. Before a buffer is modified, it must be 
first registered with the jbd through one of journal_get_write_access(), 
journal_get_create_access() or journal_get_undo_access() calls. A 
call to journal_get_undo_access() ensures that previous modifications to 
the buffer have been recorded in the journal. This is required during bitmap 
update operations to avoid irrecoverable deletes after a crash. After modifi
cation the user calls journal_dirty_metadata() or journal_dirty_data() 
to mark the buffer as dirty. After all modifications to the buffers are com
plete, a call to journal_stop() is made to mark the completion of the opera
tion. The jbd guarantees that all modifications between a journal_s tart () 
and journal_stop() are included in the same transaction and will be writ
ten to their respective location on disk only after they have been committed 
to the journal. 

4.2 Blockstore format 
RSnap comes with a user space tool, mkRSnap which is used to. format 
a physical device into a blockstore. mkRSnap accepts three parameters: 
a) blockstore's block size b) the path of the device to be formatted and 
c) the percentage space that is to be reserved for journaling. Based on 
these attributes mkRSnap creates the blockstore's superblock, zeroes out 
space for the journal and prepares a nibble map for all blocks on the device. 
The blockstore's superblock contains parameters such as j o u r n a l . s t a r t , 
journal_length and nibble_map_start and nibble_map_end. These pa
rameters guide the journaling layer and RSnap's block allocator respectively. 
Figure 4.1 shows a formatted blockstore as an example. Notice that the jour-
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Figure 4.1: A formatted blockstore. 
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Figure 4.2: Individual bits of the nibble map. 

nal and the nibble map are adjacent to each other. This reduces the number 
of seeks during post-crash journal replay. 

As its name suggests, the nibble map contains a nibble(4-bits) for each 
block in the blockstore. This includes the blockstore's superblock, blocks 
comprising the journal and blocks which make up the nibble map. Figure 4.2 
shows what each bit in the nibble stands for. Initially, mkRSnap marks 
nibbles corresponding to the superblock, journaling blocks and the nibble 
map as Reserved. Therefore, the block allocator ignores them during its 
regular operations. A zeroed nibble means that its corresponding block is 
free for use. 

Usable blocks in the blockstore store all the data and metadata corre
sponding to volumes. 

4.3 Block Allocator 

RSnap's block allocator is quite simple. It consists of two basic functions 
b a l l o c O and b f r e e O . As its name suggests b a l l o c O is used to request 
a free block from the blockstore. The block allocator scans through the 
nibblemap in a circular fashion to locate a nibble that indicates a free block. 
It then uses a linear function to compute the sector address of the block 
corresponding to the nibble, which is then returned to the caller. Before 
returning the block to the user, it marks it as Reserved along with any 
other flags which the user may have specified. Similarly b f r e e O accepts 
a block number and a set of flags from the caller. If no flags have been 
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specified then the nibble corresponding to the block number is zeroed out 
otherwise the flags are used to set a more accurate status of the block. 

A l l changes to the nibble map are journalled using the jbd APIs. ballocO 
and bfreeO assume that the caller must have already made a call to 
journal_start ( ) with the requisite number of credits and therefore they 
call into the jbd only to express the intent to dirty appropriate buffers. 

4 . 4 RSnap Operations 
4.4.1 Volume Creation 

RSnap users can create three types of volumes. The first type can be created 
through the Create 0 interface, which results in a static allocation of the 
volume's entire radix tree. This volume is new and does not share disk 
blocks with any other volume in the system. The second type of volume 
is a read-only snapshot of some base volume and is created through the 
CreateSnapshot-ROO interface. This volume cannot be modified but can 
be mounted as read-only. The third type of volume is created through the 
CreateSnapshot-RWO interface and is a mutable snapshot of some read
only snapshot volume. Note that the creation of the second and third types 
does not involve static allocation of complete radix tree structures. Instead 
merely replicating the root is enough for the volume creation operation. 

In addition to initializing a volume's radix tree, the volume creation op
eration also allocates a superblock for the volume. This superblock contains 
parameters such as the volume's size, the height of its radix tree, the sec
tor address of the block containing the root of its radix tree, the number 
of children sharing blocks with the volume and the volume's parent if any. 
Al l volume superblocks in the blockstore are tracked by a universal radix 
tree which is indexed on the 64-bit volume id. This tree is sparse initially 
and storage is allocated to it out of the usable space within the blockstore. 
During the Reinstate() operation, a volume's superblock is read and kept 
persistently in memory. 

Static volume creation 

During static volume creation, the blockstore's block size and the size of the 
volume are used to compute the height of a suitable radix tree to represent 
the volume. Each entry inside a radix tree node is a 64-bit block address 
in which one bit is reserved to mark readability or writability of blocks. 
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A l l addresses inside the radix tree nodes of a statically created volume are 
marked writable. 

The tree creation algorithm works by allocating a range of block ad
dresses for the volume at a time. In each iteration of the algorithm one 
complete leaf is allocated. This means that if the blockstore's block size is 
4K then 512 data blocks are allocated to the volume in one iteration. This 
is done so as to minimize the number of transactions on the nibble map. We 
found that allocating one block address between a call to journa l - s tar t () 
and journal_end() is not very efficient, because the nibble map has to be 
committed to the disk more often. Therefore, we avoid that by allocating 
several blocks in between a call to journal_start ( ) and journal_end(). 

R e a d - O n l y Snapshot C r e a t i o n 

Before attempting to create a writable snapshot of some parent volume, 
a user must create its read-only snapshot. The advantage in doing so is 
that multiple writable snapshots can be created out of it in the future. 
The CreateSnapshot-RO() operation facilitates the creation of a read-only 
snapshot. The operation starts by detecting if the parent volume is active or 
not. If the parent volume is active then it is frozen and all its dirty buffers are 
flushed to disk using the Linux f reeze_bdev() interface. Next, a superblock 
and a radix tree root are allocated for the new read-only snapshot volume. 
The root is filled with the contents of the current root of the radix tree 
belonging to the parent volume and then as a secondary step, all pointers in 
the current root are marked as read-only. Additionally, the parent field in the 
parent volume's superblock is set to the 64-bit id of the read-only snapshot. 
This ensures that the location of the root of the parent volume is not changed 
on disk. This entire operation (excluding the buffer flush) is journalled, so 
as to make it atomic. Beyond this point, the device corresponding to the 
parent volume is thawed using the Linux thaw_bdev() interface. Future 
writes on the parent volume trigger copy-on-write operations. 

Wri tab le Snapshot C r e a t i o n 

Writable snapshots are-created out of read-only snapshots. The system first 
creates a new superblock and an empty radix tree root for the writable 
snapshot. The contents of the radix tree root of the read-only snapshot 
are read and converted into read-only pointers before copying them into the 
writable snapshot's root. Finally, the number of children of the read-only 
snapshot is incremented by 1 and the parent field of the writable snapshot's 
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superblock is set to the 64-bit id of the read-only snapshot. Once, again the 
entire operation is journalled so that a crash does not result in erroneous 
counts or pointers. . 

4.4.2 Address Translation 

Since RSnap provides virtual volumes, its clients operate on virtual block 
numbers. These virtual block numbers need to be translated into physical 
sector numbers within the blockstore device. The implementation of the 
translation mechanism is quite similar to the ext2/ext3 address translation 
mechanism. The difference is that instead of an inode we have a radix tree. 
In some sense the radix tree is very similar to an inode. The inode can be 
considered as a radix tree whose height increases with larger block addresses. 
It should be noted that the translation mechanism in both schemes is similar 
to virtual memory addressing techniques. 

The bits in a virtual address are partitioned into multiple sets contain
ing equal number of bits. The number of bits in each set corresponds to 
the number of sector addresses that can be accomodated in a block. For 
example, if the blockstore's block size is 4K, then 512, 64-bit addresses can 
be packed into one block. Thus the number of bits required to offset into 
a single block is 9 and therefore each set will contain 9 address bits. Thus 
the relationship between a block size and the number of bits used to offset 
within the block can be defined as follows: 

NRBITS(block size) = log2{(block size)/?,) (4.1) 

Also note that the value of NRBITSO along with the height of the tree 
determines the maximum virtual block address for a volume. In the above 
example, if the height of the tree is 3 then any virtual address for the volume 
can be atmost 27 bits long. In other words the largest virtual address will 
be 2 2 7 - 1. 

Algorithm 4.4.1 depicts RSnap's basic method to compute a physical 
block address from a virtual block address. This algorithm is particularly 

35 



Chapter 4. RSnap Implementation 

used when a read operation is performed on an RSnap volume. 

Algorithm 4.4.1: L O O K U P ( r o o t , virtual address, height, block size) 

while (height > 0) 
height«— (height — 1) 

I rootbh <- RE AD SLOCK (root) 
| offset <- COMPUTE.OFFSET(virtual address, height, block size 
root <r- rootbh[offset] 

return (root) 

Starting from the root, each radix tree node is read through the function 
READ_BL0CK() and then the function C0MPUTE_0FFSET() is used to compute 
the offset within that node. This operation is repeated until we reach a leaf 
of the radix tree and then the last offset is used to compute the physical 
address of the block. The C0MPUTE_0FFSET O function is defined as follows: 

COMPUTE.OFFSET(virtual address, height, block size) = 
((virtual address) » (height * NRBITS(block size))) <fe 

((1 « NRBITS(block size)) - 1) (4.2) 

Depending upon the parameter height, the C0MPUTE_0FFSET() function 
performs a right shift on the virtual address and then applies a bit mask to 
isolate the least significant NRBITSO. These least significant bits are then 
used as an offset into the radix tree node at level height. 

Note that READJ3L0CKO uses the Linux __bread() interface to syn
chronously read blocks from the disk into the page cache. Therefore, fu
ture reads upon the same radix tree node can be served directly from the 
blockstore's page cache. Further, in the actual implementation, the buffer 
holding the node is kept locked while an address is being extracted from it. 
This fine grained locking allows multiple address translations to occur on 
different parts of the radix tree in parallel. 

The translation process gets complicated during a write operation on 
a snapshot. This is because the write may result in the invocation of a 
copy-on-write operation which entails the use of journalling for maintaining 
consistency of the radix tree belonging to the volume. Algorithm 4.4.2 

36 



Chapter 4. RSnap Implementation 

depicts RSnap's behaviour when a write operation is in progress. 

A l g o r i t h m 4.4.2: L O O K U P _ C O w ( r o o i , virtual address, height, block size) 

chain <— <j> 
currentbh <- RE AD SLOCK (root) 
while (height > 0) 

(height <— (height — 1) 
offset <- COMPUTE.OFFSET(virtual address, height, block size) 
nextroot <— currentbh[of f set] 
if writable(nextroot) 

(comment: A Copy — On — Write operation is NOT required. 

do < 

then < if (height == 0) break 
[currentbh <- RE A DEBLOCK (nextroot) 

(comment: A Copy — On — Write operation IS required. 
if (chain == <j>) 

[ rsnap.journaLstart(height) 
chain <- ALLOC-CHAIN(height) 
ichain <— 0 

[chain[ichain] <— currentbh 
if (height > 0) 

(comment: Allocate writable metadata block. 

else < 

then < 

then < 

newroot <— balloc(META) 
newrootbh *- GET.BLOCK (newroot) 
readonlybh <— RE AD-BLOCK (nextroot) 
COPY .BLOCK (newrootbh, readonlybh, READ-ONLY) 

currentbh[of f set] <— newroot 

currentbh <— newrootbh 
ichain + + 

\chain\ichain] <— currentbh 

{comment: Allocate writable data block. 
currentbh[of f set] = ballocQ 

rsnap-j our nal-dirty-metadata(chain, ichain) 
rsnap-journalstopQ 
re turn (currentbh[offset]) 

else 

During a write, the translation function verifies if the next radix tree 
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node to be read is writable . If the node is read-only then the copy-on-
write operation is invoked. The copy-on-write implementation is similar 
to splicing a new indirect branch to an inode. The algorithm begins with 
determining the height of the branch that is to be spliced into the current 
radix node. Based on that height, it invokes rsnap_journal_start() to 
reserve the required number of blocks in the journal. Later new metadata 
blocks are acquired through balloc(META). The META flag is specified so as 
to assist the garbage collector. 

Notice that whenever a new writable metadata block is acquired the 
contents of its corresponding read-only metadata block are copied into it. 
The READJDNLY flag to the C0PY_BL0CK() operation ensures that all copied 
pointers are marked as read-only. Also, the read-only pointer in the current 
buffer head(currentbh) is replaced with a pointer to the newly acquired 
metadata block. The algorithm concludes by acquiring a data block. 

Al l modified buffers are tracked by using the chain data structure. Later, 
the chain is traversed in the function rsnap_journal_dirty_metadata() so 
as to convey the intention to the jbd layer. 

Further, in the actual implementation, all nodes which are being mod
ified are kept locked until the copy-on-write operation completes. This is 
to ensure that a parallel copy-on-write is not triggered on the same block 
address. However, I /O requests on other parts of the radix tree can proceed 
without any interference. A call to rsnap_journal_stop() is finally made 
to complete the copy-on-write process. 

A n issue we encountered during the implementation of RSnap's ordered 
mode was that jbd expects buffer heads to impose data-before-metadata or
dering and unfortunately the linux block layer does not allow direct access 
to buffer heads belonging to data blocks. We solved this by introducing an 
atomic counter with every transaction. Before submitting an I /O request to 
the physical disk driver we increment the atomic counter and then decrement 
it in the asynchronous I /O notification received as part of request comple
tion. We further modified jbd to wait until our atomic counter becomes 0 
before committing any metadata blocks to the journal. 

Algorithm 4.4.2 works correctly only if the blockstore block size is equal 
to the file-system block size. If the file-system block size is less than the 
blockstore's block size, then the copy-on-write process entails reading the 
read-only data block as well. This is because only a small part of the block-
store's data block is being modified. Hence, the new data block on the block-
store will partly contain data from the read-only block and partly from the 
I /O request. In such a scenario, we first read the read-only data block using 
the __bread() interface, so that future copy-on-write operations on the same 
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data block can benefit from its presence in the page cache. Next, we allocate 
a new data block in which we first copy the read-only data block and then 
update it using the contents of the write request. Since, the write request 
should not wait any longer, we synchronously write out the new block to disk 
and upon its completion we call appropriate request completion functions 
by hand. 

4.4.3 Volume Reclamation 
As described in the design section, depending upon the type of the volume, 
reclamation can either be synchronous or will be done through a background 
garbage collector. In general when a volume is deleted, reclamation is done 
by traversing its radix tree in a depth-first manner. Further, we deallocate 
all data blocks in a leaf at once. Again, this is intended to reduce the number 
of nibble map commits to the journal. 

If a leaf volume is being deleted then all nibbles corresponding to its 
writable blocks are zeroed out immediately, whereas, all blocks that appear 
as read-only in the radix tree are ignored. On the other hand if a read-only 
snapshot is being deleted then nibbles corresponding to its writable blocks 
are marked as Tentatively deleted but Reachable. Additionally, nibbles 
corresponding to its writable radix tree nodes are marked as Meta blocks. 

1. The first phase of the garbage collector reads the blockstore's nibble 
map to identify Tentatively deleted but Reachable blocks and resets 
their Rechability bit. 

2. The second phase of the garbage collector reads the nibble map to 
identify Meta blocks and then all such blocks are read and the nib
bles corresponding to any read-only addresses they contain are set as 
Reachable. A small optimization we have done is to record at least 
one full page of Meta block addresses before proceeding to diagnose 
the addresses inside them. 

3. In the third phase the garbage collector reads the nibble map again to 
identify Tentatively deleted, Meta blocks which are reachable. Nibbles 
corresponding to all block addresses inside such blocks are marked 
as Reachable. As previously mentioned, this phase may have to be 
repeated several times until no more blocks can be marked reachable. 
In order to ignore blocks in successive iterations of the third phase 
we reset the Reserved bit in their nibbles. The bit is set again while 
marking such blocks as reachable in phase 2. 
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4. The fourth phase simply reads the nibble map and zeroes out all nib
bles which have their Tentatively deleted bit set and their Reachability 
bit cleared. 

The progress of the garbage collector is recorded into the blockstore's su
perblock and is journalled along with each of its updates to the nibble map. 
This ensures that after a crash, the garbage collector does not have to repeat 
phases which are finished. 

4.5 Chapter Summary 

In this chapter we studied RSnap's implementation details. We studied how 
RSnap formats a disk before use and its simple round-robin styled block allo
cation policy. Further, we gained insight into the different types of volumes 
that can be created as part of RSnap's operations and the algorithms used 
during address translation. Finally, we studied the implementation details 
of RSnap's garbage collector. 
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Performance Evaluation 

This chapter presents details on RSnap's performance. Intuitively, the indi
rection hierarchy imposed by a radix tree should cause significant degrada
tion in performance. Thus, our first set of experiments measure the perfor
mance degradation in using a RSnap virtual volume as compared to a raw 
disk. Since the blockstore block size can cause variance in metadata organi
zation and caching overheads, our second set of experiments analyze RSnap's 
copy-on-write behavior with various combinations of blockstore block size 
and file-system block size. One of RSnap's primary purpose is to virtu-
alize a physical disk into multiple volumes and therefore our third set of 
experiments study RSnap's performance when multiple snapshot volumes 
are being used in parallel. Since RSnap uses the page cache as a temporary 
storage for metadata, our fourth set of experiments measure the amount of 
page cache consumed during strenuous workloads. Lastly, we present some 
statistics on RSnap's garbage collector. 

For each of our experiments, we use a 3.2GHz Pentium 4 machine with 
1GB of R A M and a 80GB S A T A disk configured to give about 70MB/s 
of raw I /O performance. For evaluation purposes, we use a modified ver
sion of Bonnie+-1- to generate a stress test workload and the Postmark [13] 
benchmark to simulate a more realistic usage scenario. 

The Bonnie-)—I- benchmark performs a series of tests which saturate the 
file-system's buffer cache by creating a contiguous file(s) which is double 
the size of the R A M . It then performs the following operations in sequence: 
character writes, block writes, block rewrites, character reads and block 
reads. For each of the tests involving a write a new file is created. In the 
process it attempts to measure the raw throughput of the underlying disk. 
We modified the benchmark to do block writes before character writes. This 
is because character writes tend to be more C P U intensive than block writes 
and we are interested in measuring the copy-on-write performance for pure 
I /O workloads. If the character write test is executed first then most of the 
copy-on-write is already done by the time block write tests are invoked. Thus 
in an attempt to measure the true impact of copy-on-write on performance 
we interchanged their sequence of execution. 
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On the other hand the Postmark benchmark is designed to create a large 
pool of continuously changing files and to measure transaction rates for a 
workload approximating an Internet electronic mail server. The file-system 
performance is measured by generating a random set of text files which vary 
in size and then performing a configurable number of transactions which 
involve operations such as file creation, deletion, read or append. In our 
test cases, Postmark was configured to work with a set of 20,000 files and 
50,000 transactions. This results in approximately 200MB of data being 
written to the underlying disk. 

We further observed that RSnap's ordered mode and writeback mode 
give similar performance and therefore document results for ordered mode 
only. The similarity is because at the block layer data writes are not buffered 
and therefore most of the time metadata can be committed to disk without 
significant waiting. 

5.1 Raw Disk versus RSnap volumes 

Figure 5:1 depicts the comparison between a raw disk and a RSnap radix 
tree volume. For comparitive purposes we configure RSnap in its best case 
and worst case scenarios. We observed that RSnap performs best when the 
blockstore block size is 4K and worst when it is IK. For each of these tests, 
the file-system size was restricted to 3GB. 

In Figure 5.1(a) both the raw disk and the RSnap volume are formatted 
with a IK block sized ext2 file-system. Additionally, to force RSnap into 
its worst case behavior its blockstore is formatted with a IK block size. On 
the other hand for the measurements in Figure 5.1(b), both the raw disk 
and the RSnap volume are formatted with a 4K block sized ext2 file-system. 
In this case, RSnap's blockstore is formatted with a 4K block size. We ran 
Bonnie-I—f- on these different configurations to compare their performance. 
Each value in the graph is averaged over 3 consecutive runs of Bonnie++. 

From Figure 5.1(a) we can observe that for IK block sizes the perfor
mance of block writes on an RSnap volume can go down by 77%. However, 
for a 4K block size (Figure 5.1(b), it goes down by only 36%. The differ
ence can be attributed to the fact that a radix tree node with a IK block 
size can only store 128 64-bit addresses in it, whereas a 4K radix tree node 
can store 512 64-bit addresses in it. Due to this, the height of the radix 
tree for a 4K block size is always less than the one with a IK block size. 
Thus, with a I K block size, the metadata upkeep can be expensive in terms 
of both R A M consumption and disk seeks involving metadata reads. Note 
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Raw Disk vs RSnap Worst Case 

IjElRaw Disk 
RSnap Volume] 

Character Write Block Write Rewrite Character Read Block Read 

(a) Raw Disk performance as compared to RSnap worst case. For both cases, file-
system block size was set to IK. Blockstore block size was also set to IK. 

Raw Disk vs RSnap Best Case 

30h 

i l 

EH] Raw Disk 
BM RSnap Volume 

Character Write Block Write Rewrite Character Read Block Read 

(b) Raw Disk performance as compared to RSnap best case. For both cases, file-system 
block size was set to 4K. Blockstore block size was also set to 4K. 

Figure 5.1: Raw Disk versus RSnap volumes 
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Figure 5.2: Copy-on-Write Performance for One Level Snapshots 
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that in Figure 5.1(a), character write performance is much better than block 
write performance. This is because we modified Bonnie++ to perform block 
writes first. Due to this, the block write test is performed with a cold cache 
and later tests benefit from RSnap's metadata cache. Overall, the overhead 
of the radix tree metadata is tolerable when the blockstore block size is 4K. 

5.2 Copy-on-Write Performance 

Figure 5.2 depicts the modified Bonnie++'s performance on RSnap's one 
level snapshots. Snapshots were tested with different combinations of block-
store and file-system block size. To create a more realistic scenario, we 
modified mkRSnap to randomly reserve 20% blocks in the blockstore. This 
ages the blockstore artificially and leads to non-contiguous block allocations 
during copy-on-write operations. 

Since our version of Bonnie-r-+ performs block writes first, the Copy-on-
Write overhead is distinctly observable in Figure 5.2(a). The performance 
improves significantly during Bonnie-I—t-'s block read phase because there 
are no copy-on-writes in this phase and the relevant radix tree metadata is 
cached. 

Note that performance is lower when the file-system's block size is less 
than the blockstore's block size. This is because in order to perform a 
copy-on-write the blockstore's read-only data block has to be read and then 
written at a new location. O n the other hand, performance is best when the 
file-system's block size is equivalent to the blockstore's block size. Obviously, 
this is because the extra read is avoided. When the file-system's block size 
is larger than the blockstore's block size, then the device-mapper chops each 
I / O request into the blockstore's block size. Thus in this case performance 
is similar to the case when the file-system block is equal in size to the 
blockstore's block size. 

5.3 Multiple Snapshots 

In this test we create multiple snapshots of a single volume and then run our 
workloads on all of them simultaneously. RSnap's blockstore is formatted 
with a 4K block size and the base volume is formatted with a 4K block 
sized ext2 file-system. The radix tree for the base volume is 3 levels deep 
and represents around 3GB of storage. For comparitive purposes, we create a 
similar setup with L V M 2 snapshots. Figure 5.3 depicts the average read and 
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Figure 5.3: Bonnie-|—I- performance over multiple snapshots in parallel. 
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Figure 5.4: Average time taken per volume for a Postmark run 

write throughput per volume with Bonnie+-1- as the workload and Figure 5.4 
shows the average time taken per volume for a PostMark run. 

From Figure 5.3(a) we can observe that the write performance for RSnap 
is up to 6-12 times better than LVM2. This is because LVM2 writes its copy-
on-write mappings synchronously, whereas we perform in-memory metadata 
updates and rely on journalling for ensuring consistency. In the block read 
test LVM2 performs better than RSnap. This is because LVM2 data is or
ganized contiguously on the disk, whereas RSnap incurs the overhead of the 
radix tree metadata. Also, when copy-on-write is being done on multiple 
snapshots in parallel, the organization of data for RSnap's volume tends to 
be more fragmented. As can be observed from Figure 5.3(b), the overall 
performance degradation varies between 5% to 40% with an average degra
dation of about 20%. 

On the other hand, from the Postmark results in Figure 5.4, we can 
observe that RSnap actually performs better for more realistic workloads. 
The performance improvements observed are in the range of 3% to 55% with 
an average improvement of about 20%. This is mostly because RSnap does 
not perform metadata updates synchronously. 
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N u m b e r o f S n a p s h o t s 

Figure 5.5: Page cache consumption of radix tree metadata. 

5.4 Metadata Overhead 
In this experiment we measure the page cache consumed by the radix tree 
metadata. As in the experiments in section 5.3, we first create a single 
volume and then create its multiple snapshots. Later, we run simultaneous 
instances of Bonnie++ on these snapshots and measure the cost of keep
ing their radix tree nodes in the page cache. Recall that we are working 
with a 1GB R A M and hence bonnie-f-f will try to saturate the cache with 
2GB of data for each of the snapshot instances. In order to track the total 
amount of cache consumed by the metadata for all snapshots, we modified 
the add_to_page_cache() function to maintain the maximum number of 
pages associated with our blockstore device. Whenever, a new maxima is 
reached, the function logs it using a p r i n t k Q call on a file maintained on 
an NFS server. 

Figure 5.5 shows the results of our experiment. It can be observed that 
even with 10 instances of Bonnie-)—f- the page cache consumption does not 
exceed 45MB, which is about 4.3% of the R A M size. Moreover the growth 
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in the page cache consumption scales linearly with the number of snapshots. 

Table 5.1: Garbage Collection Statistics after Postmark runs. 
Phase 2 Phase 3 

No. of No. of Copy-on- No. of Tentatively Time Space Rec-
Snaps. Write Blocks Read Deleted Blocks Read (sec) laimed(MB) 

1 118 1422 2.2 164.77 
2 203 1446 2.2 157.47 
3 342 1446 1.14 132.50 
4 449 1468 2.37 63.40 
5 554 1447 4.53 143.57 
6 679 1471 2.43 100.28 
7 857 1469 5.37 75.20 
8 955 1483 2.25 73.57 
9 1078 1481 2.32 77.45 
10 1128 1521 2.4 23.25 

5.5 E v a l u a t i o n of G a r b a g e C o l l e c t i o n 

In order to quantify the performance of the garbage collector, we create 
multiple writable snapshots of a single volume and then run Postmark and 
Bonnie++ on them. After the tests are complete, we delete the parent 
volume so that all its blocks are marked as tentatively deleted and then run 
our garbage collector on the blockstore. Tables 5.1 and 5.2 show the results 
of our evaluations. 

From both tables, we can observe that with the increase in the number of 
snapshots the number of copy-on-write metadata blocks to be read in Phase 
2 increases. This further induces a rising trend in the number of tentatively 
deleted metadata blocks which are read in Phase 3. The total time taken 
by the garbage collector does not show any trend because it depends upon 
the number of metadata and nibble map blocks which are cached. The 
observation to be made is that with appropriate caching the time taken is in 
the order of seconds. Finally, the space reclaimed is quite variable in the case 
of Postmark and is almost the same in all test cases for Bonnie++. This 
is because Postmark has a more randomized nature whereas, Bonnie+-f-
generates a very predictable workload. Further note that in the case of 
Postmark, the amount of space reclaimed tends to fall with an increase in 
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Table 5.2: Garbage Col ection Statistics after Bonnie++ runs. 
Phase 2 Phase 3 

No. of No. of Copy-on- No. of Tentatively Time Space Rec-
Snap. Write Blocks Read Deleted Blocks Read (ms) laimed(GB) 

1 1051 489 1.9 2.01 
2 2100 494 1.76 2.00 
3 3154 499 1.80 1.99 
4 4203 511 1.98 1.97 
5 5251 547 1.92 1.90 
6 6303 511 1.89 1.97 
7 7364 549 2.09 1.89 
8 8400 519 2.06 1.95 
9 9460 547 1.89 1.90 
10 10525 549 2.36 1.89 

the number of snapshots. This is because a randomized workload results in 
the overwriting of different read-only logical blocks in indvidual snapshots. 
Due to this a larger number of read-only blocks continue to be referenced 
in one volume or another and few blocks can be reclaimed by the garbage 
collector. On the other hand, in the case of Bonnie-I—1-, most of the logical 
blocks which are overwritten are the same in peer snapshots and hence 
almost a constant amount of space can be reclaimed after each run. 

5.6 Evaluation Summary 

A first observation to be made is that RSnap performs best when the block-
store's block size is equivalent to the file-system block size. Further, the 
performance is better for larger block sizes. In our experiments, we observe 
peak performance when the block size is 4K. 

The second observation to be made is that when multiple snapshots are 
running a stress test workload in parallel, the copy-on-write performance 
is 6-12 times better than L V M 2 and post copy-on-write the average per
formance degradation is about 20%. On the other hand in realistic usage 
scenarios, RSnap may perform as much as 55% better than L V M 2 snapshots. 

A third observation to be made is that caching the radix tree metadata 
imposes very little overhead on the page cache. In our experiments, we ran 
10 snapshots in parallel and their collective metadata overhead was merely 
4.3% of the R A M . Further, assuming that the workload on various snapshots 
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is similar, the cache consumption scales linearly with increase in the number 
of snapshots. 

A final observation to be made is that garbage collection overhead is 
quite bearable. With adequate caching, a garbage collection cycle can be 
completed within seconds. However, the amount of data that can be re
claimed is dependent upon the type of workload the snapshots got exposed 
to. The garbage collector will reclaim more blocks if similar logical blocks 
get overwritten in peer snapshots. 
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Future Work and Conclusion 

6.1 Future Work 

There are several avenues for future work in RSnap. A few interesting ones 
are listed in the following paragraphs. 

6.1.1 Blockstore Extensibility 

One of the shortcomings of RSnap is that the blockstore is not extensible. 
Once all space within the blockstore is exhausted and if even the garbage 
collector cannot free more space then any subsequent requests that entails 
free block allocation will fail. Being able to add new physical devices to 
augment the existing blockstore will be a worthwhile feature to explore. 

6.1.2 Block Contiguity 

As of now we follow a very simple round-robin style block allocation pol
icy. This has the potential to override the contiguity assumptions made by 
a file-system residing on a volume. The block allocator may be modified 
to allocate logically contiguous blocks at physically contiguous locations. 
Alternatively, a utility to dynamically restructure the radix tree to bring 
logically contiguous blocks in physical proximity will be quite useful. 

6.1.3 Limiting exportability 

Copy-on-write volumes are a superb protection against malicious writes, 
however, they still can't prevent malicious reads. It would be useful to 
design a strategy in which a user can indicate the files they would prefer not 
exporting to a snapshot. Thus, any subsequent read/write attempts to that 
file in a child snapshot will be failed. File-grained semantic information may 
be communicated through techniques explored in the Semantically Smart 
Disks[25] project and the unused bits in each entry of a radix tree metadata 
node may serve as a store for per-block protection information. 
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6.2 Conclusion 

We have designed and implemented RSnap, a volume manager that allows 
a user to create recursive writable snapshots of a logical volume. Whereas 
previous volume managers have considered snapshots as special read-only 
volumes dependent on their parent for existence, RSnap grants them con
siderable freedom with regard to mutability and lifetime. 

For purposes of volume metadata upkeep, RSnap uses the light-weight 
radix tree data structure. In order to alleviate the latency in virtual to 
physical block address translation, it relies extensively on the kernel page 
cache for maintaining the intermediate nodes of a radix tree. Further, we 
have provided consistency guarantees on the radix tree data structure by 
capitalizing on the Linux journalling layer. 

Our evaluations show that the overhead of page cache consumption is 
tolerable and scales with the number of volumes. Further we have shown that 
for strenuous workloads our radix tree based implementation outperforms 
LVM2's copy-on-write implementation by 6 to 12 times and on an average 
may perform only 20% slower on post copy-on-write operations. Further, 
for more realistic workloads RSnap's journalled metadata approach improves 
performance by up to 55% over L V M 2 snapshots. 

Lastly, we have addressed the complexity of reclaiming blocks from unin
teresting read-only snapshots within a family of volumes and have presented 
a fast fault-tolerant garbage collector as a feasible solution. 
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