
Adaptive Support For Student Learning in

Educational Games

by

Xiaohong Zhao

B.Sc, Beijing University, 2000

A THESIS SUBMITTED LN PARTIAL F U L F I L L M E N T OF

THE REQUIREMENTS FOR THE D E G R E E OF

Master of Science

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming

to the required standard

The University of British Columbia

November 2002

© Xiaohong Zhao, 2002

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

Educational games can be highly entertaining, but studies have shown that they are not

always effective for learning.

To enhance the effectiveness of educational games, we propose intelligent pedagogical

agents that can provide individualized instruction that is integrated with the entertaining

nature of these systems. We embedded one such animated pedagogical agent into the

electronic educational game Prime Climb. To allow the agent to provide individualized

help to students, we built a probabilistic student model that performs on-line assessment

of student knowledge.

To perform knowledge assessment, the student model accesses a student's game actions.

By representing the probabilistic relations between these actions and the corresponding

student's knowledge in a Bayesian Network, the student model assesses the evolution of

this knowledge during game playing.

We performed an empirical study to test the effectiveness of both the student model and

the pedagogical agent. The results of the study strongly support the effectiveness of our

approach.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Figures v

List of Tables vii

Acknowledgements viii

Chapter 1 Introduction 1

1.1 INTELLIGENT TUTORING SYSTEMS AND ELECTRONIC EDUCATIONAL GAMES 2

1.1.1 Intelligent tutoring systems 2
1.1.2 Electronic Educational games 2
1.1.3 Combining ideas from ITSs and Electronic Educational Games 3

1.2 STUDENT MODELING 4
1.2.1 Student modeling and Bayesian networks 5

1.3 ANIMATED PEDAGOGICAL AGENTS 6
1.4 THESIS GOALS 7
1.5 THESIS CONTRIBUTIONS 7
1.6 OUTLINE 7

Chapter 2 Related Work 8

2.1 STUDENT MODELING IN INTELLIGENT TUTORING SYSTEMS 8
2.2 COMPUTER-BASED EDUCATIONAL GAMES 10
2.3 STUDENT MODELING USING BAYESIAN NETWORKS 12

2.3.1 Examples of Bayesian student models in several intelligent tutoring systems 13
2.3.2 Problems when applying BNs to student modeling 13

Chapter 3 The Game: Prime Climb 15

3.1 T H E GAME'S INTERFACE 16
3.1.1 Climbing Mountains in Prime Climb 16
3.1.2 the Game's Tools 18

3.2 T H E PEDAGOGICAL AGENT 2 0
3.2.1 Unsolicited hints 21
3.2.2 Help on demand ; 23

Chapter 4 The Prime Climb Student Model 26

4.1 UNCERTAINTY IN THE MODELING TASK 2 6
4.2 T H E SHORT TERM STUDENT MODEL 27

4.2.1 Variables in the short term student model 2 7
4.2.2 Assumptions underling the model structure 28
4.2.3 Representing the evolution of student knowledge in the short-term student
model 31
4.2.4 Construction and structure of the short-term student model 34

A.l A.l The static part of the short-term student model 34
4.2.4.2 Modeling student actions in the short-term model 36
Student clicked on a number to move there: 37
Student used the Magnifying glass on a number: 39
Student clicks to move to the same number she used the Magnifying glass on in
the previous time slice: 42
4.2.5 Discussion of the thesis approach to dynamically update the student model

44
4.3 LONG-TERM STUDENT MODEL 47

4.3.1 High level structure of the long term model 47
4.3.2 The version of the long-term model in the study 50

A.A IMPLEMENTATION 50

Chapter 5 The Prime Climb Study 51

5.1 STUDY GOAL 51
5.2 PARTICIPANTS 51
5.3 EXPERIMENTAL DESIGN 51
5.4 DATA COLLECTION TECHNIQUES 53
5.5 RESULTS AND DISCUSSION 54

5.5.1 Effects of the intelligent pedagogical agent on learning 54
5.5.2 Comparison of students game playing in the two groups 57

5.5.2.1 Wrong moves during game play 57
5.5.2.2 Correlations between learning and the agent's interventions 59

5.5.3 Accuracy of the student model 61
5.5.5 Discussion 64

Chapter 6 Conclusions and Future Work 65

6.1 SATISFACTION OF THESIS GOALS 65
6.1.1 The intelligent pedagogical agent 65
6.1.2 The student model 65

6.2 FUTURE WORK 66
6.2.1 Implement the high level design of the long-term model 66
6.2.2 Refine CPTs in the short-term student models 66
6.2.3 Compare an "intelligent agent" with a "silly agent" 67
6.2.4 Student play with the agent 67

6.5 CONCLUSION 67

Reference: 69

Appendix A Pre-test 76

Appendix B Post-test (for the experimental group) 78

Appendix C Post-test (for the control group) 80

Appendix D Observation sheet 82

OBSERVATION SHEET: (FOR EXPERIMENTAL GROUP) 82
OBSERVATION SHEET: (FOR CONTROL GROUP) 83

iv

List of Figures

Figure 3.1: Screen shot of prime climb interface 15

Figure 3.2: Student is on hex 8 while the partner is on 9 16

Figure 3.3: Incorrect move: the student tries to move from 8 to 42 17

Figure 3.4: Correct move: the student grabs 2 17

Figure 3.5: Using the magnifying glass 19

Figure 3.6: The Help dialog tool ..20

Figure 3.7: An example of unsolicited hint 23

Figure 3.8: Questions on the help dialog box ..23

Figure 3.9: The player is on 1 has nowhere to move and must wait for the partner to

move 25

Figure 4.1: The dependency between factorization nodes 28

Figure 4.2: Alternative representation of the dependencies between factorization

nodes 29

Figure 4.3: Two slices of an example D B N for Prime Climb 32

Figure 4.4: Our alternative approach to dynamically update the short-term model, when

an action E happens with value T 33

Figure 4.5(a): Partial factor tree of 40 35

Figure 4.5(b): Whole factor tree of 40 35

Figure 4.6: A new level of the game 35

Figure 4.7: The initial short-term student model corresponding to the game shown in

Figure 4.6 36

Figure 4.8: The CPTs for nodes F*and FKbefore and after the action Clickx occurred...38

Figure 4.9: New time slice for the model in figure 4.7, after a click action on 8 at time t39

Figure 4.10: Game state after the player moves to 8 while the partner is on 3 39

Figure 4.11: CPTs for node Fz, Fx, Fy before and after Magz action occurred 41

Figure 4.12: Changes in the short-term student model in figure 4.9 after MAG42 action..42

Figure 4.13: CPTs for the node KFT if the student performs correct Clickz action right

after she uses the magnifying glass on number Z 43

Figure 4.14: Changes in the model of figure 4.12 after the student clicks 42(when the

partner is on 19) 43

Figure 4.15: Game state after the player moves to 42 while the partner is no 19 44

Figure 4.16: CPT for node Fx 45

Figure 4.17: Part of the short-term model after a student finished climbing the

corresponding mountain (left). And part of the long-term model derived from it (right).47

Figure 4.18: Part of the long-term model (left), part of a new short-term model before a

student climbs the corresponding mountain (right) 47

Figure 4.19: The CPT for the node Fy in the new model 49

Figure 5.1: Study set-up 54

Figure 5.2: Information lost for the node F4 63

vi

List of Tables

Table 3.1: Sample hints 21

Table 3.2: The agent's hints on demand (question 1 to question5 are shown in figure

3.8) • 24

Table 4.1: The CPT represents assumption 1 29

Table 4.2: The CPT for FK 30

Table 5.1: Events captured in the log files 54

Table 5.2: Comparison of learning gain between two groups 55

Table 5.3: Comparison of crashes.... 56

Table 5.4: Comparison of the pre-test scores 56

Table 5.5: Comparison of the mountain climbed 57

Table 5.6: Statistics of total errors 58

Table 5.7: Statistics of repeated errors 58

Table 5.8: Statistics of consecutive moves 58

Table 5.9: Statistics of consecutive falls 58

Table 5.10: The agent's hints 60

Table 5.11: Correlation between hint2_l and learning gain 60

Table 5.12: Correlation between hint2_3 and learning gain 60

Table 5.13: Correlation between hint l_l and learning gain 61

Table 5.14: Correlation between hintl_3 and learning gain 61

Table 5.15: The percentage of each type of hint given by the agent 61

vii

Acknowledgements

First, I would like to express my sincere thanks to my supervisor, Dr. Cristina Conati, for

her patient guidance, her inspiration and her encouragement. This thesis would not have

been possible without her help.

I would like to thank Xiaoming Zhou, Kasia Muldner, and Andrea Bunt, for their warm

help and assistance during my research.

I would like to thank Dr. Alan Mackworth, for his valuable comments and suggestions as

my second reader.

I would like to thank my parents for their consistent support.

Finally, I would also like to thank my husband, Jian, for his constant understanding and

support.

XlAOHONG ZHAO

The University of British Columbia

November 2002

viii

Chapter 1

Introduction

With technology rapidly developing in graphics, sound, real-time video and audio,

electronic games have become more and more entertaining and enjoyable for kids, as

well as adults. Among all the kinds of games, there is a special category, educational

games, which have one goal beyond just entertainment, and that is education. Since the

1970's, various educational games have emerged and some of them claimed to have

educational effectiveness [46]. However, very few formal evaluations have been

conducted to evaluate the actual pedagogical values of these games [46]. At the same

time, educational games have been receiving criticism and resistance from both teachers

and academics in terms of their effectiveness in education [45]. For instance, Ainley [1]

highlights awareness of the mathematical structural elements of games as important, but

difficult to achieve. Also, [28] found that while educational games are usually successful

in increasing student engagement, they often fail in triggering learning.

One of the major problems in educational games is derived from the ignorance of the

personal differences among users. For instance, based on observations collected during

an electronic games exhibit in Vancouver, some researchers found that while, boys often

enjoy aggression, violence, competition, fast-action, and speed in games, girls enjoy the

opportunity to socially interact with others [31] [21]. These different personal interests,

plus different knowledge status and learning abilities, often lead to different playing

patterns, which result in different needs for individuals who interact with educational

games. Previous studies in educational games also disclosed that students may develop

game skills without learning the underlying instructional domain [9]. In addition, some

students do not access available help even if they have problems playing the game

[28] [16]. A l l of these issues dramatically reduce the educational effects of educational

games.

1

A possible solution to these problems is to devise educational games that can provide

proactive help tailored to the specific needs of each individual student.

In this thesis, we describe our work of making a mathematical educational game, Prime

Climb, more effective through an animated pedagogical agent that can provide

individualized support to student learning. Currently, individualized support is based on

both some simple heuristics and a probabilistic student model. The model tracks students'

behaviors during game playing, and uses this to assess the evolution of their knowledge

as the interaction proceeds. We also describe the results of a user study that provides

encouraging evidence toward the effectiveness of our approach.

1.1 Intelligent tutoring systems and Electronic educational

games

1.1.1 Intelligent tutoring systems

Intelligent Tutoring Systems (ITSs) are educational systems which provide

"individualized instruction". They usually incorporate the following components that

provide them with the knowledge necessary for individualized instruction [51]: 1)

knowledge of the domain (expert model), 2) knowledge of the learner (student model),

and 3) knowledge of teaching strategies (pedagogical model). Traditional computer-based

educational systems that provide computer assisted instruction (CAI) often lack the

ability to dynamically maintain a model of student reasoning and learning. It is therefore

impossible for these to dynamically adapt their instructions to individual learners. ITSs

usually infer a student model from student behaviors to adapt the instruction to the

student's needs; here a student model represents the student's current state of knowledge

[54].

1.1.2 Electronic Educational games

Games are competitive interactions bound by rules to achieve specified goals that depend

on skill, and often involve chance and an imaginary setting [17]. Because of the highly

motivating nature of games, researchers started to investigate whether these games could

be utilized to assist learning, especially for those kids who lost interest in math or other

2

science courses at school [46][31]. Thus, educational games try to take advantage of

games' motivation for educational purposes rather than simply for entertainment [38].

Electronic educational games here, refer to computer and video educational games. This

thesis focuses on computer educational games. Educational games are developed for

many domains, such as social sciences, math, language arts, physics, biology, and logic

[46].

The question of how effective educational games (including electronic educational

games) are has led to many discussions regarding whether and how these games can

assist traditional classroom instruction in order to help kids learn while they play in their

leisure time. However, only few educational game designers claim that their games are

really effective in education, and even fewer support these claims with results from

formal empirical studies [46]. [28] shows that educational games can be effective, but

only if the interaction is monitored and led by teachers, or if the games are integrated

with other more traditional activities, such as pencil and paper exercises. There exist

some factors that influence the effectiveness of educational games. Among these, the

major factors are those that relate to the personal user's features, preferences and

behaviors [38]. "Individualized instruction" is considered to be the most efficient way to

deal with personal differences, and ITSs have been heralded as the most promising

approach for delivering such individualized instruction with a computer [51]. However,

so far no educational games use related techniques from the ITS field to enhance their

effectiveness.

1.1.3 Combining ideas from ITSs and Electronic Educational Games

Educational games have the same problem as traditional computer-based learning

systems: the inability to model student knowledge, and thus provide "individualized

instruction". The diverse needs and preferences in the student population bring out the

need to have individualized help for each user, but only one of the earliest games

developed, WEST [6] tried to use Artificial Intelligence techniques to provide this

individualized help. However, WEST never went beyond the state of a preliminary

prototype, and was never deployed in real educational settings.

3

In order to model relevant student individual differences, and thus facilitate more

effective education, this thesis tries to combine techniques to provide individualized

instruction with the high motivation triggered by electronic educational games, to make

students learn in a pleasant manner. We embedded both a student model and a

pedagogical agent into the educational game Prime Climb (developed by the EGEMS

research group at UBC) to facilitate student learning of the Prime Climb's domain, which

is number factorization.

1 . 2 Student modeling

Student modeling is considered a key component of ITSs. As K. Vanlehn stated in [54],

the component of an ITS that represents the student's current state is called the student

model. A student model may try to capture a student's beliefs, abilities, motives and

future actions from the student's behavior with the system, and this can entail a good deal

of uncertainty, especially if the student is not required to explicitly show to the system all

the reasoning underlying her actions [54] [22]. Bandwidth [54] is a parameter for

categorizing student models. It is defined as the amount and quality of information on

student reasoning that the student's input provides to the student model. There are three

categories of bandwidth. From highest to lowest bandwidth category, they are as follows:

1. Mental states: Student input shows both the knowledge and intentions underlying

a student action.

2. Intermediate states: Student input includes the intermediate steps used to derive

the answer to a question or problem.

3. Final states: Student input includes only the final answer.

Each category is intended to include the information in the category beneath it. Clearly,

the higher the bandwidth, the easier it is for a student model to infer relevant features of

the current student state. However, higher bandwidth also entails more work for the

student in the ITS interface, and therefore can interfere with student motivation for using

the system. For example, the input to our student model for the Prime Climb game is

quite narrow. Its bandwidth is in the "final states" category, which means that the student

4

model can only access students' final answers in the form of their game moves, instead of

the reasoning behind the answers. There is no doubt that a model with low bandwidth,

such as our model, has more difficulty in diagnosing the student's knowledge status than

student models which have higher bandwidth. However, in order not to weaken the high

level of student motivation usually generated by Prime Climb, we cannot enhance the

"bandwidth" by asking too many questions or by forcing students to show their

reasoning. As shown in Chapter 3, we added tools to the game that can help increase the

bandwidth naturally, but their usage is not mandatory for students.

Thus, the problem of inferring what a student is thinking and what her knowledge is from

her game interactions involves a great deal of uncertainty. In recent years, much research

has focused on how to manage uncertainty in student modeling using probabilistic

approaches, and Bayesian Networks (BN) [44] are one of the central techniques used

[22]. Our student model is based on this technique. In the next section, we describe some

student models that apply B N to handle the uncertainty in intelligent learning

environments.

1.2.1 Student modeling and Bayesian networks

Bayesian Networks are one of the major methods used for handling uncertainties in

student modeling systems [22]. In recent years, such a technique has been used in many

intelligent tutoring systems, including O L A E , POLA, ANDES for physics learning (e.g.

[36], [10], [12],[15]), SQL-Tutor for learning the database language SQL (e.g. [41], [37]),

and HYDRTVE for learning to troubleshoot an aircraft hydraulics system (e.g. [40]).

OLAE's student model assesses students' knowledge off line through the equations and

diagrams they entered for solving physics problems [36]. P O L A [10] and ANDES

[12] [15] provide this assessment on line, while the student is solving a problem, thus

allowing their tutors to provide interactive help. In SQL-Tutor, the code that a student

types is the source for the student model to perform knowledge assessment; in

HYDRTVE, the student model assesses students' knowledge skills by monitoring their

trouble-shooting procedures, their actions of reviewing certain online technical support

materials, or their instructional selections, in addition to instruction that the system itself

recommends.

5

Until now, no student models based on Bayesian Networks have been embedded into

electronic educational games. Because educational games are environments designed to

entertain students as well as make them learn, some students may ignore learning when

they are playing, and some can manage to play well even if they do not necessarily

understand the underlying domain knowledge. This makes it more difficult for a student

model to assess when and how much the student is learning. Our work is the first to have

a Bayesian network based student model embedded into an educational game to perform

knowledge assessments and facilitate student learning through an animated pedagogical

agent.

1.3 Animated pedagogical agents

What are animated pedagogical agents? Basically, they are social agents with

pedagogical goals. In [24], pedagogical agents are defined as agents that engage in face-

to-face interaction with learners, much as human instructors and coaches do. They can

monitor students as they solve problems, guide and coach them as needed, and can

collaborate with them as members of teams.

Animated pedagogical agents are used in intelligent learning environments for naval

training tasks (e.g. [23]), medical education (e.g. [50]), diagnostic problem solving (e.g.

[19]), database learning (e.g. [42]), botanical anatomy and physiology learning (e.g.

[32]), Internet Protocol learning (e.g. [33]) and computer architecture learning (e.g.

[34]). Pedagogical agents are also used in interactive pedagogical dramas (e.g. [52]).

Animated pedagogical agents present two key advantages for ITSs. The first is that they

increase ways of communication between students and computers, because in addition to

tutorial dialogues, they can exploit nonverbal communication, such as locomotion, gaze

and gestures. The second advantage is that they increase the computer's ability to engage

and motivate students [24]. However, no animated pedagogical agents have been

integrated into electronic educational games to enhance learning. This thesis is an attempt

to embed an animated pedagogical agent into the Prime Climb educational game to help

kids learn number factorization.

6

1.4 Thesis Goals

One goal of this thesis is to utilize an intelligent pedagogical agent to increase the

educational effectiveness of the Prime Climb educational game.

The second goal is to build a probabilistic student model that can support the pedagogical

agent by providing accurate assessments of students' knowledge as they play the game.

The final goal is to provide empirical evidence of the effectiveness of the intelligent

pedagogical agent through a study with real students.

1.5 Thesis Contributions

Our approach enables a pedagogical agent to provide tailored instruction in the Prime

Climb educational game by relying on both simple pedagogical strategies and a

probabilistic student model. This model relies on Bayesian Networks to perform the

knowledge assessment of a student based on her interactions with the game. We

conducted an empirical study to test the effectiveness of the pedagogical agent.

The main contribution of the thesis is that our results show that the pedagogical agent can

significantly improve the educational effectiveness of the game.

The thesis also contributes to the research on student modeling in educational games.

Though student models are widely used in various intelligent tutoring systems, little work

has been done on student modeling for educational games. Our proposed student model is

designed to handle low-bandwidth information coming from the game, and to

dynamically change its probabilistic predictions on student knowledge as the interaction

evolves.

1.6 Outline

The content of the thesis is arranged as follows. Chapter 2 describes related work;

Chapter 3 describes the Prime Climb game's interface, rules, tools and the pedagogical

agent; Chapter 4 describes the student model; Chapter 5 presents the empirical study we

conducted and discusses the result; and Chapter 6 presents the conclusions and discusses

future work.

7

Chapter 2

Related Work

This chapter reviews related work on student modeling in intelligent tutoring systems and

on electronic educational games. Work in student modeling based on Bayesian Networks

is discussed, and the problems of applying this technique to educational games are stated.

2.1 Student modeling in intelligent tutoring systems

What differentiates ITSs from traditional CAI systems is that ITSs are able to

dynamically maintain an assessment of student reasoning and provide tailored

remediation based on this assessment. A student model is the ITS component that does

the assessment. The student model is consulted by other ITS modules for many purposes.

The following are the most common uses for the student model [54]:

• Advancement: The ITS consults the student model to detect a student's mastery of

the current topic, and decide whether to advance the student to the next topic.

• Offering unsolicited advice: In order to offer unsolicited advice only when the

student needs it, the ITS must know the state of the student's knowledge. For this,

it consults the student model.

• Problem generation: In many applications, a good problem for a student to solve

is just a little beyond the student's current capabilities. To find out the student's

current capabilities, the problem generation module consults the student model.

• Adapting explanations: When good tutors explain something to a student, they

use only concepts that the student already understands. To determine what the

student already knows, an ITS consults the student model.

8

• Adapting interface tools: In order to elicit a student's particular actions that are

good for her learning, an ITS must know when the student needs to perform some

particular tasks. For this, it consults the student model.

Now we discuss some examples of student models in ITSs.

Koedinger et al [29] have built a P U M P Algebra Tutor (PAT) for algebra (PUMP stands

for the Pittsburgh Urban Mathematics Project). The PAT student model applies two

modeling techniques: model tracing and knowledge tracing. Using model tracing, the

student model matches a student's solution steps for a problem with those the model

generates by using its representation of algebraic knowledge. When a student's step

differs from the correct model's step, the tutor knows where the student is in the solution

process, and can provide hints to target the current impasse. Using knowledge tracing, the

student model monitors a student's acquisition of problem solving skills, and then

supports the tutor in identifying individual areas of difficulty, and presents problems

targeting specific skills, which the student has not yet mastered. PAT is evaluated as

significantly more effective when compared with normal classroom education in the

corresponding algebra curriculum learning.

In M F D (Mixed numbers, Fractions, and Decimals), a mathematics tutor for fifth and

sixth graders [4], a student model based on fuzzy logic is utilized to keep track of a

student's proficiency on topics within the domain. For each topic (a type of problem in

the domain), the student model contains the topic information and material for encoding

student acquisition and retention of that topic. Acquisition records how well students

learn new topics, and retention measures how well a student remembers the material over

time. The student model is used to select a topic for the student to work on, generate the

problem, and provide appropriate feedback. A formative evaluation of the tutor with 20

students provides evidence that the student model constructs problems at the correct level

of difficulty.

In Andes [14], an Intelligent Tutoring System for learning Newtonian physics, the student

model is based on model tracing and knowledge tracing, similarly to the PAT's model.

However, unlike the PAT tutor, Andes allows students to follow different correct

solutions to a problem, and to skip steps in their solutions. This makes it more difficult to

9

understand what a student is trying to do at any given point, and to track her

corresponding knowledge. Thus, Andes' model uses Bayesian Networks to perform

knowledge assessment. The Bayesian Network based student model is also used in Andes

for plan recognition, to figure out a student's goal during problem solving and suggest

steps for the student to achieve that goal; the model is also used to adjust the way Andes

presents help when it decides that the student is unable to use a specific rule of physics.

By consulting the student model, Andes presents in detail those rules that the student is

not familiar with [2]; Andes also has a module, the SE-Coach, that helps students study

physics examples effectively. The SE-Coach consults the student model to decide when

to prompt a student to explain example lines in more detail if they involve rules the

student has yet to master. Several evaluations of Andes student models provide both

indirect and direct evidence of its models' effectiveness.

The examples above illustrate that student modeling plays an important and successful

role in allowing ITSs to provide "individualized instruction". Though student modeling is

a rapidly expanding research topic, and is evaluated to be significantly effective in

enhancing students' learning, few educational games benefit from this technique. In the

next section, related work in computer-based educational games is reviewed.

2.2 Computer-based educational games

Games are competitive interactions bound by rules to achieve specified goals that depend

on skill and often involve chance and an imaginary setting [17]. Highly motivating games

have the characteristics of challenge, fantasy, and curiosity [35]. Computer-based

educational games are computerized games that promote learning in a pleasant way [27].

To date, research has focused on developing ways to enhance the pedagogical

effectiveness of the educational games. In Counting on Frank [49], specific interface

elements are designed to promote students' reflective cognition in math study; Builder

[20], a math game that-teaches basic geometry concepts by requiring players to build a

house together, shows significantly better learning gains if the student is given a specific

task (build a house of a given size) instead of a open-ended task.

10

Before we go to more examples of educational games, let us first look at the definitions

of two terms: Adaptive systems and Adaptable systems. Adaptive systems monitor the

user's activity pattern and automatically adjust the interaction to accommodate user

differences as well as changes in user skills, knowledge and preferences. Adaptable

systems allow the user to control these adjustments [30].

In recent work, Carro et al [7] propose a methodology for developing adaptive

educational-game environments. They claim that by combining computer-based games in

education with adaptive game environments, games could be suitable for users with

different personal features and behaviors. In their methodology, in order to create an

adaptive game environment, one needs to create several different computer-based games

and indicate for each, the learning goals involved (for example, adding numbers,

subtracting numbers) and the type of users the game is intended for. These games are

then grouped into activity groups. Activity is the basic unit of the game structure and

represents a task to be performed. There are Decomposition Rules (DR) that describe

which activities or activity subgroups are part of a given activity group, and the order in

which they should be performed. These DRs can be activated by particular user's features

and/or behaviors while interacting with the environment. Though the authors argue that

this is a methodology for designing adaptive games, they do not describe how to

differentiate user's features or behaviors while interacting with the environment. The user

features discussed in the paper only include the user's age, language, and preferred-

media, although interests, knowledge and learning skills also play an important role in

how different students react to an educational game. Furthermore, the adaptive game

described in the paper does not have the ability to do the adaptation while the student

plays with a given activity. Thus, if during game play a student's knowledge status or

educational goals change, the game does not have the ability to dynamically change game

activity or give tailored feedback.

Conati and Klawe [16] propose to devise socially intelligent agents to improve the

educational effectiveness of collaborative educational computer games. These agents are

active game characters that can generate tailored interventions to stimulate students'

learning and engagement. The agents' actions are based on the student's cognitive states

(i.e., knowledge, goals and preferences), as well as the student's meta-cognitive skills

11

(i.e., learning capabilities) and emotional reactions during the game, as they are assessed

by a probabilistic student model. The architecture discussed in [16] supports an adaptive

educational computer game for collaborative learning.

This thesis follows the ideas in [16], and embeds an animated pedagogical agent into the

game Prime Climb. The agent, by using simple pedagogical strategies and by consulting

the assessment from a model of the student's knowledge status, gives tailored help to

students who are considered to not be learning, or who lack the relevant knowledge

necessary to play the game. The ability to automatically adjust the agent's hints makes

Prime Climb an adaptive educational game, and improves its effectiveness by providing

individualized instruction to students in the game.

2.3 Student Modeling using Bayesian Networks

Bayesian Networks are directed acyclic graphs (DAGs), where the nodes represent

random variables and the arcs specify the probabilistic dependences that hold between

these variables [44] [8]. The random variables can have any number of values, such as

True of False for binary random variables. To specify the probability distribution of node

values in a Bayesian network, one must give the prior probabilities for all the root nodes

(nodes with no predecessors), and the conditional probability tables (CPT) for all the non-

root nodes. Algorithms for performing probabilistic reasoning with Bayesian Networks

exploit the probabilistic dependences specified by the network to compute the posterior

probabilities of any node, given the exact values for some evidence nodes.

Student modeling can involve high levels of uncertainty, because its task is to assess

students' characteristics, such as domain knowledge or meta-cognitive skills, based on

limited observations of student interactions with a tutoring system. By providing sound

mechanisms for reasoning under uncertainty, Bayesian Networks are an ideal approach

for dealing with the uncertainty in the student modeling task.

12

2.3.1 Examples of Bayesian student models in several intelligent

tutoring systems

Several intelligent tutoring systems use B N based student models [22] to infer students'

knowledge status (e.g. [15], [11], [36], [37], [39], [40]) and plans (e.g. [15], [11]) to

predict students' responses (e.g. [15]) and assess meta-cognitive skills (e.g. [14], [5]).

In O L A E [36], the student model uses the equations a student used to solve a physics

problem as evidence for assessing how the student mastered the relevant physics

knowledge. [40] uses Bayesian Networks to assess students' knowledge of aircraft

components and of strategies to fix these components in an ITS for learning to

troubleshoot an aircraft hydraulics system. In SQL-Tutor [37], the student model

Bayesian Network assesses the student's mastery of constraints representing pieces of the

conceptual domain knowledge required in SQL programming.

In P O L A ([10], [11]), the successor of O L A E , the student model performs probabilistic

plan recognition and assesses the student's physics knowledge by integrating knowledge

of available plans for solving a physics problem with students' actions and mental states

during a problem solving procedure.

In recent years, interesting research has focused on computer-based support for Meta-

Cognitive Skills - domain independent skills, which have shown to be quite effective for

improving learning. In ANDES [15], the successor of P O L A , the B N based student

model is extended to assess students' example understanding from the reading and

explaining actions [14]. The student model in A C E [5] provides another form of

innovative assessment in that it uses BNs to assess the effectiveness of the student's

exploration in an open learning environment for mathematical functions.

2.3.2 Problems when applying BNs to student modeling

One problem with using Bayesian Networks is how to specify the structure of the

network, especially when the networks are large. This is a time-consuming process. For

this reason, research in student modeling investigates ways to construct and modify

Bayesian Networks at run-time. For example, the student model in ANDES [15],

constructs the Bayesian Networks automatically from problem solution graphs, and

13

extends them dynamically during the interaction according to the student's actions. The

student model in A C E [5], has a static part specified by the model designer, and a

dynamic part extended during the interaction according to the curriculum and the

student's exploration of the environment. Following this approach, the basic structure of

the Bayesian Networks in Prime Climb is specified according to the suggestions of

several elementary school math teachers about how students learn number factorizations.

The student model is dynamically extended at run-time according to the student's

interactions with the game. We describe the details of the student model in Chapter 4.

Another big problem in using BNs for student modeling is that the probability update in

B N is NP-hard [22], and therefore, can be exponential in some networks. Long update

times are unacceptable in real time applications, and especially in game like interactions

which often have a very fast pace. Successful applications of BNs indicate that when the

networks are not too large, the problem is manageable. In Prime Climb, we keep the

network at a manageable size by having different short-term models for different levels

of the game, and by extending the part of the model that encodes student actions

dynamically during game playing.

Finally, a big concern in using Bayesian Networks is how to set prior and conditional

probabilities for each node in the network to properly reflect the domain. One approach

for dealing with this problem is to define the priors and the CPTs by hand using

subjective estimates, and to refine these probabilities through empirical evaluations.

Another technique involves using machine learning techniques to learn the probabilities

from the data. In this thesis, the priors and the CPTs are designed by hand based on

relevant assumptions derived from the structure of Prime Climb and of the domain

knowledge the game targets.

14

Chapter 3
The Game: Prime Climb

Prime Climb is an educational game designed and mainly implemented by students from

the EGEMS (Electronic Games for Education In Math and Science) group at the

University of British Columbia. The main goal of the game is to help grade 6 and grade 7

students learn number factorization in a highly motivating game environment (see Figure

3.1). This thesis focuses on devising a student model and an animated pedagogical agent

for the Prime Climb game in order to facilitate learning for those students who tend to

have problems profiting from this kind of environment. In this chapter, we describe the

Prime Climb game and its interface, including the pedagogical agent we added to the

game. In the next chapter, we discuss the student model.

Figure 3.1: Screen shot of Prime Climb Interface

15

3.1 The Game's Interface

Prime Climb is a two-player game, and the aim for the two players is to climb to the top

of a series of mountains.

3.1.1 Climbing Mountains in Prime Climb

As Figure 3.2 shows, each mountain is divided into hexes, which are labeled with

numbers. The main rule of the game is that each player can only move to a hex with a

number that does not share any common factor with the partner's number. If a wrong

number is chosen, the student falls and swings back and forth until she can grab a correct

number to hang onto. Figure 3.2, 3.3, and 3.4 give an example of incorrect and correct

moves.

Figure 3.2 Student is on hex 8 while the partner is on 9.

16

Prinietlimb X: lU.Ofps

Figure 3.3: Incorrect move: the student tries to move from 8 to 42

Figure 3.4: Correct move: the student grabs 2

In Figure 3.2, the player and her partner are on 8 and 9, respectively. In Figure 3.3, the

player is swinging because she chose to move to 42. Since 42 and 9 share 3 as a common

factor, the player fell and began to swing back and forth between 3 and 2. Figure 3.4

shows the game situation after the player grabs onto 2, which allows the swinging to stop

because 2 and 9 do not share any factor.

17

In addition to the main rule described above, there are other rules that regulate students'

moves:

• A player can only choose the hexes adjacent to her current one, and at most two

hexes away from her partner's. The game shows a player's reachable hexes by

highlighting the corresponding hexes in green.

• Players do not need to take turns. Whenever a player wants to move somewhere,

she can move.

• There are obstacles on the mountains (see rocks and trees on the mountain in the

previous figures), which players cannot move to.

As students climb one mountain after another, the mountains get higher, and their

difficulty also increases (i.e., larger numbers appear). Thus, as students climb more

mountains, the game becomes more and more challenging.

3.1.2 the Game's Tools

In Prime Climb, two tools are provided to help students with the climbing task. One tool

is the Magnifying glass. To use this tool, the student must click the magnifying glass

button on the PDA shown at the top right corner of the game (see Figure 3.4), which puts

the student in the magnifying glass mode indicated by the cursor turning into the icon of a

magnifying glass. By clicking on a number on the mountain while in this mode, one can

see the factor tree of that number, which is a common representation used in Math text

books to visualize number factorization. For instance, Figure 3.5c shows the complete

factor tree for number 42. In the original version of the game, this complete factor tree

would be displayed as soon as the student clicks on the number. We have modified the

magnifying glass tool so that the factor tree is displayed one level at a time, and the

student model can have more detailed information on the student's activity (we provide

more detail on this in the next chapter). Thus, when one clicks on a number for the first

time, one sees the two direct factors' of that number (see Figure 3.5a). Clicking on either

of these factors shows its two direct factors (see Figure 3.5b, where the student clicked

1 XI and X2 are two direct factors of X, if X = XI * X2.

18

on 6), and so on. Thus, if a student is not confident about a number, she can use the

magnifying glass several times until she sees the whole factor tree of that number.

(a) (b) (c)
Figure 3.5: Using the magnifying glass

The Help dialog is a tool that we added to the original version of Prime Climb for

students to explicitly ask questions to the pedagogical agent (see Figure 3.6). The help

dialog is activated by clicking on the "help" button on the PDA. There are several

questions in the help dialog box, which are categorized into three groups according to the

common problems we observed students having during previous studies of the game.

Questions in category 1 (the first two questions at the top of the dialogue box in Figure

3.6) are for students who do not understand the rules that regulate moves, and do not

know what to do. Although students receive an introduction and a demo right before

game play, there are always students who do not know how to play due to the high

amount of information given in a short period of time; questions in category 2 (the two

questions in the middle of the dialogue box in Figure 3.6) are mainly to help students

who made a wrong move, fell, and do not know the reason for falling, or do not know

how to stop swinging; the question in category 3 (the bottom of the dialogue box) is to

help students use the magnifying glass. Questions in the first category each has a "further

help?" button, so that the agent can provide help to students at an incremental level of

detail. It first starts with a general hint, then upon request of further help, it provides

increasingly more detailed information, and only tells the student exactly what to do after

a second request of further information. This is to encourage students to reason by

19

themselves instead of relying on the agent's instructions. More details on these hints are

given in the next section.

x

C" What shall I do now? Further help?

C Where can I move? Further help?

C Why am I falling?

C How can I stop swinging?

i How con I U3c the Magnifying glo33?

Ask Cancel

Figure 3.6: The Help dialog tool

3.2 The pedagogical agent

We used the Microsoft Agent Package to implement the pedagogical agent for Prime

Climb. Among the several characters available in the package, we chose the character of

Merlin for the agent because this is the one most students selected in a previous study that

was designed specifically to decide what character to use. Currently, only one of the two

Prime Climb players can have the pedagogical agent, but it is trivial to extend the game

so that there is an agent for each player. The agent gives hints to the student either on

demand (i.e., when the student asks for them through the help dialog box), or unsolicited,

when it sees from the student model that the student needs help in order to learn better

from the game.

Number factorization is a mathematical procedure that depends on several basic math

concepts and skills [53], including number multiplication, number division, factors and

multiples, even numbers, odd numbers, prime numbers, composite numbers, and prime

factorization. Currently, our pedagogical agent assumes that the student has knowledge of

the most basic skills (such as division and multiplication, even and odd numbers) that are

2 0

taught in earlier grades, and focuses on those concepts and skills that are more directly

part of number factorization, such as factors, multiples, prime numbers, prime

factorization and common factors.

3.2.1 Unsolicited hints

Many studies show that students often do not seek help, even if they need it [3][28]. We

also observed this behavior in many students that participated in previous pilot studies

with Prime Climb. To overcome the student tendency to avoid asking for help, our

pedagogical agent provides unsolicited hints based on both simple strategy and the

student model which shows that the student needs them (as we describe in the next

chapter).

Table 3.1: Sample hints

Hintl_l "think about how to factorize the number you clicked on"
Hintl_2 "use Magnifying glass to help you"
Hintl_3 "it can be factorized like this: X l * X 2 * . . . * X n 2 "
Hint2_l "you can not move to a number which shares common factors with your

partner's number"
Hint2_2 "use the Magnifying glass to see the factor trees of your and your partner's

numbers"
Hint2_3 "do you know that x and y share z as a common factor?"
Hint3_l "great, do you know why you are correct this time?"

These hints, summarized in Table 3.1, are based on several pedagogical strategies:

Every time the student makes a wrong move, the agent checks if it is a repeated error or

not. We define repeated error as a wrong move involving two numbers. The

configuration of this wrong move is exactly the same as one the student made previously

during the game.

• If it is not a repeated error, the agent checks the student model to see if the

probability of that number is very low (lower than a given threshold that is

currently set to be 0.4). If it is, the agent tries to make the student pay more

attention to that number by providing three hints at an increasing level of

specificity (hintl_l , hintl_2 and hintl_3 in table3.1). The student model for the

2 Suppose the prime factorization of the number the student clicked on is X1*X2*.. .Xn.

21

game, as we mentioned in Chapter 1 and Chapter 2, performs the knowledge

assessment for each student who plays the game. The detail of the model is

described in Chapter 4.

• If the student makes a repeated error, the agent prompts the student to think more

about the common factors between the two numbers involved. However, because

occasionally the reason for such an error is caused by the fact that students

understood that the rule is to move to a number which shares common factors

with the partner's number, the agent starts by giving hint2_l, which states the

correct rule. Then, further help is provided if the student continues with the error

(see hint2_2 and 2_3 in table 3.1).

• The agent may prompt a student to think more even after a correct move. Often,

students can perform correct moves by guessing, by remembering previous

patterns, or by asking the agent for more specific hints, and not because they

really understand the underlying factorizations. If the student model says that this

is the case because the probability of the number involved in a correct move is

low, the agent gives the student hint3_l in table3.1.

Figure 3.7 shows an example of the agent providing an unsolicited hint. In Figure 3.7, the

student tried to move to 10, while the partner is on 5. B y consulting the student model,

the agent notices that the student has not mastered the factorization knowledge of 10, so

he gives an unsolicited hint to the student, as shown in Figure 3.7.

When the agent is giving unsolicited hints to a student, the game is not blocked, that is

the student does not need to cl ick some button to quit the hint mode and start playing

again. We did this to avoid interfering too much with the pace of the interaction.

However, to make sure that the student sees its hints, the agent audibly verbalizes them,

in addition to showing them in text (see figure 3.7), and each hint stays on the screen

until the student performs the next action.

22

Figure 3.7: An example of unsolicited hint.

3.2.2 Help on demand

The agent can respond to students' help requests, which are asked through the help dialog

box (see Table3.2 for the agent's possible responses). Figure 3.8 shows the questions on

the help dialog box.

C What shall I do now?

f Where can I move?-

C Why am I falling'

f How can I stop swinging?.

Ask Cancel

f How con I U 3 C the Magnifying g l o 3 3 ? _

Question4

Figure 3.8: Questions on the help dialog box.

23

Table 3.2: The agent's hints on demand (questionl to question5 are shown in figure3.8)
Questionl Ansl_l: "click a green highlighted hex to continue" Questionl

Ansl_2: "use magnifying glass to check the highlighted hexes around you,
find one that doesn't share common factors with your partner's number."

Questionl

Ansl_3_l: "move to x"
Ansl_3_2: "wait for your partner"

Questionl Ans2_l: "choose a green highlighted hex which doesn't share common
factor with your partner's number"

Questionl

Ans2_2: "use Magnifying glass to help you"

Questionl

Ans2_3_l: "move to x"
Ans2_3_2: "wait for your partner"

Question3 Ans3: "you fall only if you click a number which shares common factors
with your partner's number"

Question4 Ans4: "click a number you are swinging through"
Question5 Ans5: "click the button with a Magnifying glass on the PDA, and then

click the number you want to see factor tree o f

• If a student asks questionl on the help dialog box, the agent starts by providing

the generic help labeled Ansl_l in Table 3.2. A student's further help request

indicates that she has problems with finding a suitable hex to move to. Thus, the

agent provides Ansl_2 in Table 3.2, which tries to help the student find a correct

move by using the magnifying glass. If the student clicks the "further help" button

again, the agent gives the direct answer to the student. There are two possible

direct answers (Ansl_3_l and Ansl_3_2 in Table 3.2). Ansl_3_l is given when

there is a hex reachable by the student, and that does not share any common factor

with the partner's number. Ansl_3_2 is given when all the hexes which are

reachable by the student (all the green-highlighted hexes) share common factors

with the partner's number. For example, in Figure 3.9, the player is on 1, while

the partner is on 35. The hexes where the player can move to are 15, 28 and 21.

A l l these numbers share common factors with 35 so the student must wait for the

partner to move.

• If a student asks question2, the agent first provides the general help Ans2_l in

Table3.2. As "further help" is requested by the student, the agent asks her to use

the magnifying glass to try to stimulate her thinking. If "further help" is requested

a second time, the agent gives the final answer to the student. The final answer

24

could be in either one of the two cases described for question 1, depending on the

game situation.

If a student asks qusetion3, the agent tells the student the game rule that falling is

caused by moving to a number which shares common factors with her partner's.

If a student asks question4, the agent tells the student how to stop swinging.

If a student asks question5, the agent tells the student how to use the magnifying

glass by giving Ans5.

Figure 3.9: The player on 1 has nowhere to move and must wait for the partner to move.

As we said earlier, the agent's unsolicited hints are given by partially relying on the

probabilistic student model we added to the game. The next chapter describes this model.

25

Chapter 4

The Prime Climb Student Model

In this chapter, we describe the student model we embedded into the Prime Climb game.

The student model's goal is to generate an assessment of students' knowledge on number

factorization as students play the game in order to allow the pedagogical agent to provide

tailored help that stimulates student learning. To generate its assessments, the student

model keeps track of the student's behaviors during the game, since such game behaviors

are often a direct result of the student's knowledge, or lack thereof.

4.1 Uncertainty in the modeling task

Modeling students' knowledge in educational games involves a high level of uncertainty.

The student model only has access to information, such as student moves and tools

access, but not to the intermediate mental states that are the causes of the students'

actions. According to discussions with elementary school teachers, it is common for

young students to intuitively manage solving some mathematic questions successfully

without necessarily understanding the math principles behind it. Thus, analyzing student

performance in Prime Climb does not necessarily give an unambiguous insight on the

real state of the student's knowledge. A solution to this problem could be to insert in the

game more explicit tests of factorization knowledge. However this would endanger the

high level motivation that an educational game usually arises exactly because it does not

remind students of traditional pedagogical activities. Thus, both Prime Climb and our

agent are designed to interrupt game playing as little as possible, making the

interpretations of student actions highly ambiguous. As we mentioned in Chapter 1 and

Chapter 2, we used Bayesian Networks to handle the uncertainty that such ambiguous

actions bring to the student model assessment. We try to reduce the uncertainty by doing

more detailed modeling. That is, instead of just modeling where the student moves, we

26

also record the context of the movements (i.e., the partner's number), as well as the

details of the student's usage of the available tools.

4.2 The short term student model

Since the game is designed to have multiple levels of difficulty, and each level has a

mountain for students to climb, we use separate student models for each level of the

game. An alternative structure could be to have one large model that includes all the

mountains that a student accessed. This model would easily allow for the carrying of the

student knowledge status from one level to the next, but the computational complexity of

updating such a large model would be so high that it would dramatically reduce the game

speed, as we realized when we tried this approach. Therefore, we used short-term models

to assess the student's knowledge from her actions in different levels of the game, and a

long-term model for carrying students' assessment from level to level, and from different

game sessions if necessary. The assumptions and structure of the short-term models'

Bayesian networks are described in this section, while the long term model is described

in Section 4.3.

4.2.1 Variables in the short term student model

Several random variables are introduced in the short-term model Bayesian network to

represent student's behaviors and knowledge.

• Factorization Nodes Fx '• for each number X on a mountain, the student model
for that mountain includes a node Fx that models a student's ability to factorize X.
Each node Fx has two states: Mastered and Unmastered. The state Mastered
denotes that the student mastered the factorization of X down to its prime factors.
Unmastered denotes that the student does not know how to factorize the number
X down to its prime factors.

• Nodes Clickx: each node Clickx models a student's action of clicking number X
to move there. Each node Clickx has two states: Correct and Wrong. Correct
denotes that the student has clicked on a correct number, that is a number which
does not share any common factor with her partner's. Wrong denotes a wrong
move. Clickx nodes are evidence nodes, which are only introduced in the model
when the corresponding actions occur and are immediately set to either one of
their two possible values.

27

• Node KFT : this node models a student's knowledge of the factor tree as a
representation of number factorization. The node KFT has two states, Yes and No.
Yes denotes that the student knows the factor tree representation, and thus can
learn the factorization of a number by seeing the factor tree of that number. No
denotes that the student does not know what a factor tree is, and thus cannot
figure out the factorization of a number even if she sees its factor tree.

• Nodes Magx: each node Magx denotes a student's action of using the magnifying
glass on number X . A node Magx has two states, Yes and No. Yes denotes that the
student has used the magnifying glass to see the factor tree of X . Nodes Magx are
also evidence nodes, and they are added to the network always with Yes value
when a student performs the corresponding actions.

4.2.2 Assumptions underling the model structure

Before going into detail about how the nodes described above are structured into the

short-term student models, we list a set of assumptions that we use to define the structure.

Figure 4.1 shows the basic dependencies among factorization nodes which encode the

first assumption.

J \ Z = X * Y

(Fx) (Fy)

Figure 4.1: The dependency between factorization nodes

Assumptionl: Knowing the prime factorization of a number (i.e., the factorization of a

number down to its prime factors), influences the probability of knowing the factorization

of its non-prime factors. In particular, our model assumes that i f a student knows the

prime factorization of Z , Z=Xi*X2*Yi*Y2, she probably knows the factorization of X and

Y , where X = Xi*X2 and Y = Y i * Y 2 . We adopted this assumption after talking with

several elementary school math teachers. According to them, i f a student already knows

the prime factorization of a number, she most l ikely knows how to factorize the factors of

that number. On the other hand, it is far more difficult to predict i f a student knows the

factorization of a number given that the student knows the factorization of its factors. For

example, knowing that the student can factorize 4 and 15 usually does not imply that the

28

student can factorize 60. Thus, it would be far more difficult to define the conditional

probability tables for factorization nodes if the dependencies among numbers were

expressed as in Figure 4.2.

Z=X*Y.

Figure 4.2: Alternative representation of the dependencies between factorization nodes

The CPT that represents assumption 1 for the structure in Figure 4.1 is shown in Table

4.1.

Table 4.1: The CPT representing assumption 1.
Fz Fx
Mastered 0.7
Unmastered 0.3

If there are multiple parent nodes for a particular factorization node Fx, its conditional

probability table is defined in the following way: assume that node Fx has n parent

nodes, F/>/, FP2, ...,Fpn. For each assignment of the parent node values, if there are m

parent nodes (0<m<n) which have the state Unmastered, then the corresponding

probability in the conditional probability table for Fx to be Mastered is calculated using

Equation3 4.1:

0.7-[(0.7-0.3)/n]*m (4.1)

This equation generates the following CPTs:

1. If all the parent nodes are mastered (i.e., m=0), the probability of mastering X is

0.7.

3 In equation 4.1, 0.7 and 0.3 are designed by hand to denote a high probability as "Mastered" and a low
probability as "Unmastered" respectively. The equation also gives equal importance to all the parent nodes
in mastering knowledge the child node represents.

29

2. If all the parent nodes are Unmastered (i.e., m=n), the probability of mastering X

is 0.3.

3. If 0<m<n, the probability of X being Mastered is between 0.3 and 0.7, and it

decreases proportionally with the number of Unmastered parent nodes.

For instance, given the node FK, with parents nodes Fx, Fy, Fz, the CPT for FK is

shown in Table 4.2.

Table 4.2: The CPT for FK
Fx F Y F z F K

Mastered
Mastered Mastered 0.7

Mastered
Mastered

Unmastered 0.567 Mastered

Unmastered
Mastered 0.567

Mastered

Unmastered
Unmastered 0.434

Unmastered

Mastered
Mastered 0.567

Unmastered

Mastered
Unmastered 0.434

Unmastered
Unmastered

Mastered 0.434 Unmastered
Unmastered

Unmastered 0.3

More direct evidence on student factorization knowledge is provided by student actions

in the game. These actions are dynamically added as evidence nodes to the short-term

student model representing the current mountain. They include the following:

1. Clicking on a given hex to move there.

2. Using Magnifying glass on some number.

These actions affect the probabilities of knowing the factorization of the related numbers

based on several assumptions, which we describe below.

Assumption 2: Clicking on a number which does not share common factors with the

partner's number increases the probability that the student knows the factorization of the

two numbers, although this action could also be the result of a lucky guess or of

remembering previous moving patterns. A wrong click decreases the probability that the

student knows the factorization of the two numbers, although it could also be due to an

error of distraction.

30

Assumption 3: When a student uses the Magnifying glass on number X , her knowledge

of how to factorize number X likely increases if the student knows how to interpret the

factor tree representation.

Assumption 4: When a student uses the magnifying glass on number X at time t-1, and

then correctly (incorrectly) moves to number X at time t, the move provides evidence that

the student learned (did not learn) the correct factorization of X by using the magnifying

glass at time t-1. Thus, this action provides evidence that the student knows (does not

know) how to interpret the factor tree structure.

We now describe how these assumptions are built into the structure of Prime Climb

short-term models.

4.2.3 Representing the evolution of student knowledge in the short-term

student model

The short-term model for a particular student's interaction with the game must capture

the unfolding of this interaction over time, and the corresponding evolution of the

student's factorization knowledge.

Traditionally, Dynamic Bayesian Networks (DBN) [18] [26] [47] are extensions of BNs

specifically designed to model worlds that change over time.

D B N keeps track of variables whose values change overtime by representing multiple

copies of these variables, one for each time slice4 [18], and by adding links that represent

the temporal dependencies among those variables. However, it often becomes impractical

to maintain in a D B N all the relevant time slices. The rollup mechanism allows

maintaining only two time slices to represent the temporal dependencies in a particular

domain [47]: the network at slice t-1 is removed after the network for slice t is

established. The prior probability of each root node X in t is set to the posterior

probability of X in slice t-1.

An example of D B N for the Prime Climb game is shown in Figure 4.3, where node E

denotes evidence of a student's action at time t-1, while nodes Fx, Fz, and FK represent

knowledge nodes in the network. Because student knowledge can evolve with the

4 Typically, a time slice represents a snapshot of the temporal process [48].

31

interaction, knowledge nodes in time slice t must depend on knowledge nodes in t-1. This

can greatly increase the complexity of the corresponding probability tables, especially

when factorization nodes have multiple parents, as the node shown in Table 4.2.

Consequently, the update of the networks can become quite time consuming (in the order

of seconds) as we realized when we tried this approach in the game. This is unacceptable

if the pedagogical agent needs to provide prompt and up to date help to the students.

Slice t-1
Fzo-i) Fz(t)
T P i

F P2

Slice t

Fx(t-i) Fz(t) Fx(t)
T T P5 T

F P6

F T P7 F
F P8

FK(t-i) 1 Fm

T P3

F P4

Figure 4.3: Two slices of an example D B N for Prime Climb

Thus, this thesis uses an alternative approach to dynamically update the short-term

model. The following procedure (see figure 4.4) shows how we update the model before

and after an action E occurs:

• Before the action occurs, the corresponding CPT for each knowledge node is

shown in Figure 4.4, slice t-1.

• After action E occurs, let us suppose with value T, a new evidence node E is

added to the network, and the corresponding CPT for each knowledge node is

shown in Figure 4.4, slice t. In this figure, we show only the relevant portion of

CPT corresponding to the actual value of E.

32

• After the network is updated, and before a new action node is taken in, the

evidence node E is removed in slice t+1. The C P T for the node Fx is changed

according to the value of E in slice t.

• The probability of knowledge nodes not directly affected by E (e.g., Fz and FK in

figure 4.4) remains unchanged, because we currently do not model forgetting.

In Figure 4.4, 5 is the weight the action E brings to the assessment of the corresponding

knowledge nodes, and it can be either positive or negative, depending on the type of

action, pi and p 2 are the probabilities for the node Fx to be True, given its parents' values,

before action E happens, rj is the change in the posterior probability po of Fx caused by E.

Slice t-1

Fz

P(Fz=T)=p5 FK

P(FK=T)=p6

Po

Fz 1 Fx=T
T Pi
F P2

Slice t

po+g

E Fz Fx=T

T T Pi+5 T
F P2+5

Slice t+1

Fz

P(Fz=T)=p5

P(FK=T)

Fx Po+r)

Fz Fx=T
T pi+5
F p 2 +5

Figure 4.4: Our alternative approach to dynamically update the short-term model, when
an action E happens with value T.

In Figure 4.4, for slice t+1 (after removing the action node E), the prior and conditional

probabilities of all the nodes are the same as the probabilities in slice t after action E

occurred. The network is now ready for the next cycle. What we have done is to

effectively include the influence of E on Fx into the influence of Fz on Fx. Because this

method has smaller CPTs than the traditional D B N approach, it is much faster. This is

quite crucial in our game environment. However, drawbacks related to the changes of the

CPTs which were influenced by the action node, are unavoidable. We describe these

drawbacks in more detail in Section 4.2.5.

33

In the next section, our approach to dynamically update the short-term student model is

described in more detail for each type of interface action that the model captures. To be

more brief, for each action type we only show the networks and the corresponding CFTs

before and after adding the corresponding evidence node, corresponding to slices t-1 and

t in Figure 4.4.

4.2.4 Construction and structure of the short-term student model

4.2.4.1 The static part of the short-term student model

The process of building the short-term model for a given mountain starts by generating

what we call the "static part" of the model. This part includes all the nodes representing

the knowledge relevant for climbing the given mountain, that is all the Fx nodes

representing factorization knowledge for the numbers on the mountain, as well as the

KFT (knowledge of factor tree) node. The static part of the model is currently generated

by hand for each mountain before the game starts from the basic representation of each

mountain used by the original version of Prime Climb. Generating the static part of the

model automatically from the basic representation is not difficult, and we plan to

implement this feature as future work.

The dependencies among Fx nodes in the static part of the network follow the basic

pattern explained in Section 4.2.2. The actual factorization of each number is represented

hierarchically, exactly as it is done in the factor tree. That is, a number Z is first

decomposed into two numbers, X and Y , such that Z=X*Y. The same process is then

applied to both X and Y , until prime factors are reached. We need to point out that,

although there are multiple ways of generating a hierarchical decomposition of a number

(e.g., you can start decomposing 40 by factorizing it as either 4*10 or as 5*8), our

networks only represent the single hierarchical decomposition shown in the P D A factor

tree. The EGEMS researchers that developed the basic version of the game implemented

a procedure for finding the decomposition that generates the most balanced, and therefore

shortest factor tree, to make it easier to display it in the PDA.

34

For example, this procedure starts by decomposing 40, as shown in Figure 4.5(a), and

generates the full decomposition, as shown in Figure 4.5(b).

Figure 4.5(a): Partial factor tree of 40. Figure 4.5(b): Whole factor tree of 40.

Figure 4.7 shows the initial static network for the mountain in Figure 4.6. As figure 4.7

shows, before the game starts, the node KFT is not connected to any other node in the

network. The connections are built dynamically during the interactions, as we describe in

the next section.

Figure 4.6: A new level of the game

35

Yes:0.5 CT"~
No: 0.5

Yes:0.5
No: 0.5

Yes:0.5
No: 0.5

Yes:0 .5
No: 0.5

Figure 4.7: The initial short-term student model corresponding to the game shown in
Figure 4.6

The prior probabilities in the static part of the network are initialized using the long-term

student model (described in more detail later). This model encodes the current long-term

assessment of the student's knowledge, based either on prior existing information on the

student (if the student is a first time player) or on the evidence accumulated through her

previous game interactions. For example, in Figure 4.7, the 0.5 prior of each root

knowledge node represents a student who has not interacted with the game before, and

for whom we do not have any prior assessment.

The probabilities of the non-root nodes in Figure 4.7 are derived from the propagation of

the priors through the CPTs described in Section 4.2.2.

The rest of the short-term model structure is built dynamically as the student interacts

with the game, to model the influence of the student's actions on her knowledge, as

described by assumptions 2, 3 and 4 in Section 4.2.2. In the next section, we explain in

detail how different student actions are represented in the model.

4.2.4.2 Modeling student actions in the short-term model

As we mentioned earlier, we use an approach slightly different from the traditional D B N

approach to dynamically update the short-term student model given the student's

interactions with the game. Each action the student performs in the interface causes the

36

creation of a new time slice in the model, representing the effect of this action on the

assessment of the student's knowledge. As the new time slice is created, the evidence

node representing the previous student action is removed, and the relevant information is

transferred to the new slice, as described in Figure 4.4. Here we explain how this process

works for different types of student actions.

Student clicked on a number to move there:

If at time t, a student clicks on a hex labeled with number X , to move there when the

partner is on hex with number K, the evidence node representing the student's action in

time t-1 is removed, and a new time slice based on the time slice t-1 and on the new

action is created as follows:

• A l l the knowledge nodes from the previous slice are maintained in the new one.

A l l the knowledge nodes not directly influenced by the new action maintain the

posterior conditional probabilities they had in the previous slice.

• A node Clickx is added to the network to represent this cl icking action.

• Clickx is l inked to the factorization nodes Fx and FK, as shown in Figure 4.8 slice

t.

• The CPTs for nodes Fx and FK, given node Clickx>, are used to represent

assumption 2 in Section 4.2.2: a correct move provides evidence of the student

knowledge of both the clicked number and the partner's number, although the

correct move could also be due to other reasons other than knowledge. A n

incorrect cl ick action represents evidence against the knowledge.

• The conditional probabilities of the knowledge nodes affected by the new action

are defined dynamically based on both the conditional probabilities of the same

nodes before the action happened, and the weight we give to the new action in the

assessment of these knowledge nodes.

Suppose, for instance, that in the time slice t-1, before the action Clickx happened,

the node Fx and FKhad the conditional probability tables shown in Figure 4.8 slice

t-1. The conditional probabilities for Fx and FK after the action Clickx are shown

in Figure 4.8 slice t. Where the following is given:

37

• pi is the probability of Fx being Mastered when Fz is Mastered in slice t-

1.

• p2 is the probability of Fx being Mastered when Fz is Unmastered in slice

t-1.

• p3 is the probability of FK being Mastered in slice t-1.

• 0.1 is the weight that the Clickx action brings to the assessment of the

related knowledge nodes.

Figure 4.9 shows how this process works when the network in Figure 4.7 is updated with

the action node Click8 after the student clicks on hex 8 while the partner is on hex 3 (the

state of the game after this action is shown in Figure 4.10). The probabilities in the new

network reflect the fact that the correct student action increased the model prediction that

the student knows the factorization of 8 and 3, and of 8's children.

Slice t-1

FK

P(FK= Mastered) = p3

Fz Fx -Mastered

Mastered P i
Unmastered P2

Slice t

Clickx Fz I Fx=Mastered

Correct Mastered Pi+0.1 Correct
Unmastered P2+0.1

Wrong Mastered Pi-0.1 Wrong
Unmastered P2-0.1

Clickx 1 F^Mastered
Correct P3+0.1
Wrong P3-0.1

Figure 4.8: The CPTs for nodes Fx and FK before and after the action Clickx occurred

38

Yes:0.5

Corrects
Wrong:0

Yes
No: 0.486666

Yes:0.5
No: 0.5

Yes:0.5
No: 0.5

Yes:0.5
No: 0.5

Yes:0.5
No: 0.5

Figure 4.9: New time slice for the model in Figure 4.7, after a click action on 8 at time t.

Figure 4.10: Game state after the player moves to 8 while the partner is on 3.

Student used the Magnifying glass on a number:

Figure 4.11 shows a general example of how the action of using the magnifying glass on

number Z in slice t-1 is modeled in the corresponding new time slice t:

• A l l the knowledge nodes in slice t-1 are maintained in slice t. A l l the knowledge

nodes not directly influenced by the new action maintain the posterior and

conditional probabilities they had in the previous slice.

39

• Evidence nodes from the previous slice are removed. However, the updated

conditional probabilities of knowledge nodes that are affected by this evidence

node are saved over to the new time slice, as we described in Figure 4.4.

• A node Magz is added to the network to represent the activation of the magnifying

glass on Z.

• Node Magz is linked to the factorization knowledge node Fz.

• A link is also added from KFT to Fz. This, along with the link from Magz to Fz

represents assumption 3 in Section 4.2.2: the gain from seeing the factor tree of a

number depends on how much the student knows about the factor tree

representation.

• The conditional probabilities of the knowledge nodes affected by the new action

are defined dynamically based on both the conditional probabilities of the same

nodes before the action happened, and the weight we give to the new action in the

assessment of these knowledge nodes.

Figure 4.11 shows the conditional probabilities of nodes Fz Fx, and Fy before and after

the action Magz • The CPTs before the action Magz are illustrated in slice t-1, and the

CPTs after the action Magz are illustrated in slice t. 0.1 is the weight that the Magz action

brings to the assessment of the related knowledge nodes, given P(KFT=Yes) = 1. The new

C P T for Fz encodes assumption 3 in Section 4.2.2 (a student's knowledge of how to

factorize number Z l ikely increases after a Magz action, i f the student knows how to

interpret the factor tree representation).

40

Slice t-1

\Fz= Mastered) = ps

KFT

Fz Fx=Mastered

Mastered Pi
Unmastered P2

Fz
Fy=Mastered

Mastered P3

Unmastered P4

Slice t

(^MagT^

MAGZ
KFT J Fz=Mastered

Yes Yes Ps+O.l Yes
No P5

Fz
J Fx=Mastered

Mastered Pi
Unmastered P2

Fz Fy=Mastered

Mastered P3

Unmastered P4

Figure 4.11: CPTs for nodes Fz, Fx, Fy before and after Magz action occurred.

Figure 4.12 shows the network with posterior probabilities for each node after the student

activates the magnifying glass on number 42 in the mountain shown in Figure 4.10. This

action is represented by node MAG42 in Figure 4.12. The previous action of the student

was Clicks, as shown in Figure 4.9, and the prior probabilities of the root nodes in Figure

4.12 are their posterior probabilities in Figure 4.9. Since the probability of the node KFT

is 0.5, the action of MAG42 caused only a minor increase of 0.05 to the probability of

node F42. Figure 4.12 also shows that after removing the evidence node Clicks, the node

F§ still has a probability of 0.6, which is its posterior probability in Figure 4.9. This

shows that our approach saved the information from the previous time slice.

41

Figure 4.12: Changes in the short-term student model in Figure 4.9 after MAG42 action.

After the student activates the magnifying glass on 42, the P D A shows the first level of

the factor tree of this number, as shown in Figure 3.5 (a).

A similar mechanism is used to model students' further expansions of the factor tree,

shown in Figure 3.5.

Student clicks to move to the same number she used the Magnifying glass on in the

previous time slice:

Based on assumption 4 in Section 4.2.2, after a student performs this action, the model is

changed as follows (see Figure 4.13, slice t):

• A new time slice is created to represent the action of clicking Z when the partner

is on H .

• A link is added from Clickz to KFT to represent the influence that a move

following usage of the magnifying glass has on the assessment of the KFT node.

42

Slice t-1

KFT

P((KFT= KES) = pi)

Slice t

Clickz KFT
Correct Pi+0.1
Wrong Pi-0.1

Figure 4.13: CPTs for the node KFT if the student performs correct Clickz action right
after she uses the magnifying glass on number Z.

The CPTs for node KFT in time slice t-1 and t are shown in Figure 4.13. Depending on

whether Clickz is a correct action or not, the conditional probability of the node KFT

would be increased ordecreased by 0.1.

Figure 4.14 shows how the model in Figure 4.12 changes when the student clicks to

move to 42 after she used the magnifying glass on it, and the move is correct (the partner

is currently on 19, as shown in Figure 4.15).

Yes:0.5 CT~~
No: 0.5

Correct: 1
Wrong:0

Yes:0.6
No: 0.4

Figure 4.14: Changes in the model of figure 4.12 after the student clicks 42 (when the
partner is on 19).

43

Figure 4.15: Game state after the player moves to 42 while the partner is on 19.

In Figure 4.14, the probability of the node KFT is increased by 0.1 after a correct click

action on 42. At the same time, the probabilities of the nodes F42, F19 and their child

nodes are also increased.

4.2.5 Discussion of the thesis approach to dynamically update the student model

As illustrated in the previous section, the approach applied in the thesis can efficiently

model the change of student knowledge over time.

However, changing the CPTs of nodes affected by evidence nodes has its own

drawbacks. The first drawback is that this approach is based on the assumption that a

student's knowledge does not decay over time (i.e., the student does not forget). By not

having CPTs explicitly representing dependencies over time, we save computation time,

but lose flexibility in defining different relations between time slices (i.e., a student's

forgetting). The second drawback is that changing the conditional probabilities does

sometimes validate the first assumption that we want to encode in the network. Let us see

an example here: suppose at the very beginning, a node Fx has the following conditional

probabilities, as shown in Figure 4.16.

44

Fx

Fy Fz Fx

Mastered Mastered P i Mastered
Unmastered P2

Unmastered Mastered P2 Unmastered
Unmastered P3

Figure 4.16: CPT for node Fx

Suppose the student performed a sequence of actions on the hex labeled with X , and all

these actions provide negative evidence of the student's knowledge of X (we refer to

these actions as wrong actions, and we assume that the weight such actions brings to the

node's assessment is -0.1). In our approach, the CPT for F x would change in the follwing

way:

• The first wrong action decreased the 4 conditional probabilities to be pi-0.1, p2-

0.1, p2-0.1 and p3-0.1, respectively (if any of them are less than 0.1, then the

corresponding conditional probability assigned would be 0.1).

• After the second wrong action, the 4 conditional probabilities would be pl-0.2,

p2-0.2, p2-0.2, and p3-0.2, respectively (if any of them are less than 0.1, then the

corresponding probability would be assigned would be 0.1).

• And so on.

If there are lots of such actions in the sequence, then there is the possibility that the

conditional probabilities of Fx under any conditioning case are 0.1, including the case
uFy=Mastered, Fz=Mastered\ It means that even if both nodes Fy and Fz are Mastered,

the probability of the node Fx being Mastered would be 0.1. This conditional probability

disobeys our assumption 1 in that mastery of the factorization of the multiple makes it

unlikely that the students knows the factorizations of its non-prime factors. However,

because of the many wrong actions the student performed on the number, operationally,

the model's low belief in the number being mastered makes sense.

The same problem exists when the student performs a sequence of correct actions on the

number X . If the sequence is long enough, the conditional probability for X will reach 0.9

(because no probability is allowed to grow higher than this number) for any combinations

of parent values. This means that even if both nodes Fy and Fz are Unmastered, the

45

probability of the node Fx being Mastered would be 0.9. However, this is not as much of

a problem as in the previous case because this configuration is not inconsistent with

assumption 1. Not knowing the factorization of multiples does not necessarily mean that

the student cannot factorize their non-prime factors. Thus, it makes sense that, because of

the many correct actions the student performed on the factor X , the model's belief in the

number being Mastered is quite high, independently from the probabilities of its parent

factorization nodes.

A third drawback of our approach is that as the C P T of a chi ld node changes until it has

two or more equal conditional probabilities (the extreme examples are the two listed

above, when all the four conditional probabilities are the same), it loses the ability to

model how changes of the parent nodes affect the probability of their factors. For

example, in the second case listed above (the conditional probabilities are all the same),

no matter how the parent nodes change, the probability of the chi ld node is 0.9. However,

we argue that this is not a serious problem in our game environment because students do

not usually move to a particular number more than two times. A lso , a C P T in our model

only contains equal conditional probabilities after a student performs a minimum of three

consecutive actions that provide the same kind of evidence (positive vs. negative) on a

particular number.

4.3 Long-term student model

The long-term student model can be thought of as a l ink which connects the short-term

student models for different mountains. After a student finishes cl imbing a mountain, the

final assessment of knowledge nodes in the corresponding short-term student model is

stored in the long-term student model. When a new mountain is launched, the assessment

from the long-term student model is used to f i l l the prior probabilities of the short-term

student model for that mountain.

4.3.1 High level structure of the long term model

The long-term model is a one-dimensional array. At any given time, each element in it

contains the posterior probability for a factorization node Fx, from the short-term model

related to the last mountain the student completed.

46

Short-term model Long-term model

P=PI;
(Zth element)

P= P<;
(Jth element)

P=P2i
(Xth element)

P= Ps;
(Kth element)

p=Pa;
(Yth element)

P=Pe;
(Sth element)

Figure 4.17: Part of the short-term model after a student finished climbing the
corresponding mountain (left). And part of the long-term model derived from it (right).

Figure 4.17 shows on the left an example of an updated short-term model after a student

finishes climbing the relevant mountain. The right part of Figure 4.17 illustrates the

information stored in the long-term model. Each block is an element in the long-term

model's array, and it stores the posterior probability corresponding to a knowledge node

in the short-term model in Figure 4.17. The information for a node Fz is stored in the Zth

element in the array.

Long-term model,.,--'

P=PI ;
(Zth element)

P= P2;
(Xth element)

P= P4J

(Jth element)
P= Ps-.
(Kth element)

P= P?;

(Hth element)

P= PB;
(Yth element)''

P= P«;
(Tth element)"'

- S h o r t - t e r m j n o d e l

Figure 4.18: Part of the long-term model (left), part of a new short-term model before a
student climbs the corresponding mountain (right).

47

When a new mountain is launched in the game, the knowledge in the long- term model is

filled into the short-term model for that mountain as prior knowledge assessment for the

student.

Suppose the new mountain short-term model is the one shown in the right part of Figure

4.18.

Root factorization nodes in the new short-term model (like Fx and Fs) simply get their

priors set to their current probabilities in the long-term model.

The process is more complex for factorization nodes that become non-root nodes in the

new short-term model. Consider, for instance, node Fy'm. Figure 4.18. We cannot simply

transfer the current value of Fy'm the long-term model to this node. However, if we just

set Fy's CPT to the basic CPT that models the relations between knowledge nodes, any

evidence we had previously accumulated in the posterior probability of FY in the long-

term model may be lost. Instead, we proceed as shown in Figure 4.19.

The left part of Figure 4.19 shows part of model in Figure 4.18 before it is updated with

probabilities from the long-term model. The right part of Figure 4.19 shows the model

after the update, where the following holds:

1. p i is the probability of FY being Mastered, given FT is Mastered.

2. p2 is the probability of Fy being Mastered, given FT is Unmastered.

3. p3 is the posterior probability of Fy stored in the long term model. (See Figure

4.17)

48

Before inclusion of prior
knowledge from long-term model

Fy

Fj 1 Fy
Mastered P i
Unmastered P2

After inclusion of prior
knowledge from long^erm model

Y(FYDrior= Mastered) = p3

Fya Ff J Fy
Mastered Mastered 0.99 Mastered

Unmastered 0.91
Unmastered Mastered 0.5 Unmastered

Unmastered 0.01

Figure 4.19: The CPT for the node Fy in the new model

As shown in Figure 4.19, we add a new node Fyprior'm the new short-term model, which

has a probability of p3, which is the probability for node Fy stored in the long-term

student model. We let this node to be one of the parent nodes to the node Fy'm the new

short-term model, as shown in the right part of figure 4.19. By defining the CPT of node

F^in the way shown in Figure 4.19, we give a high weight to the posterior probability of

it in the long-term model. This is done to save the information on Fy accumulated in the

long-term model as much as possible.

4.3.2 The version of the long-term model in the study

Due to time restrictions we did not have the time to implement the complete version of

the long-term model we described above before running the empirical study we describe

in the next chapter. Instead, a simplified version was implemented for the study.

In the simplified version, the long-term model has the same structure, and it is updated in

the same way as we described in the previous section. When a new mountain is launched

in the game, the prior probabilities of root nodes in the new model are set to the posterior

probabilities stored in the long-term model. However in this version, we do not use the

information from the long-term model to influence the conditional probabilities of child

factor nodes, as described in the previous section. Thus, we may lose information

49

accumulated during previous interactions when we build a new short-term model. We

discuss further the limitations of the model used in the study in Chapter 5.

4.4 Implementation

The Student Model is written in Visual C++ and the Bayesian Networks are built using

the MSBNx toolkit (http://research.microsoft.com/adapt/MSBNx/, [25]). MSBNx

provides COM 5-based A P I 6 that allows independent Visual C++ applications to use all

the functionalities available in the package to build and update Bayesian networks. Our

VC++ code uses this API to load the initial static model for a new mountain, add/remove

time slices from the model, and update them given the available evidence.

5 COM: The Component Object Model (COM) is a software architecture that allows applications to be
built from binary software components. COM is the underlying architecture that forms the foundation for
higher-level software services.
6 API: Application Programming Interface

50

http://research.microsoft.com/adapt/MSBNx/

Chapter 5

The Prime Climb Study

This chapter presents a study with Prime Climb, designed to test the effectiveness of the

pedagogical agent and the student model described in the previous chapters. It was

conducted in June 2002. The study provides initial support for the effectiveness of the

developed intelligent agent in promoting students' learning with Prime Climb.

5.1 Study goal

The goal of the study is to show that an intelligent pedagogical agent that provides hints

to students enhance students learning in the educational game Prime Climb. Also, we

want to determine whether the student model we developed made reasonable

assessments.

5.2 Participants

The participants of the study were 20 students from False Creek Elementary School in

Vancouver. A l l participants were from grade 7, aged 12 to 13. A l l the participants

covered number factorization in class - a necessary condition for the study because Prime

Climb does not provide any initial instruction on number factorization. Prior to the the

study, consent forms were given to the subjects to get parental consents for their

participation.

5.3 Experimental design

The participants in the study were divided into two groups-experimental group and

control group. In the experimental group, students played with the complete version of

Prime Climb, including the student model and the pedagogical agent. In the control

group, students played with the original version of the game. This had no agent, but it did

51

have the probabilistic model. The idea behind using two groups is to compare students'

behaviors and learning gains in the different game environments, thus helping us achieve

an understanding of whether our model adequately works, whether the agent's hints are

helpful, and whether students learn more with the complete version of the game.

The study took place in a classroom in False Creek Elementary School in Vancouver.

The study consisted of 10 sessions at 30 minutes each. Two subjects participated in each

session in parallel.

Each subject had as a partner in the game a researcher (a Master's student from the

department of computer science at the University of British Columbia), instead of another

student. We chose this setting because different students may have different playing

patterns and initial factorization knowledge, which could act as a possible confounding

variable in the experiment. To minimize the confounding effect from different

researchers, we assigned two researchers in total to play with the kids in the two parallel

games that were set up, in each session. Both researchers were instructed to act as

experienced players. We also arranged things so that each of the two researchers played

with half of the control group and half of the experimental group. At the same time, we

had an observer watch the subject play in each session.

The procedure of the study is as follows:

• Written pre-test A day before the first day of the study, a pretest was given to the

study participants. The questions in the pre-test (see appendix A) mainly target

three aspects: (1) Whether students liked to play computer games. (2) Whether

students liked to solve math problems alone or with others' help. (3) Test the

student's initial knowledge level by using 7 multiple-choice questions related to

find common factors between two numbers.

• Orientation Before students were allowed to play the game, a researcher gave

them a 5-minute introduction to the game in front of the computer screen. The

game rules were briefly described to the students, and a short demo showing how

to play the game was given, to make sure that students understood what the

researcher just described. The researcher also explained all the tools available in

the interface.

52

• Game play Each game play lasted 20 minutes, with one student and one

researcher playing with each other.

• Written post-test Since the two groups used different versions of the game, we

gave two kinds of post-tests to the two groups accordingly. For the experimental

group, the post-test contains additional questions asking about their reactions to

the pedagogical agent. Both of the post-tests (see Appendix B and Appendix C)

included the same math questions that appeared in the pre-test, but listed in

different order.

5.4 Data collection Techniques

Each of the two games in a session was observed by a researcher. An observation sheet

(see Appendix D) was filled out by the observer for each game. There were also two

video cameras that videotaped the two students in each session (see Figure 5.1 for the

study setting). In addition, log files were produced during game playing to collect more

detailed information on the interaction. Table 5.1 shows the key events captured by the

log files.

Due to software problems, the game crashed very often during the first day of the study,

thus we did not include the 4 subjects from that day. In the second day, the log files for

two students were lost. Therefore, at the end of the study, there were 14 subjects for

whom we had complete data (pre-test, post-test, log files), where 6 subjects were from

the control group and 8 subjects were from the experimental group. Also, there were 16

subjects for which we had the pre-test and post-test only (7 in the control group and 9 in

the experimental group).

53

®
L1

L3

Figure 5.1: Study set-up

Table 5.1: Events captured in the log files.

INTERACTION EVENT' DESCRIPTION OF THE RECORDED
INFORMATION

Student moving The hex's number which the student clicked, and
the partner's number at that same time.

Student using magnifying
glass .

The number the student used the magnifying
glass on (either a number on the mountain
or a number expanded in the factor tree showed in
the PDA screen).

Student using the help dialog
to ask questions.

Which question the student asked through the help
dialog tool.

Agent giving help What kind of hint the agent gave to the student.

5.5 Results and Discussion

5.5.1 Effects of the intelligent pedagogical agent on learning

The first thing that we want to evaluate is whether the Prime Climb game with the student

model and the pedagogical agent has a positive pedagogical effect on learning. Thus, we

started our analysis by comparing learning gains in the two groups, where "gain" is

defined as the difference between a student's post-test and pre-test score. The test scores

come from the math questions in the pre and post-tests. These are multiple-choice

Legend

laptop

Rn) researcher

sn j subject

observer

camera

Each action event has a time stamp with it.

54

questions with the format: " X and Y share as common factors". We scored these as

follows:

• For each correct factor chosen, we gave 2 points.

• For each wrong factor chosen, we subtracted 1 point.

• If nothing was chosen, then the score was 0.

The maximum total score for both the pre-test and post-test is 18.

As Table 5.2 shows, the experimental group gained significantly (p=0.041)8 more than

students from the control group. Here, we used a one-tailed t-test because we started with

the assumption that students from the experimental group should gain more than students

from the control group.

Table 5.2: Comparison of learning gain between two groups
Number of
subjects

Mean of the
learning gain

Std. Deviation t p(l-tailed)

Experimental
Group 9 2.00 5.000

1.883 0.041
Control Group 7 -2.14 3.338

1.883 0.041

Table 5.2 also shows that students in the control group actually performed worse in the

post-test, on average. This indicates that students, without the pedagogical agent's help,

often get confused in the game environment. They may develop their own ways to play

the game well, but have not learned much in math, or even became worse in their

understanding of number factorization. However, students in the experimental group

actually showed an improvement in their factorization knowledge after playing the game.

However, before attributing these results to the presence vs. absence of the intelligent

agent, we need to rule out the effect of possible confounding variables. Thus, we

performed several tests on those factors that may act as confounding variables in the

study.

8 In our data analysis, we used two-tailed t-test as default. Here we used 1-tailed t-test, for the reason stated
above.

55

One problem in the study is that the improved version of the game we used in the second

day of the study was not stable enough for the grade 7 kids' wild playing-clicking

anywhere, at any time, in rapid succession. Several crashes happened during the study.

Thus, we need to see if these crashes could have interfered with student learning in the

two groups. We ran a T-test to see if there is any statistically significant difference

between the number of crashes in the two groups. The results9 are presented in Table 5.3.

As the table shows, the experimental group had an average 1.17 more crashes than the

control group. This result rules out the possibility that the game crashes could have

caused the worse performance of the control group.

Table 5.3: Comparison of crashes
Number of
Subjects

Mean of the
crashes

Std. Deviation t P(2-
tailed)

Experimental
Group 8 1.50 1.604

1.929 0.086

Control Group 6 .33 .516 ,

Also, one may argue that different learning gains may come from students' different

number factorization knowledge before playing the game. We performed a T-test on the

pre-test scores of the two groups (see Table 5.4). As Table 5.4 shows, students from the

experimental group scored less than the students in the control group, but this difference

is not significant (p = .517). Thus, we can rule out the possibility that initial knowledge

plays a significant role in the performance of the two groups.

Table 5.4: Comparison of the pre-test scores
Number of
Subjects

Mean of the
Pretest scores

Std. Deviation t
P(2-

tailed)

Experimental
Group

9 12.33 4.472 -0.917 0.375
Control Group 1 14.43 4.614

It is also worthy to see if there is any difference in the number of mountains the two

groups climbed. From Table 5.5, we can see that the experimental group climbed slightly

9 Note that in Table 5.3 we have only 14 students instead of the 16 students we discussed in Table 5.2. This
is because the log files of two students were lost in the second day of the study, and therefore we could not
determine the number of crashes these students experienced.

56

more mountains than the control group, but again the difference is not statistically

significant (p = 0.567). This indicates that the higher learning gains of the experimental

group are not due to the more practice (in terms of climbing more mountains) they got

from the game.

Table 5.5: Comparison of the mountains climbed

Number of
Subjects

Mean of the
mountains
climbed

Std. Deviation t
p(2-

tailed)

Experimental
Group 8 6.50 2.070

0.588 0.567
Control Group 6 5.83 2.137

0.588 0.567

To summarize, the results we presented on group differences over factors that could have

been alternative explanations for the better performance of the experimental group allow

us to rule out these variables as confounding variables.

The next issue we want to explore is how does the agent influences student learning. To

answer this question, we analyzed in more detail the students' log files, as we illustrate in

the following session.

5.5.2 Comparison of students game playing in the two groups

5.5.2.1 Wrong moves during game play

We first tried to verify whether the agent influenced the number of errors that students

made during the game. We considered 4 statistics related to errors:

• Total errors - number of total errors a student made during the play.

• Repeated errors-wrong moves students made which are the same as a previous

wrong move. For instance, suppose a student clicked number k X while the partner

was on X (X>2) at time ti . Then at time tn the student clicked k X again while the

partner was on X . We call the error the student made at time tn a repeated error.

• Consecutive moves-the number of correct moves between two wrong moves.

• Consecutive falls-the number of consecutive falls (not including repeated errors).

57

Table 5.6 through Table 5.9 show the results of performing a T-test on the above error-

related statistics. Table 5.7 shows that students from the control group made significantly

more repeated errors than those from the experimental group (p=0.018). Though we have

not found a significant difference in total errors (p= 0.190) and consecutive falls

(p=0.898), and the difference in consecutive moves is significant at the 0.1 level only, we

have found a positive trend: students in the experimental group made less total errors, did

more consecutive moves and made less consecutive falls.

Table 5.6: Statistics of total errors
Number of
Subjects

Mean
errors

Std. Deviation t P(2-tailed)

Experimental
Group 8 11.38 5.630

-1.390 0.190
Control Group 6 15.00 3.406

-1.390 0.190

Table 5.7: Statistics of repeated errors

Number of
Subjects

Mean
Repeated
errors

Std. Deviation t P(2-tailed)

Experimental
Group 8 .88 .991 -3.243 0.018
Control Group 6 4.67 2.733

-3.243 0.018

Table 5.8: Statistics of consecutive moves

Number of
Subjects

Mean
Consecutive
moves

Std. Deviation t P(2-tailed)

Experimental
Group 8 6.4056 1.51841 1.847 0.090
Control Group 6 5.0917 .96723

1.847 0.090

Table 5.9: Statistics o : consecutive falls
Number
of
Subjects

Mean
Consecutive
falls

Std. Deviation t P(2-tailed)

Experimental
Group 8 1.38 1.506

-0.131 0.898
Control Group 6 1.50 2.074

-0.131 0.898

58

These results suggest that one of the effects of the pedagogical agent's interventions is to

help students learn better from their errors. On the contrary, students in the control group

seemed to not know why they fell, and it was often hard for them to learn from their

previous falls without the agent's hints, as it is shown by the higher number of repeated

errors they made.

5.5.2.2 Correlations between learning and the agent's interventions

To further verify that the better performance of the experimental group is actually due to

the agent's interventions during the game, we checked the correlation between the

learning gain and the number of agent interventions for each student in the experimental

group. The Pearson Correlation coefficient of this is 0.548, which is significant (p = .08)

at 0.1 level 1 0 . In the correlation, we only considered unsolicited agent interventions

because during the study no student asked the agent for help through the help dialog box.

This behavior is consistent with the finding that many students often do not seek help

even if they need it [3] [16], and reinforced the need to have an agent that can provide

unsolicited help.

Though this correlation coefficient indicates that there is some kind of correlation

between the agent interventions and student gain, it does not say which kind of hints are

more helpful. In order to find out more about the utility of specific hints, we ran several

correlation tests between learning gain and each type of hint that the agent provides. A l l

the possible hints that the agent can provide are discussed in Chapter 3. The hints we

analyze here are summarized in Table 5.10.

We found out that the hint2_l ("you can not click on a number which shares common

factors with your partner's number") and hint2_3 ("do you know x and y share z as a

common factor") had the highest correlation with learning gain (see Table 5.11 and Table

5.12). These two hints are both about the game rule that tells the student that a number

1 0 Since we found out that students never followed the agent's hints related to using the magnifying glass,
this kind of interventions were excluded from the correlation test. The correlation also did not include
hint3_l ("great, do you know why you are correct this time?"), because the agent did not have a chance to
provide this hint during the study. We used the 1-tailed significant value, since we started with the
assumption that there is a positive correlation between students' gain and the agent's interventions.

59

which shares common factors with the partner's number cannot be chosen. The hint l_ l

has less effect (see Table 5.13 and Table 5.14) probably due to its overly general

statement, while the low correlations of hintl_3 could be explained by the fact that it was

given very few times. The percentage of each hint over the total number of hints can be

seen from Table 5.15. The higher effect of hints focusing on common factors could be

due to the fact that, although the subjects of the study had already been exposed to

number factorization in class, "common factor" was still a new concept for some of them

(During the orientation sessions of the study, we found that there were students who did

not understand the term "common factor" before they were given some simple examples

to explain the term). Thus, it could be that when the agent told a student that a fall was

caused by choosing a number which shared common factors with the partner's number,

this would provide a vivid example to those who had knowledge of factorization, but

were not very familiar with the term "common factor", thus helping them learn the

concept.

Hintl_l "think about how to factorize the number you clicked on"

Hintl_3 "it can be factorized like this: X 1 * X 2 * . . . * X n n "

Hint2_l "you can not click on a number which shares common factors with your
partner's number"

Hint2_3 "do you know that x and y share z as a common factor"

Table 5.11: Correlation between hint2_l and learning gain

Hint2_l &
Learning

Gain

Pearson correlation p(l-tailed) Hint2_l &
Learning

Gain .666 .035

Table 5.12: Correlation between hint2_3 and learning g

Hint2_3 &
Learning

Gain

Pearson correlation p(l-tailed) Hint2_3 &
Learning

Gain .642 .043

gain

1 1 Suppose the prime factorization of the number student clicked on is X1*X2*.. .Xn.

60

Table 5.13: Correlation between hint

Hintl_l&
Learning

Gain

Pearson correlation p(l-tailed) Hintl_l&
Learning

Gain 0.091 0.430

1 and learning gain

Table 5.14 : Correlation between hintl_3 and learning gain

Hintl_3 &
Learning

Gain

Pearson correlation p(l-tailed) Hintl_3 &
Learning

Gain 0.134 0.375

Table 5.15: he percentage of each type of hint given by the agent

HintlJ Hintl_3 Hint2_l Hint2_3

Percentage 22.7% 9.1% 22.7% 22.7%

5.5.3 Accuracy of the student model

One of the study goals is to test the accuracy of the student model, that is to test if the

student model can correctly assess the knowledge status of students from their

performance in the game. To test the model accuracy, we counted how many times the

student model makes a correct prediction of the student's knowledge by counting how

many of the knowledge nodes that the model assumed to be known or unknown at the end

of the game correspond to the actual performance of the student in the post-test [55].

From post-test performance, we determined what number factorizations the student

actually mastered (we denote each number factorization as a "rule" from now on) by

using the procedure described below. A l l the test questions are multiple-choice questions

of the form " X and Y share as common factors", and each number appears in 1

question only. Thus:

If the student chose all and only the common factors between X and Y (correct

answer), then both the factorization rules for X and Y would be marked as

Mastered.

61

• If the student did not choose any of the correct common factors for X and Y

(incorrect answer), then the factorization rules for both X and Y would be marked

as Unmastered.

• If the student chose only some of the correct common factors (partially correct

answer) their mastery of the factorization rules for both X and Y would be marked

as Unknown.

Using this approach, we marked 122 rules as Mastered and 20 rules as Unmastered in all

the students' post-tests (there are 14 subjects for which we had both the post-test and

final probabilities from the log files. Each student met 12 rules in the test. Therefore,

there are 12*14 = 168 rules in total).

The probabilities in the final long-term model are labeled as Mastered or Unmastered

based on the thresholds we used in the game. During the actual study, the agent used a

probability of 0.6 to consider a factorization node as known, and 0.4 to consider it as

unknown. We call these two thresholds 7* and Tu, respectively. If the probability of a

factorization rule in the long-term model is higher than 7* , we denote it as Mastered; if

the probability is lower than Tu, we denote it as Unmastered.

Among the 122 Mastered rules that are marked as mastered from the post-test, the model

predicted 47 rules as Mastered. The accuracy is 39%. Among the 20 Unmastered rules,

the model predicted 1 rule as Unmastered. The accuracy is 5%. However, we should take

into account the fact that for 50 of the Mastered rules, and 7 of the Unmastered rules, the

model did not get any evidence from the interaction. Thus, the final assessment of these

rules is mainly based on the 0.5 priors we assigned to all the rules at the beginning of

each interaction. If we eliminate these rules from the analysis, the percentage of rules

correctly assessed as Mastered by the model becomes 65%, and the percentage of

correctly predicted Unmastered rules becomes 7.7%. This shows that, although our

model has quite reasonable performance in assessing mastery when it gets sufficient

evidence from the interaction, it is still very inaccurate in predicting low knowledge

levels. One reason for this could be that we did not punish incorrect actions enough. A

second reason for the low accuracy of the student model is the mechanism for

62

transferring student knowledge assessments from the long-term model to the short-term

model, as we mentioned in Chapter 4, Section 4.3.2. Figure 5.2 shows an example of this.

n i

P i

4
0.9

40
0.5

Figure 5.2: Information lost for the node F4.

In this example, positive evidence for the node F4 accumulated in the long-term model so

that F4 reached a probability of 0.9. No evidence was gathered for the node F40, and its

probability is 0.5. In the new short-term model, the node F4 becomes a child node of the

node F40. However, only the root node F4Q is filled with the prior probability 0.5, the

information of F4 stored in the long-term model is lost and its starting probability in this

short-term model is 0.5 instead of 0.9. The same loss of information would happen for a

child node in which negative evidence brought the probability to a very low level in the

long-term model. Of all the nodes stored in the long-term model, 8.6% become child

nodes in later mountains. Because of the low percentage of these nodes in the long-term

model, we believe that this is not the main source of the low accuracy of the student

model. Thus, the main reason for the student model's low accuracy is likely the low

punishment that the model gives to incorrect actions.

The low accuracy of the student model did not prevent the agent from improving students

learning. This is because, some of the agent's hints (see Table 5.10, hint 2_1 and hint 2_3

) are not based on the student model, but on the simple strategy we described in Chapter

3, Section 3.2.1 (i.e., counting the number of repeated errors). As a matter of fact, these

are the only hints that have strong correlations with students learning gain (see Table 5.11

and Table 5.12). Thus, the only effect of the model's low accuracy in predicting

Unmastered rules is that the agent did not give as many hints of type hint l_ l and hint

1_3 (see Table 5.10) as it should have. Thus, increasing the model accuracy will likely

further improve the pedagogical agent's effectiveness.

63

5.5.5 Discussion

The results presented in this chapter show that after embedding an intelligent pedagogical

agent into the Prime Climb game, students gained significantly more from the game than

those students who played with the basic version of it. This is quite exciting because it

supports our assumption - a pedagogical agent helps students learn more in the

educational game. However, the student model still needs to be refined in order to obtain

more accurate assessments.

64

Chapter 6
Conclusions and Future Work

This thesis presented research on using an intelligent pedagogical agent in the Prime

Climb educational game to enhance student learning. The agent's actions are based on

both some simple strategy and the assessments from a probabilistic student model. This

work addresses a big problem of educational games: their inability to help individual

students learn. The student model here, assesses the student's knowledge evolution

during the game. The intelligent pedagogical agent provides students with individualized

help to facilitate their learning. An empirical study demonstrates the effectiveness of our

pedagogical agent in enhancing student learning.

6.1 Satisfaction of thesis goals

6.1.1 The intelligent pedagogical agent

The main goal of this thesis is to show the effectiveness of the pedagogical agent in

enhancing student learning in the game.

The empirical results we present in Chapter 5, provide strong support for our approach.

Those students who played with the game which has the pedagogical agent, learned

statistically significantly more than those students who played with a basic version of the

game which does not have an agent. Also, the fact that none of our subjects used the help

dialog box to ask the agent for help supports our idea that it is important to have a

pedagogical agent who can give unsolicited hints to help students learn.

6.1.2 The student model

The second goal of this thesis is to build a student model for the game. The student model

is based on Bayesian Networks. To design the model, we consulted with several

65

elementary school math teachers in order to reflect the proper knowledge structure of the

number factorization domain, which is the targeted domain knowledge of our game.

Basing the student model on Bayesian Networks provided us with a sound approach for

handling the large amount of uncertainty involved in assessing student knowledge from

the interaction with the game.

To reduce the computational cost of updating a large B N at run-time, we have designed

short-term student models and a long-term student model. Each short-term student model

contains a static part, which represents the relevant knowledge for a student to climb a

mountain in the game. The short-term student model also incorporates a student's game

actions to update its belief of the corresponding knowledge nodes in the model. Due to

computational cost issues, we did not apply the traditional D B N (Dynamic Bayesian

Networks) approach to explicitly model the temporal evolution of the student's

knowledge. Instead, we designed an approach that models this evolution as changes in

the conditional probabilities of the networks that represent different time steps in the

interaction.

The long-term student model stores updated assessments from each short-term model,

after a student finishes climbing a mountain. Then, it fills in the prior knowledge for a

new short-term model before the corresponding new mountain is launched in the game.

The implemented long-term model sometimes loses information due to the reason we

described in Chapter 4.

6.2 Future work

6.2.1 Implement the high level design of the long-term model

As we described in Chapter 4, the high level design of the long-term model handles the

problem of possible information loss. Future work would deal with the implementation of

the design.

6.2.2 Refine CPTs in the short-term student models

Currently, the numbers and weights in the CPTs in our short-term student model are

assigned using our subjective estimates. We need to refine these to get more accurate

66

assessments from the model. One way to refine the CPTs is to run more empirical

studies. By setting different CPTs for each study, and comparing their accuracies

afterwards, we can get a more precise design of the CPTs. However, such an approach is

not practical in that organizing such studies is not an easy task (it involves negotiating

with elementary school teachers and students, who are usually quite busy in their own

curriculum requirements). One other way to refine the CPTs is to run "simulated

students". Since we have the log files of real students in the study, by following these

students' game actions with different CPTs settings, we can generate better correlations

between the final probabilities on knowledge nodes and students' post-test scores.

6.2.3 Compare an "intelligent agent" with a "silly agent"

An interesting study that could be conducted is to have two versions of the game. One

version of the game has an agent, who provides help purely based on the student model.

The other version of the game has a "silly agent" that provides hints at random or by

following very simple strategies (i.e. always providing a hint when the student falls). By

comparing these two versions of the game, the effectiveness of the student model can be

further assessed.

6.2.4 Student play with the agent

An interesting future work would be to devise a peer agent, who can play as the partner

for the student. This will give the agent more opportunity to interact with the student and

guide their learning. For instance, the agent can lead the student to move to some

numbers the student has weak knowledge about. This will also be helpful in estimating

the student model's accuracy.

6.5 Conclusion

Educational games tend to be very attractive for the majority of students. Some students

are interested in beating the game, some are interested in the fancy multimedia effect,

some are interested in the challenge to use their knowledge to fulfill the game's goal, but

not all of them can learn from playing. This thesis work is a first step to insert an

67

intelligent animated pedagogical agent into an educational game to help students solve

questions, and to trigger their learning.

68

Reference:

[1] J. Ainley, "Playing games and real mathematics", in Pimm, D. (ed.),

Mathematics, Teachers and Children, Hodder and Stoughton, London, p. 239-

248, 1988.

[2] P. L. Albacete, and K. VanLehn, (2000). "The Conceptual Helper: An

intelligent tutoring system for teaching fundamental physics concepts".

Intelligent Tutoring Systems: 5th International Conference, Montreal, Canada.

Gauthier, Frasson, VanLehn (eds), Springer (Lecture Notes in Computer

Science, Vol . 1839), pp. 564-573.

[3] V . Aleven, and K. R. Koedinger, (2000). "Limitations of Student Control: Do

Student Know when they need help?", In G. Gauthier, C. Frasson, and K.

VanLehn (Eds.), Proceedings of the 5th International Conference on Intelligent

Tutoring Systems, ITS 2000 (pp. 292-303). Berlin: Springer Verlag.

[4] J. Beck, M . Stern, and B. P. Woolf, "Using the Student Model to Control

Problem Difficulty", In Anthony Jameson, Cecile Paris, and Carlo Tasso (Eds.)

User Modeling: Proceedings of the Sixth International Conference, UM97 (pp.

277-288). Vienna, New York: Springer Wien New York, 1997.

[5] A . Bunt, and C. Conati, "Assessing Effective Exploration in Open Learning

Environments using Bayesian Networks." In S. A . Cerri, G. Gouarderes and F.

Paraguacu (Eds), Proceedings of ITS 2002, 6th International Conference on

Intelligent Tutoring Systems, Biarritz, France, June 4-7, 2002.

[6] R. R. Burton, and J. S. Brown, " A n investigation of computer coaching for

informal learning activities", In D. Sleeman & J. S. Brown (Eds.), Intelligent

tutoring systems (pp79-98). New York: Academic Press, 1982.

[7] R. M . Cairo, A . M . Breda, G. Castillo, and A. L. Bajuelos " A Methodology for

Developing Adaptive Educational-Game Environments", In P. De Bra, P.

69

Brusilovsky, and R. Conejo(Eds.): AH2002, LNCS 2347, pp90-99. Springer-

Verlag Berlin Heidelberg 2002.

[8] E. Charniak, "Bayesian Networks without Tears", in AI magazine, 1991.

[9] C. Conati, and J. F. Lehman,(1993). "EFH-Soar: Modeling Education in Highly

Interactive Microworlds" . In Lecture Notes in Artificial Intelligence. Advances

in Artificial intelligence, AI-IA '93 Springer Verlag, Berlin.

[10] C. Conati and K. VanLehn (1996), "POLA: A student modeling framework for

Probabilistic On-Line Assessment of problem solving performance." In S.

Carberry and I. Zukerman(Eds.), Proceedings of the Fifth International

Conference on User Modeling (pp. 75-82). Boston, M A : User Modeling, Inc.

[11] C. Conati and K. Vanlehn (1996), "Probabilistic Plan Recognition for Cognitive

Apprenticeship", in G. Cottrell. (Ed.), Proceedings of the 18th Annual

Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, NJ.

[12] C. Conati, A . S. Gertner, K . VanLehn, and M . J. Druzdzel, "On-Line Student

Modeling for Coached Problem Solving Using Bayesian Networks", In

Anthony Jameson, Cecile Paris, and Carlo Tasso (Eds.) User Modeling:

Proceedings of the Sixth International Conference, UM97 (pp.231-242).

Vienna, New York: Springer Wien New York, 1997.

[13] C. Conati and K. VanLehn, "Toward Computer-Based Support of Meta-

Cognitive Skills: a Computational Framework to Coach Self-Explanation",

International Journal of Artificial Intelligence in Education (2000), 11, 389-415.

[14] C. Conati and K. Vanlehn. "Providing adaptive support to the understanding of

instructional material." In Proceedings of the international Conference on

intelligent User Interfaces, pp 41-47, Santa Fe, N M , 2001.

[15] C. Conati, A . Gertner, and K. Vanlehn, "Using Bayesian Networks to manage

Uncertainty in Student Modeling", in: Journal of User Modeling and User-

Adapted Interaction, vol. 12(4), 2002.

[16] C. Conati, and M . Klawe, "Socially Intelligent Agents in Educational Games",

in Socially Intelligent Agents -Creating Relationships with Computers and

70

Robots. Dautenhahn K. , Bond A. , Canamero D, and Edmonds B., (Eds). Kluwer

Academic Publishers, 2002.

[17] D. R. Cruickshank, and R. Teller (winter 1980). "Classroom games and

simulations", Theory into Practice, 19(1), 75-80.

[18] T. Dean, and K. Kanazawa, " A model for reasoning about persistence and

causation", Journal of Computational Intelligence, Vol.5, 142-150, 1989.

[19] R. Ganeshan, W. L. Johnson, E. Shaw and B. Wood, "Tutoring diagnostic

problem solving." Proceedings of ITS 2000, Berlin: Springer-Verlag.

[20] D. Graves, and M . Klawe, "Supporting Learners in a Remote CSCL

Environment: The Importance of Task and Communication", In the proceeding

of C S C L '97, the second international conference on computer support on

collaborative learning, Dec. 10-14, 1997, University of Toronto, Toronto,

Ontario, Canada.

[21] K. Inkpen, R. Upitis, M . Klawe, J. Lawry, A. Anderson, M . Ndunda, K.

Sedighian, S. Leroux, and D. Hsu, '"We Have Never-Forgetful Flowers In Our

Garden:' Girls' Responses To Electronic Games", Journal of Computers in

Math and Science Teaching, In Press, 1994.

[22] A . Jameson, "Numerical Uncertainty Management in User and Student

Modeling: An Overview of Systems and Issues", in User Modeling and User-

Adaptive Interactions, 5, 1996.

[23] J. Rickel and W. L . Johnson "STEVE: A Pedagogical Agent for Virtual

Reality", Proceedings of the 2nd International Conference on Autonomous

Agents (Agents'98).

[24] W. L. Johnson & J. W. Rickel "Research in Animated Pedagogical Agents:

Progress and Prospects for Training", in IUI 2001.

[25] C. M . Kadie, D. Hovel, and E. Horvitz, "MSBNx: A Component-centric Toolkit

for Modeling and Inference with Bayesian Networks", July 28, 2001, Technical

Report, MSR-TR-2001-67.

71

[26] K. Kanazawa, D. Koller and S. Russell, "Stochastic simulation algorithms for

dynamic probabilistic networks", in the proceedings of the 11th Annual

Conference on Uncertainty in AI (UAI), Montreal, Canada, 1995.

[27] M . Klawe and E. Phillips " A classroom study: Electronic games engage

children as researchers." Proceedings of Computer Support for Collaborative

Learning '95 (CSCL), Bloomington, Indiana.

[28] M . Klawe, "When Does the Use Of Computer Games And Other Interactive

Multimedia Software Help Students Learn Mathematics?", Department of

Computer Science, the University of British Columbia, 1998.

[29] K. R. Koedinger, and J. R. Anderson, "Intelligent Tutoring Goes To School in

the Big City", in the International Journal of Artificial Intelligence in Education

(1997), 8, 30-43.

[30] B. Kules, "User Modeling for Adaptive and Adaptable Software Systems",

http://www.otal.umd.edu/UUGuide/wmk/, department of Computer Science,

University of Maryland, College Park, April 19, 2000.

[31] J. Lawry, R. Upitis, M . Klawe, A . Anderson, K. Inkpen, M . Ndunda, D. Hsu, S.

Leroux, and K. Sedighian, "Exploring Common Conceptions About Boys and

Electronic Games", Journal of Computers in Math and Science Teaching, 1993.

[32] J. C. Lester, B. A . Stone and G. D. Stelling, "Lifelike Pedagogical agents for

mixed initiative problem solving in constructivist learning environments", in

User Modeling and User-Adapted Interaction 9:1-44, 1999.

[33] J. C. Lester, J. L . Voerman, S. G. Towns and C. B. Callaway, "Deictic

believability: Coordination gesture, locomotion, and speech in lifelike

pedagogical agents", Applied Artificial Intelligence 13:383-414, 1999.

[34] J. C. Lester, L . S. Zettlemoyer, J. Gregoire and W. H . Bares, "Explanatory

lifelike avatars: Performing user-designed tasks in 3d learning environments."

In Proceedings of the Third International Conference on Autonomous Agents,

1999.

72

http://www.otal.umd.edu/UUGuide/wmk/

[35] T. Malone (1981), "Toward a theory of intrinsically motivation instruction",

Cognitive Science, 4, 333-369.

[36] J. D. Martin, and K. VanLehn(1993), " O L A E : Progress toward a multi-activity,

Bayesian student modeler." In P. Brna, S. Ohlsson, & H . Pain(Eds.), Artificial

intelligence in education: Proceedings of AI-ED 93 (pp.410-417).

Charlottesville, V A : Association for the Advancement of Computing in

Education.

[37] M . Mayo, and A . Mitrovic, "Using a Probabilistic Student Model to Control

Problem Difficulty", in G. Gauthier, C. Frasson, K. Vanlehn (Eds.): ITS 2000,

LNCS 1839, pp.524-533, 2000.

[38] J. L . McGrenere "Design: Educational Electronic Multi-Player Games A

Literature Review", June 1996, Dept. Of computer Science, the University of

British Columbia.

[39] Eva Millan and J. L . Perez-de-la-cruz, " A Bayesian diagnostic Algorithm for

Student Modeling and its Evaluation", in User Modeling and User-Adapted

Interaction 12: 281-330, 2002. 2002 Kluwer Academic Publishers. Printed in

the Netherlands.

[40] R. J. Mislevy and D. H . Gitomer, "The Role of Probability-Based Inference in

an Intelligent Tutoring System", User-Mediated and User-Adapted Interaction,

5, 253-282,1996.

[41] A . Mitrovic, 1998, "Experiences in Implementing Constraint-Based Modeling

in SQL-Tutor.", Proc. ITS'98, 414-423.

[42] A . Mitrovic, and P. Suraweera (2000), "Evaluating an animated pedagogical

agent.", in G. Gauthier, C. Frasson, K. Vanlehn, (Eds.), Intelligent Tutoring

Systems: 5 t h International Conference; Proceedings of ITS 2000, 73-79, Berlin:

Springer-Verlag.

[43] S. V. Mulken, (1996), "Reasoning about the user's decoding of presentations in

an intelligent multi-media presentation system. In S. Caberry & I. Zukerman

(Eds.), Proceedings of the Fifth International Conference on User Modeling

73

(pp.67-74). Boston, M A : User Modeling, Inc. Available from

http://w ww. dfki. uni-sb.de/~mulken.

[44] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible

Inference, revised second printing, Morgan Kaufmann Publishers, Inc., San

Francisco, California, 1997.

[45] E. Phillips and M . Klawe, "Engaging Children As Collaborative Researchers: A

Classroom Study with Electronic Mathematical Games", Vancouver School

Board, Department of Computer Science, University of British Columbia, 1995.

[46] J. M . Randel, B .A. Morris, C D . Wetzel, and B. V . Whitehill, (1992). "The

effectiveness of games for educational purposes: A review of recent research."

Simulation & Gaming 23, 3, 261-276.

[47] S. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach, by

Prentice-Hall, Inc. 1995.

[48] R. Schafer, and T. Weyrath, "Assessing Temporally Variable User Properties

With Dynamic Bayesian Networks", In Anthony Jameson, Cecile Paris, and

Carlo Tasso (Eds.), User Modeling: Proceedings of the Sixth International

Conference, UM97, 377-388. Vienna, New York: Springer Wien New York.

CISM, 1997.

[49] K. Sedighian, and M . Klawe, " A n Interface Strategy for Promoting Reflective

Cognition in Children", In CHI '96, Conference Companion, ppl79-180, 1996.

[50] E. Shaw, R. Ganeshan, W. L . Johnson and D. Millar, "Building a case for agent-

assisted learning as a catalyst for curriculum reform in medical education", in

Proceedings of the Ninth International Conference on Artificial Intelligence in

Education. Amsterdam: IOS Press, 2000.

[51] V . J. Shute, and J. Psotka, (1996). "Intelligent tutoring systems: Past, Present

and Future". In D. Jonassen (Ed.), Handbook of Research on Educational

Communications and Technology: Scholastic Publications, p. 1 - 99 (double

spaced)

74

http://w
http://uni-sb.de/~mulken

[52] B. Towle, "Using student task and learning goals to drive construction of an

authoring tool for educational simulations." In G. Gauthier, C. Frasson, & K.

VanLehn(Eds.), Intelligent tutoring systems" 5th international conference;

proceedings/TTS2000, 173-181. Berlin: Springer-Verlag.

[53] A . P. Troutman and B. K. Lichtenberg "Mathematics: A good beginning.

Strategies for Teaching Children", 4th Edition, Brooks/Cole Publishing

Company, Pacific Grove, California, 1991.

[54] K. VanLehn.(1988). "Student Modeling". In M . C . Poison and J.J Richardson,

Foundations of Intelligent Tutoring Systems, (pp55-78).

[55] K. Vanlehn, and Z. D. Niu, "Bayesian student modeling, user interfaces and

feedback: A sensitivity analysis", International Journal of Artificial Intelligence

in Education, (2001), 12, 154-184.

75

Appendix A

Pre-test

Please circle the answer that best suits you.

1. Do you like playing computer games?

A. No. B. Not too often. C. Sometimes. D. A Lot.

2. How do you like to play a computer game?

A. With someone to help me B. With a partner to play together
C. Play alone

3. How do you like to play a difficult computer game?

A. With someone to help me B. With a partner to play together
C. Play alone

4. Given a math problem, how will you do?

A. With someone to help me B. With a partner to discuss
C. Try to find the solution myself

5. Do you know what a "factor" is?

factor:
For example: 2 * 3 = 6,2 and 3 are both factors of 6.

Please List the factors of 20: 20 =

6. Do you know what a "factor tree" is? If yes, will you please draw
the "factor tree" of 40?

76

A common factor is a factor common to both numbers
For example: 2 and 3 are factors of 6,
2 and 4 are factors of 8, both of 6 and 8 has 2 in common,
so 2 is a common factor of 6 and 8.

7. please circle the "common factors" shared by the following
numbers: (please note, we don't count " 1 " as a common factor)

1) . 8 and 16 share as common factors:
A.3 B.5 C. 7 D.2 E. do not share

2) . 15 and 30 share as common factors:
A.7 B.9 C. 3 D. 5 E. do not share

3) . 14 and 49 share as common factors:
A.2 B.7 C. 3 D. 11 E. do not share

4) . 9 and 27 share as common factors:
A.3 B.2 C. 9 D.6 E. do not share

5) . 11 and 33 share as common factors:
A.3 B.5 C. 7 D. 11 E. do not share

6) . 31 and 47 share as common factors:
A.3 B.5 C. 7 D. 11 E. do not share

7) . 121 and 33 share as common factors:
A. 2 B. 3 C. 11 D. 7 E. do not share

77

Appendix B
Post-test (for the experimental group)

Please circle the answer that best suits you.
Strongly
disagree

Strongly
agree

I think the agent Merlin was helpful in the
game. 1 2 3 4 5

I think the agent Merlin understands me. 1 2 3 4 5

The agent Merlin helped me play the game
better. 1 2 3 4 5

The agent Merlin helped me learn number
factorization. 1 2 3 4 5

The agent Merlin answers to my questions
were useful. 1 2 3 4 5

The agent Merlin intervened at the right
time. 1 2 3 4 5

I liked the agent Merlin 1 2 3 4 5

1. If you play PrimeClimb again, would you rather play:

With agent Merlin to help without agent Merlin to help

2. Please List the factors of 20:

20 =

3 Do you know what a "factor tree" is? Yes No
If yes:

1) . Please draw the "factor tree" of 10.

2) . Please draw the "factor tree" of 36.

4. Please circle the "common factors" shared by the following numbers: (please
note, we don't count "1" as a common factor)

78

1) . i i and 33 share as common factors;

3 5 7 11 Do not share

2) . 1_5 and 30 share as common factors:

7 9 3 5 Do not share

3) . 9 and 27 share as common factors:

3 2 9 6 Do not share

4) . 14 and 49 share as common factors:

2 7 3 11 Do not share

5) . 121 and 33 share as common factors:

2 3 11 7 Do not share

6) . 3_i and 47 share as common factors:

3 5 7 11 Do not share

7) . 8 and 16 share as common factors:

3 5 7 2 Do not share

Appendix C
Post-test (for the control group)

Please circle the answer that best suits you.

1. If you play PrimeClimb again, would you rather play:

With someone to help without other's help

2. Please List the factors of 20:

20 =

3. Do you know what a "factor tree" is? Yes No
If yes:

1) . Please draw the "factor tree" of 10.

2) . Please draw the "factor tree" of 36.

4. Please circle the "common factors" shared by the following numbers: (please
note, we don't count "1" as a common factor)

1) . i i and 33 share as common factors.

3 5 7 11 Do not share

2) . 15 and 30 share as common factors.

7 9 3 5 Do not share

80

3) . 9 and 27 share as common factors:

3 2 9 6

4) . 14 and 49 share as common factors:

2 7 3 11

5) . 121 and 33 share as common factors:

2 3 11 7

6) . 31 and 47 share as common factors:

3 5 7 11

7) . 8 and 16 share as common factors:

3 5 7 2

Do not share

Do not share

Do not share

Do not share

Do not share

Appendix D

Observation sheet

Observation Sheet: (for experimental group).

1. Did the student listened to what the agent said?

Always Sometimes Not too often Not at all

2. Did the student perform his/her own actions without listening to the agent?

Yes Sometimes Not too often Not at all

3. Did the student like to listen to the Agent?

4. Did the Agent try to help too much?

Note:

No

Note:

6. Was the agent helpful in math, or with the rules?

Yes

No Yes

No Yes

7. Did the student use the magnifying glass? No Yes

8. When did the student use the magnifying glass?

Before choosing a hex after falling down after agent's suggestion

9. Did the student use the help dialog? No Yes

10. When did the student use the help dialog?

Before choosing a hex

11. Was there any crash?

Note:

after falling down after agent's suggestion

Yes No

Observation Sheet: (for control group).

1 .Did the student try to look for some help during the play? Yes No

2. Did the student use the magnifyin£ glass? No ^ Very often

3. When did the student use the magnifying glass?

Before choosing a hex after falling down

4. Did the student use the help dialog? No Very often

5. When did the student use the help dialog?

Before choosing a hex after falling down

6. Was there any crash? Yes No

Note:

83

