
CNJ: A Visual Programming Environment

For Constraint Nets
by

Fengguang Song

B.Eng., Zhengzhou University, 1996

M.Eng., Nanjing University of Aeronautics and Astronautics, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 2002

© Fengguang Song, 2002

In presenting this thesis/essay in partial fulfillment of the
requirements for an advanced degree at the University of British
Columbia, I agree that the Library shall make it freely available for
reference and study. I further agree that permission for extensive
copying for this thesis for scholarly purposes may be granted by
the Head of my department or by his or her representatives. It is
understood that copying or publication of this thesis for financial
gain shall not be allowed without my written permission.

Oct. 1>2°°l
D a t e

Department of Computer Science
The University of British Columbia
2366 Main mall
Vancouver, BC
Canada V6T1Z4

ABSTRACT

The Constraint Nets model (CN) proves to be useful for a wide variety of purposes,

ranging from intelligent agent systems, and real-time embedded systems, to integrated

hybrid systems with various time structures: discrete, continuous, and time-based. This

thesis describes a new visual programming environment called CNJ (Constraint Nets in

Java) which utilizes component-based technology.

CNJ uses JavaBeans, Bean Introspection, drag-and-drop, and Java Swing MDI

(Multiple Document Interface) technologies, as well as XML-based C N M L as its

standard interchange format. The environment supports constraint net modeling,

simulation, and animation for hybrid systems. Furthermore, it provides support for a top-

down design, middle-out design, and bottom-up design where the module bean can be

reused anywhere in any other C N model, saving designers time and effort. As an

experiment, a hybrid dynamic elevator system is developed successfully, and test results

confirm the effectiveness of the tool for hybrid system modeling and real-time

simulation.

ii

ABSTRACT »

CONTENTS U I

LIST OF TABLES V I

LIST OF FIGURES vii

ACKNOWLEDGEMENTS «x

DEDICATION x

CHAPTER 1 INTRODUCTION 1

1.1 Thesis Statement 1

1.2 Motivation 2

1.3 Related Work 3

1.4 CNJ Overview 5

1.5 Thesis Outline 7

1.6 Contributions 7

CHAPTER 2 BACKGROUND 9

2.1 Component-Based Software Engineering 9

2.2 JavaBeans Component Architecture 10

2.3 Graphical User Interface Design 12

2.3.1 UI Design Guidelines 12

2.3.2 Java Look and Feel Style 13

2.4 Visual Programming Languages 14

2.4.1 Classification and Concepts 14

2.4.2 Automated Control Engine 16

2.5 Summary 16

CHAPTER 3 CONSTRAINT NETS 18

3.1 Constraint Net Model 18

3.1.1 Constraint-Based Intelligent System 18

iii

3.1.2 Constraint Net Syntax and Semantics 20

3.2 Requirement Specification with Timed V-Automata 21

3.3 Behavior Verification 23

3.4 Summary 23

CHAPTER 4 CONCEPTS AND ARCHITECTURE OF C N J 25

4.1 Main Idea 25

4.2 Requirement Analysis 27

4.2.1 System Requirements 27

4.2.2 User Groups 29

4.3 System Architecture 30

4.4 Summary 34

CHAPTER 5 GRAPHICAL USER INTERFACE DESIGN 35

5.1 User Interface Architecture 35

5.1.1 GUI Introduction 35

5.1.2 GUI Composition 37

5.2 Multi-threaded Panels 38

5.3 Important UI Classes 39

5.3.1 DrawPane Class 39

5.3.2 PropertySheetPanel Class 41

5.4 Constraint Net Nodes 44

5.4.1 Transduction Bean 44

5.4.2 Location Bean 46

5.4.3 Clock Bean 46

5.4.4 Module Bean 46

5.4.5 Connection 47

5.5 Summary 47

CHAPTER 6 C N J SIMULATION 49

6.1 Java Event Mechanism 49

6.2 The Compilation Step of CNJ 53

6.3 Dataflow Issue 54

6.3.1 Data-driven and Demand-driven Models 55

iv

6.3.2 Dataflow in CNJ 55

6.3.3 Transduction Scheduling Algorithm 56

6.4 Discussion of "Real-time" 60

6.5 Summary 62

CHAPTER 7 CONSTRAINT N E T M A R K U P LANGUAGE 63

7.1 X M L 63

7.2 C N M L 65

7.3 Summary 67

CHAPTER 8 A REALISTIC C N M O D E L 68

8.1 The Elevator System 68

8.1.1 Top-level Hybrid Model 69

8.1.2 The Continuous E L E V A T O R Module 71

8.1.3 The Discrete CONTROL1 Module 73

8.2 Elevator System Modeled in CNJ 73

8.3 Elevator System Simulation and Animation in CNJ 74

8.4 Summary 76

CHAPTER 9 EXPERIMENTAL RESULTS 78

9.1 Methodology 78

9.2 Results 79

9.3 Summary 82

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 83

10.1 Conclusions 83

10.2 Future Work 84

BIBLIOGRAPHY 86

APPENDIX A C N M L FILE FOR T H E CAR DYNAMICS M O D E L 89

APPENDIX B T H E E L E V A T O R SYSTEM M O D E L E D IN C N J 100

V

LIST OF TABLES

Table 5.1 DrawPane class 41

Table 6.1 Simulation output of a simple constraint net 53

Table 9.1 Simulation results for Example 1, 2, 3 80

Table 9.2 Simulation results for the Elevator system (Example 4) 81

vi

Figure 1.1 The Graphical User Interface of CNJ 5

Figure 3.1 The structure of a constraint-based agent 19

Figure 3.2 An integration system in constraint net 20

Figure 3.3 V-automata 22

Figure 3.4 Timed V-automata 22

Figure 4.1 Putting together a system from bean objects 27

Figure 4.2 Architecture of CNJ 30

Figure 4.3 Class architecture graph 32

Figure 5.1 CNFrame composition 36

Figure 5.2 Containment hierarchy of CNJ GUI 38

Figure 5.3 Method of setTarget() in BeanPropertySheet 43

Figure 5.4 C N bean classes 44

Figure 5.5 PropertyEdit of Transduction 45

Figure 5.6 Transduction definition for "minus" 45

Figure 6.1 Three types of PropertyChangeEvents in CNJ Simulation 51

Figure 6.2 A constraint net to represent x(t) = x(t-1) + step 52

Figure 6.3 A transduction scheduling example 58

Figure 6.4 Transduction scheduling algorithm 60

Figure 7.1 X M L document life cycle 64

Figure 7.2 C N M L Elements 67

Figure 8.1 3-floor elevator system 69

Figure 8.2 A hybrid model of the Elevator system 70

Figure 8.3 The continuous E L E V A T O R module 71

Figure 8.4 The discrete CONTROL1 module 73

Figure 8.5 The Elevator system modeled in CNJ 75

Figure 8.6 The Elevator animation window 77

Figure 9.1 Example 1 (a simple adder) 79

vii

Figure 9.2 Example 2 (a two-level adder) 79

Figure 9.3 Example 3 (the Car Dynamics) 80

Figure B - l B U T T O N Module 100

Figure B-2 FlipFlop Module 100

Figure B-3 ResetSignal Module 101

Figure B-4 E V E N T Module 101

Figure B-5 CONTROL1 Module 102

Figure B-6 UpRequest Module 102

Figure B-7 DownRequest Module 103

Figure B-8 StopRequest Module 103

Figure B-9 ServingState Module 104

Figure B-10 Command Module 104

Figure B - l 1 E L E V A T O R Module 105

Figure B-12 CONTROL0 Module 105

Figure B-13 B O D Y Module 106

Figure B-14 H O M E Module 106

Figure B-15 FLOOR Module 106

viii

ACKNOWLEDGEMENTS'

I would like to gratefully acknowledge my supervisor, Dr. Alan Mackworth. Numerous

motivational and instructional discussions with him ensured the success of this project.

His wealth of knowledge in computational intelligence and constraint-based systems

assisted me in identifying the critical and interesting issues of this research. His attitude

towards research and professionalism also inspired me to continuously challenge myself

to reach new levels. This work would not have been possible without his enthusiastic

supervision, invaluable guidance, and generous financial support. I also wish to thank

Dr. Jim Little for taking the time to be my second reader, and for providing me with

many insightful comments.

I would like to thank Yu Zhang (IBM) and Ying Zhang (Xerox Pare). They gave

me lots of valuable suggestions and long hours of discussion over various issues related

to this project. My experience here in the LCI lab is full of opportunities to learn, not

only from faculty and students who are experts in the field, but also from industrial

fellows and sponsoring companies. I owe my gratitude to those people who are

particularly instrumental in contributing to my experience in the LCI lab at UBC. They

are Dr. Jim Little, Dr. Anne Condon, Valerie McRae, Robert St-Aubin, and Xiaoming

Zhou. I really appreciate Lisa Beckett's great help with my technical writing.

I am deeply grateful to my parents Linbin Song, and Suzhen Ji, for their never

ceasing love and support for my whole life. Their confidence in me and encouragement

of me are the impetus of this hard work. I am also grateful to my wife Lan Lin who can

always lift up my spirits even in the worst of times. I also thank my brother Xuguang

Song and my sister Min Song for their constant inspiration and comfort.

This work was supported by IRIS and NSERC.

ix

To my parents and family,

for their support, love, and enthusiasm.

CHAPTER 1 INTRODUCTION

The complexity of software development is rapidly increasing during this decade and it

often exceeds human intellectual capability. Component-based technology, an exciting

new research area, promises to deliver scalable and reusable software because of its

decomposition, abstraction, and hierarchy properties. The Constraint Nets model (CN)

was developed by Zhang and Mackworth to represent hybrid dynamic systems. It is a

family of visual programming languages (VPLs) with inherent graphical icons and

hierarchies.

In this thesis, a visual programming environment called CNJ (Constraint Nets in

Java), is established to support constraint net modeling and simulation. CNJ uses

component-based technology (JavaBeans), Bean Introspection and Java Swing, as well

as X M L as the standard interchange format.

1.1 Thesis Statement

C N is a unified and integrated approach for modeling, specifying and verifying discrete,

continuous, and event-based hybrid dynamic systems. CNJ aims to provide a practical,

feasible environment for constraint net modeling and simulation. Although one of its

purposes is to provide such a realistic environment, other more important research

objectives include the following:

• Investigation of component-based technology in hybrid system modeling and

simulation.

• Proof that visual programming environments and visual programming languages

(VPL) are helpful for users.

• Demonstration that Java is useful for virtual real-time programming.

1

• Feasibility of the efficient and useful implementation of the concept of Constraint

Nets.

• Demonstration of an open, portable, executable representation of hybrid dynamic

systems.

1.2 Motivation

In the past decade, hybrid systems have become a focus of interest for a wide community

for two reasons. One is that analog computation is gaining more attention because of

recent technological advances, such as faster computers, and cheaper, more reliable

sensors. The other is that the integration of computers that control continuous dynamic

systems shows increasing importance [7]. Constraint Nets are developed as a unified

formal foundation for hybrid dynamic systems, consisting of modeling, and the

specification and verification of languages.

C N is a generalization of dataflow with multiple data and events, in which a

dynamic control system can be described as several block diagrams. A constraint net

represents a set of equations, with locations as variables, and transductions as functions.

It is able to support various time structures: discrete, continuous and event-based. Since

it has a graphical representation, and is composed of a set of basic graphical elements,

C N is an ideal model for visual programming.

Java is an object-oriented programming language where a Java class is reusable.

The JavaBeans technology has the important properties of reusability, bean

introspection, and platform-independence. Using the technology of JavaBeans, Java

classes are able to be reused, and can run anywhere. It facilitates greater reusage and

allows for rapid development through assembling software components rather than

writing codes.

The goal of this thesis is to design and implement a visual programming

environment for hybrid system modeling and simulation in the constraint net language.

The environment uses JavaBeans as atomic blocks to build hierarchical, modular and

large-scale system models [35]. In CNJ, several kinds of Java bean classes are

implemented and provided as elementary blocks. The tool uses Java's event handling

2

mechanism (registration of event listeners) to connect Java beans, and make them

communicate with each other. The Java event mechanism successfully handles the

support for various time structures. This JavaBeans-based visual programming

environment has the advantages of the reusability of modules, reduction of coding time,

and simplification of model development. Since CNJ is a visual programming tool, users

only need to drag and drop the provided Java beans, and assemble them together. To

store constraint net models, we also define XML-based C N M L (Constraint Net Markup

Language) as the standard interchange file format. C N M L conforms to the specification

of X M L (extensible Markup Language) 1.0.

1.3 Related Work

It has been eight years since C N was first introduced and developed. It works as a formal

analysis and modeling framework for the development of hybrid systems. C N proves to

be useful for a variety of purposes, ranging from intelligent systems, and real-time

embedded systems, to integrated hybrid systems [7]. However, there is no appropriate

programming environment available for it. CNJ is the first customized visual

programming environment for C N , based on component-based technology.

Nevertheless, research in hybrid system modeling and simulation is not

completely new. Many papers are published in this area and several systems are

developed in industry. However, most of them focus on some specific time structures,

instead of a variety of them, such as discrete, continuous, and event-based.

Maflab/Simulink [3] is a visual programming and simulation environment for

continuous and discrete control systems. It enables users to build graphical block

diagrams, simulate dynamic systems, evaluate system performance, and refine their

designs. It is currently the most popular tool for control system modeling and simulation.

However, it is not suited for hybrid system modeling in constraint nets. There are three

reasons for this:

• First, Simulink is unable to support an event-based time structure, which is an

important characteristic of hybrid systems.

3

• Second, although it supports bottom-up modeling well (by grouping), it does not

support top-down and middle-out modeling methods, which are helpful for some

users [3].

• Third, in Simulink, all the system models are stored in M D L format (Model

Description Language). In addition, since C N has a different graphical representation

from Simulink's models, the M D L file format is not able to store constraint net

models.

There is also some component-based simulation work done. [33] [28] and [17]

use Sun's B D K (Bean Development Kit) tool directly to model and simulate control

systems. B D K is a simple tool for testing Java beans, and for visually manipulating their

properties and events. It is convenient to use the B D K to assemble some beans to build a

system model or module, through drag-and-drop. However, since B D K is not aimed at

system modeling, it actually imposes some limits on the use of those systems. The

graphical user interface of B D K is weak because it is implemented in Java A W T

(Abstract Window Toolkit), not Java Swing (which is much more powerful). For

instance, in B D K , there are only a small number of visual components which display

bean properties because of its limited internal support. The wires that connect between

beans are invisible. Also, there are only Java-level events in the modeled systems, with

no concept of a continuous time structure, which is, however, essential for complex

hybrid systems. Furthermore, it is challenging work to build a complex model based on

customized JavaBeans. Users might be required to implement a very complicated Java

bean as an atomic block. A l l the limits above make those BDK-based modeling

environments difficult to use practically. In addition, it is even harder to apply it to

constraint net modeling.

Visual programming languages (VPL) have been researched for dozens of years,

and numerous visual programming systems have been developed to address specific

application areas, physical simulation, and more general programming tasks. VPLs offer

many advantages over traditional textual programming languages, such as fewer

programming concepts, concreteness, explicit relation depiction, and visual feedback [8].

Some popular visual programming languages include Alternate Reality Kit (ARK),

4

Visual Imperative PRogramming (VIPR), Cube, and so forth [13]. With the increase in

computer speed and graphical display capabilities, it is highly probable that visual

programming languages will be widely used.

1.4 CNJ Overview

Our environment is called CNJ (Constraint Nets in Java). It is a specific environment for

hybrid system modeling and simulation with constraint nets. C N is a family of visual

Figure 1.1. The Graphical User Interface of CNJ

5

programming languages, which consist of timed V-automata as a requirement

specification language, a dynamical system modeling language, and a verification

method. CNJ's system design includes support for the requirement specification

language, the dynamical modeling language and the verification method. The present

version provides visual programming in the dynamical modeling language, as well as

real-time simulation.

A constraint net is composed of Locations, Transductions, and Connections. CNJ

provides several basic Java beans, accordingly. When designing a constraint net model,

users need to draw and define transductions, locations, modules, and clocks (a kind of

transduction), and then wire these by connections. Because it is a visual programming

environment, CNJ is easy to use and learn.

CNJ is implemented in pure Java, and can run on different platforms. Its

graphical user interface consists of two main windows, shown in Figure 1.1. The big

window is the CNFrame, used for designing or drawing a constraint net model. The

small one is the PropertyEdit window, which is able to edit a selected object's properties

in the left window. When users select a different object, the PropertyEdit window

changes accordingly. The panel at the center of the CNFrame adopts the style of an MDI

(Multiple Document Interface) with child windows. Each child window has a DrawPane

for displaying a constraint net module.

CNJ supports various modeling and development methods: top-down, bottom-up,

and middle-out. With these modeling methods, user can group system models into

hierarchies to create a simplified view of subsystems or modules. To design a constraint

net model, the simple drag-and-drop method is used. In constraint nets, the function of a

transduction might be arbitrary. CNJ provides predefined basic operators for building

complicated functions. If an unsupported function is needed, CNJ developers can easily

add it. This tool also provides a compilation step to detect some syntax errors in user

designed constraint nets. After passing the compilation step, users might run a simulation

to see the output data. Users can also run an animation window to see a more

straightforward running result.

A constraint net model, or module, is stored in a Constraint Net Markup

Language (CNML). When users need a module for further reuse, they can save it in a

6

separate file. The C N M L is based on the specification of X M L 1.0, and brings X M L ' s

advantages: being content-oriented, giving easy access and reusage, providing validation

support, and so forth. Presently CNJ can export a constraint net model to a postscript

file.

1.5 Thesis Outline

This chapter provides an introduction to the thesis, including the thesis statement,

motivation, contributions and overview of CNJ. Chapter 2 introduces some background

knowledge related to our research. In it, Component-Based Software Engineering

(JavaBeans), HCI, and V P L are briefly mentioned. Chapter 3 introduces the principles of

constraint nets. In Chapter 4, we present our main idea for designing CNJ and its system

architecture. Chapter 5 describes the implementation of CNJ's graphical user interface

and the C N nodes in Java bean. Chapter 6 illustrates several mechanisms for supporting

real-time simulation in CNJ. In Chapter 7, Constraint Net Markup Language is

introduced. In Chapter 8, a hybrid Elevator control system is modeled in constraint nets,

and developed in CNJ. Chapter 9 presents some experimental results of the environment.

Finally, conclusions and future work are described in Chapter 10. Appendix A gives a

complete C N M L file for the Car Dynamics C N model. Appendix B contains the set of

graphical C N modules for the 3-floor Elevator system designed in CNJ.

1.6 Contributions

A hybrid system in general, is a continuous, discrete, and event-based dynamic system.

In the past decades, models for hybrid systems developed and matured. Some design

environments for these were also created [5]. Matlab/Simulink was developed for

continuous and discrete models [3]. DevsJava was developed for Discrete Event System

Specification (DEVS) [16]. PNK was developed for Petri Nets [34]. The Automated

Control Engine (ACE) was developed for event-based control systems [9]. C N is an

ideal model for hybrid systems, and it is unitary, modular, and powerful. It is

successfully applied to robotic system modeling. A robotic system is a typical hybrid

7

system. Its controller is modeled in discrete dynamics, its body and environment are

modeled in continuous dynamics. With the support of various time structures, CNJ is

able to model such hybrid systems in constraint nets. Component-based technology is

used to realize the visual programming environment. The simulation part is almost in

real-time, even though it is written in Java.

This thesis presents our work of CNJ for modeling and simulating real-time

hybrid systems with constraint nets. The primary contributions of our work are as

follows:

• It proves that component-based technology works well for control system modeling

and simulation.

• It shows visual programming is helpful for users.

• It demonstrates that Java is useful for real-time programming.

• It proves that Constraint Nets are a practical, feasible language for modeling hybrid

systems.

• It is helpful for different user groups to use CNJ to study Constraint Nets.

• C N M L is defined as the first standard XML-based interchange file format for

constraint nets.

8

CHAPTER 2 BACKGROUND!

CNJ is designed and implemented using component-based technology. It works as a

visual programming environment. This chapter illustrates the concepts of component-

based technology, JavaBeans, user interface design, and visual programming languages

(VPL).

2.1 Component-Based Software Engineering

The idea of software components has been developed in software engineering for some

time. A software component is defined as "a unit of composition with contractually

specified interfaces and explicit context dependencies only" [20]. In this definition,

components are independent of each other, and communicate with each other through

predefined interfaces. A software component is an independent object that has its own

functionality. Through interfaces, a large-scale and complicated system can be built on

the available components.

Component-Based Software Engineering (CBSE) is based on software

components. It is a process of building systems by combining and assembling predefined

objects or components. CBSE is able to guarantee the development of software or

systems in less time, with higher quality and reliability. The characteristics of

component-based development are as follows [15]:

• Black-box reusage

• Reactive-control and the component's granularity

• Using R A D (rapid application development) tools

• Contractually specified interfaces

• Introspection mechanism provided by the builder systems

• Software component market

9

In addition, component-based development is closely related to object-oriented

programming. It is natural and straightforward to implement software components in an

object-oriented language. The traditional techniques in object-oriented software

engineering are important for component-based development, such as design pattern,

architecture pattern, and meta-pattern. However, component-based development is

different from object-oriented development. A software component is not a part of the

application or program, but is an autonomous entity. Programmers cannot see its code,

except for the interface specification [18]. Typically, it is in the form of an object

instance instead of source code. Furthermore, component-based development does not

need to use the class hierarchy that is very important in object-oriented programming.

Currently, software components can be developed with ActiveX, CORBA,

JavaBeans and EJB (Enterprise JavaBeans). We chose JavaBeans to develop CNJ

because it has the advantages of platform-independence, object-orientation, simple

strategy for multi-threading, automatic garbage collection, safe memory usage, and easy

programming. Although a Java program's speed is not as fast as that of a C++ program,

after the utilization of Just-In-Time (JIT) and native code compilers, this problem of

speed decreases.

2.2 JavaBeans Component Architecture

Java bean is defined as "a reusable software component that can be manipulated visually

in a builder tool" [14]. The JavaBeans component architecture is a platform-neutral

architecture for the Java application environment. It is used to develop fully portable

network-aware applications within Intranets, or across the Internet. Actually, when using

Java, JavaBeans component architecture is the only choice to consider in component-

based development.

A Java bean class is able to run on various operating systems, and also within

many application environments. As [37] stated, " A JavaBeans developer secures a future

in the emerging network software market without losing customers that use proprietary

platforms, because JavaBeans components interoperate with ActiveX". Through

10

JavaBeans Architecture Bridges, JavaBeans can be connected together with other

component models, such as ActiveX. Therefore, software components that use

JavaBeans APIs are portable to containers such as Internet Explorer, Visual Basic,

Microsoft Word, and Lotus Notes.

A Java bean is a Java class. When obeying a few non-critical naming

conventions, or using a Beanlnfo class, a general Java class becomes a Java bean. A

bean's interface includes its properties, methods, and events. A Java bean has the

following typical features [14]:

• Support for "properties", both for customization and for programming use. Properties

are the named attributes of a bean. They can be accessed (read and write) by some

appropriate methods which obey some rules. The method has to be named as

get<Property> or set<Property>. There are four kinds of bean property: Simple

Property, Bound Property, Constrained Property, and Indexed Property [30]. The

Bound Property has the capability that, when the value of the property changes, it

notifies the other objects that added a PropertyChangeListener for that property. A

Constrained Property handles how a proposed property change can be permitted or

vetoed by other objects. An Indexed Property describes a multiple-value property.

• Support for "events" as a simple communication method that can be used to connect

up beans. With an event, a bean can notify other beans that something interesting has

happened. Also, other beans can do something to respond to the events. For that

purpose, event listeners are registered to event sources. The event source provides

two methods to support event listener registration: add<Event>Listener and

remove<Event>Listener, where <Event> is the name of the event.

• Support for "Introspection" so that a builder tool can analyze how a bean works. The

builder tool can detect information of a bean, such as properties, methods, and events

if the bean class conforms to naming conventions of JavaBeans.

• Support for "Persistence". A bean can be customized in an application builder, and

then have its customized state saved away and reloaded later.

• Support for "Customization". When using an application builder, a user can.

customize the appearance and behavior of a bean. Sometimes the modification of

11

simple properties is not sufficient for complex components. Additional editors or

customizers may be provided for the ease of customization.

2.3 Graphical User Interface Design

User interface is a bridge between users and computers by allowing for information

exchange between them. There are a vast variety of ways to bridge humans and

computers, for instance, display areas, digital cameras, full-duplex audio, actuators and

sensors, and more recently, even scent through aroma generating machines and artificial

noses. With increased user interface sophistication, this, in turn, makes the programming

task more difficult. Generally, user interface design and programming occupies a large

proportion of software development. From the survey [2], the average time spent on the

user interface portion is 45% during the design phase, 50% during the implementation

phase, and 37% during the maintenance phase. The most common difficulties that UI

programmers confront include getting the user's requirements, writing help text,

achieving consistency, getting acceptable performance, and communicating among

various parts of the program. In order to decrease the UI programming task, some

interface builders and UTMSs (User Interface Management System) are developed.

2.3.1 UI Design Guidelines

A good user interface should be easy to use, and suitable for a specific operating system.

However, this is not easy for software developers to realize. In addition, good UI designs

do not happen naturally. These require software developers to learn and apply a few

basic guidelines. The following items are provided as basic guidelines for designing a

user interface [12]:

1. Maintain Consistency in Look and Feel. It requires consistent visual appearance

and consistent response to user input throughout the user interface design.

2. Provide Shortcuts and Flexibility. Some experienced users need the means of

going directly to specific locations in UI.

12

3. Present Informative Feedback. Feedback gives users confidence. It tells the user

what the program is doing.

4. Design for Recovery from Error. If possible, the undo function and meaningful

error messages are provided to users.

5. Reduce Memory Demands. Too many facts and decisions might overload a

person's short-term memory.

6. Design for Task Relevance. UI should present information that pertains to the

user's task. Any arrangement of items on the screen is task-related.

7. Aid Orientation and Navigation.

8. Maintain a User-Centered Perspective. Every element of the design should be

traceable to the user requirements.

The guidelines above are at a relatively high level. However, a project does not

need to include all of them. It can just select the guidelines that are meaningful in the

context of its own user interface design.

2.3.2 Java Look and Feel Style

As the Java platform matured, developers recognized the need for consistent,

compatible, and easy-to-use Java applications. The Java look and feel provides a

platform-independent appearance and standard behavior to meet this need. It can reduce

design and development time, and lower training and documentation costs.

The Java look and feel is the default interface for applications built with the Java

Foundation Classes (JFC). It has the following characteristics [29]:

• Consistency in the appearance and behavior of common design elements.

• Compatibility with industry-standard components and interaction styles.

• Aesthetic appeal that does not distract from application content

Developers have the choice to choose a look and feel style. They can determine a

platform-dependent look and feel, or a cross-platform look and feel. If they specify a

13

cross-platform look and feel, applications appear and perform the same everywhere,

simplifying the application's development and documentation. If choosing a particular

look and feel, developers can specify an OS-dependent look and feel style. The look and

feel styles available in Java 2 SDK as follows:

• Java look and feel. (Called "Metal" in the code) It is designed for use on any

platform that supports the JFC.

• Microsoft Windows look and feel. (Called "Windows" in the code) It can be used

only on Microsoft Windows platforms. It follows the behavior of the components in

applications that ship with Windows NT 4.0.

• CDE look and feel. (Called "CDE/Motif" in the code) It is designed for use on

UNIX platforms. It emulates OSF/Motif 1.2.5.

• Macintosh look and feel. Developers can download the Macintosh style (called

"Mac OS" in the code) separately.

2.4 Visual Programming Languages

Visual Programming Languages (VPLs) are a combination of computer graphics,

programming languages, and human computer interaction. With the increase in computer

speed and graphical display capability, a great deal of research and experiments are now

possible in the field of visual programming languages. A variety of different

methodologies originate from this research field, and numerous software systems are

developed for both specific application tasks and more general tasks.

2.4.1 Classification and Concepts

In [13], visual programming languages are classified as:

• Purely visual language

• Hybrid text and visual system

• Programming-by-example system

14

• Constraint-oriented system

• Form-based system

These categories are not exclusive and a programming language might belong to more

than one category.

The category of purely visual language is characterized by its reliance on visual

techniques throughout the programming process. The programmer manipulates icons or

other graphical representations to create a program, and then debugs and executes it in

the same visual environment. The program is compiled directly from its visual

representation, and is never translated into an interim text-based language [13]. This

category can be further subdivided into sections like iconic and non-iconic languages,

object-oriented, functional, and imperative languages.

Hybrid text and visual language involves both visual and textual elements. The

hybrid systems include programs that are created visually and then translated into a

textual language, as well as those utilizing graphical elements in a textual language.

Programming-by-example systems provide users with a way to create and design

graphical objects to "teach" the system how to perform a particular task. A popular

approach for simulation design is the constraint-oriented system. Physical objects can be

modeled in the visual environment, subject to a set of constraints, to simulate natural

behaviors. These systems have also found applications in the development of graphical

user interfaces. The form-based VPLs refer to those borrowing their visualization and

programming metaphors from spreadsheets [13].

Some important basic concepts in VPLs are defined by [1], as follows:

Icon: An object with the dual representation of a logical part (meaning) and a physical

part (image).

Icon sentence: A spatial arrangement of icons from an iconic system.

Visual language: A set of iconic sentences constructed with given syntax and semantics.

15

Syntactic analysis: An analysis of an iconic sentence to determine the underlying

structure.

Semantic analysis: An analysis of an iconic sentence to determine the underlying

meaning.

2.4.2 Automated Control Engine

The Automated Control Engine (ACE) is a software package from International

Submarine Engineering Ltd., B.C., Canada. It is designed to help design event-driven,

and dataflow, control systems. The A C E is also an implementation of an object-oriented

Events and Actions programming paradigm using the C++ language [9].

Events and Actions is an object-oriented event-driven programming paradigm. It

is based upon two object types: event and action. Event represents some significant

occurrence or occurrence with some related data, such as timer interruption, or message

from other components. Action is an appropriate response to a particular event.

Typically, an action consists of a procedure for execution, a priority level for the

procedure, and a reference to any data belonging to the event. The action may signal

events after the completion of its task. Component is another key element in A C E . It is a

set of connections to input events and output events with a well-defined transformation

between them.

A C E programming is therefore, a collection of events and actions, and the

connections between them. This type of programming provides a high level of design,

which does not require any C++ knowledge. It is a natural approach to real-time or

highly interactive systems [9].

2.5 Summary

To develop a visual programming environment for constraint nets, many issues in this

chapter must be considered. It is helpful to provide this research's context. For instance,

what are visual programming languages, how to design a good user interface for such an

16

environment, which software engineering method is most suited for this application, how

to use JavaBeans to develop a component-based software, what is JavaBeans, as well as

event-driven programming, and so forth.

17

CHAPTER 3 CONSTRAINT NETS

Over the last twenty-five years, the Constraint Satisfaction Problem (CSP) model

developed and matured. Constraint Programming (CP) also evolved several powerful

frameworks. The algorithms developed for the Constraint Satisfaction Problem are made

more useful and available when they are incorporated into the Constraint Programming

(CP) paradigm [23]. This is successful, and as a result, some constraint-satisfying

devices are developed. Generally, these devices are offline. A challenge for CP

researchers is to develop a theoretical and practical tool for the constraint-based

embedded intelligent system. The Constraint Nets model (CN) is developed by Ying

Zhang and Alan Mackworth as an abstraction and a unitary framework for developing a

hybrid dynamic system, analyzing its behavior, and understanding its underlying

physics.

This chapter first describes the definition of constraint nets. Then the requirement

specification language of timed V-automata, and the behavior verification method are

described.

3.1 Constraint Net Model

Intelligent systems embedded as controllers in real systems, or virtual systems, are

designed in an online model based on various time structures: discrete, continuous, and

event-based. It is a typical hybrid dynamic system. However, the CSP paradigm and CP

paradigm are inadequate for this kind of task since they are primarily off-line. Generally,

C N is a semantic model for those hybrid dynamic systems. A constraint net model is

built as an online dataflow-like distributed programming language with formal algebraic

denotational semantics, a requirement specification language, and real-time temporal

logic [25].

3.1.1 Constraint-Based Intelligent System

18

An intelligent agent system is normally a hybrid system that runs on the domains of

discrete, continuous and event-driven structures. It is modeled as the symmetrical

coupling of an agent with its environment. An agent situated in an environment has three

machines: the agent controller, the agent body, and the environment, as shown in Figure

3.1 [23].

AGENT
CONTROLLER

Reports Constraints

BODY

J
>

Reactions

>

Actions

i
\ * 1

ENVIRONMENT

^ J

Figure 3.1. The structure of a constraint-based agent

The controller, body and environment are modeled as separate dynamic systems.

Both the controller and the body consist of discrete, continuous or event-driven

components operating over a discrete or continuous domain. The controller has the

perceptual subsystem that can (partially) observe the state of the body, and through the

body, partially observe the state of environment. The agent's body is the interface to the

environment. The body executes actions in the environment, senses the change of the

environment, and reports the environment's state to the controller. Whenever the

controller gets the report about the environment's state from the body, it calculates the

constraints and sends them to the body. Then, the body performs the actions obeying the

constraints.

19

3.1.2 Constraint Net Syntax and Semantics

A constraint net model is a dataflow and equation based model with formal syntax and

semantics. It consists of a finite set of locations, a finite set of transductions, and a finite

set of connections. Locations can be regarded as communication channels, memory cells,

variables, or wires. Transductions are causal mappings from input traces to output traces,

operating on a global reference time, or activated by external events [7]. Connections

represent interaction structures of the modeled system by relating locations with ports of

transduction. Formally, a constraint net is a triple C N = <Lc, Td, Cn>, where Lc is a

finite set of locations, Td is a set of transductions, each with an output port and a set of

input ports, and Cn is a set of connections between locations and ports [6, 10, 25]. A

Connection has to follow some restrictions: one, there is at most one output port

connected to each location; two, each port of a transduction connects to a unique

location; and three, no location is isolated.

A location is an output of the constraint net if it is connected to the output of

some transductions; otherwise, it is an input. A constraint net is open if there is an input

location; otherwise, it is closed.

A constraint net represents a set of equations, with locations as variables and

transductions as functions. The semantics of the constraint net, with each location

denoting a trace, is the least solution of the set of equations [4]. The semantics is defined

on abstract data types and abstract reference time, which can be discrete or continuous.

Graphically, a constraint net is depicted by a bipartite graph where locations are depicted

by circles, transductions by rectangle blocks, and connections by arcs.

For instance, integration is the basic transduction on a continuous time structure.

In Figure 3.2, a differential equation ds/dt = f(s) = s' is represented by a constraint net,

where so is an initial state.

f

Figure 3.2. An integration system in constraint net

20

3.2 Requirement Specification with Timed V-Automata

C N graphical modeling language focuses on the underlying structure of a system, such

as the organization and coordination of components or subsystems. However, the overall

behavior of the modeled system is not explicitly expressed. For many cases, it is

important to specify some global properties, and guarantee that these properties hold in

the proposed design.

Zhang and Mackworth advocate timed V-automata for specifying requirement

properties. A discrete V-automaton is a non-deterministic finite state automaton over

infinite sequences [6]. It was originally proposed as a formalism for the specification and

verification of temporal properties of concurrent programs. Then, discrete V-automata

were augmented to timed V-automata by generalizing time from discrete to continuous,

and by specifying time constraints on automaton-states. Therefore, timed V-automata

can be used to specify languages composed of traces on continuous, as well as discrete,

time.

A V-automaton A is a quintuple {Q, R, S, e, c}, where Q is a finite set of

automaton-states, R c S is a set of recurrent states, and S c Q is a set of stable states.

Let r be a run of A over a trace v. r is accepting if every state that appears infinitely

many times is a stable state, or if some state that appears infinitely many times is a

recurrent state [6]. With each q G Q, an assertion e(q) is associated, which characterizes

the entry condition under which the automaton may start its activity in q. With each pair

q, q' 6 Q, an assertion c(q, q') is associated, which characterizes the transition condition

under which the automaton may move from q to q'. R and S are the generalization of

accepting states to the case of infinite inputs. B = Q - (R u S) is the set of non-accepting

(bad) states.

A V-automaton can be depicted by a labeled directed graph where automaton-

states are depicted by nodes, and transition relations by arcs. Furthermore, some

automaton-states are marked by a small arrow, an entry arc, pointing to it. Each recurrent

state is depicted by a diamond inscribed within a circle. Each stable state is depicted by a

21

square inscribed within a circle. Nodes and arcs are labeled by assertions. A node or an

arc that is left unlabeled is considered to be labeled with true. The labels define the entry

conditions and the transition conditions of the associated automaton.

Some examples of V-automaton are shown in Figure 3.3 [6]: (a) states that the

system should finally satisfy G; (b) states that the system should never satisfy B and

(c) states that whenever the system satisfies R, it satisfies S in some bounded time.

(a) (b) (c)

Figure 3.3. V-automata: (a) reachability (b) safety (c) bounded response

Timed V-automata are V-automata augmented with timed automaton-states and

time bounds. Let R + be the set of non-negative real numbers. A timed V-automaton TA

is a triple {A, T, x }, where A = {Q, R, S, e, c} is a V-automaton, T c Q is a set of timed

automaton-states, and T : T U {bad} -> R + u {<*>} is a time function. A V-automaton is a

special timed V-automaton with T = 0 and x (bad) = °o. Graphically, a T-state is denoted

by a nonnegative real number indicating its time bound. Figure 3.4 shows an example of

timed V-automata. This system should satisfy S within 3 time units, whenever it satisfies

R.

Figure 3.4. Timed V-automata: real-time response

22

3.3 Behavior Verification

In constraint nets, timed V-automata in Section 3.2 work as a requirement specification

language. It can specify the required properties for the designed models. To decide

whether the model is well-designed or ill-designed, a model checking method is

developed to verify the relationship between the behavior of a dynamic system and its

requirement specification. Given a constraint net model of a system and a timed V-

automaton specification of a behavior, the behavior of the system satisfies the

requirement specification if and only if the (behavior) traces of the system are accepting

for the timed V-automaton.

The model checking method developed by Zhang and Mackworth uses the

induction principle, and generalizes both Liapunov stability analysis for dynamic

systems and monotonicity of well-foundedness in discrete-event systems [21]. A

representation between constraint nets and timed V-automata is a state-based transition

system, such as Kripke structure. The verification rules are applied to the Kripke

structure.

A useful and important type of behavior is state-based and time-invariant. A

state-based and time-invariant behavior is a behavior whose traces, after any time, are

totally dependent on the current snapshot. State-based and time-invariant behaviors can

be defined using the generalized Kripke structure.

The formal method for behavior verification consists of a set of model-checking

rules, which is a generalization of the model-checking rules developed for concurrent

programs. There are three types of rules: invariant rules (I), stability or eventuality rules

(L) and timelines rules (T) [21].

3.4 Summary

23

In Constraint Nets, timed V-automata are simple to use for requirement specifications.

However, they are not powerful enough to represent all possible behaviors. The

verification method provides a set of formal model checking rules, which can be used to

guide a formal proof procedure. However, the invariants, Liapunov, and timing functions

are not automatically created, and the verification of the rules is not automatic, in

general. Nevertheless, the C N approach can be used to solve many problems in hybrid

system modeling, designing, specification, and verification.

This chapter does not attempt a comprehensive illustration of constraint nets. It

endeavors to provide basic C N principles for CNJ, and make the thesis self-contained.

While the system design of CNJ includes the modeling language, the requirement

specification language as well as the verification method, until now, CNJ has only

provided the support for the modeling language. We propose in future work, adding the

specification and verification languages to the CNJ tool based on the existing CNJ's

architecture since our design allows for it.

24

CHAPTER 4 CONCEPTS AND,ARCHITECTURE OF C N J

In CNJ, there are predefined icons provided for users to choose, drag and drop, and

connect together. CNJ supports modularity and hierarchy in C N programming. After

completing the model design, users can compile it, simulate it, and see the animation

effect. This chapter describes the design idea, requirement analysis and implementation

mechanism of CNJ, as well as the class architecture implemented in CNJ.

4.1 Main Idea

C N is a family of visual programming languages. A constraint net consists of locations,

transductions, and connections, where locations are depicted by circles, transductions are

depicted by rectangles, and connections are depicted by arcs. When users write programs

in constraint net language, intuitively, the simplest method is to allow them to drag and

drop the predefined nodes, then customize their functions, size, and appearance. Finally,

the designed or drawn program is able to run.

In CNJ's framework, the realization of such a visual programming environment is

based on a few ideas. There are three specific types of nodes for composing a constraint

net graph. From the viewpoint of component-based software engineering, each type of

node may be implemented as a software component, which is easier for users and

program developers. In Java, JavaBeans is the only candidate to support software

components. We plan to provide a set of elementary, yet powerful building blocks for

constraint net modeling and simulation. The building blocks are implemented with

JavaBeans. Each constraint net node is a Java bean, and is added to the CNJ

environment, then customized.

To allow for adding a Java bean, the CNJ environment is required to support the

Bean Introspection mechanism. There should be a library of utilities and support objects

provided to identify the properties, events, and methods that a Java bean supports. With

25

it, the environment can customize the constraint net beans in their functionality in order

to meet programming requirements.

The communication between Java beans uses Java's event mechanism. Locations

and ports of transductions are wired by connections. The Java event mechanism allows

Java beans to act as event sources for event notifications that can be caught and

processed by some other listeners. The designed constraint net is like a dataflow graph

where data are relayed and processed from input locations to output locations. Constraint

net modules are coupled by interface locations. If a module's interface location has the

same name as one of this module's outside connected locations, the two locations are

actually connected together transparently, and communicate with each other (see Figure

4.1).

There are several different methods for modeling a hybrid dynamic system, such

as bottom-up, top-down, and middle-out. In C N , these modeling methods are generally

realized by hierarchical composition and the coupling of modules through input and

output interface locations.

In fact, a transduction can probably be specified as an arbitrary function. It is

certainly impossible to provide all of the arbitrary functions. A few basic functions are

provided in CNJ, such as +, -, *, /, or, <, >, sine, if...then...else..., delay, ... Based on

these, complicated functions for particular complex systems are able to be

compositionally represented.

After users complete designing a constraint net, the constraint net is stored away.

Unlike JavaBean's serialization, where a bean is converted into data stream and written

into storage, an XML-based file format is used to save a constraint net. We defined

Constraint Net Markup Language (CNML) as CNJ's standard interchange file format.

C N M L provides CNJ with a lot of advantages that X M L inherently owns.

Figure 4.1 illustrates how to put together a system model by bean objects. Using

this method, a system model can be built with much less effort by simply picking,

zooming, customizing, and coupling components from libraries. The locations labeled

with "loc" are modules' interface locations, with which the two modules are connected

with each other.

26

Figure 4.1. Putting together a system from bean objects

4.2 Requirement Analysis

To work as a visual programming environment, CNJ should be able to support users to

'draw' a program in constraint nets. When programming visually, users choose

locations, transductions, connections, and modules to put together a constraint net. To

mimic the realistic manual C N design, a component-based modeling and programming

framework is the most convenient and beneficial method for building CNJ.

4.2.1 System Requirements

There are several requirements for this kind of modeling and simulation environment:

• First, it should enable developers to interactively pick components, and place them

onto a work area. These components are CN's atomic nodes: locations,

transductions, connections, and modules.

27

• Second, connecting has to be accomplished in a way where events and data can be

exchanged correctly among the components.

• Third, the convenient interactive customization of bean properties should be

supported by the environment.

• Fourth, there has to be a method to check each C N node's dynamic values. For

instance, users might wish to see a location's changing values while a simulation is

running.

• Finally, such a modeling and simulation environment has to be simple to use and

execute. Also the designed model should be reusable as a new component in any

other hybrid system. In this case, a very complicated system can be built by

assembling some less complicated components.

During our system design period, we hoped to make CNJ run on the Internet as a

Java applet, for it is very helpful and important for people to learn and study constraint

nets. However, Java applets have a few limits to running on the Internet for several

reasons. For instance, an applet runs very slowly under severe network restrictions, it

cannot read or write to the local disk, and it has less rich GUI components than a Java

application. Therefore, we chose to implement CNJ as a Java application first. Moreover,

the implementation of CNJ in Java brings some advantages, such as platform portability,

simple implementation, robustness, reliability, and so forth.

In such a visual programming environment, users 'draw' constraint net programs,

instead of writing code for them. The look and feel is intended to resemble the style of

some popular drawing tools such as Adobe Illustrator, MS Painter, and Unix xfig to

support constraint net designing. In addition, to make the GUI respond as quickly as

possible, we adopt multi-threaded programming to minimize the response time to users'

action. In Constraint Nets, a model possibly consists of dozens of modules that are

hierarchically located in different levels. To support as many modules as possible, CNJ

uses Multiple Document Interface (MDI) to display each module in a child window.

Thus, every module component corresponds to a child window in the MDI desktop.

28

4.2.2 User Groups

CNJ is supposed to be used by three different types of users in three different ways.

They are the CNJ Users, CNJ Experts and CNJ Programmers. A CNJ user uses a set of

predefined, ready-to-use Java beans (locations, transductions, modules, and clocks) to

model a hybrid dynamic system. After picking the beans, he or she can customize them

by setting their properties in a dynamic interactive window (PropertyEdit Window), then

connect them together, and run simulations with them. He or she needs to know nothing

about Java language except for constraint nets. There should be a simple installation and

easy-to-use configuration for a CNJ user in different platforms. In most cases, this type

of user only needs to know how to design a constraint net. We consider CNJ users as the

main client. Also, they profit most from the component-based modeling and simulation

environment. It should be less effort for them to model an application-specific control

system.

Although CNJ provides all the necessary building blocks for constraint nets, they

are still not sufficient to build an arbitrary hybrid system because a transduction bean is

not powerful enough to support an arbitrarily complex function. There is a set of basic

function options for transduction beans. In most cases, a complex function can be built

by those basic transductions. However, occasionally, when building a complex function,

a user might find that there is an indispensable basic function not yet provided by CNJ.

In this situation, another type of user, CNJ experts, is needed. Besides the capabilities a

CNJ user has, a CNJ expert also knows how to write programs in Java in order to

implement new functions without which a necessary function cannot be built. A CNJ

expert heavily relies on Java development tools to implement new functions. However,

writing Java code to add new functions is not too troublesome. Based on explicit

guidelines, he or she can realize this by modifying a few codes in several specific places.

Although the task of a CNJ expert is challenging, it is still not the same as that of

a CNJ programmer. A CNJ programmer's task is the most demanding. He or she needs a

good understanding of CNJ's source code, detailed structure, modeling and simulation

concepts, Java Beans, C N M L , as well as the maximization of components' reusability.

29

4.3 System Architecture

CNJ is a hybrid system modeling and simulation environment. With this tool, users can

model or render a control system visually in constraint nets (CNRender). Also CNJ is

able to run or execute the designed models that are driven by Clocks (CNRun). When

there is an animation package connected to that control system, the system's running

result can be shown explicitly, and also, users can set or change input locations' values

interactively through the animation window. The architecture of CNJ is shown in Figure

4.2.

Users

i i

r CNJ
Animation Packages

CNJ CNJ

CNRun CNRender

Designed Models
in Constraint Nets^,

Figure 4.2. Architecture of CNJ

The graphical user interface is an important part, and has the same style that an

interactive drawing tool has. It has two main windows: CNFrame and PropertyEdit, as

shown in Figure 1.1 in Chapter 1. The CNFrame window is the bigger one. It consists of

MenuBar, ToolBar, ToolPane, and DrawPane. A l l the necessary C N nodes are contained

30

in the ToolPane panel (the left column) where there are the Connection bean, Location

bean, Transduction bean, Clock bean, and Module bean. DrawPane is the center area

for drawing constraint nets and has a MDI (Multiple Document Interface) for designing

different hierarchies of modules. PropertyEdit window is the smaller one lying to the

right, close to the CNFrame, and displays corresponding properties for the focused C N

node in the left DrawPane area.

To design a constraint net model, users need to choose a graphical C N node from

the ToolPane, then drag-and-drop it to the DrawPane. After that, they customize the

node's properties in the PropertyEdit window. They can also use connections to wire two

C N nodes from the source's output port to the destination's input port. In order to support

bottom-up modeling, we implement the "grouping" function to allow designers to

generate a higher level of new module component which accommodates those grouped

nodes. To support top-down modeling and middle-out modeling, we provide child

windows to display modules' content. By double-clicking a module component, its child

window pops up accordingly. To make the user interface respond as quickly as possible,

CNJ uses multiple-threaded programming with an appropriate synchronization

mechanism.

In CNJ, there are seven packages. For different purposes, Java classes are placed

under the packages separately (See Figure 4.3).

• GUI package

There is plenty of development work related to user interface implementation.

There are several windows and a few panels for designing constraint nets interactively.

CNFrame.java corresponds to the left main window. PropertySheet.java and

PropertySheetPanel.java correspond to the right main window. Connection .Java

implements the connection class in C N . ToolPane.java is for the left column panel in the

CNFrame window, in which constraint nets' graphical elementary nodes are located.

BeanWrapper.java seems like a "wrapper" for a Java bean. Every instantiated bean is

actually contained and packed in a BeanWrapper object when it is shown in CNJ.

EditedAdapter.java works as an adapter which can listen to the PropertyChangeEvent,

and transfer the event to a proper object to handle it. In the center of the CNFrame

31

window, it is a Multi-Document desktop with a set of child windows within it. The child

window is realized in DrawFrame.java. PrintUtilities.java enables the printing of a

constraint net, and the export of a constraint net to a postscript file. DrawPane.java is a

big file which has approximately 2,000 lines of code. It works as a drawing area

embedded in the DrawFrame child window. Lots of constraint net drawing and

designing mechanisms are implemented in the class of DrawPane.

(J Java class

Figure 4.3. Class architecture graph

• PropertySupport package

By the means of JavaBeans Introspection, CNJ is able to detect a bean's properties. A

property might have either a string, integer, float, or Color type. For each type, there is a

PropertyEditor to allow for displaying and editing this type of data. PropertyColor.java

supports the PropertyEditor for the Color property; PropertyText.java supports the

32

PropertyEditor for the String property; PropertySelector.java supports the PropertyEditor

for the Items (multiple options) property.

• xml package

After constraint nets are finished or partly completed, they are stored in an X M L -

based file format of C N M L (Constraint Net Markup Language). To read and write a

C N M L file, the class of CNMLIO.java is implemented and put in the xml package.

• CNAdv package

At the top right of the CNFrame window, there is an animation panel for advertising

CNJ tool. Its classes are placed under this directory.

• CNBeans package

A l l of the C N beans are placed in this package. It includes Java bean classes for

transduction, location, clock, and module. These are inherited from one parent class

named CNNode. Also, there are four subdirectories under the CNBeans: Clock,

Transduction, Location, and Module. Since Transduction is realized as a Java bean, its

bean supporting files are placed under its subdirectory, including:

• Transduction.java

• TransductionBeanlnfo.java

• CNFunction.java

• CNFunctionDlg.java

• PropertyCNFunction.java

• FunctionCustomEdi tor .java

Similarly, the Location package has Location.java and LocationBeanlnfo.java. The

Clock package has Clock.java and ClockBeanlnfo.java. Also, there are Module.java and

ModuleBeanlnfo.java in the package of Module.

33

4.4 Summary

This chapter gives the design idea, system requirements, and system design of CNJ. The

requirement analysis determines that CNJ has the interactive drawing look-and-feel,

while supporting visual modeling as well as real-time simulation. The utilization of

component-based technology (JavaBeans) gives rise to the extensibility of CNJ and

reusability of module components. Moreover, the class architecture and package

composition of CNJ are also presented.

34

^ C H A P T E R 5 GRAPHICAL USER INTERFACE DESIGN

This chapter illustrates the GUI design of CNJ. The tool is a component-based modeling

and simulation environment where each C N node is a bean, and CNJ itself, is a

JavaBeans introspecting environment. The design methodology is based on assembling

or drawing a constraint net from a set of graphical building blocks (CN nodes), and then

running or simulating that program. CNJ aims to provide users with numerous

convenient features, such as drag-and-drop, zoom in, zoom out, move, automatic

connection wiring, and so on. To avoid the slow response of GUI written in Java, it uses

multi-threaded programming among most UI panels. The following sections describe the

user interface architecture, UI threads, important supporting classes, and C N nodes as

beans.

5.1 User Interface Architecture

In CNJ's user interface, there are dozens of panels with different purposes. To support

human-computer interactive functions, CNJ's windows have several layers of Java

components. First, we introduce the concepts and functions of those panels. Then we

describe how the GUI is composed.

5.1.1 GUI Introduction

As described in Section 4.3, there are two main windows in CNJ: CNFrame and

PropertyEdit. CNFrame is the left bigger window for supporting constraint net designing

and simulation. PropertyEdit is the right one, supporting the dynamic customization of

the focused object's properties. Figure 5.1 presents the composition graph of CNFrame.

35

Menu Bar Tool Bar Advertisement Pane

Grouping

Transduct ion-

Locat ion -

Connection -

Clock _

M o d u l e -

Module Border-

Tool Pane-

MDI Desktop Status Pane Draw Pane Draw
Internal
Frame

Figure 5.1. CNFrame composition

On the Tool Pane, there are seven icons. The five icons of Transduction,

Location, Connection, Clock, and Module are C N nodes, which serve as building blocks

for designing a constraint net. Whenever a node is needed, users click its corresponding

icon and drag-and-drop it to the central Draw Panes. The "grouping" icon is used in the

method of bottom-up modeling. That is, when a user wants to convert several

components into a module, he or she uses the "grouping" function to circle those

components, and then a new module is created from them at a higher level. "Module

Border" is used for drawing a dashed-line round-corner rectangle. In a constraint net

36

module, a border is required to separate input and output interface locations from other

components.

In the center of the CNFrame is the MDI desktop. The MDI desktop is used as a

container to create a multiple-document interface, or a virtual desktop. It manages

potentially overlapping Draw InternalFrames, as there are probably dozens of Draw

InternalFrames within it. A Draw InternalFrame extends JInternalFrame and can be

added to the MDI desktop. A Draw InternalFrame displays a set of constraint net

components. It is either a C N module or the highest level of a model. The Draw

InternalFrame usually corresponds to a specific module at a higher level. When users

double click a module component, its Draw InternalFrame window pops up accordingly.

Each Draw InternalFrame contains a Draw Pane. Draw Pane is the actual area for

painting visual components and allowing them to be visually manipulated. Before being

added to a Draw InternalFrame, Draw Pane is placed into a JScrollPane, which provides

a scrollable view of Draw Pane. When users layout a constraint net larger than CNJ's

window size, the drawing area is extended automatically. In CNJ, most of the work of

constraint net modeling is done in the Draw Pane windows.

Status Pane provides users with interactive information, such as prompts,

running results, and online help. Advertisement Pane is an animation window used to

show lines of fancy words about CNJ with animated effects, such as contributions,

authors, copyrights, and acknowledgements.

5.1.2 GUI Composition

The graphical user interface of CNJ is created using Java Swing components. It has a

predefined containment hierarchy, which is hard to understand unless reading the source

code. We introduce those Swing components, and show how they fit together into a

multi-leveled containment hierarchy. The root of the containment hierarchy is a top-level

container, which provides a place for its descendent Swing components to paint

themselves.

37

CNFrame

contains

JButton

Menu Bar I Tool Bar I MDI Desktop I Tool Pane I Status Pane I AdvPane

Draw InternalFrame JButton JLabel

JScrollPane

Draw Pane

Bean Wrapper 1

CN Bean j

Figure 5.2. Containment hierarchy of CNJ GUI

Figure 5.2 is a diagram of the containment hierarchy for the CNFrame window. It

shows each container created or used by CNJ, along with the components it contains.

CNFrame is the top-level container, which extends the class of JFrame. It

contains components of Menu Bar, Tool Bar, MDI Desktop, Tool Pane, Status Pane, and

Adv Pane. It is also composed of seven levels in its containment hierarchy. In Figure 5.2,

an upper parent component is the container of its child components.

5.2 Multi-threaded Panels

Programs implemented in Java often involve slower speeds because of the Java virtual

machine (JVM) that often interprets the bytecode at the runtime. To avoid this in CNJ,

we implement multiple threads in programs to make the user interface respond as

quickly as possible.

38

In the Draw Pane, users can choose one specific component, and focus on it with

shaded hash bars around it. A thread called focusThread is created in CNFrame.java to

handle the focus change. Whenever the focus has changed, the thread detects it

immediately, and draws hash bars around the new focused object.

When designing a constraint net, users pick an icon from the Tool Pane, then put

it into a Draw Pane. To respond to this picking action, CNJ creates an internal thread of

insertThread in ToolPane .Java. The thread detects that the user has clicked an icon and

that it instantiates a bean object for the icon.

The eventThread is implemented in DrawPane.java. It is blocked by, and waiting

for, a mouse click event. The thread distinguishes two kinds of mouse click events. One

mouse click event is used for inserting a Java bean. The other one is used for drawing a

C N connection. Two different processes are notified and executed for the two mouse

click events.

Finally, the thread of animationThread is created in the animation package. It

runs separately from the CNJ simulation. Depending on its internal clock, it runs in a

variety of speeds. In addition, the animation thread is capable of setting a user's input to

input locations of a constraint net, and at the same time, displaying the simulation result

in an animation window.

5.3 Important UI Classes

In the GUI package, there are a dozen of classes. Among them, DrawPane is the most

important one. Other classes such as BeanWrapper, CNFrame, and

BeanPropertySheetPanel are also important. In this section, we introduce the classes of

DrawPane (shown in Table 5.1) and PropertySheetPanel. The simpler methods in the

DrawPane class are omitted from Table 5.1.

5.3.1 DrawPane Class

39

publ ic c lass DrawPane

Publ ic D r a w P a n e (C N F r a m e mainFrame)

Constructs a new Draw Pane. T h e a rgument of ma inFrame is the

left C N F r a m e w indow wh ich is un ique for each C N J running.

publ ic

C N F r a m e

ge tCNFrame()

Returns the handle of the left C N F r a m e window. .

publ ic void inser tBean(Object bean, Str ing beanName)

A d d s a Java bean to the Draw Pane.

publ ic vo id s ta r tMove(BeanWrapper w, i n t x , i n t y)

Init ial izes a move operat ion after users have c l icked the mouse

button on the wrapper whi le move-cursor appears .

publ ic vo id s ta r tRes ize(BeanWrapper w, i n t x , i n t y , Cursor cursor)

Init ial izes a resize operat ion after users have c l icked the mouse

button on the wrapper whi le res ize-cursor appears .

publ ic void MousePressed(MouseEven t event)

Starts the "grouping" operat ion if some condi t ion is sat isf ied.

publ ic vo id MouseRe leased(MouseEven t event)

Handles the mouse release event.

publ ic void mouseCl i cked(MouseEven t event)

Handles the mouse cl ick event.

publ ic vo id m o u s e M o v e d (M o u s e E v e n t event)

Draws a connect ion segment like a rubber band.

publ ic vo id MouseDragged(MouseEven t event)

Handles the mouse drag event.

publ ic void SetDraggedHandle(in t index)

Records the index of the handle wh ich is chosen by a user f rom a

connect ion.

Continued

40

private GetGroup ingBox(in t deltaX, int del taY)

rectangle
Figures out the on-screen box to be d rawn to represent the

proposed new locat ion of a group ing box.

pr ivate void
DrawModu leBox(Graph ics g, Rectangle box)

Draws a dashed line round-corner rectangle as a modu le border.

publ ic void r u n ()

A thread's running body to handle users ' mouse c l ick ing events.

publ ic void D o E v e n t H o o k u p ()

Starts to d raw a constra int net connect ion be tween two beans, and

create the first segment of that connect ion .

publ ic vo id scro l lLayout (Rectangle area, BeanWrapper wrapper)

Checks whether a bean is out of the area of the or iginal w indow. If

it is, C N J wil l adjust the size of the drawing area to fit it.

pr ivate void GroupToModu le (in t x 1 , int y 1 , i n t x 2 , int y2)

Groups the componen ts inside the rectangle of (x1,y1) and (x2,y2)

into a new module, wh ich is created at a higher level.

Table 5.1. DrawPane class

There are a few other methods for supporting the creation of new C N beans

based on the data read from a C N M L file. These methods includes:

createTransductionFromElementQ, createLocationFromElementi), createModuleFromE

lementQ, createConnectionFromElementQ, and createClockFromElementQ.

Other methods provide support for drawing connections, while keeping

connection segments horizontal or vertical, selecting a component, deleting a

component, dragging a rubber line, scrolling a view, building the communication

between two beans, compiling a designed constraint net, as well as running simulations,

and so forth.

5.3.2 PropertySheetPanel Class

41

CNJ realizes the Bean Introspection mechanism which enables the identification of a

bean's properties and methods. Using this method, we do not need to customize a

different PropertyEdit window for each kind of bean, and CNJ can add appropriate

components into the PropertyEdit to form a new edit window for the bean. This step is

executed automatically by programs.

The PropertySheetPanel class mainly supports Bean Introspection. Whenever

users click an object in the left CNFrame window, the setTarget() method in the

PropertySheetPanel is called. The method first identifies the new focused object's

properties, then creates and adds their corresponding visual components in the

PropertyEdit window. Its code is shown in Figure 5.3.

* setTarget() provides support for Bean Introspection.
* The Argument w is current focused bean in the left
* CNFrame window. When the focus is changed, this
* method will be called. The visual components for
* that focused bean are then added into PropertyEdit.

publ ic vo id se tTarge t (BeanWrapper w) {
proper tyFrame.getContentPane() . removeAI I () ;
removeAII() ;

wrapper = w;
bean = w.getBean() ;

try {
Beanlnfo bi = ln t rospector .getBeanlnfo(bean.getClass()) ;
pds = b i .getPropertyDescr iptors() ;

} catch (In t rospect ionExcept ion ex) {
Sys tem. e r r .p r in t ln fProper tyEd i t W i n d o w couldn' t introspect") ;
return;

}
int len = pds. length;

edi tors = new PropertyEdi tor [len] ;
va lues = new Objectf jen];
v iews = new JComponentfJen];
names = new JLabel [len] ;

// create event adaptor

Edi tedAdaptor adaptor = new Edi tedAdaptor (proper tyFrame) ;

for (int i = 0; i < len; i++) {

Str ing name = pds[i] .getDisp layName() ;
C lass type = pds[i] .getPropertyType() ;
Method getter = pds[i] .getReadMethod() ;
Method setter = pds[i] .getWri teMethod() ;

Continued
42

if (getter == null || setter == null) cont inue;
J C o m p o n e n t v iew = null;
try {

Object argsD = {};
values[i] = get ter . invoke(bean, args);
C lass pec = pds[i] .getPropertyEdi torClass() ;
PropertyEdi tor editor = nul l ;
if (pec != null) {

editor = (PropertyEdi tor) pec.newlnstance() ;

}
if (editor == n u l l) {

editor = Proper tyEdi torManager . f indEdi tor (type) ;

}
if (editor == null) {

Sys tem. ou t .p r in t l n fCan ' t f ind the PropertyEdi tor f o r : " + name)
cont inue;

}
editors[i] = editor;
edi tors[i] .setValue(values[i]) ;
ed i tors [i] .addProper tyChangeLis tener(adaptor) ;
if (edi tor .getValue() instanceof Color) {

v iew = (JComponent)
new Proper tyColor (proper tyFrame,edi tor) ;

v iews[i] = v iew;

}
if (edi tor .getValue() instanceof Str ing) {

v iew = (JComponent)
new PropertyText(edi tor) ;

v iews[i] = v iew;

}
if (name.equa ls f func t ion")) {

v iew = (JComponent)
new Funct ionCustomEdi tor (proper tyFrame,ed i tor) ;

v iews[i] = v iew;
}
if (name .equa ls f t ype ")) {

v iew = (JComponent)
new PropertySelector(edi tor) ;

v iews[i] = v iew;
}

} catch (Invocat ionTargetExcept ion ex) {
Sys tem.er r .p r in t ln fCan ' t invoke a getter method") ;
ex.pr in tStackTrace() ;
cont inue;

} catch (Except ion ex) {
Sys tem.er r .p r in t ln fCan ' t handle the property: "+name) ;
System.err .pr int ln(ex) ;
cont inue;

}
names[i] = new JLabe l (name) ;
add(names[i]) ;
add(v iews[i j) ;

}
proper tyFrame.getContentPane() .add(th is , BorderLayou t .CENTER) ;
proper tyFrame.show() ;

}

Figure 5.3. Method of setTarget() in BeanPropertySheet

43

5.4 Constraint Net Nodes

The building blocks for constraint net modeling consist of transductions, locations,

modules, clocks, and connections. Each of these is implemented as a Java bean, except

for connection, which is implemented as a geometric polyline. Their classes are put

separately into different packages. To implement the C N nodes as Java beans, some

programming rules and Java classes are required.

The C N nodes of transduction, location, module, and clock have some common

attributes and methods. We place these common attributes and methods into one parent

class named CNNode. The CNNode is thus inherited by all the constraint net node

classes shown in Figure 5.4.

CNNode

Transduction

Location

Module

Figure 5.4: CN bean classes

5.4.1 Transduction Bean

The class of Transduction is a child class of the CNNode. Its related classes are put

under the directory of Transduction (in one package). They are classes of Transduction,

TransductionBeanlnfo, CNFunction, PropertyCNFunction, FunctionCustomEditor, and

CNFunction.

44

The Transduction class contains an important attribute of the CN function, which

is to define its supported function. It implements a variety of methods for computing

different functions, such as +, -, delay, sine, cosine, and so forth. The CNFunction class

represents a constraint net function, and has the attributes of function name, input

number, input data type, output data type, and input buffer. TransductionBeanlnfo class

provides explicit information about a transduction bean's properties, methods, and

events. Without the Beanlnfo class, all of its implicit properties, methods, and events

from Java foundation classes are shown in CNJ.

~W Properties - Transduction - • X

backgroundColor

color

foregroundColor

funct ion

label

Figure 5.5. PropertyEdit of Transduction

X~W Function Definition for - \M\x\

datatype at port 1:

data type at port 2:

integer "w datatype at port 1:

data type at port 2: integer •

Ok Cancel

i

Figure 5.6. Transduction definition for "minus"

+

N / A

_ +

45

file:///M/x/

The class of PropertyCNFunction inherits from PropertyEditorSupport the ability

to allow for editing a CNFunction object. After finding the CNFunction type, CNJ

displays a specific visual view for it. The visual view is provided in the class of

FunctionCustomEditor which supports both the showing and choosing of a function

name in a ComboBox (see Figure 5.5). After users choose a function name, a new dialog

pops up to let them customize that function (see Figure 5.6). The implementation of

function customization is in the class of CNFunctionDlg.

5.4.2 Location Bean

The Location class also inherits from CNNode. A location is used to store a trace of a

constraint net. Its attributes include location type, trace clock, and trace value. A location

type can be either integer, real, boolean, event, or vector. Its bean-related classes are put

under the directory of Location. The class of LocationBeanlnfo provides explicit

information about Location bean's properties, methods, and events. Based on the

LocationBeanlnfo, the properties of Background Color, Foreground Color, Color, Label,

Type, Trace Clock, and Trace Value are shown in the PropertyEdit window. Extended

from PropertyEditorSupport, the LocationTypeEditor class allows CNJ to access a

location's type value.

5.4.3 Clock Bean

The Clock contains classes similar to what Transduction and Location have: Clock and

ClockBeanlnfo. A clock bean has an important property of "cycle", which defines how

many milliseconds it takes for a clock to tick. If its cycle is set to 10 milliseconds, the

clock's frequency is 1000/10 = 100 Hz. To support the Clock's timing, CNJ uses Java

Swing's Timer class. A Timer object is able to fire action events (clock triggering events)

to each of its connected transductions in a specified frequency.

5.4.4 Module Bean

46

Module classes are put under the directory of Module. Similar to the other beans, the

Module bean has related classes of Module and ModuleBeanlnfo. The module itself does

not have many properties, and it only has Background Color, Foreground Color, Color,

and Label. Each module bean corresponds to a constraint net module, and has a child

window to show its contents.

Modules are generally used for the methods of top-down, bottom-up, and middle-

out modeling. They are hierarchically located in different levels. To provide support for

the communication between modules in CNJ, some special methods are developed. A

module bean's input location is relayed inward to the module's input interface location,

and a module's output interface location is relayed outward to the module bean's output

location. When the module is driven by a clock, its transductions must be triggered in a

correct order because the transductions have a dependency relationship among them.

CNJ uses the transduction scheduling algorithm and a heuristic method to find their

dependency, and then lets the clock drive them in that order.

5.4.5 Connection

A connection is one of the building blocks for constraint net modeling, but it is not

implemented as a Java bean. A connection is drawn as a red directed polyline to connect

locations and ports of transductions. When a connection is created between one location

and one transduction, there is an event transfer from the source to the destination. The

Connection class is put under the directory of GUI. Methods in Connection.java deal

with drawing a polyline, editing and moving handles of the polyline, as well as checking

the compatibility of data types for the connected location and transduction.

5.5 Summary

This chapter concentrates on an overview of CNJ's graphical user interface. It introduces

the composition and architecture of the user interface. To provide an easy-to-use,

extensible and convenient user interface, CNJ creates multiple threads in program and

utilizes the JavaBeans Introspection mechanism. Furthermore, it describes some

47

important UI classes and the detailed implementation of C N nodes as Java beans

transductions, locations, clocks, modules, and connections.

48

CHAPTER 6 C N J SIMULATION

After modeling a hybrid system in constraint nets, designers can run a simulation to

verify the model. This chapter introduces how to support the real-time simulation in

CNJ, which implements the object-oriented Java Event mechanism. Before running the

simulation, a compilation step is used to detect the syntax errors. Since C N is a

generalization of dataflow with multiple data and events, and contains a set of

dependency relationships, CNJ has to find a correct order for the data flow using the

Transduction Scheduling algorithm. Another issue on the real-time simulation of CNJ is

also discussed in this chapter.

6.1 Java Event Mechanism

In the past, a program which tried to figure out what the user was doing, had to actively

ask for such information itself. This method often implies an infinite loop which

repeatedly checks a user's status, and then takes the appropriate action. This technique is

known as polling. Polling is workable, but it tends to be unwieldy when used in modern-

day applications because of its C P U waste and large code in one location.

In Java, these problems are solved by event driven programming, which is also

popular in Window systems. An event describes a specific kind of user action. Rather

than the program collecting events, J V M notifies the program when an interesting event

occurs. Programs that handle user interaction in this way are called event driven [19].

To receive an event, a Java object has to implement the appropriate interface, and

be registered as an event listener on the appropriate event source. After hearing an event,

the object performs some actions to handle the received event. Each event-handling code

executes in the single thread of event-dispatching thread. This ensures that each event

handler finishes executing before the next one executes.

In CNJ, a connection's target node registers to listen to the events from the

source node of the connection. After setting up a connection between a location and a

49

port of transduction, the data flows from the location to the transduction, or from the

transduction to the location, depending on the connection's direction. Different from

event types used in the GUI implementation, CNJ utilizes the PropertyChangeEvent to

support the CNJ simulation. In CNJ, the PropertyChangeEvent is applied in three cases:

(a) Transduction works as the event source and Location as the event listener, (b)

Location works as the event source and transduction as the event listener, (c) Clock

works as the event source and transduction as the event listener. These three cases each

carry different data objects. These are shown in Figure 6.1.

Transduction

Event Source

(a) Transduction as event source, Location as event listener

Transduction Event Listener

Location
value

Transduction ft Event Listener

Event Source
Transduction Event Listener

(b) Location as event source, Transduction as event listener

50

Event Listener

Event Listener

Event Listener

(c) Clock as event source, Transduction as event listener

Figure 6.1. Three types of PropertyChangeEvents in CNJ Simulation

To realize such a mechanism for supporting PropertyChangeEvent propagation

between constraint net nodes, three bits of code are required:

1) In the event listener class, write the code to specify that the class implements the

PropertyChangeListener interface.

publ ic c lass C N B e a n implements Proper tyChangeLis tener {

2) In the event source class, write the code that registers an instance of the event listener
class.

publ ic Proper tyChangeSuppor t pceLis teners =

new Proper tyChangeSuppor t (th is) ;
pceL is teners .addProper tyChangeL is tener (ins tanceOfCNBean) ;

3) In the event listener class, write the code that executes the event handler in the listener

interface. For instance, a transduction bean calculates a new value after getting its inputs,

and then fires an event to its connected output location.

publ ic vo id p roper tyChange(Proper tyChangeEvent evt) {
... // code that handles those heard events .

// Transfer its new va lue to its registered event l isteners.

pceL is teners . f i reProper t yChange fEven t Name" ,
newvalue,
o ldvalue) ;

}

51

After a constraint net is designed, the relationship between event sources and

event listeners is built up. Whenever there is a data change, the event of data changing is

propagated from the source to the connected listening nodes, which continues to

propagate after some processing. During the process of propagation, C N clocks are

indispensable. Clock is a special kind of transduction with no input locations. It has a

specifiable frequency. A clock drives all of its connected transductions in each cycle to

trigger them to compute their functions. Without clocks, data is not able to flow further,

since transductions' function calculation and data propagation happen only if they get a

clock event.

The following constraint net example in Figure 6.2 represents an equation of x(t)

= x(t-l) + step. We assume x = 100, step = 2, at t = 0, and the time unit is equal to the

clock's cycle (in milliseconds).

Figure 6.2. A constraint net to represent x(t) = x(t-l) + step

Users are able to run the simulation where transductions of "+" and "delay(l)" are driven

by a clock. The simulation output is shown in Table 6.1.

52

t=0 t+1 t+2 t+3 t+4 t+5 t+6 t+7

X 100 102 104 106 108 110 112 114

step 2 2 2 2 2 2 2 2

Table 6.1. Simulation output of a simple constraint net

6.2 The Compilation Step of CNJ

In the design of constraint nets, users might make some errors which are either syntactic

or semantic. In C N , there is a set of syntax rules for designing a well-formed constraint

net. Formally, a constraint net is a triple C N = <Locations, Transductions, Connections>.

To design a connection, users have to follow restrictions:

(1) there is at most one output port connected to each location;

(2) each port of a transduction connects to a unique location; and

(3) no location is isolated.

The above restrictions also affect the design of transductions and locations. First,

a transduction/location cannot be directly connected with another transduction/location,

which means a transduction is always connected to a location. Second, each location can

have only one output port. Third, a location's input should be dependent on a unique

transduction's output. Fourth, a location's data type should be compatible with the data

type of its connected transduction port.

Not obeying the rules results in syntax errors. In CNJ, we implement a

compilation module to detect syntax errors. After a user completes designing a constraint

net, he or she clicks the menu to start a simulation. However, the simulation cannot run

unless it passes the compilation. The compilation module works as follows.

• First, it checks the data type compatibility for the connected locations and

transduction ports. There are 5 kinds of data types in CNJ: integer, float, boolean,

event, and vector. When finding such a kind of error, it displays the prompt

53

"Error: data type incompatibility from Location-^ Transduction typel, type?' if

data flows from a location to a transduction.

• Second, it checks to make sure that there is no case where two transductions are

connected together directly.

• Third, it checks whether all the transduction's functions are defined completely

and correctly. If not, a prompt "Error: undefined Transduction name" pops up.

• Fourth, it checks to ensure a location's input depends on a unique transduction.

• Finally, it checks whether each of the input locations in the top-level module has

an initial value. If there is one input location not set, CNJ displays an error

prompt "Should not start simulation since not all the input locations are set."

Whenever a syntax error is found, the simulation stops immediately. Users have

to redesign their constraint nets to correct the syntax errors. CNJ's compilation step

greatly reduces users' design errors. However, because it is still a prototype, it does not

guarantee that it constrains users to make absolutely syntax-correct constraint nets.

Besides those syntax errors, there are semantic errors. A semantic error might

occur while the simulation is running. When a Java exception is thrown out, a semantic

error occurs. In our experiments, a semantic error might occur when a constraint net is

very complex and has a lot of cycles (feedback) in its graph. This problem is related to

the transduction scheduling algorithm, which sorts out transductions and then drives

them one by one. Such an error can be avoided if users know how to break the cycles

through defining some special locations in non-white color ("heuristic tips"). The

transduction scheduling algorithm is introduced, in detail, in Section 6.3.2.

6.3 Dataflow Issue

C N is a dataflow with multiple data and events. Data and events produced and consumed

by C N nodes are carried by Java objects, which flow along the connections from tails of

connections to their heads. The dataflow computing model is based on the flow of data,

not on the flow of control. Unlike the control-flow computing model, it assumes that a

program is a data dependency graph whose nodes denote operations, and whose edges

54

denote dependencies between operations. A dataflow computing model executes any

operation denoted by a node as soon as its incoming edges have the necessary operands

[11]. There are two kinds of dataflow models: data-driven dataflow model and demand-

driven dataflow model.

6.3.1 Data-Driven and Demand-Driven Models

The dataflow model described above can be more accurately characterized as a data-

driven dataflow model. It often implies the qualification of "data-driven". The data-

driven dataflow model was invented as an architectural abstraction, based on which

dataflow computers are built up. An Operand set is used as the basis for the firing rules

in data-driven systems. The firing rules may be strict or non-strict [11]. A strict firing

rule requires a complete operand set to exist before a node can fire; a non-strict firing

rule triggers execution as soon as a specific proper subset of the operand set is formed.

The latter rule gives rise to more parallelism.

Another important branch of the dataflow model is demand-driven dataflow. It

was invented as a computing model to efficiently evaluate programs in non-strict

dataflow languages. The basic idea behind demand-driven dataflow execution is that "an

operation of a node will be performed only if there are tokens on all the input edges and

there is a demand for the result of applying the operation" [11]. Its main motivation is to

deal efficiently with non-strictness, something that data-driven cannot deal with

efficiently.

6.3.2 Dataflow in CNJ

The language of constraint nets is a graphical programming model whose programs can

be given mathematical semantics under a particular data algebra. Constraint nets appear

similar to dataflow graphs, but they do not make any assumptions about how they are

evaluated. It is possible to be either data-driven or demand-driven. It also often denotes a

semantic model, which is a composition of other modules corresponding to subnets. To

execute a constraint net program, CNJ regards it as a specific computation given a set of

55

sequences of input values and a sequence of demands for output values of the constraint

net. At the initial step, only the values of the input locations are defined. At each

subsequent step, some of the undefined locations are computed and eventually, the

constraint net outputs are computed.

In CNJ, a C N module component is often both connected with and driven by a

clock. To evaluate the module correctly, the transductions contained in the module have

to be triggered in proper sequence. CNJ uses the transduction scheduling algorithm to

figure out a right dependency relationship within the transductions. Then the clock

triggers those transductions one by6'one in that order. This approach allows the

computation of constraint net modules to work as demand-driven dataflow, and it works

well.

6.3.3 Transduction Scheduling Algorithm

In general, a module component is triggered by one outside clock. It consists of a set of

connections, locations and transductions. The clock's driving events are transferred to the

module's inside transductions, but the problem is how to drive the transductions and in

what order. To find out a correct order to drive the transductions, we implement a

scheduling algorithm based on the topological sorting algorithm.

Topological sorting is a natural problem in many algorithms on directed acyclic

graphs (DAG). Topological sorting orders the vertices and edges of a D A G in a simple

and consistent way. It can be used to schedule tasks under dependency constraints. The

problem of topological sorting is described as follows:

Input: A directed, acyclic graph G=(V, E) (also known as a partial order).

Problem: Find a linear ordering of the vertices of V such that for each edge (rj) in E,

vertex i is to the left of vertex j.

56

a) A constraint net module

G> (7)a
V y Level 1

Sine + Level 2

Level 3

Level 4

Level 5

b) The hierarchical tree after sorting

57

c) The sorted order to drive the nodes

Figure 6.3. A transduction scheduling example

The topological sorting problem is also applicable to constraint net graphs.

Suppose we have a set of transductions to be driven in a C N module, and certain

transductions must be computed before other transductions. These dependency

constraints thus form a constraint net (also a directed graph). The transduction

scheduling algorithm searches for an order to execute the transductions, such that each is

performed only after all of its previous transductions are executed. In the

implementation, it utilizes the breadth-first algorithm to transverse the constraint net

graph, but in a backward way (from output interface locations to input interface

locations). The algorithm picks vertices in hierarchical levels with the output interface

locations as roots. That is, if a vertex has an out-degree-count 0 it can be next in the

topological order. Then, the algorithm removes this vertex and looks for another vertex

with an out-degree-count 0 in the resulting D A G . It repeats this until all vertices are

added to the topological order. Figure 6.3 represents a constraint net example to illustrate

the algorithm.

Graph a) shows a constraint net module. After applying the breadth-first

algorithm to transverse the graph from the end to the beginning, together with an out-

degree-count in each node, a linear order is reached in Graph b), where the numbers

denote the order of the node in the breadth-first transverse. However, the order in Graph

b) is not the final result yet, since the sequence number is calculated with the roots of the

output locations instead of the input locations. Therefore in Graph c), a correct order is

58

finally acquired after reversing the order in Graph b). Based on the final order, the

execution of the module works correctly. Although the ordered sequence includes both

transductions and locations, the clock only needs to trigger the transductions.

The transduction scheduling algorithm, however, does not work without the

condition that the constraint net has to be a directed acyclic graph (DAG). Sometimes

constraint nets have feedback connections resulting in a few cycles in the graph. In the

complex case of a directed cyclic graph, those cycles have to be broken up, and then it

becomes an acyclic graph.

In C N modules, a cycle forms when there is a backward connection for creating a

feedback. To run the simulation, the particular location in that feedback cycle has to be

assigned an initial value (or else, the involved transduction can never get inputs to

compute). Such a special kind of location is regarded as a "heuristic tip" for breaking up

cycles. When designing a constraint net and confronting a feedback cycle, designers are

required to paint the special location in a non-white background color. It also reminds

designers to assign an initial value to that location before starting the simulation. The

Java method for the algorithm is listed in Figure 6.4.

publ ic vo id .dr iveTransduct ions lnOrder(long t imestamp) {
DrawPane d rawP = d rawFrame.ge tDrawPane() ;
Vec tor vector;
T ransduct ion t ransduct ion;
BeanWrapper wrapper ;

Vec tor orderVector = new Vector () ;

int number = drawP.ge tComponentCount () ;

HashMap v is i tedMap = new HashMap() ;

HashMap dependen tCoun tMap = new HashMapO;
Ob jec tQueue queue = new Ob jec tQueue(number) ; // a F IFO queue c lass.

// First, add the output interface locat ions to Queue,
vector = drawP.getOutput ln ter faceLocat ionWrappers() ;
for (int i = 0; i < vector .s ize() ; i++) {

queue.addToQueue(vec tor .e lementAt (i)) ;
v is i tedMap.put (vector .e lementAt (i) ,new Boolean(t rue)) ;

}

whi le (!queue. isEmpty()) {

Ob jec t current = queue.getFi rs t () ; / W r a p p e r

orderVector .addElement(cur rent) ;

v e c t o r = queue.getConnectedNodes((BeanWrapper) c u r r e n t) ;

Continued
59

for (int i = 0; i < vec to r . s i ze () ; i++) {
wrapper = (BeanWrapper) vector .e lementAt(i) ;
if (!v is i tedMap.conta insKey(wrapper)) {

/* i s L e g a l T o P u s h () dec ides whether a node should be added
* to the tail of the Queue, a lso breaks up cyc les.

*/
if (i sLega lToPush(wrapper ,dependentCountMap)) {

queue .addToQueue(wrapper) ;
v is i tedMap.put (wrapper ,new Boolean(t rue)) ;

}
}

}
queue. removeF i rs tF romQueue() ;

}
BeanWrapper e lement ;
Object bean;

// reverse the order to dr ive in the orderVector .

for (int i = orderVector .s ize() - 1 ; i >= 0; i~) {
e lement = (BeanWrapper) orderVector .e lementAt(i) ;
// t r igger t ransduct ions to compute ,
bean = e lement .getBean() ;

if (bean instanceof Transduct ion) {
t ransduct ion = (Transduct ion) bean;
t ransduct ion .computeResu l t (t imestamp) ;

}
// t r igger modules to execute,

if (bean instanceof Module) {
Module m = (Module) bean;
m.dr iveTransduct ions lnOrder (t imestamp) ;

}
}

}

Figure 6.4. Transduction scheduling algorithm

6.4 Discussion of "Real-time"

Users might run CNJ's real-time simulation to see the system's result and verify their

designed models. A constraint net has one (global) or more (local) clocks with different

frequencies (Hz). The clocks are distributed in different areas or modules. By setting a

clock to an infinitely high frequency, the continuous time structure can be virtually

realized. It also depends on the simulation speed that the system requires.

In general, CNJ's real-time system is composed of a number of Java threads

which execute concurrently, and compete or cooperate to fulfill the requirements placed

60

on the system. Because it runs on digital computers, it cannot be of absolutely real-time

and have no time delay. If those threads' timing (completed before their deadlines) is

correct, we can say that the real-time simulation is correct. There are four types of real

time systems [26]:

• A hard real-time system where a missed deadline causes the failure of the system.

• A firm real-time system where there is no associated value if finishing after the

deadline, but the system can continue to run.

• A soft real-time system where missed deadlines are not ideal, but can be tolerated.

• An interactive system where there is just the "adequate response times".

We develop the transduction scheduling algorithm to schedule the transductions

for execution. Since the algorithm produces the correct order that obeys the

transductions' dependency relationship, the calculation result should be correct. In our

environment where we have a Linux Redhat 7.3 box with a PHI 1G C P U and 256M

R A M , the CNJ's simulation can run correctly in the fastest speed of 50 Hz if the C N

model is not too big. Its performance heavily depends on the hardware speed and its

specific operating system. Moreover, the correctness of the real-time system depends not

only on the logical result of its computation, but also on the time at which the results are

produced.

CNJ simulation runs on Linux boxes. Unix supports a time-slicing (preemptive)

multi-threaded system and it ensures that multiple threads of the same priority share

C P U time. When running CNJ in Linux, there are a group of processes created for the

threads to run. Also, the Linux scheduler latency affects any process's speed. If the

scheduler latency is big, it is impossible for a real-time process to respond faster than the

latency. Most Real Time Operating Systems (RTOS) have kernel code that is written to

be preemptive. However, the Linux kernel is not a preemptive kernel where all interrupts

are created equal [38]. This means that once the kernel has been entered from a system

call, the current process cannot be unexpectedly changed.

61

Linux is not designed to be a RTOS. If users need a hard real-time system in the

10's of microseconds, a modified kernel such as RTLinux, or a dedicated RTOS, is

probably more suitable than Linux as a solution.

6.5 Summary

CNJ simulation is realized by the means of Java event mechanism. C N clocks drive the

transductions to compute results, and drive the data flow along the graph. To make sure

a designed constraint net is well-formed, CNJ calls the compilation module before

starting the simulation. Also, the transduction scheduling algorithm is introduced to

compute a proper order to drive transductions correctly. On the discussion of CNJ's real

time issue, the real-time simulation depends not only on the model's logical

computation, but also on its running environment, which changes with time.

62

7= : — -- •'•.,' — r - r - — r r •• —

CHAPTER 7 CONSTRAINT N E T M A R K U P L A N G U A G E

The Constraint Net Markup Language (CNML) serves as an interchange format for CNJ

to store C N models. It is a preliminary proposal of an XML-based interchange format for

constraint nets. This chapter presents, in the first version, the concepts and terminology

of the C N M L , as well as its syntax, which is based on X M L . In the current version,

constraint nets' general features are included in the C N M L . It also provides a starting

point for the development of a standard format for Constraint Nets.

7.1 XML

X M L stands for Extensible Markup Language, which is a set of rules for defining

semantic tags that break a document into parts and identify the different parts of the

documents [27]. Different from H T M L or Tex, it is a meta-markup language, in which

developers make up the tags they need as they go along. It means they do not have to

wait for browser vendors to catch up with what they want to do. They can invent the tags

when they need to.

X M L describes a document's structure and meaning. It does not describe the

formatting of the elements on the page. The document itself only contains tags that say

what is in the document, not what the document looks like. Formatting can be added to a

document with a style sheet.

X M L documents are most commonly created with an editor. This may be a basic

text editor that does not understand X M L at all, such as vi, emacs, or Notepad.

Moreover, an X M L document does not absolutely have to be a file on some hard disk. It

can be a record or a field in a database, or it may be a stream of bytes received from the

network [27]. An X M L parser reads the document and verifies whether it is well formed.

If the document passes the tests, the parser converts the document into a tree of

elements. Finally, the parser passes the tree to the end application. If this application is a

web browser such as Mozilla, the browser formats the data and shows it to the user.

63

However, other programs may also receive the data. For instance, CNJ might view the

X M L as a constraint net that is composed of transductions, locations, and connections,

then display it in front of users. X M L is extremely flexible, and can be used for many

different purposes. Figure 7.1 shows its whole process.

T X X X X
file.xmJ Xerces

writes ' " " " is read by sends data to displays to

Editor Document Parser Browser User

Figure 7.1. X M L document life cycle

Using X M L involves several related technologies and standards. These include the

following:

• H T M L for backward compatibility with popular browsers. It takes about two years

from the initial release before most users have upgraded to a new browser version

[27].

• The CSS (Cascading Style Sheets) and X S L (Extensible Stylesheet Language)

languages to define the appearance of X M L documents.

• URLs (Uniform Resource Locators) and URIs (Uniform Resource Identifiers) to

specify the locations of documents.

• Xlinks to connect X M L documents to each other.

• The Unicode character set to encode the text of X M L documents.

X M L brings a lot of advantages to program developers. It enables the design of

field- specific markup languages. Individual professionals can develop their own markup

languages. It is a self-describing and simple data format. It can be written in 100 percent

pure ASCII text. In other formats (compressed data or serialized objects), the loss of a

single byte can result in the entire file being unreadable. X M L is designed to be easy for

64

both human and programs to read and write. Moreover, since it is structured and

integrated, X M L is ideal for large and complex documents.

7.2 CNML

C N M L supports all constraint net models. Each C N node has a corresponding Element

defined in C N M L . A file that satisfies the requirements of the interchange file format of

C N M L is called a constraint net file. Each constraint net consists of locations,

transductions, connections, and modules. It represents the graph structure of the

constraint net.

Conforming to X M L , in C N M L , a model and its constraint net nodes are

represented by X M L elements [22] [27][35]. For convenience, the tags of C N M L

elements are named after the constraint net terminology (e.g., <model>, <module>,

<transduction>, <location>, <connection>, and <clock>). When a constraint net model is

saved to a file, each node in the file is assigned a unique ID, which can be used to refer

to the object.

To give further meaning to a C N node, each node has a label. Typically, a label

represents the name of an object, or the marking of a place. For instance, transductions,

locations, and modules have labels.

Each C N node includes some graphical information. For a transduction, location,

connection, or module, its position information must be recorded. In addition, its specific

geometry shape, size, background color, and foreground color are indispensable

information. For a connection, the graphical information is the polyline's coordinates and

its connected nodes' IDs.

To represent the graphical information of a constraint net, C N M L uses the S V G

(Scalable Graphics Vector) 1.0 specification [31]. S V G is a standard language developed

by W3C for describing two-dimensional graphics in XML1.0. Moreover, in order to

specify a transduction's function, C N M L uses MathML (Mathematics Markup

Language) 2.0 specification [32]. C N M L leverages and integrates with other W3C

specification and standards. By conforming to other specifications, C N M L becomes

more powerful and makes it easier for users to transfer to other applications.

65

CNJ uses J D O M beta 7 [24] to deal with the C N M L files, to parse, to read or

write, as well as export to or import from another file format, that is, H T M L , X H T M L

and Simulink's M D L . In CNJ, the CNMLIO class is implemented to support the

handling of C N M L files.

The following a), b), and c) in Figure 7.2 are Elements of transduction, location,

and connection, described by C N M L . Also, a complete constraint net for the Car

Dynamics model in C N M L is presented in Appendix A.

t r a n s d u c t i o n id = "0">
<graphics>

<rect x = " " y = " "
w id th = " " height = " "
fill = "color"
s t roke = "color" />

</graphics>
<label color = "blue">

+

</label>
<funct ion>

<input number = "2" />
<math>

<apply>
<plus />
<ci type = " integer"> input </ci>
<ci type = " integer"> input </ci>

</apply>
</math>

</funct ion>
</ t ransduct ion>

a) C N M L element for the "plus" transduction

l o c a t i o n id = "1">

<graphics>

<el l ipse cx = " " cy = " "

rx = " " r y = " " f i l l '= "color"
stroke = "color" /> "

</graphics>

<label color = "blue">

input x

</label>
<ci type = " integer" />

</ locat ion>

b) C N M L element for a location

66

c o n n e c t i o n id = "2">
<poly l ine points = " x1 ,y1 x2,y2 x3,y3 ..." />

<source> id </source>
<target> id </target>

</connect ion>

c) C N M L element for a connection

Figure 7.2. CNML Elements

7.3 Summary

Constraint Net Markup Language (CNML) is defined for Constraint Nets for the first

time. It works as an XML-based interchange format to support the storing of constraint

nets and the representation of them. Its X M L compliant definition brings a lot of

advantages to store constraint nets, and facilitates the development and sharing of

constraint net models.

67

CHAPTER 8 A REALISTIC C N M O D E L

To test and demonstrate the performance of CNJ, we modeled a complete elevator

system in Constraint Nets, and simulated its running behavior. The elevator system is a

typical hybrid system that works as a good example to demonstrate the power of

constraint nets. In this chapter, Section 8.1 introduces the elevator system and its

designed model in a constraint net. Section 8.2 presents the constraint net model

generated by CNJ for the elevator system. Section 8.3 briefly introduces the simulation

and animation result of the modeled elevator system.

8.1 The Elevator System

Elevator systems are used in various communities as examples of methodologies for

software engineering and real-time systems. An elevator system is a typical hybrid

dynamic system with continuous motion following Newtonian dynamics and discrete

event control responding to users' request. In Zhang and Mackworth's paper [21], one n-

floor elevator system is modeled using constraint nets, including the specification and

verification for that C N model. Based on their model, a 3-floor elevator system is

designed and simulated successfully in CNJ.

The 3-floor elevator system is used in a three-floor building. Inside the elevator

there is a board of buttons to indicate floor numbers (i , 2, and 3s). Outside the elevator

there are two direction buttons (up, down) on each floor, except for the first and the third

floor, where only one button is needed (see Figure 8.1). Any button can be pushed at any

time. After being pushed, a floor button is on until the elevator reaches that floor, and a

direction button is on until the elevator reaches that floor and is moving in the same

direction.

The elevator system is modeled in two levels using constraint nets. At the lower

lever, the continuous dynamics is modeled. At the higher level, the abstraction of the

68

desired discrete system is modeled. Therefore, the model has a continuous elevator body

and a discrete controller.

Floor Buttons
(inside elevator)

Direction Buttons
(outside elevator)

Floor 3

Floor 2

Floor 1

Figure 8.1. 3-floor elevator system

The rest of this section describes the constraint net modules for the elevator

system. The system was first introduced by Zhang and Mackworth in [21].

8.1.1 Top-level Hybrid Model

The 3-floor elevator system is modeled as a hybrid constraint net model with its body

running in a continuous time domain, and its controller running in a discrete time

domain. The top-level model is shown in Figure 8.2 [21].

The E V E N T module implements the event logic that produces the events for

triggering the discrete CONTROL 1 module. It realizes the or function of the following

three events:

1) (s = idle) A [J] s (Ub s(k) v Db s(k) v Fb s(k)) . A user pushes a button at

the elevator's idle state.

2) | d s | <= £. The elevator comes to a home position.

69

3) (Com = 0) A —{Fbs(f) v (Ubs(f) A S = up) v (Dbs(f) AS = down)). A user request

has been served for a certain time. If it takes x seconds to serve a user, a delay of x

will be waited for.

bi BUTTON

ELEVATOR

Figure 8.2. A hybrid model of the Elevator system

E L E V A T O R is a continuous module where the elevator body is modeled by a

second order differential equation following Newton's Second Law. It is depicted in

Section 8.1.2. From Figure 8.2, we can see that the continuous part of E L E V A T O R is

linked seamlessly together with the discrete part of CONTROL1 by the event-driven

module of EVENT.

CONTROL1 is a discrete control module with the current floor number/and the

current button states bs (includes Ub s , Db s , Fb s for Up buttons, Down buttons, and Floor

number buttons) as inputs. The command Com, and serving state s, are its outputs. Its

module composition is described in Section 8.1.3.

70

The B U T T O N module is discrete, consisting of an array of flip-flops to simulate

pushing buttons. Interested readers might refer to [21] for more detail.

8.1.2 The Continuous ELEVATOR Module

The continuous E L E V A T O R module is depicted in Figure 8.3 [21]. Com is a command

from a higher level (CONTROL1), which can be 1,-1,0 representing up, down, and stop

respectively. / is the current floor number. When the elevator body is within a small

range of a floor, e/, is set to true, or else false.

CONTROL0

B O D Y

F L O O R H O M E

ELEVATOR

Figure 8.3. The continuous ELEVATOR module

In the FLOOR module, given the separation of floors H, and the current elevator

height h, the current floor number f can be obtained by the following:

f= [h /H] + l (1),

where [x] denotes the closest integer to x. In the H O M E module, the distance to the

nearest floor is as follows:

d s = h - (f - l)H (2),

and the home position eh is as follows:

71

eh = (| d s l < = £) (3)-

Unlike the discrete controller of CONTROL1, CONTROLO is an analog controller that

generates force to drive the elevator body. In our model, it is a linear proportional and derivative

(PD) controller. The driving force F is computed by the following:

Fo if Com =1 (41

F = i -Fo if Com =-1 (5)

Kpds - KAs if Com = 0 (6)

where d s is the distance to the nearest floor, Fois a positive constant, K p i s a proportional

gain, and K v is a derivative gain. The Fo, K p , and K v should satisfy the following

conditions [21]:

• Continuous Stability. The continuous control is stable.

• Hybrid Consistency. The interface to the discrete control is consistent.

To satisfy the conditions, Fo, K p , and K v have to be chosen based on the following

equations:

K + Kv>0, K p > 0 (7) >

Fo < min(K^4ed/3,a) (8),

Kv'= Fo/(Ke) (9),

Kv = Kv'-K (10), and
K p = K v

2 / 4 (11),

where F 0 is the motor driving force, K is the fiction coefficient, a is the maximum

acceleration of the motor, and d is the maximum deceleration of the motor. For detailed

deduction and calculation, readers may refer to the paper [21].

In the model of the elevator system, we set K = 1.0, a = d = 0.5, and e = 0.15, F 0

= 0.33, K v = 1.2, andKp = 1.21 to satisfy the above equations.

The elevator B O D Y module is modeled by a second order differential equation

following Newton's Second Law, as follows:

F-Kh = h (12)

Here we assume the mass of the body is 1, since it can be scaled by F and K. We also

ignore gravity since it can be added to F to compensate for its effect.

72

8.1.3 The Discrete CONTROLl Module

CONTROL1 is a discrete controller. It receives buttons' state of Ubs, Dbs, Fbs, the

current floor number / , and the current serving state s, and then determines the next

motion Com, and the serving state s of the elevator. It is described in Figure 8.4 [21].

UpRequest

ServingState

S(idle) CONTROLl

c - ^
. c '

1,, ,
DownRequest StopRequest

1

-WSr

Command

Figure 8.4. The discrete CONTROLl module

We assume there are three kinds of serving states: up, down, and idle. In

addition, we assume that the elevator is always parked (idle) at the first floor. The

elevator moves persistently in one direction until there is no request in that direction.

The complete logic functions of UpRequest, DownRequest, StopRequest, ServingState,

and Command can be found in the paper [21].

8.2 Elevator System Modeled in CNJ

73

The 3-floor hybrid elevator system is also practically modeled and simulated in CNJ.

However, it is different from the one described in Section 8.1. The model in Section 8.1

is developed at a higher level than this one modeled in CNJ.

As described in Chapter 4, CNJ provides users with a set of elementary

transductions for designing a constraint net, such as plus, minus, times, division, and so

forth. Before starting to design the elevator system, we already modeled a few simple

control systems for which those elementary transductions are sufficient.

However, to model the much more complicated hybrid elevator system, the basic

transduction set is not enough. Therefore, while modeling the elevator system, we wrote

code to add new transductions and new supports to allow for elevator system modeling.

In addition, some complex transductions have to be developed as modules, based on

basic transductions. In other words, the implementation of CNJ is driven by models' new

requirements. For instance, to support the elevator system, we added the vector data type

and modified some transductions to make them accept vector data input, added the

ElementAt transduction to access a specific element from vectors, and added the

isChanged transduction, as well as the wait transduction.

The elevator system modeled in CNJ is composed of three levels. There are in

total, 17 modules, 169 transductions, 2 clocks, and hundreds of locations. The top-level

model in CNJ is shown in Figure 8.5. The other module graphs are given in Appendix B,

since they have similar designs to those depicted in Section 8.1.

8.3 Elevator System Simulation and Animation in CNJ

The simulation of the modeled elevator system is able to run in two ways. First, users

input data directly into locations Ubi, Dbi, and Fbi. They are boolean vectors of three

elements with the initial value {false,false,false}. To simulate a button's pushing action

(down-up), CNJ requires users to restore the button's value to false after setting it to

true. For instance, if the Down button on the third floor is pushed once, the Dbi[3]

element should be first set to true, then set to false right away. This value change is

considered as button pushing by CNJ. After the CNJ simulation starts, the elevator's

height value is continually displayed at the bottom StatusPane.

74

Figure 8.5. The Elevator system modeled in CNJ

Another way for the simulation is to utilize a two-dimensional animation window

to display the simulation result. For the Elevator animation, we implemented a dedicated

software package. It also works as a human-computer interface for interacting with the

CNJ simulation. From the animation window in Figure 8.6, we can see that the left three

buttons are the floor buttons inside the Elevator; each floor has two direction buttons (Up

and Down). The floor buttons and the direction buttons can be pushed by clicking the

mouse on them.

The animation window is running in a separate thread. Whenever a button is

pushed, it is lighted as on, until the request is served. The states of buttons are

transferred to the CNJ simulation. Then the CNJ simulation computes new results for

every location while data is flowing along connections. For each clock tick, there is a

newly computed value for the height of the elevator body. Meanwhile, the height of the

elevator body is obtained by the animation thread in a specified frequency. Depending

75

on the animation thread's frame speed, the elevator body is shown and refreshed

frequently (generally, 5Hz).

8.4 Summary

The n-floor hybrid elevator system is modeled in constraint nets and works as a good

example to demonstrate the performance of CNJ. It is a typical hybrid system with the

elevator body as the continuous part and a discrete controller. The model designed by

CNJ is based on the one depicted in Section 8.1, but is at a lower level. During the

process of modeling, the elevator system, new functions and features are added into the

environment. Furthermore, CNJ provides an animation package as a human computer

interface to execute the simulation. It has successfully realized the modeling and

simulation of the complex 3-floor hybrid elevator system, and works correctly.

76

—w Animation • X

Figure 8.6 The Elevator animation window

77

CHAPTER 9 I^XPERIMENTAE R K S I I . I S
„ , i i ' , r firiiiiii.ii.ii.il ... r.,,.. ,, r ti i III i n ' n ^ ^ ^ ^ ^ ^ ^ i S i ^ i ^ ^ ^ ^ ^ ^ ^ S ^

9.1 Methodology

Several experiments are carried out̂ on the CNJ environment to analyze its performance.

There are four examples developed.' The first example is the simplest one, which has

only one transduction (see Figure 9.1). The second one has two levels, and the lower

level module is very simple (see Figure 9.2). The third one has dozens of nodes at one

level (see Figure 9.3) [35]. It represents the dynamics of a car which is used as a radio-

controlled mobile base for a robot soccer player. The last one is the most complicated

model (Hybrid Elevator Control System illustrated in Chapter 8), which has 17 modules

distributed in three levels, with 169 transductions and 2 global clocks (see Figure 8.5 in

Chapter 8).

We generated different shapes and sizes of models in order to find CNJ's

scalability. The shape and size of models can be defined by the parameters depth and

width. Depth determines how many levels there are in the model. Width determines the

number of nodes in each level. The above four examples have different shapes and sizes

for conducting the experiments.

The experiments run under the environment of Linux Redhat 7.1 with PHI 1 G

Hz CPU, 256M S D R A M , and Java Hotspot™ Client V M (1.4.0, mixed mode). The code

is programmed and compiled using J2SDK1.4.0. The performance of the CNJ simulation

depends on the size of the model, clock frequency, and number of clocks in the model.

Also it is dependent on its operating system's scheduling algorithm. These are called

factors. CNJ is able to run simulations in speed from an arbitrarily low frequency (e.g.,

0.1 Hz), up to what your computer is capable of (e.g., 50 Hz in our environment).

78

http://firiiiiii.ii.ii.il

9.2 Results

output

Q t e p ^

Figure 9.1. Example 1 (a simple adder)

79

Figure 9.3. Example 3 (the Car Dynamics)

Since there is only one global C N Clock in the models of Example 1, Example 2,
and Example 3, we put them in one table (Table 9.1) for comparison. Depending on the

Clock's specified frequency, the output values are computed, and flow out in different

speeds.

Clock frequency (Hz)
Average time cost per output (millisecond)

Clock frequency (Hz)
Example 1 Example 2 Example 3 (Car)

1 1010 1010 1010

10 110 110 110

20 60 60 60

50 20 20 20

100 20 20 20

1000 20 20 20

Table 9.1. Simulation results for Example 1, 2, 3

80

Chapter 8 described the hybrid 3-floor Elevator system modeled in CNJ. The

Elevator model is used as Example 4, which has two abstract levels. One is the higher-

level discrete controlling part. The other is the lower-level elevator body, running in a

continuous domain. To let the elevator body virtually run in a continuous time structure,

we used a faster Clock to drive the E L E V A T O R and E V E N T modules, and a slower one

to drive the discrete B U T T O N module. Assuming the slower clock is Clock 1, and the

faster one Clock 2. Unlike other modules, the C O N T R O L l module is event-based.

Whenever there is a state change outside, it is triggered to run once. In Table 9.2, we

assigned to the two clocks a variety of frequencies to test how more than one clock

affects the CNJ's performance. This time the output specifically refers to the elevator's

height from its body to the ground. B O D Y is a continuous module driven by Clock 2.

Clock frequency (Hz) Average time cost per output of Height (millisecond)

Clock 1 Clock 2 Example 4 (The Elevator Control System)

1 10 110

1 20 60

1 50 20

10 10 110

10 20 60

10 50 25

20 20 60

20 50 30

50 50 40

Table 9.2. Simulation results for the Elevator system (Example 4)

From Table 9.1, we can see that the maximum speed that the simulation can run

in our environment is 50 Hz. When the clock is set to 50, Hz, it fires clock events to its

transductions to make them execute once per 20 ms (1000 / 50). However, when the

81

clock's frequency is greater than 50 Hz, the output cannot be computed in a time slot less

than 20 ms. The reason is that the operating system's scheduler has its own predefined

latency for scheduling the running processes.

In Table 9.2, we find that if Clock 1 is not fast, the output speed is still dependent

on Clock 2's frequency. However, when Clock l's frequency is high enough, it greatly

slows down the output speed. For instance, compared with Table 9.1 (Clock = 50 Hz,

output speed = 20 ms), when Clock 2 = 50 Hz and Clock 1 = 10 Hz, the output speed

becomes 25 ms (slower than 20 ms). Another example is that when Clock 2 = 50 Hz,

Clock 1 = 50 Hz, the speed = 40 ms, which is much slower than 20 ms, as in Table 9.1.

Therefore, we can draw the conclusion that the number of clocks affects the simulation

speed more than the size of a C N model. The larger scalability results from the Clock

class using the Java Swing Timer class.

In Java, the Swing Timer object automatically shares a thread to avoid spawning

too many threads. It utilizes the same thread used to make cursors blink, tool tips appear,

and so on. This method might lead to an event queue which may be too long for the C P U

to process. To solve this problem, we need to implement a new Timer class which has its

own dedicated thread. Through this means, different timers' clock events will be

distributed in different threads, instead of one thread. Although it involves much more

threads when running a CNJ simulation, a faster computer can easily solve this problem.

9.3 Summary

In our environment, CNJ is able to run at the speed of 50 Hz, close to real-time. From

the experiments, the number of clocks gives a larger scalability than the model's size.

The calculation of transductions is also executed after the correct dependency order is

obtained by the transduction scheduling algorithm. Although CNJ's GUI is implemented

in Java Swing, the UI response lag is small enough that it cannot be detected by users.

Also, the performance of CNJ can be greatly improved if real-time operating systems

and high-performance computers are adopted.

82

CHAPTER 10 CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

CNJ is a visual programming environment for hybrid dynamic system modeling and

simulation with constraint nets. Component-based technology (JavaBeans) is deployed

to design and implement such an environment. Using a visual programming tool, users

can easily model control systems by assembling a number of C N nodes together without

knowing any programming languages, such as C/C++ and Java. In addition, CNJ is

capable of developing programs with features of modularity, hierarchy, and reusability,

saving designers a great deal of time and effort. It is useful for users to adopt the visual

programming technique to model and simulate control systems.

The environment is written in pure Java, and the user interface is implemented by

Java Swing. However, it runs fast, and its response lag is too low to be detected by users.

Based on Java's Event mechanism, CNJ real-time simulation is built up successfully.

Discrete, continuous, and event-based hybrid time structures are provided in CNJ. Also,

the Transduction Scheduling Algorithm ensures that data flow satisfies the transductions'

dependency relationship. Experimental results indicate that for clocks running at 50 Hz,

the designed models can run close to real-time. This work demonstrates that Java

language is useful for virtual real-time programming.

Constraint Net Markup Language (CNML) is developed for the first time as an

XML-based interchange format for storing constraint nets. It makes translation to and

from other file formats feasible and convenient. CNJ is the first practical specific

environment to support constraint net modeling and simulation. We have modeled a

variety of control systems successfully using CNJ. It works as proof of the feasibility of

the efficient and useful implementation of the concept of Constraint Nets.

The current version of CNJ is definitely a prototype. In many ways, it is an

experiment which uses component-based technology to build a visual programming

environment. It is implemented in Java, and able to execute real-time simulations for

83

hybrid models. The tool can also work as a useful practical programming environment

for constraint net users and learners.

10.2 Future Work

The prototype of CNJ could be improved in many aspects, and there might be

opportunities for future work. Besides the constraint net modeling language, C N

includes timed V-automata as the requirement specification language, and a verification

method to verify whether a constraint net satisfies the requirements. Future work,

therefore, includes the extension of the support for graphical requirement specification

and verification tools.

Until now, CNJ provides a limited set of basic functions to define transductions.

Sometimes, a complex model may require new functions that are not provided by the

function set. In addition, developers have to read code and modify some methods in a

few classes. We propose to provide a functionality which allows users to add new

functions automatically. During our future work of designing more hybrid systems, new

useful functions and reusable modules would then be incorporated.

To improve real-time performance, much work needs to be done. This includes

research on Real Time Specification Java (RTSJ 1.0 currently), adoption of real-time

operating systems, real-time Java Virtual Machines [36], and better transduction

scheduling algorithms.

Regarding the detailed implementation of CNJ, we hope to improve the

compilation step to restrict users to design constraint nets with no syntax errors, and to

generate better and clearer runtime error reports.

The graphical drawing of connections and transductions needs to be refined. In

particular, transduction components need explicit ports with them. We would like better

ways to draw C N connections more efficiently and easily.

Some operations would be helpful for future users, such as copy, paste, undo,

redo, and export to I import from other file formats (HTML, Adobe Illustrator, Matlab

M D L , ...). Also we hope to add additional support for storing each location's history

traces in CNJ simulations.

84

For Constraint Net Markup Language (CNML), a DTD (Data Type Definition) or

X S D (X M L Schema Definition) can be added to define the legal building blocks of

C N M L files. We can also use X S L (extensible Stylesheet Language) to express C N M L

files in different styles in web browsers.

In this way CNJ could provide wider coverage and be more robust. Finally, there

is an opportunity to design and simulate more challenging hybrid dynamic systems in

constraint nets with CNJ.

85

BIBLIOGRAPHY

[I] S. Chang, Principles of Visual Programming Systems. New York: Prentice Hall,
1990.

[2] Brad A. Myers and Mary Beth Rosson, "Survey on User Interface
Programming," presented at SIGCHJ'92: Human Factors in Computing Systems,
1992.

[3] B. Sharhian and M . Hassul, Control System Design Using Matlab: Prentice-Hall
Inc., 1993.

[4] Y . Zhang and A. K. Mackworth, "Constraint Programming in Constraint Nets,"
presented at First Workshop on Principles and Practice of Constraint
Programming, 1993.

[5] John Lygeros, Datta N . Godbole, and Shankar S. Sastry, "Simulation as a Tool
for Hybrid System Design," presented at Fifth IEEE conference on A l ,
Simulation and Planning in High-Autonomy Systems, 1994.

[6] Y . Zhang and A. K. Mackworth, "Specification and Verification of Constraint-
Based Dynamic Systems," in Principles and Practice of Constraint
Programming, No. 874 in Lecture Notes in Computer Science, A. Borning, Ed.:
Springer-Verlag, 1994, pp. 229-242.

[7] Ying Zhang, "A Foundation for the Design and Analysis of Robotic Systems and
Behaviors, Ph.D. thesis," in Department of Computer Science. Vancouver:
University of British Columbia, 1994.

[8] Margaret Burnett, "Scaling Up Visual Programming Languages," presented at
IEEE Computer, 1995.

[9] E. Jackson, ACE For Windows NT Prototype Design Document: International
Submarine Engineering Ltd, 1995.

[10] Y . Zhang and A. K. Mackworth, "Synthesis of Hybrid Constraint-Based
Controllers," in Hybrid Systems II, Lecture Notes in Computer Science 999, W.
K. P. Antaklis, A . Nerode, S. Sastry, Ed.: Springer Verlag, 1995, pp. 552-567.

[II] R. Jagannathan, "Dataflow Models," in Parallel and Distributed Computer
Handbook, A. Y . Zomaya, Ed.: McGraw-Hill, Inc., 1996.

86

[12] Goddard Space Flight Center of N A S A , "User-Interface Guidelines," 1996.

[13] Marat Boshernitsan and Michael Downes, "Visual Programming Languages: A
Survey," University of California, Berkeley 1997.

[14] Sun Microsystems, JavaBeans specification version 1.01, 1997.

[15] Y.Fukazawa, "Cooperation Between Methodology and its Support Tools in
Component-based Software Development," Waseda University Journal of
Science and Engineering, vol. 1, 1997.

[16] Hessam S. Sarjoughian and Bernard P. Zeigler, "DEVSJava: Basis for a DEVS-
based Collaborative M & S Environment," presented at INTERNATIONAL
CONFERENCE ON WEB-BASED MODELING & SIMULATION, 1998.

[17] John A. Miller, Y . Ge, and J. Tao, "Component-Based Simulation Environments:
JSFM As a Case Study Using Java Beans," presented at Winter Simulation
Conference, 1998.

[18] Wim Groenendaal, "Component Technology," in Xootic Magazine, 1999.

[19] H . Praehofer, J. Sametinger, and A. Stritzinger, "Discrete Event Simulation using
the JavaBeans Component Model," presented at International Conference On
Web-Based Modelling & Simulation 1999, 1999.

[20] M . Pidd, N . Oses, and R. J. Brooks, "Component-Based Simulation On The
Web," presented at 1999 Winter Simulation Conference, 1999.

[21] Y . Zhang and A. K. Mackworth, "Modeling and Analysis of Hybrid Systems: An
Elevator Study," in Logical Foundation for Cognitive Agents, F. P. H. Levesque,
Ed. Berlin: Springer, 1999, pp. 370-396.

[22] M . Jungel, E. Kindeler, and M . Weber, "The Petri Net Markup Language,"
presented at Workshop Algorithm for Petri Net, 2000.

[23] A . K. Mackworth, "Constraint-Based Agents: The ABC's of CBA's," presented at
6th Int. Conf. On Principles and Practice of Constraint Programming - CP2000,
Singapore, 2000.

[24] "JDOMBeta7,"2001.

[25] A . K. Mackworth and Y. Zhang, "Constraint-Based Agents: A Formal Model for
Agent Design," in UBC Computer Science Technical Report TR 2001-09, 2001.

[26] Guillem Bernat and Alan Burns, "Weakly Hard Real-Time Systems," IEEE
Transactions on Computers, vol. 50, 2001.

87

[27] E.R. Harold, XML Bible 2nd edition: JDB Books, 2001.

[28] K . Verschaeve, B. Wydaeghe, and F. Westerhuis, "Visual Composition with SDL
Beans," presented at ECBS 2001, Washington, USA, 2001.

[29] Sun Microsystems, "Java Look and Feel Design Guidelines (2nd edition)," 2001.

[30] Andy Quinn, "Trail: JavaBeans (TM)," 2001.

[31] W3C, Scalable Vector Graphics (SVG) 1.0 Specification, 2001.

[32] W3C, Mathematical Markup Language (MathML) Version 2.0, 2001.

[33] Y . Wang and S. Ho., "Implementation of a DEVS-JavaBean Simulation
Environment," presented at Advanced Simulation Technologies Conference,
2001.

[34] "Petri Net Kernel," Research Group Petri Net Technology, 2002.

[35] Fengguang Song and Alan K. Mackworth, "CNJ: A Visual Programming
Environment for Constraint Nets," presented at A l , Simulation and Planning in
High Autonomy Systems, Lisbon, Portugal, 2002.

[36] M . Pfeffer, S. Uhrig, Th. Ungerer, and U . Brinkschulte, "A Real-Time Java
System on a Multithreaded Java Microcontroller," presented at Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
2002.

[37] Sun Microsystems, "The Only Component Architecture for Java Technology,"
2002.

[38] Clark Williams, "Linux Scheduler Latency," Red Hat Inc., 2002.

88

APPENDIX A C N M L FILE FOR T H E CAR DYNAMICS M O D E L

<?xml version="l.0" encoding="UTF-8"?>
<cn_model id="cn">

<name>Car Dynamics</name>
t r a n s d u c t i o n id="0">

<graphics>
<rect x="150" y="326" width="90" height="40" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-1677 6961">tan</label>
<function>

<input number="l" />
<math>

<apply>
<tan />
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction>
<transduction id="l">

<graphics>
<rect x="383" y="347" width="19" height="86" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-1677 6961">/</label>
<function>

<input number="2" />
<math>

<apply>
<divide />
<ci type="1">input</ci>
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction>
<transduction id="2">

<graphics>
<rect x="537" y="300" width="19" height="98" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-16776961">*</label>
<function>

<input number="2" />
<math>

<apply>
<times />
<ci type="l">input</ci>
<ci type="l">input</ci>

</apply>
</math>

89

</function>
</transduction
<transduction id="3">

<graphics>
<rect x="739" y="373" width="22" height="78" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-1677 6961">+</label>
<function>

<input number="2" />
<math>

<apply>
<plus />
<ci type="1">input</ci>
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction
t r a n s d u c t i o n id="4">

<graphics>
<rect x="152" y="185" width="90" height="40" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-16776961">sine</label>
<function>

<input number="l" />
<math>

<apply>
<sine />
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction
t r a n s d u c t i o n id="5">

<graphics>
<rect x="153" y="128" width="90" height="40" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-16776961">cosine</label>
<function>

<input number="l" />
<math>

<apply>
<cosine />
<ci type="l">input</ci>

</apply>
</math>

</function>
</transduction>
t r a n s d u c t i o n id="6">

<graphics>
<rect x="373" y="82" width="19" height="63" f i l l = " - l " stroke=

16777216" />
</graphics>
<label color="-16776961">*</label>

90

<function>
<input number="2" />
<math>

<apply>
<times />
<ci type="1">input</ci>
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction>
<transduction id="7">

<graphics>
<rect x="377" y="171" width="21" height="66" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-1677 6961">*</label>
<function>

<input number="2" />
<math>

<apply>
<times />
<ci type="l">input</ci>
<ci type="l">input</ci>

</apply>
</math>

</function>
</transduction>
<transduction id="8">

<graphics>
<rect x="667" y="15" width="15" height="63" f i l l = " - l " stroke=

16777216" />
</graphics>
<label color="-16776961">+</label>
<function>

<input number="2" />
<math>

<apply>
<plus />
<ci type="l">input</ci>
<ci type="l">input</ci>

</apply>
</math>

</function>
</transduction>
<transduction id="9">

<graphics>
<rect x="674" y="134" width="13" height="66" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-1677 6961">+</label>
<function>

<input number="2" />
<math>

<apply>
<plus />
<ci type="l">input</ci>

91

<ci type="l">input</ci>
</apply>

</math>
</function>

</transduction
t r a n s d u c t i o n id="10">

<graphics>
<rect x="561"'y="84" width="20" height="56" f i l l = " - l " stroke=

16777216" />
</graphics>
<label color="-16776961">*</label>
<function>

<input number="2" />
<math>

<apply>
<times />
<ci type="l">input</ci>

.<ci type="l">input</ci>
</apply>

</math>
</function>

</transduction>
<transduction id="ll">

<graphics>
<rect x="561" y="174" width="20" height="55" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-1677 6961">*</label>
<function>

<input number="2" />
<math>

<apply>
t i m e s />
<ci type="1">input</ci>
<ci type="1">input</ci>

</apply>
</math>

</function>
</transduction
t r a n s d u c t i o n id="12">

<graphics>
<rect x="690" y="327" width="21" height="48" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-16776961">*</label>
<function>

< input number="2" />
<math>

<apply>
t i m e s />
<ci type="1">input</ci>
<ci type="l">input</ci>

</apply>
</math>

</function>
</transduction
<location id="13">

92

<graphics>
<ellipse cx="91" cy="343" rx="25" ry="25" fill="-3355393"

stroke="-16777216" />
</graphics>
<label color="-1677 6961">alpha</label>
<ci type="l" />

</location>
<location id="14">

<graphics>
<ellipse cx="311" cy="347" rx="25" ry="25" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-167 7 6961">loc</label>
<ci type="l" />

</location>
<location id="15">

<graphics>
<ellipse cx="243" cy="431" rx="25" ry="25" fill="-6684928"

stroke="-16777216" />
</graphics>
<label color="-16776961">length</label>
<ci type="l" />

</location>
<location id="16">

<graphics>
<ellipse cx="476" cy="389" rx="25" ry="25" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-16776961">loc</label>
<ci type="l" />

</location>
<location id="17">

<graphics>
<ellipse cx="90" cy="272" rx="25" ry="25" fill="-3355393"

stroke="-16777216" />
</graphics>
<label color="-16776961">V</label>
<ci type="l" />

</location>
<location id="18">

<graphics>
<ellipse cx="631" cy="350" rx="33" ry="23" f i l l = " - l " stroke

16777216" />
</graphics>
<label color="-1677 6961">delta-theta</label>
<ci type="l" />

</location>
<location id="19">

<graphics>
<ellipse cx="851" cy="407" rx="23" ry="20" fill="-26368"

stroke="-16777216" />
</graphics>
<label color="-16776961">theta</label>
<ci type="l" />

</location>
<location id="2 0">

<graphics>

93

<ellipse cx="314" cy="205" rx="25" ry="25" f i l l = " - l " stroke="-
16777216" />

</graphics>
<label color="-1677 6961">loc</label>
<ci type="l" />

</location>
<location id="21">

<graphics>
<ellipse cx="315" cy="149" rx="25" ry="25" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-1677 6961">loc</label>
<ci type="l" />

</location>
<location id="22">

<graphics>
<ellipse cx="501" cy="113" rx="25" ry="25" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-16776961">delta-x</label>
<ci type="l" />

</location>
<location id="23">

<graphics>
<ellipse cx="503" cy="204" rx="25" ry="25" f i l l = " - l " stroke="-

16777216" />
</graphics>
<label color="-16776961">delta-y</label>
<ci type="l" />

</location>
<location id="24">

<graphics>
<ellipse cx="753 " cy="50" rx="25" ry="25" fill="-26368" stroke

16777216" />
</graphics>
<label color="-16776961">output</label>
<ci type="l" />

</location>
<location id="25">

<graphics>
<ellipse cx="759" cy="168" rx="21" ry="22" fill="-26368"

stroke="-16777216" />
</graphics>
<label color="-1677 6961">y</label>
<ci type="l" />

</location>
<location id="26">

<graphics>
<ellipse cx="481" cy="470" rx="35" ry="17" fill="-10027213"

stroke="-16777216" />
</graphics>
<label color="-16776961">clock cycle</label>
<ci type="l" />

</location>
<location id="27">

<graphics>

94

<ellipse cx="624" cy="93" rx="13" ry="12" f i l l = " - l " stroke="
16777216" />

</graphics>
<label color="-16776961">loc</label>
<ci type="l" />

</location>
<location id="28">

<graphics>
<ellipse cx="625" cy="201" rx="13" r y = " l l " f i l l = " - l " stroke=

16777216" />
</graphics>
<label color="-167769 61">loc</label>
<ci type="l" />

</location>
<location id="29">

<graphics>
<ellipse cx="684" cy="397" rx="15" ry="12" f i l l = " - l " stroke=

16777216" />
</graphics>
<label color="-1677 6961">loc</label>
<ci type="l" />

</location>
<clock id="30">

<graphics>
<rect x="178" y="489" width="32" height="32" fill="-16711936

stroke="-65536" />
</graphics>
<delay>1000</delay>

</clock>
<connection id="31">

<polyline points="91,343 195,346" />
<source>13</source>
<target>0</target>

</connection>
<connection id="32">

<polyline points="195,346 311,347" />
<source>0</source>
<target>14</target>

</connection>
<connection id="33">

<polyline points="311,347 353,347 353,381 392,390" />
<source>14</source>
<target>l</target>

</connection>
<connection id="34">

<polyline points="243,431 352,430 352,397 392,390" />
<source>15</source>
<target>l</target>

</connection>
<connection id="35">

<polyline points="392 , 390 476,389" />
<source>l</source>
<target>16</target>

</connection>
<connection id="36">

<polyline points="90,272 494,272 494,335 546,349" />
<source>17</source>

95

<target>2</target>
</connection>
<connection id="37">

<polyline points="476,389 516,389 516,356 546,349" />
<source>16</source>
<target>2</target>

</connection>
<connection id="38">

<polyline points="546,349 631,350" />
<source>2</source>
<target>18</target>

</connection
<connection id="39">

<polyline points="194,505 195,346" />
<source>3 0</source>
<target>0</target>

</connection>
<connection id="40">

<polyline points="194,505 392,505 392,390" />
<source>3 0</source>
<target>l</target>

</connection>
<connection id="41">

<polyline points="194,505 546,505 546,349" />
<source>3 0</source>
<target>2</target>

</connection>
<connection id="42">

<polyline points="750,412 851,407" />
<source>3</source>
<target>19</target>

</connection>
<connection id="43">

<polyline points="194,505 194,538 750,538 750,412" />
<source>3 0</source>
<target>3</target>

< /connection
<connection id="44">

<polyline points="851,407 849,265 849,245 109,245 109,146 198,148"
/>

<source>19</source>
<target>5</target>

</connection>
<connection id="45">

<polyline points="851,407 849,235 130,235 130,204 197,205" />
<source>19</source>
<target>4</target>

</connect i o n
<connection id="46">

<polyline points="198,148 315,149" />
<source>5</source>
<target>21</target>

</connection>
<connection id="47">

<polyline points="197,205 314,205" />
< source>4</source>
<target>2 0</target>

96

</connection>
<connection id="48">

•cpolyline points="90,272 90,86 358,86 358,101 382,113" />
<source>17</source>
<target>6</target>

</connection>
<connection id="49">

<polyline points="315,149 315,113 382,113" />
<source>21</source>
•<target>6</target>

</connection>
<connection id="50">

<polyline points="90,272 90,103 342,103 342,179 358,179 358,190
387,204" />

<source>17</source>
<target>7</target>

</connection>
<connection id="51">

<polyline points="314,205 387,204" />
<source>20</source>
<target>7</target>

</connection>
<connection id="52">

<polyline points="382,113 501,113" />
<source>6</source>
<target>22</target>

</connection>
<connection id="53">

<polyline points="387,204 503,204" />
<source>7</source>
<target>23</target>

</connection>
<connection id="54">

<polyline points="194,505 120,505 120,183 204,183 198,148" />
<source>30</.source>
<target>5</target>

</cohnection>
<connection id="55">

<polyline points="194,505 138,505 138,295 193,295 197,205" />
<source>3 0</source>
<target>4</target>

</connection>
<connection id="56">

<polyline points="194,505 425,505 425,157 381,157 382,113" />
<source>3 0</source>
<target>6</target>

</connection>
<connection id="57">

<polyline points="194,505 413,505 413,299 387,299 387,204" />
<source>3 0</source>
<target>7</target>

</connection>
<connection id="58">

<polyline points="674,46 753,50" />
<source>8</source>
<target>24</target>

</connection>

97

<connection id="59">
<polyline points="194,505 210,511 734,511 734,97 670,97 674,46" />
<source>30</source>
<target>8</target>

</connection
<connection id="60">

<polyline points="194,505 721,505 721,220 677,220 680,167" />
<source>30</source>
<target>9</target>

</connection>
<connection id="61">

<polyline points="753,50 801,47 801,7 608,7 608,46 674,46" />
<source>24</source>
<target>8</target>

</connection>
<connection id="62">

<polyline points="759,168 808,173 808,120 609,120 609,166 680,167"

<source>2 5</source>
<target>9</target>

</connection>
<connection id="63">

<polyline points="680,167 759,168" />
<source>9</source>
<target>25</target>

</connection>
<connection id="64">

<polyline points="851,407 849,466 631,466 631,411 750,412" />
<source>19</source>
<target>3</target>

</connection>
<connection id="65">

<polyline points="501,113 571,112" />
<source>22</source>
<target>10</target>

</connection>
<connection id="66">

<polyline points="503,204 571,201" />
<source>2 3</source>
<target>ll</target>

</connection>
<connection id="67">

<polyline points="631,350 700,351" />
<source>18</source>
<target>12</target>

</connection>
<connection id="68">

<polyline points="481,470 601,470 601,385 671,385 671,356 700,351"

<source>2 6</source>
<target>12</target>

</connection>
<connection id="69">

<polyline points="481,470 575,470 575,255 539,255 539,122 571,112"

<source>2 6</source>
<target>10</target>

98

</connection>
<connection id="70">

<polyline points="481,470 565,470 565,280 546,280 546,213 571,201
/>

<source>2 6</source>
<target>ll</target>

</connection>
<connection id="71">

<polyline points="571,112 592,112 592,92 624,93" />
<source>10</source>
<target>27</target>

</connection>
<connection id="72">

<polyline points="624,93 642,93 642,51 674,46" />
<source>27</source>
<target>8</target>

</connection>
<connection id="73">

<polyline points="571,201 625,201" />
<source>ll</source>
<target>28</target>

</connection>
<connection id="74">

<polyline points="625,201 648,201 648,174 680,167" />
<source>2 8</source>
<target>9</target>

</connection>
<connection id="75">

<polyline points="700,351 724,351 724,378 611,378 611,396 684,397
/>

<source>12</source>
<target>2 9</target>

</connection>
<connection id="76">

<polyline points="684,397 724,397 750,412" />
<source>29</source>
<target>3</target>

</connection>
<connection id="77">

<polyline points="194,505 589,505 589,154 571,154 571,112" />
<source>3 0</source>
<target>10</target>

</connection>
<connection id="78">

<polyline points="194,505 588,505 588,250 571,250 571,201" />
<source>3 0</source>
<target>ll</target>

</connection>
<connection id="79">

<polyline points="194,505 704,505 704,402 703,390 700,351" />
<source>3 0</source>
<target>12</target>

</connection>
</cn_model>

99

APPENDIX B T H E ELEVATOR SYSTEM M O D E L E D IN C N J

This appendix contains the complete graphical modules for the 3-floor Elevator control

system modeled by CNJ. The top level is shown in Figure 8.5.

r
Fl lpFlop Fl lpFlop

Figure B-L BUTTON Module

Figure B-2. FlipFlop Module

100

Fugure B-3. ResetSignal Module

Figure B-4. EVENT Module

101

Figure B-6. UpRequest Module
102

Figure B-7. DownRequest Module

- Q -

elementAt r * ^ | g
elemenlAt h»-» IhCTV

L j - j elernentAl |-»-<Jbg>-

- * j e lemernA i~K^bQ>

- H e lemeni^~| -* -^£gi -

- H e lemen iA~K - ^b (j> [j - |

1 elernentAl

H elernentAl h — f b g) — r

•j IT... then... else. . . | — - M j o c > -

41... then. ..else if...then... else... • ~ * H l o y

- 0

Figure B-8. StopRequest Module

103

Figure B-10. Command Module

104

Figure B - l l . E L E V A T O R Module

Figure B-12. CONTROLO Module
105

106

