
Iris: An Integrated Circuit Layout Automatic Generator

by

Yang Lu

B.S., Shandong University, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August 2003

© Yang Lu, 2003

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the Library s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
t h i s thesis for s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. I t i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department•of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Abstract

In integrated circuit design, layout generation is tedious, time-consuming and error-prone.

Motivated by seeking an alternative to manual layout design, I implmented a C A D tool, Iris,

dedicating to layout generation automation. By using Iris, the designer describes the circuit

netlist and relative placement of each transistor and signal in the high level language Java. Iris

works out the details of every design stage and produces the final layout. Experimental results

show that Iris generates layouts which are comparable to manual layouts with much less effort

by the designer.

n

(

Contents

Abstract ••••• "

Contents • ••• •»

List of Tables v

List of Figures y i

Acknowledgements viii

Dedication • l x

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Solution 2

1.3 Contributions 4

1.4 Thesis Outline • 4

Chapter 2 Background 5

2.1 Related Work • 5

2.2 Iris Approach 8

Chapter 3 Implementation 10

3.1 User Interface 10

in

3.1.1 Example 10

3.1.2 Class Summary 21

3.2 Routing25

3.2.1 Global Routing : 27

3.2.2 Detailed Routing 31

3.3 Constraint Solving 38

3.3.1 Matlab Linear Prorgamming Solver 40

3.3.2 Constraint Graph Based Alogrithm Solver '. 42

3.3.3 Aspect Oriented Programming 45

Chapter 4 Experiments49

Chapter 5 Conclusions and Future Work 55

Bibliography 57

Appendix A User Interface Example Source 59

IV

List of Tables

Table 3.1 User Interface File 22

Table 3.2 Signal Interface and Class Implementations 22

Table 3.3 User Interface Class and Method 24

Table 3.4 Main Function • 24

Table 3.5 Step 1 Procedure 35

Table 4.1 The Weight of Layers 49

Table 4.2 Experimental Results 54

Table A. 1 Index of User Interface Example Source 59

List of Figures

Figure 1.1 The Architecture of the Tool 3

Figure 2.1 MST, SMT, RSMT of Three-Terminal Net 6

Figure 3.1 Circuit Schematic of the Carry Block 11

Figure 3.2 Layout Plan for the Carry Block , 11

Figure 3.3 Layout Plan for the P-Transistor Row 11

Figure 3.4 Layout Plan for the N-Transistor Row 12

Figure 3.5 Code Fragment from the Carry Block 13

Figure 3.6 Iris Generated Layout of the Carry Block 13

Figure 3.7 Circuit Schematic of the Sum Block 13

Figure 3.8 Layout Plan for the Sum Block 14

Figure 3.9 Layout Plan for the P-Transistor Row 14

Figure 3.10 Layout Plan for the N-Transistor Row 14

Figure 3.11 Code Fragment from the Sum Block 15

Figure 3.12 Iris Generated Layout of the Sum Block 16

Figure 3.13 Layout Plan for the One-Bit Full Adder 16

Figure 3.14 Code Fragment from the One-Bit Full Adder 17

Figure 3.15 Iris Generated Layout of the One-Bit Full Adder 18

Figure 3.16 Layout Plan for the n-Bit Ripple-Carry Adder 18

vi

Figure 3.17 Layout Plan for the n-Bit Ripple-Carry Adder 19

Figure 3.18 Code Fragment from the n-Bit Ripple-Carry Adder 20

Figure 3.19 Iris Generated Layout of the n-Bit Ripple-Carry Adder 21

Figure 3.20 Class Hierarchy of Circuit 23

Figure 3.21 Iris Generated Layout in Phase 1 .". 26

Figure 3.22 Iris Generated Layout in Phase 2 26

Figure 3.23 The First Step of Global Routing 30

Figure 3.24 The Second Step of Global Routing 30

Figure 3.25 Global Connections 31

Figure 3.26 Detailed Routing Flow 32

Figure 3.27 Track Switching for Efficient Area Use 33

Figure 3.28 Choosing of Bottom Most Track and Top Most Track 34

Figure 3.29 Two Jogging Situations :....35

Figure 3.30 Step 2 of Detailed Routing 38

Figure 3.31 Via slides on Metal2 ,....:,..„...: 39

Figure 3.32 Negative Weight Cycle in Constraint Graph 45

Figure 3.33 UML for Classes Related to Adding Constraint 46

Figure 4.1 FifoStage Manual Layout (left) and Iris Generated Layout (right) 50

Figure 4.2 One-Bit Full Adder 51

Figure 4.3 n-Bit Ripple Carry Adder 52

Figure 4.4 FifoStage under TSMC 0.18-micron Technology 53

Figure 4.5 The Relationship of Number of Transistors and Execution Time 53

vii

Acknowledgements

I would like to thank my supervisor, Dr. Mark Greenstreet, for his inspiration and guidance. I

would also like to thank my project partners Lan Lin and Alvin Albrecht.

Y A N G L U

The University of British Columbia

May 2003

Vl l l

To my parents

I X

Chapter 1

Introduction

Integrated circuit technology has evolved from the integration of a few transistors on a single

chip to the integration of millions of transistors per chip. The design technology has advanced to

deep sub-micron processes. Modern circuits are too complex and difficult for an individual to

comprehend completely. Therefore automating the design process has become the crucial issue,

and a comprehensive set of C A D tools are essential.

1.1 Motivation

VLSI chip design involves several phases starting with the specification of the system and going

through with the packaging and testing of the chips. Physical layout is an extremely tedious,

time-consuming snd error-prone process among the phases. To make the layout problem more

tractable, this phase is often divided into several steps including partitioning, placement and

floorplanning, global routing, detailed routing and compaction.

Almost all the problems related to each steps of layout design are NP-complete.

Considerable research has been done in this area both theoretically and practically. Theoretical

research has focused primarily in the area of the design and analysis of algorithms. Practical

1

research focuses on the development of various C A D tools which are based on particular

algorithms and address some practical issues. The present research is of the practical sort.

This thesis describes a C A D tool, Iris, which I developed to automate the layout design

process. Iris addresses some issues related to the design phases including placement, global

routing, detailed routing and compaction. Iris deals with channel routing problems and uses some

simple algorithms to do global and detailed routing. To my knowledge, the approach that Iris

uses is different from that of any existing C A D tool. Most existing C A D tools use grid-based

approaches, which make it difficult to route nets with varying wire width and a large amount of

memory are usually needed for dealing with the grid. Iris employs a gridless approach while

using some techniques that combine both grid-based and gridless methods.

1.2 Solution

Iris generates layout through several steps. In the first step of layout synthesis, the designer

writes a Java program to describe the relative placement and netlist information of the circuit.

The designer also chooses the layout synthesis technology and the objective function for layout

optimization. Once the circuit descriptions are given, Iris works out the details of every design

stage and produces the final layout.

Based on the placement information given by the designer, Iris optimizes the placement

by implementing diffusion and contact sharing in the placement stage. With the terminal sharing

information, the linear programming solver produces the transistor relative position in left-to-

right order for the adjacent p-transistor and n-transistor rows within the same routing channel.

Based on the placement information generated in the previous step, detailed routing or

channel routing is done in every routing channel. In this stage, compaction is performed with jog

2

insertion. The constraints of detailed routing are solved with a linear programming solver, and a

new placement is produced.

The new placement is used as the initial placement in the final step. Those nets that

cover more than one routing channel are routed as well as those nets within a routing channel.

More jogs are inserted and more constraints are added. The linear programming solver works out.

the final layout at the end of this step.

Iris has three packages. The Circuit package describes, places and routes the circuit. The

Constraint package solves the constraints. The Magic package outputs the layout in the format

used by the public domain layout editor Magic [Ousterhout 84]. The architecture of Iris is shown

in figure 1.1.

electrical connections and
relative placements

I >.erlnterfacc:

final
layout

Figure 1.1 The Architecture of Iris

1.3 Contributions

The primary contribution of my work is the implementation of a C A D tool, which describes the

circuit placement and netlist using a high level language, and automates the design stages which

includes placement, detailed and global routing, and compaction. The layouts generated by Iris

demonstrate that automatic layout design can be as area efficient as manual layout with greatly

improved design productivity. Specifically, the contributions are,

• A novel, simple heuristic method for routing

• The implementation of compaction, which is integrated into the routing design stage

• Objective functions are designed and the layouts are based on linear programming

• . Supporting multiple fabrication technologies and their design rule sets (i.e., MOSIS SCMOS

and TSMC 0.18-micron technologies)

• A hierarchical, object-oriented user interface

• Aspect oriented programming techniques are applied in the development of Iris

1.4 Thesis Outline

This chapter gives an introduction of the problem to be addressed, the overview of Iris approach,

and the main contributions. In Chapter 2,1 will give a brief overview of related work to show the

difference between previous approaches and the approach of Iris. In that chapter, I will also give

a brief introduction of what had already been done with Iris before my work, which was

explained in detail in [LinOl]. Chapter 3 presents the detailed implementation including the user

interface, the routing algorithms and the constraint solving methods. Chapter 4 presents some

test results. Chapter 5 gives conclusions, along with some suggestions for possible future

research.

4

Chapter 2

Background

2.1 Related Work

The objective of VLSI layout design automation is to investigate the optimal arrangements and

interconnections of devices and it is essentially the study of algorithms and data structures. Many

different approaches have been proposed to solve the problems related to each phase of layout

design.

Routing is a very important and difficult phase in layout design. Routing quality is

decided by several factors. Some important factors include completing the routing of all the nets,

minimizing the routing area, minimizing the wire length, minimizing the number of vias and jogs,

meeting the timing constraints, minimizing the crosstalk between nets and minimizing the delay

for critical nets. Due to the complexity of routing, it is usually divided into two phases, global

routing and detailed routing. Global routing generates the coarse route and detailed routing

generates the exact route for each net.

Global routing often uses a sequential approach choosing the shortest path for each net

as it is considered. Maze routing algorithms and line-probe algorithms can be used to route two-

5

terminal nets. Finding the shortest path for a multi-terminal net is equivalent to finding a

minimum Steiner tree. As only horizontal and vertical directions are considered in our layout,

this problem becomes finding the minimum Rectilinear Steiner tree (RST). Steiner Minimum

Tree (SMT) is a Steiner tree with minimum cost. SMT and many of its variants are NP-complete

[Garey 77]. Since SMT is related to minimum spanning tree (MST), MST can be used to

approximate SMT. The figure below shows the MST, SMT and RSMT for a three-terminal net.

9

Minimum Spanning Tree Steiner Minimum Tree Rectilinear Steiner Minimum Tree

Figure 2.1 MST, SMT, RSMT of Three-Terminal Net

The Kruskal [Kruskal 56] and Prim [Prim 57] algorithms are common algorithms used to

solve minimum spanning tree problem. They have polynomial time complexity. [Hwang 76]

cos? 3
showed that — < —. As a result, many heuristic algorithms start with MST and apply

cos? 2

rsmt

local modification to obtain an approximate RSMT.

The channel routing problem is a restriction of the detailed routing problem with the

property that all terminals are on the top or bottom side of the routing region. The horizontal

routing region in the middle is the channel. This matches the arrangement of transistor rows and

routing rows that we assume in Iris. The problem of finding a channel route with the minimum

number of routing tracks is NP-complete [Szymanski 85]. Therefore, many algorithms dealing

with routing problems are heuristic in nature.

6

There are several criteria for classifying the routing algorithms. The algorithms can be

classified as those for solving single-layer routing problem or those for solving multi-layer

routing problem. The algorithms can also be classified as grid-based in which a grid is super­

imposed on the routing region and the wires are restricted to follow the grid lines, or gridless in

which wire placement is unrestricted. The algorithms can also be classified as using an

unreserved layer model in which the net segment can be placed on any layer, or using a reserved

layer model in which certain types of segments are restricted to particular layers. The algorithms

can also be classified according to the heuristic they use, such as greedy routers.

One special case of the single-layer routing problem is river routing. Although Iris

allows routing in three layers, river routing is still applicable in our design. Given a transistor

placement, it is quite possible that the gate nets are river routable. River routability can be

determined based on the algorithm described in [Hsu 83]. If the gate nets are river routable, we

can route these nets in polysilicon layer only. Then we can use multi-layer routing algorithms to

route the rest of the nets.

If vias are allowed, then the channel routing problem can be routed in two layers.

Therefore currently Iris primarily routes in metal 1 and metal2 layers, and uses polysilicon layer

to connect transistor gate to the routing channel. In the future, we may consider routing in more

metal layers to produce more compact design. Several basic algorithms and many of their

extensions address two-layer channel routing problem.

The Left-Edge algorithm (LEA) [Hashimoto 71] sorts horizontal segments from left to

right and assigns the segments to a track so that no two segments overlap. Iris scans the terminals

in a left-to-right order, compares the left edge variable of the terminal and determines which

track to assign. Dogleg routing [Deutsch 76] is based on L E A and allows doglegs. A dogleg is a

7

vertical segment that is used to connect two horizontal segments of the same net on different

tracks. Iris allows doglegs, but the doglegs are limited to the top and bottom most tracks.

Common greedy routing algorithms routes the nets from left to right using a greedy

strategy. The Rivest-Fiduccia greedy channel router [Rivest 82] allows a net to be placed on

more than one track and have a vertical line crossing more than one horizontal segment of the

same net. Iris also uses a greedy strategy but places a net on one track only at a time.

Several factors affected the design choices of Iris. Because of the large amount of

storage and the effort to maintain grids and the availability of efficient linear programming

solvers we got the idea of using gridless approach based on linear programming solver. The

gridless approach of Iris guarantees that the routing can always complete successfully. This is

not guaranteed with most grid-based routers. The basic idea of Iris is to use a greedy heuristic

method which is very similar to the Left-Edge algorithm and allows doglegs. Iris uses a simple

routing heuristics so that the execution time won't be too long and the code is easy to test and

debug.

2.2 Iris Approach

The first prototype of Iris was built by Lan Lin. A detailed description was presented in her

thesis [LinOl] including the design flow, user interface, transistor placement and relative

optimization, linear programming interface and magic output interface. Most parts of her

implementation are preserved in my present work with a few improvements. Specifically, section

1.2 gives the new design flow and Iris architecture; section 3.1 shows the new user interface,

transistor placement and relative optimization; section 3.3 describes the new linear programming

solver; and a new function was added to the magic output interface to show the critical path of

the linear programming optimization problem.

8

The Iris user interface is written in the Java language. The interface specification adopts

a hierarchical structure. Top-level cells are composed of subcells, which have smaller subcells.

At the leaves of this tree structure are cells which contain only transistors and signals. All the

cells in each level of the tree structure can have signals local to the cell or global signals

connected to other cells. In chapter 3 a simple adder is presented as an example of how Iris

generates the final layout from the user defined interface file.

The user describes the transistor placement in the user interface file. Based on the

information of the relative positions of transistors and signal connections given in the user

interface file, Iris optimizes the transistor placement by implementing contact sharing and

diffusion sharing. Once the device merging is complete, the circuit geometry is generated with a

set of rectangles and a set of constraints. • .

The constaints are solved with a linear programming solver. Two solving methods were

introduced, LP A B O solver and depth-first-traversal solver [LinOl]. L P A B O solver is not used

later because of the difficulty of getting a bounded solution [LinOl]. The depth-first-traversal

algorithm produced satisfying results in her prototype. However, I will show in chapter 3 that the

depth-first-traversal algorithm can be used only in solving transistor placement constraints,

which led to my seeking an alternative linear programming solver for solving routing constraints.

Prior to constraint solving, the variables associated with rectangle vertex coordinates

have symbolic values. After the constraint solving, the variables have specific real values. Iris

writes the rectagles to the layout file. The layout file is in Magic format. It can be shown and

manipulated in Magic.

Lan Lin's implementation produced an optimized transistor placement. My research

extended this by implementing a router which I will describe in chapter 3. ' .

9

Chapter 3

Implementation

This chapter describes the implementation of Iris, including both the external user interface and

the internal routing and constraint solving implementation. Combined with the background

description in chapter 2, this provides a full description of Iris.

3.1 User Interface

3.1.1 Example

The formula and schematics of a one-bit full adder and an n-bit ripple-carry adder have been

described in Lan Lin's thesis. I will go on using this example to illustrate how Iris generates the

final layout from the schematic step-by-step.

The one-bit full adder is built on two basic blocks, the carry block and the sum block.

First we will examine the carry block and the sum block individually. The following figure gives

the schematic of the carry block. P 0 ... P 5 , N 0 ... N 5 represent the order in which the user will

place the transistors from left to right in each p-transistor and n-transistor row. The user chooses

the order to optimize the transistor placement so that the layout area can be minimized

10

A 0 - ^ B -4^ A -<\[

P 2 H L B-4[
c

N , B H [
N ,

N,

A < B V A H
^ o l N, N 4

N,

Figure 3.1 Circuit Schematic of the Carry Block

From the schematic we build the circuit layout plan as in figure 3.2.

Vdd

Vdd Link Region

P-transistor Region
Po Pi P2 P 3 P 4 ?5

Routing Region

N-transistor Region
N 0 N , N 2 N 3 N 4 N 5

Gnd Link Region

Gnd

Figure 3.2 Layout Plan for the Carry Block

To implement diffusion sharing and source/drain sharing, we build the following layout

plans for the p-transistor and n-transistor rows.

Po

D G S S G D S G D D G S D G S S G D

S: Source G: Gate D : Drain

Figure 3.3 Layout Plan for the P-Transistor Row

11

No N, N 2 N 3 . N 4 N 5

S G D D G S D G S S G D S G D D G S

S: Source G: Gate D: Drain

Figure 3.4 Layout Plan for the N-Transistor Row

From the above layout plan, we write the following code for the carry block. For the

complete code see appendix A.

public class CarryBlock {
private DefaultSignal _Vdd;

public CarryBlock() {
_Vdd = new DefaultSignal();

// Based on P-Transistor Row Layout Plan
booleanf] pflip = new boolean[] {true, false, false, true, true, false };
// When the value is true, we use Source-Gate-Drain order.
// When the value is false, we use Drain-Gate-Source order.
PTransistor[] p = new PTransistor[pflip.length];
for (int i = 0; i < p.length; i++) {

p[i] - new PTransistor(8); // 8 is the transistor width in Magic's "lamda"
if (pflip[i]) p[i] = p[i].flip();

}
// Based on N-Transistor Row Layout Plan

// Netlist
p[0].source().connect(p[1].source()).connect(p[4].source())

.connect(p[5].source()).connect(Vdd);

// Based on P-Transistor Row Layout Plan, place the transistors in left-to-right order
for (int i = 0; i < p.length; i ++) {

if (i == 0) pr = p[i];

12

else pr = pr.left(p[i]);

}
// Based on N-Transistor Row Layout Plan

// Based on Carry Block Circuit Layout Plan, place the circuit rows in vertical order
c = (Vdd)

.above(pr)

.above(nr)

.above(Gnd);

Running the above code produces the layout of the carry block shown in figure 3.6.

Figure 3.5 Code Fragment from the Carry Block

Figure 3.6 Iris Generated Layout of the Carry Block

Similarly, the schematic of the sum block is shown below.

Figure 3.7 Circuit Schematic of the Sum Block

1 3

The circuit layout model, p-transistor and n-transistor row layout plan are shown below.

Vdd

Vdd Link Region

P-transistor Region
P 0 P, P 2 P 3 P4P5P6P7

Routing Region

N-transistor Region
N 0 N, N 2 N 3 N 4 N 5 N 6 N 7

Gnd Link Region

Gnd

Figure 3.8 Layout Plan for the Sum Block

Po P, P 2 P 3 P 4 P 5 P 6 P7

S G D D G S S G D S G D D G S D G S D G S S G D

S: Source G: Gate D: Drain

Figure 3.9 Layout Plan for the P-Transistor Row

N 0
N, N 2 N 3 N 4

N 5 N 6
N 7

D G S S G D D G S D G S S G D S G D S G D D G S

S: Source G: Gate D: Drain

Figure 3.10 Layout Plan for the N-Transistor Row

From the above layout model, we can write the following code for the sum block. For

complete code see appendix A.

public class SumBlock {

14

private DefaultSignal _Vdd;

public SumBlock() {
_Vdd = new DefaultSignal();

// Based on P-Transistor Row Layout Plan
boolean[] pflip = new boolean[] {false, true, false, false, true, true, true, false };
// When the value is true, we use Source-Gate-Drain order.
// When the value is false, we use Drain-Gate-Source order.
PTransistor[] p = new PTransistor[pflip.length];
for (int i = 0; i < p.length; i++) {

p[i] = new PTransistor(8); // 8 is the transistor width in Magic's "lamda"
if (pflip[i]) p[i] = p[i].flip();

}

// Based on N-Transistor Row Layout Plan

// Netlist

p[0].source().connect(p[1].source()).connect(p[2].source())
.connect(p[6].source()).connect(p[7].source()).connect(Vdd);

// Based on P-Transistor Row Layout Plan, place the transistors in left-to-right order
for (int i = 0; i < p.length; i ++) {

if (i•= 0) pr = p[i];
else pr = pr.left(p[i]);

>

// Based on N-Transistor Row Layout Plan

// Based on Sum Block Circuit Layout Plan, place the circuit rows in vertical order
c = (Vdd)

.above(pr)

.above(nr)

.above(Gnd);

Figure 3.11 Code Fragment from the Sum Block

15

Running the above code produces the layout of the sum block shown in figure 3.12.

Figure 3.12 Iris Generated Layout of the Sum Block

The one-bit full adder is built from the above two blocks, the carry block and the sum

block. We may put the carry block and the sum block side by side either horizontally or

vertically. Here I put the carry block on top of the sum block.

r

Car

Vdd

Vdd Link

P-Transistor Row

Routing Row

N-Transistor Row

Gnd Link

Gnd

Gnd Link

N-Transistor Row

Routing Row

P-Transistor Row

Vdd Link

Vdd

Sum

J

Figure 3.13 Layout Plan for the One-Bit Full Adder

16

By putting the carry block on top of the sum block, the sum block is flipped vertically so

that the two blocks share a common ground. This flip is performed automatically by Iris. The

input and output signals, such as A, B, C i n , C o u t , which are local signals inside each block

originally, become global signals spanning the two routing rows now.

public class OneBitFA {
private DefaultSignal _Vdd; 1

public OneBitFAO {
_Vdd = new DefaultSignal();

// build the Carry Block and the Sum Block individually
SumBlock sb = new SumBlock();
CarryBlock cb = new CarryBlock();

// make signal conections between the two blocks

sb.Vdd().connect(cb.Vdd()).connect(Vdd);
sb.Gnd().connect(cb.Gnd()).connect(Gnd);

A = sb.A().connect(cb.A());
B = sb.B().connect(cb.B());

Cin = sb.Cin().connect(cb.Cin());

Not_Cout = sb.Not_Cout().conr i9Ct(cb.Not_Cout());

// the output signals of the one-bit full adder

Cout = cb.Cout();

Sum = sb.Sum();

c = cb.circuit().above(sb.circuit());

}
}

Figure 3.14 Code Fragment from the One-Bit Full Adder

Running the above code produces the layout of the one-bit full adder shown in figure

3.15. The complete code is shown in appendix A.

17

Figure 3.15 Iris Generated Layout of the One-Bit Full Adder

The n-bit ripple-carry adder is built from n copies of the one-bit full adder. We may put

those one-bit full adders side by side either horizontally or vertically. Here I put them

horizontally.

bitO bit 1 bit n

one-bit one-bit one-bit
full full full

adder adder adder

Figure 3.16 Layout Plan for the n-Bit Ripple-Carry Adder

By arranging the one-bit full adder cells horizontally Iris automatically combines

corresponding rows of the same type. Power and ground rows are merged into rows that span all

of the one-bit full adder cells. The p-transistor and n-transistor rows are concatenated with other

p-transistor and n-transistor rows respectively. The routing row, power link and ground link span

the whole channel. The input and output signals, such as C i n and C o u„ which are local signals

inside each one-bit full adder cell originally, become global signals connecting two one-bit full

adder cells now.

0 1 2 n

f (>» (,» (^

Vdd

Vdd Link

P-Transistor Row

Routing Row

N-Transistor Row

Gnd Link

|| Gnd

Gnd Link

N-Transistor Row

Routing Row

P-Transistor Row

Vdd Link

I Vdd

Figure 3.17 Layout Plan for the n-Bit Ripple-Carry Adder

public class nBitRCAdder {
private DefaultSignal _Vdd; public Signal Vdd() {return(_Vdd);}

public nBitRCAdder(int n) {
_Vdd = new DefaultSignal();

OneBitFA fa = new OneBitFA();
c = fa.circuit();
A[0] = fa.A();
B[0] = fa.B();
Sum[0] = fa.Sum();
Cin = fa.Cin();
Cout = fa.Cout();
fa.Vdd().connect(Vdd);
fa.Gnd().connect(Gnd);

// build one-bit full adder repeatedly
for (int i = 1; i < n; i ++) {

fa = new OneBitFAQ;

19

fa.Cin().connect(Cout);
fa.Vdd().connect(Vdd);
fa.Gnd().connect(Gnd);
c = c.left(fa.circuit());
A[i] = fa.A();
B[i] = fa.B();
Sum[i] = fa.Sum();
Cout = fa.Cout();

}
}

public static void main(String[] args) throws Exception {
Technology.setTech(Scmos.tech());
int solver = GeomCircuit.Matlab;
ObjFunc[] obj = new ObjFunc[1];
obj[0] = new ObjFunc();
obj[0].setWeight(ObjFunc.boundsWt, 0);
obj[0].setWeight(ObjFunc.layerWt, 5);
obj[0].setWeight(ObjFunc.netWt, 0);

(new GeomCircuit((new nBitRCAdder(4)).circuit(), Technology.tech(), "nBitRCAdder",

solver, obj)).toGeomCircuit();

}

}

Figure 3.18 Code Fragment from the n-Bit Ripple-Carry Adder

Running the above code produces the layout of the n-bit ripple-carry adder shown in

figure 3.19. For the complete code see appendix A.

20

Figure 3.19 Iris Generated Layout of the n-Bit Ripple-Carry Adder

3.1.2 Class Summary

The user interface is written in the Java language. AspectJ is used in the Circuit package. The

user doesn't need to be familiar with AspectJ. A l l the user needs to know about AspectJ is using

"ajc" to compile and "ajava" to run on Solaris and Linux machines, and "ajc" to compile and

"Java" to run on Win2K platforms. Several templates have been given in the adder example. The

user may define the cells hierarchically. The Java interface files fo>- the leaf cells are similar to

the files of the carry block and the sum block. Those for the upper level cells are similar to the

one-bit full adder and the n-bit ripple-carry adder. Table 3.1 gives the information that needs to

be included in the user interface file.

2 1

Leaf cell Upper level cell

1. Input/output signals, power and
ground

2. (Optional) Terminal order (Source-
Gate-Drain or Drain-Gate-Source)
of each transistor. The default order
is Source-Gate-Drain.

3. Netlist

4. The relative ordering of the
transistors in the horizontal
direction

5. Circuit rows (transistor rows and
power/ground rows), and the
relative position of these rows in the
vertical direction

1 . Input/output signals, power and
ground

2. Lower level cells

3. Signal connections of lower level
cells (Netlist)

4. The relative position of lower level
cells in horizontal or vertical
directions

Table 3.1 User Interface File

The signal interface and several class implementations of Signal interface are used for

defining input/output signals and power/ground. Usually only Signal, DefaultSignal, Power and

Ground are used in the interface file. The method Connect is used to define netlists.

Interface: Signal

Class: DefaultSignal j Class: Power Class: Ground j Class: i-ermmai

Table 3.2 Signal Interface and Class Implementations

As the circuit is defined in a hierarchical structure with upper level cells composing of

lower level cells and leaf cells composing of transistors, so are the class structures. Figure 3.20

shows the class hierarchy of the circuit.

22

Circuit

"v"

Row

7f
Power PowerLink PRow RoutingRow NRow GoundLink Ground

•v" v"
n

PTransistor NTransistor

Figure 3.20 Class Hierarchy of Circuit

In this class hierarchy, only Circuit, Power, Ground, PRow, NRow, PTransistor and

NTransistor are used in the interface file, which correspond to the whole circuit cell, vdd, gnd, p-

transistor row and n-transistor row respectively in the actual circuit as shown in the circuit layout

plan in the adder example. PowerLink, GroundLink and RoutingRow are added to the circuit

automatically in the internal implementation, which correspond to vdd link, gnd link and routing

rows in the actual circuit as shown in the circuit layout plan in the adder example..PowerLink is

inserted between the power and p-transistor rows in the circuit. GroundLink is inserted between

the ground and n-transistor rows. RoutingRow is inserted between p-transistor and n-transistor

rows. Once the complete circuit is built, placement, routing and compaction are done on this

complete circuit. Table 3.3 shows these classes and their methods relating to the user interface

file.

23

Class Method Purpose

PTransistor/NTransistor

source()

gate()

drain()

Get the terminals of a transistor so that netlist can
be defined on these terminals

PTransistor/NTransistor

'.flipO
Define terminal order (Source-Gate-Drain or Drain-
Gate-Source)

P R o w / N R o w left()
Define transistor relative position in horizontal
direction

Power/Ground connect() Define netlist

Circuit

left()

above()

mirrorX()

mirrorY()

Define the relative position of circuit rows and cells
in horizontal or vertical direction

Table 3.3 User Interface Class and Method

A t the highest level interface file, a main function gives other information that Iris

requires to produce an actual layout.

1. Choose technology (Currently Scmos or Cmor.p.18)

2. Define the objective function (Minimize the perimeter, wire-length, etc.)

3. Choose a linear programming solver (Matlab, BellmanFord or DepthFirstSearch) .

4. Ca l l the method to run the program

For the example of the one-bit full adder, this calling wi l l look like this,

(new GeomCircuit((new OneBitFA()).circuit(), Technology.tech(), "OneBi tFA",
solver, obj)).toGeomCircuit();

Table 3.4 Main Function

Iris currently provides two technology files, Scmos.java and Cmospl8.java, which

define the layers, the minimum width of each layer, the minimum separation of two layers so

24

that in the internal implementation necessary constraints are added to generate design rule

correct layout. By writing a new file similar to these two files, other technologies can, be used to

generate design rule correct layout.

3.2 Routing

Routing take place in three phases. Each phase generates an ordered list of transistor terminals.

Based on the initial placement generated in the previous phase and the user-provided information

in the user interface file, the current phase generates an improved transistor placement which is

used in the next phase as the initial placement.until in the last phase a final layout is generated..

Phase 1: Describe the circuit only in terms of transistor rows. Add necessary horizontal

constraints to guarantee that transistor rows satisfy the design rules. Solve the

constraints and get the relative position of each transistor.

Phase 2: Describe the whole circuit, including transistor rows, power and ground rows, power

link, ground link and routing rows. Do channel routing within each channel. Only

connections within each channel are considered at this point. Global routing, i.e.,

connections between channels, are handled in the next and final phase. Add necessary

constraints. Solve the constraints and get the relative position of each transistor.

Phase 3: Describe the whole circuit, including transistor rows, power and ground rows, power

link, ground link and routing rows. Do global routing and detailed routing. Add

necessary constraints. Solve the constraints and get the final layout.

For example, the FifoStage circuit has four transistor rows. From bottom to top, they are

p-transistor row, n-transistor row, p-transistor row and n-transistor row. After phase 1, we get the

transistor placement layout in the following figure. Phase 1 generates the ordered list of all

transistors and their terminals, which will be used in phase 2 as the initial placement.

25

Figure 3.21 Iris Generated Layout in Phase 1

The layout described in file FifoStagel.mag only considers horizontal constraints,

because vertical constraints are not important in this phase. To make the layout easy to read and

design rule correct, I added vertical constraints when generating figure 3.21. I used the index

number to indicate the left-to-right order at the end of the phase. Those terminals connecting to

power and ground don't have the index number on them because the routing of power and

ground nets is done in power link and ground link regions. Only the nets routed in a single

routing row region have the index numbers. Horizontal compaction is done in this phase

including diffusion sharing and source/drain sharing. This compaction generates a more accurate

relative position of each terminal.

M g j
S3 n

us

Figure 3.22 Iris Generated Layout in Phase 2

26

Figure 3.22 shows the layout in file FifoStage2.mag, which is generated at the end of

phase 2. This layout includes the ordered list of all transistors which will be used during phase 3

as the initial placement. We can see from this layout that only detailed routing or channel routing

is done in this phase. The reason that I choose to implement channel routing first and use this

layout as the initial placement during phase 3 is based on the assumption that most routing is

within each channel, so the local routing within each channel will have the greatest impact on the

relative positions of transistors. Horizontal compaction of local routing is done in this phase,

which generates a more accurate relative position of each terminal.

In chapter 4, figure 4.1 shows the final layout in file FifoStage3.mag generated at the

end of the global routing process. In phase 3,1 first calculate global routing information for those

terminals whose nets are global nets. For each global net in each routing row, I determine at

which terminal I should do global routing. Once the global routing information is achieved, both

local routing and global routing are done simultaneously in phase 3.

Phase 2 and phase 3 use the same algorithm for local routing. The only difference

between phase 2 and phase 3 is that phase 2 doesn't take global routing into consideration. In

phase 3, Iris performs global routing first and then detailed routing, which is a common approach.

Iris doesn't have a separate compaction phase. Compaction is done throughout phase 3,. mixed

together with routing.

3.2.1 Global Routing

Global routing determines the approximate course of connecting wires for global nets. In the

case of channel routing, global nets are those nets spanning more than one routing row. Iris uses

sequential routing in which one net is routed each time and the shortest path is chosen for this net.

Because of the characteristics of the global routing algorithm that Iris uses, the routing order of

27

the global nets doesn't matter. Each time a net is arbitrarily chosen to route until all nets.are

routed.

The problem of finding the shortest set of connections for an n-pin net is a Steiner tree

problem. Minimum spanning trees can be used to approximate Steiner trees. Prim and Kruskal

algorithms for solving minimum spanning tree problem have complexity of 0(n 2), where n is the

number of pins. Iris uses a different approach from the minimum spanning tree. The global

routing algorithm Iris uses can generate good layout for most cases with better performance than

Prim's and Kruskal's algorithms. The algorithm is divided into two steps. The first step is based

on the sorting of routing rows. The complexity is O(nlogn) for the sort plus an additional O(n)

phase following the sort, resulting in overall complexity of O(nlogn) for this step, where n is the

number of routing rows. The second step is based on the sorting of the index of terminals within

each routing row. The complexity is O(nlogn) for the sort plus an additional O(n) phase

following the sort, resulting in overall complexity of O(nlogn) for this step, where n is the

number of terminals within this routing row. The two steps are in a sequential order. The

complexity of this global routing algorithm is then O(nlogn), where n is the number of terminals.

Algorithm 3.1 Global Routing

1. For each global net Do

2. Sort the routing rows in which the global net has terminals in ascending order in the y"

direction

3. For each routing row in the sorted list Do

4. Pair each routing row with its predecessor in the sorted list to get a connection

5. End For

// Now we have a connection list for each net including all the connections generated in

// the above step.

6. For each connection of this net Do

7. Sort the terminals in the bottom routing row in left-to-right ascending order

8. Sort the terminals in the top routing row in left-to-right ascending order

28

// The intermediate rows don't matter.

9. Denote the leftmost terminal in the bottom routing row as chOLeft

10. Denote the leftmost terminal in the top routing row as chlLeft

// Every terminal has an index which is produced in the previous step and

// indicates the left-to-right order

11. If (ch0Left>chlLeft)

12. Find the rightmost terminal in the top routing row which has an index

smaller than chOLeft, and denote it as chlRouting. Do global routing at

terminal chOLeft in the bottom routing row and at terminal chlRouting

in the top routing row

13. Else // chOLeft <chlLeft

14. Find the rightmost terminal in the bottom routing row which has an

index smaller than chlLeft, and denote it as chORouting. Do global

routing at terminal chORouting in the bottom routing row and at terminal

chlLeft in the top routing row

15. End If

16. End For

17. End For

Iris tries to build a global route for one global net each time in an arbitrary order. A

netlist has been built when the user interface file is given by the user. In Line 1, the algorithm

chooses a global net from this netlist. Lines 2 to 5 are the first step of global routing. Every

routing row has a uiaque id associated'with it, which is called channelld. First, we find all the

routing rows in which this net has terminals. Then, these routing rows are sorted in ascending or

descending order by their channelld. Here I use ascending order. Next, a pair is formed between

the adjacent routing rows. This step is illustrated in the following figure.

29

channelld: 11

channelld: 8

channelld: 5

channelld: 3

Suppose this net has terminals in

routing rows with channelld 3, 5,

8, 11

We get the following pairs:

(3 ,5)

(5 ,8)

(8, 11)

Figure 3.23 The First Step of Global Routing

Lines 6 to 16 are the second step of global routing. In this step, the algorithm tries to

build one and only one connection for each pair. It determines where the connection or wire

should be put. First, the terminals are sorted by their index generated in Phase 2 of routing

process in left-to-right ascending order within each routing row. Then, the leftmost terminals in

the routing rows of a pair are compared with each other. The bigger one will be chosen to do

global routing in its routing row for this net. For the other routing row that routing has not been

decided yet, a search for the terminal that has an index smaller than the one we just chose is

performed. The first terminal found in the above search will be used for global routing in its

routing row for this net. This step is illustrated in the following figure.

Line 11 and 12

Line 13 and 14

channelld : 1

channelld : 0

channelld

channelld : 0

Figure 3.24 The Second Step of Global Routing

30

At the end of step 2, we may build the global connections for a net looking like below.

• • n • • channelld : 11

channelld : 8

channelld : 5

channelld : 3

Figure 3.25 Global Connections

The above method always finds the terminals to be connected within a channel from the

left side to the right side, which may cause congestion if these terminals of several global nets

happen to be close to each other within a channel.

3.2.2 Detailed Routing

Detailed routing determines the exact course of wires that comply with the global routes

generated in global routing phase and that obey a set of constraints. In this phase, Iris deals with

the channel routing problem. Iris uses a gridless approach in that the detailed routing algorithm

does not rely on the grid to determine the course of wires but relies solely on the constraints.

Iris applies a greedy method to solve the channel routing problem. The greedy method

attempts to construct an optimal solution in stages. At each stage it makes a decision that appears

to be the best at the time. A decision made in one stage will not be changed in a later stage. Iris

handles one terminal in one stage. Several operations are performed for a terminal in one stage.

In the worst case an operation has complexity of O(n). The complexity of the whole detailed

routing algorithm is 0(n2), where n is the number of terminals.

31

Iris performs detailed routing on three layers, polysilicon, metal 1 and metal2. All three

layers can be used to route within a channel. Only metal2 is used to route between channels.

There is no limitation for the directions of the three layers. They can be placed in both horizontal

and vertical directions, although polysilicon and metal2 are primarily used for vertical routing

and metal 1 is primarily used for horizontal routing.

Detailed routing is performed in two regions as shown in the layout plan of the adder

example, power/ground link regions and routing row regions. For the power/ground link routing

we can simply add a metal 1 rectangle to connect the source or drain terminal with the power or

ground wire when the terminal is in the same net as power or ground. For the routing row region

a two-step routing procedure is performed. The detailed routing flow is shown below.

Step 1

Step 2

The net is not power/ground net && net.size() > 1

y y
Complete the connections in current channel

The net is global net and should be routed at this terminal

Complete the connections with other channels

c return J

Figure 3.26 Detailed Routing Flow

The basic idea of Iris channel router is to route each terminal in the left-to-right order

generated in Phase 2 of routing process, check which track the net is using and which track

should be used for later routing if this is not the last terminal of this net, add necessary

connections for this terminal and the tracks, and necessary constraints to satisfy the design rules.

32

One net can switch to another track even if it is using a track. The switching strategy is to make

use of the top most and bottom most tracks most, and release the tracks in the middle. The reason

for doing this is that the top most and bottom most tracks can not be released in most situations

because they are used for the vias which are necessary for routing the source or drain terminal.

Figure 3.27 shows an example illustrating why switching to another track is necessary for

efficient area utilization.

2 7 8 .
At terminal 6 the net
switches from track 1 to
track 0, track 1 is released
which leads to terminal 7
using track 1. Otherwise, a
new track has to be

1 3 4 5 6 9 10 created.

Figure 3.27 Track Switching for Efficient Area Use

Deciding when to switch and which track to switch to depends on whether the top most

and bottom most tracks are currently used by other nets and whether the current net has terminals

not yet routed in the current channel and other channels. If the current net has terminals not yet

routed in the current channel, I denote localFutmeUse a i true. If the current net needs to do

global routing at this terminal, I denote globalFutureUse as true. Next, I determine whether the

top most and bottom most tracks are available for local routing and global routing. This

procedure is similar for both local routing and global routing. First I check whether the bottom

most and top most tracks are currently used by other nets. If they are used by other nets, then

they are not available for the current net. Next I check those terminals located between the

current terminal and the next terminal belonging to the current net in current channel to see

whether they are source/drain or not. If they are source or drain, and they are not power or

ground net, then the top most track will not be available if that terminal is at the top of the

track 2
track 1
track 0

33

channel, and the bottom most track will not be available if that terminal is at the bottom of the

channel. If only the bottom most track is available,,I denote availGlobal or availLocal as 0. If

only the top most track is available, I denote availGlobal or availLocal as 1. If both tracks are

available, I denote availGlobal'and availLocal as 2. If availLocal and availGlobal conflict, that

is, availLocal = 0 and availGlobal = 1, or availLocal = 1 and availGlobal = 0, then neither track

can be used for the current net. If both tracks are available, I choose the track closest to the

current terminal with the exception shown in figure 3.28. If neither track is available, I find an

empty track in the middle tracks. If no empty track is available, a new track is created.

top most track

middle tracks

bottom most track

Keep using the top most
track as shown in the right
figure instead of changing
from the top most track to
the bottom most track in the
left figure

Figure 3.28 Choosing of Bottom Most Track and Top Most Track

Determining which track is being used and which track will be used by the current net is

performed in stepl of detailed routing shown in figure 3.26. At the end of this process, I have

usingTrack and toUseTrack being either true or false depending on whether the current net is

using a track or not and whether the current net will use a track or not. I also have

usingTracklndex and toUseTracklndex being an integer number to show the track, index. For

different combination of usingTrack and toUseTrack, different procedure shown in the following

table is performed to complete step 1 of detailed routing.

34

UsingTrack toUseTrack
usingTracklndex

toUseTracklndex

Procedure

False true X StartUseTrack

True false X EndUseTrack

True true Yes UseSameTrack

True true No UseDiffTrack

Table 3.5 Step 1 Procedure

Throughout step 1 compaction is done through via elimination by either vertical

alignment or jog insertion. Vertical alignment can be applied to polysilicon when the terminals

on both sides of the channel are gate and they belong to the same net, and can be applied to

metal2 when the terminals on both sides of the channel are source or drain and they belong to the

same net. Vertical alignment eliminates unnecessary polycontacts in the case of polysilicon and

vias in the case of metal2. Jogging adds horizontal polysilicon or metal2 when otherwise only

metal 1 can be placed horizontally, and eliminates unnecessary polycontacts or vias. Jogging can

be done in the following two situations shown in figure 3.29.

poly
metall P c

poly

When there is no poly of
other net inserted between
the two pc, jogging is
performed and pc is
eliminated when possible

poly

P°'y poly

metal2

m2c

metal 1 m 2 c

metal2

When there is no metal2 of
other net inserted between
the two m2c, jogging is
performed and m2c is
eliminated when possible

metal2

meta!2
metal2

Figure 3.29 Two Jogging Situations

35

Once vertical alignment and jog insertion are determined, the procedure StartUseTrack,

EndUseTrack, UseSameTrack and UseDiffTrack are easy to write. In the pseudocode below,

whenever a rectangle is added, relative constraints are also added.

StartUseTrack

If current terminal is Gate

Extend the polysilicon to the track

Add polycontact on this track

Else // current terminal is Source or Drain

Add vertical metal2 to connect the terminal to the track

Add m2contact on the track

End If

End StartUseTrack

EndUseTrack

If current terminal is Gate

Extend the polysilicon to the track

If jogging

Add horizontal polysilicon on the track

Else

Add horizontal metal 1 on the track

Add polycontact to connect vertical polysilicon and horizontal meiail

End If

Else // current terminal is Source or Drain

Add vertical metal2 to connect the terminal to the track

If jogging

Add horizontal metal2 on the track

Else

Add horizontal metal 1 on the track

Add m2contact to connect vertical metal2 and horizontal metal 1

End If

End If

End EndUseTrack

36

UseSameTrack is similar to EndUseTrack except that a polycontact is added for later

routing on the track when the terminal is gate, and an m2contact is added for later routing on the

track when the terminal is source or drain.

UseDiffTrack is similar to UseSameTrack except that the vertical polysilicon extended

from the terminal needs to connect both the usingTrack and tollseTrack when the terminal is

gate, and the vertical metal2 extended from the terminal needs to connect both the usingTrack

and toUseTrack when the terminal is source or drain.

Step 2 of detailed routing connects the current channel with the other channel when the

current net is a global net. The track used for this connection is determined in step 1. Compaction

is done through via elimination by either vertical alignment or jog insertion which is same as in

step 1. The pseudocode below shows this procedure.

Step 2 of Detailed Routing

// For the current channel, when current terminal is Source or Drain, we do vertical

// alignment, add nothing

If current terminal of current channel is Gate

Add horizontal metal 1 and m2c on the track of the current channel

End If

If the last terminal of the other channel is Gate

Add horizontal metal 1 and m2c on the track of the other channel

Else // Source or Drain

If Jogging

Add horizontal metal2 on the track of the other channel

Else

Add horizontal metal 1 and m2c on the track of the other channel

End If

End If

Add vertical metal2 to connect the two m2c

End Step 2 of Detailed Routing

37

The following figure shows the four situations that Step 2 of detailed routing deals with.

pc/n,2c _ ™tal 1 m 2 c t h e . . . 0 * e . r . . C h a n . n e I pc/m2c j e t a U m 2 c

1 = 1
metal2

pc
t

metal 1

mlc

m2c metal2

the current channel

the other channel

meta!2

m2c

m2c metal2
1=

metal2

the current channel
pc [§=ffl mlc m2c H

t
metal 1

metal2

Figure 3.30 Step 2 of Detailed Routing

Before jogging and other optimization, I got the layout with area ratio to the hand layout

1.8:1 without doing global routing. From the test result in chapter 4, we can see that the

optimization significantly improved the layout area with the result area to the hand layout area

ratio of 0.99:1.

3.3 Constraint Solving

The integrated circuit layout has to satisfy a set of design rules including size rules, separation

rules and overlap rules to guarantee correct fabrication. The geometry of the circuit layout is

represented in terms of rectangles. The design rules are then turned into a set of constraints over

the four variables indicating the left, bottom, right and top sides of the rectangle, and the layout

problem then becomes a linear programming problem.

Two solving methods for linear programs were considered in Lan Lin's thesis. The

LPABO [Park 00] solver was first tried but rejected later because of the difficulties of

constructing a cost function. A depth-first-traversal algorithm was used in her prototype

38

successfully and satisfying results were obtained. In this thesis, I describe two other solving

methods. There are two reasons that lead to my seeking alternative solving methods..First, the

depth-first-traversal algorithm doesn't take into consideration the optimization cost function.

Second, the depth-first-traversal algorithm requires that no cycle exists in the constraint graph. It

doesn't work when constraints of the form v 0—v, >a and v, — v0>b exist, which are

produced during the reduction of constraints generated from routing. The following figure shows

an example where su<

X 0 X)

x,=x0+4

Figure 3.31 V ia slides on Metal2

Although the depth-first-traversal algorithm has the two drawbacks mentioned above, it

has one important good thing: its running time is fast. The time complexity is 0(n+m) with n

unknowns and m constraints. It can be used in phase 1 of routing, because phase 1 of routing has

the property that no cycle exists in the constraint graph. This is due to the fact that in phase.Fall

rectangles are put side by side in horizontal direction in each transistor row. These rectangles are

either adjacent to each other or separated from each other. No rectangles can slide on other

rectangles. If we want to add extra optimization features to phase 1, we still need the linear

programming solvers which I will describe below.

ch constraints occur.

x 2 x 3

x3=x2+3

Xo X|

x 2 x 3

X | > = X 2

X| - x 3 > = -3
x 3 - x , > = -4

3
X 0 X]

x 2 x 3

x3>=x0

39

3.3.1 Matlab Linear Programming Solver

Matlab has an optimization toolbox that is capable of solving linear programming problems. The

linear programming problem is expressed in the following form.

T
miri f x such that A • x < b

Aeq•x = beq
lb<x<ub

where/, x, b, beq, lb, and ub are vectors and A and Aeq are matrices, and vector inequalities are

evaluated elementwise.

The function linprog can be used to solve this kind of problem. It has several forms

which have different numbers of input and output arguments. Iris uses the following form.

[x,fval, exitflag, output] = linprogif, A, b, Aeq, beq, lb, ub)

lb and ub defines a set of lower and upper bounds on the variables, x, so that the solution

is always in the range lb < x < ub . The output argument fval represents the value of the

objective function/'JC. A positive value of exitflag indicates that linprog converged successfully

The argument output provides other information including the algorithm that linprog used to

solve the linear programming problem.

Matlab has two options for solving linear programming problem using linprog, medium

scale linear programming and large-scale linear programming. Iris chooses the large-scale option

which uses an interior-point method and requires A and Aeq be sparse.

Sparse matrices are especially suitable for expressing the layout constraints, because all

constraints are either in the form x0 - x, >= b or in the form x0 - Xi = b so that each row of A and

Aeq contains one 1 and one -1, and all other entries are 0. The function spalloc is used to

40

allocate space for sparse matrix. A = spalloc(m, n, nzmax) creates an all zero sparse matrix A of

size m x n with space to hold nzmax nonzeros. The matrix can then be generated entry by entry

without requiring repeated storage allocation as the number of nonzeros grows

The objective function is defined as,

/ = ^ weight * [(right - left) + (top - bottom)]
rec tan gles

weight can be different based on different choices. Different layers can have different weights,

for example, diffusion can be given a higher weight than contact to get a higher priority.

Different nets can have different weights, so that the user can choose to optimize the nets having

longer wires with higher priority, or to optimize the nets having more pins with higher priority,

or to optimize the nets that the user thinks are more critical with higher priority. Minimizing all

the rectangles is equivalent to minimizing total wire length. Besides the four variables related to

the rectangles, other variables can also be added to the objective function, for example, the

variables representing the boundaries of each layers, so that the total perimeter can be minimized.

Iris creates an m-file named circuit.m, which is passed to and executed in Matlab.

Matlab runs as a separate process spawned by the Java runtime environment. The solution file

named circuit.dat is produced by Matlab, and is read by Java object. Below is a typical circuit.m

file.

% size of A matrix

m = 550;

n = 649;

A = spalloc(550,649,1100);

A(1,2) = 1;

A(1,1) = -1;

41

% A*X >= B

B = [...
9...
0 ...

];
B = B';

% m i n C ' * X

C = [...

-0.3132465325636185...

0.0 ...

];

C = C ;

% solve Ip

[soln, cost, exitFlag, output] = linprog(C, -A, -B, [], [], zeros(n,1), lnf*ones(n,1));

% write solution to disk

fid = fopen('circuit.dat','w');

fprintf(fid, 'cost = %f\n', cost);

fprintf(fid,'exitFlag = %f\n', exitFlag);

f printf (fid, 'output = %f %f % s \n', output.iterations, output.cgiterations, output.algorifhm);

fprintf(fid, '%f\n', soln);

fclose(fid);

quit;

3.3.2 Constraint Graph Based Algorithm Solver

The Matlab linear programming solver either gives an optimal solution when linprog converges,

or shows the problem is infeasible. The latter indicates an error in the router, and more

information is desirable to assist debugging. When there are cycles of constraints leading to

infeasibility, the developer wants to know which constraints are in the cycle. When the optimal

42

solutions are obtained, the developer wants to check the critical path in the final layout to see if it

can be improved further. Furthermore, Matlab is slow especially for large designs. Alternative

approaches that can give more information to the developer for analysis are desirable.

The layout problem contains only difference constraints, that is, each row of matrix A

contains one 1 and one -1, and all other entries are 0. The system of difference constraints can be

interpreted as a constraint graph. Given a system Ax < b of difference constraints, where A is an

mxn matrix, the corresponding constraint graph is a weighted, directed graph G=(V, E), where

V= { V0, V!, v„+1}

and

E = { (v„ vj) : xj - Xj <= bk is a constraint, i, j = 1... n }

U { (vft V/) , (v0, v2), (vft v„) } // create a leftmost vertex, v0

U { (v,, vn+l), (v2, vn+I), (vn, vn+/) } // create a rightmost vertex, vn+I

Each vertex v„ for / = 1... n, corresponds to one unknown variable. Each directed edge

corresponds to one inequality. Two additional vertices v0 and v„ + / are added to the constraint

graph. Every vertex v„ for / = 7... n, can be reached from v0 and v„+,can be reached from every

vertex v„ for i = 1... n. The weight of edge (v„ v,-) is vv(v„ vj) - bk The weight of edges leaving v0

and edges going into v„ + / are 0.

The critical path is the longest path in the constraint graph from v0 to vn+1. The weight of

the longest path is defined as,

weight(critical path) = max { weight(path): the path is from v0 to vn+] }.

Finding the longest path can be turned into the problem of finding the shortest path by changing

the constraints in the following way,

v,. - v . > b, {bk > 0) -> v. - v,. < -1 * bk {bk > 0)

43

The Bellman-Ford algorithm can solve the single-source-single-destination shortest path

problem allowing the edges to have negative weights. The algorithm returns a boolean value

indicating whether or not there is a negative weight cycle that is reachable from the single source.

If there is a negative weight cycle, then no feasible solution exists. If there is no such cycle, the

algorithm produces the shortest path and its weight, and gives a feasible solution.

I use the notation and description of the algorithm in [CLR 90]. The Bellman-Ford

algorithm runs in time 0 (V £) with V vertices and E edges. For the system of difference

constraints, this time is 0{n+nm) with n unknowns and m constraints. With a little modification

to the subprogram Initialize-Single-Source (G, s), the algorithm can run in 0(nm) time.

Modified-Initialize-Single-Source (G, s)

For each vertex ve V(G)

Do d[v] = 0, II the original algorithm is d[v] = °°

predecessor[v] = null

d[s] = 0

End

When the algorithm returns true, d[v] gives the feasible solution for vertex v, and the

chain of predecessors originating at the single-destination vertex vn+l and running backwards

gives the critical path. The algorithm can be modified to find the negative weight cycle when it

returns false.

Modified-Bellman-Ford (G, w, s)

Initialize-Single-Source (G, s)

Fori= 1 tolVfGjl-1

Do for each edge (w,v)e E(G)

Do Relaxfw, v, w) //Relax(u,v,w) is same as described

// in [CLR 90]

44

feasible = true

For each edge (u,v)e E(G) and uos

Do if d[v] > d[u] + w(u, v)

d[v] = 1

feasible = false

Return feasible

End

Those vertices having d[vj = 1 form the negative weight cycle. The negative weight cycle in the

constraint graph indicates that there is a cycle of infeasible constraints in the layout constraint set.

The following example shows this situation.

v 2 - V | < = - 2 ' i v, - v 2 >= 2
v 3 - v 2 <= -3 v 2 - v 3 >= 3
V, - V 3 <= -1 V 3 - V] > - 1

negative weight cycle in constraint graph cycle of constraints in constraint set

Figure 3.32 Negative Weight Cycle in Constraint Graph

3.3.3 Aspect Oriented Programming

For any user design (i.e., program), Iris should generate a feasible set of constraints. However, in

the course of developing Iris, programming errors often led to infeasible systems of constraints.

To aid the debugging, it was helpful to be able to identify these infeasible cycle automatically.

The next step is to detect where in the source code these constraints are added to the constraint

set. Figure 3.33 shows the U M L for those classes and their methods where constraints are added.

45

GeomCircuit

+ toGeom ()

A

Ground GroundLink Power PowerLink NRow PRow RoutingRow GlobalRoute

+ toGeom () + toGeom () + toGeom () + toGeom () + toGeom () + toGeom () + toGeom () + toGeom ()

Add Constraint

executed by executed by

CRSimpleJogging GRSimpleJogging

+ doCRSimpleJogging () + doGRSimpleJogging ()

Figure 3.33 U M L for Classes Related to Adding Constraint

The method addConstraint in class GeomRowProto is used to add a constraint to the

constraint set. Several classes call addConstraint method many times in their method toGeom

shown in figure 3.33. One way to trace the source code is to print something whenever this

method is called. For example, adding one line of code System.out.println(" addConstraint is

called at " + classname + linenumber) before addConstraint whenever addConstraint is called.

The programmer will have to write many such kind of code in several classes. Even if the

programmer uses a subprogram to print debugging message, the classname and linenumber has

to be passed to the subprogram whenever addConstraint is called. Either way the programmer

has to explicitly do something to trace the code. Thus the code for adding constraint and the code

46

for tracing the cycle of constraints tangles together which makes the code a mess. Aspect

oriented programming helps in this situation.

Aspect oriented programming [Elrad 01] provides mechanisms — aspects, to localize

crosscutting concerns and implement the system in a crosscutting way. Tracing the constraints is

one concern, and adding constraints is another concern. Separating these two concerns reflects

the way the developer wants to think about the system. This separation localizes different

concerns, hence makes the design and code more modular.

Aspect oriented programming builds on existing technologies. I used AspectJ [Kiczales

01], an aspect oriented extension to Java, in Iris. To trace such a constraint v, - v0 >= 1, the

tracing aspect will be:

aspect Tracing {

pointcut trace_addConstraint(Variable v1, Variable v2, double d):

(call(void GeomRowProto.addConstraint(Variable, Variable, double)) && args(v1, v2, d));

before(Variable v1, Variable v2, double d): trace_addConstraint(v1, v2, d) {

if (v1.id() == 0 && v2.id() == 1 && d == 1) {

// v1 .id() == 0 represents v0 and v2.id() == 1 represents v,

SourceLocation I = thisJoinPoint.getSourcel_ocation();

System.out.println(l.getFileName() + "" + l.getLine() +

" [within " + l.getWithinType() + "]");

}

}

}

In this aspect, the pointcut trace_addConstraint identifies any call to addConstraint

method defined by GeomRowProto. Before advice before(...): trace_addConstraint(...) prints a

message showing at which line of which class file the method addConstraint is called when the

join point is reached. For example, this message could be "PRow.java 176 [within class

Circuit.PRow]". It tells that at line 176 of the file PRow.java within the class Circuit.PRow the

47

method addConstraint is called, that is, the constraint is added to the constraint set. Then the

developer can check the source code at line 176 of file PRow.java to see whether or not the

constraint should be added. •. . •

With the Java language, the developers have to delete or comment out a lot of tracing

code when debugging is complete if they want to disable the tracing, which is frustrating.

AspectJ provides an easy way to remove the debugging message by removing the aspects from

the compile configuration when they are not needed, that is, changing makefile not to include the

tracing aspects. Since AspectJ is used only for debugging in Iris, the user doesn't need to know

anything about AspectJ. Once the makefile is changed, Iris can be built and run in the traditional

Java environment without the support of AspectJ.

48

Chapter 4

Experiments

Several examples were tested to check several design goals. The testing was run on a Linux

machine with 1GHz CPU, 256M RAM, ajc version 1.0.6 running on Java 1.4.0J31. The

objective function was designed to minimize layout perimeter and total wire length. The weights

assigned to the layers are listed in table 4.1.

layer pdiff ndiff ptran ntran pdc ndc poly pc metal 1 metal2 m2c

weight 10 10 1 1 1 1 3 4 1 1 1

Table 4.1 The Weight of Layers

The first design goal is to make the Iris generated layout comparable to the hand layout.

The comparison was performed between an Iris generated layout and a manually designed layout

under technology MOSIS SCMOS with the example FifoStage. The manual layout is shown in

figure 4.1. The Iris generated layout is shown in figure 4.1, which is design rule correct for

MOSIS SCMOS technology. The manual layout included the input and output signals, p-well

and n-well which are not yet implemented in Iris. This leads to the Iris generated layout that is

49

smaller than the manual layout. Considering the extra area required by input and output signals,

p-well and n-well which are not yet included in the Iris generated layout, the result is still

encouraging, which demonstrates that Iris generated layout is comparable to the manual layout.

Figure 4.1 FifoStage Manual Layout (left) and Iris Generated Layout (right)

The second goal is to achieve designer efficiency. From the n-bit ripple-carry adder

example, we can see the user may need to spend some time in writing the netlist for the leaf cell.

Other parts of lhe code don't need tmcb time because they are similar for different cells, so the

user may reuse other parts of code for different cells. Designer efficiency is greatly improved

over manual layout especially for upper level cells such as the one-bit full adder and the n-bit

ripple-carry adder which require only a few lines of code in Iris but require a lot of time by hand

layout. Further studies with real users are needed to quantify theses claims.

Most of the execution time is spent on constraint solving, and for smaller circuits the

time is mostly spent starting Matlab. The number of transistors determines the size of the

50

constraint matrix, which determines the execution time of Matlab's linear program solver. The

number of transistors and the size of constraint matrix are in a roughly linear relationship. With

the increasing of the number of transistors, the execution time increases significantly. Table 4.2

gives the excution time of all the examples. Figure 4.5 shows the relationship of the number of

transistors and the execution time. I drew this figure using a polynomial of degree n = 2 to fit the

data. The result polynomial is p(x) = 0.0368x2 + 0.6735x + 10.0327.

The third goal is to achieve flexibilty. The flexibility is implemented through the

placement methods that the circuit may use. In the leaf cell, the transistor can be put using the

flip method to implement drain/source sharing and diffusion sharing. In the upper level cell, the

user can use the left and above methods to build a module from one or more leaf cells arbitrarily.

A l l the cells can be flipped either horizontally or vertically by using the mirrorX or mirrorY

method respectively. In chapter 3, we described how to build the carry block and the sum block;

how to build a one-bit full adder from the carry block and the sum block using the above method;

and how to build an n-bit ripple-carry adder from n copies of the one-bit full adder using the left

method. The following example shows the flexibility in which the one-bit full adder was built

from the carry block and the -am block using the left method. Only one line of code in class

OneBitFA in figure 3.14 needs to be changed. The result is shown in figure 4.2.

c= cb..circuit().above(sb.circuit()) i I> cb.circuit().left(sb.circuit())

Figure 4.2 One-Bit Ful l Adder

5 1

Here is another example to show the flexibility. Observing the n-bit ripple-carry adder

shown in figure 3.19, we can see that it is not a balanced layout in terms of space utilization. The

upper part of the layout has a lot of white space while the lower part of the layout is quite dense.

This is because the sum block is wider than the carry block. Putting 4 copies of the carry block

side by side in the upper part and 4 copies of the sum block side by side in the lower part, this

difference of area utilization is increased. Trying to get a more balanced layout, one good way

would be vertically flipping every other one-bit full adder. The code change to the n-bit ripple-

carry adder in figure 3.18 and the layout are shown below. The ratio of the layout before and

after the flip is 1:09:1.

1 fin I i

f 1 B-.-v .- |
»

. . .

is 3 * s s c s s 52 ess 3 ''m i: z-i 53 r<

m i mm 1. M
m

si 61 : m m
m ak >;

x a
i f Ci % 2 != 0)

c = c.left(fa.circuit()); ' > c = c.left(fa.circuit().mirrorY());
else

c - c.left(fa.circuit());

Figure 4.3 n -B i t R i p p l e Carry A d d e r

The fourth goal is to support multiple technologies. Currently Iris supports M O S I S

S C M O S and T S M C 0.18-micron design technology. A l l the above examples are based on

M O S I S S C M O S technology. The following figure shows FifoStage under T S M C 0.18-micron

technology. A lot of optimization still needs to be done under this technology.

52

h
H

H P He
SI

II

Figure 4.4 FifoStage under T S M C 0.18-micron Technology

Figure 4.5 The Rela t ionship o f N u m b e r o f Transistors and Execu t ion T i m e

53

Example Height
'(X)

Width

a)
Cell Area Number of

Transistors

Execution
Time

(seconds)

Constraint
Matrix Size

Manual FifoStage
(Figure 4.1) 94 66 6204 18 X X

FifoStage under MOSIS
SCMOS Technology
(Figure 4.1)

119 52 6188 18 47 550*649

FifoStage under TSMC
0.18-micron Technology
(Figure 4.4)

165 102 16830 18 46 539*654

Carry (Figure 3.6) 61 49 2989 12 30 31.8*375

Sum (Figure 3.12) 68 65 4420 16 34 372*394
One-Bit Full Adder
(Figure 3.15) 137 80 10960 28 64 798*703'

n-Bit Ripple-Carry Adder
(n=4) (Figure 3.19) 138 337 46506 112 492 2845*1186

n-Bit Ripple-Carry Adder
(n=4) (Figure 4.3) 144 297 42768 112 566 2916*1193

n-Bit Ripple-Carry Adder
(n=10) 144 750 108000 280 3118 7233*2168

n-Bit Ripple-Carry Adder
(n=20) 145 1505 218225 560 11932 14428*3793

Table 4.2 Experimental Results

54

Chapter 5

Conclusions and Future Work

This thesis describes the automatic circuit layout generation tool Iris. Iris views the circuit from

the point of view of object oriented programming. Classes and methods written in Java are

designed in such a way that the circuit level abstraction is reflected. Aspect oriented

programming techniques are applied in the development of Iris. Simple heuristic methods are

proposed to solve the routing problem. Constraint solving methods used in this thesis produce

the optimal solution. New design technologies are easy to integrated into Iris. The layouts

generated by Iris are comparable in area to full custom layouts with great savings in designer

effort and time. Layout modifications are greatly simplified for the designer.

Different approaches have been proposed to solve the layout problems. Much current,

research addresses layout design automation. As for Iris per se, the future work will be in the

following areas.

By checking the layout generated by Iris, we can see that some layouts can be

compacted further. Currently Iris uses some simple methods for routing. In the future, we may

try more sophisticated heuristics and algorithms.

55

The layout design process involves many steps. The quality of results obtained in a later

step depends on the quality of results obtained in the earlier steps. Hence the earlier steps have

more influence on the quality of the final layout. The first step of Iris is the placement, which is

based on the relative positions defined in the user interface file. Optimizing the relative position

is necessary for generating a good layout.

Fabrication technologies are changing toward supporting more process features, such as

more metal layers. Currently Iris supports routing on metal 1 and metal2 layers. Supporting more

metal layers is desirable for producing more compact designs. With more metal layers available

for routing, three dimensional routing techniques are necessary to achieve the performance and

density goals. Over-the-cell routing is one of such techniques for reducing the routing area.

Future work can also be done in the area of supprting more architectural styles, such as

transistor folding, transistor stacking and via stacking.

56

Bibliography

[CLR 90] T. H. Cormen, C. E. Leiserson and R. L . Rivest. "Introduction to

Algorithms". 1990.

[Deutsch 76] D. N. Deutsch. "A Dogleg Channel Router". Proceedings of 13th

ACM/IEEE Design Automation Conference, 1976.

[Elrad 01] T. Elrad, R. E. Filman, A. Bader. "Aspect-Oriented Programming".

Communications of the ACM, Vol. 44, No. 10, October, 2001.

[Garey 77] M . R. Garey and D. S. Johnson. "The Rectilinear Steiner Tree Problem

is NP-Complete". SIAM Journal Applied Mathematics, 1977

[Hashimoto 71] A. Hashimoto and J. Stevens. "Wire Routing by Optimization Channel

Assignment within Large Apertures". Proceedings of the 8th Design

Automation Workshop, 1971.

[Hsu 83] C. P̂ Hsu. "General River Routing Algorithm". Proceedings of 20th

Design Automation Conference, June, 1983.

[Hwang 76] F. K. Hwang. "On Steiner Minimal Trees with Rectilinear Distance".

SIAM Journal of Applied Mathematics, January, 1976.

57

[KiczalesOl] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kerstan, J. Palm, W. G.

Griswold. "Getting Started with AspectJ". Communications of the ACM,

Vol. 44, No. 10, October, 2001.

[Kruskal 56] J. B. Kruskal. "On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem". Proceddings of the American

Mathematical Society, 1956.

[Lin 01] Lan Lin. "An Auomatic Layout Generator for Integrated Circuit Design".

MSc thesis. 2001

[Ousterhout 84] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor. "Magic:

A VLSI Layout System". Proceedings of the 21s' Design Automation

Conference, 1984.

[Park 00] Soondal Park. "LPABO ver 5.72 User Manual (2000.5.2)".

http://orlab.snu.ac.kr/pub/software/lpabo/lpabo572.wp

[Prim 57] R. C. Prim. "Shortest Connection Networks and Some Generalizations".

Bell System technical Journal, 1957.

[Rivest82] R. L. Rivest and C. M. Fiduccia. "A Greedy Channel Router".

Proceedings of the 19"' Design Automation Conference, 1982.

[Szymanski 85] T. G. Szymanski. "Dogleg Channel Routing is NP-Complete". IEEE

Transactions on Computer-Aided Design, January, 1985.

58

http://orlab.snu.ac.kr/pub/software/lpabo/lpabo572.wp

Appendix A

User Interface Example Source

class CarryBlock 64

class SumBlock 66

class OneBitFA 68

class nBitRCAdder 69

class FifoStage 71

Table A. 1 Index of User Interface Example Source

59

import Circuit.*;
import java.util.*;
import Constraints.*;

public class CarryBlock {
private DefaultSignal _Vdd;
private Signal A; public Signal A() {return A;}
private Signal B; public Signal B() {return B;}
private Signal Cin; public Signal Cin() {return Cin;}
private Signal Not_Cout; public Signal Not_Cout() { return Not_Cout; }
private Signal Cout; public Signal Cout() {return Cout;}
private Circuit c; public Circuit circuit() {return c;}
private Power Vdd; public Signal Vdd() {return(Vdd);}
private Ground Gnd; public Signal Gnd() {return Gnd;}
private PRow pr;
private NRow nr;

public CarryBlock() {
_Vdd = new DefaultSignal();
A = new DefaultSignal();
B = new DefaultSignal();
Cin = new DefaultSignal();
Not_Cout = new DefaultSignalO;
Cout = new DefaultSignalO;
Vdd = new Power(_Vdd, 6);
Gnd = new Ground(6);

// Based on P-Transistor Row Layout Model
boolean[] pflip = new boolean[] {true, false, false, true, true, false };
PTransistor[] p = new PTransistor[pflip.length];
for (int i = 0; i < p.length; i++) {

p[i] = new PTransistor(8);
if (pflip[i]) p[i] = p[i].flip();

}

// Based on N-Transistor Row Layout Model
boolean[] nflip = new boolean[] {false, true, true, false, false, true };
NTransistor[] n = new NTransistor[nflip.length];
for (int i = 0; i < n.length; i++) {

n[i] = new NTransistor(4);
if (nflip[i]) n[i] = n[i].flip();

}

// Netlist
p[0].source().connect(p[1].source()).connect(p[4].source())

,connect(p[5].source()).connect(Vdd);

60

n[0].drain().connect(n[1].drain()).connect(n[4].drain())
.connect(n[5].drain()).connect(Gnd);

p[0].gate().connect(p[4].gate()).connect(n[0].gate())
.connect(n[4].gate()).connect(A);

p[1].gate().connect(p[3].gate()).connect(n[1].gate())
.connect(n[3].gate()).connect(B);

p[2].gate().connect(n[2].gate()).connect(Cin);
p[0].drain().connect(p[1].drain()).connect(p[2].source());
n[0].source().connect(n[1].source()).connect(n[2].drain())
p[2].drain().connect(n[2].source()).connect(p[3].drain())

.connect(n[3].source()).connect(p[5].gate())

.connect(n[5].gate()).connect(Not_Cout);
p[3].source().connect(p[4].drain());
n[3].drain().connect(n[4].source());
p[5].drain().connect(n[5].source()).connect(Cout);

// Based on P-Transistor Row Layout Model
for (int i = 0; i < p.length; i ++) {

if (i = 0) pr = p[i];
else pr = pr.left(p[i]);

}

// Based on N-Transistor Row Layout Model
for (int i = 0; i < n.length; i ++) {

if (i == 0) nr = n[i];
else nr = nr.left(n[i]);

}

// Based on Carry Block Circuit Layout Model
c = (Vdd)

.above(pr)

.above(nr)

.above(Gnd);

61

import Circuit.*;
import Java.util.*;
import Constraints.*;

public class SumBlock {
private DefaultSignal _Vdd;
private Signal A; public Signal A() {return A;}
private Signal B; public Signal B() {return B;}
private Signal Cin; public Signal Cin() {return Cin; }
private Signal Sum; public Signal Sum() {return Sum;}
private Signal Not_Cout; public Signal Not_Cout() {return Not_Cout; }
private Circuit c; public Circuit circuit() {return c;}
private Power Vdd; public Signal Vdd() {return(Vdd);}
private Ground Gnd; public Signal Gnd() {return Gnd;}
private PRow pr;
private NRow nr;

public SumBlockO {
_Vdd = new DefaultSignalO;
A = new DefaultSignalO;
B = new DefaultSignalO;
Cin = new DefaultSignalO;
Sum = new DefaultSignalO;
Not_Cout = new DefaultSignalO;
Vdd = new Power(_Vdd, 6);
Gnd = new Ground(6);

// Based on P-Transistor Row Layout Model
booleanf] pflip = new boolean[] {false, true, false, false, true, true, true, false };
PTransistor[] p = new PTransi"*or[pf!ip.length];
for (int i = 0; i < p.length; i++) {

p[i] = new PTransistor(8);
if (pflip[i]) p[i] = ppl.flipO;

)

// Based on N-Transistor Row Layout Model
boolean[] nflip = new boolean[] {true, false, true, true, false, false, false, true };
NTransistor[] n = new NTransistor[nflip.length];
for (int i = 0; i < n.length; i++) {

n[i] = new NTransistor(4);
if (nflip[i]> n[i] = n[i].flip();

}

// Netlist
p[0].source().connect(p[1].source()).connect(p[2].source())

.connect(p[6].source()).connect(p[7].source()).connect(Vdd);

62

n[0].drain().connect(n[1].drain()).connect(n[2].drain())
.connect(n[6].drain()).connect(n[7].drain()).connect(Gnd);

p[0].gate().connect(p[6].gate()).connect(n[0].gate())
.connect(n[6].gate()).connect(A);

p[1].gate().connect(p[5].gate()).connect(n[1].gate())
.connect(n[5].gate()).connect(B);

p[2].gate().connect(p[4].gate()).connect(n[2].gate())
.connect(n[4].gate()).connect(Cin);

p[0].drain().connect(p[1].drain()).connect(p[2].drain())
.connect(p[3].source());

n[0].source().connect(n[1].source()).connect(n[2].source())
.connect(n[3].drain());

p[3].gate().connect(n[3].gate()).connect(Not_Cout);
p[4].source().connect(p[5].drain());
p[5].source().connect(p[6].drain());
n[4].drain().connect(n[5].source());
n[5].drain().connect(n[6].source());
p[3].drain().connect(n[3].source()).connect(p[4].drain())

.connect(n[4].source()).connect(p[7].gate()).connect(n[7].gate());
p[7].drain().connect(n[7].source()).connect(Sum);

// Based on P-Transistor Row Layout Model
for (int i = 0; i < p.length; i ++) {

if (i == 0) pr = p[i];
else pr = pr.left(p[i]);

}

// Based on N-Transistor Row Layout Model
for (int i = 0; i < n.length; i ++) {

if (j == 0) nr = n[i];
else nr = nr.left(n[i]);

}

// Based on Sum Block Circuit Layout Model

c= (Vdd)
.above(pr)
.above(nr)
.above(Gnd);

63

import Circuit.*;
import java.util.*;
import Constraints.*;

public class OneBitFA {
private DefaultSignal _Vdd ;
private Signal A; public Signal A() {return A;}
private Signal B; public Signal B() {return B;}
private Signal Cin; public Signal Cin() {return Cin;}
private Signal Sum; public Signal Sum() {return Sum;}
private Signal Not_Cout; public Signal Not_Cout() {return Not_Cout;}
private Signal Cout; public Signal Cout() {return Cout;}
private Circuit c; public Circuit circuit() {return c;}
private Power Vdd; public Signal Vdd() {return(Vdd);}
private Ground Gnd; public Signal Gnd() {return Gnd;}

public OneBitFA() {
_Vdd = new DefaultSignal();
A = new DefaultSignal();
B = new DefaultSignal();
Cin = new DefaultSignal();
Sum = new DefaultSignal();
Not_Cout = new DefaultSignal();
Cout = new DefaultSignal();
Vdd = new Power(_Vdd, 6);
Gnd = new Ground(6);

// build the Carry Block and the Sum Block individually
SumBlock sb = new SumBlock();
CarryBlock cb = new CarryBlock();

// make signal conections between the two blocks

sb.Vdd().connect(cb.Vdd()).connect(Vdd);
sb.Gnd().connect(cb.Gnd()).connect(Gnd);
A = sb.A().connect(cb.A());
B = sb.B().connect(cb.B());
Cin = sb.Cin().connect(cb.Cin());
Not_Cout = sb.Not_Cout().connect(cb.Not_Cout());

// the output signals of the one-bit full adder
Cout = cb.Cout();
Sum = sb.Sum();
c = cb.circuit().above(sb.circuit());

}
}

64

import Circuit.*;
import java.util.*;
import Constraints.*;

public class nBitRCAdder {
private DefaultSignal _Vdd; public Signal Vdd() {return(_Vdd);}
private Signal[] A; public Signal[] A() {return A;}
private SignalQ B; public Signal[] B() {return B;}
private Signal Cin; public Signal Cin() {return Cin;}
private Signalf] Sum; public Signal[] Sum() {return Sum;}
private Signal Cout; public Signal Cout() {return Cout;}
private Circuit c; public Circuit circuit() {return c;}
private Power Vdd;
private Ground Gnd; public Signal Gnd() {return Gnd;}

public nBitRCAdder(int n) {
_Vdd = new DefaultSignalO;
Vdd = new Power(_Vdd, 6);
Gnd = new Ground(6);
A = new Signal[n];
B = new Signal[n];
Sum = new Signal[n];
OneBitFA fa = new OneBitFA();
c = fa.circuit();
A[0] = fa.A();
B[0] = fa.B();
Sum[0] = fa.Sum();
Cin = fa.Cin();
Cout = fa.Cout();
fa.Vdd().co;inect(Vdd);
fa.Gnd().connect(Gnd);

// build one-bit full adder repeatedly
for (int i = 1; i < n; i ++) {

fa = new OneBitFA();
fa.Cin().connect(Cout);
fa.Vdd().connect(Vdd);
fa.Gnd().connect(Gnd);
c = c.left(fa.circuit());
A[i] = fa.A();
B[i] = fa.B();
Sum[i] = fa.Sum();
Cout = fa.Cout();

}

65

public static void main(String[] args) throws Exception {
Technology.setTech(Scmos.tech());
int solver = GeomCircuit.Matlab;
ObjFunc[] obj = new ObjFunc[1];
obj[0] = new ObjFunc();
obj[0].setWeight(ObjFunc.boundsvVt, 0);
obj[0].setWeight(ObjFunc.layerWt, 5);
obj[0].setWeight(ObjFunc.netWt, 0);

(new GeomCircuit((new nBitRCAdder(4)).circuit(), Technology.tech(), "nBitRCAdder
solver, obj)).toGeomCircuit();

}
}

66

import Circuit.*;
import java.util.*;
import Constraints.*;

public class FifoStage {
public static void main(String[] args) {

long begin = System.currentTimeMillis();
System.out.println("time :" + begin);

Technology.setTech(Scmos.techO);
ObjFunc[] obj = new ObjFunc[1];
obj[0] = new ObjFunc();
int solver = GeomCircuit.Matlab;

DefaultSignal Vdd = new DefaultSignalO;
Signal inTB = new DefaultSignalO;
Signal inFB = new DefaultSignalO;
Signal outTB = new DefaultSignalO;
Signal outFB = new DefaultSignalO;
Power vddl = new Power(Vdd, 6);
Power vdd2 = new Power(Vdd, 6);
Ground gnd = new Ground(6);

PTransistorf] to = {new PTransistor(8),new PTransistor(8),new PTransistor(8)};
NTransistor[] t1 = {new NTransistor(8),new NTransistor(8),new NTransistor(8)};
NTransistor[] t2 = {new NTransistor(10),new NTransistor(10),new NTransistor(6),

new NTransistor(6),new NTransistor(10),new NTransistor(10),new NTransistor(IO)};
PTransistor[] t3 = {new PTransistor(12),new PTransistor(12),new PTransistor(12),

new PTrarisistor(1?.),new PTransistor(12)};

t0[0].source().connect(t0[1].drain()).connect(t0[2].drain()).connect(vdd1);
t0[0].drain().connect(t0[1].source()).connect(t1[0].source());
tO[0].gate().connect(t1[0].gate()).connect(t2[6].drain()).connect(t3[4'j.drain()).connect(outFB);
t0[1].gate().connect(t0[2].source()).connect(t1[1].gate())

.connect(t1[2].source()).connect(outTB);
t0[2].gate().connect(t1 [2].gate()).connect(t2[3].drain())

.connect(t2[4].source()).connect(t3[2].source());
t1 [0].drain().connect(t1 [1].source());
t1[1].drain().connect(t1[2].drain()).connect(t2[0].source())

.connect(t2[2].drain()).conhect(t2[3].source())

.connect(t2[5].drain()).connect(t2[6].source()).connect(gnd);
t2[0].gate().connect(t3[0].gate()).connect(inFB);
t2[0].drain().connect(t2[1].source());
t2[1].gate().connect(t2[5].gate()).connect(t3[1].gate()).connect(t3[3].gate());
t2[1].drain().connect(t2[2].source()).connect(t2[6].gate())

67

.connect(t3[1].drain()).connect(t3[4].gate());
t2[2].gate().connect(t2[3].gate());
t2[4].gate().connect(t3[2].gate()).connect(inTB);
t2[4].drain().connect(t2[5].source());
t3[0].source().connect(t3[3].drain()).connect(t3[4].source()).connect(vdd2);
t3[0].drain().connect(t3[1].source());
t3[2].drain().connect(t3[3].source());

PRowpRowl =t0[0].left(t0[1]).left(t0[2]);
PRow pRow2 = t3[0].left(t3[1]).left(t3[2]).left(t3[3]).left(t3[4]);
NRow nRowl = t1[0].left(t1[1]).left(t1[2]);
NRow nRow2 = t2[0].left(t2[1]).left(t2[2]).left(t2[3]).left(t2[4]).left(t2[5]).left(t2[6]);

Circuit fifoStage = (vdd2)
.above(pRow2)
.above(nRow2)
.above(gnd)
.above(nRowl)
.above(pRowl)
.above(vddl);

obj[0].setWeight(ObjFunc.boundsWt, 0);
obj[0].setWeight(ObjFunc.layerWt, 5);
obj[0].setWeight(ObjFunc.netWt, 0);

GeomCircuit geomCircuit = new GeomCircuit(fifoStage, Technology.tech(), "FifoStage", solver,
obj);

geomCircuit.toGeomCircuit();
}

}

68

