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Abstract ii 

Abstract 

Collision detection is a vital task in almost all forms of computer animation and physical simulation. 
It is also one of the most computationally expensive and therefore a frequent impediment to efficient 
implementation of real-time graphics applications. s 

We describe how graphics hardware can be used as a geometric co-processor to carry out the 
bulk of the computation involved with collision detection. Methods for performing out this task are 
described in the context of two different forms of collision detection and using two separate portions 
of the hardware graphics pipeline. 

We first demonstrate how a programmable vertex engine can be used to perform all of the 
computation required for a closed-form particle simulation in which the particles may impact with 
a variety of surfaces. The technique is used for both visual simulation and to report collision data 
back to an application running on the computer's C P U . 

The second form of collision detection involves using frame buffer operations to implement a ray-
casting algorithm which detects static interference between solid polygonal objects. The algorithm 
is.linear in both the number of objects and number of polygons and requires no preprocessing or 
special data structures. 
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Chapter 1 

Introduction 

1.1 Problem and Mot iva t ion 
A vital task in almost all forms of computer animation or physical simulation is the act of collision 
detection. When solid objects are being animated, it is critical to determine if and when they are 
about to, or have already, come into contact with each other. Example problem domains where 
collision detection is almost ubiquitous include rigid and deformable body simulation, computer 
games, virtual reality, surgical simulation, robotics, path planning, and computer-aided design and 
manufacturing ( C A D / C A M ) . 

Collision detection is also usually. one of the most computationally expensive operations in 
animation or simulation. Collision detection traditionally does not take temporal coherence into 
account and therefore must be performed at least once for each frame of the animation or time step 
of the simulation. 

The simplest test for collision between two individual polygonal objects is a function of the 
number of polygons in the two models. For two objects with m and n polygons, respectively, the 
algorithm is expected to run in 0(mn) time. Similarly, for systems involving large numbers of 
potentially colliding objects, the computational expense involved is particularly large. This is true 
regardless of the representation used for the object's geometry. For a group of n objects, the naive 
approach requires 0(n2) pair-wise tests for collision. This is hardly efficient. 

Many algorithms have been devised which improve the asymptotic running time of collision 
detection in both the polygonal object case and the multi-body case. These can be very efficient, 
but they traditionally involve specialized data constructs in addition to the geometric definitions of 
the objects. 

This problem is further exacerbated in real-time graphics applications, where additional con­
straints associated with real-time computation must be taken into account. Such applications must 
execute at a minimum frame rate and, as a result, the resources allocated to collision detection are 
much more limited. 

It is reasonable, then, to.ask whether the computation involved with collision detection can 
be offloaded from the computer's primary processor and memory, and be performed somewhere 
else. To do so frees up C P U power for other tasks and enables the application to make use of a 
computational resource that might otherwise be underutilized. 

In recent years, the computational power of graphics hardware has made enormous leaps, not 
only in speed but also in functionality. The advent of programmable graphics pipelines in particular 
has caused a flurry of research activity into the possibility of using graphics hardware for other forms 
of computation. Furthermore, graphics hardware is optimized for particular types of computation, 
including three-dimensional vector mathematics and image-based operations. This specialization 
makes collision detection algorithms good candidates for implementation on graphics hardware. 
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1.2 Research Contributions 
This thesis shows how graphics hardware may be used to perform the bulk of the computational 
work involved wi th collision detection. 

We outline how the graphics hardware can be viewed as a more general-purpose computing 
device. In support of this, we describe the implementation of two separate collision detection 
algorithms. 

The first form of collision detection involves using a • programmable vertex engine to perform 
closed-form dynamical simulation of particles whose motion paths may intersect a variety of an­
alyt ical surfaces. W h e n the main application requires no feedback about collision, the algorithm 
executes entirely on the computer's G P U . We also describe how, using a modification of the tech­
nique, information about the collisions can be transmitted back to the main application. 

The second algorithm uses a commodity 3D graphics accelerator to realize an image-space al­
gori thm for detecting interference between an arbitrary number of polygonal solid bodies. The 
algorithm handles both convex and non-convex objects and has an expected running time that is 
linear in both the number of objects and number of polygons involved. It also has the advantage 
of requiring no preprocessing, and no additional data constructs beyond the polygonal meshes that 
make up the objects. 

1.3 Thesis Organization 
This thesis is divided into five chapters. 

Th is chapter introduced the problem that is addressed by the thesis research. 
In Chapter 2, we give an overview of the general problem of collision detection and a brief 

outline of prior research conducted in that area. We also describe the current state of the art 
in programmable graphics hardware and contrast it wi th the tradit ional hardware-based graphics 
pipeline. The concept of using graphics hardware as a more general processing device is introduced 
and we outline some of the hurdles that must be overcome for it to become a reality. 

Chapters 3 and 4 provide detailed case studies of the two hardware-assisted forms of collision 
detection. 

Chapter 3 describes the closed-form particle simulation. We provide details of how the collision 
detection can affect the visual simulation of the particles, and can also be used to provide feedback 
about the state of the particle simulation to the n o n - G P U port ion of the simulator. 

Chapter 4 provides details of the image-space interference detection algorithm. The underlying 
methodology, a class of hardware-assisted ray-casting algorithms, is also described. 

In the final chapter, we state our conclusions. We also outline some potential directions for 
future research. 

1.4 Terminology and Typographic Conventions 
In much of the literature, the term interference detection is used in place of collision detection. For 
the purposes of this thesis, we make the distinction that interference detection is used only to denote 
the determination of whether or not two objects are currently in contact. Col l is ion detection, on 
the other hand, encompasses both interference detection and the determination of whether or not 
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two object are about to come into contact. In other words, we make a distinction between collision 
detection in static and dynamic settings. We note, however, that collision detection most often 
involves repeated iteration of interference detection. 

We use the acronym CPU to denote the central processing unit or primary computational 
component of a computer. We also use the less common acronym GPU to denote the graphics 
processing unit, or primary computational component of a computer's graphics hardware. 
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Chapter 2 
Background and Related Work 

2.1 Collision and Interference Detection 
For a comprehensive overview of collision detection techniques, we refer the reader to the surveys 
by Lin and Gottschalk [LG98] and by Jimenez et al. [JTT01]. 

There have been previous attempts to use graphics hardware to aid in collision detection. Almost 
all of these techniques have been used to find interferences between solid polygonal models, which is 
the subject of our work described in Chapter 4. We therefore defer an overview of hardware-assisted 
interference detection techniques to Section 4.1.1. 

Collision detection algorithms are often classified by the types of models that they operate on. 
One such taxonomy is presented in [LG98] and is the one that we adopt here. It is shown in 
Figure 2.1. The types of models that we are most interested in are highlighted. 

For the particle system collision detection in Chapter 3, we intersect the motion paths of particles 
with analytical surfaces such as planar sections and quadrics. In general, the geometry is most 
closely related to implicit surfaces. 

The ray-casting algorithm of Chapter 4 detects whether the edges of rasterized polygons intersect 
solid polyhedral volumes. It is therefore concerned primarily with structured polygonal volumes. 

2.1.1 Polygonal Models 

If polygon-polygon intersection tests are used to determine whether two polyhedral objects are 
overlapping, then the simplest algorithm requires 0(n2) such tests, where n is the number of 
polygons. For real-time applications with models that have thousands of polygons, that many 
intersection tests are simply not feasible. 

For convex models, there are many algorithms that are known to be quite efficient. Indeed, 
with hierarchical mesh representations, algorithms are known which run in sub-linear time [DK90]. 
These techniques all require special data structures and quite often need to subject the models to 
a significant amount of preprocessing. 

Non-convex models are more difficult to deal with. So much so that the most typical method 
is to decompose the non-convex object into convex parts. Some approaches use volume decompo­
sition [Cha84], while others use surface decomposition [EL01]. Such decompositions are typically 
very expensive and models therefore need to be preprocessed. This makes decomposition algorithms 
suitable for rigid bodies but much less so for deformable objects. 

It is also quite common to perform collision detection using the bounding volumes of objects 
instead of using the full polygonal models. Doing so allows trivially non-colliding objects to be 
rejected quickly through calculations that are optimized for simple volumes. Axis-aligned boxes and 
spheres are particularly fast, as are implicit volumes such as cones and spheres. Oriented bounding 
boxes are another popular data structure [GLM96]. In general, the trend has been to attempt 
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Figure 2.1: A taxonomy of 3D model representations 

to find bounding volumes that approximate the underlying geometry as closely as possible. In 
addition, hierarchies of these volumes are often constructed in order to allow progressive refinement 
of intersection queries. 

Hierarchical partitioning of the space in which models are embedded using structures such as 
binary space partitions is also a common technique. 

2.1.2 Mult iple Object Collision Detection 

Finding collisions in large collections of objects adds another layer of computational complexity. 
Not only do the individual objects have to be tested against each other, but in a collection of 
n objects, there are 0(n2) potential collisions. Performing interference tests between all pairs of 
objects is therefore highly inefficient. This is sometimes called the "N-body processing problem". 

Various techniques have been developed to aid in reducing the number of required pairwise 
interference tests. 

For dynamical systems, many N-body techniques attempt to make use of spatiotemporal coher­
ence. By estimating the maximum velocities and accelerations of all objects, bounds can be placed 
on when collisions between objects are expected to occur. 

For interference queries in static environments, a common method is to perform some type of 
spatial subdivision. The space occupied by the objects is divided into cells and a data structure 
is constructed which enumerates the objects occupying each cell. Interference detection is only 
performed when two or more objects are found to occupy the same cell. 

It is also common to perform pairwise tests on object bounding boxes in order to avoid per­
forming full interference detection on objects that are distant from each other. When this is com­
bined with a technique for spatially sorting the bounding boxes, N-body processing becomes more 
tractable [CLMP95]. 

2.2 Balancing the C P U and G P U loads 
A l l computing systems have a limited amount of computational resources. Most real-time graphics 
applications will try to use as much of those resources as possible, and for complex simulations or 
large virtual worlds there is never a lack of ways to expend them. It is no easy task decide how 
these resources are allocated. This is especially true of applications involving user interactivity, 
where there are strict limits on the frame rate of the system. 

In most current systems, the two major computational units are the C P U and G P U . When 
geometry data is submitted to the G P U , it is not necessarily immediately processed. The G P U can 
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handle a large volume of data, but the C P U can submit it even more quickly than it is processed. 
Therefore, geometry data is usually passed from the C P U into a "staging buffer" where it waits for 
the G P U to process it. What this means is that the C P U can quickly submit large volumes of data 
and go on to perform other tasks while waiting for the G P U to use it up. Figure 2.2(a) shows a 
system in which the load is balanced between the C P U and C P U , and both are used to maximum 
capacity. 

Maintaining a perfectly balanced load between the C P U and G P U is extremely difficult. It is 
usually the case that one of them is used to maximum capacity, and while it finishes processing, 
the other sits idle for a time. If a system uses the C P U to maximum capacity, we say that it is 
CPU-bound. Similarly, if the G P U is used to the maximum, we say that the system is GPU-bound. 
Figures 2.2(b) and 2.2(c) show CPU-bound and GPU-bound systems, respectively. 

In the past, it was possible for many systems to be GPU-bound. However, recent rapid advances 
in graphics hardware have outstripped advances in C P U technology, meaning that more and more 
applications are now CPU-bound. Therefore, the motivation becomes even stronger to offload 
computation to the graphics hardware. 

2.3 Graphics Hardware 
The hardware real-time graphics pipeline is a complicated mechanism and an exhaustive description 
of it is beyond the scope of this thesis. For an excellent overview, we refer the reader to a recent 
book by Akenine-Moller and Haines [AMH02]. 

A high-level overview is shown in Figure 2.3. When we are using the graphics hardware to 
perform calculations, we make a distinction between the geometry pipeline and the pixel pipeline. 
Although both portions of the pipeline are user-controllable and at least partially programmable, 
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they operate on fundamentally different data. 
The geometry pipeline is concerned with manipulating vertex data and transforming it into a 

format that is ready for fragment generation. The pixel pipeline, on the other hand, is used to 
manipulate the per-pixel elements of fragments that are going to be transferred to the display. 

2.3.1 The Geometry Pipeline 

The operations encompassed by the geometry pipeline are shown in Figure 2.4. The geometry 
pipeline is primarily concerned with transforming, lighting, and providing texture coordinates for 
vertices. It also takes care of clipping geometry and mapping it to screen coordinates. 

We use the geometry pipeline to perform calculations that pertain to data that is specified 
in object space or world space. In particular, point or vector data is particularly well suited to 
processing at this stage. We also use the geometry pipeline to set up data for further calculations 
that take place in the pixel pipeline. 

Programmable Vertex Pipelines 

One of the most significant recent developments in graphics hardware has been the introduction of 
programmable vertex pipelines. 

Up until recently, the typical geometry pipeline was characterized by a fixed-function model. 
That is, geometry submitted to the G P U was subjected to a fixed set of transformation, lighting, 
texturing and rasterization operations. These operations were hardwired into the graphics hardware 
and controlled by a very small set of input variables. The geometry pipeline is now characterized 
by a programmable model, in large part due to the work described by Lindholm et al. [LKM01]. 
The programmable portions of the vertex pipeline are highlighted in Figure 2.4. 

The various stages may be programmed to perform a variety of operations, vastly increasing the 
types of visual effects that may be constructed. More importantly, the range of computational ca­
pability is good enough to support non-visual tasks that have previously been difficult or impossible 
to perform on graphics hardware. 

Programmable vertex pipelines are now supported as part of the standard DirectX [Mic02] A P I 
as vertex shaders and in the OpenGL [SA02] API as vertex programs. 
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Vertex Programming Model 

We can view the vertex engine as Single Instruction Multiple Data (SIMD) machine, with vertex 
programs as the programming A P I for this machine. The instruction set for this machine is the 
set of vertex program instructions and the input data is characterized by the per-vertex data sent 
from the primary application. This is reinforced by one of the fundamental assumptions of the 
programmable vertex engine, which is that vertex input data has no a priori meaning attached to 
it, other than that the vertex engine will process it in some manner to produce the homogeneous 
screen coordinates, colours, and texture coordinates of the vertex. 

2.3.2 The Pixel Pipeline 
The other major user-controllable portion of the graphics pipeline is the pixel pipeline. Figure 2.5 
shows its various stages. Currently, the only programmable portion is the multitexturing portion 
of the pixel pipeline. 

We use the pixel pipeline to perform calculations on image space data. Because calculation takes 
place primarily on frame buffer data, the pixel processing stages are inherently two dimensional (or, 
at best, 2.5D if the depth buffer is considered). 

For the purposes of the collision detection algorithm presented in Chapter 4, the most relevant 
portion of the pixel pipeline is the stencil and depth buffer operations. 

2.3.3 A Streaming Model of Computation 
We take a cue from the work of Purcell et cd. [PBMH02] and view the graphics hardware as a 
streaming processor for both vertex and pixel data. A n example of a system implemented for 
streaming computation and an overview of the concepts involved can be found in [KDR + 01]. 

The basic idea is that data is processed as a sequential stream of independent elements. Each 
data element is processed in a near-identical manner. This is done by creating a program (otherwise 
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known as a kernel) that is executed on each member of the input stream. When computation is 
completed, results get placed into the output stream. 

We can therefore view portions of both the geometry pipeline and the pixel pipeline as streaming 
models of computation. In the geometry pipeline data elements and kernels are represented, respec­
tively, by streams of vertex data and vertex programs. In the pixel pipeline, they are represented 
by fragment data and pixel shaders (fragment programs). As an example, we can characterize 
the vertex programs used in Section 3.2 as kernels for a streaming implementation of closed-form 
particle simulation. Similarly, the pixel operations of each rendering pass in Section 4.4 are kernels 
contributing to an interference algorithm. 

The primary advantage of a streaming model of computation is that members of the input stream 
can each be operated on in parallel. This is so because each element of data is independent and not 
reliant on any other element for processing. If performance needs to be improved, more pipelines can 
be added to the system. Most graphics hardware already implements the pixel pipeline in parallel. 
Parallel geometry pipelines are implemented on the Xbox G P U , as well as current high-end chip 
sets from NVIDIA and ATI. 

The characterization of the pixel pipeline as a streaming processor follows in the footsteps of 
Fournier and Fussell [FF88], who provide a formal description of the frame buffer as a computational 
engine. In their model, they consider each pixel of the frame buffer to be a finite automaton. The 
input for the automaton consists of incoming pixel data. Register memory for the automaton 
consists of the various buffers (colour, depth, stencil, etc). The automaton itself is viewed as a 
finite-state machine, where the operations that it may perform are both functions (e.g. colour 
modulation) and boolean predicates (e.g. depth test) that the frame buffer hardware can perform. 

2.3.4 Retrieving Computational Results from Graphics Hardware 
One of the primary problems encountered in using graphics hardware to perform non-graphics 
computation is that the results must almost always be accessed for further processing. 

The difficulty stems from the fact that graphics hardware generally has only one destination for 
the results of its computation, and that is the frame buffer. Therefore, the efficiency of using the 
G P U as an auxiliary computational device is largely dependent on how easily frame buffer memory 
can be accessed. 

This is not so much of a problem if the results are used for subsequent card-local computations. If 
such is the case, then rendering to texture memory or an off-screen rendering surface (Section 2.3.5) 
ensures that the G P U can quickly access the data in future rendering passes. However, in many 
applications, the host C P U will require the data, which means that the data needs to be transferred 
from frame buffer memory to system memory (Figure 2.6). 

Unfortunately, in most computers, the memory architecture and/or system bus is designed for 
maximum throughout from C P U to graphics hardware, and not for transfer in the other direc­
tion [AMH02]. 

For instance, in a P C , the frame buffer memory is located on the graphics accelerator. The 
system C P U is connected to the graphics accelerator by a bus such as the Accelerated Graphics 
Port (AGP) interface. However, for transferring data in the other direction, the much slower PCI 
interface is used, making C P U access to the frame buffer inefficient. As an example, with a such an 
architecture, pixels can be read from a 32-bit frame buffer at a maximum rate of 66MHz [MauOl]. 
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The result is reading a 256 by 256 pixel area of the frame buffer from a graphics accelerator will 
take approximately 1 msec1. 

We hasten to add that it is not always necessary to access all of the colour channels of the frame 
buffer. For instance, often the computational results require less than the full 32 bits of precision 
available in most colour buffers. If such is the case, then frame buffer access time can be vastly 
improved by retrieving only those data channels that store significant bits of data. Similarly, other 
buffers such as the stencil buffer have fewer bits of precision than the colour buffer, and access to 
their values is therefore faster. 

Access to frame buffer memory is less of a problem in systems that use a Unified Memory 
Architecture (UMA) . In such systems there is only one pool of memory which is shared by all of 
the components of the computer including the C P U , G P U , sound processor and other subsystems. 

Our experiments verify this and show roughly the same performance. 
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Figure 2.8: Coordinating the C P U and G P U during readback 

Examples of systems using U M A are the SGI 02 and the Microsoft Xbox. An example is shown in 
Figure 2.7. 

Our expectation is that C P U access to graphics accelerator memory will become much more 
efficient in the near future. The amount of interest being shown in using the G P U as a secondary 
computing device will likely motivate hardware manufacturers to optimize data transfer from graph­
ics hardware to system memory. 

C P U - G P U Coordination 

Another difficulty with retrieving data from the graphics hardware is that there must be more 
coordination than usual between the C P U and the G P U . Consider the computational scheduling 
posed by Figure 2.8. The C P U must interrupt whatever it is doing and grab the pixels as soon as 
the non-graphics G P U task is complete. The reason for this is that the G P U cannot do any further 
work until the pixels have been retrieved, because subsequent drawing actions will corrupt the data. 
When the G P U is waiting for the C P U , it is in a stall state. 

This problem can be at least partially alleviated by using more than one rendering surface 
(Section 2.3.5), if such is available. 

2.3.5 Off-Screen Rendering Surfaces 
Most graphics hardware does not usually associate the whole of its frame buffer memory with a 
single rendering context. This allows each application that makes use of the frame buffer to control 
and impose its own state on a virtual version of the graphics hardware. 

Current graphics hardware also allows a rendering context to be associated with an off-screen 
rendering surface (sometimes called a pbuffer). An off-screen rendering surface is a portion of 
frame buffer memory that is not associated with any form of visual display. Off-screen surfaces 
are commonly used for real-time graphics techniques such as rendering directly to a texture map. 
The advantage of this is that all operations associated with off-screen surfaces are card-local. In 
addition, the overhead associated with visual display is eliminated. 

For the purposes of our collision detection algorithms, off-screen rendering surfaces are ideal. 
Firstly, and mostly importantly, we do not wish to visually display the pixel data that is rendered 
during collision detection. Off-screen rendering surfaces allow us to access the results of card-local 
computation without displaying that data in a visible context. 

The alternative to rendering to an off-screen surface is to render to the back buffer of a visible 
surface. Once the collision algorithm is through using the surface, then surface is cleared and the 
visible data is rendered before swapping the buffer to the front for display. The problem with 
this technique is that reading pixel data from the surface causes the graphics hardware to cease 
rendering to that surface until the pixel read is complete. In addition, reading pixels is a slow 
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operation. This means that there is a long period of time during which the visible surface is 
unavailable for rendering. For many applications, such as video games, where there is only one 
visible surface, the stall engendered by this is unacceptable. By rendering to an off-screen surface, 
we at least partially alleviate this stall in the graphics pipeline. 

We emphasize, however, that rendering to an off-screen surface does not eliminate or significantly 
reduce the computational overhead associated with transferring information from card-local frame 
buffer memory to the computer's main memory. 

2.4 Geometric Computations with Graphics Hardware 
The rapid increase in the capabilities of graphics hardware have spurred numerous researchers to 
investigate using it for non-graphics purposes. One of the more active threads of research in this area 
has been using graphics hardware to perform geometric computations. L in and Manocha [LM02] 
provide a good overview of recent results. 

Geometric problems are particularly well suited to this form computation assistance. Hardware-
based transformation engines are optimized for calculations on geometric data. For instance, pro­
grammable vertex pipelines are optimized for vector-based mathematics and are able to perform 
calculations such as vector dot-products in a single G P U cycle, or a matrix-vector multiply in as 
little as three G P U cycles. Fixed-function vertex pipelines are even more efficient at transforming 
vertex data. In addition, many graphics accelerators have several geometry engines, making graph­
ics hardware even more useful for geometric calculations on streaming data or independent sets of 
geometric data. 

Graphics hardware is also very good at performing image-space geometric computation by using 
the advanced capabilities of modern frame buffers. Pixel pipelines and fragment programs allow 
almost arbitrarily complicated calculations to be performed on frame buffer pixel data. 
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Chapter 3 
Particle System Collision Detection 
This chapter develops a technique for performing collision detection between dynamically simulated 
particle primitives and groups of implicitly defined objects. We describe how this collision detection 
can be performed using a programmable vertex engine. 

We use the particle collision detection in the context of visual simulation, which requires no 
C P U intervention. We also provide a method for relaying collision information back to the C P U 
for further processing, using a construct called'the impact map. 

3.1 Background 

3.1.1 Particle Systems 

Particle systems as modelling primitives were first introduced to the computer graphics literature 
by Reeves [Ree83, RB85]. 

For the vast majority of applications, a particle is viewed geometrically in one of two different 
ways: either as representative point in some continuum, or as a description of the dynamic state of 
some larger solid. 

In the context of computational modelling of continuous dynamical systems, particles are typ­
ically used to describe the state of individual points within the continuum. In other words, a 
collection of particles describes a discretization of some continuous system. This is necessary be­
cause of the limitations inherent in modelling a continuous system on a non-continuous device (i.e., 
the computer). Examples of such applications include simulation of deformable objects [TF88], 
liquids and gases [Sta99], and other natural phenomena. There has already been research into using 
graphics hardware to aid in such computations, as evidenced by the recent work of James and 
Pai [JP02]. Particles are also commonly used in geometric modelling for tasks such as sampling 
implicit surfaces and volumes [WH94]. 

Particles can also be used to describe dynamic states of large collections of individual objects. 
For example, particles are commonly used to model snow, rain, fireworks, or other phenomena that 
consist of large numbers of individually replicated geometric objects [Ree83]. 

Our particle collision detection is used in the context of simulations of the second type. A 
sample application included detecting collisions of hailstones against other objects. However, there 
is nothing to preclude us from modelling simulations of the first type. For instance, we can easily 
envisage performing collision detection for surface elements of a soft object that is undergoing some 
procedural deformation. 

In many applications, particles can self-replicate, or spawn other particles. We do not model 
particles of this type. This is because particle state is computed using a programmable vertex 
pipeline. This pipeline has the restriction of allowing the state of only a single vertex to be computed" 
for each set of data passed to the hardware. 
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It is important to note that if we are using particles to represent the states of individual objects, 
then each particle is used to represent an object that has its own geometric structure. For "small" 
particles, it suffices for us to compute the equations of motion using the centre of mass of the 
particle as the particle's position. Each vertex of the object is displaced from the computed position 
of the centre of mass by an amount equal to the vertex's object space position. Given additional 
information, such as the angular velocity of the particle's coordinate frame, we could give the 
particle a more complex motion at the cost of more computational expense for the G P U . 

Particles can also contain other state information besides data representing geometry or motion. 
For instance, if colours or texture coordinates need to be animated, these features can be set as 
part of the particle's state. 

3.2 Particle Simulation Using Graphics Hardware 

3.2.1 Formulation of Particle Dynamics 
The motion of particles is completely determined by initial conditions, with the exception of the 
calculation of impacts with (and possible response to) interfering bodies. We therefore let the 
instantaneous three-dimensional position, p, of a particle be given by a parametric equation, 

' p = <?(£), (3.1) 

where t is the global simulation time. 
The initial attributes of each particle, such as position and velocity, are passed as data to the 

programmable vertex engine. In addition, particles are "regenerative" in the sense that they are 
created with an initial state, simulated for a finite period of time and then expire, at which time 
they are "reborn". When a particle is reborn, it may be recreated with altered starting conditions. 
The key to altering starting conditions is the observation that since a particle's life span is periodic 
in nature, then we can count how many generations a particle has undergone. This generation 
count can be used as input to a method for procedurally altering the particle's starting conditions. 

The advantage to using closed-form equations of motion is that a particle's defining parameters 
are specified once and never change. This allows us to create graphical simulations in which the 
computer's C P U need never participate, except to pass data to the graphics accelerator at each 
frame of the animation. 

3.2.2 Formulation of Collider Objects 
We allow particles to impact with colliders, objects whose surfaces we implicitly define by some 
equation 

/(p) = 0, (3.2) 

where p is a point on the surface. 

Configuration of Colliders 
It is worth noting that the configuration of multiple colliders with respect to the motion of a 
particle is largely irrelevant. By this we mean that if a particle's motion path intersects more than 
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Figure 3.1: A particle whose motion intersects a planar collider 

one collider, then it does not matter which collider is impacted first. When a particle is capable 
of colliding with multiple objects, then we compute the time of collision with each object and use 
only the results of the earliest collision. 

3.2.3 Detecting Collisions 
Combining the two previous equations, the intersection of a particle's motion with the surface is 
then described by 

h(t) = f(g(t)) = 0. (3.3) 

This formula implicitly gives us the global simulation time, t, at which a particle impacts a collider. 
We detect a collision by comparing the computed collision time against the global simulation 

time. If the computed collision time is the lesser of the two, then we know that a collision has 
already occurred. 

We can also process collisions even further, in order to detect collisions with more complex 
objects. This is done by associating with each collider one or more functions c(p) > 0. These are 
used to test whether or not the computed collision point matches some constraint. This is useful 
in detecting collisions with bounded planar sections, or objects with holes, for example. 

3.2.4 Examples of Particle Dynamics 
We have implemented simulations of particles that have both first and second order dynamics. 

Part icles w i t h Second Order Dynamics 

We simulate particles that obey second order dynamics. 
For a particle with initial position x0 and initial velocity VQ, subject to constant acceleration a, 

the instantaneous position of the particle is given by: 

g(t) = {-at2) + v0t + x0 (3.4) 
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Figure 3.2: Particles whose motion intersects a quadric collider 

We detect collisions between second order particles and colliders that are bounded planar sec­
tions. The unbounded surface of a collider is then given by 

/ ( p ) = N - ( p - p o ) = 0 (3.5) 

where N is the surface's normal, and po is any point on the surface. 
The collision time is then given implicitly by 

Kt) = f(g(t)) = N • ( ( ^ a t 2 ) + v 0 t + x 0 - po) = 0 (3.6) 

which is a quadratic equation in t. 
Solving a quadratic equation using vertex programs is easy. It is also a scalar operation, meaning 

that using vector operations we can solve four such equations simultaneously. 
We bound the planar sections that particles may collide with by using the additional constraint, 

c(p). For example, intersections with circular discs require c(p) = r — \g(t) — q| > 0, where r and 
q are, respectively, the radius and centre point of the disc. 

Part icles w i th F i r s t Order Dynamics 

We can also simulate particles that obey first order dynamics. 
For a particle with initial position x 0 and initial velocity Vrj, the instantaneous position of the 

particle is given by 
g{t) = v0t + x 0 (3.7) 

We can detect collisions between first order particles and colliders that are described by second 
order surfaces such as natural quadrics. These colliders are objects such as ellipses, parabloids, 
hyperbloids, and elliptical cylinders and cones. This is illustrated in Figure 3.2(a). 
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Given p = [x y z l] , the general form of a quadric surface is given by 

/ (p) = Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 21 z + J 

which can be expressed in matrix form as [Han89]: 

/ ( P ) = P T Q P = o 

where 

A D E G 
D B F H 
E F C I 
G H I J 

Collision time is then given implicitly by: 

hit) = /(g(*)) = g(* fQg(*) = (vo* + x 0 ) T Q ( v 0 t + x 0 ) = 0 (3.9) 

This is again a quadratic equation in t and easily solved using vertex programs. 
For example, for an ellipsoidal collider with axis lengths r x , ry, and r z , the collider's surface is 

given by: 

1 x xy z 

or 

[ I A S 0 0 0 
0 0 0 
0 0 0 
0 0 0 -1 

A sample scene with particles impacting a quadric collider is shown in Figure 3.2(b). 

3.3 Visual Simulation 
For visual simulation, it is not enough to simply calculate whether or not the particles have impacted 
another object. The particles should actually do when a collision is determined to have occurred. 
We currently have two ways of letting particles react to collisions: they are either eliminated or 
undergo a limited number of bounces. 

3.3.1 Post-Collision Particle Elimination 
The collision detection calculation lets us know if any collision has occurred at some previous point 
in a particle's current iteration. If a collision has occurred then we can eliminate the particle from 

= 0 

(3.8) 
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Figure 3.3: Particles disappear after collisions 

visual display in some manner. This is usually accomplished by assigning the particle some reference 
alpha colour and using alpha testing to direct the hardware not to display any fragment with that 
alpha value. Alternatively, we can translate the particle to some point that is known to not be 
visible in the scene. 

Figure 3.3 shows a scene with a variety of colliders that are all blocking particles. 

3.3.2 Col l i s ion Response 
It is possible to simulate particles with a limited amount of collision response. 

The primary difficulty in modelling collision response is that when a collision is detected in a 
vertex program, it is not possible to use the particle's attributes to record the collision. This is 
because vertex programs treat per-vertex data as read-only information. 

It is therefore not possible to permanently modify a particle's position or velocity in response 
to a detected collision. 

Therefore, when modelling collisions with response, we check if collision has occurred at any 
time in the past. If a collision was found, then temporary hardware registers are used to record the 
time, position, and velocity of collision restitution. The particle's motion is then recomputed using 
these updated simulation parameters (Figure 3.4(a)). The collision detection is also recomputed 
with the new parameters. 

This process can be repeated several times. Since the hardware that we used does not support 
looping in vertex programs, our implementation allowed only a limited number of collision responses. 
Using a DirectX 8 vertex shader or OpenGL 1.4 vertex program implementation, there are enough 
instructions slots available to compute three bounces. This limitation could be partially overcome 
by using hardware that supports the newer release of DirectX 9, which supports limited looping in 
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3.4 Collision Feedback 
3.4.1 R e t r i e v i n g C o l l i s i o n I n f o r m a t i o n 

Using the graphics hardware to report collisions to an application running on the computer's main 
C P U is considerably harder than using it to simulate particles for purely graphical purposes. To 
do so, we must find some way to transmit information back from the graphics hardware. As we 
described in Section 2.3.4, the only way to access such information is through the frame buffer. 

Therefore, to retrieve collision events from the frame buffer, we introduce a device that we call 
the Impact Map. 

3.4.2 T h e I m p a c t M a p 

When we are using vertex programs to calculate impact events, we do not submit to the hardware 
the same particle geometry as we use for visual simulation. Instead, we direct the G P U to render a 
single point primitive with the same simulation parameters as the particle. Furthermore, we do not 
render this point primitive as part of the graphical scene. Instead, we redirect rendering to another 
graphics context that contains a logical device that we will henceforth refer as the impact map. An 
example of a context for the impact map might be an off-screen rendering surface, such as is often 
used for purposes like rendering to a texture map. 

The impact map is basically a two-dimensional representation of the locations on colliders at 
which particles have impacted. At each simulation step, the G P U vertex program computes whether 
or not each particle has impacted a collider at some time between the previous and current frames of 
the animation. If a collision is detected, then a two-dimensional representation of the exact impact 
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(a) (b) 

Figure 3.5: A collider and its associated impact map. The impact map colours are enhanced for 
explanatory clarity. 

location is calculated. The 2D representation is then renormalized to fit the dimensions of the 
viewport containing the impact map and the point primitive is drawn at that location. If no impact 
occurred, then the point primitive is transformed to some location outside of the impact map's 
viewport. This causes the graphics hardware to cull the impact point during fragment generation. 

The impact map for a single rectangular collider is shown in Figure 3.5. 

3.4.3 E n c o d i n g Impact Information 

When we detect a collision and render it into the impact map, we can also attach some auxiliary 
data about the collision. This data is stored in the colour channels of the pixel that the collision is 
mapped into. 

For instance, given three colour channels, we may choose to encode the identity of the collider 
that was impacted, the exact collision time, and the magnitude of the velocity with which the 
particle hit the collider. 

M u l t i p l e Impacts 

Note that it is possible for more than one collision to map into the same pixel of the impact map. 
For many applications, such as rendering "paintball" or "splat" textures (see Figure 3.6) at the 
impact points on colliders, this is perfectly acceptable. In many cases the results of one collision 
may mask the results of another. 

Alternatively, multiple collocated collisions could be naively combined in the impact map by 
using an additive blend of one or more colour channels. This blend is easily accomplished using the 
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Figure 3.6: A table with "splat" textures to indicate collisions 

pixel shading stage of the graphics pipeline1. 

3.5 Key Issues 

3.5.1 Spatiotemporal Resolution of Collision Feedback 

The precision with which collisions are reported by the graphics hardware is controlled by two 
factors: 

• The pixel resolution of the viewport into which the impact map is rendered. This impacts the 
spatial resolution of collision feedback 

• The maximum frame rate at which the impact map can be rendered. This impacts the 
temporal resolution of collision feedback. 

Spatial Resolution 

A l l collisions are reported back from the graphics hardware via the impact map. Since the im­
pact map is rendered into a viewport of fixed pixel resolution, then the impact map itself will be 
constrained to that same resolution. Since the impact map is simply a two-dimensional parameteri­
zation of the surface of a collider, then the collider-space resolution of collision feedback is similarly 
constrained. 

1If the pixel shading stage is programmable, then collisions can be combined in even more interesting ways. 
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As an example, consider a rectangular planar collider, of dimensions M by N. Such a collider 
maps into the impact map via a simple scale transformation. If the impact map has a resolution of 
p pixels by q pixels, then the spatial resolution of collision feedback is limited to y by j . 

A serious implication of decreased spatial resolution is that the algorithm is more prone to 
mapping multiple collisions to a single pixel. However, as explained in Section 3 .4.3, this may not 
be a significant problem in all applications. 

Also, if the relationship between impact map coordinates and collider surface coordinates is 
non-linear, then the resolution of collision feedback will be non-constant across the surface of the 
collider. For most applications, this type of artifact would be unacceptable, and we therefore 
attempt to maintain a linear relationship, if at all possible. 

Increased spatial resolution is gained by enlarging the impact map. Rendering into a larger 
impact map is not appreciably slower than rendering into a smaller impact map. This is because 
every particle still gets "rendered" only once and when a collision occurs is still rendered as only a 
single pixel. Therefore, the vertex transformation, rasterization, and pixel fill rates of the algorithm 
are the same regardless of the size of the impact map. However, when the impact map size is 
increased, more pixel data must be transferred back from the graphics hardware over the system 
bus, and subsequently inspected by the C P U . Therefore, the spatial resolution of collision feedback 
is increased at the expense of extra temporal latency. 

Temporal Resolution 

The graphics hardware performs collision detection at discrete intervals, governed by how fast it can 
render and retrieve an impact map. Therefore, at a coarse level, the resolution of collision detection 
is equal to impact map's maximum sustainable frame rate. 

We can, however, make use of the fact that the simulation and collision detection is computed in 
closed-form. This means that not only can we check whether or not collision has occurred between 
the previous and current frames, but we can also calculate exactly (to within 8 bits of precision) 
when the collision happened. We calculate this value as an offset between the two frames and report 
it through one of the colour channels of the impact map. 

Latency in Collision Feedback 

Since the impact map's frame rate determines how quickly collision detection can be done, it is also 
the prime source of latency. Even though the graphics hardware can calculate collision times with 
relatively high precision, latency results from the rate at which the results of those calculations can 
be reported. Since those results are reported by reading the frame buffer, latency can be viewed 
as the maximum amount of time that it takes to render and read an impact map. For scenes with 
very large numbers of particles or a large impact map, this latency can be fairly high. 

However, we can again make use of the fact that the calculations are closed-form. Since the 
behaviour of particles is entirely predetermined, we can "look ahead" into the future when perform­
ing collision detection. If the global time for collision detection is offset by an amount equal to the 
maximum expected latency, then collision events will be reported in a more timely fashion. 
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3.5.2 An Alternative to the Impact Map 
A n alternative to using the impact map would be to assign every particle one or more pixels in 
the viewport. The pixels assigned to a particle would be reserved exclusively for the results of that 
particle's collision detection computations. In this case, a particle's impact location would not be 
inferred the frame buffer position of a pixel. Instead, impact location could be encoded in the colour 
channels of one of the particle's pixels. 

This approach has several advantages. Since the number of particles is typically much fewer 
than the number of pixels in the impact map, the amount of frame buffer memory that needs to be 
transferred to the C P U could potentially be minimized. 

Assigning each particle its own pixels could also overcome many difficulties related to spatial 
resolution (Section 3.5.1). However, in order to improve resolution, more than one pixel is needed 
to encode position. This is because the naive mapping of {X, Y, Z} {R, G, B} allows only 8 bits 
of resolution for each of X, Y, and Z. This is equivalent to the resolution afforded by a relatively 
small 256 by 256 pixel viewport. The use of floating point frame buffers may also aid in overcoming 
this limitation. 

In addition, if multiple pixels are assigned to a particle, then rendering time will be vastly 
increased. Since vertex programs can generate only one set of vertex data, then rendering to 
multiple pixels will effectively require each particle's collision detection to be computed multiple 
times. 

3.6 Results 

3.6.1 Implementation 
We implemented the particle system collision detection algorithm in the Java programming lan­
guage, using OpenGL [OS99] as the real-time rendering API . The interface between Java and 
OpenGL was provided by the OpenGL for Java [GL4] third-party interface layer. 

The initial development and testing was done using a computer with an 800 MHz Pentium III 
C P U , and a graphics accelerator that used the NVIDIA GeForce3 chip set. 

We implemented the collision detection in such a manner that the test application consisted of 
three separate threads, each performing a distinct function: 

• Rendering the graphical scene 

• Rendering and retrieving the collision information through the impact map 

• Processing and making use of the collision information (as, for example, in sound simulation) 

Our justification for this is that the particle simulation is computed in closed-form, and therefore 
requires minimal intervention from the main application. The advantage, of course, is that the 
thread that uses the collision information can take full control of the computer's main C P U while 
the graphics hardware computes the data. In a single-threaded application, the C P U would be 
sitting idle while waiting for G P U computation to complete. In addition, multi-threading allows 
the application to take full advantage of computers that have more than one C P U . 
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(a) (b) 

Figure 3.7: Hailstone particles colliding with outdoor objects 

3.6.2 Simulation of Hail and Rain 

We have implemented an application that uses hardware-assisted collision detection for both visual 
simulation and feedback to an application running on the computer's main C P U . The application 
is an audio-visual simulation of hail falling on an outdoor scene. 

The hail is simulated as particles with motion denned by first-order dynamics. We perform 
collision detection between each hail particle and a variety of objects. For instance, Figure 3.7(a) 
shows a scene where the hail collides with a house and gazebo with metal roofs and a picnic table. 
Figure 3.7(b) shows a scene where the hail collides with a garbage can and a picnic table. 

For visual simulation, the hailstones are dispensed with when they impact with collider objects 
in the scene. In Figure 3.7 colliders include building roofs and the tops of the table and can. 

We use the collision feedback to drive an audio simulation that uses modal synthesis to generate 
sound whenever a collider is struck by a particle. The audio synthesis is based on an extension to 
the work of van den Doel et al. [vdDKPOl]. 
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Chapter 4 
Interference Detection through 
Ray-Cast ing 
In many instances of animation and simulation, the types of objects being modelled are primarily 
polygonal solids. This is especially true in fields such as C A D / C A M , rigid body simulation, and 
character animation. 

This chapter develops an image-space method for detecting interference between solid polygonal 
bodies. The algorithm makes use of virtual ray casting to determine which portions of the edges of 
the solids lie within the volumes enclosed by other solids. 

The technique exhibits a number of features which, to our knowledge, no other interference 
detection algorithm has successfully combined: 

• Processing is done with the aid of commodity-level graphics hardware. 

• Convex and nori-convex geometry can be handled. 

• A n arbitrary number of objects can be handled and identified. 

• Intersection tests are performed on the geometry itself, not on an approximation to the surface. 

• No special data structures are required. 

• No preprocessing is required. 

• The algorithm's expected asymptotic running time is linear in both the number of objects 
being tested and the number of polygons comprising the objects. 

In the context of the following discussion, a polygonal solid is deemed to be a closed manifold, 
enclosing a finite volume. Unless otherwise noted, the solid may be non-convex and may contain 
hollow regions. 

4.1 Background and Related Work 

4.1.1 Interference Detection 
There have been a number of previous attempts at using graphics hardware to aid in interference 
detection. 

Perhaps the best known example of using graphics hardware to detect interference regions is the 
work of Rossignac et al. [RMS92]. They use the depth and stencil buffer capable hardware to aid in 
the inspection of cross-sections of computer-modelled mechanical assemblies. Clipping planes are 
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moved through volumes occupied by the solid assemblies. Rays are cast toward points on a clipping 
plane. A point is known to be within the solid if a ray passes through an odd number of polygonal 
faces before reaching the point. 

Shinya and Forgue [SF91] reported some early results of using a hardware depth buffer to support 
interference detection. They start with the assumption that all objects are convex. For each pixel, 
a list of the maximum and minimum depth values of each object is stored. These lists are then 
sorted. If any object's zmax and zmin values are not adjacent in the sorted lists, then two objects 
are interfering. The hardware is used to calculate the zmin and zmax depth maps of each object. 
The main drawback of this approach is the huge overhead of repeatedly copying the depth buffer 
and then sorting the depths for each pixel. Storing many depth maps also requires huge amounts 
of memory. 

Myszkowski et al. [MOK95] describe using the depth and stencil buffers in conjunction to detect 
inference. Of all the previously reported results, their work most closely resembles our own. As 
with our algorithm, they use the stencil buffer to store a running count of how many solid objects 
a ray enters and leaves before reaching a surface point of another object of interest. As in [SF91], 
their method is applicable only to objects that are convex in the direction of the rays being cast. In 
addition, their algorithm does not work for more than two objects and must be repeated for every 
object pair that requires interference detection. 

The work of [MOK95] was subsequently expanded on by Baciu and Wong [BW97, BWS98]. 
Their primary contribution was to extend the techniques developed in [MOK95] to compute the 
area of the region of overlap between two interfering solids. Like the previous work, their algorithm 
is applicable only to individual pairs of convex objects. In order to minimize the number of object 
pairs being tested, they use axis-aligned or oriented bounding box tests [GLM96] to winnow down 
the number of objects that may be interfering with each other. One significant benefit of performing 
only pair-wise interference tests is that the ray-casting viewport's size and position are optimal for 
the objects being tested. Even so, using such a technique to compute the areas of interference is of 
limited utility, since such a calculation is limited to the precision imposed by frame buffer resolution. 

Vassilev et al. [VSC01] have used an image-space depth and colour buffer technique for detecting 
collisions in cloth animation for computer-generated characters. They first render two depth maps, 
from the front and back, associated with the character. For the clothing, the coordinates of the 
cloth vertices are transformed into the image space of the depth maps. The x and y image-space 
coordinates of the cloth can then be used to index into two depth maps. If, for either depth map, 
the z value of the cloth vertex is less than the depth map value, then they conclude that the cloth 
has intersected the character's body. This method works in practise, but has the drawback that if 
a body part occludes another body part in the depth map, then collision between the cloth and the 
occluded body part can be missed by the algorithm. 

Interestingly, the work of [VSC01] has also produced a method for using the graphics hardware 
to aid in collision response calculations. They do so by rendering normal maps and velocity maps for 
the characters' bodies, along with the depth maps. The normal maps are produced by specifying, 
for each body vertex, that its colour is equal to its normal. By smooth shading the character, 
this ensures that, in the rendered image, the colour of any body point is that point's interpolated 
normal. Similarly, by mapping a vertex's velocity vector to its colour, a velocity map of the body 
can be rendered. When a cloth/body collision is detected in the depth map, the corresponding 
body normal and velocity can be extracted from their respective maps for use in collision response 
calculations. 
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More recently, Wagner et al. [WSM02] have used an image-based approach for collision detection 
within the context of a physical simulator used for eye surgery. With the assumption that a retinal 
membrane is convex in directions perpendicular to the movement of a surgical instrument, they 
compare the rendered depth buffers of the membrane and instrument. They also use a colour 
buffer-based feature identification method similar to our own to find the facet of the membrane 
which was penetrated by the instrument. In addition, they use the difference in the depth buffers 
to give a crude approximation of the displacement vectors of membrane features. 

Another approach to using graphics hardware to aid in collision detection in the context of 
surgery is presented by Lombardo et al. [LCN99]. Their method is distinguished by the use the 
picking and feedback modes of OpenGL to determine which features of a simulated organ are in 
contact with a model of a laparoscopic surgery tool. However, these features are usually not fully 
hardware-accelerated, which may cause performance to not be as good as expected. 

Interference detection is a subset of a more general class of computation which is sometimes 
called proximity queries. Hoff et al [HZLM01] have demonstrated the use of graphics hardware to 
generate proximity information for two :dimensional objects. They perform image-space computa­
tions for collision detection, separation distance, penetration depth, and contact points and normals. 
Their method is applicable only for individual pairs of objects, and makes use of a distance field 
computation that was originally used in the context of generating Voronoi diagrams using graphics 
hardware [HCK + 99]. The technique has also recently been expanded to proximity queries in three 
dimensions [HZLM02]. 

Graphics hardware has also been used by K i m et al for the computation of penetration depth 
between pairs of 3D polyhedral models in the context of physics-based simulation of solid bod­
ies [KOLM02]. They make use of the depth buffer to aid in the computation of Minkowski sums in 
order to find the minimum translational vector needed to separate two interfering bodies. 

Most recently, Govindaraju et al have used graphics hardware to find sets of potentially in­
terfering objects in complex scenes [GRLM03]. As with our algorithm, they use hardware-based 
occlusion queries (Section 4.5.2) to aid in their interference detection. Their algorithm requires the 
use of traditional collision detection methods to determine whether or not potentially interfering 
objects are indeed engaged in interference. 

4.1.2 The Depth and Stencil Buffers 
Our multi-body collision detection algorithm makes heavy use of two specific features of graphics 
hardware. These are the depth buffer and the stencil buffer. Both buffers are standard features of 
the vast majority of commodity-level 3D graphics accelerators. 

The depth buffer [Cat75] (or z-buffer) stores the screen-space depth, or z-value of each pixel of 
the frame buffer. It is most commonly used for visible-surface determination during rasterization, 
but may be used for other purposes such as generation of shadow maps [Wil78, SKvW + 92] . In 
recent years, the depth buffer has been used by numerous researchers to aid in other forms of 
geometric computation. A survey of some of these alternate uses may be found in [TPK01]. For the 
purposes of our algorithm, the depth buffer is used to store the depth values of all polygon edges. 
It is subsequently used to test the depth values of polygons against those edge depths. 

The stencil buffer [OWN +99] (also known as pixel masks) is a special buffer, used to associate 
an extra integer value with each pixel. This value may be altered during a rendering pass, or used 
in a test to determine whether or not a pixel is drawn. It is typically used for purposes such as 
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Figure 4.1: Shadow volumes 

masking off which areas of the frame buffer may be rendered to. For the purposes of our algorithm, 
it is used to mark pixels that correspond to rays that intersect polygon edges that intersect other 
solids. 

4.1.3 Relat ionship to Shadow Algor i thms 

The initial inspiration for this algorithm came from the one of the most common shadowing tech­
niques in real-time rendering, the shadow volume algorithm [Cro77, Ber86]. Using the shadow 
volume technique, a polygonal mesh is created that represents the volume of space that lies in the 
shadow cast by an object. Determining whether or not a point lies in shadow involves casting a ray 
from the viewer toward the point. The point is in shadow if the ray enters more shadow volumes 
than it exits. This is illustrated in Figure 4.1. The test can be performed in hardware by using the 
stencil buffer to count the difference in the number of front-facing and back-facing polygons that lie 
between a point and the viewer [Hei91]. As will be seen shortly, our algorithm employs this same 
basic ray casting technique to determine if a point lies within the volume enclosed by some solid 
object. 

4.2 Interference 
Before describing our interference detection algorithm, we will give a brief description of what 
exactly we mean by interference. 

We let p 6 P denote that point p is contained within solid polygonal object P. Also let dP be 
the set of edges of P. We denote intersection of two solid objects by A D B. We define intersection 
as follows: 3a € A, b € B\a = b. When two objects intersect each other, we say that they are in 
interference. 

Our interference detection algorithm is predicated on the following property: Two polygonal 
objects are interfering with each other if and only if an edge of one object intersects the volume 
occupied by the other. This is expressed by the following theorem [Can87]: 

Theorem 4.1 AnB ^ $ iff {3a edA,b€ B\a = b} or {3a € A,b € dB\a = b} 
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( i ) B C A ( i i ) Ac B ( i i i ) 

Figure 4 2: Objects in interference 

(a) (b) 

Figure 4.3: Ways in which two faces may intersect 

P r o o f If p £ dP, then p £ P. Therefore, if a G dA and a £ B, then a £ A and a £ B. Similarly, if 
b £ dB, and b £ A, then b £ B and 6 G A 

Conversely, if ,4 n B ^ 0, then either (i) A wholly contains B (i.e., B C A), or (ii) 5 wholly 
contains A (i.e., A C 5 ) , or (iii) the boundaries of A and B intersect (Figure 4.2). Case (i) implies 
Vfe £ dB,3a £ A\b = a, while case (ii) implies Va 6 dA,3b £ B\a = b. Case (iii) implies that 
some face of A intersects some face of B (Figure 4.3). Either the intersection is bounded by an 
edge of A, in which case this edge intersects the face of B (i.e., 3a £ dA,b £ B\a = b), or the 
intersection is bounded by an edge of B, in which case this edge intersects the face of A (i.e., 
3b £ dB, a £ A\a = b). 

We also note that this property is invariant under affine and projective transformations [TT02], 
meaning that an intersection test based on this property may be applied at any point in the graphics 
pipeline. 

Detecting interference by querying for intersection between edges and polyhedral volumes has 
been used in the past. However, most such algorithms are very slow, since they typically require 
exhaustive tests for edge-face intersections between objects [Boy79, Can86]. 

4.3 R a y C a s t i n g i n G r a p h i c s H a r d w a r e 

4.3.1 Cas t ing Rays through the V iewpor t 

When we are rendering a scene, we specify a rectangular region of the frame buffer that pixels may 
be rendered into. This region is termed the viewport. 

We think of a pixel in the frame buffer as the point at which a ray cast from the hypothetical 
viewer's eye intersects the viewport. The various buffers are used to store relevant information 
about the ray. For instance, the depth buffer might hold the screen-space depth value of the first 
object (or, in our case, edge of an object) that the ray intersects. The stencil buffer can hold a value 
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Figure 4.4: Casting rays from a point in a polygon 

(typically 8 bits), which is ancillary information about the ray, such as whether or not it intersects 
an object that is in interference. 

The depth value of a pixel is calculated as an interpolation of the depth of the polygon that covers 
the pixel [FvDFH90]. Since our ray casting algorithm largely relies on depth values for determining 
interference, we consider the buffer values of the pixel to be a reasonable approximation to a ray 
cast through the "centre" of the pixel. In effect, when rays are cast at objects, we are sampling the 
depth values of those objects at discrete intervals. 

In general, therefore, we regard the viewport as a framework for point sampling a graphical 
scene on a regular grid [Smi95]. 

4.3.2 Counting Boundary Crossings 
A central feature of our algorithm is the concept of locating a point relative to a solid by casting 
a semi-infinite ray from the point. The number of polygons of the solid's boundary that the ray 
passes through are counted. The two-dimensional version of this technique was first introduced 
in 1962 by Shimrat [Shi62] and corrected by Hacker [Hac62]. It is commonly used to solve the 
point-in-polygon problem, and was first used in the context of interference detection between solid 
models by Boyse [Boy79]. 

It is a theorem of computational geometry that a semi-infinite ray originating within a closed 
solid will intersect the boundary of the solid an odd number of times [0'R98]. This is a three-
dimensional version of the Jordan Curve Theorem, first formulated in two dimensions by Camille 
Jordan in 1893 [Jor93], which states that any simple closed curve divides the plane into two regions. 

In addition, for a directed ray, we can specify whether or not an intersection of the ray with a 
solid corresponds to the ray entering or leaving the solid's volume. We can make use of the fact 
that "enters" and "leaves" alternate and that there may not be two consecutive instances of an 
"enter" or a "leave". This means that the difference between the number of "enters" and "leaves" 
is at most one. 

We therefore restate the theorem as follows: 

Theorem 4.2 Let all intersections of a ray with the boundary of a solid be classified as either 
"entering" or "leaving" the volume enclosed by the solid. A semi-infinite ray cast from the interior 
of a solid will "leave" the solid one more time than it "enters" the solid (Figure 4-4)-

This has an interesting implication for points that are possibly interior to more than one solid. 
Suppose that we count the difference between the number of times a semi-infinite ray leaves or enters 
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Figure 4.5: Counting boundary crossings 

all solids. The origin of the ray lies within some solid if the count is positive. Furthermore, the 
magnitude of the count indicates how many solids the ray's origin lies within. Figure 4.5 illustrates 
several rays and the counts that they produce. 

We recognize that there are several degenerate cases when rays are cast through solids in this 
manner. These are described in the context of our algorithm in Section 4.5.7. 

4.3.3 Geometry Format and Requirements 

Since the algorithm uses rasterizing graphics hardware, object geometry must necessarily be spec­
ified as a collection of polygons. For maximum polygon throughput, optimized geometric data 
structures such triangle strips [ESV96] are naturally preferable. Our algorithm is not dependent on 
such structures, however. In addition, we render the geometry in two different formats: wireframe 
and filled polygons. Therefore, an optimized version of the wireframe geometry, with duplicate 
edges removed, is also preferable. 

Because the algorithm detects interference between solid objects, the polygonal meshes that 
represent them must be closed. That is, there should be no cracks or holes in the meshes that rays 
can slip through 1. 

We also require that the mesh representing an object be simple, in the sense that it is not self-
intersecting. The reason for this is that the Jordan Curve Theorem (Section 4.3.2) does not hold 
for self-intersecting objects. 

A n object is therefore required to have a well-defined inside and outside - in other words, it 
should be a closed manifold. 

Offset Edges 

It is also necessary for surface normals to be supplied with polygons, hopefully on a per-vertex 
basis. When we draw the wireframe version of the geometry, it is offset slightly outward from 
the polygonal version. The reason for this is that the graphics hardware does not rasterize lines 
in exactly the same way that it rasterizes polygons. In particular, an edge of a polygon, when 
rasterized as a line, is not guaranteed to have exactly the same depth values as the "edge" of the 
rasterized polygon. Therefore, it is possible for the rasterized edges of a solid to lie slightly inside 
or outside its polygonal boundary. If an edge lies inside the boundary, then the algorithm will 

The Newell teapot [Cro87], for example, does not meet this criterion. 
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DEPTH 

Figure 4.6: Rays cast at the edges of an object of interest. The edge points are disjoint. The 
polygons of another object enclose some of the edge points. 

(incorrectly) determine that the edge is in interference with its own solid. We therefore offset all 
edges by a small amount in the direction of their normals, ensuring that such a situation cannot 
occur. 

If the graphics hardware has a programmable vertex pipeline (Section 2.3.1), then we do not need 
to precompute vertex offsets or waste memory storing an offset version of the geometry. Instead, a 
vertex program is used to automatically offset edges at the time that they are rendered. This also 
allows us to generate view-dependent offsets, if necessary. 

4.4 The Algor i thm 
Interference detection is performed by point-sampling the scene and looking for object edges that 
are interior to other solids. This is done using hardware ray-casting. Rays are cast through the 
pixels of the viewport at objects of interest. Rays that strike those objects' edges are of particular 
interest. Figure 4.6 shows this in two dimensions. Note that the edge points appear disjoint. In a 
one-dimensional slice of the viewport, the edge points will only be connected if the edge lines up 
exactly with the slice. 

When a ray strikes an edge, then we count the difference in the number of back-facing and 
front-facing polygons lying between the edge point and the ray's origin at the viewport. If the 
difference is not equal to zero, then we know that the edge point lies within the volume of space 
occupied by another object. 

More formally, suppose that a ray with origin point pv is cast toward an edge point pe. Let 
no,..., n„ be the normals of the polygons that lie between p„ and p e (See Figure 4.7). Now define 
sgn(x) as: 

[ 1 x > 0 
sgn(x) = < —1 x < 0 

{ 0 x = 0 
(4.1) 
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Figure 4.7: Polygons lying between the ray source and an edge point 

DEPTH 

Figure 4.8: Initialize the depth buffer 

In effect, the following equation is evaluated: 

n 

/ ( P e , Pv) = S&n(ni • ( P e - P t » ) ) (4-2) 
i=l. 

Now if / ( P e , P u ) 7̂  0, then the edge point p e is interior to some other object. Furthermore, the 
number of objects that p e is interior to is equal to |/(p e , P v ) I• 

4.4.1 The Rendering Passes 

The primary interference detection algorithm consists of the equivalent of three rendering passes. 
This is shown in pseudocode in Algorithm 1. 

We also illustrate the process with a sequence of explanatory images showing a two-dimensional 
version of two objects (from Figure 4.6) in interference. These figures show how we test whether 
the edge points of one object lie within the volume enclosed by the polygons of another object. 

In the first rendering pass (Lines 4-10), we render all of the edges that we wish to check for 
interference, and initialize the depth buffer with their depth values (Figure 4.8). This ensures that 
all rays cast through pixels will be targeted at polygon edges. The first pass is the only one in which 
the depth buffer is altered. A l l subsequent rendering passes perform depth tests relative to these 
depth values. What this means is that all rays cast through pixels will either intersect an edge or 
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A l g o r i t h m 1 Detect Interference 
1: for all pixels do {clear depth and stencil buffers} 
2: Z = 0, stencil = 0 
3: end for 
4: depth test = none 
5: Enable depth update 
6: stencil function = none 
7: Disable colour update 
8: for all objects do {draw the edge depths} 
9: Draw edges blue{Pass #1} 

10: end for 
11: Disable depth update 
12: depth test = '<' 
13: for all objects do 
14: cull mode = back-face 
15: stencil function = increment 
16: Draw polygons blue{Pass #2: add front-facing polygons} 
17: cull mode = front-face 
18: stencil function = decrement 
19: Draw polygons blue{Pass #3: subtract back-facing polygons} 
20: end for 
21: for all pixels do {check for interference} 
22: if stencil > 0 then 
23: RETURN( interference=true ) 
24: end if 
25: end for 
26: RETURN( interference=false ) 

go to infinity 2. 
In the second and third rendering passes, we do not alter the depth buffer or the colour buffer. 

We do use depth testing, and reject all pixels that fail the depth test. This allows-us to count only 
those pixels of polygons that lie in front of edges. During these two rendering passes, we count the 
number of polygons that lie between the edges and the origin of the rays. 

In the second rendering pass (Lines 14-16), we draw only those polygons whose normals face 
toward the ray's origin (Figure 4.9). That is, we reject all polygons for which the dot product of the 
normal with the ray direction is positive. In the graphics hardware this corresponds to a back-face 
cull. We increment the stencil buffer for each pixel that passes the depth test. 

In the third rendering pass (Lines 17-19), we draw only those polygons whose normals face away 
from the ray's origin (Figure 4.10). That is, we reject all polygons for which the dot product of the 
normal with the ray direction is negative. In the graphics hardware this corresponds to a front-face 
cull. We decrement the stencil buffer for each pixel that passes the depth test. 

Passes two and three have the effect of using the stencil buffer to count the difference between 
the number of front-facing and back-facing polygons that lie between the ray's origin and the edge 
point in question. 

After the third pass, the stencil buffer value at each pixel gives the results of the collision 
detection: 

2Actually the far clipping plane, which is infinity for our purposes. 
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Figure 4.9: Render all front-facing polygons of possibly enclosing objects. The polygon being ren­

dered is highlighted. The value of the stencil buffer after rendering each polygon is 

shown at left. 
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Figure 4.10: Render all back-facing polygons of possibly enclosing objects. The polygon being 
rendered is highlighted. The value of the stencil buffer after rendering each polygon is 
shown at left. 
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• A positive stencil buffer value at a pixel represents a ray cast toward an interfering edge point. 
The magnitude of the value indicates how many objects the edge point is interfering with. 

• A stencil buffer value of zero indicates that the ray represented by the pixel either (a) did not 
intersect an edge point, or (b) intersected an edge point that was not interfering with another 
object. To distinguish between these two depth value of less than infinity indicates 
that an edge was intersected. 

• A negative stencil buffer value means that the ray intersected more back-facing than front 
facing polygons. This indicates that at least one object is not a closed manifold. 

To check for interference, the values in the stencil buffer must be scanned. This requires the 
stencil values to be passed from the graphics hardware to the C P U . 

This version of the algorithm does not identify which objects are interfering with each other. It 
only informs us whether or not an edge point of any object has intersected the volume of another 
object. Note that at no point do we modify the colour buffer. The colour buffer is used in an 
extended version of the algorithm to identify exactly which objects are involved in the interference. 
This process is described in Section 4.5.1. 

Also note that passes two and three could be collapsed into a single rendering pass if the 
system is capable of implementing different stencil buffer operations based on whether polygons 
are front-facing or back-facing. This functionality has recently been introduced independently by 
both NVIDIA and ATI corporations. They have exposed two-sided stencil operations in OpenGL 
through, respectively, the EXT_stencil_two_side and ATT_separate_stencil extensions. 

4.5 Key Issues 

4.5.1 Object Identification 

The interference detection algorithm can efficiently discover whether or not any objects are interfer­
ing with each other. However, it is more problematic to identify the objects that are participating 
in the interference. Identifying one of the objects is easy, but identifying both is considerably more 
difficult. 

Identifying One Object 

To identify only one of the interfering objects, it suffices to assign each object an unique colour. 
When the edges of objects are drawn in the first rendering pass, they are drawn with the object's 
colour. Then when the stencil buffer is parsed, if a pixel is found with a non-zero stencil value, that 
pixel's colour will uniquely identify one of the interfering objects. Furthermore, we know that the 
object is the one whose edges are partially enclosed by the other object. Algorithm 2 illustrates 
this. 

Note that the identification of the object requires pixels to be retrieved from both the stencil 
and colour buffers. If reading the stencil buffer is impossible or too expensive, we can use a modified 
version of the algorithm that requires reading only from the colour buffer. It does so at the expense 
of a fourth rendering pass at the end of the algorithm. This is shown in Algorithm 3. The extra 
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Algorithm 2 Identify one interfering object 
1: for all pixels do {clear colour, depth and stencil buffers} 
2: Z=0, stencil=0, colour=(0, 0, 0, 0) 
3: end for 
4: depth test = none 
5: Enable depth update 
6: stencil function = none 
7: Enable colour update 
8: for all objects do {draw edges with colour enabled} 
9: Draw edges blue{Pass #1} 

10: end for 
11: Disable colour update 
12: Disable depth update 
13: depth test = '<' 
14: for all objects do 
15: cull mode = back-face 
16: stencil function = increment 
17: Draw polygons blue{Pass #2: add front-facing polygons} 
18: cull mode = front-face 
19: stencil function = decrement 
20: Draw polygons blue{Pass #3: subtract back-facing polygons} 
21: end for 
22: for all pixels do {check for interference} 
23: if stencil > 0 then 
24: add colour to list of interfering objects 
25: end if 
26: end for 

rendering pass redraws the edges of the objects and updates the colour buffer at only those locations 
where the stencil buffer is positive. Note also that the colour buffer is no longer updated in the first 
rendering pass. 

Identifying Both Objects 

In our algorithm, an interference point corresponds to an object edge that penetrates the volume 
contained by another object. For each interfering edge point we can therefore make a distinction 
between the penetrating object and the penetrated object. The identification algorithm described in 
the previous section will successfully identify the penetrating object. The difficulty lies in attempting 
to discover the identity of the penetrated object. 

We have designed a modification to the algorithm that will find the identity of the penetrated 
object, at the cost of the equivalent of another three rendering passes. This is shown in Algorithm 4. 

Before identifying the penetrated object, we clear the stencil buffer in order to remove the effects 
of identifying the penetrating object. This can actually be accomplished in the same rendering pass 
that we use to write the penetrating object's identity. 

The basic idea is to repeat the counting process for each individual object. If, after repeating 
the counting for a single object, the stencil buffer was incremented (i.e. stencil=l), then we know 
that object has an edge penetrating it. We write the object's identity into the frame buffer by 
redrawing the object's polygons and updating the buffer only where the stencil equals 1. In the 
same pass we also reset the stencil value to 0 whenever it equals 1, in order to restore the stencil 
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A l g o r i t h m 3 Identify one interfering object without stencil read 
1: for all pixels do {clear colour, depth and stencil buffers} 
2: Z=0, stencil=0, colour=(0, 0, 0, 0) 
3: end for 
4: depth test = none 
5: Enable depth update 
6: stencil function = none 
7: Disable colour update ' 
8: for all objects do 
9: Draw edges blue{Pass #1} 

10: end for 
11: Disable depth update 
12: depth test = '<' 
13: for all objects do 
14: cull mode = back-face 
15: stencil function = increment 
16: Draw polygons blue{Pass #2: add front-facing polygons} 
17: cull mode = front-face 
18: stencil function = decrement 
19: Draw polygons blue{Pass #3: subtract back-facing polygons} 
20: end for 
21: depth test = '=' 
22: stencil function = none 
23: Enable colour update 
24: stencil test = '> 0' 
25: for all objects do 
26: Draw edges blue{Pass #4: identify objects} 
27: end for ;•• ,? 
28: for all pixels do {check for interference using colour buffer} 
29: if colour > 0 then ; | 
30: add colour to list of interfering object's 
31: end if •. | 
32: end for * 

buffer's original state. 
This algorithm requires that the two objects draw their identifiers into separate channels of the 

colour buffer. For instance, we might reserve the red and green channels for the first object, and the 
blue and alpha channels for the second object. With a typical frame buffer, this affords us between 
12 and 16 bits per identifier, allowing us to distinguish up to 65,000 objects. For most applications, 
this is enough identifiers to uniquely identify every polygon and every edge. 

As with the single object identification algorithm, if the stencil buffer cannot be accessed directly, 
the colour buffer alone will suffice, at the cost of an extra rendering pass. 

Note that the modified algorithm relies on the assumption that an edge is interfering with at 
most one object. We reserve only one set of colour channels for storing the identity of the penetrated 
object. If a single edge point penetrates multiple objects, then only one of then is reported3. 

The penetrated object to be reported will be the last one in the rendering order. 
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A l g o r i t h m 4 Identify both interfering objects 
for all pixels do {clear colour, depth and stencil buffers} 

Z=0, stencil=0, colour=(0, 0, 0, 0) 
end for 
depth test = none 
Enable depth update 
stencil function = none 
Enable colour update 
for all objects do 

Draw edges blue{Pass #1} 
end for 
Disable colour update 
Disable depth update 
depth test = '<' 
for all objects do 

cull mode = back-face 
stencil function = increment 
Draw polygons blue{Pass #2: add front-facing polygons} 
cull mode = front-face 
stencil function = decrement 
Draw polygons blue{Pass #3: subtract back-facing polygons} 

end for 
depth test = '=' 
Enable colour update 
stencil test = '> 0' 
stencil function = 'replace with 0' 
for all objects do 

Draw edges blue{Pass #4: identify objects & reset stencil} 
end for 
stencil function = none 
depth test = '<' 
for all objects do 

stencil test = none 
Disable colour update 
cull mode = front-face 
stencil function = decrement 
Draw polygons blue{Pass #5: add front-facing polygons} 
cull mode = back-face 
stencil function = increment 
Draw polygons blue{Pass #6: subtract back-facing polygons} 
Enable colour update 
stencil test = '> 1' 
stencil function = 'replace with 0' 
Draw polygons blue{Pass #7 - identify object & reset stencil} 

end for 
for all pixels do {check for interference} 

if colour <> 0 then 
add colour channel 1 to list of interfering objects 
add colour channel 2 to list of interfering objects 

end if 
end for 
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Optimizing Retrieval of Interference Data 

An important consideration here is the speed of access to the colour and stencil buffers. The colour 
buffer typically has 32 bits of precision per pixel, while the stencil buffer has 8 bits per pixel. This 
means that reading the full colour buffer typically takes longer than reading the stencil buffer. 
Therefore, if colliding objects do not need to be identified, then the data should be retrieved from 
from the stencil buffer. 

Similarly, if objects need to be identified, it may not be necessary to allocate all of the colour 
channels to store object identifiers. A 32-bit frame buffer allows 16 bits of precision for each of 
the two identifiers. If there are less than 256 objects, then only 8 bits of precision are needed 
for object identifiers and therefore only two colour channels are required. By retrieving only the 
necessary channels from the frame buffer, it may be possible to improve access to pixel data on 
some architectures. 

4.5.2 Avoiding Frame Buffer Reads 

We have found that, in practise, one of the most time consuming parts of the algorithm is the act 
of retrieving the frame buffer to main memory and parsing through it one pixel at a time. It would 
therefore be useful if there were some method of avoiding some or all of this part of the process. As 
it turns out, for some applications, there are several methods for doing this. 

Testing for Pixel Writes using Occlusion Queries 

In our algorithm, interference is indicated if the stencil value for any pixel is greater than zero 
after the third rendering pass. The fourth rendering pass re-renders the wireframe version of the 
geometry and updates the colour buffer entry of any pixel for which the depth value is equal to the 
existing value and the stencil value is greater than zero. Therefore, testing for interference amounts 
to checking whether or not any pixel passes both the depth test and the stencil test during the 
fourth rendering pass. 

Fortuitously, this test is supported in commodity-level hardware via hardware-based occlusion 
queries. Hardware occlusion queries were first introduced on commodity hardware by Hewlett-
Packard in their Visualize fx graphics hardware [SOG98] and are also available in the latest graphics 
accelerators from the NVIDIA and ATI corporations4. This functionality is exposed in OpenGL 
through the HP.occlusion.test and NV_occlusion.query extensions. These extensions require almost 
no extra C P U or G P U overhead and do not require an extra rendering pass. 

The NV_occlusion_query extension is slightly more robust, as it returns a count of how many 
pixels pass the test and, more importantly, several queries may be simultaneously extant. This 
means that in the fourth rendering pass, we can issue a separate occlusion query for every object. If 
the occlusion query for an object returns a positive value, then we know that the object is involved 
in some interference. When we want to identify both objects, the same process can be repeated in 
the final rendering pass. This will successfully identify all interfering objects. Pseudocode is shown 
in Algorithm 5. 

4The technology was first implemented on the Denali GB graphics hardware of the Kubota Pacific Titan 3000 
workstation [GKM93], 
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A l g o r i t h m 5 Identify objects using occlusion queries 
for all pixels do {clear depth and stencil buffers} 

Z=0, stencil=0 
end for 
depth test = none 
Enable depth update 
stencil function = none 
Disable colour update 
for all objects do 

Draw edges blue{Pass #1} 
end for 
Disable depth update 
depth test = '<' 
for all objects do 

cull mode = back-face 
stencil function = increment 
Draw polygons blue{Pass #2: add front-facing polygons} 
cull mode = front-face 
stencil function = decrement 
Draw polygons blue{Pass #3: subtract back-facing polygons} 

end for 
depth test = '=' 
stencil function = none 
stencil test = '> 0' 
for all objects do 

Begin occlusion query for object 
Draw edges blue{Pass #4: identify objects} 
E n d occlusion query for object 

end for 
depth test = '<' 
for all objects do 

cull mode = front-face 
stencil function = decrement 
Draw polygons blue{Pass #5: add front-facing polygons} 
cull mode = back-face 
stencil function = increment 
Draw polygons blue{Pass #6: subtract back-facing polygons} 
stencil test = '> 1' 
stencil function = 'replace with 1' 
Begin occlusion query for object 
Draw polygons blue{Pass #7 - identify objects & reset stencil} 
E n d occlusion query for object 

end for 
for all objects do {check for interference} 

if occlusion count > 0 then 
add object to list of interfering objects 

end if 
end for 
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What is more, if objects are identified using occlusion queries, then the colour buffer does not 
need to be touched, since it is sufficient only to know that some pixel passed both the depth and 
stencil tests. However, it is important to note that when multiple pairs of objects are interfering, 
we cannot determine which exact objects make up those pairs. We must still read the colour buffer 
to do this. 

Although occlusion queries require no extra work on the part of the C P U or G P U , they still 
require the geometry being tested to finish rasterizing. Since the C P U passes information to the 
G P U faster than it can be processed, this means that the C P U may have to wait for a while before 
occlusion information becomes available. However, no stall is engendered on the G P U , and the 
C P U can continue performing other tasks until the occlusion query data is available. It is also 
worth noting that in our application we have to wait for the geometry to finish rasterizing anyway, 
since we cannot read the frame buffer until rendering is completed. 

Querying for Non-Zero Colour 

If there is no interference, then the colour buffer is never touched. Therefore, early non-interference 
detection could be implemented by querying the graphics hardware for the maximum colour value 
of any pixel processed during the final rendering pass. If the maximum colour is zero, then no 
interference is indicated, and there is no need to parse the pixels of the frame buffer. 

Some graphics hardware supports a minimum/maximum pixel query during pixel transfer oper­
ations5. In fact, this functionality is exposed in the standard OpenGL A P I through glHistogram 
and glMinmax. The fastest form of pixel transfer is a card-local copy of frame buffer memory. Such 
a copy does not require data to be transfered from the graphics acclerator to the computer's main 
memory, and therefore engenders a briefer stall on the graphics pipeline. 

The graphics accelerator6 on which we tested the algorithm unfortunately does not support 
hardware-accelerated min/max operations, and early non-interference detection of this type was 
therefore highly inefficient7. However, in the presence of hardware that supported this functionality, 
efficient early non-interference detection would be very simple. 

4.5.3 Image Space vs. Object Space 

The ray-casting algorithm is an image space algorithm. As such, there are a number of issues 
specific to image space techniques that must be dealt with. 

When interference detection is being conducted, we must ensure that every object of interest is 
visible when projected onto the viewport. Put another way, all points where collision may occur 
must be visible by at least one of the rays. 

The effectiveness of the algorithm is greatly dependent on the relative distance between objects. 
If objects are on average separated by distances much greater than their average size, then interfer­
ence detection will not be very precise. The relationship between object separation and precision 
of interference detection is largely a function of viewport resolution and depth buffer resolution. 

5 But not during rasterization, unfortunately. 
6 A graphics card using the NVIDIA GeForce 4 chip set. 
7So inefficient, in fact, that interference detection as a whole slowed down by over two orders of magnitude! 
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Viewport Resolution 

The resolution of the viewport through which rays are being cast is of paramount importance. It 
directly affects the precision of the interference detection. 

Suppose that we are using an orthographic projection. Let xv, yv be the image-space dimensions 
of the viewport, and xw, yw, zw be the world-space dimensions of the view frustum. World-space 
precision of interference detection in the plane parallel to the viewport is then limited to ^ by 

As an example, suppose that the viewport is mapped to a spatial volume that is 1 meter to 
a side. Further suppose that the screen-space resolution of the viewport is a 100 by 100 pixel 
box. This means that each pixel, and hence each ray, corresponds to a 1 centimetre square box. 
Interferences can be detected at no better than 1 centimetre precision in any plane parallel to the 
viewport. 

Depth Buffer Resolution 

The depth buffer resolution has a similar effect on the precision of interference detection in the 
direction perpendicular to the plane of the viewport. Additionally, the precision of depth values 
is affected by the type of projective transform imposed on the scene for the interference detection 
process. In particular, perspective projection results in distant objects receiving screen-space depth 
values with less precision than close objects [AMH02]. 

For many situations, this is actually preferable. In primarily visual applications, such as video 
games or virtual reality, it is better to give more attention to objects that are close to the user's 
viewpoint [OD01]. 

We note, however, that using perspective projection increases greatly the likelihood of self-
intersection being reported, as described in Section 4.5.8. 

On the other hand, we may wish to detect collisions with uniform precision over the entire view 
volume. In such is the case, then the best solution is to use an orthographic projection, which 
requires no perspective division. 

We also ensure that the view frustum is as tight as possible around the bounding box of all the 
objects being tested for interference. This allows maximum precision in the screen-space z direction 
when objects are rendered. 

4.5.4 Mult iple Objects and Non-Convex Geometry 

Our ray casting algorithm, unlike previous efforts in hardware-assisted interference detection, can 
handle both non-convex geometry and large sets of potentially interfering objects. 

The reason for this stems from the previous observation that if two objects are interfering with 
each other, then an edge of one of them must intersect the volume of the other. The only way for an 
intersection to miss detection by the algorithm is if no ray can see an interfering edge point. Recall 
that the depth buffer stores the depth values of the closest edges to the eyepoint. For an edge to 
be obscured would require every pixel of every interfering edge to be occluded by other edges (see 
Figure 4.11). 

Such a situation might occur for one of three reasons: 

• The configuration of the objects is highly degenerate (see Section 4.5.7). 
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DEPTH" 

Figure 4.11: A n undetectable interference. Interfering edges of one object are blocked by the edges 
of another object (in purple). 

• There is a locally dense cluster of edges in the projection of the scene onto the viewport. 

• The viewport resolution not high enough. 

The most common of these problems is the second one. Dense clusters of edges indicate that 
either the objects have very large edge counts, or the projection of the objects is so small that they 
are taking up a small viewport area. This can be solved by increasing viewport resolution, but 
in practise doing so is not very practical beyond a small amount. A better solution would be to 
perform some precomputation that minimizes the world-space area that rays are cast into. 

4.5.5 Interference Localization 

We have already demonstrated that it is possible to use the graphics hardware to detect object 
interference. Furthermore, an extension to the algorithm made it possible to detect which pairs 
of objects are interfering with each other. What remains now is to determine the location of the 
interference. $ t-

For many applications, it does "not'suffice to know only that two objects are interfering with 
each other. Rigid body simulation, for instance, requires knowledge of the surface points at which 
objects are interpenetrating, in order to correctly apply forces or impulses to separate contacting 
bodies. 

There are several problems with attempting to localize collision points using our algorithm. 
Firstly, the size of the viewport that we are rendering into limits the spatial precision of contact point 
location. Secondly, there are a potentially large number of points reported for each interference. 
This is especially true for objects created from dense meshes, which have a large number of edge 
points that may lie within the volume of another object. 

Using a variation of the object identification scheme, it is possible to determine which edges 
are involved in the interference. Recall that we identified interfering objects by assigning unique 
colours to them. We can similarly assign colours to edges. During interference detection we can 
render each edge with an unique colour, which is used to identify the edge when we parse through 
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the frame buffer8. We therefore have a list of edges that intersect the volumes of other objects. It 
is also the case that, unless one object entirely encloses another, if two objects are interfering, then 
an edge of one must penetrate the surface of the other. This means that our list of interfering edges 
must include those edges that penetrate the surfaces of other objects, which makes the search for 
surface contact points much easier. 

We also observe that every pixel in the frame buffer has an associated depth value in the depth 
buffer. The pixel location and depth combine to give the screen-space location of an interfering point 
located by the ray cast through the pixel. The screen-space position can be subjected to a reverse 
transformation to find the world-space (or object-space) location of the associated interference point. 

We note, however, that such an operation does not come for free. A typical frame buffer will 
have 24 bits of depth precision, so reading all of the depth values will take about 3/4 of the time 
required to read the colour buffer. Of course, the depth values only need to be retrieved for those 
pixels where interference is detected, but the time required is still non-negligible. 

4.5.6 Collision Response 

For animation applications, interference between two solids indicates a collision between two moving 
objects. If a collision is detected, then we are typically interested in also computing the responses 
exhibited by the colliding bodies. 

As presented, our image-space method does not provide enough information to compute collision 
responses. To do so, we require better interference localization. Specifically, we want to know the 
object-space positions at which object edges are penetrating the surfaces of other objects. In 
addition, we require knowledge of the surface normals and object velocities at those points. 

Vassilev et al [VSC01] make an attempt at using the hardware to aid in computation of collision 
response in the context of cloth simulation. However, their methods are not completely applicable 
to our algorithm. Specifically, the concept of producing a normal map and velocity map for the 
objects is not sufficient for our purposes. This is because the normal and velocity maps will be 
available only for the edges of objects. This is only half the required information, as the normal 
and velocity of the surface points of the penetrated object must also be known. 

We therefore currently make no attempt to use graphics hardware to aid in response computa­
tion. Any such calculations must be performed in software. This is largely sufficient for rigid body 
simulation, for example, where computation of object-space velocities is a relatively simple matter. 

4.5.7 Degenerate Cases 

There are several cases where the geometry being tested for interference may lead to degeneracies 
during the ray-casting process. 

Many of these are the result of the geometry format that we use. In particular, polygonal geom­
etry results in degenerate situations when a ray is coincident with an edge or a vertex. Figure 4.12 
illustrates these degeneracies in a two-dimensional setting. 

Degeneracy #1 illustrates a ray passing through a vertex on the silhouette edge of the polygons. 
It does not present a problem to our algorithm. The vertex is drawn and counted once for each 

8For very small numbers of edges, we can assign an occlusion query (Section 4.5.2) to each edge, and thus avoid 
the frame buffer read. 
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Figure 4.12: Degenerate ray/polygon intersections 

polygon, both front-facing and back-facing, that contains it. This means that the stencil buffer 
count at that pixel is both incremented and decremented. 

Degeneracy #2 illustrates a ray which is exactly collinear with an edge. It does not present a 
serious problem to our algorithm either. This is because the graphics hardware does not render 
edges (or polygons) that are completely perpendicular to the viewport after projection. Therefore, 
edges and polygons collinear with rays will not show up in the count. 

Degeneracy #3 would seem to be the most likely to cause problems, as both faces touching 
the vertex would be counted by the ray, when only one should be. However, graphics hardware is 
designed in such a manner that this situation cannot occur. When two polygons share an edge, the 
hardware will still scan-convert each pixel only once. This feature was originally designed to avoid 
problems arising from duplicate renderings of pixels corresponding to polygons with features such 
as transparency. However, it works equally well in our algorithm by avoiding counting degeneracies 
arising from duplicate pixels. 

Therefore, in general, all three forms of deneneracy cannot occur. However, even if they did, our 
algorithm is designed in such a way that they are unlikely to arise. The usual method for dealing 
with degeneracies in geometric computations is to subject the geometry to some form of pertur­
bation [EM90]. We already perform perturbation on the geometry in order to deal with problems 
that crop up due to limited precision in hardware rasterization (see Sections 4.3.3 and 4.5.3). It 
is worth noting, however, that this perturbation also helps to minimize the problems arising from 
degenerate ray-polygon intersections. 

4.5.8 Self-Intersection 

It is possible for the algorithm to incorrectly report that an object has intersected itself. One of 
the base assumptions of our algorithm is that we are dealing with simple, closed polygonal meshes. 
That is, objects that do not intersect themselves. When self-intersection is reported, it is almost 
always the result of one of two situations occurring. 

The first form of self-intersection is the result of the limited precision of both the viewport and 
the depth buffer. Buffer precision is discussed in detail in Section 4.5.3. We note here that the 
precision of the viewport is almost always the determining factor. The depth buffer typically has 
up to 24 bits of resolution, whereas the viewport has the equivalent of between 7 and 10 bits of 
resolution. 

The second form of self-intersection occurs because of rasterization differences between polygons 
and edges. In particular, an edge may not have the same depth values when rendered in wireframe as 
when it is rendered as part of a polygon. This problem, and its solution, is described in Section 4.3.3. 
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Depending on the application context, self-intersection can be a very common problem. Indeed, 
in some situations it may be unavoidable. For instance, in character animation it is often the case 
that the skin of one part of the body does not blend smoothly with the skin of an adjacent body 
part. This is especially true if each body part is modelled separately and the skin mesh as a whole 
is assembled later. 

For cases where self-intersection is inevitable, we have to accept that spurious intersections will 
be rendered into the frame buffer. Of course, these can be trivially rejected when their colour is 
inspected. Unfortunately, it also means that early non-interference detection, such as that described 
in Section 4.5.2 may not always be completely effective. 

4.6 Complexity Analysis 
It is reasonable to ask what the asymptotic running time of our algorithm is. There are three 
primary variables which affect the performance of the algorithm. 

For collision detection involving multiple objects, the running time is a function of how many 
objects are involved. The naive algorithm for TV objects involves 0(N2) pair-wise tests. Our 
algorithm draws each object a constant number of times and is therefore 0(N) in the number of 
objects involved. This is, of course, assuming that each object has roughly the same number of 
polygons. If this is not the case, then performance is better measured as a function of the total 
number of polygons in the objects being tested. 

For collision detection involving two polygonal objects, the running time is usually a function of 
the number of polygons. If the two objects are constructed of P{ and Pj polygons, respectively, then 
the naive algorithm involves O(PiPj) polygon-polygon intersection tests. Our algorithm renders 
each edge or polygon a constant number of times and is therefore 0(P) in the number of polygons, 
where P is the total number of polygons of all objects being tested. It is important to note that 
our algorithm remains 0(P) in the number of polygons regardless of how many individual objects 
are being tested for interference. 

The third determining factor is how many pixels must be scanned in order to determine whether 
or not interference has occurred. Each pixel is scanned only once for each iteration of interference 
detection, so if there are R pixels, our algorithm is 0(R) in the number of pixels. 

4.7 Results 

4.7.1 Implementation 

Base Implementat ion 

We implemented the interference detection algorithm in the C++ programming language, using 
OpenGL [OS99] as the real-time rendering API . OpenGL is standardized across multiple computing 
architectures and stencil buffers are required by the standard, making it ideal for our purposes. 

Our timing tests were performed on a computer with dual 1.8GHz Pentium IV CPUs and a 
graphics accelerator that used the NVIDIA GeForce4 chip set. 
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Game Console Implementation 

We also implemented the interference detection algorithm using a proprietary A P I called PureSD [Rad]. 
Pure3D is a rendering abstraction layer that allows rendering to be performed on a variety of com­
puter platforms via a common API . 

On the P C platform, Pure3D can use either DirectX 8 or OpenGL 1.3 to perform rendering. 
On the Microsoft XBox [MicOl, AbrOO] platform, Pure3D uses a specialized version of DirectX 8. 

The XBox's main C P U is a 733MHz Pentium III, and it utilizes variant of the NVIDIA GeForce3 
chip set. For the purposes of testing our algorithm, the XBox differs from a P C in several ways. 
The most significant of these is the XBox's memory system, which uses a Unified Memory Archi­
tecture (UMA) design (Section 2.3.4). For instance, our tests indicate that frame buffer access is 
significantly faster on the XBox than on a comparable P C . 

4.7.2 Examples 
We have tested the algorithm with a wide variety of solid objects. 

A n example is given in Figure 4.13, which shows a scene involving several highly non-convex 
objects9 that are entangled and interfering with each other. Figure 4.13(a) shows the edges of the 
objects being tested. Figure 4.13(b) shows an enhanced version of the interferences reported in the 
stencil buffer. The colours in the enhanced stencil buffer correspond to the colours of the objects 
whose edges are in intereference. 

Note in particular that the underlying structures of the interfering portions of the meshes are 
clearly discernible. 

Another example is given in Figure 4.14, which shows a large number of objects, many of which 
are interfering. Objects that are engaged in interference are highlighted in red. 

A significant effort was made to test the algorithm with non-convex objects and scenes involving 
many objects. We also tested the algorithm with objects of very high polygon count. For low 
polygon count objects such as boxes, we were able to simultaneously detect interference between 
several hundreds of objects. With small numbers of objects, such as a single pair, we were able to 
use models with polygon counts of over five thousand before mesh density became too high for the 
algorithm to function correctly. 

Courtesy of [Sch98]. 
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(a) Scene (b) Stencil Buffer 

Figure 4.14: Multiple objects in interference 
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4.7.3 Timings 
When measuring the performance of the algorithm, we start the timing with the first command 
issued to the graphics card. Timing is concluded when either pixel parsing is finished or the last 
occlusion query result becomes available. This gives us the total time required by both the C P U and 
G P U . Note, however, that it is possible for either computational unit to be idle during some of the 
computation. For example, once the frame buffer is retrived, the G P U is not needed for scanning 
pixels. Similarly, the C P U may have free cycles while waiting for geometry to be processed. 

Timing values were taken as the mean over 100 trials. Vertical bars at data points show the 
standard deviation. The spatial configuration of the objects was randomized for each trial. 

Figure 4.15 shows interference detection time as a function of the number of objects being 
tested. The objects were all boxes constructed as strips of twelve triangles. The relationship is 
clearly linear. 

1 - ^r* using frame buffer read 
z'*" using occlusion queries 

0 40 80 120 160 200 
number of objects 

Figure 4.15: Timing data as a function of object count 

Figure 4.16 shows interference detection time as a function of the number of polygons in the 
objects being tested. For this example, we used objects with the same basic shape, but constructed 
at several levels of detail with different numbers of polygons. The relationship here is also linear. 

Note in particular that reading the frame buffer rather than using occlusion queries to identify 
objects can be fairly costly. In these examples we rendered to a 256 by 256 pixel off-screen rendering 
surface. 

T h e Cost of Scanning Pixels 

We have found that, in practise, for our interference detection algorithm, by far the most expensive 
operation was the act of reading the pixels from the graphics hardware and parsing through them 
looking for interferences. 

Table 4.1 shows the relative time spent rendering objects and scanning pixels using two different 
viewport resolutions. Timing data is showed for detecting interference using both the "read pixels" 
and "occlusion query" methods. With over three thousand polygons, this represents a moderately 
complex set of objects. 
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read pixels occlusion query 
# Polygons 3614 3614 3614 3614 
Resolution 640x480 256x256 640x480 256x256 
# Pixels 307,200 65,536 307,200 65,536 
Pixel Read Time 6.7 msec 1.5 msec 0.0 msec 0.0 msec 
Pixel Parse Time 1.2 msec 0.2 msec 0.0 msec 0.0 msec 
G P U Render Time 4.0 msec 3.9 msec 4.0 msec 3.9 msec 

Table 4.1: Timings for pixel reads and occlusion queries 

First note that the time spent in rendering is approximately the same regardless of viewport 
resolution. However, the time spent in reading and scanning pixels increases rapidly with viewport 
resolution. As can be seen, if we use occlusion queries to identify objects, then we no longer need 
to spend time scanning pixels. Any degradation in rendering speed is primarily due to the graphics 
hardware stalling while waiting for the results of the first set of occlusion queries to return. The 
occlusion query method allows us to increase the size of the interference detection viewport, without 
incurring a significant performance penalty. This means that if the hardware has extra frame buffer 
memory, we can increase the precision of interference detection at almost no cost. 

Detecting Non-interference 

Using occlusion queries, we can perform an early test for non-interference, as described in Sec­
tion 4.5.2. Table 4.2 shows timings for our algorithm using non-interference detection on models 
when interference is present and when it is not present. When interference is not present, the 
non-interference technique consistently saves approximately thirty percent of the G P U rendering 
time. 

We also note that early non-interference can be employed even if the frame buffer needs to 

using frame buffer read -
| using occlusion queries -
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# polygons 606 1076 1734 2580 
Interference 0.92 1.35 2.04 2.94 
N o interference 0.63 0.98 1.48 2.11 

Table 4.2: Rendering timings using early non-interference detection (in msec) 

ultimately be scanned 1 0. In this case, the time savings will be even more pronounced, since the 
expensive pixel read operation can be avoided when non-interference is detected. 

°To identify the exact pairs of interfering objects, for instance. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 
We have presented two collision detection algorithms that make use of graphics hardware to assist 
in-computation. 

The first algorithm uses a programmable geometry engine to perform closed-form simulation 
of particles. The motion paths of the particles are intersected with analytical surfaces in order to 
determine whether or not an impact with the surface has occurred. Information about collisions is 
rendered into a two-dimensional reparameterization of the impacted surface and transmitted back 
to the computer's main processor for further processing. 

The second algorithm uses a ray-casting technique to point-sample closed polyhedral objects 
and locate edge points that are interior to other objects. The algorithm requires no preprocessing 
or custom data structures and its running time is linear in both the number of objects and number 
of polygons comprising the objects. 

The main drawback to both algorithms is their reliance on transferring data from the frame 
buffer to the main C P U , which may be a slow process. This can be at least partially overcome 
by applying other techniques such as the occlusion queries used in the ray-casting interference 
detection. 

5.2 Future Work 
We have identified a number of potential directions of research for both collision detection tech­
niques. 

5.2.1 Particle System Collision Detection 
A wider variety of motions for particles is a natural progression of the current work. In particular, 
dynamic motions that are not closed-form in nature would be desirable. This could be likely be 
accomplished by rendering dynamic properties of particles to texture memory. Texture memory is 
not yet accessible to vertex programs, but is accessible to the fragment programs of current graphics 
hardware. A more sophisticated vertex or fragment programming model could make hardware-based 
particle dynamics a reality. 

We envisage using a much wider variety of objects as colliders. For instance, implicit surface 
constructs [Blo97] such as skeletal convolutions, blobby objects, or implicit surface patches have 
analytical surface properties that make them amenable to fast calculation of trajectory intersections. 
In addition to new forms of colliders, the algorithm should be extended to handle much larger 
numbers of collider objects. 
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A difficulty with the impact map concept is that it is not always clear how an analytical surface 
may be reparameterized in two dimensions. Indeed, for many such objects, no global reparameter-
ization may exist. Several different researchers have demonstrated results that may aid us in this 
area. Alonso et al. [ACJ +01] demonstrate the virtual mesh, a Jacobian mapping of curved patches 
to the plane. The geometry images work of Gu et al. [GGH02] shows how arbitrary surfaces can 
be remeshed onto a completely regular 2D structure. Both of these approaches are far too compu­
tationally expensive to be feasible with the current generation of programmable geometry engines. 
However, our expectation is that in the future complex computations such as these will be possible. 

Many forms of impact information may be static in the sense that the data remains constant for 
any given location on the surface of a collider. Such data may be precomputed and then queried 
when collision occurs. The most logical location in which to store such data on graphics hardware 
is in texture memory. The impact map could be used to report such data via per-pixel texturing 
operations. 

5.2.2 Interference Detection through Ray-Casting 

The precision of our hardware-assisted ray-casting is currently constrained by the dimensions of the 
viewport that we are rendering the objects into. Overcoming the limitations imposed by viewport 
resolution is a natural area for future work. 

Our method could be extended to provide better interference localization. For applications such 
as rigid body simulations, this would entail identifying the point at which an edge of one objects 
intersect the surface of the other object. The proximity queries described by-Hoff et al [HZLM01, 
HZLM02] provide a good starting point for this extension to our work. 

We believe there is some merit in combining our algorithm with level-of-detail techniques. This 
would allow us to perform fast rejection tests on coarse approximations to the polygonal models, 
and only use the full model when higher accuracy is needed. Similarly, the algorithm could also 
easily be extended to handle interference detection with bounding volume hierarchies such as those 
of Gottschalk et al. [GLM96]. In such a situation, only the portions of the model in the leaves of 
the hierarchy would be used for full-precision interference detection. 
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