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Abstract

A\

The classic optical ﬂow constraint equation is accurate under conditions of
translation and distaﬁt light sources, but becomes inaccurate under conditions where the
object may rotate or deform. The inaccuracigs are generally a result of the changing
intensities at points uncier rotation or deformation. -The changing intensities of these
points are associated with the changing surface gfadients. We investigate a novel
approach to multiple light source optical flow under known reflectance properties. This
novel approach is specialized for translation épd fér rotation around axes which are |
parallel to the optical axis. The assumption that fhe objéct 1s moving under translétion,
rotation, or a combination of translatioﬁ and'rotation in'the image plane allows us to
introduce a physical surface area constraint. Even with this additional ‘constréint, ‘ V
however, the problem still remains locally underdetermined.

At each time frame, our multiple light séurce optical flow abproach assume§ that
three irﬁages are acquired from the same viewpoint, but un.der three different illumination
conditions. Photometric stereo determines mahy of thé coefficients in our
underdetermined system, which has six equétio.ns in seven ur;.knowns_at each pixel in the
image. Two of the unknowns are the optical flow component‘vs. Another three of the
unknowns are the total derivatives of the three intensities with respect to time. The last
" two are the total derivatives of the éurface gradients With respect to time. A variety of '
local regularizétion methods were investigated to select optical flow estimates which best

matched the known motion fields. All the experimental results for this approach were

obtained from synthétic data, in which the motion fields were known. -
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Chapter One

1 Optical Flow

1.1 Introduction

"In this thesis we mainly investigate multiple light source optical flow [18] for
objects which are translating or rotating around an axis parallel to the optical axis. The
‘optical axis is the axis which passes through the image center and the opﬁcal center. In

Figuré 1.1.1, the imaging axis is the z-axis.

optical axis

Figure 1.1.1: Imaging axis under orthographic projection.

- Optical flow [7,9] is the apparent motion of the image intensity pattern. Often the optical
flow will correspond.with the actual motion field in the scene, but there are many cases in

which this is not true. The classic example is that of a sphere that is rotating. In the

absence of distinct surface markings, the image sequence of a sphere that is rotating will




be constant since there are no changes in the image intensity pattern. Hence the optical
flow will be zero at points on the sphere. However the actual mdtion field is a rotation of
t};’e sphere.

Often in the célculation of the optical flow, it 1s assumed that the radiance of a

point E(x,y.t) does not change over time. This can be stated mathematically as

——————dE(“Y’y’[):—aﬁzl+@\)+?£:0
.~ oOx oy o

. Equation 1.1.1

where u, and v are dx/d! , and dy/dt respectively. This as_éumption implies that no
matter how the surface normal at that innt changes over time its radiance is constant.

- This is true under transiation under distant light sources, but in general this assumption is
not correct..For example, under rotation, the radiance at a poiﬁt changes with time as its
surface normal changes with respect to the lights sources and the viewer.

! It is enlightening to see that it is possible to solve Equation 1.1.1 for the normal
velocity. The normal velocity isl the compo'nent of (u,v) in the direction of the intensity

gradient. If we let the normal velocity be v, then

_—dEldi  VE

y
IVEL  IvE]

Equation 1.1.2

However the velocity perpendicular to the normal velocity cannot be recovered, without
additional information. Essentially the problem is that the system is under-determined.
Suppose we let a surface be represented by z = f(x, y), under orthographic

projection, where z points along the optical axis, and x and y form the image coordinates,




as in Figure |.1.1. Letting the partial derivatives of f be represented by p and ¢, we have .

af
oy

o

p=-—,and g == The general image irradiance equation can be written as
av o o

E(x,y) = R(p.q)
Equation 1.1.3

where £ is the image irradiance at the point (x,y) in the image and R is the scene radiance
produced by a surface point with p and ¢ as partial derivatives. Note that x and y are
functions of time ¢, and p and q are functions of x, y and hence .

Therefore compared to Equation 1.1.1, the general equation for dE/dt is

dE _OE @JFQE_;_O_R{@_[)“@HG_P}%{@H oq aq}

— = —u+—v + v+ —=
d o oy ot odplox oy ot| oglox oy ot

Equation 1.1.4

In Equation 1.1.1 .ar'ld Equation 1.1.4, it 1s the u anéi v quantities that form the optical
flow. Equation 1.1.1 is an equation in two unknowns, # and v, so it is not possible to
solve for u and v uniquely, witﬁout regularization. Often, the minimum norm solution of
(u,v) 1s chosen as an initial approximétion for some global regularization method, in these .

cases.

-
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Chapter Two

2 Multiple Light Source Optical Flow

2.1 Introduction

Photofnetrfc stereo is used in our optical flow estimation to help introduce more
knowlgdge of the three dimensional world into our optic.alAﬂow equations. Photometric
stereo allows us to determine surfa_ce gradients at all points on an imaged iject, and -

“hence its curvature. It involves the use of multiple images;ofthe same scene taken
sifnultaneously from the same view point, but under different illumination conditions:
This is typically accomplished by illuminating the; scene with three light sources from
different di'rections. The light sources are‘isolated in the red, green, and blue spectrums.
A‘ colour camera is then used to capture the scene. The red, green, and blue planes of the
célour image records the scene under the red, green, and blue_ illurﬁinatiops. conditions, -
respectively.

In photometric stereo [17], the situation can be described with three image

- rradiance equations.

E(x,p) = R(p.q)

E,(x,y)=R,(p,q)
Es(x,y)=Ry(p.q)

Equation 2.1.1




C. E. Siegerist’s work [14,15] uses the classic optical flow constraint equation;, and
-assumes that the image irradiance £ is constant over time.

d—E:ExﬁwLE‘,QJrE, =0,
dt dt 7 dt

E o,
oy o

Equation 2.1.2
If three images are acquired, we end up with a system of three linear equations in two
. unknowns. The unknowns are dx/dt, and dy/dt, which form the optical flow. The

equations are as follows.

‘Eu+E v+ E, =0
E,u+E, v+E, =0
E. u +E3yv+E3[ =0

Equation 2.1.3
dx dy .. S
where, u = = V= o In general this is an over determined system, and the least

squares solution for # and v can be found as

' {u}:(ATA)“AT — L
. 4

Elx Ely
where A=|FE, E,,
E3x E3'V

Equation 2.1.4




However, under certain conditions, Equation 2.1.3 will not be over determined, and may =,
_be under determined. This will be discussed later in section 3.4 on degenerate cases.
C. E Siegerist’s woyk [14,15] on real time multiple light source optical( flow shows
‘that this method works quite well for translational motion. However the assumption that
dF/dt =0 is only correct under translation and infinitely distant li.ght sources. In order
to avoid making this assumption, Equation 1.1.4, the derivative of the full image
irradiance equation ‘With respect to time, was used. David Hsu’s work [11] extends the
- classic optical flow ‘co‘nstraint eciuation to an equation similar to Equatifon 1.14 fbr the
-three light sources. It tries to account for cases which are not just translational in- nature
by accounting for the changes in tﬁe intensity of a point duel to surface normal changes at
that point. This leads to an ﬁﬁderdetermihed system, and he was able to show that by
tuning fhe regularization parametefs, a minimal rotation, or a maximal_rotation solution
for the optical flow could be obtained. The mini.malvrotatzion solution fayored a solution
in which the surface normal did not change. This tends to yield fhe same results as if the
- optical flow constraint equation, Equation 1.1.1, had been used, and is accurate under
conditions of translations. The maximal-rotatiqn solution favors a solution in which the

surface normals change significantly. This yields results which are quite different from

those had the optical flow constraint equatibn been used. -




Chapter T‘hree
3 Physical Surface Area Based Approach

3.1 Introduction

In our method, we .etllso exteﬁa the optical flow constraint equations, and create an
initial syétem of equations which are similar itvo that uséd by David Hsu [11], except that
we ha\}e constructed the reflectance mép, R, as a funétion of the surface gradient, p and q,
instead of the unit surface normal, which can fépreseﬁted by three variables, and an
additional constraint equation. We use the full image irradiance equation, Equation | 1.1.4,
for the three imaging conditions in mu.'ltiple light sou'rce oﬁtical flow. The only
unknowns in these equations are # and v. The other entitieé can be calculated from the

image sequence or knowledge of the reflectance map.

Eu+Ev+E, =R, Z’; R, Z‘tI
Equation 3.1.1

Lyu+E, v+ E, =R, Zp 2‘7%
Equation 3.1.2

B+ By v+ I —R3pi';p R"’Cclzg ‘

Equation 3.1.3

Note that




and

-Note that -

b v, P, P

dr &y o

Equation 3.1.4

dq_2%,,%,, %4
aox dy o

E‘quation 3.1.5

o

B.-&, 2o L
E, ~—R Z‘yDJrquZz
E, —Rngfv’ qugz'
Ez";:RéP%+qua}/
E,, :R;%’[QRZQ%

E, =R, Zp +R3qqu

poon, @ g %
Ty Ty
E, =R, Pop A
Yoo o

Equation 3.1.6

The above equations can be rearranged as




Eu+E v-a =-E,

“1v

Equation 3.1.7

E,u+b,v-a, =-L,

Equation 3;1.8.

E.u+E, v-—a, =-F,

Equatibn 3.1.9
pu+rpyv-a= ;Pz
Equation 3.1.10
qu+q,v-b=-q,

Equation 3.1.11

And in matrix form the above can be represented as.

U
E, E, -1.0 0 0o o]v| [
E, E, 0 -1 0 0 0]ag
E, E, 0 0 -I 0 la,|=
p. P, 0 0 0 -1 0|a
. g, 0 0 0 0 -1
| )

Equation 3.1.12




dp dg dF, d,

where a, b,a,, a,, and «a; are equal to the total derivatives of —, , , and
‘ - dt dt dt  dt
R, } . d, dF. dl.
> respectively. The variables a,, @,, and a, are also equal to —~, —% and —-
dt  dt dt
) ' df.  dR
respectively, because 7 = ——l’— fori=1,2, and 3.

3.2 Photometric Surface Constraint

R. J. Woodham [17] introduced the notion.that all the intensity triples from a
lambertian surface, under photometric stereo conditions, lie on an ellipsoid in the space
of intensity triples. Elli Angélopoulou and Lawrence B. Wolff [1,2,3] extended this to
show that the intensity triples from a generalized diffuse surface lie on a closed convex
surface in the space of intensity triples.” This closed convex surface will be referred to as
the photometric surface. At any given point in the image, its intensity triple will

correspond to a point on this photometric surface. As time progresses, the surface normal

(n,,n,,n,) and the intensity triple at a point in the image will change and the respective

point on the photometric surface will move to a new point on the photometric surface.
Because the point is constrained to lie on this photometric surface, its velocity vector,

dR, dR, dR, ) . )
(7", d; , dt ), on the photometric surface will always be perpendicular to the surface

normal of this photometric surface. From the notation used in Equation 3.1.7, Equation
3.1.8, and Equation 3.1.9, the velocity vector can be written as (o, a,,a;).

Let us define the photometric surface as

10



F(E,E,E)=0 o
Equation 3.2.1

Then the normal (n,,n,,n,) tothis surface s

dF_dr dF
dE," dE,’ dE, 1

(n,n,,n,)=(

Equation 322
Because of the relation in Equation 2.1.1, the surfaqe normal can be equivalently
“expressed as va'cross product of vector derivatives of the reflectance with Tespect to p and

R,)

2927 3q

) (n1;nz>n3) = (RlpJR
:_(RZpRBq _RSPR

2p>R3p)X (quaR
R,R,-R,R, R R;~R

29> 3q° 2 2p

R] q )
Equation 3.2.3 .

Therefore the photometric constraint can be written as

(Ry, Ry, = Ry, Roy, R, R, — R R

2p* N3q 2q> 3q>

RlpRZIq._Rluqu). (a] 7a_7:’a3_) = O

Equation 3.2.4

¢

Hence it appears that knowledge of all the photometric surface normals will allow
ué to introduce an‘ additional constraint on our optical ﬂqw eqﬁations, However this 1s
not the case. In fact the photometric constraint is a éoﬁsequence of Equation 3.1.7,

‘ Equation 3.1.8, Equation 3.1.9, Equation 3.1.10, énd Equation.3:vl : l_lA To see this, let ué
first convert Equation 3.1.7, Equation 3.1.8, and Equation. 3.1 9 into equatioﬁs uéing
derivatives of the reflectance, using the identities in Equation 3.1.6. Equation 3.1.7,

Equation 3.1.8, and Equation 3.1.9 become

11




(Rl ppx + quQx )I’l + (Rlppy + quqy )V - a] = _RI [)p/ - quqf

Equation 3.2.5

(]e'lppx + Rqux )'ll + (RZ])py + R.’Z(.lq_v )V - a’l = —R’lppl - R'qut
Equation 3.2.6
(RSppx + RSqqx)ll + (R3ppy + RSqqy)v - a_3 = ;RSPPI - RSqqr

Equation 3.2.7

. Now we can subtract Equation 3.1.10 multiplied by R, ,and Equétion 3.1.11 multiplied by

R

4> from Equation 3 2.5 to get
—a +R,a+R b= O

Equation 3.2.5;
Subtracting Equation 3.1.10 multiplied by R, ,and Equation 3.1.11 multi‘pliedlby R,,,
from Equation 3.2.6, we get |

—a,+ R, ,a+ R, b= 0

Equatio;n 3.2.9

Subtracting Equation 3.1.10 multiplied by R; ,and Equation 3.1.11 multiplied by 12'3(1: |
from Equation 3.2.7, we get |
-+ R a+ R, b= 0

3q

Equation 3.2.10
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Finally summing up Equation 3.2.8 multiplied by - (R, R, - R R, ), Equation 3.2.9

multiplied by — (K, R, — R ,R;,), and Equation 3.2.10 multiplied by

lg

~(R,R,, — R, R,)yields

o — R, +(ROR, — R, R

2p” “3q ly

(R, R,, ~ R, R;, )t + (R, R
Egquation 3.2.11

which is just the photometric surface constraint, Equation 3.2.4. Hence the photometric
surface constraint equation does not provide any additional constraint to our existing

equations.

3.3 The Physical Surface Area Constraint For Rotations

Accounting for physical surface area in the scene however does provide an
additional constraint on our optical flow equations. Let us represent a surface as -

z= f(x,y), atunction onx and y. Now let us consider trying to find the area of a patch

o of

Q). Let us assume that we know the value of p and g at (x,y), where p = = and g = -
' , ox :

\ ay

The area S of the surface over a patch Q in the x and y plane can be expressed as follows.

Let » be the surface normal.

n=(1,0,p)x(0,1,q) = (-p,~q,1)

Equation 3.3.1

Ya; =0 ‘




S = ”lnldxdy = ”,/pz +q° +ldxdy
Q Q

Equation 3.3.2

Then a small area dfs, at (x,y) can be expressed as

ds = A1+ p* + q*dxdy
Equation 3.3.3

| fhé surface gradients P and q are ﬁncf{ons of ’)‘c and y, and the x and y are
‘;h’e'mse:lves.ﬁmctions Qf the time, ‘t, So thé infmitesimai area, ds, will remain co'rls'fant
under conditions of translation. This is because the object is only translating and the.
surface gradients at a given (x,y), with respect to the viewer, are not changing. The

infinitesimal area, ds, will also rerﬁéin coﬁstant under conditions of rotation around an
~axis parallel to the optical axis, since, in this case, (p*> +¢°) is constant.
Therefore under conditions of translations and rotations around axes parallel to.
. :the optical axis, the area ds should:not change as time moves along. This can be
expressed as |

d(ds) _
di-

O .
Equation 3.3.4
Let us denote ds by 4 for convenience. Then we have.

—__dA(xd,’y, J =Au+ Av+A4,

Equation 3.3.5



file:///rtyxdy
file:///dxdy

1

dA 1 R N P 49,
—=—(+p +q°) *@pp,+29q,) = Py —=
de 2 NI+p° +q°

Equation 3.3.6

dA PP, +4q,

dy  J1+p*+4°

Equation 3.3.7

dA _ pp,+qq,

Equation 3.3.8
So combining thesé equations; we getg
» (pp, +qqu+ ( pp‘y + (1(1;, s o, +.qqt .

Equation 3.3.9

Combining Equativon 3.3.9 with Equation 3.1.7, Equation 3.1.8, Equation 3.1.9, Equation
3.1.10, and Equaﬁon 3.1.11, we get a system of 6 equations in 7 unknowns in the best:

case. This will be the system that we use in our approach to solve for optical flow.
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L, E, -1 0 0o o ol"| [ -£ ]
E,. E, 0 -1 0 of " _E,
E. E. 0 0 -1 0 0] _E,
P, 2 0 o0 1o |2 -y,

q. g, .0 0 o -1 @ ~-q,

PP tqq. pp.tqq, 0O O 0 | Z |- PP — 94, ]

Equation 3.3.10

3.4 Degenerate Cases

In orde.r to solve for the optical flow using Equation 2.1.3 c;r Equation 3.3.10, we
generally_need to calculate the matrix product 4" 4. -For solving Equation 2.1.3, we uée
AT 4 as described in Equation 2.1.4. For solving Equation 3.3.10, 4”7 4 is used in a local
regularization process which is described in section 4.2 on local regularization. Hence
knowledge of the rank of A" 4 is hélpﬁﬂ in determining whether a solution can be found.

In Equation 2.1.3, # and v are over determined. . There are, however, several cases

_in which this system of equations will degenerate, and it becomes impossible to solve for
.the optical flow using thé method described after the definition of the systems of

Equation 2.1.3. These degeneracies occur when the object’s sufface 1S planér or
developable. When the surface being imaged is planar, the matrix 4 has no linearly

independent rows. To see this we just need to note that if the surface is planar then

E.=E, =0 forall i=1, 2, and 3

Equation 3.4.1




as the image intensity is the same at all poiﬁts on the planar surface. Hence 4’ 4, will
have a rank of zero.

When the surface is developable, the matrix 4 has only one linearly independent
row. The reason why the matrix 4 has one linearly independent row is due to the

following property which occurs when the surface is developable [16].

Y = 2 fori=1,2,3,and j=1,2,3
E. E

ix Jx

Equation 342
To see this we first note that
E, R p. b,
{ }:H{ ”]whereH:{ v
Ey Rq ) qx q_v
Equation 3.4.3 - -
H is known as the Hessian matrix, and for developablei surfaces it can be shown that the -
* determinant of the Hessian is zero. Because A is positive definite, it can be factored as
J[A o], . o
H=R 0 o IR, where R is a rotation matrix.
Equation 3.4.4
- Hence no matter what (R, R ) 1s, it will be mapped to a point, (L, £.), on a straight

line. From this it can be shown that Equation 3.4.2 holds. Since 4 has one lineafly

independent row, the matrix product, 4" 4, will have a rank less than or equal to one.

This follows from the following inequality of matrix ranks [13].
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rank(BC) < rank(B) , and

rank(BC) < rank(C)
Equation 3.4.5

Equation 3.3.10 also has similar degenerate cases. Before we delve into these
degenerate cases, which can decrease the rank of 4" 4, let us first prove another lemma-

concerning the number of independent rows of 4 and the rank .of A" 4.

Lemma 1.  If 4 is an m by p matrix with m<p and has m independent rows, then 4" 4

has full rank. (In other words, the rank of A" 4 is equal to m.)

Proof: This follows from Sylvester’s inequality [10, page 13].
" rank(B) + rank(C) - k < rank(BC) < min(rank(B), rank(C)
Equation 3.4.6

where B is an m by k matrix with & independent columns, and C is an arbitrary k by »

matrix. If we let B equal A", and C equal 4, we get
m<rank(A" A) <m
Equation 3.4.7

as k is equal to m, here. Hence the rank of A" A ism, if 4 is m by p with m independent

TOWS.

Let us consider the Equation 3.3.10 as Ax=b. The maximum number of

independent rows A can have is 6. In this case, from lemma 1, A" 4 will have full rank.
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The minimium number of independent rows A can have is 5. In this case, from the

inequalities in Equation 3.4.5, AT A4 will‘have a rank léss tﬁan orequalto 5. Ahasa
minimum of 5 independent rows Because the first five rows has an element, -1, in a
célumn where all other rows have zero. Hence these 5 rows are able to span a space with
dimension 5, and are linearly independent. The matrix, 4, will have 5_ indepeﬁdent TOWS

o4

when (pp, +gq.)and(pp, +494,) from the last row of Equation 3.310 are zero. If

(pp, +9q.) or (pp, +4qq,) are not equal to zero, the matrix 4 will have 6 independent

roOws.

There are many conditions which might cause (pp, +qq,.) and (pp, +4q,) to
be zero. An obvious case is when the surfacé is planar. In this case the p and ¢ are
constant and the partial derivatives of p and g are zero. Itis interesting to note however
that developable surfaces do not in general cause ( pﬁx +4qq,) and (pp, + (]C-[y) to be
zero, and hence do not in general decrease thé rank éf matrix A as they did when we were

considering the matrix A from Equation 2.1.3, which uses the classic optical flow

constraint equations.
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Chapter Four

4 Imp'lementation

4.1 Hardware and Software Setup

Optvical flow calculations were carried out on a Pentium III 300 MHz computer.
The programs were written in Visual C++ 6.0, and made use of CLAPACK (C Linear
Algebra Package), and Microsoft’s Vision Software Development Kit. One synthetic
image was synthesiéed using Kinetic’s 3D Studio Mak, but most of the synthetic data
\;vas .created by self made programs through a knowlvedg.e (v);f surféce gradients and -
feﬂectance maps. |

In order to estimate.the optical ﬂ(gw, the Eqﬁétion 3.3.10 is solved through a local
regﬁlarizé;ﬁon at each pixel for the éeven unknowns. All the elements in the 6 by 7

E

ly»

matrix, 4, and the 6 by 1 matrix, b, can be calculated. The image gradients £

ix>

E,E L, E,., E,. L,  and E,, , canbe determined by taking partial derivatives in

1t > 2x 2 2y 2t 3x* 3vo
the image sequence. The surface gradients, p and ¢, can be determined from the

photometric stereo lookup table. The derivatives of the surface gradients p_, p,, p,,

4., q,,and g, can be determined by taking discrete derivatives of p and ¢, but a method

which is less sensitive to noise is used.
Before the image gradients are calculated, all the images are smoothed with a 5 by
5 discrete Gaussian filter, with & = 1. The image gradients are calculated by using a

kernel of size 5. The following are the exact values in this difference kernel.
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diff kernel[-2] = (float)-1.0/12.0
diff_kernel[-1] = (float)8.0/12.0

diff_kernel[0] = (float)0.0

diff kernel[1] = (float)-8.0/12.0

diff_kernel[2] = '(hoat)l .0/12.0

This kernel has element O as the center element, and is convolved with the smoothed

. images in the x, and y orientations, and also in time. The gradients in time are taken over

5 images, 2 before and after in the time sequence to the image of interest.

Photometric stereo [17] allows us to obtain surface gradient information from

. intensity triples. The photometric stereo lookup table is a table containing surface

gradient doubles, (p,g), associated with intensity triples, and is indexed by these intensity
triples. This photometric stereo lookup table yields important information about other

potential imaged objects provided that they are made of the same material, have the same

reflectance properties, and are imaged under the same imaging geometry. The imaging
geometry refers to the camera, and the relative positions of the three light sources with

respect to the camera. To build the photometric stereo lookup table, a real or synthetic

image of a calibration sphere is used. The image is analysed and the associations
between intensity triples and gradient doubles (p,g) are made. Asin R. J. Woodham’s
work {17}, we use the following equations to make the association between intensity

triples and the gradient doubles (p,q). The sphere is represented as



2

XX+ () +zi =

‘ Equation 4.1.1
where A takes the aspect ratio into account. The intensity triple at the point (x,y) in the
“image is associated with the gradient double (p,q), by the following equation.

X Ay

z ' z
. Equation 4.1.2
Hence if the imaging geometry or the material of interest changes, the photometric stereo
' léo_kup table must. be recalibrated again in order to be useful.

Photometric stereo [17] utilizes spectral multiplexing. Spectral mﬁltiplexing
involves the use of multiple images taken from the same viewpoint, but under differént
conditions of illuminations. As in R. J. Woodham’s work [17], we use three images in
our sf)ectral multiplexing, under three illumination conditions. For real images, the three
images are acquired simultaneously in a colour image, with a Sony DXC-950 3 CCD 24-
bit coloqr caméra with a Sony VCL-714BXEA zoom lens. The red, green, énd blue
fields of the éolour ima’gev form the three images. The red, green, and blue fields of ‘the_
colour image can cépture a scene under three different illumination conditions, .if the
thre¢ .light sources illuminate the scene from different directions, and are sufficiently
isolated in the red, oreén, and blﬁe_ parts of the visible spectrum. This photometric sfereo
setup for real images used three Newport MP-1000 Moire (white-light) projectors with
associated Nikon lenses and spectral filters. The filters separted the white light into the
red, blue, and green parts of the spectrum. The filters were manufactured by Corion.

R.Woodham’s work [17] showed that there was negligible overlap in the wavelengths of
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the red, blue, and green f.'lltere‘d light sources. The light sources were placed so as to
illuminate the camera’s area of interest from different directions.

Spectral multiplexing was also artificially introduced into the synthet.ic images.
This was accomplished by using different reflectance maps for the intensities in the red,
green, and blue fields of the image. The different reflectance maps are specific to the
different illumination directions of the red, green, and blue filtered light so‘urces, and ére
derivéd from the calibration sphere used in the photometric sfereo éetup. This is done by

inverting the association between and intensity triple (r,g,b), and its surface gradient

(r.q). The red, green, and blue reflectance maps are tables which map the surface

“gradient (p,q) to the r, g, and b elements respectively of the inv"t‘e'nsity triple. Surface

B gra'dients (»,q) which are not ‘explicitly in the table can be interpolated at run time from

the recorded data.

In order to calculate the partial derivates of the surface gradient (p,q) in a manner
which is less sensitive noise we make use the derivatives of the three reﬂecf[ance maps for
thie three different illumination conditions, which in our case is the red, green, and blue

illumination conditions. The derivatives of the reflectance maps R, R, R, R, )

R;,, and R are calculated at run time, as needed, from the reflectance maps. The
derivatives of the surface gradient, p_, Py> Pi» 4> 4, ,and g, are calculated as follows.-

The equations in Equation 3.1.6 in matrix form are
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| quation 4.1.3
Considering the abo'.ve as
E=0M"
Equation 4.1.4
we:"cén solve for Q as
0= W(M.TM)—I
Equation 4.1.5

The derivatives of the surface gradient, p,, p,, p,, 4., 4, ,and g, g, can be extracted

from Q.

" Because tables used in gradient lookup are potehtially very long, it became
" important to determine how many significant bits are in the images taken by our system.
This was accomplished by looking at the least sighificant bits of the image and -deci»ding :
whether there was a non-random pattern in the image. If there Was a non—random pattern
in the image, then it was likely that 1t reﬂected the underlying scene, and therefore
contained significant information. We started by looking at the least significant bit_, then
the last two significant bits, etc. We found that the two ieast significant bits did not
contain much information. Hence instead of indexing the tablés with 8 bit intensity
values, we use 6 bit intensity values: Hence instead of having 16,777,216 (2"8 * 2"8 *

278) entries in our tables, we have 262,144 (276 * 276 * 26) entries in our tables.’
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4.2 Locai Regularization

Given that all the elements besides the unknowns can be estimated in Equation
3.3.10, local regularization can to be used. This local regularization does not consider
information from any other points in the image, as in global regularization, or any other
non-local regularization.  Again, let us represent Equation 3.3.10 as
Ax=05b

Equation 4.2.1

The regularization that is used is one which finds the x which minimizes

Ao|lPx|)” + 4] 4x - 8]

Equation 4.2.2

where 4, >0 and 4, >0 are regularization parameters chosen beforehand. P represents
a st’a‘bili_zation function, and is also éhosen in advvance'._ Two types of regularization were
‘imple.mented and tested. Both of whi(':.h‘ were studied by D. Hsu’s work [11] on multiple
light source optical flow. The regulariz_’ations make use of OR .factorization and Singular
Valuﬁe Decomposition (SVD‘);

The standard OR factorization [13] of a real m by n métrix A s given by

-of)

Equation 4.2.3

25



where R is an 7 by » upper triangular matrix , O is an m by m orthogonal matrix, and
m>n. If 4 has n linearly independent rows, then R is non-singular. Often the

factorization 1s written as

o))

Equation 4.2.4

which reduces to

Equation 4.2.5

where O, consists of the first n columns of O, and O, consists of the remaining columné.
- The Singular Value Decomposition [13] of a real m by » matrix 4 is given by
A=UZVT
Equ;nior_{ 4.2.6
Here, the U and } matrices are 6rth'ogonal; and X 4is an m by »n diagonal matrix with real
i'di‘agori:al cléments ;.

0,20,2..20 ;20

min{ m,n
Equation 4.2.7 '

These real diagonal elements o, are known as the singular values of 4, and the first

min(m,n) columns of U and ¥ are known as the left and right singular vectors of 4. The

mathematical relation between singular values and singular vectors is described below.
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Av, =cu, and A'u, = oV,

Equation 4.2.8
\ .

where u, 1s the ith left singular vector, and v, is the ith right singular vector.

Method 1

This method assumes that the measurements are exact. So ”Av - b” is weighted
heavily. In fa;t ifweset A, =, and A, = 1, the problem essentially becomes one of
finding the x which minimizes "Pv“, subject to Ax = b This regularization problem has
a unique solution up to the pullspaée of P. The aiéofithm used is as follows.

 First we use QR factorization on 4" to gét AT =0 (?j =(0,0,) (?j A isa
7 b}ll 6 matrix, le is a 7 by 6 matrix, O, i‘s a 7 by 1 matrix, and Risa 6 by 6 uf)per

triangular matrix. The matrix Q which is equal to (QI QZ) isa7by7 orthogonal_matrix. '

Now

e

Q'x=b
0l ¥

Equation 4.2.9

So if we let .
| z = O x

Equation 4.2.10

\ye get
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1z =b
0

Equation 4.2.11

7

“) ) L. . ’ .
Now let z = li ] where Zz, is a vector of six elements, and z, is a scalar. Then
z

2

RTZl =b
Equation 4.2.12
can be solved uniquely, because R, in general, will have a rank of 6. Note that z, can be

any value and Equation 4.2.11 will still be satisfied. This means that z, can be adjusted

50 as to minimize ||Px].

Let

h(z,) =P’
Equation 4.2.13

and O = [Ql ; Qz] where (), is the first 6 columns of O and (, 1s the last column of Q.

Substituting Equation 4.2.10 into Equation 4.2.13 we get

=) = PO = P07, +0s1)

2

Equation 4.2.14




We only consider stabilizing functions, P, such that / is convex and has only one
-~ minimum. This way the minimum can be found at the point where the derivative of 4 is

éero.
0=H(z)=2APQz, + 0,2,V (PO)
" Equation 4.2.15
The solution is obtained by solving
(Q; P"PQ,)z, =-0; P" PO,z
Equation 4.2.16

If P 1s positive definite, the solution is unique. If P is only positive semi-definite then we -
find the solution with minimum /, norm, by using Singular Value Decomposition (SVD)

to solve Equation 4.2.16.

~Method 2

The assumption, that the measurements are exact, in general will not be correct.

In this case A, should not be set to . Instead it should be set to a finite value. So here
‘we set A, =1 and A, =1, beca‘gse énly the ratio between A, and 4, is impor‘tant: In our
implementations of this second method, wé experiment with three different values for A .
The three different values are O.QOOOOOOI, 0.0001, and 0.1. Essentially herevwe are
minimizing

() =[x =]+ 2 Pl

Equation 4.2.17
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Again, we only consider stabilizing functions, P, such that 4 is convex and has only one

minimum. The minimum occurs when the derivative of /(x) is equal to‘ zero.
0=h(x)=2(Ax—b) A+21(Px)" P

Equation 4.2.18

0=A"(Ax~b)+ AP Px
Equation 4.2.19
Therefore
(A" 4 +,A{?Té)x = AT_b
qu;ation 4.2.20

So x may be solved if (A7 4+ APT P)is invertible. When it is not invertible, the solution

x may not be unique, and so we chose the solution with the smallest norm. So Equation

4220 is solved using the standard Singular Value Decomposition algorithm (SVD). One
of the problems with this method is that (A" A+ AP" P) has a large condition number and

inverting (A" A+ AP" P) is ill conditioned.
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~

Stabilizing Functions

In general P can be taken to be any positive semi-definite matrix. In our applications P is
a 7 by 7 diagonal matrix with diagonal entries d,,d,.d,.;d,,d .d,, and d,. So
|Pxl = | 2 dix
i=1.7

Equation 4.2.21 »
|

The relative weights of the d,’s determines the contribution weight of the elements of the

vector x. Because x corresponds to the 7 by 1 matrix in Equation 3.3.10
x= [u, v, ahdz,a;, a, b]T
Equation 4.2.22
The first two cdmponents of the solution, x, describe the trgnslational_ component of the

solution. The middle three components of the solution x, describe the change in the

dE, dE, d. |
2 , E27 E3). The last two components of the
dt dt = dt

intensity triple, because (a,,a,,a;) = (

soluti.on x describe the rotational component of the solution, because a and b are equal to
the total derivatives of the surface gradiems p and g with respect to time. Frpm here on
the first two elements will be groupédand referred to as the translational component of
the solution, the middle three components as the intensity changé component of the
~ solution, and the last two components as the rotational components of the solution.

In our implementations we have implemented four different types of stabilizing
functions. The first is a stabilizing function that minimizes the intensity change and the

rotational component of the solution. The intensity change and rotational component of
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the solution are minimized by placing infinite weight on the intensity change and
rotational components with respect to the other components, which are weighted with

zero weight. This in effect tries to account for observed motion mainly by translation,

and the associated P, has the following form.

e

Il
o o0 o o oo
oo O o o o o
o o0 o~ o o
o 0o 0 - 0o o o
oo —~o o o o
o - 0 o o o o
— o 0 © o o O

Equation 4.2.23

The. second stabilizing function minimizes the trah‘slational component of the
solutioﬁ.. The translational component of the solution is minimized by placing infinite
weight on the translational componénts with respect to the other components which are

 weighted with zero weight__.l This in effect tries to account for the observed motion mainly

by rotation, and the associated P, has the following form.

1000000
0100000
00000O0O00O
P,={0 0 0000 0
00 000O00O
10000000
00000 0 0]

Equation 4.2,24




The third stabilizing function minimizes the translational, intensity change, and
rotational components of the solution. This is accomplished by weighting all components
with a weight of one. This has the effect of selecting a solution to the optical flow

problem with the minimum amount of translation and rotation, which are equally

weighted.
10 00 0 0 0]
0100000
0010000
P=0 001000
0000100
0000O0TO
00000 0 1]

Equation 4.2.25

The fourth stabilizing function minimizes the intensity change components of the |
solution. This 1s accomplished by weighting the intensity change components with a
weight of one. This has the effect of selecting a solution to tﬁe optical flow problem with
the minimum améunt of intensity change. It 1s expected that the fourth stabilizing

function will yield similar results to the minimal intensity change and rotation solution,

because the less rotation there is, the less the intensity change will be.

o3
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~
1l :
O 0 O O o O O
00 0O o o o
o 0o o —~ O o O
o O - 0o o o o
o 0o 0 o o o o
o O 0 o0 0 o O

o O O O

Equation 4.2.26

In the four different stabilizing functions, the matrices P, P,, P,, and P, have

difterent null spaces. The local regularization selects the minimum norm solution within
these null spaces. The minimal intensity changé and rotation solution is correct under
translation under distant light sources,v and yields a motion estimate which is similar to
that obtained had we assumed the classic optical flow constraint equations. The minimal
translation solution is correct for deforming surfaces with minimal translation but has
significant surface normall changes. The rﬁinimal translation, intensity change, and
rotation solution is more difficult to analyze. The assumptions on the observed motion
for the minimal translation, and the minimal rotation case contradic;c each other. Hence
the minimal translation, intensity change, and rotation solution is likely to be correct

under a certain balance of rotation and translation in the scene.
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Chapter Five

5 Synthetic Image Data

Experimentation and data collection were accomplished using synthetic
image data. The true optical flow for the synthetic data could be calculated and then
compared with the estimated optical flow from our algorithm. The motions in the

sequences described below include translation, rotation, and deformation.

51 ‘Calibration sphere

" The synthetic calibration sphere was created using a program called “3D Studio

Max 2.0” which is made by Kinetix. This is a three dimensional graphics program which |

“allows one to place 6'bjects and light sources at arbitrary locations in a virtual
environment, and to render this: virtual scene using vério'us shading models. Information
on the various shading models can be obtained on the internet at the Uniform Resource

"Locator (URL), www ktx.com. In this program, the calibration ‘sphere was created by

placing a sphere at the center of ‘the scene, and placing red, gfeeh, and blu?: 1ighf sources

behind the camera. The light sources were arranged so that they illuminated the sphere
from three, different directions. In this artificial environmént the light sources were |
separated into the red, green, and blue parts of the specmim with no overlaps. The
calibration sphere was made of a dull white material, and a lambertian or diffuse.

reflectance model was used. The placément of the light sources illuminated the sphére
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from the bottom left, top, and bottom right, for the red, blue, and green light sources

respectively.



Figure 5.1.1: The calibration sphere under the red illumination.

Figure 5.1.2: The calibration sphere under the green illumination.



Figure 5.1.3: The calibration sphere under the blue illumination.

5.2 Translation of a Sphere

This sequence shows the synthetic calibration sphere translating horizontally to
the right. The translational speed is constant at 1 pixel per frame. The sphere is a
doubly curved object and hence the multiple light source optical flow from Siegerist’s

work [14,15] can be used.



Figure 5.2.1: The first of 11 images in the translating calibration sphere sequence. The red, green,

and blue illuminations have been superimposed.

Figure 5.2.2: The last of 11 images in the translating calibration sphere sequence. The red, green,

and blue illuminations have been superimposed.



5.3 Curving Sheet

The curving sheet image ‘sequence shows a white sheet gradualljy curving. The
surface normal at the centér of the sheet is pointed towards the Yiewer. At the start of the
sequence the sheet is almost flat, but then gradually the edges‘_ start curving away from the
viewerl. In ordér to determine the true optical flow of the seque‘nce'> it is important to
understand how the curving sheet deformation was parametérizéd and formulated.

The curving sheet is parameterized by its iength [ in pixels, with /=0 representing
the vertical line at the center of the sheet. The sheet is also parameterized by its width w

in pixels, with w=0 representing the horizontal edge at the top of the sheet.

w I=-length2 . =0 : . |=lengtiv2

Figure 5.3.1: Diagram depicting thélparametériza:_tion of curving surface.

The curving deformation on the éheet takes place oﬁly aléng the laxis. Since we are

assuming an orthographic -projection all horizontal lines represented by WZk, where & is

some value, will continue to be projected to horizontaf lines in the image sequence as the

sheet deforms. |
" Let x and y be the image coordinatés where x increases towards the right from

x=0 at the left edge, and y increases downwards from y=0 at the top edge. Also we will
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let time be represented by t. If we model the curving of the sheet as being wrapped
around a cylinder which decreases in radius, then the radius decreases with time. When
the"-rAadius is at infinity the sheet is flat, but as time moves on and the radius decrease's‘,
ancj'fhe sheet wrépped around the cylinder appears to curve away from the vieV\}er. We-
also let the radiu§ r=k-mt, Wherebk'and m are some constants. Then under orthographic

préjection the sheet will be represénted as

' |
X=X, +rcos —+—
ro 2

y=y, +tw

(! ﬂ)
z=rsin| —+—|~r
’ ‘ r 2

Equation 5.3.1

where (xc, yc) is the center of the image and the z-axis points towards the viewer aloqg
the optical center.

The / and w parameters of the sheet represent actual lengths. Since we are
modeling a sheet that is deforming bu;t' not strefching, at eacﬁ time step thé /and w
parameters are constrained to be within certain ranges at all times 7 in the image
séquence.

—length/2 <1< length/2 .
0 <w < width
Equation 5.3;2

The following proves that / and w represent actual lengths on the sheet surface. Because
of orthographic projection and the fact that there is no deformation occurring along the w

axis, it 1s obvious that w represents actual length on the curved sheet. To show that /
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represents actual lengt'h, we will determine the length along the / axis of the deforming
“sheet. This is equivalent to finding the arc length of the curve in the x and z plane. From

elementary calculus, we know that, if X and Y are parameterized by /, then

arclength = I\/ X +Y?dl

Equation 5.3.3

So 1n our case we have

arclength = I\/ < 1zl

Equation 5.3.4

2 2
arclength = I {— sin (i + %D + (cos(i + %D dl
ro r

Equation 5.3.5

arclength = J.ldl =1
" Equation 5.3.6

Hence it is clear that the parameter, /, is also a parameter which represents actual length
in the horizontal direction on the surface of the curved sheet.
In order to synthesize the images of the deforming sheet we have just

parameterized, we need to know the surface gradients (p,q), of the curving sheet.
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| i
Equation 5.3.7 . :

o
a‘yv

Equation 5.3.8

0

z;s z fs Constkant élong y parameter.

Now that we have the gradients, (p,q), at all pointé on the Sheef, we can use the red,
green, and blue reflectance maps estimated from the Synthetic calibration sphere to
convert the gradient (p.q) into red, greén, and blue intensity_yalues at ail points on the : |
sheet in the image. The image sequence bis creafed by repeating t:his process for a certain

range of time values.
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Figure 5.3.2: A wire mesh visualization of the curved sheet, at the end of its deformation. Units are

in pixels.
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Figure 5.3.3: The first of 11 images in the curving sheet sequence. The red, green, and blue

illuminations have been superimposed.

Figure 5.3.4: The last of 11 images in the curving sheet sequence. The red, green, and blue

illuminations have been superimposed.



In order to determine how accurate our estimated optical flow is, we determine
the known motion field. The known motion field (u,v) for the curving image sequence is

given below.

~ Equation 539

dt drdft - o

‘Equation 5.3.10

In our actual implementation r deforms according to the following equation.

r=210-10¢, where 7 is time.
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5.4 Curved Translating Sheet

This translation sequence consists of a non-deforming curved sheet which
translates to the right. The curved sheet is parameterized and created in a similar manner
to the sequence above, except that it does not deform. The speed of the horizontal motion
was set to a constant value of 1 pixel per frame. The curved translating sheet is exactly
the same as the curved sheet at the last frame in the curving sheet sequence which is

shown in Figure 5.3.4, and has the same wire mesh visualization as in Figure 5.3.2.

Figure 5.4.1: The first of 11 images in the curved translating sheet sequence. The red, green, and

blue illuminations have been superimposed.
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Figure 5.4.2: The last of 11 images in the curved translating sheet sequence. The red, green, and

blue illuminations have been superimposed.

3.5 Rotation of a Surface With Negative Gaussian Curvature

This sequence shows a saddle shaped object being rotated around the center of the
image at a rate of 0.01 radians per frame. All points on the surface have negative
Gaussian curvature. Along the length of the object, the edges curve away from the
viewer, while along the width of the object, the edges curve toward the viewer. This can
be parameterized in a similar manner to the curved sheet discussed above, and curvature
is simply introduced in a perpendicular direction to that which is already present. The
effects of inter-reflection which would occur in real life for this saddle shaped object

were not taken into account.
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Figure 5.5.1: A wire mesh visualization of the surface with negative Gaussian curvature. Units are

in pixels.

Figure 5.5.2: The first of 11 images in the sequence of a rotating surface with negative Gaussian

curvature. The red, green, and blue illuminations have been superimposed.
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Figure 5.5.3: The last of 11 images in the sequence of a rotating surface with negative Gaussian

curvature. The red, green, and blue illuminations have been superimposed.

5.6 Translation of a Surface With Negative Gaussian Curvature

This sequence shows the same saddle shaped object as that depicted in Figure
5.5.1 being translated at a rate of 1 pixel per frame. The effects of inter-reflection, which

would occur in real life for this saddle shaped object were not taken into account.



Figure 5.6.1: The first of 11 images in the sequence of a translating surface with negative Gaussian

curvature. The red, green, and blue illuminations have been superimposed.



Figure 5.6.2: The last of 11 images in the sequence of a translating surface with negative Gaussian

curvature. The red, green, and blue illuminations have been superimposed.

5.7 Rotation and Translation of a Surface With Negative Gaussian
Curvature

This sequence shows the same saddle shaped object as that depicted in Figure 5.5.1 being
translated at a rate of 0.5 pixels per frame and also being rotated at a rate 0.01 radians per
frame. The effects of inter-reflection, which would occur in real life for this saddle

shaped object were not taken into account.

N
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Figure 5.7.1: The first of 11 images in the sequence of a rotating and translating surface with

negative Gaussian curvature. The red, green, and blue illuminations have been superimposed.

Figure 5.7.2: The last of 11 images in the sequence of a rotating and translating surface with

negative Gaussian curvature. The red, green, and blue illuminations have been superimposed.



5.8 Rotation of a Surface With Positive Gaussian Curvature

This sequence shows a surface with positive Gaussian curvature being rotated
around the center of the image at a rate of 0.01 radians per frame. Along all the edges of
this rectangular object, the surface curves away from the viewer. This can be
parameterized in a similar manner to the curved sheet discussed above, and curvature is

simply introduced in a perpendicular direction to that which is already present.

Figure 5.8.1: A wire mesh visualization of the surface with positive Gaussian curvature. Units are in

pixels.
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Figure 5.8.2: The first of 11 images in the sequence of a rotating surface with positive Gaussian

curvature. The red, green, and blue illuminations have been superimposed.



Figure 5.8.3: The last of 11 images in the sequence of a rotating surface with positive Gaussian

curvature. The red, green, and blue illuminations have been superimposed.

5.9 Translation of a Surface With Positive Gaussian Curvature

This sequence uses the same surface with positive Gaussian curvature as that
depicted in Figure 5.8.1. In this sequence, it is being translated at a rate of 1 pixel per

frame.
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Figure 5.9.1: The first of 11 images in the sequence of a translating surface with positive Gaussian

curvature. The red, green, and blue illuminations have been superimposed.



Figure 5.9.2: The last of 11 images in the sequence of a translating surface with positive Gaussian

curvature. The red, green, and blue illuminations have been superimposed.

5.10 Rotation and Translation of a Surface With Positive Gaussian
Curvature

This sequence uses the same surface with positive Gaussian curvature as that depicted in
Figure 5.8.1. It has positive Gaussian curvature at all points and is being translated at a

rate of 0.5 pixels per frame and is also being rotated at a rate 0.01 radians per frame.



Figure 5.10.1: The first of 11 images in the sequence of a rotating and translating surface with

positive Gaussian curvature. The red, green, and blue illuminations have been superimposed.

Figure 5.10.2: The last of 11 images in the sequence of a rotating and translating surface with

positive Gaussian curvature. The red, green, and blue illuminations have been superimposed.
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Chapter Six

6 Results

6.1 Optical Flow Estimation Techniques Tested
Two types of optical flow estimation techn)iques were i;nplemented and tested.

The two types of optical flow will be identified as -type 1 and tyipe 2 optical flows. Type

1 is the multiple light source optical flow and solves the optical flow problem by using

Equation 2.1.4. Type 2 solves for the optical flow by using thation 3.3.10.
The type 2 optical flow estimation has sub-types id;ﬁ:entiﬁed as A, B, B, and

B" according to the type of regularization used. Type A uses method 1 from the

d@s@ussion on regularization, while type B uses method 2 with 4 equal to 0.00000001.

Type B" uses method 2 with A equal to 0.0001 and Type B” ﬁses method 2 with ‘/1 equal
to 0.1. Also all the sub-types of the type 2 optical flow estimat:io‘n will -be:_ﬁxr‘ther sub-
classified based on the stabilizing function used. “Mm A” wilii refer to th%: miﬁimum
intensity change and rotation stabilizing ﬁmction,é“Min. B” w111 refer ;[o the n;inimum
translation stabilizing funétion, “Min. C” will refé_f to the m1mmum interié’iiy change,
translation and rotation stabilizing function, and “Mm D” w1llrefer to thé‘lmi'nimum

intensity change stabilizing function. =~
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Minimize

Algorithm | Equations | Regularizat | Lambda (1) | Minimize | Minimize
Used | ion Method Translation | Intensity | Rotation
- Change
Type 1 Equatién N/A N/A N/A N/A
214 | |

Type 2A - | Equation 1 N/A No Yes - Yes

. Min. A 3.3.10

Type 2A - | Equation 1 N/A Yes No No
Min. B 3.3.10

Type iA - | Equation 1 N/A Yes Yes ~ Yes
Min. C 3.3.10

Type 2A - | Equation 1 N/A. No - Yes No
Min. D 3.3.10

| Type ZB - Eq.‘uation 2 0.00000001 No Yes | Yes
Mm A 3.3.10 | | |
| Type 2B - | Equation 2 VO.OOOO40001 - Yes No No

Min. B 33.10

Type 2B - | Equation 2 0.00000001 Yes Yes Yes
Min. C 33.10

Type 2B - | Equation 2 0.00000001 No Yes No
Min. D 3 3A1(>)
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0.0001

Type 2B’ — | Equation 2 No Yes Yes
Min. A | 3.3.10

Type 2B’ - - Equation 2 0.0001 Yes No No
Min. B 3.3.10

Type 2B’ - | Equation 2. 0.0001 Yes Yes. Yes
Min. C 33.10

Type 2B’_-. Equation 2 0.0001 No Yés No
Mi“' D 3.3.10

Type 2B” — | Equation 2 0.1 No Yes Yes
Min. A 3.3.10 |

Type 2B” - | Equation 2 0.1 Yes No No
Min. B 3.3.10

Type 2B" - Eciuation : 2 0.1 Yes Yes - Yes
Min. C 3.3.10

Type 2B” - | Equation | -~ 2 0.1. No Yes No
Min. D 3.3.10

Thble 6.1.1: The different optical flow estimation algorithms implemented and tested.
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6.2 Optical Flow Estimation Quality Measures

All the variations on the optical flow estimation techniques described above were
tested using the synthetic image sequences described in chapter 5. For each optical flow
estimation a number of statistical averages were calculated. At a given pixel (x,y), we

denote the # and v components of the estimated optical flow as u,(x, y), and v, (x, y).

The average of u,(x, y) is denoted as », and the average of v, (x, y) is denoted as v, .

The averages are calculated by summing over all the pixels corresponding to the object’s
surface and Adividing by the number of pixels considered. The pixel is considered if it is
illuminated by all three light sources and has a neighborhood of pixels which are also
illuminated by all three sources. This neighborhood condition considers pixels which are
far enough away from the edge of the object that the édge effects from image smoothing
“do not contribute to the stbatistics. The neighborhood is a 5 by 5 grid with the pixel of

interest at the center.

N [N [N [N [N
N [N [N [N [N
N N |P N [N
NN [N N[N
N [N N INTN

Figure 6.2.1 The 5 by 5 neighborhood of the pixél P. All cells labelled “N” are in the 5 by 5
neighborhood.



Here all the cells labeled with “N” are part of the neighborhood of the pixel P. A 5by 5
neighborhood was used because a 5 by 5 Gaussian smoothing kernel was used in our

implementation to smooth the images.

Do, (x,)

(x,y)surface

U

o ’{(x, M\, ¥)> surface}]

Equation 6.2.1

> v, (x,y)

(x,v)asurface

1%

© el y) 3 surface|
Equation 6.2.2
where “| |” is the “size of” operator which returns the number of elements in a set. The

standard deviation of # and v is also calculated and will be denoted as o, and o,

respectively. Standard deviations in our analysis are always calculated according to the

following formula.

.Z&m»—ﬂz

(x,y)esurface

o, =
l{(x, y)|(x, y) S szll‘_fa(-;e}| -1

Equation 6.2.3
where T is some quantity at pixel, (x,y), like #, or v,. We will denote the # and v

components of the known motion field vector at a pixel (x,), as u, (x,y) and v, (x,y).
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The averages and standard deviations are also calculated for the known motion field

vectors. They will be denoted as Z , Z o, »and o, respectively.

u

Zuk (x,y).

(x,v)3surface

Y \{(x W(x,y) > suzface}'

Equation 6.2.4

ka(xay)‘

(x,y)3surface

kN, ) > surface]

1%

Equation 6.2.5

These v and v co>mponent averages of the estimated optical flow make sense for
translating objects, as all the estimated optical flow vectors should be constant if the

_ ' | )
estimation is completely accurate. If the estimation is not completely accurate, the
averaging tends to get rid of some of the noise that is present in the estimation.

" A number of error measures will be used t‘oigauge the quality of the estimated
optical flow.. Our formulation for the estimation of optical ﬂow is under-constrained and
ambiguous. We are simply seleéting a solution out of all the ambiguous cases. Hence
part of the error is due to the ambiguous nature éf 't.he problem. Nonetheless we will still
refer to these comparison measures as error measures, and the difference between the
knéwn motion field vector and estimated optical flow vectors at a point (x,y) will be:
referred to as the error vector. The first set of error measures involves the error vectors

between the known motion field vectors and the estimated optica'l flow vectors. Let us:

denote the error vector as e and define it as follows.
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e(x,y) = (1, (x, 9.9, 06, )= (1, (. 1), v, (x, )
Equation ‘6.2.6
where z)e(x, y) and v, (x,y) are the u and v components of the estimate;d optical ‘ﬂow
vector at the pixel, (x,y), and u, (x, y) and. v, (x, j/) are the w and v componénts of the
knowﬁ motion field vector at the; pixel; (x, y) The average norm of the error vectors will

be denoted as M.

2 [l v

H :' (x,y)esurface
{(x, »)(x, y) € surface}]

- Equation 6.2.7
The standard deviation of the norms of the error vectors will be denoted as Ojy-

The u corhponent of e(x, y) will be denoted as e, (x, y) and the v component of

e(x,y) will be denoted as e;(x,y). The average of the magnitlide of e (x,y) over all

eu

the pixels corresponding to the object’s surface will be denoted as and the average

magnitude of e (x, y) over all the pixels corresponding to the object’s surface will be
denoted as H The average of e, (x,y) over all the pixelé corresponding to the object’s
“surface "will be denoted as Z and the average of e, (x,y) over all the pixelis

corresponding to the object’s surface will be denoted as Z.
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2 Jle, G )|

H — (x,y)esurface .
ke ylx, y) € surface

Equation 6.2.8

2.

(x,v)esurface

) i{(\’ y)l(x, y)e Sul‘face}l

e, (x, )|

ev

Equation 6.2.9

2 ¢.(x,))
" (x,y)esurface

= HESY (R surface}]

Equation 6.2.10

Se )

. (x,v)esurface

e

" RCep|(x, ) € surface

Equation 6.2.11

The standard deviations of e, (x, ), e,(x,»), |le, (x, »)| and |le, (x, »)| will be denoted as

T, > O,» Oj, and o, | Tespectively.

At a given pixel (x,)), the norm of the error, e, divided by the norm of the known
motion field vector will be denoted as ». This quantity expresses the amount of error per

known amount of motion.
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) = JeCe 2
e, ), v )

Equation 6.2.12

One of the most informative error measures is the average of r over all pixels that are a

part of the object’s surface being imaged and will be denoted as 7. This measure r
expresses the amount of error per known amount of motion on average over all the pixels

corresponding to the object’s surface.

> or(x,y)

(x,v)esurface

(x,y)e Sllifacé}'

F=

ey

Equation 6.2.13

The above measure r encodes both the errors in magnitude and direction of the
estimated optical flow vectors. In order to measure only the directional error between the
estimated optical flow vectors and the known motion ﬁeld vectors we will introduce one
more measure to gage the quality of the directibns of the estimated optical flow vectors.
Ata given pixel (x,y), let £ denote the angle between estimated optical flow vectér and

the known motion field vector.

| (z'zg<x,y>;\zg<x,y))-(za(x,y),vk(x,y))j -
Z(x, ) =
(x,y)=cos ["(Ue( x, y), v, (x, y))””(u L), v (x, y))" ‘

Equation 6.2.14

Here we are only interested in the positive angles returned by the inverse cosine function,

because our directional measure will be the average magnitude of £(x, y) over all pixels
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corresponding the object’s surface and will be denoted as Z. Sowe assume that the

inverse cosine function always returns values in the range of 0 tor .

3" Z(x, y)

Z - (x.y)esurface
I {(x, y)l( x,y) € S‘Llrface}l

Equation 6.2.15
The standard deviation of Z(x, y) over all pixels corresponding the object’s surface will

be denoted as o, .
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6.3 Translation of the Calibration Sphere

Known Motion Field

>
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Figure 6.3.1: The known motion field for the translating calibration sphere. Vectors are magnified

10 times and sampled every 20 pixels.

Measure ' Average Standard Deviation

i, 1.000000 - 0.000000

v, 0.000000 - 0.000000
e, | 1.000000 0.000000
v | 0.000000 0.000000
(| 1.000000 0.000000

Table 6.3.1: The averages and standard deviations of measures associated with the known motion

field. The units for all measures are pixels.




Type 1 Optical Flow Estimation
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Figure 6.3.2: The type 1 optical flow estimation for the translating calibration sphere. Vectors are

magnified 10 times and sampled every 20 pixels.

Measure , Average Standard Deviation
u, 1.02011 0.155768
YV, -0.005898 0.323023
Uy 1 0
Vi | 0 0

e, 002011 | 0.155768
€, -0.005898 ) . 0.323023
“e“ 0177143 0.312516

”eu ” 0.098314 Q.122484
"ev ” _ 0.122239 ' 0.299058
r 0.177143 0.312516
yd 0.107476 0.142329

Table 6.3.2: - The averages and standard deviations of measures associated with the type 1 optical

flow estimation. The mcasure r is unitless. The measure £ is in radians. All other measures are in

pixels.




Type 2A Min. A Optical Flow Estimation
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Figure 6.3.3: The type 2A Min. A optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.965659 0.261974
Ve -0.001434 0.145695
u, 1 0 |
Vi 0 0
e, -0.034341 0.261974
e, -0.001434 0.145695
el 0.198312 0.227399
Eu 0.141533 0.223109
€ 0.095068 0.110413
r . 0.198312 0.227399
£ 0.097455 0.099299

Table 6.3.3: The averages and standard deviations of measures associated with the type 2A Min. A

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. B Optical Flow Estimation
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Figure 6.3.4: The type 2A Min. B optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

- Measure Average : Standard Deviation
u, 0.484021 0.373708
v, .0.005511 | 0.355688
u, 1 0
Vi 0 0
e, | .0.515979 0.373708
€, 0.005511 0.355688
e 0.663219 030426
le. 0526835 0.358241
& 0.308737 0.176704
r 0.663219 0.30426
/ 0.784984 0.457188

Table 6.3.4: The averages and standard deviations of measures associated with the type 2A Min. B

optical flow estimation. The mcasure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2A Min. C Optical Flow Estimation -
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Figure 6.3.5: The type 2A Min. C optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.682772 . 0.284131
v, ] ~0.003327 | 0.222653
P 1 ‘ 0
Vi o ' ' 0 » 0
Cy -0.317228 ' 0.284131
e, 0.003327 0.222653
le] 0.417219 0.238487
le. | ' 0.333361 _0.265018
€ 0.185223 0.1236
r 0.417219 0.238487
£ 0.285751 0.18296

Table 6.3.5: The averages and standard deviations of measures associated with the type 2A Min. C
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. D Optical Flow Estimation
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Figure 6.3.6: The type 2A Min. D optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

- Measure Average Standard Deviation
u, 0.965658 - 0.261973
Ve -0.001434 0.145695
Uy, 1 0
Ve 0 0
€, -0.034342 0.261973
€, -0.001434 0.145695
el 0.198312 0.227399
| “eu ” 0.141533 0.223109
e '0.095068 0.110413
¥ 0.198312 0.227399
pd 0.097455 0.0993

Table 6.3.6: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2B, 2B’, and 2B” Min. A Optical Flow Estimation
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Figure 6.3.7: The type 2B Min. A optical flow estimation for the tranSlating calibration sphere.

I

Vectors are magnified 10 times and sampled every 20 pixels.

2B" Min. A

} 2B Min. A 2B’ Min. A
Measure | Average | Standard | Average Standard Average . | Standard
Deviation Deviation Deviation
u 1.021277 0.15875 1.020507 0.158327 1.020034 0.156021
Ve -0.005378. 0.32523 -0.005464 0.324829 -0.005825 Oi323202
U, 1 0 -1 0 1 0
v, 0 0 0o ' 0 0 0
€, 0.021277 0.15875 | 0.020507 0.158327 0.020034 0.156021
e, -0.005378 | 0.32523 -0.005464 0.324829 -0.005825 0.323202
”el 0.17975 0.314876 0.178938 0.314662 0.177393 0.31268
”eu " 0.099899 0.125198 0.099435 0.124901 0.098472 0.122666 -
€, 0.12404 0.300694 0.123464 0.300499 0.12242 0.299177
¥ 0.17975 0.314876 0.178938 0.314662 0.177393 _0.31268
yd 0.109054 0.145002 0.108604 0.144731 0.107693 0.142775

Table 6.3.7: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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. Type 2B, 2B’, and 2B” Min. B Optical Flow Estimation
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~ Figure 6.3.8: The type 2B Min. B optical flow estimation for the franslating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B"” Min. B
Measure | Average | Standard | Average | Standard Average Standard
Deviation ' Deviation Deviation
u, 0.483421 0.373345 0.307274 '0.323476 0.044637 0.134728
Ve 0.005507 0.355188 0.003949 0.256898 0.001246 0.079468
Uy 1 0 1 0 1 0
Vi 0 0 0 0 0 0
u -0.516579 | 0.373345 -0.692726 0.323476 -0.955363 0.134728
e, 0.005507 0.355188 0.003949 0.256898 0.001246 0.079468
”e I 0.663223 0.304238 0.762045 0.264203 0.961342 0.11405
€. 0.527273 0.358082 0.695771 0.316874 0.955566 0.133278
€, 0.308259 0.176533 0.194651 0.167697 0.027216 1 0.074672
¥ 0.663223 0.304238 0.762045 0.264203 0.961342 0.11405
pd 0.826019 0.546009 0.828912 0.549546 0.827237 0.547405

Table 6.3.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. B optical flow estimation. The mcasure r is unitless. The measure Z is in radians. All

\

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. C Optical Flow Estimation
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Figure 6.3.9: The type 2B Min. C optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C 2B"” Min. C
Measure | Average | Standard Average | Standard | Average | Standard
' Deviation Deviation Deviation
u, 0.715898 0.246847 0.635354 0.214035 0.574245 0.194891
Y. . | 0.006586 0.234884 0.004522 0.201468 | -0.000261 0.1951
Uy - 1 ‘ 0 1 0 1 0
Ve 0 0 0 0 0| 0
€, -0.284102 | 0.246847 -0.364646 0.214035 | -0.425755 0.194891
€, 0.006586 0.234884 0.004522 0.201468 | -0.000261 0.1951
”e” 0.393332 0.205306 0.430975 0.183432 0.47691 - 0.172831
“eu ” : 0.30395 0.221951 0.37373 0.197746 | 0.430625 0.183882
||e‘|| 0.197835 0.126784 0.16277 0.118808 | 0.158475 0.113795
7 | 0.393332 0.205306 0.430975 0.183432 0.47691 0.172831
Z 1 0.291177 0.190262 0.263782 0.186978 | 0.281585 0.194536
Table 6.3.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. The measure / is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow Estimation
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Figure 6.3.10: The type 2B Min. D optical flow estimation for the translating calibration sphere.

Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D ' 2B” Min. D
Measure | Average | Standard Average Standard | Average Standard
Deviation Deviation Deviation
.U, 1.021276 0.15875 1.020506 0.158326 1.020033 0.156019
Ve -0.005377 0.32523 -0.005464 0.324829 | -0.005826 0.323202
u, 1 . 0 ‘ 1 0 1 0
Vi 0 -0 0 0 0 0
e, 0.021276 0.15875 0.020506 0.158326 0.020033 0.156019
e, -0.005377 0.32523 -0.005464 0.324829 -0.005826 0.323202
"e | 0.17975 0.314876 0.178938 0.314662 0.177392 0.312679
”eu I 0.099899 0.125197 0.099435 0.124901 0.098471 0.122665
€, 0.12404 0.300694 0.123464 0.300499 0.122419 0.299176
r 0.17975 0.314876 " 0.178938 0.314662 0.177392 0.312679
yd 0.109054 0.145002 | 0.108604 0.144732 0.107692 0.142773

Table 6.3.10: The averages and standard deviations of measures associated with the type 2B, 2B/,
and 2B” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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6.4 Curving Sheet

The type 1 multiple light source optical flow. method cannot estimate the flow properly
for developable surfaces, so only the type 2 estimation technique for optical flow will be
shown. - o '

Known Motion Field
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Figure 6.4.1: The known motion field for the curving sheet. Vectors are magnified 35 times and

sampled every 20 pixels.

Measure | Average _ Standard Deviation
Cu, ‘ ' 0 : 0.134642
Vi ' _ 0 ' 0
o | | 0088119 0.101799
[l 0 0
(e v )| ‘ 0.088119 . 0.1017.99'

Table 6.4.1: The averages and standard deviations of measures associated with the known motion

field. The measure r is unitless. All measures are in pixels.
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Type 2A Min. A Optical Flow Estimation
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Figure 6.4.2: The type 2A Min. A optical flow estimation for the curving sheet. Vectors are

magnified 0.000000000000004 times and sampled every 20 pixels.

Measure Average Standard Deviation

u, -0.162539 3.240363

Y, 3.45929E+14 2.82933E+15
Uy 0 0.134642
Vi 0 0
€, -0.162539 3.1258
e, 3.45929E+14 2.82933E+15
le] 1.45225E+15 2.45266E+15
le. | 2.63142 1.694745
le.| 1.45225E+15 2.45266E+15
r 1.00325E+28 1.20386E+29
£ 1.51226 0.289457

Table 6.4.2: The averages and standard deviations of measures associated with the type 2A Min. A
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

arc in pixels.
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Type 2A Min. B Optical Flow Estimation
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Figure 6.4.3: The type 2A Min. B optical flow estimation for the curving sheet. Vectors ;lre
, magnified 2 times and sampled every 20 pixels. |
Measure Average Standard Deviation
U, -0.14445 3.205273
"e. 0 0.287939
Uy 0 0.134842
Vi 0 0
€, -0.14445 3.090808 .
e, 0 0.287939
el 2.613752 1.680674
€. 2.591166 1.690954
1€y 0.048586 0.28381
r 2.01542E+12 2.36781E+13
£ _ 0.053333 0.30824

Table 6.4.3: The averages and standard deviations of measures associated with the type 2A Min. B
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. C Optical Flow Estimation
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Figure 6.4.4: The type 2A Min. C optical flow estimation for the curving sheet. Vectors are

magnified 2 times and sampled every 20 pixels.

Measure

Average Standard Deviation

u, -0.145185 | | 3.218087

v, 0 0.202182

u, 0 0.134642

Vi 0 0

e, -0.145185 3.103231

e, 0 0.202182
G 2623962 1.675204
le. | 2.617133 1.673686
e 0.029572 0.200007
¥ 2.0171E+12 2.36968E+13

Z 0.03445 0.272545

Table 6.4.4: The averages and standard deviations of measures associated with the type 2A Min. C

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2A Min. D Optical Flow Estimation
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Figure 6.4.5: The type 2A Min. D optical flow estimation for the curving sheet. Vectors are
magnified 0.000000000000004 times and sampled every 20 pixels.

Measure Average Standard Deviation

u, -0.162539 3.240363
Ve 3.45929E+14 2.82933E+15
u, 0 0.134642
Vi 0 0
€, -0.162539 31258
e, - 3.45920E+14 2.82933E+15
el 1.45225E+15 2.45266E+15
€y 2.63142 1.694745
€ 1 1.45225E+15 2.45266E+15
r - 1.00325E+28 1.20386E+29
£ 1.51226 0.289457

Table 6.4.5: The averages and standard deviations of measures associated with the type 2A Min. D
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Figure 6.4.6: The type 2B Min. A optical flow estimation for the curving sheet. Vectors are

magnified 2 times and sampled every 20 pixels.

2B Min. A 2B’ Min. A 2B"” Min. A
Measure | Average Standard Average Standard Average Standard
Deviation Deviation Deviation
u -0.142662 3.257643 -0.160225 3.247889 -0.162388 - 3.2505622
Ve 0 1.320262 0 1.150765 0 -1.078429
Uy 0 0.134642 0 0.134642 0 . 0.134642
Vi 0 0 0 .0 0 0
u -0.142662 3.142417 -0.160225 3.132997 -0.162388 3.135713
€, 0 1.320262 0 1.150765 0 ' 1.078429
”e | 2.678971 2.112064 2.656735 2.026534 2.655547 ~1.992391
”eu ” 2.652187 1.691308 2.632291 1.706421 2.632132 1.711852
€ 0.040767 1.319633 0.038561 1.150119 0.037602 1.077773
r 1.69259E+12 | 1.98869E+13 | 1.55237E+12 | 1.82432E+13 | 1.55235E+12 | 1.82428E+13
£ 0.028017 0.269778 0.028054 0.269747 0.028064 0.269748

Table 6.4.6: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B"” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Opiical Flow Estimation
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Figure 6.4.7: The type 2B Min. B optical flow estimation for the curving sheet. Vectors are

magnified 2 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B” Min. B

Measure | Average | Standard Average Standard Average Standard

Deviation Deviation Deviation
u, -0.139623 3.201663 -0.014633 0.73972 -0.005184 0.04495
Ve 0 | 0287783 0 0.11293 0 '0.000502
Uy 0 0.134642 0 0.134642 0 0.134642
Ve 0 0 0 0 0 0
€, -0.139623 3.087124 -0.014633 0.612937 -0.005184 0.127064
e, 0 0.287783 0 0.11293 0 0.000502
”e“ 2.6024 1 .691 053 0.360718 0.50846 0.083905 0.09556
"eu " 2.579842 1.701104 0.352401 0.501707 0.083904 0.09556
€ 0.048487 0.283668 0.01442 0.112005 0.000039 0.000501
r 7.4112E+11 | 8.70654E+12 | 117229792.8 | 1377282367 | 117237.5699 | 1377362.236
ya 0.053333 0.30824 0.053333 0.30824 0.053333 0.30824

Table 6.4.7: The averages and standard-deviations of measures associated with the type 2B, 2B’, and

2B” Min. B optical flow estimation. The measure r is unitless. The measure  is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. C Optical Flow Estimation
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Figure 6.4.8: The type 2B Min. C optical flow estimation for the curving sheet. Vectors are

-magnified 2 times and sampled every 20 pixels. '

2B Min. C 2B’ Min. C 2B"” Min. C

Measure Average Standard Average * Standard Average Standard

' Deviation Deviation Deviation
i, -0.142102 3.214436 -0.093626 2.195431 -0.092035 2.055316
v, 0 0.202111 0 0.172778 0 0.169902
U, 0 0.134642 0 0.134642 0 0.134642
Y 0 0 0 0 0 0
€, - -0.142102 3.099506 -0.093626 2.077482 -0.092035 1.937986
e, 0 0.202111 0 0.172778 0 0.169902
7”el 2.614689 . 1.68252 1_.773133 1.100143 1.668613 1.004318
€y 2.60786 1 .68b98 1.766003 1.098043 1.661131 1.002349
€, - 0.02954 0.199941 0.024846 0.170982 0.024666 0.168102

LF 1.11357E+12 | 1.30834E+13 | 8.89828E+11 | 1.04562E+13 | 8.53426E+11 | 1.00285E+13 |

£ 0.034504 0.272319 0.036308 0.275083 0.037047 0.276253

Table 6.4.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

‘other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow Estimation
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Figure 6.4.9: The type 2B Min. D optical flow estimation for the curving sheet. Vectors are

magnified 2 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B” Min. D

Measure | Average Standard Average Standard Average Standard

Deviation Deviation Deviation

U, -0.142662 3.257643 -0.160225 3.247891 -0.162389 3.250524
Ve 0 1.320274 0 1.150754 0 1.078398
Uy 0 0.134642 0 0.134642 0 0.134642
Ve 0 0 0 0 0 0
€, -0.142662 3.142418 -0.160225 3.132999 -0.162389 3.135716
€, 0 1.320274 0 1.150754 0 1.078398
Iel 2.678972 2112071 2.656735 2.02653 2.655548 1.992378
C. 2.652187 1.691308 2.632292 1.706424 2632133 1.711855
e, 0.040767 1.319645 0.038561 1.150108 0.037602 | 1.077742
R 1.69259E+12 | 1.98869E+13 | 1.55237E+12 | 1.82432E+13 | 1.55235E+12 | 1.8243E+13_
£ . 0.028017 0.269778 0.028054 0.269747 0.028064 0.269748

Table 6.4.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. D optical flow estimation. The measure r is unitless. The measure  is in radians. All

other measures are in pixels.
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6.5 Curved Translziting Sheet

The type 1 multiple light source optical flow method cannot determine the flow for
developable surfaces, so only the type 2 optical flow estimation technique results will be
shown. ‘

Known Motion Field
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Figure 6.5.1: The known motion field for the translating curved sheet. Vectors are magnified 10

times and sampled cvery 20 pixels.

Measure . _Average ~ Standard Deviation

w, ~ 1.000000 0.000000
v | 0.000000 . | 0.000000
e 1.000000 | 0.000000
el ~ 0.000000 . 0.000000
Iy, v, ) | 1.000000 0.000000

Table 6.5.1: The averages and standard deviations of measures associated with the known motion

field. All measures are in pixels.
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Type 2A Min. A Optical Flow Estimation
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Figure 6.5.2: The type 2A Min. A optical flow estimation for the translating curved sheet. Vectors
are magnified 0.00000000000001 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 1.036104 0.263672
v, -2.66135E+13 9.60369E+14
u, 1 0
Vi 0 0
€, 0.036104 0.263672

i e -2.66135E+13 9.60369E+14
el 4.14421E+14 8.66752E+14
e, 0.104323 0.244831
€ 4.14421E+14 8.66752E+14
r - 4.14421E+14 8.66752E+14
Z 1.46612 0.38511

Table 6.5.2: The averages and standard deviations of measures associated with the type 2A Min. A
optical flow estimation. The measure r is unitless. The measure £ is'in radians. All other measures

are in pixels.
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Type 2A Min. B Optical Flow Estimation
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Figure 6.5.3: The type 2A Min. B optical flow estimation for the translating curved sheet. Vectors

are magnified 10 times and sampled every 20 pixels.

Measure Average _ Standard Deviation
u, ' 1.019631 0.271611
Ve 0 : 0.090596
U | 1 0
v, 0 , 0
€, : | 0.019631 : 0.271611
€, ' 0 ) 0.090596
”el ‘ 0.118612 0.261335
€. 0.109976 | 0.249123
€, : 0.017412 0.088907
R 0.118612 _ . 4 _0.261335
Z 7 0.026161 - 0.138672

Table 6.5.3: The averages and standard deviations of measures associated with the type 2A Min. B
optical flow.estimation. The measure r is unitless. The measure / is in radians. All other measures

are in pixels.

91




Type 2A Min. C Optical Flow Estimation
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Figure 6.5.4: The type 2A Min. C optical flow estimation for the translating curved sheet. Vectors

are magnified 10 times and sainpled every 20 pixels.

Measure Average Standard Deviation
u, 1.028629 0.257969
v, 0 0.059492
u, 1 0
Vi 0 0
€, 0.028629 . 0.257969
e, 0 0.059492
el 0.106015 0.244268
Cu 0.101082 0.239059
€y 0.009012 0.058805

r 0.106015 0.244268
Z 0.010296 0.059511

Table 6.5.4: The averages and standard deviations of measures associated with the type 2A Min. C

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. D Optical Flow Estimation
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Figure 6.5.5: The type 2A Min. D optical flow estimation for the translating curved sheet. Vectors

are magnified 0.00000000000001 times and sampled every 20 pixels.

Measure Average Standard Deviation
u,. 1.036104 0.263671
Ve -2.6.61 35E+13 9.60369E+14
U 1 0
Vi 0 0
€, 0.036104 - 0.263671
e, -2.66135E+13 9.60369E+14
Ilel 4.14421E+14 8.66752E+14
e 0.104323 0.244831
"e‘, " 4. 14421E+14 8.66752E+14
Cr 4.14421E+14 8.66752E+14
Z '1.46612 0.38511

Table 6.5.5: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2B, 2B’, and 2B” Min. A Optical Flow Estimation
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Figure 6.5.6: The type 2B Min. A optical flow estimation for the translating curved sheet. Vectors

are magnified 10 times and sampled every 20 pixels.
\

_ 2B Min. A ' 2B’ Min. A 2B” Min. A
Measure | Average | Standard | Average | Standard | Average | Standard
- Deviation ' Deviation Deviation
u, . 1.03519 0.253348 1.033541 0.263507 1.033738 0.270427
Ve 0 0.342174 0 0.34486 0 0.351724
e 1 0 1 0 1. 0
Vi 0 0 0 0 0 -0
€, 0.03519 0.253348 0.033541 0.263507 0.033738 | - 0.270427
€, 0 0.342174 0 0.34486 0 0.351724
”e| 0.109014 0.413064 0.108739 0.421503 0.109902 0.43116
“eu “ 0.098012 0.236255 | 0.097678 0.247021 0.098678 0.25403
el 0.013043 0.341925 0.012938 0.344617 0.013015 0.351483
v 0.109014 0.413064 0.108739 0.421503 0.109902 0.43116
yd 0.005392 0.057209 0.005237 0.056437 0.005165 0.056098

Table 6.5.6: The averages and standard deviations of measures associated with the type 2B, 2B', and
2B” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow Estimation
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Figure 6.5.7: The type 2B Min. B optical flow estimation for the translating curved sheet. Vectors

are magnified 10 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B” Min. B
Measure | Average | Standard Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 1.004322 0.279711 0.281178 0.378537 0.002568 0.015323
Ve 0 0.090325 0 0.047219 0 0.00052
U, 1 0 1 0 1 0
Vi 0 0 0 0 0 0
€y 0.004322 0.279711 -0.718822 0.378537 -0.997432 0.015323
e, 0 0.090325 0 0.047219 0 0.00052
' le, 0.128627 0.264328 0.761678 0.286473 0.997432 0.015323
"eu " 0.120163 0.25262 0.760147 0.286649 0.997432 0.015323
€ 0.017311 0.08865 0.006504 0.046769 0.000033 | 0.000519
4 0.128627 0.264328 0.761678 0.286473 0.997432 0.015323
pd 0.026161 0.138672 0.026161 0.138672 0.026161 0.138672

Table 6.5.7: The averages and standard deviations of measures associated .with the type 2B, 2B', and

2B"” Min. B optical flow estimation. The measure r is unitless. The measure £ is in radians. All

‘'other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. C Optical Flow Estimation
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Figure 6.5.8: The type 2B Min. C optical flow estimation for the translating curved sheet. Vectors

are magnified 10 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C 2B” Min. C
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 1.019292 0.260423 0.823345 0.267081 O.789354 0.26337‘
Y, 0 0.059477 0 0.056755 0 © 0.056336
Uy 1 0 1 0 1 0
Vi 0 0 0 0 0 0
€, 0.019292 0.260423 -0.176655 0.267081 -0.210646 0.26337
€, 0 0.059477 0 0.056755 0 0.056336
' ”e” 0.110236 0.244084 0.232095 0.227795 0.26196 0.219738
€ 0.105329 0.23895 0.229212 | 0.223605 | 0.259287 | 0.215647
||e‘, " 0.009011 0.05879 0.00827 0.056149 0.008293 0.055722
r 0.110236 0.244084 0.232095 0.227795 0.26196 0.219738
£ 0.010318 0.059533 0.011658 0.067029 0.01235 0.070991

Table 6.5.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B" Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow Estimation
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Figure 6.5.9: The type 2B Min. D optical flow estimation. for the translating curved sheet. Vectors

are magnified 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B” Min. D
Measure | Average | Standard | Average | Standard | Average | Standard
_ Deviation Deviation Deviation
u, 1.03519 0.253348 1.033541 0.263507 1.033738 0.270428
Ve 0 0.342174 0 0.344861 0 0.351729
Uy 1 0 1 0 1 -0
Vi 0 ‘ 0 0 0 0 0
€y 0.03519 0.253348 0.033541 0.263507 0.033738 0.270428
€, 0 0.342174 0 0.344861 7 0 0.351729
”e” . 0.109014 0.413064 |. 0.108739 0.421504 0.109902 0.431165
”e" ” . 0.098012 0.236255 0.097678 0.247022 0.098678 0.254031
€. 0.013043 0.341926 0.012938 :0.344619 0.013015 | 0.351488
r 0.109014 0.413064 0.108739 -0.421504 0.109902 0.431165
Z 0.005392 . 0.057209 - | 0.005237 0.056437 0.005165 | 0.056098

Table 6.5.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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6.6 Rotation of a Surface With Negative Gaussian Curvature

Known Motion Field
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Figure 6.6.1: The known motion field for the rotating surface with negative Gaussian curvature

Vectors are magnified 10 times and sampled every 20 pixels.

Measure : _ Average Standard Deviation
", B .0 0.732816
Y, . B 0 0.468766
"“k” . 0.631154 0.372356 _
vl aE ) 0.390208 0.259756

H(uk, Vi )| : 0.784106 0.376717

Table 6.6.1: The averages and standard deviations of measures associated with the known metion

field. The measure r is unitless. The measure  is in radians. All other measures are in pixels.
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Type 1 Optical Flow Estimation

Figure 6.6.2: The type 1 optical flow estimation for the rotating surface with negative Gaussian

curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Average

Measure Standard Deviation
u, -0.026634 1.207233
v, -0.003204 1.200599
u, 0 0.732816
Vi 0 0.468766
¢, -0.026634 0.622309
e, -0.003204 0.889667
||e| 0.77432 0.761513
[|e,, || 0.445683 0.435129
||e‘,|| 0.573548 0.680109
-y 1.294162 1.580457
/ 0.283987 0.231137

Table 6.6.2: The averages and standard deviations of measures associated with the type 1 optical

flow estimation. The measure r is unitless. The measure £ is in radians. All other measures are in

pixels.
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Type 2A Min. A Optical Flow Estimation

“Figure 6.6.3: The tybe 2A Min. A optical flow estimation for the rotating surface with neghtive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure _Average Standard Deviation
u, -0.020448 1.233756
v, -0.004997 , 1.291821
Uy 0 0.732816
Vi 0 0.468766
e, -0.020448 | , 0.67678
e, -0.004997 1.016785
] 0.805597 | 0.918322
le. | 0.462881 ~0.494148
le.| 0.600366 - 0.820624
r 1.34301 - 1.76883

-/ 0.200014 0.238149

Table 6.6.3: The averages and standard deviations of measures associated with the type 2A Min. A

optical flow estimation. The measure r is unitless. The measure Z is in radians. All other measures

are in pixels.
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Type 2A Min.

B Optical Flow Estimation
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Figure 6.6.4: The type 2A Min. B optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors arc magnified 10 times and sampled every 20 pixels.:

Measure Average Standard Deviation
u, -0.012674 .0.415968
v, -0.011052 0.31971
Uy 0 0.732816
Vi 0 0.468766
€, -0.012674 0.603756
e, -0.011052 0.495564
el 0.672638 0.397403
le. | 0.450845 . 0.401764
€ 0.41674 0.268378

r 0.837118 0.177931
Z 1.03181 0.348888

Table 6.6.4: The averdges and standard deviations of measures associated with the type 2A Min. B
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. C Optical Flow Estimation
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Figure 6.6.5: The type 2A Min. C optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure . Average Standard Deviation
u, -0.013993 0.777264
v, -0.02398 0.519127
U 0 0.732816
‘ Vi 0 0.468766
e, . ' .0.013993 0.230545
e, ' .0.02398 0.217927
el 0.212287 0.237374
€. 0.131485 0.189888
& 0.143358 0.165876
v 0.321901 0.337653
Z , 0.175804 0.16936

Table 6.6.5: The averages and standard deviations of measures associated with the type 2A Min. C
optical flow estimation. The measure r is unitless. The measure Z is in radians. All other measures

are in pixels.
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Figure 6.6.6: The type 2A.Min. D optical flow estimation for the rotating surface with negative

Type 2A Min. D Optical Flow Estimation
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- Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure

Average Standard Deviation
u, -0.020448 - 1.233743
V. -0.004993 1.291802
U, 0 0.732816
v, 0 0.468766
€, -0.020448 0.676764
e, -0.004993 1.016762
le] 0.805586 0.918294
C. 0.462874 0.494133
€ 0.600359 0.820601
r 1.342995 1.768789
Z 0.290012 0.238148

Table 6.6.6: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure /£ is in radians. All other measures

are in pixels.




Type 2B, 2B’, and 2B” Min. A Optical Flow Estimation
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Figure 6.6.7: The type 2B Min. A optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. A 2B’ Min. A 2B"” Min. A

Measure | Average | Standard | Average | Standard | Average | Standard
' Deviation ‘ Deviation Deviation
u, -0.028704 1.240773 -0.027702 1.227127 -0.026708 1.209576
Y, 0.001175 1.298493 -0.000047 | 1.241082 -0.002604 1:202041"

Uy 0 0.732816 0 0.732816 0 0.732816

Vi 0 0.468766 0 0.468766 0 0.468766

€, -0.028704 0.676498 -0.027702 0.651597 -0.026708 0.625467

e, 10.001175 1.014995 -0.000047 | 0.941671 -0.002604 0.891089

“e” 0.802091 0.919411 0.79199 0.827538 0.775465 0.764591

”e“ ” 0.46076 0.496151 0.456399 0.465873 0.446551 0.438757
“ev " 0.597054 | 0.820811 0.58768 0.735774 -6.574218 0.681401

r 1.340487 1.770217 1.321145 1.66008 1.295127 1.581188

y 0.290073 0.238385 0.287389 0.234418 . 0.284067 0.231103

Table 6.6.7: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow Estimation
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Figure 6.6.8: The type 2B Min. B optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B"” Min. B
Measure | Average |.Standard | Average | Standard | Average | Standard
Deviation Deviation ' Deviation
u, -0.012845 0.416126 -0.011902 0.374295 -0.005776 0.120229
Ve -0.011035 0.31977 -0.007854 0.282625 0.000868 0.087973
Uy 0 0.732816 0 -0.732816 . . 0 0.732816
Vi 0 0.468766 0 0.468766 0 0.468766
€, -0.012845 0.603585 | -0.011902 0.618994 -0.005776 0.716097
e, -0.011035 0.495566 -0.007854 | 0.482088 0.000868 - 0.464062
el 0.672501 | 0.397383 | 0.6824 0.3874 | 0.770124 | 0.367517
€. 0.450686 0.401689° 0.48155 0.389097 | 0.616056 0.365089
€ 0.416741 0.268381 ' 0.398224 0.271813 0.385168 0.258833
v 0.836891 0.176773 0.862873 0.153251 0.987626 0.055354
Z 1.035537 0.358807 1.035809 0.359235 1.035719 0.358924

Table 6.6.8: The averages and standard deviations of measures associated with the type 2B, 2B, and

2B” Min. B optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels,
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Type 2B, 2B’, and 2B” Min. C Optical Flow Estimation
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Figure 6.6.9: The type 2B Min. C optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C - 2B” Min. C

Measure | Average | Standard | Average | Standard | Average | Standard
' - Deviation Deviation Deviation
u, -0.019062 0.781198 --0.002108 0.770561 0.019229 0.695406
Ve -0.020856 0.525582 -0.04164 0.506823 -0.071462 0.455809
Uy 0 0.732816 0 0.732816 0 0.732816
Vi 0 0.468766 0 0.468766 0 0.468766_
€, -0.019062 0.219673 -0.002108 0.212329 0.019229 0.206943
e, -0.020856 |  0.203386 -0.04164 0.179475 -0.071462 0.152258
”e“ 0.206308 0.218759 0.188312 0.208736 0.20242 0.174669
”eu ” 0.127724 0.179738 0.117953 0.176563 0.129566 0.162503
e 0.13817 0.150695 0.123363 0.136843 0.128487 0.108537
r 0.317293 0.33171. 0.285666 0.303132 0.305908 0.281594
Z 0.176481 -0.169816 0.162721 0.159338 0.191072 0.180111

Table 6.6.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. The measure / is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow Estimation

Figure 6.6.10: The type 2B Min. D optical flow estimation for the rotating surface with negative

Gaussian curvature. Vectors are magnified 10 times and'sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B"” Min. D

Measure | Average | Standard | Average | Standard | Average | Standard

Deviation Deviation Deviation

u -0.028703 1.240757 -0.027701 1.227115 | -0.026706 1.209543
Ve 0.001179 1.298459 -0.000044 1.241064 -0.002605 1.202019
uy 0 0.732816 0 0.732816 0 0.732816
Vi 0 0.468766 0 0.468766 0 0.468766
€, -0.028703 _ 0.676476 -0.027701 0.651581 -0.026706 0.625427
€, 0.001179 1.014954 -0.000044 0.94165 -0.002605 0.891064
||e| 0.80208 0.919358 0.791978. 0.827513 0.775441 - 0.764553
”eu ” 0.460753 | 0496128 0.456391 0.465859 0.446532 0.438719
€, 0.597046 0.820765 | 0.587672 | 0.735754 | 0.574204 0.68138
r 1.340471 1.770151 1.321126 1.660039 1.295093 1.581133
pd 0.290072 0.238384 0.287387 |- 0.234417 | 0.284065 0.231105

- Table 6.6.10: The averages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. D optical flow estimation. The measure 7 is unitless. The measure Z is in radians. All

other measures are in pixels.
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6.7 Translation of a Surface With Negative Gaussian Curvature

Figure 6.7.1: The known motion field for the translating surface with negative Gaussian curvature.

Known Motion Field
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Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
", 1.000000 0.000000
v, 0.000000 0.000000
o | 1.000000 | 0.000000
v 0.000000 0.000000
I v )| 1.000000 0.000000

Table 6.7.1: The averages and standard deviations of measures associated with the known motion

field. The measure r is unitless. The measure £ is in radians. All other measures are in pixels.
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Type 1 Optical Flow
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Figure 6.7.2: The type loptical flow estimation for the translating surface with negative Gaussian

curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 1.026016 ' 0.22315
v, -0.0031 1.253734
Uy . 1 0
Ve : 0 ' ' 0
e, f 0.026016 0.22315
€, ' -0.0031 ' 1.253734
le] 0.302459 1.237274
et | 0.09086 0.205467
le. | 0.266413 1.225104
r 0.302459 1.237274
/ 0.165259 0.242102

Table 6.7.2: The averages and standard deviations of measures associated with the type 1 optical
flow estimation. The measure r is unitless. The measure 2 is in radians. All other measures are in

pixels.
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Type 2A Min. A Optical Flow
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Figure 6.7.3: The type 2A Min. A optical flow estimation for the translating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Table 6.7.3: The averages and standard deviations of measures associated with the type 2A Min. A
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels. -
A
7

Measure _-Average Standard Deviation

u, . 1.015535 0.21744 |
v, | 0.019208 1.198455

u, ' 1 . 0
Vi 0 0

e, 0.015535 | 0.21744 |

€, 0.019208 1.198455

le] 0.30576 1 179276
le. | 0.093898 | 0.196734

e 0.263546 ' 1.169275

r 0.30576 ' 1.179276

Z 0.166728 0.241619
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Type 2A Min. B Optical Flow

‘Figure 6.7.4: The type 2A Min. B optical flow estimation for the translating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, .  0.643305 0.454303
v, -0.005065 - : 10.295743
U : 1 ‘ 0
Vi 0 0
€, A -0.356695 0.454303
e, -0.005065 \ 0.295743
le] 0.52506 0.381338
le. | 0.415091 0.401648
Je. | 0.228468 ‘ 0.187856
r 0.52506 - 0.381338
Z 0.607632 0.546113

Table 6.7.4: The averages and standard deviations of measures associated with the type 2A Min. B
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. C Optical Flow
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Figure 6.7.5: The type 2A Min. C optichl flow estimation for the translating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.885491 0.265396
v, _0.003547 0.234221
", 1 | 0
Vi | 0 . o
€, . -0.114509 0.265396
€, 0.003547 ' 0.234221
] 0.252921 . 0.272853
le. | - 047713 0.228412
.| 0.133488 - 0.192489
r 0.252921 0.272853
Z 0.141913 0.13829

Table 6.7.5: The averages and standard deviations of measures associated with the type 2A Min. C
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. D Optical Flow
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Figure 6.7.6: The type 2A Min. D optical flow estimation for the translating surface with negative

- Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 1.015535 0.217443
v, 0.019201 1.19849
L 1 0
v 0 , ‘ T
€, 0.015535 - | ' 0.217443
€, , 0.019201 1.19849
i 0.305764 1.179311
€ 0.093899 0196737

Je.] 0.26355 1.16931
r 0.305764 1.179311
£ 0.166729 0.241621

Table 6.7.6: The a%rages and standard deviations of measures associated with the type 2A Min, D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2B, 2B, and 2B” Min. A Optical Flow
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Figure 6.7.7: The type 2B Min. A optlcal flow estimation for the translatmg surface with negatwe

Gaussian curvature. Vectors are ‘magnified 10 times and sampled every 20 pn{els.

_ 2B Min. A 2B’ Mm. A , 2B” Min. A
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation ' Deviation » " | Deviation
u, 1.023672. 0.196776 1.023972 0.200033 - 1.025944 0.222412
Ve 0.019119 1.198595 0.016228 1.193974 -0.003017 1.251757
U, 1 0 1. 0 1 0
Vi 0 0 0 0 0 0
€, 0.023672 0.196776 0.023972 0.200033 0.025944 0.222412
0.019119 1.198595 0.016228 1.193974 -0.003017 1.251757
0.2988 1.177707 0.296611 1.174071 0.302286 1.235178
€. 0.086637 | 0.178256 0.08703 0.181695 | 0.090726 | 0.204716
e 0.26434 1.169238 0.26204 1.164976 | 0.266409 1.223082
¥ 0.2988 1.177707 0.296611 1.174071 0.302286 1.235178
yd 0.166417 0.241852 0.165343 0.241126 0.165451 0.242477

Table 6.7.7: The averages and standard deviations of measures associated with the type 2B, 2B’, and - '

2B" Min. A optical flow estimation. The measure r is unitless. The measure ~ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow
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Figure 6.7.8: The type 2B Min. B optical flow estimation for the translating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

__2BMin. B 2B’ Min. B 2B"” Min. B
Measure | Average Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 0.643225 0.454243 0.463769 0.427441 0.022268 0.084161
Ve -0.004903 0.295401 | -0.004165 0.21493 -0.000826 0.042337
Uy 1 0 1 0 1 0
Vi 0 0 0 . 0 0 0
€, -0.356775 0,454243 -0.536231 0.427441 -0.977732 0.084161 .
€, -0.004903 0.295401 | -0.004165 0.21493 -0.000826 0.042337
He" . 0.524843 0.381374 0.625652 0.353578 | 0.979886 0.068252
Heu ” 0.415127 0.401613 0.5785 0.368219 0.978909 0.069136 :
”ev“ 0.228161 0.187687 - 0.150371 0.153623 0.007963 0.04159
r 0.524843 0.381374 0.625652 0.353578 0.979886 0.068252 -
L 0.615816 0.556611 0.616878 0.55712 0.613821 0.554227

Table 6.7.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. B optical flow estimation. The measure r is unitless. The measure £ is in radians, All

other measures arc in pixels.
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Type 2B, 2B, and 2B” Min. C Optical Flow
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Figure 6.7.9: The type 2B Min. C optical flow estimation for the tralislating surface with negatiire

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

. 2B Min. C 2B’ Min. C 2B" Min. C .
Measure | Average Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 0.888538 0.257078 0.854424 0.250651 0.808472 0.262075
Ve O..003804 0.234443 0.007841 0.208503 0.011213 0.158672
u; 1 0 1 0 1 0
Vi 0 0 0 0 o - 0
€, -0.111462 0.257078 _0.145576 0.250651 | -0.191528 0.262075
¢, 0.003804 0.234443 0.007841 0.208503 |- 0.011213 0.158672
”e l 0.249805 0.26662 0.241806 0.262835 0.264099 0.246819
€y 0174002 | 0219625 | 0.192678 | 0216548 | 0.233544 0.22544 -
"ev " 0.134093 0.192345 0.106851 0.179214 0.08487 0.134534
14 0.249805 0.26662 0.241806 0.262835 0.264099 0.246819
yd 0.14243 0.139455 0.117646 0.129043 0.100125 0.107209

Table 6.7.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. ‘The measure / is in radians. All

_ other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow

Figure 6.7.10: The type 2B Min. D optical flow estimation for the translating surface with negative

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B” Min. D
‘Measure | Average | Standard | Average | Standard | Average | Standard
' Deviation. ‘ Deviation Deviation
u 1.023672 0.19678 1.023972 0.200036 1.025945 0.222433
Ve 0.019112 1.198631 0.016221 1.194017 -0.003035 1.251958
"y 1 0 1 0 1 0
Vi 0 0 0 0 0 0
€, 0.023672 0.19678 0.023972 0.200036 0.025945 0.222433
€, 0.019112 1.198631 0.016221 1.194017 -0.003035 1.251958
“e“ 0.298804 1177742 | 0.296616 1174114 0.30231 1.23538
1 ”eu “ 0.086638 0.178259 0.087031 | 0.181698 0.09073 0.204737
|ev l 0.264344 1.169274 0.262045 1.165019 0.266429 1.223283
r 0.298804 1177742 0.296616 1.174114 0.30231 1.23538
£ 0.166417 0.241853 0.165343 0.241128 0.165448 0.242478

Table 6.7.10: The averages and standard deviations of measures associated with the type 2B, ZB’,

and 2B” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixcls.
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6.8 Rotation and Translation of a Surface with Negative Gaussian

Curvature

Known Motion Field
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Figure 6.8.1: The known motion field for the rotating and translzliing surface with negative Gaussian

curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.5 0.828117
Yy 0 0.280359
] - 0.80427 0.537506
vl ' 0.241545. 0.142319
e v, )l 0.873972 0.500532

field. All measures are in pixels.
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Table 6.8.1: The averages and standard deviations of measures associated with the known motion




Type 1 Optical Flow

Figure 6.8.2: The type 1 optical flow estimation for the rotating and translating surface with

negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average : Standard Deviation

u, | 0.513119 1.252835
v, : -0.064763 1.500357
", 0.5 B | 0.828117
vy | 0 - ' 0.280359
€, _ 0.013119 0.502478
e, ' -0.064763 1.360187
el 0.829368 1.191253
le 0.337401 0.372575
"e | : 0.63273 1.205795
v 1.295993 . A 1.822922
Z 0.311989 0.312019

Table 6.8.2: The averages and standard deviations of measures associated with the type 1 optical
flow estimation. The measure r is unitless. The measure £ is in radians. All other measures are in

pixels. .
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Figure 6.8.3: The type 2A Min. A optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every. 20 pixels.

Type 2A Min. A Optical Flow

Measure Average Standard Deviation
u, 0.49656 1.223665
Ve -0.05245 1.583047
Uy 0.5 0.828117
Vi 0 0.280359
€, -0.00344 0.515875
e, -0.05245 1.448678
”_e| . 0.855991 1.278597
le. | 0.345342 0.383241
le. | 0.652982 .1.294225

r 1.33508 2.025876
Z 0.320975 0.323646

Table 6.8.3: The averages and standard deviations of measures associated with the type 2A Min. A

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.

120



Type 2A Min. B Optical Flow
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Figure 6.8.4: The type 2A Min. B optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.321193 ~ 0.527403
v, ‘ __-0.002764 0.288226 '
", 05 0.828117
v 0 .  0.280359

- €, -0.178807 .0.697287
e, -0.002764 0.453419
el | . 0.686994 | | 0.501798
le. |  0.472894 0.54272
le. | ~0.371909 0.259375

r 0.787508 ' 0.32358
£ 0.962267 » 0.467942

. Table 6.8.4: The averages and standard deviations of measures associated with the type 2A Min. B
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

" are in pixels.
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Type 2A Min. C Optical Flow
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"Figure 6.8.5: The type 2A Min. C optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, - 0.449203 0.863007
v, : -0.007631 0.40771
Uy o 0.5 0.828117
Vi . 0 0.280359
R -0.050797 0.302624
e, -0.007631 0.293145
e 0.26348 0.332761
le. | 0.156646 0.263861
Je. | 0.172373 0.237232
r - 0.396028 0.705978
Z 0.(200626 0.237431

Table 6.8.5: The averages and standard deviations of measures associated with the type 2ZA Min. C
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Figure 6.8.6: The type 2A Min. D optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Type 2A Min. D Optical Flow

Standard Deviation

Measure . Average
u, 0.496559 1.223656
v, -0.052447 1.58304
U 05 0.828117
vy 0 0.280359
€, -0.003441 0.515865
e, -0.052447 1.448674
€l 0.855979 1.278596
Cull 0.345337 0.383231
le. 0.652974 1.294224
ro 1.335063 2.025853
£ 0.320975 0.323646

Table 6.8.6: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2B, 2B’, and 2B"” Min. A Optical Flow

Figure 6.8.7: The type 2B Min. A optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. A _2B'Min. A 2B"” Min. A
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 0.508156 1.252049 0.509795 1.252176 0.513128 1.253075
Ve -0.060525 1.603328 -0.058934 1.568129 -0.06535 1.503125
Uy 0.5 0.828117 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359
€, 0.008156 0.500724 0.009795 0.50053 0.013128 0.502684
e, -0.060525 1.467881 -0.058934 1.431114 -0.06535 1.363113
lel 0.854805 1.295535. 0.844671 1.260434 0.830347 1.194031
€. 0.336659 0.370739 0.336445 0.370711 0.337452 0.372808
e 0.659103 1.312976 0.648693 1.277006 0.633654 1.208642
r - 1.3352 2.032264 1.319977 1.9745 1.296579 1.823741
L 0.320373 0.323518 0.317202 0.320135 0.312157 0.312289

Table 6.8.7: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow

Figure 6.8.8: The type 2B Min. B optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. B . 2B’ Min. B 2B" Min. B
Measure | Average | Standard | Average | Standard | Average | Standard
‘ Deviation Deviation Deviation
L, . 0.320937 | 0.527756 0.230534 0.481639 0.007905 | . 0.126686
Ve -0.002787 0.288014 | - -0.002414 0.239796 -0.001839 0.072969
Uy 0.5 0.828117 0.5 0.828117 0.5 - 0.828117
Vi . 0. 0.280359 0 0.280359 0 0.280359
€, -0.179063 0.697319 -0.269466 0.712076 -0.492095 0.806567
€, -0.002787 0.453241 | -0.002414 0.413926 -0.001839 0.287376
”e” 0.686977 0.501796 0.71983 0.482528 0.857747 0.489437
:Heu | 0.473039 0.54272 0.550749 0.525673 0.783811 0.527575
“e‘,” 0.37171 0.259349 0.332621 0.246373 0.244238 0.151439
r 0.787473 0.323461 0.835815 0.214807 0.987001 0.056331
£ 0.97095 0.48489 - 0.969691 0.483186 0.969523 0.483958

Table 6.8.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and
2B” Min. B optical flow estimation. The measure r is unitless. ‘The measure Z is in radians. All

other measures are in pixels.
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Type 2B, 2B/, aﬂd 2B” Min. C Optical Flow

Figure 6.8.9: The type 2B Min. C optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C 2B"” Min. C

Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation

U, 0.456767 0.869273 0.46346 0.86489 0.468949 0.809016

Ve -0.010012 0.41121 © 0.001592 0.372644 0.02336 10.308418

U 05 0.828117 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359
€, -0.043233 0.250047 -0.03654 0.24857 -0.031051 0.257685
e, -0.010012 0.291751 0.001592 0.24948 0.02336 0.183147
”e | 0.249407 0.295644 0.227504 | 0.271302 -| 0.216301 0.233809
Cu 0.142346 0.21007 0.139035 0.209263 0.14382 0.216058
evl 0.170508 0.236949 0.147312 0.201348 .0.12619 0.134774
r 0.386666 0.702356 0.354518 0.65066 0.335881 0.620093
yd 0.20077 0.236467 0.184561 0.238145 .0.189116 0.228745

Table 6.8.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B, and 2B” Min. D Optical Flow

Figure 6.8.10: The type 2B Min. D optical flow estimation for the rotating and translating surface

with negative Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B" Min. D
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation - Deviation Deviation
u 0.508155 1.252039 0.509794 1.252167 0.513129 1.253066 _
Ve -0.060522 1.603315 -0.058931 1.568119 -0.065345 1.503139
Uy 0.5 0.828117 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359
€, 0.008155 0.500713 0.009794 0.500519 0.013129 0.502676 .
€, -0.060522 1.467869- | -0.058931 1.431107 - | -0.065345 1.363136
4 .
Ie* 0.854793 1.295526 0.844657 1.260431 0.83033 1.194065
”eu ” 0.336655 0.370729 0.33644 0.370702 0.337446 0.372802
e 0.659094 1.312967 0.648683 1.277003 0.633641 1.208674
r 1.335183 2.032226 1.319958 1.974473 1.296556 1.823716
£ 0.320373 0.323518 0.317201 | 0.320134 0.312152 0.312288

Table 6.8.10: The averages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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6.9 Rotation of a Surface With Positive Gaussian Curvature

Known Mottion Field
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Figure 6.9.1: The known motion field for the rotating surface with positive Gaussian curvature.

Vectors are magnified 10 times and sampled every 20 pixels.

Measure ' Average ‘Standard Deviation
uy 0 0.732816
Vi 0 0.468766
i ' 0.631154 0.372356
vl 0.390208 0.259756
JGeri v, )| ' 0.784106 0.376717

Table 6.9.1: The averages and standard deviations of measures associated with the known motion

field. All measures are in pixels.
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Figure 6.9.2: The type 1 optical flow estimation for the rotating surface with positive Gaussian

Type 1 Optical Flow Estimation
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curvature. Vectors are magnified 20 times and sampled every. 20 pixels.

Standard Deviation

Measure Average

u, -0.041499 0.655506
v, -0.049725 0.77928

u, 0 0.732816 .
Vi 0 0.468766
e, -0.041499 0.608952’
e, -0.049725 0.902984
||e | _ 0.754114 0.788472
||e“ || 0.435246 0.4279

"e” 0.562232 0.708334
ro 1.25925 1.490273
/ 0.986764 0.876978

Table 6.9.2: The averages and standard deviations of measures associated with the typ

flow estimation. The measure r is unitless. The measure < is in radians. All other measures are in

pixels.
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-Figure 6.9.3: The type 2A Min. A optical flow estimation for the rotating surface with. positive

Type 2A Min. A Optical Flow Estimation
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Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, -0.03137 10.609187
v, -0.033372 0.72762
u, 0 0.732816
Vi 0 0.468766
€, -0.03137 0.574276
‘ e, -0.033372 0.847721
le] 0.752568 ~ 0.695803
le. 0.433163 0378338
le. | 0.561019 0.636389
r 1.264576 1.381854
£ 0.986883 0.878407

Table 6.9.3: The averages and standard deviations of measures associated with the type 2A Min, A

optical flow estimation. The measure r is unitless. The measure /£ is in radians. All other measures

are in pixels.




Type 2A Min. B Optical Flow Estimation
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Figure 6.9.4: The type 2A Min. B optical flow estimation for the rotating surface with positive

- Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

Measure Average ' Standard Deviation
u, -0.017124 0.3845
Y, ~ 0.004853 0.254874
u, 0 ' 0.732816
Yy 0 0.468766
e, -0.017124 _ 0.616834
€. . .0.004853 0.475946
el 0.671933 0.394735
: le.]l 0.46289 0.408047
le. | :  0.407473 0.245983
roo 0.837352 0.178655
4 ’ 1.037083 0.356841

Table 6.9.4: The averages and standard deviations of measures associated with the type 2A Min. B
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. C Optical Flow Estimation
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Figure 6.9.5: The type 2A Min. C optical flow estimation for the rotating surface with positive

Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, -0.023736 0.453832
v, -0.015198 0.304343
u, 0 0.732816
v, , 0 0.468766
€. -0.023736 0.490333
e, -0.015198 . 0.460246
le] 0.609 0.286621

le. , 0.389686 : 0.298544
Je. | 0.406519 0.216317
r 0.88026 ‘ 0.418327
z 0.876148 0.694527

Table 6.9.5: The averages and standard deviations of measures associated with the type 2A Min. C

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Figure 6.9.6: The type 2A Min. D optical flow estimation for the rotating surface with positive

Type 2A Min. D Optical Flow Estimation
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Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, -0.031369 0.609194
v, -0.033371 0.727648
Uy 0 0.732816
Vi 0 0.468766

y -0.031369 0.574285
€. -0.033371 0.847745
le] 0.752569 0.695839

Je. | 0.433163 0.378352
le. 0.561019 0.636421
r 1.264574 1.381895
Z 0.986882 0.878406

Table 6.9.6: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2B, 2B, and 2B” Min. A Optical Flow Estimation
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Figure 6.9.7: The type 2B Min. A optical flow estimation for the rotating surface with positive

Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

2B Min. A 2B’ Min. A 2B"” Min. A
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u -0.034119 0.618244 -0.034284 0.619814 -0.041133 0.653982
v, -0.034848 0.734132 -0.036499 0.734301 " -0.04907 0.778102
u, 0 0.732816 0 0.732816 0 0.732816
Vi 0 0.468766 0 0.468766 0 0.468766
€, -0.034119 0.575265 -0.034284 0.576482 - | -0.041133 0.607585
e, -0.034848 0.852512 -0.036499 0.853057 ' -0.04907 0.901227
”e | 0.752741 0.702456 0.749403 0.707757 0.75331 0.786112
Cu 0.432005 0.381391 0.430673 0.384735 0.434779 0.426394 ‘
”ev ” 0.56265 0.641409 0.55952 0.644953 0.561541 0.706596
r 1.265056 1.384341 1.257897 1.39099 1.258519 1.488815
/ 0.986302 -0.877607 0.985243 0.87738 0.986416 0.876944

Table 6.9.7: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. A optical flow estimation. The measure r is unitless. The measure Z is in radians. All

other measures are in pixels.




Type 2B, 2B’, and 2B” Min. B Optical Flow Estimation

Figﬁre 6.9.8: The type 2B Min. B optical flow estimation for the rotating surface with positive

Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B” Min. B

Measure | Average | Standard | Average | Standard | Average | Standard

Deviation Deviation Deviation

u, -0.017073 0.384558 -0.014975. | - 0.341235 -0.008858 0.120254
Ve -0.004904 0.254803 -0.001787 0.215919 0.003439 0.063951

i, 0 0.732816 0 0.732816 0 0.732816

Vi 0 0.468766 0 0.468766 0 0.468766

€, -0.017073 0.616772 -0.014975 0.632305 -0.008858 0.726078

e, -0.004904 0.475876 -0.001787 0.463655 0.003439 0.459389

_ ||e|| 0.671855 0.394686 0.683304 0.384828 0.774848 0.371358

||e~ ” 0.462847 0.408001 0.493397 0.395708 0.624157 0.371055

”e” 0.407402 0.245967 0.390987 0.249204 0.383592 0.252788

r 0.837169 0.177333 0.864187 0.149412 0.991242 0.041432

/ 1.041031 0.368464 1.041566 0.368379 1.04158 0.368559

Table 6.9.8: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. B optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.




Type 2B, 2B’, and 2B” Min. C Optical Flow Estimation

Figure 6.9.9: The type 2B Min. C optical flow estimation for the rotating surface with positive

Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C 2B” Min. C

‘Measure | Average | Standard | Average | Standard | Average | Standard
Deviatio_n Deviation Deviation

u -0.026647 0.459427 -0.022188 0.439344 | -0.024229 0.411696

Y, © -0.014404 0.307725 -0.013404 0.282412 -0.015622 0.24474
u, 0 0.732816 0 0.732816 0 0.732816
Vi 0 0.468766 0 0.468766 0 - 0.468766
e, -0.026647 .| 0.485939 -0.022188 0.485339 -0.024229 0.498795
€, -0.014404 0.458205 -0.013404 0.433852 -0.015622 0.411448
||e | 0.605692 0.283071 0.585675 0.285352 0.579586 0.288072
€. 0.386608 0.295593 | 0.383176 0.298693 0.391427 0.310102.
ey 0.405271 0.214264 0.380002 0.209763 0.361834 0.196482
r 0.877475 0.418385 0.835206 0.386688 0.815678 0.358595
L 0.87495 0.693722 0.829868 0.698959 0.792386 0.683293

Table 6.9.9: The averages and standard deviations of measures associated with the type 2B, 2B’, and

2B” Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.




Type 2B, 2B’, and 2B” Min. D Optical Flow Estimation

Figure 6.9.10: The type 2B Min. D optical flow estimation for the rotating surface with positive

Gaussian curvature. Vectors are magnified 20 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B"” Min. D
Measure | Average | Standard | Average | Standard | Average | Standard
' Deviation Deviation Deviation
u, -0.034118 [ 0.618236 -0.034283 0.619824 -0.041139 0.654038
Ve -0.034846. | - 0.734097 -0.036498 0.734338 -0.049079 0.778224
U, 0 0.732816 0 0.732816 0 0.732816
Vi 0 0.468766 0 0.468766 0 0.468766
€, -0.034118 0.575259 -0.034283 0.576495 | -0.041139 0.607644
€, -0.034846 0.852482 -0.036498 | 0.853088 -0.049079 0.901 342
| 0.752741 0.702416. 0.749403 0.707804 0.753325 0.786276
”eu ” 0.432004 0.381382 0.430673 0.384754 0.434787 0.426471
€ 0.562649 0.641369 0.559519 0.644994 0.561553 0.706734
o 1.265052 1.384237 1.257895 1.391045 1.25853 1.48899
£ 0.986302 0.877606 0.985242 0.877379 0.98642 0.876943

Table 6.9.10: The averages and standard deviations of measures associated with the type 2B, 2B,

and 2B” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radlans AIl

other measures are in pixels




6.10 Translation of a Surface With Positive Gaussian Curvature

Known Motion Field
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Figure 6.10.1: The known motion field for the translating surface with positive Gaussian curvature.

Vectors are magnified 10 times and sampled every 20 pixels.

R — = = — = — —>
|
|
|

Measure ' ' Average Standard Deviation
w, T 1000000 0.000000
v, 0.000000 " 0.000000
"'”k ” ' _ _ 1.000000 : ' 0.000000
"Vk " ' : 0.000000 0.000000
"(uk WV, jl 1 ' 1.000000 ' 0.000000

Table 6.10.1: The averages and standard deviations of measures associated with the known motion

field. All measures are in pixels.
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Type 1 Optical Flow
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Figux;e 6.10.2: The type 1 optical flow estimation for the translating surface with positive Gaussian

curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Standard Deviation

Measure Average
u, 1.025517 0.227234
Ve 0.006833 1.366753
U, 1 0
Vi 0 0
€y 0.025517 0.227234
e, 0.006833 1.366753
||e| 10.295394 1.353915
2 0.090913 0.209812
€. | 0.259299 1.341947
r 0.295394 '1.353915
£ 0.165197 0.241831

Table 6.10.2: The averages and standard deviations of measures associated with the type 1 optical

flow estimation. The measure r is unitless. The-measure £ is in radians. All other measures are in

pixels.
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Type 2A Min. A Optical Flow
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- Figure 6.10.3: The type 2A Min. A optical flow estimation for the translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 1.015957 0.225237
v, -0.013608 1.301582
u, 1 0
Ve 0 0

u 0.015957 0.225237
€, -0.013608 1.301582
e 0.308788 1.284498

|re~ | 0.094621 0.20502
ey 0.266682 1.27404
r 0.308788 1.284498
£ 0.16787 0.245508

Table 6.10.3: The averages and standard deviations of measures associated with the type 2A Min. A

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2A Min. B Optical Flow
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Figure 6.10.4: The type 2A Min. B optical flow estimation for the translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

~_Measure Average Standard Deviation
o, | . 0.644317 0.458264
v, | 0.004278 0.295703
u, | 1 0
Ve 0. 0
€, -0.355683 0.458264
e, 0.004278 0.295703
el 0.525498 0.384477
le.| 0.415829 0.404476
e 0.228316 0.187959
r 0.525498 0.384477
/ 0.607421 0.546064

‘Table 6.10.4: The averages and standard deviations of measures associated with the type 2A Min. B

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other mcasures

are in pixels.
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Type 2A Min. C Optical Flow
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Figure 6.10.5: The type 2A Min. C optical flow estimation for the translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure ___-Average Standard Deviation
u, 0.886484 : 0.269735
v, , -0.003978 , 0.248934
u, | 1 0
v, _ | 0o ‘ 0
e, -0.113516 0.269735
e, -0.003978 0.248934
le] _ 0.25546 0.286993

le. _0.177741 | | 0.232487
e, 0.136184 0.208416
r 0.25546 0.286993
£ 0.143571 0.144375

Table 6.10.5: - The averages and standard deviations of measures associated with the type 2A Min. C

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2A Min. D Optical Flow

Figure 6.10.6: The type 2A Min. D optical flow estimation for the translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average - Standard Deviation
u, 1.015957 ' : 0.22524
v, -0.013604 1.301629
‘llk . . 1 0
Vi , -0 k 0
€, - 0.015957 - : 0.22524
e, -0.013604 1.301629
e 0.308792 1.284544
le. 3 ~0.094621 ' 0.205023
le. 0.266685 - 1274087
r . . 0.308792 ' 1.284544
£ 0.167869 , 0.245507

Table 6.10.6: The averages and standard deviations of measures associated with the type 2A Min. D
optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.
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Type 2B, 2B’, and 2B” Min. A Optical Flow
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‘Figure 6.10.7: The type 2B Min. A optical flow estimation for the translating surface with positive

Gaussian curvature. .Vectors are magniﬁ_ed 10 times and sampled every 20 pixels.

___2BMin. A 2B’ Min. A 2B” Min. A
Measure |- Average | Standard | Average | Standard | Average | Standard
‘ : Deviation Deviation Deviation
U, 1.024111 0.205278 1.024233 0.207827 1.025478 0.226717
Ve -0.013479 1.301753 -0.01136 1.303557 0.006757 1.365383
"y 1 0 1 0 1 0
Vi 0 0 0 0 0 0
€, 0.024111 0.205278 0.024233 0.207827 0.025478 0.226717
€, -0.013479 1.301753 -0.01136 1.303557 0.006757 1.365383
"e” 0.301854 1.283099 0.298837 1.286025 0.295243 1.352477
€. 0.087338 0.187329 0.087551 0.190036 0.090824 0.209286
”ev “ 0.267532 1.274035 0.264303 1.276531 0.259288 1.340554
r 0.301854 1.283099 0.298837 1.286025 0.295243 1.352477
yd 0.167584 0.245748 0.166093 0.244278 0.165339 0.242044

Table 6.10.7: The a{'erages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. A optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow !
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Figure 6.10.8: The type 2B Min. B optical flow estimation for the translating surface with positive =~

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. B 2B’ Min. B 2B" Min. B
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 0.644237 0.458205 0.464752 0.431849 0.02266 0.090479
Ve 0.004116 0.295361 10.003403 0.214856 0.001088 0.045915
Uy 1 0 1 0 1 0
Vi 0 0 0 0 0 0
€, -0.355763 0.458205 -0.535248 0.431849 -0.97734 0.090479
€, 0.004116 0.295361 0.003403 0.214856 0.001088 0.045915
”el 0.52528 0.384512 0.62606 0.356657 0.980031 0.070918
ey 0.415866 0.404441 0.579204 0.370816 0.978921 0.071369
e . 0.228009 0.18779 0.150215 0.153653 0.008067 0.045214
r 0.52528 0.384512 0.62606 0.356657 0.980031 0.070918
L 0.615197 0.555658 0.61643 0.55666 0.614235 0.555405

Table 6.10.8: The averages and standard deviations of measures associated with the type 2B, 2B',

and 2B” Min. B optical flow estimation. The measure r is unitless. The measure / is in radians. All

other measures are in pixels.
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| Type 2B, ZB’, and 2B” Min. C Optical Flow
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Figure 6.10.9: The type 2B Min. C optical flow estimation for the translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

- 2B Min. C 2B’ Min. C 2B" Min. C
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
U, 0.889569 - 0.261477 0.855194 0.254277 0.808671 0.262887
V. -0.004228 0.249166 | -0.008183 | 0.221797 -0.011086 0.160312
Uy 1 0 1 0 1 0
Vi 0 0 0 0 0 0
u -0.110431 0.261477 -0.144806 0.254277 -0.191329 | 0.262887
€, -0.004228 0.249166 -0.008183 0.221797 -0.011086 0.160312
: ”e” 0.252315 0.281073 | 0.243787 0.274687 0.264394 0.248261
(eu ” 0.174575 0.223804 0.193088 0.219868 0.233625 0.22613
le. 0.136806 | 0.208291 | 0.109119 0.19327 0.085334 | 0.136164
ro 0.252315 0.281073 0.243787 0.274687 0.264394 0.248261
. 0.144089 0.145502 0.119124 0.135191 0.100342 0.107289

Table 6.10.9: The averages and standard deviations of measures associated with the type 2B, 2B/,

and 2B” Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. D Optical Flow
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Figure 6.10.10: The type 2B Min. D optical flow estimation for the transldtmg surface with posmve

Gaussian curvature. Vectors are magnifi ed 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B"” Min. D
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation
u, 1.024111 0.205281 1.024233 0.20783 1.025479 0.226738
Ve -0.013475 1.301802 -0.011356 1.303614 0.006772 .1.365593
Uy 1 0 1, 0 1 0
Vi 0 0 0 0 0 0
€, 0.024111 0.205281 0.024233 0.20783 0.025479 0.226738
€, -0.013475 1.301802 -0.011356 1.303614 0.006772 1.365593
"e" 0.301858 1.283148 0.298841 1.286083 0.29526 1.352689
”eu " 0.087339 0.187333 0.087551 0.19004 0.090827 0.209307
”ev " 0.267535 1.274085 0.264306 -1.276589 0.259302 1.340765
’ 0.301858 1.283148 10.298841 1.286083 0.29526 1.352689
/ 0.167582. 0.245747 0.166092 0.244277 0.165339 | 0.242045

. _ ( _
Table 6.10.10: The averages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. D optical flow estimation. The measure 7 is unitless. The measure £ is in radians. All

other measures are in pixels.
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6.11 Rotation and Translation of a Surface wi'th Positive Gaussian

Curvature

Known Motion Field
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Figure 6.11.1: The known motion field for the rotating and translating surface with positive

Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

N

.. Measure Average Standard Deviation
Uy 0.5 0.828117
Vi 0 0.280359
o | 0.80427 0.537506
vl 0.241545 0.142319
(et v ) 0.873972 0.500532

field. All measures are in pixels.
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Table 6.11.1: The averages and standard deviations of measures associated with the known motion




Type 1 Optical Flow
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Figure 6.11.2: The type 1 optical flow estimation for the rotating and translating surface with

positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, : 0.507621 0.566288
v, -0.049223 1.005767
U, _ 0.5 0.828117
Y | 0 0.280359
e, | 0.007621 0.431403
e, -0.049223 1.137235
e | ~ 0.782229 | 0932732
ey 0.308546 0.301599
e 0.601414_ 0.966444
r 1269681 1.813566
Z 5 1.020951 0.900852

Table 6.11.2: The averages and standard deviations of measures associated with the type 1 optical -
flow estimation. The measure r is unitless. The measure £ is in radians. ‘All other measures are in

pixels.
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Type 2A Min. A Optical Flow
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F i.gure 6.11.3: The type 2A Min. A optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure .Average Standard Deviation
u, _ 10.497357 . 0.560068
v, -0.056957 1.07724
U, ' 05 0.828117
Ve 0 0.280359
€y -0.002643 0.445587

€, -0.056957 1.206419
le] .0.806202 1.003624
C. 0.312235 0.3179
€ 0.622167 1.035174
r 1.310182 1.998251
Z 1.029846 0.902167

Table 6.11.3: The averages and standard deviations of measures associated with the type 2A Min. A
optical flow estimation. The measure r is unitless. The measure Z-is in radians. All other measures

are in pixels.
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Figure 6.11.4: The type 2A Min. B optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Type 2A Min. B Optical Flow
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Measure Average Standard Deviation

U, 0.306493 0.471503

Ve -0.001064 0.245655

U 0.5 0.828117
Y, 0 -0.280359
€, -0.193507 0.701012

e, -0.001064 0.435231
] 0.68733 0.495835
e 0.479903 10.546397
€. 0.360952 0.243179

¥ 0.795609 0.351071

£ 0.972872 0.48828

Table 6.11.4: The averages and standard deviations of measures associated with the type 2A Min. B -
optical flow estimation. The measure r is unitless.. The measure £ is in radians. All other measures

are in pixels.

151




Type 2A Min. C Optical Flow
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Figure 6.11.5: The type 2A Min. C optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, ‘ 0.425582 0.500532
v, -0.030096 0.304835
u, - 0.5 0.828117
Vi 0 0.280359
€, -0.074418 0.524139
€ -0.030096 0.505238
le] 0.635109 0.364764
e 0.364147 - 0.384256
€ 0.397148 0.313749
r 0.906237 0.741561
£ 0.913032 : 0.764985

Table 6.11.5: The averages and standard deviations of measures associated with the type 2A Min. C

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

are in pixels.




Type 2A Min. D Optical Flow
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Figure 6.11.6: The type 2A Min. D optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

Measure Average Standard Deviation
u, 0.497355 0.560068
Ve -0.056948 1.07723
U, 0.5 0.828117
vy 0 0.280359
e, -0.002645 0.445589
e, -0.056948 1.206409
le] 0.806199 1.003614
le. | 0.312236 0.317901

é 0.622163 | 1.035164
r 1.310174 1.998207 -
- 1.029844 0.902165

Table 6.11.6: The averages and standard deviations of measures associated with the type 2A Min. D

optical flow estimation. The measure r is unitless. The measure £ is in radians. All other measures

. arein pixels. .




Type 2B, 2B’, and 2B” Min. A Optical Flow
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- Figure 6.11.7: The type 2B Min. A optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. A 2B’ Min. A 2B” Min. A

Measure | Average | Standard | Average | Standard | Average | Standard
Deviation Deviation Deviation

u, 0.505935 0.564189 0.506717 0.563791 0.507751 0.566453
Ve -0.059675 1.079824 -0.05745 1.042139 -0.049459 1.005777
Uy 0.5 0.828117 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359
€, 0.005935 0.426 0.006717 0.426607 0.007751 0.431269
e, -0.059675 1.208647 -0.05745 1.173326 -0.049459 1.137146
“el 0.801466 1.001762 0.793565 0.965539 0.7823 0.932516
€. 0.304359 0.298117 0.305072 0.298272 0.308466 0.301494
”ev " 0.623707 1.036997 0.615187 1.000763 0.601594 0.96624
r 1.30895 1.999626 1.29059 - 1.898176 1.269828 1.813396
pd 1.029662 0.903543 1.027422 0.902852 1.021109 0.90082

Table 6.11.7: The averages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. A optical flow estimation. The measure  is unitless. The measure / is in radians. All

other measures are in pixels.
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Type 2B, 2B’, and 2B” Min. B Optical Flow
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Figure 6.11.8: The type 2B Min. B optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels. '

2B Min. B 2B’ Min. B 2B”" Min. B
Measure | Average Standard Average Standard Average Standard
Deviation - | Deviation Deviation
u, 0.306049 0.471849 0.215673 0.421748 0.004231 0.117099
v, -0.001117 0.245555 0.000042 0.19006 -0.001267 | 0.046651 .
u, 0.5 . 0.828117 ‘ 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359
e, -0.193951 0.700683 -0.284327 0.71691 -0.495769 0.813087
€ _ -0.001117 0.435192 0.000042 0.393499 -0.001267 0.283724
||e | 0.687094 0.495836 0.721574 0.478496 0.863075 °| 0.492422
”eu ” 0.479642 0.546361 -0.561 0.529218 0.790977 0.530319
e, 0.360878 0.24322 0.320031 0.228949 0.241435 0.149023
F 0.795308 0.350908 0.841983 0.232489 0.991672 0.055754
£ 0.981682 0.506227 0.982106 0.506385 0.981977 0.505957

Table 6.11.8: The averages and standard deviations of measures associated with the type 2B, 2B’,

and 2B” Min. B optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Type 2B, 2B', and 2B” Min. C Optical Flow.
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Figure 6.11.9: The type’ 2B Min. C optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. C 2B’ Min. C 2B"” Min. C
Measure | Average | Standard | Average | Standard | Average | Standard
Deviation , , Deviation Deviation
u 0.43066 .0.504944 0.41747 0.48343 0.397221 0.451114
v -0.031968 0.306354 -0.025905 0.272953 -0.016183 0.215445
Uy 0.5 0.828117 0.5 0.828117 0.5 0.828117
Vi ‘0 0.280359 0 0.280359 0 0.280359
€, -0.06934 0.510124 -0.08253 0.519961 -0.102779 | ' 0.552031
€, -0.031968 0.505366 -0.025905 0.47472 -0.016183 0.424729
“e“ 0.629224 0.354279 0.617952 0.348314 0.617508 0.338568
”eu” 0.357135 | 0.370789 0.376969 0.367505 0.409595 0.384094
“e” 0.396422 0.315057 0.369417 0.29926 0.341282 0.253335
r 0.902814 0.742346 0.862428 0.64093 0.841073 | '0.594276
-/ 0.913482 0.765897 0.883429 0.75185 0.844306 0.724234

Table 6.11.9: The averages and standard deviations of measures associated with the type 2B, 2B',

and 2B” Min. C optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels. |
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Type 2B, 2B’, and 2B” Min. D Optical Flow
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Figure 6.11.10: The type 2B Min. D optical flow estimation for the rotating and translating surface

with positive Gaussian curvature. Vectors are magnified 10 times and sampled every 20 pixels.

2B Min. D 2B’ Min. D 2B"” Min. D

Measure | Average | Standard | Average | Standard | Average Standard
Deviation Deviation ' Deviation

u, 0.505933 0.564188 0.506716 0.56379 0.507745 0.566452

Ve -0.059666 1.079833 -0.057441 1.042132 -0.049438 1.005785
Uy 0.5 0.828117 0.5 0.828117 0.5 0.828117
Vi 0 0.280359 0 0.280359 0 0.280359 -
€, 0.005933 | 0.426002 0.006716 0.426609 0.007745 0.431285
€, -0.059666 1.208653 -0.057441 1.173318 -0.049438 1.137147
Ie | 0.801464 1.001772 0.793562 0.965532 0.782296 0.932527.
”eu ” 0.30436 0.298118 0.305073 0.298273 0.308474 0.301508

' ”ev ” 0.623704 1.037006 0.615183 1.000755 0.601582 0.966247

I3 1.308943 1.999653 1.290581 1.898132 1.269809 1.813351

yd 1.029661 0.903541 1.027421 0.90285 1.021098 0.900816

Table 6.11.10: The averages and standard deviations of measures associated with the type 2B, 2B,
and 2B"” Min. D optical flow estimation. The measure r is unitless. The measure £ is in radians. All

other measures are in pixels.
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Chapter 7

-7 Conclusions and Future Work

Although our approach is specialiied for translations and rotations in the image
plane, the problem of optical flow estimation still remains under-determined locally. We
have-attempted to select the optical flow estimate which best matches the known motion |
field by using a number of local regularization schemes. This was met with varying
degrees of success. |

For the curving sheet sequence results of section 64 all the optical flow

estimation techniques found a solution which poorly matched the known motion field.
This sequence yielded the largest r error measure for all optical flow estimation

techniques implemented. All the I error measures wére over 10", The underlying
motion in this sequence was neither é translation nor a rotation. The motion was a
curving deformation of the sheet. This violated the assumption that the underlying
motton was a fotation, translation, or a combination of both.

Many translating motion fields were estimated very well by the opticél flow
estimlation techhiques implefnented. For the translating calibration sphere results of

section 6.3, the type 1 and the type 2B" Min. A optical flow estimatioﬁ‘techniques do

very well with the r error measures being less than 0.18. The type 1 technique assumes
the classic optical flow constraint which is correct for this sequence. The type 2B" Min.
A minimizes the rotational component of the solution which is appropriate for this

sequence. For the translating curved sheet sequence results of section 6.5, the type 2B’
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Min. A and the type 2A Min. C optical flow estimation techniques do very well with the

r error measures being less than 0.109. The 2B' Min. A minimizes the rotational
component of the solution which 1s appropriate fOr this sequence. However, the type 2A
Min. C-minimizes all the components of the solution.

In sections 6.6, 6.7 and 6.8, we experimented with sequences involving a surface
“ with negative Gaussian curvature under rotation, translation, and combined motions: In
these sequences the type 2B, 2B', and 2B" Min. iC selects the optical flow estimate which
comes closest to the known motion ﬁeld For this particular surface with negative ' ;
Gaussian curvature, the stabilizing function which minimizes aH the components of'the
solution is able to select the best optical flow estimate under conditions of rotation,
translation, and combined motions.

In sections 6.9, 6.'10 and 6.11, we experimented with sequences involving the
snrface with positive Gaussian curvature under rotation, trénslation, and combined
motions. In the seciuences involving rotation, all the optical flow estimation techniques
selected an optical flow estimate which poorly matched the known motion field. This
was th/e case even under different light source directions, iThis leads us to hypothesize
that the sign of the Gaussian curvature of a surface plays an important role in how: well
our optical flow estimation techniqu“es pertorm under rOtational cases. Under rotation,
our'optical flow estimation techniques performeci very well for the surface with negative
Gaussian curvature, but performed poorly for the surface with positive Gaussian
curvature. Further research is necessary to _validate this hypothesis.

. There were a number of general trends which were noticeable among the

techniques implemented. In general, the type 2A and 2B methods yielded similar results,




under the same stabilizing functions. The 6nly time they differ significantly is in the |
sequence involving a translating curved sheet. In this case the type 2A Min. A and 2A
Min. D yield very bad results, whereas the type 2B estimation does not. So the “ ‘
assumption of exact measurements which is made in the regularization of type 2A, is not
| -acceptable under all coniiitions. Also 1n the type 2A and 2B optical flow estimation

techniques, thg minimum intensity change and rotation stabilization yields a similar, if

not the same result, as if just the minimum intensity change stabilization had been used.

This is evident from all the test cases.

Also noticeable was the fact that the type 2B, 2B, or 2B" optical flow estimation

“techniques yield similar r values when the optical flow estimate is quite good. The three
different A values used have little effect in these cases. An example is in Table 6.6.9. |

When the type 2B optical flow estimate was not so good, the type 2B', and the type 2B"

optical flow also yield bad optical estimates, but the r values can vary more
significantly. An example 1s in Table 6.3.9.

Oiir approaéh to optidal flow estim'cition 1 very locél, in which only information
at a given pixeli is considered. This infoimation includes images derivatives and surface
gradients at that pixel. Because our approach solves a linear system, it has the potential
to be very fast. There are many possible improvements to this approach which have yet .
to be investigated. The stabilizing function p.lays a very important role in determining the
most appropriate optical flow estimation. In our implementations, the stabilizing
function for a certain optical flow estimation technique was constant for all pixels in the

image. However, customizing the stabilizing function for each pixel may yield better

results. Knowledge or estimates of the general underlying motion gained from such




/

methods as feature tracking or previous optical flow iterations could be used to customize
the stabilizing function to each pixel. Another area of further research is the use of global

regularization, instead of the local regularization techniques which we investigated.
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