
The MPI Implementation on NetVM
by

Yanping Gu

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
December 2000

© Yanping Gu, 2000

U B C Special Collections - Thesis Authorisation Form Page 1 of 1

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia,. I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I further agree that permission for extensive copying of
t h i s thesis for s c h o l a r l y purposes may be granted by the head of' my
department or by h i s or her representatives. I t i s understood 1 that-
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l ,not
be allowed without my written permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date

http://www.library.ubc.ca/spcoll/thesauth.html 12/15/00

http://www.library.ubc.ca/spcoll/thesauth.html

Abstract

Advances in network technology now allow an application to reliably transfer data
to a remote node without remote CPU intervention. It removes the communication
overhead of traditional operating systems by allowing the sender to directly write to
the memory of a remote node. However, translating remote memory semantics into
standard stream-oriented interfaces like MPI is challenging. In this thesis we demon
strate the possibility and efficiency of using the remote memory technology as the
underlying communication system in our implementation of MPI. Our performance
results show significantly improvement on both microbenchmarks and real-world
applications compared to L A M over Myrinet. The remote memory model is shown
to be powerful in implementing MPI semantics.

11

Contents

Abstract 1 1

Contents »i

List of Tables vi

List of Figures vii

Dedication viii

1 Introduction 1

1.1 Overview 1

1.2 Synopsis 3

2 Background 4

2.1 Message Passing Interface 4

2.1.1 Point-to-point Communication Operation Interfaces 5

2.1.2 MPI Semantics 6

2.2 NetVM 7

2.2.1 Overview 7

2.2.2 API 8

iii

2.3 Myrinet 9

2.4 Related work 10

2.4.1 L A M 10

2.4.2 M P I C H 11

2.4.3 M P L B I P 11

2.4.4 M P L N P 12

3 MPIN - MPI on NetVM 14

3.1 MPIN System Overview 15

3.1.1 System Architecture 15

3.1.2 Data Structures 16

3.1.3 Design Challenges 17

3.2 The Control Message Area 18

3.2.1 Control Messages 18

3.2.2 C M A Data Structure 19

3.2.3 A Model for Send and Recv Operations in MPI 22

3.3 Order and Progress . • 24

3.3.1 MPI Semantics for Order and Progress of Message Passing . 24

3.3.2 Control Message Matching in MPIN 25

3.3.3 State Machine for MPI Request 25

3.3.4 Request Management 29

3.4 Wildcard in Receive Operation 31

3.4.1 Data Structures . . 32

3.4.2 Limitations and Future Work 41

i v

4 P e r f o r m a n c e 43

4.1 Experimental Setup 43

4.2 Microbenchmarks 44

4.2.1 Latency 45

4.2.2 Throughput 46

4.3 Receive From MPI_ANY_SOURCE Test 48

4.4 Application-level Tests 48

4.4.1 Measurements 51

5 C o n c l u s i o n s 53

B i b l i o g r a p h y 55

v

List of Tables

2.1 NetVM API 8

3.1 Types of Control Messages 19

3.2 Request States for Send and Recv Operations (Normal Case) 26

3.3 Request States for Send and Recv Operations (MPI_ANY_SOURCE) 37

4.1 Microbenchmarks for MPIN and L A M using MPI_Send and MPLRecv

Operations 44

v i

List of Figures

3.1 System Architecture of MPIN 14

3.2 Control Message 19

3.3 Control Message Area (CMA) 20

3.4 Model for Send and Recv Operation 23

3.5 State Transition of Requests 27

3.6 Sub List in Request List 29

3.7 Recv from M P I _ A N Y _ S O U R C E 34

3.8 State Transition for Recv from M P I _ A N Y _ S O U R C E 38

3.9 Virtual List in Request List 40

4.1 Comparison of Latency for MPIN and L A M 46

4.2 Comparison of Throughput for MPIN and L A M 47

4.3 Measurement of Latency/Throughput 47

4.4 Comparison of Recv from M P I _ A N Y _ S O U R C E for MPIN and L A M 49

4.5 Comparison of Running PRSimp on MPIN and L A M 52

vii

To DSG Lab.

V l l l

Chapter 1

Introduction

In this thesis we describe the issues in building MPIN (MPI on NetVM) and present

the design and performance of the system. Implementing MPIN is motivated by

the idea of providing a fast and efficient MPI (Message Passing Interface) system

using remote memory technology, NetVM, as the underlying communication system.

We explore the possibility and advantage/disadvantage of building MPI on top of

NetVM. In this chapter we give a brief overview of the context in which we build

MPIN, the issues raised, and the design approach we have taken.

1.1 Overview

User-mode networking and zero-copy protocols are widely accepted as being essential

for reducing software overheads in high-performance communication. User-mode

networking gives applications direct access to the network hardware, removing the

operating system from the critical path. Zero-copy protocols transfer data directly

between user space and the network hardware, eliminating host-CPU data copying

for sending and receiving messages.

1

The remote memory model, which allows applications to directly access the

memory of a remote node, is equally important for high-performance communication

for two reasons. First, the separation of control and data can improve performance

because many data transfer operations do not necessarily transfer control. As a

result, an application can transfer data to a remote node without remote C P U in

tervention. Second, this approach provides reliable data delivery since the sender

specifies the target address for the transfer. This sender-based memory manage

ment, together with a sufficiently reliable network hardware such as the Myrinet,

eliminates receive buffer overruns and avoids the need for message buffering, ac

knowledgements and re-transmission protocols. Several other systems have also

explored the advantages of using this approach [6, 8].

The semantics of MPI, however, specify a model of stream-oriented commu

nication. There are two challenges in. trying to translate remote memory semantics

into the MPI stream-oriented model. First, we must separate the transfer of data

from the transfer of control messages. Second, we must provide a form of stream-

oriented communication.

This thesis demonstrates that the remote memory model is powerful in im

plementing MPI semantics. Since the remote memory model allows us to directly

transfer data between application memories, there is no need for any intermediate

buffering of the data either by the kernel communication system or an MPI dae

mon. It removes the overhead of traditional network interfaces thereby improving

the performance of MPI communication operations.

Comparing to L A M , a widely used MPI implementation based on T C P , our

results showed that MPIN greatly improves the performance for both microbench-

marks and real-world applications.

2

1.2 Synopsis

In the following chapters we present the design and implementation of MPIN and the

performance for both the microbenchmarks and real-world applications. Chapter 2

provides background knowledge for the system. It includes an introduction to the

MPI standard, NetVM, Myrinet and a review of selected existing MPI implementa

tions. Chapter 3 describes the issues in building MPIN, the overall design approach,

and the implementation. The performance of the system and the comparison with

L A M over Myrinet are presented in Chapter 4. Chapter 5 is the conclusion of the

thesis.

3

Chapter 2

Background

In this chapter we provide background to better understand the design of MPIN.

We introduce the MPI standard, NetVM on which we built MPIN, and the Gigabit

networking technology Myrinet. We then review some of the related existing MPI

implementations built on various underlying communication systems.

2.1 Message Passing Interface

There are two parallel computing paradigms: shared memory and message passing.

Message passing is generally used for parallel machines with distributed memory.

Over the last decade many implementations of message passing systems have been

developed by different vendors. However, several systems have demonstrated that

a message passing system can be efficiently and portably implemented. With this

goal, the MPI Forum started the standardization effort for the Message Passing

Interface. The MPI standard provides vendors a base set of routines with which

they can implement their systems. With this standard, applications built using

different implementations of MPI are portable.

4

We introduce the basic features of MPI that have to be guaranteed in an MPI

implementation. We describe the syntax of point-to-point communication operation

interface, and the MPI semantics of message passing.

2.1.1 Point-to-point Communication Operation Interfaces

The MPI standard provides interfaces for a rich set of point-to-point and collective

communication operations. In this section we describe the syntax of the interfaces for

point-to-point communication operations, which form the basis of the MPI collective

communication operations. The basic MPI communication mechanism is sending

and receiving messages by processes. The interfaces of Send and Recv operations

are defined as:

Send(buf, count, datatype, dest, tag, comm)

Recv(buf, count, datatype, source, tag, comm, status)

The Send operation specifies a send buffer in the sender's memory in which

the message data is stored. The first three parameters specify the location, size

and type of the message. In addition, an envelope of the message is also specified

by the parameters. An MPI envelope consists of a fixed number of fields: source,

destination, tag and communicator. Certain fields of the MPI envelope are included

in the parameters of both Send and Recv operations and are used to distinguish

messages. In a Send operation, three fields of the MPI envelope: destination, tag

and communicator, are specified by the last three parameters in the interface.

MPI offers four communication modes for the Send operation: standard,

buffered, synchronous and ready. Programmers decide which mode is suitable for

their applications. For a Send operation in standard mode, it is up to the MPI

implementation to decide whether the outgoing message is buffered. When the

5

standard send returns, the sender buffer may not yet have been transferred to the

receiver so the receiver must avoid reading or modifying the receiving buffer. Buffer

mode buffers the outgoing message so that Send operation can return before the

matching Recv is posted by buffering the messages at either the sender or, typically,

the receiver. The safest mode among the four is synchronous mode. It completes

only when the message is safely received by the receiver. In general it requires an

acknowledgement message from the receiver after it gets the data. Ready mode

requires that the Send operation may only be started after the matching Recv has

started. Otherwise the operation is erroneous and the outcome is undefined.

The first three parameters of the Recv operations specify the receiving buffer,

the size and type of the message. The receiving buffer has to be large enough to

hold the incoming message data. The following three parameters specify the fields

of MPI envelope for Recv, which are source, tag and communicator. They are used

for selecting the matching incoming message. Information about a received message

is stored in the status parameter.

5enriand Recv operations can be both blocking and non-blocking. A blocking

operation returns only when the operation completes. Users are allowed to reuse

resources specified by the operation after that. A non-blocking operation, on the

other hand, may return before the operation completes. It is completed by either

MPLTest() or MPLWait() operations. Any reuse of the resources specified by the

uncompleted operation is prohibited.

2.1.2 M P I Semantics

MPI semantics guarantee certain general properties of point-to-point communica

tions. In this section we describe two of them: the order and progress of message

6

passing.

Order of messages is one of the key properties of MPI semantics. MPI mes

sages are not allowed to overtake each other. The MPI envelope is used to distinguish

between messages. By the MPI ordering rule, if a sender sends two messages with

the same envelope to a destination, the second matching Recv on the destination

can not be satisfied by the first message if the first Recv is still pending.

The second property of MPI semantics is that MPI guarantees the progress

of communication operations. For a pair of matching Send and Recv operations

initiated on two processes, if neither of them is consumed by another matching

operation, they are guaranteed to complete.

2 . 2 NetVM

2.2.1 Overview

NetVM is a novel network interface that supports user-mode, zero-copy, remote

network memory without pinning the source or the destination memory. The NetVM

prototype is implemented in firmware for the Myrinet and is integrated with the

FreeBSD virtual memory system. NetVM's remote-write latencies are 13.3 fis and

53.3 fis for 4-byte and 4-KB transfers respectively, with a maximum throughput of

94.6 M B / s .

NetVM was designed with the following goals:

1. Read and write to/from remote virtual and physical memory.

2. Optionally notify a remote application.

3. Enforce protected operations.

7

operation description
register initialize with NetVM
export declare segment for data transfer
unexport revoke exported segment
import locate remote exported segment
write write to remote segment
read read from remote segment
writeP write to remote physical segment
readP read from remote physical segment
handler define user notification handler
arm invoke handler on notification

Table 2.1: NetVM API

4. Provide reliable delivery.

5. Support out-of-order delivery networks.

2.2.2 A P I

Table 2.1 lists the key operations available for an application using NetVM.

The application initializes NetVM by calling register. It then calls export to

declare each virtual address range it uses for data transfers. An exported segment

is guarded by a 64-bit protection key. When the application calls import to locate

remote segments, NetVM sends a request to the remote node's kernel driver which

responds with the segment address limits and protection key. An application can

revoke an export by calling unexport to immediately disable all remote access to the

segment. There is no need to ensure that other applications revoke their imports

first.

The write and read operations transfer data to and from a remote segment.

The application simply specifies the source and target virtual addresses. NetVM also

supports statically pinned transfers. WriteP and readP are similar to their virtual

counterparts except the application specifies physical addresses instead. They also

8

require that both source and target buffers have been statically pinned.

The application notifies a remote application by specifying a signal in the

write/writeP calls. To enable asynchronous notification, the remote application first

calls handler to register a notification handler and then calls arm to prime it. Once

armed, NetVM will invoke the handler exactly once when it receives a notifying

write/writeP to that application. Notifications that arrive when the handler is

unarmed are ignored.

2.3 Myrinet

Myrinet is a local area network based on the technology used for packet communica

tion and switching within massively parallel processors [3]. A Myrinet link consists

of a full-duplex pair of 1.25Gb/s channels. It is a highly reliable network with a

very low error rate. Variable-length packets are supported in Myrinet which uses

wormhole routing to deliver the packets. The topology of Myrinet ensures that the

capacity of the network grows with the number of nodes.

Each machine has a Network Interface Card (NIC) which contains a LANai

network processor, on-board S R A M and three D M A engines. The S R A M is fast and

relatively small. It is accessed by the host from the I/O bus. The three D M A engines

are used for transferring data from the NIC to the network, from the network to NIC,

and between the host and the NIC. In addition, the host can access the S R A M using

programmed I/O (PIO). The D M A engines are controlled by the Myrinet Control

Program (MCP) running on the LANai network processor. The interesting feature of

Myrinet is that the LANai network processor is programmable. Its programmability

motivated the design of User-Level Network Interface Protocol [11].

9

2.4 Related work

We review a selected list of MPI implementations in this section. They differ in

both the MPI implementation and the underlying communication system.

2.4.1 L A M

L A M features a full implementation of MPI. It is originated from the Trollius Op

erating System developed at the Ohio Supercomputer Center for transputers.

L A M runs as a single UNIX daemon on each computer. The daemon is

uniquely structured as a nano-kernel and hand-threaded virtual processes. It is

transparent to users and system administrators.

The L A M library is written in two layers. The lower layer is the communi

cation system which provides communication primitives for the upper layer. The

upper layer is portable and independent of the underlying communication system.

L A M uses a Request Progression Interface (RPI) to drive the underlying communi

cation system. RPI is the most sophisticated message-advancing engine in the MPI

library. It handles the progress of non-blocking communication requests.

L A M provides two modes of passing messages between processes: L A M D

(daemon) mode and C 2 C (client-to-client) mode. In L A M D mode, all MPI messages

are passed between processes via the L A M daemons. C 2 C mode intends to use the

highest performance of the underlying communication system by bypassing the L A M

daemons and passing messages directly between processes. L A M includes a T C P / I P

implementation of C 2 C mode. L A M D mode is typically slower than C 2 C mode in

message passing but provides extensive monitoring capabilities.

A set of L A M nodes are started by lamboot. L A M supports a dynamic

resource environment in which both L A M nodes and MPI processes can be added

10

and removed at runtime with lamgrow and lamshrink.

2.4.2 M P I C H

M P I C H is a freely available, complete implementation of the MPI specification,

designed to be both portable and efficient. The portability and some features of

M P I C H are based on three existing systems: P4, Chameleon, and Zipcode.

The software architecture of M P I C H supports the goals of portability and

high performance. The central mechanism of achieving these goals is the Abstract

Device Interface (ADI). ADI separates the communication device dependent part

of an implementation from the MPI specific implementation. Channel interface is

a small subset of interfaces in ADI. It provides a way to transfer data from one

process's address space to another's. It can be expanded gradually to include spe

cialized implementation of more of the ADI functionality. ADI provides portability

for M P I C H . Various versions of M P I C H were implemented with their ADIs based on

different hardware. ADI was designed to provide a portable MPI implementation,

but it can be used to implement any high-level message-passing library.

2.4.3 MPI_BIP

MPI.BIP is a port of M P I C H over Myrinet using the BIP (Basic Interface for Paral

lelism) [10] as underlying communication system. BIP is a network communication

interface designed for message-passing parallel computing. The goal of the design

was to exploit the high speed Myrinet by bypassing system calls or memory copies.

It delivers to the application the maximal performance achievable by the hardware.

The BIP interface provides send and receive, blocking or non-blocking communica

tion primitives. There are separate protocols for long messages and short messages.

11

BIP uses a rendezvous protocol in sending and receiving long messages. With this

protocol a receive has to be posted before a send. For short messages BIP stores

them in a circular queue on the receiver's side. Send can complete without a receive

being posted. A send will block if the queue becomes full.

BIP was designed to achieve zero-copy in MPI. MPI_BIP includes a header

in small messages; big messages are transmitted on a different channel than the MPI

header. BIP provides only raw flow control capabilities, and relies on the upper layer

protocol to implement flow control. A credit-based flow control is implemented by

MPI_BIP based on BIP queues to avoid message overflow on the receiver's side.

The BIP interface could be directly used by specialized applications, but the

main usage of BIP is through other well established protocol layers such as MPI.

2.4.4 M P L . N P

MPIJMP [1] is a message-passing layer designed for Myrinet. The goal is to re

duce host communication overhead by offloading communication related tasks from

the host processor based on the assumption that the network processor is able to

handle more than average workloads. MPI_NP uses L A M as the MPI library. It

implemented a specific Myrinet Control Program (MCP) and a Request Progression

Interface (RPI) to L A M .

MPI_NP implemented channels, a bidirectional communication path, to com

municate between two processes. Channels are implemented on the NIC. They con

sist of buffer space to store the body of messages and rings to hold MPI envelopes.

Messages in a channel follow the MPI ordering rules and cannot overtake each other.

MPI_NP maintains a global channel queue on the NIC. Similar to BIP, MPIJNP uses

a credit-based flow control mechanism to control message overflow on channels.

12

MPI_NP supports blocking and non-blocking MPI communication operations

and various modes for the Send operation. It provides three protocols for transferring

messages between two processes: full credit, message rendezvous, and eager sending

of small messages. The full credit protocol requires that a sender has enough credit

before it sends a message. There are two cases that need to be considered in the

message rendezvous protocol: unexpected messages when the Send operation hap-

pens earlier than a matching Recv operation, and expected messages when the Recv

operation occurs earlier than a matching Send. Eager sending of small messages is

used to transfer small messages quickly. Messages are sent without credit using this

protocol. If there is no space on the receiver the message will be dropped. In this

case the receiver notifies the sender, and the message will.be sent when the sender

gets enough credits.

MPIJNP supports zero copy. It uses memory on the NIC as its system buffer.

When data being transferred does not fit into the system buffer, MPI_NP uses either

sender buffering or address translation and page pinning to achieve zero copy.

13

http://will.be

Chapter 3

MPIN - MPI on NetVM

M P I N is an implementat ion of the M P I standard. It uses N e t V M as the underlying

communicat ion system. The objective of M P I N is to take advantage of N e t V M

to remove the communicat ion overhead associated wi th communicat ion stacks in

t radi t ional operat ing systems to achieve better performance for parallel computat ion

using M P I .

The remote write interface provided by N e t V M changes the semantics of

the t radi t ional send and receive communication functions. It allows applications to

directly access the memory of a remote node. Whi le achieving better performance

NetVM

Figure 3.1: System Archi tecture of M P I N

1-1

in transferring data, it makes implementing MPI on top of it a challenge.

In this chapter we introduce the system architecture of MPIN, address the

challenges of using NetVM's remote write interface to implement MPI communica

tion operations, and describe the design approach taken.

3.1 M P I N System Overview

MPIN is an MPI implementation on NetVM. We introduce the system architecture

of MPIN in this section. We also describe the challenges of implementing MPIN

using the NetVM interface, and the advantages of doing so.

3 .1.1 System Architecture

Figure 3.1 shows the system architecture of MPIN. The arrows show the direction

of function calls in each layer. There are three layers shown in the figure:

NetVM, the low layer, provides the communication system on which MPIN

is built. The remote write interface of NetVM allows direct writes to the memory of

a remote node, but the lack of synchronization between the sending and receiving

nodes makes implementing MPIN communication operations a challenge.

MPIN layer is the implementation of MPI. It interacts directly with the

underlying communication system - NetVM. NetVM is initialized when MPIN starts.

Communication operations in MPIN, for example MPI_Send() and MPI_Recv(),

are built on top of the NetVM layer using the remote write interface. MPIN is

responsible to synchronize the communication entities.

The top- layer is the application layer. Applications are parallel programs

written in MPI. They can run on any MPI implementation without code change.

15

3.1.2 Data Structures

We briefly introduce the primary MPIN data structures in this section. They consist

of a control message area (CMA) , a request, and a request list. These three data

structures form the basis of the communication functions in the MPIN system. The

detailed descriptions for each of them is provided in the following sections.

The key idea of having a CMA is that a process can send control messages

by writing the messages directly to, the appropriate region of the C M A on other

process. C M A is implemented as a two-dimensional array in the memory of every

process. Each C M A has a designated space for every other process involved in

the communication. Each process knows the memory addresses of C M A s on other

processes, thus it can send control messages directly to it.

A request is a system object to identify communication operations and match

the operation that initiates the communication with the operation that terminates it,

such as MPI_Test() and MPLWait() . A request object identifies various properties

of a communication operation such as the send mode, the context, the tag and the

destination arguments to be used for a Send, or the tag and the source arguments

to be used for a Recv. In addition, this object stores information that records the

current status of the operation.

MPIN creates a request object for each Sendov Recv operation initiated. The

request is destroyed when the communication is done. For a blocking operation,

this occurs when the function returns; for a non-blocking operation, it is when the

communication finishes, and MPLTest() or MPI_Wait() is called to complete this

request.

A request list is a double linked list which stores all the pending requests

during the execution of an application. It is a global variable in MPIN. Each request,

16

after it is created, is appended to the request list. Pending requests keep pointers

to the previous and next requests. Within the request list, pending requests that

relate to each other form lists of special purpose, called sub lists or virtual lists.

We describe sub lists and virtual lists in Section 3.3.4 and Section 3.4.1. Using the

request list MPIN manages communication operations executed by an application.

3 .1 .3 Design Challenges

The challenges in building MPIN are mainly related to synchronization in sending

and receiving data. We describe the problems and our design approach in this

section.

The MPI model uses the message as the fundamental unit for data transfer,

the semantics of which is stream-oriented communication. Messages are used for

both transferring data and synchronizing senders and receivers. On the other hand,

NetVM allows an application to reliably transfer data to a remote node without

synchronizing with the receiver process and without the intervention of the remote

C P U . Building MPIN requires translating remote memory network semantics into

the MPI stream-oriented communication model. There are two challenges in doing

so.

First, we know that one advantage of NetVM is that it separates control and

data. This separation substantially improves the performance of network operations

that require only data flow, but the data transfer happens asynchronously between

the sender and receiver. MPIN must provide synchronization between Send and

Recv operations. In doing so, MPIN uses different types of control messages and

the C M A data structure on each process to store control messages sent from remote

processes.

17

Second, MPIN must provide a form of stream-oriented communication in

transferring control messages and data. We develop a state machine to control the

sending and receiving of data, and to ensure the order and progress of communication

operations.

The remainder of this chapter describes our design approach and the im

plementation. Section 3.2 and Section 3.3 explore the details of the design and

implementations for the two challenges mentioned above. Section 3.4 focuses on the

design when the wildcard MPI_ANY_SOURCE is used in Recv operation, which is

an extension of the design for normal operations.

3.2 The Control Message Area

A control message area, C M A , is created in each MPI process to store control

messages sent to this process. There are different types of control messages in MPIN

used in communication operations. We introduce the types of control messages used,

the functionality of the C M A , and how C M A works for the key communication

operations.

3.2.1 Control Messages

A control message is 32 bytes long, as shown in Figure 3.2. It contains the MPI

envelope (source or destination process ID, tag, communicator or context ID), the

type of the control message, a count of the elements being sent or received, the MPI

data type, the receiver's buffer address, and the index of the remote RFA data struc

ture. The RFA data structure is used for recording Recv from M P I _ A N Y J 3 0 U R C E

information and will be introduced in Section 3.4.

Control messages are used to synchronize sending and receiving operations

18

1 process tag ctrl msg count context MPI data recver's remote L id tag
type id type but addr RFA indx

Figure 3.2: Control Message

types of control messages
UNUSED
RTR
SC

ENA.ANY
RTR_ANY

UNABLE_ANY
DISABLE-ANY

Table 3.1: Types of Control Messages

in MPIN. Control message types are shown in Table 3.1. Type U N U S E D is used

in the C M A to mark unused control message slots. R T R (Request To Receive) is a

control message sent from the receiver when an Recv operation is posted. It informs

the sender that the receiver is ready to receive data. SC (Send Complete) is an

acknowledgement from the sender that the data has been sent. Upon getting this

message, the receiver knows that the data it received is complete. The remaining

four control messages: E N A J ^ N Y , R T R _ A N Y , U N A _ A N Y , and D I S A B L E _ A N Y ,

are used only when MPI_ANY_SOURCE is used in a Recv operation. The description

is provided in Section 3.4.

3.2.2 C M A D a t a Structure

C M A is a data structure which stores the incoming control messages from every

process involved in the communication. It is created in the memory of every process

when MPIN is initiated. In this section we introduce the data structure and explain

19

on process» on process j

Figure 3.3: Control Message Area (CMA)

the operations on it.

Data Structure

The C M A is a two-dimensional array created and initialized in the memory of each

process when an MPI application starts. The first dimension is the processes, the

second is the control messages sent from each process. Figure 3.3 shows the C M A

data structure on processes i and j. CMA keeps an array for each process, including

itself. Each array implements a circular list. Each circular list holds up to 128 control

messages. If there are n processes involved in the communication, for example,

there are n circular lists in the C M A . When a process writes control messages to a

destination process, it writes the control message to its designated circular list in

the C M A on the destination process. In addition to storing control messages, CMA

on a process also contains information about the CMAs on other processes it writes

to.

CMA works in the following way: consider the CMAs in Figure 3.3, one on

process i and the other on process j. The CMA on process i contains a circular

list for incoming control messages from process j (and vice versa). Process i writes

outgoing control messages directly into its remote C M A list in process fs C M A . The

20

message is appended to the list. Since process i is the only process adding to this

circular list, the pointer to the tail of the circular list can be maintained in process

»'s C M A , as shown by the remote tail'm Figure 3.3. Additionally, to prevent process

i from overrunning its remote circular list on process j, it is necessary to store a

local copy of the head pointer on process j, as shown as the remote head, which

is used to compare with remote tail before sending a control message to process j.

Since the head pointer on process j is being updated by j when it processes control

messages, it is necessary for process j to periodically update «'s outdated copy of

remote head pointer. MPIN refreshes this pointer using remote write whenever

process z's designated circular list in process fs C M A reaches half of its capacity.

Operations on the C M A

There are five primary operations on the C M A : the initialization of C M A , adding a

control message to a circular list, scanning for a matching control message, removing

a control message, and freeing a C M A .

Initializing a CMA: The C M A is created in the memory of an MPI process

when MPIJnit() is called. Each process gets the address of the C M A in every other

process.

Adding a control message: When a process needs to send a control message

to a destination process, it writes the message to the designated C M A circular list

in the destination process. As we know, every process keeps the remote tail (see

Figure 3.3) of its designated C M A circular list in other processes, the process can

calculate the destination memory address based on the remote tail and the address

of the remote C M A , and write the control message using remote write.

MPIN assumes that the number of control messages pending in the C M A

21

for each process does not go beyond the threshold of the circular list, which is 128

control messages in total for each process. The system crashes if a process tries to

write a control message to the destination C M A when the list is full.

Scanning for a control message: Scanning for a matching control message

in a circular list starts from the C M A list head, which is maintained by the local

process. It goes through every control message in the list before it reaches a slot

marked as U N U S E D , or reaches the head of the list when the list is full. The process

repeats till the matching control message is found.

Removing a control message : When a control message is matched, it is

removed from the C M A list. If the message is the head of the list, its slot is marked

as U N U S E D . Otherwise, control messages ahead of it in the C M A list are shifted

one slot toward the tail. The head pointer is updated in both cases.

Freeing a CMA : The memory space allocated for the C M A is freed when

MPI_Shutdown() is called.

3.2.3 A M o d e l for Send and Recv Operations in M P I

In this section we describe how the C M A works for the key communication opera

tions in MPI. We present a model for Send and Recv operations and explain how

we use the C M A and control messages to synchronize the operations.

We use Figure 3.4 to explain the model. There are two processes in the

figure: a receiver and a sender. In each process a buffer and the designated C M A

circular list for the other process is shown. A Recv operation on the receiver begins

the operation by writing a control message R T R into its designated C M A list on

the sender (step 1 in Figure 3.4). The receiver then spin-waits on its local C M A list

till it gets the control message SC from the sender.

22

receiver
s t e p l

sender

RTR
C M A

list

target
buffer

s t e p 2

data

C M A
list HE-

s t e p 3

source
buffer

S C

Figure 3.4: Model for Send and Recv Operation

If Send operation is called before the RTR arrives to the sender's C M A , Send

spin-waits on the C M A list for the matching RTR from the receiver. Once the RTR

is found, the sender extracts the destination address and size from it, and ensures

that the buffer size is large enough to hold the data. The sender then transfers

the data in its source buffer directly to the target buffer using NetVM (step 2 in

Figure 3.4). Finally, the sender writes a SC control message to the receiver's C M A

to inform it that the data transfer is complete (step 3 in Figure 3.4). The Recv

operation on the receiver returns when it gets the matching SC from the sender.

This model applies to both blocking and non-blocking Send and Recv oper

ations, but the implementations differ. The details will be explained in Section 3.3.

The main difference between this model and traditional MPI implementa

tion is that in this model, transferring of control message and data are completely

separated.

In the situation where MPI_ANYJSOURCE is used as the source parameter

of a Recv operation, the receiver does not know where to write the R T R message

to when it starts. An extended model which covers this special situation will be

described in Section 3.4.

3 . 3 Order and Progress

MPI semantics guarantee certain general properties of point-to-point communica

tion. This section describes the order and progress of message passing and how they

apply to blocking and non-blocking operations. We list the key points which need

to be considered to maintain the MPI semantics, and describe the state machine we

developed in MPIN for this task.

3.3.1 M P I Semantics for Order and Progress of Message Passing

MPI semantics define the order and progress of message passing, as described in

Section 2.1.2. A valid MPI implementation must ensure MPI semantics. The MPI

semantics are easy to maintain for blocking operations. The nature of blocking

operations retains the execution order and there are no other operations interrupting

their progress. Maintaining the ordering of non-blocking operations is more complex,

because they return without completing the communication they started. Once

started, the progress of non-blocking operations are independent. MPIN must then

manage pending operations to ensure that order is maintained, and each operation

can make progress properly.

In the design of MPIN, control and data are separated. Three things must be

guaranteed to maintain the order and make progress for blocking and non-blocking

operations.

• The order of control messages stored in C M A list for each process must be

maintained. Control messages must be stored in the order they are written

and this order must be maintained until the message is removed from the list.

• The sequence of writing control messages by different operations must be kept

24

so that message overtaking does not happen.

• For pending identical requests that were created by the same communication

operations with same arguments, scanning for matching control messages in

the C M A circular list must be ordered. By doing so an operation does not get

a control message that is destined to be taken by another operation, assuming

that the two operations are waiting for the same control message.

3.3.2 Control Message Matching in M P I N

Control messages are used to synchronize communication operations. In blocking

operations, scanning for matching control messages and sending data are done with

out interruption. A non-blocking operation does not have to be finished before it

returns. Considering the situation where there are multiple non-blocking operations

initiated but not finished, the sequence for the pending operations to send control

messages and scan for matching control messages has to be kept.

Two things must be ensured in MPIN. Firstly, when identical control mes

sages are going to be sent by pending operations, they have to be sent in the sequence

that the operations started. Secondly, if pending operations need to scan the C M A

list for identical control messages, they also have to do it in this sequence. An op

eration can not scan the C M A list until the identical operation initiated ahead of it

has found the message.

3.3.3 State Machine for M P I Request

In Section 3.1.3 we explained that implementing MPIN on top of NetVM requires a

form of stream-oriented communication for transferring control messages and data.

In this section we describe our design approach, as well as the state machine we

25

states for Send description
P E N D I N G Waiting to be activated
W A I T R T R Scanning CMA list for matching RTR
S T A R T S C SC sent
D O N E Send completed
states for Recv description
S T A R T R T R RTR sent to source process
W A I T S C Scanning CMA list for matching SC
D O N E Recv completed

Table 3.2: Request States for Send and Recv Operations (Normal Case)

developed for this task.

Request State

The request state is a property of a request object. It records the current status of

the request. Table 3.2 shows the request states for Send and Recv operations, and a

brief description for each state. MPIN determines the state transition for Send and

Recv operations. It will be explained in the following section.

The request states listed in Table 3.2 fall into two categories:

• static state : P E N D I N G , S T A R T R T R , D O N E

• automatic state : WAITRTR, S T A R T S C , WAITSC

Processing a request in static state does not change the state nor push the

communication forward. A request is usually put in static state when it is ready to

move to the next state, e.g., to start scanning for a control message, but has to give

way to another pending identical request which is in the same state. Messages in

static state can be activated and moved to the next state by other pending requests

ahead of them in the request list.

26

Send

Send
M a t c h e d

R T R
, S C
^ f * " \ S e n t w

• ^ (S T A R T S C] DONE

Recv
R T R

S e n t
M a t c h e d

S C

Recv

Figure 3.5: State Transition of Requests

On the other hand, when MPIN processes a request in an automatic state, it

extracts information from the request object and pushes forward the communication

according to the current state.

State Transition

Figure 3.5 demonstrates the state transition process of Send and Recv operations.

Two fonts are used in the figure to distinguish static states (PENDING, S T A R T R T R ,

DONE) and automatic states (WAITRTR, S T A R T S C , WAITSC). We use the solid

arrows to show the progressing direction of a request. The dashed arrows point out

the activation points where a request in a static state is activated by a request in

an automatic state which just finished a state transition. The requirements of state

transitions of automatic states are also shown.

In this figure, a Send operation could start from either P E N D I N G or WAIT

R T R state. Normally, when a request for a Send operation is created, if there are

no identical requests pending ahead of it, or all of the pending identical requests

are in state S T A R T S C or D O N E , it starts in the state W A I T R T R . Otherwise, it

27

starts in P E N D I N G . For the Recv operation without wildcard M P I _ A N Y _ S O U R C E

in use, the operation starts by sending an R T R message to the sender. The state

of the request is put in WAITSC when there is no identical requests pending, or all

of the pending identical requests are in state D O N E . Otherwise, the request state

starts with S T A R T R T R . Processing requests of both operations moves the state in

the direction of the solid arrows till it reaches state D O N E . The state transition for

Recv operations with M P I - A N Y - S O U R C E is explained in Section 3.4.

State transition may be triggered by remote or local events. It may depend on

the behavior of a remote process, for example, when a control message is sent. If the

request is in a state of waiting for this control message, the state transition happens

when this control message arrives in the C M A and is found in the processing of the

request. In Figure 3.5, a Send request in state W A I T R T R moves to S T A R T S C when

the matching R T R is found in the C M A list, and a Recv request in state WAITSC

moves to D O N E when the SC is found. State transitions may also happen on a local

event. For example, the state S T A R T S C of a Send operation moves to D O N E after

the SC control message is sent.

Requests in automatic states are responsible for activating identical requests

pending after them and which are in static states. Usually the activation happens

at the point of state transition of a request in an automatic state, as shown with

the dashed arrows in Figure 3.5. When a Send request gets the matching RTR, its

request state moves from W A I T R T R to S T A R T S C . The identical request pending

after it, which must be in state P E N D I N G at this moment, is activated and the

request state moves to W A I T R T R . For the same reason, a Recv request in state

WAITSC, when it transits to state D O N E , activates its following pending identical

request, which must be in state S T A R T R T R , to state WAITSC.

28

Figure 3.6: Sub List in Request List

3.3.4 Request Management

MPIN stores all the pending requests in the request list during the execution of

an application. We introduce a special list in the request list called a sub list,

and describe how MPIN manages the progressing of pending requests stored in the

request list.

Sub List

The sub list is a doubly linked list which links pending identical requests in the

request list. The reason we introduce this special list is that when there are identical

requests pending in the request list, the dependency among them has to be considered

to maintain the order of the operations they represent. Sub lists are used to do that.

Each pending request keeps pointers to the previous and next requests in the

request list. In addition to these pointers, a request which belongs to a sub list also

keeps pointers to its previous and next requests in its sub list.

Figure 3.6 shows requests in the request list at some point in the execution of

an application. There are six requests pending in total. The shaded boxes represent

29

identical requests which belong to a sub list. The head and tail pointers in the figure

are for the request list, while subhead and subtail pointers keep track of the start

and end of the sub list.

Progress of Requests

Progressing of a request starts from the request being appended to the request list,

and stops when it is removed. In this section we describe how MPIN processes the

pending requests in three steps:

• After a request is appended to request list, all pending requests ahead of it are

searched to find out if it belongs to a sub list. If so, it is appended to the sub

list.

• MPIN processes each request in the request list according to its current request

state. Figure 3.5 shows the state transition for Send and Recv operations. Us

ing the example in Figure 3.6 again, requests 1, 3, and 4 are identical requests

of Send operations which belong to a sub list. Their states are S T A R T S C ,

WAITRTR, and P E N D I N G respectively. Request 4 is blocked by request 3

because only one request is allowed to scan for R T R at a time. According to

Figure 3.5, when request 3 moves to state S T A R T S C , it activates request 4

from state P E N D I N G to W A I T R T R .

• The state of a request eventually moves to D O N E . At this time, a request of a

blocking operation is removed from the request list; if the request represents a

non-blocking operation, it is removed from the request list when an MPLTest()

or MPI_Wait() function is called. Pointers to both request list and sub list are

updated accordingly.

30

Message passing in MPIN progresses with the state transition of requests,

and the states are only transited by calls into MPI communication functions. When

a communication function is called, MPIN goes through all the pending requests

in the request list and processes them according to their current state. For each

pending request, doing so is equal to getting the communication function called

once more. It is necessary to do so in MPIN because sometimes a pending request

might block requests following it which are supposed to move on no matter what

state this request is in. Going through all the pending requests and processing

them whenever possible is the only way for MPIN to guarantee the progress of

communication functions.

3.4 Wildcard in Receive Operation

MPI allows a Recv operation to accept messages from an arbitrary sender if the

Recv's source parameter is MPI_ANY_SOURCE. A Send operation from any process

which has the matching tag and context parameters is considered to be a matching

operation. If there are multiple matching Send operations, only one can be matched.

In a sender-initiated system like L A M , message passing can happen without

the matching Recv being posted. Messages from different sources are queued up on

the receiver's side. Source matching happens locally on the receiver's side when a

Recv is posted. For a Recv operation with MPI_ANY_SOURCE, the first message

in the queue is picked up. Source matching in MPIN is difficult. Since NetVM is

used as the underlying communication system, system copying is removed. Instead

of being queued up in the receiver's buffer, message data is written directly into the

receiver's memory when the matching Recv is posted. In MPIN, source matching

must be finished before data is sent to the receiver. To do this, the receiver must

31

cooperate with the potential senders using control messages. Data transfer then

happens between the Recv and the Send on the matched sender.

The model we describe in Section 3.2.3 applies only to the case in which

the source parameter of a Recv operation is specific. In that model, a Recv op

eration always starts by sending an R T R control message to the source. When

M P I _ A N Y _ S O U R C E is used, the receiver does not know in the beginning which

source it is going to send the R T R to. We extended the old model to cover the

situation where MPI_ANY_SOURCE is used as the source parameter in Recv oper

ations.

We describe our design in three steps: data structures, state transition, and

request management.

3.4.1 Data Structures

Source matching is done through control information exchanged between the receiver

and the potential senders. MPIN creates two data structures: RFA(Receive From

Any source), and SRFA(Sender's information for Receive From Any source). The

receiver creates an entry in its R F A when a Recv operation is initiated. In addition,

the receiver writes an entry to the SRFA on every other process for this Recv. We de

scribe the new data structures and control messages used when M P I _ A N Y _ S O U R C E

is specified as the source parameter in Recv operations, and a new model based on

them.

Data Structures

RFA and SRFA are created in the memory of each process and are used for the

receiver and sender to exchange control information. Figure 3.7 shows that both

32

the RFA and SRFA are implemented as arrays. R F A is used by the receiver and

SRFA by the sender. There are two fields in an element of RFA. One is the tag

parameter of the Recv operation, the other is an array of flags for each process.

The address of the RFA on each process is exported to other processes when MPIN

starts. An element of the SRFA consists of four integers: the destination and the

tag parameters of the Send operation, the index of the RFA entry on the destination

process, and a flag. The usage of flags in both R F A and SRFA are described later.

In addition to the R F A and SRFA data structures, four new types of control

messages are used; Table 3.1 shows them: E N A _ A N Y , R T R _ A N Y , U N A _ A N Y and

D I S A B L E _ A N Y . E N A _ A N Y is used for Recv with MPI_ANY_SOURCE to notify

the potential senders. R T R _ A N Y works the same as RTR except that it is sent

from a Recv operation with MPI_ANY_SOURCE. U N A _ A N Y is sent from a Send

operation to let the receiver know that the sender does not intend to send data to

it. D I S A B L E _ A N Y is used to revoke the information that a Recv operation with

M P I _ A N Y _ S O U R C E has broadcast to the potential senders.

We develop a new model for the situation where M P I _ A N Y _ S O U R C E is used

in Recv operations. This model is an extension of the one we describe for the normal

case. We use the data structures and new control messages introduced in this section

to describe this model.

A Model for Recv with M P I _ A N Y _ S O U R C E

We use Figure 3.7 to explain the model. There are two processes in the figure:

a receiver and a sender. On the receiver's side, an RFA and a C M A list for the

sender's process are shown. The SRFA and a C M A list for the receiver's process are

shown on the sender's side. The exchange of control information and data between

33

Figure 3.7: Recv from MPI_ANY.SOUR.CE

these two processes uses NetVM remote write.

When a Recv operation with MPI_ANY_SOURCE starts, the tag parameter

and an array of flags are added as a new entry to the local RFA. All the flags are set

to 0 initially (step 1 in Figure 3.7). The Recv operation then writes an ENA_ANY

control message to the C M A list in every process (step 2 in Figure 3.7). A flag in an

RFA entry will be turned on to 1 by the corresponding sender if the sender wishes

to send data. The receiver scans the flag array to find out which flag has be turned

on. The first corresponding sender is picked up and the flag turned off.

When a process finds an ENA_ANY in its CMA list it adds a new entry to

its SRFA (step 3 in Figure 3.7). The new entry consists of the destination and the

tag parameter of the Recv operation, an index of the RFA entry on the receiver, and

a flag 0. The first three integers are carried by the ENA_ANY control message.

When a Send operation is called, the sender checks the SRFA to see if there

is a Recv from MPI_ANY_SOURCE entry that has matching destination and tag,

and if the flag is 0. If so, the Send sets the flag to 1, then uses NetVM to write

34

http://MPI_ANY.SOUR.CE

a 1 to the corresponding flag in the R F A entry on the receiver process (step 4 in

Figure 3.7). The destination address of the flag is calculated by the remote RFA's

address, the index of the RFA entry, and the ID of the sender's process.

The Recv operation scans the array of flags in the R F A entry. The first

potential sender is picked up if the flag for the sender is 1. The receiver then turns

the flag to 0 and sends an R T R _ A N Y control message to the sender (step 5 in

Figure 3.7).

/ When the sender finds the R T R _ A N Y control message in its C M A list, it sets

the corresponding SRFA flag to 0 and writes the data and a SC control message to

the receiver (step 6 in Figure 3.7). At this point, the Send operation completes and

returns. Upon getting the SC control message, the Recv from MPI_ANY_SOURCE

also completes.

MPIN does not remove the R F A entry when the Recv operation returns. This

reduced communication overhead of broadcasting E N A _ A N Y control messages for

every Recv by having identical Recv from M P I _ A N Y _ S O U R C E use the same entry.

However, it left a problem that there might be R F A flags set by previous senders

that have already completed.

We solve this problem as follows. When a receiver thinks that the sender is

interested in sending data to it, and the sender has already been satisfied, it sends

an R T R _ A N Y to the sender. The sender responds to it by sending an U N A _ A N Y

back to the receiver.

Upon getting the U N A _ A N Y control message, the Recv operation knows that

this sender is not interested in sending data to it anymore. It then starts to scan

the RFA entry for the next potential sender.

The D I S A B L E _ A N Y control message is not displayed in the figure. It is used

35

when the RFA does not have a space for a new entry. The oldest entry is removed

and a D I S A B L E _ A N Y control message carrying information about the removed

entry is written to every process. When a D I S A B L E _ A N Y control message is found

in the C M A list, a process cleans up the corresponding SRFA entry. If a new Recv

from MPI_ANY_SOURCE starts and finds that there is no entry for it, it will create

a new one.

This model works for both blocking and non-blocking communication oper

ations where the source parameter of Recv operations can be either specific or a

wildcard. Suppose there are N processes in the communicator. In the normal case,

the number of control messages required for a, Recv from MPI_ANY_SOURCE to

finish is:

N(ENA_ANY) + 1 (Setting RFA flag) + 1(RTR_ANY) + 1(SC) = N + 3

In the best case where an RFA entry already exists, the E N A - A N Y control

message needs not to be sent. The total control messages involved are 3.

We extended the state machine to cover the situation where the source pa

rameter of Recv operation is a wildcard. The new state machine is based on the

model we just described.

State Transition

New states are added to the old state machine. Table 3.3 lists all the states with brief

descriptions. States for a Recv operation are also categorized as for normal requests

(PENDING_NOR, S T A R T R T R , WAITSC) and for requests with wildcard source

parameters (PENDING-ANY, S O U R C E _ M A T , S O U R C E _ M A T _ A U T O , STARTR-

T R A , WAITSC J J A) . State D O N E is for both cases.

Figure 3.8 shows the state transitions. Two fonts are used as in Figure 3.5 for

36

states for Send description
P E N D I N G _ N O R
W A I T R T R
W A I T R T R A
S T A R T S C
D O N E

Waiting to be activated
Scan CMA list for matching RTR
Scan CMA list for matching RTR-ANY
SC sent
Send completed

states for Recv description
P E N D I N G _ A N Y
P E N D I N G _ N O R
S O U R C E J V I A T
S O U R C E J V I A T - A U T O
S T A R T R T R
S T A R T R T R A
W A I T S C
W A I T S C _ U A
D O N E

Waiting to be activated. For Recv with MPI_ANY_SOURCE
Waiting to be activated. For normal Recv
Scan RFA for potential source
Scan RFA for potential source
RTR sent to source process
RTR_ANY sent to potential source process
Scan CMA list for matching SC
Scan CMA list for matching SC or UNA_ANY
Recv completed

Table 3.3: Request States for Send and Recv Operations (MPI_ANY_SOURCE)

static states and automatic states respectively. Solid arrows show the progressing

direction of a request. Dashed arrows show the activation points where static states

for a Recv request with a specific source parameter are activated. Static states of a

Recv with M P I _ A N Y _ S O U R C E request are activated in a different way and will be

described later.

Request Management

MPIN processes pending requests in the request list. We introduced the sub list

in Section 3.3.4. Recv requests in a sub list are requests with a specific source

parameter. For a Recv with MPI_ANY_SOURCE request, the sub list it belongs

to is only determined when a matching source is found from one of the potential

sources. For requests corresponding to Recvs with MPI_ANY_SOURCE, another

special list called a virtual list is created inside the request list. Next we describe

the virtual list and how MPIN processes requests in the virtual list.

37

Send

Send
R.ecv

Figure 3.8: State Transition for Recv from M P I _ A N Y _ S O U R C E

38

V i r t u a l List

The virtual list is a special list created in the request list and used to store iden

tical pending Recv with M P I _ A N Y _ S O U R C E requests. For those requests, source

matching happens before the data transfer. Before the real source is determined,

the request can not be added to a sub list. After the source matching, the request

becomes a normal Recv request and could be added to one of the sub lists pending

ahead of it in the request list. Thus, its existence has to be known by the other

pending requests in order to maintain the order of all the pending operations.

A virtual list connects identical Recv requests with M P I _ A N Y _ S O U R C E . In

addition, it also connects a Recv request with MPI_ANY_SOURCE and the requests

that are the tails of sub lists with matching tag and context parameter pending in

front of it. When the real source is determined, the Recv request becomes a normal

one and will be added to a sub list pending ahead of it if there is one.

Figure 3.9 shows a virtual list in a request list. Boxes with the same shades

represent identical Recv requests in a sub list. Requests 1 and 6 belong to a sub list,

and requests 2, 3, and 5 belong to another sub list. Boxes labeled ANY indicates

identical Recv requests with M P I _ A N Y _ S O U R C E in use (requests 4, 7, 8). They

form a virtual list. From the figure we can see that besides the pointers connecting

the A NY requests, requests 4 and 7 keep pointers linking to the tails of the sub lists

pending ahead of them, assuming that the requests in the sub lists have matching

tag and context parameters with the ANY requests in the virtual list.

Progress of Requests

The progressing of Recv requests with MPI_ANY_SOURCE happens with the state

transition shown in Figure 3.8. When a request is created and appended to the

39

Figure 3.9: Virtual List in Request List

•10

request list, it is also appended to the virtual list it belongs to. MPIN processes

each request according to its current request state. In MPIN, the real source of the

request is determined only when the request state reaches state D O N E , then the

request becomes a normal Recv request. It is removed from the virtual list and joins

the sub list it belongs to. Processing of the request continues as it does for a normal

Recv request. The request is eventually removed from the.request list.

In transiting a static state of a Recv request with MPI_ANY_SOURCE, the

pending requests in sub lists ahead of it and connected to it in the virtual list

suggest which state this request can move forward to. The suggested state is put

into a temporary variable. Every request ahead of it in the virtual list has to make

a suggestion, and the lowest state is chosen for the request to continue from when

the request is processed.

3.4.2 L imi ta t ions and Future W o r k

MPIN is not a fully implements MPI system. The current prototype of MPIN

implemented basic blocking and non-blocking Send and Recv operations. Some of

the collective communication operations such as MPIJBcastQ and MPI_Barrier() are

implemented based on the point-to-point operations. Communications in MPIN are

currently limited to one communicator. Wildcard in Recv operations is implemented

only for M P I _ A N Y J 3 0 U R C E . But our design can be easily extended to implement

Recv operations with M P I _ A N Y _ T A G .

Our future work can be summarized as follows:

• Fully implement all four modes for Send operations;

• Implement associate operations such as MPLProbeQ;

41

Implement the rest of the collective operations;

Implement the wildcard: MPI_ANY_TAG;

Extend the message passing to inter-communicator communication.

42

Chapter 4

Performance

MPIN was developed and tested on the FreeBSD operating system. We compare

the performance of MPIN to L A M running on T C P over Myrinet. We compare our

system with L A M because L A M is a widely used MPI implementation running on

T C P / I P . MPIN uses NetVM as the underlying communication system which allows

direct access to a remote node's memory without T C P intervention.

We present performance results for both microbenchmarks and real applica

tions. Microbenchmarks test the latency and throughput for various sizes of data.

A MPI application, RSimp[5], was used to test the performance of a real applica

tion running on MPIN and L A M . The results show that compared to L A M , MPIN

improves the performance for both the microbenchmarks and the real-world appli

cation.

4.1 Experimental Setup

Our experiments were conducted on a cluster of 266-MHz Pentium Pro PCs with

128-MB of memory running FreeBSD 2.2.2 and with a page size of 4-KB. The

43

Data
(bytes)

Latency(MPIN)
(lis)

Latency (L A M)
(us)

Throughput (MPIN)
(MB/sec)

Throughput(LAM)
(MB/sec)

4 29.91 201.66 0.13 0.02
8 30.00 202.08 0.27 0.04
16 30.09 202.21 0.53 0.08
32 30.42 209.14 1.05 0.16
64 32.10 210.83 2.00 0.32
128 33.78 254.66 3.78 0.53
256 35.00 221.46 7.31 1.22
512 37.36 233.41 13.68 2.31
1024 43.30 257.33 23.71 4.17
2048 52.85 320.09 38.80 6.81
4096 69.89 459.50 58.43 9.42 •
4100 78.85 460.36 51.53 9.43
5120 90.17 492.46 56.97 11.15
6144 99.59 533.79 61.85 12.51
7168 108.52 578.25 65.91 13.56
8192 116.58 649.54 70.16 13.96

Table 4.1: Microbenchmarks for MPIN and L A M using MPLSend and MPLRecv
Operations

PCs are connected by the Myrinet network that uses 33-MHz LANai 4.1 network

processors with 1-MB on-board S R A M .

Timing in the experiment is measured by counting machine cycles and di

viding it by the clock speed of the C P U to convert it to microseconds.

4.2 Microbenchmarks

In this section we present microbenchmarks for MPIN. We tested the latency and

throughput of the system for various sizes of data, and compared the performance

with L A M running on T C P over Myrinet.

The MPI blocking Send and Recv operations are used in testing microbench

marks. The data set we chose ranges from 4 bytes to 8K bytes. Data being sent

started at page boundary. The largest size we used covers two pages.

44

Table 4.1 shows the latency and throughput of MPIN and L A M for various

sizes of data. The results are also shown in Figure.4.1 and Figure 4.2 for latency

and throughput respectively.

4.2.1 Latency

We tested one-way latency using MPI Send and Recv operations. Two nodes are

used in the test with one node sending data and the other node receiving. The

procedure is repeated 1000 times. The median value is reported.

In MPIN, when M P I _ A N Y _ S O U R C E is not used, a receiver starts the com

munication by sending a R T R control message to the sender. The communication on

the receiver's side finishes when the matching control message SC from the sender

is found in the C M A list. A Send is spin-waiting on the C M A if a matching Recv

hasn't been posted. The blocking time of Send depends on the starting time of Recv,

thus it should not be added to the overall latency. On the other hand, L A M is not

receiver-initiated. The sender does not need the Recv operation to be posted before

it sends the data.

To get the correct measurement, we use a pingpong test to measure latency.

The method we used is shown in Figure 4.3. One node starts the timer, sends the

data using MPI_Send(), then uses MPLRecv() to receive the response. The other

node sends the data back as soon as it gets it. The timer starts on the first node

before MPLSend(), and stops when the MPLRecv() returns. We get the one way

latency for a specific size of data by dividing the difference of the two times by two.

From Figure 4.1 we see that the latency of MPIN is more stable than that

of L A M . As the data size gets bigger, the time spent for sending it in L A M grows

faster than MPIN. The figure shows a drop in L A M when the data size is 256 bytes.

45

700

600

500

I 400
u
o

'e
_" 300
_
3

200

100

0

0 2000 4000 6000 8000 10000
Data Size (bytes)

Figure 4.1: Comparison of Latency for MPIN and L A M

After that, the latency grows constantly. In MPIN, there is a small delay when data

crosses the page boundary, which is at 4K bytes.

4.2.2 Throughput

Throughput was also tested for different sizes of data on L A M and MPIN. For a

specific size of data, throughput is calculated by dividing the data size by the time

spent in sending it. The time of sending data is measured using the same method

we used in testing latency.

Figure 4.2 shows that compared to L A M , MPIN has greatly improved the

throughput for the various sizes of data used in the test. The throughput for 8K

bytes data is 70.16MB/second in MPIN. For both MPIN and L A M , as the data size

grows, the network gets more saturated and thus has better throughput. There is a

46

0 2000 4000 1 6000 8000 10000
Data Size (bytes)

gure 4.2: Comparison of Throughput for MPIN and

Mode 1 Node 2

T l
MPI_Send()

MPI_Recv()
T 2

MPI_Recv()

MPI_Send()

Figure 4.3: Measurement of Latency/Throughput

47

drop when the data crosses the page boundary at 4096 bytes. After that point the

throughput goes up again as the data size grows to 8K.

In the figure, L A M on T C P over Myrinet shows a much lower throughput

than MPIN. The reason is that the T C P uses system calls which go through the

kernel and incurs extra copy to and from user/kernel memory. L A M internal buffer

ing also has a big contribution to the overhead. L A M can return from MPI_Send

after buffering the message. Messages could stay in the system buffer before they

get sent out.

4.3 Receive Prom MPI_ANY_SOURCE Test

We measured MPIN's performance of Recv operation with M P L A N Y J 3 0 U R C E

and compared it with L A M . The test runs with one receiver and various number of

senders. The receiver calls Recv horn M P I _ A N Y _ S O U R C E to receive data from one

of the senders. The test runs with 1, 2, 3, 4 senders respectively. The results are

shown in Figure 4.4. We measured the time the receiver takes to receive the data in

each case. The result shows that even though more control messages are involved

in Recv from M P I _ A N Y _ S O U R C E in MPIN, the performance is comparable with

L A M .

4.4 Application-level Tests

To test MPIN we used an application from the area of computer graphics, specifically

a polygonal mesh simplification algorithm. The purpose of these algorithms is to

reduce the complexity of polygonal models so that computer graphics hardware is

able to render them at interactive rates. These algorithms are both memory and

48

0 1 ' ' 1

1 2 3 4
Number of Nodes

Figure 4 . 4 : Comparison of Recv from M P I _ A N Y _ 3 0 U R C E for MPIN and L A M

computation intensive and thus are ideal candidates for parallelization.

We used a parallel version of an algorithm called RSimp [5] to evaluate the

performance of MPIN. The algorithm operates by obtaining a very coarse approxi

mation of a polygonal model and then iteratively refining it until the required level

of detail is obtained. For our purposes the algorithm can be viewed as consisting

of a priority queue and an n-ary tree where a node can have two, four, or eight

children.

The algorithm begins with a root node having eight leaf nodes. The leaf

nodes are inserted into the priority queue. During each iteration a leaf node is

removed from the priority queue and is internalized by creating two, four, or eight

leaf nodes. These leaf nodes are then inserted into the priority queue. The algorithm

stops when the required number of leaf nodes are obtained.

49

Several modifications were required to transform the sequential version of

RSimp into its current parallel incarnation PRSimp [4]. PRSimp's design is based

on the master worker architecture. There is a single master node that controls the

entire simplification process and partitions out work to the worker nodes. The first

main modification consisted of adding MPI communication operations to enable

the master node to send and receive data from the worker nodes. The second

modification involved modifying RSimp such that it could determine whether it was

a master or a worker node and performing as such. A master node performs all the

operations performed in RSimp plus additional operations of sending and receiving

data from the worker nodes. The worker nodes have considerably less responsibility.

Their main task is to receive a node, expand it into 2, 4, or 8 leaf nodes and return

them to the master.

The changes to the simplification process are as follows. Instead of retrieving

one node from the priority queue, expanding it, and inserting the new leaf nodes

back in, the master node retrieves n nodes from the priority queue; where n is the

number of worker nodes. The master node then sends a node to each of the workers

to be processed. It then removes one more node from the priority queue, processes

the node itself, and inserts the sub nodes back in. Then it receives the processed

nodes from the workers and inserts the results back into the priority queue. This

process is repeated until the required number of leaf nodes is reached.

The application uses non-blocking Send in distributing the work to workers

and non-blocking Recv in receiving results. Workers get the distributed work, do the

computation, and send the results back. The workers use blocking communication

calls.

50

4.4.1 Measurements

We report three aspects of the performance of running PRSimp on MPIN and L A M :

total time, latency and overhead. The measurements are obtained on the master

node only, because its performance determines the overall application performance.

The performance for the sequential version RSimp is provided as a reference.

The running time of the application includes reading data from the disk,

simplifying data (running the algorithm), and writing the results back to disk. The

communication between the master and workers happens only in the second phase.

Figure 4.5 compares the performance of running PRSimp on MPIN and L A M

over Myrinet. The total time, latency and overhead of running PRSimp are shown

in this figure.

The total time we report is the time of the simplication phase. It includes

the time of performing the computation, the latency and the overhead of the com

munication functions.

The time of latency and overhead forms the communication time. The timer

starts before the communication operations are called and stops after they finish.

Latency covers the time of calling MPLTest to test if the Send or Recv operation

finishes. The time for each MPLTest is totaled up as the overall latency of the

communication operations in the application. Overhead is obtained by subtracting

the communication time of the application by the latency.

By comparing the performance in running PRSimp on MPIN and L A M , we

get the overall performance as well as the breakdown of latency and overhead of the

communication operations in each system. With the message size of 10K to 16K

bytes sent from the master node, MPIN achieved a very low latency in waiting for

the communication operations to complete, and the overall communication time is

51

Performance Results

7

6

5

3

2

Total Time i l
Latency

-

Overhead EGSS

- -

- -

MPIN LAM-TCP-MYR

Figure 4.5: Comparison of Running PRSimp on MPIN and L A M

considerably lower.than L A M . As a result, the overall cost of running PRSimp on

. MPIN is improved about 54% compared to L A M over Myrinet.

52

Chapter 5

Conclusions

MPIN is an MPI implementation on Myrinet using the NetVM as the underlying

communication system. It aims to provide parallel applications an MPI interface

based on fast remote memory technology.

Several recent research projects have explored the benefits of using pro

grammable network interfaces provided by current gigabit networks [3]. These ben

efits include lower message overhead possible when interfaces are directly accessible

at user level [6, 9, 13], lower large-message latency possible when interfaces frag

ment and pipelining data transfers between host memory and the network [2, 7, 14],

higher throughput possible when fragmentation and pipeline are adaptive to message

size [10, 12], and lower overheads possible when interfaces implement sender-based

flow control [6]. Our work differs from each of these projects in that we focus on

functionality at a higher-level than the network protocol layer.

This thesis focuses on the design and implementation of blocking and non-

blocking MPI point-to-point communication operations using the remote write in

terface provided by NetVM. Based on different semantics of remote write and MPI,

our design mainly focused on providing a synchronization mechanism for message

53

passing, and translating the remote write semantics to stream-oriented semantics.

MPIN creates a Control Message Area (CMA) on each process, and uses different

types of control messages to synchronize message passing. A state machine was de

veloped to control the progress of message passing between processes, and to ensure

the order and progress of communication operations.

MPIN is compared with L A M running on Myrinet. Performance showed that

MPIN improved the performance of both the microbenchmark and real world appli

cations. This thesis proved that the remote memory technology can be a powerful

tool in implementing a stream-oriented MPI library.

54

Bibliography

[1] A . Wijeyeratnam and A . Wagner. MPI-NP: A Myrinet communication layer for
L A M . In Proc. of the 11th Parallel and Distributed Computi ng and Systems,
Cambridge, Massachusetts, November 1999.

[2] Darrell Anderson, Jeff Chase, Syam Gadde, Andrew Gallatin, Ken Yocum,
and Mike Feeley. Cheating the I/O bottleneck: Network storage with
Trapeze/Myrinet. In Proceedings of the 1998 USENIX Technical Conference,
June 1998.

[3] N. J . Boden, D. Cohen, R. E . Felderman, A . E . Kulawik, C . L Seitz, J . N.
Seizovic, and Wen King Su. Myrinet: a gigabit-per-second local area network.
IEEE Micro, 15(l):29-36, February 1995.

[4] Dmitry Brodsky. R-simp to pr-simp: Parallelizing a model simplification algo
rithm. Technical Report TR-00-02, University of British Columbia, 2000.

[5] Dmitry Brodsky and Benjamin Watson. Model simplification through refine
ment. In Sidney Fels and Pierre Poulin, editors, Graphics Interface '00, page To
appear in G l '00. Canadian Information Processing Society, Canadian Human-
Computer Communications Society, May 2000.

[6] Greg Buzzard, David Jacobson, Milon Mackey, Scott Marovitch, and John
Wilkes (HP Labs). An implementation of the Hamlyn sender-managed interface
architecture. In 2nd USENIX Symposium on Operating System Design and
Implementation (OSDI), pages 245-60, October 1996.

[7] Jeffery S. Chase, Andrew J . Gallatin, Alvin R. Labeck, and Kenneth G . Yokum.
Trapeze messaging API. Technical Report CS-1997-19, Duke University, De
partment of Computer Science, November 1997.

[8] Cezary Dubnicki, Angelos Bilas, Kai Li , and Jim F . Philbin (Princeton). Design
and implementation of virtual memory-mapped communication on Myrinet. In
International Parallel Processing Symposium, April 1997.

55

[9] Edward W . Felten, Richard D . A lpe r t , Angelos Bilas , Ma t th i a s A . B lumr i ch ,

Douglas W . C la rk , Stefanos N . Damianakis , Cezary Dubnick, L i v i u Iftode, and

K a i L i . E a r l y experience wi th message-passing on the Shr imp mult icomputer .

In Proc. of the 23rd International Symposium of Computer Architecture, M a y
1996.

[10] Loic P r y l l i and Bernard Tourancheau. B i p : a new protocol designed for high
performance networking on M y r i n e t . In Workshop PC-NOW, IPPS/SPDP98,
1998.

[11] R . Bhoedjang, T . R u h l and H . E . B a l . Design Issues for User-Level Network
Interface P r otocols. IEEE Computer, 31(11):53 - 60, November 1998.

[12] Randolph Y . Wang , A r v i n d Kr ishnamurthy , Richard P M a r t i n , Thomas E A n
derson, and D a v i d E Cul ler . Mode l ing and opt imizing communicat ion pipelines.
In Proceedings of ACM International Conference on Measurement and Model
ing of Computer Systems, 1998.

[13] M a t t Welsh, A n i n d y a Basu , and Thorsten von Eiken . Incorporating memory

management into user-level network interfaces. In Hot Interconnects V, A u g

1997.

[14] Kenneth G . Y o k u m , Jeffery S. Chase, Andrew J. Ga l l a t in , and A l v i n R . Labeck.
Cut - through delivery in Trapeze: A n exercise in low-latency messaging. In
Proceedings of the 6th IEEE International Symposium on High Performance
Distributed Computing (HPDC-6), pages 243-52, August 1997.

56

