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Abstract 

Replication is widely employed to achieve fault tolerance and high availability. 

There are two common approaches: active replication and primary-backup replication. In 

the primary-backup approach, the service states are replicated on the backup server. 

When the primary server fails, the backup server takes over and continues the service. 

In most present implementations based on TCP/IP communication, the TCP 

connections between clients and servers break if the primary servers crash. The topic of 

this thesis is to keep the connections intact across primary server failures - the backup 

server will take all the TCP connections automatically so that, from the client's point of 

view, no services will be influenced by the failures. 

To achieve this goal, we implemented replication in the TCP layer. The information 

and data associated with the sockets are replicated on the backup server, so when a 

primary server fails, the backup server can reconstruct all the sockets. By using an ARP 

message to claim the IP address of the failed primary server, the backup server ̂ refreshes 

the routing tables in other nodes so the packets addressed to the failed primary server will 

be redirected to the backup server from then on. By this means, the backup server takes 

over seamlessly, without breaking the present TCP connections. 
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Chapter 1 

Introduction 

With the development of network technology, especially with the booming of the 

Internet, more and more services are rjecorning available on the network:: Many services 

demand high availability and fault tolerance. Replication is a widely employed technique 

to achieve fault tolerance. The state of the service is replicated on several failure-

independent servers, so that the service remains available even when a subset of the 

servers fails. From the client's viewpoint, there is only a single server providing 

continuous service. 

There are generally two approaches to replication. One way is called active (state 

machine) replication, in which clients update the state on all the servers atomically. 

Another approach is called passive (primary-backup) replication. In this approach, there 

is one designated primary server that handles requests from clients, while all the other 

servers are backups to the primary server. When the primary server fails, one of the 

backup servers takes over and becomes the new primary server. Passive replication is 

widely used in commercial products because it is comparatively simpler and has lower 

overhead on clients. 



TCP/IP, as the standard protocol used in the Internet, has become a platform of 

choice for many services because of the popularity of the Internet. However there is not a 

standard on how to achieve fault tolerant for services that use TCP/IP. 

1.1. Motivation 

In most present primary-backup implementations based on TCP/IP, replication is 

implemented in the application layer. As a result, every application has its own 

replication implementation. One drawback of implementing replication in the application 

layer is that when the primary server fails, the TCP connections to the primary server 

break down. The clients have to reestablish connections with the new primary server after 

they notice the break of the TCP connections. The clients and the new primary server 

need to negotiate to continue the service from some checkpoint. For a communication 

intensive service, this may require the retransmission of lots of data. 

The goal of this thesis is to seek a way to keep the TCP connections intact across 

server failures. Because of the lack of necessary information associated with TCP 

connections in the application layer, it is impossible to implement replication purely in 

the application layer. By implementing replication in the TCP layer, we can get another 

benefit at the same time: providing a general-purpose replication service to applications. 

1.2. Design Issues 

On one hand, we have the information associated with the TCP connections when we 

implement replication in the TCP layer. On the other hand, we do not have the 

information in regard to the data processing in the application layer, which is necessary to 

reconstruct the receiving queue upon takeover. We provide an API that users may use for 

checkpointing to solve this problem. 
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To get the information necessary for recovery, replication must be performed 

frequently to keep the replicated data on the backup consistent with that on the primary. 

However, replication operations cause overhead and influence the performance of the 

system. We follow an event-triggered processing style to replicate data every time it is 

changed. Choosing the right point to replicate is a key issue in the system design. 

Even with all the information needed, there is still a synchronization issue on 

takeover. The backup application and the TCP implementation must be closely 

synchronized to ensure that the responsibility for each byte of data is taken by either the 

application or the system but not both. 

To investigate the feasibility of the idea of implementing replication in the TCP 

layer, we chose FreeBSD as our experimental environment because it is a stable UNIX 

system and its source code is free. We modified part of the TCP and socket code, so that 

the control blocks of a socket and the data sent and received through the socket can be 

replicated on the backup in time. Myrinet is selected as the communication medium 

between the primary and backup to rninimize the communication overhead. 

1.3. Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 introduces some background 

knowledge and compares our work to related work. In Chapter 3 we discuss the design 

and implementation of our system. Experimental results are given in Chapter 4. Finally 

we summarize the work accomplished and suggest the future work that may be extended 

from this thesis. 
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Chapter 2 

Background Knowledge 

and Related Work 

This chapter introduces some background knowledge and some research and 

techniques related to our work. The first three sections review several common 

techniques used to achieve fault tolerance. Section 2.5 discusses some implementations 

of request distribution. Some of them use techniques similar to those we used in our 

work. The BSD TCP implementation, the base we implement our project on, is 

introduced in Section 2.6. In the last section, we introduce the communication API we 

used between primary servers and the backup, NetVM. 

2.1. Transactions 

The concept of a transaction is widely used in fault-tolerant protocols. Transactions 

have four essential properties [Tanen95]: atomic, consistent, isolated and durable. 

Atomicity ensures that a transaction is all-or-nothing: either it happens completely or not 

at all. Consistency means a transaction does not violate system invariants. The third 

property is often cited as serializability, meaning the execution of a transaction never 

appears to overlap the execution of another transaction, and the system behaves as if all 
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the transactions are executed sequentially in some order. Durability means that once a 

transaction commits, the results of the transaction become permanent. 

A common method of implementing transactions is to log history on stable storage. 

This method is often coupled with the two-phase commit protocol [Gray78] in distributed 

systems. In this protocol, the transaction committing involves two phases, preparation 

and committing. When a transaction is ready to commit, one of the group, members 

initiates the two-phase commit by writing "prepare" in the log and sends the "prepare" 

message to the other members. All the other members check their states to see if they are 

ready to commit when they receive the message, and send back their decision. Only when 

the initiator receives "ready" from all the members could it write "commit" in the log and 

send the message to the other members. Otherwise the transaction is aborted. The 

"commit" in the log is the sign and is the only sign that the transaction has committed. 

If, a computation consists of a sequence of transactions then different: forms of 

redundancy may be employed to achieve fault tolerance. E.g., by using a log, a 

transaction may be rolled back to the last consistent state and the computation restarted 

from there if an error is detected. By this means, fault tolerance is accomplished by time 

redundancy. Another popular technique is to employ physical redundancy to mask the 

failure of a component. 

2.2. Message Logging and Checkpointing 

Although transactions are widely used to accomplish fault tolerance, there: are some 

situations in which it is hard to employ this technique. If the service state is determined 

by its initial states and the sequence of the messages sent and received, a similar 

technique, message logging, may provide fault tolerance as well. When a server fails, we 
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can always restore its initial state and roll forward by reapplying the messages saved in 

the log to reach the state before the failure. Message logging can be either sender-based 

or receiver-based. 

Used alone sometimes [Dimmer85] [PR85], checkpointing is a technique that is 

often used with message logging. Checkpointing saves the service state on some stable 

storage, so when a server fails, we may simply restore the last checkpoint and roll 

forward from there instead of restoring the initial state. 

Message logging protocols can be also categorized in two groups: pessimistic : 

protocols [JZ87], which require the messages to be logged synchronously before they are 

sent out (sender-based) or processed (receiver-based); and optimistic protocols [DG96] 

[JV87] [SY85], which allow message logging to be performed in parallel with message 

sending or processing. Optimistic protocols introduce lower overhead but may cause 

inconsistency. Another approach is causal logging [AM98] [EZ92], which logs in volatile 

memory and piggybacks the log on every message. Because there is no stable storage 

involved, the performance is better than that in pessimistic protocols. On the other hand, 

the system states are consistent. Comparison of different approaches can be found in 

[AM98] [RAV98]. 

2.3. Replication Models 

In a client-server architecture, physical redundancy is to replicate the service states 

on multiple sites that fail independently. The clients even do not have to be aware of the 

existence of the multiple sites, they may use the service as if there is only one server 

providing the service. 
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Active Replication Passive Replication 

Figure 2-1 Replication Models 

There are two widely employed replication approaches: active replication and 

passive replication. Active replication is also called the state-machine approach, in which 

all the replicated servers are identical. The service states on all active servers should be 

updated atomically, so all servers share the same view of the service states. In this way, 

every server is ready to continue the service if other servers fail. Passive replication, or in 

another word, primary-backup replication, designates one replica as the primary server, 

and all the other servers are its backup. In this approach, only the primary server handles 

requests from clients, and the primary server is normally responsible for updating the 

service states on backup servers periodically. If the primary server fails, one of the 

backups takes over and becomes the new primary. 

There exist many replication model variations. In some implementations, client 

requests must be delivered to all the replicas atomically and in-order. The response to 

clients may be generated by voting [Gifford79]. Some implementations assume that the 

faults are fail-stop [Schneider83], and allow requests to be handled by only one of the 

replicas, and only the updates are broadcast among the replicas [LLG92]. There may 
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exist a front-end to handle client requests and forward them to appropriate servers. Many 

load balancing switch implementations [AYI97] [DCHKW97] [PABSDZN98] use this 

architecture. The front-ends may also run at client nodes [LLG92] to choose one of the 

servers to communicate with. There are also proposals to use location services to decide 

to which server to send requests [Trian95]. 

Figure 2-2 Some Variations 

Generally in the state machine approach, the overhead associated with atomic 

ordered delivery of messages tends to slow down the response to client requests. 

Comparatively, the primary-backup approach has lower overhead and normally needs 

less resources on backup servers because the services don't have to be active on them. 

However, this approach tends to require longer recovery time since a backup must 

explicitly use some algorithm to recover the service according to the replicated states. 

This may cause a problem in that during the gap between the failure of the primary server 

and takeover by a backup, some client requests may get lost, which in turn may cause 

clients to give up. More discussions on this may be found in [BMST92]. 

Each of the two approaches has its advantage, and both approaches need to replicate 

service states on multiple servers. The replication, synchronization and associated 
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communication delay introduce great overhead, and many efforts have been made to 

reduce it [WB84][OL88][LLG92][RMDJ94]. 

2.4. One-copy Serializability 

One principle of employing the replication technique is to provide clients the view 

that there is a single server providing service. This is termed as "one-copy serializability" 

[BG83], which has two aspects. First, the service is one-copy equivalent, i.e., multiple 

replications of an object appear as a single logical object to clients. Second, transactions 

may proceed on different replicas, but the system behaves as if all the transactions are 

executed in some serial order. Corresponding to the two properties, a replication method 

should include two sets of mechanism: a replica-management protocol to replicate all the 

data updates on the replicas, and a concurrency-control protocol to control the concurrent 

data access by multiple clients. In primary-backup protocols, the replication method is 

comparatively simple because only the primary server handles requests from clients. The 

concurrency control protocol in this approach is quite similar to that in non-replicated 

systems. The situation in the state-machine approach is much more complicated in that 

each replica may be eligible to handle client requests. The replicas must be closely 

synchronized to keep data consistent. 

A simple implementation of one-copy serializability is the read-one-write-all 

protocol. In this protocol a read operation is executed on any replica, and the correctness 

of the operation is guaranteed because a write operation must be executed on all the 

replicas atomically. This protocol observes strict consistency: any read to an object 

returns the valued stored by the most write operation to the object. 
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Observing that the availability of write operations in the read-one-write-all protocol 

is severely restricted, Gifford presents a quorum protocol [Gifford79] in which a read 

operation involves a read quorum number of copies while a write operation involves a 

write quorum number of copies. The sum of the read and write quorums must exceed the 

total number of replicas. The quorum protocols [AB91] [Herlihy87] sacrifice the 

availability of read operations to increase that of write operations: write operations do not 

have to be executed on all replicas, but read operations must be executed on multiple 

replicas to get the most recent updated results by voting. 

Two-phase Locking is a widely used technique for concurrency control in both read-

one-write-all and quorum protocols. As the name suggests, two-phase locking includes 

two phases: a growing phase to acquire locks and a shrinking phase to release locks. A 

transaction should get all the locks needed during the growing phase. Lock acquiring and 

lock releasing should not be interleaved during the execution of a transaction. If a process 

fails to acquire all the locks needed, it may simply release all the locks acquired and try 

the two-phase locking again later. 

Although two-phase locking ensures serializability, it causes high overhead. That is 

where the optimistic concurrency control [KR81] comes in. The idea behind it is to 

assume that the possibility of conflicts is fairly low, so everyone may just go ahead and 

do whatever is needed. If conflicts do occur, influenced transactions may be aborted. In 

contrast to the two-phase locking protocol, optimistic protocols normally update replicas 

asynchronously. This approach improves the system performance but may cause 

inconsistency. This is illustrated in Figure 2-3. Under synchronous updates, the primary 

sends update messages to backups synchronously when it receives a request from a client, 
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and it will not send the response to the client until it gets acknowledgement from all the 

backups. In asynchronous mode, the primary sends back the response at once, and the 

update message is scheduled some time in the future. The example is given in the 

primary-backup model, but it applies to the state machine model as well. More 

discussions on this can be found in [SL95]. 

Figure 2-3 Synchronous update vs. asynchronous update 

Many researchers have observed that serializability is too strict as a correctness 

criterion in many situations. A protocol may work well even if the data on replicas are 

temporally inconsistent, on condition that the inconsistency is bounded and the data will 

eventually reach consistency. Following this approach, many protocols achieve better 

performance than protocols observing one-copy serializability [DGP90] [PL91] [KG94] 

[SL95] [XSSRT96]. Research is also performed on the propagation protocol for weak 

consistency [PST97]. Rexford et al. employed a similar technique, window-consistency, 

for primary-backup replication [RMDJ94] [MRJ97]. 

The location-based paradigm [Trian92] [TT95] combines a quorum protocol with the 

asynchronous technique. In this protocol, servers are organized as in quorum protocols. 

In addition, the size of the write quorum should be larger than the half of the total 

replicas. Read / write operations are similar to those in quorum protocols except that the 

updating information is sent to location servers. The non-replication-like performance is 
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achieved by employing "asynchronous replicated lock acquisition". Instead of getting a 

lock from the number of replicas in the quorum synchronously, a client obtains the lock 

from a single replica called the leader replica. The leader replica sends back an 

acknowledgement and broadcasts lock-acquisition messages to other replicas, which in 

turn will obtain the lock locally. Thus the lock acquisition operation on non-leader 

replicas is performed in parallel with the client's execution of subsequent operations. 

Some deadlock-prevention mechanisms need to be employed. 

2.5. Request Distribution 

One of the replication variants we discussed in Section 2.1 has one front-end 

handling client requests and passing requests to appropriate servers. This architecture is 

widely used in the World Wide Web. Many web sites employ identical web servers to 

process client requests due to workload and fault-tolerance requirements. IBM and 

CISCO even designed hardware to support request distribution [CISCO] [IBM]. There is 

also much academic research in this area [AAPPS99] [APB96] [AYI97] [DCHKW97] 

[PABSDZN98]. 

Many of these implementations aim at distributing HTTP streams to balance 

workloads among different servers. SWEB [AYI97] implements this in the HTTP layer 

by URL redirection [BFF95]. The front end sends back a URL redirection message that 

includes the IP address of one of the back end servers when it receives an HTTP 

connection request. The client will set up a new TCP connection to the new IP address 

upon receiving the URL redirection message. ONE-IP [DCHKW97] presents two low-

cost solutions that do not require modifying TCP implementations on servers to 

accomplish load balancing among servers. All the back end servers share the same IP 
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address by using address aliases. In the routing-based dispatching, a dispatcher (which 

may be the router) in the cluster acts as the front end to distribute TCP traffic to different 

servers according to the IP address of the client. In the broadcast-based dispatching, the 

client requests are broadcast to all servers, and every server has a filtering routine that 

filters out undesired packets. In both implementations, the client IP ^addresses are 

statically configured to dispatch to different servers, therefore this approach is not so 

flexible as the dynamic dispatching implementations. 

L ARD [PABSDZN98] and the Layer 5 switch [AAPPS99] are designed for content-

based switching. The front-end in these implementations not only check the workload of 

the back-end servers but also check the content of an incoming request (mainly U R L 

message [BMM94]) to dispatch it. This approach may achieve high cache hit rate by 

dispatching similar requests to the same back-end server. The complexity of this 

approach is that only after the TCP connection has been set up will the front-end be able 

to check the content of the higher layer requests. LARD implements this by a technique 

called 'TCP handoff". A client sets up a connection to the front-end, which checks the 

content of the request and chooses one of the back-end servers. The front-end then 

forwards the established connection to the appropriate back-end server by sending a 

"handoff' request to it. After accepting the request, the back-end takes over the 

connection and sends to the client directly*. A technique similar to the TCP handoff, 

TCP-R (TCP Redirection) [FYT97] was originally designed for mobile computing, but 

can be used in the handoff situation with little modification. The L5 switching is similar 

to LARD, but it does not modify the TCP state machine. When it receives the request 

* Only packets sent from the back-end to the client are direct, the packets sent from the client to the back-
end still need to be forwarded by the front-end. 
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from a client, instead of sending a special request message, the switch sends a normal 

TCP connection request to a back-end with the initial sequence number selected by the 

client. With the two TCP connections, the switch acts as a medium between the client and 

the back-end. If the implementation is just like this, there is no doubt that the 

performance will not be good. The magic lies in the port controller on the switch. A 

classifier at the server port controller on the switch converts the sequence number in 

every packet from the back-end to the switch to the sequence number used between the 

switch and client. By this means, the two TCP connections splice and packets may bypass 

the CPU of the switch and be switched very quickly by the port controllers. 

The magicrouter [APB96] is a more general-purpose design, which allows a user-

level process to modify every packet passing a device driver. One of the applications of 

this technique is to change the packet header to redirect it to different destination, as what 

the port controller in L5 switch does. Shared memory is used to allow the kernel to 

expose packets to user level processes. The advantage of this approach is that the policy 

> is made by the user process, so it is very flexible. The weakness is that in most systems, 

the user-kernel communication is slow, so the performance is greatly reduced. 

2.6. BSD TCP Implementation 

The TCP implementation in BSD UNIX is tightly coupled with the socket 

implementation. Introduced in 4.2BSD, sockets have become the most popular API for 

TCP/IP communication. Most TCP implementations in systems originated from BSD 

UNIX are based on the implementation in 4.4BSD-Lite, and are quite similar. The 

version of the code described in this thesis is FreeBSD 2.2.2 Release. The TCP 
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implementation is very complex. Here we can only introduce what is directly related to 

our implementation. More information can be found in [WS95] 

2.6.1. Essential Data Structures 

An application can use the socket system call to create a socket which is then used to 

send or receive data. The system call creates a socket structure inside the kernel, which 

contains pointers to protocol related data structures and queues for sending and receiving 

data (so_snd and so_rcv). A listening socket also contains queues for partially completed 

connections and ready to complete connections. 

s t r u c t socket { 
short so_type; 
short so_options; 
short so_linger; 
short so_state; 
caddr_t so_pcb; 
st r u c t protosw 

/* 
/* 
/* 
/* 

'so_proto; 

generic type, see socket.h */ 
from socket c a l l , see socket.h */ 
time to l i n g e r while c l o s i n g */ 
in t e r n a l state flags SS_*, below */ 

/* protocol control block */ 
/* protocol handle */ 

/* 
Variables for connection queuing. 
Socket where accepts occur i s so_head i n a l l subsidiary sockets. 
If so_head i s 0 , socket i s not r e l a t e d to an accept. 
For head socket so_q0 queues p a r t i a l l y completed connections, 
while so_q i s a queue of connections ready to be accepted. 
If a connection i s aborted and i t has so_head set, then 
i t has to be pu l l e d out of e i t h e r so_qO or so_q. 
We allow connections to queue up based on current queue lengths 
and l i m i t on number of queued connections for t h i s socket. 

*/ 
s t r u c t socket *so_head; /* 
TAILQ_HEAD(, socket) so_incomp; 

unaccepted connections */ 
TAILQ_HEAD(, socket) SO_COmp; 

connections */ 
TAILQ_ENTRY(socket) S O _ l i s t ; 

short so_qlen; 
short so_incqlen; 

short so_qlim.it; 
short so_timeo; 
u_short so_error; 
p i d _ t so_pgid; 
u_long so_oobmark; 

/* 

back pointer to accept socket ' 
/* queue of p a r t i a l 

queue of complete unaccepted 

l i s t of unaccepted connections 

*/ number of unaccepted connections 
number of unaccepted incomplete 
connections */ 
max number queued connections */ 

/* connection timeout */ 
/* error a f f e c t i n g connection */ 

pgid for signals */ 
chars to oob mark */ 

/ 

/* 
/* 

* Variables for socket b u f f e r i n g . 
*/ 
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s t r u c t sockbuf { 
u_long sb_cc /* actual chars i n buffer */ 
u_long sb_hiwat; /* max actual char count */ 
u_long sb_mbcnt; /* chars of mbufs used */ 
u_long sb_mbmax; /* max chars of mbufs to use */ 
long sb_lowat; /* low water mark */ 
str u c t mbuf *sb_ mb; /* the mbuf chain */ 
stru c t s e l i n f o sb_sel; /* process s e l e c t i n g 

read/write */ 
short sb_flags; /* f l a g s , see below */ 
short sb_timeo; /* timeout for read/write */ 

} so_ rev, so_snd; 
#define SB_MAX (256 *1024) /* default for max chars i n sockbuf:*/ 
#define SB_LOCK 0x01 /* lock on data queue */ 
ttdefine SB_WANT 0x02 /* someone i s waiting to lock */ 
#define SB_WAIT 0x04 /* someone i s waiting f o r data/space */ 
ttdefine SB_SEL - 0x08 /* someone i s s e l e c t i n g */ 
ttdefine SB_ASYNC 0x10 /* ASYNC I/O, need sig n a l s */ 
ttdefine SB_NOTIFY (SB_WAIT1 SB_SEL|SB_ASYNC) 
ttdefine SB_NOINTR 0x40 /* operations not i n t e r r u p t i b l e */ , 

caddr _ t SO_tpcb; /* Wise, protocol c o n t r o l block XXX */ 
voi d (*so_upcall) _ _ P ( ( s t r u c t socket *so, caddr_t arg, i n t 

w a i t f ) ) ; 
caddr_t so_upcallarg; '/* Arg for above */ 

}; ' 

Figure 2-4 Socket Structure 

The field so_pcb in the socket structure is a pointer to a protocol control block, 

which is the IP control block for Internet domain sockets. The IP control block is used for 

both TCP and UDP communications. The structure contains a back pointer to the socket 

structure and a pointer to another protocol control block, e.g., the TCP control block. All 

s t r u c t inpeb { 
LIST_ENTRY 
LIST_ENTRY 
Struct 
s t r u c t 
u_short 
s t r u c t 
u_short 
s t r u c t 
caddr_t 
s t r u c t 
i n t 
s t r u c t 
s t r u c t 
s t r u c t 

}; 

(inpeb) i n p _ l i s t ; / * l i s t for a l l PCBs of t h i s proto */ 
(inpeb) inp_hash; /* hash l i s t */ 

inpebinfo *inp_pcbinfo; 
in_addr inp_faddr;/* foreign host table entry */ 

foreign port */ 
/* l o c a l host table entry */ 

l o c a l port */ 
/* back pointer to socket */ 

pointer to per-protocol peb */ 
placeholder f o r routing entry */ 
generic IP/datagram flags */ 

ip inp_ip; /* header prototype; should have more */ 
mbuf *inp_options; /* IP options */ 
ip_moptions *inp_moptions; /* IP multicast options */ 

inp_fport; /* 
in_addr inp_laddr; . 
inp _ l p o r t ; /* 
socket *inp_socket; 
inp_ppcb; / * 
route inp_route; /* 
inp_f l a g s ; /* 

Figure 2-5 IP Control Block 
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the control blocks of the same protocol are chained in a doubly linked list so the system 

may locate any of them by searching the list linearly. The control blocks are chained in a 

hash table as well. For transport demultiplexing, the system can also find a control block 

quickly by using the hash table. The control blocks with the same hash code are chained 

in a special list. 

s t r u c t tcpcb { 
st r u c t 
s t r u c t 

tcpiphdr * seg_next; 
tcpiphdr *seg_prev; 

/* sequencing queue */ 

i n t 
i n t 
i n t 
i n t 
i n t 
u i n t 

t_state; /* state of t h i s connection */ 
t_timer[TCPT_NTIMERS]; /* tcp timers */ 
t _ r x t s h i f t ; 
t_rxtcur; 
t_dupacks; 
t_maxseg; 

u_ i n t t_maxopd; 
i n t 
u _ i n t 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

t_force; 
t _ f l a g s ; 
TF_ACKNOW 
TF_DELACK 
TF_NODELAY 
TF_NOOPT 
TF_SENTFIN 
TF_REQ_SCALE 

7* 
/* 
/ * 
/* 
/* 
/* 

*/ 

0x0001 
0x0002 
0x0004 
0x0008 
0x0010 

log(2) of rexmt exp. backoff 
current retransmit value */ 
consecutive dup acks reed */ 
maximum segment s i z e */ 
mss plus options */ 
1 i f fo r c i n g out a byte */ 

/* ack peer immediately */ 
/* ack, but t r y to delay i t */ 
/* don't delay packets to coalesce */ 
/* don't use tcp options */ 
/* have sent FIN */ 

0x0020/* have/will request window s c a l i n g 
TF_RCVD_SCALE 0x0040/* other side has requested s c a l i n g 
TF_REQ_TSTMP 0x0080/* have/will request timestamps */ 
TF_RCVT_TSTMP 0x0100/* a timestamp was received i n SYN */ 
TF_SACK_PERMIT 0x0200/* other side s a i d I could SACK */ 

*/ 
*/ 

#define TF_NEEDSYN 0x0400 
#define TF_NEEDFIN 0x0800 
#define TF_NOPUSH 0x1000 
#define TF_REQ_CC 0x2000 
#define TF RCVD CC 0x4000 
#define TF_SENDCCNEW 0x8000 

/* 
/* 
/* 
/* 
/* 
/* 

send SYN ( i m p l i c i t state) 
send FIN ( i m p l i c i t state) 
don't push */ 
have/will request CC */ 
a CC was received i n SYN 

*/ 
*/ 

send CCnew instead of CC i n SYN */ 
st r u c t tcpiphdr *t_template;/* s k e l e t a l packet for transmit 
s t r u c t inpeb *t_inpcb; /* back pointer to internet peb 

* The following f i e l d s are used as i n the protocol s p e c i f i c a t i o n . 
* See RFC783, Dec. 1981, page 21. 
*/ 

/* send sequence variables */ 

*/ 
*/ 

tcp_seq 
tcp_seq 
tcp_seq 
tcp_seq 
tcp_seq 
tcp_seq 
u_long 

snd_una; 
snd_nxt; 
snd_up; 
snd_wll; 
snd_wl2 ,-
i s s ; 
snd_wnd ; 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

send unacknowledged */ 
send next */ 
send urgent pointer */ 
window update seg seq number 
window update seg ack number 
i n i t i a l send sequence number 
send window */ 

*/ 
*/ 
*/ 

/* receive sequence variables 
u_long rcv_wnd; 
tcp_seq rcv_nxt; 

*/ 
/* receive window */ 
/* receive next */ 
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tcp_seq rcv_up; /* receive urgent pointer */ 
tcp_seq i r s ; /* i n i t i a l receive sequence number */ 

* A d d i t i o n a l v a r i a b l e s for t h i s implementation. 
*/ 

/*' receive v a r i a b l e s *•/ 
tcp_seq rcv_adv; 

/* retransmit v a r i a b l e s */ 
tcp_seq snd_max; 

/* advertised window */ 

/* highest sequence number sent; 
* used to recognize retransmits 

*/ 
/* congestion c o n t r o l (for slow s t a r t , source quench, retransmit a f t e r 
loss) */ 

u_long snd_cwnd; /* congestion-controlled window */ 
u_long snd_ssthresh;/* snd_cwnd s i z e threshold for 

* for slow s t a r t exponential to 
* l i n e a r switch 
*/ 

/* 
* transmit timing s t u f f . See below for scale of s r t t and r t t v a r . 
* "Variance" i s a c t u a l l y smoothed d i f f e r e n c e . 
7 

u_int t _ i d l e ; 
i n t t _ r t t ; 
tcp_seq t_rtseq; 
i n t t _ s r t t ; 
i n t t _ r t t v a r ; 
u _ i nt t_rttmin; , 

/* i n a c t i v i t y time */ 
/* round t r i p time */ 
/* sequence number being timed */ 
/* smoothed round-trip time */ 
/* variance i n round-trip time */ 
/* minimum r t t allowed */ 

u_long max_sndwnd; /* l a r g e s t window peer has o f f e r e d */ 

/* out-of-band data */ 
char 
char 

ttdefine 
ttdefine 

i n t 

t_oobflags ; 
t_iobc; 
TCPOOB_HAVEDATA 
TCPOOB_HADDATA 
t_ s o f t e r r o r ; 

/* have some */ 
/* input character */ 
0x01 
0x02 
/* p o s s i b l e error not yet reported */ 

/* RFC 1323 v a r i a b l e s */ 
snd_scale; 
rcv_scale; 
request_r_scale; /* 
requested_s_scale; 

u_char 
u_char 
u_char 
u_char 
u_long 
u_long 
tcp_seq 

/* RFC 1644 v a r i a b l e s */ 
tcp_cc cc_send; 
tcp_cc cc_recv; 
u_long t_duration; 

/* window s c a l i n g for send window */ 
/* window s c a l i n g for recv window */ 

pending window s c a l i n g */ 

ts_recent; 
ts_recent_age; 
last_ack_sent; 

/* 

/* 
/* 
/* 

timestamp echo data */ 
when l a s t updated */ 

send connection count */ 
receive connection count 
connection duration */ 

/* TUBA s t u f f */ 
caddr_t t_tuba_pcb; /* next l e v e l down pcb for TCP over z */ 

/* More RTT s t u f f */ 
u_long t_rttupdated; /* number of times r t t sampled */ 

}; 
Figure 2-6 T C P Control Block 
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Given an IP control block, the corresponding TCP control block can be easily 

obtained through the pointer in the IP control block. Unlike the IP control block, which 

mainly contains static information about the communicating peer, the TCP control block 

contains much dynamic information, which is used to provide the TCP semantics: 

/* header at beginning of each-mbuf: */ 
struc t m_hdr { 

str u c t mbuf *mh_next; /* next buffer i n chain */ 
str u c t mbuf *mh_nextpkt; /* next chain i n queue/record */ 
caddr_t mh_data; /* l o c a t i o n of data */ 
i n t mh_len; /* amount of data i n t h i s mbuf */ 
short mh_type; /* type of data i n t h i s mbuf */ 
short mh_flags; /* fl a g s ; see below */ 

}; 

/* record/packet header i n f i r s t mbuf of chain; v a l i d i f M_PKTHDR set 
*/ 
str u c t pkthdr { 

str u c t i f n e t * r c v i f ; /* rev in t e r f a c e */ 
in t len; /* t o t a l packet length */ 

}; 

/* d e s c r i p t i o n of external storage mapped into mbuf, v a l i d i f M_EXT 
set */ 
struct m_ext { 

caddr_t ext_buf.; /* s t a r t of buffer */ 
void (*ext_free) /* free routine i f not the usual */ 

P((caddr_t, u _ i n t ) ) ; 
u_int ext_size; /* s i z e of buffer, for ext_free */ 
void (*ext_ref) /* add a reference to the ext object */ 

P((caddr_t, u _ i n t ) ) ; 
}; 

struct mbuf { 
struc t m_hdr m_hdr; 
union { 

st r u c t { 
st r u c t pkthdr MH_pkthdr; /* M_PKTHDR set */ 
union { 

str u c t m_ext MH_ext; /* M_EXT set */ 
char MH_databuf[MHLEN]; 

} MH_dat; 
} MH; 
char M_databuf[MLEN]; /* !M_PKTHDR, !M_EXT */ 

} M_dat; 
}; 

Figure 2-7 Mbuf Structure 
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reliable communication, flow control and congestion control. The sequence numbers in 

the structure play important roles in detecting duplicate or lost packets. The TCP control 

block is a big structure as shown in Figure 2-6. 

The mbuf, shown in Figure 2-7, which stands for "memory buffer", is the basic 

memory management unit for network communications inside the BSD kernel. The 

sending and receiving queues in the socket structure are organized as mbuf chains. The 

mbuf provides an easy way to manipulate data buffers, including prepending and 

appending data to buffers, removing data from buffers, and mirurnizing the amount of 

data copied for these operations. The mbuf can be varying-sized, contairiing up to 108 

bytes of data. For more data than that, more than one mbuf can be chained together, or an 

external buffer of 2048 bytes can be employed. There is a pointer in the mbuf header 

pointing to the first byte of data, and a field storing the size of the data inside this mbuf. 

To add more data to an mbuf chain, we may simply append or prepend a new mbuf to the 

chain. Some mbufs can be deleted from the chain upon removing data. If part of the data 

in a mbuf needs to be removed, we may simply modify the data pointer to point to the 

new beginning, if the data is to be removed from the beginning. Otherwise we can 

modify the size field to reflect the data left in the mbuf, if the data is to be removed from 

the end. Mbufs are not only used for storing data, but also for IP address, port number 

and protocol control information. 

2.6.2. Connection Establishment 

The TCP connection establishment procedure is known as a three-way-handshake. In 

normal operations, a client (the active open side) sends a SYN to the server (the passive 

open side). The server in the "listen" state sends back a packet containing a SYN and an 
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A C K for the SYN from the client. Upon receiving the packet, the client sends back an 

A C K for the SYN from the server, which may be piggybacked on the first data packet or 

on the following data packet, and enters the "established" state. The server enters the 

same state after it receives the ACK. The normal procedure on the server side is shown in 

the Figure2-8. 

User creates a socket 
and listens on it 

LISTEN 
State ) 

Remove the socket from 
the complete queue and 

return it to user 
User calls acceptQ^ 

ESTABLISHED 
State 

S Y N received 

Create a new socket 
and put it in the 

incomplete queue 

Move the socket from 
the incomplete queue to| 

the complete queue 

A C K received 

S Y N _ R E C E I V E D 
State 

Send back 
S Y N / A C K 

Figure 2-8 Connection Establishment 

2.7. NetVM 

NetVM is an API on the MyriNet Gigabit Network Interface developed by Joon 

Suan Ong at UBC. With NetVM, a process is able to read and write memory on a remote 

node directly. NetVM was originally designed for user level communication, so all the 

functions could only be invoked in user space. Ong modified it to fit with our 

requirement. The only function used in our project is the remote write function using 

physical addresses. The function interface is shown in Figure 2-9. 

21 



unsigned i n t 
lkm_remote_write_phy(void *p, /* l o c a l buffer pointer */ 

unsigned i n t pa, /* correspondent phy s i c a l address */ 
i n t len, /* buffer s i z e */ 
Tprot_key key, /* l o c a l access key, unused i n kernel */ 
i n t rem_node, /* MyriNet node i d */ 
i n t rem_id, /* block i d , unused */ 
voi d *rem_p, /* remote buffer pointer */ 
unsigned i n t rem_pa, /* remote buffer p h y s i c a l address */ 
Tprot_key rem_key, /* remote access key, unused */ 
i n t f lags /* synchronization f l a g */ 

) ; 

Figure 2-9 NetVM Remote Write 

This kernel version remote write borrows the interface from the one for user level 

communication, so there are many unused parameters, which are used to enforce security 

in the user level version. 

There are some constraints on using NetVM. First, like most communication APIs 

based on DMA, the data to be transferred must be DMAable. On IBM PCs, this means 

both the address and the length of the data must be multiples of 4. Second, the data 

cannot cross a memory page boundary. Normally the memory page size on PCs is 4096 

bytes. Third, both the virtual memory address and the physical address must be used to 

achieve best performance. And last, the present version of NetVM does not provide a 

notification mechanism on data arrival events. An alternative message passing API 

implemented by Mricom, G M [Myr99] does provide notification but does not support 

remote memory operations. 

Despite all these constraints, NetVM provides a convenient communication 

mechanism with low overhead. Without using explicit messages, NetVM releases the 

user process on the remote node from handling messages. 
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Chapter 3 

Design and Implementation 

The goal of our system is to provide a general tool for various applications to attain 

fault tolerance. The system must have these properties: 

• Transparent to clients. 

• Low overhead. 

• Little involvement of user applications. 

• Easy-to-use interface. 

The failure that our design addresses is the failure of a server. A server may fail, but 

we assume the failure is fail-stop. We do not try to handle network partitions or 

Byzantine failures. 

3.1. Overview 

As shown in Figure 3-1, we follow the primary-backup approach. Similar to 

[Barlett87], every primary server only has one backup in our model. This decision is 

based on the fact that the failure possibility of the primary server is fairly low and our 

implementation is not designed to handle Byzantine failure. A benefit of this approach is 

that it avoids synchronization among backup servers. Different from [Barlett87], several 

primary servers may share the same backup. 
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Clients 

Figure 3-1 System Architecture 

Applications using this system achieve fault tolerance through a way quite similar to 

message logging protocols. The difference is that the message and checkpoint logs are 

not saved on some stable storage, but on a backup server. Instead of rebooting the server 

and restarting the applications on it after a server crashes, the backup server takes over 

and continues providing the services. 

Figure 3-2 shows the normal scenario of the working process of the backup system, 

which comprises of 3 phases. In the setup phase, a primary begins with creating a 

listening socket and notifies the backup, which in turn creates a backup environment for 

the socket and returns the information to the primary. Every time it accepts a connection 

request from a client, the primary creates a new socket and creates a new back 

environment on the backup. The second phase is the communication phase, in which the 

primary works similar to normal TCP servers, except that it replicates every packet 

received and sent and the control blocks of the communication sockets on the backup. 

The primary also sets a heartbeat flag on the backup to indicate that it is still alive. At the 

same time, the application checkpoints periodically. The takeover phase begins when the 

primary crashes. The backup assumes that the primary has failed after there has been no 
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Figure 3-2 Backup-Takeover Process 

heartbeat signal from it for some time, and takes over. The sockets are reconstructed with 

the data received and sent since the last checkpoint. An application is executed to use 

these sockets to resume communication with the clients. 

There are four modules implemented on the primary server. The first one is the 

environment-setup module which sends requests to the backup server to set up the 

backup environment and records configuration information concerning these connections. 

Its counterpart, the release module, notifies the backup server to free the resources 

allocated, and releases related local resources. The replication module is responsible for 

replicating the incoming and outgoing data and related control information on the backup 

side. The last module is a timer that generates heartbeat signals periodically to tell the 

backup that it is still alive. 
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Referring to Figure 3-2, the system on the backup server is divided into two parts: a 

backup daemon running in user space and a L K M (Loadable Kernel Module) running in 

the system kernel which provides a system call. The backup daemon has two main tasks. 

The first one is to invoke the backup system call, which loops, processing backup 

requests from the primaries. Second, the backup daemon executes appropriate 

applications to take over when the L K M detects a primary server failure and forks a new 

process to return to the user space. The L K M sets up the backup environment for a socket 

on a primary when it receives a backup request and destroys the environment when it 

set up 

Set up 
Environment 

Start Timer 

UDP 
Receive 

cancel 

time out 
Create New 
Process 

new 
Reconstruct 
Sockets 

Claim IP 
Address 

Return to 
Application 

Replease 
Resource 

old 

Figure 3-3 L K M 
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receives a cancellation request. A timer checks the heartbeats from the primary servers 

periodically and notifies the system of the primary failure event if there is no heartbeat 

from a primary server for some period. The process forks on fail-over events. The 

original process keeps on looping, while the new process handles the takeover, including 

claiming the IP address of the failed primary, recovering all the sockets backed up for the 

failed primary and creating file descriptors for the sockets to return to the backup 

daemon. The daemon executes appropriate applications and passes the corresponding file 

descriptors to them. 

3.2. Application Interlace 

The system is rarining on the server side and is transparent to clients, so there is no 

need to modify the code on the client side at all. On the server side, the system replicates 

all application TCP messages on the backup server. The state of an application is 

determined by its initial state and the TCP messages that it has received and sent. 

The system also provides an easy way to checkpoint an application. By this means, 

an application can write a checkpoint log on the backup server. When the primary server 

fails, the application can restart from the last checkpoint on the backup server instead of 

restarting from the initial state. The requirement is that the application must be able to 

recover according to the checkpoint. The system can reconstruct all the sockets used on 

the failed primary server and pass them to the application. The data received and sent 

since the last checkpoint can be recovered as well.' 

In summary, to use the system, an application should: 

• On the primary server: 

o Set the backup option 
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o Checkpoint 

• On the backup server: 

o Be able to recover from the checkpointed state. 

3.3. Backup Environment Setup 

The system provides the backup function as an option to applications. The socket is 

selected as the basic unit to set this option. An application can use the backup function by 

setting the backup option on a socket. For a socket with the backup option, the system 

creates the backup environment on the backup server for the socket, including creating a 

socket and related data structures, allocating data buffers to replicate incoming and 

outgoing packets, and allocating a log buffer to store checkpoint information. Every 

socket with the backup option has a corresponding socket for it on the backup server. 

Sockets without the backup option are processed as usual. 

For a listening socket with the backup option set, all the sockets created for 

connections accepted by it inherit the backup option automatically. This is suitable for 

most applications based on TCP. The listening socket does not transfer any data, it is only 

involved in handling connection-establishing requests. It is the sockets created through 

the listening socket, not the listening socket itself, that are used to exchange user, data. 

3.4. Synchronization 

To keep the service states on the primary server and the backup server consistent, the 

system must be well synchronized. There are several synchronization issues here. First, 

the application and TCP layer must share the same view on data upon takeover, i.e., each 

byte of data is either handed by the application or by the kernel, but not both. Second, 

replicated data in the TCP layer on the backup server must be consistent with that on the 

28 



primary server, so that the application gets the same flow of data no matter which server 

it communicates with. Third, on the backup server, the TCP state must be consistent with 

the data replicated. 

3.4.1. Synchronization between the Application and the T C P Layer 

Message replication is done in the TCP layer. To recover from a failure faster, the 

application server must have some mechanism, e.g., using a checkpoint log to record the 

service state periodically. The TCP layer is unaware of the service state in the application 

layer, so checkpointing must be done in the application layer. Thus we have two logs 

handled by different layers. 

The aim of the system is to make the failure of a server transparent to clients, so we 

cannot expect client applications to contribute to failure recovery. Everything should be 

done on the server side. Because data is replicated on the server side, the system must 

ensure that every TCP message is handled "exactly once". 

For incoming data, this means that every packet must be handled by the application 

exactly once. When the backup server takes over and restarts from the last checkpoint, 

the TCP layer is responsible for passing all the packets sent or received since the last 

checkpoint to the newly restarted application. The client application is oblivious to the 

failure and will neither restart from the checkpoint nor resend these packets. For outgoing 

data, there must be some mechanism to prevent the restarted application from resending 

the data that has been sent by the failed primary before it failed. 

The synchronization between the TCP layer and the application layer is achieved by 

using sequence numbers. TCP is a stream oriented reliable communication protocol, in 

which sequence numbers are exploited to detect lost and duplicated data. This makes the 
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sequence number a good candidate to log the transaction history. The only requirement is 

that the server application also uses sequence numbers to log transactions. By this means, 

the takeover server application may notify the TCP layer about the sequence numbers of 

the last bytes it sent and received, which can be retrieved from the checkpoint log. The 

TCP layer will then remove the inconsistent data from the sending and receiving queues. 

By doing this, it is guaranteed that the application will receive from the last byte it 

received and there will be no duplicate data in the sending queue. 

3.4.2. Synchronization between the Primary Server and Backup Server 

To ensure that the system may recover from primary server failure at any point, the 

data on the backup server and the primary server must be consistent. When a data packet 

arrives from the network, the device driver is invoked at the interrupt level. The IP layer 

then calls the appropriate transport layer routine to handle it according to the packet type. 

For a TCP packet, the TCP layer checks the packet header, and if it is the expected packet 

puts it in the receiving queue waiting for the application to fetch the data. An 

acknowledgement for this packet is arranged to be sent back some time in the nature. 

Normally the application retrieves the data asynchronously, and the packet is deleted 

from the queue after that. When the acknowledgement arrives, the sender deletes the 

corresponding packet from the sending queue and will not try to send it again. If the 

primary crashes right after it sends back the acknowledgement for an un-replicated 

packet, the sender of that packet will think the packet has been received and remove it 

from the sending queue. When the backup takes over, there will be no way for it to get 

this packet again. From this analysis it is obvious that an incoming packet must be 

replicated not only before the data is retrieved by the application, but also before the 
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acknowledgment is sent back. Replicating data before it is put in the receiving queue 

satisfies these requirements. 

Without the backup system, the socket layer merely puts the packet in the sending 

queue when an application sends a packet through a socket. The TCP layer will send the 

packet out through the IP layer at some convenient time. Because the send routine returns 

to the application immediately after the packet is put in the queue, the application may 

write the checkpoint before the packet has been sent. It is necessary to replicate the data 

before the send routine returns or delay the checkpoint until the acknowledgement of the 

packet has been received, so that the backup server may send out the packet if the 

primary server fails in such a scenario. 

3.4.3. Synchronization between Data Replication and Control Block 

Replication 

The TCP control block plays an important role in providing reliable communication. 

More specifically, the sequence numbers stored in the control block are the key to 

preventing duplicate or missing data. Because the replicated sockets on the backup server 

are not really communicating with clients, the TCP layer will not update their states 

automatically. In our model, the TCP control blocks on the backup server are just copies 

of those on the primary server. This causes a potential problem in that the replicated data 

and control block may be inconsistent on the backup. 
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Figure 3-4 Sending / Receiving process on the primary 

One way to guarantee that the data and control blocks are consistent is to replicate 

data and the corresponding control block atomically. Extra effort would be needed if we 

made the data replicating and control block replicating atomic. We followed another 

approach — simply replicating them separately. The correctness of this approach is 

guaranteed by the TCP functionality of providing reliable communication. It may happen 

that the control block states and the data states on the backup server are not consistent. 

However, when we reconstruct sockets on the backup server, we create data queues 

according to the control blocks. By doing so, the possibility of inconsistency is 

eliminated and at the same time, no necessary information is lost. Consider the two 

scenarios of replicating data on the primary in Figure 3-3. 

32 



In the first scenario, there are two points where failure may cause inconsistency. 

First, the primary fails after the data has been replicated on the backup server, but not put 

in the queue or has been put in the sending queue but the send system call has not 

returned. Because the primary fails before the send system call returns, the application on 

the primary will not log this packet as "sent". After takeover, the restarted application on 

the backup server will re-send the data. If there is no special mechanism here, then the 

data will be appended to the end of the sending queue, which has included the same data. 

This inconsistency between the application and TCP layer has been discussed in Section 

3.4.1. 

Second, if the primary server fails when some packets have been sent out, but the 

control block on the backup server has not been updated, then the control block states are 

inconsistent with the service states. However, this is well handled by TCP itself. 

According to the stale control block on the backup server, these packets have not been 

sent yet, so they will be re-sent. The duplicate packets will be detected on the client side 

and discarded. 

Similarly, there exists an inconsistent point in the second scenario. If the primary 

server fails between the data replication and control block replication, then the states on 

the backup server are inconsistent. There are more data in the backup buffer than what 

the control block shows. Neither the primary server nor the backup server will send 

acknowledgement for this received packet, so the client will re-send it. If the backup 

server copies the data from the backup buffer to the receiving queue as it is, then there 

will be duplicate data in the receiving queue. The solution is that by checking the 
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"rcv_nxt" sequence number in the control block, only data consistent with the control 

block will be copied to the receiving queue. 

3 . 5 . Implementation 

We implemented the system on IBM PCs running FreeBSD 2.2.2-Release. The 

computers are connected through MyriNet. On the primary server side, we modified part 

of the socket and TCP code to support the replication needed, since the replication 

operation closely interacts with the present TCP implementation. It is almost impossible 

to implement the replication as a Loadable Kernel Module (LKM). On the other hand, the 

module on the backup server is comparatively independent of other parts of the kernel, 

which allows us to implement it as a L K M . Implemented as an L K M , the system is more 

portable. A computer can begin to provide the backup service without rebooting. 

3.5.1. Backup Socket Management 

As introduced in Chapter 2, IP control blocks are linked in a list in BSD systems. 

TCP timers search the list to deliver TCP timeout events. The system also uses a 

hashtable to accelerate demultiplexing. Our system creates a corresponding backup 

socket on the backup for each socket on a primary that needs to be backed up. If we use 

the standard routine to create backup sockets, the IP control blocks of these sockets will 

be linked in the system list and the system hashtable. This may cause the backup server to 

handle the backup sockets mistakenly, e.g., trying to send out unacknowledged packets, 

accepting packets oriented to a primary server, etc. 

We solve this problem by creating a backup list and a hashtable on the backup using 

the same data structures as the BSD system kernel does. Instead of being linked to the 
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system list and hashtable, the IP control block of a backup socket is linked to the backup 

ones until the takeover. 

3.5.2. Backup Buffer Management 

For each socket to be backed up, the backup server creates a backup socket and 

allocates two data buffers for it, one for the outgoing data, and the other for the incoming 

data. Unlike the sending or receiving queues in the BSD TCP implementation, which are 

organized as mbuf linked lists, the buffers are allocated as continuous memory regions at 

the time the backup environment is set up. This approach avoids the overhead of 

allocating a small piece of memory every time some data needs to be replicated, but has 

the risk of wasting resources. The buffers are organized as fixed-sized circular lists, and it 

is the applications' responsibility to use them wisely. If there is too much data transmitted 

between two checkpoints, old data in the buffers may be overwritten by new data. The 

application must checkpoint in time to avoid data loss. 

Two auxiliary buffers are used to keep track of data boundaries in the sending buffer 

and the receiving buffer respectively. The contents of the buffers are pairs of sequence 

numbers and data pointers (see Figure 3-3), which are used to record the address of the 

data beginning from the specific sequence number. The length of the data can be obtained 

by the difference of two sequence numbers of neighboring pairs. Like the data buffers, 

these buffers are also organized as circular lists. The reason for using these buffers is 

explained in Section 3.5.4. 

In BSD systems, the sending/receiving queues are organized as mbuf lists, so the 

backup server needs to copy the data from the buffers to create the mbuf lists when it 

takes over. If the data is stored in mbuf lists when it is replicated, it will be faster to take 

35 



over. However, this approach introduces high overhead to data replication, and as a 

result, influences the system performance. Moreover, mbufs are managed by the kernel 

specially. Remote writing to mbufs is not really possible. 

3.5.3. Backup Option 

Our system provides applications the backup functionality as an option. If an 

application sets the option, our system will back up the indicated socket on the backup 

server. The socket is the basic unit for replication, so we reuse the socket option function 

in the operating system instead of providing a new routine. The socket option setting 

routine is pretty flexible. It may be used to set options for the socket layer, the TCP layer 

or the IP layer, which normally modifies socket data structures, TCP control blocks or IP 

control blocks respectively. Some socket options are just used to set flags in the 

so_options field of socket structures, whereas other socket options and TCP, IP options 

may be used to set or get system configurations. The setsockopt() system call provides an 

easy way to pass a variable length parameter. 

: Because our system is designed for TCP communication, we implement the backup 

option in the TCP layer. An application needs to use level IPPROTO_TCP to call 

setsockopt() so that the option is handled correctly in the TCP layer. Setsockopt() can be ; 

used to set or cancel the backup option. To set the option, the application should pass a 

structure containing the IP address and port number of the backup server as a parameter, 

which will be used to indicate the backup server to send requests to. This information is 

saved in the kernel for later use, e.g., to cancel the option. 

Sockets created by the "accept" system call should inherit the backup option 

automatically so that applications do not need to set the option for every accepted socket. 
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This is done in two steps. As shown in Figure 2-8, a new socket is created when the 

listening socket receives a SYN packet. The pointer to the backup server information is 

taken as a flag that the socket needs to be backed up. This pointer is copied to the newly 

created socket, so the new socket will be backed up on the same backup server as the 

listening socket is. The second step, setting up the backup environment, is done in the 

accept() system call. The TCP layer follows the same steps to set up the backup 

environment as those used in setting the backup option. Because tcp_input, the routine 

handling the SYN packet, is executed at interrupt level, whereas UDP is used in setting 

up backup environments, it is hard to implement the setup inside tcp_input. 

< 3.5.4. Replication 

Replication includes data replication and control block replication. Both of them are 

implemented by using NetVM. The reason we chose NetVM is that considering the large 

amount of data to be replicated, we tried to rninimize the overhead of replication. 

Myrinet provides a fast communication platform and NetVM is a convenient 

communication API available to us on Myrinet. The IP control block, which contains the 

static information of a connection, is replicated only once, right after the backup 

environment is set up. The TCP control block, which has fields that change with every 

data transmission, is updated frequently. Both the virtual address and the physical address 

of a remote buffer are needed to use NetVM. A primary server imports the addresses 

from the backup server when the backup environment is established. 
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s t r u c t bkpaddrs{ 
voi d *snd_buf; /* v i r t u a l address of the sending buffer */ 
i n t snd_buf_pa; /* physi c a l address */ 
voi d *snd_pnt; /* address of the pointer b u f f e r for sending */ 
i n t snd_pnt_pa; /* ph y s i c a l address */ 
void *rcv_buf; /* address of the r e c e i v i n g buffer */ 
i n t rcv_buf_pa; /* physi c a l address */ 
void *rcv_pnt; /* addresses of the pointer b u f f e r */ 
i n t rcv_pnt_pa; 
s t r u c t tcpcb *tcb; /* addresses of the TCP co n t r o l block */ 
i n t tcb_pa; 
s t r u c t inpcb *inp; /* addresses of the IP co n t r o l block */ 
i n t inp_pa; 
void *log; /* addresses of log */ 
i n t log_pa; 

}; 

Figure 3-5 Imported Addresses 

As introduced in Chapter 2, NetVM uses D M A to achieve fast data transmission. 

This requires that messages be word aligned. Normally variable addresses satisfy the 

alignment requirement of DMA, but the length of the data sent by user applications does 

not always fit with this criterion. This causes a problem when we use NetVM to replicate 

data. We solve this problem by copying extra data. For example: suppose that we need to 

copy 22 bytes of data whose offset from the beginning of a memory page is 0x0023. 

Instead of copying the exact 22 bytes of datâ  we copy 28 bytes of data from the offset 

0x0020. The operation satisfies the "DMAable" requirement of NetVM. Now the 

problem is how to notify the backup server about this so that the padding will not be 

taken as normal data by the backup server. 

Since NetVM simply writes data to a remote node without notification, the only 

possible solution is either send a notification to the backup server or use another remote 

write to log this on the backup server. Because the backup server does not care about the 

replicated data until a primary server fails, we follow the second approach. That is why 

we use two auxiliary pointer buffers to store this information. 
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Still using the above example and assuming that the 22 bytes data starts with 

sequence number 1: Figure 3-5 shows that extra bytes are copied from the primary server 

to the backup server. We can find the address of the real data from the pointer buffers, 

and by reading the next sequence number we know that only 23-1=22 bytes data in this 

segment are valid. 

0X0023 0X003C 

0X0020 Seq=l Primary Server 

•>. 22 bytes 

Data Buffer 

Pointer buffer 

• 2L 1 

Seq=l Seq=23 
1 1 
l 

Backup Server 

Figure 3-6 Handle unaligned data 

There are still several problems to deal with! First, the data in sending/receiving 

queue is stored in mbuf lists instead of continuous buffers. Second, NetVM cannot cross 

4KB page boundaries. Third, both the data buffer and pointer buffer are organized as 

circular lists. Special handling is needed when the end of buffer is reached. Furthermore, 

we want to use as few remote writes as possible. Otherwise, remote writes may introduce 

high overhead and consume pointer buffers very quickly. 

The size of an mbuf is smaller than 4K bytes, so an mbuf is always allocated within 

one memory page [MBKQ96]. Thus the read operation on a primary server when we use 

NetVM does not cross the page boundary. The buffers on the backup server are allocated 

as multiples of 4K, so the end of a buffer is also the end of a page. The system uses the 

remote write function in NetVM to replicate the mbufs one by one. Each time an mbuf is 

processed, the page boundary on the backup server is checked. If the data size in an mbuf 
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is larger than the space left in the current page on the backup server, the data needs to be 

copied in two sections. 

The writing of the pointer buffer is delayed until all the mbufs in a queue have been 

replicated or unaligned data is reached. This implementation saves many remote writes 

on aligned data. The backup server reconstructs the sending and receiving queues 

according to the pointer buffers, so if the primary server fails after some data is replicated 

but the corresponding pointer is not set, the data will not be copied upon takeover. The 

writing of sequence number and pointer pairs is overlapped. Every time a bunch of data is 

replicated in a remote buffer, the beginning sequence number and starting address and the 

ending sequence number and ending address are written in the corresponding pointer 

buffer, and the first pair overwrites the second pair written last time. By this means, the 

backup server may get the size of the last bunch of data while no extra space is used to 

save the data size. 

A bckpargs structure (Figure 3-6) is used on the primary server to record the offsets 

of the next byte to write in different buffers. An offset may be round up if the end of the 

corresponding buffer is reached. The replication operation is fully executed on the 

primary server side. 

s t r u c t bkpargs{ 
st r u c t bkpaddrs bckpaddrs;/* buffer addresses on the backup */ 
u_long snd_off; /* o f f s e t i n sending buffer */ 
u_long snd_pnt_off; /* o f f s e t i n sending pointer buffer */ 
u_long rc v _ o f f ; /* o f f s e t i n r e c e i v i n g buffer */ 
u_long rcv_pnt_off; /* o f f s e t i n r e c e i v i n g pointer buffer */ 
u_long log_off; /* o f f s e t i n log */ 

}; 
Figure 3-7 bckpargs structure 
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3.5.5. Failure Detection and Takeover 

We simply use heartbeat signals to detect the failure of primary servers. A timer on 

the primary server sets a flag on the backup server using NetVM every 0.2 seconds, and a 

timer on the backup server checks the flags every one second. If a flag has not been set 

within 1 second, the backup server will consider the primary server to have failed and 

will take over. The timers on the primary server and backup server are implemented in 

different ways. On the primary server, we use the TCP timer directly. In the BSD 

implementation, TCP uses two timer routines to check on TCP timeout events. One is 

called the "quick timer", which interrupts every 0.2 seconds; the other is the "slow 

timer", which interrupts every 0.5 seconds. We use the quick timer to set: the flag on the 

backup server. On the backup server, we use the "timeout" function inside the kernel to 

schedule a routine that checks on the "alive" flags. The flags are stored in a linked list. 

The routine checks and clears all the flags every 1 second. This allows up to four 

heartbeat signals to be lost before a failure is signaled. 

If a flag is not set since the last timeout event, the timer appends a special packet to 

the receiving queue of the blocked UDP socket which is waiting for the requests from 

primary servers and wakes up the socket. We implement it this way because the timeout 

is an interrupt event, which is not related to any process, whereas we need the process 

information to create file descriptors for the sockets to be recovered. Other alternatives 

were also considered. One choice is to send a signal to the blocked process, which will 

interrupt the blocked socket from waiting and cause the system call to return. The 

application must use another backup system call to reenter the kernel and again wait for a 

request. Another alternative is to use two processes inside the kernel, one of which is 
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used to handle requests, the other just sleeps until the timer routine sends a signal to it 

when a primary server failures. Both of the approaches are more complicated than the 

first alternative that we have adopted. 

When the blocked socket is woken up, the system may find the failure of a primary 

server from the received special packet, which contains the IP address of the failed 

server. A new process is created to handle this takeover, and the old process loops back 

and blocks on the UDP receive waiting for new requests. 

; The newly created takeover process first searches the backup socket list (see Figure 

3-7) for IP control blocks corresponding to the failed primary server according to the IP 

address. For every socket found, the replicated data is copied from backup buffers to the 

sending and receiving queues. Incoming data between the last checkpoint and rcv_nxt is 

copied to the sending queue. For incoming data, the snd_nxt is used as the start point, and 

the last sequence number in the pointer buffer is taken as the end mark. 

s t r u c t pntlnk{ 
char *snd_buf, *snd_pnt;/* b u f f e r pointers */ 
char *rcv_buf, *rcv_pnt; 
s t r u c t inpcb * i p ; /* corresponding IP control block */ 
struc t pntlnk *next; /* next backup socket i n chain */ 

} ; 

Figure 3-8 Structure of Backup Information List 

All corresponding IP control blocks are moved from the backup control block list to 

the system control block list so that they may accept incoming packets. The system 

creates a file descriptor for every socket associated with the new process, which will be 

directly used by the application to send and receive data. The backup server adds the IP 

address of the failed primary server to the network interface as an alias, which causes an 

ARP message to be broadcast in the local network. Every node in the local network, 

including the router, will update their corresponding routing entry accordingly. All the 
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messages addressed to that IP address will then be redirected to the backup server. 

Finally, the new process returns from the system call to the daemon with all the file 

descriptors. Then the backup daemon executes a special version of the corresponding 

server application, which can recover according to the checkpoint log, and passes all the 

file descriptors to it, and the server application may continue the service from then on. 

Our system passes the file descriptors to the application as command line arguments. This 

requires the application be able to get the file descriptors by this means and continue 

communication with them. 

Before it uses these newly created sockets to communicate with the clients, the 

restarted server application should retrieve the log for each socket through a system call 

and continue from the last checkpoint. It also needs to synchronize with the TCP layer 

through a special system call. The TCP layer gets the sequence number of the next byte 

to send by this means, so it may remove all the inconsistent data from the queue. 

3.6. Limitation 

The system is designed to support multiple primary servers with multiple TCP 

connections. However, there are some factors constraining its scalability. First, the 

backup buffers are allocated inside the kernel when the backup environment is set up. 

This approach avoids the overhead of allocating memory every time when a packet is 

replicated, but limits the amount of the pending data. Currently the sending buffer and the 

receiving buffer are both 128K bytes. Considering that a TCP packet can be as big as 

64K bytes, the buffer is really not so big. However, even with such a small buffer size, 

the backup server still runs out of memory quickly. The reason is that in our present 

implementation, the buffer is allocated from a submap inside the kernel. This is the 
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standard behavior of the kernel malloc() of BSD Unix [MBKQ96]. The default size of the 

submap is about 19M in our system. The total buffer size allocated for a backup socket is 

about 400K, so the maximum number of the living sockets that the backup server can 

handle is about 40. Even without the constraint of the submap, the total number of 

sockets that can be handled is still limited by the physical memory size. This is because 

the buffers are allocated inside the kernel as unpaged memory, which cannot be swapped 

out. 

Second, the throughput of the system is constrained by the communication capability 

of NetVM. NetVM puts sending messages in a queue before sending them through 

Myrinet. When the queue is full, no more messages can be put in the queue. In our 

testing, when there are 3 clients sending messages without pause, the NetVM begins 

reporting queuing errors. 

Besides these constraints, checkpointing in our system is only partially implemented. 

The first version of checkpointing only allows the application to log the sequence number 

of the last byte of data it has handled. The second version of checkpointing allows the 

application to log with a customized data structure, but the system call that will be used 

to synchronize the restarted application and the TCP layer are unimplemented. 
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Chapter 4 

Evaluation 

We test the system performance on a cluster of 266 MHz Pentium II PCs with 

128MB of R A M connected by a Myrinet network with a LANai (version 3.0). Clients are 

connected to the servers by 100 Base-T Ethernet. 

There are two main aspects to evaluate the performance of a replication system: the 

overhead caused by replication in during normal operation, and the gap between the 

primary failure and takeover. Three groups of experiments are conducted to measure the 

overhead of setting up the TCP connection, the overhead of communication and the time 

required between the failure detection and returning the reconstructed sockets to the 

application. 

4.1. Connection Setup 

In this experiment, a client sends 10 groups of 40 connection requests to the primary 

server. After each group of requests, both the client and the server close these 

connections, and the client sends another group of connection requests. For comparison, 

we conducted the same experiment to set up connection to a socket without the backup 

option. The average time on setting up a connection in each group is shown in Table 4-1. 
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When it listens on a socket, a server can set the value of the backlog, which 

determines how many connection requests may be put in the waiting list. The results 

show that when this value is big enough, the connection set-up time to a socket with the 

backup option is similar to that of a socket without this option. This benefits from the 

two-phase backup environment setup. As shown in Figure 4-1, when a connection request 

arrives, the system only sets the backup option to indicate the connection should be 

replicated, but does not communicate with the backup server. An acknowledgement is 

then arranged to be sent. Only when the "accept" system call comes from the application, 

will the system communicate with the backup server to set up the backup environment. 

backlog = 0 backlog = 50 
normal backup normal backup 

1 62,990 1,413,841 376 422 
2 397 1,424,753 374 440 
3 415 1,424,754 387 454 
4 397 1,424,759 400 470 
5 412 1,424,733 412 478 
6 428 1,424,737 443 448 
7 453 1,424,758 466 466 
8 476 1,424,758 486 482 
9 508 1,424,758 455 509 

10 472 1,424,752 441 535 
Avg 440 1,423,660 424 470 

Table 4-1 Connection Establishing Time (in us) 

When the backlog is set to 0, only when the prior connection request has been 

processed will a new connection request be handled. Table 4-1 shows that the connection 

setup time to a backup socket increases dramatically in this situation. Comparatively, the 

connection setup time to a socket without the backup option is almost not influenced 

except for the first group. 

* This value does not count the result of the first group. 
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Client Primary Backup Client Primary Backup 

Backlog = 50 Backlog = 0 

Figure 4-1 Connection Set up 

To explain the surprisingly long time on connection establishment, we must go over 

the 3-way handshake of TCP connections. As introduced in Section 2.6.2, the server 

sends back an acknowledgement for a connection request with a SYN, and puts the newly 

created socket in an incomplete connection queue. When the client receives the 

acknowledgement, an acknowledgement for the SYN is sent back and the connection 

system call returns to the user. Upon receiving the acknowledgement, the server moves 

the created socket from the incomplete queue to the complete queue, and wakes up the 

process blocked by the accept system call, if applicable. By now the 3-way handshake is 

finished. 

In our system, setting up the backup environment on the backup server introduces 

overhead to the last step of the 3-way handshake, as shown in Figure 4-1. Upon receiving 

the acknowledgement, the server moves the created socket to the complete queue, but 

waking up the user process is delayed until the backup environment has been set up on 

the backup server. When the backlog length is set to 0, if a new connection requests 

arrives during this period, it will be simply dropped because there is a pending socket in 

the complete queue [Stevens 94]. The client has to resend the connection request after 
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time out, and this time, the request is processed at once. This explains why the average 

connection establishment takes so long time in the backup system. Comparatively, in the 

normal system, in most cases when the second connection request arrives, the prior 

created socket has been removed from the complete queue and passed to the user. As a 

result, the connection request is processed immediately instead of being dropped. There is 

often some chance in the very beginning that a request is dropped because of the privious 

request has not been fully processed, so the average connection establishment time in the 

first group is much longer than those in the other groups. 

4.2. Data Communication 

Two experiments are conducted to test the overhead of data communication caused 

by replication. In the first experiment, the client application exchanges data package of 

1000 bytes with the server. As in the Stop-and-Wait protocol, the client does not send the 

next packet until it receives the response to the privious packet. The results shown in 

Table 4-2 are the total time for exchanging 5000 packets. The time for exchanging-data < 

with a socket with the backup option is about 4.0% longer than the time for a socket 

without this option. 

1 2 3 4 5 Average 
Normal 10,755,143 10,763,547 10,771,293 10,774,137 10,770,663 10,766,957 
Backup 11,202,858 11,206,439 11,188,651 11,167,897 11,202,721 11,193,713 

Table 4-2 Time of Communication (in us) 

In the second experiment, we measure on the overhead on different packet sizes. 

Similar to the first experiment, the client sends the next packet when it receives the 

response from the server for the previous packet. Different from the first one, the 

response is just an acknowledgement of 1 byte. Since big packets may be segmented by 
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the TCP layer, the server needs to collect all the data in a packet before it sends back the 

acknowledgement. 

From Table 4-3 we can see that the overhead caused by replication is decreasing with 

the. packet size growth. The reason is that the replication is packet based. The overhead 

on each packet is relatively constant, almost independent of the packet size. When a 

packet is too big to fit in a D T U of the lower layer, the TCP layer segments it to smaller 

packets. The D T U size of Ethernet is normally 1500 bytes, so the size of the data in a 

packet received by the receiver is normally 1460 bytes (1500 D T U - 20 TCP Header - 20 

IP Header). This explains why the relative overhead is comparatively stable when the 

packet size is bigger than 1460. 

Packet Size(B) 256 1,024 4,096 16,384 
Normal(us) 2,731,144 6,308,314 19,463,870 112,992,111 
Backup(us) 3,106,565 6,712,500 19,756,464 114,294,780 
Overhead 13.7% 6.4% 1.5% 1.2% 

Table 4-3 Overhead on Different Packet Sizes 

We also test the throughput with and without replication by sending 5000 packets of 

1 K bytes continuously without waiting for the response. There is no obvious difference 

between the two sets of results. The result shows that the replication is not the bottleneck 

of the communication, which can be done in parallel with the TCP communication. 

A major reason that the system did not introduce high overhead to the 

communication is that we used the asynchronous communication mode of NetVM. In the 

asynchronous mode, the remote write simply puts the message in a local queue and 

returns. The message is sent out later. Since it is not blocked on replication, the system 

achieved good performance, but introduced the risk of inconsistency. If the synchronous 

mode is used, the overhead will be much higher. 
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4.3. Takeover 

The takeover time depends on many factors, such as the total number of connections 

replicated, the number of sockets to be reconstructed, the size of the data to be copied to 

the sending and receiving queues, etc. We used a simplified program to test the 

approximate takeover time. The system takes several steps to take over: 

1. Failure detection. 

2. Searching for control blocks belonging to the failed primary server. 

3. Copying data to the sending and receiving queues of the sockets to be 

reconstructed. 

4. Using ARP message to add the IP address of the failed primary server as an alias. 

5. Forking a new process. 

6. Creating file descriptors associated to the new process for the reconstructed 

sockets and copying them to the user space. 
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Figure 4-2 Takeover Time on Different Data Sizes 
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7. Returning to the user space. 

After this, the daemon application executes the corresponding application, and the 

application recovers the service from the log. 

The first step takes about 1 second for the system to detect the failure of a primary 

server. We measure the overall time from step 2 to step 6. In the simplified, system, there 

is only one primary server, and there is only one connection from the client to the 

primary server to be replicated. It is shown in Figure 4-2 that the takeover time increases 

with the sizes of data to be copied, but not in a large scale. 
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Figure 4-3 Takeover Time on Different Connection Numbers 

Figure 4-3 shows the relationship between takeover time and the number of active 

connections. The results are sampled on a single client with different numbers of 

connections with the server. The backup server takes over when there are 10K bytes of 

pending data on each connection. The takeover time increases linearly with the number of 

connections. 



Comparing Figure 4-2 and Figure 4-3 we can see that the influence of the number of 

active connections is much bigger than that of the pending data size. When there are 

many active connections, the course of takeover may take a rather long time, which in 

turn may cause the client to give up after trying to communicate with the server for 

several times. 

4.4. Overall 

The results from these experiments show that the system achieves our design goals 

with acceptable overhead. Although the connection establishing time is not so satisfying 

when the backlog is set to 0, there is no server application using such configuration in 

practice. Through the experiments we also found that when it sends out data 

asynchronously without waiting for a response from the server, the client may achieve 

approximately the same throughput as that in a non-replication environment. However, 

the scalability of the system is constrained by the takeover time. And as discussed in 

section 4.2, using synchronous communication will degrade the system performance. 

Checkpointing, which we did not use when we tested the system, will also introduce 

overhead. 
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Chapter 5 

Conclusions and Future Work 

5.1. Conclusions 

The thesis has evaluated the idea of implementing replication in the TCP layer. By 

implementing replication in the TCP layer, the services provided by the primary server 

migrates to the backup server without breaking the TCP connections when a primary 

server fails. 

In general, the system has met all the initial goals stated in Chapter 3. First, the 

system is transparent to clients, which will not notice the failure of the primary server and 

do not need to reestablish TCP connections. Second, the overhead caused by replication 

is relatively low and there is no big influence on the system performance. Third, the 

server application is only involved to checkpoint from time to time to use this service in 

normal operation. And last, the system provides an easy way to checkpoint and take over. 

Using this system, an application can easily achieve fault tolerance without managing 

replication itself. The system provides a general service for the applications with the 

requirement of fault tolerance. 

Most existing fault tolerant systems are implemented in the application layer, so the 

failure of a server cannot be transparent to the clients. Every system must manage the 
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replication itself. Some other systems [AAPPS99] [APB96] [AYI97] [DCHKW97] 

[PABSDZN98] provide the mechanism of redirecting client requests to another server, 

but they are not designed for the problem that our system addresses, and the redirection in 

these system only happens in the connection establishment stage. 

The success of our system shows that implementing replication in the TCP layer is a 

feasible way to achieve fault tolerance. By separating replication and checkpointing, we 

can use the system as a more general-purpose tool for other applications. Many 

techniques used in the system are proved to be useful and can be utilized in other 

situations as well. For example, the technique of migrating TCP connections can used in 

a content-based switch [AAPPS99] to reduce the overhead of changing TCP sequence 

numbers. 

5.2. Future Work 

This thesis presents the idea of implementing replication in the TCP layer. Although 

the results are promising, there is still room for future research. 

First, the system is far from optimized. The overhead of setting up the backup 

environment can be reduced by using some more efficient communication method 

instead of UDP. In present implementation, the backup buffers are allocated from a 

submap inside the kernel, which has a limit of about 19 MB in our experimental 

environment*. This constrains the maximum number of sockets that can be replicated on 

the backup server. Moreover, because all the backup buffers are allocated inside the 

kernel, and the malloc() routine inside the kernel allocates unpaged physical memory 

[MBKQ96], the number of sockets that can be replicated is limited by the physical 

* This information be obtained by using "vmstat -m". 
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memory available on the backup server. The system is just a prototype to test the idea of 

implementing replication in the TCP layer; many details required by a stable system, such 

as exception handling, are missing from our implementation. 

Second, we only used some simple programs to test the system performance. More 

comprehensive applications need to be implemented to evaluate the system and the 

application interface. 

The system is built on Myrinet, which is a Gigabit-per-second network widely used 

in research environments but not in the business world. More efforts are needed to port 

thê  system to commercial high-speed networks such as Gigabit Ethernet before it can be 

exploited in the real world. 

55 



Bibliography 

[AAPPS99] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, D. Saha, "Design, 

Implementation and Performance of a Content-Based Switch". 

[AB91] D. Agrawal and A.J. Bernstein. "A Nonblocking Quorum Consensus 

Protocol for Replicated Data". IEEE Transactions on Parallel and 

Distributed Systems, Vol. 2, No. 2, p.p.171-179, April 1991. 

[AM98] L . Alvisi and K. Marzullo, "Message Logging: Pessimistic, Optimistic, 

Causal, and Optimal". IEEE Transactions on Software Engineering, Vol. 

24, No. 2, p.p. 149-159, February 1998. 

[APB96] E. Anderson, D. Patterson and E. Brewer. "The Magicrouter, and 

Application of Fast Packet Interposing". OSDI, 1996. 

[AYI97] D. Andresen, T. Yang and O.H. Ibarra. 'Towards a Scalable Distributed 

WWW Server on Workstation Clusters". Journal of Parallel and 

Distributed Computing, 1997. 

[Barlett87] J. Barlett, J. Gray, and B. Horst. "Fault Tolerance in Tandem Computer 

systems". The Evolution of Fault-Tolerant Computing, Vol.1, pp. 55-76, 

New York, 1987. 

[BG83] K.P. Bernstein and N. Goodman. 'The Failure and Recovery Problem for 

Replicated Databases". In Processing of the 2 n d A C M SIGACT-SIGOPS 

Symposium on Principles of Distributed Computing, p.p. 114-122, August 

1983. 

56 



[BFF95] T. Berners-Lee, R. Fielding, and H. Frystyk. "Hypertext Transfer 

Protocol - HTTP/1.0". IETF RFC 1945, October 1995. 

[BJ87] K.P. Birman and T.A. Joseph, "Reliable Communication in the Presence 

of Failures". A C M Transactions on Computer Systems, Vol. 5, No. 1, 

pp.47-76, February 1987. 

[BMST92] N. Budhiraja, K. Marzullo, F.B. Schneider and S. Toueg. "Primary-

Backup Protocols: Lower Bounds and Optimal Implementations". 

[CISCO] Cisco Systems Inc., "LocalDirector". http://www.cisco.com 

[CM84] J. Chang, and N.F. Maxemchuk, "Reliable Broadcast Protocols". A C M 

Transactions on Computer Systems. Vol.2, No.3, pp.251-273, August 

1984. 

[DCHKW97] O.P. Damani, P.E. Chung, Y. Huang, C. Kintala and Y . M . Wang. "ONE-

IP: Techniques for Hosting a Service on a Cluster of Machines". 

Computer Networks and ISDN Systems, 29:1019-1027, 1997. 

[DG96] O.P. Damani and V.K. Garg, "How to Recover Efficiently and 

Asynchronously when Optimism Fails". In Proceedings of the 16th 

International Conference on Distributed Computing System, p.p. 108-

115, 1996. 

[DGP90] A.R. Downing, LB. Greenberg, and J.M. Peha, "OSCAR: An 

Architecture for Weak-Consistency Replication". In Proceedings of IEEE 

PARBASE-90 International Conference on Databases, Parallel 

Architectures, and Their Applications, p.p. 350-358, 1990. 

[Dimmer85] C.I. Dimmer, "The Tandem Non-Stop System". 

57 

http://www.cisco.com


[EZ92] E.N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent Rollback-

Recovery with Low Overhead, Limited Rollback and Fast Output 

Commit". IEEE Transactions on Computers, Vol. 41, No. 5, p.p. 526-

531, May 1992. 

[FYT97] D. Funato, K. Yasuda, and Hi. Tokuda, "TCP-R: TCP Mobility Support 

for Continuous Operations". IEEE 97. 

[Gifford79] D.K. Gifford, "Weighted Voting for Replicated Data". A C M SIGOPS, 

pp. 150-162, December 1979. 

[Herlihy87] M . Herlihy. "Concurrency versus Availability: Atomicity Mechanisms 

for Replicated Data". A C M Transactions on Computer Systems, Vol. 5, 

No. 3, p.p. 249-274, August 1987. 

[IBM] IBM Corporation. "IBM Interactive Network Dispatcher". 

http://www.ics.raleigh.ibm.com/ics/isslearn.htm. 

[JB86] T.A. Joseph and K.P. Birman, "Low Cost Management of Replicated 

Data in Fault-Tolerant Distributed Systems". A C M Transactions on 

Computer Systems, Vol. 4, No. 1, pp.54-70, February 1986. 

[KG94] H. Kopetz and G. Grunsteidl, ' T T P - A Protocol for Fault-Tolerant Real­

time Systems". In IEEE Computer, Vol. 27, p.p. 14-23, January 1994. 

[KR81] H.T. Kung and J.T. Robinson, "On optimistic Methods for Concurrency 

Control", A C M Transactions on Database Systems, Vol.6, pp.213-226, 

June 1981. 

58 

http://www.ics.raleigh.ibm.com/ics/isslearn.htm


[LLG92] R. Ladin, B. Liskov and S. Ghemawat. "Providing High Availability 

Using Lazy Replication". A C M Transactions on Computer Systems. 

Vol.10, No.4, pp.360-391, November 1992. 

[MRJ97] A. Mehra, J. Rexford, F. Jahanian, "Design and Evaluation of a Window-

Consistent Replication Service". IEEE Transactions on Computers, Vol. 

48, No. 9, Septermber 1997. 

[OL88] B. Oki and B. Liskov. "Viewstamped Replication: A New Primary Copy 

Method to Support Highly Available Distributed Systems". 7th A C M 

Symposium on Principles of Distributed Computing, pp.8-17, August 

1988. A C M SIGOPS-SIGACT. 

[PABSDZN98] V.S. Pai, M . Aron, G. Banga, M . Svendsen, P. Druschel, W. Zwaenepoel, 

E. Nahum. "Locality-Aware Request Distribution in Cluster-based 

Network Servers". A C M ASPLOS VIII, p.p. 205-216, October, 1998. 

[PL91] C. Pu and A. Left, "Replica Control in Distributed Systems: An 

Asynchronous Approach". In Proceedings of A C M AIGMOD, p.p. 377-

386, May 1991. 

[PR85] J. Postel and J. Reynolds, "File Transfer Protocol (FTP)". IETF RFC 959, 

October 1985. 

[PST97] K. Petersen, M.J. Spreitzer, D.B. Terry, M . M . Theimer, and A.J. Demers, 

"Flexible Update Propagation for Weakly Consistent Replication". A C M 

SOSP-16, p.p. 288-301, October 1997. 

[RAV98] S. Rao, L. Alvisi, and H.M. Vin, 'The Cost of Recovery in Message 

Logging Protocols". 

59 



[RMDJ94] J. Rexford, A. Mehra, J. Dolter and F. Jahanian. "Window-Consistent 

Replication for Real-Time Applications". Proc. Workshop Real-Time 

Operating Systems and Software, pp.107-111, May 1994. 

[Schneider83] F.B. Schneider, "Fail-Stop Processors", Digest of Papers from Spring 

CompCon '83 26th IEEE Computer Society International Conference, 

pp.66-70, March 1983. 

[Schneider90] F.B. Schneider, "Implementing Fault-tolerant Services Using the State 

Machine Approach: A Tutorial", A C M Computing Surveys, Vol.22, 

N/>.4, pp.299-319, December 1990. 

[SL95] X. Song, J.WiS. Liu, "Maintaining Temporal Consistency: Pessimistic vs. 

Optimistic Concurrency Control", IEEE Transactions on Knowledge and 

Data Engineering, Vol. 7,No. 5, p.p. 786-795, October 1995. 

[Stevens94] W.R. Stevens, 'TCP/IP Illustrated, Volume 1: The Protocols". Addison-

Wesley, January 1994. 

[Trian92] P. Triantafillou. "High Availability is not Enough", IEEE 92. 

[TT95] P. Triantafillou and D.J. Talylor, "The Location-Based Paradigm for 

Replication: Achieving Efficiency and Availability in Distributed 

System", IEEE Transactions on Software Engineering, Vol.21, No.l , 

January 1995. 

[WB84] G.T.J. Wuu and A.J. Bernstein. "Efficient Solutions to the Replicated 

Log and Dictionary Problems". In A C M Proc. Of the Third Annual 

Symposium on Principles of Distributed Computing", pp.233-242, 

August 1984. 

60 



[WS95] G.W. Wright and W.R. Stevens, 'TCP/IP Illustrated, Volume 2: The 

Implementation". Addison-Wesley, January 1995. 

[XSSRT96] M . Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham, and D. 

Towsley, "Scheduling Transaction with Temporal Constrains: Exploiting 

Data Semantics". In Proceedings IEEE Real-Time Systems Symposium, 

December 1996. 

61 


