
KEEPING TCP CONNECTIONS INTACT ACROSS SERVER FAILURES

by

RUILI

B.E., Tsinghua University, 1995

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
T H E REQUREMENTS FOR T H E D E G R E E OF

Master of Science

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standards

The University of British Columbia

December 2000

© Rui L i , 2000

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
t h i s thesis for s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. I t i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date

Abstract

Replication is widely employed to achieve fault tolerance and high availability.

There are two common approaches: active replication and primary-backup replication. In

the primary-backup approach, the service states are replicated on the backup server.

When the primary server fails, the backup server takes over and continues the service.

In most present implementations based on TCP/IP communication, the TCP

connections between clients and servers break if the primary servers crash. The topic of

this thesis is to keep the connections intact across primary server failures - the backup

server will take all the TCP connections automatically so that, from the client's point of

view, no services will be influenced by the failures.

To achieve this goal, we implemented replication in the TCP layer. The information

and data associated with the sockets are replicated on the backup server, so when a

primary server fails, the backup server can reconstruct all the sockets. By using an ARP

message to claim the IP address of the failed primary server, the backup server ̂ refreshes

the routing tables in other nodes so the packets addressed to the failed primary server will

be redirected to the backup server from then on. By this means, the backup server takes

over seamlessly, without breaking the present TCP connections.

ii

Table of Contents

Abstract .'. ii

Acknowledgements vii

Table of Contents iti

List of Figures v

List of Tables vi

Chapter 1 1

1.1. Motivation 2

1.2. Design Issues 2

1.3. Thesis Outline 3

Chapter 2 4

2.1. Transactions 4

2.2. Message Logging and Checkpointing 5

2.3. Replication Models 6

2.4. One-copy Serializability 9

2.5. Request Distribution 12

2.6. BSD TCP Implementation 14

2.6.1. Essential Data Structures 15

2.6.2. Connection Establishment 20

2.7. NetVM 21

Chapter 3 23

3.1. Overview 23

3.2. Application Interface 27

Hi

3.3. Backup Environment Setup 28

3.4. Synchronization 28

3.4.1. Synchronization between the Application and the TCP Layer 29

3.4.2. Synchronization between the Primary Server and Backup Server 30

3.4.3. Synchronization between Data Replication and Control Block Replication.31

3.5. Implementation 34

3.5.1. Backup Socket Management 34

3.5.2. Backup Buffer Management 35

3.5.3. Backup Option 36

3.5.4. Replication 37

3.5.5. Failure Detection and Takeover 41

3!6. Limitation..... 43

Chapter 4 .. 45

4.1. Connection Setup 45

4.2. Data Communication 48

4.3. Takeover 50

4.4. Overall 52

Chapter 5 53

5.1. Conclusions 53

5.2. Future Work : 54

BIBLIOGRAPHY 56

iv

List of Figures
Figure 2-1 Replication Models 7

Figure 2-2 Some Variations 8

Figure 2-3 Synchronous update vs. asynchronous update 11

Figure 2-4 Socket Structure 16

Figure 2-5 IP Control Block 16

Figure 2-6 TCP Control Block 18

Figure 2-7 Mbuf Structure 19

Figure 2-8 Connection Establishment 21

Figure 2-9 NetVM Remote Write 22

Figure 3-1 System Architecture 24

Figure 3-2 Backup-Takeover Process 25

Figure 3-3 L K M 26

Figure 3-4 Sending / Receiving process on the primary 32

Figure 3-5 Imported Addresses 38

Figure 3-6 Handle unaligned data 39

Figure 3-7 bckpargs structure 40

Figure 3-8 Structure of Backup Information List 42

Figure 4-1 Connection Setup 47

Figure 4-2 Takeover Time on Different Data Sizes 50

Figure 4-3 Takeover Time on Different Connection Numbers 51

V

List of Tables

Table 4-1 Connection Establishing Time (in us) 46

Table 4-2 Time of Communication (in us) 48

Table 4-3 Overhead on Different Packet Sizes49

vi:

Acknowledgements

Many people have given me help in various ways during my two years study at

UBC. First I am greatly indebted to my supervisor, Dr. Norm Hutchinson, for his great

guidance on my thesis project. His inspiration and encouragement always stimulated me

to seek more knowledge. I am grateful to Dr. Mike Feeley, not only for him being the

second reader of my thesis, but also for that he was always ready to offer help on my

project. My former advisor, Dr. Son Vuong helped me extend my horizon in the network

area. Thanks also to the folk in the Distributed Systems Lab, especially to Joon Suan Ong

and Yvonne Coady, for their great help on my thesis.

There are still many fellows who influenced my study at UBC, but I cannot list all of

their names. I would like to thank them for being supportive to me.

Finally I would like to thank my parents for always having confidence on me. I hope

that they will take pride in me.

v.ii

Chapter 1

Introduction

With the development of network technology, especially with the booming of the

Internet, more and more services are rjecorning available on the network:: Many services

demand high availability and fault tolerance. Replication is a widely employed technique

to achieve fault tolerance. The state of the service is replicated on several failure-

independent servers, so that the service remains available even when a subset of the

servers fails. From the client's viewpoint, there is only a single server providing

continuous service.

There are generally two approaches to replication. One way is called active (state

machine) replication, in which clients update the state on all the servers atomically.

Another approach is called passive (primary-backup) replication. In this approach, there

is one designated primary server that handles requests from clients, while all the other

servers are backups to the primary server. When the primary server fails, one of the

backup servers takes over and becomes the new primary server. Passive replication is

widely used in commercial products because it is comparatively simpler and has lower

overhead on clients.

TCP/IP, as the standard protocol used in the Internet, has become a platform of

choice for many services because of the popularity of the Internet. However there is not a

standard on how to achieve fault tolerant for services that use TCP/IP.

1.1. Motivation

In most present primary-backup implementations based on TCP/IP, replication is

implemented in the application layer. As a result, every application has its own

replication implementation. One drawback of implementing replication in the application

layer is that when the primary server fails, the TCP connections to the primary server

break down. The clients have to reestablish connections with the new primary server after

they notice the break of the TCP connections. The clients and the new primary server

need to negotiate to continue the service from some checkpoint. For a communication

intensive service, this may require the retransmission of lots of data.

The goal of this thesis is to seek a way to keep the TCP connections intact across

server failures. Because of the lack of necessary information associated with TCP

connections in the application layer, it is impossible to implement replication purely in

the application layer. By implementing replication in the TCP layer, we can get another

benefit at the same time: providing a general-purpose replication service to applications.

1.2. Design Issues

On one hand, we have the information associated with the TCP connections when we

implement replication in the TCP layer. On the other hand, we do not have the

information in regard to the data processing in the application layer, which is necessary to

reconstruct the receiving queue upon takeover. We provide an API that users may use for

checkpointing to solve this problem.

• 2

To get the information necessary for recovery, replication must be performed

frequently to keep the replicated data on the backup consistent with that on the primary.

However, replication operations cause overhead and influence the performance of the

system. We follow an event-triggered processing style to replicate data every time it is

changed. Choosing the right point to replicate is a key issue in the system design.

Even with all the information needed, there is still a synchronization issue on

takeover. The backup application and the TCP implementation must be closely

synchronized to ensure that the responsibility for each byte of data is taken by either the

application or the system but not both.

To investigate the feasibility of the idea of implementing replication in the TCP

layer, we chose FreeBSD as our experimental environment because it is a stable UNIX

system and its source code is free. We modified part of the TCP and socket code, so that

the control blocks of a socket and the data sent and received through the socket can be

replicated on the backup in time. Myrinet is selected as the communication medium

between the primary and backup to rninimize the communication overhead.

1.3. Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces some background

knowledge and compares our work to related work. In Chapter 3 we discuss the design

and implementation of our system. Experimental results are given in Chapter 4. Finally

we summarize the work accomplished and suggest the future work that may be extended

from this thesis.

3

Chapter 2

Background Knowledge

and Related Work

This chapter introduces some background knowledge and some research and

techniques related to our work. The first three sections review several common

techniques used to achieve fault tolerance. Section 2.5 discusses some implementations

of request distribution. Some of them use techniques similar to those we used in our

work. The BSD TCP implementation, the base we implement our project on, is

introduced in Section 2.6. In the last section, we introduce the communication API we

used between primary servers and the backup, NetVM.

2.1. Transactions

The concept of a transaction is widely used in fault-tolerant protocols. Transactions

have four essential properties [Tanen95]: atomic, consistent, isolated and durable.

Atomicity ensures that a transaction is all-or-nothing: either it happens completely or not

at all. Consistency means a transaction does not violate system invariants. The third

property is often cited as serializability, meaning the execution of a transaction never

appears to overlap the execution of another transaction, and the system behaves as if all

4

the transactions are executed sequentially in some order. Durability means that once a

transaction commits, the results of the transaction become permanent.

A common method of implementing transactions is to log history on stable storage.

This method is often coupled with the two-phase commit protocol [Gray78] in distributed

systems. In this protocol, the transaction committing involves two phases, preparation

and committing. When a transaction is ready to commit, one of the group, members

initiates the two-phase commit by writing "prepare" in the log and sends the "prepare"

message to the other members. All the other members check their states to see if they are

ready to commit when they receive the message, and send back their decision. Only when

the initiator receives "ready" from all the members could it write "commit" in the log and

send the message to the other members. Otherwise the transaction is aborted. The

"commit" in the log is the sign and is the only sign that the transaction has committed.

If, a computation consists of a sequence of transactions then different: forms of

redundancy may be employed to achieve fault tolerance. E.g., by using a log, a

transaction may be rolled back to the last consistent state and the computation restarted

from there if an error is detected. By this means, fault tolerance is accomplished by time

redundancy. Another popular technique is to employ physical redundancy to mask the

failure of a component.

2.2. Message Logging and Checkpointing

Although transactions are widely used to accomplish fault tolerance, there: are some

situations in which it is hard to employ this technique. If the service state is determined

by its initial states and the sequence of the messages sent and received, a similar

technique, message logging, may provide fault tolerance as well. When a server fails, we

5

can always restore its initial state and roll forward by reapplying the messages saved in

the log to reach the state before the failure. Message logging can be either sender-based

or receiver-based.

Used alone sometimes [Dimmer85] [PR85], checkpointing is a technique that is

often used with message logging. Checkpointing saves the service state on some stable

storage, so when a server fails, we may simply restore the last checkpoint and roll

forward from there instead of restoring the initial state.

Message logging protocols can be also categorized in two groups: pessimistic :

protocols [JZ87], which require the messages to be logged synchronously before they are

sent out (sender-based) or processed (receiver-based); and optimistic protocols [DG96]

[JV87] [SY85], which allow message logging to be performed in parallel with message

sending or processing. Optimistic protocols introduce lower overhead but may cause

inconsistency. Another approach is causal logging [AM98] [EZ92], which logs in volatile

memory and piggybacks the log on every message. Because there is no stable storage

involved, the performance is better than that in pessimistic protocols. On the other hand,

the system states are consistent. Comparison of different approaches can be found in

[AM98] [RAV98].

2.3. Replication Models

In a client-server architecture, physical redundancy is to replicate the service states

on multiple sites that fail independently. The clients even do not have to be aware of the

existence of the multiple sites, they may use the service as if there is only one server

providing the service.

6

Active Replication Passive Replication

Figure 2-1 Replication Models

There are two widely employed replication approaches: active replication and

passive replication. Active replication is also called the state-machine approach, in which

all the replicated servers are identical. The service states on all active servers should be

updated atomically, so all servers share the same view of the service states. In this way,

every server is ready to continue the service if other servers fail. Passive replication, or in

another word, primary-backup replication, designates one replica as the primary server,

and all the other servers are its backup. In this approach, only the primary server handles

requests from clients, and the primary server is normally responsible for updating the

service states on backup servers periodically. If the primary server fails, one of the

backups takes over and becomes the new primary.

There exist many replication model variations. In some implementations, client

requests must be delivered to all the replicas atomically and in-order. The response to

clients may be generated by voting [Gifford79]. Some implementations assume that the

faults are fail-stop [Schneider83], and allow requests to be handled by only one of the

replicas, and only the updates are broadcast among the replicas [LLG92]. There may

7

exist a front-end to handle client requests and forward them to appropriate servers. Many

load balancing switch implementations [AYI97] [DCHKW97] [PABSDZN98] use this

architecture. The front-ends may also run at client nodes [LLG92] to choose one of the

servers to communicate with. There are also proposals to use location services to decide

to which server to send requests [Trian95].

Figure 2-2 Some Variations

Generally in the state machine approach, the overhead associated with atomic

ordered delivery of messages tends to slow down the response to client requests.

Comparatively, the primary-backup approach has lower overhead and normally needs

less resources on backup servers because the services don't have to be active on them.

However, this approach tends to require longer recovery time since a backup must

explicitly use some algorithm to recover the service according to the replicated states.

This may cause a problem in that during the gap between the failure of the primary server

and takeover by a backup, some client requests may get lost, which in turn may cause

clients to give up. More discussions on this may be found in [BMST92].

Each of the two approaches has its advantage, and both approaches need to replicate

service states on multiple servers. The replication, synchronization and associated

8

communication delay introduce great overhead, and many efforts have been made to

reduce it [WB84][OL88][LLG92][RMDJ94].

2.4. One-copy Serializability

One principle of employing the replication technique is to provide clients the view

that there is a single server providing service. This is termed as "one-copy serializability"

[BG83], which has two aspects. First, the service is one-copy equivalent, i.e., multiple

replications of an object appear as a single logical object to clients. Second, transactions

may proceed on different replicas, but the system behaves as if all the transactions are

executed in some serial order. Corresponding to the two properties, a replication method

should include two sets of mechanism: a replica-management protocol to replicate all the

data updates on the replicas, and a concurrency-control protocol to control the concurrent

data access by multiple clients. In primary-backup protocols, the replication method is

comparatively simple because only the primary server handles requests from clients. The

concurrency control protocol in this approach is quite similar to that in non-replicated

systems. The situation in the state-machine approach is much more complicated in that

each replica may be eligible to handle client requests. The replicas must be closely

synchronized to keep data consistent.

A simple implementation of one-copy serializability is the read-one-write-all

protocol. In this protocol a read operation is executed on any replica, and the correctness

of the operation is guaranteed because a write operation must be executed on all the

replicas atomically. This protocol observes strict consistency: any read to an object

returns the valued stored by the most write operation to the object.

9

Observing that the availability of write operations in the read-one-write-all protocol

is severely restricted, Gifford presents a quorum protocol [Gifford79] in which a read

operation involves a read quorum number of copies while a write operation involves a

write quorum number of copies. The sum of the read and write quorums must exceed the

total number of replicas. The quorum protocols [AB91] [Herlihy87] sacrifice the

availability of read operations to increase that of write operations: write operations do not

have to be executed on all replicas, but read operations must be executed on multiple

replicas to get the most recent updated results by voting.

Two-phase Locking is a widely used technique for concurrency control in both read-

one-write-all and quorum protocols. As the name suggests, two-phase locking includes

two phases: a growing phase to acquire locks and a shrinking phase to release locks. A

transaction should get all the locks needed during the growing phase. Lock acquiring and

lock releasing should not be interleaved during the execution of a transaction. If a process

fails to acquire all the locks needed, it may simply release all the locks acquired and try

the two-phase locking again later.

Although two-phase locking ensures serializability, it causes high overhead. That is

where the optimistic concurrency control [KR81] comes in. The idea behind it is to

assume that the possibility of conflicts is fairly low, so everyone may just go ahead and

do whatever is needed. If conflicts do occur, influenced transactions may be aborted. In

contrast to the two-phase locking protocol, optimistic protocols normally update replicas

asynchronously. This approach improves the system performance but may cause

inconsistency. This is illustrated in Figure 2-3. Under synchronous updates, the primary

sends update messages to backups synchronously when it receives a request from a client,

10

and it will not send the response to the client until it gets acknowledgement from all the

backups. In asynchronous mode, the primary sends back the response at once, and the

update message is scheduled some time in the future. The example is given in the

primary-backup model, but it applies to the state machine model as well. More

discussions on this can be found in [SL95].

Figure 2-3 Synchronous update vs. asynchronous update

Many researchers have observed that serializability is too strict as a correctness

criterion in many situations. A protocol may work well even if the data on replicas are

temporally inconsistent, on condition that the inconsistency is bounded and the data will

eventually reach consistency. Following this approach, many protocols achieve better

performance than protocols observing one-copy serializability [DGP90] [PL91] [KG94]

[SL95] [XSSRT96]. Research is also performed on the propagation protocol for weak

consistency [PST97]. Rexford et al. employed a similar technique, window-consistency,

for primary-backup replication [RMDJ94] [MRJ97].

The location-based paradigm [Trian92] [TT95] combines a quorum protocol with the

asynchronous technique. In this protocol, servers are organized as in quorum protocols.

In addition, the size of the write quorum should be larger than the half of the total

replicas. Read / write operations are similar to those in quorum protocols except that the

updating information is sent to location servers. The non-replication-like performance is

11

achieved by employing "asynchronous replicated lock acquisition". Instead of getting a

lock from the number of replicas in the quorum synchronously, a client obtains the lock

from a single replica called the leader replica. The leader replica sends back an

acknowledgement and broadcasts lock-acquisition messages to other replicas, which in

turn will obtain the lock locally. Thus the lock acquisition operation on non-leader

replicas is performed in parallel with the client's execution of subsequent operations.

Some deadlock-prevention mechanisms need to be employed.

2.5. Request Distribution

One of the replication variants we discussed in Section 2.1 has one front-end

handling client requests and passing requests to appropriate servers. This architecture is

widely used in the World Wide Web. Many web sites employ identical web servers to

process client requests due to workload and fault-tolerance requirements. IBM and

CISCO even designed hardware to support request distribution [CISCO] [IBM]. There is

also much academic research in this area [AAPPS99] [APB96] [AYI97] [DCHKW97]

[PABSDZN98].

Many of these implementations aim at distributing HTTP streams to balance

workloads among different servers. SWEB [AYI97] implements this in the HTTP layer

by URL redirection [BFF95]. The front end sends back a URL redirection message that

includes the IP address of one of the back end servers when it receives an HTTP

connection request. The client will set up a new TCP connection to the new IP address

upon receiving the URL redirection message. ONE-IP [DCHKW97] presents two low-

cost solutions that do not require modifying TCP implementations on servers to

accomplish load balancing among servers. All the back end servers share the same IP

12

address by using address aliases. In the routing-based dispatching, a dispatcher (which

may be the router) in the cluster acts as the front end to distribute TCP traffic to different

servers according to the IP address of the client. In the broadcast-based dispatching, the

client requests are broadcast to all servers, and every server has a filtering routine that

filters out undesired packets. In both implementations, the client IP ^addresses are

statically configured to dispatch to different servers, therefore this approach is not so

flexible as the dynamic dispatching implementations.

L ARD [PABSDZN98] and the Layer 5 switch [AAPPS99] are designed for content-

based switching. The front-end in these implementations not only check the workload of

the back-end servers but also check the content of an incoming request (mainly U R L

message [BMM94]) to dispatch it. This approach may achieve high cache hit rate by

dispatching similar requests to the same back-end server. The complexity of this

approach is that only after the TCP connection has been set up will the front-end be able

to check the content of the higher layer requests. LARD implements this by a technique

called 'TCP handoff". A client sets up a connection to the front-end, which checks the

content of the request and chooses one of the back-end servers. The front-end then

forwards the established connection to the appropriate back-end server by sending a

"handoff' request to it. After accepting the request, the back-end takes over the

connection and sends to the client directly*. A technique similar to the TCP handoff,

TCP-R (TCP Redirection) [FYT97] was originally designed for mobile computing, but

can be used in the handoff situation with little modification. The L5 switching is similar

to LARD, but it does not modify the TCP state machine. When it receives the request

* Only packets sent from the back-end to the client are direct, the packets sent from the client to the back-
end still need to be forwarded by the front-end.

13

from a client, instead of sending a special request message, the switch sends a normal

TCP connection request to a back-end with the initial sequence number selected by the

client. With the two TCP connections, the switch acts as a medium between the client and

the back-end. If the implementation is just like this, there is no doubt that the

performance will not be good. The magic lies in the port controller on the switch. A

classifier at the server port controller on the switch converts the sequence number in

every packet from the back-end to the switch to the sequence number used between the

switch and client. By this means, the two TCP connections splice and packets may bypass

the CPU of the switch and be switched very quickly by the port controllers.

The magicrouter [APB96] is a more general-purpose design, which allows a user-

level process to modify every packet passing a device driver. One of the applications of

this technique is to change the packet header to redirect it to different destination, as what

the port controller in L5 switch does. Shared memory is used to allow the kernel to

expose packets to user level processes. The advantage of this approach is that the policy

> is made by the user process, so it is very flexible. The weakness is that in most systems,

the user-kernel communication is slow, so the performance is greatly reduced.

2.6. BSD TCP Implementation

The TCP implementation in BSD UNIX is tightly coupled with the socket

implementation. Introduced in 4.2BSD, sockets have become the most popular API for

TCP/IP communication. Most TCP implementations in systems originated from BSD

UNIX are based on the implementation in 4.4BSD-Lite, and are quite similar. The

version of the code described in this thesis is FreeBSD 2.2.2 Release. The TCP

14

implementation is very complex. Here we can only introduce what is directly related to

our implementation. More information can be found in [WS95]

2.6.1. Essential Data Structures

An application can use the socket system call to create a socket which is then used to

send or receive data. The system call creates a socket structure inside the kernel, which

contains pointers to protocol related data structures and queues for sending and receiving

data (so_snd and so_rcv). A listening socket also contains queues for partially completed

connections and ready to complete connections.

s t r u c t socket {
short so_type;
short so_options;
short so_linger;
short so_state;
caddr_t so_pcb;
st r u c t protosw

/*
/*
/*
/*

'so_proto;

generic type, see socket.h */
from socket c a l l , see socket.h */
time to l i n g e r while c l o s i n g */
in t e r n a l state flags SS_*, below */

/* protocol control block */
/* protocol handle */

/*
Variables for connection queuing.
Socket where accepts occur i s so_head i n a l l subsidiary sockets.
If so_head i s 0 , socket i s not r e l a t e d to an accept.
For head socket so_q0 queues p a r t i a l l y completed connections,
while so_q i s a queue of connections ready to be accepted.
If a connection i s aborted and i t has so_head set, then
i t has to be pu l l e d out of e i t h e r so_qO or so_q.
We allow connections to queue up based on current queue lengths
and l i m i t on number of queued connections for t h i s socket.

*/
s t r u c t socket *so_head; /*
TAILQ_HEAD(, socket) so_incomp;

unaccepted connections */
TAILQ_HEAD(, socket) SO_COmp;

connections */
TAILQ_ENTRY(socket) S O _ l i s t ;

short so_qlen;
short so_incqlen;

short so_qlim.it;
short so_timeo;
u_short so_error;
p i d _ t so_pgid;
u_long so_oobmark;

/*

back pointer to accept socket '
/* queue of p a r t i a l

queue of complete unaccepted

l i s t of unaccepted connections

*/ number of unaccepted connections
number of unaccepted incomplete
connections */
max number queued connections */

/* connection timeout */
/* error a f f e c t i n g connection */

pgid for signals */
chars to oob mark */

/

/*
/*

* Variables for socket b u f f e r i n g .
*/

15

http://so_qlim.it

s t r u c t sockbuf {
u_long sb_cc /* actual chars i n buffer */
u_long sb_hiwat; /* max actual char count */
u_long sb_mbcnt; /* chars of mbufs used */
u_long sb_mbmax; /* max chars of mbufs to use */
long sb_lowat; /* low water mark */
str u c t mbuf *sb_ mb; /* the mbuf chain */
stru c t s e l i n f o sb_sel; /* process s e l e c t i n g

read/write */
short sb_flags; /* f l a g s , see below */
short sb_timeo; /* timeout for read/write */

} so_ rev, so_snd;
#define SB_MAX (256 *1024) /* default for max chars i n sockbuf:*/
#define SB_LOCK 0x01 /* lock on data queue */
ttdefine SB_WANT 0x02 /* someone i s waiting to lock */
#define SB_WAIT 0x04 /* someone i s waiting f o r data/space */
ttdefine SB_SEL - 0x08 /* someone i s s e l e c t i n g */
ttdefine SB_ASYNC 0x10 /* ASYNC I/O, need sig n a l s */
ttdefine SB_NOTIFY (SB_WAIT1 SB_SEL|SB_ASYNC)
ttdefine SB_NOINTR 0x40 /* operations not i n t e r r u p t i b l e */ ,

caddr _ t SO_tpcb; /* Wise, protocol c o n t r o l block XXX */
voi d (*so_upcall) _ _ P ((s t r u c t socket *so, caddr_t arg, i n t

w a i t f)) ;
caddr_t so_upcallarg; '/* Arg for above */

}; '

Figure 2-4 Socket Structure

The field so_pcb in the socket structure is a pointer to a protocol control block,

which is the IP control block for Internet domain sockets. The IP control block is used for

both TCP and UDP communications. The structure contains a back pointer to the socket

structure and a pointer to another protocol control block, e.g., the TCP control block. All

s t r u c t inpeb {
LIST_ENTRY
LIST_ENTRY
Struct
s t r u c t
u_short
s t r u c t
u_short
s t r u c t
caddr_t
s t r u c t
i n t
s t r u c t
s t r u c t
s t r u c t

};

(inpeb) i n p _ l i s t ; / * l i s t for a l l PCBs of t h i s proto */
(inpeb) inp_hash; /* hash l i s t */

inpebinfo *inp_pcbinfo;
in_addr inp_faddr;/* foreign host table entry */

foreign port */
/* l o c a l host table entry */

l o c a l port */
/* back pointer to socket */

pointer to per-protocol peb */
placeholder f o r routing entry */
generic IP/datagram flags */

ip inp_ip; /* header prototype; should have more */
mbuf *inp_options; /* IP options */
ip_moptions *inp_moptions; /* IP multicast options */

inp_fport; /*
in_addr inp_laddr; .
inp _ l p o r t ; /*
socket *inp_socket;
inp_ppcb; / *
route inp_route; /*
inp_f l a g s ; /*

Figure 2-5 IP Control Block

16

the control blocks of the same protocol are chained in a doubly linked list so the system

may locate any of them by searching the list linearly. The control blocks are chained in a

hash table as well. For transport demultiplexing, the system can also find a control block

quickly by using the hash table. The control blocks with the same hash code are chained

in a special list.

s t r u c t tcpcb {
st r u c t
s t r u c t

tcpiphdr * seg_next;
tcpiphdr *seg_prev;

/* sequencing queue */

i n t
i n t
i n t
i n t
i n t
u i n t

t_state; /* state of t h i s connection */
t_timer[TCPT_NTIMERS]; /* tcp timers */
t _ r x t s h i f t ;
t_rxtcur;
t_dupacks;
t_maxseg;

u_ i n t t_maxopd;
i n t
u _ i n t

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

t_force;
t _ f l a g s ;
TF_ACKNOW
TF_DELACK
TF_NODELAY
TF_NOOPT
TF_SENTFIN
TF_REQ_SCALE

7*
/*
/ *
/*
/*
/*

*/

0x0001
0x0002
0x0004
0x0008
0x0010

log(2) of rexmt exp. backoff
current retransmit value */
consecutive dup acks reed */
maximum segment s i z e */
mss plus options */
1 i f fo r c i n g out a byte */

/* ack peer immediately */
/* ack, but t r y to delay i t */
/* don't delay packets to coalesce */
/* don't use tcp options */
/* have sent FIN */

0x0020/* have/will request window s c a l i n g
TF_RCVD_SCALE 0x0040/* other side has requested s c a l i n g
TF_REQ_TSTMP 0x0080/* have/will request timestamps */
TF_RCVT_TSTMP 0x0100/* a timestamp was received i n SYN */
TF_SACK_PERMIT 0x0200/* other side s a i d I could SACK */

*/
*/

#define TF_NEEDSYN 0x0400
#define TF_NEEDFIN 0x0800
#define TF_NOPUSH 0x1000
#define TF_REQ_CC 0x2000
#define TF RCVD CC 0x4000
#define TF_SENDCCNEW 0x8000

/*
/*
/*
/*
/*
/*

send SYN (i m p l i c i t state)
send FIN (i m p l i c i t state)
don't push */
have/will request CC */
a CC was received i n SYN

*/
*/

send CCnew instead of CC i n SYN */
st r u c t tcpiphdr *t_template;/* s k e l e t a l packet for transmit
s t r u c t inpeb *t_inpcb; /* back pointer to internet peb

* The following f i e l d s are used as i n the protocol s p e c i f i c a t i o n .
* See RFC783, Dec. 1981, page 21.
*/

/* send sequence variables */

*/
*/

tcp_seq
tcp_seq
tcp_seq
tcp_seq
tcp_seq
tcp_seq
u_long

snd_una;
snd_nxt;
snd_up;
snd_wll;
snd_wl2 ,-
i s s ;
snd_wnd ;

/*
/*
/*
/*
/*
/*
/*

send unacknowledged */
send next */
send urgent pointer */
window update seg seq number
window update seg ack number
i n i t i a l send sequence number
send window */

*/
*/
*/

/* receive sequence variables
u_long rcv_wnd;
tcp_seq rcv_nxt;

*/
/* receive window */
/* receive next */

17

tcp_seq rcv_up; /* receive urgent pointer */
tcp_seq i r s ; /* i n i t i a l receive sequence number */

* A d d i t i o n a l v a r i a b l e s for t h i s implementation.
*/

/*' receive v a r i a b l e s *•/
tcp_seq rcv_adv;

/* retransmit v a r i a b l e s */
tcp_seq snd_max;

/* advertised window */

/* highest sequence number sent;
* used to recognize retransmits

*/
/* congestion c o n t r o l (for slow s t a r t , source quench, retransmit a f t e r
loss) */

u_long snd_cwnd; /* congestion-controlled window */
u_long snd_ssthresh;/* snd_cwnd s i z e threshold for

* for slow s t a r t exponential to
* l i n e a r switch
*/

/*
* transmit timing s t u f f . See below for scale of s r t t and r t t v a r .
* "Variance" i s a c t u a l l y smoothed d i f f e r e n c e .
7

u_int t _ i d l e ;
i n t t _ r t t ;
tcp_seq t_rtseq;
i n t t _ s r t t ;
i n t t _ r t t v a r ;
u _ i nt t_rttmin; ,

/* i n a c t i v i t y time */
/* round t r i p time */
/* sequence number being timed */
/* smoothed round-trip time */
/* variance i n round-trip time */
/* minimum r t t allowed */

u_long max_sndwnd; /* l a r g e s t window peer has o f f e r e d */

/* out-of-band data */
char
char

ttdefine
ttdefine

i n t

t_oobflags ;
t_iobc;
TCPOOB_HAVEDATA
TCPOOB_HADDATA
t_ s o f t e r r o r ;

/* have some */
/* input character */
0x01
0x02
/* p o s s i b l e error not yet reported */

/* RFC 1323 v a r i a b l e s */
snd_scale;
rcv_scale;
request_r_scale; /*
requested_s_scale;

u_char
u_char
u_char
u_char
u_long
u_long
tcp_seq

/* RFC 1644 v a r i a b l e s */
tcp_cc cc_send;
tcp_cc cc_recv;
u_long t_duration;

/* window s c a l i n g for send window */
/* window s c a l i n g for recv window */

pending window s c a l i n g */

ts_recent;
ts_recent_age;
last_ack_sent;

/*

/*
/*
/*

timestamp echo data */
when l a s t updated */

send connection count */
receive connection count
connection duration */

/* TUBA s t u f f */
caddr_t t_tuba_pcb; /* next l e v e l down pcb for TCP over z */

/* More RTT s t u f f */
u_long t_rttupdated; /* number of times r t t sampled */

};
Figure 2-6 T C P Control Block

18

Given an IP control block, the corresponding TCP control block can be easily

obtained through the pointer in the IP control block. Unlike the IP control block, which

mainly contains static information about the communicating peer, the TCP control block

contains much dynamic information, which is used to provide the TCP semantics:

/* header at beginning of each-mbuf: */
struc t m_hdr {

str u c t mbuf *mh_next; /* next buffer i n chain */
str u c t mbuf *mh_nextpkt; /* next chain i n queue/record */
caddr_t mh_data; /* l o c a t i o n of data */
i n t mh_len; /* amount of data i n t h i s mbuf */
short mh_type; /* type of data i n t h i s mbuf */
short mh_flags; /* fl a g s ; see below */

};

/* record/packet header i n f i r s t mbuf of chain; v a l i d i f M_PKTHDR set
*/
str u c t pkthdr {

str u c t i f n e t * r c v i f ; /* rev in t e r f a c e */
in t len; /* t o t a l packet length */

};

/* d e s c r i p t i o n of external storage mapped into mbuf, v a l i d i f M_EXT
set */
struct m_ext {

caddr_t ext_buf.; /* s t a r t of buffer */
void (*ext_free) /* free routine i f not the usual */

P((caddr_t, u _ i n t)) ;
u_int ext_size; /* s i z e of buffer, for ext_free */
void (*ext_ref) /* add a reference to the ext object */

P((caddr_t, u _ i n t)) ;
};

struct mbuf {
struc t m_hdr m_hdr;
union {

st r u c t {
st r u c t pkthdr MH_pkthdr; /* M_PKTHDR set */
union {

str u c t m_ext MH_ext; /* M_EXT set */
char MH_databuf[MHLEN];

} MH_dat;
} MH;
char M_databuf[MLEN]; /* !M_PKTHDR, !M_EXT */

} M_dat;
};

Figure 2-7 Mbuf Structure

19

reliable communication, flow control and congestion control. The sequence numbers in

the structure play important roles in detecting duplicate or lost packets. The TCP control

block is a big structure as shown in Figure 2-6.

The mbuf, shown in Figure 2-7, which stands for "memory buffer", is the basic

memory management unit for network communications inside the BSD kernel. The

sending and receiving queues in the socket structure are organized as mbuf chains. The

mbuf provides an easy way to manipulate data buffers, including prepending and

appending data to buffers, removing data from buffers, and mirurnizing the amount of

data copied for these operations. The mbuf can be varying-sized, contairiing up to 108

bytes of data. For more data than that, more than one mbuf can be chained together, or an

external buffer of 2048 bytes can be employed. There is a pointer in the mbuf header

pointing to the first byte of data, and a field storing the size of the data inside this mbuf.

To add more data to an mbuf chain, we may simply append or prepend a new mbuf to the

chain. Some mbufs can be deleted from the chain upon removing data. If part of the data

in a mbuf needs to be removed, we may simply modify the data pointer to point to the

new beginning, if the data is to be removed from the beginning. Otherwise we can

modify the size field to reflect the data left in the mbuf, if the data is to be removed from

the end. Mbufs are not only used for storing data, but also for IP address, port number

and protocol control information.

2.6.2. Connection Establishment

The TCP connection establishment procedure is known as a three-way-handshake. In

normal operations, a client (the active open side) sends a SYN to the server (the passive

open side). The server in the "listen" state sends back a packet containing a SYN and an

20

A C K for the SYN from the client. Upon receiving the packet, the client sends back an

A C K for the SYN from the server, which may be piggybacked on the first data packet or

on the following data packet, and enters the "established" state. The server enters the

same state after it receives the ACK. The normal procedure on the server side is shown in

the Figure2-8.

User creates a socket
and listens on it

LISTEN
State)

Remove the socket from
the complete queue and

return it to user
User calls acceptQ^

ESTABLISHED
State

S Y N received

Create a new socket
and put it in the

incomplete queue

Move the socket from
the incomplete queue to|

the complete queue

A C K received

S Y N _ R E C E I V E D
State

Send back
S Y N / A C K

Figure 2-8 Connection Establishment

2.7. NetVM

NetVM is an API on the MyriNet Gigabit Network Interface developed by Joon

Suan Ong at UBC. With NetVM, a process is able to read and write memory on a remote

node directly. NetVM was originally designed for user level communication, so all the

functions could only be invoked in user space. Ong modified it to fit with our

requirement. The only function used in our project is the remote write function using

physical addresses. The function interface is shown in Figure 2-9.

21

unsigned i n t
lkm_remote_write_phy(void *p, /* l o c a l buffer pointer */

unsigned i n t pa, /* correspondent phy s i c a l address */
i n t len, /* buffer s i z e */
Tprot_key key, /* l o c a l access key, unused i n kernel */
i n t rem_node, /* MyriNet node i d */
i n t rem_id, /* block i d , unused */
voi d *rem_p, /* remote buffer pointer */
unsigned i n t rem_pa, /* remote buffer p h y s i c a l address */
Tprot_key rem_key, /* remote access key, unused */
i n t f lags /* synchronization f l a g */

) ;

Figure 2-9 NetVM Remote Write

This kernel version remote write borrows the interface from the one for user level

communication, so there are many unused parameters, which are used to enforce security

in the user level version.

There are some constraints on using NetVM. First, like most communication APIs

based on DMA, the data to be transferred must be DMAable. On IBM PCs, this means

both the address and the length of the data must be multiples of 4. Second, the data

cannot cross a memory page boundary. Normally the memory page size on PCs is 4096

bytes. Third, both the virtual memory address and the physical address must be used to

achieve best performance. And last, the present version of NetVM does not provide a

notification mechanism on data arrival events. An alternative message passing API

implemented by Mricom, G M [Myr99] does provide notification but does not support

remote memory operations.

Despite all these constraints, NetVM provides a convenient communication

mechanism with low overhead. Without using explicit messages, NetVM releases the

user process on the remote node from handling messages.

22

Chapter 3

Design and Implementation

The goal of our system is to provide a general tool for various applications to attain

fault tolerance. The system must have these properties:

• Transparent to clients.

• Low overhead.

• Little involvement of user applications.

• Easy-to-use interface.

The failure that our design addresses is the failure of a server. A server may fail, but

we assume the failure is fail-stop. We do not try to handle network partitions or

Byzantine failures.

3.1. Overview

As shown in Figure 3-1, we follow the primary-backup approach. Similar to

[Barlett87], every primary server only has one backup in our model. This decision is

based on the fact that the failure possibility of the primary server is fairly low and our

implementation is not designed to handle Byzantine failure. A benefit of this approach is

that it avoids synchronization among backup servers. Different from [Barlett87], several

primary servers may share the same backup.

23

Clients

Figure 3-1 System Architecture

Applications using this system achieve fault tolerance through a way quite similar to

message logging protocols. The difference is that the message and checkpoint logs are

not saved on some stable storage, but on a backup server. Instead of rebooting the server

and restarting the applications on it after a server crashes, the backup server takes over

and continues providing the services.

Figure 3-2 shows the normal scenario of the working process of the backup system,

which comprises of 3 phases. In the setup phase, a primary begins with creating a

listening socket and notifies the backup, which in turn creates a backup environment for

the socket and returns the information to the primary. Every time it accepts a connection

request from a client, the primary creates a new socket and creates a new back

environment on the backup. The second phase is the communication phase, in which the

primary works similar to normal TCP servers, except that it replicates every packet

received and sent and the control blocks of the communication sockets on the backup.

The primary also sets a heartbeat flag on the backup to indicate that it is still alive. At the

same time, the application checkpoints periodically. The takeover phase begins when the

primary crashes. The backup assumes that the primary has failed after there has been no

24

I

primary i backup

creat a socket
and listen

set backup
option

] set up backup
environment

set backup
option)

1
1

set up backup
environment

-

1

accept a
connection 1

;
create a new
socket with

backup option

• set up backup
environment

create a new
socket with

backup option

set up backup
environment

replicate data
anriloRs y

-

data exchange
with the client

send heartbeats check up
heartbeat

periodically

data exchange
with the client 1 ^ -

application^ checkpoint

check up
heartbeat

periodically

4 i

;_ggprimary^—" i
fail !

assume
primary failure
and take over

Figure 3-2 Backup-Takeover Process

heartbeat signal from it for some time, and takes over. The sockets are reconstructed with

the data received and sent since the last checkpoint. An application is executed to use

these sockets to resume communication with the clients.

There are four modules implemented on the primary server. The first one is the

environment-setup module which sends requests to the backup server to set up the

backup environment and records configuration information concerning these connections.

Its counterpart, the release module, notifies the backup server to free the resources

allocated, and releases related local resources. The replication module is responsible for

replicating the incoming and outgoing data and related control information on the backup

side. The last module is a timer that generates heartbeat signals periodically to tell the

backup that it is still alive.

25

Referring to Figure 3-2, the system on the backup server is divided into two parts: a

backup daemon running in user space and a L K M (Loadable Kernel Module) running in

the system kernel which provides a system call. The backup daemon has two main tasks.

The first one is to invoke the backup system call, which loops, processing backup

requests from the primaries. Second, the backup daemon executes appropriate

applications to take over when the L K M detects a primary server failure and forks a new

process to return to the user space. The L K M sets up the backup environment for a socket

on a primary when it receives a backup request and destroys the environment when it

set up

Set up
Environment

Start Timer

UDP
Receive

cancel

time out
Create New
Process

new
Reconstruct
Sockets

Claim IP
Address

Return to
Application

Replease
Resource

old

Figure 3-3 L K M

26

receives a cancellation request. A timer checks the heartbeats from the primary servers

periodically and notifies the system of the primary failure event if there is no heartbeat

from a primary server for some period. The process forks on fail-over events. The

original process keeps on looping, while the new process handles the takeover, including

claiming the IP address of the failed primary, recovering all the sockets backed up for the

failed primary and creating file descriptors for the sockets to return to the backup

daemon. The daemon executes appropriate applications and passes the corresponding file

descriptors to them.

3.2. Application Interlace

The system is rarining on the server side and is transparent to clients, so there is no

need to modify the code on the client side at all. On the server side, the system replicates

all application TCP messages on the backup server. The state of an application is

determined by its initial state and the TCP messages that it has received and sent.

The system also provides an easy way to checkpoint an application. By this means,

an application can write a checkpoint log on the backup server. When the primary server

fails, the application can restart from the last checkpoint on the backup server instead of

restarting from the initial state. The requirement is that the application must be able to

recover according to the checkpoint. The system can reconstruct all the sockets used on

the failed primary server and pass them to the application. The data received and sent

since the last checkpoint can be recovered as well.'

In summary, to use the system, an application should:

• On the primary server:

o Set the backup option

27

o Checkpoint

• On the backup server:

o Be able to recover from the checkpointed state.

3.3. Backup Environment Setup

The system provides the backup function as an option to applications. The socket is

selected as the basic unit to set this option. An application can use the backup function by

setting the backup option on a socket. For a socket with the backup option, the system

creates the backup environment on the backup server for the socket, including creating a

socket and related data structures, allocating data buffers to replicate incoming and

outgoing packets, and allocating a log buffer to store checkpoint information. Every

socket with the backup option has a corresponding socket for it on the backup server.

Sockets without the backup option are processed as usual.

For a listening socket with the backup option set, all the sockets created for

connections accepted by it inherit the backup option automatically. This is suitable for

most applications based on TCP. The listening socket does not transfer any data, it is only

involved in handling connection-establishing requests. It is the sockets created through

the listening socket, not the listening socket itself, that are used to exchange user, data.

3.4. Synchronization

To keep the service states on the primary server and the backup server consistent, the

system must be well synchronized. There are several synchronization issues here. First,

the application and TCP layer must share the same view on data upon takeover, i.e., each

byte of data is either handed by the application or by the kernel, but not both. Second,

replicated data in the TCP layer on the backup server must be consistent with that on the

28

primary server, so that the application gets the same flow of data no matter which server

it communicates with. Third, on the backup server, the TCP state must be consistent with

the data replicated.

3.4.1. Synchronization between the Application and the T C P Layer

Message replication is done in the TCP layer. To recover from a failure faster, the

application server must have some mechanism, e.g., using a checkpoint log to record the

service state periodically. The TCP layer is unaware of the service state in the application

layer, so checkpointing must be done in the application layer. Thus we have two logs

handled by different layers.

The aim of the system is to make the failure of a server transparent to clients, so we

cannot expect client applications to contribute to failure recovery. Everything should be

done on the server side. Because data is replicated on the server side, the system must

ensure that every TCP message is handled "exactly once".

For incoming data, this means that every packet must be handled by the application

exactly once. When the backup server takes over and restarts from the last checkpoint,

the TCP layer is responsible for passing all the packets sent or received since the last

checkpoint to the newly restarted application. The client application is oblivious to the

failure and will neither restart from the checkpoint nor resend these packets. For outgoing

data, there must be some mechanism to prevent the restarted application from resending

the data that has been sent by the failed primary before it failed.

The synchronization between the TCP layer and the application layer is achieved by

using sequence numbers. TCP is a stream oriented reliable communication protocol, in

which sequence numbers are exploited to detect lost and duplicated data. This makes the

29

sequence number a good candidate to log the transaction history. The only requirement is

that the server application also uses sequence numbers to log transactions. By this means,

the takeover server application may notify the TCP layer about the sequence numbers of

the last bytes it sent and received, which can be retrieved from the checkpoint log. The

TCP layer will then remove the inconsistent data from the sending and receiving queues.

By doing this, it is guaranteed that the application will receive from the last byte it

received and there will be no duplicate data in the sending queue.

3.4.2. Synchronization between the Primary Server and Backup Server

To ensure that the system may recover from primary server failure at any point, the

data on the backup server and the primary server must be consistent. When a data packet

arrives from the network, the device driver is invoked at the interrupt level. The IP layer

then calls the appropriate transport layer routine to handle it according to the packet type.

For a TCP packet, the TCP layer checks the packet header, and if it is the expected packet

puts it in the receiving queue waiting for the application to fetch the data. An

acknowledgement for this packet is arranged to be sent back some time in the nature.

Normally the application retrieves the data asynchronously, and the packet is deleted

from the queue after that. When the acknowledgement arrives, the sender deletes the

corresponding packet from the sending queue and will not try to send it again. If the

primary crashes right after it sends back the acknowledgement for an un-replicated

packet, the sender of that packet will think the packet has been received and remove it

from the sending queue. When the backup takes over, there will be no way for it to get

this packet again. From this analysis it is obvious that an incoming packet must be

replicated not only before the data is retrieved by the application, but also before the

30

acknowledgment is sent back. Replicating data before it is put in the receiving queue

satisfies these requirements.

Without the backup system, the socket layer merely puts the packet in the sending

queue when an application sends a packet through a socket. The TCP layer will send the

packet out through the IP layer at some convenient time. Because the send routine returns

to the application immediately after the packet is put in the queue, the application may

write the checkpoint before the packet has been sent. It is necessary to replicate the data

before the send routine returns or delay the checkpoint until the acknowledgement of the

packet has been received, so that the backup server may send out the packet if the

primary server fails in such a scenario.

3.4.3. Synchronization between Data Replication and Control Block

Replication

The TCP control block plays an important role in providing reliable communication.

More specifically, the sequence numbers stored in the control block are the key to

preventing duplicate or missing data. Because the replicated sockets on the backup server

are not really communicating with clients, the TCP layer will not update their states

automatically. In our model, the TCP control blocks on the backup server are just copies

of those on the primary server. This causes a potential problem in that the replicated data

and control block may be inconsistent on the backup.

31

Application calls
write/send

Replicate data
on backup

Put data in
sending queue

write/send
returns

Send data out Update control Replicate
through IP block states control blocks

Sending data

Data come
through IP

Update control
block states

Replicate data
on backup server

Put data in
receiving queue

Application calls
read/recv

Replicate
control blocks

Send back
acknowledgement

Receiving data

Figure 3-4 Sending / Receiving process on the primary

One way to guarantee that the data and control blocks are consistent is to replicate

data and the corresponding control block atomically. Extra effort would be needed if we

made the data replicating and control block replicating atomic. We followed another

approach — simply replicating them separately. The correctness of this approach is

guaranteed by the TCP functionality of providing reliable communication. It may happen

that the control block states and the data states on the backup server are not consistent.

However, when we reconstruct sockets on the backup server, we create data queues

according to the control blocks. By doing so, the possibility of inconsistency is

eliminated and at the same time, no necessary information is lost. Consider the two

scenarios of replicating data on the primary in Figure 3-3.

32

In the first scenario, there are two points where failure may cause inconsistency.

First, the primary fails after the data has been replicated on the backup server, but not put

in the queue or has been put in the sending queue but the send system call has not

returned. Because the primary fails before the send system call returns, the application on

the primary will not log this packet as "sent". After takeover, the restarted application on

the backup server will re-send the data. If there is no special mechanism here, then the

data will be appended to the end of the sending queue, which has included the same data.

This inconsistency between the application and TCP layer has been discussed in Section

3.4.1.

Second, if the primary server fails when some packets have been sent out, but the

control block on the backup server has not been updated, then the control block states are

inconsistent with the service states. However, this is well handled by TCP itself.

According to the stale control block on the backup server, these packets have not been

sent yet, so they will be re-sent. The duplicate packets will be detected on the client side

and discarded.

Similarly, there exists an inconsistent point in the second scenario. If the primary

server fails between the data replication and control block replication, then the states on

the backup server are inconsistent. There are more data in the backup buffer than what

the control block shows. Neither the primary server nor the backup server will send

acknowledgement for this received packet, so the client will re-send it. If the backup

server copies the data from the backup buffer to the receiving queue as it is, then there

will be duplicate data in the receiving queue. The solution is that by checking the

33

"rcv_nxt" sequence number in the control block, only data consistent with the control

block will be copied to the receiving queue.

3 . 5 . Implementation

We implemented the system on IBM PCs running FreeBSD 2.2.2-Release. The

computers are connected through MyriNet. On the primary server side, we modified part

of the socket and TCP code to support the replication needed, since the replication

operation closely interacts with the present TCP implementation. It is almost impossible

to implement the replication as a Loadable Kernel Module (LKM). On the other hand, the

module on the backup server is comparatively independent of other parts of the kernel,

which allows us to implement it as a L K M . Implemented as an L K M , the system is more

portable. A computer can begin to provide the backup service without rebooting.

3.5.1. Backup Socket Management

As introduced in Chapter 2, IP control blocks are linked in a list in BSD systems.

TCP timers search the list to deliver TCP timeout events. The system also uses a

hashtable to accelerate demultiplexing. Our system creates a corresponding backup

socket on the backup for each socket on a primary that needs to be backed up. If we use

the standard routine to create backup sockets, the IP control blocks of these sockets will

be linked in the system list and the system hashtable. This may cause the backup server to

handle the backup sockets mistakenly, e.g., trying to send out unacknowledged packets,

accepting packets oriented to a primary server, etc.

We solve this problem by creating a backup list and a hashtable on the backup using

the same data structures as the BSD system kernel does. Instead of being linked to the

34

system list and hashtable, the IP control block of a backup socket is linked to the backup

ones until the takeover.

3.5.2. Backup Buffer Management

For each socket to be backed up, the backup server creates a backup socket and

allocates two data buffers for it, one for the outgoing data, and the other for the incoming

data. Unlike the sending or receiving queues in the BSD TCP implementation, which are

organized as mbuf linked lists, the buffers are allocated as continuous memory regions at

the time the backup environment is set up. This approach avoids the overhead of

allocating a small piece of memory every time some data needs to be replicated, but has

the risk of wasting resources. The buffers are organized as fixed-sized circular lists, and it

is the applications' responsibility to use them wisely. If there is too much data transmitted

between two checkpoints, old data in the buffers may be overwritten by new data. The

application must checkpoint in time to avoid data loss.

Two auxiliary buffers are used to keep track of data boundaries in the sending buffer

and the receiving buffer respectively. The contents of the buffers are pairs of sequence

numbers and data pointers (see Figure 3-3), which are used to record the address of the

data beginning from the specific sequence number. The length of the data can be obtained

by the difference of two sequence numbers of neighboring pairs. Like the data buffers,

these buffers are also organized as circular lists. The reason for using these buffers is

explained in Section 3.5.4.

In BSD systems, the sending/receiving queues are organized as mbuf lists, so the

backup server needs to copy the data from the buffers to create the mbuf lists when it

takes over. If the data is stored in mbuf lists when it is replicated, it will be faster to take

35

over. However, this approach introduces high overhead to data replication, and as a

result, influences the system performance. Moreover, mbufs are managed by the kernel

specially. Remote writing to mbufs is not really possible.

3.5.3. Backup Option

Our system provides applications the backup functionality as an option. If an

application sets the option, our system will back up the indicated socket on the backup

server. The socket is the basic unit for replication, so we reuse the socket option function

in the operating system instead of providing a new routine. The socket option setting

routine is pretty flexible. It may be used to set options for the socket layer, the TCP layer

or the IP layer, which normally modifies socket data structures, TCP control blocks or IP

control blocks respectively. Some socket options are just used to set flags in the

so_options field of socket structures, whereas other socket options and TCP, IP options

may be used to set or get system configurations. The setsockopt() system call provides an

easy way to pass a variable length parameter.

: Because our system is designed for TCP communication, we implement the backup

option in the TCP layer. An application needs to use level IPPROTO_TCP to call

setsockopt() so that the option is handled correctly in the TCP layer. Setsockopt() can be ;

used to set or cancel the backup option. To set the option, the application should pass a

structure containing the IP address and port number of the backup server as a parameter,

which will be used to indicate the backup server to send requests to. This information is

saved in the kernel for later use, e.g., to cancel the option.

Sockets created by the "accept" system call should inherit the backup option

automatically so that applications do not need to set the option for every accepted socket.

36

This is done in two steps. As shown in Figure 2-8, a new socket is created when the

listening socket receives a SYN packet. The pointer to the backup server information is

taken as a flag that the socket needs to be backed up. This pointer is copied to the newly

created socket, so the new socket will be backed up on the same backup server as the

listening socket is. The second step, setting up the backup environment, is done in the

accept() system call. The TCP layer follows the same steps to set up the backup

environment as those used in setting the backup option. Because tcp_input, the routine

handling the SYN packet, is executed at interrupt level, whereas UDP is used in setting

up backup environments, it is hard to implement the setup inside tcp_input.

< 3.5.4. Replication

Replication includes data replication and control block replication. Both of them are

implemented by using NetVM. The reason we chose NetVM is that considering the large

amount of data to be replicated, we tried to rninimize the overhead of replication.

Myrinet provides a fast communication platform and NetVM is a convenient

communication API available to us on Myrinet. The IP control block, which contains the

static information of a connection, is replicated only once, right after the backup

environment is set up. The TCP control block, which has fields that change with every

data transmission, is updated frequently. Both the virtual address and the physical address

of a remote buffer are needed to use NetVM. A primary server imports the addresses

from the backup server when the backup environment is established.

37

s t r u c t bkpaddrs{
voi d *snd_buf; /* v i r t u a l address of the sending buffer */
i n t snd_buf_pa; /* physi c a l address */
voi d *snd_pnt; /* address of the pointer b u f f e r for sending */
i n t snd_pnt_pa; /* ph y s i c a l address */
void *rcv_buf; /* address of the r e c e i v i n g buffer */
i n t rcv_buf_pa; /* physi c a l address */
void *rcv_pnt; /* addresses of the pointer b u f f e r */
i n t rcv_pnt_pa;
s t r u c t tcpcb *tcb; /* addresses of the TCP co n t r o l block */
i n t tcb_pa;
s t r u c t inpcb *inp; /* addresses of the IP co n t r o l block */
i n t inp_pa;
void *log; /* addresses of log */
i n t log_pa;

};

Figure 3-5 Imported Addresses

As introduced in Chapter 2, NetVM uses D M A to achieve fast data transmission.

This requires that messages be word aligned. Normally variable addresses satisfy the

alignment requirement of DMA, but the length of the data sent by user applications does

not always fit with this criterion. This causes a problem when we use NetVM to replicate

data. We solve this problem by copying extra data. For example: suppose that we need to

copy 22 bytes of data whose offset from the beginning of a memory page is 0x0023.

Instead of copying the exact 22 bytes of datâ we copy 28 bytes of data from the offset

0x0020. The operation satisfies the "DMAable" requirement of NetVM. Now the

problem is how to notify the backup server about this so that the padding will not be

taken as normal data by the backup server.

Since NetVM simply writes data to a remote node without notification, the only

possible solution is either send a notification to the backup server or use another remote

write to log this on the backup server. Because the backup server does not care about the

replicated data until a primary server fails, we follow the second approach. That is why

we use two auxiliary pointer buffers to store this information.

38

Still using the above example and assuming that the 22 bytes data starts with

sequence number 1: Figure 3-5 shows that extra bytes are copied from the primary server

to the backup server. We can find the address of the real data from the pointer buffers,

and by reading the next sequence number we know that only 23-1=22 bytes data in this

segment are valid.

0X0023 0X003C

0X0020 Seq=l Primary Server

•>. 22 bytes

Data Buffer

Pointer buffer

• 2L 1

Seq=l Seq=23
1 1
l

Backup Server

Figure 3-6 Handle unaligned data

There are still several problems to deal with! First, the data in sending/receiving

queue is stored in mbuf lists instead of continuous buffers. Second, NetVM cannot cross

4KB page boundaries. Third, both the data buffer and pointer buffer are organized as

circular lists. Special handling is needed when the end of buffer is reached. Furthermore,

we want to use as few remote writes as possible. Otherwise, remote writes may introduce

high overhead and consume pointer buffers very quickly.

The size of an mbuf is smaller than 4K bytes, so an mbuf is always allocated within

one memory page [MBKQ96]. Thus the read operation on a primary server when we use

NetVM does not cross the page boundary. The buffers on the backup server are allocated

as multiples of 4K, so the end of a buffer is also the end of a page. The system uses the

remote write function in NetVM to replicate the mbufs one by one. Each time an mbuf is

processed, the page boundary on the backup server is checked. If the data size in an mbuf

39

is larger than the space left in the current page on the backup server, the data needs to be

copied in two sections.

The writing of the pointer buffer is delayed until all the mbufs in a queue have been

replicated or unaligned data is reached. This implementation saves many remote writes

on aligned data. The backup server reconstructs the sending and receiving queues

according to the pointer buffers, so if the primary server fails after some data is replicated

but the corresponding pointer is not set, the data will not be copied upon takeover. The

writing of sequence number and pointer pairs is overlapped. Every time a bunch of data is

replicated in a remote buffer, the beginning sequence number and starting address and the

ending sequence number and ending address are written in the corresponding pointer

buffer, and the first pair overwrites the second pair written last time. By this means, the

backup server may get the size of the last bunch of data while no extra space is used to

save the data size.

A bckpargs structure (Figure 3-6) is used on the primary server to record the offsets

of the next byte to write in different buffers. An offset may be round up if the end of the

corresponding buffer is reached. The replication operation is fully executed on the

primary server side.

s t r u c t bkpargs{
st r u c t bkpaddrs bckpaddrs;/* buffer addresses on the backup */
u_long snd_off; /* o f f s e t i n sending buffer */
u_long snd_pnt_off; /* o f f s e t i n sending pointer buffer */
u_long rc v _ o f f ; /* o f f s e t i n r e c e i v i n g buffer */
u_long rcv_pnt_off; /* o f f s e t i n r e c e i v i n g pointer buffer */
u_long log_off; /* o f f s e t i n log */

};
Figure 3-7 bckpargs structure

40

3.5.5. Failure Detection and Takeover

We simply use heartbeat signals to detect the failure of primary servers. A timer on

the primary server sets a flag on the backup server using NetVM every 0.2 seconds, and a

timer on the backup server checks the flags every one second. If a flag has not been set

within 1 second, the backup server will consider the primary server to have failed and

will take over. The timers on the primary server and backup server are implemented in

different ways. On the primary server, we use the TCP timer directly. In the BSD

implementation, TCP uses two timer routines to check on TCP timeout events. One is

called the "quick timer", which interrupts every 0.2 seconds; the other is the "slow

timer", which interrupts every 0.5 seconds. We use the quick timer to set: the flag on the

backup server. On the backup server, we use the "timeout" function inside the kernel to

schedule a routine that checks on the "alive" flags. The flags are stored in a linked list.

The routine checks and clears all the flags every 1 second. This allows up to four

heartbeat signals to be lost before a failure is signaled.

If a flag is not set since the last timeout event, the timer appends a special packet to

the receiving queue of the blocked UDP socket which is waiting for the requests from

primary servers and wakes up the socket. We implement it this way because the timeout

is an interrupt event, which is not related to any process, whereas we need the process

information to create file descriptors for the sockets to be recovered. Other alternatives

were also considered. One choice is to send a signal to the blocked process, which will

interrupt the blocked socket from waiting and cause the system call to return. The

application must use another backup system call to reenter the kernel and again wait for a

request. Another alternative is to use two processes inside the kernel, one of which is

41

used to handle requests, the other just sleeps until the timer routine sends a signal to it

when a primary server failures. Both of the approaches are more complicated than the

first alternative that we have adopted.

When the blocked socket is woken up, the system may find the failure of a primary

server from the received special packet, which contains the IP address of the failed

server. A new process is created to handle this takeover, and the old process loops back

and blocks on the UDP receive waiting for new requests.

; The newly created takeover process first searches the backup socket list (see Figure

3-7) for IP control blocks corresponding to the failed primary server according to the IP

address. For every socket found, the replicated data is copied from backup buffers to the

sending and receiving queues. Incoming data between the last checkpoint and rcv_nxt is

copied to the sending queue. For incoming data, the snd_nxt is used as the start point, and

the last sequence number in the pointer buffer is taken as the end mark.

s t r u c t pntlnk{
char *snd_buf, *snd_pnt;/* b u f f e r pointers */
char *rcv_buf, *rcv_pnt;
s t r u c t inpcb * i p ; /* corresponding IP control block */
struc t pntlnk *next; /* next backup socket i n chain */

} ;

Figure 3-8 Structure of Backup Information List

All corresponding IP control blocks are moved from the backup control block list to

the system control block list so that they may accept incoming packets. The system

creates a file descriptor for every socket associated with the new process, which will be

directly used by the application to send and receive data. The backup server adds the IP

address of the failed primary server to the network interface as an alias, which causes an

ARP message to be broadcast in the local network. Every node in the local network,

including the router, will update their corresponding routing entry accordingly. All the

42

messages addressed to that IP address will then be redirected to the backup server.

Finally, the new process returns from the system call to the daemon with all the file

descriptors. Then the backup daemon executes a special version of the corresponding

server application, which can recover according to the checkpoint log, and passes all the

file descriptors to it, and the server application may continue the service from then on.

Our system passes the file descriptors to the application as command line arguments. This

requires the application be able to get the file descriptors by this means and continue

communication with them.

Before it uses these newly created sockets to communicate with the clients, the

restarted server application should retrieve the log for each socket through a system call

and continue from the last checkpoint. It also needs to synchronize with the TCP layer

through a special system call. The TCP layer gets the sequence number of the next byte

to send by this means, so it may remove all the inconsistent data from the queue.

3.6. Limitation

The system is designed to support multiple primary servers with multiple TCP

connections. However, there are some factors constraining its scalability. First, the

backup buffers are allocated inside the kernel when the backup environment is set up.

This approach avoids the overhead of allocating memory every time when a packet is

replicated, but limits the amount of the pending data. Currently the sending buffer and the

receiving buffer are both 128K bytes. Considering that a TCP packet can be as big as

64K bytes, the buffer is really not so big. However, even with such a small buffer size,

the backup server still runs out of memory quickly. The reason is that in our present

implementation, the buffer is allocated from a submap inside the kernel. This is the

43

standard behavior of the kernel malloc() of BSD Unix [MBKQ96]. The default size of the

submap is about 19M in our system. The total buffer size allocated for a backup socket is

about 400K, so the maximum number of the living sockets that the backup server can

handle is about 40. Even without the constraint of the submap, the total number of

sockets that can be handled is still limited by the physical memory size. This is because

the buffers are allocated inside the kernel as unpaged memory, which cannot be swapped

out.

Second, the throughput of the system is constrained by the communication capability

of NetVM. NetVM puts sending messages in a queue before sending them through

Myrinet. When the queue is full, no more messages can be put in the queue. In our

testing, when there are 3 clients sending messages without pause, the NetVM begins

reporting queuing errors.

Besides these constraints, checkpointing in our system is only partially implemented.

The first version of checkpointing only allows the application to log the sequence number

of the last byte of data it has handled. The second version of checkpointing allows the

application to log with a customized data structure, but the system call that will be used

to synchronize the restarted application and the TCP layer are unimplemented.

44

Chapter 4

Evaluation

We test the system performance on a cluster of 266 MHz Pentium II PCs with

128MB of R A M connected by a Myrinet network with a LANai (version 3.0). Clients are

connected to the servers by 100 Base-T Ethernet.

There are two main aspects to evaluate the performance of a replication system: the

overhead caused by replication in during normal operation, and the gap between the

primary failure and takeover. Three groups of experiments are conducted to measure the

overhead of setting up the TCP connection, the overhead of communication and the time

required between the failure detection and returning the reconstructed sockets to the

application.

4.1. Connection Setup

In this experiment, a client sends 10 groups of 40 connection requests to the primary

server. After each group of requests, both the client and the server close these

connections, and the client sends another group of connection requests. For comparison,

we conducted the same experiment to set up connection to a socket without the backup

option. The average time on setting up a connection in each group is shown in Table 4-1.

45

When it listens on a socket, a server can set the value of the backlog, which

determines how many connection requests may be put in the waiting list. The results

show that when this value is big enough, the connection set-up time to a socket with the

backup option is similar to that of a socket without this option. This benefits from the

two-phase backup environment setup. As shown in Figure 4-1, when a connection request

arrives, the system only sets the backup option to indicate the connection should be

replicated, but does not communicate with the backup server. An acknowledgement is

then arranged to be sent. Only when the "accept" system call comes from the application,

will the system communicate with the backup server to set up the backup environment.

backlog = 0 backlog = 50
normal backup normal backup

1 62,990 1,413,841 376 422
2 397 1,424,753 374 440
3 415 1,424,754 387 454
4 397 1,424,759 400 470
5 412 1,424,733 412 478
6 428 1,424,737 443 448
7 453 1,424,758 466 466
8 476 1,424,758 486 482
9 508 1,424,758 455 509

10 472 1,424,752 441 535
Avg 440 1,423,660 424 470

Table 4-1 Connection Establishing Time (in us)

When the backlog is set to 0, only when the prior connection request has been

processed will a new connection request be handled. Table 4-1 shows that the connection

setup time to a backup socket increases dramatically in this situation. Comparatively, the

connection setup time to a socket without the backup option is almost not influenced

except for the first group.

* This value does not count the result of the first group.

46

Client Primary Backup Client Primary Backup

Backlog = 50 Backlog = 0

Figure 4-1 Connection Set up

To explain the surprisingly long time on connection establishment, we must go over

the 3-way handshake of TCP connections. As introduced in Section 2.6.2, the server

sends back an acknowledgement for a connection request with a SYN, and puts the newly

created socket in an incomplete connection queue. When the client receives the

acknowledgement, an acknowledgement for the SYN is sent back and the connection

system call returns to the user. Upon receiving the acknowledgement, the server moves

the created socket from the incomplete queue to the complete queue, and wakes up the

process blocked by the accept system call, if applicable. By now the 3-way handshake is

finished.

In our system, setting up the backup environment on the backup server introduces

overhead to the last step of the 3-way handshake, as shown in Figure 4-1. Upon receiving

the acknowledgement, the server moves the created socket to the complete queue, but

waking up the user process is delayed until the backup environment has been set up on

the backup server. When the backlog length is set to 0, if a new connection requests

arrives during this period, it will be simply dropped because there is a pending socket in

the complete queue [Stevens 94]. The client has to resend the connection request after

47

time out, and this time, the request is processed at once. This explains why the average

connection establishment takes so long time in the backup system. Comparatively, in the

normal system, in most cases when the second connection request arrives, the prior

created socket has been removed from the complete queue and passed to the user. As a

result, the connection request is processed immediately instead of being dropped. There is

often some chance in the very beginning that a request is dropped because of the privious

request has not been fully processed, so the average connection establishment time in the

first group is much longer than those in the other groups.

4.2. Data Communication

Two experiments are conducted to test the overhead of data communication caused

by replication. In the first experiment, the client application exchanges data package of

1000 bytes with the server. As in the Stop-and-Wait protocol, the client does not send the

next packet until it receives the response to the privious packet. The results shown in

Table 4-2 are the total time for exchanging 5000 packets. The time for exchanging-data <

with a socket with the backup option is about 4.0% longer than the time for a socket

without this option.

1 2 3 4 5 Average
Normal 10,755,143 10,763,547 10,771,293 10,774,137 10,770,663 10,766,957
Backup 11,202,858 11,206,439 11,188,651 11,167,897 11,202,721 11,193,713

Table 4-2 Time of Communication (in us)

In the second experiment, we measure on the overhead on different packet sizes.

Similar to the first experiment, the client sends the next packet when it receives the

response from the server for the previous packet. Different from the first one, the

response is just an acknowledgement of 1 byte. Since big packets may be segmented by

48

the TCP layer, the server needs to collect all the data in a packet before it sends back the

acknowledgement.

From Table 4-3 we can see that the overhead caused by replication is decreasing with

the. packet size growth. The reason is that the replication is packet based. The overhead

on each packet is relatively constant, almost independent of the packet size. When a

packet is too big to fit in a D T U of the lower layer, the TCP layer segments it to smaller

packets. The D T U size of Ethernet is normally 1500 bytes, so the size of the data in a

packet received by the receiver is normally 1460 bytes (1500 D T U - 20 TCP Header - 20

IP Header). This explains why the relative overhead is comparatively stable when the

packet size is bigger than 1460.

Packet Size(B) 256 1,024 4,096 16,384
Normal(us) 2,731,144 6,308,314 19,463,870 112,992,111
Backup(us) 3,106,565 6,712,500 19,756,464 114,294,780
Overhead 13.7% 6.4% 1.5% 1.2%

Table 4-3 Overhead on Different Packet Sizes

We also test the throughput with and without replication by sending 5000 packets of

1 K bytes continuously without waiting for the response. There is no obvious difference

between the two sets of results. The result shows that the replication is not the bottleneck

of the communication, which can be done in parallel with the TCP communication.

A major reason that the system did not introduce high overhead to the

communication is that we used the asynchronous communication mode of NetVM. In the

asynchronous mode, the remote write simply puts the message in a local queue and

returns. The message is sent out later. Since it is not blocked on replication, the system

achieved good performance, but introduced the risk of inconsistency. If the synchronous

mode is used, the overhead will be much higher.

49

4.3. Takeover

The takeover time depends on many factors, such as the total number of connections

replicated, the number of sockets to be reconstructed, the size of the data to be copied to

the sending and receiving queues, etc. We used a simplified program to test the

approximate takeover time. The system takes several steps to take over:

1. Failure detection.

2. Searching for control blocks belonging to the failed primary server.

3. Copying data to the sending and receiving queues of the sockets to be

reconstructed.

4. Using ARP message to add the IP address of the failed primary server as an alias.

5. Forking a new process.

6. Creating file descriptors associated to the new process for the reconstructed

sockets and copying them to the user space.

224,000 i
- 222,000 -
3 220,000 -
| 218,000 -
j= 216,000 -
a> 214,000 -
o 212,000 -
•* 210,000 -
H 208,000 -

206,000 -

0 20 40 60 80 100 120 140

Pending Data (KB)

Figure 4-2 Takeover Time on Different Data Sizes

5 0

7. Returning to the user space.

After this, the daemon application executes the corresponding application, and the

application recovers the service from the log.

The first step takes about 1 second for the system to detect the failure of a primary

server. We measure the overall time from step 2 to step 6. In the simplified, system, there

is only one primary server, and there is only one connection from the client to the

primary server to be replicated. It is shown in Figure 4-2 that the takeover time increases

with the sizes of data to be copied, but not in a large scale.

1,200,000 -i

^ 1,000,000 -

~ 800,000 -
E
if 600,000 -
0)
>
S 400,000 -
ra
"~ 200,000 -

0 -
0 2 4 6 8 10 12

Active Connections

Figure 4-3 Takeover Time on Different Connection Numbers

Figure 4-3 shows the relationship between takeover time and the number of active

connections. The results are sampled on a single client with different numbers of

connections with the server. The backup server takes over when there are 10K bytes of

pending data on each connection. The takeover time increases linearly with the number of

connections.

Comparing Figure 4-2 and Figure 4-3 we can see that the influence of the number of

active connections is much bigger than that of the pending data size. When there are

many active connections, the course of takeover may take a rather long time, which in

turn may cause the client to give up after trying to communicate with the server for

several times.

4.4. Overall

The results from these experiments show that the system achieves our design goals

with acceptable overhead. Although the connection establishing time is not so satisfying

when the backlog is set to 0, there is no server application using such configuration in

practice. Through the experiments we also found that when it sends out data

asynchronously without waiting for a response from the server, the client may achieve

approximately the same throughput as that in a non-replication environment. However,

the scalability of the system is constrained by the takeover time. And as discussed in

section 4.2, using synchronous communication will degrade the system performance.

Checkpointing, which we did not use when we tested the system, will also introduce

overhead.

52

Chapter 5

Conclusions and Future Work

5.1. Conclusions

The thesis has evaluated the idea of implementing replication in the TCP layer. By

implementing replication in the TCP layer, the services provided by the primary server

migrates to the backup server without breaking the TCP connections when a primary

server fails.

In general, the system has met all the initial goals stated in Chapter 3. First, the

system is transparent to clients, which will not notice the failure of the primary server and

do not need to reestablish TCP connections. Second, the overhead caused by replication

is relatively low and there is no big influence on the system performance. Third, the

server application is only involved to checkpoint from time to time to use this service in

normal operation. And last, the system provides an easy way to checkpoint and take over.

Using this system, an application can easily achieve fault tolerance without managing

replication itself. The system provides a general service for the applications with the

requirement of fault tolerance.

Most existing fault tolerant systems are implemented in the application layer, so the

failure of a server cannot be transparent to the clients. Every system must manage the

53

replication itself. Some other systems [AAPPS99] [APB96] [AYI97] [DCHKW97]

[PABSDZN98] provide the mechanism of redirecting client requests to another server,

but they are not designed for the problem that our system addresses, and the redirection in

these system only happens in the connection establishment stage.

The success of our system shows that implementing replication in the TCP layer is a

feasible way to achieve fault tolerance. By separating replication and checkpointing, we

can use the system as a more general-purpose tool for other applications. Many

techniques used in the system are proved to be useful and can be utilized in other

situations as well. For example, the technique of migrating TCP connections can used in

a content-based switch [AAPPS99] to reduce the overhead of changing TCP sequence

numbers.

5.2. Future Work

This thesis presents the idea of implementing replication in the TCP layer. Although

the results are promising, there is still room for future research.

First, the system is far from optimized. The overhead of setting up the backup

environment can be reduced by using some more efficient communication method

instead of UDP. In present implementation, the backup buffers are allocated from a

submap inside the kernel, which has a limit of about 19 MB in our experimental

environment*. This constrains the maximum number of sockets that can be replicated on

the backup server. Moreover, because all the backup buffers are allocated inside the

kernel, and the malloc() routine inside the kernel allocates unpaged physical memory

[MBKQ96], the number of sockets that can be replicated is limited by the physical

* This information be obtained by using "vmstat -m".

54

memory available on the backup server. The system is just a prototype to test the idea of

implementing replication in the TCP layer; many details required by a stable system, such

as exception handling, are missing from our implementation.

Second, we only used some simple programs to test the system performance. More

comprehensive applications need to be implemented to evaluate the system and the

application interface.

The system is built on Myrinet, which is a Gigabit-per-second network widely used

in research environments but not in the business world. More efforts are needed to port

thê system to commercial high-speed networks such as Gigabit Ethernet before it can be

exploited in the real world.

55

Bibliography

[AAPPS99] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, D. Saha, "Design,

Implementation and Performance of a Content-Based Switch".

[AB91] D. Agrawal and A.J. Bernstein. "A Nonblocking Quorum Consensus

Protocol for Replicated Data". IEEE Transactions on Parallel and

Distributed Systems, Vol. 2, No. 2, p.p.171-179, April 1991.

[AM98] L . Alvisi and K. Marzullo, "Message Logging: Pessimistic, Optimistic,

Causal, and Optimal". IEEE Transactions on Software Engineering, Vol.

24, No. 2, p.p. 149-159, February 1998.

[APB96] E. Anderson, D. Patterson and E. Brewer. "The Magicrouter, and

Application of Fast Packet Interposing". OSDI, 1996.

[AYI97] D. Andresen, T. Yang and O.H. Ibarra. 'Towards a Scalable Distributed

WWW Server on Workstation Clusters". Journal of Parallel and

Distributed Computing, 1997.

[Barlett87] J. Barlett, J. Gray, and B. Horst. "Fault Tolerance in Tandem Computer

systems". The Evolution of Fault-Tolerant Computing, Vol.1, pp. 55-76,

New York, 1987.

[BG83] K.P. Bernstein and N. Goodman. 'The Failure and Recovery Problem for

Replicated Databases". In Processing of the 2 n d A C M SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, p.p. 114-122, August

1983.

56

[BFF95] T. Berners-Lee, R. Fielding, and H. Frystyk. "Hypertext Transfer

Protocol - HTTP/1.0". IETF RFC 1945, October 1995.

[BJ87] K.P. Birman and T.A. Joseph, "Reliable Communication in the Presence

of Failures". A C M Transactions on Computer Systems, Vol. 5, No. 1,

pp.47-76, February 1987.

[BMST92] N. Budhiraja, K. Marzullo, F.B. Schneider and S. Toueg. "Primary-

Backup Protocols: Lower Bounds and Optimal Implementations".

[CISCO] Cisco Systems Inc., "LocalDirector". http://www.cisco.com

[CM84] J. Chang, and N.F. Maxemchuk, "Reliable Broadcast Protocols". A C M

Transactions on Computer Systems. Vol.2, No.3, pp.251-273, August

1984.

[DCHKW97] O.P. Damani, P.E. Chung, Y. Huang, C. Kintala and Y . M . Wang. "ONE-

IP: Techniques for Hosting a Service on a Cluster of Machines".

Computer Networks and ISDN Systems, 29:1019-1027, 1997.

[DG96] O.P. Damani and V.K. Garg, "How to Recover Efficiently and

Asynchronously when Optimism Fails". In Proceedings of the 16th

International Conference on Distributed Computing System, p.p. 108-

115, 1996.

[DGP90] A.R. Downing, LB. Greenberg, and J.M. Peha, "OSCAR: An

Architecture for Weak-Consistency Replication". In Proceedings of IEEE

PARBASE-90 International Conference on Databases, Parallel

Architectures, and Their Applications, p.p. 350-358, 1990.

[Dimmer85] C.I. Dimmer, "The Tandem Non-Stop System".

57

http://www.cisco.com

[EZ92] E.N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent Rollback-

Recovery with Low Overhead, Limited Rollback and Fast Output

Commit". IEEE Transactions on Computers, Vol. 41, No. 5, p.p. 526-

531, May 1992.

[FYT97] D. Funato, K. Yasuda, and Hi. Tokuda, "TCP-R: TCP Mobility Support

for Continuous Operations". IEEE 97.

[Gifford79] D.K. Gifford, "Weighted Voting for Replicated Data". A C M SIGOPS,

pp. 150-162, December 1979.

[Herlihy87] M . Herlihy. "Concurrency versus Availability: Atomicity Mechanisms

for Replicated Data". A C M Transactions on Computer Systems, Vol. 5,

No. 3, p.p. 249-274, August 1987.

[IBM] IBM Corporation. "IBM Interactive Network Dispatcher".

http://www.ics.raleigh.ibm.com/ics/isslearn.htm.

[JB86] T.A. Joseph and K.P. Birman, "Low Cost Management of Replicated

Data in Fault-Tolerant Distributed Systems". A C M Transactions on

Computer Systems, Vol. 4, No. 1, pp.54-70, February 1986.

[KG94] H. Kopetz and G. Grunsteidl, ' T T P - A Protocol for Fault-Tolerant Real­

time Systems". In IEEE Computer, Vol. 27, p.p. 14-23, January 1994.

[KR81] H.T. Kung and J.T. Robinson, "On optimistic Methods for Concurrency

Control", A C M Transactions on Database Systems, Vol.6, pp.213-226,

June 1981.

58

http://www.ics.raleigh.ibm.com/ics/isslearn.htm

[LLG92] R. Ladin, B. Liskov and S. Ghemawat. "Providing High Availability

Using Lazy Replication". A C M Transactions on Computer Systems.

Vol.10, No.4, pp.360-391, November 1992.

[MRJ97] A. Mehra, J. Rexford, F. Jahanian, "Design and Evaluation of a Window-

Consistent Replication Service". IEEE Transactions on Computers, Vol.

48, No. 9, Septermber 1997.

[OL88] B. Oki and B. Liskov. "Viewstamped Replication: A New Primary Copy

Method to Support Highly Available Distributed Systems". 7th A C M

Symposium on Principles of Distributed Computing, pp.8-17, August

1988. A C M SIGOPS-SIGACT.

[PABSDZN98] V.S. Pai, M . Aron, G. Banga, M . Svendsen, P. Druschel, W. Zwaenepoel,

E. Nahum. "Locality-Aware Request Distribution in Cluster-based

Network Servers". A C M ASPLOS VIII, p.p. 205-216, October, 1998.

[PL91] C. Pu and A. Left, "Replica Control in Distributed Systems: An

Asynchronous Approach". In Proceedings of A C M AIGMOD, p.p. 377-

386, May 1991.

[PR85] J. Postel and J. Reynolds, "File Transfer Protocol (FTP)". IETF RFC 959,

October 1985.

[PST97] K. Petersen, M.J. Spreitzer, D.B. Terry, M . M . Theimer, and A.J. Demers,

"Flexible Update Propagation for Weakly Consistent Replication". A C M

SOSP-16, p.p. 288-301, October 1997.

[RAV98] S. Rao, L. Alvisi, and H.M. Vin, 'The Cost of Recovery in Message

Logging Protocols".

59

[RMDJ94] J. Rexford, A. Mehra, J. Dolter and F. Jahanian. "Window-Consistent

Replication for Real-Time Applications". Proc. Workshop Real-Time

Operating Systems and Software, pp.107-111, May 1994.

[Schneider83] F.B. Schneider, "Fail-Stop Processors", Digest of Papers from Spring

CompCon '83 26th IEEE Computer Society International Conference,

pp.66-70, March 1983.

[Schneider90] F.B. Schneider, "Implementing Fault-tolerant Services Using the State

Machine Approach: A Tutorial", A C M Computing Surveys, Vol.22,

N/>.4, pp.299-319, December 1990.

[SL95] X. Song, J.WiS. Liu, "Maintaining Temporal Consistency: Pessimistic vs.

Optimistic Concurrency Control", IEEE Transactions on Knowledge and

Data Engineering, Vol. 7,No. 5, p.p. 786-795, October 1995.

[Stevens94] W.R. Stevens, 'TCP/IP Illustrated, Volume 1: The Protocols". Addison-

Wesley, January 1994.

[Trian92] P. Triantafillou. "High Availability is not Enough", IEEE 92.

[TT95] P. Triantafillou and D.J. Talylor, "The Location-Based Paradigm for

Replication: Achieving Efficiency and Availability in Distributed

System", IEEE Transactions on Software Engineering, Vol.21, No.l ,

January 1995.

[WB84] G.T.J. Wuu and A.J. Bernstein. "Efficient Solutions to the Replicated

Log and Dictionary Problems". In A C M Proc. Of the Third Annual

Symposium on Principles of Distributed Computing", pp.233-242,

August 1984.

60

[WS95] G.W. Wright and W.R. Stevens, 'TCP/IP Illustrated, Volume 2: The

Implementation". Addison-Wesley, January 1995.

[XSSRT96] M . Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham, and D.

Towsley, "Scheduling Transaction with Temporal Constrains: Exploiting

Data Semantics". In Proceedings IEEE Real-Time Systems Symposium,

December 1996.

61

