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Abstract 

A central motivation of computer graphics research is the generation of images, 

which approximate views of objects with sufficient detail as to render the distinction 

between the real and the artificial difficult or impossible. Much of the required visual 

complexity can be found on the surfaces of objects. Rich textures, such as animal fur or 

heavy cloths, introduce a level of detail which is immediately recognized as natural by 

the human visual system. It is, however, the detail of complex macro-structured surfaces 

which makes them difficult to model and expensive to render. 

Presented in this thesis is a new method for the rendering of complex natural 

surfaces, which combines traditional 2D texturing and light field rendering. Here, real 

surfaces are approximated utilizing light emitted from complex surfaces, captured and 

tiled as surface light textures. As a form of texturing this method inherits issues 

associated with other types of texturing. But, with this new form of texturing we also see 

the introduction of research problems that are unique to the method. For example, low-

incidence object silhouettes are given special consideration as the real texture edges are 

grafted at surface silhouettes to avoid unrealistic smooth polygonal or spline boundaries. 

Moreover, we partially overcome the static nature of light fields with a complementary 

technique which animates the parameter space of the light field rather than the original 

captured object. 
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1 Introduction 

Computer graphics has become incorporated into widely disseminated 

applications for productivity and entertainment, many requiring not merely the flexibility 

which computer generated images offer, but also images which are accurate in their 

approximation of natural phenomena, with the additional provision of efficient rendering 

speeds. Arguably, the most compelling measure of success in computer graphics is found 

in the degree to which the computer production of images reduces the disparity between 

artificial and real imagery. For this goal to be approached, computer generated images 

require the same degree of convincing details which are characteristic of natural 

photography. Therefore, each object embedded within a scene must conform to human 

visual expectations. An object's surface features contribute significantly to the expected 

projection of appearance on the human eye and without such detail, objects can appear 

manufactured and unnatural. A real rabbit owes its appearance to the presence of fur on 

its body, and to the recognizable details on the fur and at the silhouette (Figure 1.1). 

Figure 1.1: Real rabbit. 
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For another example, the geometry of a duckling without the expected downy surface 

details would appear as a plastic facsimile, as can be seen in Figure 1.2. 



For correctly approximating natural phenomena one cannot strictly rely on 

hardware improvements to generate more objects at a faster rate. With brute force 

methods, it is not necessarily true that N + l surface features is an improvement upon N 

surface features i f those features each do not themselves capture the visual realism of the. 

surface. A dominant theme of previous work that has sought to model natural surfaces 

has been to tile geometries or artificially produced volumetric data across surfaces. 

These methods tend to yield sparsely tiled surfaces that are convincing only at a distance 

or at low incidence angles, or else, require prohibitively high computation time. 

However, the main shortcoming of these solutions is found in the assumption that the 

geometric or volumetric tiles can be modeled artificially in the first place. Instead, we 

introduce the potential use of real physical data from complex macro-structured surfaces, 

animated and integrated with, arbitrary geometric surfaces. In doing so, we may more 

closely match the appearance of natural textures in which higher sampling rates do, in 

fact, translate into greater accuracy. 

Additionally, as the complexity of the scene grows it often implies a concurrent 

increase in the work of the animator or modeler, forcing application designers to 

customize "special effects" in the absence of a unified method for rendering surfaces. 

We wish to avoid the repetitive effort and expense, which is applied in tailoring solutions 

to generate each type of natural surface. In the research presented we describe a single 

technique that can be employed for simulating many disparate surfaces and simulate 

textures that have yet to be modeled with previous natural phenomena methods. 
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To this end, we utilize a recently developed technique that has enjoyed an 

increasing attention as a form of realistic rendering, namely, Image Based, rendering 

(IBR). This approach substitutes the geometric datum as the atomic data item with that 

of the color sample. With sufficient quantities of such samples captured from a sufficient 

breadth of viewpoints, the object can be subsequently reconstructed from arbitrary 

viewpoints. However, this color data must remain static in time and gathered under a 

fixed lighting environment. This is due to the unfeasibility of constructing light fields 

under all possible lighting conditions, in all possible geometry. The loss of the dimension 

of time places sharp constraints on the applicability of I B R techniques in general, and 

light field rendering in particular. Typically, light field software permits the viewing of 

objects disjoint in time, situated in essentially a void. . 

We circumvent the time constraint, at least partially, by animating not the object 

itself, but the parameter space of the light field within which the object is captured. In 

doing so, we allow the re-introduction of time without the prohibitive cost. Furthermore, 

we tile the animated light field across the surface of a geometrically defined object, 

thereby creating a kind of dynamic light texture. 

Chapter 2 provides background pertaining to traditional forms of texturing 

surfaces. This is followed in with an overview of IBR and light field rendering in 

particular as it stands prior to the publication of this thesis. A l l previous work is 

discussed and shown in relation to the present work. Chapter 3 begins the discussion of 

the current research, detailing our methods of animating light fields. Then the process of 
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tiling a light across a geometric surface is described in Chapter 4, with results and future 

work presented in Chapters 5 and 6 respectively. 
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2 Previous Work 

We begin with an overview of computer graphics techniques, which directly relate to the 

current work presented. We do this in order to provide the reader with an understanding 

of the fields as well as to delineate the boundary between Dynamic Light Textures and 

work that has preceded it. As this research can be viewed as a bringing together of 

surface texturing, Image Based Rendering (IBR) and the realistic simulation of natural 

phenomena, the number of related topics is necessarily quite broad. A n d so, here we wi l l 

concentrate strictly on providing the necessary background for understanding texturing 

and Light Field Rendering. 

2.1 Texturing 

Natural surfaces are complex. Too illustrate this, Figure 2.1 shows a number of natural 

surfaces such as fur, heavy cloths, reptilian skin and corroded rocks. These types of 

surfaces are often too complex to model directly as geometric surface detail, both for 

reasons of rendering time and of modeling effort. This is partly because the final color 

registered by the human eye can be a result of multiple interactions of light with the 

surface geometry and local illumination characteristics. Some of the aspects, which 

effect appearance, include self-shadowing, a varying Bi-Directional Reflection Function 

(BRDF) and transparency, to name a few [Glas95]. 
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Figure 2.1: Complex Natural Surfaces 

The use of texture mapping, in its various forms, has the capacity to enrich the 

visual appearance of objects without requiring the considerable computations that would 

be necessary for a truly physically based simulation of the surface [Heck89]. Work on 

Texture mapping began with the early work of Bl inn and Newel, altering surface color 

[Blin76]. Texturing has also been applied to a wider range of surface attributes such as: 

surface normal [Blin78], transparency [Gard85] and surface displacement [Cook84], 

among others. Figure 2.2 illustrates a number of common 2D texturing methods, 

implemented as Renderman shaders. Generally, texture mapping entails the mapping of a 

function / onto a 3D surface. We can group various flavors of texturing by the domain of 

the function, that is, whether the domain is two or three-dimensional. 
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2.1.1 Generalized Texturing of Surfaces 

A 2D Texture Map is a method of controlling the color of a surface on a texel-by-texel 

basis, where a texel, which stands for TEXture Element, is the smallest addressable unit 

of a tiled image. 

Figure 2.2: 2D Textures (clockwise from top-left): un-textured, 
procedural turbulence, displacement, bump, transparency and image map. 

However, 2D surface patterns can also be generated by other means such as clonal 

mosaic models [Walt98], reaction diffusion [Mein95] or with the use of genetic 

algorithms [Sims90] for which the reader is referred to the given references. We will 

return our focus to yet another method, procedural texturing, when we look at the 

construction of artificial light fields [Eber94, Peac85, Perl89]. 

Despite the fact that 2D texturing can increase the overall visual interest, it is 

limited in a number of ways. First and foremost, the color at any point on the surface is 

not dependent on the viewing angle of the observer. As can be seen in the wood grain 
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texture in Figure 2.2, there is a noticeable "billboard" aspect that cannot be overcome 

with higher resolutions or with more sophisticated filtering. This effect is heightened as 

the camera changes direction and draws near to the object. Moreover, the more complex 

and structured the texture is expected to be, the less convincing 2D texturing is. It is 

sufficient to consider tiling a single image of fur across a surface, displayed from a 

changing point of view, to understand this limitation. 

The limitations of 2D texturing are often masked with the complementary use of 

bump mapping functions, which perturb the surface normal N at point P, based on the 

grayscale value of its input image or internal computation [Blin78]. Here, brightness is 

used as a gradient such that 0 corresponds to a surface depression, and 1 is an elevation. 

A good example of bump map use is for simulating the surface of an orange. At some 

low resolution an orange is a roughly a ball. The small surface pits, which emerge at 

higher resolutions, can be well captured with bump mapping, but at low incidence 

viewing, the silhouette exposes the limitations of this method: that the boundary between 

an object and the background is not effected by adjusting the surface normals. 

Generally speaking, as the complexity of the surfaces increase, so do the 

techniques used to model them. That is true both in terms of implementation 

requirements and run-time. Fur has been modeled with various brute force methods, 

representing hair with large numbers of polygons or particles [Anjy92, Disc99, Flei95, 

Wata92]. Although these methods handle close-ups with well articulated strands, results 

can contain severe aliasing and/or computational costs which, in some algorithms, 

actually increase as the subject decreases in screen size. For example, in the work 
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presented in Anjyo et al. in 1992, the scenes contained 50,000 or more individual hair 

strands with only moderately convincing appearance. Alternatively, volumetric 

techniques such as those found in [Kaji89, Meye98 and Neyr98] produce more visually 

convincing results under certain conditions. These techniques proceed to address the 

illumination and rendering of hairs by pre-computing a volume texel which is tiled across 

a surface. Hair geometry is rasterized into this texel and final rendering is accomplished 

using volume rendering. It is beyond the scope of this thesis to describe these methods in 

any detail, and so the interested reader is directed to the original papers. However, we 

will return to some of these methods in a comparison of results. 

2.2 Image Based Rendering 

In the past, most if not all of rendering could be described as a process of rasterizing a 

rectangular window of geometric models in a virtual space. With a strong analogy to the 

photographer's studio the geometric objects are placed relative to some arbitrary 

reference point, the lighting is set, camera is configured and placed and the "picture is 

taken". With real and artificial rays of light extending to and from the camera and the 

scene's surfaces, the color and intensities of the reflected and emitted light are then 

. gathered within a rectangular film or image. Animation can be seen as a sequence of 

such renderings each with the objects, lighting or camera slightly altered. The extended 

analogy to the movie studio augments this parallel, but generally the structure of the 

process remains. Although it cannot be said that this computer-rendering paradigm has 

been replaced, there has been, of late, a competing rendering model that at the same time 

10 



strengthens the cinematic analogy in some respects, yet distorts and limits it in others, 

namely image-based rendering. 

Image-based rendering might be subdivided further into View Interpolation 

methods [Lipp80, Seit96] and Light Field methods [Levo96, Gort96]. Generally 

speaking, view interpolation involves epipolar analysis, and the establishing of 

correspondences between images or range images [McMi95 , Chen95]. Inwardly, 

multiple views on surface of sphere surrounding object are taken; outwardly multiple 

panoramic views at spaced intervals are gathered. Objects are then re-rendered from 

new viewing locations often using depths to resolve overlaps. 

Recently, the use of real images has been employed in the construction of 

panoramic environments with the introduction of the QuickTime V R software [Chen95, 

Chen93]. And , similar work in D3R introduced the concept of view-dependent morphed 

textures with the Facade Software used in the reconstruction of Architecture from 

photographs [Debe96]. Advantages of using view interpolation include: modest 

computation that is independent of scene complexity, no expenditure of modeling effort 

and the capacity to capture hard to model objects and surfaces. However, these methods 

are limited in that they require depth ranges or correspondences between images which 

would be quite difficult to obtain from surfaces such as fur. 

2.2.1 Light field Rendering 

A s the I B R technique presented in this paper can be seen as a bridge between traditional 

2D texturing and light field rendering, we now proceed with an introduction to light 

fields. But before delving into the particulars of the constructed light field let us quickly 
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review the light field's description. Light fields have been described by one of their 

originators as: 

"A new image-based rendering technique that does not require 

depth information or image correspondences, yet allows full 

freedom in the range of possible views. The idea behind the 

technique is a representation of the light field - radiance 

as a function of position and direction in regions of space 

free of occluders (free space)...Creating a light field from 

a set of images corresponds to inserting 2D slices into the 

4D light field representation...Once a light field has been 

created, new views may be constructed in real time by extracting 

2D slices in appropriate directions." [Levo96] 

Light fields can be understood as a discrete 4D slice of a the 7D plenoptic function 

[McMi95]: 

Fit, X, x, y, z, 0, (])) 

where / is time, X is wavelength, x, y and z are coordinate positions in 3D, and where 0 

and § denote the viewing direction. This idealized function will produce the correct 

quantity for each wavelength viewed from a given position and angle at a particular point 

in time. The reduction of dimensions is possible if we compute a RGBA color value for 

any position and angle at t = tn, yielding a 5D light field: 

L(x, y, z, 0, §) 
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This can be further reduced provided the object of interest is located in free space 

wherein the value of any given light ray is constant over its length. This produces the 

much reduced 4D light field: 

L(x, y, 6, <|>) 

where (x, y) denotes the planar position, and (0, ())) defines the direction. But, we notice 

that the flexibility of the light field decreases as dimensions are removed, capturing only 

a discrete sampling of light of static objects in unconcluded space. 

The main issues that need to be considered are to a large extent related to the 

considerable size of light field objects, as light fields often require hundreds to thousands 

of images. We can succinctly approach these issues by briefly answering the following 

questions: 

Parameterization How are the light samples structured? 

Construction How are the samples acquired? 

Display How are new viewpoints constructed? 

Compression How can we exploit coherence in 4D? 

Table 1: Light Field Issues 

Because light fields can be as large as 100MB uncompressed, it is essential that the 

parameterization of the 4D data permits computationally efficient accessing. And , 

because we wish to cover views of an object completely and evenly, uniform sampling of 

position and viewing angle is also desirable. A simple parameterization that allows rapid 

access and good coverage is the parallel positioning of two grid planes which we wi l l call 
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UV and ST. This two plane addressing of light vectors is accessed by providing two 

coordinate pairs (u, v) and (s, t) discrete on [0..1]. Together, the UV and ST planes 

comprise a single light slab. Figure 2.3 shows a simple diagram of a possible light slab. 

ST 

Figure 2.3: A Light Slab 

For our purposes we will consistently name the UV plane as that closest to the captured 

object and ST as that furthest away. A light field is a simply a set of such slabs. 

Typically, for full coverage of an arbitrary object, the light field will consist of 6 slabs, 

each parallel to the axial planes, forming a cube around the object. 

As a function over 4 variables which produces radiance values in an double grid 

structure, the light field can be constructed as a set of input images. Each input image is 

essentially a 2D slice of the larger 4D structure. One can imagine a camera which is 

placed at each point on the ST plane, with the produced image as a captured image of the 

U V plane at one point in time, as shown in Figure 2.4. 
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Figure 2.4: 2D Light Field Slice 

These images can be generated artificially with a renderer, or with a real camera. 

Although the light field requires many images the process is a good candidate for 

automation, as in [Levo96]. 

Generating new views of an object corresponds to extracting and re-sampling a 

2D slice of the light field. For a light field L and an image / , each ray passing through the 
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center of projection of the virtual camera and a pixel I(x, y ) is intersected with UVat (u, 

v) and with ST at (s, t), as in Figure 2.6. 

Figure 2.6: Re-sampled view of light slab. 

Once the u, v, s, t positions are known the RGB color value L(u, v, s, i) is directly 

accessed: 

Image(x, y) = L(u, v, s, i) 

Only those rays with (u, v) and (s, t) coordinates inside both quadrilaterals are 

represented in the light slab. It is unlikely that the intersection point of the UV and ST 

planes are exactly at grid points, which means that the closest grid points must be 

sampled and interpolated. Common interpolation methods are bilinear over ST or UV, or 

quadrilinear over both ST and UV. This has been improved upon in the work done by 

[Gort96] which uses an approximate geometry of the captured object to improve the 

quality of the reconstruction at lower sampling densities. Additionally, we will merely 

note that due to the size of light fields a high compression rate is required. Compression 
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rates can be achieved at ratios of (100:1) due to coherence in 4 dimensions, with fast 

decoding and offline encoding. 

Recent advances in Light Field Rendering have augmented the original light field 

concept in some fashion. Multiple light fields have been successfully merged [Chiu98], 

layered [Kang99], augmented with geometric scenes [Mene99], and also used as canned 

light sources [Heid98]. Related to the present work, [Mill98] has used light fields as a 

storage construction for surfaces in pre-computed global illumination. Current research 

is also being applied to the re-lighting of light fields [Mene99]. However, fully animated 

light fields and the integration of light fields with geometric objects remains a currently 

studied problem. 
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3 Dynamic Light Fields 

3.1 Constructing Light Fields 

In order to show the potential of dynamic light fields, and conversely, to delimit the 

boundaries of its usefulness, it is necessary to construct light fields that convey the full 

extent to which a light field can be convincingly animated. We wi l l focus on a 

particularly difficult and computationally expensive macro-structured surface: animal fur. 

3.1.1 Constructing Artificial Light Fields 

In its construction of light fields, the Stanford light field authoring package makes 

use of the RenderMan interface for sampling 2D image slices. In particular Larry Gritz's 

Blue Moon Rendering Tool was used as the primary rendering engine, "which are a set of 

rendering programs and libraries which adhere to the RenderMan™ standard as set forth 

by Pixar" [Grit96]. A t the core of the RenderMan interface is the procedural texture 

shader language. The shading language allows the programmer to procedurally direct all 

aspects of surface shading calculations executed by the RenderMan renderer. These 

include surface shading, light source description, atmospheric effects, and surface 

displacement. Fortunately, the phenomena which procedural textures readily generate 

tend to correlate with those that are best animated with dynamic light fields, such as fur. 

L ike traditional 2D texturing, procedural textures use the UV surface coordinates 

as input but do not simply index color values in a stored image array. It is common for 

procedural textures, such as turbulence, to be based on fields of isotropic psuedo-random 
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noise with an appropriate value range and distribution [Eber94]. The random noise fields 

are fixed grids of random numbers of N dimensions, interpolated linearly or, more 

frequently, with a polynomial fitting, such as with Catmull-Rom splines, see Figure 3.1 

below. 

Figure 3.1: Catmull-Rom Spline interpolated noise field. 

To move from noise to turbulence, self-similarity is imposed by summing the 

noise at the current point with scaled down noise values at other points. To compute a 

sample turb(x) from the turbulence function, noise is combined with amplitude varying 

as a function of frequency, building up a stochastic spectral function: 

k 

turb(x) = V abs(noise(2f x) 12f ) 
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Where k is the smallest integer for which —— > width(pixel), and the noise() function 

is an interpolating access function to values stored in the random noise array. A 2D slice 

of a 3D turbulence function is shown in Figure 3.2. 

Figure 3.2: Self-similar turbulence function. 

Although procedural textures tend to require greater computation, each value is 

computed as needed at an arbitrary level of detail. Additionally, the procedural textures 

are designed to be band-limited by low-pass filtering the random noise, thereby avoiding 

the necessity for filtering out aliasing due to high frequencies. A n d while this type of 

texture has a very compact representation when compared with image, volumetric or light 

textures, they can be difficult to construct in a predictable way. 

In the present work, various pseudo-stochastic procedural noise-based turbulence 

functions have been used both in the construction of the light fields as well as to drive the 

20 



movement of the light field's ST plane, as will be described in Section 3.2.1. To 

illustrate, shown in Figure 3.3 is a fur patch constructed as a randomized array of cones. 

The cones are arranged according a regular grid which has been subjected to a bivariate 

Gaussian jitter displacement. 

Figure 3.3: Bird's eye view of procedural fur texture. 

To compute the coloration and opacity of the cones, we begin with a white noise function 

with a low pass filter to safely remain within the Nyquist Frequency when rendered under 

normal conditions. This is a lattice noise, with each point in the lattice being indexed as 

(x, y, z). The noise function calculates an interpolated value between each random value 

in the lattice where the interpolation is computed with a Catmull-Rom cubic spline 

function. Each cone exhibits a surface texture local to itself. The texture is a flame-like 
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turbulence, as described in [Eber94] on pages 279-280, which indexes a dark-brown (at 

the base) to light-brown (at the tip) color array, which is itself interpolated with a spline. 

Additionally, the cones in the fur patch are subject to a similar, procedural opacity 

function. We conclude our discussion of generating artificial fur with an array of images 

that comprise a subset of the fur light field rendered with the described cone array. At the 

top-left is ST image (0.6875,0), increasing to (0.6875, 0.25) moving right and (0.8125,0) 

moving down. At bottom-right is ST image (0.8125, 0.25). 

Figure 3.4: Each ST image is a 2D slice of the 4D light field. 
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3.2 Dynamic Light Fields 

Producing animated light fields with a brute force technique would be expensive to the 

point of unfeasibility. It would require capturing a light field at many points in time for 

each articulation of an object. Apart from the fact that this may entail a multi-

generational project for significant animations, for animating fur it would be extremely 

difficult to capture an entire light slab as it is moving. To circumvent this seeming 

limitation of light fields, we do not animate the original object; we instead animate the 

parameter space, thereby animating the light. 

3.2.1 Animating the Parameter Space 

Work presented in "Light Field Rendering" [Levo96] and "The Lumigraph" [Gort96] 

each defines a finite double-grid data-structure for the storage and re-construction of 

sample color data surrounding a given object. Because we wish to animate the captured 

object by dynamically changing the parameter space of the light field, it is therefore the 

grid, either UV or ST, which is subjected to animated displacement. Now, suppose for a 

moment that we take a flat patch of fur and capture the light data emanating from that fur 

in such a way as to place the UV plane on or about its surface. Then, by shifting the grid 

points on the ST plane in waves approximating a wind motion 1, the resulting animation 

yields a movement that is approximately equivalent to an animation in which the original 

object is altered. Figure 3.5 depicts a 2D orthogonal projection of this scenario with the 

arrows denoting the displacement of grid points in the ST plane. Once the (s, i) position 

of a particular pixel (x, y) in image I is known, the computed S and T displacements 

1 An animation technique described in [Eber94] on page 187 which is claimed to be a wind-like motion. 
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dispS(s, t, t), dispT(s, t, t*) at time /'is directly added and the light field, L , is sampled at 

the new position: 

I(x, v, t') = L(u, v, s + dispS(s, t, t'), t + dispT(s, t, t')) 

For the purpose of illustration a turbulent warping function and a procedural 

turbulence which approximates the animation of gases are used for generating 

displacements. The warping function is an application of the 3D lattice noise discussed 

earlier, with values ranging from -0.5 to 0.5. In this case the 3rd dimension is used as 

time. As the time frame moves through the lattice, the scaled and interpolated value in 

the lattice is indexed by the s and t coordinates and subsequently used as dispS(s, t, tj and 

dispT(s, t, t). Only a subset of the function's range is used at any time, with separate 

samplings of the functions used for each of the S and T directions. 

Camera Plane 
(ST) 

Focal Plane 
(UV) 

V 

Figure 3.5: Displacing ST coordinates. 
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The second function simulates gas movement in a solid space. This procedure 

incorporates a horizontal helical path used which produces an upward swirling effect. 

The interested reader is referred to [Eber94] for further details on solid texturing of gases. 

Time slices of the functions are shown in Figure 3.6 with the values of x e [-0.5..0.5] 

scaled to the range of [-255..255] and with negative values shown as (255-x). Visually, 

in the figure, dark areas are negative displacements with light areas being positive. 

Figure 3.6: Time slice of the Animated Warp (left) and Wind (right). 

Figure 3.7 depicts the effects of the animated warp on the previously discussed fur 

patch in successive frames, at a high amplitude: 
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• • L T D 
Figure 3.7: Animated stills of Artificial Fur. 

3.2.2 Animat ing Ar t icula ted Objects 

We might ask to what extent the animation of the ST grid is applicable to 

articulated objects and i f the movement of the grid can be interactively directed. These 

questions have been explored with the following animation techniques which alter the ST 

plane indexing, acting as translation functions for each ST point. Control of the each 

translation function is affected in various ways by user manipulation o f Bezier splines 

and with the movement of displacement points. In discussing each of the techniques, we 

wi l l assume a UV space between 0.0 and 1.0 in each dimension. Figure 3.8 shows a 

dragon light field alongside a grid ranging in both S and T directions from 0.0 to 1.0 

[Levo96]. The dotted square in the center of the grid denotes the current extent of the ST 

space that is being utilized for display. 
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Figure 3.8: Dragon shown with ST plane coordinates. 

The first ST displacement method which we will discuss, spline distortion, is to a 

certain extent analogous to the fish eye transform in 2D imaging. The further the current 

s and t point is away from the center C positioned at Cs=0.5, C(=0.5 in ST, the further it is 

translated in the same direction. This effect is mitigated by the user-controlled Bezier 

curve as seen in Figure 3.9 which allow the user to control the amplitude of the 

displacement at positive and negative distances from C. The Bezier curve is a vector-

based function of two variables in the form: 

M(d,t') = [X(d),Y(d)] 

with M evaluated at time t', where d is the current point under evaluation, so that for each 

d, M(d, t') calculates a point on the curve. To define M(d, t') we begin with a Bernstein 

polynomial of degree n: 

W = (?) d'a-dy-' 

Now if P( t) represents a set of control points whose state is set at time t' then: 
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1=0 

represents a Bezier curve as d varies from 0 to 1. The spline curve level at the s and t 

positions is multiplied with the signed distances from C : 

dispS{s, 0 = M ( s / ) * (s - Cs), 

dispTit, 0 = M(t,t') *{t- Q 

This allows the user to set the broadness of the displacement, or, for example, make the 

displacement one-sided. 

Figure 3.9: Spline Distortion of the ST plane 

The related "Slider displacement" is more direct than the previously mentioned 

user control. In this interface, shown in Figure 3.10, there are two separate user-

controlled curves: one affecting the S direction, Ms, and the other in the T direction, M,. 
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The scaled curve's value is directly added as an offset to each pixels s and t positions, so 

that dispS{s, t, t) = Ms(s, t) and dispT(s, t, t) = M,(t, t\ 

Figure 3.10: Slider Displacement of the ST plane 

Another approach which has been developed, Repulse Point distortion, allows the 

user to directly alter the ST space. The name, Repulse Point, is given to imply that the ST 

space is pushed away from the each control point in the set R in a particular direction. A 

Repulse Point re R with position (rs, r,) acts with a circular radius; the closer the (s, t) 

point is to r, the stronger is the effect. Each r displaces the s or the t position in the 

positive or negative direction, as indicated to the user from its color. The sum total of all 

displacement amounts from each r provides the displacement for s and r : 

J'k-rj+lt-rj^ abs(s-rs) 
dispS(s, t, t) = ^ 

rmR, 
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( 

dispT(s, t,t) = £ 
reR, 

(t-r.) 

scaled by some constant k. Shown in Figure 3.11, are a number of control points acting 

on the Dragon. The color of the point indicates two things to the user: its brightness 

conveys the power of the warp and its color the direction. In combination the object can 

be rotated differentially. In the figure, we see that only the head of the Dragon is twisted. 

Figure 3.11: Repulse Point Distortion of the ST plane. 

Further examples are given in Figure 3.12, in which the top row shows successive frames 

of the Dragon's plume becoming larger. The bottom row shows the twisting of the 

Dragon's head in sequence. 
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Figure 3.12: Dragon's plume becoming larger (top), twisting o f the 

Dragon's head (bottom) in sequence. 

The interactive animation of ST has been explored with partial success for 

articulated objects. Objects can be stretched and warped in a cartoon fashion, but for 

animating selective portions of an object it must be true that the selected portion is 

visually separate from the rest of the object body. Put another way, the portion of the 

object that is to be animated must not occlude other parts o f the object. However, these 

techniques can also be applied, without caveats, to directly manipulate the light field 

textures which follow. 
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4 Light Textures 

Upon further consideration of the animated light field of fur, it might be claimed that it is 

an interesting artifact in itself to have a dynamic light field mimicking such a complex 

and difficult to simulate surface. However, in an effort to increase the utility of dynamic 

light fields we have developed a method for texturing the light field itself across a 

surface, such as a NURB. This light texture, once tiled, could then be subjected to the 

same methods of animation but this time globally over the entire surface. 

4.1 Tiling Light Fields 

A textured surface is parameterized with the 2D coordinates u and v. For parametrically 

defined objects, the parameterization is produced as a natural byproduct of the surface 

construction. For other surfaces, such as polygons or implicitly defined objects such as 

quadratics, the UV parameterization must be explicitly determined. For example, for 

planar polygons, each triangle is parameterized with an affine transformation between 

each of its vertices i with coordinates (x, y, z) and (u, v): 

[x,y, z] = [u,v,\] 

The surface coordinates (u, v) are used to index each color when tiling a raster image 

across a surface. 

A 

B 

C 
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If we define 2D texturing more broadly, as a set of functions F with each texture 

function f'eF, altering surface attribute i, we can allow for greater flexibility of 

surface appearance. B y way of introduction to tiling light textures we now describe the 

familiar bump mapping technique, which has some similarities to light texturing. A 

bump mapping function, Bmap € F, perturbs the surface normal N at point P, based on 

the grayscale value of its input image or internal computation [Blin78]. In the case of 

image input, brightness is used as a gradient such that 0 corresponds to a surface 

depression, and 1 corresponds to an elevation. The perturbation must be independent of 

the surface orientation and position to avoid an unwanted animation of the surface as the 

object moves. Therefore, the normal is perturbed with a function which relies on surface 

dP , dP 
derivatives u = — and v' = — at point P on the surface, such that N(P) = u • v'. To 

du dv 

gain independence from the surface's orientation and position we define two new vectors 

q and r which are coplanar and together with N form a new coordinate system such that: 

q = N-v', 

r = N u, 

Nd=B'q-Bvr 

where B" and Bv are partial derivatives of the Bump Map B at (u, v). A n d so, the new 

normal N' is the sum of N and the new displacement Nd : 

N' = N + N' 

Light texturing tiles the light vectors o f a light field across a surface. Here we 

dP dP 
also make use of surface derivatives u = — , v' = — and normal N o f the underlying 

du dv 
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surface that we are texturing across. It is also required that both the UV ant ST positions 

for each viewing ray are known. But, in order to be clear, it is important to reiterate at 

this point the naming convention we are using for the light field on the one hand, and of 

the underlying surface on which we are texturing on the other. Recall that we have 

adopted the convention that the ST grid is the camera plane that is furthest from the fur 

texture that we have captured as a light field. The UV grid is then the focal plane, located 

at the texture itself. The surface on which we are to tile the light field also is defined with 

UV parameters. It is an artifact of the standard naming of light fields and surfaces that 

UV is employed for both. However, this is in a sense convenient as the UV space of the 

underlying N U R B , or polygonal, object is to be integrated with the t / F and ST parameters 

of the tiled light field. The situation is shown in Figure 4.1. The tiling method is as 

follows: 

1. Equate the scaled UV space of surface with UV space of light 
field. 

2. Transform the viewing direction from surface coordinates to 
light field coordinates. 

3. Intersect ST with transformed viewing vector from the point on 
the UV plane. 

Formally, the UV space of the object, O, with points at (Ou, Ov), and the scaled UV space 

of the light field, L, with points at (Lu, Lv), are to be equated. What remains is the 

determination of the ST, at (Ls, Lt), the coordinates that specify the particular light ray we 

are looking for in the light field. This ST position is gained by taking the viewing vector 

from the eye, w - {wx,wy,wz), to the object's surface at point P = (Px,Py,Pz), and 
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transforming it from the coordinate space of the N U R B to the light field's coordinate 

space. The new vector, w' = [w'x, w , w'z), is calculated as: 

Wx,w'y,yv'z] = [wx,wy,Yvz][M] 

where, 

uy uz 

r r 
V V 

y z 

and where u' -{u'x,u',«')= — and v = (v'x,v\',v') = — are the partial derivative of 
du dv 

the surface at point P and N is the normal to the surface at P. Then, by intersecting the 

transformed viewing vector, w' = {w'x,w'y, w'z), with the light field's ST plane, at (Ls, Lt), 

plane from (Lu, Lv), on the UV plane, we acquire both the necessary UV and ST 

coordinates. To illustrate, Figure 4.2 shows a N U R B with the UV space tiled 3 x 3 ; the 

left image shows the resulting 3 x 3 light texture of a fur patch. 

M" 

TV 
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Figure 4.1: Transforming from surface coordinates (left) to Light Field coordinates 
(right). 

The calculations for this aspect of the technique are simple and, therefore, fast. 

Once the light texture is tiled, we can then animate the global ST space of the tiles surface 

with the same animated displacement techniques discussed previously. With this new 

tiling method there are, however, a number of issues that must be addressed. 

Figure 4.2: Artificial Fur Light Texture (3x3). 
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4.2 Filtering Light Textures 

Before filtering the Light Texture, we need to crop UV within the real texture area, 

thereby avoiding the real edges of the original texture. This cropping can be as simple as 

setting the bounds within the texture in the first instance when capturing the light data. 

Using the cropped light texture the near-edge samples are filtered with complementary 

samples on other side. The key to edge filtering is to strike a balance between the 

removal of discontinuities and excessive blurring. In the case of light texturing, filtering 

can be in all U V, S and T directions, or some subset thereof. For the constructed 

examples presented here, the quadrilinear filtering in the re-sampling of the light field 

itself was sufficient to mitigate discontinuities, however, further research could be 

applied to this issue. 

4.3 4D Multi-Resolution Analysis/Synthesis 

A n alternate solution, which has been partially explored, extends the work of [DeBo97] 

From 2D to 4D. The work of [DeBp97] describes a two phase process for generating 

new textures from input images. In synthesizing the 2D texture, the input image is first 

analyzed, identifying the joint occurrence of texture features at multiple resolutions. This 

is accomplished by constructing Laplacian Pyramids, one for each of the Gaussian, and 

it's first and second derivatives. The filters can be seen in Figure 4.3, with sample 

Gaussian pyramids in Figure 4.4. To generate the original Gaussian filter the following 

formula has been applied: 
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G{XX,X2,LL^LL2,GX,G2)= 1 

f f \ 2 \ 

_2 

CJ, 
V V 1 ) V 2 J / 

{2noxo2) 

where (x,,x2) is the current pixel position, {fiy,li2) denotes the filter center and (<r,,<T2) 

denotes the standard deviation in each of the two directions. 

In the synthesis phase, a new texture is generated by sampling successive spatial 

frequency bands from the input texture based on similar features at lower spatial 

frequencies. To re-arrange the texture, each level in the pyramid structure is re-sampled 

from the original at that same level. Furthermore, constraints are maintained between 

"parent" and "child" levels to avoid high frequencies at "parent" edges by constraining 

sampling with the features gathered from the Gaussian derivative pyramids. For a 

complete discussion of technique the author is directed to [DeBo97], however, a brief 

description follows for convenience: for each pixel, (x, y), in each level, i, in the 

synthesis pyramid, S[i](x, y), assess a potential swap pixel, (x',y'), in the analysis 

pyramid, A[i](x',y'), by computing the distance between all parent pixels in S and A at 

each level j in A(x',y')'s parent feature structure. If the sum distance is below the 

acceptable distance metric, then the pixel is added to the set of swappable pixels from 

which the synthesized pixel is selected, in a uniform psuedo-random fashion. 
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The method of analysis and synthesis of 2D textures has been re-implemented in order to 

determine its effectiveness in synthesizing textures such as fur, with the intent of 

extending the method to the generation of 4D light textures. In order to demonstrate the 

correctness of the re-implementation, Figure 4.5 contains synthesized textures from 

[DeBo97], followed by Figure 4.6 which contains similar textures generated from the 

current re-implementation. 

Figure 4.5: Original tiles are to the left, with synthesized textures from [DeBo97] to the 
right. Top left texture has lowest threshold, increasing clockwise. 
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Figure 4.6: Original tiles are to the left, with synthesized textures from current re-
implementation to the right. Top left texture has lowest threshold, increasing clockwise. 

Considering that the synthesis procedure contains a random component, the textures 

above are similar enough to indicate correctness. 

One of the key motivations for using light textures is the potential for using real 

light data acquired from real surfaces. In order to test the viability o f using the multi-

resolution method on real surfaces, such as fur, images were acquired of an actual fur 

sample using the A C M E measurement facility. The U B C A C M E facility is an integrated 

robotic system which can be used to gather a large number of registered measurements. 

Amongst the varied components, a 3 C C D color video camera exists which was used to 

gather multiple images of fur textures. But, as the synthesis is applied to an image 

sample retrieved from the A C M E measurement facility, it becomes clear that the multi-

resolution method does not work equally well for all types of textures. The synthesis 

procedure works well for input images which are tillable in the first instance and exhibit 

distinct textural lines. But, for the textures we are primarily interested in, such as fur, the 
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synthesis process tends to introduce more discontinuities than it prevents, as can be seen 

from Figure 4.7. 

Figure 4.7: 2D Multi-Resolution Synthesis of Fur Image from A C M E Facility. Top left 
texture has lowest threshold, increasing clockwise. 

We initially proposed the use of a 4D Gaussian filter along with its first and 

second partials to extract edge responses at multiple scales from light textures. In 4D, the 

light field is to be decomposed into multiple Laplacian pyramids [Burt83] of down-

sampled light fields. These responses are used to condition a probabilistic re-sampling of 

the Gaussian pyramid to synthesize a set of unique light texture tiles, with the expectation 

that each newly constructed tile wi l l possess edges inherently compatible with its 

neighbor's. But, in addition to the unimpressive results of synthesizing fur textures in 
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2D, moving from 2D to 4D proved to be too.computationally and memory intensive for 

development, debugging and execution on light fields of significant size. Light fields 

which can currently be synthesized are blurred and suffer from ghosting to such an extent 

as to render it difficult to determine i f a synthesis algorithm is, in fact, working as 

planned. 

To illustrate this, Table 2 details memory requirements of light textures of varying 

quality. The qualitative descriptions indicate that a light texture at a "good", or typical, 

resolution is beyond available computing power. The "minimum" level of resolution 

which is need to obtain distinctive textural features is also somewhat beyond available 

means. And, the "current" level that is now attainable is not sufficient for development. 

Qual i ty of L igh t F ie ld Size of L igh t F ie ld 
(UxVxSxT) 

M e m o r y Requirements 

Good 256x256x128x128 -68.719 Gigabytes 

Minimum 256x256x32x32 =4.295 Gigabytes 

Current 128x128x16x16 = 268.435 Megabytes 

Table 2: Light Field memory requirements. 

The memory requirements are calculated with following formulas: 

p = n

2 +n + \-C(n,2) 



where n is the number of dimensions (4), and p is the number of pyramids. The formula 

for p can be understood as the initial Gaussian, 1, plus its first derivatives, n, plus its 

2 

second derivatives, n , minus the redundant second derivatives, n choose 2. For an 

example of what is meant by redundant second derivatives, refer to the identical second 

derivative filters in the lower right corner of Figure 4.3. The height of each pyramid is 

simply computed as: 

where q and r are the UV and ST dimensions, each level i is 16 the size of level (z'-l), 

and assuming 4 bytes per pixel. This calculation also rests on the assumption that each of 

the R, G and B channels can be computed separately, otherwise the memory size 

increases by a factor of three. 

Therefore, upon consideration of results obtained in 2D for the textures in which 

we are interested, and the expense of computation that would be needed for anything but 

a toy light field, the extension to of the analysis/synthesis procedure to 4D has been, at 

least, postponed until further computational resources permit its continuation. Due to 

these constraints only an unstructured collection of 2D images were gathered with the 

A C M E facility for test purposes. Though, it should be noted that A C M E is fully capable 

of acquiring light fields once programmed to do so. 

h = log 2(min(c7,r)) 

and the total memory requirements as: 

(4*q p) 
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4.4 Silhouette Grafting 

When viewing an object which globally exhibits a macro-structured texture with a given 

depth, silhouette effects are produced between the boundary of the object and its 

immediate background. An example of this is given in Figure 4.8. Without such 

silhouettes, light texturing would share the same visual discrepancy as bump mapping. 

As described so far, the light textures at low incidence viewing vectors do not as yet 

produce the "fuzzy" edges of the fur surface that would be expected. As described, the 

boundary of the object behaves like the underlying surface and not like the edges of the 

texture. This limitation can be overcome by grafting an actual edge from the original 

texture where the object boundary should be. 

Figure 4.8: Silhouette Example 

To implement this we first make use of the related technique of displacement 

mapping to provide a depth, d, to the texture. Displacement mapping takes bump 
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mapping a step further by modifying point P, on object O, itself rather than normal, N at 

P. For polygons, this usually involves an increased division of the surface into a higher 

resolution mesh of coplanar polygons. Each P is then translated with a function 

Disp such that the new point: 

P' = P + Disp(u,v). 

Although displacement mapping is a marked improvement on bump mapping, it still falls 

short of being able to model the complexity of surfaces that we are primarily interested 

in, such as fur. But, we make use of a constant displacement in order to define a double 

boundary for the surface, O, yielding the trivial formula: 

Disp(u,v) = d* N 

where N is the normalized outward-pointing normal at P. The effect of this displacement 

is shown in Figure 4.9. 

Figure 4.9: Tea Pot (left) and silhouette of inner/outer surfaces (right). 
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The inner surface, 0/, and the exterior surface, OE, are then used together in a 

boolean test to determine i f the viewing vector w = (wx, w , wz) passes strictly through a 

silhouette. With an intersection function, inter(0, w), returning T R U E i f view vector 

w intersects surface O , the table below shows the three categories of vectors: 

inter(Oi, w) 

TRUE FALSE 

inter(OE, w ) TRUE Regular Silhouette inter(OE, w ) 

FALSE N / A Background 

Table 3: Determining Silhouettes. 

It is clear from the table that we are interested in inter (0E, w) n —• inter (O,, w). 

Graphing a silhouette onto the rendered object requires a secondary light field, M, 

to be created. This light field is comprised of a single slab in which the UV and ST planes 

are defined perpendicular to the texture being captured. The UV plane rests along the 

textures edge; the ST plane is set parallel to UV at some distance away. A n example of a 

edge light field can be seen in Figure 4.10 below: 

Figure 4.10: Light texture edge. 
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Once the light field edge has been created and the silhouette has been identified 

on object O, the UV position in the light field edge, (Mu, Mv), must be determined for 

each silhouette pixel. We first crop and scale the UV plane of the light field edge so that 

Mv values of 0.0 and 1.0 correspond to positions at the fur's base and top respectively. 

The value in the Mu direction then defines the horizontal position from left to right, 0.0 to 

1.0. For determining the Mu position in the edge light field, the user has the option of 

setting the value to a scaled combination of the underlying object's Ou and Ov surface 

coordinates. Examples of which are: M u = ((c*0 u)modl), M u = ((c *O v)modl) or 

(((c*0jmodl) + ((jt*0v)modl)) ^ 
M u = — - ' - ^ , for some scaling constants c and k. To 

compute the vertical position, Mv, the distance, d, that the viewing vector, 

w = {wx,wy,wz), travels within the object's silhouette to surface exit point 

fi (fi, 3-.fi,) P (P, y,PX) 

px-Qj2+(py-QyJ+(P:-Q,)2 

for some scaling constant r. 

The ST position, (Ms, Mt), is then calculated in the same fashion as in the standard 

light texturing described earlier. With both the UV and ST coordinates known, the 

intensity value from the edge light field is directly accessed and applied as a transparency 

channel over the silhouette region. Examples are shown in Figure 4.11 below. 
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Figure 4.11: Grafted silhouettes. 

In addition, to provide greater control, varying lengths and widths of the 

silhouette can be applied over the surface of an object to correspond to a proportionate 

( L U , L V ) scaling of the light texture and object, OE, thickness. The length, perpendicular to 

the object, and horizontal scaling of the silhouette can be set by simply assigning varying 

scale values over the object's surface, as in Figure 4.12. Alternatively, silhouette size can 

be assigned with the use of a smoothly changing texture as a kind of light texture height-

map. 

Figure 4.12: Varying silhouette size. Different colors indicate different scale factors. 

Also, when taking lighting into account, the same edge can be acquired twice and made 

use of from two opposing directions. That is, a silhouette edge may be captured with 

both front and back lighting, each used according to the circumstance. 
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5 Results and Discussion 

5.1 Evaluating Light Textures 

In assessing the quality of results, judgment is left to the reader. A number of sample 

images and image sequences have been created so that accuracy and degree of visual 

interest can be gauged. Figure 5.1 shows a teapot tiled with a light field generated from a 

wicker-like geometric model. Figures 5.2-5.4 show various applications o f the fur light 

texture. 

Figure 5.1: Wicker Teapot. 
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Figure 5.2: Furry Teapot. 

Figure 5.3: Fur Hat. 
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Figure 5.4: Untextured duck (Top). Furry duck (Bottom). 

A s noted previously, the animation techniques o f section 3.2.1 can be applied to light 

textures tiled across the object's surface. Figure 5.5 depicts a sequence o f still images of 

the procedural wind function displacing the UV coordinates of the underlying teapot. 
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Figure 5.5: Furry Teapot with procedural wind displacement sequence. 

5.2 Cost Analysis 

Critical components for evaluating any technique that makes use of light field rendering 

are the associated space and time requirements. The computational requirements of light 

field rendering as described in [Levo96] is roughly two times the cost of texture mapping. 

Light texturing, as implemented here, incurs the cost of light field rendering plus the cost 

of raytracing the untextured object. In terms of space requirements, a light field with 1 

slab, 32x32 images/slab, 256x256 pixels/image, for example, would take something on 

the order of 3.4 megabytes of storage for a compressed data. Each of the quantities 

related to efficiency are presented in the table below: 
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Stage Significant Quantities 

Acquisition 5 hours 

Compression 4 hours 

Rendering Rate 1.37 minutes/frame 

Table 4: Computational Requirements 

Both the acquisition and compression stages are entirely pre-computed, and so can be 

considered as a one-time expense, separate from the rendering rate. Once the light 

textures have been pre-computed, they may be re-used indefinitely. In fact, it is only the 

pre-computation of these aspects which make light field rendering effective. The most 

important quantity is rendering speed and it is instructive to further divide the time 

requirements of the rendering rate into: 

1. The cost of ray tracing an un-textured surface 

2. + The cost of transforming vectors from surface to light field space 

3. + The cost of light field rendering (roughly 2x cost o f texture mapping). 

Significant quantities computed at a screen size of 500x500 of the "fur hat" on a Pentium 

II450 mhz with 512 megs of R A M from each of the rendering stages are as seen below: 
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Stage Significant Quantities 

Ray Tracing 1.27 min/frame 

Vector Transforms 5.3 sec/frame 

Light Field Rendering 0.71 sec/frame 

Table 5: Display Rate Requirements 

Although the display rate is not real-time, one must consider the visual density of 

the fur surface and the modest difference in rendering speed between raytracing an 

untextured surface and raytracing a light textured surface. The same image rendered with 

only the "constant" Renderman™ shading model required 1.255 min/frame, and with the 

"plastic" Renderman™ shading model it required 1.3 min/frame. The rendering rate 

achieved is well within the capacity of current computing power, and is a significant 

improvement over brute force, geometrically based approaches such as [Kaji89] and 

[Flei95]. A n attempt has been made to compare the computational requirements of 

various methods of rendering complex surfaces in Table 6. However, it should be noted 

that the hardware on which the rendering was benchmarked varies significantly, as does 

the quality of results, and, possibly, image size. 
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Stage Significant Quantities System 

3D Texels 
[Kaji89]-

2 h/frame 16 cpu I B M 
3090 mainframe 

Cellular Textures 
[Flei95] 

"many hours" Unknown 

Volumetric Textures 
[Neyr98] 

(10 min to lh)/frame SGI Indy 

Interactive Volumetric 
Textures [Neyr98] 

2.5 frames/sec SGI 0 2 with 
hardware acceleration 

Table 6: Comparison of Complex Surface Methods 
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6 Conclusions and Future Work 

6.1 Conclusions 

Light textures inherit most of the advantages and disadvantages of light fields 

themselves. Complex surfaces are rendered at speeds independent of surface complexity 

with improvements in quality requiring only increased resolutions. It adds a fixed cost 

per pixel to the rendering time of an un-textured surface. Moreover, multiple types of 

surfaces can be simulated without the large expenditures of research effort that would be 

needed i f each type were to be generated using a uniquely tailored solution. 

The required attributes of a texture in order to be a candidate for light texturing 

are fairly minimal. Almost anything that can be placed on a flat table and which can be 

subsequently filtered is a candidate for the method. Complementing this property is the 

fact that light textures can be tiled on most surfaces, only requiring: a surface normal, 

surface derivatives and viewing vector for each rendered pixel. A n d as the measurement 

of perceived accuracy of artificial images of complex natural scenes is a difficult research 

problem in itself, it might be argued that since light texturing is potentially reality-based, 

the necessity for such metrics is diminished as the approach would implicitly approach 

real surface appearance. With this in mind, we suggest that the use of actual light 

samples from natural surface constitutes a certain step in the right direction, for which the 

current work has laid a foundation. 
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However, the main limitation is currently the inability to re-light the surface. This 

is indeed a major obstacle if the problem cannot be addressed, but we feel that it is in the 

category of an open problem rather than an unmanageable impediment. 

6.2 Future Work 

The work presented here leaves a number of avenues open to further investigation. We 

might speculate on the development of further techniques such as implementing a method 

of light texture re-lighting. As mentioned previously, concurrent research by [Mene99] is 

directed towards this very problem. However, this re-lighting method requires an octree 

reconstruction of the original object's geometry. The geometry is approximated by 

carving away voxels that are considered to be outside of the light field. A voxel is 

considered outside if there is some light ray in the light field which passes through it and 

does not intersect the object. But, for a light texture, the entire geometry cannot be 

reconstructed from the silhouette. This is partly due to the complexity of the surface, but 

also because closer strands of hair will occlude strands which are more distant. Since the 

geometry cannot be approximated, the method cannot be applied to the application we are 

interested in. 

Alternatively, the brute force method of capturing a light field for every direction of 

incoming light would require the dataset to move from 4D to 6D and would not be 

feasible. Yet, if rotational symmetry is assumed for lighting a surface such as fur, it 

might be possible to approximate the lighting effect with, say, half a dozen light fields 

with equally spaced angles between lights. Or, it may be that any attempt to re-light a 

light texture would require assumptions to be made about the particular texture, or that 
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textural features need to be extracted and made use of in some fashion. The use of real 

light fields as textures may also introduce additional challenges such as minimizing initial 

lighting imbalance. 

Alternate, physically based methods [Shin92] of animating the ST grid could be 

employed by generating the ST plane movement from a mixture of wind models and the 

kinematical movement of the underlying object. For example, in an attempt to model fur 

attached to loose skin, the ST texturing of the light field might be forced to play "catch 

up" with a delay in matching the ST movement of the underlying object, relative to the 

objects velocity. 

The use of procedural vortex functions can be used to approximate the curling of fur 

by rotating view vectors around surface normals. A simple example of this can be seen 

in Figure 6.1. But, there may be other methods of rotating the light vectors, such as by 

making use of vector flow fields. Furthermore, as an extension of the translation and 

rotational methods described thus far, a procedural light field animation language 

interface might be created, providing access to UV, ST, normals, color, illumination, 

multiple light fields, opacity, and convolutions. 
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Figure 6.1: Rotating the normals. 

Also, 3D warping and repulse point displacement techniques might be developed for light 

textures, analogous to the 2D versions previously described. These controls would 

operate in the space of the underlying surface to give direct user control of the global 

light texture movement. 

Additional complexity could be introduced by blending multiple light textures 

over a single surface. In light texture Mip-Maps we see another potential research 

direction, specifically with regard to optimization. Further work could also be applied to 

the filtering of light textures with respect to the scaling caused by the changing distance 

of the object to the virtual camera. And, finally, more effort could be expended on fully 

exploring the range of surfaces that can be modeled with light textures, such as: grasses, 
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downy feathers, heavy cloths and weaves, corroded metals, structured stones, bricks and 

reptilian skins. 
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G l o s s a r y 

2D Texture - A 2D Texture Map is a method of controlling the color of a surface on a 
texel-by-texel basis. This is commonly achieved by tiling a raster image across a 
surface. But, 2D surface patterns can also be generated by other means such as 
"procedural textures" which use the UV surface coordinates as input. 

3D Texture - 3D textures require the use of the full 3D coordinates of a point in space as 
input. Although there can be additional input, such as time, the three positional axis 
are the minimum. This method has been called 'solid texturing', as the 'interior' o f 
the object exhibits the texture throughout, provided the object remains within the 
defined domain of the texture function. The limitations of this approach are the space 
(i.e. volumetric data) or time requirements (i.e. procedural function). 

Ambient Light - It is the light that has been reflected off secondary surfaces in the 
environment. Ambient light can be viewed as the remaining light that illuminates 
object in a world when all light attributable to the direct rays from a specific light 
sources is removed. Typically, ambient light is simulated in one of two ways: 
through "radiosity" estimations, or, more simply, by providing an ambient light 
coefficient, or coefficients, which are applied to each object's surfaces. In the 
absence of ambient light, an object that resides in shadow would not be visible. 

Articulation - Objects are considered articulated i f they are composed of multiple parts, 
some or all of which are separably moveable. 

Band-Limited - A function is said to be band-limited i f the coefficients of its Fourier 
transform are non-zero for a finite range of frequencies. 

Bilinear Interpolation - Bilinear Interpolation computes a weighted average of the four 
surrounding elements for some attribute. This convolution is repeated for each 
element. It is termed bilinear in that the interpolation is conducted linearly in both the 
horizontal and vertical directions. 

Bump Map - A bump map is a method for creating surface complexity without altering 
the geometry of the original object. Normals are adjusted in accordance with the 
grayscale values of a tiled bitmap image or with procedurally generated values. 
Although the bump can provide convincing surface appearance, the object's edges 
can look anomalous as they remain unchanged. 

Cellular Texture - Cellular Textures are tiled patterns of geometrical elements. Each 
element is constructed through a biologically patterned process of cellular growth 
constrained to the "host" object's surface. Cellular Texture elements can be defined 
with volume datasets and with polygonal meshes. [Fleischer 95] 
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Displacement Map - Displacement mapping takes bump mapping a step further by 
modifying point P itself rather than normal, N(P). This involves an increased division 
of the surface into a higher resolution mesh of coplanar polygons. 

Filter - A n image filter is commonly employed in signal reconstruction. It is a function 
that interpolates discrete samples to form an approximation of the original function. 
The interpolation filter is convolved with the sampled data to remove or mitigate 
spurious discontinuities and fi l l missing data when samples are spaced too far apart. 
Other uses for filters include edge detection and image compression. 

Hypertexture - A n Hypertexture is a solid texture with no well-defined boundary 
[Perl89]. It constitutes a density function that details the transition at the area within 
the object and the area without. A n 'Hypertextured' object can be divided into three 
regions: a hard region within which the object is entirely solid, a soft region where 
the objects density is non-zero and an outside region. It is the hypertexture's 
behavior in its soft region that characterizes it. 

Image-Based Rendering - A reality-based method for generating photo realistic 
computer graphics. This method differs from geometrically based rendering in that 
the basic data element consists of photometric observations. [McMil lan 95] 

Laplacian Pyramid - A decomposition of N-dimensional data into a hierarchy of bands. 
Each band, or level, is a constructed recursively from the level below through the 
application of local operators at multiple scales and identical shape. A t each recursive 
step the data is low passed filtered with the result subtracted from the original data at 
that level, yielding an array containing high frequencies and a complementary array 
containing low-passed data at a reduced sample density. 

Light Field - Light Field rendering reconstructs a subset of the plenoptic function in free-
space. A Light Field is an image-based method for capturing the complete 
appearance of both synthetic and real-world objects. It is a structured representation 
of light captured under fixed lighting conditions. A s a "pure" image-based method, 
Light Fields do not capture geometric representations of the original objects, though 
geometry may be approximated from the gathered light. 

Light Slab- A Light Field is parameterized as a set of Light Slabs. These slabs are 
defined as a pair of parallel planes, ST and UV. Each plane is discretely subdivided in 
each of the S, Tand U, V dimensions. For each (u, xv, s, i) point in the defined space, a 
color sample is maintained, which are subsequently used as input for reconstructing 
views of the original object with the appropriate reconstructions kernel (typically 
bilinear or quadrilinear). 

Light Texture - A light texture is a light field that has been tiled over the surface of a 
geometrically defined surface. 

Macrostructure - The macrostructure of a surface texture refers to those characteristics 
that are manifest global to the surface. Macro features of textures are those qualities 
that emerge at lower resolutions. 
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Mip-map - Mip-maps are a hierarchical structure used to store pre-filtered textures, at 
multiple resolutions. The mip-map is arranged in a square divided into areas three of 
which contain the R, G and B components of the texture at the original resolution. 
The remains area recursively stores a M I P - M A P of the original texture filtered with 
2x super-sampling. 

Morphing - Short for metamorphosing, morphing refers to an animation technique in 
which one image, or geometry, is gradually transformed into another. 

Normal - A normal to a plane is defined as the cross product of two vectors lying in that 
plane. A flat polygon situated in 3-D Coordinate Space has an orientation, pointing 
out from the surface of the polygon and perpendicular to that surface. As there are 
two normals, one on each side of the surface, pointing in opposing directions, the 
choice of the side from which the normal projects defines the front or "face" of the 
polygon. The concept of the normal extends to curve surfaces, where the normal is 
defined as the cross product of the surface's partial derivatives at a given point. 

Pixel - Pixels, short for "pixel elements" might be defined as the smallest element of a 
display or image whose intensity can be adjusted. 

Plenoptic Function - The plenoptic function, first defined by Adelson and Bergen, 
describes all that is visible from a given point in space. It is a seven dimensional 
function, defining an intensity for each point in the parameter space where the 
dimensional axis are: time (7), wavelength(A), position (x, y, z), and viewing direction 
(0,0). 

Point Sampling - Also known as nearest neighbor, point sampling is the simplest form of 
sampling. The attribute's (color, alpha, etc.) value at the position in the defined space 
is directly selected. The process in repeated for each sample forming the image being 
reconstructed. 

Procedural Texture - Procedural texture mapping is the use of a function or set of 
functions applied to a set of points in order to generate a texture. Procedural textures 
are defined algorithmically, typically returning an intensity value or values given the 
current point in space. The advantages of procedural texturing are that minimal space 
is required to store the texture's data, as the values are generated as needed. This 
yields the additional benefit that the textures resolution is not fixed and so can be 
"zoomed" to an arbitrary degree. This is also a disadvantage as the values need to be 
computed for each pixel, at each time step, thereby exhibiting the classic trade-off 
between computational time and space. 

Reaction Diffusion - Reaction-diffusion simulates a chemical process over a surface. 
This process produces stable patterns by diffusing and reacting two or more psuedo-
chemicals, which leave a color trace over the surface. 

Real-time - In computer graphics, it refers to the generation and display of animation, 
whether it be pre-computed or interactively generated, without noticeable lag or 
flicker at some resolution which is sufficient for the application. 
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Rendering - The range of computation that this term refers to continues to broaden as 
new techniques of generating views of graphic objects into raster or vector based 
images emerge. Broadly, the rendering process produces a structured area of 
intensity levels yielding a n-dimensional slice of a plenoptic function in a given real 
or artificial area. 

Sampling - Sampling is a reduction from the continuous to the discrete by selecting a 
finite set of values of a function or signal in some structured or random fashion. This 
is the converse of signal reconstruction. 

Texel - Related to pixels, the texel, which stands for TEXture Element, is the smallest 
addressable unit of a texture map. 

View Dependant Texture - V i e w dependent textures are macro-structured surface 
textures where the intensity of the diffuse surface color (or some subset of the area) 
depends not only on its location in the objects UV space, but also on the viewing 
angle. 

View Interpolation - View interpolation utilizes a partial plenoptic sampling combined 
with image flow fields in order to reconstruct new viewpoints. [McMil lan 95] 
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