
An MPI Messaging Layer for Network Processors

by

Ashley Wijeyeratnam

B.Sc, The University of Colombo, Sri Lanka, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Mas t e r o f Science

in

THE FACULTY'OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
October

1999

© Ashley Wijeyeratnam, 1999

ln presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, 1 agree that the Library shall make it

freely available for reference and study. 1 further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of CcrfAgtA^fc-R ^ 'MfcNe-G

The University of British Columbia
Vancouver, Canada

Date 0OTD6£(^ l° l*t°l

DE-6 (2/88)

Abstract

We describe the design and implementation of M P I - N P , a Myrinet communication system tailored

to support L A M , a public domain version of M P I . T h e goals of M P I - N P are to reduce the time spent

on the host for message processing, and to promote the overlap of computation and communication.

M P I - N P achieves these goals by off-loading as much of the computation as possible to the network

processor. M P I - N P relieves the host of several tasks, making more C P U cycles available to the

application, but pays a price for heavy utilization of the slower network processor, by adding a

significant overhead to message latency. Although part of the overhead can be attributed to the

hardware of our testbed, the philosophy of M P I - N P characteristically does not provide the best

latency possible because of performance disparities between host and network processors. Users

are left with the choice of deciding on the trade-off of latency versus host overhead. Applications

which are not latency bound can expect to perform well on M P I - N P .

ii

Contents

Abstract ii

Contents iii

Acknowledgements v

1 Introduction 1

1.1 Overview 1

1.2 Motivation 2

1.3 Thesis Statement 4

1.4 Methodology 4

1.5 Synopsis 5

2 Background 6

2.1 Parallel Computing and Metacomputing 6

2.2 The Message Passing Interface 7

2.2.1 L A M 9

2.2.2 MPICH 10

2.3 Gigabit Networking 11

2.3.1 Existing Technologies 11

2.3.2 System Architecture 13

iii

2.3.3 Performance Issues 14

2.4 Related Work 16

2.4.1 Selected Implementations of MPI 16

2.4.2 Messaging Systems on the Myrinet 18

3 The Design of MPI-NP 23

3.1 Channels 24

3.2 Flow control 27

3.3 Message protocols 28

3.3.1 Full Credit 28

3.3.2 Message Rendezvous 29

3.3.3 Eager send of small messages 30

3.4 Message matching 31

3.5 Supporting Zero Copy 34

3.6 Hardware issues 35

3.7 Architectural Overview 37

4 Evaluation 41

4.1 Bandwidth 42

4.2 Host Overhead 43

4.3 Latency for Small Messages 44

4.4 Discussion 47

5 Conclusions 48

5.1 MPI at the Network Layer 48

5.2 Future Work 50

Bibliography 53

iv

Acknowledgements

I am greatly indebted to my supervisor, Professor Alan Wagner, for inspiring and guiding me

through the two years I spent at UBC. I am grateful to Professor Mike Feeley for the many general

and project specific discussions we had, that influenced my way of thinking, and to Professor Norm

Hutchinson, who was always ready to push his sleeves up at the hint of a problem. Thanks also to

the folk in the Distributed Systems lab for the wonderful times we had.

I am especially grateful to the occupants of the Motha residence who put an extra effort to

make Vancouver feel like home to me. Chamath Keppitiyagama was a tower of strength, challenging

every point, supporting every move I made. Finally, I wish to thank my family, who's continued

support is immeasurable.

A S H L E Y W I J E Y E R A T N A M

The University of British Columbia

October

1999

Chapter 1

Introduct ion

1.1 Overview

Clusters of commodity processors connected by high speed networks have become an attractive

platform for high performance parallel computing. In the last few years there has been a dramatic

increase in processor speed, but, more importantly for clusters, there has been an even more

dramatic improvement in network performance. Networks with 50MHz workstations on 10 Megabit

per second ethernet of a few years ago are now being replaced with 650MHz PCs on Gigabit per

second networks. The gap between processor, memory and network performance has narrowed

to the extent that cluster computing is now viewed as a viable platform for high performance

computing [Bake99].

Delivering the performance of high speed networks to the application remains a challenge.

Software overhead for communication is a significant bottleneck in the performance[Kara94]. Much

of the overhead comes from processing protocol layers, copying data between buffers and making

transitions between user space and kernel space. Typically, the application makes the data location

known to the kernel which copies the data into a system buffer and proceeds to write it into the

network interface which sends it across the wire. One way of reducing software overhead is to make

the network interface (NI) accessible at the user level so that the application could transfer data

1

directly to the NI, avoiding the overhead of going through the kernel.

A new generation of network interface cards (NICs) provide solutions to these issues by being

highly reliable and accessible at the user level. These networks, called System Area Networks, span

a small area of about 25 to 50 square feet. Their limited span allows data transmission to be almost

error free eliminating the need for heavyweight reliability protocols.

The most interesting feature of newer NICs is an embedded programmable processor. The

advantage of a programmable NIC is it makes it possible to tailor the communication interface to

a particular application to improve performance by replacing all purpose protocol stacks with a

specific, thin and simple user-level interface.

1.2 Motivation

Programmable interface cards, most notably Myrinet[Bode95], have been used in a variety of

projects. The focus of these projects have ranged from simple communication interfaces [Pryl98,

Chun97, Laur97] to issues of security and protection [Buzz96, Dubn97a] to the support of specific

applications [Coad99, Bhoe98]. The common goal of these interfaces is to provide a lean, general

purpose interface to give good bandwidth and latency over a range of message sizes. In some cases

these goals are accomplished by restricting the flexibility of the interface and, in most cases, by

making minimal use of the network processor (NP). The justification given[Iann98] for minimizing

the amount of message processing in the NIC is that the NP runs too slowly to handle messages in a

timely manner. It has been found that processing messages on the host gives the best performance

in terms of message latency and bandwidth.

Almost all of these systems are designed specifically for the Myrinet which, introduces

difficulties that are specific to the Myrinet hardware and need not be the common case as we show

in chapter 4. Comparably cheap embedded processors at about 10% the cost of host processors with

clock speeds of more than 38%[Micr99, Dief99] of the host are currently available and the trend

signals a faster growth of embedded processor performance. With a better designed NIC and a

2

faster processor running at speeds closer to the host CPU, entrusting more tasks to the NP becomes,

feasible. The focus of this thesis is to investigate network support for MPI on the assumption that

the network processor is capable of efficiently handling moderate workloads in comparison to the

host processor.

There are several advantages to off-loading computation to the NP and tightly integrating

the interface to a specialized message passing system like MPI.

• Message passing alone involves a non-trivial amount of computation. Since the target appli­

cations for a high speed message passing system are often computationally intensive parallel

applications, it is desirable that the host CPU devote as little time for message passing as

possible. Off-loading message processing to the NP makes additional CPU cycles available to

the application.

• The host could add several messages into the communication pipeline without waiting for

them to make progress because message progress would, to a large extent, be handled by the

NP.

• There are performance advantages for protocols required by special MPI communication

routines like Synchronous Send and Ready Send that can be handled more efficiently between

two NICs rather than at the higher level between two hosts.

• Current communication systems implement collective communication like broadcast, gather

and scatter on top of point-to-point routines. It is more efficient to implement collective

routines on the NIC rather than on the host because doing so would require only a single

interaction per routine between host and NIC.

Host overhead is a cost incurred on every communication instance and is a parameter that

directly determines the granularity of parallelism that can be effectively exploited by a distributed

application. It is an issue that, along with heavier NP utilization, has so far been unconsidered.

3

1.3 Thesis Statement

Utilizing embedded network processors to handle messages of a message passing application would

reduce host overhead on a high speed communication system thereby making more host C P U cycles

available to the application for computation while the network processor manages communication.

1.4 Methodology

We have taken this alternative approach in the development of M P I - N P (Message Passing Interface

on the Network Processor) to test the feasibility of our objectives. In designing M P I - N P we

analyzed the communication layer of L A M , a popular public domain implementation of M P I written

to work with T C P / I P , and determined the division of work between the host and the NI based on

our objective of minimum host overhead. Functionality such as routing, message matching, buffer

management, flow control and protocol processing was migrated down to the N I C .

In implementing M P I - N P we have made use of the optimizations present in existing high

speed interfaces with the aim of achieving low latency and high throughput. T h e principles of M P I -

N P are not specific to any type of hardware. T h e only assumptions we make are about capabilities

found in current network interfaces, which are that the NI is accessible at user-level and that it

has an embedded programmable processor and some memory which can be used as system buffers.

T h e implementation was done on Myrinet NICs and has optimizations pertaining to the Myrinet

hardware in order to optimize performance.

O u r design relieves the host of several tasks but, in comparison to other message passing

systems on similar platforms, performs poorly on message latency due to the fact that our testbed

was unsuitable for heavy utilization of the network processor. The current state of the hardware

indicates that NICs have made improvements in design and processor speeds compared to our test

bed. M P I - N P would make bigger percentage improvements than existing systems if the performance

of network processors improves with respect to the host C P U . Still, we expect the host processor

to be the more powerful of the two and therefore it would be faster to perform certain tasks on the

4

host. Applications tightly bound by latency would perform well if the work on a message's critical

path were executed in the fastest manner possible, which would be on the host. Other applications

which are not latency critical would benefit greatly by the philosophy of MPI-NP.

1.5 Synopsis

In the following chapters we present the issues of designing a message passing system and explain

the design decisions we made in implementing MPI-NP. Chapter 2 highlights the need for message

passing systems and briefly describes the M P I standard and some implementations of it. It also

includes an overview of networking technology and brief reviews of related communication systems

for the Myrinet. Chapter 3 contains a discussion and justification of the overall design of M P I -

NP. We evaluate the performance of M P I - N P in chapter 4 and finally present our conclusions in

chapter 5 along with a description of further work needed for M P I - N P to be complete.

5

Chapter 2

Background

In this section we discuss the issues surrounding distributed computing in general and the message

passing paradigm in particular. We review two existing public domain implementations of the Mes­

sage Passing Interface (MPI) standard. We then discuss high performance networking technology

and the new issues introduced by them. Finally we review methods employed, by existing message

passing systems implemented on such networks, to address these issues.

2.1 Parallel Computing and Metacomputing

Distributed applications fall broadly into two categories.

• Applications that combine the processing power of the networked machines to enhance their

performance thus turning the network into a single parallel processing machine

• Applications that cooperatively use resources, like storage and computing power, made avail­

able on the network that are not available otherwise.

T h e scientific and engineering computing community have found in workstation clusters a

cheap and convenient mode of parallel processing. Massively parallel processors are fast losing

their appeal. Contributing to this phenomenon are their prohibitive costs compared to declining

6

workstation costs, and the increase in performance of workstations and networking technologies.

The price/performance ratio of workstations improve at 80% a year whereas that of supercomputers

improve at about 20% to 30% a year[Ande95]. Networking technology has advanced over the last

few years to provide bandwidths and point-to-point latencies such that the network is no longer the

bottleneck in the performance of a distributed application. These combined advances have turned

supercomputing into an affordable commodity[Bake99].

The widespread availability of workstations, supercomputers and storage devices on net­

works has prompted the development of metacomputing systems[Grim98] that bring together these

diverse resources and present it to applications as one unified system. Such a system will consist of

millions of hosts and other computing resources connected by high speed links and provide desktop

users with supercomputing power. The vision of a nationwide metacomputer was presented several

years ago[Smar92] and now projects like Globus[Fost97a], by providing tools to integrate applica­

tions, middleware and the network, and Legion[Grim97], by supporting distributed object oriented

abstractions, work towards bringing that vision closer to reality.

2.2 The Message Passing Interface

A common characteristic of distributed and networked parallel applications is their method of

communication. Data is transferred by passing messages between host processes. This holds

true for scientific applications as well as for metacomputing experiments. Of the two parallel

computing paradigms, namely shared memory and message passing, networked parallel computing,

dictated by the distributed nature of the hardware, follows the latter. Message passing is the most

common and well understood model of parallel computation. At the time the MPI standard[Mess95]

was proposed, there existed many implementations of message passing libraries each with its own

syntax, semantics, strengths and limitations. The standardization effort by the MPI Forum was

an attempt at enabling applications written using these libraries to be portable. The standard

itself only specifies the application programmer interface and the behavior of its features in an

7

implementation.

An MPI program is made up of several autonomous processes executing their own code in

their own address spaces in an MIMD style. Processes communicate with each other by invoking

MPI communication primitives. The number of processes are decided at startup time in MPI-1.

Primitives for dynamic process creation and deletion are described in the MPI-2[Mess97] specifi­

cation. Processes belong to a group that initially includes all processes of the application and are

identified by their rank in the group. While they can form themselves into sub groups, a process is

allowed to be a member of many groups simultaneously. Processes can also arrange themselves into

graph or Cartesian topologies. Processes within a given group can communicate among themselves,

or a process of one group can communicate with any process of another group. The former is known

as intra group communication while the latter is called inter group communication. Objects called

communicators[Fost96] define communication spaces.

MPI has a rich collection of point-to-point communication functions: buffered, synchronous,

ready and standard. Each of these modes can be blocking or non-blocking. Each MPI message

carries, in addition to its data, an envelope containing the source, destination, tag, and context ID

of the message. Messages are received (matched) based on the contents of the message envelope.

Applications can use wildcards, MPI_ANY_SOURCE and MPI_ANY_TAG, to receive a message from any

source and/or with any tag. MPI also provides for one-sided communication routines such as put

and get, and collective communication routines such as broadcast, scatter and gather operations

which serve the typical communication needs of most parallel computing applications.

A key property of MPI messages is that they are non-overtaking. The message ordering

rule states that messages sent from one process to another are made available to the receiver in the

order in which they are sent. The receiver may choose to pick the second message over the first,

if they can be distinguished. If two receive operations match a message and they are both still

pending, the message is delivered to the first.

The notion of a message taken by most message passing libraries is a contiguous data buffer.

Whenever non contiguous data of possibly different types are to be sent, they are packed into a

8

contiguous buffer by the sender and unpacked by the receiver. This is an expensive operation

requiring too many copy operations by both processes. MPI provides a facility to define data types

that are non contiguous and where the data elements differ in their fundamental types.

Several implementations of MPI customized for various environments are available in the

public domain. Two of the more popular versions are LAM[Burn94, Burn89] developed at the

Ohio Supercomputer Center and MPICH[Grop96] developed by Argonne National Laboratory and

Mississippi State University. Both of these implementations are based on precursor systems. The

following sections give brief overviews of these systems.

2.2.1 L A M

The Local Area Multicomputer (LAM) is a subset of an operating environment called Trollius[Burn90],

originally developed for message passing on transputer nodes.

The core of L A M is a multi tasking micro kernel that runs as one UNIX daemon per host.

MPI messages can be sent either via the L A M daemon or directly to the receiving process in

client-to-client mode. The daemon is a legacy of Trollius and is useful during the application

development stage, providing facilities for debugging and monitoring messages. A L A M based MPI

application, even if started up in client-to-client mode, still needs the daemon to help setup the

initial connections. The processes once connected form a fully interconnected topology. Application

specific virtual topologies are built on top of this.

The upper layers of L A M use a Request Progression Interface (RPI) to monitor and manage

messages. When a process needs to send or receive a message, it does so as a request for service.

Requests are maintained in a queue and can be in one of four states, INIT, START, ACTIVE and

DONE. The RPI layer reads and writes data into TCP sockets in non blocking mode, trying to

transfer as much data as possible from one request before servicing another.

If the message content is fragmented in the application, the data is gathered and packed into

a single buffer. Certain data types require byte order conversions to be performed on them before

transmission. The message is wrapped in an envelope containing addressing and identification

9

attributes and placed in a request. The request is then added onto the request progression queue

to be serviced.

2.2.2 M P I C H

The design of M P I C H is based on mainly three libraries, p4[Butl94], Chameleon and Zipcode[Skje94].

The p4 library supports multiple models of parallel computation. Programmers can use monitors to

coordinate access to shared data in a shared memory model. It contains message passing functions

and global operations that can be used in a distributed memory model. In addition p4 routines

can be used to manage collections of processes. The library is portable to many different types of

parallel machines, workstations and environments.

Zipcode is a message passing system designed to support parallel libraries and large scale

multicomputer software. Many of its features were adapted into the M P I standard specification

as well. The main contribution of Zipcode was the notion of a "context". It uses process groups

to limit the scope of message passing activities, defines separate communication contexts to enable

library development and allows different notations of process naming to support virtual topologies.

M P I C H is a library whose routines form a layered hierarchy. The portable two upper layers

interact with the device dependent lower layer through an Abstract Device Interface (ADI)[Grop95j.

The A D I provides four kinds of services, namely specifying messages to be sent or received, moving

data between the application and the hardware, managing pending messages and providing infor­

mation about the environment. The lowest layer is an interface to the device which does all of the

work. The interface has been written using the chameleon macros and, for its U N I X workstation

implementation, the device it connects to is p4. Since p4 is a message passing library by itself, all

layers on top are simply interfaces to it.

The major concern of M P I C H is portability. This emphasis causes it to perform a number

of operations that do not take place in L A M . Some of these additional operations are listed below.

• Checks arguments to function calls for validity. Datatypes have a special 'cookie' in them to

10

hold their integrity.

• Keeps pointers to datatypes and opaque M P I objects (e.g. communicator) in an array and

performs lookup based on implementation platform.

• Keeps communication devices in a table and perform lookup every time a message is sent.

• Copies message from user buffer to a packet.

• Adds an external Data Representation (XDR) wrapper

• Converts all data from host to network byte format

These additional operations take its toll on the performance of M P I C H compared to LAM[Nupa94].

Yet because of the ease of replacing the A D I , M P I C H is a popular choice among M P I implementors.

Most new implementations of M P I are simply clones of M P I C H with a custom built A D I .

2.3 Gigabit Networking

The advances in network performance is another key factor in the popularity of cluster supercom-

puting. The last few years have seen L A N s supporting increasing bandwidths of up to a Gigabit

per second and decreasing point to point latencies of less than 5 microseconds. In this section we

review two of these technologies and discuss their implications on systems development.

2.3.1 Ex i s t i ng Technologies

Gigabit Ethernet

Ethernet is the standard and most widely used communication medium in LANs . High

speed networks were built on Fast Ethernet or 100BASE-T until the recent emergence of Gigabit

Ethernet[Giga99]. Gigabit Ethernet uses the C S M A / C D protocol, has the same frame format and

size as its predecessors and therefore makes the upgrade easy. Unlike 10BASE-T and Fast Ethernet,

it supports full-duplex operating mode for point to point connections. A point can be a switch or

11

an end station. The C S M A / C D protocol is used only when there are shared connections and in

such a case it operates in half-duplex mode.

Operating over optical fibre channels, it has been experimentally shown to achieve a through­

put of over 720Mbps with a 100 percent offered load and collisions in half-duplex mode[Giga99].

Theoretically it can support a full-duplex throughput of 2 Gbps.

Although relatively new to the market, it's low cost compared to Myrinet and the ease of

application migration virtually ensures Gigabit Ethernet to be the dominant technology.

Myrinet

Myrinet [Bode95] is a networking technology that offered Gigabit-per-second throughput,

before the commercial availability of Gigabit ethernet. Based on technology used for packet switch­

ing in massively parallel processors, Myrinet has several interesting features.

• Each channel, a pair of which makes up a full duplex Myrinet link, has a data rate of upto

1.28 Gbps.

• An almost negligible bit error rate makes the network very reliable and eliminates the need

of higher level protocols that traditionally assumed an error prone physical layer.

• Myrinet being a point-to-point network, the physical layer is not shared. Therefore the

capacity of the entire network increases with the number of nodes. The network can be

scaled by chaining switches.

• Packets are routed using a wormhole routing mechanism. A packet consists of a header, body

and a tail. The header contains routing information that is stripped at each routing point.

Once a packet enters a channel, it occupies the channel until its tail passes through. Other

packets are prevented from using that channel in the meantime.

• Taking advantage of its reliable communication medium, the Myrinet uses cut-through rout­

ing, where data packets are forwarded as soon as they are received, as opposed to store-and-

12

forward routing, where the entire packet is buffered and verified before being forwarded.

• By using cut-through routing when a channel becomes blocked, the packet need not be queued

on the routing circuit or node. The packet is blocked with flow control provided by the link.

Applications using a lightweight communication interface can obtain latencies of 5 microsec­

onds and bandwidths of upto a Gigabit per second[Pryl98]. The only drawback of Myrinet is its

price, which currently is about the same as that of a high end personal computer.

2.3.2 System Architecture

A NIC on our Myrinet testbed has a custom designed 33MHz processor, 1MB S R A M and 3 D M A

engines, one each for transferring data from NIC to the wire, from the wire to the NIC and for

transferring data between the host and the NIC. Data transfer is initiated by a Myrinet Control

Program (MCP) running on the NIC.

HostDMA

SRAM on NIC

*

RecvDMA SendDMA

HostDMA

/
SRAM on NIC

RecvDMA SendDMA

Myrinet Switch

Figure 2.1: Dataflow between hosts

Figure 2.1 shows the basic data flow between two hosts on the network. The network

interface resides on the hosts 1 0 bus and therefore in addition to the D M A channel the host can

access memory on the NIC via programmed 1 0 (PIO).

The three D M A channels and the C P U all reside on the same memory bus called the L B U S ,

as shown in Figure 2.2. The bus arbitration protocol gives the C P U the. lowest priority, with the

13

HostDMA

Network
Processor

SendDMA

1
Myrinet

Figure 2.2:, Myrinet NIC Architecture

RecvDMA getting the highest priority.

2.3.3 Performance Issues

The challenge facing network interface designers is to deliver hardware performance to the applica­

tion with minimal degradation. Traditionally, it was the operating system that handled interaction

with the NIC, multiplexing it among user processes. While doing so meant that users need not

be concerned about security and sharing, it also meant expensive transitions into kernel space

and copying data into kernel buffers prior to its transmission. Unix sockets have such properties,

but were suited for Ethernet mainly because the communication medium was unreliable and slow.

Efforts to impose the socket model on Myrinet have yielded poor performance rates[Rodr97] com­

pared to the hardware capacity. Drastic differences in hardware characteristics require reinventing

the communication interface model.

Following the path opened by microkernel researchers, network interface designers have

stripped network management from the operating system and have introduced the concept of

14

User Space Communication where a user library takes advantage of hardware properties like

low bit-error rates and sequenced delivery to implement a thin communication layer, eliminating

OS overheads to directly interact with the network device in order to bring hardware performance

closer to the application. Circumventing the OS creates a security problem. If more than one

application makes use of the network interface simultaneously, measures must be taken to protect

their data and address space boundaries from each other. The issue of security is addressed by

Hamlyn[Buzz96] but systems like BIP[Pryl98] and PM[Tezu98] assume that the system has only a

single user. BIP even goes as far as to restrict the number of communicating processes to one so

that the communication layer can be kept simple and fast.

Protocols like T C P required user data to be copied onto kernel buffers before being trans­

mitted, and vice versa. Data movement between buffers has been shown to be a primary cause

for high latency in communication systems[Drus96]. A system transferring data to and from the

user's data structures directly into the NIC is said to employ a zero copy protocol. Since NIC

memory is mapped onto the user's virtual address space, messages can be moved between host and

NIC memory by the host, same as performing a copy operation in host memory. Data transfer by

D M A involves the additional step of determining the corresponding physical address of the host

data area because the D M A is initiated by the NIC which is a device on the host I /O bus. Virtual

to physical address translation involves looking up kernel data structures, so OS assistance is an

absolute necessity in this case. Consequently, the page in host memory that holds the data area

must be prevented from being swapped out by the V M system before D M A is complete. This is

achieved by marking the page as "pinned". Some operating systems impose a limit, in addition to

the obvious physical memory constraints, on the number of pages that can be pinned at any given

time. Then pinned pages turn into a scarce resource that needs to be managed well.

When data transfers that are managed by the NIC are completed, the host should be

informed so that the relevant data areas can be made free. The host can learn of this event either

by being interrupted by the NIC or by polling on a status variable. Both these methods have their

drawbacks. If the host spin waits, it would spend valuable C P U cycles which could otherwise be

15

spent on useful work. Interrupts on the other hand take up a significant proportion of message

latencies [Thek93] for small messages due to the cost of the host C P U vectoring the interrupt

and the cost of servicing the interrupt. If interrupt servicing causes a page fault, the cost of the

operation goes up by three orders of magnitude 1 . If a message is kept waiting on the wire until

the interrupt service routine can determine its destination in host memory, the message can block

other messages and cause congestion because of the wormhole routing property of the Myrinet.

The default behaviour of the NIC if a message is left unserviced for longer than a specified time, is

to reset itself, causing all state to be lost.

2.4 Related Work

A review of existing work on message passing systems and interfaces for high speed networks is

given in this section.

2.4.1 Selected Implementations of MPI

Both M P I C H and L A M use point-to-point communication primitives to implement collective com­

munication routines. M P I - C C L [Bruc95] focuses on optimizing collective communication on net­

works built on an unreliable broadcast medium such as Ethernet. It is built on URTP, a User

level Reliable Transport Protocol that has both point-to-point and multicast capabilities. U R T P is

partially an extension to the OS kernel built on top of the networks Data-Link layer, and partially a

user level library. Buffer management is unique in that send buffers are managed by the M P I - C C L

layer and receiver buffers are managed by URTP. An incoming message goes through two layers

of buffers, kernel and URTP, before being deposited into the user provided buffer. Moving data

between buffers is in keeping with its objective of freeing kernel buffers as soon as possible so that

packets are not dropped and retransmitted for lack of buffers.

M P I - F M [Laur97] was one of the first implementations of M P I on the Myrinet hardware. It

'disk I/O takes tens of milliseconds while message latencies are measured in tens of microseconds

16

replaced the P4 device of M P I C H with an F M (Fast Messages) device. It addressed the multiple

data copy problem by adding an upcall to the F M layer so that a received message can be recon­

structed directly in its destination buffer, and by gathering non-contiguous data on the host into

the network interface instead of into a temporary buffer as done in T C P / I P implementations.

The Globus metacomputing toolkit supports an implementation of M P I called M P I C H -

G [Fost98a, Fbst98b] that insulates users from the details of underlying diverse computer architec­

tures and networks. A metacomputing system can include environments that have diverse resource

management, process management and security services, in addition to heterogeneous hardware

with varying communication infrastructure. M P I C H - G attempts to provide solutions for problems

such as host access control, authentication, process scheduling process monitoring and customized

communication hitherto left unaddressed by message passing libraries. Providing support for mul-

timethod communication is the Nexus [Fost97b] secure channel device which uses T C P / I P when in

the wide area, vendor-specific protocols within a host and shared memory within an S M P cluster.

Because it uses Globus services M P I C H - G can implement (but has not yet done) MPI-2 features

like dynamic process creation, which the original design of M P I C H did not encourage.

The Virtual Interface (VI) Architecture [Comp97] is a standard that specifies an interface

between a S A N and the host with an intent of replacing heavy weight protocols such as T C P / I P .

The VI Architecture consists of a V I kernel agent - a device driver that performs OS related

operations, a VI user agent - a user library that implements the VI A P I giving users direct access

to the NIC bypassing the OS, and a VI NIC - which has local memory and D M A engines which can

access host memory without host C P U interaction. Its most interesting feature is the specification

of an R D M A 2 operation where a local user process can initiate D M A on a remote host in order

to access data of a remote application in a cache coherent manner. The VI standard has heavy

industrial backing and so the introduction of a (commercial) implementation of M P I for VI called

M P I / P r o [Dimi99] was not surprising. M P I / P r o uses threads for notification and to ensure message
2 R D M A in the context of VIA stands for Remote DMA, and not Receive D M A as referred to in later chapters in

the context of Myrinet

17

progress without user interaction. Long messages are handled by first using a rendezvous protocol

and then by initiating an R D M A . By using multiple queues to hold receive requests, it reduces to

0(1) the search complexity for a matching request on message arrival.

2.4.2 Messaging Systems on the M y r i n e t

A whole new avenue of research was opened with the introduction of user-level programmable

NICs. Several research projects have proposed interesting methods for getting the most out of a

high performance NIC. Some of those projects are reviewed in this section.

BIP3

BIP [Pryl98] is low-level message interface for Myrinet which thinly veils the hardware with a user

library that delivers close-to-raw performance to the application and guarantees reliable in-order

delivery of messages. An implementation of M P I called MPI -BIP is built using this library. It avoids

packet dropping and retransmission by ensuring that the receiving node has buffer space, before

transmitting a message. A credit based flow control scheme is used to this effect where the sending

node has prior knowledge of the receiver's buffer availability. The communication protocols are

message size dependent. Short messages are sent immediately to the destination node, irrespective

of whether a receive has been posted, unless the sender runs out of credit in which case the sending

routine blocks. Both sender and receiver rendezvous before the transmission of a long message,

ensuring that the message can be delivered to the application immediately.

BIP has a simple channel interface to M P I where the number of channels can be set at

initialization time by the user (the number of channels depends of the amount of memory available

in the NIC). Messages are injected and removed from these channels. There is no look-ahead

capability to a BIP channel and message matching is done by the host. BIP headers consist of the

message route and tag. The M P I envelope is part of BIP message which has to be stripped by

the host As a consequence of the simple channel implementation, BIP has the restriction that at
3 Version 0.95a

18

most one send and receive can be active at a given time on a channel. The one message restriction

imposes a limit to the degree to which communication and computation can be overlapped. Large

messages are broken into fixed size packets (the optimal size of which is a function of the message

length) and are pipelined along the critical path of host-to-NIC, NIC-to-wire, wire-to-NIC and

NIC-to-host so as to get the best bandwidth. Messages are transferred directly between user space

and the NIC. OS intervention is sought only to pin pages during D M A and this is done with the

aid of a kernel module.

The BIP interface is limited to a single process. It provides notification of network errors

to the upper layers and expects a higher level protocol to recover from them.

Hamlyn

Initially designed for large scale M I M D multicomputers, the Hamlyn network interface [Buzz96]

was extended to the Myrinet to provide applications with a simple but efficient interface to the

underlying hardware circumventing the OS. It introduced the concept of sender-based memory

management where the sender specifies the message destination in the remote hosts memory so

that messages can directly be deposited on receipt instead of being buffered. A 64 bit protection

key in the message header ensures that applications are protected from unwanted messages being

deposited in their address space. This process does require additional synchronization between

sender and receiver. A unique packet numbering scheme is used so that out-of-order packets on

an adaptive routing network can be reassembled sequentially. A receiving process can decide on

the notification mechanism by indicate whether it needs to be interrupted or whether it polls a

notification queue. On receiving a complete message, Hamlyn indicates its arrival by updating a

notification queue in the host and interrupting the receiving process if needed. Message headers

(metadata) are maintained in the applications memory in the host.

P M

P M [Tezu98] is another low-level interface which is also derived from M P I C H and has explored

issues related to zero-copy. Distinguishing it from other Myrinet interfaces is its cache of pinned

19

pages. It makes the assumption that most instances of data transfer occur from a local region

in memory, and therefore when a page is pinned for D M A , it is kept pinned even after the D M A

completes so that the next data transfer would not have to incur the page pinning overhead. Pinned

pages are maintained until system resource limitations require some of them to be freed in order

to pin more pages. They are then freed in L R U fashion.

P M encourages remote memory writes where the sender specifies the destination address

of a message. This is so that after an initial synchronization phase, the relevant data areas can

be pinned and kept pinned until the application ends. Such a scheme, though cost efficient, is

incapable of supporting a general purpose specification like M P I .

Active Messages

An Active Message [Eick92] is one that includes in its header an address of a user level process that,

upon message arrival, is woken up to handle the message. This process is a privileged interrupt

handler that is expected to quickly pull out the message from the network. A M is based on the

programming model that arriving messages have preallocated buffers or that the message contains a

simple request to which the handler can immediately reply. The Myrinet implementation of Active

Messages, AM-I I [Chun97], supports multiple host applications and has three different size based

protocols. Applications have a staging area in their virtual address space to which medium and

large messages are copied before sending. On the receive side, large messages are again sent through

the staging area whereas medium messages are deposited in their final destination. Small messages

transfers are zero-copy operations. Messages follow a request-reply scheme where all messages are

acknowledged.

The A M A P I implements an abstraction called an endpoint with several configurable prop­

erties. Two endpoints form a virtual interconnect which we could call a channel. They protect

applications from each other and have bindings to physical communication resources. Applications

are free to create as many endpoints as they see fit. Since NIC memory is limited, host memory is

used as a cache to hold inactive endpoints. Endpoint faults are serviced similar to page faults in

20

the V M system. One of the methods AM-II uses to maintain flow control is to assign to endpoints,

credits based on queue sizes. In this scheme, individual senders can regulate themselves but mul­

tiple simultaneous messages to the same receiver from several senders can overrun receive buffers.

Anything exceeding the endpoint's outstanding message limit is dropped and N A C K e d .

Illinois Fast Messages

Fast Messages [Paki97] from the University of Illinois is a low-level Myrinet message passing in­

terface with a very small A P I . Similar to Active Messages, F M includes in its header, the ID of a

message handler which would extract the message from the network. Unlike Active messages, F M

does not follow a request-reply scheme and it also guarantees that messages are delivered in order.

Drawbacks of F M - 1 , chiefly intermediate buffering due to message header processing and

unexpected receives, were fixed in FM-2 [Laur98] to offer better system level performance. In doing

so, it increases the size of its A P I from three functions to five while supporting zero-copy gather and

scatter operations. It also imposes a stream abstraction where messages can be sent and received

in pieces.

The speed difference between the network processor and host processor was a key fac­

tor [Iann98] in dictating the work division in F M . The firmware running on the NIC was kept

as simple as possible, thereby assigning all the work to the host processor. Message matching,

fragmentation and reassembly are examples of tasks handled by the host.

Virtual Memory-Mapped Communication

V M M C [Dubn97b] is a user level communication interface supporting multiprogramming, buffer

protection and zero-copy. Data transfer occurs after the sender and receiver make a rendezvous.

Data areas exported by the receiver are imported and mapped onto the sender's virtual address

space. User programs interact with a V M M C daemon to submit import export requests which are

passed on to corresponding daemons on other hosts over ethernet. The daemon locks exported

pages and passes their physical addresses to the importing daemon which writes them into a page

table maintained in the NIC. Protection is ensured by having a local page table for each sending

21

process. Arriving messages are placed in user memory without requiring an explicit receive request.

V M M C - 2 [Dubn97a] improves on the design by removing daemon mediation and having

all communication over the Myrinet. It also relaxes the import/export requirements by accepting

unexpected messages for a receiver, which are transferred to a default buffer and kept there until

a receive is posted. Sends and receives are based on virtual memory while a user managed T L B

contains virtual to physical translations. The U T L B is maintained in the host in order to accom­

modate a large number of mappings. Additionally, a U T L B cache is also maintained in the NIC

to reduce lookup times from the host. V M M C - 2 has a retransmission protocol to recover from

network errors.

Trapeze

The Trapeze messaging system [Ande98] is integrated to the V M system of the OS and designed to

support the,Global Memory Service [Feel95]. G M S uses the network as a backing store for virtual

memory pages swapped out of host memory and the main objective of trapeze is to support low

latency transfer of pages across the network. The focused nature of its design allows trapeze to

support fixed message sizes and offer no protection because communication is only between kernels.

Its most interesting feature is the way it handles messages. The Myrinet firmware uses

cut-through delivery during data transfer, thereby fully utilizing the data pipeline from sending

host memory to NIC to wire to receiving NIC to receiving host memory (see figure 2.1). It initiates

D M A as soon as some data becomes available, rather than waiting for a complete packet. This

operation is performed on a single packet, instead of fragmenting the data into smaller packets

and incurring packet processing overhead. By getting all D M A engines in the data path to work

simultaneously trapeze achieves bandwidth almost equal to that offered by the hardware.

22

Chapter 3

The Design of MPI-NP

The primary objective in designing M P I - N P was to reduce communication overhead on the host

and offload it to the Network Processor in order to allow for as much overlap of computation and

communication as possible. In order to achieve this objective the tasks related to communication

should be identified. Candidate tasks/responsibilities for migration could be listed as

• routing of messages to the proper destination

• complete and reliable delivery of messages

• maintenance of protection boundaries between processes so that multiple processes can be

supported

• management of message buffers

• implementation of specialized protocols for non-standard routines such as Synchronous Send

and Ready Send

• matching of Receive requests with messages that have arrived

• performing collective communication with a group of peer processes

23

Traditionally some of these tasks were the responsibility of the host operating system. How­

ever since the NI is at user level, there is now the potential to move some or all of them to the NIC.

In the case of MPI-NP, since we were interested in off-loading computation, we perform these tasks

on the NIC. In the following sections we describe the abstractions and methodologies employed by

M P I - N P to handle these tasks.

Another goal of message passing systems is to deliver the performance of the underlying

hardware to the application. This is true of parallel applications which, by their very nature, are

time critical. These characteristics include low latency, high bandwidth as well as the fair and

efficient management of the memory and hardware resources in the network. Even though our

objectives make few assumptions of the underlying hardware, an implementation has to ultimately

be on top of a certain type of architecture. In this chapter, we also describe issues arising from the

hardware we use, namely Myrinet, in trying to get good performance.

3.1 Channels

It is desirable that the communication pipeline support multiple active messages simultaneously

so that the sending host could initiate transfer of multiple messages by simply depositing them

at the top of the pipeline and then return to computation or continue sending messages to more

destinations while the the messages themselves make progress, as opposed to blocking on the second

message to process A because the first message is still in the pipeline or blocking on a Send to process

B because a message for process A has blocked the network. Although it is not practical to have a

pipeline of unlimited capacity, it is desirable that it support at least a few outstanding messages.

With multiple messages awaiting service, the NP must ensure that messages adhere to the

M P I ordering rule while preventing messages which are waiting for rendezvous from blocking the

progress of other messages. Since M P I allows an application to have multiple processes per host

and MPI-2 allows for dynamic process creation, there is the added concern that when the NIC

is shared by all communicating processes on the host, the messaging system should ensure that

24

messages do not unfairly use system resources and that they are delivered only to the intended

destination process.

If the application topology were made known to the NIC, that information could be used to

ensure a fair distribution of resources and also to route messages to their destinations.

In an effort to address the above issues, M P I - N P implements the abstraction of a virtual

channel; a bidirectional communication path between every two M P I processes. Channels are

implemented on the NIC where a channel consists of buffer space to store the body of messages

and rings to hold M P I envelopes. They have complete knowledge of resources on either end.

Resources used by channels are independent from one another which ensures protection and makes

the behavior of the channel deterministic. The lack of buffer space in one channel does not block

the progress of other channels as depicted in Figure 3.1.

SEND R E C E I V E

A B C C B A

N t

Figure 3.1: Message Progress in Virtual Channels

M P I - N P channels are defined between two processes and therefore can carry multiple mes­

sage tags and M P I contexts. The only constraint of a channel is that it adheres to the M P I message

ordering rule and does not allow message overtaking. This constraint does not apply to messages

across channels. We define the message visibility inside a channel to be the look-ahead capabilities

of receivers trying to extract messages from the channel. Because messages are buffered inside the

channel structure several messages may be active at the same time inside the same channel but

their 'tag' may not necessarily be identical. When matching messages, it is possible that, based

25

on tag values, a later message be matched over the oldest message. Any of the messages whose

envelopes have arrived at the destination node are visible and available to be matched.

M P I - N P maintains a global channel queue on the NIC to schedule message transfer on the

wire. M P I - N P schedules channels similar to how an operating system does processes. Figure 3.2

shows the state transitions of a channel.

Channels with messages ready for sending are placed on a ready queue. Each channel has

its own ring of messages, allowing the application to continue injecting messages into the channel,

even though the channel itself could be blocked. If a channel does not have sufficient credit to send

the message at the head of its ring, it is deemed to be blocked and is rotated to the end of the

scheduling queue. When the message is sent, the channel is removed from the queue or added back

to end if it has more messages. Channels are serviced in a round robin fashion.

Channels are created at application INIT time. The current implementation has no support

for dynamic process creation primitives described by MPI-2. As a result channel resources are

statically allocated at INIT time. These resources include slots in a message table, send and receive

buffer space. A possible solution for dynamic channel allocation is discussed in section 5.2. M P I - N P

currently supports up to 64 channels (in 1 Mbyte of S R A M) where, in the case where the system's

channel capacity is fully utilized, each channel is guaranteed at least 4.5KBytes each of send and

Figure 3.2: State machine for channels

26

receive buffer space (9KB in total) and 32 slots in the message table. The number of messages that

can be buffered in a channel is a function of the message slots owned by a channel and the message

size. On the sender's side, the number of messages that can be injected into the NIC is limited by

the size of the channel's send ring, which is currently at set 16, and the rate at which messages can

be sent across the wire.

In summary

• Channels are created at application INIT time.

• A channel is made up of send and receive buffers, a table of received but unmatched messages

and a table of messages expected by the application

• Channels facilitate fair use of resources by all communicating processes, adhere to the message

ordering rule, simplify message matching and provide protection to processes at the NIC level.

The concept of a channel exists in BIP, A M and F M as well. BIP channels, implemented

on the NIC, support only a single message in its pipeline. A M also implements its channels on the

NIC and has no limit to its pipeline since its protocol allows for messages to be dropped. Channels

in F M are completely implemented in the host and are distinguished by the message handler that

services messages. F M uses flow control to limit the capacity of its pipeline to the number of

receives posted.

3.2 Flow control

Reliable delivery of messages and network congestion avoidance are important issues in low level

message passing systems. The wormhole routing characteristic of Myrinet can have messages block

the path of other messages while they are in the network. A well designed M C P should retrieve all

messages from the wire as quickly as possible in order to reduce congestion in the network. But

messages that are D M A e d in from the wire need to be buffered until they can be transferred to

the host. Since the application matches messages based on a tag value rather than in order of

27

arrival, messages could occupy the receive buffer for an indefinite period of time. If the rate at

which messages arrive surpasses the rate at which the host accepts them, buffer overflow occurs.

Two possible ways of handling buffer overflow is to either use flow control to stall the sender and

prevent new messages from entering the pipeline or to drop messages as T C P does and have it

retransmitted.

We chose the former method because flow control helps ensure that messages do not cause

network congestion and bandwidth is not wasted by dropped messages. M P I - N P uses a credit-

based flow control mechanism similar to that used by BIP. The credit value is a combination of the

size of the receive buffer and the number of free message slots on the receiver side of the channel.

Unlike other low-level interfaces, flow control is entirely handled within the NIC. The

MPI_Send primitive hands the message to the NP which than handles its delivery to the desti­

nation. If all of the resources inside a channel are exhausted then flow control ensures that the next

SEND will block until space becomes available, essentially reverting to sender-buffered communica­

tion [Buzz96], a strategy successfully used in other systems such as Hamlyn, F M and BIP.

3.3 Message protocols

M P I - N P handles the rich variety of message primitives defined in M P I such as blocking/non-

blocking, synchronous, standard and ready-receive. It uses three protocols for transferring messages

between a sender and receiver; full credit, rendezvous and eager sending of small messages. The

first protocol is used when the sender has credit where as the other two are followed only when the

sender does not have sufficient credit.

3.3.1 Full Credit

This is the simplest case, when the sender knows that there is enough buffer space on the receiver

to accommodate the message, it is sent immediately. The sender's credit depreciates as messages

are sent, and it is replenished when the receiving process removes the message from the channel's

28

receive buffer. Credit is transferred along with ACKs that are generated for every message. The

sender doesn't necessarily block for an ACK if it has full credit, unless the message was a Synchronous

Send, in which case it blocks until it gets an ACK informing it that the message was collected by

the receiving process.

3.3.2 Message Rendezvous

There are two cases to consider depending on whether the send or the receive occurs first. Ex­

pected messages are messages for which the receive has already occurred, otherwise they are called

unexpected messages. The rendezvous mechanism used by M P I - N P is essentially receiver driven.

Unexpected messages

In the case that the Send routine occurs much earlier than a matching Receive routine,

the Send routine causes the message to be added to the appropriate channel structure on the NIC

and the channel to be added to the scheduling queue. If there is sufficient credit the message is

forwarded to the destination and its envelope is added to the message table. Once a Receive that

matches an envelope is posted, the message is directly D M A ' e d into the receiver's buffer.

If there isn't sufficient credit then a RECVJIEQ control message is sent to the destination and

the channel becomes blocked. In this case, the protocol becomes receiver-initiated and waits for

the receiver to arrive and the message turns into an expected message.

Expected messages

In the case that the Receive routine occurs much earlier than a matching Send routine,

the Receive executes and adds it's envelope to the expected message queue on the NIC. The

N P sends out a SEND_REQ control message to the source specified in the message envelope (ANY

flags are discussed in Section 3.4). If the send request matches the head of the channel send ring

then the source responds with the message itself otherwise the source (i.e. sender) responds with

a NACK. When the message finally arrives the source NIC sends out a RECVJIEQ where now the

2 9

destination responds with a SEND_REQ causing the message to be sent out by the NIC on the sender

side. Note that SEND_REQs always get a response in the form of a message or a NACK, whereas

RECVJIEQs do not require a response. This is to avoid misinterpreting control messages of the

same M P I message as those of two different messages in the case where both the SENDJREQ and

RECV_REQ occur simultaneously. Since the RECVJIEQ matches an unacknowledged SENDJUEQ it can

be discarded with the knowledge that the sender will reply to the SEND_REQ with the message. If

the protocol were changed where in such a case the receiver responded with another SEND_REQ, the

sender would misinterpret this for a new SEND_REQ and respond with a second message which would

have no corresponding receiver nor buffer space and would have to be dropped. The rendezvous

protocol we follow avoids this situation.

Messages that are transferred in response to a SEND_REQ are expected and can be sent without

credit. Since a matching receive exists, they are guaranteed to be delivered to the application and

cannot block the progress of other messages.

MPI-NP 's rendezvous protocol is receiver-initiated for all messages which do not have suf­

ficient credit. In this case, the protocol takes advantage of this fact by having a special common

receive area and directly transferring it to the host. For large messages, where sufficient credit is

either difficult or impossible to acquire, the protocol degrades to ready-receive or, in the case of

very large messages, to synchronous communication. Unlike the rendezvous mechanism in P M , we

do the message matching on the NIC which can operate asynchronously to the host.

3.3.3 Eager send of smal l messages

Credit for a channel could be delayed by the receiver being busy sending out a large data message.

The protocols described so far require the sender to block until it gets new credit or a SEND_REQ.

A different protocol called eager send is used for very small messages, which could be important,

characteristically small, control messages of the application, in an attempt to deliver them a little

sooner. The current implementation uses an arbitrarily set size as the threshold. The optimal

message size could be determined by the intersections of the plot of the time taken to send messages

30

of varying length with the plot of time taken to generate a control message.

In eager send, the sender sends the message immediately without waiting for credit. If the

message is accepted by the receiver, it responds with an ACK. The sender would block until it gets

the ACK, which is not too much of a delay, since it would have blocked anyway had it waited for

credit.

If, on the other hand, the channel is full and the message cannot be accommodated, the

receiver drops the message and returns a NACK to the sender. The sender does not re-send the

message until it has sufficient credit to ensure the message will not be dropped again. Dropped

messages waste the hardware resources of the network, but because messages are small and are

dropped only once, its effect is expected to be minimal.

3.4 Message matching

Messages are matched based on three parameters; rank of process, message context and tag. Since

messages are sent through channels, the rank is automatically matched, leaving only context and

tag to be explicitly matched. These parameters, along with other meta information are contained

in an envelope which is sent as the message header. Message headers of all incoming messages are

stored in a message table which is shared by all active channels.

We initially tried an implementation that had the message table residing on the host because

of space constraints on the NIC. This introduced additional overhead to the host because the host

was required to search the table every time a Receive occurred. It also complicated the host

interface as well as the work done by the M C P because in addition to buffering messages, the M C P

was required to keep track of the message table using only costly D M A operations while the host

had to synchronize with the M C P before searching, to avoid a possible race condition if the M C P

were to upload new envelopes at the same time the host was searching the table. Although it could

be safely said that host processors would always be faster than embedded network processors, the

synchronization overhead added to heavy maintenance overheads on the NIC makes having the

31

message table on the host infeasible.

The current implementation locates the message table in the NIC in order to remove the

mentioned overheads. The NP now bears a reduced maintenance cost while the host interface is

considerably simpler. The only drawback of this scheme is that the size of the message table per

channel is decreased due to the limited memory on the NIC, thus reducing the number of messages

that could be buffered on the NIC.

Message matching takes place in three different ways.

• The message is sent first. It is buffered on the receiver and its envelope is placed in the

message table. When the application posts a receive, the host places a request containing the

parameters. The M C P matches this with the envelope in the table and goes on to deliver the

body.

• The receive is posted first. The receiver maintains a list of expected messages. When the

message eventually arrives, the NP matches it with an entry in this list and immediately

transfers the message to the application's address space.

• The message is larger than the credit available. In this case, the sender transmits a RECV_REQ

which is matched with with a pre-posted receive. If there is no match, the channel stores the

envelope and compares it with subsequently posted receives until matched.

Wildcards

One of the advantages of the M P I - N P rendezvous protocol and the ability to match messages

on the NIC is that it simplifies the handling of M P I wildcards. In simple low-level interfaces M P I

wildcards must be handled by the host. The M P I standard describes two wildcards, MPI_ANY_TAG

and MPI_ANY_SOURCE.

MPI_ANY_TAG wildcards are handled on a per channel basis, where we only search messages

within a channel. The number of messages is limited to the visibility within a channel, which is not

32

expected to be large and therefore the search is sequential. One would expect that for most part,

requested messages are near the top of the channel. We could implement a more sophisticated

channel searching mechanism, however it may incur additional cost on every search and would

require the message table to be well utilized in order to pay off. The current implementation keeps

the simple and most common case fast.

Handling the MPI_ANY_SOURCE wildcard is a little more complicated. We are again con­

strained by the message ordering rule which requires MPI_ANY_SOURCE requests to be treated the

same as other Receive requests. M P I - N P orders messages by channel since the common case is for

messages to be matched by rank. When the host makes an MPI_ANY_SOURCE request messages in

all channels become candidates for matching. We could have had an additional structure that held'

information about messages in all channels so that an MPI_ANYJ30URCE could be matched by simply

querying this structure, but maintaining it would mean adding and removing information for every

message received or delivered to the host. We have followed a simpler approach that makes the

common case fast but is not as efficient for wildcards.

When the M C P gets an MPI_ANY_SOURCE request from the host, it searches sequentially all

channels associated with the process making the request, until a match is made. For this reason

channels are grouped by the process they belong to. For every MPI_ANY_SOURCE request, channels

are searched in a rotating manner in order to prevent starvation by some channels. If there is no

match, a request is added to all related channels. When a message arrives only requests in its

channel are selected for matching. If a match occurs on an MPI_ANY_SOURCE request, the duplicated

requests are removed by following a horizontal chain.

Our scheme allows requests to be met in the order that they were posted within a particular

channel except for MPI_ANY_SOURCE requests, which are matched not necessarily in the order of

message arrival across all channels because we do not compare message arrival times across channels.

Since this is not a requirement of the M P I standard, we did not feel it necessary to add to the

complexity by supporting this feature.

33

3.5 Supporting Zero Copy

Data movement between buffers has been shown to be a cause for high latency in communication

systems [Drus96]. Most implementors aim to integrate a zero copy feature into their systems, where

data is copied directly between application buffers and NIC buffers, eliminating traditional system

buffers which served as intermediate staging areas. This has been made easier by the network being

brought up to user level. M P I - N P uses memory on the NIC as its system buffer. NIC buffers on

both sender and receiver ends make up one big system buffer. Data is transferred from user space

to this system buffer and back into user space, we incorporate several strategies to achieve zero

copy when messages do not fit our system buffer.

Sender buffering

Small messages are buffered on the receiver's NIC until their final destination address is

known and zero-copy can be used. This allows messages to be sent before the receive is posted.

Messages larger than the space available on the receiver's NIC are held on the sender until space

becomes available. This is similar to what is done by BIP, F M and Hamlyn. In addition to enabling

zero copy, a sender buffered scheme also contributes to maintaining flow control.

Address translation and page pinning

In order to D M A messages directly to and from the application's address space the NP needs

to know its physical address. It also needs to be sure that the page in memory is not swapped

out by the host operating system before the transfer is complete. We use a loadable kernel module

in Linux to perform virtual to physical address translation and also to pin the page to prevent it

from being swapped out. A designated area in host memory is used to hold translated addresses.

It is not possible to hold all translations on the NIC since messages can span thousands of physical

pages [Kim,97]. We could use the NIC to cache page entries but for very large messages the host

would have to frequently synchronize with the NP and update the entries in order to adhere to

the M P I message progress rule. A non-blocking call would not be able to perform updates and

34

message progress would stall until the user makes an MPI_TEST or MPI_WAIT call. By having a large

page table in host memory, the host could, at most times, lock all the required pages and return

to computation while the NP follows links in the table to send or receive the complete message. If

the message is large enough that it runs out of page table entries, M P I - N P falls into user-driven

mode where the message cannot make progress until another M P I communication routine is called

by the application.

The current implementation supports more than 15,400 page entries in the page table,

allowing a maximum message size of more than 60 MegaBytes to make progress without user

intervention.

Holding page tables on the host for the sake of flexibility costs us communication bandwidth

because the N P has to refer to it frequently in order to follow links and it can only do this by D M A .

Our current implementation batches several pages into one entry in order to reduce the frequency

of page table accesses. We have also optimized for the case where data resides on only one page by

including that address along with the request so that the N P has one less reference to make.

3.6 Hardware issues

There are several optimizations that pertain directly to the Myrinet cards. One of these corresponds

to size at which it becomes faster to use PIO rather than D M A to transfer the message from the

NIC to the host. The cost associated with a D M A transfer is high and consists of overheads in

address translation, page pinning, D M A setup and page unpinning. The technique used by M P I - N P

is the same as that described by BIP. The threshold is experimentally determined and is dependent

on hardware characteristics of the host machine. For small messages this decreases the message

latency as seen in Figure 3.3, a plot of latency variations in MPI -NP .

The jagged P I / O line indicates a quirk in the hardware. We get the best latency when the

message size is in multiples of 32 bytes which in our testbed also happens to be the width of the

cache Line[Shan97].

35

140 J

0 50 100 150 200 350 300 350 400
Bytes

Figure 3.3: Variation of Latency with Method of Transfer

Getting back to our objective of reducing host overhead, we see in Figure 3.4 that the best

Send overhead can be obtained if the message size threshold is in the region of 1 KByte, bigger

than that shown in Figure 3.3. There is no overlap in the Receive overhead, indicating that all

messages should be transferred through D M A . A possible reason for this is that the PCI bus has

a write back cache which makes reads return slower than writes as the cache is not immediately

flushed when data is written.

A second hardware specific optimization is message pipelining. There is a three stage pipeline

from Host to NIC, NIC to NIC, and NIC to Host that when optimized can reduce the latency to send

a single message. Both BIP and Trapeze describe techniques for pipelining of a single message. We

use the Trapeze technique of cut-through delivery [Yocu97] where if the user's Send and Receive

calls are properly timed, all D M A engines in the message's path are able work on the same message

simultaneously in order to improve performance. The advantage of using cut-through delivery is

that it is adaptive, doesn't require a fixed packet size and allows us to packetize the messages

according to page boundaries.

36

(A) - Send (B) - Receive

60 </)
TD
C o o
8 50
o
o
"E

40

— • PI/0
DMA

r
f '

I-— • PI/0
DMA 1

I-

i
i

J

•>
i-

j '

: ./'
•J
(•

/ • :
i' i

j
j

i i

/
V

V

V

V

V

V •-• PI/0
DMA

V

V

I
J-

i i
500 1000 1500 2000

Bytes
0 500 1000 1500 2000

Bytes

Figure 3.4: Variation of Overhead with Method of Transfer

3.7 Architectural Overview

M P I - N P consists of a user library, an M C P and a loadable kernel module. The library interacts

with the M C P to exchange M P I messages and invokes the kernel module to pin pages to memory

and translate virtual memory addresses into physical addresses. A fixed region in host memory

called the copyblock holds a page table containing addresses of pinned pages.

The memory on the NIC is divided into two areas; the lower address region which holds the

text, data and stack of the M C P and the upper region on which reside data structures and buffers

shown in Figure 3.5.

Of the several lists maintained by the NIC, the most important is the list of channels. Each

channel, whose use is described in section 3.1, has a list of expected messages (those for which the

application has posted an MPIJlecv operation but has no matching message), a list of messages

already received but yet unclaimed by the host, a private send ring, receive ring, and associated

37

Figure 3.5: The Layout on the NIC

send and receive buffers. The rings hold the meta data while the buffers hold the message body.

The M C P sends out messages in the order that it receives them from the host. Therefore the send

buffer acts as a message queue as shown in Figure 3.6. When a message is too large to be added

into the end of the buffer it is wrapped around to the beginning. In this way, the buffer can be

used to accommodate messages of unlimited size as long as it makes progress on the network. If

the buffer is filled before the entire message is downloaded onto the NIC, the remaining part of the

message is left on the host until more buffer space becomes available.

^ Current Message

Figure 3.6: Messages in a Channel's Send Buffer

The receive buffer is organized as a heap because the application may select messages based

on a tag value rather than in order of arrival. Messages are placed in the first available free space

and are fragmented according to space distribution, as shown in Figure 3.7.

38

Figure 3.7: Messages in a Channel's Receive Buffer

The main send ring is in essence a ready queue for channels with outgoing messages waiting

to be serviced. A channel can have only one entry in this ring in order to preserve the message

sequence because at the time an entry is posted, it is not known whether the message can make

progress. Since blocked channels are rotated in the ring to make room for active channels, multiple

entries of a single channel in this ring can cause messages to be sent out of sequence unless an

elaborate scheduling scheme is used. Maintaining only a single entry keeps ring management

simple while preserving message sequences. The receive ring is a list of channels with messages

which have been claimed by the application and are waiting to be uploaded. A channel can have

a number of entries in this ring because message destinations are known and they are guaranteed

to make progress.

When an expected message eventually arrives it is sent through a common receive buffer

instead of going through the channel's receive buffer, since its destination is known, Messages longer

than expected and non-MPI data packets are dropped.

In addition to data messages, M P I - N P uses control messages to enable M C P s to commu­

nicate with each other. Control messages are generated by events triggered either by the host or

by incoming messages. Since there is only a single outgoing hardware link which may be utilized

by both data and control messages, the latter is placed in a queue until this link becomes free and

then transferred onto the wire.

39

Host Interface

The host has a narrow interface to the network and is based again on message size. When

sending a small message, if the channel send ring is empty, the message is copied into the send

buffer and a send request is placed on the NIC. If the channel is occupied by messages, the large

message protocol is followed because the host overhead of accurately determining the location to

copy the message to, taking the asynchronous operation of D M A engines into account, is too high.

When sending large messages, the host locks the relevant pages in memory and places a

send request indicating the page table entry. It is then free to continue with application processing

unless it is a blocking call, in which case it polls on the page table entries until they are freed by

the M C P and then unlocks them.

When receiving messages, the host follows the same procedure as sending large messages,

except that it places a receive request instead of a send request. No size distinction is made when

receiving messages since the hardware dictates (Figure 3.4) that it is cheaper to D M A messages of

all sizes.

Special send operations like Synchronous Send and Ready Send are handled in the NIC.

Again the host only places the Send request which has one or more associated page table entries.

The success of the operation is indicated by a status flag in the page table entry which is updated

by the M C P in the usual manner.

Host requests are placed in a designated area in NIC memory which the M C P polls. If more

than one process wishes to interact with the M C P , a system semaphore ensures that interaction

happens only one process at a time to prevent a race condition from occuring otherwise. An

alternative to obeying a semaphore is for the processes to place their requests in their respective

channels and have the M C P poll each channel. This would be effective for the host processes, but

makes the M C P ' s task tedious on any architecture.

40

Chapter 4

Evaluation

M P I - N P was developed on the Linux operating system (RedHat 5.1 kernel version 2.0.35). The ex­

periments were conducted on a cluster of 266MHz Pentium PII PCs with 128MB of R A M connected

by a Myrinet network with a L A N a i 4.1, 33MHz processor and 1 M B S R A M on the NIC.

In obtaining measurements, we tried to simulate a typical application's environment where

the data has only just been generated and therefore total time includes time to flush the cache into

memory before data transfer. We adopted a pessimistic page pinning policy (refer to sections 3.5

and 5.2) by assuming that every message was from a new data area and therefore for large messages

we pinned the relevant pages every time data transfer was about to take place and unpinned them

when transfer completed.

Timings were obtained in the following manner. The sending application generates new

data, starts the timer, sends the data and receives the same amount of data as a reply before it

stops the timer and determines Ts as shown in Figure 4.1. The receiver, waits for data to arrive,

starts its timer, writes new data, stops the timer, sends the data back to the sender and determines

Tr. One way time is given by (Ts - Tr)/2. This procedure was repeated 256 times for each message

size and the median value was used in plotting curves. Time was measured by counting machines

cycles and dividing it by the clock speed of the C P U to convert it into units of microseconds. We

compare our results with BIP because its architecture is exactly the opposite of MPI-NP. M P I - N P

41

Sender Receiver

Figure 4.1: Time Measurements

tries to make maximum use of the NP whereas BIP has only a thin software layer on the NIC,

barely enough to facilitate data transfer thereby getting the best performance from the network

hardware.

4.1 Bandwidth

Figure 4:2 is a plot of the one-way bandwidth measurements as a function of message size. We

reach a peak application level bandwidth of 70 MBytes per second.

In our first implementation, a page table entry held the translation of one physical page. This

meant that data in a page in host memory required three D M A operations just to be downloaded

to the NIC; one for fetching its address from the page table, one for downloading the data and one

to mark that table entry as free so that the host can unpin the page. This is a significant overhead

for 4 K B , or less, of data per page. The method only yielded a peak bandwidth of 60 MBytes per

second. The current implementation performs a page table lookup and update every four pages.

Each page table entry now contains address translations of four pages to accommodate this protocol

thereby reducing the frequency of page table look up. There is still a waste of bandwidth if the

data does not span four pages. Communicating page information to and from host memory and

42

801

150 — \ -

I .: "!
5 :
| 40 - .;• ^ -
to "

30 \ ;

20 :

10' 1 ' ' '

0 0.5 1 1.5 2 2.5
Massage Size in Bytes x10 6

Figure 4.2: Bandwidth vs Message Size

the fact that M P I - N P pins and unpins the related pages every time a message is transferred, are

the main reasons for the current implementation being unable to achieve a higher bandwidth. A l l

these facts highlight the need for a better page management scheme to reduce the frequency of

page table look-ups by the NIC.

Due to memory limitations on the NIC, for messages larger than available buffer space, the

buffer is reused in a rotating manner, i.e. as soon as an area is known to be free it is filled with

a block of data as explained in section 3.7. The drop in bandwidth as the message size increases

beyond buffer size is caused by the overhead of reusing buffers.

4.2 Host Overhead

Since M P I - N P relieves the host of several communication related tasks the overhead incurred by

the host is kept as low as possible. Figure 4.3 compares the host overhead, during a Send operation,

of M P I - N P with that of B I P 1 .

The overhead in M P I - N P gradually rises when the message size increases but when it passes

'This particular test was on the latest version BIP-0.98a which works on the newer Linux 2.2.x kernels. BIP-0.95a,
the version used for other evaluations, had an extremely high and seemingly inaccurate overhead which, personal
communication with the developers of BIP revealed, is not evident in the newer releases

43

120

100

80

I
O I 60
S 1

40

20

0

0 200 400 6O0 800 1000 1200 1400 1600 1800 2000
Bytes

Figure 4.3: Comparison of Host Overhead Variation

the point where the protocol changes from small to large message size, 1024 Bytes, the rise depends

on the number of pages pinned. The BIP curve makes a transition at 200 Bytes which we presume

is the small message threshold. It's behaviour at 1000 Bytes is unexplained. BIP-0.97 has an

identical behaviour at 1000 Bytes.

BIP performs better for very small messages but M P I - N P performs significantly better for

larger messages. It must be noted here that BIP has a constraint of supporting only one message

in the pipeline allowing it to make assumptions about the channel's occupancy whereas M P I - N P is

more flexible and as a result has more host overhead in deciding which protocol to use depending

on channel occupancy in the NIC, as described in section 3.7.

4.3 Latency for Small Messages

The lowest application level latency we obtained for a 4 Byte message was 68 microseconds. This

value is high compared to the values reported by other messaging systems referred to in this paper.

The median value of one-way latency as a function of message size is shown in Figure 4.4 and is

44

compared to the latency obtained by BIP. The sharp rise in the BIP curve at 2562 Bytes is when

BIP changes its protocol from small to large messages.

140

120

100

| 80

E 60

40

20

0

0 200 400 600 800 1000 1200
Bytes

Figure 4.4: Comparison of Latency Variation

Figure 4.5 presents a breakdown of the time a small message spends in the communication

pipeline when the message is expected, i.e. a matching receive is already posted. The overlaps

of time segments on the NIC depict time required to clean up queues after a message has been

sent/received.

We see that 75% of the time is spent on computation by the NIC. M P I - N P relies heavily on

the NP, but the 33MHz processor on our testbed is unable to deliver good performance. In addition

to being eight times slower than the host, it is further hampered by having to share the memory

bus with the host and network D M A engines. This is a peculiarity of the Myrinet hardware used

as our testbed.

Access to the local memory bus in L A N a i 4.1 is prioritized as follows. The host D M A gets

priority over the NP on the rising edge of a clock cycle. On the falling edge, the Receive D M A
2BIP-0.95a was used for all other tests because it ran on the same Linux kernel MPI-NP was developed on. The

threshold seems to differ between versions

45

Sending Host

Sending NP

Wire

Receiving NP

Receiving Host

28 58 68 microseconds

Figure 4.5: A Breakdown of Message Latency

gets highest priority, followed by the Send D M A with the N P again getting least priority. During

program execution, the N P uses one edge of the clock cycle to fetch the instruction from memory

and another edge to execute it. Contention for the memory bus occurs during fetching and, if

the instruction required a memory reference, during execution. Figure 4.6A shows NP slowdown

when one D M A engine is at work. The NP had access to memory on every other cycle edge. The

computation had 50% memory reference instructions which is reflected by the fact that it slowed

down by 50%.

[A] IB]

1000

Alone
- 1 Active DMA

— DMA completion

5000 10000
Instructions

1000

— Alone
— Both DMAs Active
• - - • DMA completion

/
/

/
/

/
/

/

/
/

/
/

/
/ : '

/
/

/

/ . - '

5000 10000
Instructions

Figure 4.6: Impact of D M A Activity on the Network Processor

Figure 4.6B shows N P slowdown when both the host D M A and Send D M A engines are

active. In this instance the NP loses access to both edges of a cycle. Since the L A N a i 4.1 chip does

46

not have an instruction cache, program execution stops until either D M A completes.

4.4 Discussion

The constraints mentioned above would no longer exist with the introduction of a faster network

processor with an on-chip cache. Commonly available embedded processors have a cache, are several

times faster than the one aboard the Myrinet NIC, are of extremely low cost and are improving fast

in all above factors. The technology on our testbed is two years old. Yet the embedded processors

available at that time were still more powerful than the L A N a i 4.1. An example of a two year old

processor is the N E C R4300[Micr97] running at 133 M H z with a 16K cache and, most importantly,

a price tag of $32 at the time. With a processor of similar power, the time a message spends in the

NIC taken from Figure 4.5 would reduce less than 13 microseconds, not taking cache effects into

account. With a cache, the N P need no longer block because of D M A activity and we would see a

drastic decrease latency.

Current embedded processors are much more powerful[Micr99] as are host processors[Dief99].

Systems like M P I - N P that heavily utilize the NP have much to gain from hardware advancements.

Since M P I - N P does more work on the NIC, its percentage of improvement would be greater than

systems that do more processing on the host. Improvements in host processor speed will also be of

higher benefit to applications using M P I - N P since they consume less C P U cycles for communication.

47

Chapter 5

Conclusions

Recently, computationally intensive applications with supercomputing needs have found P C clusters

to be a cheap and effective alternative to massively parallel processors. Contributing to this change

are rapidly improving price/performance ratios of personal computers and momentous advances in

networking technology that allows data transmission throughput to be measured in Gigabits per

second. A change in network interface design by including an embedded processor on the NIC and

making it directly accessible at user level played a significant role in the development of several

communication systems that come close to supplying the raw hardware performance of the network

to the application layer. An issue largely overlooked in the development of these systems is the

utilization of the NP to reduce communication overhead on the host, a parameter which directly

impacts the granularity of communication in parallel applications.

5.1 MPI at the Network Layer

We have researched the feasibility of offloading communication related tasks from the host pro­

cessor to the network processor in order to reduce host communication overhead. Our thesis was

based on the assumption that the architecture of the NIC and especially the N P was capable of

effectively handling more than average workloads. We have designed and implemented a prototype

48

message passing system called MPI-NP, to test our hypothesis. M P I - N P is designed to provide the

communication layer for L A M , a public domain implementation of M P I .

We have made use of many of the optimization techniques described in the literature and

added a few of our own, to support latency saving features like zero copy and eager sending,

bandwidth enhancing features like cut-through delivery and page batching, flow control using credits

and message rendezvous protocols. Based on hardware characteristics of our testbed, we decided

to use P I / O for small messages and D M A for large messages when transferring data between host

and NIC. ' •

We were successful in relieving the host processor of tasks such as message matching, flow

control, protocols for non-standard sends, and several other tasks which were traditionally re­

sponsibilities of the operating system such as routing, resource sharing, flow control and buffer

management. M P I - N P implements a channel abstraction on the NIC and makes the NP aware

of the process topology and details of message envelopes to facilitate many of these tasks. This

information makes it possible to implement collective communication with minimum interaction

from the host. The host now only initiates communication and, in most cases, is free to return to

the application while the NP manages the messages. This work was focused more on designing the

network layer. Related research at the U B C Distributed Systems Lab by Chamath Keppitiyagama

has resulted in reducing the application interface of MPI-NP, in some cases, to just one function

call, with a total host overhead of 4 microseconds in sending a message.

Migrating functionality to the network processor reduces host overhead. Unfortunately the

configuration of NICs on our testbed impedes overall performance of the communication system as

the NP is unable to effectively handle the workloads assigned to it. Existing technology and the

microprocessor market is conducive to designing a better performing NIC. A change in hardware

architectures where the N P performance is closer to the performance of the host would benefit

applications and favour the design philosophy of MPI-NP.

The question to be asked here is how much improvement should the network processor gain

in order for M P I - N P to be effective. The current trend suggests that host processors are faster than

4 9

NPs and therefore for certain types of benchmarks, like latency, it is always better to do more work

on the host. BIP, the antithesis of MPI -NP, has reported a latency of about 4 microseconds by using

only the BIP A P I . M P I support is added on top of the BIP library. We can surmise that a small BIP

message spends about 2 microseconds in the network layer. In order to achieve a similar timing on

similar hardware, M P I - N P requires a N P 24 times faster than the 33MHz L A N a i 4.1, which works

out to be more powerful than the 266 M H z host processor. This leads to the question of which

parameter, latency or overhead, is more important. The state-of-the-art indicates that a trade-off

between the two parameters needs to be made depending on the requirements of the application.

Applications with fine-grained communication needs are better served by the philosophy of BIP

whereas compute intensive applications with more coarse-grained and collective communication

needs would work well over M P I - N P .

5.2 Future Work

M P I - N P is not yet fully compliant to the M P I specification. In the current implementation chan­

nels are identified by the global rank of the process, which is how messages are matched with

requests. The issue of handling inter-group and intra-group communication is still open. In group

communication the process ranks of a group may not be the same as their global rank. We foresee

additional parameters in the host interface and message protocols to support groups. This means

that the N P would be required to do more work to determine group composition and absolute ranks

of processes whereas the host complexity would remain unchanged.

The current implementation does not scale above 64 channels because of the static allocation

of resources. There are several drawbacks to statically creating channels. First, the amount of buffer

space available for each channel decreases as the number of M P I processes increase. Secondly, it is

not possible for channels that are rarely used or not used at all to allow their resources to be used

by other more active channels. A solution to this problem is to treat the NIC memory as a cache for

channels. Channels would be dynamic and would not become active until they are first used and

50

when inactive, can be freed or swapped up to the host. The MPI-2.0 specification [M'ess97] describes

dynamic process creation and management which is already supported by L A M . In designing M P I -

NP, we have foreseen the need to support dynamic channels, and have decoupled channels from

network resources, such as buffers, message tables and request tables, as much as possible.

M P I - N P currently employs a pessimistic page management strategy. Other known strategies

used get around the page management overhead need to be investigated in order to implement a

better page management scheme. Possible alternatives would be to maintain a T L B on the NIC, as

done by U-Net [Eick95] and V M M C - 2 , and to cache pinned pages, as done by P M , with the hope

that the next message also comes from the same vicinity as the previous message, thus avoiding

pinning and unpinning the same page twice in quick succession.

For very large messages, message progress is user driven in the current implementation. If

the system runs out of page entries to accommodate the entire message, progress of non-blocking

requests could stall until the user makes another communication request, at which time previous

pending requests are attended to. Several implementations of M P I (L A M , M P I C H , MPI-BIP) are

user driven in this manner even though it means that they do not implement the M P I message

progress rule. A possible approach would be to emulate M P I / P r o and F M by creating a new

thread of control for every communication request, which would monitor message progress. The

host overhead of running multiple threads, switching contexts between them and the cost of being

interrupted by the NIC need to be quantified before such a method is selected.

Almost all M P I systems implement collective communication on top of point-to-point prim­

itives which requires the host to interact with M C P several times incurring the associated software

overhead every time. By making the N P aware of the application topology we have laid the foun­

dation for migrating collective communication into the NIC. The implementation would require

only one interaction with the host per call, further reducing host overhead. The performance of

collective routines would also increase because of the reduced interaction.

One of the characteristics of the Myrinet is its negligible bit-error rate. Following the

example of other systems[Arak98], M P I - N P takes advantage of this property to avoid error checking.

51

A future implementation would perform C R C checks on data and insulate the application from the

rare network error.

52

Bibliography

[Ande95] Anderson, T .E . , Culler, D .E . , Patterson, D .A . , and the N O W Team. " A Case for
Networks of Workstations: N O W " . IEEE Micro, February 1995.

[Ande98] Anderson, D . C , Chase, J.S., Gadde, S., Gallatin, A . J . , Yocum, K . G . and Feeley, M . J .
"Cheating the I/O Bottleneck: Network Storage with Trapeze/Myrinet". Proc. of the
USENIX Technical Conference, June 1998.

[Arak98] Araki, S., Bilas, A . , Dubnicki, C , Edler, J . , Konishi, K . , and Philbin, J . "User-Space
Communication: A Quantitive Study". Proc. of Supercomputing 98, November 1998.

[Bake99] Baker, M . , and Buyya, R. "Cluster Computing: The Commodity Supercomputing".
Software - Practice and Experience, Vol. 29, No. 6, 1999.

[Bhoe98] Bhoedjang, R., Romein, J . , and Bal, H .E . "Optimizing Distributed Data Structures Us­
ing Application-Specfic Network Interface Software". Intl. Conf. on Parallel Processing,
pp. 485-492, August 1998.

[Bode95] Boden, N . J . , Cohen, D. , Felderman, R .E . , Kulawik, A . E . , Seitz, C .L . , Seizovic, J .N. ,
and Su, W . "Myrinet - A Gigabit-per-Second Local-Area Network". IEEE Micro,
Vol. 15, No. 1, pp. 29 - 36, February 1995.

[Bruc95] Bruck, J , Dolev, D. , Ho, C , Rosu M . , and Strong, R. "Efficient Message Passing
Interface (MPI) for Parallel Computing on Clusters of Workstations". 7th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 64 - 73, July 1995.

[Burn89] Burns, G . " A Local Area Multicomputer". Proceedings of the Fourth Conference on
Hypercube Concurrent Computers and Applications, March 1989.

[Burn90] Burns, G . , Dixit, V . , Daoud, R., and Machiraju, R. " A l l About Trollius". Occam Users
Group Newsletter, August 1990.

[Burn94] Burns, G . , Daoud, R., and Vaigl, J . " L A M : An Open Cluster Environment for M P I " .
Supercomputing Symposium '9Jt, June 1994.

[Butl94] Butler, R., and Lusk, E . "Monitors, Messages and Clusters: The P4 Parallel Program­
ming System". Parallel Computing, Vol. 20, pp. 547 - 564, Apri l 1994.

53

[Buzz96] Buzzard, G. , Jacobson, D. , Mackey, M . , Marovich, S., and Wilkes, J . "An Implemen­
tation of the Hamlyn Sender-Managed Interface Architecture". Proc. of the Second
Symposium on Operating System Design and Implementation (OSDI '96), pp. 245 -
259, October 1996.

[Chun97] Chun, B . , Mainwaring A . , and Culler, D . E . "Virtual Transport Protocols for Myrinet".
Hot Interconnects V, August 1997.

[Coad99] Coady, Y . , Ong, J.S., and Feeley, M . J . "Using Embedded Network Processors to im­
plement Global Memory Management in Workstation Cluster". Proc. of the IEEE
Symposium on High Performance Distributed Computing, August 1999.

[Comp97] Compaq, Intel and Microsoft. "Virtual Interface Architecture Specification, Version
1.0". http://www.viarch.org, December 1997.

[Dief99] Diefendorff, K . "Athlon Outruns Pentium III". Microprocessor Report, Vol. 13, No. 11,
August 23, 1999.

[Dimi99] Dimitrov, R., and Skjellum, A . "An Efficient M P I Implementation for Virtual Interface
(VI) Architecture-Enabled Cluster Computing". Proc. of the Third MPI Developer's
Conference, March 1999.

[Drus96] Druschel, P. "Operating System Support for High-Speed Communication". Communi­
cations of the ACM, Vol. 39, No. 9, pp. 41 - 51, September 1996.

[Dubn97a] Dubnicki, C , Bilas, A . , Chen, Y . , Damianakis, S., and L i , K . " V M M C - 2 : Efficient
Support for Reliable, Connection-Oriented Communication". Proc. of Hot Interconnects
V, August 1997.

[Dubn97b] Dubnicki, C , Bilas, A . , L i , K . , and Philbin, J . "Design and Implementation of Virtual
Memory-Mapped Communication on Myrinet". Proc. of the 1997 International Parallel
Processing Symposium, pp. 388 - 396, April 1997.

[Eick92] Eicken, T., Culler, D. , Goldstein, S., and Schauser, K . "Active Messages: A Mech­
anism for Intergrated Communication and Computation". Proc. of the 19th Annual
Symposium on Computer Architecture, pp. 256 - 266, May 1992.

[Eick95] Eicken, T., Basu, A . , Buch, V . , and Vogels, W . "U-Net: A User-Level Network Inter­
face for Parallel and Distributed Computing". Proc. of the 15th ACM Symposium on
Operating Systems Principles, pp. 40 - 53, December 1995.

[Feel95] Feeley, M . J . , Morgan, W . E . , Pighin, F . H . , Karlin, A . R . , Levy, H . M . and Thekkath,
C A . "Implementing Global Memory Management in a Workstation Cluster". Proc. of
the 15th ACM Symposium on Operating Systems Principles, pp. 201 - 212, December
1995.

54

http://www.viarch.org

[Fost96] Foster, I., Kesselman, C , and Snir, M . "Generalized Communicators in the Message
Passing Interface". Proceedings of the MPI Developers Conference, July 1996.

[Fost97a] Foster, I., and Kesselman, C. "Globus: A Metacomputing Infrastructure Toolkit". Intl
Journal of Supercomputer Applications, Vol. 11, No. 2, pp. 115 - 128, 1997.

[Fost97b] Foster, I., Karonis, N.T. , Kesselman, C , Koenig, G . , and Tuecke, S. " A Secure Com­
munications Infrastructure for High-Performance Distributed Computing". Proc. 6th
IEEE Int'l Symposium on High Performance Distributed Computing, 1997.

[Fost98a] Foster, I., and Karonis, N . T . " A Grid-Enabled M P I : Message Passing in Heterogenous
Distributed Computing Systems". Proc. of SC98: High Performance Networking and
Computing Conference, November 1998.

[Fost98b] Foster, I., Geisler, J . , Gropp, W. , Karonis, N . , Lusk, E . , Thiruvathukal, G. , and Tuecke,
S. "Wide-Area Implementation of the Message Passing Interface". Parallel Computing,
Vol. 24, No. 11, pp. 1735 - 1749, 1998.

[Giga99] Gigabit Ethernet Alliance. "Gigabit Ethernet: accelerating the standard for speed".
whitepaper, May 1999.

[Grim97] Grimshaw, A . , and Wulf, W . "The Legion Vision of a Worldwide Virtual Computer".
Comm. of the ACM, Vol. 40, No. 1, pp. 39 - 45, January 1997.

[Grim98] Grimshaw, A . , Ferrari, A . , Lindahl, G . , and Holcomb, K . "Metasystems". Comm. of
the ACM, Vol. 41, No. 11, pp. 46 - 55, November 1998.

[Grop95] Gropp, W. , and Lusk, E . "An Abstract Device Definition to support the Implementation
of a High-Level Point-to-Point Message-Passing Interface". Technical Report Preprint
MCS-P392-1193, Argonne National Laboratory, March 1995.

[Grop96] Gropp, W. , Lusk, E . , Doss, N . , and Skjellum, A . "High-performance, Portable Im­
plementation of the M P I Message Passing Interface Standard". Parallel Computing,
Vol. 22, No. 6, pp. 789-828, September 1996.

[Iann98] Iannello, G . , Lauria, M . , and Mercolino, S. "Cross-platform Analysis of Fast Messages
for Myrinet". Workshop on Communication, Architecture and Applications for Network-
based Parallel Computing (CANPC 98), February 1998.

[Kara94] Karamcheti, V . , and Chien, A . "Software Overhead in Messaging Layers: Where does
the time go?". Proc. of the Sixth Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pp. 51 - 60, October 1994.

[Kim,97] K im, J . , and Lilja, D . J . "Characterization of Communication Patterns in Message-
Passing Parallel Scientific Application Programs". Technical Report HPPC-97-10, High-
Performance Parallel Computing Research Group, University of Minnesota, 1997.

55

[Laur97] Lauria, M . , and Chien, A . A . " M P I - F M : High Performance M P I on Workstation Clus­
ters". Journal of Parallel and Distributed Computing, Vol. 40, No. 1, pp. 4 - 18, January
1997.

[Laur98] Lauria, M . , Pakin, S., and Chien, A . A . "Efficient Layering for High Speed Communi­
cation: Fast Messages 2.x". Proc. of the 7th High Performance Distributed Computing
Conference, July 1998.

[Mess95] Message Passing Interface Forum. "MPI : A Message-Passing Interface Standard".
http://www.mpi-forum.org/docs/mpi-ll-html/mpi-report.html, June 1995.

[Mess97] Message Passing Interface Forum. "MPI-2: Extensions to the Message-Passing Inter­
face". http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html, July 1997.

[Micr97] Microdesign Resources. "Chart Watch: Embedded Processors". Microprocessor Report,
Vol. 11, No. 4, March 31, 1997.

[Micr99] Microdesign Resources. "Chart Watch: Embedded Processors". Microprocessor Report,
Vol. 13, No. 3, March 8, 1999.

[Nupa94] Nupairoj, N . , and Ni , L . "Performance Evaluation of Some M P I Implementations on ,
Workstation Clusters". Technical report, Department of Computer Science, Michigan
State University, October 1994.

[Paki97] Pakin, S., Karamcheti, V . , and Chien, A . A . "Fast Messages (FM): Efficient, Portable
Communication for Workstation Clusters and Massively-Parallel Processors". IEEE
Concurrency, Vol. 5, No. 2, pp. 60 - 73, June 1997.

[Pryl98] Prylli , L . , and Tourancheau, B . "BIP: A New Protocol Designed for High Performance
Networking on Myrinet". Workshop, PC-NOW, 12th International Parallel Processing
Symposium and 9th Symposium on Parallel and Distributed Processing, March 1998.

[Rodr97] Rodrigues, S.H., Anderson, T . E , and Culler, D . E . "High Performance Local Area
Communication With Fast Sockets". Proc. of Me USENIX 1997 Technical Conference,
January 1997.

[Shan97] Shanley, T., MindShare, Inc. Pentium Pro and Pentium II System Architecture. Addison
Wesley, 1997.

[Skje94] Skjellum, A . , Smith, S.G., Doss, N .E . , Leung, A .P . , and Morari, M . "The Design and
Evolution of Zipcode". Parallel Computing, Vol. 20, No. 4, pp. 565 - 596, Apri l 1994.

[Smar92] Smarr, L , and Catlett, C E . "Metacomputing". Comm. of the ACM, Vol. 35, No. 6,
pp. 44 - 52, June 1992.

56

http://www.mpi-forum.org/docs/mpi-ll-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

[Tezu98] Tezuka, H . , O'Carroll, F . , and Hori, A . "Pin-down Cache: A Virtual Memory Manage­
ment Technique for Zero-copy Communication". 12th International Parallel Processing
Symposium and 9th Symposium on Parallel and Distributed Processing, March 1998.

[Thek93] Thekkath, C . A . , and Levy, H . M . "Limits to Low-Latency Communication on High-
Speed Networks". ACM Transactions on Computer Systems, Vol. 11, No. 2, pp. 179 -
203, May 1993.

[Yocu97] Yocum, K . G . , Chase, J.S., Gallatin, A . J . , and Lebeck, A . R . "Cut-Through Deliv­
ery in Trapeze: An Exercise in Low-Latency Messaging". IEEE Symposium on High-
Performance Distributed Computing (HPDC), August 1997.

57

