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Abstract 

We describe the design and implementation of M P I - N P , a Myrinet communication system tailored 

to support L A M , a public domain version of M P I . T h e goals of M P I - N P are to reduce the time spent 

on the host for message processing, and to promote the overlap of computation and communication. 

M P I - N P achieves these goals by off-loading as much of the computation as possible to the network 

processor. M P I - N P relieves the host of several tasks, making more C P U cycles available to the 

application, but pays a price for heavy utilization of the slower network processor, by adding a 

significant overhead to message latency. Although part of the overhead can be attributed to the 

hardware of our testbed, the philosophy of M P I - N P characteristically does not provide the best 

latency possible because of performance disparities between host and network processors. Users 

are left with the choice of deciding on the trade-off of latency versus host overhead. Applications 

which are not latency bound can expect to perform well on M P I - N P . 

ii 



Contents 

Abstract ii 

Contents iii 

Acknowledgements v 

1 Introduction 1 

1.1 Overview 1 

1.2 Motivation 2 

1.3 Thesis Statement 4 

1.4 Methodology 4 

1.5 Synopsis 5 

2 Background 6 

2.1 Parallel Computing and Metacomputing 6 

2.2 The Message Passing Interface 7 

2.2.1 L A M 9 

2.2.2 MPICH 10 

2.3 Gigabit Networking 11 

2.3.1 Existing Technologies 11 

2.3.2 System Architecture 13 

iii 



2.3.3 Performance Issues 14 

2.4 Related Work 16 

2.4.1 Selected Implementations of MPI 16 

2.4.2 Messaging Systems on the Myrinet 18 

3 The Design of MPI-NP 23 

3.1 Channels 24 

3.2 Flow control 27 

3.3 Message protocols 28 

3.3.1 Full Credit 28 

3.3.2 Message Rendezvous 29 

3.3.3 Eager send of small messages 30 

3.4 Message matching 31 

3.5 Supporting Zero Copy 34 

3.6 Hardware issues 35 

3.7 Architectural Overview 37 

4 Evaluation 41 

4.1 Bandwidth 42 

4.2 Host Overhead 43 

4.3 Latency for Small Messages 44 

4.4 Discussion 47 

5 Conclusions 48 

5.1 MPI at the Network Layer 48 

5.2 Future Work 50 

Bibliography 53 

iv 



Acknowledgements 

I am greatly indebted to my supervisor, Professor Alan Wagner, for inspiring and guiding me 

through the two years I spent at UBC. I am grateful to Professor Mike Feeley for the many general 

and project specific discussions we had, that influenced my way of thinking, and to Professor Norm 

Hutchinson, who was always ready to push his sleeves up at the hint of a problem. Thanks also to 

the folk in the Distributed Systems lab for the wonderful times we had. 

I am especially grateful to the occupants of the Motha residence who put an extra effort to 

make Vancouver feel like home to me. Chamath Keppitiyagama was a tower of strength, challenging 

every point, supporting every move I made. Finally, I wish to thank my family, who's continued 

support is immeasurable. 

A S H L E Y W I J E Y E R A T N A M 

The University of British Columbia 

October 

1999 



Chapter 1 

Introduct ion 

1.1 Overview 

Clusters of commodity processors connected by high speed networks have become an attractive 

platform for high performance parallel computing. In the last few years there has been a dramatic 

increase in processor speed, but, more importantly for clusters, there has been an even more 

dramatic improvement in network performance. Networks with 50MHz workstations on 10 Megabit 

per second ethernet of a few years ago are now being replaced with 650MHz PCs on Gigabit per 

second networks. The gap between processor, memory and network performance has narrowed 

to the extent that cluster computing is now viewed as a viable platform for high performance 

computing [Bake99]. 

Delivering the performance of high speed networks to the application remains a challenge. 

Software overhead for communication is a significant bottleneck in the performance[Kara94]. Much 

of the overhead comes from processing protocol layers, copying data between buffers and making 

transitions between user space and kernel space. Typically, the application makes the data location 

known to the kernel which copies the data into a system buffer and proceeds to write it into the 

network interface which sends it across the wire. One way of reducing software overhead is to make 

the network interface (NI) accessible at the user level so that the application could transfer data 
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directly to the NI, avoiding the overhead of going through the kernel. 

A new generation of network interface cards (NICs) provide solutions to these issues by being 

highly reliable and accessible at the user level. These networks, called System Area Networks, span 

a small area of about 25 to 50 square feet. Their limited span allows data transmission to be almost 

error free eliminating the need for heavyweight reliability protocols. 

The most interesting feature of newer NICs is an embedded programmable processor. The 

advantage of a programmable NIC is it makes it possible to tailor the communication interface to 

a particular application to improve performance by replacing all purpose protocol stacks with a 

specific, thin and simple user-level interface. 

1.2 Motivation 

Programmable interface cards, most notably Myrinet[Bode95], have been used in a variety of 

projects. The focus of these projects have ranged from simple communication interfaces [Pryl98, 

Chun97, Laur97] to issues of security and protection [Buzz96, Dubn97a] to the support of specific 

applications [Coad99, Bhoe98]. The common goal of these interfaces is to provide a lean, general 

purpose interface to give good bandwidth and latency over a range of message sizes. In some cases 

these goals are accomplished by restricting the flexibility of the interface and, in most cases, by 

making minimal use of the network processor (NP). The justification given[Iann98] for minimizing 

the amount of message processing in the NIC is that the NP runs too slowly to handle messages in a 

timely manner. It has been found that processing messages on the host gives the best performance 

in terms of message latency and bandwidth. 

Almost all of these systems are designed specifically for the Myrinet which, introduces 

difficulties that are specific to the Myrinet hardware and need not be the common case as we show 

in chapter 4. Comparably cheap embedded processors at about 10% the cost of host processors with 

clock speeds of more than 38%[Micr99, Dief99] of the host are currently available and the trend 

signals a faster growth of embedded processor performance. With a better designed NIC and a 
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faster processor running at speeds closer to the host CPU, entrusting more tasks to the NP becomes, 

feasible. The focus of this thesis is to investigate network support for MPI on the assumption that 

the network processor is capable of efficiently handling moderate workloads in comparison to the 

host processor. 

There are several advantages to off-loading computation to the NP and tightly integrating 

the interface to a specialized message passing system like MPI. 

• Message passing alone involves a non-trivial amount of computation. Since the target appli­

cations for a high speed message passing system are often computationally intensive parallel 

applications, it is desirable that the host CPU devote as little time for message passing as 

possible. Off-loading message processing to the NP makes additional CPU cycles available to 

the application. 

• The host could add several messages into the communication pipeline without waiting for 

them to make progress because message progress would, to a large extent, be handled by the 

NP. 

• There are performance advantages for protocols required by special MPI communication 

routines like Synchronous Send and Ready Send that can be handled more efficiently between 

two NICs rather than at the higher level between two hosts. 

• Current communication systems implement collective communication like broadcast, gather 

and scatter on top of point-to-point routines. It is more efficient to implement collective 

routines on the NIC rather than on the host because doing so would require only a single 

interaction per routine between host and NIC. 

Host overhead is a cost incurred on every communication instance and is a parameter that 

directly determines the granularity of parallelism that can be effectively exploited by a distributed 

application. It is an issue that, along with heavier NP utilization, has so far been unconsidered. 
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1.3 Thesis Statement 

Utilizing embedded network processors to handle messages of a message passing application would 

reduce host overhead on a high speed communication system thereby making more host C P U cycles 

available to the application for computation while the network processor manages communication. 

1.4 Methodology 

We have taken this alternative approach in the development of M P I - N P (Message Passing Interface 

on the Network Processor) to test the feasibility of our objectives. In designing M P I - N P we 

analyzed the communication layer of L A M , a popular public domain implementation of M P I written 

to work with T C P / I P , and determined the division of work between the host and the NI based on 

our objective of minimum host overhead. Functionality such as routing, message matching, buffer 

management, flow control and protocol processing was migrated down to the N I C . 

In implementing M P I - N P we have made use of the optimizations present in existing high 

speed interfaces with the aim of achieving low latency and high throughput. T h e principles of M P I -

N P are not specific to any type of hardware. T h e only assumptions we make are about capabilities 

found in current network interfaces, which are that the NI is accessible at user-level and that it 

has an embedded programmable processor and some memory which can be used as system buffers. 

T h e implementation was done on Myrinet NICs and has optimizations pertaining to the Myrinet 

hardware in order to optimize performance. 

O u r design relieves the host of several tasks but, in comparison to other message passing 

systems on similar platforms, performs poorly on message latency due to the fact that our testbed 

was unsuitable for heavy utilization of the network processor. The current state of the hardware 

indicates that NICs have made improvements in design and processor speeds compared to our test 

bed. M P I - N P would make bigger percentage improvements than existing systems if the performance 

of network processors improves with respect to the host C P U . Still, we expect the host processor 

to be the more powerful of the two and therefore it would be faster to perform certain tasks on the 
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host. Applications tightly bound by latency would perform well if the work on a message's critical 

path were executed in the fastest manner possible, which would be on the host. Other applications 

which are not latency critical would benefit greatly by the philosophy of MPI-NP. 

1.5 Synopsis 

In the following chapters we present the issues of designing a message passing system and explain 

the design decisions we made in implementing MPI-NP. Chapter 2 highlights the need for message 

passing systems and briefly describes the M P I standard and some implementations of it. It also 

includes an overview of networking technology and brief reviews of related communication systems 

for the Myrinet. Chapter 3 contains a discussion and justification of the overall design of M P I -

NP. We evaluate the performance of M P I - N P in chapter 4 and finally present our conclusions in 

chapter 5 along with a description of further work needed for M P I - N P to be complete. 
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Chapter 2 

Background 

In this section we discuss the issues surrounding distributed computing in general and the message 

passing paradigm in particular. We review two existing public domain implementations of the Mes­

sage Passing Interface (MPI) standard. We then discuss high performance networking technology 

and the new issues introduced by them. Finally we review methods employed, by existing message 

passing systems implemented on such networks, to address these issues. 

2.1 Parallel Computing and Metacomputing 

Distributed applications fall broadly into two categories. 

• Applications that combine the processing power of the networked machines to enhance their 

performance thus turning the network into a single parallel processing machine 

• Applications that cooperatively use resources, like storage and computing power, made avail­

able on the network that are not available otherwise. 

T h e scientific and engineering computing community have found in workstation clusters a 

cheap and convenient mode of parallel processing. Massively parallel processors are fast losing 

their appeal. Contributing to this phenomenon are their prohibitive costs compared to declining 
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workstation costs, and the increase in performance of workstations and networking technologies. 

The price/performance ratio of workstations improve at 80% a year whereas that of supercomputers 

improve at about 20% to 30% a year[Ande95]. Networking technology has advanced over the last 

few years to provide bandwidths and point-to-point latencies such that the network is no longer the 

bottleneck in the performance of a distributed application. These combined advances have turned 

supercomputing into an affordable commodity[Bake99]. 

The widespread availability of workstations, supercomputers and storage devices on net­

works has prompted the development of metacomputing systems[Grim98] that bring together these 

diverse resources and present it to applications as one unified system. Such a system will consist of 

millions of hosts and other computing resources connected by high speed links and provide desktop 

users with supercomputing power. The vision of a nationwide metacomputer was presented several 

years ago[Smar92] and now projects like Globus[Fost97a], by providing tools to integrate applica­

tions, middleware and the network, and Legion[Grim97], by supporting distributed object oriented 

abstractions, work towards bringing that vision closer to reality. 

2.2 The Message Passing Interface 

A common characteristic of distributed and networked parallel applications is their method of 

communication. Data is transferred by passing messages between host processes. This holds 

true for scientific applications as well as for metacomputing experiments. Of the two parallel 

computing paradigms, namely shared memory and message passing, networked parallel computing, 

dictated by the distributed nature of the hardware, follows the latter. Message passing is the most 

common and well understood model of parallel computation. At the time the MPI standard[Mess95] 

was proposed, there existed many implementations of message passing libraries each with its own 

syntax, semantics, strengths and limitations. The standardization effort by the MPI Forum was 

an attempt at enabling applications written using these libraries to be portable. The standard 

itself only specifies the application programmer interface and the behavior of its features in an 
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implementation. 

An MPI program is made up of several autonomous processes executing their own code in 

their own address spaces in an MIMD style. Processes communicate with each other by invoking 

MPI communication primitives. The number of processes are decided at startup time in MPI-1. 

Primitives for dynamic process creation and deletion are described in the MPI-2[Mess97] specifi­

cation. Processes belong to a group that initially includes all processes of the application and are 

identified by their rank in the group. While they can form themselves into sub groups, a process is 

allowed to be a member of many groups simultaneously. Processes can also arrange themselves into 

graph or Cartesian topologies. Processes within a given group can communicate among themselves, 

or a process of one group can communicate with any process of another group. The former is known 

as intra group communication while the latter is called inter group communication. Objects called 

communicators[Fost96] define communication spaces. 

MPI has a rich collection of point-to-point communication functions: buffered, synchronous, 

ready and standard. Each of these modes can be blocking or non-blocking. Each MPI message 

carries, in addition to its data, an envelope containing the source, destination, tag, and context ID 

of the message. Messages are received (matched) based on the contents of the message envelope. 

Applications can use wildcards, MPI_ANY_SOURCE and MPI_ANY_TAG, to receive a message from any 

source and/or with any tag. MPI also provides for one-sided communication routines such as put 

and get, and collective communication routines such as broadcast, scatter and gather operations 

which serve the typical communication needs of most parallel computing applications. 

A key property of MPI messages is that they are non-overtaking. The message ordering 

rule states that messages sent from one process to another are made available to the receiver in the 

order in which they are sent. The receiver may choose to pick the second message over the first, 

if they can be distinguished. If two receive operations match a message and they are both still 

pending, the message is delivered to the first. 

The notion of a message taken by most message passing libraries is a contiguous data buffer. 

Whenever non contiguous data of possibly different types are to be sent, they are packed into a 
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contiguous buffer by the sender and unpacked by the receiver. This is an expensive operation 

requiring too many copy operations by both processes. MPI provides a facility to define data types 

that are non contiguous and where the data elements differ in their fundamental types. 

Several implementations of MPI customized for various environments are available in the 

public domain. Two of the more popular versions are LAM[Burn94, Burn89] developed at the 

Ohio Supercomputer Center and MPICH[Grop96] developed by Argonne National Laboratory and 

Mississippi State University. Both of these implementations are based on precursor systems. The 

following sections give brief overviews of these systems. 

2.2.1 L A M 

The Local Area Multicomputer (LAM) is a subset of an operating environment called Trollius[Burn90], 

originally developed for message passing on transputer nodes. 

The core of L A M is a multi tasking micro kernel that runs as one UNIX daemon per host. 

MPI messages can be sent either via the L A M daemon or directly to the receiving process in 

client-to-client mode. The daemon is a legacy of Trollius and is useful during the application 

development stage, providing facilities for debugging and monitoring messages. A L A M based MPI 

application, even if started up in client-to-client mode, still needs the daemon to help setup the 

initial connections. The processes once connected form a fully interconnected topology. Application 

specific virtual topologies are built on top of this. 

The upper layers of L A M use a Request Progression Interface (RPI) to monitor and manage 

messages. When a process needs to send or receive a message, it does so as a request for service. 

Requests are maintained in a queue and can be in one of four states, INIT, START, ACTIVE and 

DONE. The RPI layer reads and writes data into TCP sockets in non blocking mode, trying to 

transfer as much data as possible from one request before servicing another. 

If the message content is fragmented in the application, the data is gathered and packed into 

a single buffer. Certain data types require byte order conversions to be performed on them before 

transmission. The message is wrapped in an envelope containing addressing and identification 

9 



attributes and placed in a request. The request is then added onto the request progression queue 

to be serviced. 

2.2.2 M P I C H 

The design of M P I C H is based on mainly three libraries, p4[Butl94], Chameleon and Zipcode[Skje94]. 

The p4 library supports multiple models of parallel computation. Programmers can use monitors to 

coordinate access to shared data in a shared memory model. It contains message passing functions 

and global operations that can be used in a distributed memory model. In addition p4 routines 

can be used to manage collections of processes. The library is portable to many different types of 

parallel machines, workstations and environments. 

Zipcode is a message passing system designed to support parallel libraries and large scale 

multicomputer software. Many of its features were adapted into the M P I standard specification 

as well. The main contribution of Zipcode was the notion of a "context". It uses process groups 

to limit the scope of message passing activities, defines separate communication contexts to enable 

library development and allows different notations of process naming to support virtual topologies. 

M P I C H is a library whose routines form a layered hierarchy. The portable two upper layers 

interact with the device dependent lower layer through an Abstract Device Interface (ADI)[Grop95j. 

The A D I provides four kinds of services, namely specifying messages to be sent or received, moving 

data between the application and the hardware, managing pending messages and providing infor­

mation about the environment. The lowest layer is an interface to the device which does all of the 

work. The interface has been written using the chameleon macros and, for its U N I X workstation 

implementation, the device it connects to is p4. Since p4 is a message passing library by itself, all 

layers on top are simply interfaces to it. 

The major concern of M P I C H is portability. This emphasis causes it to perform a number 

of operations that do not take place in L A M . Some of these additional operations are listed below. 

• Checks arguments to function calls for validity. Datatypes have a special 'cookie' in them to 
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hold their integrity. 

• Keeps pointers to datatypes and opaque M P I objects (e.g. communicator) in an array and 

performs lookup based on implementation platform. 

• Keeps communication devices in a table and perform lookup every time a message is sent. 

• Copies message from user buffer to a packet. 

• Adds an external Data Representation (XDR) wrapper 

• Converts all data from host to network byte format 

These additional operations take its toll on the performance of M P I C H compared to LAM[Nupa94]. 

Yet because of the ease of replacing the A D I , M P I C H is a popular choice among M P I implementors. 

Most new implementations of M P I are simply clones of M P I C H with a custom built A D I . 

2.3 Gigabit Networking 

The advances in network performance is another key factor in the popularity of cluster supercom-

puting. The last few years have seen L A N s supporting increasing bandwidths of up to a Gigabit 

per second and decreasing point to point latencies of less than 5 microseconds. In this section we 

review two of these technologies and discuss their implications on systems development. 

2.3.1 Ex i s t i ng Technologies 

Gigabit Ethernet 

Ethernet is the standard and most widely used communication medium in LANs . High 

speed networks were built on Fast Ethernet or 100BASE-T until the recent emergence of Gigabit 

Ethernet[Giga99]. Gigabit Ethernet uses the C S M A / C D protocol, has the same frame format and 

size as its predecessors and therefore makes the upgrade easy. Unlike 10BASE-T and Fast Ethernet, 

it supports full-duplex operating mode for point to point connections. A point can be a switch or 
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an end station. The C S M A / C D protocol is used only when there are shared connections and in 

such a case it operates in half-duplex mode. 

Operating over optical fibre channels, it has been experimentally shown to achieve a through­

put of over 720Mbps with a 100 percent offered load and collisions in half-duplex mode[Giga99]. 

Theoretically it can support a full-duplex throughput of 2 Gbps. 

Although relatively new to the market, it's low cost compared to Myrinet and the ease of 

application migration virtually ensures Gigabit Ethernet to be the dominant technology. 

Myrinet 

Myrinet [Bode95] is a networking technology that offered Gigabit-per-second throughput, 

before the commercial availability of Gigabit ethernet. Based on technology used for packet switch­

ing in massively parallel processors, Myrinet has several interesting features. 

• Each channel, a pair of which makes up a full duplex Myrinet link, has a data rate of upto 

1.28 Gbps. 

• An almost negligible bit error rate makes the network very reliable and eliminates the need 

of higher level protocols that traditionally assumed an error prone physical layer. 

• Myrinet being a point-to-point network, the physical layer is not shared. Therefore the 

capacity of the entire network increases with the number of nodes. The network can be 

scaled by chaining switches. 

• Packets are routed using a wormhole routing mechanism. A packet consists of a header, body 

and a tail. The header contains routing information that is stripped at each routing point. 

Once a packet enters a channel, it occupies the channel until its tail passes through. Other 

packets are prevented from using that channel in the meantime. 

• Taking advantage of its reliable communication medium, the Myrinet uses cut-through rout­

ing, where data packets are forwarded as soon as they are received, as opposed to store-and-
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forward routing, where the entire packet is buffered and verified before being forwarded. 

• By using cut-through routing when a channel becomes blocked, the packet need not be queued 

on the routing circuit or node. The packet is blocked with flow control provided by the link. 

Applications using a lightweight communication interface can obtain latencies of 5 microsec­

onds and bandwidths of upto a Gigabit per second[Pryl98]. The only drawback of Myrinet is its 

price, which currently is about the same as that of a high end personal computer. 

2.3.2 System Architecture 

A NIC on our Myrinet testbed has a custom designed 33MHz processor, 1MB S R A M and 3 D M A 

engines, one each for transferring data from NIC to the wire, from the wire to the NIC and for 

transferring data between the host and the NIC. Data transfer is initiated by a Myrinet Control 

Program (MCP) running on the NIC. 

HostDMA 

SRAM on NIC 

* 

RecvDMA SendDMA 

HostDMA 

/ 
SRAM on NIC 

RecvDMA SendDMA 

Myrinet Switch 

Figure 2.1: Dataflow between hosts 

Figure 2.1 shows the basic data flow between two hosts on the network. The network 

interface resides on the hosts 1 0 bus and therefore in addition to the D M A channel the host can 

access memory on the NIC via programmed 1 0 (PIO). 

The three D M A channels and the C P U all reside on the same memory bus called the L B U S , 

as shown in Figure 2.2. The bus arbitration protocol gives the C P U the. lowest priority, with the 
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HostDMA 

Network 
Processor 

SendDMA 

1 
Myrinet 

Figure 2.2:, Myrinet NIC Architecture 

RecvDMA getting the highest priority. 

2.3.3 Performance Issues 

The challenge facing network interface designers is to deliver hardware performance to the applica­

tion with minimal degradation. Traditionally, it was the operating system that handled interaction 

with the NIC, multiplexing it among user processes. While doing so meant that users need not 

be concerned about security and sharing, it also meant expensive transitions into kernel space 

and copying data into kernel buffers prior to its transmission. Unix sockets have such properties, 

but were suited for Ethernet mainly because the communication medium was unreliable and slow. 

Efforts to impose the socket model on Myrinet have yielded poor performance rates[Rodr97] com­

pared to the hardware capacity. Drastic differences in hardware characteristics require reinventing 

the communication interface model. 

Following the path opened by microkernel researchers, network interface designers have 

stripped network management from the operating system and have introduced the concept of 
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User Space Communication where a user library takes advantage of hardware properties like 

low bit-error rates and sequenced delivery to implement a thin communication layer, eliminating 

OS overheads to directly interact with the network device in order to bring hardware performance 

closer to the application. Circumventing the OS creates a security problem. If more than one 

application makes use of the network interface simultaneously, measures must be taken to protect 

their data and address space boundaries from each other. The issue of security is addressed by 

Hamlyn[Buzz96] but systems like BIP[Pryl98] and PM[Tezu98] assume that the system has only a 

single user. BIP even goes as far as to restrict the number of communicating processes to one so 

that the communication layer can be kept simple and fast. 

Protocols like T C P required user data to be copied onto kernel buffers before being trans­

mitted, and vice versa. Data movement between buffers has been shown to be a primary cause 

for high latency in communication systems[Drus96]. A system transferring data to and from the 

user's data structures directly into the NIC is said to employ a zero copy protocol. Since NIC 

memory is mapped onto the user's virtual address space, messages can be moved between host and 

NIC memory by the host, same as performing a copy operation in host memory. Data transfer by 

D M A involves the additional step of determining the corresponding physical address of the host 

data area because the D M A is initiated by the NIC which is a device on the host I /O bus. Virtual 

to physical address translation involves looking up kernel data structures, so OS assistance is an 

absolute necessity in this case. Consequently, the page in host memory that holds the data area 

must be prevented from being swapped out by the V M system before D M A is complete. This is 

achieved by marking the page as "pinned". Some operating systems impose a limit, in addition to 

the obvious physical memory constraints, on the number of pages that can be pinned at any given 

time. Then pinned pages turn into a scarce resource that needs to be managed well. 

When data transfers that are managed by the NIC are completed, the host should be 

informed so that the relevant data areas can be made free. The host can learn of this event either 

by being interrupted by the NIC or by polling on a status variable. Both these methods have their 

drawbacks. If the host spin waits, it would spend valuable C P U cycles which could otherwise be 
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spent on useful work. Interrupts on the other hand take up a significant proportion of message 

latencies [Thek93] for small messages due to the cost of the host C P U vectoring the interrupt 

and the cost of servicing the interrupt. If interrupt servicing causes a page fault, the cost of the 

operation goes up by three orders of magnitude 1 . If a message is kept waiting on the wire until 

the interrupt service routine can determine its destination in host memory, the message can block 

other messages and cause congestion because of the wormhole routing property of the Myrinet. 

The default behaviour of the NIC if a message is left unserviced for longer than a specified time, is 

to reset itself, causing all state to be lost. 

2.4 Related Work 

A review of existing work on message passing systems and interfaces for high speed networks is 

given in this section. 

2.4.1 Selected Implementations of MPI 

Both M P I C H and L A M use point-to-point communication primitives to implement collective com­

munication routines. M P I - C C L [Bruc95] focuses on optimizing collective communication on net­

works built on an unreliable broadcast medium such as Ethernet. It is built on URTP, a User 

level Reliable Transport Protocol that has both point-to-point and multicast capabilities. U R T P is 

partially an extension to the OS kernel built on top of the networks Data-Link layer, and partially a 

user level library. Buffer management is unique in that send buffers are managed by the M P I - C C L 

layer and receiver buffers are managed by URTP. An incoming message goes through two layers 

of buffers, kernel and URTP, before being deposited into the user provided buffer. Moving data 

between buffers is in keeping with its objective of freeing kernel buffers as soon as possible so that 

packets are not dropped and retransmitted for lack of buffers. 

M P I - F M [Laur97] was one of the first implementations of M P I on the Myrinet hardware. It 

'disk I/O takes tens of milliseconds while message latencies are measured in tens of microseconds 
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replaced the P4 device of M P I C H with an F M (Fast Messages) device. It addressed the multiple 

data copy problem by adding an upcall to the F M layer so that a received message can be recon­

structed directly in its destination buffer, and by gathering non-contiguous data on the host into 

the network interface instead of into a temporary buffer as done in T C P / I P implementations. 

The Globus metacomputing toolkit supports an implementation of M P I called M P I C H -

G [Fost98a, Fbst98b] that insulates users from the details of underlying diverse computer architec­

tures and networks. A metacomputing system can include environments that have diverse resource 

management, process management and security services, in addition to heterogeneous hardware 

with varying communication infrastructure. M P I C H - G attempts to provide solutions for problems 

such as host access control, authentication, process scheduling process monitoring and customized 

communication hitherto left unaddressed by message passing libraries. Providing support for mul-

timethod communication is the Nexus [Fost97b] secure channel device which uses T C P / I P when in 

the wide area, vendor-specific protocols within a host and shared memory within an S M P cluster. 

Because it uses Globus services M P I C H - G can implement (but has not yet done) MPI-2 features 

like dynamic process creation, which the original design of M P I C H did not encourage. 

The Virtual Interface (VI) Architecture [Comp97] is a standard that specifies an interface 

between a S A N and the host with an intent of replacing heavy weight protocols such as T C P / I P . 

The VI Architecture consists of a V I kernel agent - a device driver that performs OS related 

operations, a VI user agent - a user library that implements the VI A P I giving users direct access 

to the NIC bypassing the OS, and a VI NIC - which has local memory and D M A engines which can 

access host memory without host C P U interaction. Its most interesting feature is the specification 

of an R D M A 2 operation where a local user process can initiate D M A on a remote host in order 

to access data of a remote application in a cache coherent manner. The VI standard has heavy 

industrial backing and so the introduction of a (commercial) implementation of M P I for VI called 

M P I / P r o [Dimi99] was not surprising. M P I / P r o uses threads for notification and to ensure message 
2 R D M A in the context of VIA stands for Remote DMA, and not Receive D M A as referred to in later chapters in 

the context of Myrinet 
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progress without user interaction. Long messages are handled by first using a rendezvous protocol 

and then by initiating an R D M A . By using multiple queues to hold receive requests, it reduces to 

0(1) the search complexity for a matching request on message arrival. 

2.4.2 Messaging Systems on the M y r i n e t 

A whole new avenue of research was opened with the introduction of user-level programmable 

NICs. Several research projects have proposed interesting methods for getting the most out of a 

high performance NIC. Some of those projects are reviewed in this section. 

BIP3 

BIP [Pryl98] is low-level message interface for Myrinet which thinly veils the hardware with a user 

library that delivers close-to-raw performance to the application and guarantees reliable in-order 

delivery of messages. An implementation of M P I called MPI -BIP is built using this library. It avoids 

packet dropping and retransmission by ensuring that the receiving node has buffer space, before 

transmitting a message. A credit based flow control scheme is used to this effect where the sending 

node has prior knowledge of the receiver's buffer availability. The communication protocols are 

message size dependent. Short messages are sent immediately to the destination node, irrespective 

of whether a receive has been posted, unless the sender runs out of credit in which case the sending 

routine blocks. Both sender and receiver rendezvous before the transmission of a long message, 

ensuring that the message can be delivered to the application immediately. 

BIP has a simple channel interface to M P I where the number of channels can be set at 

initialization time by the user (the number of channels depends of the amount of memory available 

in the NIC). Messages are injected and removed from these channels. There is no look-ahead 

capability to a BIP channel and message matching is done by the host. BIP headers consist of the 

message route and tag. The M P I envelope is part of BIP message which has to be stripped by 

the host As a consequence of the simple channel implementation, BIP has the restriction that at 
3 Version 0.95a 
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most one send and receive can be active at a given time on a channel. The one message restriction 

imposes a limit to the degree to which communication and computation can be overlapped. Large 

messages are broken into fixed size packets (the optimal size of which is a function of the message 

length) and are pipelined along the critical path of host-to-NIC, NIC-to-wire, wire-to-NIC and 

NIC-to-host so as to get the best bandwidth. Messages are transferred directly between user space 

and the NIC. OS intervention is sought only to pin pages during D M A and this is done with the 

aid of a kernel module. 

The BIP interface is limited to a single process. It provides notification of network errors 

to the upper layers and expects a higher level protocol to recover from them. 

Hamlyn 

Initially designed for large scale M I M D multicomputers, the Hamlyn network interface [Buzz96] 

was extended to the Myrinet to provide applications with a simple but efficient interface to the 

underlying hardware circumventing the OS. It introduced the concept of sender-based memory 

management where the sender specifies the message destination in the remote hosts memory so 

that messages can directly be deposited on receipt instead of being buffered. A 64 bit protection 

key in the message header ensures that applications are protected from unwanted messages being 

deposited in their address space. This process does require additional synchronization between 

sender and receiver. A unique packet numbering scheme is used so that out-of-order packets on 

an adaptive routing network can be reassembled sequentially. A receiving process can decide on 

the notification mechanism by indicate whether it needs to be interrupted or whether it polls a 

notification queue. On receiving a complete message, Hamlyn indicates its arrival by updating a 

notification queue in the host and interrupting the receiving process if needed. Message headers 

(metadata) are maintained in the applications memory in the host. 

P M 

P M [Tezu98] is another low-level interface which is also derived from M P I C H and has explored 

issues related to zero-copy. Distinguishing it from other Myrinet interfaces is its cache of pinned 
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pages. It makes the assumption that most instances of data transfer occur from a local region 

in memory, and therefore when a page is pinned for D M A , it is kept pinned even after the D M A 

completes so that the next data transfer would not have to incur the page pinning overhead. Pinned 

pages are maintained until system resource limitations require some of them to be freed in order 

to pin more pages. They are then freed in L R U fashion. 

P M encourages remote memory writes where the sender specifies the destination address 

of a message. This is so that after an initial synchronization phase, the relevant data areas can 

be pinned and kept pinned until the application ends. Such a scheme, though cost efficient, is 

incapable of supporting a general purpose specification like M P I . 

Active Messages 

An Active Message [Eick92] is one that includes in its header an address of a user level process that, 

upon message arrival, is woken up to handle the message. This process is a privileged interrupt 

handler that is expected to quickly pull out the message from the network. A M is based on the 

programming model that arriving messages have preallocated buffers or that the message contains a 

simple request to which the handler can immediately reply. The Myrinet implementation of Active 

Messages, AM-I I [Chun97], supports multiple host applications and has three different size based 

protocols. Applications have a staging area in their virtual address space to which medium and 

large messages are copied before sending. On the receive side, large messages are again sent through 

the staging area whereas medium messages are deposited in their final destination. Small messages 

transfers are zero-copy operations. Messages follow a request-reply scheme where all messages are 

acknowledged. 

The A M A P I implements an abstraction called an endpoint with several configurable prop­

erties. Two endpoints form a virtual interconnect which we could call a channel. They protect 

applications from each other and have bindings to physical communication resources. Applications 

are free to create as many endpoints as they see fit. Since NIC memory is limited, host memory is 

used as a cache to hold inactive endpoints. Endpoint faults are serviced similar to page faults in 
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the V M system. One of the methods AM-II uses to maintain flow control is to assign to endpoints, 

credits based on queue sizes. In this scheme, individual senders can regulate themselves but mul­

tiple simultaneous messages to the same receiver from several senders can overrun receive buffers. 

Anything exceeding the endpoint's outstanding message limit is dropped and N A C K e d . 

Illinois Fast Messages 

Fast Messages [Paki97] from the University of Illinois is a low-level Myrinet message passing in­

terface with a very small A P I . Similar to Active Messages, F M includes in its header, the ID of a 

message handler which would extract the message from the network. Unlike Active messages, F M 

does not follow a request-reply scheme and it also guarantees that messages are delivered in order. 

Drawbacks of F M - 1 , chiefly intermediate buffering due to message header processing and 

unexpected receives, were fixed in FM-2 [Laur98] to offer better system level performance. In doing 

so, it increases the size of its A P I from three functions to five while supporting zero-copy gather and 

scatter operations. It also imposes a stream abstraction where messages can be sent and received 

in pieces. 

The speed difference between the network processor and host processor was a key fac­

tor [Iann98] in dictating the work division in F M . The firmware running on the NIC was kept 

as simple as possible, thereby assigning all the work to the host processor. Message matching, 

fragmentation and reassembly are examples of tasks handled by the host. 

Virtual Memory-Mapped Communication 

V M M C [Dubn97b] is a user level communication interface supporting multiprogramming, buffer 

protection and zero-copy. Data transfer occurs after the sender and receiver make a rendezvous. 

Data areas exported by the receiver are imported and mapped onto the sender's virtual address 

space. User programs interact with a V M M C daemon to submit import export requests which are 

passed on to corresponding daemons on other hosts over ethernet. The daemon locks exported 

pages and passes their physical addresses to the importing daemon which writes them into a page 

table maintained in the NIC. Protection is ensured by having a local page table for each sending 
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process. Arriving messages are placed in user memory without requiring an explicit receive request. 

V M M C - 2 [Dubn97a] improves on the design by removing daemon mediation and having 

all communication over the Myrinet. It also relaxes the import/export requirements by accepting 

unexpected messages for a receiver, which are transferred to a default buffer and kept there until 

a receive is posted. Sends and receives are based on virtual memory while a user managed T L B 

contains virtual to physical translations. The U T L B is maintained in the host in order to accom­

modate a large number of mappings. Additionally, a U T L B cache is also maintained in the NIC 

to reduce lookup times from the host. V M M C - 2 has a retransmission protocol to recover from 

network errors. 

Trapeze 

The Trapeze messaging system [Ande98] is integrated to the V M system of the OS and designed to 

support the,Global Memory Service [Feel95]. G M S uses the network as a backing store for virtual 

memory pages swapped out of host memory and the main objective of trapeze is to support low 

latency transfer of pages across the network. The focused nature of its design allows trapeze to 

support fixed message sizes and offer no protection because communication is only between kernels. 

Its most interesting feature is the way it handles messages. The Myrinet firmware uses 

cut-through delivery during data transfer, thereby fully utilizing the data pipeline from sending 

host memory to NIC to wire to receiving NIC to receiving host memory (see figure 2.1). It initiates 

D M A as soon as some data becomes available, rather than waiting for a complete packet. This 

operation is performed on a single packet, instead of fragmenting the data into smaller packets 

and incurring packet processing overhead. By getting all D M A engines in the data path to work 

simultaneously trapeze achieves bandwidth almost equal to that offered by the hardware. 
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Chapter 3 

The Design of MPI-NP 

The primary objective in designing M P I - N P was to reduce communication overhead on the host 

and offload it to the Network Processor in order to allow for as much overlap of computation and 

communication as possible. In order to achieve this objective the tasks related to communication 

should be identified. Candidate tasks/responsibilities for migration could be listed as 

• routing of messages to the proper destination 

• complete and reliable delivery of messages 

• maintenance of protection boundaries between processes so that multiple processes can be 

supported 

• management of message buffers 

• implementation of specialized protocols for non-standard routines such as Synchronous Send 

and Ready Send 

• matching of Receive requests with messages that have arrived 

• performing collective communication with a group of peer processes 
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Traditionally some of these tasks were the responsibility of the host operating system. How­

ever since the NI is at user level, there is now the potential to move some or all of them to the NIC. 

In the case of MPI-NP, since we were interested in off-loading computation, we perform these tasks 

on the NIC. In the following sections we describe the abstractions and methodologies employed by 

M P I - N P to handle these tasks. 

Another goal of message passing systems is to deliver the performance of the underlying 

hardware to the application. This is true of parallel applications which, by their very nature, are 

time critical. These characteristics include low latency, high bandwidth as well as the fair and 

efficient management of the memory and hardware resources in the network. Even though our 

objectives make few assumptions of the underlying hardware, an implementation has to ultimately 

be on top of a certain type of architecture. In this chapter, we also describe issues arising from the 

hardware we use, namely Myrinet, in trying to get good performance. 

3.1 Channels 

It is desirable that the communication pipeline support multiple active messages simultaneously 

so that the sending host could initiate transfer of multiple messages by simply depositing them 

at the top of the pipeline and then return to computation or continue sending messages to more 

destinations while the the messages themselves make progress, as opposed to blocking on the second 

message to process A because the first message is still in the pipeline or blocking on a Send to process 

B because a message for process A has blocked the network. Although it is not practical to have a 

pipeline of unlimited capacity, it is desirable that it support at least a few outstanding messages. 

With multiple messages awaiting service, the NP must ensure that messages adhere to the 

M P I ordering rule while preventing messages which are waiting for rendezvous from blocking the 

progress of other messages. Since M P I allows an application to have multiple processes per host 

and MPI-2 allows for dynamic process creation, there is the added concern that when the NIC 

is shared by all communicating processes on the host, the messaging system should ensure that 
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messages do not unfairly use system resources and that they are delivered only to the intended 

destination process. 

If the application topology were made known to the NIC, that information could be used to 

ensure a fair distribution of resources and also to route messages to their destinations. 

In an effort to address the above issues, M P I - N P implements the abstraction of a virtual 

channel; a bidirectional communication path between every two M P I processes. Channels are 

implemented on the NIC where a channel consists of buffer space to store the body of messages 

and rings to hold M P I envelopes. They have complete knowledge of resources on either end. 

Resources used by channels are independent from one another which ensures protection and makes 

the behavior of the channel deterministic. The lack of buffer space in one channel does not block 

the progress of other channels as depicted in Figure 3.1. 

SEND R E C E I V E 

A B C C B A 

N t 

Figure 3.1: Message Progress in Virtual Channels 

M P I - N P channels are defined between two processes and therefore can carry multiple mes­

sage tags and M P I contexts. The only constraint of a channel is that it adheres to the M P I message 

ordering rule and does not allow message overtaking. This constraint does not apply to messages 

across channels. We define the message visibility inside a channel to be the look-ahead capabilities 

of receivers trying to extract messages from the channel. Because messages are buffered inside the 

channel structure several messages may be active at the same time inside the same channel but 

their 'tag' may not necessarily be identical. When matching messages, it is possible that, based 
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on tag values, a later message be matched over the oldest message. Any of the messages whose 

envelopes have arrived at the destination node are visible and available to be matched. 

M P I - N P maintains a global channel queue on the NIC to schedule message transfer on the 

wire. M P I - N P schedules channels similar to how an operating system does processes. Figure 3.2 

shows the state transitions of a channel. 

Channels with messages ready for sending are placed on a ready queue. Each channel has 

its own ring of messages, allowing the application to continue injecting messages into the channel, 

even though the channel itself could be blocked. If a channel does not have sufficient credit to send 

the message at the head of its ring, it is deemed to be blocked and is rotated to the end of the 

scheduling queue. When the message is sent, the channel is removed from the queue or added back 

to end if it has more messages. Channels are serviced in a round robin fashion. 

Channels are created at application INIT time. The current implementation has no support 

for dynamic process creation primitives described by MPI-2. As a result channel resources are 

statically allocated at INIT time. These resources include slots in a message table, send and receive 

buffer space. A possible solution for dynamic channel allocation is discussed in section 5.2. M P I - N P 

currently supports up to 64 channels (in 1 Mbyte of S R A M ) where, in the case where the system's 

channel capacity is fully utilized, each channel is guaranteed at least 4.5KBytes each of send and 

Figure 3.2: State machine for channels 
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receive buffer space (9KB in total) and 32 slots in the message table. The number of messages that 

can be buffered in a channel is a function of the message slots owned by a channel and the message 

size. On the sender's side, the number of messages that can be injected into the NIC is limited by 

the size of the channel's send ring, which is currently at set 16, and the rate at which messages can 

be sent across the wire. 

In summary 

• Channels are created at application INIT time. 

• A channel is made up of send and receive buffers, a table of received but unmatched messages 

and a table of messages expected by the application 

• Channels facilitate fair use of resources by all communicating processes, adhere to the message 

ordering rule, simplify message matching and provide protection to processes at the NIC level. 

The concept of a channel exists in BIP, A M and F M as well. BIP channels, implemented 

on the NIC, support only a single message in its pipeline. A M also implements its channels on the 

NIC and has no limit to its pipeline since its protocol allows for messages to be dropped. Channels 

in F M are completely implemented in the host and are distinguished by the message handler that 

services messages. F M uses flow control to limit the capacity of its pipeline to the number of 

receives posted. 

3.2 Flow control 

Reliable delivery of messages and network congestion avoidance are important issues in low level 

message passing systems. The wormhole routing characteristic of Myrinet can have messages block 

the path of other messages while they are in the network. A well designed M C P should retrieve all 

messages from the wire as quickly as possible in order to reduce congestion in the network. But 

messages that are D M A e d in from the wire need to be buffered until they can be transferred to 

the host. Since the application matches messages based on a tag value rather than in order of 
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arrival, messages could occupy the receive buffer for an indefinite period of time. If the rate at 

which messages arrive surpasses the rate at which the host accepts them, buffer overflow occurs. 

Two possible ways of handling buffer overflow is to either use flow control to stall the sender and 

prevent new messages from entering the pipeline or to drop messages as T C P does and have it 

retransmitted. 

We chose the former method because flow control helps ensure that messages do not cause 

network congestion and bandwidth is not wasted by dropped messages. M P I - N P uses a credit-

based flow control mechanism similar to that used by BIP. The credit value is a combination of the 

size of the receive buffer and the number of free message slots on the receiver side of the channel. 

Unlike other low-level interfaces, flow control is entirely handled within the NIC. The 

MPI_Send primitive hands the message to the NP which than handles its delivery to the desti­

nation. If all of the resources inside a channel are exhausted then flow control ensures that the next 

SEND will block until space becomes available, essentially reverting to sender-buffered communica­

tion [Buzz96], a strategy successfully used in other systems such as Hamlyn, F M and BIP. 

3.3 Message protocols 

M P I - N P handles the rich variety of message primitives defined in M P I such as blocking/non-

blocking, synchronous, standard and ready-receive. It uses three protocols for transferring messages 

between a sender and receiver; full credit, rendezvous and eager sending of small messages. The 

first protocol is used when the sender has credit where as the other two are followed only when the 

sender does not have sufficient credit. 

3.3.1 Full Credit 

This is the simplest case, when the sender knows that there is enough buffer space on the receiver 

to accommodate the message, it is sent immediately. The sender's credit depreciates as messages 

are sent, and it is replenished when the receiving process removes the message from the channel's 
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receive buffer. Credit is transferred along with ACKs that are generated for every message. The 

sender doesn't necessarily block for an ACK if it has full credit, unless the message was a Synchronous 

Send, in which case it blocks until it gets an ACK informing it that the message was collected by 

the receiving process. 

3.3.2 Message Rendezvous 

There are two cases to consider depending on whether the send or the receive occurs first. Ex­

pected messages are messages for which the receive has already occurred, otherwise they are called 

unexpected messages. The rendezvous mechanism used by M P I - N P is essentially receiver driven. 

Unexpected messages 

In the case that the Send routine occurs much earlier than a matching Receive routine, 

the Send routine causes the message to be added to the appropriate channel structure on the NIC 

and the channel to be added to the scheduling queue. If there is sufficient credit the message is 

forwarded to the destination and its envelope is added to the message table. Once a Receive that 

matches an envelope is posted, the message is directly D M A ' e d into the receiver's buffer. 

If there isn't sufficient credit then a RECVJIEQ control message is sent to the destination and 

the channel becomes blocked. In this case, the protocol becomes receiver-initiated and waits for 

the receiver to arrive and the message turns into an expected message. 

Expected messages 

In the case that the Receive routine occurs much earlier than a matching Send routine, 

the Receive executes and adds it's envelope to the expected message queue on the NIC. The 

N P sends out a SEND_REQ control message to the source specified in the message envelope (ANY 

flags are discussed in Section 3.4). If the send request matches the head of the channel send ring 

then the source responds with the message itself otherwise the source (i.e. sender) responds with 

a NACK. When the message finally arrives the source NIC sends out a RECVJIEQ where now the 
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destination responds with a SEND_REQ causing the message to be sent out by the NIC on the sender 

side. Note that SEND_REQs always get a response in the form of a message or a NACK, whereas 

RECVJIEQs do not require a response. This is to avoid misinterpreting control messages of the 

same M P I message as those of two different messages in the case where both the SENDJREQ and 

RECV_REQ occur simultaneously. Since the RECVJIEQ matches an unacknowledged SENDJUEQ it can 

be discarded with the knowledge that the sender will reply to the SEND_REQ with the message. If 

the protocol were changed where in such a case the receiver responded with another SEND_REQ, the 

sender would misinterpret this for a new SEND_REQ and respond with a second message which would 

have no corresponding receiver nor buffer space and would have to be dropped. The rendezvous 

protocol we follow avoids this situation. 

Messages that are transferred in response to a SEND_REQ are expected and can be sent without 

credit. Since a matching receive exists, they are guaranteed to be delivered to the application and 

cannot block the progress of other messages. 

MPI-NP 's rendezvous protocol is receiver-initiated for all messages which do not have suf­

ficient credit. In this case, the protocol takes advantage of this fact by having a special common 

receive area and directly transferring it to the host. For large messages, where sufficient credit is 

either difficult or impossible to acquire, the protocol degrades to ready-receive or, in the case of 

very large messages, to synchronous communication. Unlike the rendezvous mechanism in P M , we 

do the message matching on the NIC which can operate asynchronously to the host. 

3.3.3 Eager send of smal l messages 

Credit for a channel could be delayed by the receiver being busy sending out a large data message. 

The protocols described so far require the sender to block until it gets new credit or a SEND_REQ. 

A different protocol called eager send is used for very small messages, which could be important, 

characteristically small, control messages of the application, in an attempt to deliver them a little 

sooner. The current implementation uses an arbitrarily set size as the threshold. The optimal 

message size could be determined by the intersections of the plot of the time taken to send messages 
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of varying length with the plot of time taken to generate a control message. 

In eager send, the sender sends the message immediately without waiting for credit. If the 

message is accepted by the receiver, it responds with an ACK. The sender would block until it gets 

the ACK, which is not too much of a delay, since it would have blocked anyway had it waited for 

credit. 

If, on the other hand, the channel is full and the message cannot be accommodated, the 

receiver drops the message and returns a NACK to the sender. The sender does not re-send the 

message until it has sufficient credit to ensure the message will not be dropped again. Dropped 

messages waste the hardware resources of the network, but because messages are small and are 

dropped only once, its effect is expected to be minimal. 

3.4 Message matching 

Messages are matched based on three parameters; rank of process, message context and tag. Since 

messages are sent through channels, the rank is automatically matched, leaving only context and 

tag to be explicitly matched. These parameters, along with other meta information are contained 

in an envelope which is sent as the message header. Message headers of all incoming messages are 

stored in a message table which is shared by all active channels. 

We initially tried an implementation that had the message table residing on the host because 

of space constraints on the NIC. This introduced additional overhead to the host because the host 

was required to search the table every time a Receive occurred. It also complicated the host 

interface as well as the work done by the M C P because in addition to buffering messages, the M C P 

was required to keep track of the message table using only costly D M A operations while the host 

had to synchronize with the M C P before searching, to avoid a possible race condition if the M C P 

were to upload new envelopes at the same time the host was searching the table. Although it could 

be safely said that host processors would always be faster than embedded network processors, the 

synchronization overhead added to heavy maintenance overheads on the NIC makes having the 
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message table on the host infeasible. 

The current implementation locates the message table in the NIC in order to remove the 

mentioned overheads. The NP now bears a reduced maintenance cost while the host interface is 

considerably simpler. The only drawback of this scheme is that the size of the message table per 

channel is decreased due to the limited memory on the NIC, thus reducing the number of messages 

that could be buffered on the NIC. 

Message matching takes place in three different ways. 

• The message is sent first. It is buffered on the receiver and its envelope is placed in the 

message table. When the application posts a receive, the host places a request containing the 

parameters. The M C P matches this with the envelope in the table and goes on to deliver the 

body. 

• The receive is posted first. The receiver maintains a list of expected messages. When the 

message eventually arrives, the NP matches it with an entry in this list and immediately 

transfers the message to the application's address space. 

• The message is larger than the credit available. In this case, the sender transmits a RECV_REQ 

which is matched with with a pre-posted receive. If there is no match, the channel stores the 

envelope and compares it with subsequently posted receives until matched. 

Wildcards 

One of the advantages of the M P I - N P rendezvous protocol and the ability to match messages 

on the NIC is that it simplifies the handling of M P I wildcards. In simple low-level interfaces M P I 

wildcards must be handled by the host. The M P I standard describes two wildcards, MPI_ANY_TAG 

and MPI_ANY_SOURCE. 

MPI_ANY_TAG wildcards are handled on a per channel basis, where we only search messages 

within a channel. The number of messages is limited to the visibility within a channel, which is not 
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expected to be large and therefore the search is sequential. One would expect that for most part, 

requested messages are near the top of the channel. We could implement a more sophisticated 

channel searching mechanism, however it may incur additional cost on every search and would 

require the message table to be well utilized in order to pay off. The current implementation keeps 

the simple and most common case fast. 

Handling the MPI_ANY_SOURCE wildcard is a little more complicated. We are again con­

strained by the message ordering rule which requires MPI_ANY_SOURCE requests to be treated the 

same as other Receive requests. M P I - N P orders messages by channel since the common case is for 

messages to be matched by rank. When the host makes an MPI_ANY_SOURCE request messages in 

all channels become candidates for matching. We could have had an additional structure that held' 

information about messages in all channels so that an MPI_ANYJ30URCE could be matched by simply 

querying this structure, but maintaining it would mean adding and removing information for every 

message received or delivered to the host. We have followed a simpler approach that makes the 

common case fast but is not as efficient for wildcards. 

When the M C P gets an MPI_ANY_SOURCE request from the host, it searches sequentially all 

channels associated with the process making the request, until a match is made. For this reason 

channels are grouped by the process they belong to. For every MPI_ANY_SOURCE request, channels 

are searched in a rotating manner in order to prevent starvation by some channels. If there is no 

match, a request is added to all related channels. When a message arrives only requests in its 

channel are selected for matching. If a match occurs on an MPI_ANY_SOURCE request, the duplicated 

requests are removed by following a horizontal chain. 

Our scheme allows requests to be met in the order that they were posted within a particular 

channel except for MPI_ANY_SOURCE requests, which are matched not necessarily in the order of 

message arrival across all channels because we do not compare message arrival times across channels. 

Since this is not a requirement of the M P I standard, we did not feel it necessary to add to the 

complexity by supporting this feature. 

33 



3.5 Supporting Zero Copy 

Data movement between buffers has been shown to be a cause for high latency in communication 

systems [Drus96]. Most implementors aim to integrate a zero copy feature into their systems, where 

data is copied directly between application buffers and NIC buffers, eliminating traditional system 

buffers which served as intermediate staging areas. This has been made easier by the network being 

brought up to user level. M P I - N P uses memory on the NIC as its system buffer. NIC buffers on 

both sender and receiver ends make up one big system buffer. Data is transferred from user space 

to this system buffer and back into user space, we incorporate several strategies to achieve zero 

copy when messages do not fit our system buffer. 

Sender buffering 

Small messages are buffered on the receiver's NIC until their final destination address is 

known and zero-copy can be used. This allows messages to be sent before the receive is posted. 

Messages larger than the space available on the receiver's NIC are held on the sender until space 

becomes available. This is similar to what is done by BIP, F M and Hamlyn. In addition to enabling 

zero copy, a sender buffered scheme also contributes to maintaining flow control. 

Address translation and page pinning 

In order to D M A messages directly to and from the application's address space the NP needs 

to know its physical address. It also needs to be sure that the page in memory is not swapped 

out by the host operating system before the transfer is complete. We use a loadable kernel module 

in Linux to perform virtual to physical address translation and also to pin the page to prevent it 

from being swapped out. A designated area in host memory is used to hold translated addresses. 

It is not possible to hold all translations on the NIC since messages can span thousands of physical 

pages [Kim,97]. We could use the NIC to cache page entries but for very large messages the host 

would have to frequently synchronize with the NP and update the entries in order to adhere to 

the M P I message progress rule. A non-blocking call would not be able to perform updates and 
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message progress would stall until the user makes an MPI_TEST or MPI_WAIT call. By having a large 

page table in host memory, the host could, at most times, lock all the required pages and return 

to computation while the NP follows links in the table to send or receive the complete message. If 

the message is large enough that it runs out of page table entries, M P I - N P falls into user-driven 

mode where the message cannot make progress until another M P I communication routine is called 

by the application. 

The current implementation supports more than 15,400 page entries in the page table, 

allowing a maximum message size of more than 60 MegaBytes to make progress without user 

intervention. 

Holding page tables on the host for the sake of flexibility costs us communication bandwidth 

because the N P has to refer to it frequently in order to follow links and it can only do this by D M A . 

Our current implementation batches several pages into one entry in order to reduce the frequency 

of page table accesses. We have also optimized for the case where data resides on only one page by 

including that address along with the request so that the N P has one less reference to make. 

3.6 Hardware issues 

There are several optimizations that pertain directly to the Myrinet cards. One of these corresponds 

to size at which it becomes faster to use PIO rather than D M A to transfer the message from the 

NIC to the host. The cost associated with a D M A transfer is high and consists of overheads in 

address translation, page pinning, D M A setup and page unpinning. The technique used by M P I - N P 

is the same as that described by BIP. The threshold is experimentally determined and is dependent 

on hardware characteristics of the host machine. For small messages this decreases the message 

latency as seen in Figure 3.3, a plot of latency variations in MPI -NP . 

The jagged P I / O line indicates a quirk in the hardware. We get the best latency when the 

message size is in multiples of 32 bytes which in our testbed also happens to be the width of the 

cache Line[Shan97]. 
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Figure 3.3: Variation of Latency with Method of Transfer 

Getting back to our objective of reducing host overhead, we see in Figure 3.4 that the best 

Send overhead can be obtained if the message size threshold is in the region of 1 KByte, bigger 

than that shown in Figure 3.3. There is no overlap in the Receive overhead, indicating that all 

messages should be transferred through D M A . A possible reason for this is that the PCI bus has 

a write back cache which makes reads return slower than writes as the cache is not immediately 

flushed when data is written. 

A second hardware specific optimization is message pipelining. There is a three stage pipeline 

from Host to NIC, NIC to NIC, and NIC to Host that when optimized can reduce the latency to send 

a single message. Both BIP and Trapeze describe techniques for pipelining of a single message. We 

use the Trapeze technique of cut-through delivery [Yocu97] where if the user's Send and Receive 

calls are properly timed, all D M A engines in the message's path are able work on the same message 

simultaneously in order to improve performance. The advantage of using cut-through delivery is 

that it is adaptive, doesn't require a fixed packet size and allows us to packetize the messages 

according to page boundaries. 
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Figure 3.4: Variation of Overhead with Method of Transfer 

3.7 Architectural Overview 

M P I - N P consists of a user library, an M C P and a loadable kernel module. The library interacts 

with the M C P to exchange M P I messages and invokes the kernel module to pin pages to memory 

and translate virtual memory addresses into physical addresses. A fixed region in host memory 

called the copyblock holds a page table containing addresses of pinned pages. 

The memory on the NIC is divided into two areas; the lower address region which holds the 

text, data and stack of the M C P and the upper region on which reside data structures and buffers 

shown in Figure 3.5. 

Of the several lists maintained by the NIC, the most important is the list of channels. Each 

channel, whose use is described in section 3.1, has a list of expected messages (those for which the 

application has posted an MPIJlecv operation but has no matching message), a list of messages 

already received but yet unclaimed by the host, a private send ring, receive ring, and associated 
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Figure 3.5: The Layout on the NIC 

send and receive buffers. The rings hold the meta data while the buffers hold the message body. 

The M C P sends out messages in the order that it receives them from the host. Therefore the send 

buffer acts as a message queue as shown in Figure 3.6. When a message is too large to be added 

into the end of the buffer it is wrapped around to the beginning. In this way, the buffer can be 

used to accommodate messages of unlimited size as long as it makes progress on the network. If 

the buffer is filled before the entire message is downloaded onto the NIC, the remaining part of the 

message is left on the host until more buffer space becomes available. 

^ Current Message 

Figure 3.6: Messages in a Channel's Send Buffer 

The receive buffer is organized as a heap because the application may select messages based 

on a tag value rather than in order of arrival. Messages are placed in the first available free space 

and are fragmented according to space distribution, as shown in Figure 3.7. 
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Figure 3.7: Messages in a Channel's Receive Buffer 

The main send ring is in essence a ready queue for channels with outgoing messages waiting 

to be serviced. A channel can have only one entry in this ring in order to preserve the message 

sequence because at the time an entry is posted, it is not known whether the message can make 

progress. Since blocked channels are rotated in the ring to make room for active channels, multiple 

entries of a single channel in this ring can cause messages to be sent out of sequence unless an 

elaborate scheduling scheme is used. Maintaining only a single entry keeps ring management 

simple while preserving message sequences. The receive ring is a list of channels with messages 

which have been claimed by the application and are waiting to be uploaded. A channel can have 

a number of entries in this ring because message destinations are known and they are guaranteed 

to make progress. 

When an expected message eventually arrives it is sent through a common receive buffer 

instead of going through the channel's receive buffer, since its destination is known, Messages longer 

than expected and non-MPI data packets are dropped. 

In addition to data messages, M P I - N P uses control messages to enable M C P s to commu­

nicate with each other. Control messages are generated by events triggered either by the host or 

by incoming messages. Since there is only a single outgoing hardware link which may be utilized 

by both data and control messages, the latter is placed in a queue until this link becomes free and 

then transferred onto the wire. 
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Host Interface 

The host has a narrow interface to the network and is based again on message size. When 

sending a small message, if the channel send ring is empty, the message is copied into the send 

buffer and a send request is placed on the NIC. If the channel is occupied by messages, the large 

message protocol is followed because the host overhead of accurately determining the location to 

copy the message to, taking the asynchronous operation of D M A engines into account, is too high. 

When sending large messages, the host locks the relevant pages in memory and places a 

send request indicating the page table entry. It is then free to continue with application processing 

unless it is a blocking call, in which case it polls on the page table entries until they are freed by 

the M C P and then unlocks them. 

When receiving messages, the host follows the same procedure as sending large messages, 

except that it places a receive request instead of a send request. No size distinction is made when 

receiving messages since the hardware dictates (Figure 3.4) that it is cheaper to D M A messages of 

all sizes. 

Special send operations like Synchronous Send and Ready Send are handled in the NIC. 

Again the host only places the Send request which has one or more associated page table entries. 

The success of the operation is indicated by a status flag in the page table entry which is updated 

by the M C P in the usual manner. 

Host requests are placed in a designated area in NIC memory which the M C P polls. If more 

than one process wishes to interact with the M C P , a system semaphore ensures that interaction 

happens only one process at a time to prevent a race condition from occuring otherwise. An 

alternative to obeying a semaphore is for the processes to place their requests in their respective 

channels and have the M C P poll each channel. This would be effective for the host processes, but 

makes the M C P ' s task tedious on any architecture. 
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Chapter 4 

Evaluation 

M P I - N P was developed on the Linux operating system (RedHat 5.1 kernel version 2.0.35). The ex­

periments were conducted on a cluster of 266MHz Pentium PII PCs with 128MB of R A M connected 

by a Myrinet network with a L A N a i 4.1, 33MHz processor and 1 M B S R A M on the NIC. 

In obtaining measurements, we tried to simulate a typical application's environment where 

the data has only just been generated and therefore total time includes time to flush the cache into 

memory before data transfer. We adopted a pessimistic page pinning policy (refer to sections 3.5 

and 5.2) by assuming that every message was from a new data area and therefore for large messages 

we pinned the relevant pages every time data transfer was about to take place and unpinned them 

when transfer completed. 

Timings were obtained in the following manner. The sending application generates new 

data, starts the timer, sends the data and receives the same amount of data as a reply before it 

stops the timer and determines Ts as shown in Figure 4.1. The receiver, waits for data to arrive, 

starts its timer, writes new data, stops the timer, sends the data back to the sender and determines 

Tr. One way time is given by (Ts - Tr)/2. This procedure was repeated 256 times for each message 

size and the median value was used in plotting curves. Time was measured by counting machines 

cycles and dividing it by the clock speed of the C P U to convert it into units of microseconds. We 

compare our results with BIP because its architecture is exactly the opposite of MPI-NP. M P I - N P 
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Sender Receiver 

Figure 4.1: Time Measurements 

tries to make maximum use of the NP whereas BIP has only a thin software layer on the NIC, 

barely enough to facilitate data transfer thereby getting the best performance from the network 

hardware. 

4.1 Bandwidth 

Figure 4:2 is a plot of the one-way bandwidth measurements as a function of message size. We 

reach a peak application level bandwidth of 70 MBytes per second. 

In our first implementation, a page table entry held the translation of one physical page. This 

meant that data in a page in host memory required three D M A operations just to be downloaded 

to the NIC; one for fetching its address from the page table, one for downloading the data and one 

to mark that table entry as free so that the host can unpin the page. This is a significant overhead 

for 4 K B , or less, of data per page. The method only yielded a peak bandwidth of 60 MBytes per 

second. The current implementation performs a page table lookup and update every four pages. 

Each page table entry now contains address translations of four pages to accommodate this protocol 

thereby reducing the frequency of page table look up. There is still a waste of bandwidth if the 

data does not span four pages. Communicating page information to and from host memory and 
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Figure 4.2: Bandwidth vs Message Size 

the fact that M P I - N P pins and unpins the related pages every time a message is transferred, are 

the main reasons for the current implementation being unable to achieve a higher bandwidth. A l l 

these facts highlight the need for a better page management scheme to reduce the frequency of 

page table look-ups by the NIC. 

Due to memory limitations on the NIC, for messages larger than available buffer space, the 

buffer is reused in a rotating manner, i.e. as soon as an area is known to be free it is filled with 

a block of data as explained in section 3.7. The drop in bandwidth as the message size increases 

beyond buffer size is caused by the overhead of reusing buffers. 

4.2 Host Overhead 

Since M P I - N P relieves the host of several communication related tasks the overhead incurred by 

the host is kept as low as possible. Figure 4.3 compares the host overhead, during a Send operation, 

of M P I - N P with that of B I P 1 . 

The overhead in M P I - N P gradually rises when the message size increases but when it passes 

'This particular test was on the latest version BIP-0.98a which works on the newer Linux 2.2.x kernels. BIP-0.95a, 
the version used for other evaluations, had an extremely high and seemingly inaccurate overhead which, personal 
communication with the developers of BIP revealed, is not evident in the newer releases 
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Figure 4.3: Comparison of Host Overhead Variation 

the point where the protocol changes from small to large message size, 1024 Bytes, the rise depends 

on the number of pages pinned. The BIP curve makes a transition at 200 Bytes which we presume 

is the small message threshold. It's behaviour at 1000 Bytes is unexplained. BIP-0.97 has an 

identical behaviour at 1000 Bytes. 

BIP performs better for very small messages but M P I - N P performs significantly better for 

larger messages. It must be noted here that BIP has a constraint of supporting only one message 

in the pipeline allowing it to make assumptions about the channel's occupancy whereas M P I - N P is 

more flexible and as a result has more host overhead in deciding which protocol to use depending 

on channel occupancy in the NIC, as described in section 3.7. 

4.3 Latency for Small Messages 

The lowest application level latency we obtained for a 4 Byte message was 68 microseconds. This 

value is high compared to the values reported by other messaging systems referred to in this paper. 

The median value of one-way latency as a function of message size is shown in Figure 4.4 and is 
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compared to the latency obtained by BIP. The sharp rise in the BIP curve at 2562 Bytes is when 

BIP changes its protocol from small to large messages. 
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Figure 4.4: Comparison of Latency Variation 

Figure 4.5 presents a breakdown of the time a small message spends in the communication 

pipeline when the message is expected, i.e. a matching receive is already posted. The overlaps 

of time segments on the NIC depict time required to clean up queues after a message has been 

sent/received. 

We see that 75% of the time is spent on computation by the NIC. M P I - N P relies heavily on 

the NP, but the 33MHz processor on our testbed is unable to deliver good performance. In addition 

to being eight times slower than the host, it is further hampered by having to share the memory 

bus with the host and network D M A engines. This is a peculiarity of the Myrinet hardware used 

as our testbed. 

Access to the local memory bus in L A N a i 4.1 is prioritized as follows. The host D M A gets 

priority over the NP on the rising edge of a clock cycle. On the falling edge, the Receive D M A 
2BIP-0.95a was used for all other tests because it ran on the same Linux kernel MPI-NP was developed on. The 

threshold seems to differ between versions 
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Figure 4.5: A Breakdown of Message Latency 

gets highest priority, followed by the Send D M A with the N P again getting least priority. During 

program execution, the N P uses one edge of the clock cycle to fetch the instruction from memory 

and another edge to execute it. Contention for the memory bus occurs during fetching and, if 

the instruction required a memory reference, during execution. Figure 4.6A shows NP slowdown 

when one D M A engine is at work. The NP had access to memory on every other cycle edge. The 

computation had 50% memory reference instructions which is reflected by the fact that it slowed 

down by 50%. 
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Figure 4.6: Impact of D M A Activity on the Network Processor 

Figure 4.6B shows N P slowdown when both the host D M A and Send D M A engines are 

active. In this instance the NP loses access to both edges of a cycle. Since the L A N a i 4.1 chip does 
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not have an instruction cache, program execution stops until either D M A completes. 

4.4 Discussion 

The constraints mentioned above would no longer exist with the introduction of a faster network 

processor with an on-chip cache. Commonly available embedded processors have a cache, are several 

times faster than the one aboard the Myrinet NIC, are of extremely low cost and are improving fast 

in all above factors. The technology on our testbed is two years old. Yet the embedded processors 

available at that time were still more powerful than the L A N a i 4.1. An example of a two year old 

processor is the N E C R4300[Micr97] running at 133 M H z with a 16K cache and, most importantly, 

a price tag of $32 at the time. With a processor of similar power, the time a message spends in the 

NIC taken from Figure 4.5 would reduce less than 13 microseconds, not taking cache effects into 

account. With a cache, the N P need no longer block because of D M A activity and we would see a 

drastic decrease latency. 

Current embedded processors are much more powerful[Micr99] as are host processors[Dief99]. 

Systems like M P I - N P that heavily utilize the NP have much to gain from hardware advancements. 

Since M P I - N P does more work on the NIC, its percentage of improvement would be greater than 

systems that do more processing on the host. Improvements in host processor speed will also be of 

higher benefit to applications using M P I - N P since they consume less C P U cycles for communication. 
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Chapter 5 

Conclusions 

Recently, computationally intensive applications with supercomputing needs have found P C clusters 

to be a cheap and effective alternative to massively parallel processors. Contributing to this change 

are rapidly improving price/performance ratios of personal computers and momentous advances in 

networking technology that allows data transmission throughput to be measured in Gigabits per 

second. A change in network interface design by including an embedded processor on the NIC and 

making it directly accessible at user level played a significant role in the development of several 

communication systems that come close to supplying the raw hardware performance of the network 

to the application layer. An issue largely overlooked in the development of these systems is the 

utilization of the NP to reduce communication overhead on the host, a parameter which directly 

impacts the granularity of communication in parallel applications. 

5.1 MPI at the Network Layer 

We have researched the feasibility of offloading communication related tasks from the host pro­

cessor to the network processor in order to reduce host communication overhead. Our thesis was 

based on the assumption that the architecture of the NIC and especially the N P was capable of 

effectively handling more than average workloads. We have designed and implemented a prototype 
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message passing system called MPI-NP, to test our hypothesis. M P I - N P is designed to provide the 

communication layer for L A M , a public domain implementation of M P I . 

We have made use of many of the optimization techniques described in the literature and 

added a few of our own, to support latency saving features like zero copy and eager sending, 

bandwidth enhancing features like cut-through delivery and page batching, flow control using credits 

and message rendezvous protocols. Based on hardware characteristics of our testbed, we decided 

to use P I / O for small messages and D M A for large messages when transferring data between host 

and NIC. ' • 

We were successful in relieving the host processor of tasks such as message matching, flow 

control, protocols for non-standard sends, and several other tasks which were traditionally re­

sponsibilities of the operating system such as routing, resource sharing, flow control and buffer 

management. M P I - N P implements a channel abstraction on the NIC and makes the NP aware 

of the process topology and details of message envelopes to facilitate many of these tasks. This 

information makes it possible to implement collective communication with minimum interaction 

from the host. The host now only initiates communication and, in most cases, is free to return to 

the application while the NP manages the messages. This work was focused more on designing the 

network layer. Related research at the U B C Distributed Systems Lab by Chamath Keppitiyagama 

has resulted in reducing the application interface of MPI-NP, in some cases, to just one function 

call, with a total host overhead of 4 microseconds in sending a message. 

Migrating functionality to the network processor reduces host overhead. Unfortunately the 

configuration of NICs on our testbed impedes overall performance of the communication system as 

the NP is unable to effectively handle the workloads assigned to it. Existing technology and the 

microprocessor market is conducive to designing a better performing NIC. A change in hardware 

architectures where the N P performance is closer to the performance of the host would benefit 

applications and favour the design philosophy of MPI-NP. 

The question to be asked here is how much improvement should the network processor gain 

in order for M P I - N P to be effective. The current trend suggests that host processors are faster than 
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NPs and therefore for certain types of benchmarks, like latency, it is always better to do more work 

on the host. BIP, the antithesis of MPI -NP, has reported a latency of about 4 microseconds by using 

only the BIP A P I . M P I support is added on top of the BIP library. We can surmise that a small BIP 

message spends about 2 microseconds in the network layer. In order to achieve a similar timing on 

similar hardware, M P I - N P requires a N P 24 times faster than the 33MHz L A N a i 4.1, which works 

out to be more powerful than the 266 M H z host processor. This leads to the question of which 

parameter, latency or overhead, is more important. The state-of-the-art indicates that a trade-off 

between the two parameters needs to be made depending on the requirements of the application. 

Applications with fine-grained communication needs are better served by the philosophy of BIP 

whereas compute intensive applications with more coarse-grained and collective communication 

needs would work well over M P I - N P . 

5.2 Future Work 

M P I - N P is not yet fully compliant to the M P I specification. In the current implementation chan­

nels are identified by the global rank of the process, which is how messages are matched with 

requests. The issue of handling inter-group and intra-group communication is still open. In group 

communication the process ranks of a group may not be the same as their global rank. We foresee 

additional parameters in the host interface and message protocols to support groups. This means 

that the N P would be required to do more work to determine group composition and absolute ranks 

of processes whereas the host complexity would remain unchanged. 

The current implementation does not scale above 64 channels because of the static allocation 

of resources. There are several drawbacks to statically creating channels. First, the amount of buffer 

space available for each channel decreases as the number of M P I processes increase. Secondly, it is 

not possible for channels that are rarely used or not used at all to allow their resources to be used 

by other more active channels. A solution to this problem is to treat the NIC memory as a cache for 

channels. Channels would be dynamic and would not become active until they are first used and 
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when inactive, can be freed or swapped up to the host. The MPI-2.0 specification [M'ess97] describes 

dynamic process creation and management which is already supported by L A M . In designing M P I -

NP, we have foreseen the need to support dynamic channels, and have decoupled channels from 

network resources, such as buffers, message tables and request tables, as much as possible. 

M P I - N P currently employs a pessimistic page management strategy. Other known strategies 

used get around the page management overhead need to be investigated in order to implement a 

better page management scheme. Possible alternatives would be to maintain a T L B on the NIC, as 

done by U-Net [Eick95] and V M M C - 2 , and to cache pinned pages, as done by P M , with the hope 

that the next message also comes from the same vicinity as the previous message, thus avoiding 

pinning and unpinning the same page twice in quick succession. 

For very large messages, message progress is user driven in the current implementation. If 

the system runs out of page entries to accommodate the entire message, progress of non-blocking 

requests could stall until the user makes another communication request, at which time previous 

pending requests are attended to. Several implementations of M P I ( L A M , M P I C H , MPI-BIP) are 

user driven in this manner even though it means that they do not implement the M P I message 

progress rule. A possible approach would be to emulate M P I / P r o and F M by creating a new 

thread of control for every communication request, which would monitor message progress. The 

host overhead of running multiple threads, switching contexts between them and the cost of being 

interrupted by the NIC need to be quantified before such a method is selected. 

Almost all M P I systems implement collective communication on top of point-to-point prim­

itives which requires the host to interact with M C P several times incurring the associated software 

overhead every time. By making the N P aware of the application topology we have laid the foun­

dation for migrating collective communication into the NIC. The implementation would require 

only one interaction with the host per call, further reducing host overhead. The performance of 

collective routines would also increase because of the reduced interaction. 

One of the characteristics of the Myrinet is its negligible bit-error rate. Following the 

example of other systems[Arak98], M P I - N P takes advantage of this property to avoid error checking. 
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A future implementation would perform C R C checks on data and insulate the application from the 

rare network error. 
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