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Abstract 

At the heart of the ideas of the work of Dutch graphic artist M.C. Escher is the idea 
of automation. We consider one such problem that was inspired by some of his 
earlier and lesser known work [MWS96, Sc90, Sc97, Er76, Es86]. From a finite 
set of (possibly overlapping) connected regions within a unit square (Figure 1), is 
it possible to make a prototile with concatenated and colored copies of the original 
square tile (Figure 2), such that the pattern in the plane arising from tiling with the 
prototile 

• uniformly colors connected components, and 

• distinctly colors overlapping components (Figure 3)? 

The answer is yes, that such a prototile exists for any (suitably defined) de
sign confined to a unit square. We present a proof of existence and an efficient (and 
implementable) algorithm to construct prototiles. Moreover, in the existence proof, 
it will become apparent that a prototile for a given design may not be unique (up 
to concatenation). In such a situation, there are infinitely many "measurably dif
ferent" prototiles. The secret of each design is encoded by either one or infinitely 
many (number theoretic) lattices; we will show how to extract all possible lattices 
by using techniques from graph theory and graph algorithms. Finally, from a certain 
point of view, the prototiles that we construct are canonical. We begin an analysis 
of the canonical prototiles by making a connection from lattices to binary quadratic 
forms to class number. 
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Figure 1: A design for which there is a ... 

Figure 2 : ...colored prototile... 

Figure 3: ...that wallpapers the plane with suitably matching colors. 
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Chapter 1 

Preliminary Remarks 

We begin by giving some examples of problems that have been studied in computer 

science and that are related either directly or indirectly to the problem that is the 

focus of this thesis. The areas that we will consider are decidability of certain 

kinds of tiling problems, and computer graphics and aesthetics. 

1.1 Decidability 

A problem, phrased as language membership, is said to be decidable [Pa94, C086] 

if regardless of the input, there is procedure (algorithm) that outputs the correct 

answer of "yes" or "no" in a finite number of steps. Some examples are 

• Travelling Salesperson Given a finite set of cities C = {ci,..., Ck}, a dis

tance function d : C x C —> Z (the integers), and a bound B, is there a tour 

that visits each city exactly once, ends where it began, and does so with an 

accumulated distance of at most Bl 

• FSA Do two particular finite state automata recognize the same language? 
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• Tiling or Domino Problem Given infinitely many copies of a finite set of 

unit square tiles with colored edges, can the plane be tiled by translation in 

such a way that the sides abut and colors match? 

The bulk of this thesis considers a variation on the tiling problem whose 

origin lies in sketchbooks of M.C. Escher [Sc90, Er76]; it will be described in 

Chapter 2. 

We mention some results that are related to the Domino problem. A con

jecture of H . Wang [Wa74], that any set of tiles that tile the plane must admit a 

periodic tiling of the plane, was proved false by R. Berger [Be66] who produced a 

set of 20426 tiles that admit no periodic tiling; Berger later produced another such 

aperiodic set of tiles with cardinality 104. R. Robinson [Ro71] constructed an aperi

odic set of tiles with only six elements. The Penrose tiles [Pe78, GS87] are a pair of 

quadrilateral tiles together with matching conditions that admit no periodic tiling of 

the plane. To date, it is not known if there exists a single tile (a connected region of 

R2) that only tiles the plane aperiodically. Problems of the tiling ilk have captured 

the attention of scholars in many areas, included among them mathematicians (ge

ometry and number theory), computer scientists (decision problems, verification, 

graphics), artists (Alhambran designs), physicists and chemists (crystallography), 

and philosophers to name a few. See for example, [Ma76], [Ho79], [Es86], [Sc90], 

[Pe78],[Er76], [KSOOa], [KSOOb], and [MR01]. 

Outputting a "yes" or "no" answer upon any input to the original square tile 

problem is known to be equivalent to the halting problem, and so is undecidable 

[Pa94]. As such, not surprisingly, variations on the problem have surfaced. For 

example, Szegedy [Sz98] expands on the notion of tile T and allows as acceptable 

input a finite union of elements from Z x Z (lattice points in the plane), which is 

called a finite cluster. A tiling is then a covering of Z x Z with nonoverlapping 
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translates of T. For an arbitrary such T no algorithm is known to determine whether 

or not T tiles Z x Z , and Szegedy studies two special instances of the problem: 

\T\ = p, where p is a prime number, and |T|=4. In both cases he gives an efficient 

algorithm that decides whether or not an arbitrary T with the appropriate cardinality 

tiles Z x Z . He also generalizes the problem away from Z x Z to an abstract problem 

for arbitrary finitely generated abelian groups. 

1.2 Graphics and Aesthetics 

Many of the ideas behind the work of M.C. Escher lend themselves to computer 

automation. Two notable examples are 

• C. Kaplan and D. Salesin's Escherization [KSOOa], 

• 1. D. Schattschneider's Escher's Combinatorial Patterns, [Sc97, Sc90] 

and 

2. R. Mabry, S. Wagon, and D. Schattschneider's Automating Escher's 

Combinatorial Patterns [MWS96]. 

The former paper presents an algorithm that, upon given any motif (in their 

case, a decorated subset of K 2 , referred to as a "closed Figure"), outputs a new motif 

that is "close" to the original and that tiles the plane (for examples, see [KSOOb]). 

The technique used is simulated annealing, and their algorithm performs well on 

many convex or nearly convex motifs, and hence on many of Escher's original de

signs. The authors maintain that "Unlike most research projects in computer graph

ics, this one is motivated more by intellectual curiosity than by practical import." 
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The latter papers inspired the problem that is addressed in this thesis. Like 

the tiling problems mentioned in Section 1.1, the input will be information con

tained in a closed unit square, but with more complicated matching conditions than 

those imposed on the boundaries. The conditions arise from a problem of aesthetics 

and visualization, and in particular on some of the sketches found in Escher's note

books [Sc90]. The problem is difficult to state in brief terms, but can be illustrated 

visually. We will do so in Chapter 2. At the outset, the problem may be viewed 

as a decidability problem (the question of the existence of a particular geometric 

object) that will eventually be answered in the affirmative. An affirmative answer 

to the question and an array of interesting examples provoke questions of classifica

tion. Moreover, underlying the work is that we seek an efficient (polynomial-time) 

algorithm that constructs what we will define as a Big Tile. 
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Chapter 2 

Motivation and History 

A problem inspired by M.C. Escher that has recently initiated a variety of papers 

[Da97, Ge02, MWS96, Sc97, Wa99] is described as follows [Es86, Sc90]. Produce 

a potato and a sharp knife. Cut the potato in half and square off the flat face of 

one of the halves. Carve an interesting design into the square face. Call this design 

a motif. Also consider the designs created by the cyclic group of rotations acting 

on the square-with-carved-design. Each such new design is called an aspect of the 

original motif. Ultimately, use the four aspects of the motif as ink stamps. Escher's 

idea, which he hoped to sell to a tiling company, was to make a square tile to be 

used for filling the plane with a periodic pattern. For example, in the grid shown in 

Figure 2.1 stamp each subsquare with any of the four aspects of the motif (one of 

Escher's own) in Figure 2.2. 

There are four subsquares and thus 44 = 256 tiles that can be produced. Take 

a particular tile T and create a pattern in the Euclidean plane by taking the image of 

T under Z x Z. The result is a doubly periodic wallpaper pattern. See Figures 2.3 

and 2.4. Let Ti and T 2 be two tiles and W\, W2 be their respective doubly periodic 

wallpaper patterns. Tiles Ti and T 2 are inequivalent if for every isometry a we 

have o{Wx) ^WL. 
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Figure 2.1: Grid of subsquares to be used as a template for a 2x2 Escher tile 

Each tile yields a periodic wallpaper pattern, but some different-looking tiles 

yield wallpaper patterns that are equivalent up to isometry. Escher, who wanted to 

sell his idea to a tile company, wondered about the following question [Sc90, Sc97]: 

up to isometry, how many inequivalent 2x2 tiles in up to four aspects are there? The 

unexpected answer, which Escher calculated by brute force, is 23. Schattschneider 

in [Sc97] verified Escher's calculation by way of Burnside's Lemma. Gethner gen

eralized Escher's result by giving an exact formula for the number of inequivalent 

m x m tiles in up to four aspects [Ge02] for any m G Z + . 

Figure 2.2: A motif M designed by M . C. Escher 
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Figure 2.3: 2x2 Escher tile that uses all four aspects of the motif in Figure 2.2 

In particular 

Theorem 2.0.1 (Gethner): Let N4(m) denote the number of inequivalent m x m 

Escher tiles with motifs in up to four aspects. Then 

k\m fclm 

+ a ( m ) ( m 2 4 m 2 / 4 + 3m24m^2-1)}, (2.1) 

where 

a(m) 
1 ifm is even 

0 ifm is odd, 

rk is the number of (not necessarily distinct) prime divisors ofk, and $ is the Euler 

<p function. 

Escher also made use of the unused half of the potato: he carved a reflection 

of the original motif, thereby increasing the total number of aspects to eight. The 

number of inequivalent 2 x 2 tiles in up to eight aspects turned out to be 154, which 

was verified computationally by Davis [Da97]. 
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Figure 2.4: Fragment of doubly periodic wallpaper pattern produced by the 
Escher tile in Figure 2.3 

Escher, Mabry, Schattschneider, and Wagon [MWS96, Sc90] were inspired 

to think about coloring and subsequently automating the coloring. The purpose of 

Section 2.1 is to make precise the set-up for the coloring question to which they 

alluded. The purpose of the remaining chapters is to lay the foundation for an af

firmative answer to a question of existence, present an efficient and implementable 

algorithm that produces a Big Tile, to allude to aspects of classification, and to 

suggest possibilities for future research. 

2.1 Statement of Problem 

Escher's problem appears to start in the realm of geometry and in modern terms, in 

visualization. To give a precise statement of the problem, we need many definitions. 
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2.2 Weighty Definitions 

L e t S y be the subset of R 2 given by {(x,y) : i — \ <x<i+\,j-\ < y < j + 

That is, Sij is a closed square region with area one and center (i, j) and i, j e Z . 

In the previous section, Escher used a motif that was composed of many individual 

motif pieces. 

Definition 2.2.1 (Motif Piece): A motif piece (m, i, j) is a connected subset ofSij 

such that dSij f] m is a finite union of closed intervals, where dSitj is the boundary 

ofSitj. 

In the long run, the problem we are after begins with some design composed 

of motif pieces inside a unit square. For the coloring problem that we will address, 

it does not matter what method the artist used to construct the design. The previous 

section simply describes one method (among infinitely many) that an artist could 

use. 

Definition 2.2.2 (Escher tile): An Escher tile T is given by T = {(mi, 0,0), 

(m2, 0, 0 ) , . . . , (rrik, 0, 0)}, where T is a finite nonempty set of motif pieces satisfy

ing 

1. (rrii, 0, 0) n( m j ' ° ' 0) D dSo.o = 0 whenever i ^ j (no pair of motif piece 

intersect on the boundary), 

2. (rrii, 0, 0) % <9So,o (no motif piece is contained in the boundary), and 

3. (rrii, 0, 0) % \JiseA (mjs, 0, 0)for A C { 1 , . . . , k) (no motif piece is contained 

in the union of other motif pieces). 

See Figure 2.5 for an illustration of one motif piece among many that define 

an Escher tile. 
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Remarks: 

• An Escher tile is an artistic design contained in a closed unit square. 

• Given an Escher tile T = {(mi, 0,0), (m 2 ,0 ,0 ) , . . . , (mk, 0,0)} the motif 

pieces are distinct elements of a set, though as subsets of R 2 , it may be the 

case that (m,, 0, 0) f](mj, 0, 0) ^ 0 for some i ^ j. 

• In the ensuing discussions for which the location of an abstract motif piece 

(mt, i, j) is not relevant, we denote (mt, i, j) by a capital letter such as M or 

N or perhaps Mt or A^. 

Figure 2.5: One motif piece among many inside an Escher tile: Definitions 2.2.1 
and 2.2.2 

Definition 2.2.3 (Wallpaper Pattern): Given an Escher tile T, the Escher wall

paper pattern generated by T is the periodic plane pattern arising from taking 

the elementwise image ofT under the map Z x Z, and is denoted by Wall(T). 

Notation: We will generate the map Z x Z by a and /3, where for any point (x, y) € 

R2, a((x, y)) := (x + 1, y) and (3((x, y)) := (x, y + 1). In general for integers r 
and s, ar(3s((x, y)) — (x + r, y + s). For our purposes, given an arbitrary motif 

piece (mt,i,j) we write ar/3s((mt, i,j)) = (mt,i+ r,j + s). See Figure 2.6 for a 

fragment of the wallpaper pattern generated by the Escher tile in Figure 2.5. 
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Figure 2.6: Fragment of the Escher wallpaper pattern generated by the Escher 
tile in Figure 2.5 

With an Escher tile T = { ( m i , 0,0), ( m 2 , 0 , 0 ) , . . . , (mk, 0,0)}, the wallpa

per pattern given by Wall(T) is the set { a r / 3 s ( ( m i , 0,0)) : r, s G Z } | J {ar/3s((m2, 0, 

r, s G Z } | J . . . (J {arPs{(mk, 0, 0)) : r, s G Z } . That is, WaH(T) is simply the 

(necessarily infinite) set of all possible East-West and North-South integer translates 

of the elements of T. 

Definition 2.2.4 (Location of a Motif Piece): A motif piece (mt, r, s) has location 

(r, s), the center of the unit square in which mt resides. 

In Definition 2.2.2, the definition of Escher tile, we choose the motif pieces 

to have location (0, 0) for no other reason than convenience; any fixed location 

would serve the same purpose. 
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Definition 2.2.5 (Contiguous motif pieces): A motif piece is contiguous with it

self. Two motif pieces M and N in different locations are contiguous ifMf]N ^ 

0. 

Figure 2.7: The black motif piece is contiguous with five other motif pieces: 
Definition 2.2.5 

That is, a motif piece is contiguous with itself and two motif pieces in dis

tinct locations are contiguous if and only if they intersect on the boundaries of 

translates of 50,0; the intersection of distinct contiguous motif pieces is necessarily 

a finite union of vertical and horizontal line segments, some of which may be points 

[St81]. Figure 2.7 shows several contiguous motif pieces. 

Definition 2.2.6 (Related motif pieces): Two (not necessarily distinct) motif pieces 

M and N are said to be related if there exists a finite sequence of motif pieces 

{Ni, N2,..., Nt} such that M = N\, N — Nt and Ni is contiguous with A^+i for 

i = l,...,t-l. 

12 



Figure 2.8: Contiguous, related, and intersecting motif pieces: Definition 2.2.5 
and Definition 2.2.6 

See Figure 2.8 for an example of contiguous, related, and intersecting motif 

pieces. 

The subset of E 2 given by \ J l

i = 1 Ni is necessarily connected, whereas two 

or more motif pieces in the same location that intersect are not necessarily related. 

Contiguous motif pieces are related, but related motif pieces are not necessarily 

contiguous. 

Definition 2.2.7 (Wallpaper component): Given a motif piece M , the wallpaper 

component generated by M , denoted W ( M ) , is the set { N : N is a motif piece 

related to M } . 

Clearly "related" is an equivalence relation on the set of all motif pieces in 

Wall(T) arising from a given Escher tile T. Consequently, an Escher wallpaper 
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component is an equivalence class of motif pieces whose elementwise union is a 

connected subset of R 2 . Thus, the set of Escher wallpaper components partitions 

Wall(T) into (possibly infinitely many) disjoint sets, each of whose elementwise 

union is a connected subset of R2. 

It is important to continue to emphasize the distinction between set intersec

tion and the intersection of motif pieces (subsets of R 2), particularly in light of the 

next definition. 

Definition 2.2.8 (Overlapping components): Two distinct wallpaper components 

W(M) and W(N) are said to overlap if there exists (ms,i,j) G W(M) and 

{mt,i,j) 6 W(N) such that (ms,i, j) f]{mt,i, j) ^ 0. 

See Figure 2.9 for an example of a pair of distinct overlapping wallpaper 

components. The original Escher tile can be seen in any subsquare. 

The following lemma is a direct consequence of Definition 2.2.8 and the 

Z x Z periodicity of Wall(T). 

Lemma 2.2.9 (Overlaps of W((mi,0,0))): Let T — { ( m i , 0,0), . . . , (mk, 0,0)} 

be an Escher tile. Distinct wallpaper components W ( ( m i , a, b)) andW((mi, u, v)) 

overlap if and only ifW((mi, 0,0)) and W((mi, a — u,b — v)) overlap. 

At last we have the means to give the definition of Big Tile, the idea of which 

leads to nontrivial questions of existence and classification. In a word, a Big Tile for 

an Escher tile T will be an m x n rectangular region consisting of ran concatenated 

copies of T with lower left subsquare centered at (0,0) and sides parallel to the 

standard axes; each motif piece in the Big Tile will be assigned a color from a 

set of cardinality A . Finally, the image of the Big Tile under mZ x nL produces 

the original pattern Wall(T) colored in such a way that wallpaper components are 

14 



Figure 2.9: Distinct and overlapping wallpaper components: Definition 2.2.8 

uniformly colored and distinct overlapping wallpaper components are colored with 

different colors. We give the formal definition next. 

Definition 2.2.10 (Big Tile): Given an Escher tile T — {(mi, 0,0),..., (m*, 0,0)} 
a A-colored mxn Big Tile for T denoted BT{A, m, n), is laden with the following 

requirements. Let M,N € Wall(T) be arbitrary. 

• There exists a function, CA, that assigns some color from among A colors 

to each motif piece contained inside the mxn region that contains the Big 

Tile. That is C A : {mi, . . . ,mfc} x mZ x nZ —y COLORS is onto and 

\COLORS\ = A. We write (m s, to signify the colored motif piece ms 

in location 

• BT(A, m, n) = \J(i,j)ezmxZn LUi *> J * ) A , and after "tiling" the plane 

with the image of BT(A, m, n) under mZ x nZ, w Ziave 
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1. forevery(ms,il,j1)and(mt,i2,j2) e W(M)wehaveCA((ms,il,jl)) 

= CA((mt, i2,j2)) (alternatively we write CA{W{M)) — CA{W(N)), 

2. if W(M) and W(N) overlap and are distinct, then CA(W(M)) ^ 

CA(W(N)), and 

3. there does not exist a A-colored Big Tile, B'T such that B? is composed 

of concatenated copies of B'T (with sides abutting). 

The Main Questions: 

1. Given an arbitrary Escher tile T, does a Big Tile BT for T exist? 

2. If BT exists for a particular Escher tile, must it be unique? 

3. If BT exists and is not unique, what can be said about the set of Big Tiles for 

T? How do the number of colors and size of a Big Tile depend on the size of 

the input (number of motif pieces and boundary intersections)? 

4. If the answer to Question 1 is "yes" then is there an efficient algorithm to 

construct i ? r ? 

5. What can be said about the classification of the set of Big Tiles for an arbitrary 

Escher tile T? 

A picture is worth 10,000 words. In the next section we give an example. 

2.3 An Escher tile and Two Big Tiles 

The Escher tile given in Figure 2.10 was designed by M.C. Escher and produced by 

a Mathematica package implemented by Mabry and Wagon in [MWS96, Wa99]. 

Recall that there are 154 inequivalent Escher tiles that arise from taking rotations 
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and reflections of Escher's original motif (see Chapter 2) and arranging them in a 

2x2 grid. By way of the same package it is shown by trial and error that a Big Tile 

exists for each of these 154 Escher tiles. Specifically, upon input of an Escher tile T 

together with a correct guess of the Big Tile dimensions, a graphical representation 

of a Big Tile is given as output. However, if an incorrect guess is made (say m x n), 

then an m x n tile CT will be returned: the image of CT under mZ x nZ yields a 

wallpaper pattern whose wallpaper components are uniformly colored but for which 

there exists at least one pair of overlapping components that are colored the same. 

See Figure 2.12 for an example of a 3-colored 1 x 3 Big Tile for the Escher 

tile in Figure 2.10. 

Figure 2.10: Another Escher tile produced by the motif in Figure 2.2 

The Big Tile for the Escher tile of Figure 2.10 is not unique. A 4x4 Big Tile 

is shown in Figure 2.13 that requires four colors. 

In fact, as will become evident in Section 5.1, there are infinitely many es

sentially different Big Tiles for the Escher tile in Figure 2.10. 

2.4 Prior Work on Escher tiles 

Aside from Escher's original sketches, only the paper by Mabry, Wagon, and Schattschnei

der [MWS96] has addressed the question of the decidability of the Big Tile prob

lem, though they present the problem in terms of programming and visualization. 
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Figure 2.11: Fragment of singly periodic wallpaper pattern produced by the 
Escher tile in Figure 2.10 

They use a brute-force approach to show that Big Tiles exist for each of 154 Escher 

tiles that arise from the motif and the reflection of the motif in Figure 2.2. 

Their program works as follows: 

1. Upon input of a given Escher tile T, make a guess as to the dimensions of a 

potential Big Tile for T. Suppose the guess ism x n. 

2. One copy of T is placed in each of the m x n subsquares, and every intersec

tion of a motif piece with the boundary of its unit square in each of the m x n 

subsquares is labelled with a variable. 

3. If two or more boundary intersections in a given subsquare belong to the 

same motif piece, then the same variable is assigned to each such boundary 

intersection. 
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Figure 2.12: A three-colored 1x3 Big Tile for the Escher tile in Figure 2.10 

4. Two adjacent copies of T may have nontrivial intersection along a boundary. 

Suppose copy A has a boundary intersection labelled x and adjacent copy B 

has a boundary intersection labelled y, and further suppose that the boundary 

intersections corresponding to x and y intersect. Assign x = y and do so for 

all such contiguous motif pieces (see Figure 2.14). This subroutine ensures 

that motif pieces inside the m x n region that belong to a connected subset of 

R 2 will be assigned the same color, and gives rise to a set of many equations 

and many unknowns (though the system is sparse) to be solved by techniques 

from linear algebra. 

5. Construct a graph which contains a vertex for each wallpaper component, and 

two vertices are adjacent if and only if the corresponding connected regions 

inside the mxn region overlap. 

6. Vertex-color this graph and if possible assign different colors to overlapping 
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Figure 2.13: A four-colored 4x4 Big Tile for the Escher tile in Figure 2.10 

wallpaper components. 

7. If an incorrect Big Tile size is input, then the program returns as visual output 

a rectangular tile whose internal connected components are uniformly colored 

and whose opposing boundaries have correctly matching colors. 

T i l e A T i l e B 

Figure 2.14: x = y 

The authors construct a database of Big Tile sizes, one for each of the 154 

Escher tiles constructed by way of Escher's original motif. They did so by brute 

force: they looked at large fragments of wallpaper and made guesses for Big Tile 

sizes. Most, though not all, of the Big Tile sizes yield minimally colored Big Tiles. 
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In the next chapter we discuss a method to prove the existence of a Big Tile 

for an arbitrary Escher tile. 
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Chapter 3 

Escher tiles: Toolbox 

3.1 Graph Theory 

Two basic tools are required for the Big Tile existence theorem: the period graph of 

T and the overlap graph of T. 

The period graph of T is a directed labelled multigraph whose vertices are 

in one-to-one correspondence with the motif pieces of T, and whose directed la

belled edges identify contiguous motif pieces. That is, an Escher tile in the (0,0) 

position is surrounded by eight other Escher tiles whose centers are (i, j) with i, j 

G {—1,0,1} and can be thought of as being north, south, east, west, northwest, 

northeast, southwest, or southeast of the tile in the "home" position. In the period 

graph, two vertices ms and mt are adjacent if and only if (ms, 0,0) D (mt, i, j) = 

0 for some i,j £ {—1,0,1} (with at least one of i or j not equal to 0); the directed 

edge (ms,mt) is labelled with the vector See Figure 3.1 for an Escher tile 

together with it's eight surrounding Escher tiles. Figure 3.2 shows the period graph 

for the Escher tile in Figure 3.1. 

The vertices of the overlap graph are equivalence classes of vertices of the 

period graph: two distinct period graph vertices will be equivalent exactly when the 
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two corresponding motif pieces are related; the vertices of the overlap graph will be 

called jE-vertices. Two equivalent vertices necessarily belong to the same Escher 

wallpaper component, and hence it is worthwhile early on to identify such occur

rences. Two distinct £?-vertices V\ and V2 will be adjacent in the overlap graph of T 

if and only if there is non-trivial intersection in E 2 among motif pieces associated 

with Vi and motif pieces associated with V2. That is, adjacent .E-vertices in the 

overlap graph belong to distinct overlapping Escher wallpaper components must 

receive different colors in any Big Tile for T. 

Precisely, 

Definition 3.1.1 (Period Graph of an Escher tile). LetT = {(mu 0,0), (m2,0,0), 

..., (rrik ,0,0)} be an Escher tile. The period graph of T, denoted GT, is a labelled 

directed graph constructed by the following rules. 

1. (Vertices) V(GT), the vertices ofGr, are in one-to-one correspondence with 

the motif pieces ofT. Define to be the vertex that corresponds to (rrii, 0, 0) 

fori = l,...,k. 

2. (Edges) E(GT), the edges ofGr, are directed and given by (vs, vt) G E(GT) 

labelled with if and only if 

• (i,j) ± (0,0), and 

• (ms,0,0)r)(mt,i,j) ^ 0 . 

We write £(vs, vt) = to denote the vector label of directed edge (vs,vt). On 

those occasions for which we must identify each coordinate of a vector label sepa

rately, we define £i(vs, vt) — i and£2(vs, vt) = j. 
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In essence, the period graph is a road map that tells one how to walk along a 

wallpaper component without fear of derailment. 

The following proposition follows directly from Definition 3.1.1. 

Proposition 3.1.2 (Vector Labels and Edges are Bidirectional Pairs): Let T be 

an Escher tile with period graph GT- Then (vs,vt) G E(GT) ifandonlyif(vt,vs) G 
E(GT)- Moreover, £(ys,vt) = —£(vt,vs). 

Most of the time, we restrict our attention to an Escher tile whose period 

graph is connected, although in general a period graph need not be connected. Each 

connected component of a period graph corresponds to an Escher tile whose motif 

pieces are a subset of T; we make this idea precise in the next definition. 

Definition 3.1.3 (Escher tile Induced by a Subgraph of the Period Graph): Let 

T be an Escher tile with period graph GT and suppose GT has N connected com

ponents given by G\,... ,GN- Let i G {1, . . . , N} and suppose V(Gi) = {v^, vi2„ 

• • • > vi3} far some s < q. Then the Escher tile induced by Gi is the set of motif 

pieces {(m^ ,0,0) (mi2,0,0),..., (mis ,0,0)}. 

Absent from the period graph is information about when and if distinct wall

paper components overlap. That is the purpose of the next two definitions. 

Definition 3.1.4 (E-vertex): Given the period graph GT far an Escher tile T, Vi 

and Vj in V(GT) are said to be equivalent if and only if (m̂ , 0,0) and (rrij, 0,0) 

are related. The equivalence class ofvi G V(GT) under the relation related is said 

to be an E-vertex, and is denoted \VJ\. 

Note that an E-vertex represents a collection of motif pieces in a single Escher tile 

that belong to the same component in the wallpaper pattern. We have the machinery 

to define the overlap graph of T. 
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Definition 3.1.5 (Overlap Graph of an Escher tile): Let T be an Escher tile with 

period graph GT- The overlap graph of T, denoted Or, is a simple, undirected, 

unlabelled graph constructed by the following rules. 

1. (Vertices) The vertex set of Or, denoted V(OT), is exactly the set of E-

vertices ofV(GT)-

2. (Edges) Suppose [vi], [VJ] G V(OT) with [vi] f][vj] = 0. In other words, [vi] 

and [VJ] are distinct. Define [vi] to be adjacent to [VJ] in OT if and only if 

3vw G [vi] and vz G [VJ] such that (mw, 0, 0) f](mz, 0, 0) ^ 0. 

In particular, a pair of adjacent E-vertices corresponds to a pair of unrelated 

motif pieces contained in the unit square S0,o, and therefore are elements of dis

tinct overlapping wallpaper components. This information is crucial to have since 

eventually we must color such a pair of wallpaper components with distinct colors. 

Figure 3.3 shows the overlap graph for the Escher tile in Figure 3.1. 

Often it will be helpful to use the undirected unlabelled graph that underlies 

the period graph. 

Definition 3.1.6 (Agglomerated Period Graph): Let GT be the period graph for 

Escher tile T. The agglomerated period graph of GT is the undirected graph 

obtained from GT by dropping the order from the edges in E(GT), removing the 

vector labels and multiple edges. The agglomerated period graph is denoted by 

GT-

Though the agglomerated period graph has no multiple edges, it may have loops. 

An analysis of all nontrivial simple cycles (including loops) in the agglomerated 

period graph will extract inherent periodicities of the wallpaper pattern. 
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Definition 3.1.7 (Agglomerated Spanning Tree): Let T be an Escher tile with 

period graph GT and agglomerated period graph GT- An agglomerated spanning 

tree of GT is a spanning tree O/GT, and is denoted by ST-

Once we have an agglomerated spanning tree, useful information can be 

gained by reinstating the information about the edges of ST that was suppressed 

when GT was agglomerated. 

Definition 3.1.8 (Fat Spanning Tree): Let T be an Escher tile with agglomerated 

spanning tree ST- A fat spanning tree of ST, denoted ST, is the agglomerated 

spanning tree with the multiplicities, directions, and vector labels inherited from 

the corresponding edges of the period graph GT-

See Figure 3.4 for the fat spanning tree for the period graph in Figure 3.2. 

It will be useful to keep track of the edges that were removed from both the period 

graph and agglomerated period graph when the agglomerated spanning tree and fat 

spanning tree were constructed. 

Definition 3.1.9 (Agglomerated Removed Edges): Let T be an Escher tile with 

agglomerated period graph GT and agglomerated spanning tree ST- The removed 

edges of GT is the set E(GT) \ E(ST), and is denoted RT-

That is, RT is the set of edges that were removed from the agglomerated 

period graph when the agglomerated spanning tree was constructed. 

Finally, we reinstate the directions, multiplicities and vector labels to ele

ments of RT in the next definition. 

Definition 3.1.10 (Fat Removed Edges): Let T be an Escher tile with agglom

erated removed edges RT- The fat removed edges of T, denoted RT, is E(GT) \ 

E(ST)- That is, RT is the set RT with the directions, multiplicities and vector labels 

reinstated. 
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It is an easy consequence of Definitions 3.1.9 and 3.1.10 that \RT\ = 2 | i? T | . 

Later on, for the purpose of coloring wallpaper components and in light of 

Lemma 2.2.9, it is important to identify 

• [r, s] G Z 2 for which W((rai, 0,0)) does not overlap W({rn\, r , s)), and 

• [r, 5] G Z 2 for which W((mu 0, 0)) = W((mu r, s)). 

The former vectors help to identify distinct wallpaper components that may 

legitimately be colored with the same color. On the other hand, the latter vectors 

are the periodicities inherent in the wallpaper pattern. We name these two kinds of 

vectors in the next definitions. 

Definition 3.1.11 (Collision-Free Vector for T) : Let T be an Escher tile whose 

period graph is connected. Any [r, s] G Z 2 for which W ( ( m i ,0,0)) does not overlap 

W ( ( m i , r , s ) ) is a collision-free vector for T, and the set of all such vectors is 

denoted A(T). 

At the other end of the spectrum, vectors that are "forbidden" (formally 

defined in Section 5.1) are essentially those vectors that are not collision-free. See 

Figure 3.10. 

Definition 3.1.12 (Inherent Periodicities in Wall(T)): Let T be an Escher tile 

whose period graph is connected. Any [r,s] € Z 2 for which W((mi, 0, 0)) = 

TV ( ( m i , r, s)) is an inherent period of Wall(T). 

The next chapter is devoted to extracting (inherent) periodicity properties 

and overlap information from the components of the graphs GT and OT- Some

times GT alone contains enough information to produce a Big Tile for T. On those 

occasions for which the graph OT must be relied upon, the Big Tile problem gains 

more depth. 
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3.2 What the Graphs Have to Offer 

Given an Escher tile T with period graph GT, we associate a trail (any sequence of 

adjacent vertices) in GT with a 2-dimensional vector value [r, s] G Z 2 by adding the 

vector labels of all edges in the trail. This idea will be made precise in Definition 

3.2.1. 

A trail in GT encodes a walk on a fragment of a wallpaper component along 

(not necessarily distinct) contiguous motif pieces. Each step is either North, South, 

East, West, Northeast, Southeast, Southwest, or Northwest. Often we must keep 

track of the relative locations of motif pieces on such a walk. To do so, we define 

the vector value of a trail next. 

Definition 3.2.1 (Vector value of a trail in GT)'- Let T be an Escher tile with 

period graph GT and suppose Tr — {vai,..., vat} is a trail in GT- The vector 

value of Tr is given by Kvaj, vaj+l )• 

That is, the vector value of a trail Tr is the sum over all vector labels of the directed 

edges in Tr. Furthermore, a trail {t> a i,... ,vat} in GT together with one motif 

piece (mai, x, y) uniquely specifies a set of motif pieces, one for each vertex in Tr, 

that are related to (mai,x,y). So, an Escher wallpaper walker who starts a walk 

on motif piece in location (xi, yi) and walks along trail Tr whose vector value is 

[̂ 2,2/2] will finish the walk in location (x2 — x i , y2 — yi)-

Definition 3.2.2 (Set of Motif Pieces Induced by a Trail in GT): Let T be an 

Escher tile with period graph GT and suppose Tr = {vai, ..., vat} is a trail in GT-

For any a,b G Z, we define the set of motif pieces induced by Tr and (mai, a, b) 

to be 
t / i i ^ 

Tr((mai,a,b)) := (m a i ,a ,&)u (J I m a , , a - ^ £ I { V J , vj+1), b - ^ £2{VJ, vj+1) 
i=2 V 3=1 3=1 J 
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In other words, suppose we are standing on (mai, a, b) and wish to walk along the 

sequence of contiguous (and hence related) motif pieces dictated by Tr = {vai, 

• • •, vat}. We necessarily walk from (mai,a, b) to a copy of ma2. The location 

of ma2 is (a — i\(vai, v a 2 ) , b — h(vai,va2))- That is, we walk to a new location 

along a pair of contiguous motif pieces dictated by the vector label of (vai,va2). 

In general, suppose ( m ^ , ! , ! / ) is the motif piece corresponding to v a i _ i - Then 

(mai,x - M v . ^ a J , ! / - (-2{vai_^vai))is the motif piece corresponding to va% 

in Tr. So, the coordinates of the location of mai corresponding to vai £ T r are 

obtained by keeping track of where we started (namely at (a, b)) and summing over 

all vector labels of consecutive edges in Tr up to and including the edge (u a i_!, vai). 

Definition 3.2.3 (Nontrivial and Trivial Circuits in GT): Let Circ be a circuit in 

the period graph of an Escher tile. Circ is said to be nontrivial if the vector value 

of Circ in GT is not [0,0]. A circuit whose vector value is [0, 0] is said to be trivial. 

It turns out that the non-trivial circuits in GT (or lack thereof) will play an 

important role in the construction of a Big Tile. We will often exploit the association 

between circuits and vectors by referring to "linearly independent circuits" when the 

context is clear. Moreover, exploiting any spanning tree of the agglomerated period 

graph will give rise to a set of motif pieces, all related, that generate Wall(T). 

Definition 3.2.4 (Generating Motif Pieces): Let T = { ( m b 0 ,0) , . . . , (mk, 0, 0)} 

be an Escher tile whose period graph GT is connected. Define a set of generating 

motif pieces of T, denoted gen(T, a, b), as follows. 

1. Let ST be the fat spanning tree of agglomerated spanning tree ST-

2. Let Px be the unique path in ST from v\ to vxfor x = 2 , . . . , k and [ix,jx] be 

the vector value ofPx in ST-
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Then a set of generating motif pieces for T is gen(T, a, b) := {(mi, a, b), '(m 2, a+ 

«2, b + j2), (mk, a + ik, b + jk)}. For s = 1,..., k, we say that (ms, a + is, 

b + js) G gen(T, a, b) is a generating motif piece for T. 

Most often we use gen(T, 0,0) = {(mu0,0), [m2,i2,32), (mk,ik,jk)}. A set 

of generating motif pieces for an Escher tile is, in effect, a set of translated elements 

of T whose union is a rearrangement of the original motif pieces that forms a con

nected subset of R 2 . In fact an Escher tile whose period graph is connected is like 

a set of jumbled puzzle pieces that are unscrambled by gluing together the set of 

generating motif pieces with instructions from the fat spanning tree. Figure 3.5 is 

an example of an Escher tile together with a set of generating motif pieces. An ex

ample of an Escher tile, its period graph, a fat spanning tree and a set of generating 

motif pieces are given in Figures 4.1, 4.2, 4.4, and 4.5. 

Definition 3.2.5 (Ghost Motif Piece and Ghost Vector): Let T = {(mi, 0,0), 

(m2, 0, 0), . . . , (mk, 0, 0)} be an Escher tile whose period graph GT is connected. 

Let ST be an agglomerated spanning tree ofGT- Suppose gen(T, 0, 0) = {(mi ,0,0), 

..., (mk ,ik,jk)} is a set of generating motif pieces that arise by way of ST- A ghost 

motif piece of (m s , is,js) G gen(T, 0,0) is any motif piece (ms, a, b) such that 

• (a,b) ^ (is,js) and 

• (m s , a, b) is contiguous with some element ofgen(T, 0, 0). 

The vector [a — is,b — js] is a ghost vector for T. 

A ghost motif piece (or simply ghost) is necessarily contiguous with a gen

erating motif piece: the ghost vector that translates a ghost to it's generator will 

help identify inherent periods in the wallpaper pattern. For example in Figure 3.5, 

note that ghost vector [2,1] translates ghost (m 3 , —2,1) to generator (m 3 ,0, 2). 
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The next lemma and corollary are immediate and useful consequences of 

Definition 3.2.5. 

Lemma 3.2.6 (Finitely Many Ghost Vectors): Let T = {(mi, 0,0), (m 2 ,0,0), 

..., (rrik, 0,0)} be an Escher tile whose period graph is connected. Then there are 

only finitely many ghost vectors for T. 

Proof: Any set of generating motif pieces is contained within a square of side 

length k. By Definition 3.2.5, a ghost motif piece is contained within a square of 

side length k + 2 (expand the original by one unit in all directions). | 

Corollary 3.2.7 (Ghost Vectors are Bounded in Length by 0(k)): Let T = 

{(mi, 0, 0), (m 2 , 0, 0), . . . , (rrik, 0, 0)} be an Escher tile whose period graph is 

connected. If [a, b] is any ghost vector for T then \a\, \b\ < k + 1. 

Finally, in the remainder of this section, we will show that the ghost vectors 

(inherent periodicities in their own right) are the building blocks for the inherent 

periodicities in the Escher wallpaper pattern Wall(T). 

Lemma 3.2.8 (Ghost Vectors as Building Blocks of Inherent Periodicities): Let 

T = {mi, 0, 0), . . . , (m*;, 0,0)} be an Escher tile whose period graph is connected 

and suppose a set of generating motif pieces for T is gen(T, 0, 0) = {(mi, 0, 0), 

..., (m-k, iki jk)}- Then (ms, a, b) is related to (ms, c, d) if and only if there exists 

X\,..., %N G Z such that 

a 

b 
where {gi , . . . , grsr} is the set of ghost vectors for T. 

XiEi-\ r - X j v g N , 
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Moreover, 

• for any (ms, a, b)), (ms, c, d) G Wall(T), we have W((ms , a, b)) = W((ms, 

c, d)) if and only if equation (3.1) holds for some X i , ..., x^. 

Proof: Motif piece (ms, a, b) is related to (ms, c, d) if and only if (ms, a, b) and 

(ms, c, d) belong to the same wallpaper component. Let Walk = {N± = (ms, a, b), 

N2, ..., Nj = (ms, c, d)} be a sequence of contiguous motif pieces that describes 

a walk from (ms, a, b) to (ms, c, d). We know that 

Wall(T)= | J gen(T,x,y), 

where the union is disjoint, and thus Walk is represented by a (not necessarily 

distinct) sequence gen(T, x\,yi), gen(T, x2, y2), • • •, gen(T, XQ, yo). In particu

lar, Walk alternates between subwalks within a set of generating motif pieces 

and an exit from that set of generating motif pieces to the next gen(T, xa,ya). 

The exit necessarily takes place from a generator in gen(T, Xi, yi) to its ghost in 

gen(T, xi+i,yi+i). Say the vector value of the walk from this generator to its ghost 

is gi-

We now determine the vector value of Walk. First, since (ms, a, b) G gen(T, 

%u yi) we have a = xi+is and b = yi+js. Similarly, c = xR + is andrf = yR+js. 

The subwalk in gen(T, xi,yi) starts on (ms, a, b) and must end on (mtl ,a — itl,b — 

jtl), where (m t l , x2 + itl, y2 +jh) G gen(T, x2,y2)isa ghost of (mtl ,a-it,b-jt). 

Let gi x be the associated ghost vector. Then the vector value of the walk from 

(ms, a, b) to {mtl, x2 + itl, y2 + jh) is 

xi + ih - a x i + ih - x i - i s hi ~ i's xi + ih - a 
+ g h = + g i i = 

Vi + hi - b Vi + Jti - 2/i - Js Jh ~ js 
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In general the walk from (ms, a, b) to (ms, c, d) has vector value given by 

+ gi 3 + • • • 
- is ih ~ ih 

+ Sh + 
Jtl ~~ Js jt2 -jti 

+ itQ - V i 
+ gitQ_x + 

is ~ itQ + - V i 
+ gitQ_x + 

JtQ ~~' JtQ-l Js — JtQ 

— S i l "t~ Si2 + ' " ' + SiQ_i > 

as desired. 

For the second claim, W((ms, a,b)) = W((ms, c, d)) if and only if (ms, a, b) 

and (ms, c, d) are related if (and by the first part of this proof) if and only if equation 

(3.1) holds. This completes the proof. | 

Lemma 3.2.9 (Circuits in GT are Linear Combinations of Ghost Vectors): Let 

T be an Escher tile whose period graph GT is connected. Suppose Circ = {v^, 

..., vis} is a circuit in GT whose vector value is [a, b] [0, 0]) and let (gi, . . . , 

g N} be the set of ghost periods for T. Then 

a 

b 
= Zlgl H rXNgw 

Proof: Choose any x,y G Z . Motif pieces (ms,x,y) and (ms,x + a,y + b) 

are contained in the set of motif pieces induced by Circ and (ms, x, y). Therefore 

(ms, x, y) and (ms, x + a, y + b) are related. By Lemma 3.2.8, 

a 

b 
Zlgl + H^ATgN, 

as desired. | 

We summarize the results from this section. 
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• By Definition 2.2.6, (ms, a, b) is related to (ms, c, d) if and only if there is a 

walk along contiguous motif pieces from (ms, a, b) to (ms, c, d). 

• By Definition 3.1.1, there is a walk along contiguous motif pieces from (ms, 

a, b) to (ms, c, d) if and only if there is a circuit in GT given by {vs,vi2, ..., 

Vs}- • 

• By Lemma 3.2.8, (ms, a, b) is related to (ms, c, d) if and only if 

= Z l g l + H X A r g N , 
c — a 

d-b 

where g i , . . . , g N are the ghost vectors of T, and xx, ..., G Z . 

We conclude that the vector value of any circuit in GT is an integer linear 

combination of ghost vectors for T. Moreover, by the second claim in Lemma 3.2.8, 

all integer linear combinations of the ghost vectors for T exactly characterize the 

set of vectors [A, B] such that W((mx,x, y)) = W((m1,x + A,y + B)). 

Thus, the subspace of Z 2 spanned by the ghost vectors GV := {#i, . . . , # A T } 

describe the inherent periodicities in Wall(T). In the next section we rely on this 

characterization of inherent periodicities to define, essentially, three kinds of Escher 

tiles (whose period graphs are connected): 

• the subspace spanned by GV is trivial, or 

• the subspace spanned by GV is one-dimensional, or 

• the subspace spanned by GV is two-dimensional. 

The machinery is in place: in the next section we outline how to use it. 
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3.3 Number Theory 

The period graph of an Escher tile contains much information, some of which can 

be extracted by using number theory. The crux of the matter is that 

• nontrivial circuits in the period graph can be viewed as vectors in Z 2 (by way 

of their vector values), 

• the vector value of any circuit in GT is a linear combination of ghost vectors, 

GV, and 

• the subspace spanned by G V has dimension 0,1 or 2. 

• If the subspace of Z 2 spanned by G V does not have full rank, then we sup

plement GV with either one or two collision-free vectors, as needed. 

• Ultimately, we associate an Escher tile with a pair of linearly independent 

vectors from Z 2 . A l l integer linear combinations of such a vector pair forms 

a (number theoretic) lattice. This special lattice will be the main tool with 

which we construct a Big Tile for T. 

The next three definitions serve to distinguish among the three possible ranks 

of the subspace spanned by the ghost vectors of an Escher tile. 

Definition 3.3.1 (Component of GT is trivially periodic): Let C(GT) be a con

nected component of period graph GT of an Escher tile T. If the Escher tile T' 

induced by C(GT) has no ghost vectors, then V is said to be trivially periodic. 

An Escher tile that is trivially periodic will have a wallpaper component that 

is bounded by a disk in the plane. See Figure 3.6. 
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Definition 3.3.2 (Component of GT is singly periodic): Let C(GT) be a con

nected component of period graph GT of an Escher tile T. Let T' be the Escher tile 

induced by C(GT)- If the dimension of the subspace spanned by the ghost vectors 

for 7" is one, then V is said to be singly periodic. In particular, if GV = { x i U , 

x2u, . . . , xNu}, then the natural period forT' is gcd(xi, ..., XN)U. 

That is, the natural period, which is a priori an inherent period, is the small

est (in Euclidean length) vector [̂ 1,̂ 2] for which there are related motif pieces in 

different locations, (ms, a, b) and (ms, c, d) such that 

Pl a — c 

P2 b -d 

Moreover, an Escher tile that is singly periodic will have a connected component 

that is infinite, but that is contained in a band of finite width. See Figure 3.7. 

Definition 3.3.3 (Component of GT is doubly periodic): Let C{GT) be a con

nected component of period graph GT of an Escher tile T and suppose T" is the 

Escher tile induced by C(GT)- If the dimension of the subspace spanned by the 

ghost vectors G V for T' is two, then T' is said to be doubly periodic. Any basis 

for GV is a pair of natural periods for T". 

An Escher tile that is doubly periodic will have a component that is un

bounded in all directions; it cannot be contained in any half-plane. See Figure 3.8 

for an example of an Escher tile whose period graph has a doubly periodic compo

nent. 

For the most part we will concentrate on Escher tiles whose period graphs 

have only one connected component. Figure 3.9 is a singly periodic Escher tile with 

natural period [1, —3]. Figure 3.10, a fragment of the wallpaper pattern generated 
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by the Escher tile in Figure 3.9, shows three vectors: the natural period ([1, —3]), a 

collision-free vector ([1, 0]), and a forbidden vector ([0, —1]). 

Next we use the natural period(s) of C(GT) to give a more concise descrip

tion of wallpaper components than that given by Definition 2.2.7. 

Lemma 3.3.4 (Wallpaper Component Description): Let T — {(mi, 0, 0), . . . , 

(mk, 0, 0)} be an Escher tile and suppose GT is is connected. 

• Suppose GT is singly periodic with natural period \pi,P2] and let ST be an 

agglomerated spanning tree for GT that yields gen(T, 0, 0) = {(mi, 0, 0), 

(m2,i2, J2)i • • •, (™>k,ik,3k)}- ThenW((ml,r,s))= {{(m^r + k0pu s + 

k0p2), (m 2 , r-i2+koPi, s-j2+k0p2), . . . , (m f c, r-ik + k0pi, s-jk+k0p2)} : 

k0 G Z}. 

• Suppose GT is doubly periodic with natural periods [pi,p2] and [qi, ft], and 

let §T be an agglomerated spanning tree for GT that yields gen(T, 0, 0) = 

{(mi, 0,0), (m2,i2,j2), •-., (rnk,ik,jk). ThenW((mur,s)) = {{{m1,r + 

koP\ + l0qi, s + k0p2 + /oft), (™2, r - i2 + k0pi + l0qi, s-j2 + k0p2 + /oft), 

..., (mk, r -ik + koPi + l0qi, s - jk + k0p2)} : A;0, l0 € Z} . 

Proof: Case 1 (GT is singly periodic with natural period [pi,p2]): By Defi

nitions 2.2.7 and 3.1.1, in general, if (ms,ii,ji) and (mt,i2,j2) G W((mi,r,s)) 

are distinct, then there exists a nonempty path GT from vs to vt. In our particular 

situation, (mi, i,j) G W((mi,r, s)) with (i,j) ^ (r, s) if and only if there exists 

a nonempty circuit, Circ, in G T beginning (and ending) on vL. Since GT is singly 

periodic, the vector value of Circ is /cobi,P2] for some /c0 £ Z . Alternatively, 

i = r + /c0pi and j = s + A;0p2, as needed. 

Now suppose (mx,i,j) G W((m!,r, s)) for some x G { 2 , . . . , k}. There is 

a path from (mx, r, s) along contiguous motif pieces in W((mi,r, s)) if and only if 
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there is a corresponding path P from vx to v\. HP is the unique path from vx to v\ 

in ST, the agglomerated spanning tree of GT then i = —ix + r and j = — jx + s. 

If P is not the unique path from v\ to vx in S V then suppose P' is. In other words 

the vector value of P' is [ix, jx]. The concatenation of P with the reversal of P' 

yields a circuit starting (and ending) at V\ and passing through vx. By necessity, 

the vector value of the circuit is ko\pi,p2] for some k0 ^ 0. So, on one hand, the 

vector value of Circ is k0\pi,p2] and on the other hand the vector value of Circ is 

the difference of the vector values of P and P'. In all, the vector value of P is then 

h[Pi,P2\ ~ [ix,3x] = [-ix + koPu -jx + k0p2]. Alternatively, i = r - i x + k0pi and 

j = s — jx + k0p2. In summary, the set of locations that contain translates of my 

in W((mi,r, s)) is given by {{r-iy + kopx, s-jy + k0p2 : k0 £ Z} for y = 1,..., k. 

Case 2 (Gr is doubly periodic with natural periods [pi,£>2] and [qi, tfe]): A sim

ple modification of the proof of Case 1 gives us that the set of locations that contain 

translates of my in W((m,i,r, s)) is given by {(r — iy + k0pi + loq2, s — jy + k0p2 + 

I0Q2 • k0,l0 E Z} for y = 1,..., k. | 

Finally, we will use ghost motif pieces and vectors to produce the natural 

periods (if there are any) of an Escher tile. 

Proposition 3.3.5 (Use Ghost Motif Pieces to Extract Natural Periods): Let 

T = {(mi, 0, 0), . . . , (m-h, 0, 0)} be an Escher tile whose period graph GT is con

nected Let GV be the set of ghost vectors for T. The natural periods ofT can be 

extracted from GV inO(k2) time. 

Proof: By Lemma 3.2.6 and Corollary 3.2.7 there are 0(k2) ghost vectors each of 

whose entries is bounded (in absolute value) by 0(k). 

Suppose T is singly periodic and let the set of ghost vectors be G V = {X\VL, 

..., xtu}. By Definition 3.3.2, the natural period of T is gcd(^i, . . . , xt)u. Since 
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t = 0(k2) and X j = 0(k) for i = 1,..., k, finding the greatest common divisor can 

be done in 0(k2) time. 

Suppose T is doubly periodic. By Definition 3.3.3, Lemma 3.2.6 and Lemma 

3.2.9, a pair of natural periods for T is a basis for the vector space spanned by G V . 

Since \GV\ =0(k2) and the entries of each element of GV are bounded in absolute 

value by 0(k), finding a basis can be done in 0(k) time [Co95]. | 

The purpose of the next definition is to identify a particular translate of m i 

for an arbitrary Escher wallpaper component W((mi, r, s)) whose component in 

the period graph is singly periodic. We have m i in location ( r , s) belonging to 

W((mi, r, s)). When a wallpaper component corresponds to graph component of 

GT that is singly periodic (in a sense, the hardest case) we subtract integer multiples 

of the only periodicity [ p i , p 2 ] from [r, s] to find translates of mx in W ( ( m i , r, s)). 

The translate of m x closest to and above or on the x—axis will be a special copy 

of m i and its y-coordinate defined to be the height of W((mi, r, s)). For exam

ple, when the height of W((m-i,r,s)) turns out to be 0, then W((mi,r,s)) is a 

horizontal translate (or rightward shift) of W((mi, 0,0)). 

Definition 3.3.6 (Height of a singly periodic wallpaper component): Let T be a 

singly periodic Escher tile with natural period [ p i , p 2 ] . The height of W ( ( m i ,r,s)) 

is s (mod P2) and is denoted height(W((m-i, r, s))). 

Escher tiles for which the period graph has some connected components that 

are not doubly periodic provide flexibility in the outcome of a Big Tile. We will see 

that a doubly periodic Escher tile is encoded by a pre-determined number-theoretic 

lattice, and gives no choice as to the assignment of colors in a Big Tile, and is in a 

sense the easiest case to consider. The essence of the global solution, that of exis

tence of a Big Tile for arbitrary Escher tiles, lies in the choice of one collision-free 

vector in the singly periodic case, and in the choice of a pair of linearly independent 
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collision-free vectors in the trivially periodic case. One has the sense that there is 

a minimal (with respect to the associated lattice) such vector pair that will do the 

trick. Any vector pair that survives the minimality conditions and respects the in

herent periodicities will be fair game for use in creating a Big Tile. 

Not surprisingly, since we are after a rectangular Big Tile, and since we 

are going to use a lattice L to find one, it will be important to find the smallest 

rectangular sublattice of L. 

Lemma 3.3.7 (Smallest Rectangular Sublattice of Lattice): Suppose L = < 

[Pi, P2], [qi, Q2] > is the lattice generated by \puP2], [91,92] £ ^ 2 and let A = 

Pi92 — P29i- The smallest rectangular sublattice of L is L' = < [|gcd(^2 ̂ , 0], 

[0> |gcdut i ,9 i ) | ] > • 

Proof: If there are x, y G Z such that 

Pi 9i r 
+ y — 

P2 _ 92 0 

then 
Pi 9i X r 

P2 92 _ . y . 
0 

in which case 
X 1 92 -Qi r 

y ~ A -P2 Pi 0 

or alternatively, 

X A 

.  y . 

-p2r 

.  y . A 

Thus, r = — — r because r G Z and Iri is minimal. A similar argument shows 

that the smallest nonzero value of \s\ for which [0, s] G L is s = gcd(^ qiy 
This 

completes the proof. | 
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Our next task will be to gain some understanding about how to find one or 

two collision-free vectors for an Escher tile whose period graph is connected and 

either singly or trivially periodic. To find suitable collision-free vectors, we call 

upon OT, the overlap graph of T; we explain the use of overlap graph by way of a 

detailed example. 
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Figure 3.1: An Escher tile in home position surrounded by eight other Escher 
tiles. Motif piece (m 4, 0, 0) is contiguous with (m 3 ,1, 0) and (m 3, 0, 0) is con
tiguous with (m 4, —1,0). Therefore, the period graph (see Figure 3.2) contains 
directed edge ( r a 4 , ra3) with vector label [1,0] and directed edge ( r a 3 , m 4) with 
vector label [—1,0] (as well as many other edges). 

42 





44 



Figure 3.5: Unravelling the Escher tile puzzle with a set of generating motif 
pieces. A ghost of (m 3 , —2,1) is (m 3 , 0, 2) 
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Figure 3.6: Trivially periodic Escher tile 



Figure 3.8: Component that is doubly periodic 

Figure 3.9: Singly periodic Escher tile with natural period [1, —3] 

47 



Figure 3.10: Natural period [1, —3]; collision-free vector [1,0]; forbidden vector 
[o,-i] 
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Chapter 4 

Detailed Example 

Begin by inputting an Escher tile T = {(mi, 0, 0), (m 2 , 0, 0), . . . , (m 9 , 0, 0)}: see 

Figure 4.1. We keep track of the pairwise intersections of elements of T in the 

overlap graph OT, and also of the intersections of elements of T with dSo,o. 

• Construct GT, the period graph for T; see Figure 4.2. 

• Let ST be a spanning tree of the agglomerated period graph GT- An example 

is shown in Figure 4.3. 

• We gain some insight by drawing the vertices and edges of the spanning tree 

in Figure 4.3 in the plane so that the vertices that represent motif pieces are 

in their correct physical locations under the assumption that m x is in location 

(0,0). See Figure 4.4. 

• By way of the fat spanning tree ST, a set of generating motif pieces (see 

Definition 3.2.4) is given by gen(T, 0,0) = {(mi, 0,0), (m 2 ,0,1), (m 3 , 2,0), 

(m 4 ,1,0), (m 5 ,1,1), (m 9 ,1,1), (m 6 , 2,1), (m 7 ,3,1), (m 8 , 3, 2)}, which is 

shown in Figure 4.5. 
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Let RT be the set of edges that were removed from GT when the spanning 

tree ST was constructed. In this example, RT = {(u 4, Vg), (v2, v3)}. Let 

RT = E(GT) \ E(ST)- That is, return the multiple edges and vector labels to 

elements of R. Then RT = {(w4, vg) labelled [0, —1], (vg, i>4) labelled [0,1], 

(v2,v3) labelled [0,1], (v3,v2) labelled [0, -1]}. Thus, there are potentially 

four ghost motif pieces: {(m 4 ,1,0), (m 9 ,1,1), (m 3 , 0, 2), (m 2 , 2, —1)}. A l l 

of these motif pieces are contiguous with generating motif pieces, but not all 

give rise to ghost vectors as we shall see. 

We wish to determine if the motif piece corresponding to an endpoint of a re

moved edge is in a location that is different than its corresponding generating 

motif piece; when such a situation occurs, we have identified a ghost vector. 

- For example, (m 4,1,0) lives directly below (m 9 ,1,1), and is shown in 

Figure 4.6 in dark gray. Since (m 4,1,1) lands in the same location as 

generating (m 4 , 1, 0), no information is gained. 

- Similarly, the ghost of (m 9 , 1,1) lives directly above the generator (m 4 , 

1, 0), and lands in the same location as the original (m 9 ,1,1), so no 

information is gained. See Figure 4.7. 

- What about the ghosts of (m 2,0,1) and (m 3 , 2,0)? The ghost of (m 3 , 

2, 0) lives directly above (m2,0,1) and is shown in Figure 4.8. 

- Since the locations of (m 3 ,0, 2) and (m 3 , 2,0) satisfy [0 - 2, 2 - 0] = 

- [2 , -2 ] , we conclude that [2,-2] is a ghost vector for the Escher tile 

in this example. 

- The last motif piece to check is the ghost of (m 2 ,0,1). In general, the 

number of ghost motif pieces is at most 2|i?r|- The ghost of (m2,0,1) 

lives directly below (m 3,2,0) as shown by Figure 4.9. 
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- Since generator (m 2,0,1) and ghost (m 2 , 2, —1) satisfy [0 — 2,1 —(-1)] 

= [2, -2] , we find (again) that [2, -2] is a ghost vector of T. 

Figure 4.1: An Escher tile: Big Tile to be determined 

We conclude that the Escher tile T is singly periodic with period [2, -2] 

because there is only one ghost vector. 

The previous example illustrates (one case of) a theorem guaranteeing that 

the natural period(s) of Escher tiles can be found in polynomial time. 

We now have a method by which we can compute the /^-vertices of the over

lap graph. 

Detect-reIated-motif-pieces-in-location-(0,0) algorithm: 

If Escher tile T is doubly periodic, we need not worry about detecting related motif 

pieces because the Big Tile is unique and predetermined. In fact we do not need to 

use the overlap graph, as we shall see in Section 5.1. 

In that case, first assume that T is singly periodic with natural period \p\, p 2]. 

Recall that gen(T, 0, 0) = {(mi, 0,0), ( m 2 , i 2 , j 2 ) , (mk,ik,jk)}. Let (ms,is, 

js)-. (™*,h,jt) €• gen(T,0,0) with s f t. Since (ma,i„ja) is related to (mt,it,jt), 
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Figure 4.2: Period graph, GT, for T in Figure 4.1 

we have (m s,0,0) is related to (mt,it — is,jt — js). Hence, (m s ,0,0) is related 

to (mt, 0,0) if and only if (mt, 0,0) is related to (mt, it - is,jt — js). By Lemma 

3.3.4, (mt, 0,0) is related to (mt, it — is,jt — js) if and only if 

is ~ it 
= k0 

Pi 
= k0 

js - jt . P 2 . 

for integer k0 0. 

Practically speaking, in the singly periodic case, we have reduced the prob

lem of detecting which motif pieces in an Escher tile are related to that of comparing 
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Figure 4.3: A fat spanning tree, ST> for GT 

the locations of elements of gen(T, 0, 0) with their corresponding ghosts. 

In this example, (m 5,0,0) and (m 9,0,0) are related because ( m 5 , l , l ) , 

(m 9,1,1) € gen(T, 0,0) are related since [ 1 - 1 , 1 - 1 ] = [0,0] is a multiple of 

[2, -2] so that v5 G [vg]. (In the trivially periodic case, the agglomerated spanning 

tree is unique and thus a set of generating motif pieces necessarily places related 

motif pieces in the same location.) 
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Figure 4.4: The fat spanning tree, ST with vertices embedded in correct loca
tions relative to (mi, 0,0) 

4.1 Get a Collision-Free Vector 

Next we seek a collision-free vector that is linearly independent with [2, —2], the 

natural period of T. To find such a vector we will use the Overlap Graph of T. See 

Figure 4.10. 

Remark: At most 14 distinct Escher wallpaper components overlap W((m\, 0,0)). 

(In general the "14" will be replaced by twice the number of edges in the overlap 

graph.) 

Idea of Proof: By Definition 2.2.7, W((mi, 0,0)) is the set of all motif pieces 

related to (mi, 0,0). By Lemma 3.3.4, the set of all translates of (mi, 0,0) that 

belong to W((mi,0,0)) have locations given by {(2k, — 2k) : k G Z} . Simi

larly the set of translates of (m 2,0,0) that belong to W((m2,0,1)) have locations 

given by {(2k, 1 - 2k) : k G Z}. The set of translates of (m 3,0,0) that be

long to W((mu 0,0)) have locations given by {(2 + 2k,-2k : k G Z}. The 
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Figure 4.5: Set of generating motif pieces gen(T, 0, 0) 

set of translates of (m 4,0,0) that belong to W((mx, 0,0)) have locations given by 

{(1 + 2k, -2k) : k G Z}. The set of translates of (m5, 0, 0) and (m 9 , 0, 0) that 

belong to W((mi, 0, 0)) have locations given by {(1 + 2k, 1 — 2k) : k G Z}. The 

set of translates of (m 6 , 0, 0) that belong to to W((mi, 0, 0)) have locations given 

by {(2 + 2k, \ - 2k) : k G Z}. The set of translates of (m 7,0,0) that belong 

to to W((mi, 0,0) have locations given by {(3 + 2k, 1 — 2k) : A; G Z}. The set 

of translates of (m 8 , 0, 0) that belong to to W((mx, 0, 0)) have locations given by 

{{3 + 2k,2-2k) : k G Z}. 

Thus, to find a wallpaper component that overlaps W((mi, 0,0)), it suf

fices to pick for example, (m 4 ,1 + 2fc, —2k) and find all motif pieces that overlap 

(m 4 ,1 + 2k, —2k) (and in general, find all motif pieces that overlap elements of 

gen(T, 0, 0).) With that goal in mind, note that (m,, 1 + 2k, -2k) n ( r a 4 , 1 + 

2k, —2k) ^ 0 if and only if (m 4 ,1, 0) fl {rrii, 1, 0) ^ 0 , which is true if and only 

if (m 4,0,0) n (rrii, 0,0) ^ 0 . But this is precisely the information contained in the 

overlap graph OT, namely which motif pieces in a given unit square have nontrivial 

intersection as subsets of R 2 . In all, for each i?-vertex [v] in the overlap graph, 
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Figure 4.6: A potential ghost of m 4 

there are deg([u]) motif pieces that overlap the equivalence class of motif pieces 

contained in [v]. Hence, there are at most Yl[v]eoT d e s(M) = ^ distinct wallpaper 

components that overlap W((mi, 0,0)). 

A nearly immediate consequence is that there exists a vector [r, s] such that 

W((TOI,0, 0)) and W((mi,r, s)) do not overlap, which is what we are after. In 

fact, it won't be hard to generalize away from this example and characterize the set 

of all vectors [r, s] for which W((mx, 0, 0)) does not overlap W((mi, r, s)) for any 

connected component of the period graph of an Escher tile T. 

For now, though, we set our sights lower since we are after existence. Re

call that the goal for the singly periodic example in this section is to find a second 

vector [r, s] linearly independent with [2, —2] and such that W((mi,r, s)) does not 

overlap W((mi, 0,0)). It suffices to find the (at most) 14 wallpaper components 

that overlap W((mi, 0,0)), and then, for example, find a translate of W((mi, 0,0)) 

that is not in the set of wallpaper components that overlap W ( ( m i , 0,0)). The fol

lowing are the details of computations that enable us to find suitable collision-free 

vector(s). 
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mi )—{ m4 ) — ( m3 

Figure 4.7: A potential ghost of m 9 

The Actual Work: 

Since (mi, 0,0) and (m 8,0,0) are not overlapped by any motif pieces, it suffices to 

study the pairwise intersections among (m 2 , 0,1), (m 3 , 2, 0), (m 4 ,1 , 0) (m 5 i 9 ,1,1), 

(m 6 , 2,1), and (m 7 , 3,1). We use gen(T, 0, 0) as a set of generators together with 

the natural period [2, —2] to choose motif pieces (mi, x, y) such that y = 0 or y = 1 

(the height of the wallpaper component) as generators for all wallpaper components 

under consideration. This gives us an easy way to see when two wallpaper compo

nents are the same. 

Motif piece (m 2,0,1) is overlapped by 

. W((m 4 , 0 , l ) ) W((mu-1,1)), 

• H/((m 6 ,0 , l ) ) W((mu-2,0)), 

• W((m7,0,1)) W((mu-3, 0)), and 

• W{(m5,9,0,l)) = W((m1,-2,l)). 

Motif piece (m 3,2,0) is overlapped by 
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0 

Figure 4.8: The ghost of m 3 

• W{(m6, 2,0)) = W((rnu 0, -1)) = W((mu -2,1)) . 

Motif piece (m 4,1,0) is overlapped by 

. W((m2,1,0)) = W((mi,-l,l)), 

• W{(m6,l,0)) = ^ ( (m! , -3 ,1 ) ) , and 

. W((m7,1,0)) = W((mi,-4,1)). 

Motif piece (m 5 > 9,1,1) is overlapped by 

. W((m2,l,l)) = W((ml,l,0)). 

Motif piece (m 6,2,1) is overlapped by 

• W{{m2,2,l)) = W{{mx,2,0)), 

• i y ( (m 3 , 2 , l ) ) = W((m 1 ,0 , l ) ) ,and 

• W((m4,2,l)) = W((ml,l,l)). 

Motif piece ( ra 7 ,3 ,1 ) is overlapped by 

58 



Figure 4.9: The ghost of m 2 

• H/((m 2 ,3 , l ) ) = W ( ( m i , 3 , 0 ) ) a n d 

• W((m4,3,l)) = W((mi,2,l)). 

From a wallpaper component W((mi, a, b)) that overlaps W((mi,0,0)) (with 

b — 0 or b = 1 for this singly periodic example with natural period [—2, 2]) we know 

that any vector in the set {[a, b] + k[-2,2] : k € Z} is not available as a collision-

free vector for Escher tile T. The previous list, once the repetitions have been 

eliminated, yields the complete list of vectors that are not available as collision-free 

vectors: 

• { [ - l , l ] + fc[-2,2] : k e Z}, 

• {[-2,0] + fc[-2,2] :keZ}, 

• {[-3,0] + fc[-2,2] : k G Z}, 
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Figure 4.10: The overlap graph 

• {[-2,1] + fc[-2,2] : k G Z}, 

• {[-3,1] + A;[-2,2] : k G Z} , 

• {[-4,1] + fc[-2,2] : k G Z}, 

• {[1,0] + A;[-2,2] : k G Z} , 

• {[2,0] + A;[-2,2] : k G Z}, 

• {[0,l] + A;[-2,2] : A; G Z}, 

• {[1,1] + 2, 2] : k G Z} , 

• {[3,0] + fc[-2,2] : A; G Z}, and 

• {[2,1] + A;[-2, 2] : k G Z}. 

Since neither of the sets {[3,1] +A;[-2, 2] : A; G Z} nor {[-4,0] + k[-2, 2] : 

A: G Z} are in the previous list, both [3,1] and [—4,0] are available as collision-

free vectors. Moreover, the lattices < [-2,2], [3,1] > and < [-2, 2], [-4,0] > are 

inequivalent, which will lead to the construction of two inequivalent 8-colored Big 

Tiles for the Escher tile of this example. 
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4.2 Big Tile Dimensions 

We return to a more general setting: suppose the oracle has, upon input of Escher 

tile T, given you the pair of linearly independent vectors [pi,p 2], [91, 92] £ Z 2 that 

are collision-free and/or natural periods for T (depending on the input). Let A = 

\P1Q2 — P2Qi\- The Big Tile, BT, we will construct requires A colors. The dimen

sions of BT will be , ,,A—r, by , • . , A — V l ; the oracle tells us that the dimensions 
1 |gcd(P2,<?2)| •> |gcd(pi,gi)| 

were arrived at by finding the smallest rectangular sublattice of the lattice < [pi, p 2], 

[?i> 92] > (see Lemma 3.3.7). 

Now, given any location (r, s) in the region (0 < r < | g c d(p 2 q 2 ) | and 0 < 

s < [gcd^ assign a color to (mi,r, s). The colors are chosen from a set of 

colors called a palette. The palette contains A colors, one for every pair 

where [i,j] is a coset representative of < [pi,p2]> [91,92] >, the lattice generated by 

[pi,p2] and [91,92]. Visually, the palette is the half-open parallelogram spanned by 

[pi,p2] and [qi, q2}. Loosely speaking, we color each copy of m,\ inside the palette 

with the color corresponding to the location of each such rri\. Extending the correct 

colors to the remaining motif pieces in the rest of the subsquares in the Big Tile 

region follows with some minor work that exploits some information contained in 

a spanning tree of the agglomerated period graph GT- We will illustrate the work 

by continuing the example. 

4.3 Assigning The Colors 

The Escher tile T in our example was singly periodic with period [2,-2] and in 

section 4.1 we found that [3,1] could be used as a collision-free vector. A Big Tile 

parameterized by [2, -2] and [3,1] requires |2 x 1 — (3 x (—2))| = 8 colors. The 

palette has dimensions 8 x 1 , and linear algebra, elementary number theory, and 
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a final use of the locations of the set of generating motif pieces found in section 

4.1, Figure 4.5 are all that are needed to assign colors to all of the motif pieces 

whose locations are in the Big Tile region. In particular we can encode the col

oring instructions in a pair of permutations: one horizontal and the other vertical. 

For example, the horizontal color permutation is given by (12345678) and can be 

extracted directly from the palette. The meaning of the permutation is: if motif 

piece (rrii, r, s) is known to be assigned color c, then (m„ r + j, s) must be assigned 

color c + j (mod 8). The vertical coloring permutation is given by (1,1 + 1 x 5 

(mod 8), 1 + 2 x 5 (mod 8), 1 + 3 x 5 (mod 8), 1 + 4 x 5 (mod 8), 1 + 5 x 5 

(mod 8), 1 + 6 x 5 (mod 8), 1 + 7 x 5 (mod 8)) = (16385274). That is, if say 

motif piece (rrii, r, s) is known to have color c, then (rrii, r,s + j) must be assigned 

color c + 5j (mod 8). This information can be captured in a set of nine instruc

tions to color all of the motif pieces in the Escher tile T with location (r, s): Let 

(rrii, t) mean "assign color t to motif piece rrii in location (r, s)." The coloring in

structions for tile T in location (r, s) are given by (T, r, s) = {(mi, 1 + r + 5s 

(mod 8)), (m 2 ,6 + r + 5s (mod 8)), (m 3 ,5 + r + 5s (mod 8)), (m 4 ,7 + r + 5s 

(mod 8)), (m 5 ,4 + r + 5s (mod 8)), (m 6,6 + r + 5s (mod 8)), (m 7 ,1 + r + 5s 

(mod 8)), (m 8 ,0 + r + 5s (mod 8)), (m 9 ,0 + r + 5s (mod 8))}. The visual output 

of the eight-colored 8 x 8 Big Tile for the Escher tile given in Figure 4.1 is shown 

in Figure 4.11. 

This method illustrates the outline of an efficient algorithm for producing 

a Big Tile for an arbitrary Escher tile T. Moreover, this example was chosen to 

illustrate another idea, that of the idea of essentially "different" A-colored Big 

Tiles for a given Escher tile. 

Recall that [3,1] was a valid collision-free vector for the construction of a 

Big Tile for the Escher tile given in Figure 4.1. Another valid choice is [—4,0], 
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Figure 4.11: An eight-colored 8 x 8 Big Tile for the Escher tile in Figure 4.1. 
This corresponds to the lattice generated by {[2, —2], [3,1]}. 

and it is interesting to note that |det 
0 

Idet 
-2 3 

2 1 
- 8. Note 

also that the lattice generated by the vector pair {[2, —2], [-4,0]} is not equivalent 

to the lattice generated by {[—2, 2], [3,1]} (this requires an argument using a basic 

tool from number theory [Ap76]). A different eight-colored Big Tile for T, corre

sponding to the lattice generated by {[2, -2] , [-4,0]}, is shown in Figure 4.12. 

In the next Chapter we will prove that a Big Tile exists for any Escher tile. 
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Figure 4.12: A different eight-colored Big Tile for the Escher tile in Figure 4.1. 
This corresponds to the lattice generated by {[2, —2], [—4,0]}. 
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Chapter 5 

Mirabile Dictu: Existence Proof 

The purpose of this chapter is to verify the allegations of previous chapters, namely 

that a Big Tile exists for an arbitrary Escher tile. First we study an Escher tile whose 

period graph is connected. That a Big Tile exists for an arbitrary Escher tile will 

follow with very little extra work. The Big Tile existence proof will be accom

plished by constructing a Big Tile for T with tools from Chapter 3. In Chapter 6 

we will massage the construction into an efficient algorithm. In Chapter 7 we will 

shed light on why the Big Tiles arising from our construction are canonical, and 

follow with a canonical representation of Big Tiles that will shed some light on the 

chromatic number of an Escher tile, and also under what circumstances there exist 

two measurably different A-colored Big Tiles for a fixed value of A . These ideas 

are intended to be catalysts for a future classification of Big Tiles. 

5.1 A Few More Tools 

It is of seminal importance to detect when two distinct wallpaper components over

lap. 
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Lemma 5.1.1 (Find Collision-Free Vectors): LetT = {(mi, 0 ,0) , . . . , (mk, 0,0)} 

be an Escher tile whose period graph has one connected component and suppose 

T is either trivially or singly periodic. 

l.IfT is singly periodic with natural period \pi,P2], then there exist infinitely 

many [91,92] G Z 2 linearly independent with [pi,p2], such that 

( IJ M)f]( U N ) = 0-
MelV((mi,0,0)) NeW({mi,qi,qi)) 

2. IfT is trivially periodic, then there exist infinitely many linearly independent 

vector pairs {[pi,p 2], [91,92] £ Z 2 } such that 

( U M)f l( U Ar) = 0> 
M € W ( ( m i , 0 , 0 ) ) JVeW ( ( m i , p i , p 2 ) ) 

and 

( U M ) fK U N) = 0-
M € W ( ( m i , 0 , 0 ) ) N G W ( ( m i , 9 i , 9 2 ) ) 

Proof: Case 1: We draw upon the many and varied tools from Chapter 3. 

We have: 

• an Escher tile T with a connected period graph GT that is singly periodic with 

natural period [pi,p 2], 

• an agglomerated spanning tree ST that gives rise to a set of generating motif 

pieces gen(T, 0,0) = {(mi, 0,0), ( m 2 , i 2 , J2), • • •, (mk,ik,jk)}, and 
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• the overlap graph, OT, which tells us if one equivalence class of motif pieces 

in any given location intersects another in the same location. 

We need: 

• a characterization of the set F(T) of "forbidden" wallpaper components 

{W((mu a, b))} that overlap W{[mi, 0, 0)). We will use 0T to find F(T), 

which is represented by a set of forbidden vectors, F(T). 

We will show that \F(T) \ is finite, but more importantly, we will show that Z 2 \ 

F(T) is nonempty and in fact infinite. 

The Procedure: 

First we find F(T). Suppose W((mua,b)) overlaps W((mu0,0)). By Def

inition 2.2.8, two such wallpaper components overlap if and only if 3 (ms, x, 

y) £ W((mi,0,0)) and (mt, x, y) £ W((mua,b)) such that Mf)N ^ 0 . 

For example if M is motif piece mi in some location, then the location must be 

(k0pi, k0p2) for some k0 £ Z . In that case, N = (ms, k0pi, k0p2) for some s £ 

{ 1 , . . . , k}. By the construction of W((mx, 0, 0)) (see Definition 2.2.7) (mi,k0pi, 

&0P2) f l ( m s , hp2) ^ 0 if and only if (m x , 0,0) f | (rns, 0, 0) ^ 0 . In gen

eral, for (mt,a,b) £ W((mi,0,0)) we have (a, b) = (-it + k0 p i , -jt+ k0p2), 

which means (mt, -it+ Ar0pi,-jt + k0p2) f | (ms, -it + k0pi ,-jt + k0p2) ^ 0 if 

and only if (mt, 0,0) f](ms, 0,0) ^ 0. That is, wallpaper components that overlap 

W((mi, 0,0)) can be tracked to precisely those pairs of motif pieces in location 

(0,0) that intersect one another, which is exactly the information given by the over

lap graph OT, a finite graph. That is, to find a bound for the number of wallpaper 

components that overlap W((mi, 0,0)), it suffices to count the number of motif 

pieces that intersect each element (m s , is,js) £ gzn(T, 0,0); but (ms, is,js) is in

tersected by exactly deg([v„]) distinct motif pieces, where [vs] is an E-vertex of the 
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overlap graph OT- Thus, an upper bound for the number of wallpaper components 

that overlap W((mx,0,0)) is 

YI ° M N ) ' 

which is twice the number of edges in OT, this quantity does not always give the 

exact number of distinct wallpaper components that overlap W((mx, 0,0)) because 

two different pairs of intersecting motif pieces may belong to the same wallpaper 

component, as is the case in the detailed example in Chapter 4. 

(Figure 5.1 shows a set of generating motif pieces gen(T, 0, 0) for the Es

cher tile in Figures 3.9 and 3.5 and all of the motif pieces that overlap elements of 

gen(T, 0, 0). See Figure 5.2 for the overlap graph of T.) 

Now, suppose the finite set of forbidden wallpaper components that over

lap W^rm, 0, 0)) is given by F(T) = {W((mu au h)),..., W((mu at, bt))}. 

Though each forbidden wallpaper component W((mi,as,bs)) is encoded by an 

infinite set of forbidden vectors, namely {[as + k0pi,bs + k0p2] • k0 £ Z} , we 

can assume without loss of generality that 0 < bs < p2fors — 1,..., k by using 

bi = height(W((mi, ai, bi)) (Definition 3.3.6). 

Consider H = {[M,0] : M £ Z} (or else {[0,M] : M £ Z} if it so 

happens thatp2 = 0). Only finitely many elements of H can correspond to elements 

F(T) leaving infinitely many vector candidates that can be used to identify Escher 

wallpaper components that do not overlap W((mx, 0,0)). 

We conclude that there exist infinitely many vectors [qi, q2] £ Z 2 such that 

W((mi, 0, 0)) does not overlap W((mx, qi, q2)). This completes the first (and hard

est) case. 

Case 2: Suppose T is trivially periodic. We modify the argument given in Case 

1 to apply to this case. In particular, finding an upper bound for the number 
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of wallpaper components that overlap W((mi, 0,0)) can be accomplished by ex

amining all pairs of overlapping motif pieces in each location of the set of gen

erating motif pieces, which is, again, twice the number of edges in the overlap 

graph so that the set of forbidden wallpaper components is finite. Say the set is 

F(T) = {W((mi, a-i, h)),..., W((mi, at, bt)). Since T has no natural periods, the 

set of vectors {[ax, bx],..., [at, bt}} uniquely identifies the forbidden vectors F(T). 

In that case any vector in [x, y] e Z 2 \ F(T) has the property that W((mi,x, y)) 

does not overlap W((m,i, 0,0)). This concludes Case 2 and the proof. | 

We have, now, a constructive method to identify a pair of "good'' linearly 

independent vectors [px, p2], [qx, q2] € Z 2 with an Escher tile whose period graph is 

connected. The lattice L = < \pi,p2}, [<Zi, (fe] > will be all we need to construct a 

Big Tile for T. 

Lemma 5.1.1 gives fuel to the idea of constructing a Big Tile from a lattice. 

We make these ideas precise in the next several definitions. 

Definition 5.1.2 (Forbidden Vectors and Determinants): Let T = { ( m i , 0,0), 

..., (trik, 0, 0)} be an Escher tile whose period graph is connected, and is either 

singly or trivially periodic. By Lemma 5.1.1 the number of wallpaper components 

that overlap W((m\, 0, 0)) is finite and can be characterized by a set of vectors 

F(T). Let F(T) = {W((mu au bx)), W((mt,at,bt))} be the finite set of wall

paper components that overlap W((mi, 0, 0)). 

• If T is singly periodic with natural period \pi,p2], then F(T) = {[ax + 

koPi, h + k0p2], ...,[at + kopi, bt + k0p2] : k0 G Z and 0 < h < p2 for 

i = l . . . , * } . 

• IfT is trivially periodic then F(T) — {[ax, bx],..., [at, bt]}. 

We say that F(T) is the set of forbidden vectors for T, and 
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• ifT is trivially periodic, for any [n, r 2], [si, s2] £ F(T), we say \ris2 — r2S\\ 

is a forbidden determinant for T. 

• If T is singly periodic with natural period \pi,p2] then for any [qi,q2] £ 

F(T), we say \piq2 — p2qx\ is a forbidden determinant for T. 

Note that in the singly periodic case, the complement of F(T) in Z 2 is ex

actly the set of collision-free vectors for T. 

In the singly periodic case there are infinitely many vectors that identify the 

finitely many forbidden wallpaper components that overlap W((mi, 0, 0)) but as it 

turns out there are only finitely many forbidden determinants, as we demonstrate in 

the next lemma. 

Lemma 5.1.3 (Finitely Many Forbidden Determinants): Let T be an Escher 

tile whose period graph is connected and is either trivially periodic or else singly 

periodic with natural period [pi,p2]. Then there are only finitely many forbidden 

determinants for T. 

Proof: If T is trivially periodic then by the proof of Lemma 5.1.1 there are only 

finitely many forbidden vectors, and hence by Definition 5.1.2 there are only finitely 

many forbidden determinants. If T is singly periodic with natural period \p\,p2], 

then by the proof of Lemma 5.1.1 the set of forbidden vectors for T is given by 

F(T) = {[«i + k0pi, bx + kQp2],..., [at + k0pi, bt + kQp2] : k0 £ Z and 0 < b{ < p2 

for i — 1,..., t). Since 

|det 
px a{ + hpi 

| = |det 
Pl CLi 

p2 h + k0p2 Pi k 

there are only finitely many forbidden determinants for T. | 
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We have enough vocabulary to narrow the field of allowable vectors even 

further; we wish to restrict to allowable vector pairs {[pi,P2], [91,92]} such that 

Pi 9i 
|det 

P2 92 
is strictly larger than any forbidden determinant. 

Definition 5.1.4 (Color-Safe Determinant): Let T be an Escher tile whose period 

graph is connected, and is either singly or trivially periodic. Let F = { A x , . . . , At} 

be the set of forbidden determinants for T. Then a color-safe determinant for T 

is any integer A such that A > maxAieF{Ai\. 

Definition 5.1.5 (Color-Safe Lattice): Let T be an Escher tile whose period graph 

is connected and suppose A(T) is the set of collision-free vectors for T in the triv

ially and singly periodic cases. 

• Suppose T is trivially periodic. Let \p\,P2\ a n d [91,92] £ A(T) be linearly 

independent and suppose \p1q2 — P2911 is a color-safe determinant for T. Then 

the lattice < [pi,p 2], [91,92] > is said to be a color-safe lattice for T . 

• Suppose T is singly periodic with natural period [pi, p2] and let [qx, q2] G 

A(T). If \p\q2 — p2q\\ is a color-safe determinant for T then the lattice < 

[Pi, P2], [91,92] > is a color-safe lattice for T. 

• Suppose T is doubly periodic with natural (linearly independent) periods 

[pi,p2] and [91,92]- Then the lattice < [̂ 1,̂ 2], [91,92] > is a color-safe 

lattice for T. 

It will be necessary to know that if L =< \puP2], [91,92] > is a color-safe 

lattice then any sublattice of L is color-safe. 
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Lemma 5.1.6 (Sublattice of Color-Safe Lattice is Color-Safe): Let T be an Es

cher tile with color-safe lattice L. Then for any sublattice L' C L we have V is 

color-safe for T. In particular, if[r, s] G L' then W((mx, 0, 0)) does not overlap 

W((mur,s)). 

Proof: Suppose V =< [ax, a2], [bx, b2] > is a sublattice of L =< [pi,p2], [91, q2] >• 

Then 3xx, yx, x2, y2 G Z such that 

and 

a i Pi 
+ yi 

qi 

P2 92 

h 
= x2 

Pi 
+ 2/2 

9i 

b2 P2 92 

which means 
ax bx 

XxPi + 2/i9i X2P1 + J/291 
a2 b2 

XlP2 + 2/192 X2P2 + 2/292 and thus 

X1P1 + 2/i9i X2P1 + 2/29i 1 

X1P2 + 2/i92 x2p2 + y2q2 J 

But 
XxPx + 2/i9i X2P1 + 2/29i , 

|det I 
[ X1P2 + 2/i92 x2p2 + ?/292 J 

= |(P29i -P192)(Z22/1 - ^12/2)| 

> \P2q1 ~ Pi92 I 

because [ax, a2] and [61, b2] are linearly independent and xx,y\,x2,y2 G Z. In that 

case, since L is a color-safe lattice, |p 2 9i — P192I is a color-safe determinant and 

thus so is |(p 29i - Pi92)(^22/i ~ £12/2) I- We conclude that 11 = < [a l 5 a 2], [61, b2] > 

is color-safe. | 

The following corollary is a direct consequence of Lemma 5.1.6. 
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Corollary 5.1.7 (Vector in a Color-Safe Lattice is Collision-Free): Let T be an 

Escher tile T whose period graph is connected and for which L is a color-safe 

lattice. Then any v € L is a collision-free vector for T. 

Finally, it will be useful to find an upper bound for the area of a color-safe 

lattice in terms of k, the number of motif pieces in an Escher tile. This area is the 

absolute value of the determinant of the matrix of generating vectors. 

Proposition 5.1.8 (Color-Safe Lattice of Area at Most 0(k2)): Let T = {(mi, 

0, 0), . . . , (mk, 0, 0)} be an Escher tile whose period graph is connected. 

• IfTis doubly periodic with natural periods [pi,p2] and [qi, q2] then < [pi, 

P2], [qi, 92] >. the color-safe lattice, satisfies \piq2 — P2Qi \ < (k + l)2. 

• IfT is singly periodic with natural period \px, p2] then < [pi, p2], [2k+2, 0] > 

is a color-safe lattice for T as long as p2 ^ 0. If p2 = 0, then < [pi,p2], 

[0, 2k + 2] > is a color-safe lattice for T. 

• IfT is trivially periodic, then < [2k + 3, 0], [0, 2k + 3] > is a color-safe lattice 

forT. 

Proof: If T is doubly periodic, the claim follows from Corollary 3.2.7. Sup

pose T is singly periodic with natural period [pi,P2] and without loss of gener

ality assume px ^ 0. By the proof of Lemma 5.1.1, we identify the finitely 

many wallpaper components that overlap W((mx, 0,0)) by examining the motif 

pieces that intersect each element of a set of generating motif pieces gen(T, 0,0) = 

{(mi,0,0), (mk,ik,jk)}- Suppose, for example, (ms,is,js) € gen(T,0,0) 

and that (ms,is,js)n (mt,is,js) for some t ^ s. Then (mt,is,js) is related to 

(mi, is — it,js — jt) and lies in the same forbidden wallpaper component W((mt, 

h, js)) = W((mi, is - it, js - jt)). By the proof of Lemma 3.3.5, \js - jt\ < \p2\. 

Hence, the height of W((mt, is, js)) is 
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• js - jt if js ~ Jt > 0, or else 

• js ~jt + \P2\ if j* ~jt<0. 

In the former case, the forbidden vector that we use to identify W((mt, is, js)) is 

[ia ~ h, js - jt], and in the latter case is [is -it±p1, j„ - jt ± p2]. In both cases, 

since by Corollary 3.2.7 we have \pi\ < k + 1, we have shown that any forbidden 

vector [a, b] for T has the property that \a\ < 2k + 2. 

If T is trivially periodic, then by a similar argument, the forbidden vectors 

all have entries bounded (in absolute value) by k. Thus, we are assured that we may 

use one of [2A; + 3, 0] or [0, 2k + 3] as a collision-free vector for T in the singly 

periodic case, and both of [2k + 3, 0] or [0, 2k + 3] as collision-free vectors in the 

trivially periodic case. In all cases we have shown that there exists a color-safe 

lattice whose fundamental region has area 0(k2). | 

We have worked hard to associate special lattices with an Escher tile T 

whose period graph is connected. The lattice < [p i ,p2] , [91,92] > is an abelian 

group that has \p\q2 — Piqi \ cosets. In the next section we will color the cosets of 

a color-safe lattice, extend the coloring to the wallpaper components in Wall(T), 

and extract a | p i 9 2 — p 2 9 i |-colored Big Tile for T. 

5.2 Coloring the Cosets 

For the purpose of assigning colors to all of the motif pieces in Wail(T) we define 

the palette, which requires as input a linearly independent vector pair from Z 2 . 

Subsequently we define the colored tile, which requires an Escher tile and a palette 

as input. 

Definition 5.2.1 (Palette): Suppose \p\,p2] and [91,92] € Z 2 are linearly indepen

dent, let A = \piq2 - p2qi| and L =< \pi,p2], [91,92] >• The palette correspond-
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ing to [pi, p2], [qi, ft] is {[i, j] + L : i, j G Z}, and is denoted by Palette([pi, p2], 

[qi, q2]). In other words, the palette is the set of A distinct cosets of the lattice L. 

Often we denote [i, j] + L by [i, j]. 

We were first introduced to the palette in Chapter 4, where visually speaking 

we think of the palette as the half-open parallelogram P spanned by \px, p2] and 

[qi, q2] and the colors are labelled by the A lattice points contained in P. See 

Figure 5.3 for an example of a set of six distinct coset representatives of the palette 

corresponding to [3,0] and [0, 2]. 

In Chapter 6, which contains a polynomial-time algorithm that constructs a 

Big Tile, we will benefit from knowing that for any arbitrary linearly independent 

[pi,p2] and [qx, q2] G Z 2 , we can always find a rectangular array of distinct coset 

representatives for Palette([px, p2], [qx, q2]). This important fact will ultimately 

make the coloring instructions for a Big Tile constructed with Palette(\pi p2], [qx, 

q2}) easy to specify. 

Lemma 5.2.2 (Rectangular Array of Distinct Coset Reps): Suppose \px,p2] and 

[qi-, ft] £ Z 2 are linearly independent, and let A = \pxq2 — p2qi\- Then a set of 

distinct coset representatives for Palette(\p\, p2], [qx, q2]) is given by {(i, j) : 0 < 
l< igcdfrU)!' 0 < j < |gcd(p2,̂ 2)|}. 

Proof: Let m = lgcd{p2m)l and n' = |gcd(p 2 ,ft) | . By Proposition 3.3.7, \m\ is 

minimal such that [m, 0] G L and that n' is at most as large as the smallest verti

cal shift in Palette(\pi, p2], [qx, ft]). As such, all of the elements of Palette(\pi, 

P2], [qi, ft]) are contained (with repetitions) within the infinite vertical strip X = 

{[hj] • 0 < i < m, j G Z}. Now consider Y = : 0 < i < m, 0 < j < n'} 

and note that \Y\ = A. By the minimality of m, any pair of elements in a row 

or column of Y must be distinct. Now, if all coset representatives of Palette(\p\, 
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Pi], [<7i, Qi]) in Y are distinct, we are done. Otherwise, without loss of generality, 

assume that [0,0] and both represent the same coset in Palette([pi, p2], [91, 

q2]) for some ^ [0,0] in Y and with i minimal. Consider the parallelogram 

spanned by [m, 0] and Since n' is at most as large as the smallest vertical 

shift < \pi, p2], [qi, q2] >, we must have i ^ 0. For any [a, b] G Z 2 we have 

[a + m,b] = [a, b] and hence the half-open parallelogram spanned by [m, 0] and 

[0, j] represents the same set of cosets as the half-open parallelogram spanned by 

[m, 0] and [i, j]. In fact every point in Y is represented by some point in the paral

lelogram spanned by [m, 0] and [0, j]. In that case, by the minimality of i, no other 

coset representatives of Palette(\pi, p2], [qi, q2]) can be contained in X, which is 

a contradiction. We may conclude, then, that the elements of Y represent the A 

elements of Palette(\pi,p2], [<?i, q2]). | 

The author wishes to thank Joel Friedman for the inspiration for this elegant proof. 

Next we construct a colored tile for an Escher tile T whose period graph 

has only one connected component. The colored tile will consist of concatenated 

copies of T, sides abutting, whose motif pieces are colored by way of Palette(\pi, 

Pi], [<7i) 92]), and whose dimensions depend upon pi,p2, qi and q2. 

Definition 5.2.3 (colored tile): Let T = {(mi, 0 ,0) , . . . , (m*, 0,0)} be an Escher 

tile and assume GT, the period graph for T, is connected. Suppose [p\,p2] and 

[qi 1 92] G Z 2 are linearly independent, and let L =< \pi,p2], [91, 92] >• 

1. Set A = \p1Q2 — p2qi\, m = , , , A — r r , andn = , , , A — r , . 

L f i ^ rzHL\> |gcd(p2,92)|' |gcd(pi,<7i)| 

2. Let ST be an agglomerated spanning tree of GT, and gen(T, 0,0) = {(mi, 

0, 0), (m 2 , «2, J2)) • • •, (wijb ik, jk)} a set of generating motif pieces obtained 

from the fat spanning tree ST-
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3. Define the coloring function CA. LetCA : Wall(T) -^-Palette(\pi, p2], [91,92]) 

by CA({ms, i, j)) := [-i8 + i,-js + j}. 

A colored tile for T parameterized by [pi, p2] [91,92] and denoted Cx([pi, p 2], 

[91,92]) set {{ms,i, j , C A ( ( m i , - z , + i , - j s + j')) : z G Z m , ; ' G Z n , s = 

1,..., A;}, where the fourth entry assigns a color from Palette([pi, p2], [gi, g2]) to 

m s m location (i, j) by way of the coloring function CA. 

Visually, Cr([Pi,p 2 ], [91, <fe]) is a | g c d ( ^ g 2 ) | x | g c d ( ^ g i ) | rectangle with lower 

left unit subsquare centered at (0, 0), and sides parallel to the standard axes. Each 

unit subsquare centered at a lattice point contains a copy of T whose motif pieces 

are colored by the function CA. The work behind the scenes of the construction of 

a colored tile is this: we place a copy of m\ inside each unit subsquare centered 

at a lattice point contained in Palette([p\, p2], [91, 9 2]) and color each such copy 

of (mi,i,j) with the coset + L. A copy of mi in location is related 

to each of {(m 2 , i2 + 1J2 + j), • • •, (m*, k + hjk + j)}, and CA assigns color 

[i, j] + L to this particular set of motif pieces related to (mi, i, j). Note that the set 

{(mi,i,j), (7712,12 + «, J'2 + j), • ..,(mk,ik + i,jk + j)} is simply gen(T,i,j) or 

alternatively, is the set gen(T, 0,0) translated elementwise by the vector [i, j]. 

See Figures 5.4 and 5.6 for an example of an Escher tile T and six translated 

(and colored) copies of gen(T, 0,0) that are derived from the palette corresponding 

to [2,1] and [6,0]. The vector [2,1] is the natural periodicity of T and [6,0] is a 

collision-free vector for T. A Big Tile for T can be found in Figure 5.7. 

We are ready to prove that a Big Tile exists for an Escher tile whose period 

graph has one connected component. 

Theorem 5.2.4 (Big Tile for Escher tile with Connected Period Graph): Let 

T = {(mi, 0,0), (m 2,0,0), . . . , (mk, 0,0)} be an arbitrary Escher tile whose pe

riod graph GT is connected. Then there exists a Big Tile for T. 
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Proof: The Escher tile T is trivially, singly, or doubly periodic. By Proposition 

5.1.8, there exists a color-safe lattice for T in all three cases. Suppose one such 

is < \pi,p2], [91,92] >• Let C T = C T ( [ P I , p2], [91,92]) be the colored tile for T 

colored by Palette(\pi, p2], [91, 92]). We claim that CT is a Big Tile for T. 

In order to verify the claim, by Lemma 2.2.9 it suffices to show 

1. C A ( M ) = CA{N) for every M,N G W((mi, 0, 0)), in which case we write 

CA(W((mi, 0,0)) to mean the one color from Palette(\pi, p2], [qi, q2]) that 

is assigned to every motif piece in W((mi, 0,0)), and 

2. if CA(W((mu 0,0)) = CA(W((mu i,j)), therxWiirri!,0,0)) mdW((mu 

i, j)) do not overlap. 

Part 1: The wallpaper components are uniformly colored by construction because 

by Lemma 3.3.7 the rectangular lattice < [ĵ dT^plT)! > 

0],[0, 

lattice of < [px, p2], [qx, q2] >. That is, the coloring of Wall(T) assigned by way of 

the cosets of < [pi,p 2], [91,92] > is inherited by any sublattice of L. 

Part 2: Suppose ^ ( ^ ( f m i , 0, 0))) = C A ( W ( ( 7 7 7 , I , i , j))). By the construction of 

CT the colored tile generated by [px, p2] and [91,92], we know that [i, j] G < [px, p2], 

[9i, 92] >• In that case i = xp\ + yqx and j = xp2 + yq2 for some x, y G Z . Without 

loss of generality assume that at least one of \pi,p2] or [91,92] is a collision-free 

vector for T (if both are natural periodicities then W((m\, 0,0)) = W({rn\, i, j)), 

which has been disallowed). Suppose [pi,p2] is not a natural period and [91,92] 

is a natural period. Then W((mi,i,j)) — W((mi,xpi + yq\,xp2 + yp2)) = 

W((m-i, xpi, xp2)). By Corollary 5.1.7, since [xpi,xp2] G L, W((rrii, 0,0)) does 

not overlap W((m\, xpx,xp2)). Hence, wallpaper components that are colored the 

same do not overlap. | 

At last we have the means to prove that a Big Tile exists for any Escher tile. 
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Theorem 5.2.5 (Big Tile for Arbitrary Escher tile): Let T be an Escher tile. 

Then there exists a Big Tile for T. 

Proof: Let GT be the period graph for T and suppose GT has N connected com

ponents. Consider the N Escher tiles induced by the connected components GT 

(see Definition 3.1.3): Tu T2, ..., TN. By Theorem 5.2.4, there is a Big Tile for 

Ti for i = 1, . . . , N. Let BTi = B^i^i, rrii, ni) be a Aj-colored rrii x n>i Big 

Tile for T{. For each use a new set of colors; being wasteful is not relevant for 

showing existence. Let m = l cm(mi , . . . , mN) and n = lcm (n i , . . . , nN). A Big 

Tile for T, then, consists of the concatenation of — x — copies of Birp inside an 

mxn rectangular region for i = 1,..., N. The number of colors used will be 

Now that we know that a Big Tile exists for any Escher tile, we have two 

tasks ahead of us. First we describe an algorithm called ColorFast, that constructs 

a Big Tile for an Escher tile whose period graph is connected (which easily extends 

to any Escher tile). The algorithm will be linear in the total number of intersec

tions of motif pieces along the boundary of 5*0,0, the unit square in which T is 

located. Our last task, at least for purposes of this thesis, is to make a connection 

between irreducible Big Tiles and positive definite binary quadratic forms with inte

ger coefficients. We view the Big Tile constructed in the proof of Theorem 5.2.4 as 

canonical, and it is the canonical Big Tiles for which we will make the connection 

to binary quadratic forms. 
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Figure 5.1: Motif pieces that intersect elements of gen(T, 0,0) for the Escher 
tile in Figure 3.9 
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Figure 5.2: Overlap graph for the Escher tile in Figure 3.9 

0,1 1,1 2,1 

0,0 1,0 2,0 

Figure 5.3: Palette associated with [3,0] and [0,2] 
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Figure 5.4: A singly periodic Escher tile with natural period [2,1 

Figure 5.5: A palette 

Figure 5.6: Set of colored motif pieces that serve as generators for a colored 
tile: the palette and coloring function C A are extracted from vectors [2,1] and 
[6,0] 
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Figure 5.7: A 6-colored Big Tile for the Escher tile in Figure 5.4 
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Chapter 6 

Efficient Big Tile Construction: The 

ColorFast Algorithm 

The purpose of this Chapter is to describe a general polynomial-time algorithm, 

ColorFast, to construct a Big Tile for an Escher tile T whose period graph is con

nected. For the most part, ColorFast was used in the detailed example given in 

Section 4 and we will formalize that procedure with a few speedups along the way. 

Abstractly, an Escher tile is specified by T — {(mi, 0 ,0) , . . . , (mk, 0,0)}, 

where (rrii, 0, 0) is a connected subset of S0t0 f ° r * = 1, • • •, the pairwise inter

section of the k motif pieces, and the set of intersections of each piece with dSo$ 

are given. The latter is assumed to be pre-sorted. For an implementation, one need 

only assume that each motif piece is a finite (connected) union of polygons. For the 

purpose of constructing a Big Tile for T, we only need to specify how many motif 

pieces there are, which pairs intersect, and the finite sorted set of boundary intersec

tions for each. With that information, ColorFast will return the dimensions of a Big 

Tile, BT, together with a finite set COLORS of colors, and a function that takes 

a motif piece in BT as input and returns an element of COLORS to assign to that 

motif piece. In the end, it is up to the artist to design the Escher tile and construct 
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the Big Tile, although the latter task could be delegated to, say, a tile company. 

Most of the procedures that are called in the ColorFast algorithm will be fa

miliar, but we give a brief description and the runtime for each. Let n = max(k2,I), 

where / is the total number of intersections of motif pieces of Escher tile T with 

dSQfi. 

• An Escher tile is input as T = {motifpieces,overlaps,boundaryintersections}, 

where overlaps has information containing the pairwise intersection of ele

ments of motifpieces and boundaryintersections contains for the bottom, 

top, right, and left sides, as well as NW, SE, NE, SW corners, a pre-sorted list 

of motif piece intersections along dS0,o-

• PeriodGraph stores vertices (one for each motif piece in T) and directed 

edges. The directed edges can be obtained by comparing elements boundary-

intersections in 0(n) time since boundaryintersections is presorted. Once 

this step has been accomplished we remove any multiple edges that contain 

the same vector label. Thus, the period graph will have 0(k2) edges. 

• AgglomeratedPeriodGraph can be obtained in 0(k2) time by suppressing 

information (namely the vector labels and edge directions and multiplicities) 

contained in PeriodGraph. 

• AgglomeratedSpanningTree can be obtained in 0(k2) time by using a breadth 

first search tree [CLR89]. 

• FatSpanningTree takes as input a spanning tree of the agglomerated period 

graph GT and reinstates the multiple edges, directions, and vector labels from 

the period graph GT- This can be done in 0(k2) time. 

• GeneratingMotifPieces extracts, in 0(k) time, a location for each motif 

piece, from the fat spanning tree. 
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RemovedEdges takes as input the agglomerated period graph GT and an 

agglomerated spanning tree ST, and returns the edges that were removed from 

GT when ST was constructed. That is, RemovedEdges(GT, ST) = E(GT) \ 

E(ST)- This can be done in 0(k2) time. 

FatRemovedEdges is E(GT) \ E(ST) and can be found in 0(k2) time by 

reinstating information in RemovedEdges. 

GhostMotifPieces is a list of 0(k2) edges and each endpoint produces a 

location relative to a related generating motif piece. This can be done in 

0(k2) time. 

GhostVectors finds all ghost vectors by comparing locations of each gener

ating motif piece with the location of its potential ghost, by way of RT and 

ST, which takes time 0(k2). 

NaturalPeriods returns the natural period(s) of T (if there are any). If T 

is singly periodic, the greatest common divisor of 0(k2) scalars that are 

bounded by O(k) must be computed (see Definition 3.3.2 and Lemma 3.2.7). 

If T is doubly periodic, find a basis of subspace of 1? spanned by the ghost 

vectors of T. If T is trivially periodic, NaturalPeriods returns the empty set. 

In the worst case, this step takes time O(k)2 [Co95]. 

Palette. By Lemma 5.2.2, a set of distinct coset representatives for the lattice 

< [Pi.Pa], [91,92] > is reps := {[i,j] : 0 < i < \scd£2,g2)l 0 < J < 

|gcd(p2, 92)|}, where A = \pxq2 - p2qi\. The call to Palette([pi,p2], [91, 92]) 

will return reps, which by Proposition 5.1.8 has size 0(k2). 

ColorSafeLattice returns two vectors. If T is singly periodic with natural pe

riod [pi,p 2], ColorSafeLattice returns {[pi,p 2], [2k+3,0]} ifp2 ^ 0 or returns 
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{[Pi) P2], [0, 2k + 3]} if P2 = 0. If T is trivially periodic, ColorSafeLattice re

turns {[2fc + 3,0], [0,2k + 3]}. By Proposition 5.1.8, ColorSafeLattice returns 

a color-safe lattice. This step can be done in time 0(k2). 

• BigTilelnstructions simply returns two positive integers m and n and a set 

of verbal instructions for the color to be assigned to each (mt, a, b) e BT-

Specifically, if periods = {[pi, P2], [<?i, 92]} then 

_ |Plg2 — P2gl I 

|gcd(p2,92)| 

and 
\PlQ2 - P 2 9 1 I 

77, =Z . 

|gcd(pi,gi)| ' 

By Lemma 3.2.7, this step takes at most 0(\g(k)) steps since \pi\, \p2\, \qi\, 

and |g 2 | are bounded by 0(k) [CLR89]. 

The verbal instructions are as follows. Motif piece (mt, a, b) is colored the 

same as (mi, a — it,b — jt) (where (mt, it, jt) e gen(T, 0,0)). Therefore, the 

color assigned to (mi, a — it,b — jt) is (i1, j') where 

- f = b- jt (mod p2) with, say, b-jt = qp2 + j' and 0 < f < p2, and 

- i' = (a — it — qpi) (mod m). 

In other words, given an arbitrary motif piece (mt, a, b) e Wall(T), first we 

find a translate of (mi, 0,0) that is related to (m t , a, b) by way of (mt, it, jt) 

€ gen(T,0,0). That is, ( m b a — it,b — jt) is related to (mtra,b). Next 

we use the Euclidean Algorithm to find a quotient q and remainder j' such 

that b — jt = qp2 + j', where by Definition 3.3.6, we have j' is the height 

of W((mu a, b)). Finally, it remains to specify the location of the copy of 

mi that belongs to W((mt, a, b)) whose y— coordinate is j'. This location 
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is simply ((a — it — qpi) (mod m), b - jt - qP2)- In surnmary, (mt, a, 6) is 

colored ((a — it — qpi) (mod m), b — jt — qp2). 

We present the ColorFast algorithm next: 

Algorithm ColorFast(T) 

Initialization 

• input T = {motifpieces, overlaps, boundaryintersections} 

Procedure 

1. GT <— PeriodGraph(mota/pieces, boundaryintersections) 

2. GT <— AgglomeratedPeriodGraph(Gx) 

3. ST <- SpanningTree(GT) 

4. ST <- FatSpanningTree(S'r) 

5. generators GeneratingMotifPieces(Sr) 

6. i2y RemovedEdges (GT, ST) 

7. fatremovededges <— FatRemovedEdges^x) 

8. ghosts •<— GhostMotifPieces(generators, fatremovededges) 

9. ghostvectors <— GhostVectors(ghosts, generators) 

10. periods <— Na,tuia\Periods(ghostvectors, generators) 

11. if length(periods) = 2 

(a) colors <— Palette(periods) 
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(b) return BigTileInstructions(colors, generators) 

12. else 

if length(periods) = 1 

(a) colors <— Pdlette(periodsU[2k + 3, 0]) or Palette (periodsU [0, 2k + 

3]) 

(b) return BigTileInstructions(colors, generators) 

13. else 

(a) colors «- Palette([2A; + 1,0], [0, 2k + 3]) 

(b) return BigTileInstructions(colors, generators) 

14. end 

In summary, the most costly part of ColorFast is the construction of the 

period graph which, in the worst case, takes 0(n) steps. A l l of the work following 

the construction takes at most 0(k2) steps. Therefore, we have shown 

Theorem 6.0.6 (ColorFast is a Polynomial-Time Algorithm): LetT — {(mi ,0,0), 

(m 2 , 0,0), . . . , (mk, 0,0)} be an Escher tile whose period graph GT is connected. 

Let I be the total number of intersections of motif pieces in T with dSo,o- Let 

n = max(k2,1), where k is the number of motif pieces in T. The algorithm Color-

Fast takes time 0(n). 
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Chapter 7 

Toward a Classification 

7.1 Irreducible and Reducible Big Tiles 

To some extent, the Big Tiles constructed in Section 5.1 are canonical, by which 

we mean that given an arbitrary A-colored Big Tile for Escher tile T whose period 

graph is connected, we can always find a ^-colored Big Tile for T that exhibits the 

same structure as the Big Tiles constructed in Chapter 5.1 and with 5 < A . This 

observation suggests the next definition, that of an irreducible Big Tile; we will 

adopt irreducible Big Tiles as our canonical representation. 

Definition 7.1.1 (Irreducible and Reducible Big Tiles): Let T be an Escher tile 

and BT a A-colored m x n Big Tile for T and let CA((ms,i, j)) denote the color 

assigned to motif piece (ms, The Big Tile BT is said to be irreducible if 

1. forevery(ms,i1,j1),(ms,i2,J2) G BT, whenever CA{(ms, iu = C A ( ( m s , 

«2J 32)), \h - i2\ < m and \jx - j2\ < n then [ix - i2,jx - j2] is an integer 

linear combination of natural periods ofT, and 

2. CA((rna,ii,ji)) / CA({ms,i2,j2) if either ii = i2 or ji = j2for allix,i2 G 

Z m andji,j2 G Znforall s = 1,..., k. 
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Otherwise, BT is said to be reducible. 

Thus , an irreducible B i g T i l e is one in wh ich the same co lor ing of a mo

tif piece does not occur in any row or any co lumn . In particular, i f T is t r iv ia l ly 

periodic, by Def in i t ion 7.1.1 every occurrence o f mot i f piece ras in an irreducible 

B i g T i l e for T is assigned a different color. Figures 2.12, 2.13, 4 .11, and 4.12 are 

examples of irreducible B i g Ti les . See Figure 7.2 for an example a reducible B i g 

T i l e for the Escher tile in Figure 7.1. 

Figure 7.1: An Escher tile 

Figure 7.2: A reducible Big Tile for the Escher tile in Figure 7.1 

Definition 7.1.2 (Lattice-Encoded Big Tile): Let T be an Escher tile whose pe

riod graph is connected and BT = Br(A, ra, n) a A-colored mxn Big Tile for T. 
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The lattice < [pi, p2\, [qi, 92] > £ Z 2 encodes BT ifBr is equivalent to the colored 

tile generated by Palette(\pi, p2], [qi, q2]) andT. 

Lemma 7.1.3 (Irreducible Big Tile is Encoded by a Lattice): LetT = {(mi ,0,0), 

..., (rrik ,0,0)} be an Escher tile whose period graph is connected and suppose and 

BT := £ x ( A , m, n) is an irreducible Big Tile for T. Then there exists a lattice that 

encodes BT-

Proof: Let a set of generating motif pieces for T be given by gen(T, 0,0) = 

{(mi, 0,0), (m2,12,32), {mk,ik,jk)}-

Case 1: Suppose T is trivially periodic. We claim that the lattice L =< [m, 0], 

[0,n] > encodes BT. By Definition 7.1.1, every translate of (mi, 0,0) in BT is 

colored with a different color so that a palette is given by the cosets of L. Since the 

period graph is connected, all motif pieces in BT must be colored with some color 

from Palette([m, 0], [0,n]). Thus, A = mn. Moreover, the locations of all motif 

pieces mi that are colored with [0,0] must be {(xm, yn) : x, y G Z}. In general, 

because the period graph is connected, an arbitrary (m s , i, j) G BT is colored [i — 

h,j — js] (because (ms,i,j) is related to (mx,i — is,j — js), which is colored 

[i — h,j — js]- Trivially, the dimensions of BT satisfy m = | c^o n)| a n ( * n = 

| g c d ^ Q ) | . Thus, BT is the colored tile generated by Palette([m, 0], [0, n]) and T. 

Case 2: Suppose T is singly periodic with natural period [pi,p2] and for now as

sume p2 ^ 0. We claim that BT is the colored tile generated by < [pi, p2], [m, 0] > 

andT. 

First we show that A = \p2m\: let (mi,i,j) G Wall(T) be arbitrary and 

colored c. By Definitions 7.1.1 and 2.2.10, 3i,j such that 0 < i < m, 0 < j < p2, 

and (mi,i,j) is colored c. That is, without loss of generality we can assume j 

is the height of W((mi, i,j)) and since BT is a Big Tile of width m, we can use 

j (mod m). Because UMe9en(T,o,o) M is a connected subset of R2, the remaining 
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motif pieces in Wall(T) must be colored from the same set of colors. In that case, 

we see that A < mp2- Moreover, by Definition 7.1.1, if 0 < «i, «2 < m and 

0 < Ji,J2 < P2 and ( m i , i i , j i ) and ( m 1 , i 2 , j2) are colored the same, then [i± — 

hji - 32] = [koPi, k0p2] for some k0 £ Z . Since 0 < ji,j2 < p2 we have k0 = 0, 

which means ix = i2 and ji = j2. In particular, A > p2m and thus altogether 

A = \p2m\. 

What can we say about the value of n? The previous argument shows 

that we can label the colors of BT with the A = \mp2\ cosets of the lattice < 

[m, 0], [^1,^2] >• By Definition 7.1.1 for 0 < j < n, we know that (mi, 0, j) can

not be colored [0,0]. Our argument so far has shown that the set of all locations of 

mi that are colored [0, 0] is given by {(xpi + ym, yp2) : x, y e Z} . Thus, |n| must 

be minimal (and nonzero) such that 

0 m pi 
= X + y 

n 0 P2 

or equivalently, 

-
X 1 P2 -Pi 0 

.  y . 

p2m 0 m n 

—pin , mn n 
=> x = r and y = , r = - j— 

\p2m\ \p2m\ \p2\ 

By the proof of Lemma 3.3.7, n = j ^ ^ . Trivially, we have m = We 

conclude that BT, in this case, is the colored tile generated by Palette([pi, p2], [m, 0]), 

and hence by Definition 7.1.2 is encoded by the lattice < [pi, P2], [m, 0] >. 

Case 3: Suppose T is doubly periodic with natural periods [pi,p2J and [ft, ft]- We 

claim that BT is encoded by the lattice L =< \pi,p2], [ft, ft] >. Since T is doubly 
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periodic, by Definition 2.2.7, the wallpaper pattern WalliT) contains only finitely 

many wallpaper components, one for each of the \p\q2 — P2Qi\ cosets of L. Let 

(mi,hj) £ WalliT) be arbitrary and suppose (mi,i,j) is colored c. Then for any 

€ L we have (mi, i,j) is colored c because (mi, i,j) is related to (mi, i,j). 

Moreover, if W((mi,0,0)) and W((mi,o,6)) are distinct (i.e., [a, b] g" L), then 

W((mi , 0,0)) overlaps W((m1: a, b)). Thus, all of the wallpaper components must 

be colored with \pxq2 — P2Qi \ different colors and so we label each with a coset of 

L. So far, we have shown that A = \piq2 — p2q\ | and that the colors can be labelled 

with cosets. It remains to show that m and n satisfy the requirements of Definition 

5.2.3. But by assumption, BT is irreducible and hence m and n must be minimal 

such that 

m Pi 
+ yi 

Qi 
+ yi 

0 P2 Q2 

and 

0 Pi 
+ Z/2 Qi 

= x2 
+ Z/2 

n P2 Q2 

for some X\,y\,x2, y2 £ Z.The proof of Lemma 3.3.7 yields m = |gCd(p2 Q2)\ and 

n = | g c d ^ Thus, BT, in this case, is the colored tile generated by Palette([pi, 

P2], [Qi, Q2]) and T, and hence BT is encoded by the lattice < [pi,;?2], [<Zi, Q2] >, as 

desired. | 

In fact, the lattice that encodes an irreducible Big Tile is unique. 

Corollary 7.1.4 (The Lattice that Encodes a Big Tile is Unique): Let T be a 

doubly periodic Escher tile whose period graph is connected and suppose L = < 

\pijP2}, [91,92] > encodes an irreducible Big Tile B r ( A , m , n). If L' = < [ri ,r 2 ] , 

[si, s2] > is another lattice that encodes BT- Then V = L. 
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Proof: By Definitions 7.1.2 and 5.2.3 and the proof of Lemma 7.1.3, we have 

\rxS2 — r2Si \ = A and that [m, 0], [0, n] e L and [ra, 0], [0, n] € V. Hence, L = V, 

as desired. | 

Finally, the following corollary is a direct consequence of Lemma 7.1.3. 

Corollary 7.1.5 (Doubly Periodic Escher tile: Unique Big Tile): Let T be an 

Escher tile whose period graph is connected. Then the Big Tile for T is unique and 

irreducible. 

7.2 Irreducible Big Tiles as Tools 

7.2.1 In Search of the Chromatic Number of T 

By Theorem 5.2.5, given any Escher tile T, there exists a Big Tile for T. Hence, it 

makes sense to define the chromatic number of T. 

Definition 7.2.1 (Chromatic Number of an Escher tile): Let T be an arbitrary 

Escher tile and B = { A i , A2, • • •, } be the set of all positive integers Afar which 

there exists a A-colored Big Tile for T and without loss of generality assume A , 

< A i + 1 whenever \B\ > 1 and A j , Ai+X G B. By Theorem 5.2.5, B is nonempty. 

The chromatic number of T, denoted x(T), is given by x(T) = Ax. That is, the 

chromatic number of an Escher tile is the smallest (positive) integer A for which 

there exists a A-colored Big Tile for T. 

For example, three is the chromatic number of the Escher tile in Figure 2.10; 

an irreducible Big Tile for this coloring is in Figure 2.12. Irreducible Big Tiles 

were useful in the existence theorems in Chapter 5.1 (Theorems 5.2.4 and 5.2.5), 

and now will prove useful as a tool to investigate some special cases of Escher tiles 

for which we can actually compute x(T). First we prove that when in search of 
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x{T) we need look no further than the collection of irreducible Big Tiles for T. 

By Corollary 7.1.5, all Escher tiles for which the period graph is connected and 

doubly periodic have a unique Big Tile, which up to concatenation, is irreducible. 

In fact we can find the unique lattice that encodes the one irreducible Big Tile for 

T and thus, in this special case we can compute xCO- As a next natural step in 

an analysis of the chromatic number, we analyze Escher tiles whose period graphs 

are connected and either trivially or singly periodic. The end result will be that a 

reducible A— colored Big Tile for T leads to an irreducible 5— colored Big Tile for 

T where 5 < A . In other words, when searching for x(T) for such an Escher tile, 

we need look no further than the collection of irreducible Big Tiles for T. 

Lemma 7.2.2 (Reducible BT(A,m,n) ->• Irreducible BT(5 < A ,m ' ,n ' ) ) : Let 

T be an Escher tile with connected period graph that is either trivially or singly 

periodic and suppose B?(A, m, n) is a reducible Big Tile for T. Then there exists 

an irreducible Big Tile for T, BT(<5, m', n') such that 8 < A. 

Proof: Case 1: Let T be trivially periodic and suppose 0 < ii,i2 < m, 0 < 

* 2 , J 2 < n, ^ (12,32), and ( m i , i i , and (mi,i 2,j 2) are colored with 

the same color (since BT(A, m, n) is reducible, such a pair must exist). Suppose 

ii — i2 = pi and ji — j2 = p2. Without loss of generality (by using an appropriate 

vector translation and by periodicity) we may assume (mi, 0,0) and (mi,pi,p2) 

with 0 < pi < m and 0 < p2 < n are colored the same. Among all motif pieces 

colored the same as (mi, 0,0) within BT(A, m, n), choose pi to be minimal and 

positive (otherwise do the same for p2). Then the set of lattice points within the 

parallelogram spanned by [0,n] and [̂ 1,̂ 2] contain copies of m x all colored with 

distinct colors by the minimality of p i . Thus, A > pin. (If it so happens that pi = 0 

simply re-run the argument with a minimal p2 and use the parallelogram spanned 

by [pi,2>2] and [m, 0] concluding that A > p2m.) Now construct an irreducible Big 
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Tile for T using Palette ([pi,p2], [0, n]). The resulting Big Tile requires |pin| colors 

and has area b H _ bil" 2 

|gcd(n,p2)| |gcd(pi,0)| |gcd(n,p2)|" 

Case 2: Suppose T is singly periodic with natural period [pi,p2]. If the copies of 

m\ located at lattice points contained in the half-open parallelogram spanned by 

[0, n] and [pi,p2] (or use [m, 0] if it so happens that p2 = 0) are all colored with 

different colors then A > |mp 2| in which case simply construct the irreducible Big 

Tile BT(\mp2l , Jf,1"' . fr"',,), which has area , fc1"' „ , If,1"' = , 
1 W |gcd(n,p2)|' |gcd(pi,0)| ^' |gcd(n,p2)| |gcd(pi,0)| |gcd(n,p2)|' 

just as in the previous case. Otherwise, without loss of generality (using a shift if 

necessary) there is some translate of mi, say (mi, qi,q2), contained in the half-open 

parallelogram spanned by [pi,p2] and [0, n] that is colored the same as (m 1 ; 0, 0). 

Among all such (mi, qi, q2) choose 1̂1 to be minimal. Then the translates of mi 

contained in parallelogram spanned by [pi, p2] and [qx, q2] are colored with different 

colors, which means that A > \p\q2 — p2q\\. In that case simply construct an 

irreducible |pi^ 2 — p2qx\ —colored Big Tile for T with Palette(\pi, p2], [qx, q2}). 

I 
The good news is that in any attempt to determine x{T) it suffices to study 

only the irreducible Big Tiles for T. The bad news is that there is no guarantee that 

extracting an irreducible Big Tile from a reducible one will yield an irreducible Big 

Tile that is smaller in area than the reducible one. 

Finally, by Lemma 5.1.8 and Lemma 7.2.2 we can give an upper bound for 
X(T). 

Theorem 7.2.3 (Upper Bound for x(T)): Let T = {mu 0,0), . . . , (mk, 0,0)} be 

an Escher tile whose period graph has N connected components. Then x{T) < 

N{2k + 3)2. 

Proof: Suppose the period graph of T has Af connected components and let 7\ , . . . , 

TN be the Escher tiles induced by each component (Definition 3.1.3). By Proposi-
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tion 5.1.8, for each Tj there is an irreducible Big Tile for Tj that requires at most 

(2k + 3) 2 colors. Since there are JV components, and by the construction given in 

Theorem 5.2.5, there is a Big Tile for T that requires at most N(2k + 3) 2 colors. 

I 
We can do somewhat better for an Escher tile whose period graph is con

nected and doubly periodic: we can compute the chromatic number exactly. 

Theorem 7.2.4 (Chromatic Number of Doubly Periodic Escher tile): Suppose 

T is an Escher tile whose period graph is connected, and let [ p i , p2] and [qx, q2] be 

natural periods for T. Then\{T) = \piq2 — p2qi\. 

Proof: Since T is doubly periodic, the Big Tile is unique and irreducible by Corol

lary 7.1.5. Thus, x(T) = \piq2 - p2qx|. | 

7.2.2 In Search of Inequivalent A-Colored Big Tiles 

By Lemma 7.1.2 and Corollary 7.1.4, an irreducible Big Tile for Escher tile T cor

responds to a unique lattice. Say this lattice can be generated by u = [ux,u2 

and v = [vi, v2 

u • u u • V 

u • V V • V 

Consider the Gram Matrix [Co95, Va91] of u and v, namely 

The Binary Quadratic Form (herein referred to as BQF) that 

we associate with BT is f(x,y) := [x,y] 

ward calculation shows that 

u u u v X 

u v v V y 
. A straightfor-

f(x, y) = (u\ + u\)x2 + 2(ulVl + u2v2)xy + (v\ + v2

2)y2 (7.1) 

The discriminant of an arbitrary BQF ax2 + bxy + cy2 is given by b2 - Aac. If we 

let A = uxv2 — u2vx, then the discriminant of / in equation 7.1 is —4A 2 . 
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Let BT be an irreducible Big Tile for Escher tile T whose period graph is 

connected. We will make a connection between irreducible A-colored Big Tiles 

for T and BQFs with integer coefficients of discriminant —4A 2 . In particular, 

we wonder under what circumstances we can find two or more irreducible A -

colored Big Tiles for T. That would entail finding two color-safe lattices L = 

< [Pi,P2].[?i,92] > and V = < [p[,p'2Wi,q2] > f o r T s u c h t h a t P1Q2 - P2<7i = 

P1Q2 ~ P2Q1 but for which L ^ V. It is well understood in the realm of Analytic 

Number Theory (see for example [Ap76]) under what circumstances two lattices 

are equivalent, and we mention briefly how the mechanics work. To do so, we 

need a definition for the modular group, and an understanding of a particular group 

action of the modular group on the set of BQFs of a fixed discriminant. 

Definition 7.2.5 (Modular Group): The modular group T(l) is 

r ( i ) := 
a j3 

7 6 
: a, f3,7,6 € Z and aS — ^ 7 = 1 (7.2) 

That is, the modular group is the set of all 2 x 2 matrices with integer entries and 

determinant 1. It is not hard to see that T(l) is a group under matrix multiplication. 

Next we define an action of T(l) on the set of BQFs with integer coefficients and 

of discriminant D. 

In particular, let f(x, y) = ax2 + bxy + cy2, suppose b2 - 4ac = D, and say 

that 

a B 

7 S 

Then the action of M on / is given by 

M e r ( i ) . 

f\M := f(ax + Py,^x + 5y) 

a(ax + f3y)2 + b(ax + (3y)((3x + 73/) + c(^x + 6y)' 
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= (aa2 + baj + c^2)x2 + (2aa(j + b(a5 + £7) + 2cy5)xy + (a/32 + b(38 + cd2)y2. 

We see that f\M is a BQF with integer coefficients. Moreover, if we let A = 

(aa2 + kry + C 7 2 ) , B = (2aa/3 + b(a8 + /37) + 2c7<5), and C = (aft2 + b/35 + c52), 

then the discriminant of f\M is 

5 2 - 4AC = (a6 - h)2(b2 - Aac) 

= D 

since aS — ̂ 7 = 1 and 62 — 4ac = D. So, the described action of T(l) on the 

set of BQFs of discriminant D is indeed a group action [GaOl]. What will be of 

use to us is that under the group action so described, the number of orbits is finite. 

Specifically [Bu89], 

Theorem 7.2.6 (Finitely Many Orbits): Let BQFD be the set of all binary quadratic 

forms with integer coefficients of discriminant D < 0. Then the number of orbits of 

BQFD under the action o /T(l) is finite. 

In particular, 

Definition 7.2.7 (Class Number): Let BQFD be the set of all binary quadratic 

forms with integer coefficients of discriminant D < 0. The number of orbits of 

BQFD under the action o /T( l ) is called the class number of D, and denoted 

h(D). 

In our situation, we make a connection between irreducible A-colored Big 

Tiles BT with the set BQF_iA2 as follows. We have 

1. an Escher tile T whose period graph is connected, 

2. an irreducible A-colored Big Tile BT for T, 
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3. the unique lattice L generated by [p\,p2] and [qi, q2] that encodes BT (satis

fying \piq2 - p2qx \ = A) , and 

4. a BQF of discriminant —4A 2 to associate with BT, namely (p\ + p\)x2 + 

2(pi9i + Vi<h)xy + (q\ + q2)y2 by way of the Gram Matrix for \p\,p2] and 

Again, from [Ap76] we have 

Theorem 7.2.8 (Equivalence of Lattices): Two integer lattices L = < [pi,P2].[9i, 

q2] > and V = < [Pi,P2],[Qi, Q2] > are equivalent (meaning L = V) if and only if 

there exists 

7 5 
€T(1) 

such that 
a (3 Pi Qi ' P'l Q'i' 

7 5 P2 92 P2 92 

Inescapably, we are led to a method of differentiating between irreducible 

A-colored Big Tiles. 

Definition 7.2.9 (Inequivalent A-Colored Big Tiles): Let T be an Escher tile 

whose period graph is connected and suppose BT and B'T are both irreducible 

A-colored Big Tiles for T and encoded by lattices L and L' respectively. Then 

BT is equivalent to B'T if and only if L is equivalent to V. Alternatively BT is 

inequivalent to B'T if and only ifL is inequivalent to L'. 

The following theorem is a direct consequence of Theorem 7.2.8, the nature 

of the correspondence between a A-colored irreducible BT and B Q F _ i A 2 , and 

Definition 7.2.9. 
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Theorem 7.2.10 (Inequivalent A-Colored Big Tiles): Let T be an Escher tile 

whose period graph is connected and suppose BT and B ' T are both irreducible 

A-colored Big Tiles for T. If BT is inequivalent to B ' T , then h(—4A2) > 1. 

In fact, the two inequivalent and irreducible 8-colored Big Tiles in the example in 

Chapter 4 were constructed from the two inequivalent color-safe lattices 

2 3 
and 

2 - 4 
and 

- 2 1 - 2 0 

where [2, —2] where the Escher tile T was singly periodic with natural period 

[2, —2] and collision-free vectors [—4,0] and [3,1]. 

Faced with a particular D for which we want to compute h(D), brute force 

methods are adequate [Bu89]. On the other hand, general results are much harder 

to come by. So, for our purposes, we simply use the class number as a tool that 

provides a necessary condition on A that tells us that there is a possibility of more 

than one irreducible A-colored Big Tile for T. 

We end this chapter with one more theorem with thanks, again, to the class 

number. 

Theorem 7.2.11 (Finitely Many Inequivalent A-Colored Irreducible Big Tiles): 

Let T be an Escher tile whose period graph is connected, and let A be any positive 

integer. Then the number of inequivalent irreducible A-colored Big Tiles for T is 

finite and at most h(—4A2). 
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Chapter 8 

Future Work 

8.1 Generalizations 

The following is a sample of ideas for generalizing the methods in this thesis. 

1. Ask and answer the Escher Big Tile question for regular-hexagon tilings in 

the Euclidean plane. 

2. Ask and answer the Escher Big Tile question for equilateral-triangle tilings 

in the Euclidean plane. 

3. Ask and answer the Escher Big Tile question for regular tilings of the hyper

bolic plane. 

4. Replace the translation group Z x Z with another group (finitely generated 

and abelian? other wallpaper groups?) What can be asked and what can be 

answered? 

5. The methods of this thesis should carry through to an analogue of the Big 

Tile existence question for 3-dimensional cubical tilings of R 3 . 
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8.2 Machinery Applied to Graph-Coloring and VLSI 

Design 

The machinery that we built for constructing Big Tiles may shed light on an open 

problem that lives among the areas computational geometry, VLSI design, and 

graph coloring. 

Problem: A rectangle visibility graph G (RVG) is a simple graph whose ver

tices are represented by nonoverlapping rectangles in the plane and whose sides are 

parallel to the x— and y—axes; two vertices are adjacent if and only if they have 

either a horizontal or a vertical visibility [HSV99]. Rectangle visibility graphs are 

thickness-two graphs: they can be decomposed into (at most) two planar graphs G\ 

and G2, such that V(G) = V(GX), V(G) = V(G2), E(G) = E(GX) (J E(G2), and 

E(Gx) f]E(G2) = 0. In general, a thickness-A; graph is a simple graph that can 

be decomposed into k planar layers. Finding the thickness of an arbitrary graph is 

of interest to VLSI designers since thickness may be viewed as a measure of the 

minimum number of layers required to design a computer chip whose network is 

given by G and such that no two wires cross. The maximum value of the chro

matic number of an arbitrary thickness-two graph is known to lie between 9 and 12 

[Hu93, HR90, Ga80], and has an application to the testing of printed circuit boards 

[GJS76]. A complete graph on eight vertices, K8, has a representation as an RVG. 

No R V G that requires more than eight colors is known [HSV99]. 

Conjecture: Let G be an arbitrary RVG. Then x(G) < 8. 

It is not hard to show that the vertices of any R V G can be represented by rectangles 
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whose corners have integer coordinates. As such, perhaps a modification of the 

period graph will be a tool that can be used to prove the conjecture. The edges will 

be weighted with vectors that have integer entries and contain information about 

type of visibility (horizontal or vertical, to the left of or to the right of etc), and the 

shortest distance between two vertices: the present best guess is that the vectors 

will live in Z 4 . 
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Appendix A 

Art Gallery 

Over time we have learned to expect the unexpected. Figure A. 1 shows examples of 

two Big Tiles (the Escher tile can be found in any subsquare) for which an increase 

in area does not correspond to an increase in the number of colors needed. The Big 

Tile on the left has area 18 and requires six colors, whereas the Big Tile on the right 

has area 16 and requires eight colors. 

Figure A.2 shows an example of an Escher tile that at first glance seems to 

be composed of many unrelated motif pieces. Upon analyzing the overlap graph, 

we find that nearly all of the motif pieces are related, and that a Big Tile for T is 

l x l and requires only one color. A fragment of the Escher wallpaper is shown in 

Figure A.3. 
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Figure A. 1: Minimal area need not correspond to minimal coloring 

Figure A.2: A deceptive Escher tile 
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Figure A 3 : The deceptive tile unravelled 
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Figure A.5: Escher tile whose period graph is disconnected 

Figure A.6: Fragment of wallpaper pattern for the Escher tile in Figure A.5 
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Figure A.7: Another of Escher's designs 
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