
The Online and Offline Properties of Routing

Algorithms in M P L S

by

Serene Wing Hang Wong

Hon.B.Sc, University of Toronto, 2000

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Mas te r of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

July 2002

© Serene Wing Hang Wong, 2002

\

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the Un i v e r s i t y of B r i t i s h Columbia, I
agree that the Li b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
th i s thesis for s c h o l a r l y purposes may be granted by the head of my
department or by his or her representatives. I t i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department of £omputW Sconce

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date Tuly 1$ ZOOZ

Abstract

This thesis focuses on the route allocation problem. In particular, we consider how
to optimally place a LSP on a network such that the bandwidth demand is guar
anteed. The objection function is throughput. Specifically, two metrics are used:
the number of rejected requests and the amount of rejected bandwidth. We eval
uate the performance of five routing algorithms: the shortest path algorithm, the
widest-shortest path algorithm, the shortest-widest path algorithm, the minimum
interference routing algorithm, and the profile-based routing algorithm. In addition,
we investigate the sensitivity of history of the two more sophisticated routing algo
rithms: the minimum interference routing algorithm, and the profile-based routing
algorithm.

We explore the sensitivity of history through the use of the batch process
scheme. The batch process scheme allocates tunnels for a batch of requests at a
time, and can be viewed as a continuum with its ends being the online and offline
scheme. We compare the performance of routing algorithms with varying batch sizes
indicating the changes of the history information.

The routing decisions that routing algorithms make significantly influence
the performance of the network. Thus, it is beneficial to evaluate the performance
of routing algorithms. Furthermore, with the batch process scheme, algorithms can
make use of the history information in order to make better routing decisions which
would greatly enhance the utilization of the network resources.

ii

Contents

Abstract ii

Contents iii

List of Tables v i

List of Figures vi i i

Acknowledgements x

1 Introduction 1

1.1 Motivation 3

1.2 The Problem 5

2 Background 7

2.1 Traffic Engineering 7

2.2 Traffic Engineering Problems 8

2.3 Limitations of Current Interior Gateway Protocol 10

2.4 MPLS 12

2.5 MPLS and Traffic Engineering 14

2.5.1 Explicit Routing 14

iii

2.5.2 Traffic Trunk Attributes 15

2.5.3 Resource Attribute 17

2.6 Existing Routing Algorithms 19

3 T h e P r o b l e m 22

3.1 Algorithms 22

3.1.1 Shortest Path (SP) 22

3.1.2 Widest-shortest path (WSP) 23

3.1.3 Shortest-widest path (SWP) 25

3.1.4 Minimum Interference Routing Algorithm (MIRA) 26

3.1.5 Profile-Based Routing Algorithm (PB) 28

3.2 Refinement of the Problem 33

4 Exper imenta l Design 35

4.1 Introduction 35

4.2 Methodology 35

4.3 Comparison Among all Algorithms 38

4.4 History 42

4.4.1 SP, WSP, SWP 42

4.4.2 MIRA 43

4.4.3 MIRA Online 43

4.4.4 MIRA Batch 43

4.4.5 PB 53

4.4.6 PB Online 53

4.4.7 PB Batch 54

4.4.8 History 64

iv

5 Conclusion 67

5.1 Future Work 70

Bibl iography 74

A p p e n d i x A Topologies 76

v

L i s t o f T a b l e s

4.1 Performance for SP, WSP, SWP 39

4.2 Performance of MIRA and PB, No. of Rejections 39

4.3 Performance of MIRA and PB, Rejected Bandwidth 40

4.4 Performance of WSP and PB, No. of Rejections 40

4.5 Performance of WSP and PB, Rejected Bandwidth 41

4.6 Performance of MIRA and WSP 41

4.7 Topology 15 for SP, WSP and SWP 42

4.8 MIRA Online 44

4.9 MIRA Batch 46

4.10 PB Online, Topology 1, for having 1 class 54

4.11 PB Batch, Egress Node As Mapping Function 57

4.12 PB Batch, Ingress Egress Pair As Mapping Function 57

4.13 No. of Rejections for PB Batch with 500 Randomly Assigned Classes 58

4.14 Rejected Bandwidth for PB Batch with 500 Randomly Assigned Classes 58

4.15 No. of Rejections for PB Batch with 1 Class 59

4.16 Amount of Bandwidth Rejected for PB Batch with 1 Class 60

4.17 PB Batch with Bandwidth as the Mapping Function 61

4.18 No. of Rejections for PB Batch with 3 Randomly Assigned Classes . 61

vi

4.19 Rejected Bandwidth for PB Batch with 3 Randomly Assigned Classes

vii

List of Figures

2.1 Explicit Routing 14

3.1 Widest-Shortest Path, residual capacities are shown on the link . . . 24

3.2 MIRA 28

3.3 An Example for PB 31

4.1 An Example for MIRA to Perform Better with More History 47

4.2 MIRA Performs Better With Less History, Example 1 49

4.3 MIRA Performs Better With Less History, Example 2 51

4.4 MIRA Performs Better With Less History, Example 3 52

4.5 Example Illustrating the More Information PB has, the Worse it Per

forms When Using a Few Number of Classes 65

4.6 Algorithms and their Sensitivity in terms of the Number of Rejections,

Topology 8 66

4.7 Algorithms and their Sensitivity in terms of the Amount of Band

width Rejected, Topology 8 66

A . l Topology 1 77

A.2 Topology 2 78

A.3 Topology 3 79

viii

A.4 Topology 4 8 0

A.5 Topology 5 8 1

A.6 Topology 6 8 2

A.7 Topology 7 8 3

A.8 Topology 8 8 4

A.9 Topology 9 8 5

A. 10 Topology 10 8 6

A. 11 Topology 11 8 7

A. 12 Topology 12 8 8

A.13 Topology 13 8 9

A. 14 Topology 14 9 0

A. 15 Topology 15 9 1

ix

A c k n o w l e d g e m e n t s

I would like to thank my supervisor, Professor Alan Wagner, for his guidance
throughout the thesis. I would especially like to thank him for being approach
able, patient and considerate. I would also like to thank Professor William Evans,
my second reader, for his valuable comments.

S E R E N E W I N G H A N G W O N G

The University of British Columbia

July 2002

C h a p t e r 1

I n t r o d u c t i o n

The explosive growth in the Internet over the last few years has resulted in a mas

sive increase in traffic as well as the development of services and applications that

demand higher quality of service. A major problem is how the extra demands on the

network can be accommodated to allow for this enormous growth while attaining

the quality of service that applications desire. Traffic engineering is an area which

manages traffic in networks to achieve better utilization of network resources, bet

ter response time and better service guarantees. With better traffic management,

networks are able to route more traffic, and provide higher quality of service.

More formally, traffic engineering is an area that strives to achieve perfor

mance goals through the knowledge obtained from measuring, modeling and con

trolling of network traffic. We focus on the controlling of network traffic, the route

allocation problem, which considers how to allocate paths for requests. Some general

problems that are connected to the route allocation problem that traffic engineering

seeks to solve include the constraint based routing problem, connection admission

control problem, rerouting problem, and the network and capacity planning prob

lem. The constraint based routing problem is to determine how to optimally place a

1

Label Switched Path (LSP) such that it satisfies a set of constraints on the network.

The connection admission problem looks at whether or not to accept a request.

The rerouting problem is to determine how to reroute a LSP, and the network and

capacity planning problem is to determine an optimal network topology for a set

of estimated requests. Our main concern in this thesis is on the constraint based

routing problem with the understanding that routing allocation is a component in

all of the above mentioned problems.

The routing allocation problem for an Internet Service Provider (ISP) is a

big challenge due to the rapid growth of networks. An ISP has to allocate more

paths for the increase in traffic and to lay LSPs that satisfy their quality of service.

The current Interior Gateway Protocols (IGP), the networking protocols that are

used by ISPs, have limitations. Routing Information Protocol (RIP) is one of the

most commonly used IGP and was originally released in Unix BSD. Open Shortest

Path First (OSPF) is another commonly used IGP and it is a more widely used IGP.

Both RIP and OSPF are based on the shortest path algorithm. A major shortfall

of the shortest path algorithm is congestion. The shortest path algorithm does not

consider the characteristics of the traffic or the link state information when it makes

its routing decision. It only considers the topology information. Therefore, current

IGPs do not have sufficient capabilities for traffic engineering.

Several approaches have been developed to overcome the weaknesses of cur

rent IGPs. One approach is the development of the overlay model. This approach

puts a virtual topology on top of the physical topology. The IGPs then treat the

virtual topology as though it were physical. Extensions have also been made to

OSPF to support traffic engineering. More recently, a new protocol, Multiprotocol

Label Switching (MPLS) which has the capacity to explicitly specify a path has

2

been developed.

MPLS is an IGP. It is situated in between layer 2 and layer 3 of the Open

Systems Interconnection (OSI) model, and it uses label switching as its forwarding

scheme. Label switching consists of two components, the forwarding component and

the control component. The forwarding component uses the label and the forwarding

table when making its forwarding decision. The label is used as an index into the

forwarding table to determine the outgoing interface. The control component gives

routing information to MPLS enabled routers and creates forwarding tables used by

the forwarding component.

There are several advantages to MPLS for traffic engineering including, but

not limited to its ability to do explicit routing, to attach attributes to traffic trunks

and to make use of attributes attached to resources. Explicit routing facilitates traf

fic engineering control by allowing the entire path, from source to destination, to be

specified. The ability to attach attributes to traffic trunks enables the specification

of quality of service for each traffic trunk. The ability to make use of attributes

attached to resources constrains the use of resources for LSPs, and hence allows the

control of the use of resources. These capabilities make MPLS suitable for traffic

engineering.

1.1 Motivation

Routing allocation problems can be online or offline. An offline routing algorithm

assumes that one has complete knowledge about future requests, and an online or

dynamic routing algorithm does not have any knowledge regarding the future. It

routes requests one by one as they arrive. The constraint based routing problem,

the connection admission control problem and the rerouting problem have both an

3

online and offline counter part, while the network and capacity planning problem is

an offline problem.

Although routing algorithms are often dynamic, in practice, the time to

provision a tunnel is often not dynamic; instead, it is a batch process. A batch

process refers to the handling of requests a batch at a time as opposed to one by

one, as they arrive. There are two reasons for provisioning tunnels using the batch

process. Firstly, there is a time lapse between a customer ordering a service from

a company, and the company passing it to the network engineer to configure the

network. Secondly, networks are configured periodically as network reconfiguration

is error prone, and an error would cause undesirable consequences. During the time

lapse, requests are collected in a batch. Thus a batch process is often used for tunnel

provisioning. :<

The batch process is useful in many situations. It is suitable for services

that are subscribed to a company on a regular basis, and for services that do not

require immediate action. This batch process can be viewed as a spectrum with

its ends being the online scheme and the offline scheme. The batch process has

more knowledge when compared to the online scheme, but has less knowledge when

compared to the offline scheme.

The batch process is advantageous in that it can gain history information

from the batch of requests and it is also suitable for many services. The question

that is of interest then is which algorithms are best suited for the batch process

environment, or which algorithms are sensitive to history.

4

1.2 The Problem

In this thesis, we consider a simple constraint based routing problem. We focus

on how to optimally place a LSP such that the bandwidth is guaranteed. The

objective function is throughput. In particular, two metrics are used: the number

of rejected requests and the amount of rejected bandwidth. We evaluate five routing

algorithms:

1. Shortest path algorithm - chooses the shortest path with respect to the number

of hops.

2. Widest-shortest path algorithm - chooses the shortest path. If there exists

more than one shortest path, the widest path is chosen. The widest path is

the one with the largest residual bandwidth in the bottleneck link.

3. Shortest-widest path algorithm - chooses the widest path. If there is more

than one widest path, the shortest path is chosen.

4. Minimum interference routing algorithm - uses the maxflow computation to

make its routing decision. The key idea is to minimize interference.

5. Profile-based routing algorithm - uses multi-commodity flow computation as

the preprocessing phase to approximate traffic, and uses the shortest path

algorithm as its online phase to route individual requests.

In addition, we focus on the sensitivity of history of the two more complex algo

rithms, the minimum interference routing algorithm, and the profile-based routing

algorithm.

The rest of the thesis is organized as follows. Chapter two gives the back

ground information. Chapter three discusses the shortest path algorithm, the widest-

5

shortest path algorithm, the shortest-widest path algorithm, the minimum interfer

ence routing algorithm, and the profile-based routing algorithm in detail. In addi

tion, Chapter three refines the research problem. Chapter four presents the design

of the test cases and provides the test results as well as their explanations. Chapter

five concludes our work and makes suggestions for future work.

6

Chapter 2

Background

The popularity of the Internet has grown tremendously over the last few years and

has resulted in an enormous increase in traffic as well as the development of new

applications and services. The problem is how one can accommodate this increase

in traffic, while providing the quality of service that new applications and services

desire. Traffic engineering is an area that manages traffic in networks with the

goal to optimize the utilization of network resources and to attain higher network

performance.

2.1 Traffic Engineering

Traffic engineering is an area that includes the application of technology to measure,

model, characterize and control network traffic, and to achieve certain performance

goals through the use of such knowledge [1].

Two essential classes of performance objectives for traffic engineering are

described in [1], namely, traffic oriented objectives and resource oriented objec

tives. Traffic oriented objectives focus on the quality of service for particular traffic

7

streams. Some examples in a single class best effort service model are throughput

maximization, packet loss minimization and delay minimization. Resource oriented

objectives focus on the utilization of network resources. In particular, it is not desir

able to have one part of the network over-utilized and another part of the network

under-utilized. An example of resource oriented performance objective is bandwidth

maximization. There are performance objectives that belong to both the traffic and

resource oriented performance objectives. An example is congestion minimization.

Congestion occurs when the network does not have enough resources and when re

sources are not efficiently used. The aim of traffic engineering is to avoid the latter.

In this thesis, we focus on the problem of controlling traffic, in particular,

the route allocation problem.

2.2 Traffic Engineering Problems

Girish, Zhou and Hu, [9] , mathematically formulated four traffic engineering prob

lems all connected to the routing problem: the constraint based routing problem,

the connection admission control problem, the rerouting problem, and the network

and capacity planning problem. In the following we briefly describe each of these

problems.

• Constraint Based Routing Problem - In the constraint based routing problem

[9] , an optimal placement of a label switched path (LSP) that satisfies a set

of given constraints is to be determined. The LSP determines the path that

all packets assigned to that LSP must follow from ingress to egress. The con

straints include the network state information, the attributes of the resources

of the network, and the attributes of the LSPs [9]. If there exists several feasi-

8

ble LSPs that satisfy all the constraints, then the optimal LSP must further be

determined. In order to choose an optimal path, there needs to be an objective

function or some metrics to define what needs to be optimized. Bandwidth,

delay, delay jitter and cost are some common routing metrics [21]. Their objec

tive functions are maximizing the total bandwidth or the residual bandwidth,

minimizing delay, minimizing jitter, and minimizing the cost, respectively. A

routing algorithm routes paths according to these objective functions [21].

• Connection Admission Control Problem - Admission control [9] is the problem

of deciding whether or not to admit a request. There are two reasons why

one would reject a request. Firstly, if it is impossible to satisfy the request

within the given constraints, then it must be rejected. However, even when

the constraints can be satisfied, there is still the issue of whether it is best to

accept this request over future requests. For example, if accepting the request

results in blocking future traffic, then it might be better to reject the request

in order to accept future requests.

• Rerouting Problem - Rerouting is the problem of rerouting LSPs [9]. Rerout

ing is to route already established tunnels to other paths. Rerouting is needed

when one or more elements in the network, nodes or links, fails or recovers

from earlier failure. During a failure, LSPs that use the node or the link are

affected. Those affected LSPs have to re-route to other feasible paths, called

backup LSPs. Routers such as Junipers allow multiple backup paths to be

configured so that affected LSPs can route to the backup paths. Once the

network elements have recovered, re-optimization of allocated tunnels may be

desired'. This is done by rerouting LSPs on more preferable links that become

9

available once the recovery of one or more network elements occurs. Rerouting

can also be used for preemptive tunnels where higher priority LSPs are able

to preempt lower priority LSPs [9]. Finally, load balancing may also require

rerouting [9].

• Network Design and Capacity Planning Problem - The network design and

capacity planning problem is to determine an optimal network topology given

an estimation of requests. This is the initial problem of constructing the

network and to plan for its future growth.

The focus of this thesis is on the constraint based routing problem although

the routing allocation is a component in all of the previous problems. In particular,

we consider the simple problem of optimally placing an LSP such that the bandwidth

demand is satisfied. The two objective functions that we use are the minimization

of the number of rejected requests and the amount of rejected bandwidth.

2.3 Limitations of Current Interior Gateway Protocol

An Interior Gateway Protocol (IGP) is a networking protocol that is used within

an autonomous system (AS). An AS is a network that is under a single entity of

administrative control. The two most common IGPs used are RIP and OSPF. RIP

is an older protocol originally released in Unix BSD. OSPF is a newer and more

widely used IGP.

The Routing Information Protocol (RIP) [12] is an IGP that uses the dis

tance vector algorithm. When making routing decisions, RIP compares alternate

paths using a fixed metric, such as the number of hops and cost. There are several

limitations to traffic engineering with RIP. Firstly, RIP uses a fixed metric and thus,

10

it is not designed for making routing decisions based on metrics such as delay or

load, which are real-time parameters. Secondly, RIP is based on the shortest path

algorithm, and the shortcomings of which will be discussed later.

The Open Shortest Path First (OSPF) [15] is another IGP that uses the

shortest path algorithm. It is a destination based algorithm and as such the routing

decision is based only on the destination. Destination based algorithms impose

restrictions on their routing choices because requests with the same source and

destination have to route on the same path. Fortz and Thorup in [8] optimizes the

weight in OSPF in order to do traffic engineering. Routing decisions are based on

the shortest path which in turn is based on the assigned weights. They optimize the

weights based on a given set of demands using a local search heuristic. However,

since it is still a destination based algorithm, the routing decision is restricted and

cannot consider the source, destination and quality of service in routing decisions.

Current IGPs are insufficient for traffic engineering because they are based

on the shortest path algorithm. A major drawback of the shortest path algorithm is

congestion. The shortest path algorithm makes routing decision based on topology

information and does not take into consideration the availability of bandwidth or

the characterization of traffic. Congestion occurs when 1) multiple requests use

the same links, or 2) a request is routed on a path that does not have enough

bandwidth to satisfy its demand. The shortest path algorithm is not able to use other

feasible paths in the network which can accommodate the incoming requests without

causing congestion. Thus, current IGPs which use the shortest path algorithm are

insufficient for traffic engineering.

Several approaches have been developed to improve the deficiencies of current

IGPs. An overlay model has been used. Virtual topologies are placed on top of the

11

physical topology, and the IGP looks at virtual topologies as if they are the physical

network. The use of overlay models allows for the application of various functions

including constraint-based routing, admission control, and imposing traffic policies

[1]. Extensions have also been made to OSPF to support traffic engineering [11].

In the extension, a traffic engineering database is formed by additional attributes

that are added to OSPF advertisements. Some additional attributes include the

traffic engineering metric, the maximum bandwidth which can be used and color.

The traffic engineering database can be use for the monitoring of link attributes and

constraint-based source routing.

Most recently, a new protocol called MPLS (Multiprotocol Label Switching)

has been introduced by the Internet Engineering Task Force (IETF). MPLS makes

it possible to explicitly specify the entire path. .We focus on MPLS in this thesis.

The next two sections give an overview of MPLS and its capabilities for traffic

engineering.

2.4 M P L S

MPLS [6, 17] is a protocol that uses label switching as its forwarding scheme. It is

an IGP. MPLS is in between layer 2, the link layer, and layer 3, the network layer,

in the OSI (Open Systems Interconnection) model. We will briefly describe how

packets are routed using label switching.

Before describing label switching, we first introduce some terminologies. A

MPLS enabled router is a label-switched router (LSR). A collection of LSRs and the

connections between them form a MPLS cloud within which tunnels or LSPs are

created. An ingress router is the edge router that the packet enters into the MPLS

network, and an egress router is the last router before the packet leaves the MPLS

12

network.

Label switching consists of two components, the forwarding component and

the control component. The forwarding component of an algorithm is to make

forwarding decisions. The forwarding decision uses two kinds of information, the

label and the forwarding table. A label is of a short fixed length and does not encode

any network layer header information. A label is assigned to a packet as it arrives at

an ingress router. As a packet arrives at each LSR, it uses the assigned label to index

into the forwarding table to determine its outgoing interface. In a connectionless

network layer protocol, as a packet arrives at the router, the packet's header is

examined. The router consults the IP routing table to perform a longest prefix

match with the packet's destination address for the next hop. Packets in MPLS do

not have to consult the IP routing table every time they arrive at a router.

The control component gives routing information to LSRs and creates for

warding tables required by the forwarding component. The label switching control

component includes all routing protocols that the convention routing control compo

nent uses. Since the convention routing control component does not need to create

forwarding tables, the information that convention routing provides is not sufficient

for label switching. A mapping is needed between the next hop and the label.

MPLS uses the notion of Forwarding Equivalence Class (FEC). Al l Packets

in an LSR can be forwarded into some disjoint subsets. A LSR treats each subset

in the same manner. These subsets are FECs. A packet is mapped into a FEC as

it arrives in the ingress router. The mapping is based on the source and destination

addresses as well as the type of service of the packet. FEC gives service providers

a lot of flexibility. FEC allows them to route every FEC in a different manner

satisfying the individual FEC's needs.

13

F

Figure 2.1: Explicit Routing

2.5 M P L S and Traffic Engineering

Let us first introduce the following terminology. A traffic trunk or a tunnel is an

aggregation of flows that is placed on a LSP. The aggregation of flows belongs to

the same class. In practice, traffic trunk, tunnel and LSP are synonymously used.

MPLS has several capabilities for traffic engineering. The first is its ability

to do explicit routing [1]. Explicit routes can either be manually configured by a

network operator or automatically established by MPLS defined control protocols.

The second is its ability to attach attributes to traffic trunks [1, 20]. These attributes

can characterize the QoS for traffic trunks. The third is its ability to make use of

attributes attached to resources [1, 20] which can restrict the placement of LSPs on

the network. Each of these mechanisms is further described.

2.5.1 Explicit Routing

Explicit routing allows the setup of LSPs to use any path from source to destination.

The path can be completely specified in which all LSRs between the ingress and

egress nodes are specified. The path can also be partially specified in which only

a subset of LSRs on the path between the ingress and egress nodes are specified.

14

A LSP is setup from A to E in Figure 2.1. A=>C=>D=>F=$>E completely

specifies the path. Each hop in the path is set to be strict or loose. If the hop is

set to strict, the next hop must be the specified LSR and the specified LSR must

be adjacent to it. If the hop is set to loose, other hops can be inserted before the

specified LSR, and the LSR does not have to be adjacent.

Explicit Routing allows more control for traffic engineering than the control

mechanisms used in current IGPs, and it can specify any path, not only the shortest

path. Explicit Routing is more flexible than destination based routing because it

considers both the source and the destination when making its routing decision,

while destination based routing makes its decision based only on the destination.

If two requests share the same source and destination, explicit routing can route

them in two completely different paths but destination based routing cannot. Thus,

explicit routing is more flexible and allows more control.

2.5.2 Traff ic T r u n k A t t r i b u t e s

Traffic Trunk attributes [20, 1] are parameters that characterize the behavior of a

traffic trunk. They are important because they determine the QoS of a traffic trunk.

These attributes are assigned to LSPs by network operators or can be assigned in

the ingress router by the underlying protocol as traffic trunks are mapped to an

FEC. Several traffic trunk attributes are described below.

• Traffic Parameter Attribute [1] - The traffic parameter attribute specifies the

characteristic of traffic streams. Some examples are peak rates, average rates,

burst size and bandwidth. The traffic parameter attribute is important to

traffic engineering because it allows the specification" of resource requirement

which enhances resource allocation and congestion avoidance.

15

Resource Class Affinity Attribute [1, 20] - The resource class affinity attribute

specifies the class of resource that the tunnel is to include or exclude. For

inclusion, it restricts the tunnel to be placed on certain classes of resources,

and for exclusion, it restricts the tunnel from being placed on some classes

of resources. For example, in explicit inclusion, all resources that do not

belong to a specified class are first pruned before computing the tunnel. This

is helpful for imposing policies such as limiting the tunnels to be placed on

certain specific regions in the network.

Adaptivity Attribute [1, 20] - The adaptivity attribute is a binary value which

indicates the possibility of a tunnel to be re-optimized. Re-optimization refers

to the re-establishment of existing tunnels for better performance. If a tunnel

is permitted to re-optimize, then it can route on a different path as resources

become available. However, if a tunnel is not permitted to re-optimize, the

tunnel is pinned to its original path. Tunnels can be re-optimized when the

state of the network changes. The state of network changes from time to time

because resources may become available. Resources that were allocated could

become deallocated and resources may also recover from failure thus creating

more routing options. In our thesis, tunnel re-optimization is not permitted.

Setup Priority Attribute [20] - The priority attribute defines the order of im

portance of tunnels . In particular, when multiple LSPs compete for the same

resources, the setup priority determines which LSP has the highest priority

and should get the available resources.

Preemption Attribute [1, 20] - The preemption attribute specifies whether

a tunnel can preempt other tunnels. This permits tunnels that have higher

16

priority to have the privilege to take on better paths.

• Resilience Attribute [1, 20] - The resilience attribute specifies whether a tunnel

is to be rerouted to another path in case of failures that affect the tunnel.

• Policing Attribute [1] - The policing attribute specifies actions that are taken

if a tunnel exceeds its traffic parameter values. These actions may include

limiting its rate, tagging it or having no action at all. It is desirable to have

policing in ingress routers to ensure that the service level agreements (SLA)

are enforced. The policing attribute provides supervision in the usage in the

network.

2.5.3 Resource Attribute

Resource Attributes [1] are parameters that specify the state information for topolo

gies. They provide information that is essential for the traffic placement on re

sources. On the other hand, they also constrain the use of resources for LSPs which

is important for traffic engineering. In this section, two resource attributes, the

maximum allocation multiplier and the resource class attribute, are discussed.

• Maximum Allocation Multiplier [1] - The maximum allocation multiplier spec

ifies the availability of resources for allocation. Examples of resources that have

this attribute are bandwidth on links and LSRs' buffer resources. The avail

ability of resources can be configured administratively enabling better con

trol of congestion avoidance and network utilization. This attribute is often

configured so that resources are under-subscribed or over-subscribed. Under-

subscription of a resource implies that the aggregated demands from all LSPs

for that resource is less than the capacity for that resource. Over-subscription

17

of a resource implies that the aggregated demands from all LSPs for that re

source is greater than the capacity of that resource. Under-subscription places

a limit on the utilization of the resource. This may be used to reserve backup

LSPs in the event of failure. Usually, over-subscription is used to better utilize

resources by making use of the stochastic nature of traffic, such as when the

peak rates of the two flows do not occur at the same time. -

There is a trade-off between congestion avoidance and better network utiliza

tion. If one is interested in avoiding congestion by using the under-subscription

approach, then at times when the actual traffic is less than the specified traf

fic, it will lead to network under-utilization. LSPs may be forced to take sub-

optimal paths using the virtual link capacity even if there exists an optimal

path using the physical link capacity. On the contrary, if one desires to have

high-utilization in the network by using the over-subscription approach, then

at times when the actual traffic is greater than the specified traffic, congestion

will occur [20]. Thus, the maximum allocation multiplier has to be carefully

configured in order to obtain a balance between congestion avoidance and

better network utilization.

• Resource Class Attribute [1] - Resource class attribute is used to classify

resources into classes. The resource class attribute can be viewed as assigning

colors to resources, such that resources that have the same color will belong

to the same class. This attribute is helpful in implementing policies such as:

— the inclusion or exclusion policy of resource utilization for LSP place

ments as discussed above

— the preference of resources of LSP placements

18

- the local traffic control of a specific area in a network

— the application of uniform policy of some resources that are not in the

same region

2.6 Existing Routing Algorithms

This section gives an overview of some existing routing algorithms [5].

Many of the existing routing algorithms can be classified into two groups.

The first group of algorithms is greedy. They optimize for a given flow and do not

consider other flows. The second group of algorithms uses network flow computation,

which are not greedy but are more computationally expensive.

Algorithms that belong to the first group are:

• Shortest Path Algorithm - First prune all links that do not satisfy the band

width demand. Then the shortest path, with respect to the number of hops,

is chosen. The shortest path algorithm optimizes a given flow by routing on

the shortest path without considering other flows, thus, congestion may result

if multiple paths share the same links.

• Wang-Crowcroft Algorithm - This algorithm is a bandwidth-delay-constrained

algorithm [19]. It first prunes all links that do not satisfy the bandwidth

demand. Then Dijkstra's Algorithm is run on the residual graph. A path is

feasible when its delay is less than the delay constraint. This algorithm can

be reduced to the shortest path algorithm. Instead of using hop count, it uses

the delay as its metric. Thus, it is greedy, as discussed in the shortest path

algorithm.

19

• Widest-Shortest Path Algorithm - Guerin, Orda, and Williams describe this

algorithm in [16]. It first selects the shortest path. If there exists more than

one shortest path, the widest path is chosen. The widest path is the path that

has the largest residual bandwidth in its bottleneck link. Although it chooses

the widest path to avoid congestion when there exists more than one shortest

path, it is still greedy when there is only one shortest path.

• Shortest-Widest path Algorithm - Wang and Crowcroft describe this algo

rithm in [22]. It first selects the widest path. If there exists more than one

widest path, the shortest path is chosen. This algorithm is greedy in that

it attempts to use the least congested path for the current request with no

consideration for requests that are to come.

• Awerbuch et al. Algorithm - This algorithm is a throughput-competitive

routing algorithm [2], with bandwidth being the constraint. The objective

function is to maximize the amortized throughput, and the costs in links are

exponential to the utilization of bandwidth. This algorithm can be reduced

to the shortest path problem with a different weight function. Thus, this

algorithm is also greedy.

Algorithms that belong to the second group are:

• Minimum Interference Routing Algorithm - Kar, Kodialam and Lakshman

describe the minimum interference routing algorithm in [10]. Its key concept

is to defer the loading of critical links of other potential flows. Critical links are

computed using maxflow computations. This algorithm is not greedy because

it considers other flows when optimizing a given flow.

20

• Profile-Based Routing Algorithm - Suri, Waldvogel and Warkhede describe the

profile-based routing algorithm in [18]. A multi-commodity is first computed

which outputs a reduced graph. Then, the shortest path algorithm is run on

the reduced graph. The objective is to satisfy as many requests as possible.

This algorithm is not greedy because the multi-commodity computation looks

at all flows when making its routing decision.

In our thesis, we select algorithms from each group for our evaluations. From

the first group, we choose the shortest path algorithm, the widest-shortest path

algorithm, and the shortest-widest path algorithm. From the second group, we

choose the minimum interference routing algorithm and the profile-based routing

algorithm. Each of these five algorithms is discussed in detail in the next chapter.

21

C h a p t e r 3

T h e P r o b l e m

There are two sections in this chapter. The first section discusses the five algorithms

we are going to investigate: the shortest path algorithm, the widest-shortest path

algorithm, the shortest-widest path algorithm, the minimum interference algorithm,

and the profile-based algorithm. The second section is the thesis statement.

3.1 Algorithms

3.1.1 Shortest Path (SP)

The shortest path routing algorithm is a simple algorithm. Given a source, a des

tination, and a bandwidth request, the algorithm returns a path which starts from

the source and ends at the destination, with every link in the path possessing a

residual bandwidth greater than or equal to the requested bandwidth. The term,

residual bandwidth refers to the bandwidth available for allocation. We call such

paths feasible paths. In a network topology, several feasible paths might exist. The

shortest path routing algorithm selects the shortest path among all feasible paths

where the shortest path is the path that has the least number of links between the

22

source and the destination.

The major advantage of this algorithm lies in its simplicity. The shortest

path algorithm is a greedy algorithm which optimizes a given flow and does not

consider other flows. This can result in poor utilization of the overall network.

Since flows are treated independently, it is possible for congestion to occur when

multiple flows use the same links. Shortest path is unable to avoid congestion by

taking other feasible paths; as a result the congested link can become even more

congested, while other parts of the network remain under-utilized.

Latency is also a concern. There are basically two kinds of delay: queuing

delay and propagation delay [22]. Shortest path minimizes the propagation delay

by minimizing the number of hops in a path. However, queuing delay may increase

due to congestion.

3.1.2 Widest-shortest path (WSP)

In [16], Guerin, Orda, and Williams describe the widest-shortest path algorithm.

Widest-shortest path differs from shortest path by choosing the widest path if there

exists more than one shortest path. The widest path is the one that has the largest

residual bandwidth in its bottleneck link. A bottleneck link of a path is the link

with the smallest residual bandwidth. Widest-shortest path improves upon shortest

path because among all equal length paths, it attempts to avoid the bottleneck link

hoping to avoid congestion. The algorithm can be described as follows:

1. Prune all links that do not satisfy the required bandwidth

2. Choose the shortest path (with respect to the number of hops)

23

B

C

Figure 3.1: Widest-Shortest Path, residual capacities are shown on the link

3. If there exists more than one shortest path, choose the widest path (the one

with the largest residual bandwidth in its bottleneck link)

Figure 3.1 shows a network topology with a request to allocate a tunnel from

A to D having 3 units of demand. There are three feasible paths, A B =j> D,

A C =i> D, and A => E =j> F D. The algorithm chooses the shortest path.

There are two shortest paths: A =t> B =>• D and A =i> C =i> D. Both of these paths

route through three hops. Among these two shortest paths, the algorithm chooses

the widest path, A =>• B =>• D. This is because the bottleneck for A B =i> D

is 10 units, and the bottleneck for A C =l> D is 5 units. The path with the

largest residual bottleneck link capacity is chosen. Thus, this algorithm returns

A B D.

Widest-shortest path improves on the shortest path algorithm when there is

more than one shortest path. However, this algorithm is still based on the shortest

path and the improvement only occurs when there is more than one shortest path.

Thus it suffers from the same limitations as the shortest path algorithm. However,

widest-shortest path may work well in networks with large numbers of equal length

24

paths, i.e. fully meshed networks.

3.1.3 Shortest-widest path (SWP)

The shortest-widest path algorithm is described by Wang and Crowcroft in [22].

It is an improvement to shortest path since it attempts to avoid congestion by

choosing the widest path. Shortest-widest path uses two metrics. The first metric

used maximizes the smallest residual link capacity over all paths from source to

destination. The second is to minimize the propagation delay. Recall that there are

basically two kinds of delay: queuing delay and propagation delay. Queuing delay is

estimated in the first metric, since if the bottleneck bandwidth in a link is small, it

is likely that the queuing delay is large. These two metrics are called the width and

the length of a path. The bottleneck residual bandwidth corresponds to the width

of the path and the propagation delay corresponds to the length of the path. The

algorithm optimizes each of these metrics in turn.

The algorithm is as follows. First prune all links that do not meet the band

width requirement. Then, find a path with the largest width, the largest bottle

neck residual bandwidth. If several paths have the same largest bottleneck residual

bandwidth, then the path with the minimum length is chosen. Note the difference

between the shortest-widest path algorithm and the widest-shortest path algorithm.

Widest-shortest path chooses the shortest path first whereas the shortest-widest

path chooses the widest path first.

Shortest-widest path improves upon shortest path by maximizing the small

est residual link capacity in a path. However, there is a drawback to this algorithm.

The algorithm first looks for a path with the largest width. The path with the largest

width may be a long path from the source to destination. While on the one hand, it

25

is avoiding congested links, on the other hand, it is using a lot of network resources

by routing on longer non-shortest path links. Propagation delay also increases if

the widest path is long. Shortest-widest path may be good on smaller networks. As

well, one could imagine combining the width and the length by bounding the length

of the widest path. There is no reason why long paths have to be accepted.

3.1.4 Minimum Interference Routing Algorithm (MIRA)

Kar, Kodialam, Lakshman describe the minimum interference routing algorithm

in [10]. MIRA is an online, bandwidth guaranteed algorithm that does not split

requests. MIRA maximizes the acceptance of demand by deferring the loading of

critical links that might, if congested, lead to rejection of requests. Unlike the

previously discussed greedy algorithms, MIRA considers other flows when making

its routing decisions. Furthermore, MIRA uses information about the ingress egress

pairs that previous algorithms do not use.

MIRA uses the maxflow computation. The idea of maxflow is to push as

much flow as possible from a source a to a destination b 1. The maxflow value for

(a, b) decreases as a demand is routed from a to b. The maxflow value for (a, b) also

decreases as a demand is routed from c to d if (c, d) routes its demand using (a, 6)'s

bottleneck edge. In this case, the routing of (c, d) interferes with (a, b). The key

idea in MIRA is to minimize the interference. Suppose a request with ingress egress

pair (a, b) arrives. MIRA chooses a path that satisfies the bandwidth requirement,

and minimize the interference with the rest of the ingress egress pairs, i.e. excluding

(a, 6).

More formally, MIRA chooses its paths as follows. For each ingress egress
1 Ingress egress nodes are in lowercases for general situations, and uppercases for

examples.

26

pair excluding the ingress egress pair that belongs to the current request, a critical

set is computed. The critical set consists of a set of critical edges. The critical

set for any ingress egress pair is the minimum cut between that ingress egress pair.

If there exists more than one minimum cut for that ingress egress pair, then the

critical set is the union of all the minimum cuts. Intuitively, a critical set contains

the bottleneck edges for that ingress egress pair. MIRA defers the loading of or

"protects" critical links.

The ingress egress pairs are arranged in order of their relative importance.

The importance of an ingress egress pair can be assigned by choosing functions

that indicate the importance of an ingress egress pair. In this thesis, we define the

importance of an ingress egress pair as the inverse of its maxflow. This implies that

the smaller the maxflow is for an ingress egress pair, the more the importance of the

ingress egress pair. The idea is to protect links that have small residual bandwidth.

For each ingress egress pair besides the ingress egress pair in the current

request, calculate its maxflow and its critical set. For each edge in the topology,

assign a weight. The weight function is:

w(l) = asd

(s,d):leCsd

where (s,d) is an ingress egress pair, Csd is the critical set for ingress egress pair,

(a,d),

asd = l/osd

is the importance of ingress egress pair {s,d), and asci is the maxflow of (s,d). A l l

the edges that do not meet the bandwidth requirement are pruned from the network

and the shortest path algorithm is run on the reduced network.
Figure 3.2 shows a network topology with a request to allocate a tunnel from

27

Figure 3.2: MIRA

D to C having 10 units of demand. Suppose that the only ingress egress pairs are

(A, C) and (D,C). The critical set for (A, C) is {BC} since BC is its minimum

cut. The maxflow for (A,C) is 50. The importance of (A, C) is 1/50 = 0.02.

The weight for BC is 0.02 and the weights for all other links are set to a very

small positive number, say 0.00001. The cost for D =>• B C is 0.02001, and

the cost for D =• E F => G =• C is 0.00004. Thus MIRA chooses the path

D=>E=>F=>G=>C since 0.00004 is less than 0.02001.

Although MIRA's minimum interference idea is appealing, it has several

limitations. Firstly, MIRA only focuses on the affect of interference for one ingress

egress pair instead of a cluster of nodes. Secondly, MIRA does not use the infor

mation about demands of requests leading to situations where the protection of

ingress egress pairs is unfavorable. Thirdly, MIRA does not have admission control.

Fourthly, MIRA is computationally expensive since for every request, hundreds of

maxflows may need to be calculated.

3.1.5 P r o f i l e - B a s e d R o u t i n g A l g o r i t h m (P B)

Suri, Waldvogel, and Warkhede describe the profile-based routing algorithm in [18].

PB was designed to overcome the weaknesses in MIRA. PB uses a set of traffic

28

profiles that enable PB to consider the blocking effect on a cluster of nodes instead

of focusing on one ingress egress pair. Moreover, PB includes admission control. PB

uses a multi-commodity flow computation that is used initially to reserve bandwidth

based on estimates of the traffic demand. Once the bandwidth is reserved, shortest

path is used to allocate bandwidth for individual requests.

PB, like MIRA, is an online algorithm. However, PB has two phases: an

offline phase and an online phase. The offline phase is a multi-commodity flow

computation, and the online phase is the shortest path algorithm. The basic idea

of the multi-commodity flow algorithm is to push as much flows from sources to

destinations as possible while minimizing a cost function.

PB uses the output of the multi-commodity flow computation to enforce

admission control as well as to guide the shortest path algorithm. The output

of the multi-commodity flow pre-allocates bandwidth for flows and the shortest

path algorithm is executed on the pre-allocated bandwidth. When the pre-allocated

bandwidth is not able to satisfy the demand, the request is rejected even though

there may be sufficient bandwidth to satisfy the request. The offline and online

phases are discussed in detail.

Offline, Preprocessing Phase

The first phase is the multi-commodity flow preprocessing phase. PB uses a set

of traffic profiles. The information in the traffic profile can be obtained by moni

toring the network, deduced from historical trend data or can be based on service

level agreements (SLAs). SLAs are service specifications that both customers and

providers have to adhere to. Each traffic profile is a tuple, (class ID, ingress node,

egress node, requested bandwidth). The class ID specifies the class that the ingress

29

egress pair belongs to. Some examples of classes include having all requests with

the same ingress egress pair in one class, having all requests with the same egress

node in one class and having all requests with the same bandwidth in one class.

The requested bandwidth is an aggregated bandwidth between the ingress egress

pair for that class. Since each traffic profile contains aggregated information, i.e.

each traffic profile does not correspond to a particular flow, the aggregated flows in

the traffic profile can be split. The splitting does not imply that each flow is split,

since the information is aggregated, it simply implies that several flows are routed

on other paths.

It might not be possible to route all requests in the set of traffic profiles, thus

additional edges are added to the graph. For each ingress egress pair, an edge from

the ingress to the egress node is added. This edge is called the excess edge where

the capacity and the cost for it are both infinity. The cost for all non-excess edges is

one. The objective of this phase is to push as much flow in the set of traffic profiles

as possible, and also to minimize the cost. Each traffic class is one commodity.

Assume that there are k commodities. The cost function is as follows:

is the cost of edge e, and xi{e) is the amount of flow in edge e for commodity i.

Online Phase

The online phase uses Xi(e) from the offline phase. Initially, the capacity for each

edge is set to Xi(e) for each class resulting in a reduced graph for each class. Each

k

where

cost(e) = {(

1 if eis not an excess edge
o o if e is an excess edge

30

0*
(a) Initial Capacities

Ingress Node Egress Node Required bandwidth
A B 30
A E 20
A B 40

(b) Reduced graph from output of the
multi-commodity flow algorithm

Ingress Node Egress Node Aggregated bandwidth
A B 50
A E 20

(c) Requests (d) Traffic Profile

Figure 3.3: An Example for PB

request is assumed to map to a unique class and is routed on the pre-allocated

bandwidth specified in the reduced graph using the shortest path algorithm.

If the demand for class i on edge e is greater than X((e), then even though the

real capacity is greater or equal to the demand, PB would not allow the demand to

route on edge e. The values generated from the offline phase are used as thresholds

for the online phase. Furthermore, a request that belongs to class i cannot use

bandwidth that is reserved for class j.

31

Example

For the sake of simplicity, consider the following example using one class. Figure 3.3

(a) shows a network topology with its initial capacities. Figure 3.3 (b) shows the

pre-allocated bandwidth output from the multi-commodity flow algorithm. Figure

3.3 (c) shows the requests, and Figure 3.3 (d) shows the set of traffic profiles. During

the online phase, a tunnel A =j> B is placed for the first request, a tunnel A =£• D =>•

C =i> E is placed for the second request, and the third is rejected since there is

not enough pre-allocated bandwidth that can satisfy it although there is actually

sufficient bandwidth to satisfy it.

PB uses class information. The mapping function that maps LSPs to classes

is an important factor for the success of PB. This is because the multi-commodity

flow pre-allocates bandwidth for each class, and a request that belongs to class A

can only use bandwidth that is reserved for class A. Properties of the definition of

classes that are of interest include the number of classes that LSPs are mapped into

and which LSPs should be mapped into the same class.

We have mentioned the improvements of PB over MIRA. Let's look at some

of its disadvantages. Firstly, PB assumes that the splitting of a commodity implies

the splitting of a group of flows, not an individual flow. This is because PB uses

an aggregation of bandwidth in the traffic profile. This causes a problem when an

individual flow has a large demand. Secondly, PB's performance depends on the

accuracy of the information provided in the set of traffic profiles.

32

3.2 Refinement of the Problem

We have seen four traffic allocation problems in the previous chapter, the constraint

based routing problem, connection admission control problem, rerouting problem,

and the network and capacity planning problem. The constraint based routing

problem, the connection admission control problem, and the rerouting problem have

both an online and offline counter part. The network and capacity planning problem

are static problems since they have an estimation of requests. An offline scheme

assumes that one has complete knowledge of the requests. An online scheme does not

assume any prior knowledge regarding the future, specifically, the future sequence

of requests. Each request allocates a tunnel as it arrives.

Although routing algorithms often consider tunnel provisioning to be dy

namic, however, in practice, static provisioning is commonly used to provision tun

nels corresponding to a service. The time for tunnel provisioning is often not dy

namic, but rather, it is a batch process. A batch process allocates tunnels for a

batch of requests instead of allocating a single tunnel for a single request as it ar

rives. This batch process can be viewed as a continuum with its ends being the

offline and online scheme. It has more knowledge than the online scheme but less

knowledge than the offline scheme. The knowledge that the batch process has is the

history information.

There are two reasons for provisioning tunnels using a batch process and not

dynamically. First, there is a time lapse from the moment when a company takes

in service requests, to when the requests are passed on to the network engineer, to

when the network engineer configures the network. Secondly, networks are usually

only reconfigured at certain times, and usually do not reconfigure previous services

as reconfiguration is prone to error and could lead to undesirable consequences. We

33

do not consider the reconfiguration of existing tunnels, but it could, however, use

the same algorithms as presented in the thesis.

Batch processing of tunnel provisioning is useful for many services. It is useful

for services that are subscribed by customers on a regular basis and it is useful for

services that do not require immediate action. For example, if a company receives

ten services that require actions for tomorrow, then the company can process a

batch of ten requests.

Our main concern is which of these algorithms are best suited for this type

of environment. The batch process makes use of two kinds of history information.

The first is the different sizes of batches. The second is the information that a

specific algorithm gives, for example, the ingress egress pair, communication matrix,

bandwidth, and the class that a LSP belongs to. The question thus can be rephrased

to ask how sensitive are the algorithms to history information.

In this thesis, we address the route allocation problem. In particular, we focus

on how a LSP can be optimally placed with respect to minimizing the number of

rejected requests and rejected bandwidth, while satisfying the demand. We evaluate

five algorithms, SP, WSP, SWP, MIRA and PB. In addition, we study two of the

more sophisticated algorithms, MIRA and PB, with respect to their sensitivity to

history information.

34

C h a p t e r 4

Experimental Design

4.1 Introduction

In this section we describe the experimental set-up. Al l the algorithms were written

in Java and we made use of BRITE for topology generation [13]. We used the Graph

Theory Package compiled by Brian W. Bush to implement these algorithms [3],

and used PPRN for the multi-commodity computation applied in the profile-based

algorithm [4]. Experiments were conducted to compare the different algorithms, and

only a representative subset of the total number of experiments run is presented.

Topologies are shown in Appendix A.

4.2 Methodology

The experimental methodology used to investigate the algorithms is specified in

this section. There are a number of parameters to be considered. These include the

following:

35

1. Algorithms - The sensitivity of history of the online, batch process, and offline

schemes are compared in these algorithms:

• SP - the online, batch process and offline scheme for SP

• WSP - the online, batch process and offline scheme for WSP

• SWP - the online, batch process and offline scheme for SWP

• MIRA online - the online scheme for MIRA

• MIRA batch - the batch process scheme and the offline scheme for MIRA

• PB online - the online scheme for PB

• PB batch - the batch process scheme and the offline scheme for PB

2. Topology - In [14], Medina, Matta and Byers show that BRITE (Boston Uni

versity Representative Internet Topology gEnerator) [13] generates topologies

that resemble the Internet more closely than two very commonly used tools,

namely, Waxman and Transit-Stub, as well as the grid. Their results are based

on how closely topologies generated from those tools match the four power-

law relationships of the Internet topology described by Faloutsos et al. in [7].

Brite is available at http://www.cs.bu.edu/brite/download.html.

We used 15 topologies. Each topology consists of 30 nodes. Brite's bandwidth

assignment is continuous. We want a discrete bandwidth assignment since in

the real world, bandwidth assignment is not continuous. The three discrete

bandwidths that are used are 10 Gb, 1 Gb and 100 Mb. We select the heavy tail

distribution for bandwidth assignment in Brite and convert the output from

Brite into the three discrete bandwidths. We choose the heavy tail distribution

for bandwidth assignment because there are more edges with small bandwidth

than large bandwidth in the networks.

36

http://www.cs.bu.edu/brite/download.html

The Objective function was throughput. In particular, the two metrics that mea

sure throughput are the number of rejected requests and the amount of rejected

bandwidth.

In order to compare the different algorithms, we fixed a number of the pa

rameters and then varied the algorithms and topologies in order to compare the

results.

The following parameters were fixed.

1. Distribution of Requests

• Number of requests: 1000

• Sequence of randomly generated requests: fixed

• Size of requests: 1Mb, 5Mb, 10Mb

o Assignment of request size: given by Zipf's law. Zipf's law states that

Pn ~ l/na where Pn is the frequency in which n occurs, n is the item

than has the nth rank, and a is close to 1. Intuitively, Zipf's law states

that only a few items occur very frequently. Most items seldom occur.

Thus, by using Zipf's law, we are saying that small request size occur

very frequently while large request size occur rarely. In 1000 requests,

there are:

- 546 1Mb requests

- 273 5Mb requests

- 181 10Mb requests

Thus, the total bandwidth requested for these 1000 requests is 3721 Mb.

2. History Information - Batch Sizes

37

• Batch Sizes:

- 1, 20, 50, 100, 500, 1000

- For a batch size of 1, the algorithm corresponds to the online scheme

since the algorithm only knows about the current request and has no

knowledge about future requests. For a batch size of 1000, the al

gorithm corresponds to the offline scheme because the algorithm has

complete knowledge of the future, and knows exactly which requests

are coming. In between the online and offline scheme, we can con

sider processing requests in different sized batches. For each batch,

we can use the information about the requests in the batch. The

larger the batch size, the more history information is available to the

algorithm.

4.3 Comparison Among all Algorithms

In this section, we compare the performance among SP, WSP, SWP, MIRA with

batch size 100 and PB with batch size 100 with its class definition being the ingress

egress pair. We make four observations.

1. WSP performs the best out of SP, WSP and SWP, as shown in Table 4.1.

For the number of rejections, it performs better than SP and SWP in 12 out

of 15 topologies. For the amount of bandwidth rejected, it performs better

than SP and SWP in 13 out of 15 topologies. This is expected as WSP is an

improvement to SP because it avoids congestion by taking the widest path,

the path that has the largest bandwidth in its bottleneck link, when there

exists more than one shortest path. It performs better than SWP although

38

Topology SP WSP SWP
No. of Rejections 1 116 92 215

Rejected Bandwidth(Mb) 1 152 124 407
No. of Rejections 6 151 122 238

Rejected Bandwidth(Mb) 6 235 166 510
No. of Rejections 7 80 44 162

Rejected Bandwidth(Mb) 7 80 44 260
No. of Rejections 10 17 12 144

Rejected Bandwidth(Mb) 10 17 12 256
No. of Rejections • 14 47 33 178 ,

Rejected Bandwidth(Mb) 14 71 37 338

Table 4.1: Performance for SP, WSP, SWP

SWP also avoids congestion because SWP, by avoiding congestion, may end

up using long paths resulting in the use of more network resources.

2. SWP performs the worst out of SP, WSP and SWP, Table 4.1. For the number

of rejections, it performs the worst in 13 out of 15 topologies, and 14 out of

15 topologies for the amount of bandwidth rejected. SWP takes into consid

eration the congestion, however, SWP may end up using a longer path than

the shortest path by avoiding congested areas leading to the increase use in

network resources.

Topology MIRA PB
No. of Rejections 1 131 60
No. of Rejections 3 152 67
No. of Rejections 6 131 73
No. of Rejections 7 69 32
No. of Rejections 14 33 30

Table 4.2: Performance of MIRA and PB, No. of Rejections

3. PB performs better with the number of rejections as its metric. For the num

ber of rejections, PB performs better than MIRA in 6 out of 10 topologies,

39

Topology MIRA PB
Rejected Bandwidth(Mb) 1 187 223
Rejected Bandwidth(Mb) 3 164 167
Rejected Bandwidth(Mb) 6 187 255
Rejected Bandwidth(Mb) 7 77 210
Rejected Bandwidth(Mb) 14 37 150

Table 4.3: Performance of MIRA and PB, Rejected Bandwidth

Topology WSP PB
No. of Rejections 1 92 60
No. of Rejections 3 69 67
No. of Rejections 6 122 73
No. of Rejections 7 44 32
No. of Rejections 14 33 30

Table 4.4: Performance of WSP and PB, No. of Rejections

Table 4.2, and performs better than WSP in 7 out of 10 topologies, Table 4.4.

The 10 topologies are the topologies that do not have "stop" as the result. The

"stop" represents a bug in PPRN package that we use for the multi-commodity

flow algorithm. We have contacted the author of the package regarding this

bug. However he was unable to fix it at the time the experiments were run.

This package is available at http://www-eio.upc.esf"jcastro/pprn.html. How

ever, for the amount of rejected bandwidth, both MIRA and WSP perform

better in all 10 topologies, Table 4.3, Table 4.5. This is because PB assumes

that information is aggregated and the splitting of commodity is actually the

splitting of groups of flows instead of individual flow. Thus, PB may favor re

quests that have smaller bandwidth demand which enables it to accept more

requests.

40

http://www-eio.upc.esf

Topology WSP PB
Rejected Bandwidth(Mb) 1 124 223
Rejected Bandwidth(Mb) 3 77 167
Rejected Bandwidth(Mb) 6 166 255
Rejected Bandwidth(Mb) 7 44 210
Rejected Bandwidth(Mb) 14 37 150

Table 4.5: Performance of WSP and PB, Rejected Bandwidth

Topology MIRA WSP
No. of Rejections 1 131 92

Rejected Bandwidth(Mb) 1 187 124
No. of Rejections 3 152 69

Rejected Bandwidth(Mb) 3 164 77
No. of Rejections 6 131 122

Rejected Bandwidth(Mb) 6 187 166
No. of Rejections 7 69 44

Rejected Bandwidth(Mb) 7 77 44
No. of Rejections 14 33 33

Rejected Bandwidth(Mb) 14 37 37

Table 4.6: Performance of MIRA and WSP

4. Greedy algorithms do not always perform worse than algorithms that are based

on network flow computations, Table 4.6. For the number of rejections, WSP

performs better than MIRA in 11 out of 15 topologies, and they have the same

performance in topology 14. For the amount of bandwidth rejected, WSP

performs better than MIRA in 9 out of 15 topologies and performs the same

in 2 topologies. This is because MIRA needs the ingress egress pair to perform

maxflow computations, however, as we will see later, history information does

not always enhance performance.

41

4.4 History

This section discusses the role of history and how it appears in algorithms SP, WSP,

SWP, MIRA and PB. We also evaluate the effect of history in these five algorithms.

4.4.1 S P , W S P , S W P

SP, WSP and SWP only use the network topology state information. They do

not use any algorithm specific history information such as ingress egress pairs or

bandwidth demands. SP, WSP, and SWP are not sensitive to history because they

do not use any other information except the topology state information. Thus, the

batch process of tunnel provisioning does not help in achieving a better utilization

of the network.

Algorithm
No. of Requests per Batch

Algorithm 20 50 100 200 500 1000
No. of Rejections SP 46 46 46 46 46 46

Rejected Bandwidth (Mb) SP 100 100 100 100 100 100
No. of Rejections WSP 25 25 25 25 25 25

Rejected Bandwidth (Mb) WSP 70 70 70 70 70 70
No. of Rejections SWP 44 44 44 44 44 44

Rejected Bandwidth (Mb) SWP 128 128 128 128 128 128

Table 4.7: Topology 15 for SP, WSP and SWP

Table 4.7 shows that as the amount of history increases, both the number

of rejected requests and the amount of rejected bandwidth remain constant for SP,

WSP and SWP. Table 4.7 is the result for topology 15. Of course, this behavior

occurs in 15 out of 15 topologies for SP, WSP and SWP.

42

4.4.2 M I R A

Like SP, WSP and SWP, MIRA uses the network topology state information. An

additional knowledge MIRA uses is the ingress and egress nodes. The ingress and

egress nodes are used as the specific history information for MIRA. We separate

MIRA into two cases, MIRA online and MIRA batch. MIRA online corresponds

to the online scheme, and MIRA batch corresponds to the batch process and the

offline scheme.

4.4.3 M I R A Online

MIRA predetermines a set of ingress egress nodes before it considers any request.

In MIRA online, the predetermined set of ingress egress nodes is all possible pairs

of ingress egress nodes in the topology. This corresponds to knowing nothing about

the history because all possible pairs of ingress egress nodes are used. MIRA has to

protect all these ingress egress pairs even though there might be no requests from

some of the ingress egress pairs. Thus, this is the online scheme in that it does not

know anything about the history.

MIRA online adds all ingress egress pairs, and this is used in the experiments

as a model for MIRA online where it has no history information, i.e. batch size of

1. Note that batch size of 1 is not reasonable since no interference is possible. As a

result, there is a discontinuity from MIRA online for no history to batch size of 20.

4.4.4 M I R A Batch

The batch process makes use of the history information that is in the current batch

when making its routing decision. In order to use the batch process, some mod

ifications are made to MIRA. The modification is called MIRA batch. Instead of

43

predetermining a set of ingress egress nodes to be used, a dynamically chosen set of

ingress egress nodes is used. The set of ingress egress nodes for each batch is tai

lored for that particular batch. For each batch, the set of ingress egress pairs used

includes those ingress egress pairs that appear at least once in the current batch of

requests. This implies that all ingress egress nodes that are used will correspond to

some requests in the future, and protecting them is beneficial for satisfying those

later requests. If the batch size is 1000, then it corresponds to the offline scheme

because it knows the entire history as there are a total of 1000 requests.

The larger the size of the batch implies that one would have more history

information. In our modification, only ingress egress nodes that belongs to the

current batch of requests is protected by MIRA when handling the requests in the

current batch. This means that if there is some ingress egress nodes that are not in

the current batch, but are in the next batch, then they will not be protected in the

current batch. Thus, it is expected that the larger the size of the batch, the better

MIRA performs.

Evaluation of History - M I R A Online

Topology No. of Rejections Rejected Bandwidth
3 141 153
5 51 67
6 115 171
9 0 0

Table 4.8: MIRA Online

One would speculate that MIRA is sensitive to history because it uses the

ingress egress nodes. Furthermore, MIRA batch should perform better than MIRA

online since MIRA batch corresponds to the batch process and offline scheme. How-

44

ever, this is not the case.

Table 4.8 shows the number of rejections out of 1000 requests and the rejected

bandwidth out of 3721Mb for MIRA online for topology 3, 5, 6 and 9. Compare these

numbers with Table 4.9. MIRA batch does not always perform better than MIRA

online. In topology 3, MIRA batch does not perform better than MIRA online

for each batch size 50, 100 and 200. In topology 5, for the number of rejections,

MIRA online is better than MIRA batch for batch sizes 50 and 100. For bandwidth

rejection, MIRA batch with batch sizes 20, 50 and 100 does not perform better than

MIRA online. In topology 6, for the number of rejections, MIRA online is better

than MIRA batch for all batch sizes. Finally, in topology 9, MIRA online is not

better or worse than MIRA batch because an excellent performance is achieved for

both MIRA online and MIRA batch as all entries are 0.

Topology 3, 5 and 6 are not the only topologies in which MIRA batch does

not perform better than MIRA online. This is true for 13 out of 14 topologies.

Topology 9 is not included since the number of rejections and the amount of rejected

bandwidth are 0 for both MIRA online and MIRA batch.

This set of experiments shows that MIRA is not sensitive to history. This

can also be seen in the next set of experiments. The reason for MIRA not being

sensitive to history is presented after the presentation of the results for MIRA batch.

Evaluation of History - MIRA Batch

MIRA batch corresponds to the batch process scheme and the offline scheme. Batch

sizes 20, 50, 100, 200, 500 and 1000 correspond to varying the amount of history

information. One would speculate that the larger the size of the batch, the more

knowledge regarding the future, and hence, the better the performance.

45

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
No. of Rejections 3 111 177 152 157 121 122

Rejected Bandwidth(Mb) 3 127 205 164 161 141 142
No. of Rejections 5 44 62 61 35 42 52

Rejected Bandwidth(Mb) 5 91 78 77 55 58 68
No. of Rejections 6 142 158 131 135 127 124

Rejected Bandwidth(Mb) 6 214 254 187 195 183. 176

Table 4.9: MIRA Batch

However, this is not the case. Table 4.9 shows that for topology 3, 5 and

6, there is no trend that shows the larger the size of the batch, the better the

performance for both the number of rejected requests and the amount of rejected

bandwidth. In fact, in 11 out of 14 topologies for the rejected bandwidth and 10 out

of 14 topologies for the number of rejections, it is observed that the larger the size

of the batch does not imply better performance. Topology 9 is again not included

since MIRA batch performs so well that all entries are 0.

M I R A ' s S e n s i t i v i t y t o H i s t o r y

It is clear from the experimental results that history does not play an important

role in MIRA. Particularly, as the amount of history information increases, the

performance does not increase. There is no trend to show that performance for both

the number of rejected requests and the amount of rejected bandwidth improves with

increasing batch size or amount of history information. This implies that in some

situations, MIRA performs better with more history information, while in other

situations, MIRA performs better with less history information. Table 4.9 shows

that for topology 3, the performance for batch size 100 is worse than the performance

for batch size 20. In this case, MIRA performs better when it knows less. On the

46

ingress egress pair request
*AC DC40

DC AC 30
EF EF20

Figure 4.1: An Example for MIRA to Perform Better with More History

other hand, the performance for batch size 500 is better than the performance for

batch size 100. In this case, MIRA performs better when it knows more. Table 4.9

gives more examples of this finding.

First, let us first consider MIRA's enhanced performance with more history.

Recall that the history information used in MIRA is the ingress egress pair, and one

of the key ideas of MIRA is to minimize interference. Assume that MIRA knows

about the ingress egress pair (a, b), and MIRA is currently routing the request (e, /) .

When MIRA routes (e,/), it tries to protect all ingress egress pairs that it is aware

of, including (a, 6), by minimizing the interference on their critical edges. If MIRA

is not aware of (a, b), that is, if MIRA has less history information, then MIRA

will not protect (a, b). Then, other requests may use up the critical edges of (a,b)

causing (a, b) to be rejected. In situations like this, MIRA performs better with

more history information.

Figure 4.1 shows a network, the ingress egress pairs and the requests. The

case in which MIRA knows about the ingress egress pair (A, C) will be discussed

first. The current request is (D,C). When (D,C) chooses its path, it considers

47

ingress egress pairs (A, C) and (E,F). The critical set of (A, C) is {BC}, with its

maxflow value being 50. The critical set of (E,F) is {EF}, with its maxflow value

being 80. Therefore, the weight for BC is 0.02, the weight for EF is 0.0125, and

the weight for all other links are set to a small positive value, say 0.00001. (D, C)

chooses D=>E=>F=>G=>Cas opposed to D =>• B ^ C since the weight for

D^>E=>F=>G^C is 0.01253 and the weight for D ==v B =• C is 0.02001. The

request (A, C) is accepted since BC has enough residual bandwidth for it. Thus, all

requests are satisfied. However, if MIRA does not know about (A, C), then when

(D,C) makes its routing decision, it does not consider (A, C). Thus, the weight for

all links are 0.00001 except for EF whose weight is 0.0125. Thus, (D, C) routes on

D =•> B =•> C instead of D =i> E => F =>• G =t> C. In this case, (A, C) is rejected.

Thus, in this example, MIRA performs better with more history information.

This can be seen in Table 4.9. In topology 3, the number of rejections and

the amount of rejected bandwidth decreases as the batch goes from 50 to 100, 200

to 500 and 100 to 500. This is also shown in topology 5 as the batch size goes from

50 to 200 and 50 to 500, in topology 6 as the batch size goes from 50 to 500, 20 to

1000 and 50 to 100.

Now, let us consider situations in which MIRA performs better with less

history. Three of these situations are discussed.

Assume MIRA acknowledges the ingress egress pair (a, b), and assume that

the maxflow of (a, b) is small. Since the maxflow of (a, b) is small, the weight of the

critical edges for (a, b) is high. Thus, other ingress egress pairs route around these

critical edges and choose other longer paths. The three situations are as follows:

1. The demand of (a, b) is much smaller than its maxflow.

48

ingress egress pair request
•AC DC5

DC ACI
EF EF50

A B C Note: ingress egress pair with * is not always included.

0 10

0 50 0
D E

Figure 4.2: MIRA Performs Better With Less History, Example 1

2. Rejecting (a, b) is better than protecting it.

3. The demand of (a, b) is larger than its maxflow.

Situation 1: The demand of (a, b) is much smaller than its maxflow

If MIRA does not know about (a, b), (a, b) will still be accepted despite the inability

of MIRA to protect its critical edges, (a, b) will be accepted because its demand

is much smaller than its maxflow. Furthermore, other ingress egress nodes do not

have to take longer paths which would use up network resources, and in turn reject

other requests. Thus, in this situation, MIRA performs better with less history.

Figure 4.2 shows a network topology, the set of ingress egress pairs, and

the set of requests. Consider the case if MIRA knows about (A,C). When (D,C)

makes its routing decision, it considers the ingress egress pairs (A, C) and (E,F).

The critical set for (A,C) is {BC}, and the critical set for (E,F) is {EF}. The

maxflow value for (A, C) is 10 and the maxflow value for (E, F) is 50. Thus, the

weight for BC is 0.1 and the weight for EF is 0.02. All other links are assigned a

weight of a small positive number, 0.00001. There are two feasible paths for (D, C),

49

D B C whose weight is 0.10001 and D =•> E => F G C whose weight

is 0.02003. Thus, (/J), C) chooses D^E^>F=>G=>C. EF now has a residual

bandwidth of 45, thus {E,F) is blocked because it demands 50 units of flow. In this

case, both (D, C) and (A, C) are accepted but (E, F) is blocked.

Now consider the case in which MIRA does not acknowledge (A, C). When

(D, C) makes its routing decision, it considers the ingress egress pair (E,F). The

critical set for (E,F) is {EF}, and its maxflow value is 50. Thus, the weight for

EF is 0.02 while all the other weights are 0.00001. Again, there are two feasible

paths for (D, C), D =t> B =i> C whose weight is 0.00002 and D E =i> F =>• G =t> C

whose weight is 0.02003. Thus, (D, C) chooses D =j> B =•> C. In this case, (E, F) is

not blocked since the residual capacity for EF is 50, and (A, C) is not blocked since

the residual capacity for BC is 5 and (A, C)'s demand is only 1. Thus, all three

requests are accepted. This example illustrates the first case for MIRA to perform

better with less history.

Situation 2: Rejecting (a, b) is better than protecting it

If MIRA does not know about (a, b), (a, b) will be rejected since MIRA will not be

able to protect (a,b). However, by rejecting (a, b), other ingress egress pairs do not

have to take longer paths which use up network resources which in turns reject other

requests. MIRA may perform better by rejecting (a, b) rather than protecting it. s

Thus, if MIRA does not know about (a, b), MIRA may perform better.

Figure 4.3 shows a network topology, a set of ingress egress pairs and a set

of requests. Consider the case which MIRA knows about the ingress egress pair

(A, C). When (D, C) makes its routing decision, it considers the ingress egress pairs

{A,C), {E,F) and (F,G). The critical set for (A,C) is {BC} and its maxflow

50

ingress egress pair request

A B C

•AC DCS
DC AC 10
EF EF50
FG FG50

0

0

Note: ingress egress pair with * is not always included.

D E F G

Figure 4.3: MIRA Performs Better With Less History, Example 2

value is 10. The critical set for (E, F) is {EF} and its maxflow value is 50. The

critical set for (F, G) is {FG} and its maxflow value is 50. Thus, the weights for

the links are as follows: BC has a weight of 0.1, EF has a weight of 0.02, FG has

a weight of 0.02, and the rest of the links have a weight of 0.00001. (D, C) routes

on D=>E=>F=>G=>Cas supposed to D => B =>• C since the weight for

D ^ E ^ F ^ G ^ C is 0.04002 and the weight for D =• B =^ C is 0.10001.

Thus, (A, C) is accepted and routes on A B C, (E, F) and (F, G) are rejected

since the residual bandwidths for EF and FG are both 45 and their demands are

50. Thus, (A, C) is accepted but both (E, F) and (F, G) are rejected.

Consider the case in which MIRA is not aware of {A, C). When (D, C) makes

its routing decision, it considers (E, F) and (F,G). The weights for EF and FG

are both 0.02. The weights for the rest of the links are 0.00001. Thus, {D,C)

chooses D B =>- C to route on since its weight is 0.00002 and the weight for

D^E^F=>G^C is 0.04002. This results in the rejection of (A, C) since the

residual bandwidth on BC is 5 and (A, C)'s bandwidth demand is 10. However, both

(E,F) and (F, G) are accepted. Thus, in this case, MIRA accepts more requests

51

ingress egress pair request
•AC DC10
DC AC 30
EF EF45

D E F G

Figure 4.4: MIRA Performs Better With Less History, Example 3

when it knows less.

Situation 3: The demand of (a, b) is larger than its maxflow

No matter how MIRA protects the critical edges of (a, 6), (a, b) will not be accepted

as the demand of (a, b) is larger than its maxflow. Since MIRA knows about (a, b),

MIRA will protect it causing other requests to take longer paths. Longer paths

imply using up network resources which in turn may reject other requests. Thus, if

MIRA does not know about (a, b), it will perform better.

Figure 4.4 shows a network topology, ingress egress pairs and requests. As

sume MIRA knows about (A, C). When (D, C) makes its routing decision, it con

siders (A, C) and (E,F). Thus, the weight for BC is 0.1 and the weight for EF is

0.02. Al l other links have weight 0.00001. (D, C) chooses D^>E=>F=>G=>C

since its weight is 0.02003 which is less than 0.10001, the weight for D =•> B C.

Thus, both (A, C) and (E, F) are rejected. If MIRA does not know about (A,C),

(D, C) routes on D ="> B => C. In this case, only (̂ 4, C) is blocked. Thus, in this

case, MIRA performs better when it knows less.

52

Therefore, in all three situations, one can see that MIRA does not always

perform better when it has more history. This can be seen in our experiments, Table

4.9. In topology 3, the number of rejected requests and the amount of rejected

bandwidth increase as the batch size increases from 20 to 50 and from 20 to 100.

This can also be seen in topology 5 where the batch size increases from 200 to 1000

and from 500 to 1000, and in topology 6, where batch size increases from 100 to 200

and from 20 to 50.

4 . 4 . 5 P B

Like all previously discussed algorithms, PB uses the network topology state infor

mation. Additionally, PB requires a set of traffic profiles. There are basically three

kinds of knowledge in a traffic profile. They are:

1. class information

2. ingress egress pairs

3. the aggregated bandwidth requirement for each ingress egress pair in that class

A l l three kinds of knowledge are used as the specific history information for PB. We

separate PB into two cases, PB online and PB batch. PB online corresponds to the

online scheme, and PB batch corresponds to the batch process and offline scheme.

4 . 4 . 6 P B Online

In PB online, the predetermined set of traffic profiles uses all possible ingress egress

nodes in the topology and uses a constant as the aggregated bandwidth. This

corresponds to the online case because PB online knows nothing about the history.

53

Topology Demanded Bandwidth No. of Rejections Rejected Bandwidth
1 1 838 3294
1 5 568 1986
2 1 812 3342
2 5 573 2029
3 1 813 3337
3 5 585 2047
4 1 832 3375
4 5 582 2069
5 1 825 3397
5 5 576 2153

Table 4.10: PB Online, Topology 1, for having 1 class

Table 4.10 shows the result for using 1 and 5 as the aggregated bandwidth.

PB online using one class performs poorly for all 15 topologies. The result is not

surprising since one would expect PB online to perform poorly when there is no

history information. The performance of PB relies on the amount of information

the set of traffic profiles provides.

4.4.7 P B Batch

History information obtained from the current batch is used for the batch process

scheme. In order to use the batch process scheme, some modifications to PB are

made. The modified version of PB is known as PB batch. Instead of predetermining

a set of traffic profiles, PB batch dynamically builds the set of traffic profiles.

For each batch, the set of traffic profiles only includes those ingress egress

pairs that appear at least once in the current batch of requests. The required

bandwidth for each ingress egress pair in a class is no longer an estimate but it

is the aggregated bandwidth from the current batch of requests. Al l ingress egress

pairs that are in the set of traffic profiles will be used by some requests in the future.

54

When the batch size is 1000, this corresponds to the offline scheme.

PB requires two phases: the preprocessing phase and the online phase. For

1000 requests, the preprocessing phase is executed once, then each 1000 requests are

routed one at a time in the online phase. PB batch requires more than two phases.

In PB batch, for each batch of requests, these two phases are needed. For example,

if the size of the batch is 500, then for each 500 requests, a preprocessing phase and

an online phase are needed.

PB Classes

The definition of classes is not well defined in [18] and we attempt to experimentally

determine how it affects the quality of the solution. In particular, we investigate

how the definition of classes or the mapping function for mapping requests to classes

affect PB's sensitivity to history. There are two issues regarding classes of PB that

are to be tested, the number of classes which requests are mapped to, and the

mapping function for defining which requests should belong to the same class.

PB batch is expanded to test the properties of classes in PB. It is expanded

such that requests are mapped into classes using different mapping functions. Six

mapping functions are used:

1. Map all requests into one class.

2. Map all requests that have the same bandwidth requirement into one class.

There are at most three classes according to this mapping function since band

width requirement can only be 1Mb, 5Mb or 10Mb.

3. Map all requests that have the same egress node into one class. There are at

most thirty classes since the topologies contain 30 nodes.

55

4. Map all requests that have the same ingress and egress nodes into one class.

There are at most eight hundred and seventy classes according to this mapping

function since the topologies contain 30 nodes. Thus, there are 30 * 29 = 870

different ingress egress pairs.

5. Randomly assign requests to three different classes.

6. Randomly assign requests to five hundred different classes.

By using different mapping functions to map requests to different number of

classes, one class, three classes, thirty classes, five hundred classes and eight hundred

and seventy classes, one can see how the number of classes affects PB's sensitivity to

history. Furthermore, by varying the mapping function for defining which requests

should belong to the same class, one can see how the definition of classes affects

PB's sensitivity to history.

Evaluat ion of His tory - P B Batch with Topologically and R a n d o m l y A s

signed Classes

This set of experiments investigates whether PB's sensitivity of history is affected

by the way requests are being classified. Two groups of mapping functions are used

in assigning classes, one topologically and the other randomly.

1. Topologically Assigned Classes - Mapping functions that topologically as

signed classes ensure requests that are in the same class share some topological

properties. Two such mapping functions are studied here.

The first mapping function is to map all requests that have the same egress

node into one class. The second mapping function is to map all requests that

56

have the same ingress and egress nodes into one class. One would expect that

the more history PB has, the better PB performs.

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
4 No. of Rejections 39 34 26 22 stop stop
4 Rejected Bandwidth(Mb) 255 210 160 135 stop stop
8 No. of Rejections 47 32 33 33 19 13
8 Rejected Bandwidth(Mb) 282 200 150 138 155 100
9 No. of Rejections 39 38 22 stop stop stop
9 Rejected Bandwidth(Mb) 249 217 112 stop stop stop
15 No. of Rejections 41 30 stop stop 37 26
15 Rejected Bandwidth(Mb) 201 160 stop stop 159 143

Table 4.11: PB Batch, Egress Node As Mapping Function

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
4 No. of Rejections 37 31 28 24 stop stop
4 Rejected Bandwidth(Mb) 240 195 170 145 stop stop
8 No. of Rejections 48 31 34 33 24 9
8 Rejected Bandwidth(Mb) 278 195 165 133 170 80
14 No. of Rejections 58 34 30 stop stop stop
14 Rejected Bandwidth(Mb) 249 214 150 stop stop stop
15 No. of Rejections 41 30 stop stop 32 25
15 Rejected Bandwidth(Mb) 201 160 stop stop 138 138

Table 4.12: PB Batch, Ingress Egress Pair As Mapping Function

Both Table 4.11 and Table 4.12 demonstrates that the more history PB has, the

better it performs as speculated. As the size of the batch increases, indicating

more history information is available, the better the performance of PB. For

the egress node as the mapping function, this is shown in 11 out of 15 topologies

for the amount of rejected bandwidth. For the ingress egress pair as the

mapping function, this is shown in 12 out of 15 topologies for the amount of

rejected bandwidth. Thus, PB is sensitive to history when these two mapping

57

functions of are used.

2. PB Batch with Randomly Assigned Classes - Mapping functions that ran

domly assign classes do not characterize any property of requests that are in

the same class. A mapping function that randomly maps requests into five

hundred classes is used. Experiments for this mapping function are run 5

times, and the result presented here is the average of the 5 experiments, with

the outliers removed.

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
No. of Rejections 2 86.2 81.4 61.8 56.3 stop stop
No. of Rejections 4 39.3 33.8 33 30.6 stop stop
No. of Rejections 8 72.2 44 42.4 28.4 26.8 20.2
No. of Rejections 15 47.8 43.2 stop 33.3 38.8 24.2

Table 4.13: No. of Rejections for PB Batch with 500 Randomly Assigned Classes

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
Rejected Bandwidth(Mb) 1 497.7 324.8 415.6 315.8 stop 273.8
Rejected Bandwidth(Mb) 2 355.6 335.8 244.2 239.3 stop stop
Rejected Bandwidth(Mb) 4 245 209 176.8 156.2 stop stop
Rejected Bandwidth(Mb) 14 236.4 220 206.2 171.2 stop stop

Table 4.14: Rejected Bandwidth for PB Batch with 500 Randomly Assigned Classes

Again, one would expect that the larger the size of the batch, the better the

performance of PB batch. Results are shown in Table 4.13 and Table 4.14.

This trend is shown in 11 out of 15 topologies for the amount of bandwidth

rejected. Thus PB is also sensitive to history when requests are randomly

assigned to five hundred classes.

58

For both groups of mapping functions, the more the history, the better PB performs

is shown. PB is sensitive to history when requests that are in the same class share

some topological properties, and when requests that are in the same class may not

have any property in common. Thus PB's sensitivity to history does not depend on

the definition of which requests should belong to the same class.

Evaluat ion of His tory - P B Batch with a Few N u m b e r of Classes

In this section, we investigate PB's sensitivity to history and the number of classes

PB uses. .We see in the previous section that PB is sensitive to history when a

considerable number of classes are used:

• The mapping function that maps all requests having the same egress node into

one class has at most thirty classes

• The mapping function that maps all requests having the same ingress egress

pair into one class has at most eight hundred and seventy classes

• The mapping function that randomly assign classes has five hundred classes

We are to investigate PB's sensitivity to history when only a few number of

classes are used. Let's start with PB batch using one class.

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
No. of Rejections 1 69 99 126 129 177 290
No. of Rejections 6 68 108 134 174 stop stop
No. of Rejections 14 56 83 127 138 stop stop
No. of Rejections 15 61 84 stop stop 158 287

Table 4.15: No. of Rejections for PB Batch with 1 Class

59

No. of Requests per Batch
20 50 100 200 500 1000

Topology 1 393 554 732 619 523 498
Topology 2 389 536 730 568 stop stop
Topology 3 260 440 613 stop stop stop
Topology 4 301 394 493 436 stop stop
Topology 5 264 372 stop stop stop stop
Topology 6 306 532 609 583 stop stop
Topology 7 249 504 680 stop stop stop
Topology 8 408 558 643 623 530 438
Topology 9 420 540 786 stop stop stop
Topology 10 299 415 663 stop stop stop
Topology 11 259 497 690 stop stop stop
Topology 12 300 562 stop stop stop stop
Topology 13 453 534 stop stop stop stop
Topology 14 320 476 654 559 stop stop
Topology 15 263 349 stop stop 545 469

Table 4.16: Amount of Bandwidth Rejected for PB Batch with 1 Class

One would expect that the larger the size of the batch, the better the per

formance of PB batch. However, such a trend is not seen from the above results

when PB batch uses only one class, Table 4.15 and Table 4.16. Moreover, the trend

for the number of rejection is just the opposite, the more history, the worse the

performance. In fact, this situation is seen in 13 out of 15 topologies for the number

of rejections.

Consider what happens when PB batch uses three classes. There are two

mapping functions that map requests to at most three classes. The first mapping

function is to map all requests that have the same bandwidth requirement into one

class. Recall that the bandwidth requirement can only be 1Mb, 5Mb or 10Mb. Thus,

this mapping function maps requests to at most three classes. The second mapping

function randomly assigns requests to three classes. For this mapping function, we

ran the experiment five times, and the results presented here is the average of the

60

five experiments.

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
No. of Rejections 1 59 94 118 159 stop 161

Rejected Bandwidth(Mb) 1 296 354 448 686 stop 706
No. of Rejections 2 84 107 128 140 stop stop

Rejected Bandwidth(Mb) 2 354 380 475 482 stop stop
No. of Rejections 4 49 91 96 117 stop stop

Rejected Bandwidth(Mb) 4 263 305 384 482 stop stop
No. of Rejections 6 62 116 132 175 stop stop

Rejected Bandwidth(Mb) 6 289 361 409 523 stop stop

Table 4.17: PB Batch with Bandwidth as the Mapping Function

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
No. of Rejections 1 56.6 60.8 85.4 105.6 147 228.8
No. of Rejections 4 41 49.4 54.2 81 stop stop
No. of Rejections 6 61.8 78.2 90.2 114 stop stop
No. of Rejections 8 52 59.6 69 109.8 141.2 171.6

Table 4.18: No. of Rejections for PB Batch with 3 Randomly Assigned Classes

Again, one would expect that the larger the size of the batch, the better

the performance of PB batch. However, such a trend is not seen from the above

results when PB batch uses only three classes, Table 4.17, Table 4.18 and Table

4.19. Moreover, the trend for both mapping functions is the opposite; the more

history PB has, the worse it performs. In fact, for mapping all requests that have

the same bandwidth requirement into one class, the trend, the more history, the

worse it performs, is seen in 15 out of 15 topologies for the number of rejections

and 12 out of 15 topologies for the amount of rejected bandwidth. For randomly

mapping requests into three classes, this trend is seen in 15 out of 15 topologies for

the number of rejections. An explanation is given next.

61

Topology
No. of Requests per Batch

Topology 20 50 100 200 500 1000
Rejected Bandwidth(Mb) 3 227.8 270.4 319.2 stop stop stop
Rejected Bandwidth(Mb) 6 263.6 299.4 392.6 475.8 stop stop
Rejected Bandwidth(Mb) 11 247.4 269.8 335.2 stop stop stop
Rejected Bandwidth(Mb) 14 245.6 250.6 298 510 stop stop

Table 4.19: Rejected Bandwidth for PB Batch with 3 Randomly Assigned Classes

Recall that PB requires two phases: the preprocessing phase and the online

phase. The preprocessing phase is a multi-commodity flow computation on the set

of traffic profiles. The online phase is based on the output from the preprocessing

phase. The output of the multi-commodity flow computation provides the band

width information for each edge for each class. Denote xi(e) to be the amount of

bandwidth on edge e for class i output by the multi-commodity flow algorithm. The

online phase is the shortest path algorithm running on the reduced graph. Requests

that belong to class i cannot use bandwidth that is reserved for class j.

When only a few classes are used, a large amount of bandwidth reservation

is made from the multi-commodity flow computation for each class. This is because

there are a large number of requests in a class since there are only a few number of

classes. This is what happened in our experiments since we used a small number of

classes, one and three, and we have 1000 requests. Thus, for the case of using one

class, 1000 requests are in that class, and for the case of three classes, on average,

there are 333 requests per class. The multi-commodity flow computation knows

which bandwidth is reserved for which commodity within a class. However, the

shortest path algorithm does not know. It only considers the shortest path that is

available on the reduced graph. For a request that belongs to class i, the shortest

path algorithm finds the shortest path on the reduced graph with bandwidth that is

62

reserved for class i. The shortest path algorithm is not able to tell which bandwidth

is reserved for which request. It only knows which bandwidth is reserved for which

class. Furthermore, due to the large amount of bandwidth that is reserved for

class i, the shortest path may choose to route on bandwidth that is reserved by

the multi-commodity flow computation for other requests within the same class.

The online phase has somehow overridden the intelligence from the preprocessing

phase. Therefore, when a few number of classes are used, it is not the case that

the more history information, the better PB performs. This is because the more

history information implies more requests per batch which implies more bandwidth

per class.

Figure 4.5 is an example to illustrate this situation. For the sake of simplicity,

an example in which PB batch that uses one class is presented. Capacities that are

not shown in Figure 4.5 are of no significance for our purposes. There are two sets

of requests, A and B. A contains requests that are in two batches of sizes two and

three. B contains requests that are in one batch of size five.

Let's look at Requests A first. For the first batch, the multi-commodity flow

algorithm reserves 20 units of bandwidth in the path / =>• B =>• C D for ID, and

reserves 10 units of bandwidth in the path E => B => C D. Thus, the online

phase will route ID on the path / =>• B =>• C => D for ID and route ED on the

path E =^ B =>• C =4> D. When the second batch is handled, AD is rejected since

the only path from A to D is A^B=>C=5>D and the capacity for BC is 30.

When handling the first batch, PB did not know about AD since it is in the second

batch. Thus, Requests A rejects 1 request, AD 30.

Let's now look at Requests B. PB is able to see all 5 requests since they are

all in one batch. One would expect Requests B to perform better than Requests

63

A since it knows more. The multi-commodity flow algorithm reserves 20 units of

bandwidth in the path I J C => D for ID, reserves 10 units of bandwidth

in the path E =» F =>• G D for ED, reserves 30 units of bandwidth in the path

A =>• B =>• C D for A D , reserves 10 units of bandwidth in EB and reserves 20

units of bandwidth in IB. After finishing the preprocessing phase, the online phase

is performed. The shortest path route ID using the path 7. => B C D since

this path uses 4 hops and the path I =>• J =>• C =j> D also uses 4 hops. The shortest

path algorithm uses bandwidth that is not reserved for ID, but it is intended for

AD and IB. The shortest path route ED using the path E B C =>• Z> for

£J7J> since this path uses 4 hops and the path E ^ F G D uses 4 hops as well.

The shortest path algorithm uses bandwidth that is not reserved for ED but it is

intended for AD and EB. Thus, Requests B rejects 3 requests, AD 30, EB 10 and

IB 20.

Thus, from this example, we can see that when PB uses a few number of

classes, it is not true that the larger the size of the batch, the better the performance

of PB . This also explains the trend the more history, the worse PB performs. The

experiments show that PB is not sensitive to history when only a few number of

classes are used

4.4.8 H i s t o r y

After looking at the five algorithms and their sensitivity to history individually, we

are going to compare their sensitivity to history in this section. From the above

discussions as well as from Figure 4.6 and Figure 4.7, one can see that SP, WSP and

SWP are not sensitive to history at all. The number of rejected requests and the

amount of rejected bandwidth do not fluctuate as the amount of history information

64

I J

0 — 0 — 0 — 5 — Q
A / B C /

o—-o—-a
E F

Requests A
Requests B

Ingress Egress Pair Demanded Bandwidth Ingress Egress Pair Demanded Bandwidth
ID 20 ID 20
ED 10 ED 10
X X X X X X AD 30
AD 30 EB 10
EB 10 IB 20
IB 20

Figure 4.5: Example Illustrating the More Information PB has, the Worse it Per
forms When Using a Few Number of Classes

changes. On the other hand, we have seen that MIRA is also insensitive to history.

However, MIRA's number of rejected requests and the amount of rejected bandwidth

fluctuate as the amount of history information changes. Out of the five algorithms,

PB is the algorithm that is most sensitive to history. It is expected since PB contains

more history information than the other algorithms. PB is able to show the trend,

the more history, the better it performs under appropriate class definitions.

65

Sensitivity ol Algorithms to History

1 1 1 r— 1 1 1 1 1

sp — t —

% W<!p K j swp — * —
- mira — a — -

-

pb-ineg — • —

^ x f t ^ — <

1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Number of Requests per Batch

Figure 4.6: Algorithms and their Sensitivity in terms of the Number of Rejections,
Topology 8

Sensitivity of Algorithms to History

I i i i i i i i i i I
0 100 200 300 400 500 600 700 800 900 1000

Number of Requests per Batch

Figure 4.7: Algorithms and their Sensitivity in terms of the Amount of Bandwidth
Rejected, Topology 8

66

C h a p t e r 5

Conclusion

In this thesis, we considered the route allocation problem of optimal placing of a LSP

with guaranteed bandwidth. The metrics that are used are the number of rejected

requests and the amount of rejected bandwidth. We evaluate five routing algorithms:

the shortest path algorithm, the widest-shortest path algorithm, the shortest-widest

path algorithm, the minimum interference routing algorithm and the profile-based

routing algorithm. Furthermore, we look at the sensitivity of history in routing

algorithms. In particular, we investigate which algorithms are well-suited for the

batch process scheme.

For the evaluation of SP, WSP, SWP, MIRA and PB, we see that WSP

performs the best out of SP, WSP and SWP. We also see that SWP performs

the worst out of SP, WSP and SWP although both WSP and SWP attempt to

avoid congestion. In avoiding congestion, SWP may ultimately take longer paths

which in turn would use up network resources and this may hinder its performance.

Moreover, we see that PB performs better with the number of rejected requests as

its metric. This is because the information in the set of traffic profiles is aggregated

and PB assumes the splitting of an aggregation of flow instead of an individual flow

67

can be split. Furthermore, we see that an algorithm which uses the network flow

computation does not necessarily perform better than a greedy algorithm.

As for the sensitivity of history in routing algorithms, one can see that SP,

WSP and SWP are not sensitive to history. The number of rejected requests and the

amount of rejected bandwidth remain constant as the amount of history information

changes. Since they are not sensitive to history, the batch process scheme does not

help in attaining better network utilization. This result is as speculated since no

history information is incorporated into the algorithms.

On the other hand, we have seen that MIRA is also insensitive to history

although it uses history information when it routes requests. As the size of the batch

increases, indicating the amount of history information increases, the performance

does not increase conjunctively. Thus, we conclude that history does not play an

important role in MIRA. In some situations, MIRA performs better with more

history information, and in other situations, MIRA performs better with less history

information.

MIRA could be improved in order to be more sensitive to history. The

improvement requires MIRA to use the demand of the ingress egress pair as the

history information in addition to the ingress egress pair itself. Recall there are

three situations in which MIRA performs better with less history information.

1. The demand size for (a, ft) is smaller than its maxflow, and MIRA does not

need to protect (a, 6).

2. Rejecting (a, tb) is better than protecting it.

3. The demand size for (a, b) is larger than its maxflow, and MIRA does not need

to protect (a, b).

68

Consider the first and the last situations. If MIRA uses the demand of the

ingress egress nodes as its history information, then it can acknowledge that the

demand for (a, b) is smaller or larger than its maxflow, and that protecting (a, b)

may not be advantageous. For the second situation, MIRA needs some admission

control mechanism to decide that rejecting (a, b) is better than protecting it. The

knowledge of demand may also be helpful in this aspect.

Out of the five algorithms, PB is most sensitive to history. PB is able to

demonstrate the trend that the more history PB has, the better it performs under

appropriate class definitions. We have explored how the definition of classes affect

PB's sensitivity to history, and find that the number of classes in which requests

are mapped to affects PB's sensitivity to history. When a few classes are used,

the performance of PB is worse as it receives more history information. This is true

when requests are mapped into one class, or when requests with the same bandwidth

requirement are mapped into one class or requests are randomly mapped into three

classes. When the ingress egress pair or the egress node is used as the mapping

function, more classes are used. When more classes are used, the trend, the more

history, the better the performance can be shown. Furthermore, when requests are

randomly mapped into five hundred classes, the trend can also be seen. Therefore,

we conclude that the number of classes used affects PB's sensitivity to history.

However, the ways requests are classified does not affect PB's sensitivity to history.

PB shows the trend when more classes are used, regardless of whether requests that

are in a class share some topological information or whether requests are randomly

assigned into classes.

In conclusion, we see that algorithms that do not use history in their algo

rithms are not sensitive to history and that algorithms that do use history in their

69

algorithms are not implicitly sensitive to history, with MIRA being an example of
such a condition. Furthermore, algorithms that show the trend, the more history,
the better their performance, may possess other factors that affect their sensitivity
to history, with PB being a prime example. Thus, the intuitive idea which suggests
that algorithms with more future knowledge will perform better is not necessarily
true. Performance depends on how well the history information is used.

The routing decisions made by routing algorithms are crucial to the perfor
mance of the network. Thus it is important for routing algorithms to make wise
decisions. Therefore, we have evaluated the performance of five routing algorithms.
Furthermore, with the batch process scheme, routing algorithms are able to make
use of more history information when making its routing decision. Routing algo
rithms that are able to use history information well greatly enhances the utilization
of the network resources and the performance of the network. With better perfor
mance of the network, the network is able to accommodate more traffic and attain
higher quality of service.

5.1 Future Work

From our studies, we see the potential advantage of improving the performance of
algorithms through the availability of more history information by using the batch
process scheme. We have achieved some preliminary understanding of how the
use of history affects the performance of routing algorithms. We have also seen
that whether history information can facilitate the performance of an algorithm
depends on how well the history information is used. Two questions regarding the
improvement of performance through the use of history are raised.

70

1. MIRA uses the ingress egress pair as its history information while PB uses

the class information, the ingress egress pair as well as the aggregated band

width as its history information. What kind of history information should be

incorporated into routing algorithms?

2. How can algorithms use history better?

Improvements can be made to PB so that PB can use history better. It would

be advantageous if PB can be sensitive to history under all circumstances. However,

we have seen that PB is sensitive to history only under appropriate class definitions.

PB is not sensitive to history when a few classes are used. When only a few classes

are used, there are a large number of requests per class. Thus, the multi-commodity

flow computation reserves a large amount of bandwidth per class. The shortest path

algorithm is not able to distinguish which bandwidth is reserved for which request

within a class. Therefore, the intelligence of the multi-commodity flow computation

is somehow overridden by the shortest path algorithm. Consequently, one might

be inclined to eliminate the shortest path algorithm. However, the shortest path

algorithm serves two purposes. Firstly, the multi-commodity flow algorithm uses

a set of traffic profiles that is an estimation of the traffic as opposed to the actual

traffic. Thus, the shortest path algorithm is needed to handle the actual traffic.

Secondly, the multi-commodity flow algorithm allows the splitting of a commodity.

The splitting of a commodity can become problematic when large requests are split

because individual requests are not allowed to be split. Thus, the shortest path

algorithm is needed to ensure that an individual request can route on a single path.

Therefore, the shortest path algorithm is indispensable despite its negative effects

on the multi-commodity flow algorithm.

71

We propose several modifications to PB so that the shortest path algorithm

is not necessary, and in turn, PB can be sensitive to history under all situations.

The modifications are as follows:

1. Instead of using the multi-commodity flow algorithm, use an unsplittable

multi-commodity flow algorithm. With this modification, the shortest path

algorithm is no longer needed to ensure that an individual request routes on

a single path since the unsplittable multi-commodity flow algorithm does not

split commodities.

2. Increase the output of the unsplittable multi-commodity flow algorithm by a

certain percentage. With this change, the shortest path algorithm is no longer

needed to handle the actual traffic. The set of traffic profiles that is used by

the unsplittable multi-commodity flow algorithm is an estimation of the traffic.

The actual traffic may be more than the estimated traffic. Thus, the output

of the unsplittable multi-commodity flow algorithm is increased by a certain

percentage in order to accommodate the traffic that is not being estimated.

3. Route requests according to the increased output from the unsplittable multi-

commodity flow algorithm.

With these adjustments, PB does not need the shortest path algorithm, and

thus, PB is able to use all intelligence from the unsplittable multi-commodity flow

algorithm.

Implementation and testing of these modifications are required in order to

determine whether PB can be sensitive to history under all circumstances with these

modifications.

72

Another area that requires further study is the development of algorithms for

the batch process scheme. Routing algorithms for this scheme are needed because

both the online and offline routing schemes are not suitable. History information

is not used by dynamic routing but is used by the batch process scheme. Offline

routing algorithms use history information and time complexity is not an issue.

However, time is an issue for the batch process scheme. Consequently, neither the

online nor the offline routing algorithms are ideal for this scheme, and therefore

algorithms specialized for the batch process scheme need to be developed.

More convincing routing algorithms are also needed. There is a vast amount

of literature on routing algorithms, but the current deployed routing algorithms are

still based on the shortest path algorithm.

73

Bibliography

D. Awduche, J. Malcolm, J. Agogbua, M . O'Dell, and J.McManus. Require
ments for traffic engineering over MPLS. RFC 2702, September 1999.

B. Awerbuch, Y.Azar, S. Plotkin, and O. Waarts. Throughput-competitive
on-line routing. 34th Annual Symposium on Foundations of Computer Science,
Palo Alto, California, November 1993.

Brian W. Bush. Graph theory package.

Jordi Castro and Narcis Nabona. PPRN. Statistics and Operations Research
Department, Universitat Politecnica de Catalunya, Barcelona (Spain), Septem
ber 1994.

Shigang Chen and Klara Nahrstedt. An overview of quality of service routing for
next-generation high-speed networks: Problems and solutions. IEEE Networks,
Special Issue on Transmission and Distribution of Digital Video, Nov/Dec 1998.

Bruce Davie and Yakov Rekhter. MPLS Technology and Applications. Morgan
Kaufmann Publishers, 2000.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. AGM SIGCOMM, Cambridge, MA,
September 1999.

B. Fortz and M . Thorup. Internet traffic engineering by optimizing OSPF
weights. IEEE INFOCOM, March 2000.

Muckai K Girish, Bei Zhou, and Jian-Qiang Hu. Formulation of the traffic
engineering problems in MPLS based ip networks. Proceedings of the Fifth
IEEE Symposium on Computers and Communications, 2000.

Koushik Kar, Murali Kodialam, and T.V. Lakshman. Minimum interference
routing of bandwidth guaranteed tunnels with MPLS traffic engineering ap
plications. IEEE Journal on Selected Areas in Communications, 18(12), Dec
2000.

74

[11] Dave Katz, Derek Yeung, and Kireeti Kompella. Traffic engineering extensions
to OSPF. Internet Draft, October 2001.

12] G. Malkin. Rip version 2. Internet Standards Track Protocol, November 1998.

13] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite
(boston university representative internet topology generator).- Boston Univer
sity, http://www. cs.bu. edu/brite/download, html.

14] Alberto Medina, Ibrahim Matta, and John Byers. On the origin of power laws
in internet topologies. ACM Computer Communication Review, 30(2), April
2000.

15] J. Moy. OSPF version 2. Internet Standards Track Protocol, April 1998.

161 R.Guerin, Ariel Orda, and D. Williams. QoS routing mechanisms and OSPF
extensions. Proceedings of 2nd Global Internet Miniconference(joint with Globe-
com'97), November 1997.

171 Eric C. Rosen, Arun Viswanathan, and Ross Callon. Multiprotocol label switch
ing architecture. Internet Draft, July 2000.

181 Subhash Suri, Marcel Waldvogel, and Priyank Ramesh Warkhede. Profile-
based routing: A new framework for MPLS traffic engineering. Lecture Notes
in Computer Science, 2156, 2001. Quality of Future Internet Services.

191 Z. Wang and J. Crowcroft. QoS routing for supporting resource reservation.
IEEE Journal on Selected Areas in Communications, 14(7):1228-1234, Septem
ber 1996.

201 Xipeng Xiao, Alan Hannan, Brook Bailey, and Lionel M . Ni. Traffic engineering
with MPLS in the internet. IEEE Network Magazine, pages 28-33, March 2000.

211 Xipeng Xiao and Lionel M . Ni. Internet QoS: A big picture. IEEE Network,

13(2):8-18, March 1999.

221 Z.Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia
applications. IEEE JSAC, 14(7):1288-1234, September 1996.

75

http://www

Appendix A

Topologies

These are the topologies that are used in this thesis.

76

Figure A . l : Topology 1

77

Figure A.2: Topology 2

78

Figure A.3: Topology 3

79

Figure A.4: Topology 4

80

Figure A.5: Topology 5

81

Figure A.6: Topology 6

82

Figure A . 7: Topology 7

83

Figure A.8: Topology 8

84

Figure A . 9 : Topology 9

85

Figure A . 10: Topology 10

86

Figure A . l l : Topology 11

87

Figure A. 12: Topology 12

88

Figure A. 13: Topology 13

89

Figure A . 14: Topology 14

90

(s)
Figure A. 15: Topology 15

91

