
A Constraint-Based Approach for Computing
Fault Tolerant Robot Programs

by

Scott K. Ralph

M.Sc. (Computer Science) University of British Columbia 1991

B.Sc. (Honours, Computer Science) Memorial University 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard .

The University of British Columbia
June 1999

© Scott K. Ralph, 1999

In presenting this thesis in partial fulfilment of the requirements for an
advanced degree at the University of British Columbia, I agree that the
Library shall make it freely available for reference and study. I further agree
that permission for extensive copying of this thesis for scholarly purposes may
be granted by the head of my department or by his or her representatives.
It is understood that copying or publication of this thesis for financial gain
shall not be allowed without my written permission.

Department of Computer Science

The University of British Columbia
Vancouver, Canada

Date: July 7, 1999

Abstract

We develop a new framework, based on the Least Constraint, for pro
gramming robots to perform a task using a fault tolerant trajectory. We take
a specification of the task, expressed as a set of constraints on the robot's con
figuration over time, and produce a fault tolerant trajectory. The methodology
encourages fault tolerant behavior at two levels: first at the task-design phase by
encouraging the designer to omit extraneous constraints which reduce the poten
tial for fault tolerant operation, and secondly, at the trajectory generation phase
by avoiding critical configurations. The critical configurations are identified via
a measure of fault tolerance which is global in nature. The dual optimization of
fault tolerance at both the high-level design phase as well as the low-level recovery-
motion generation phase allows more of the inherent fault tolerance of the robot to
be exploited. We believe that combining these two processes into a single formalism
is unique and beneficial.

The methodology is unique in its ability to deal with robots which are not
kinematically redundant with respect to arbitrary task, but which are sufficiently
redundant with respect to the particular task constraints to allow the task to be
described as a set of "loose" constraints over time.

The constraint-based approach allows us to model faults as additional con
straints to the specification, thereby allowing an efficient means of computing the
effect a fault will have on the ability to complete the task, using the reduced config
uration space of the robot. Faults not previously considered, such as the inclusion
of additional obstacles, as well as dynamic information arising from sensors, can
also be included using this formalism. An efficient algorithm for constructing a
recovery motion for a fault has been developed.

A specific example of a seldom considered fault, the collision of the robot
with an unknown obstacle, is presented. We show that in addition to detecting
the event, we are also able to recover the collision geometry. This information can

then be used in a more intelligent recovery motion selection.

We have developed a new global fault tolerance measure called longevity.
The fault tolerance measure examines a set of faults which may occur at a given
configuration, and based on the optimal recovery motions for the given fault, ranks
the configuration in its ability to satisfy the future task requirements. Using this
fault tolerance measure, a trajectory which maximizes the worst-case failure mode
of the robot is computed.

A number of experiments show the applicability of the method to a num
ber of domains. We analyze the resulting trajectories with respect to their ability
to sustain a fault, and we compare them to more traditional methods for accom
plishing the same task. We demonstrate that trajectories obtained using the least
constraint specification and the fault tolerance measure are able to achieve a much
larger degree of fault tolerance than naive methods for the same task. The fault
tolerant trajectories make optimal use of the 1-fault tolerant configuration space,
and maximize the worst-case utility of the trajectory given a fault.

ni

Contents

Abstract ii

Contents iv

List of Tables ix

List of Figures x

Acknowledgements xiii

Glossary of Terms xiv

1 Introduction 1

1.1 Fault Tolerance: Terms and Definitions 3

1.2 An Architecture for Fault Tolerant Robotic Systems 5

1.3 Fault Tolerance Scenario 8

1.4 Notational Conventions 10

1.5 Examples of Tolerable Faults 10

1.5.1 3-R Planar Manipulator 10

1.5.2 Tolerable Faults for Non-redundant manipulators 16

1.6 Overview of the Methodology 18

IV

1.7 Outline of the thesis 22

1.8 Thesis Contributions 24

2 Fault Tolerant Design 26

2.1 Background 27

2.1.1 Kinematics of the Task 28

2.1.2 Kinematic Effects of a Fault 30

2.1.3 Adding Redundancy 34

2.1.4 Defining the Task 36

2.1.5 Example of an Explicit Task Description 38

2.1.6 Velocity Profile Specification 39

2.1.7 Example of an Implicit Task Description 40

2.1.8 Least Constraint Robot Programming 41

2.2 Design of Fault Tolerant Robots 43

2.2.1 Planar Case 44

2.3 Fault Tolerant Task Design 46

2.3.1 Ideal Properties of a Specification 47

2.3.2 Valid Trajectories, Verification 51

2.3.3 Constructing the Specification 51

2.3.4 Linking Functions 52

2.3.5 Driving Constraints 53

2.3.6 Examples of LC Specifications 54

2.3.7 Limitations 57

2.3.8 Ranking Trajectories 58

2.3.9 Optimal Utility Paths 60

2.4 Decomposition of the Valid Space 62

2.4.1 Uniform Decomposition 64

2.4.2 Graph of Time-augmented Configuration Space 65

2.4.3 Utility of a Discrete Path 66

3 Fault Tolerant Trajectory Planning 70

3.1 Background 73

3.1.1 Local Measures of Fault Tolerance 74

3.1.2 Global Methods 77

3.1.3 Planning Under Uncertainty 86

3.2 Reactive Path Planning 89

3.2.1 Representing Faults 90

3.2.2 Recovery Motions for a Fault 93

3.2.3 R O D ' S in a Discrete Configuration Space . . 94

3.2.4 Additional Obstacles as Faults 97

3.2.5 Computing Optimal Recovery Motions 98

3.2.6 Computing Recovery Motions for Multiple Source Vertices . 100

3.3 Contingency Planning 102

3.3.1 A Global Fault Tolerance Measure 105

3.3.2 Longevity: A Global Measure of Fault Tolerance 106

3.3.3 Computing Longevity 110

3.3.4 The Sorted-Minimum Path Ranking 110

3.3.5 Interpretation of Sorted-Minimum Performance Metric . . . 112

3.3.6 Computing the Fault Tolerant Path 113

3.3.7 Complexity Analysis of the Sorted-Minimum Path Algorithm 115

VI

4 Reactive Elements 118

4.1 Previous Work in FDI 119

4.2 Analytical Redundancy: Parity Space Methods 121

4.3 Detecting and Localizing a Manipulator Collision 123

4.3.1 Motivation 123

4.3.2 Introduction 124

4.3.3 Contact Forces 127

4.3.4 Contact Localization 131

4.3.5 Admissibility Constraints 132

4.3.6 Feature Identification 134

4.3.7 Results 134

4.3.8 Extensions 136

4.3.9 Conclusions 139

5 Trajectory Planning Experiments 140

5.1 Fault Tolerant Locomotion . . : 141

5.1.1 The 4-Beast . 142

5.1.2 Rolling Gait 144

5.1.3 4-Beast Design 144

5.1.4 Specification of the Tumble Step 146

5.1.5 Decomposition of JFCT 151

5.1.6 Computing the Measure of Fault Tolerance . 151

5.1.7 Generating the Paths 153

5.1.8 Evaluating Path Performance 154

5.2 Fault Tolerant Manipulation 158

vi i

5.2.1 Defining the Task 160

5.2.2 Decomposition of the Configuration Space 161

6 Conclusions and Future Work 169

6.1 Future Work 171

Bibliography 172

Appendix A Decomposition of TCT 179

Appendix B Computing the Optimal Recovery Motion for a Fault 183

B.l Computing the Recovery Motion for a Single Source Vertex 184

B.2 Computing Recovery Motions for Multiple Source Vertices 185

Appendix C Algorithms for Computing the Most Fault Tolerant Tra
jectory 187

C.l Algorithm for Sorted-Minimum Path Comparison Operator 187

C.2 Computing Sorted Minimum Paths 189

C.3 Proof of Correctness of Sorted-Minimum Path Algorithm 192

vni

List of Tables

3.1 Symbols used in the complexity analysis and their meaning 115

4.1 Classification error rate with varying relative errors in r^ 136

4.2 Contact Parameters 138

5.1 Trajectory lengths for 4-beast experiment 155

5.2 Denavit-Hartenberg parameters of Puma 560 manipulator 160

5.3 Summary of the RODs used in computing the recovery motions for
the Puma 560 163

IX

List of Figures

1.1 And-gate with a fault 5

1.2 Generic architecture for a fault tolerant robotic system . 6

1.3 Positioning task performed by a 3-R planar manipulator 11

1.4 Example of 3R planar manipulator executing a positioning task with
a fault 12

1.5 Point of failure of a 3R planar manipulator 12

1.6 Family of joint angles for an end-effector position and a joint-2 failure
constraint 13

1.7 Family of joint angles for an end-effector position and a joint-3 failure
constraint 13

1.8 Trajectory for 3R planar manipulator, and a recovery motion after
a joint-2 failure 14

1.9 Trajectory for 3R planar manipulator, and a recovery motion after
a joint-3 failure 15

1.10 An example of a non-redundant robot performing a task described
as a set of constraints 17

1.11 Components of the proposed framework 22

2.1 Planar 3-R manipulator with unit-lengths showing fault tolerant
configuration space 32

2.2 Self-motion manifold for planar 3-R manipulator (see Fig. 2.1). . . . 33

x

2.3 A 3-R manipulator, and a 6 DOF manipulator which is first-order
fault tolerant 36

2.4 Example of an implicit method of defining a task using collision-
space obstacle representation 41

2.5 Static and time-dependent "driving" constraints, used to produce a
motion 54

2.6 Polygonal obstacle constraint in LC 55

2.7 LC specification for a place-on-table task 56

2.8 Decomposition of the time-augmented configuration space into non-
overlapping convex cells 63

2.9 Utility of a cell 67

3.1 Trajectories of [PK95] sharing a common recovery motion 84

3.2 Canadian Traveler Problem [PY89] 88

3.3 Example of modeling a failed actuator as an additional constraint. 92

3.4 Effects of a fault constraint when using a discretized configurations
space 96

3.5 Immobilized actuator constraint in discrete graph 97

3.6 Computing recovery motions in a discrete topology 102

3.7 Relationship between perf(ui) and fault tolerance measure L{vi). . . 109

4.1 Residuals of a system, formed using a system model 120

4.2 Contact forces of a planar manipulator 129

4.3 Cumulative distribution of localization errors for varying relative
error in r^ 137

5.1 The 4- and 8-beasts: the first two platonic beasts 142

5.2 Image of the prototype 4-beast 143

5.3 Simulation of a canonical tumble-step of the 4-beast 145

XI

5.4 Simulator for the 4-Beast 146

5.5 Canonical tumble of 4-beast up a 20 deg. incline 147

5.6 Starting configuration for a tumble-step 148

5.7 Two views of the decomposed configuration space of 4-beast 151

5.8 Fault tolerant trajectories of the 4-beast 154

5.9 Evaluation of the fault tolerance of the path generated with the Lavg- 156

5.10 Evaluation of the fault tolerance of the path generated with the Lavg-157

5.11 Initial and final configurations of pick-and-place task using a Puma 560
robot manipulator 158

5.12 Two similar configurations with very dissimilar tolerance to faults. . 159

5.13 Distribution of util(ufc) and L^orsti'^k), taken as a percentage of the
470,400 valid cells. 163

5.14 Comparison of fault tolerant and joint-interpolated motion for Puma 560
example 165

5.15 Endpoints for optimal recovery motions for Puma 560 example. . . 166

5.16 Longevity and utility vs. path length for optimal and straight-line
joint-interpolated motion; 167

A.l Computing whether a constraint surface forms part of the TCT
boundary within a given cell 182

C.l Edge Relaxation 191

C.2 Proof of correctness of Algm. C.2 195

Xll

Acknowledgements
I would like to give special thanks to my advisor Dinesh Pai for his help and

guidance over the past several years. It has been a pleasure to work with someone

so talanted, and who is also such a good mentor. I would also like to thank my

committee, Peter Lawrence, Jim Little, Alan Mackworth, and Alan Wagner for

their many comments which helped to make this a better thesis. Special thanks to

Jim for his always fun discussions!

I also owe a lot to my many friends at U.B.C., for their encouragement and

companionship: Bill, David, Roger, Rob Walker, Andreas, Anne. I am sure that I

am forgetting several! Special thanks to Valerie and Rob Scharein for encourage

ment when I needed it the most.

My parents Judith and Earle have been very loving and supportive through

out my graduate studies - it is to them that this thesis is dedicated.

SCOTT K . RALPH

The University of British Columbia
June 1999

Xll l

Glossary of Terms

Qjj : C -^ E The fault constraint function associated with the predicate Wj

C C E" The configuration space of the robot.

C = C X E"*" The time-augmented configuration space.

Cell{vi) The interior of cell labeled Vi in decomposition of the

configuration space.

d The number of sub-divisions of each dimension of C.

E = {cij} The set of edges of the decomposed configuration space.

TCT C C The feasible configuration-time space.

G The constraint specification of the task.

gi = {hi < 0), A constraint predicate used in the specification of the

9r,j = {hi,j < 0) task (J^CT).

, 7 The maximum trajectory length in the graph of vertices.

hi, hi J : C —)• E The constraint functions associated with gi and gij

respectively.

J e E"^" The manipulator Jaccobian.

XIV

V e £'"><" The failed manipulator Jaccobian (freezing i'^ actuator).

/C : C —>̂ W Forward kinematic relation.

L{vi,u)) Longevity of a vertex Vi given a fault described by u.

Lw{vi) Worst-case longevity value over all faults

uji G fl. A measure of fault tolerance.

m The dimension of the workspace of the robot,

n The dimension of the configuration space of the robot.

Number of vertices in the decomposed configuration space.

The set of faults considered.

A point in the workspace of the robot.

Array storing the optimal recovery motion for a vertex.

Points in the configuration space of the robot.

Points in the time-augmented configuration space.

The subset of C reachable from q.

Predicate. True when 9{t) satisfies the specification

over the time interval [0, tmax]-

0{t),x{t) G C Trajectories of the robot through the configuration space.

util(^, F) The utility of 9{t), subject to the restriction F.

V = {vi} The set of vertices of the decomposed configuration space.

iOi = (oji < 0) A constraint predicate.

W C E"" The workspace of the robot.

Â„

Q

p' ,x '€ W

n[]

q , q ' e C

q,q'eC

R{q,F)

sat(6',F,tmax)

XV

Chapter 1

Introduction

Issues pertaining to fault tolerance in robotic systems are seldom addressed at

present, most likely because the vast majority of robots are used in manufactur

ing applications. In such applications the environment can be carefully engineered

so that unexpected interactions with the environment are kept to a minimum.

The growing number of robots deployed in hazardous and/or unstructured envi

ronments, medical applications, and other safety-critical applications will place an

increasing importance on the development of fault tolerant robotic systems. In

mission critical applications, such as space exploration, the benefit of autonomous

detection and compensation of errors is obvious. In teleoperation applications hu

man operators, who now perform the bulk of error detection and recovery, may not

be able to detect errors with sufficient speed and accuracy to ensure the safety of

the robot and its surroundings. Additionally, inevitable transmission delays may

amplify the effects of errors making the autonomous detection of errors crucial. In

hazardous waste removal tasks, such as nuclear cleanup operation [BT84], human

intervention may not be possible, making failures very costly. Fault tolerance in

industrial robotics may increase the lifespan of a robot, or reduce the frequency

of human intervention, significantly reducing the operating costs. Lastly, in cases

where a robot is unable to tolerate a fault and still complete the task, often it will

still be useful to detect the error, and take actions which minimize the severity of

the damage or risk. For the above reasons it is increasingly attractive to deploy

robot systems which are able to detect errors and isolate the fault causing the

error. Where possible, the robot can then utilize the remaining functionality to

compensate for the fault and complete the task.

These considerations motivate research in the areas of fault detection and

identification [Fra90, VWC94], design [PAK94], and path planning for redundant

manipulators with redundancy resolution [LM94b, PK96]. Fault tolerant path

planning which examines the topological properties of the configuration space has

been applied to locomotion tasks [RP97], and 3 DOF positioning tasks performed

by a redundant manipulator [RP99]. Error detection and recovery has also been

studied within the scope of manipulation tasks [Don89], producing paths which

either succeed, or noticeably fail.

Much of the work in fault tolerant robotics uses the terms "fault", "error"

and "failure" as synonyms which can cause unnecessary confusion. To avoid this

confusion we will clearly define the terms "fault", "error", "failure", and "error re

covery" in Section 1.1 in a consistent way as proposed in [LA81]. Next we will place

the task of fault tolerant robot programming in context, and introduce a simple

system architecture, similar to that proposed by [GV89, Vis94], which separates

the subproblems of control, fault detection and identification, error recovery, and

path planning into separate modules.

1.1 Fault Tolerance: Terms and Definitions

Lee and Anderson [LA81] define a system as a set of components, each of which

may be recursively defined in terms of smaller components. At the lowest level are

atomic components; their structure is not broken down into sub-components. A

fault is any defect occurring in an atomic component causing it to behave incon

sistently with its specification. We should note that the system also includes the

system specification, defined below, and that faults may exist within the specifica

tion itself.

Examples of a fault include a broken wire, a coding bug, or an unexpected

interaction with the environment (such as the collision of a manipulator with an

obstacle not modeled by the program). The system evolves through a set of internal

states as a result of the changes to the state of its components. The external

state of a system is an abstraction of the internal state, and is an ordered set of

the external state of its components. We rnay not directly observe the internal

state of the system.

The system specification is an authoritative description of the set of valid

internal states of the system. Each state of the system should be classified as

being valid, meaning it corresponds to the system specification, or erroneous

(or invalid), indicating that it does not meet the system specification. If the

specification classifies every possible state of the system, then the specification is

said to be complete; this is a highly desirable quality of the system specification.

Validity of the system is an attribute of the system's state, and not of the trajectory.

A failure is a defined as a deviation of the behavior of the system from its

specification, and is an event from which there is no recovery. An erroneous state

is a valid state of the system, which could, but need not, result in a system failure

through a series of valid transitions. The part of the erroneous state which differs

from a valid state is called an error. The error is the only direct manifestation

of the fault that we can directly observe when attempting to detect a fault. The

causal relationship between a fault, an error, and a failure is given below:

fault —>• error —>• failure
physical universe information universe external universe

(abstraction of physical)

Fault detection and identification (FDI), is the process of examining

the error and abductively determining which fault(s) produced it. Once the fault

has been identified, the inconsistent or erroneous internal state may need to be

changed so that it is once again consistent with the specification. This process is

called error recovery.

To illustrate the relationship between a fault, an error, and a failure, consider

an and-gate such as shown in Fig. 1.1. Under normal operation the result should

give c = aAb. If during fabrication the input a was short-circuited to ground, then

this would be considered a fault. The manifestation of the fault, a being stuck at

zero, is an error. If the input is a = 1,6 = 1 then an incorrect value would be

computed at c leading to an failure. However, errors do not have to lead to failures

as the input a = 1,6 = 0 will still compute the correct value.

We will look more carefully at the process of fault detection and identifica-

a

h

Figure 1.1: And gate. Normal computation will result in c = a A 6.

tion for typical robot faults in Chapter 4. For faults such as sensor or actuator

faults which leave an actuator inoperable, the error recovery involves computing

an alternative trajectory, or recovery motion which continues to satisfy the task.

The challenge of generating a fault tolerant robot program is the construc

tion of a system which, when a fault occurs, is still able to meet the demands of

the specification and continue to satisfy the system requirements.

1.2 An Architecture for Fault Tolerant Robotic

Systems

Fig 1.2 describes a simple system architecture in which the tasks of fault detection

and identification (FDI) are separated from the higher level tasks of path planning

and error recovery. We will assume that there is a low-level controller which takes

input from the trajectory generator and the sensors and produces commanded

torques to the actuators. The FDI subsystem, which is responsible for monitoring

the sensors and actuators, compares the sensor readings to their expected values.

Upon detecting an anomaly, the FDI system is responsible for identifying the fault

which is most likely to have given rise to the error, and sending the fault information

to the trajectory generation subsystem. In order to successfully tolerate faults we

require that the FDI system detect errors quickly and accurately identify the fault.

We also require the trajectory generation to produce effective recovery actions

which maximize the use of the remaining functionality of the robot to complete

the task.

Increasing
real-time
demands

Path Planning/
Robot Design

Trajectory Generator
(Error Recovery)

1

Discrete/Symbolic

Domain

Controller FDI

Continuous
Domain

Sensors &
Actuators

Figure 1.2: The architecture of the system is divided into five parts: the sensors
and actuators; the controller which sends commanded motions to the actuators and
receives sensor data; the FDI subsystem which monitors the sensors and actuators,
detects errors, and identifies which fault was responsible; the trajectory generation
which is also responsible for choosing appropriate recovery actions in the event of
a fault; and the path planning/robot design encompassing issues of the design of
the robot and the completion of the task as a whole.

Notice that the trajectory generator can receive events from two sources:

the controller, or the FDI system. Whether we decide to classify a given event

as a fault, or as an event handled by the controller is dependent on the relative

complexity of the controller compared to the trajectory generator. For example,

if we wish to implement a guarded-move operation [McK91], we may choose to

perform the contact monitoring by the controller, in which case the contact event

is passed from the controller to the trajectory generator, or we may use a simple

controller and perform the monitoring by the FDI system which will send the

6

contact-fault signal to the trajectory generator.

A fault could include any unexpected or un-modeled external interaction

with the system. Typically faults will require intervention by the error-recovery

mechanism, provided an effective recovery action exists for the fault. We will not

consider minor external perturbations as faults, such as small positioning errors,

as these are typically dealt with by the low-level controller (s).

For a large set of faults, such as those involving sensors or actuators, the

only error recovery possible is to render the affected actuator immobile. This is

reasonable since the failed actuator is likely to move unpredictably, and the failure

of a sensor associated with an actuator yields the actuator uncontrollable. Next we

must re-plan and execute a new trajectory called the recovery motion, which is

an alternative trajectory to accomplish the task. It is the job of the error-recovery

system to plan for and initiate the recovery motion. This joint-immobilization fault

scenario is common, and is described in Section 1.3. Using this fault tolerance

assumption, the generation of a recovery motion is a kinematic problem involving

a new mechanism with one fewer degree of freedom, obtained by fixing one of joint

angles of the original robot. Since we are interested in the higher-level problems

of contingency planning, we will focus on faults involving the immobilization of an

actuator.

The task of the FDI subsystem is to recover as much information about the

fault as possible so that it can be used by the error recovery system. For faults

resulting in the immobilization of an actuator the identification of the actuator

involved in the fault is sufficient. In Chapter 4 we describe an interesting fault,

namely the collision of a robot manipulator by an un-modeled obstacle. This

7

fault is interesting because the dynamics of the manipulator itself allows the entire

manipulator to act as a virtual position sensor for the point of contact. The

extraction of the contact geometry is potentially useful for the generation of the

recovery motion since it provides some additional obstacle constraint information.

Some faults are transient, making error recovery relatively straightforward,

however since we are interested in higher level contingency planning, we will focus

our attention on persistent faults, specifically those which require the immobiliza

tion of an entire actuator.

1.3 Fault Tolerance Scenario

A robot is said to be 1-fault tolerant if it can successfully complete the task in the

event of a joint failure under the following scenario [PK94]:

An FDI algorithm monitors the proper functioning of each actua

tor/sensor of a robotic system. Upon detecting a fault, an intelligent

controller immobilizes the actuator by activating its brake, and auto

matically adapts the joint trajectories to reflect the new robot structure.

The task is then continued without interruption.

To successfully tolerate a fault we must have some degree of redundancy in

our sensors and actuators. Much of the previous work in fault tolerant robotics

has focused on kinematically redundant robots executing motions which have been

explicitly prescribed. For example we may specify a set of via-points in the robot's

workspace [PAK94, PK95], or a velocity profile of the robot [LM94a]. Provided we

8

stay within the kinematically redundant workspace of the robot, we can sustain a

fault while continuing to follow the commanded motion.

We feel that this view of fault tolerance is too restrictive since it only reflects

the ability of the robot to follow a specific motion and does not consider the

intrinsic constraints of the task. In many instances there may exist a family of

trajectories which all satisfy the task. For example, when moving a manipulator to

a particular position, it may be sufficient to constrain the endpoint of the trajectory,

and avoid obstacles. By giving the controller the ability to choose intelligently the

most fault tolerant trajectory from a set of trajectories, all of which satisfy the

task constraints, we may expect a larger degree of fault tolerance of the resulting

system. By considering only the constraints of a given instance of a task we are

able to exploit the full potential fault tolerance of the robot. In particular, we are

interested in developing methods for producing fault tolerant behavior for robots

which are not necessarily fault tolerant for arbitrary tasks, but are sufficiently

redundant with respect to a particular task. Specifically we consider tasks which

can be naturally expressed as a set of loose constraints on the configuration over

time.

As we shall see, the use of an intelligent task specification is vital if we are

to exploit the full potential of the inherent fault tolerance of the robot with respect

to the task. In Chapter 2 we will introduce a language based on least constraint

which defines a task by a set of constraints on the robot's configuration over time.

The following illustrates an example of a task which is easily expressed as a set

constraints.

1.4 Notational Conventions

We will use the convention that bold-face variable names denote vectors, as in q

to denote a vector of joint angles, and subscripts denoted elements of a vector,

or column of a matrix, e.g., q = {qi,q2,- •', Qn)^ • We will differentiate two vector

quantities by superscripts, e.g. q'.

1.5 Examples of Tolerable Faults

We will give two short examples of faults which can be tolerated by a robotic sys

tem. In the first example the manipulator is kinematically redundant. The second

example is of a task which is naturally expressed as a set of constraints on the

robot, and while not kinematically redundant, there is still sufficient redundancy

of the robot with respect to the task constraints to permit a valid trajectory to the

desired goal.

1.5.1 3-R Planar Manipulator

The first example we will look at is that of a kinematically redundant manipulator.

As long as the end-effector positions are within the kinematically fault tolerant

region of the workspace, alternative trajectories can be chosen to reach a given

point in the workspace.

Consider a 3-R planar manipulator as depicted in Fig. 1.3 in which our task

is to move from an initial point in the workspace p^ to a final position p" .̂ We

10

assume an initial configuration of

q^ = (151.2°,-88.6°, 114.9°)^

y
/I

p ' = (1.1,0)

Figure 1.3: Positioning task performed by a 3-R planar manipulator.

From q-̂ we find that the configuration q^ which places the end effector at

p^, and is closest in joint space to the initial configuration q^ is

j2 = (40.6°,-171.4°, 136.9°)^

The configurations q'̂ and q^ as depicted in Fig. 1.4 give the initial and

final configurations of the 3-R manipulator. We will assume that the manipulator

performs a joint interpolated motion in which the joint velocities remain constant

throughout the motion.

Suppose that the motion takes one time unit to be completed, and that

during the execution, a fault occurs at time t = 0.5, or at the configuration

q^ = (95.9°, -130.0°, 125.9°)^ as shown in Fig. 1.5. Since the manipulator is

11

kinematically redundant, there is a family of joint angles which position the end

effector at the same position. Depending on the kinematic structure of the manip

ulator, the position of the goal, and the configuration at which the fault occurred,

it may be possible to accomplish the positioning goal.

Figure 1.4: Initial and goal positions
configurations of the manipulator.

Figure 1.5: Point of failure.

Upon detecting the fault the controller must re-plan a new trajectory of the

manipulator since the failed joint is no longer movable. The new motion is called

the recovery motion for the fault. We can consider the manipulator after the

fault as being a new manipulator with one less actuator and one fixed joint angle.

The new path planning problem is the same as the original with one fewer degrees

of freedom. In our example, upon freezing the joint, the manipulator is no longer

kinematically redundant, and there are at most two distinct configurations which

accomplish the goal end eff"ector position.

Figure 1.6 shows the family of joint angle solutions for the goal position p^.

The failure in joint 2 constrains the set of configurations to lie on the configuration

space plane q^ — —130.0°. Since there is a point in this plane which achieves p" ,̂

we can construct a recovery motion from the point of failure to the goal, as shown

in Fig. 1.8.

12

Family of joint angle solutions for the point (1.1.0.0)

q3 (deg.

p2 joint solutions -
q2 = -130deg constraint •

•50 0 50
q2 (deg.)

q1 (deg.)

Figure 1.6: The family of solutions for end-effector position (1.1,0.0). The planar
fault constraint 92 = —130° intersects the family of solutions at two points, allowing
an alternative trajectory to the goal.

Family of joint angle solutions for ttie point (1.1,0.0)

• p2 joint solutions •
q3 = 125.9deg constraint •

q2 (deg.)

Figure 1.7: The family of solutions for end-effector position (1.1,0.0). The planar
constraint qz = 125.9° intersects the family of solutions at two points, allowing an
alternative trajectory to the goal.

13

200

150

100

50

-50

-100

q1 no fault -»-
q3 no fault - i -

q1 recovery -«-
q3 recovery -t-

0.2 0.4 0.6
time

0.8

Figure 1.8: Original trajectory and corresponding error recovery motion for a fail
ure in joint 2.

14

200

150'

100

50

0

-50

-100

-150

.or\ri

Joint 3 Fault

q1 no fault -«—
q2 no fault -t—

q1 recovery - « - -
' • -______̂ q2 recovery - H — "

~~~~~~~~'* ' t——^ 

..̂  ^̂ ' 

1 1 1 1 

0.2 0.4 0.6 
time 

0.8 

Figure 1.9: Original trajectory and corresponding error recovery motion for a fail
ure in joint 3. 

15 



Similarly there is a corresponding failure constraint for the actuator q^ as 

depicted in Fig. 1.7, for which there is a corresponding recovery motion shown in 

Fig. 1.9 

1.5.2 Tolerable Faults for Non-redundant manipulators 

The above example illustrates the ability of a redundant manipulator to sustain 

a failed actuator by choosing an alternative trajectory to the goal position. A 

second instance in which the robot is not kinematically redundant but is still able 

to sustain a failed actuator is given in the following example. There are many tasks 

which can be described best using a set of constraints on the robot's configurations 

over time. Such tasks can permit a large range of valid trajectories which achieve 

the task. This large solution space can be exploited to obtain a fault tolerant 

trajectory which satisfies the constraints. 

Consider the following task of a robot walking in two dimensions as depicted 

in Fig. 1.10. 

The task goal is to translate the body to the left to allow the transfer foot 

to make contact with the next foothold. We will assume that only workspace and 

static stability constraints are present. Stability is specified by requiring the center 

of mass to satisfy inequality constraints gi and g2 shown in the figure. Horizontal 

motion is achieved by a moving constraint g4{t). If a fault is introduced in the 

present configuration rendering the distal right joint immovable, the body position 

is constrained to lie on a circular arc (shown as a dotted arc). By not prescribing 

a specific trajectory, the robot is still able to reach the goal using the reduced 

16 



workspace. 

stability 
constraints 

93 \\\\\\\\W 

Figure 1.10: An example of a non-redundant robot performing a task described as 
a set of constraints. 

The locomotion task described above is an example of a task which is natu

rally expressed as set of constraints on the robot's configuration over time. Instead 

of prescribing a particular trajectory of the robot over time, we describe the task 

using a set of 4 constraints. In the event of a fault the new configuration space of 

the robot is reduced to a sub-manifold of the original configuration space. To ascer

tain whether the robot is still capable of completing the task we need only consider 

the satisfiability of the task constraints in the reduced configuration space. As we 

shall see later, representing the addition of a fault as the inclusion of an additional 

task constraint allows a particularly elegant means of computing the capabilities 

of a robot under varying fault hypotheses. 

This illustrates the utility of expressing a task explicitly as a set of con

straints on the robot's configuration over time. In addition to providing a natural 

means of expressing the task, we also ensure that there is a large family of trajec-

17 



tories from which we may choose. This correspondingly increases the likelihood of 

being able to sustain a fault, and still achieve the goal of translating the robot to 

the goal. 

This method of specifying a task using a set of constraints is particularly 

useful when defining the behavior for an autonomous robot where one may wish 

to specify a number of safety constraints which must be satisfied. This permits us 

to compose a set of constraints, some of which are used to drive the trajectory to 

the goal, and others which ensure a minimal set of safety requirements. 

This thesis develops a methodology for taking a given instance of a robot 

and task specification, and producing a robot program which maximizes the fault 

tolerance of the robotic system. What follows is an overview of the overall method

ology. 

1.6 Overview of t he Methodology 

Constructing a fault tolerant program can be divided into three parts, each differ

ing in the degree of reactivity. These parts are: fault tolerant design, contingency 

planning, and fault reactive components. The design components, as well as the 

contingency planning, are computationally intensive, and must be performed of

fline. Fault tolerant design (FTD) and contingency planning are similar in that 

they both involve examining global properties of the kinematics of the task and 

the effects faults have on the resulting capabilities of the robot. The reactive com

ponents reflect the need of the robot to quickly respond to detected errors and 

commence recovery actions in order to minimize the effects of the faults, and thus 

18 



increase the likelihood of completion of the task. 

Fault tolerant design, the least reactive, is performed entirely off-line, and 

involves the design of the robot and task. The design of the robot consists of the 

geometric properties of the robot: the type of joints and the geometry of the links. 

In the design problem we are looking for a set of design parameters which maximize 

the fault tolerance of the resulting robot. The design of the robot determines the 

forward kinematics, and therefore the set of reachable configurations. When a fault 

is encountered the set of reachable configurations is changed. To be fault tolerant 

the robot must be able to reach the points along a valid trajectory, even when 

a fault has occurred. For this reason the design of the robot places the largest 

restrictions on the fault tolerant potential of the robot. 

The second design element, the construction of the task, involves defining 

the set of valid trajectories which satisfy the designers intentions. The task speci

fication involves encoding constraints on the task so that the resulting trajectories 

meet the design requirements. Given the design, we may wish to verify that the 

design specification is correct, that is that all the resulting trajectories of the robot 

satisfy the design requirements, as well as verifying that the design is fault tolerant 

with respect to a set of potential faults. 

Given the specification, the path planning subsystem generates a valid path 

through the configuration space. A fault tolerant path will utilize the extra de

grees of freedom of the robot with respect to the task to maintain a configuration 

which is fault tolerant. By choosing a design which encodes relatively few task 

constraints, and by choosing the constraints from salient features of the task, we 

correspondingly increase the amount of redundancy of the robot with respect to 

19 



the task. This increases the set of valid trajectories of the robot, giving us larger 

freedom when choosing a recovery motion for a fault. 

Through careful design of the robot, as well as intelligent planning of the 

task, we are able to construct a robot program which has a large potential for fault 

tolerant operation. Put another way, the design parameters effect the planning and 

execution of the robot program, and therefore determine the inherent potential for 

fault tolerant operation. 

The second part of the problem, contingency planning, takes the specifi

cation of the robot and the task, and reasons about future faults, and their effects 

on the robot's ability to complete the task. The end product of the contingency 

planning is a contingency plan which minimizes the detrimental effects of faults 

on the robot, and thus maximizes the probability of successful completion of the 

task. The contingency plan is a path with a set of recovery motions. The recov

ery motions may be explicitly stored, or given algorithmically as a function of the 

configuration. 

The design problems, as well as the contingency planning problems must 

characterize global properties of the configuration space, such as connectedness, 

to characterize the performance of a given design or contingency plan. We should 

avoid robot designs which force the use of, and trajectories which contain, configu

rations which become disconnected to the task goal by the introduction of a fault. 

For these configurations there is no recovery action which completes the task. 

The last part, fault reactive components, are those aspects which are 

performed at the time of the fault, and are the most reactive. This includes the 

20 



fault detection and identification, and the use of effective recovery motions. 

The main emphases of this work are in the components of fault tolerant task 

specification, the computation of optimal recovery motions, and global contingency 

planning of the task. The planning and design problems are significantly harder to 

solve since they must consider the global aspects of the task, but need be performed 

only once for a each combination of robot and task. The contingency planning 

makes use of a performance measure which characterizes the risk associated with 

a configuration by measuring the effectiveness of recovery motions for a suite of 

potential faults. 

Fig. 1.11 gives a description of the components of the methodology that we 

will employ. The task specification as well as the faults considered are modeled 

as algebraic constraints on the robot's configuration over time. The configuration 

space is decomposed into a discrete set of regions so that paths through the configu

ration space can be computed in an efficient manner. From the task specification a 

measure of utility is constructed. Topological properties of the configuration space 

under various fault scenarios are computed which are then used for the construc

tion of optimal recovery motions. The effectiveness of the recovery motions is then 

used to construct a performance measure which ranks the fault tolerant potential 

of the configuration. Using the performance metric, paths are constructed which 

maximize the use of fault tolerant regions of the configuration space. 

21 



Faults Task Specification 

Model ing of task and 

faults as constraints 

Decomposition of 

Configuration Space 

Topological 
Properties 

Utility Measures Performance 
Measures 

Recovery Motions Fault Tolerant 

Paths 

Measures over the 
configuration space 

Resul t ing path and 

associated recovery 

mot ions 

Figure 1.11: Components of the proposed framework. 

1.7 Outline of the thesis 

We organize the thesis into four chapters: fault tolerant design, fault tolerant 

trajectory planning, fault detection and identification, and a set of experiments 

with analyses. 

Chapter 2 considers the design aspects of constructing a fault tolerant robot, 

as well as methods for defining a robotic task which allows a greater degree of the 

fault tolerant capabilities of the robot to be exploited. The method we propose 

for defining the task, called least constraint, uses a set of constraints on the 

robot's configuration over time. The constraint-based approach allows us to model 

a fault as the inclusion of an additional constraint on the configuration space, thus 

naturally incorporating the kinematic constraints of a fault. 

Chapter 3 develops methods for producing fault tolerant trajectories for a 

robot executing a given task. This involves determining the risk of a given fault. 

22 



computing contingency plans which reduce the overall risk during the execution 

of the task, and the computation of recovery motions which allow the robot to 

compensate for a given fault and still achieve the goal. 

Chapter 4 examines the process of detecting the occurrence of a fault, identi

fying the cause of the fault, and executing an appropriate recovery action. We also 

investigated fault identification of a collision event, a type of fault not commonly 

considered, and show how appropriate modeling of the event can allow extraction 

of collision geometry, which is useful in planning a recovery motion. The theory of 

this type of fault identification is developed, and some simulation results given. 

Chapter 5 describes a set of experiments in which a task is described as a set 

of constraints, and a fault tolerant trajectory is generated using the fault tolerance 

measure. The first example concerns the generation of a fault tolerant gait for a 

4-legged robot. This also demonstrates how easy it is to program a large degree of 

freedom robot using the LC approach. The second example concerns a Puma 560 

manipulator performing a pick-and-place task, and involves 5 actuated degrees of 

freedom. The trajectories for both examples are analyzed with respect to fault 

tolerance. 

Chapter 6 summarizes the main results of the thesis, and discusses future 

directions for research in fault tolerant robotics. 

23 



1.8 Thesis Contributions 

We have developed a new framework for the programming of robots to perform 

a task in a fault tolerant manner. The methodology encourages fault tolerant 

behavior at two levels: at the task-design phase by encouraging the designer to 

omit extraneous constraints which reduce the potential for fault tolerant operation, 

and at the trajectory generation phase by avoiding critical configurations. 

We have developed a global measure for fault tolerance which considers the 

optimal recovery motions over a set of faults, and ranks the configuration in terms 

of its ability to continue to satisfy the task requirements. Since we do not con

strain the recovery motions, as is common with methods which use a redundancy 

resolution algorithm to compute the recovery motions, the fault tolerance measure 

is more likely to reflect the true fault tolerant potential of a configuration. 

The modeling of the task by constraints also gives rise to an elegant and 

efficient method modeling faults as additional constraints. This permits one to 

quickly ascertain the effect a fault will have on the available recovery motions. 

An efficient algorithm for constructing a recovery motion for a fault has been 

developed. Using constraints to represent faults allows us to consider new faults not 

previously considered, such as collisions with an unmodelled object. In addition, 

dynamic knowledge, such as the discovery of an additional obstacle, can also be 

easily incorporated using our method. 

The LC framework used as a method to specify a robot's behavior was 

first presented in [Pai91]. What is novel here is the use of LC to model faults 

as additional constraints, the use of this efficient representation to compute the 

24 



optimal recovery motions, and the construction of a global fault tolerance measure 

which reflects the effectiveness of the optimal recovery motions to complete the 

task. 

The methodology is unique in its ability to deal with robots which are not 

kinematically redundant with respect to arbitrary task, but which are sufficiently 

redundant so as to allow the task to be described as ja set of "loose" constraints 

over time. Prior to this work, little consideration was given to maximizing the 

fault tolerance of robots executing such tasks. It is believed this type of scenario 

is common among robots currently deployed, hence there is a great potential for 

these methods to be applied to a large number of present day tasks, with little 

additional overhead. In addition, the methods presented are also applicable to, 

traditional kinematically redundant manipulators. 

We have developed an efficient algorithm for taking the constraint-based 

task description, and producing a fault tolerant trajectory. A number of experi

ments have been performed showing the applicability of the method to a number of 

domains. The resulting trajectories have been analyzed with respect to their abil

ity to sustain a fault, and compared to more traditional methods for accomplishing 

the same task. Using the LC method a considerable amount of fault tolerance was 

achieved. 

The optimization of the fault tolerance at both the design and trajectory 

generation phase allowed exploitation of more of the inherent fault tolerance of 

the robot. The computed trajectories make optimal use of the 1-fault tolerant 

configuration space, and maximize the worst-case utility of the trajectory given a 

fault. 

25 



Chapter 2 

Fault Tolerant Design 

This chapter considers design components which affect the construction of a fault 

tolerant robot program. We will look at both the design of the physical robot, as 

well as the design of the task itself. The product of these two design decisions in 

tandem determine the overall fault tolerant potential of the robot. The section 

pertaining to robot design will be a review of previous work, allowing us to focus 

on the relatively novel aspects of task design. 

The problem of task design is similar to that of robot programming in that 

it requires the designer to take a set of design constraints, and "compile" them 

into a set of motion/action primitives which accomplish the goal, while satisfying 

the task constraints at each point along the trajectory. The task can be defined in 

terms of explicit methods, in which one directly specified the motion, or implicit 

methods which embody a higher-level approach. 

The design of the task itself has largely been neglected in previous work in 

26 



fault tolerant robotics. Typically it has been assumed that the motion is defined 

explicitly as a particular trajectory to be followed, requiring the manipulator to be 

kinematically redundant along the entire trajectory. 

We use the term "task design" to emphasize the fact that we are inter

ested in formalizing the process of constructing a robot program which is fault 

tolerant. In addition it focuses attention on the design parameters which are to 

be optimized to obtain a robot program that is robust to faults. The design of 

the task determines the points in the workspace which are usable, which in turn 

constrains the configurations of the robot. The risk associated with each configu

ration depends on properties of the kinematics of the corresponding reduced order 

derivatives constructed at the point in configuration space. 

By attempting to design the task using constraints obtained from salient 

features of the task constraints, we hope that additional fault tolerant capabilities 

can be achieved. Since we require that the robot be fault tolerant with respect to 

task constraints, and not fault tolerant over the entire workspace, the methodology 

is applicable to non-kinematically redundant manipulators. 

2.1 B ackgr ound 

Determining the fault tolerant capabilities of a robot executing a task involves 

examining the kinematic mapping of the robot's joint angles to points in the 

workspace which satisfy the task constraints. What follows is a brief overview 

of the kinematic analysis of a robot performing a task as it pertains to the fault 

tolerant capabilities of the robot. 

27 



2.1.1 Kinematics of the Task 

Assume that we have a robot with n actuators, with C C E", the configuration 

space, giving the set of all possible configurations of the robot. We will denote by 

q = (91) • • •) 9n) £ C a particular configuration of the robot. We will assume that 

the workspace of the robot is W C E'". The relationship of joint angles q to points 

in the workspace x is given by the forward kinematic mapping: 

X = X:(q), (2.1) 

where x e W C E"* is a generalized position vector giving both position/orientation 

of the end-effector, W is the workspace of the robot, and q G C C E" is a vector 

of joint angles of the robot. As pointed out in [Bur89]: 

Roughly speaking, the forward kinematic map 'rips' the configuration 

space manifold apart into pieces; distorts each piece; and combines the 

distorted pieces to form W (page 265) 

Given a position in the workspace, the set of joint angles which accomplish 

this position is given by the inverse of the kinematic map: 

q = /C-^(x). (2.2) 

which is generally not unique. For a non-redundant manipulator there may be a 

discrete finite set of joint angle solutions. For a kinematically redundant manip

ulator the inverse-kinematics mapping produces an infinite family of solutions for 

each point in the workspace. The family of solutions to Eq. 2.2 can be understood 

by looking at the differential motion of the manipulator. The linear approximation 

28 



dx dx _ _ _ dx 
dqi dq2 dqn 

(2.4) 

to the relationship of joint angle rates q G K", and the end-effector velocity x G E"* 

is given by: 

J q = X, (2.3) 

where the Jacobian, J 6 R"*^", is defined as: 

The solution for all joint rates q which satisfy Eq. 2.3 is 

q = J+x + ( / - J + J ) i , (2.5) 

where the superscript "+" indicates the pseudo-inverse, and z is an arbitrary 

joint velocity vector [Alb72, KH83]. The term (/ — J^ J) is the projection onto 

the null-space of the Jacobian. The family of solutions of Eq. 2.1 forms a (n — 

m)-dimensional hyper-surface in n-dimensions called the self-motion manifold 

[KH83]. Trajectories along these hyper-surfaces do not affect the end-effector po

sition/orientation, and so are in the null-space of the manipulator Jacobian. The 

null space of the manipulator's Jacobian, the set of vectors satisfying x = 0 in 

Eq. 2.3, gives velocities tangent to the self-motion surface. 

The interplay of the two design problems is evident from Eq. 2.1. The 

specification of the task determines the trajectory that the robot will ultimately 

follow, thus determining which points, x, of the workspace are to be used. The 

design of the robot involves choosing design parameters, including the number of 

actuators, n, as well as the link lengths and other geometric properties, all of which 

affect the kinematic mapping relation, /C. 

29 



2.1.2 Kinematic Effects of a Fault 

A fault need not remove a usable actuator from the system. For example, we 

may consider the collision of the robot by an unmodeled obstacle as a fault (as 

discussed in Chapter 4). However, the most commonly anticipated fault will involve 

immobilization of an actuator. Kinematically we may consider a robot with a fault 

that results in k actuators becoming immobilized as equivalent to its k-th reduced 

order derivative, which is the robot with {n — k) effective degrees of freedom, with 

link-geometry which is consistent with immobilization of the actuators [PAK94]. 

Suppose that we have a fault that has resulted in a new lower-dimensional 

configuration space CROD- Determining whether the fault will still permit success

ful completion of the task involves determining whether we can find a family of 

joint angles q(t) € CROD which satisfies the task requirements. 

While it should be clear that a task description which admits the largest 

family of trajectories is more likely to be tolerant of the fault, let us assume that 

we can identify a number of points in the workspace which are critical to the 

task. Characterizing a task using a set of critical points is a method found in 

[PAK94, LM94b]. 

Determining whether a critical point x*̂  G W is reachable by a reduced order 

derivative involves computing the preimage of x'̂  under the relation JC, denoted 

p, and determining whether a trajectory can be constructed in CROD from the 

point of failure, to a point in p. Clearly if p fl CROD = 0 then there can exist 

no such trajectory. In addition, p fl CROD may consist of a number of connected 

components which are not reachable from all failure positions. 

30 



We can better understand the preimage, p, of a point by looking at families 

q along the self-motion manifold at the critical point. For a critical point of a 

task, the global fault tolerance of a point is related to the characteristics of the 

self-motion manifold at that point since it defines the range of joint angle values 

that correspond to a fixed point in the workspace of the manipulator [LM94b]. The 

bounds on the joint angle values along the self-motion manifold determine the set 

of configurations for which there exists a configuration to the point in the work 

space. 

Consider the kinematically redundant 3-R planar manipulator illustrated 

in Fig. 2.1. The self-motion manifold of configurations of the manipulator corre

sponds to one-dimensional curves embedded in the three-dimensional configuration 

space of the manipulator, T^. Projecting T^ onto the g293-plane gives us the plot 

in Fig. 2.2 in which each point in the plane corresponds to the family of configu

rations whose distance from the origin of the workspace is a constant. The curves 

represent the self-motion manifolds of various configurations of the manipulator, 

and represent the families of vectors q whose end-effector positions are at a fixed 

distance from the origin. 

Consider the 4 points x \x^ ,x^, and x^ in the workspace in Fig. 2.1 with 

corresponding configurations p^,p^,p^ and p"* of Fig. 2.2. Point x^ corresponds to 

a point on the reach singularity in which the manipulator is fully extended. The 

self-motion manifold for this configuration is a single point, hence there is no other 

configuration which corresponds to the same workspace point x^. Therefore any 

position along the reach singularity surface is inherently non-fault-tolerant. 

Point x^ corresponds to a point whose distance from the origin is slightly 

31 



Non-Fault 
Tolerant 
Curve 

Fault 
Tolerant 
Curve 

Figure 2.1: Planar 3-R manipulator with unit link lengths (adapted from [LM94b]). 
The manipulator is 1-fault tolerant in the region bounded by the two circular arcs. 

larger than one link-length. At this configuration the self-motion manifold is very 

large, spanning almost the entire range of 52 and ^3. Consequently any configura

tion which is slightly farther than one link-length away from the origin is inherently 

fault tolerant since there is such a large family of kinematic solutions. 

An indication of the fault tolerance of a given configuration is the bounding-

box of the self-motion manifold of the position. The bounding boxes for the points 

x^ and x"* are denoted by the dotted lines in Fig. 2.2. We can see that the bounding-

box of x^ is much smaller than x^, hence there is a larger family of configurations 

which is able to satisfy the positioning of the manipulator at x^ as compared to 

x l 

We can see that for points in the work space that are closer than one link-

length from the origin, such as x^, there are two distinct self-motion curves that 

are disconnected, resulting in two non-overlapping bounding boxes. For points in 

32 



Null-Curves of 3R planar manipulator 

Figure 2.2: Self-motion manifold for the 3-R manipulator (see Fig. 2.1). The self-
motion manifold is a one-dimensional curve in E ,̂ which is projected onto the 
g293-plane. Curves labeled p^,p^,p^ and p'' correspond to the workspace points of 
x^,x^,x^, and x^ respectively of Fig. 2.1. 

33 



this region of the workspace not all configurations are reachable by remaining in 

one component of the self-motion manifold. 

For a fault resulting in the immobilization of the joint, we may guarantee 

that the manipulator is able to reach a given point in the future by constraining 

the range of motion of each of the n actuators. 

Determining the degree of fault tolerance of a configuration in the above 

example is greatly simplified since it purely a function of the kinematics of the 

manipulator. The fact that all points in the configuration space are feasible also 

greatly simplifies the analysis. If we have further constraints imposed by the task, 

for example due to the addition of an obstacle, the analysis becomes much more 

complicated. 

We will introduce a method for specifying the set of trajectories which satisfy 

the task constraints using a set of constraints in Section 2.3. Since the introduc

tion of a fault can also be described as the addition of further constraints to the 

task description, we have a simple mechanism for determining the fault tolerant 

capabilities of reduced order derivatives. We will show how faults can be modeled 

as additional constraints in Chapter 3, and show how to compute recovery motions 

given a fault. 

2.1.3 Adding Redundancy 

Designing a fault tolerant robot involves the addition of mechanisms which, when a 

fault occurs which leaves a mechanism immovable, can be used to take over the re

sponsibilities of the failed mechanism, and thereby continue to perform the desired 

34 



task. Sreevijayan et al. describe a subsumptive architecture involving redundancy 

at four levels [STT94]: 

1. Dual Actuators : extra actuators per joint. 

2. Parallel Structures : extra joints per DOF. 

3. Redundant Manipulators : extra DOF's per arm. 

4. Multiple Arms : extra arms per system. 

The choice for how many additional actuators to use, and the choice for the kine

matic design parameters is dependent on the demands placed on the robot by the 

task, as well as financial and other constraints. 

If feasible we may replicate each of the actuators with a parallel actuator 

whose axis is aligned with the original. This is illustrated in Fig. 2.3 where (a) 

represents the non-redundant 3-R manipulator, and (b) gives the 6 DOF manipu

lator obtained by adding a parallel actuator to each of the 3 actuators in (a). The 

manipulator in (b) is called l-fault-tolerant since it is able to sustain any one 

fault and still achieve any positioning task in the original workspace [PAK94]. 

While the manipulator of Fig. 2.3(b) has the benefit of being fault tolerant 

throughout the entire workspace, it does so at the cost of doubling the number 

of actuators. Alternatively we may choose to use fewer additional actuators, and 

obtain a robot which is fault tolerant for a subset of the original workspace. 

When a fault is introduced it alters the set of accessible configurations of 

the robot. Determining the abilities of a robot when a fault has left one or more 

35 



(a) 

Figure 2.3: Depicted in (a) is a 3-R manipulator, and (b) a 6 DOF manipulator 
which is first-order fault tolerant. Each joint has a parallel joint which, in the event 
of a fault, can be used to position the arm. The example is modified from [PAK94] 
and is illustrative of designs found in [WDHC91]. 

actuators immovable requires that we look at properties of the kinematic mapping 

of joint angles to positions in the workspace. 

2.1.4 Defining the Task 

The process of designing a task involves a compilation of the task constraints into 

a robot program which achieves the task. Programming a robot is a very complex 

problem, so it is a natural goal to, subdivide it into a set of simpler sub-tasks; one 

example is proposed in [McK91, p. 485]: 

Task level The definition of the task within the framework of the designer's con

ceptual model of the production process. 

Action level A sequence of actions completing the task such as "insert part", 

"slide end-effector", "place object". 

36 



Robot level Sequence of "robot machine code" further decomposing the action. 

For example, "pick up part A" may translate into "open manipulator", "more 

gripper to grasping position", "grasp part", "raise gripper to position B". 

Joint level At this level control systems for position, velocity and force directly 

determined the joint parameters. 

Previous work in fault tolerant robotics assumes that we have the task de

composed to the robot level. The goal of fault tolerant trajectory generation is to 

produce a joint level description of the task which is able to tolerate faults during 

the execution of the program. The methodology that we present, as we shall show 

in the subsequent sections, spans the four levels above. By utilizing the flexibility 

obtained through careful definition of the task, we hope the resulting trajectories 

are able to express more of the inherent fault tolerance of the robot with respect 

to the task. 

Task constraints may include avoiding obstacles, ensuring that joint angle 

limits and joint angle velocity constraints are satisfied, as well as satisfying con

straints that are particular to the specific task. 

Pai has broadly classified approaches to robot programming into two types: 

explicit, and implicit approaches [Pai91]. Explicit approaches are those approaches 

in which the designer explicitly defines the motion of the robot. Typically the mo

tion is specified via a set of primitives provided by a robot programming language 

(such as [TSM83, Una83]). The advantage of this approach is that since the user is 

directly specifying the trajectory, fine motion control is possible. The price for this 

performance is that the user is often forced to make arbitrary decisions in order 

37 



to execute the motion. While these decisions may be arbitrary with respect to ob

taining a trajectory which satisfies the designer's intentions, they may have large 

implications to the overall fault tolerance of the resulting program. For example, 

if the designer chooses to force the motion of the robot through a point which is 

inherently fault intolerant, such as a reach singularity, the fragility of the resulting 

robot program is inevitable. 

Implicit approaches differ in that they require the user to specify the high-

level goals of the task, omitting low-level details. Examples of these types of 

approaches include motion planning [Lat91, LP82], as well as optimal trajectory 

planning [BDG85, SH85]. These approaches are powerful and provide good results 

as long as the method is well suited for the task. For example, there is little point 

in using an optimal trajectory planning method which minimizes the joint angle 

velocities if the joint angle velocities are not important to the problem. If the 

optimality criteria for trajectory generation do not reflect the fault tolerance of 

configurations along the path, then it is very likely that the resulting paths will 

not be very tolerant to faults during the execution. 

We shall give an example of explicit and implicit task specification, and then 

suggest an alternative which is a compromise, sharing features of both. 

2.1.5 Example of an Explicit Task Description 

One method for specifying the task at the action level is by specifying a set of 

points in the workspace called knot points [McK91]. Typically the trajectory is 

constructed using cubic splines through the knot points. The ability to sample the 

38 



spline at fine intervals allows one to perform smooth motion of the end-effector. A 

second benefit of using a cubic spline to specify the trajectory is that the positions 

and the velocities of the end-effector are guaranteed to be continuous. 

One problem of the approach is that it is difficult to ensure that the tra

jectory does not pass through a singularity, causing the joint velocities to exceed 

their limits. To overcome this we may define the set of knots in joint space, and 

perform a smooth interpolation between points in joint angle space. Specifying the 

task in joint space has its own problems, however. Obstacle constraints, which are 

easier to specify in the workspace of the robot, may be difficult for the designer 

to visualize, making the construction of the task error-prone. Furthermore, due to 

the highly nonlinear nature of the forward kinematics, end effector motion arising 

from a joint interpolated motion may yield unexpected results. 

2.1.6 Velocity Profile Specification 

Another method of specifying the task is by specifying a velocity profile, x(t), 

of the robot's end-effector. This has the advantage that the velocity of the end-

effector is defined for all points along the trajectory, and is not the by-product of 

the interpolation, as is the case with knot-point specification. Velocity profiles, 

however, have the same difficulties with respect to singularities and obstacles as 

described above. 

39 



2.1.7 Example of an Implicit Task Description 

Examples of implicit methods are described in [Lat91]. As an illustrative example 

consider the problem depicted in Fig. 2.4 of moving a polygonal robot, denoted by 

the triangle, in a room with obstacles which are also polygonal. To simplify the 

problem we will ignore rotations of the robot, and will constrain the robot to the 

region inside the room walls. 

A useful technique is to choose some reference point on the robot, and to 

compute the portions of the configuration space which correspond to some point 

of the robot colliding with some obstacle (either the square obstacle or the walls). 

Each obstacle results in a collision-space obstacle with edges arising from features 

of the robot or the obstacle. Once the computation of the configuration space 

obstacles has been performed, the problem reduces to computing a path of a point 

in the configuration space among a set of polygonal configuration space obstacles. 

This example illustrates the power of implicit techniques in allowing the 

designer to concisely define the task at a high level; the designer need only specify 

the geometry of the robot and the obstacles and specify the initial and final con

figurations. However the method does not provide the designer any fine control 

of the particular trajectory that is chosen. Since there is little control over the 

specific trajectory which is chosen there is no ability to fine tune the trajectory. 

For example, there is no way to indicate that we would like to exploit regions of 

the configuration space which are more fault tolerant. 

As we have seen there are benefits and drawbacks when using both implicit 

and and explicit methods. We will now discuss an alternative approach called 

40 



(a) Work space analysis. (b) Configurations space analysis. 

Final 
Configuration 

/\ 

• -
Obstacle 

Initial 
Configuration 

y \ Wall 
A Reference 

Point 

Configu 
Space 
Obstac 

I 

iration 
>-

es 

• ' ' 

\ ^ 

Collision-free 
Path 

?.' 

Figure 2.4: Example of an implicit method for describing a task. The initial and 
final configurations are given by the triangles. A path is constructed by computing 
a path in the configuration space which avoids the configuration space obstacles. 

Least Constraint which shares properties of both; tasks can be described in a high 

level while still permitting fine control over the specific trajectory when needed. 

2.1.8 Least Constraint Robot Programming 

In an effort to decrease the complexity of specifying the control of large degree 

of freedom mechanical systems, Pai introduced a method called Least Constraint 

[Pai91]. LC allows the designer to express the task using a set of constraints on 

the configuration of the robot. The constraints describe the motion using large 

time-varying sets of non-zero measure to represent "goal" regions, and requiring 

the robot to be inside this set throughout the trajectory. As long as the task is 

specified correctly we should not care which point in the region is chosen. The 

41 



regions are defined using a conjunction of inequality constraints. 

For systems with many degrees of freedom it may not be convenient or 

natural to express constraints in a single space. To alleviate this, a number of 

domain systems, 

{Vr.ie / } , 

which relate to each other with linking functions 

lij :Vi ^Vj, {i,j) eLcI X I, 

which are assumed to satisfy the consistency condition that the corresponding 

mapping diagrains commute. We assume that there is a basic domain VQ. The 

choice for the domains is left open to the designer, and can be an arbitrary manifold, 

however in practice they would likely be copies of R". Using the domain systems 

allows the designer to specify a constraints in any domain which is convenient, and 

using the linking functions to lift the constraints from one domain to the next. 

The motion specification in LC consists of a system time-varying inequal

ity constraints 

Pa = fa{x{t),t) < 0, where /^ : r>i x R ̂  R, a e A, (2.6) 

where x{t) is a time-dependent trajectory in I>j. Once the trajectory is specified 

using the constraint functions, the control actions are computed using constraint 

satisfaction. The motion is obtained by lifting each of the constraints fa from their 

respective domain di into the domain VQ, to produce a trajectory x{t) G VQ which 

satisfies the constraints at all times t. 

For efficiency, Pai implemented the constraint satisfaction using a fast relax

ation method, and utilized automatic differentiation [Pai91]. The control strategy 

42 



relies on the property of the constraint specification that, given a configuration 

which satisfies the constraints at a particular time, computing a configuration 

which satisfies the constraints for a time shortly later can be done very efficiently. 

There is a close similarity between constraint satisfaction and obstacle avoid

ance. We can view constraint surfaces as forming obstacles in a related space, and 

the satisfaction of the constraint corresponding the point being in the exterior of 

all "constraint objects". It is not surprising therefore, that obstacle constraints are 

easily expressed using LC. 

An alternative approach to LC, similar in that it is a constraint-based ap

proach is found in [ZM95]. Using a formalism called constraint nets, a problem 

can be specified, and in many instances the controller synthesized, while also sat

isfying constraints on safety, reachability, or persistence. 

2.2 Design of Fault Tolerant Robots 

Paredis and Khosla [PAK94] examined the task of constructing fault tolerant planar 

manipulators. In contrast to [Mac90] which attributed fault tolerance to a specific 

posture, fault tolerance as defined in [PAK94] relates to the manipulator as a whole. 

A manipulator is considered A;-fault tolerant if and only if every (n — A;)-degree of 

freedom reduced order derivative can still accomplish the task. Since each of the 

k actuators may be frozen at any angle, showing that a manipulator is A;-fault 

tolerant requires that we prove that there does not exist a set of /c-joint angles for 

which the k-th reduced order derivative is unable to accomplish the task. The task 

was described by a set of points in the workspace which are critical to the task. 

43 



Paredis and Khosla described analytically the necessary and sufficient con

ditions for fault tolerant planar manipulators, and showed how these conditions 

could be used to design a 5 DOF planar manipulator which is 1-fault tolerant. 

For spatial manipulators, the geometric complexity of the constraints makes the 

analytical design of a fault tolerant manipulator infeasible. Instead a numerical 

approach is described which makes use of a penalty function to produce the set of 

Denavit-Hartenberg parameters which satisfy the task requirements. We will limit 

our discussion to the planar case. 

2.2.1 Planar Case 

A planar manipulator, denoted by At = (/i, • • • ,ln), is described by the set of link 

lengths li. The task is defined as a set of positions/orientations in the workspace, 

W = {{xj,yj,(l)j)}. The fault tolerant workspace, denoted FTWS of a /c-faillt 

tolerant n DOF manipulator is the set of points in the workspace that are reachable 

by all possible {n—k) reduced order derivatives. The manipulator is A;-fault tolerant 

for the task W so long as W C FTWS. 

To find a set of link lengths k which yields a 1-fault tolerant manipulator, 

we use induction on the number of links, and split the manipulator into two parts: 

the last link /„, and the first (n — 1) links which comprise a new manipulator 

M.* = (/i, • • • ,/„_i). For M to be 1-fault tolerant M* must be able to reach 

the points in the new workspace W* in any orientation when all actuators are 

operative, and in at least one orientation when any one of the (n — 1) actuators 

44 



are frozen at an arbitrary angle. The new workspace W* is defined as 

W* = { {Xj - In cos (j)j, Vj - In Siu (j)j) G E^ | (^^.^ y.^ ^.^ g ^ | (2.7) 

This problem is easier to solve due to the radial symmetry of the manipu

lator. The manipulator M. is first order fault tolerant if and only if 

W* C FTWS* = Ux, y) em^ R' < ^x^ + y^ <R^\ (2.8) 

where R'^ and R^ are the closest and farthest radii reachable by A1*. 

Analytical expressions for Re and Rf can be found by considering all of the 

reduced order derivatives M.i, 

Mi{ql) = {h,---,li-2,Ci{q{),k+i,---,Q (2.9) 

where Ci{q{) is the new length between joints {i — 1) and {i + 1), 

\h-i-h\<C,{ci{)<{k^i+k). 

The value q{ is the angle at which the actuator is frozen. When maximizing the 

reach of the planar manipulator, the worst angle for a reduced order derivative is 

q- ~ TT, for which Ci = \li-i — li\. This gives a reach of 

R{ = L - {li_i + k) + \k_i - k\, (2.10) 

where 

n - l 

L=Y.k, (2.11) 

is the total length of the manipulator Ai*. If we set lo = In = L, then this 

expression is correct for i = 1 and i = n. The final expression for the maximum 

reach radius is thus: 

R^ = mmR{. (2.12) 

45 

file:///li-i


To compute R^ we use the fact that the minimum distance between two 

endpoints of a chain of rigid links is 

max jo, length of the longest link — ^ lengths of other Unks} . (2.13) 

Depending on whether £j is the largest link we set q( = 0 or q{ = ir for maximum 

radius 

R^ - max{0,2(/i_i + k) - L, 21^^ -L + {k^i + k) - l̂ .̂i + li\}. (2.14) 

If we set /o = /„ = 0 this expression is correct for i = 1 and i = n, giving 

R" =maxRf. (2.15) 

Using the constraints of R^ and R'^ above, Paredis and Khosla were able 

to prove that 5 DOF were sufficient for 1-fault tolerance, in the plane. A fault 

tolerant workspace without holes {i.e., R'^ = 0) is obtained by setting the first four 

link lengths equal, A4 = (/, I, I, I, I5), where 5̂ can be chosen freely. 

2.3 Fault Tolerant Task Design 

Before we describe our method of defining a task we will give a list of properties 

which an ideal motion specification language would have. Some of these properties 

have already been mentioned in Sections 2.1.8 and 2.1.5 when we contrasted im

plicit and explicit methods for describing a motion. The properties are derived from 

different facets of the motion specification problem; some properties are desired of 

any motion specification; others arise from the specific demands of producing a 

fault tolerant path. The properties reflect the following three ways in which the 

specification will be used: 

46 



• To verify that the specification is correct. This involves determining whether 
a vahd trajectory exists which meets the design goals. 

• To construct paths. 

• To efficiently assess the effect of faults at a particular configuration and the 
overall fault tolerance of a given path. 

2.3.1 Ideal Properties of a Specification 

PI Completeness. 
The specification should be complete and unambiguous with every possible 
state uniquely classified as a valid or invalid state of the system. 

P2 High Level Description 
The talk specification should permit the goals of the task to be expressed at a 
high level. The constructs of the language, where possible, should reflect the 
demands of the task, and not describe a means of satisfying the demands. 

P3 Fine-level control 
The specification language should allow the designer to have a fine-level con
trol over the resulting motion. When a task requires fine-motion control 
tailored by the designer, the constructs of the specification language should 
permit this. 

P2 and P3 reflect the respective properties of implicit and explicit methods 

of robot motion programming, as mentioned in Sections 2.1.7 and 2.1.5. These two 

properties are often antagonistic; however LC, being an intermediate approach and 

sharing properties of both explicit and implicit methods, is a compromise on these 

two approaches. 

P4 Use of salient features of the task. 
Where possible the task should be defined using only the salient features of 
the task's domain, and should not contain constraints which are artifacts of 
the specification itself. To this end, the designer should not have to make 
arbitrary decisions simply to make a well-formed specification (as is often the 
case in "explicit methods" described in Section 2.1.5). 

47 



An example of a specification which introduces additional constraints as an 

artifact of the specification language itself is the following. Suppose that we specify 

a task using joint-interpolated motion commands through a series of knot-points 

in the configuration space, through which the end-effector is to pass. The joint-

interpolated motion will produce a motion with constant joint velocity rates. This 

additional constraint will likely not refiect any real constraint on the task, and will 

likely produce a motion which passes through regions which are less fault tolerant 

than necessary. 

P5 Explicit use of tolerances. 
When the designer has specific knowledge about the task tolerances the speci
fication should incorporate this directly. Knowing the tolerances allows one to 
design the task such that a larger family of "valid" trajectories are included 
in the specification. This larger set of trajectories can be used in choosing 
a trajectory which is more fault tolerant, thus allowing more of the inherent 
fault tolerance of the robot to be used. 

P6 Ease of modification. 
Incremental changes during the design process should be handled with ease. 
The designer should be able to easily alter task parameters, such as the posi
tion and shape of obstacles, without having to adjust the entire description. 
This requires that the effects of common task parameters should have localized 
effects to the task description. 

P7 Fast Verification. 
Given a specification of the task, the process of verifying that the specification 
is consistent, and permits a valid trajectory accomplishing the goal, should be 
computationally inexpensive. Additionally, when the specification is inconsis
tent, the verification process should indicate which portions of the specification 
should be changed. 

P7 and P6 reflect the fact that the process of constructing a specification is 

48 



an iterative process, often requiring many verification/modification cycles. To aid 

in this process, the specification should allow a parameterization of the task using 

measures which are meaningful to the designer. P4 and P 5 aid in this process. 

P8 Decoupling of specification and implementation. 
The specification should not concern itself with the means of producing the 
trajectory through the configuration space. 

P9 Easy inclusion of dynamic information. 
One source of dynamic information is the use of sensing by the robot, which 
must be characterized by the specification. Another source of dynamic infor
mation is the introduction of a fault, which may be considered an environ
mental interaction for which there is no direct sensing. A specification for 
a fault tolerant system should have an easy mechanism for describing unex
pected interactions, a means of computing the effects of a fault on the system, 
and a means for describing effective recovery actions. 

P9 is crucial for planning fault tolerant tasks. When a fault occurs we are 

left with a new robot, the reduced order derivative, which requires a re-planning of 

the motion to complete the task. LC provides a natural means of reasoning about 

the effects of a fault on the overall task since we can model faults as additional 

constraints which are imposed at execution time. 

We will take an approach that is similar to the LC specification of [Pai91], 

in which motions are described by assertions of configuration- and state-dependent 

constraints on the robot which must be maintained throughout the entire trajec

tory. 

Assume that the configuration space of the robot is denoted by C C E", 

and that a particular configuration is denoted by q, 

q = {qi,---,qnf. (2.16) 

49 



A trajectory is simply a mapping 9{t), 

0 :R+ ^C. (2.17) 

from time, E"*" (t = 0 denoting the start of the task), to configurations. We will 

not impose any restrictions on the trajectories considered, however we will insist 

that they be continuous, 9 G T, 

r - { / : E + ^ C , / G C ° , } . (2.18) 

Since the specification deals with time- and configuration-dependent con

straints, it is useful to define an abstract space 

C = C X E+, (2.19) 

the product of the configuration space and time. We will call C the time-

augmented configuration space. The end product of the specification, which 

we will describe later, is the construction of the feasible set 

J^CT C C. (2.20) 

TCT, the feasible configuration-time space, forms a complete spec

ification because it uniquely classifies all trajectories as valid or invalid. TCT 

gives, at each instant of time, all configurations which meet the specification re

quirements. 

The interpretation of the temporal dimension of points in the space C may 

be literal, or it may simply denote a single parameter which characterizes the 

progress towards the goal. When explicit time constraints are not present, it is still 

useful to use a single time-like parameter to characterize the progress towards the 

50 



goal. Constraints on C can easily express time^ordering and deadline constraints. 

Essentially we can think of transforming the path planning problem in C with time 

constraints to an equivalent path planning.problem in (C x E"*") with "obstacles" 

representing the time constraints. We show later that the explicit inclusion of 

time in the task specification provides us with a natural measure of utility of a 

configuration. 

2.3.2 Valid Trajectories, Verification 

Given a task described by J-^CT, all trajectories, 9, are classified as valid or invalid 

as follows. 

Definition 2.1 (Trajectory/Configuration Validity) 

Given the set ^FCT, a trajectory, 6, is called valid if, and only if 

V t > 0 , {e{t),t) eTCT. (2.21) 

Likewise a configuration q' is valid at time t, > 0 iff (q',tj) G TCT- • 

The process of determining whether the trajectory satisfies the specification 

involves a verification step, namely Eq. 2.21. 

2.3.3 Constructing the Specification 

Constructing a robot program using LC involves defining a set of configuration- and 

time-dependent constraints, and from the composition of these constraints we form 

51 



TCT• Care must be taken when specifying the constraints since TCT is not simply 

defining a single trajectory, rather it is defining the entire family of acceptable 

trajectories. If constructed properly one should not care which configuration q'' is 

used so long as (q°,^o) ^ TCT. 

The specification is composed of a set of constraint functions of the form: 

hi^j : C -> E, (2.22) 

and the corresponding set of predicates 

gi,o •• {hij < 0). (2.23) 

The task specification is simply the set of constraints G = {gij}, denoting 

the Disjunctive Normal Form [GN87]: 

G '^ V A 9i.^ (2-24) 
1=1 j=i 

TCT = {qeC\G{q)}. (2.25) 

where Âv gives the total number of OR-terms, the z-th term composed of ÂAi 

AND-terms. 

2.3.4 Linking Functions 

The constraint functions of Eq. 2.22 are examples of constraints in the basic 

domain, VQ, of an LC specification [Pai91]. For our problem, the basic domain is 

Vo = C. The set of valid trajectories will be determined using constraints in the 

basic domain, denoted by T>Q in [Pai91], or C. 

52 



We will assume that each constraint h is supplied by the designer directly, 

or by specifying an alternative constraint 

in an alternative domain Pfc. Each domain V^ is related to the basic domain by 

the composition of the linking functions 

Po ^ • • • -^ ^fc- (2.26) 

From this we can construct the equivalent constraint function, h, in the domain 

Vo, such that 

h = h'' olkiO---oloj. (2.27) 

2.3.5 Driving Constraints 

Using algebraic inequalities to define the task allows us to easily express static 

constraints, such as joint angle limits or configuration space obstacles, as well 

dynamic constraints which drive the robot through the valid configuration space 

towards the goal. We will refer to the time-dependent constraints which are used 

to push the robot towards the goal as driving constraints. 

To illustrate the use of time-dependent constraints in producing a motion, 

consider the simple example in Fig. 2.5, in which the goal is to produce a trajec

tory to the goal position located at the intersection point of the two constraints. 

The driving constraint reduces the set of acceptable configurations over time until 

convergence at the goal position. 

53 



/ i d ( q , i ) = 0 

Figure 2.5: The use of static and time-dependent driving constraints in producing 
a motion. 

Notice that there is no explicit representation of the goal; the goal is im

plicitly defined using the driving constraints of the system. The goal state(s) 

can be thought of as the set of configurations (possibly empty) which satisfy the 

specification at some time tmax- The design process involves constructing a set of 

constraints which ensure that the valid configurations converge to the goal states 

by some upper time-bound m̂ax-

2.3.6 Examples of LC Specifications 

The following are some examples of simple task constraints that are common to 

robot tasks, and illustrate the ease with which task constraints, such as obstacle 

avoidance and end-effector placement, are expressed using LC. In the first example 

we wish to assert that the robot is not to collide with an obstacle. 

Example 2.1 (Obstacle Avoidance) 

Consider a navigation task in the plane with C = K ,̂ with a triangular configu-

54 



ration space obstacle, as depicted in Fig. 2.6. 

( C 1 , C 2 ) 

(gi>?2) 

( 0 1 , 0 2 ) 
(bubi) 

Figure 2.6: The configuration space of a robot is E^ with q = (91,92) denoting 
the robot. The triangular configuration space obstacle is given by the vertices 
(oi, 02), (61, 62) and (ci,C2). The non-intersection constraint can be expressed us
ing three algebraic inequalities, each denoting that q lie in one of the half-planes 
constructed by the edges of the triangle. 

Constraining q not to lie in the interior of the triangle is described using 

three constraints. 

hn = (92-^2)(ci-61) - (91-6i)(c2-62), 

h2i = (92-02)(&i-a i ) - (91-a i ) (62-02) , 

hi = (92-C2)(a i -c i ) - (91-ci)(a2- t ;2) . 

(2.28) 

(2.29) 

(2.30) 

Each constraint corresponds to configurations which occur on a half-plane con

structed with one of the three edges. The configurations which are safe from 

collision are described by (/in V /i2i V /131). 

By reversing the sense of each of the constraints, and replacing disjunction 

over the three constraints with conjunction, we enforce the configuration to be in 

the interior. This is useful for specifying support-regions for static stability, such 

as found in legged locomotion tasks [RP97]. 

55 



A second illustration of LC is the task of moving the end-eff'ector to a given 

position in the workspace. This is achieved using driving constraints which ensure 

that the distance of the end-effector to the goal point decreases over time. 

Example 2.2. Placing an object on a table 

Consider the pick-and-place task of putting the object held by the gripper onto a 

Figure 2.7: LC task specification for the placement of an object onto a surface 
(modified from [Pai91]). 

specified place on the table (as depicted in Fig. 2.7). The task is specified with 

constraints on positions of the gripper in the task space of the manipulator. The 

constraints / i and /2 ensure that the manipulator stays within the bounds of the 

table, /4 ensures that the manipulator does not make contact with the table. The 

end position of the object is the center of a cone that is given by the constraints 

/s and /e. The motion of the manipulator is achieved with the driving constraint 

/a which forces the height of the manipulator to decrease over time. The cone 

constraint ensures that position of the manipulator converges to the end position. 

56 



These examples illustrate the incremental nature of defining a task in LC. 

Each constraint is an assertion of some property that the designer would like to 

impose on the resulting trajectories. Furthermore these assertions can be added 

during the design process as the verification process brings new factors to light. 

2.3.7 Limitations 

The LC specification is limited to first-order predicates over C, and does not allow 

the use of the existential operator. Hence many properties that require second order 

logic cannot be expressed. Second order logic is useful for expressing temporally 

indeterminate properties such as "p(q) will occur in the future" or "p2(q) will be 

true some time after pi(q) is true. For example, we cannot express predicates such 

as: 

V(q,i) finished-a{q^,t) =^ 3t'> t, such that startb{q,t'). 

This makes it impossible to express deadlock conditions directly in the spec

ification. If we want to verify that a property is true of the specification, it must 

be verified using other techniques. 

Another shortcoming of the LC specification is that it does not allow one to 

express constraints which are functions of the joint velocities q. If the constraints on 

the joint velocities are complex functions of q, then we may make the configuration 

space include the joint velocities, i.e., C = q x q [SPA99]. Often, however, it may 

suffice to simply place bounds on the magnitude of the joint velocities. In these 

circumstances we may omit the joint velocity constraints from the specification 

and ensure that the velocity constraints are satisfied when constructing paths. 

57 



Later we will show how to decompose the configuration space into a set of 

non-overlapping convex regions. Letting a vertex represent each region we con

struct a graph, G = {E,V). Using this graph we can denote sets of trajectories 

by listing the vertices of the graph through which the trajectory passes. Using 

the graph of the feasible configuration space, velocity constraints can be expressed 

with appropriate constraints on the edges of the discrete graph. 

2.3.8 Ranking Trajectories 

The problem of taking the task specification, expressed in LC, and producing 

a trajectory satisfying the constraints is an example of a traditional trajectory 

planning problem, and is described in [Pai91]. Pai used an iterative method which 

took the current configuration and a set of constraints, and using a fast relaxation 

method produced a nearby configuration which also satisfied the constraints. The 

resulting set of solutions comprised the trajectory of the robot. In this way LC 

was being used as a "reactive" method for producing the trajectory. 

We are interested in producing more than a valid trajectory through the 

configuration space; we seek a trajectory which is fault tolerant. Using a fault 

tolerance measure which assesses the ability of the robot to complete the task 

given a fault, we will show how to produce a fault tolerant trajectory which also 

satisfies the task constraints. 

The LC specification only requires that each point along the trajectory sat

isfies the constraint predicates. The goal-motion is implicitly described as the 

trajectory obtained by satisfying the constraints over time. For a finite task it is 

58 



sufficient to satisfy the task for some time interval [0,trnax], where it is assumed 

that convergence to the goal configuration is guaranteed by appropriate selection of 

the constraint functions. For infinite tasks we must satisfy the constraint functions 

for all i > 0. From the use of time, either literally, or as an parameterization of 

progress towards the goal, it should be clear that the length of time for which a 

trajectory satisfies the constraints is a meaningful measure of the utility. 

Given the implicit definition of the goal of an LC specification, we will 

introduce definitions for satisfiability and utility which allows us to construct an 

objective function. Computing the best trajectory is therefore a classical optimal 

control problem [Kir70] in which we seek a trajectory (not necessarily unique) 

which obtains a maximum utility. 

The verification process confirms that the task constraints are satisfied over 

some time interval, which we shall denote by the predicate sat() as follows: 

Definition 2.2 (Satisfiability of a trajectory) 

We say that a trajectory 9 satisfies a feasibility set F, for a time ^max, denoted 

sat(^, F, ^max), if it remains entirely inside the set F up to a time imax̂  

sat(^,F,t„ax) ^ VtG[0,i„ax], {e{t),t)eF. (2.31) 

D 

We define satisfiability in terms of an abstract feasibility set F , enabling 

us to alter F dynamically. Thus F captures the task constraints as well as any 

additional constraints resulting from additional sensing or faults. 

59 



For a robot with no additional fault constraints, we say that a trajectory 0 

satisfies the task for a time imax iff sat(^, J^CT, tmax)-

Since the only requirement is constraint satisfaction, the only meaningful 

measure of utility is the length of time for which the constraints are satisfied: 

Definition 2.3 (Utility of a trajectory) 

Given a feasibility set F , and a trajectory 9 : W^ ^ C,9 E T, the utility of the 

trajectory with respect to the feasibility, denoted util(^, F) , is: 

util(^,F) = sup{i |sat(^,F,t)}. (2.32) 

D 

The utility of a trajectory ^, given a robot with no additional fault con

straints, is 

util(^,J'^Cr). (2.33) 

2.3.9 Optimal Utility Paths 

Given the definition of utility, we seek a trajectory T which maximizes this measure. 

This is an example of an optimal control problem where we seek the optimal 

trajectory Topt such that: 

9opt{F) = argmaxutil(^,F). (2.34) 

We can see that the maximum utility obtainable is a function of the spec

ification G, and the topology of the (reduced) feasibility set F. Specifically it is 

60 



related to the utilities of the valid configurations which can be reached by a given 

configuration. 

For a robot with no additional fault constraints, the optimal utility path is 

given by 

eopti^CT). (2.35) 

Definition 2.4 (Reachability set) 

Given a set F C TCT representing a (potentially restricted) feasibility set, and a 

pair q — (q'^jto) G TCT^ the set of points in TCT which are reachable from q at 

time to is given by i?(9, F): 

R{q,F) = {{q\ti)eF, U>to\39eT, (^(io) = q°) A (^(t,) = q^) A 

{yte[to,h], {9{t),t)eF)}. (2.36) 

R{q, F) is called the reachability set of q in F. • 

Again, for a robot with no additional fault constraints, the reachability set 

is given as 

R{q,TCT), (2.37) 

which gives the all accessible configurations for a robot with no additional fault 

constraints. 

61 



2.4 Decomposit ion of t he Valid Space 

Configuration space path planning can be roughly broken into two types of tech

niques: exact and approximate methods (see [Lat91] for survey). The difference in 

the two methods is in the way in which the valid configuration space is represented. 

Exact methods do not approximate the valid configuration space and are thus more 

accurate, however this is at the cost of increasing the computational complexity of 

planning a path through the configuration space. An important class of approxi

mate methods decompose the valid space into a set of disjoint regions called cells, 

The advantage of using approximate decomposition methods is that it allows us 

to represent the valid configuration space using a discrete graph of vertices. This 

greatly simplifies the problem of computing a path through the configuration space. 

We will perform a similar approximate cell decomposition on the time-

augmented configuration space, C. Each cell has a unique label Vi, V = {vt}. The 

interior of the cell is denoted Cell{vi) C C. We assume that the decomposition 

includes the entire time-augmented configuration space, that is, 

C = ]JCell{vi), 
i 

and that they are non-overlapping, 

yi^j, Cell{v,)nCell{vj) = ^. 

Each cell is classified as valid, if Cell{vi) C TCT, invalid if Cell{vi) n 

TCT = 0, and mixed otherwise. Figure 2.8 illustrates a time-augmented config

uration space that is decomposed into a set of regular n-dimensional rectangular 

regions. 

62 



Valid , 
Cells 

t 
1 

S ^ • 

>^ 
^^ 

J-

• C 

Invalid 
Cells 

Figure 2.8: Decomposition of the time-augmented configuration space into 20 rect
angular cells. The decomposition yields 4 valid cells, 2 invalid cells, and 14 mixed 
cells. If required we may further refine the decomposition by further sub-dividing 
mixed cells into smaller cells, some of which may be valid, invalid, or mixed. 

The classification of the cells as valid, invalid or mixed involves determin

ing whether a surface of TCT intersects the boundary of a cell. The boundaries of 

J-CT are formed by taking portions of the constraint surfaces of the form: 

hi[q) 0. (2.38) 

To determine whether the boundary of TCT intersects a given cell we may 

first identify which of the constraint surfaces hi = 0 intersect a given cell. For each 

constraint function which intersects the cell, we must then determine if any part 

of the surface is used in forming the surface of TCT. 

Determining solutions for h{q) = 0 is a constrained optimization problem. 

Details of the decomposition process can be found in appendix A. 

63 



2.4.1 Uniform Decomposition 

To simplify the decomposition process, as well as to ease the determination of 

topological properties of the decomposed space, we decompose C by regularly 

subdividing each of the n-dimensions into equally spaced intervals. Thus each of 

the cells is a (n + l)-dimensional rectangular region, the first n coordinates of which 

define the point in C, and the (n + l)-dimension representing time. 

Let Ni,- • • ,Nn G Z+ denote the number of subdivisions of each of the n 

dimensions of C. We can then associate with each cell Vk an index, X{vk) which 

gives the position of the cell in the integer lattice: 

X{vk) = ( a ; t , - - - , x y , 4 G Z , l < 4 < i V , - . (2.39) 

Furthermore, we will denote each j-th interval of the subdivision of the i-dimension 

of C by the closed interval [0^,6^]. Thus for each cell 

Cell{v,) = [al b',] x[alb',]x... [a^ b^] x [tl,, 4 J , (2.40) 

where [^in^^ax] represents some closed time interval associated with the cell k. 

There are two drawbacks to using a uniform decomposition. First, since we 

only make use of cells whose interior is entirely contained inside the valid region, 

there may be large regions of TCT which are inaccessible. By further decomposing 

mixed cells into smaller cells one could obtain a better approximation to TCT. 

The second problem with using a uniform decomposition of TCT is that it leads to 

a number of cells that is 0(2"). To remedy these problems would require a more 

intelligent, hierarchical decomposition of the valid configuration space (see [Lat91] 

for examples), however this would also require a large number of modifications to 

the methods presented here, and is therefore outside the scope of this thesis. 

64 



2.4.2 Graph of Time-augmented Configuration Space 

Once decomposed we can represent the time-augmented configuration space as a 

graph 

G = {V,E), 

y ^^fwilvi i sa Validcell}, (2.41) 

E = {e,j} . 

where V is the set of vertices representing valid cells, and E is the set of edges 

which connect the vertices. The adjacency relationships contained within E are 

dependent both on the structure of !FCT and its decomposition, as well as the 

dynamic constraints on the robot. 

We will assume that an edge tij is in E if and only if there exists a corre

sponding valid trajectory between the two cells: 

ejj ^ E iff 3^ e T, and ti,tj,tk: € M"̂ , ti < tk < tj, such that 

{e{U),U)eCell{vi), {9{tj),tj)eCell{vj), (2.42) 

{t e [ti,tk)) =^ {e{t),t) e Cellivi), and 

{tE [tk,tj])^{e{t),t)eCell{vj). 

and further, that this trajectory 9 satisfies all static and dynamic constraints de

sired by the designer which are not explicitly covered by the LC specification. 

Eq. 2.43 ensures that there exists a path which starts in Cell{vi), ends in CeU{vj), 

and does not pass through any other cell before passing to Vj. 

Given the graph of the time-augmented configuration space, Q = {V, E), we 

65 



can represent paths embedded in C by an ordered list, p, of vertices vi as P: 

P = {Pi,P2,---,Pk},Pi&V. 

The path P is valid, if and only if 

n-l 

ensuring that only valid edges are used. The path P is a valid initial path, if it is 

valid and 

(q,0)eCe/ /(pi) , 

which ensures that the path starts at time t = 0. 

The valid discrete path represents an equivalence class of trajectories, T{P), 

specifically: 

r(P) = I ^ e r Vt e 3ii, ^2, • • •, tfc e M, ti<t2--- <tk, so that 

( A (Vt G {ti-i,t), {9{t),t) G Cellipi))) A (2.43) 

\yte[o,h){e{t),t) eCeilipiYj A 

(yt>h, {9{t),t)eCell{pk)\Y 

The times ti,- • • ,tk in Eq. 2.43 are transition times at which the trajectory passes 

from one cell to the next. 

2.4.3 Utility of a Discrete Path 

Since a discrete path represents an equivalence class of trajectories we seek a mea

sure of utility which is conservative. Additionally it should be computationally 

inexpensive to compute, hence we would like to avoid a minimization over T{P). 

66 



First we will propose a measure of utility for a vertex v^ assuming that it is 

the terminus of a path. 

Definition 2.5 (Utility of a cell) 

Given a cell, Vk, a conservative estimate for configurations (q, t) € Cell{vk) is 

util(t'fc) = min supjti > t(j\{q,ti) G TCT}. 
{(l,to)eCell(vk) 

(2.44) 

D 

The utility of a cell Vk is depicted in Fig. 2.9. If the cell's boundary does 

not correspond to the boundary of !FCT, then computing uti\(vk) corresponds to 

finding the configuration q" which is "closest" to the TCT boundary. If part of 

the boundary of TCT corresponds to the cell's boundary, then the minimization 

of Eq. 2.44 may correspond to a configuration lying in the interior of the cell. 

util(ufc) 

A 

'/ 

Cell Vk 

tu) 

Boundary 
oiTCT 

Minimum 
utility point 

^ = 

Figure 2.9: The utility of a vertex Vk-

67 



Given the utility of a vertex, we may define the utility of the path in terms 

of the utility of the last vertex. 

Definition 2.6 (Utility of a discrete path) 

Given a path P = {pi, • • • ,Pk}, Pi € V, we define the utility of P as: 

util(P) = util(pfc). (2.45) 

D 

The utility measure of the discrete path is conservative, in that 

util(P) < min util(^,J^CT). (2.46) 

Since the utility of a path is a function only of the last vertex, it is dependent 

only on the cell's boundaries and the structure of TCT. Computing Eq. 2.45 for 

each of the cells Vk allows us to know that utility of any possible path P. We can 

find the optimal utility path from a vertex v^ by looking at all vertices that it is 

connected to. 

In Eq. 2.36 we used F C J-CT to denote a restricted subset of TCT- In 

an analogous way, we will define the reachability set of a vertex, given a subset 

F<ZV. 

Definition 2.7 (Reachability set of vertex Vk) 

The reachability set of a vertex Vk is the subset set of vertices, which are reachable 

from Vk using only vertices in F , and edges in E^ 

R{vk,F) = {vj\3 avaMpathP = {pi,---,pm}, Pz € F } . (2.47) 

68 



F represents a restricted set of vertices, similar to F in Eq. 2.31. • 

For a robot with no additional fault constraints, the set of reachability set 

of a vertex Vk is 

R{vk,V). (2.48) 

69 



Chapter 3 

Fault Tolerant Trajectory 

Planning 

Once the robot has been designed, and the task specified, the next step is to 

construct a trajectory which satisfies the task requirements. To the extent that 

the design elements of the robot and the task specification permit, we should 

also choose a trajectory which avoids the use of configurations which, if a fault 

were to occur, would leave the robot unable to complete the task. To clarify 

these aims, we will consider two types of path planning problems that must be 

solved when computing a globally fault tolerant trajectory. While the two path 

planning problems are similar in their goals, they diff'er in how they consider faults. 

Specifically they diff'er in the temporal nature of the faults considered. 

The first type, called reactive path planning, deals with faults that have 

just occurred or have occurred in the recent past. Paths constructed during reactive 

path planning are the recovery motions which are used to compensate for the fault 

70 



and thereby attempt to preempt a failure. Reactive path planning deals with the 

original task description with a relatively few number of additional constraints 

imposed by a fault. 

The second type, what we term contingency planning, deals with con

structing a navigational strategy, the goal of which is to minimize the effects of 

potential faults in the future, and thereby maximize the likelihood of completing 

the task. Contingency planning is much harder than reactive path planning since 

it must construct a strategy using incomplete, or uncertain knowledge. Addition

ally, contingency planning in the domain of fault tolerant path planning must, if 

it is to be effective, reason about the recovery motions for each fault. This means 

that at least approximate solutions to the reactive path planning are needed for 

contingency planning. These solutions can be computed offline. 

The construction of the fault tolerant trajectories has the following four 

aspects: 

Problem 1 LC specification -^ valid trajectory 

Problem 2 LC specification + fault constraint ^^ recovery motion 

Problem 3 LC specification + recovery motions -^ fault tolerance measures 

Problem 4 LC-specification + fault tolerance measures ' ^ fault tolerant path 

The first problem is that of producing a valid trajectory, and is described 

in [Pai91]. The second problem involves computing a recovery motion for a fault 

by expressing the fault as an additional constraint to the specification, and is an 

71 



example of reactive path planning. This can be computed on demand once the 

fault has been detected and identified, or may be computed ahead of time. 

The third problem concerns computing a measure of fault tolerance of a 

configuration given the recovery motions for an enumerated set of faults. Lastly, 

in problem 4, given the measures of fault tolerance we compute a fault tolerant 

trajectory. These two aspects comprise the contingency planning portion of our 

problem. 

There are two types of motion planning problems in the robotics literature: 

path planning, which deals with the construction of a collision-free path through 

the configuration space; and trajectory planning which constructs a trajectory 9{t) 

(see [Lat91] for survey). In general the trajectory planning problem is more diffi

cult since it must also satisfy the velocity constraints of the robot. Our goal is to 

produce a fault tolerant trajectory, so we will be solving a trajectory planning prob

lem. However, due to our representation of the problem using the time-augmented 

C = C X E"*" there is the potential for confusion. 

By decomposing C into disjoint regions, we will identify families of trajec

tories, 9{t), by the ordered list of regions of C that the trajectory passes. Using 

this representation the problem of constructing trajectories is reduced to a path-

planning problem in a discrete graph. 

Before describing the two types of path planning, we will introduce some 

previous work on the construction of fault tolerant trajectories. 

72 



3.1 Background 

To the best knowledge of the author, the most closely related and relevant bodies 

of work dealing with the construction of fault tolerant trajectories for a robot are 

Lewis and Maciejewski's work [LM94b, LM94a] and Paredis and Khosla's work of 

[PK95]. There are two key properties, shared by these two bodies of work, which 

are in contrast to the methods employed in this thesis. 

First, both assume a kinematically redundant manipulator that is executing 

a task defined as an explicit path in the workspace of the robot such as x(t) E R^. 

From this the differential motion 

m = ^q, (3.1) 

is computed. Describing the task as in Eq. 3.1 has the advantage that, unlike the 

the kinematic function, /C(q), the Jacobian of the robot with the failed actuator 

is obtained easily from the original value of the Jacobian, J. For a frozen z-th 

actuator, the Jacobian for the failed manipulator is denoted by V, where 

V 9x 9x r\ dx dx 
dqi dqi-i dqi+i dqn 

obtained by zeroing the z-th column of J. 

(3.2) 

The second feature common to both [PK95] and [LM94b] is the use of a 

redundancy resolution algorithm to compute the joint angle trajectory q(t) 

for the fault recovery. A redundancy resolution algorithm resolves an under-

determined system of joint angles or velocities defined by Eq. 2.1 or Eq. 3.1 to 

a particular solution q or q. This means that the fault recovery mechanism for 

both approaches is completely described by the redundancy resolution algorithm. 

73 



Both [PK95] and [LM94b] consider only redundancy resolution algorithms 

which can be described as selecting a joint velocity q using the free parameter z in 

q = J+±+{I-J-^J)z, (3.3) 

which we have already described in Section 2.1.1. For review of redundancy res

olution algorithms of the form of Eq. 3.3 please refer to [Nen89]. Typically z is 

chosen so as to optimize some objective function, such as maximizing the distance 

to joint angle limits [Lie97]. 

Since the choice for q is dependent only on the current state, q, we need 

not consider the previous states of the manipulator when computing a recovery 

motion. 

While [PK95] and [LM94b, LM94a] share the use of a redundancy resolution 

algorithm to construct recovery motions for a fault, they differ in the method for 

choosing the nominal trajectory q(t) which is followed when no fault is present. 

Lewis and Maciejewski define a local measure of the fault tolerance of a configu

ration when choosing the trajectory. We describe this measure in Section 3.1.1. 

Paredis and Khosla use methods that examine global properties of the kinematic 

mapping, which are described in Section 3.1.2. 

3.1.1 Local Measures of Fault Tolerance 

The approach used in [LM94a] is to construct a local measure of the fault tolerance 

of a configuration. This measure is then maximized by using a redundancy reso

lution algorithm which performs a null-space maximization of this measure. That 

is, a direction z is chosen which maximizes this measure. The (/ — J"*" J) term in 

74 



Eq. 3.3 projects this direction into the null space of the manipulator Jacobian, and 

hence has no effect on the position of the end-effector in the workspace. 

The fault tolerance measure, kfm{q), is based on the amount of dexterity 

remaining after a fault has occurred. The measure is maximized when, despite a 

single actuator failure, the manipulator is still able to perform motions in arbitrary 

directions. Computing kfm{q) requires the singular value decomposition (SVD) 

of the Jacobian. Given the Jacobian J = E"*^", we can decompose the matrix in 

the standard way so that 

J - UEV, (3.4) 

where U E E"*̂ "* and V e E"^" are orthogonal matrices, and S is a diagonal 

matrix whose elements, ai, are typically given in descending order [Str88]. 

The SVD decomposition has an intuitive physical interpretation: the singu

lar values, (Tj, give the size of possible motions for unit norm joint angle rates; the 

column vectors of V give the normalized of joint angle rates that give a motion of 

ai, in the direction Ui of the workspace [LM94a]. 

A number of kinematic dexterity measures have been proposed which are 

based on the singular values of the Jacobian. For example, the ratio of the largest 

to smallest singular values, also known as the condition number, has been used 

to develop isotropic redundant manipulators [KM91, Ang92]. A measure, called 

manipulability, the product of the singular values is proportional to the volume 

of the velocity ellipsoid [Yos85]. 

The smallest singular value of the Jacobian, denoted by km, is the dexterity 

measure used by [LM94a, LM94b], and gives the worst-case scaling of joint angle 

75 



velocities to end-effector velocities: 

km = am{J)- (3.5) 

This can be interpreted as the ease with which the manipulator can be moved in 

the least suitable direction. 

From the definition of dexterity of Eq. 3.5, the measure of kinematic fault 

tolerance, kfm, is constructed. Assuming that a fault in the i-th actuator results 

in the locking of the actuator at the position at which the fault occurred, the 

resulting Jacobian of the faulty manipulator is: 

kfm{(i) = mincr^lV , (3.6) 

the minimum over all faults, i, of the smallest singular value of the failed-Jacobian. 

There are several difficulties with the use of kfm. as a sole guide in the 

selection of a fault tolerant trajectory. Due to the local nature of the measure, it 

will likely not capture the subtle nuances of the kinematic mapping on a global 

scale, and therefore can not guarantee global fault tolerance. Nonetheless, there 

are applications where kfm is still of great use, specifically in cases where the 

desired trajectory x(i) is not known a priori. In these cases global fault tolerance 

is unachievable, and local kinematic fault tolerance measures are the only hope 

for selecting fault tolerant trajectories. Practical use of the approach would also 

necessitate the addition of joint angle and obstacle avoidance into the scheme, 

which are not considered. 

Another detractor of the method is that it requires the computation of 

the gradient of kfm.{q), forcing one to compute the complete SVD of V. The 

76 



computational complexity of SVD, is approximately [GL89], 

4m^n + 8mn^ + 9r^^ (3.7) 

which is relatively expensive for an online algorithm. With the capabilities of 

current microprocessors, however, this is not a lirriiting property of the method, 

except in situations where one is forced to use antiquated hardware. 

Lastly, kfm does not consider information about the specific desired trajec

tory x(t), but rather it assumes that end-effector movements in all directions will 

be required after joint failure. Consider a situation in which, at some point along 

the trajectory, the remaining portion of the trajectory requires the end effector to 

move in directions comprising a small subspace of the original velocity space of 

the manipulator. In such, a case we do not want the measure of fault tolerance 

to disproportionately discredit a configuration's inability to perform motions not 

needed to complete the task. As an example, if x is confined to points in the xy-

plane, then we would like to ignore the z-component of * J when computing kfm. 

Task-specific performance measures are an appropriate alternative, such as those 

found in [vdDP94]. 

Acknowledging the shortcomings of the local kinematic fault tolerance mea

sure, Lewis and Maciejewski proposed a global method [LM94b], which, along with 

Paredis and Khosla's work in [PK95] is described in Section 3.1.2. 

3.1.2 Global Methods 

As discussed in Section 2.1.2, the global fault tolerance associated with a par

ticular configuration is related to properties of the self-motion manifold at that 

77 



point. Methods for characterizing the self-motion manifold can be found in [Bur89, 

LM94b]. 

Lewis and Maciejewski [LM94b] used a number of points in the workspace, 

called "critical points," and determined constraints on the fault tolerant exe

cution of the task in terms of the self-motion manifolds at each critical point. 

Since each of the critical points must be reachable when an actuator failure occurs, 

the self-motion manifold gives the range of joint angle values which can reach the 

critical point. 

For each critical point a "bounding box" of the preimage manifold is com

puted. An example of these bounding boxes corresponding to the 3-R planar 

manipulator, depicted in Fig. 2.1 (page 32), can be seen in Fig. 2.2. (page 33). 

Extremum points, such as x^ occurring at the reach singularity, have a 

family of joint angle solutions consisting of a single point, p^, so the preimage 

manifold, and hence the bounding box, is a single point occurring at the origin of 

Fig. 2.1. This indicates that a critical point of x^ is extremely fault intolerant, as 

a fault leaving any joint frozen at a non-zero position would leave the critical point 

unreachable. For this reason one should choose to tailor the robot/task so that 

critical points similar to x-*̂  do not occur. 

A critical point such as x"̂  on the other hand has a preimage manifold which 

spans almost the entire configuration space (the bounding box is omitted for p'^), 

and hence it minimally constrains the family of fault tolerant trajectories which 

accomplish the task. The point x^ is therefore extremely fault tolerant. 

The bounding boxes for the preimage manifolds for points x^ and x"* are 

78 



illustrated by dotted-lines in Fig. 2.2 (page 33). The preimage manifold of x^ 

consists of two disconnected regions, differing in the sense of the q2 joint angle. 

To construct a fault tolerant trajectory we must ensure that the robot stays 

inside the fault tolerant configuration space of the robot. The subspace of configu

rations which are fault tolerant with respect to the task was determined in [LM94b] 

by computing the bounding boxes for each of the critical-points, and then taking 

the set intersection of the bounding boxes. Global fault tolerance is achieved by 

using a redundancy resolution algorithm which ensures that the trajectory remains 

in the intersection of the bounding boxes. Enforcing that the trajectory remain in 

the intersection region by use of null-space optimization of Eq. 3.3 is identical to 

the problem addressed in [Lie97]. 

One problem with this approach is that the bounding-box constraints them

selves do not ensure that a path through the fault-tolerant workspace will be 

found by the redundancy resolution algorithm. In some instances the redundancy-

resolution algorithm may get stuck at local minima. In other situations the topol

ogy of the configuration space may be such that a continuous path does not exist. 

As pointed out in [PK95], the bounding box information is not adequate for cap

turing global topological properties of connectedness. Therefore there may be 

instances where a path through the fault tolerant configuration space cannot be 

found. 

Another problem with the approach, mentioned in [LM94b], is the compu

tation expense of computing the envelope of the preimage manifold. The method 

is not feasible for higher-dimensional problems as this computation is too expen

sive. For one dimensional self-motion manifolds they make elegant use of a lin-

79 



early increasing spiral to estimate the bounds of a two dimensional surface in 

an n-dimensional space. Efficient methods for characterizing higher-dimensional 

preimage manifolds remains an open problem. 

Paredis and Khosla [PK95] propose a method which is similar to [LM94b], in 

that it also pre-computes the preimage manifolds to ensure global fault tolerance. 

Like [LM94b] they also make use of a redundancy resolution algorithm of the form 

of Eq. 3.3, and it is the responsibility of the redundancy resolution algorithm to 

execute the recovery motion upon discovery of a failed actuator. We devote the 

rest of Section 3.1.2 to the description of the algorithm presented in [PK95]. 

In keeping with their nomenclature, let 9{t) e T" represent a trajectory 

in the joint space, where T" is a n-dimensional torus (only revolute joints were 

considered). A path p{t) G M'" defines the task as an explicit path through the 

workspace of the robot. 

If a fault occurs, at a time denoted hy t*, a recovery motion is computed 

using the redundancy resolution algorithm, assumed to be of the form of Jacobian-

based algorithms of Eq. 3.3. This alternative trajectory, dependent on the partic

ular joint effected, j , as well as the time of failure, t*, is written as 

e{t,j,f). 

A trajectory 9{t) is defined to be 1-fault tolerant with respect to the task 

p{t), if for every joint j e {!,• • •, n}, and at each instant t*, there exists a 9{t,j, t*) 

for which: 

1. 9{t,j,t*) maps onto p{t) under /C. 

80 



2. e{t*) = 9{t*,j,t*). 

3. 9j{tJ,t*) = 9j{t*),yt>t\ 

4. 6{t,j,t*) does not violate any secondary task requirements . 

Item 1 ensures that the alternative trajectory 9{t,j,t*) is able to complete 

the task; items 2 and 3 ensure that the alternative trajectory is consistent with 

the actuator failure, and the final item ensures that any further task constraints 

which are not specified by p{t), such as joint angle or obstacle constraints, are also 

satisfied. If a posture (configuration), 9, satisfies the secondary requirements, we 

write 9 E S. 

Let r{p) be the preimage of the point p E W^ defined as^ 

r(p) = {9eT''\)C{9)=p}, (3.8) 

which will be a set of r—dimensional manifolds, an exception being when p is a 

critical value where it will not be a manifold but a bouquet of tori [PK95]. The 

value r gives the degree of redundancy of the manipulator. From the preimage, 

they define the tolerability of a posture as: 

Definition 3.1 (Posture Tolerant to a Failure of Joint j [PK95]) 

A posture 9 ET{p{t*)) is tolerant to a failure of DOF j ifi^the alternative trajectory 

9{t,j, t*) as determined by the redundancy resolution algorithm, satisfies all of the 

task requirements. The set of postures which are tolerant of a failed j-th joint are 

^The symbol S was used in [PK95]. We use F to avoid confusion with the diagonal matrix of 
SVD of Eq. 3.4. 

81 



given by the set 

^i c r(p(r)). 

n 

We highlight a portion of Defn. 3.1 to draw attention to a subtle, yet impor

tant feature of how fault tolerance is defined. Specifically this is the dependence of 

the definition on the particular redundancy resolution algorithm. This is not an 

oversight on the part of the authors; they clearly state that the method takes as 

input a redundancy resolution algorithm. However, when one is confronted with a 

fault which is classified as fault intolerant, one can never be sure if it is an artifact 

of the underlying kinematics of the problem, or if it stems from the inability of the 

redundancy resolution algorithm to make use of the entire 1-fault tolerant config

uration space. For example for certain p(i*) the redundancy resolution algorithm 

may get stuck at a singularity, the alternative trajectory Q{t,j, t*) may violate joint 

angle or collision constraints, or 9{t,j,t*) may pass outside the workspace. 

This shows the potential tradeoff of using a redundancy resolution algo

rithm. On the one hand we get a concise and compact algorithmic description 

of the recovery motions for all potential faults, however, it comes at the price of 

potentially constraining the family of trajectories which can be used to complete 

the task. 

Given the set of postures J-^', we can find the set of acceptable postures, 

denoted A*\ by taking the set intersection over all joints j , 

A'' = fl-^f- (3-9) 

82 



Two properties are noted in [PK95] which allows them to compute the set 

of acceptable postures efficiently. Similar properties of recovery motions were in

dependently identified by the author and used in the algorithms presented later in 

this chapter. The properties are similar to those used when solving optimal control 

problems using dynamic programming techniques. 

Property 1: The acceptability of a posture d{t*) is dependent only on the future 

course of the trajectory p{t), and is independent of the history of the trajectory, 

p{t) for t<t*. 

Since at the last instant in time iiast, the path is completed, all faults are 

tolerable, and hence the acceptable postures is the entire preimage of the last 

task-point, piast-

^*la. t = j r j a s t ^ . . . ^ j-^last ^ r{pi^,), ( 3 .10 ) 

This forms the initialization step of the algorithm. From ^*iast we work 

backwards in time to compute the fault tolerant path. 

Property 2: Given that the redundancy resolution algorithm determines the veloc

ity 9 based only on the value of j and p{t), two alternate trajectories, 

9'{t,j,ti) and 9''{t,j,t2), is > ^2, 

if they intersect at a common point, will follow identical trajectories thereafter. 

This situation is depicted in Fig. 3.1. 

A corollary to property 2 is that a posture 9{ti) is fault tolerant with respect 

to a failed joint j if and only if the corresponding alternative trajectories are also 

83 



0 
n 

Oi{t,j,ti) = 

t2 

Figure 3.1: Two trajectories, 9^{t) and 9'^{t) for which the alternative trajectories 
9i{t,j,ti) a.nd92{t,j,t2), arising from different faults, are coincident for times t > i2 
(adapted from [PK95]). 

tolerant of a failed j-th joint: 

9{h) e T'j' <^ 9{t\j,h) e JF**, Vr > ti, and ^(^i) G S, (3.11) 

where <S denotes that it satisfies all the secondary task requirements. 

Using the above two properties, an algorithm was developed for computing 

the sets of acceptable postures A*'' for discrete time steps tk- The next part of 

the algorithm is to take the sets ^** and form a smooth trajectory through the 

acceptable sets. Ideally they should avoid close proximity to the boundaries of the 

acceptable sets. 

To simplify the search of a trajectory 9{t) through the acceptable sets, each 

set A^'', is taken as the union of disjoint regions 7V''' with 

A^" = y nl' and nl' n nf, Vi ^̂  j. (3.12) 
i 

Searching for a continuous trajectory 9{t) involves finding a sequence of regions 

84 



Ti^'i' which are connected by a continuous path. A connectivity graph is created 

which describes the regions 7̂ -* and 'R!'-^ for which there is a trajectory connecting 

them. The structure of this graph is simple due to the small number of disjoint 

regions ??.•*' in each set A^*'. 

Topological information is required at three parts of the implementation: 

when computing the fault tolerant sets T^, when intersecting these sets to form 

the acceptable postures A!''', and during the determination of the disjoint regions 

7̂ **̂ . Locally the preimage manifold is diffeomorphic to E'", allowing it to be ap

proximated by a r-dimensional hyper-plane. The preimage, r(p), is formed using a 

simplicial approximation with r-dimensional simplices, for example line segments 

when r = 1, triangular patches when r = 2, etc.. 

Let P denote the total number of path points pk = p{k/S.t)., and S represent 

the total number of postures 9 E T"' used in approximating T{p). Increasing S 

improves the accuracy, however 

5 = 0(2'-). 

The total complexity of the algorithm can be expressed as 

0 ( F 2 V ) . (3.13) 

The exponential growth due to r means that it is practical for only r = 1 

or r = 2, however these degrees of redundancy are sufficient for a large number of 

problems. 

To illustrate the adequacy of the algorithm, a simulation of a 4 DOF robot 

executing a planar task of tracing out a circle was performed. By simulating the 

85 



introduction of various faults during the execution of the task they were able to 

demonstrate the fault tolerance of the chosen trajectory and redundancy resolution 

algorithm. 

3.1.3 Planning Under Uncertainty 

In addition to the previous work related to fault tolerant path planning, there exists 

a body of related work which deals with the general problem of path planning 

under uncertainty. Computing a navigation strategy in a (partially) unknown 

environment is similar in nature to planning a trajectory in anticipation of faults, 

however the source of this uncertainty is quite different. 

Two sources of uncertainty may confront us when planning a path in an 

uncertain environment. First we may have incomplete knowledge of the terrain, 

requiring a method for gradually acquiring this knowledge over time, and building 

a map [KL88]. Secondly, there may be uncertainty resulting from unknown events, 

such as a fault, or quantities that are only known probabilistically, such as a bridge 

which may or may not be blocked from use. Of these two types of uncertainty, 

the second of these two problems is most applicable to the problem of computing 

a fault tolerant trajectory for a robot. 

Dean et al. used utility theory in their development of a navigation system 

[DBC"'"90]. Emphasis is placed on the coordination of task-achieving activities and 

map-building activities. 

Computing optimal plans for navigation in large and uncertain environments 

was investigated in [LG87]. The uncertainty in the environment was encoded using 

86 



uncertain grids in which each grid element is assigned 0 or 1 if the traversability 

is known, or a random variable if unknown. Regions are then labeled as "passable," 

"impassable," or "choke," the last meaning it is dependent on one or more random 

variables. Linden and Glickman propose a navigation algorithm which is similar 

to A* (see [GN87]). 

Papadimitriou and Yannakakis introduced a problem called the Canadian 

Traveler Problem (CTP), variants of which have relevance to many problems of 

contingency planning including navigation and network routing [PY89]. In CTP 

we are given a graph, such as that depicted in Fig. 3.2, representing an uncertain 

map, the edges of which are partitioned into two sets: a set of edges which are fixed, 

and a set of edges which may disappear probabilistically. Each edge is assigned 

a weight which is interpreted as the cost incurred by using the edge. The goal is 

to determine a contingency plan which achieves minimal total cost. The difficulty 

in computing a good contingency plan is that the knowledge of whether or not 

a probabilistic edge is present is known only when we are at the vertex that is 

incident to the edge. 

Bar-Noy and Schieber [BNS91] introduced a variant of CTP, the k-Canadian 

Travelers Problem, in which the number of blocked edges is bounded above by 

k. Using a recursive algorithm they were able to produce a travel plan that guar

antees the smallest worst-case travel cost. Another variant that they look at is the 

Stochastic Recoverable CTP in which each of the edges that become blocked 

will be reopened in a certain time. 

The similarity of the CTP and its variants to the computation of fault 

tolerant paths is apparent if we let nodes in the graph represent configurations 

87 



Vl 

Edge 

ei,2 

ei,3 
62,4 

62,5 

63,5 

63,6 

64,7 

65,7 

66,7 

Type 
Fixed 

Uncertain 
Uncertain 

Fixed 
Fixed 
Fixed 
Fixed 
Fixed 

Uncertain 

Cost 
3 
9 
2 
8 
3 
6 
5 
4 
1 

Probability 
-

0.7 
0.8 

-

-

-

-

-

0.5 

Figure 3.2: The Canadian Traveler Problem distinguishes between edges which are 
fixed (always traversable), and those whose presence is known only probabilistically 
(uncertain edges). 

of the robot. Edges encode the topological information about the configuration 

space when no fault occurs. Constructing a fault tolerant path is similar to CTP 

in that we must reason about how potential faults will remove edges. Rather than 

minimizing the cost of the path, we try instead to minimize the use of "critical" 

vertices, which are susceptible to failure given removal of edges due to a fault. 

Runping Qi investigated the problem of path planning under uncertainty 

using decision graphs in his PhD thesis [Qi94]. The framework proposed involved 

using "U-graphs," or uncertain graphs, which are distance graphs in which edge 

weights are not a constant, but are a random variable. Solutions to minimal cost 

U-graph problems correspond to optimal navigational plans. For a good overview 

of the problem of navigation under uncertainty please see [Qi94]. 

One commonality of [PY89, BNS91, Qi94] is the treatment of the presence 

or absence of an edge as an independent random variable. This is in contrast to the 

planning of fault tolerant trajectories since a single fault may remove more than 

88 



one edge from the graph. Thus the process of determining the usability of an edge 

is not an independent event. 

The approach that we will use is similar to the CTP, except we include/exclude 

vertices of the graph rather than edges. By treating the fault as a constraint, we 

exclude all vertices that are not consistent with the fault constraint. 

3.2 Reactive Path Planning 

So far we have not concerned ourselves with reactive path planning since it has 

been assumed to be part of the redundancy resolution algorithm. As mentioned 

in Section 3.1.2, the use of a redundancy resolution algorithm has the benefit of 

providing a compact, algorithmic representation of the recovery motions. However, 

the author believes that constraining potential recovery motions to those that are 

realizable from a particular redundancy resolution algorithm unnecessarily limits 

the family of recovery motions, and hence has the potential for limiting the degree 

of fault tolerance of the robot executing the task. 

Using an LC approach we can represent the introduction of a fault as an 

additional constraint, and can thus treat the problem of computing a recovery 

motion as a path planning problem in a smaller dimensional space. The appeal of 

this approach is that it allows us to use a similar method to produce the trajectory, 

q(t), as well as the recovery motions given a fault. 

89 



3.2.1 Representing Faults 

As described in Section 2.1.2, the introduction of a fault which immobilizes an ac

tuator can be thought of as determining a new robot, the reduced order derivative, 

which has one fewer actuated degrees of freedom. The new path planning problem 

can be solved in one of two ways. First we can consider the recovery motion as a 

path planning problem using the lower-dimensional configuration space CROD with 

the original task constraints. Secondly, we can compute the path using the original 

configuration space C, and adding additional constraints to the specification to 

ensure the robot remains in the reduced configuration space sub-manifold. 

From a theoretical point of view these two ways of phrasing the reactive path 

planning problem are equivalent, however there are a number of benefits to using 

the second approach. The most important benefit is that there are a number of 

types of faults which can be easily modeled as the inclusion of additional constraints 

to the specification that can not be easily captured using the former approach. For 

example, an unexpected collision of the robot by a heretofore unknown obstacle 

can be dealt with by adding an inequality constraint to keep the robot away from 

the new obstacle. This type of situation can not be easily expressed using the 

original task description and a reduced'configuration space. 

Secondly, modeling faults as additional constraints on the task provides an 

efficient means of computing the recovery motion for a large suite of faults. By 

considering a large number of fault scenarios at a given configuration, as well as the 

resulting recovery motions, we may accurately measure global fault tolerance of a 

configuration. Since the measures of satisfiability and utility are still applicable 

90 



to the additionally constrained task description, the same methods can be used to 

compute the nominal trajectory as well as any recovery motion. 

We assume that we are given a set of faults Q — {fi} enumerating all possible 

faults we wish to consider. In a similar way to the task specification, we associate 

with each fault fi a constraint function 

ai-.C^R, (3.14) 

and an associated predicate, 

iUi = {ai < 0), (3.15) 

which describes the fault constraint. 

The reduced feasible configuration space, denoted TCT\^, is defined 

as 

^CT\^ = {qeJ'CTHq)}. (3.16) 

We say that a configuration q is feasible, given a fault uj iiq E TCT\^. Effectively 

TCT\^ determines the set of valid trajectories given a fault. The reduced feasibility 

set acts as a new specification for the generation of a valid recovery motion. 

By way of contrast, we could say that the fault is tolerable by the robot 

if there exists a path in CROD satisfying the task constraints, as described in 

[PAK94], or we could simply require that there exists a path in the reduced feasible 

configuration space J^CT\^. The advantage to the latter is that a much larger class 

of faults can be modeled, specifically those that do not result in a frozen actuator. 

The following example illustrates the modeling of a fault as an additional 

constraint and the resulting reduced feasibility set TCT\^. 

91 



Example 3.1 (Example of a failed actuator constraint for C C E^) 

Suppose we are given a task in which TCT corresponds to the interior of the 

conical region of C = K̂  x E+, as illustrated in Fig. 3.3. A fault occurring at time 

t = 0, involving actuator "̂2, while at position gfaii, gives rise to a failure constraint 

described by 

UJ •• q2 = 9fail- (3.17) 

9 = ( q " . < 0 ) 

Figure 3.3: A conical feasible configuration space J-CT, and corresponding failure 
constraint involving actuator 92- The reduced feasible configuration space, TCT\^ 
is obtained by taking the intersection of the failure constraint surface and jFCT. 

Taking the intersection of TCT and the fault-constraint plane, we get a 

triangular-shaped reduced feasible configuration space of TCT\^, depicted on the 

right of Fig. 3.3. TCT\^ determines the feasible trajectories which can be used as 

recovery motions for the fault. Given a point q = (q°, to), denoting a configuration 

at some time after the fault occurred, we see that the recovery motion obtaining the 

largest utility would be one which ended at point q', which satisfies the specification 

until a time ti. • 

We constructed the example so that the fault occurred at time t = 0 to 

simplify the example. The full expression for a frozen-actuator fault constraint is 

92 



given by 

UJfa = (wo => {OJI A LO2)) , (3.18) 

where Q!o(q,t) = (ifaii - ^ ) , (3.19) 

Q!i(q,t) = ( g j - f e i i ) , and (3.20) 

a 2 ( q , 0 = (9faii-gj)- (3.21) 

which has three parameters, j , the actuator involved, Qfaii, the position of the joint 

at the time of failure, and ifaii, the time of failure. The predicate ujfa is formed 

from three predicates, CUQ which implements the "switching" effect, making the 

constraint active only after the time ifaii; and UJI,LO2 which implement the equality 

constraint via two inequality constraints. Recall that the implication expression 

"a =^ b can be re-written as "^a V b." The subset of C which is consistent with 

the frozen actuator constraint is 

{qeC\u{q)} = { ( g , t ) G C | ( g i = feii)V(t<tfaii)}. (3.22) 

3.2.2 Recovery Motions for a Fault 

Using the reduced feasibility set TCT\^ as the parameter F , the definitions for 

satisfiability, utility, and reachability, which were presented in Chapter 2 are easily 

adapted for their application to robots with additional fault constraints. 

Definition 3.2 (Tolerating a fault) 

We say that a trajectory 6 successfully tolerates a fault, uj for a time tjnax iff 

sat{e,TCTi^,t^^^). (3.23) 

D 

93 



The utility of a trajectory 0 given a fault is 

ut i l (^,J-Cr |J . (3.24) 

Using the measure of utility we can define the optimal recovery motion as follows: 

Definition 3.3 (Optimum Recovery Motion for a Fault) 

Given a fault w, occurring at a time i/, the optimal recovery motion is defined 

to be 

OoTm{uj,tf) = arg max util (6',:FCTi ) . (3.25) 
{9eT\vtelo,tf], co{e{t))} ^ ' 

This is the maximum utility trajectory which is consistent with the fault constraint. 

The particular trajectory Q is not necessarily unique. • 

Like optimal utility trajectories, the optimal recovery motion for a fault 

is dependent only on the specification, and the topology of the reduced feasibil

ity set TCT\^. The topological properties are described by the set of reachable 

configurations 

R{q,TCTiJ, q = {q',to). (3.26) 

3.2.3 R O D ' S in a Discrete Configuration Space 

When using a discretized configuration space to represent the valid trajectories of 

the specification (as described in Section 2.4), each fault will classify each of the 

vertices as consistent or inconsistent with the fault constraint. 

94 



In Section 2.4 we classified a cell as valid if its interior was entirely contained 

inside the valid region, that is 

Vk is valid ^ Cell{vk) C TCT. (3.27) 

Similarly we will classify a fault, u, as being consistent with a fault iff 

Cell{vk) C J^CT\^, (3.28) 

otherwise we will classify the cell as inconsistent. We will denote by ROD(a;) C V 

the set of vertices that are consistent with the fault uj. 

ROD{uj) = {vkeV\CeU{vk)CJ^Cri^]. (3.29) 

The set of vertices which are consistent with a fault, and reachable from a 

given vertex Vk is written as 

R{vk,ROD{uj)). (3.30) 

The properties of consistency and reachability as determined by the presence 

of a fault is depicted in Fig. 3.4 below. Only cells whose interiors completely lie 

inside the reduced feasibility region TCT\^ are considered consistent with respect 

to the fault a;, so Vi e ROD{UJ),VJ G ROD(w), and Vk ̂  ROD(w). 

Using a discretized configuration space requires us to make corresponding 

changes to the fault constraints that are used. For faults in which the actuator is 

immobilized, the reduced feasible configuration space is a lower dimensional sub-

manifold, so clearly we cannot require that all points in a given cell Cell{vk) be 

consistent with this type of fault constraint. Since a vertex Vk represents a family of 

trajectories over a given range of joint angle values, we would like to avoid having 

95 



Figure 3.4: Given a graph Q = {V, E) representing the feasible region of TCT, 
each fault partitions the set of vertices into those that are consistent with the fault 
constraints, denoted by ROD(a;), and those that are inconsistent. 

to know the particular configuration in Cell{vk) at which the fault occurred, and 

treat all faults of a given actuator while in a given cell the same. 

Consider an immobilized j - th joint occurring while in a configuration con

tained in cell{vk). Assuming a uniform rectangular decomposition of the feasible 

configuration space, the ranges of the joint angle qj will be given by the interval 

[a),h]\ 

Constraining the j - th joint to remain in this interval after some time tfaii is 

achieved by the following constraint predicate: 

u Vk,3 (it > tfai.) =» {{qj > 4 ) A (g,- < b';))) , (3.31) 

which is true at times t < tfan, and for all configurations for which qj lie in the 

interval of joint angles spanned by Cell{vk). This is illustrated in Fig. 3.5. 

96 



Inconsistent 
Regions 

Figure 3.5: The reduced feasible configuration, TCT]^-, space resulting from a 
frozen actuator using the discrete frozen actuator constraints of 3.31, projected 
into the Qji-plane. 

3.2.4 Additional Obstacles as Faults 

To further illustrate the flexibility of the approach to modeling a broad range of 

faults, consider the case where, during the execution of a task, we discover that 

there is an additional obstacle in the workspace. If we know the geometry of the 

obstacle, or are able to approximate it conservatively by some bounding polygon, 

then we can treat the additional obstacle as a fault, and include the additional 

obstacle constraints at run-time to produce a trajectory which avoids the new 

obstacle. 

• For example, if the additional obstacle is approximated by a bounding tri

angle, as shown in Fig. 2.6, then we can use the three constraint functions /in, /121 

and hzi from Eq. 2.28, Eq. 2.29, and Eq. 2.30 to form the fault constraint 

Qjobs = min(/iii,/i2i,^3i) 

97 

(3.32) 



Since the methods of [LM94a, LM94b, PK95] only deal with faults that 

result in a frozen actuator, they provide no method for dealing with unexpected 

interactions such as a new obstacle. Modeling external interactions as constraints 

allows the recovery-motion generation to deal with a broad range of unexpected 

interactions. This allows us to separate the fault tolerant planning into two parts: 

the nominal path to accomplish the goal, and various exception handling routines 

to deal with unexpected interactions. 

3.2.5 Computing Optimal Recovery Motions 

We defined the optimal recovery motion in the continuous case in Eq. 3.25, how

ever finding the optimal recovery motion requires finding the particular trajectory 

which maximizes the utility. Solving Eq. 3.25 in the general case is at least as 

hard as robot motion planning, which using exact methods is NP-hard [Can88]. 

Therefore computing the constrained optimization as phrased in Eq. 3.25 is too 

computationally expensive to be used to generate the recovery motion at the time 

of a fault. 

Instead we will use the conservative utility estimates for vertices in the 

discrete graph of cells, and solve for the optimal path through the restricted set of 

vertices ROD(a;). We will define the optimal recovery motion as the shortest path 

whose endpoint has the largest utility. 

Definition 3.4 (Optimal Discrete Recovery Motion) 

Assume a situation in which during the execution of a task, the robot 

98 



is in some configuration q-̂  at time t{^i\, when a fault occurs, with (q- ,̂tfaii) € 

Cell{vk),Vk e ROD(a;). 

Let Vj be the largest utility vertex reachable by Vk, 

Vj = arg max util(?;i). (3.33) 

vieR{vk,ROB{w)) 

We define the optimal recovery motion as the shortest valid path 

P={Vk,P2,---,P7n,Vj}. (3.34) 

Let Prm{fJki<^) denote this shortest-length maximum-utility recovery motion. In 

the event that Vj is not unique in Eq. 3.33, choose Vj so as to minimize the length 

ofp inEq. 3.34. D 

To compute the recovery motion as defined above, we use a breadth-first 

search algorithm to find the shortest path. If the degree of each vertex is bounded 

above by 5, and we let 

NF = I R O D (O;) I 

denote the number of vertices in the ROD, then the computational complexity of 

computing the recovery motion for the vertex v^ is 

0{SNF). (3.35) 

The breadth-first search algorithm for computing the recovery motion is given in 

Appendix B.L The recovery motions are stored using the array 

7r[i], 

99 



which gives the vertex adjacent to Vi which is used in the recovery motion. Thus 

the recovery path for vertex Vi is given by: 

{ui, v^ii], v^[^[{i], •••,Vk}, where 7t[k] = 0. 

The end of the recovery motion is denoted by 7r[k] — 0. 

3.2.6 Computing Recovery Motions for Multiple Source 

Vertices 

So far we have only considered the case of planning a recovery motion for a single 

fault. We will now describe an algorithm that, given a reduced feasibility set F, will 

compute the recovery motions for all vertices in F simultaneously. This has the 

advantage that, in general, neighboring vertices will have similar recovery motions. 

Treating the recovery motions as an optimal control problem, we can use a dynamic 

programming approach, and save computation by using the recovery motions for 

neighboring vertices as partial solutions to other recovery motions (see [BDG71] 

for an overview of the use of dynamic programming techniques for the purposes of 

optimal control). 

There are two factors which motivate the simultaneous computation of re

covery motions for multiple sources: 

• If sufficient resources are available we would like to pre-compute the set of 

recovery motions for a set of faults, thus enabling their immediate use in the 

event of a fault. 

• Computing the recovery motions for a set of possible faults can be used as 

100 



a measure of risk of utilizing a given vertex in the nominal trajectory. We 

will describe a measure of risk which uses the results of the recovery motions 

over a set of faults in Section 3.3.2. 

An important feature of the recovery motions as defined by Eq. 3.34 is that, 

for faults that immobilize an actuator, as described by the constraint function 

Eq. 3.18, the set of reachable vertices given a fault, R{vk,ROD{uj)), is not de

pendent on the time at which the fault occurred. In other words, as long as the 

vertex Vk is consistent with the joint-immobilization constraint, once we are at the 

vertex Vk, the set of vertices that we can now reach is not dependent on when the 

joint-angle constraint became active. In this sense the recovery motion generation 

is stateless, and need only consider the present configuration Vk-

Therefore, for the purposes of computing the set of reachable vertices from 

a given vertex, we can use the simplified constraint predicate 

LU «(-'=) = (^a'^ - q. < o) A [qj - b'^ < O) . (3.36) 

In addition, using a regular decomposition of the configuration space allows 

us to compute 

F^^""^ = ROD(a;̂ ('̂ '=)) (3.37) 

for a relatively small number of intervals. 

The algorithm for computing the recovery motions for all vertices Vk consis

tent with the fault constraint is given in Appendix B.2, and is an example of an 

edge-relaxation algorithm similar to Dijkstra's edge-relaxation algorithm for deter-

101 



mining the shortest paths [CLR90]. The difference lies in that our partial ordering 

of paths considers both the utility and length of the path. 

The computational complexity of computing the recovery motions for all 

vertices in ROD (a;) simultaneously is 

0{\E\ + NF\og^Np), (3.38) 

which is the same as "Modified Dijkstra's Algorithm" for the set of shortest paths 

to a single destination [CLR90]. To illustrate how 7r[A;] stores the optimum utility 

recovery motions, consider the example given in-Fig. 3.6. 

Vl V2 V3 

^5_ 

V4 V6 

i- 4-
Vg 

Vertex Vi 
• Vl 

V2 

vz 
V4 

V5 

V6 

vr 
Vs 

V9 

util(vi) 
0.9 
0.4 
0.2 
0.6 
0.1 
0.3 
0.8 
0.5 
0.7 

7r[i] 
0 
1 
2 
1 
4 
5 
4 
5 
8 

Figure 3.6: Given a set of vertices F = {vi,- • •, VQ} consistent with some fault to, 
the edges of the recovery motions are shown by the large arrows. 

3.3 Contingency Planning 

The contingency planning problem that we will look at is the task of selecting 

a nominal trajectory which satisfies the task constraints, such that when a fault 

occurs, a recovery motion is likely to exist which will allow the completion of the 

102 



task. This is an example of contingency planning since we do not know ahead of 

time where or when a fault may occur, rather we must construct a trajectory which 

avoids configurations which are overly susceptible to faults. In contrast to the CTP 

problem in which edges have a cost which is to be minimized, we will associate 

with each vertex a performance measure which quantifies the fault tolerance of the 

vertex. The performance measure is to be maximized along the trajectory. 

The performance measure, described in Section 3.3.1, is analogous to the 

kinematic fault tolerance measure kfmQ of [LM94a, LM94b], and is at a maximum 

when the configuration has sufficient residual ability after the fault to complete 

the task. The performance measure integrates information from all possible failure 

modes at the vertex, to give a single scalar value given by 

perf(?;i). 

We can therefore break the path planning problem into two parts: the com

putation of the performance measures for varying configurations Vi and fault sce

narios (J, and next determining the path which maximizes the performance measure 

along the path. 

In computing the discrete paths we will assume there is some maximum time 

m̂ax which, by judicious choice of LC constraint functions, the robot is guaranteed 

to complete the task. For tasks which are specified to be performed ad infinitum, 

some means of computing the trajectories by repeated concatenation of finite time 

interval trajectories is needed. In such a case tmax can be considered a planning 

horizon. We will only concern ourselves with finite tasks for the present. 

103 



The set of "source" vertices, denoted Vgrc is 

ŝrc = {vieV\3{q,0)eCell{vi)}. (3.39) 

Similarly the set of "destination" vertices, which is determined by tmax is 

Kist = {Wilutil(Wi) > t „ , a x } . (3.40) 

Since util(wj) is a conservative estimate, we seek a path 

-Pgoai = {Pi,---,Pm}, with piEVsrc, and Pm ^Vdst, (3.41) 

which is a valid path, and whose performance measure perf() is maximized along 

the path. We will let 

V = {Pgoal} (3.42) 

be the set of all discrete paths Pgoai which complete the task as defined above. 

Choosing the particular path from V which is most fault tolerant is done by 

ranking paths using the Sorted-Minimum path ranking. This ranking scheme 

considers the fault tolerance measure computed at each vertex along the path. The 

highest-ranked path is taken as the most fault tolerant path to the goal. 

What follows in the remainder of this chapter is a description of the fault 

tolerance measure and the sorted-minimum path ranking, which, when combined, 

identifies the best fault tolerant trajectory to the goal. We will show that the 

trajectory produced is optimal with respect to the worst-case failure mode of the 

robot executing the task. 

104 



3.3.1 A Global Fault Tolerance Measure 

A measure of fault tolerance, if it is to be meaningful, should characterize the 

ability of a robot, using its remaining functional capacity after a fault, to complete 

the task. The performance measure of a configuration evaluates this ability over 

all applicable failure modes of the robot, for example, by considering immobilizing 

each of the n actuators, and combines them by taking the worst-case or average-

case behaviors, to produce a single performance metric. 

There are two properties we would like in a ideal fault tolerance performance 

measure: 

PI Global 

The measure should reflect global topological properties of the configuration 

space, and how altering the topological properties via a fault affects the ability 

to continue to satisfy the task requirements. 

P2 Ease of Interpretation 

In addition to quantifying the fault tolerance at a configuration, the value of 

the measure should be in units which are relevant to the task. If the fault 

tolerance measure has a natural interpretation there is the possibility of using 

it to guide the designer when constructing the task. 

In contrast the kinematic fault tolerance measure of kfm{) is a local mea

sure, and therefore does not reflect the task as a whole. The measure kfm{) gives 

the smallest singular value of the failed-Jacobian, which gives the worst scaling of 

joint angle velocities to end effector velocities. This relates to the dexterity of the 

105 



configuration, but the value has no interpretation with respect to the task and its 

completion. 

In [PK95], sets of postures, J\-*, that were fault tolerant with respect to 

a joint j were computed. These sets of postures did reflect the global nature of 

the configuration space and the task. The diflflculty with this approach is that it 

restricted the types of recovery motions considered; a posture was fault tolerant 

if the redundancy resolution algorithm could find a sufficient recovery motion. 

Also, the methods classify a configuration as fault tolerant or fault intolerant, and 

therefore does not give any additional information as to how close the configuration 

is to being able to sustain a fault and complete the goal. 

3.3.2 Longevity: A Global Measure of Fault Tolerance 

The appeal of local performance measures such as kfm{) is they require limited 

computational resources for their computation; typically they require only knowl

edge about differential behavior of the robot, such as the failed-Jacobian V for 

example. However, given that we have a utility measure util() which ranks a tra

jectory's ability to satisfy the task requirements, and given an efficient algorithm for 

computing the recovery motions of a large set of configurations/faults (described 

in Appendix B.2), a fault tolerance performance measure which considers both the 

effects of, and recovery motions for, a fault scenario is possible. 

The fault tolerance measure, called longevity, ranks the configuration, Vk, 

as to its ability to tolerate a fault, to. 

Definition 3.5. (Longevity Fault Tolerance Measure) 

106 



Given a fault, described by the predicate to, and a configuration and time (qo, to) G 

Cell{vk)i the longevity of the vertex Vk is defined to be the utility of the optimal 

recovery motion for the fault computed at Vk\ 

L{vk,uj) =< . (3.43) 
-oo Vk ̂  ROD(a;) 

We assign the value of — oo to any configuration Vk which is not consistent with 

the fault constraint. 

Let ft denote the set of all possible faults we wish to consider, and fl{vk) 

denote all faults consistent with the vertex v^: 

0 = {oui}, Q{vk) = {co^ e ^\vk e ROD{uJ^)}. (3.44) 

The worst-case longevity is defined as 

Lmin = min L{vk,uj), (3.45) 

and gives the utility of the optimal recovery motion for the worst-case failure mode 

of the robot while in a configuration Vk- , • 

The units of the longevity fault tolerance measure the same as util(), namely 

time. This reflects the philosophy of LC: we should not care about the particular 

configurations chosen along a trajectory, but only that the constraints are satisfied 

over time. Since we only care how long the constraints can be satisfied, like utility, 

the fault tolerance measure gives the length of time that the constraints can be 

satisfied given a fault. Defining the fault tolerance measure in this way ensures 

that we do not impose any further semantic constraints on how we interpret an 

LC program. 

107 



If we limit the faults to immobilized actuator faults, then 

Q{vk) = K'='^|; = l , - - - ,n} (3.46) 

where LO'"'"^ corresponds to the constraint given by the function a'"'"^ of Eq. 3.31. 

The benefit of the longevity measure is that it allows for a very natural 

interpretation. If 

•^minV^fcj ^ ' 'max) 

then configurations in Cell{vk) are fault tolerant with respect to all faults fl. 

Vertices Vk for which 

are able to tolerate a fault involving the jf-th actuator. If 

then the vertex is not fault tolerant, but does guarantee to satisfy the task con

straints until at least time ty^,. 

If we think of an adversary who is able to introduce a single fault during the 

execution of a task, and whose goal is to minimize the utility of our trajectory, then 

L{vk) gives a lower bound on the utility that the adversary is able to attain. Since 

it is reasonable to assume that any fault process that is likely to encounter will 

not have knowledge of our trajectory ahead of time, L{vk) is clearly a conservative 

means of selecting a configuration. 

The longevity performance gives an indication of the safety associated with 

a configuration, Vk, however it does not reflect the main objective of completing 

108 



the task. For example, a vertex Vk with 

util(tifc) < L{vk) = t„ 

is 1-fault tolerant, however it is very far from reaching the goal. We will define the 

performance measure, perf(ujt), so as to combine the two objectives of maintaining 

safety and accomplishing the goal: 

perf('yfc) = < 
L{vk) if L(vfc) < 

^max + Util(Ufc) if L{Vk) > 

(3.47) 

For vertices Vk G Vdst which correspond to attaining the goal, perf(ufc) > 

2imax- The interpretation of the performance perf(ufc) is given in Fig 3.7. 

perf(vfe) 

2U 

Task 
completion 

1-fault 
tolerant 

"Longevity": L{vk) 

1-fault intolerant 

Figure 3.7: The relationship between the performance measure perf(ufc) and the 
fault tolerance measure, longevity, L{vk). Consider a path p = {pi,P2-iP3,P4}-
Vertices with perf('yfc) < tmax) corresponding to pi and p2j are 1-fault intolerant. 
Vertices with tmin < perf(wfc) < 2tmax, such as p^ are 1-fault tolerant. Vertices with 
perf(ufc) > 2tma.xi such as p4, correspond to completion of the task. 

109 



3.3.3 Computing Longevity 

If the number of faults considered at each vertex is a coristant NQ = \Q,{vk)\, then 

we can represent the set of recovery motions as a two dimensional array of edges 

Trim, j = l,2,---,Nn, 

which gives the edge of the recovery motion from Vk for the fault Wj E Q{vk). If we 

consider only joint immobilization faults, then we can compute the set of recovery 

motions for the fault Uj for all vertices Vk simultaneously using the algorithm 

described in Appendix B.2. 

Computing the value of L{vk,u}j) involves traversing the linked-list stored 

at 7r[j][A;], and returning the utility of terminal vertex: 

J utilK) if 7rb][A;]^0 
L{vk,ujj) = < . (3.48) 

L \VTr[j][k],ujj] otherwise 

Once the performance measures perf(̂ ;fc) have been computed for each ver

tex, what remains is the construction of a path which maximizes this measure. 

This is done by finding the path which is ranked highest according to the Sorted-

Minimum Path ranking, defined next. 

3.3.4 The Sorted-Minimum Path Ranking 

There are several objective functions available to rank a given path, each producing 

trajectories with differing characteristics. We could use a conservative objective 

function 
m 

minperffwj), 

110 



however, since it considers the performance at only one point where it is at a 

minimum, it can not distinguish between two paths which share a common min

imum performance value. For example, if the vertex at the initial point of the 

trajectory happens to have the smallest performance value, then all paths from the 

initial vertex will be ranked the same. Alternatively we could take the mean of the 

performance along the path 
•1 m 

— ^perf(ui) , 

however this has the disadvantage of promoting paths which are circuitous, since 

the mean can be increased by loitering in areas of high performance, perhaps not 

even attaining the goal. 

In many instances, due to the topology of the valid configuration space, we 

may be forced to use vertices for which the performance is very poor. The use of 

these regions, if inevitable, should not unduly influence the ranking of a path. 

A compromise is the Sorted-Minimum ranking, which was suggested by 

Pai and Reissell [PR95] as a metric for choosing a path over rough terrain. The 

sorted-minimum path metric takes the performance values at each vertex in the 

path, and sorts the values. Two paths are ranked by taking the sorted performances 

and comparing them lexicographic manner as follows: 

Definition 3.6 (Sorted-Minimum Path Metric) 

Given two valid paths 

P= {Pi,---,Pm}, Pi^V, p' = {p'i,---,p'j}, Pi^V, 

let z and z' be the sequence of perf(pj) and perf(p^), sorted in increasing order so 

111 



that 

z = {zj}, Zi = perf(pj), 

^' = {^a, ^: = perf(p;), (3.49) 

-2̂1 < -2̂2 < • • • < ^m, a n d 2i < 22 — • • • — -2̂ j- (3 .50 ) 

The partial ordering of paths, written as p > p', indicating that the path p is 

preferred over p', is computed by comparing the sequences of sorted performance 

values in a lexicographic manner. We write p > p' if 

A - i \ 
3j < min(m,n), / \ Zj = z• A Zj > z'y (3.51) 

Additionally, if either z or z' are prefixes of the other, then the shorter path is 

preferred. Two paths are equivalent, p = p' iff 

(m = n) A (Vi = 1, • • •, n, Zi = z[). 

The optimally fault tolerant path, not necessarily unique, is the path 

Pft with 

Vy e V, {p' ^ Pft) ^ (pft > p'] . (3.52) 

3.3.5 Interpretation of Sorted-Minimum Performance Met

ric 

When a fault tolerant path is not possible, for example when all possible trajecto

ries are forced to pass through a "critical" point which is inherently fault intolerant, 

112 



the path generation scheme should still produce paths which maximize the achiev

able fault tolerance. This is achieved with the Sorted-Minimum ranking since any 

critical portion of the task, corresponding to the unavoidable risk, will be repre

sented as common entries of the sequence of sorted performance values. Thus the 

path pft will correspond to the shortest fault tolerant path, if one exists. However, 

if a fault tolerant path does not exist, pft will maximize the realizable fault toler

ance along the path. The fact that pft is well defined and meaningful for tasks in 

which there does not exist a 1-fault tolerant path is a desirable characteristic of 

the path generation mechanism. In cases where a 1-fault tolerant path does not 

exist, we can interpret pjt as the "closest approximation." 

In contrast, postures in [PK95] are described by the binary property of 

inclusion in the set of fault tolerant postures, J^j*. Paths are generated by finding 

a connected path through the fault tolerant regions. If such a path does not exist 

there exists no method for generating a path which is "most fault tolerant." This 

inability to deal with critical configurations is also exhibited by paths generated 

using null-space optimization of kfrnQ, as found in [LM94a]. Assuming any path 

to the goal must involve the critical region, null-space optimization of kfm{) may 

fail to find a path through the critical region. 

3.3.6 Computing the Fault Tolerant Path 

Given the partial ordering of paths, >, the algorithm for computing the opti

mal sorted-minimum performance path is easily described as an edge-relaxation 

algorithm. The algorithm is similar to the "Modified Dijkstra's algorithm" for 

computing minimum-cost paths from a single source [CLR90, p. 575-531]. 

113 



At each point in the algorithm each vertex stores a currently-best-known 

path to a destination vertex. Using a priority-queue, we consider paths in decreas

ing >-order, and check to see if the path constructed by adding the edge e^j to the 

beginning of the path would improve the current best path from Vi. 

The qualifier "modified" in "Modified Dijkstra's Algorithm" refers to the use 

of a heap in implementing the priority-queue. For sparse graphs the complexity of 

the Modified Dijkstra's Algorithm is 

0{{V + E)\og^E), 

an improvement from O(V^) of the original Dijkstra's Algorithm [CLR90]. 

Before we describe the algorithm we will look at implementation of the 

Sorted-Minimum path comparison, >. Efficient implementation of > is crucial 

since it is the most computationally expensive operation of computing the paths. 

Like the algorithms for computing the recovery motions, we will store the 

paths using an array denoted by Tv[i]. In the worst-case, computing the boolean 

predicate p > p' for two paths 

P= {Vi, Pnli], Pn[7r\i]], • • • , P m } , a n d p' = {Vj, p^[j], P,r[7r[j]], ' ' ' , Pk}, 

involves traversing the linked-list of vertices for both paths, sorting the arrays 

of performance measures, and incrementally examining the sorted arrays until a 

unique performance value is found. If we let 7 denote the maximum path length, 

then the cost of this comparison is 

C(7log2 7), 

since it involves the sorting of 7 real numbers. We can greatly improve the efficiency 

114 



of the path-comparison operator by storing the minimum performance measure of 

each path in a separate array. If the minimum performance value of two paths 

is unique, then we can determine p > p' in constant time. Otherwise we must 

perform the expensive traversal, sorting and comparison operation. The algorithm 

for computing > is given in Appendix C.l. 

The algorithm for computing the Sorted-Minimum performance paths, which 

makes use of the path comparison operator > described above, is given in Ap

pendix C.2. 

The proof of correctness is very similar to that of Dijkstra's algorithm 

[CLR90], and can be found in Appendix C.3. 

3.3.7 Complexity Analysis of the Sorted-Minimum Path 

Algorithm 

In computing the overall time complexity of the algorithm, we must first consider 

the total number of calls to the path comparison operator >. Multiplying this 

complexity by the number of real-valued comparisons of perf(wi) gives the total 

complexity of the algorithm. In the analysis we will use the following quantities: 

Symbol 
N, = \V\ 

7 

Meaning 
The number of vertices in V. 
An upper-bound on the length of any Sorted-Minimum 
performance path to a vertex in Vdst-

Table 3.1: Symbols used in the complexity analysis and their meaning. 

Given that the maximum size of the priority queue is Ny, each addition, 

115 



removal, and heap re-ordering operation (denoted by AddToPriorityQueue((5,fj), 

RemoveMaxPCl(Q), and ReHeapif y(Q, j)) will take at most 0(log2 Ny) >-operations. 

Each call to the procedure Rela.x{i,j) of Line 6 will have one call to > and 

one call to one of AddToPriorityQueue((5,t'j,7r[]) or ReHeapify((3, j ) , for a total 

of 

calls to >. Since the While-loop of line 2 is repeated a total of Ny times, the total 

number of calls to > is 

C>(iV„(l + log2iV„)). (3.53) 

Given a regular-decomposition, in which Ny = d"-^ this reduces to 

C>(d"(l + nlog2d)) = 0 (nd" log2d). (3.54) 

Determining the computational complexity of the path-comparison operator 

>, as described in Appendix C.l, is difficult since it depends on the distribution 

of the performance measure perf(t;j), as well as the structure of the graph. In 

cases where the minimum performance measures for both paths are unique, the 

comparison can be performed in 0(1) time. If two paths have the same minimum 

performance measure, then the number of comparisons is determined by the sorting 

of the two lists of performance measures, and is 0(7log2 7), corresponding to the 

worst-case behavior of the algorithm. 

The upper-bound on the maximum path length, 7, is dependent on the 

topological properties of the configuration space, the particular decomposition of 

the feasible space J-CT-, the dimensionality of the configuration space, n, as well 

116 



as the task specification. Using a regular decomposition, it is reasonable to assume 

that 

7 = 0{nd) (3.55) 

indicating that it grows linearly with both the dimensionality of configuration 

space, as well as the number of sub-intervals each joint angle of the configuration 

space is divided into. This is the same as saying that the path lengths are at worst a 

constant factor more than the Manhattan distance between the two vertices which 

are farthest apart. 

The worst-case time complexity of Algm. C.l is therefore given as 

O {nd\og2{nd)). (3.56) 

The total time complexity of Algm. C.2 is therefore 

0(n2rf"+Mog2(d)log2(dn)) > 0{dn^N^). (3.57) 

This indicates that the computational complexity is at least quadratic in n, the 

dimension of the configuration space, and linear in the total number of vertices N^. 

However, Ny = O {d^), and is therefore exponential in n, the number of actuated 

degrees of freedom. This motivates the use of a more intelligent decomposition of 

the configuration space, such as a hierarchical scheme, to avoid this exponential 

growth. 

117 



Chapter 4 

Reactive Elements 

This chapter considers the reactive elements of executing a robot task in a fault 

tolerant manner. These include the real-time monitoring of the sensors and actua

tors to detect when an erroneous event has occurred, as well as the identification of 

the fault that was likely the cause of the error. Much of the research involving fault 

tolerance in robots has concerned the problem of path planning, and have assumed 

the prior existence of a fault detection and identification (FDI) subsystem which 

performs these functions [RP97, RP99, LM94b, LM94a, PK95]. 

We will give a brief overview of previous work in the area of fault-detection 

and identification, and introduce a novel method for diagnosing collision faults 

where a manipulator comes in contact with an unknown obstacle. 

While a collision of the robot with an obstacle may appear similar to an 

actuator failure, in so far as the actuator abruptly stops, the constraints that 

an additional obstacle places on the completion of the task are often much less 

118 



limiting than an actuator failure. Determining the geometry of the obstacle allows 

us to include the obstacle via additional constraints on the task. The difficulty 

in recovering the geometry of the obstacle is that we have no way of directly 

sensing the object other than the robot sensor histories since, presumably if we 

had sophisticated sensors for the detection of the obstacle, such as a vision system, 

then the collision could have been avoided in the first place. We will introduce a 

method which, given a model of the dynamics of the manipulator and the histories 

of the sensors, the collision geometry of the obstacle can be recovered. 

4.1 Previous Work in FDI 

Error detection schemes can be divided into two types: those that use structural 

redundancy, and those that use analytical redundancy. Structural redundancy 

makes use of redundant sensors in which each sensor reports its reading, and an 

arbitration takes place to form a consensus. Sensors which are outliers from this 

consensus reading indicate a potential fault in the sensor. An example of structural 

redundancy, often employed in control systems, is the use of Triple Modular 

Redundancy [HSL78, Wen78], in which a set of three sensors vote to produce a 

consensus. Fault detection in this scheme is simple: any sensor which does not 

agree with the majority is likely a faulty sensor. Control systems may exploit 

structural redundancy to reduce the effects of noise on the system [Ste91]. In 

general, the use of replicated hardware will be bounded by cost and weight. For 

this reason we will focus on analytical redundancy techniques. 

Analytical redundancy, a more complicated method of detecting a fault, 

119 



u(t) 
(system inputs) 

Physical. System System Model 

X(t) 
(system state) 

Residual 
Generation (predicted state) 

\̂  Residual (s) 

Figure 4.1: A set of residuals of a system. The state of the system, x{t), evolves 
over time due to the current state, and the inputs u{t). With the system model, 
a predicted state x{t) is constructed, which is combined with x{t) to produce a 
residual whose magnitude indicates the degree of departure of the system from its 
expected state. 

relies on a system model to produce an independent estimate on the system state. 

This independent estimate can then be used to validate the proper operation of 

the sensors and actuators. Common to many error detection schemes is the use of 

a residual, which indicates the degree of departure of the system state from that 

estimated using the system model. This is depicted in Fig. 4.1. 

Using the residuals to detect that an anomaly has occurred, we must now 

identify the fault which is responsible for the observed system behavior. The pro

cess of fault identification is similar to the task of diagnosis in AI [FL87]. Provided 

we can characterize a set of faults in which we are interested, we may use the model 

of the system, as well as observations of its behavior to diagnose the fault. 

Many errors have associated parameters which, provided they can be re-

120 



covered, may aid in the error recovery. An specific example of this, discussed in 

Section 4.3, is the determination of new obstacle's location from the collision event. 

For this we need to extract features from the residuals, and estimate the state of the 

system as well as the environment. This has been explored by many researchers, 

and is well summarized in [Ise93]. 

4.2 Analytical Redundancy: Parity Space Meth

ods 

Due to the increased weight and cost of replicating sensors, much of the work in 

FDI in robotics has focused on analytical redundancy techniques [LR91, Cla78, 

VWC94]. Of particular interest is the use of parity space methods [CW84]. 

Chow and Willski [CW84] have developed a methodology for fault detection 

in discrete linear systems that is based on the parity space of the system. 

Given a discrete time linear system with inputs u and outputs y, 

X{t + 1) = AX{t) + Bu (4.1) 

y{t) = CX{t), 

where X G K^ is the state vector, u G M^ a vector of inputs, y{t) G M^, and 

A G R^""^, B G R^""^, and C G R^""^ are constants which depend on the 

linearization of the system. Chow and Willsky [CW84] define 

P = {w|u^Z = 0 } , (4.2) 

121 



where Z = 

C 

CA 

CA' 

(4.3) 

as the order-s parity space of the system; Z is the s-step observable subspace. If we 

let ^ = {(j)i} he a, set of linearly independent parity vectors which span this space 

(not necessarily unique), each 0j gives an linear combination of observations y{k—i) 

which correspond to a unique fault direction. Since the input u(A;) is non-zero, we 

must compensate for the applied input as in [CW84] to give the parity-vectors as: 

p[k) — $ < 

y{k - s) 

yik) 

,-H 

u{k — s) 

u{k) 

0 

(4.4) 

CB 0 

H = CAB CB 0 (4.5) 

CA'-^B • CAB CB 0 

Parity techniques have a number of nice qualities. The number of tests is 

optimal in the sense that each vector corresponds to a unique fault direction. It 

is possible, in theory, to construct $ so as to have distinct columns. In this case 

each parity vector will correspond to a unique fault hypothesis. Also, since parity 

methods are able to exploit both direct and temporal redundancy of the system, 

they can be applied to the detection of actuator and sensor failures. 

122 



The main problem with FDI techniques using analytical redundancy is that 

they suffer from the practical limitation that the system model on which the model 

is based is never known exactly [Fra90], hence the actual outputs will never match 

the modeled outputs, and therefore the residuals will always be non-zero. To ensure 

that there is not a constant false-alarm due to the non-zero residual, the residuals 

are compared against a threshold which must be tuned. This may significantly 

reduce the sensitivity of the error detection. 

4.3 Detecting and Localizing a Manipulator Col

lision 

This section deals with the detection and localization collision event involving a 

robot manipulator and an un-modeled obstacle. The detection scheme combines 

information about the observed disturbance torques to detect collisions and to infer 

the position of the collision in the environment. This work was first presented in 

[RP95]. 

4.3.1 Motivation 

Typical robotic tasks often require some collision free-motions, and there has been a 

considerable work in methods for collision avoidance [Bro83, Can93, LatQl]. While 

we may construct a path which successfully avoids collisions with known obstacles, 

the problem of unexpected collisions always exists as long as there is uncertainty in 

our sensing, control, or our modeling of the environment. This is particularly true 

123 



for mobile robotics where the errors in position may increase as the robot moves 

in the environment [Mal91]. 

When a collision event occurs, the error recovery mechanism must first per

form the necessary emergency actions, such as the application of the braking sys

tem, to limit the damage to the robot and the obstacle. Next a new trajectory must 

be constructed which satisfies the obstacle constraints imposed by the new obsta

cle. To facilitate this, some knowledge of the obstacle's position in the workspace is 

crucial. We propose a method for collision identification and localization using ob

served disturbance torques at the joints. The disturbance torques provide a great 

deal of information about the interaction of the manipulator with the environment, 

with little or no additional sensing. 

4.3.2 Introduction 

The method we propose models interactions between surfaces of the manipulator 

and points in the environment as a set oi features which are configuration indepen

dent. These features have associated parameters which provide a basis for the set 

of all generalized forces generated by the given feature. Combining these features, 

with knowledge of the disturbance torques and the manipulator configuration yields 

a system which is sufficient for identification and localization of collisions of the 

manipulator with the environment. Localization of the collision involves solving 

for feature parameters which "best" fit the observed disturbance torques. 

We demonstrate how additional constraints on the system yield a over-

constrained system, and argue that the least-squares solution provides a means 

124 



of determining feature parameters which is robust with respect to noise. We also 

give a measure based on the least-square projection which provides a useful measure 

for comparing the merits of competing collision hypotheses. 

We will assume below that the disturbance torque r^ can be estimated with 

some uncertainty. This could be done by joint torque measurements if we have a 

model of the actuator dynamics, or measuring measuring joint states and using a 

disturbance observer [TM089]. In general we are given a n-link manipulator whose 

equations of motion are described by: 

Td = M{e)9 + V{9,e) + G{9)-Ti^p,^ (4.6) 

where M is the mass matrix, V denotes velocity-dependent terms such as the 

centrifugal and coriolis terms and viscous friction, G denotes position-dependent 

terms {e.g. gravity), Tjnput represents the input to the system, and TJ. represents 

a disturbance torque. Given measurements or estimations of 9, 9, and 9 we may 

observe the disturbance torque r^. 

There have been advances in path planning which deal with uncertain con

trol and sensing [LMT87], as well as path planning which is guaranteed to succeed 

or noticeably fail [Don87]. Much less attention has been given to the task of 

collision detection and localization as a source of information for recovery from un

expected errors. We propose a means by which we may combine knowledge of the 

sensor and actuator histories, with a model of the dynamics to infer the geometry 

of contact with the obstacle. 

The use of contact information is prevalent in grasping (e.g., [Sal83]), mobile 

robotics (e.g., [Mal91]), and industrial robotics (e.g., [TM089]). [Sal83] uses force 

125 



information from strain gauges to infer interactions with the end effectors and the 

object. Here the objects position is relatively well known, and it is the position 

and orientation of the various contacts that are recovered. [Mal91] uses contact 

information to reduce the uncertainty of the robots position and orientation. The 

contact serves as a reference point for the robot. [TM089] uses a model of the 

dynamics of a serial manipulator and infers collision when a disturbance of sufficient 

magnitude occurs. 

The overall goal of our approach is similar to the collision detection presented 

in [TM089], but attempts to extract more information from the limited torque 

sensing. Like [TM089] we may estimate the disturbance torques by observing the 

system dynamics, or we may use direct measurements of the forces and moments 

as in [Sal83] if this sensor information is available. 

Sensing issues aside, the problem we wish to address is, to a large extent, 

the inverse problem of [Sal83]. The grasping problem of [Sal83] involves precise 

knowledge of the object, both position and orientation, with unknown contact 

geometry. The goal is to. infer the contact geometry from measurements of the 

applied forces and torques at the contacts. With the collision localization problem 

we use a model of the contact, with measured interaction forces, and infer the 

unknown position of the object. 

We propose a means by which not only the presence of a collision, but also 

the position of the collision on the manipulator can be inferred. [TM089] assumes 

that once a collision has taken place the robot is able to return to a "safe position". 

This is not simple in practice since the same positional errors in the robot that may 

have lead to the collision may make it impossible to move to the safe position. By 

126 



recovering the collision geometry we may make a more intelligent choice for error 

recovery. 

We begin in Section 4.3.3 with a description of contact forces on a serial 

manipulator in terms of features of the links, and their associated parameters. 

These features are combined with the configuration-dependent terms to produce a 

contact Jacobian which will fully describe the set of joint forces observable by the 

manipulator. The task of localizing the collision from a set of disturbance torques 

is presented in section 4.3.4. Geometric constraints on the position, as well as 

cone-constraints due to friction are given to further constrain the system. A means 

of qualitatively determining which feature took part in the collision, as well as 

metric for comparing competing contact hypotheses is then developed. Results of 

a simulation of a planar 3 DOF manipulator is presented in Section 4.3.7, followed 

by a discussion of possible extensions to the formulation in Section 4.3.8. We 

conclude with a summary of the results in Section 4.3.9. 

4.3.3 Contact Forces 

Determining contact position involves finding a position and force which is con

sistent with the observed disturbance torques. Since there will be errors in our 

disturbance torque measurements, the contact information should correspond to 

the interpretation which "best" describes the measurements. To sufficiently con

strain the system we may have to impose additional constraints on the number 

and the type contacts which are modeled. 

To model the interaction of the manipulator with an object, we will con-

127 



sider a set of features which describe the set of generalized forces which can be 

transmitted to the manipulator. These features may be generate by point, line, or 

soft-finger contacts and may include frictional forces (see, for instance, [MS85]). 

For example, consider the simplified example of a three DOF manipulator 

with parallel joints in Fig. 4.2, with triangular shaped links. The manipulator is 

effectively planar, but we shall treat it as a spatial manipulator for consistency. 

Suppose there is frictionless contact between face i of link j and a point in the 

environment. Then the contact wrench (i.e., force and torque) on in link-_7's frame 

of reference is 

f \ ( n 
'Wi e Ail 

\ 

Ui X rji 

(4.7) 

Here Aji is the magnitude of the contact force, rji G K̂  is the unit vector 

normal to face i, Ui G M̂  is a unit vector tangent to face i in the plane perpendicular 

to the joint axes (since this is eflFectively a planar problem), and 

Ai2 

parameterizes the location of the contact on face i. Thus associated with each 

feature is a vector Aj whose elements parameterize the set of possible generalized 

forces the feature may produce. 

A,: 

V A,; i2 

(4.8) 

It is important to note that the Â  are subject to further admissibility constraints; 

e.g., Aji is required to be non-negative since it represents the inward contact force, 

and Aj2 is subject to constraints from the geometry of the face i. We will return to 

this issue in Section 4.3.4. 

128 



Figure 4.2: A three DOF planar manipulator with triangular faces (taken from 

[RP95]). 

The set of all possible contact forces can be expressed in a single configura

tion independent matrix 

where n is the number of degrees of freedom of the manipulator, and n/ is the 

number of contact features. 

For the example suppose the potential contacts between points in the envi

ronment and faces of the links can be described by six features shown in Figure 4.2, 

one for each face i whose normals are given by 77̂ . F is given as 

129 



F^ 

7?i0 772 0 0 0 0 0 0 0 0 0 

O z i O 22 0 0 0 0 0 0 0 0 

0 0 0 0 773 0 774 0 0 0 0 0 

0 0 0 0 0 23 0 24 0 0 0 0 

0 0 0 0 0 0 0 0 775 0 776 0 

0 0 0 0 0 0 0 0 0 25 0 26 

^ . ^ 

yAey 
2j = Ẑ j X 77J. 

(4.9) 

(4.10) 

(4.11) 

The propagation of forces on one link to another is represented by matrix 

(^(q) e lR6"x6n̂  

'/̂ (q) 

)^ 

(^... ^ 

W21: 

\ WnE J 

2iT ZxT 
I w 'A 

0 

)R P-,)R 

0 

j j J 

\R 

= (l)FX 

10 

/ ^0^ ••• -2<t> 
(4.12) 

(4.13) 

(4.14) 

130 



where *WJE is the total wrench from all features (i, i + I,- • •, n), and J(/) is the 

adjoint transform [MLS94], which transforms a twist in reference frame j into 

an equivalent wrench in frame i. ^^R is the rotation matrix from i to j , and pjj is 

a vector from the origin of frame j to frame i. The matrix 0 is sometimes called 

the Composite Rigid Body transformation [Jai91]. 

We may then express observed torques at each of the joints as: 

T, - 5^(q),/.(q)FA (4.15) 

C{q) 

^52(q) 0 
(4.16) 

0 "s„(q) 

where *Sj is the unit twist of the i-th joint. The contact Jacobian, C, gives the basis 

of all disturbance torques arising from the features / j . Therefore all information 

related the configuration and geometry of the arm is in the contact Jacobian C 

and the actual contact that occurs is parameterized by A. 

4.3.4 Contact Localization 

The contact Jacobian, C, is a (nxup) matrix, where Up is the number of parameters 

in A. In order to solve for r^ using Eq. 4.15, we will have to make some assumptions 

on A. Generically, the initial contact between the manipulator and the environment 

will occur at a single feature of the manipulator. Since this is the most important 

case for detecting and localizing collisions, we will focus on this case here. In 

the example above, the single contact assumption gives us 6 possible solutions. 

131 



each corresponding to an over-determined 3 x 2 system of equations. Each contact 

hypothesis corresponds to taking a different subset of the columns of C. We will 

denote the reduced system obtained by taking the columns of C corresponding to 

feature z as Cj. We may then solve for 

K = CrVrf, (4.17) 

or if Ci is over-determined, then we may take the least squares solution 

Ai = (C^C)" ' c^ rd . (4.18) 

Once we have determined a value for Â , the corresponding position on the 

link can be determined. For our example, the position of the link is given by 

P(A.) = ^ e [ 0 , L ] . (4.19) 

To determine which contact hypothesis best explains the observations, the 

contact state will be further analyzed as follows. In Section 4.3.5 we will check 

that the state of hypothesized contact is admissible given geometric and physical 

constraints. After this stage, it may be the case that more than one admissible 

hypothesis satisfies the constraints; in Section 4.3.6, we show how to construct a 

metric which compares the merit of the competing hypotheses to select an optimal 

hypothesis. 

4.3.5 Admissibility Constraints 

The constraints on A depend on the parameterization of the features. We will 

give the A constraints for the example problem. The constraints for problems in 

132 



3D, or with the addition of friction will be marginally more complicated. Typical 

constraints include: 

Ci'. Non-negative normal force. The contact forces can only be "outward" relative 

to the surface of the link. 

C2: Geometric Constraints. The contact position must be on the link's surface. 

C3: Frictional Constraints. 

For our example the constraints are: 

Ci : Aji > 0. (4.20) 

C2 : 0 < £> = ^ < L. (4.21) 

where D is the position of the contact measured relative to link-z's frame of refer

ence. 

The constraints can be treated as a filter to eliminate hypotheses after the 

computation of the parameters Aj. However the constraints are typically linear 

inequalities, AiXi < 0; (e.g., Eq. 4.20 and Eq. 4.21). In this case the feasibility 

problem, 

QA, = Td (4.22) 

AiXi < 0 (4.23) 

can be solved simultaneously using linear programming. 

133 



4.3.6 Feature Identification 

In instances where there exists more than one admissible single-contact hypothesis 

which satisfies the constraints, we must use some means of determining which is 

most likely. For over-constrained problems, such as our example, a natural choice 

for ranking our solutions is the residual: 

proj, = | | ( / - C, {CfQ) Cf) T,\\ (4.24) 

the length of the projection of r^ orthogonal to the column space of Cj. This is the 

sum of squared differences of the predicted and observed disturbance torques. 

4.3.7 Results 

To investigate the effectiveness of Eq. 4.24 as a feature classifier, a series of simula

tions involving the three DOF triangular-shaped manipulator were performed. A 

constant reaction force of IN was used in generating the feature torques, with unit 

link lengths (L=l). The feature, /,, was chosen randomly, as well as the position on 

the link. The joint angles g2 and q^ were chosen randomly from [0, 27r]. The ideal 

disturbance torques r^ were computed, to which varying noise was added. The rela

tive magnitude of the noise was held constant at various levels (0.01, 0.02, • • •, 0.30). 

The direction of the error in R^ was uniformly distributed. In this way the error 

was uniformly distributed amongst the individual disturbance torques. 

We measure success at classification in two ways: feature identification is 

measured by the percentage of contact features that are correctly classified; for 

each correctly identified feature, we measure the accuracy oi feature localization. 

134 



Table 4.1 shows the effect of noise on the error rate of the feature identifi

cation. The error rates of the classification scheme utilizing the constraints Ci in 

conjunction with projj are very small; features were misclassified in less than 2% 

of the tests for relative errors in r^ up to 30%. This indicates that proj^ is very 

effective in the identification of the feature involved in the collision, even when the 

disturbance torques contain a large relative error. 

It should be noted that the error rates do not include contacts with features 

/ i and /2 on link 1 {i.e., only features /s, • • •, /e)- All simulated contacts on features 

/ i and /2 are wrongly classified as /a and f^ respectively. This is due to the fact that 

a small error associated with the torque at 92 will always produce an explanation 

of a collision on link 2 very close to the proximal end of the link. Since the system 

is under-constrained for C\ and C2, any solution using the disturbance torques of 

Q2,- • • iQn refiect only the noise. Features /a and f^ are chosen rather than /s , /e 

because we are looking for the smallest A satisfying Eq. 4.15. In practice, this can 

be easily dealt with; for example small disturbance torques at the distal joints of 

the manipulator can be set to zero or solutions with positions very close to the 

proximal end of the link can be rejected. 

Since we have a large degree of confidence in the feature identification, we 

now turn our attention to the localization of the contact. The same method of 

constructing random collision examples was performed with the same noise mod

els, and an estimate of each collision location was computed for each example. 

Only samples in which the correct feature was identified were considered. Addi

tionally, only contacts involving /3,--- , /6 were considered since position cannot 

be recovered for collisions on the first link as it is under-constrained. 

135 



Relative Error 
ll^d-^dealll 

\\rA\ 
0.01 
0.02 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

Percentage 
Mis-classification 

0.02 
0.04 
0.11 
0.39 
0.70 
0.98 
1.39 
1.71 

Table 4.1: Classification error rate with varying relative errors in r^. 

Fig. 4.3 shows the eflfects of noise on the confidence level of our scheme in 

localizing the collision to various tolerances. Consider the task of resolving the 

collision to within 5% of its true value. We can see that our confidence level is very 

high, 98.6% for 1% relative error, 91.7% for 2% relative error, and 72.3% for 5% 

relative error. 

4.3.8 Extensions 

The methodology can be extended to include three-dimensional links, frictional 

forces, and links with curved surfaces. We briefly describe these extensions here. 

Three dimensional links and frictional forces can be modeled by extending the 

number of parameters for each feature. Curved link geometries are more difficult 

because of the non-linearities introduced. 

For example, addition of friction to our two-dimensional problem adds an 

additional parameter, the component of reaction force tangent to the surface, as 

136 



D. 
E 

100 

90 h 

80 

70 

60 

50 

40 

30 

20 

10 

0 

1 Samples successfully localized vs. localization tolerance 
" 1 " " " . ^ " 

. - - • o 

.-•' o 
.-' o 

0.05 0.1 0.15 
Localization tolerance (fraction of link-length) 

0.01 — 
0.02 —• 
0.05 - -
0.10 
0.15 - -
0.20 —• 
0.25 ----
0.30 o 

0.2 

Figure 4.3: Cumulative distribution of localization errors for varying relative error 
in Td. 

137 



well as an additional frictional constraint. Thus 

^Wi = Aji ["•1 
["I 

+ Aj2 f " 1 
\i^iXr]i j 

+ Ai3 l"'] 
[") 

(4.25) 

(4.26) 

where [i is the coefficient of friction. Since there are three parameters, we will only 

determine the collision position for collisions with link 3 or higher. 

Table 4.2 gives the number of parameters needed for various types of contact 

[MS85]: 

Contact 
Point contact without friction 

Point contact with friction 
Soft contact 

2-D 
2 
3 
3 

3-D 
3 
5 
6 

Table 4.2: Contact Parameters. 

Thus for 3-dimensional frictional contacts we have 6 parameters. In general 

this will require that the contact occur on link-i, z > 6, if we are to determine 

exactly the position of the contact. In some cases, this may restrict our ability 

to recover contact geometry. However, the increased number of constraints may 

sufficiently restrict the set of feasible contacts to still be of use for contacts on 

prior links. For some restricted applications we may have the required information 

to recover contact geometry exactly. For example, knowledge of the shape of the 

payload of a 6 or greater DOF manipulator will allow collisions of the payload with 

the environment to be recovered. This might be useful for teleoperation tasks for 

example. 

The example we have been discussing has involved links whose surfaces are 

138 



easy to parameterize. In some applications, links will have curved surfaces, leading 

to a feature matrix, F = F{X), which is non-linear. This requires the solution of 

non-linear system of equations for Aj. An alternative approach is to approximate 

the surface of the link by a series of polyhedral faces. This approximation can be 

hierarchical and successively refined, i.e., if a solution is feasible at given level of 

approximation, the face can be decomposed into smaller faces, and the process is 

repeated. Thus at each step we may eliminate a large fraction of the remaining 

surface of feasible contacts. Our assumption is that while there may be localization 

inaccuracies due to the errors in approximating the normals of the surface with 

polygons, the positional information will be sufficient to constrain the position to 

a polygonal region. 

4.3.9 Conclusions 

We have described a method by which un-modeled manipulator collisions can be 

identified, and the position of the contact can be localized. The method is based 

purely on the observed disturbance torques, and a set of features given by the 

geometry of the manipulator. The formulation provides an easy means of testing 

collision hypotheses, as well as a method for ranking competing hypotheses. We 

also describe extensions that are currently being investigated. Simulations of the 

method on a planar manipulator indicate that the method is robust with respect 

to noise for both collision feature identification, as well as feature localization. 

139 



Chapter 5 

Trajectory Planning Experiments 

In this chapter we will describe a set of experiments which demonstrate the appli

cation of our methodology to practical problems. To show the applicability of the 

method to a variety of domains, we have chosen two very dissimilar domains: a 

locomotion task involving a 4-legged robot [RP97], and a pick-and-place task with 

a Puma 650 manipulator [RP99]. The locomotion task is an excellent candidate for 

the method since it shows the ease with which static stability and reachability con

straints can be expressed in LC. In addition, since there are 12 actuated degrees of 

freedom, LC provides a natural means of programming the robot. While there are 

a large number of actuated degrees of freedom, since we consider only translations 

of the body, and due to the positional constraints, the configuration space of the 

robot is C = K .̂ The Puma 560 example deals with a larger number of degrees of 

freedom; we include it to show the method's ability to deal with higher dimensional 

problems. In addition, the simplicity of the task facilitates the interpretation of 

trajectories and their degree of fault tolerance. 

140 



5.1 Fault Tolerant Locomotion 

The work of fault tolerant locomotion was presented in [RP97], and concerns a 

4-legged, spherically symmetric robot, called the 4-Beast, the first of a family 

of robots called Platonic Beasts, developed at UBC. The interested reader is 

encouraged to consult [PBR95a, PBR95b, PBR94] for a detailed description of the 

robot and prior work. 

There were two main reasons for constructing the 4-beast. First we hoped 

that the novel configuration of the robot would give new insights on general loco

motion, as well as allow the investigation of new gaits. Secondly, we were interested 

in the potential increase in fault tolerance that the spherically symmetric construc

tion would allow. Since it is widely believed that legged robots are well suited for 

rough or unknown terrain, it is hoped that an increased ability to circumvent or 

recover from tipping or falling would increase the utility of legged robots in these 

situations. 

People have been interested in legged robots from the early 1960s, as well as 

an increased interest in mobile robotics in general (for surveys see [CW90, Rai84, 

Rai86, SW89]). Inspired from biological perspectives on locomotion, the arrange

ment of the legs is typically modeled after insects and mammals [Fer93, Bro89]. 

In addition, knowledge obtained by observing animals is incorporated into the 

locomotion algorithms. As a byproduct of wanting to reduce the total energy ex

penditure, legged robots are designed to have a relatively small range of preferred 

orientations (there is evidence for this in nature as well). As a result they are sus

ceptible to toppling. Due to the unique spherical symmetry of the 4-beast, there is 

141 



no preferred orientation, and hence it is hoped the robot will be much more robust 

when operating in rough terrain. 

5.1.1 The 4-Beast 

The 4-Beast was the first member of a family of robots called "platonic beasts", 

which are spherically symmetric, high degree of freedom robots with multi-purpose 

limbs. These robots are constructed by attaching a kinematic chain, i.e., a limb, 

at each vertex of a spherically symmetric polyhedron. The polyhedron can be one 

of the five Platonic solids — hence the name of the family; however, robots based 

on other spherically symmetric polyhedra such as the Archimedian polyhedra are 

included in this family as well. A sketch of the first two members of this family, 

the 4-beast generated by the tetrahedron, and the 8-beast generated by the cube, 

are given in Fig. 5.1, 

Figure 5.1: Examples of platonic beasts. The figure sketches the 4-beast, with 
RRR limbs placed at the vertices of a tetrahedron and an 8-beast with limbs at 
the vertices of a cube (adapted from [PBR94]). 

A prototype of the 4-beast is depicted in Fig. 5.2. The prototype was con

structed using an octahedron and taking the center of every other face as the vertex 

of a virtual tetrahedron. The octahedron allows each face to serve as either a mount 

142 



for the limb, or as a mount for the embedded micro-controller and electronics. 

Figure 5.2: Prototype of 4-beast. The robot has 4 limbs, each with 3 revolute 
joints, for a total of 12 actuated degrees of freedom. 

A key benefit of the spherical symmetry of limb placement is robustness 

with respect to toppling. This is particularly important for locomotion on rough 

terrain where it is difficult to measure terrain orientation, friction and integrity. 

On such terrain, it is not possible to guarantee toppling avoidance. Even if there 

is no physical damage to the robot after toppling, most legged robots may not 

be able to recover since the limb placement is specialized for operation in a small 

range of body orientations and the robot can land on its "back". The platonic 

beast design, on the other hand, has no direction specialized as the "up" direction, 

as can be seen from the rolling gait. A statically stable foot placement is available 

in all orientations of the body in three dimensions, allowing the robot to recover 

from a topple. We are not aware of any other robot with this ability. 

In addition to the symmetry, each of the legs are identical to one another 

143 



allowing the substitution of one leg for another in the event of a leg actuator failure. 

Each leg is controlled separately by a dedicated Motorola M68332 micro-controller, 

increasing the ease with which a leg may be substituted for another. This advantage 

is particularly relevant for beasts with larger number of legs such as the 8-beast, 

where, if a limb were to fail, the body could be rotated to a configuration where 

the defective limb was not needed for locomotion. 

5.1.2 Rolling Gait 

Provided the relative lengths of the limbs as compared to the size of the body allows 

the beast to place all four limbs on the ground, the beast will be capable of the 

crawl or statically stable creeping gaits [MF68]. However, the novel construction of 

the robot gives rise to a new gait, termed a Rolling gait [PBR94]. The rolling gait 

is composed of a set of isomorphic steps called tumbles. A canonical tumble-step 

is depicted in graphic simulation in Fig. 5.3. 

5.1.3 4-Beast Design 

Due to the modular design of the links it is possible to configure the legs in a variety 

of ways, as well as changing the link lengths. Before the gait could be constructed, 

it was first necessary to compute the design parameters which permitted the best 

gait given the requirements of static stability and maximum torque limits. To this 

end, a simulator was developed which allows the user to specify the mass and size 

of the body, and the leg geometry [PBR94]. The user can compose a candidate 

tumble trajectory, and verify that the torque and static stability constraints are 

144 



Figure 5.3: A simulation of a canonical tumble-step. We start in the initial config
uration given by (a), and rotate the body counter-clockwise. The top leg replaces 
the rightmost leg as a a support leg, bringing the rightmost leg to rest at (h) at 
the top. (adapted from [PBR94]). 

145 



not violated. An image of the 4-beast simulation is given in Fig. 5.4. 

Figure 5.4: A simulator, running on a SGI workstation, of the 4-Beast. The design 
verification involves ensuring static stability and maximum torque requirements 
are satisfied throughout the trajectory. 

5.1.4 Specification of the Tumble Step 

The task of generating a canonical tumble-step has been investigated in [PBR95b], 

and is illustrated in Fig. 5.5, however the trajectory was not chosen according to 

any fault tolerance criteria. 

To compute a fault tolerant tumble-step for the 4-beast, consider an idealized 

4-beast, depicted in its initial configuration in Fig. 5.6. For the purposes of the 

specification, we will label the feet as L,R,T and B meaning the "left", "right", 

"top" and "back" feet respectively, as indicated in Fig. 5.6. We will let the edges 

of the tetrahedron, as well as the link lengths for each leg, be of unit length. This 

means that the workspace of each leg is a sphere of radius 2 units centered about 

146 



Figure 5.5: Canonical tumble with 4-beast prototype up a 20 degree slope (taken 
from [PBR95b]). 

the vertex to which the leg is attached. Furthermore we will assume that the foot 

positions for the left, right and back foot are given by p \ p ^ and p^ respectively, 

as depicted in 5.6, with 

The position of the transfer foot is 

p' = *(o .^ .o) ' . 

The parameter 0 determines the size of the support triangle. The foot placement 

was chosen to lie on an equilateral triangle since this maximized the size of the 

feasible configuration space, as well as simplifying the kinematics. Also, using 

a tumble with equilateral triangles allows one to construct a path with a series 

of isomorphic steps, where each step is generated from a canonical tumble by a 

relabeling of the limbs, and a fixed rotation about the body's center of mass. The 

goal of the tumble-step is to move the body in the (—y)-direction, allowing the 

robot to place the top leg at position p"*. Each step consists of a translation of the 

body, followed by a rotation at the end of the step to reorient the body. 

If we are free to position and orient the body with three feet placed on the 

147 



p . 

V 

Back Support 
Polygon 

Front Support Polygon 
Transfer foot 

Figure 5.6: Starting configuration for a tumble-step for an idealized 4-beast. 

ground, then the configuration space of the robot is 

X S0{3) X T 12 

for a total of 18 degrees of freedom. The constraint that the feet must remain fixed 

at positions p^, p^ and p^ provides us 9 constraints leaving 9 remaining degrees of 

freedom. To simplify the visualization of the resulting trajectories, we will consider 

only translations of the body, and can therefore take C = E^ with 

denoting the position of the center of mass of the robot's body. Fixing the feet 

positions means that the joint angles for each of the support legs can be determined 

directly from the body position, with at most 4 distinct solutions for each leg. 

Visualizing the trajectory of the robot in this reduced configuration space is made 

much easier. 

148 



To ensure that we remain statically stable, we must ensure that the center of 

mass of the robot, when projected into the a;y-plane, lies in one of the two support 

triangles, 

Ap^pV, or Ap^pV-

We can write the static stability constraint corresponding to the support triangle 

Ap-'^p^p^ as the conjunction of three constraints: 

3 

where /ii,i(q,i) = q x ( p ^ —P^)-k, (5.2) 

hiM^t) = q x ( p 3 - p 2 ) . k , 

hiM,t) = q x ( p ^ - p ^ ) - k , 

and k denotes the unit vector in the positive ^-direction. Similarly for the support 

triangle Ap-'^p'*p^, the static stability constraint is 

3 

1=1 

where /i2,i(q, t) = q x (p^ - p-̂ ) • k, (5.3) 

^2,2(q,t) = q x ( p 2 - p 4 ) . k , 

h2,3{q,t) = q x ( p i - p 2 ) . k . 

In addition to the stability requirement, we must also ensure that the robot 

is able to reach each of the feet position. For each foot position p ' the reachability 

constraint is given by 

gp'{q,t) = ( V < 0 ) ' (5-4) 

149 



where hpi p ' - q - ( < / . - ! ) 

2 

- 1 
2x/3 

\ 271 / 

- 2 , (5.5) 

Next we must define a driving constraint which forces the trajectory of the 

robot in the (—y)-direction. This is given by the constraint function 

9d = {hd < 0), 

hd,{q,t) = -yo + y + t, 

yo = 0.2165. 

(5.6) 

This ensures that the robot moves from its initial position of y = yo at a rate of 

at least one unit length per unit time. The choice for the value yo was made to 

correspond to the decomposition of the feasible configuration space (discussed in 

Section 5.1.5). 

Lastly, we must also ensure that the robot does not collide with the ground, 

which is accomplished with the following height constraint: 

9h 

hh{q,t) = 

{hh < 0), 

1 

2^6 z. (5.7) 

Using the above constraint predicates, the specification is: 

G = [gdAQh^ (5.8) 

{{gpip2p3 A gp, A 5fp2 A ppg) V {gpip4p2 A gp, Agp.AgpJ)). 

This ensures that the robot is in one of the two support triangles, can reach each 

of the three foot positions corresponding to the support triangle, and continues to 

move in the (—y)-direction. 

150 



5.1.5 Decomposi t ion of ^ C T 

Next we performed a uniform decomposition of the valid space, defined by Eq. 5.9, 

in which each of the three dimensions was subdivided into 8 intervals. This yielded 

56 valid cells, depicted in Fig. 5.7. 

0.50 X 

Figure 5.7: Two views of the 56 valid cells of the configuration space for the 4-beast. 

5.1.6 Computing the Measure of Fault Tolerance 

When computing the kinematic effects of a fault, we must consider the kinematic 

mapping of/Cf23 and /Cf42, where 

/C, : T ^ ^ C . (5.9) 

which maps a set of 9 joint angles, corresponding to the three supporting legs, into 

a robot position (x, y, z) € C. For configurations q which make use of support 

151 



triangle Ap-^p^p^ we use JC^i^, and for configurations using Ap-^p^p^ we use /Cf42. 

The inverse kinematic mapping is not unique, but gives at most four leg solutions 

for each body configuration. 

In computing the fault tolerance measure for each of the 56 cells, we con

sidered 12 faults, each corresponding to the immobilization of a single actuator of 

the robot. To compute the fault tolerance measure, longevity, we took the center 

point of each cell, and found the trajectory corresponding to the optimal recovery 

motion. The optimal recovery motion is a trajectory from the center of the cell 

to the configuration in the reduced order derivative with the largest utility. This 

trajectory exists in the configuration space of the reduced order derivative, a two 

dimensional sub-manifold of C. This trajectory is the optimal recovery motion 

for the fault. A gradient descent method was used to find this recovery motion 

[PTTF92]. The total number of constrained optimization problems solved was 

56 X 12 = 672. 

Given the values of 

L{vi,ujj), z = l , - -- ,56, j = l , --- ,12, 

we can compute the average- and worst-case fault tolerance measures as: 

L^Yg{vk) = 7^ (Zl-^(^^'O) ' and (5.10) 

12 

LwoTst{vk) = mnL{vk,i). (5.11) 

Given that the units of L{vk,i) are time, we can compute the equivalent 

y-position, y{vk), using Eq. 5.6, setting h^ — Q and solving for y: 

Ve^vgivk) = Vo- -̂ avg(wfc), and (5.12) 

152 



yvjOTstyVk) — yo ~ Lworst\Vk)- (5.13) 

This allows us to interpret ya,yg{vk) as the closest position to the goal attainable, 

given a fault, averaged over the 12 failure modes of configuration Vk- The closest 

position to the goal attainable, given the worst possible fault, while in configuration 

Vk is given by ^worst(t'A;)-

5.1.7 Generating the Paths 

Using the fault tolerance performance measures of Lavg(t'A:) and L^iorstivk), a tra

jectory was constructed using the Sorted-Minimum path ranking. Let x^^s and 

ĵ worst (jenote the paths constructed using Z/avgĈ jt) and -Lworst(wfc) respectively. 

The initial point was taken as 

/ \ 

V 

(5.14) 

/ 

0 

0.2165 

0.9375 

No final position was specified, and was left as a free parameter for the path 

optimization. 

As a benchmark for performance we will compare the trajectories to a 

straight-line motion. The straight line motion in parametric form is: 

/ . \ / 

(5.15) 

0 

x'(t) = 0.2165 +t 

^ 0.9375 

This path is the shortest straight-line path passing through the centers of starting 

cell to the smallest attainable y-value. 

/ V 

0 

- 1 

-0.325 

\ 

153 



5.1.8 Evaluating Path Performance 

The results of the fault tolerant paths generated using Lavgl̂ fc) and I/worst (̂ Jt) are 

depicted with the straight-line motion in Fig. 5.8, as well as the âvg and yworst 

depicted in Fig. 5.9 and Fig. 5.10 respectively. 

z 
1 -

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 

0.1 
-0.05 

• X 

<^cr 

0 ^ 
0.05 

start 

0.2 

Figure 5.8: Fault tolerant trajectories of the 4-beast as computed using the Sorted-
Minimum path ranking and the fault tolerance measures I/avg(̂ fc) and I/worst ("̂ fc), as 
well as a straight-line motion for the same task. The straight-line motion, denoted 
x^, acts as a benchmark to gauge the fault tolerance of the resulting trajectories. 

There are two interesting features of the fault tolerant paths, given in 

Fig. 5.8, which are worth noting. First, the fault tolerant paths are consider

ably longer than the straight-line motion. The lengths of the trajectories in C are 

summarized in table 5.1. 

This indicates that the fault tolerant path was forced to move significantly 

154 



Path 
Straight-line 
-'^avg 

-^ worst 

Length 
0.607 
1.58 
1.60 

Table 5.1: Trajectory lengths for 4-beast experiment. 

away from the goal in order to ensure tolerance to faults along the path. The second 

feature is the departure of both the average- and worst-case fault tolerant paths 

from the straight-line motion. Both of these departures occurred at approximately 

the mid-point of the straight-line motion. This indicates that the region of the 

configuration space near the point of divergence has a relatively low measure of 

fault tolerance. We can verify that the measure of fault tolerance in this region 

was small by examining the values of âvg and ^worst in this region. 

To evaluate the degree of fault tolerance of each of the three paths, 20 

samples were taken along the trajectory such that the arc length between samples 

was equal. For each sample yavg and yworst was computed, as well as the y-positions 

for the straight line motion. The results are depicted in Fig. 5.9 and Fig. 5.10. 

Comparing the average-case fault behaviors of yavg(x^^ )̂ against the corre

sponding straight-line motion yavg(x^) we see that the longevity path consistently 

performs much better. If we were to define "success" as reaching a y value of say, 

—0.35, we would see that over half of the longevity path would be 1-fault tolerant 

on average. 

Comparing the relative improvements of the x^^^ and ĵ .worst ̂  ^g compared to 

the straight-line motion, we see that the worst-case fault tolerant path has a larger 

relative improvement. The larger relative improvement is likely due in part to the 

155 



S3i 

yavg vs. arc length 
T 

0.4 0.6 
Scaled arc length 

Figure 5.9: Evaluating the fault tolerance of the trajectories. The closest point to 
the goal, given a fault, averaged over all 12 possible failure modes of a configuration. 
yavg(x^^ )̂ corresponds to points taken along the fault tolerant path, while yavg(x^) 
correspond to equivalent configurations taken along the straight-line path. 

156 



;35 

0.05 <iif 
yworst vs. arc length 

0 \ N 

-0.05 -

-0.1 -

-0.15 

-0.2 h 

-0.25 

-0.3 

-0.35 

-0.4 

>> 

>> 
VwOTSt 

y^^i^tl -<s-

<̂  

«>. 
^x>—o—^-^^-o-<t 

_L I I 
0 0.2 0.4 0.6 

Scaled arc length 
0.8 

Figure 5.10: Evaluating the fault tolerance of the trajectories. The closest point 
to the goal, given the worst-case fault over all 12 failure modes of a configu
ration. yworst(x™°'̂ '̂ *) corresponds to points taken along the fault tolerant path, 
while yworst(x )̂ correspond to equivalent configurations taken along the straight-
line path. 

157 



fact that the minimum path performance criteria was used which is better suited 

for computing worst-case paths than for average-case paths. 

5.2 Fault Tolerant Manipulation 

Computing a fault tolerant trajectory for a robot manipulator, first presented in 

[RP99], concerned a pick-and-place task performed on a Puma 560 manipulator. 

An example of such a task is given in Fig. 5.11, in which we are given an initial and 

final position in the workspace. We will assume that the positioning task ignores 

the orientation of the end-effector, hence W C M .̂ Since the manipulator has 5 

actuated degrees of freedom which effect the position of the end-effector (the 6**̂  

actuator performs a roll along the z-axis of the tool), the robot is kinematically 

redundant, with r = 5 — 3 = 2, orders of redundancy. 

ID 

Figure 5.11: Initial and final configurations for a pick-and-place task using a 
Puma 560 robot, (a) denotes the initial, and (b) the final configuration. The 
goal position is given by the small cube in the workspace of the manipulator. 

Despite the fact that there are two degrees of redundancy, the fault tolerance 

of configurations of the robot vary greatly. This illustrated in Fig. 5.12. The goal 

158 



position is given by the small cube, (a) and (b) are the same distance from the 

goal in joint space, but have very different fault tolerant capabilities. Taking the 

worst-case fault for (a) and (b), resulting in a frozen actuator, we compute the 

recovery motions which minimize the distances to the goal. The endpoints for the 

recovery motions of (a) and (b) are given by (c) and (d) respectively. We see that 

the recovery motion of (a) is able to get much closer to the the goal position as 

compared to (b). 

E ID 

C=±) 

(b) 
DD 

(d) 

Figure 5.12: Two competing configurations, (a) and (b) are two configurations at 
the same distance in joint space from the goal. Freezing the most critical-actuator 
for each we compute the optimal recovery motion to the goal (shown as the small 
cube). The endpoints for the recovery motions for (a) and (b) are given by (c) and 
(d) respectively. 

159 



5.2.1 Defining the Task 

The Denavit-Hartenberg parameters, for the Puma 560, simplified according to 

[McK91, p. 218-219], are given in table 5.2. 

Link 

1 
2 
3 
4 
5 
6 

Angle 
dn 
ei 
02 

03 
04 
0, 
Oe 

Displacement 
dn 

660.4 
149.5 

0 
432 
0 

56.5 

Length 
''n 

0 
432 

0 
0 
0 
0 

Twist 
^n 

+90° 
0° 

-90° 
+90° 
-90° 

0° 

Range (°) 

-160,160 
-225,45 
-45,225 
-110,170 
-100,100 
-266, 266 

Table 5.2: Denavit-Hartenberg parameters of Puma 560 manipulator. 

The forward kinematics relation is given as 

where p^(q) = Cil-CisdedS^ - S23{deC5 + d^) + I2C2C2] 

+5i {deSiSs + (^2), 

Pj/(q) - Si[-C2sd(iC4S5-S23{deC5 + di) + l2C2] + 

[^65455 + ^2] , 

Pz(q) = -S23deC4S5 + C23{deC5 + d4)+l2S2 + di, 

Ci = cos{qi), Si = sm{qi), 

Cij = cos{qi + qj), Sij = sm{qi + qj). 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

We will take the goal manipulator position as x^. To simplify the specifica

tion, as well as permitting a simple interpretation of the results, we will define the 

proximity of the end-effector as 

p r o x ( q ) = dj^^ (d^ax - I l ^puma(q ) " X^ (5.21) 

160 



where dmax is the farthest distance of any point in the workspace of the manipulator 

from the goal position x^. The range of prox(q) is the unit interval, and is at a 

maximum when the end effector is at the goal. We then define the task as a simple 

relation on the proximity: 

G = (^proxA^ji) (5.22) 

^prox = (/iprox < 0), 

/iprox(q,i) = t - p rox (q ) , (5.23) 

9JL = 91 e [-160°, 160°] A 92 e [-225°, 45°] A (5.24) 

93 G [-45°, 225°] A 94 e [-110°, 170°] A 

95 G [-100°, 100°]. 

The constraint gji ensures that the joint limits are enforced. Each interval 

constraint of the form 

Qi G [a, h] 

can be specified using two inequality constraints. The specification is constructed 

so that motion is completed in one time unit. The construction of the task allows 

us to interpret the safety measure L(q, w) in terms of the proximity prox(q'^) of 

the endpoint q'̂  of the recovery motion. 

5.2.2 Decomposition of the Configuration Space 

Since the only time-dependent constraint is Eq. 5.23, which is a simple linear 

function of t, we can omit the time-dimension of C and let 

C = C, 

161 



reducing the dimension of C from 6 to 5 dimensions. 

Taking the goal position x^ = (55, —430,1472), and taking d = 20, resulted 

in a total of 470,400 cells within the joint angle limits, each 18° on a side. Each cell 

is connected to all valid cells that share a face, thus each vertex has a minimum 

degree of 5, and a maximum degree of 10. The accessible portion of TCT is 

[-144°, 144°] X [-216°, 36°] x [-36°, 216°] x [-108°, 162°] x [-90°, 90°] (5.25) 
^ J- ' ^ V ' ^ V ' ^ J- ' ^ J- ' 

16 cells 14 cells 14 cells 15 cells 10 cells 

Trajectories were constructed using the center points of each of the cells 

through which the path passed. The initial configuration was taken to be 

q° = (171°, -171°, 27°, 153°, -27°)^, 

corresponding to a manipulator position of (101.6,155.7, 216.0)-^ measured in mm 

from the center of the base. The initial configuration is depicted in Fig. 5.11(a). 

The distribution of the utility values, util(wfc), and the fault tolerance mea

sure, L{vk) is given in Fig. 5.13. 

The recovery motions for each cell were computed for each of the 5 possible 

actuator faults at each cell. Each recovery motion was constructed by taking 69 

different slices through the discretized configuration space to form the RODs, as 

summarized in Table 5.3. The number of cells in each ROD varied from 29,400 

to 47,040 cells, depending on the failed actuator. The vertices of the ROD corre

sponded to 

F / = [v,\x] = k], k = l,---,d. (5.26) 

A fault tolerant trajectory was computed using the worst-case fault toler-

162 



35 
Distribution of util(T;fc) and L^oTst{vk), over 470,400 cells 

25 h 

20 

15 

10 

5 

0 

-

-

-

-

_ 

-

1 1 1 

(/J 

O 
^ 

1 

1 
util(vfc) 

-^worst('yfc) 

1 

1 r- -

1 

-

-

-

-

-^ 

-

0.2 0.4 ^ ^ 0.6 ^ ^ 0.8 
Value of util(wfc) or Lworst(̂ 'fc) 

Figure 5.13: Distribution of util(wA:) and L„oTst{i^k), taken as a percentage of the 
470,400 valid cells. 

Failed Actuator 
1 
2 
3 
4 
5 

Total 

# RODs considered 
16 
14 
14 
15 
10 
69 

# cells in each ROD 
29,400 
33,600 
33,600 
31,360 
47,040 

Table 5.3: A summary of the number of actuator failures considered, and the size 
of each ROD. 

163 



ance measure Lworst from the initial configuration to the goal position x^, passing 

through a total of 20 vertices. Let Pft represent this fault tolerant trajectory. 

For the sake of comparison, a joint-interpolated motion was also constructed 

from the initial configuration q*̂  to the goal. The joint-interpolated motion cor

responded to the smallest total displacement in configuration space. Let Pji be 

the list of vertices corresponding to this joint interpolated motion. Like the fault 

tolerant path Pft the joint interpolated motion passed through 20 vertices. The 

trajectories Pft and Pji are given in Fig. 5.14. 

To evaluate the fault tolerance of the two paths, the recovery motions for 

the worst-case fault for each vertex in both PpT and Pjj was computed. Fig. 5.15 

gives the endpoint of the optimal recovery motion for each of the worst-case fault 

scenarios. We can see that the fault-tolerant path is able to guarantee a significantly 

closer proximity to the goal for much of the trajectory. This is especially true for 

the vertices 10-19 of the trajectories, where the worst-case faults result in recovery 

motions that are still quite close to the goal. 

We can better evaluate the performance of the fault tolerant trajectory by 

examining the utility and longevity along the two paths. We can interpret the 

utility of the trajectory as the proximity to the goal position, and the longevity as 

the proximity of the recovery motion for the worst-case fault. Fig. 5.16 gives these 

values taken at each vertex of PpT and Pjj. 

We can see that the joint interpolated motion has a much closer proximity, 

especially through steps 1-14. We can compute the actual distance knowing d^ax = 

1826mm, so d(q) = (1 — prox(q))(imax- The proximity value (utility) at step 14 

164 



Vertex# 1 2 3 4 5 6 7 
(D Q (D ID ID (D C 

FT 

JI 
Vertex# 8 10 11 12 13 14 

FT 

JI 
I 

(D (D (D (D 

Vertex# 15 

FT 

16 17 18 19 20 

JI ii 

Figure 5.14: Trajectories of fault tolerant path, Pft, generated with L^orst measure, 
and joint interpolated motion Pji. 

165 



Vertex# 1 2 

FT 
Critical Act. 1 

f 

JI 
Critical Act. 1 

Vertex# 8 9 10 11 12 13 14 

FT 
Critical Act. 2 

JI 
Critical Act. 

f I' f (f 

Vertex# 15 16 17 18 19 20 

FT 
Critical Act. 

JI 
Critical Act. 1 1 

Figure 5.15: Endpoint configurations for optimal recovery motions for the worst-
case faults for both the fault tolerant path (FT) and the joint interpolated path 
(JI). 

166 



Fault tolerance measure Lworst and utility, for Pjt and Pjj 

0.95 -

0.85 

0.75 -

10 12 14 16 
Path Length 

Figure 5.16: Longevity and utility vs. path length for optimal and straight-line 
joint-interpolated motion. 

167 



is only 0.365 (1160mm) for PpT while Pjj has a proximity of 0.653 (634mm). 

While the proximity values of the joint-interpolated path are almost monotonically 

increasing, the values for PpT remain almost constant at 0.725 (502mm) for steps 1-

11. 

Examining the longevity values for both trajectories we see that the fault 

tolerant path is able to make considerable gains over the interpolated motion. The 

mean longevity value for Ppr path is 0.907, and for joint-interpolated motion it 

is 0.849 for a difference of 0.058 (106mm). This means that given a single fault 

occurring along the trajectory, the use of the fault tolerant path will, on average, 

result in a recovery motion which is 106mm closer to the goal. The maximum 

difference in the longevity values occurred at step 11 where the FT path had a 

longevity value which exceeded the JI path by 0.114. A significant feature of the 

longevity plots is that the longevity values remain at the optimal value of unity 

from step 14 to the end of the motion for PpT- The joint-interpolated trajectory 

on the other hand does not reach a longevity value of unity until step 19. This 

means that, even though the proximity at step 14 is only 0.365 at this point, it is 

guaranteed to reach the goal under any 1-fault scenario. From the plots of utility 

and longevity it is clear that the fault tolerant path is optimizing the longevity 

measure by choosing configurations which are not closer to the goal, but rather are 

safer. 

168 



Chapter 6 

Conclusions and Future Work 

We have described a comprehensive framework for programming robots to perform 

a task in a fault tolerant manner. The methodology encourages fault tolerant 

behavior at two levels: at the task-design phase by encouraging the designer to omit 

extraneous constraints which reduce the potential for fault tolerant operation, and 

at the trajectory generation phase by avoiding critical configurations. The method 

is unique in its ability to deal with robots which are not kinematically redundant 

with respect to arbitrary task, but which are sufficiently redundant so as to allow 

the task to be described as a set of "loose" constraints over time. 

Since LC allows us to model faults as additional constraints to the speci

fication, we can efficiently compute the effect a fault will have on the ability to 

complete the task, using the reduced configuration space of the robot. Faults 

not previously considered, such as the inclusion of additional obstacles, as well as 

dynamic information arising from sensors, can also be included using this formal

ism. An efficient algorithm for constructing a recovery motion for a fault has been 

169 



developed. 

We have developed a global measure of fault tolerance which can be used to 

identify configurations which are tolerable to faults. The fault tolerance measure 

examines a set of faults which may occur at a given configuration, and based on the 

optimal recovery motions for the given fault, ranks the configuration in its ability 

to continue to satisfy the task requirements. 

We have developed an algorithm which, given the fault tolerance measure 

evaluated at discrete points of the configuration space, produces a trajectory which 

maximizes the utility of the worst-case failure mode of the robot. The effectiveness 

of the methodology has been demonstrated in two experiments, as well as showing 

the applicability of the method to a number of domains. The resulting trajectories 

were analyzed with respect to their ability to sustain a fault, and we compared 

them to more traditional methods for accomplishing the same task. We have 

demonstrated that trajectories obtained using the LC method were able to achieve 

a much larger degree of fault tolerance than naive methods for the same task. 

The results of the experiments have shown that the fault tolerant paths are 

often less direct, making use of configurations that are safe and not necessarily 

close to the goal. In this sense they are trading oflf trajectory length for safety. 

A specific example of a seldom considered fault, the collision of the robot 

by an unknown obstacle, has been developed. We have shown that in addition 

to detecting the event, we are also able to recover the collision geometry. This 

information can then be used in a more intelligent choice for a recovery motion. 

170 



6.1 Future Work 

Thus far we have only considered fault scenarios involving a single actuator. The 

generality of modeling faults as additional task constraints would easily permit 

us to model two or more faults using the same formalism. For example, when 

computing combinations of two faults, to^ and tu ,̂ the valid portion of the reduced 

order derivative is simply 

Ĵ Cr̂ î 2 = {qeTCT\uj'{q)Auj\q)}. (6.1) 

While more computationally intensive, computing trajectories which are 2-

fault tolerant is possible, and would be an interesting avenue for future work. 

Since we can easily model the inclusion of obstacles, the methods could be 

easily adapted for computing trajectories in which an obstacle of known geometry, 

but unknown position, is introduced into the configuration space of the robot. 

In this sense we are able to model sensor uncertainty as a "fault" insofar as the 

construction of the trajectory is concerned. 

We have focused on the sorted-minimum path metric when producing the 

fault tolerant trajectories. This metric is conservative in that it considers the worst-

case failure mode of the trajectory. Exploring alternative path metrics, such as the 

mean fault tolerance measure along the trajectory, would be a practical extension 

of the methods proposed. 

171 



Bibliography 

[Alb72] Arthur Albert. Regression and the Moore-Penrose Pseudoinverse. Aca
demic Press Inc., New York, 1972. 

[Ang92] J. Angeles. The design of isotropic manipulator architectures in the 
presence of redundancies. In International Journal of Robotics Re
search, volume 11, pages 196-201, 1992. 

[BDG71] R. Boudarel, J. Delmas, and P. Guichet. Dynamic Programming and 
its Application to Optimal Control. Academic Press, New York, 1971. 

[BDG85] J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of robot 
manipulators. International Journal of Robotics Research, 4(3), 1985. 

[BNS91] A. Bar-Noy and B. Schieber. The Canadian traveler problem. In Proc. 
2nd Annual ACM-SIAM Sym. on Discrete Algorithms, pages 261-270, 
1991. 

[Bro83] R. A. Brooks. Solving the find-path problem by good representation 
of free space. IEEE Trans. Systems, Man, and Cybernetics, SMC-
13(3):190-197, 1983. 

[Bro89] R. A. Brooks. Robots that walk: Emergent behaviors from a care
fully evolved network. In International Conference on Robotics and 
Automation, pages 692-694, 1989. 

[BT84] C. Bonivento and A. Tonielli. A detection estimation multifilter ap
proach with nuclear application. In Proceedings of the 9th World 
Congress of IFAC, pages 1771-1776, Budapest, Hungary, 1984. 

[Bur89] J. W. Burdick. On the inverse kinematics of redundant manipulators. 
In International Conference on Robotics and Automation, pages 264-
270, Scottsdale, AZ., May 14-18 1989. 

[Can88] John F. Canny. The Complexity of Robot Motion Planning. MIT Press, 
Cambridge, MA., 1988. 

172 



[Gan93] J. F. Ganny. The Complexity of Robot Motion Planning. MIT Press, 
Cambridge, MA., 1993. 

[Gla78] R. N. Clark. Instrument fault detection. IEEE Transactions on 
Aerospace and Electronic Systems, 14(3), 1978. 

[GLR90] Thomas H. Gormen, Charles E. Leiserson, and Ronald L. Rivest. In
troduction to Algorithms (McGraw-Hill edition). McGraw-Hill, 1990. 

[GW84] Edward Y. Chow and Alan S Willsky. Analytical redundancy and 
the design of robust failure detection systems. IEEE Transactions on 
Automatic Control, AG-29(7):603-614, July 1984. 

[GW90] I. J. Cox and G. T. Wilfong, editors. Autonomous Robot Vehicles. 
Springer Verlag, 1990. 

[DBC+90] T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejiter, and M. Ran-
dazza. Coping with uncertainty in control systems for navigation and 
exploration. In AAAI-90, pages 1010-1015, 1990. 

[Don87] B. R. Donald. Error Detection and Recovery for Robot Planning with 
Uncertainty. PhD thesis, MIT Department of Electrical Engineering 
and Computer Science, Cambridge, MA., 1987. 

[Don89] Bruce R. Donald. Error detection and recovery in robotics. Springer-
Verlag, Berlin, 1989. 

[Fer93] Cynthia Ferrell. Robust agent control of an autonomous robot with 
many sensors and actuators. Master's thesis, MIT, 1993. 

[FL87] Pamela K. Fink and John C. Lusth. Expert systems and diagnostic 
expertise in the mechanical and electricaldomains. IEEE Transactions 
on Systems, man and Cybernetics, SMG-17(3):340—349, May/June 
1987. 

[Fra90] Paul M. Frank. Fault diagnosis in dynamic systems using analytical 
and knowledge-based redundancy - a survey and some new results. 
Automatica, 26(3):459-474, 1990. 

[GL89] G. H. Golub and C. F. Van Loan. Matrix Computations. The John 
Hopkins University Press, Baltimore, second edition, 1989. 

[GN87] Michael R. Genesereth and Nils J. Nilsson. Logical foundations of 
artificial intelligence. Morgan Kaufmann, Los Altos, GA., 1987. 

[GV89] Aleks GoUii and Pravin Varaiya. Hybrid dynamical systems. In IEEE 
29th Conference on Decision and Control, pages 2708-2712, Dec. 1989. 

173 



[HSL78] A. L. Hopkins, T. B. Smith, and J. H. Lala. Ftmp - a highly reliable 
fault-tolerant multiprocessor for aircraft. Proceedings of the IEEE, 
66(10):1221-1240, Oct. 1978. 

[Ise93] Rolf Isermann. Fault diagnosis of machines via parameter estimation 
and knowledge processing - tutorial paper. Automatica, 29(4):815-835, 
Jul 1993. 

[Jai91] A. Jain. Unified formulation of dynamics for serial rigid multibody 
systems. Journal of Guidance, Control, and Dynamics, 14(3):531-542, 
1991. 

[KH83] C. A. Klein and C. H. Huang. Review of pseudoinverse control for 
use with kinematically redundant manipulators. IEEE Transactions 
on Systems Man and Cybernetics, SMC-13(2):245-250, March/April 
1983. 

[Kir70] Donald E. Kirk. Optimal Control Theory: An Introduction. Electrical 
Engineering Series. Prentice-Hall, 1970. 

[KL88] B. J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale 
space. AI Magazine, 9(2):25-43, 1988. 

[KM91] C. A. Klein and T. A. Miklos. Spatial robotic isotropy. In IJRR, 
volume 10, 1991. 

[LA81] P. A. Lee and T. Anderson. Fault tolerance, principles and practice. 
Prentice Hall, Englewood Cliffs, NJ., second revised edition, 1981. 

[Lat91] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic 
Publishers, Boston, MA., 1991. 

[LG87] T. A. Linden and J. Glicksman. Contingency planning for an au
tonomous land vehicle. In International Joint Conference on Artificial 
Intelligence, pages 1047-1054, Milan, Italy, 1987. 

[Lie97] Liegois. Automatic supervisory control of the configuration and be
havior of multibody mechanisms. IEEE Transactions on Systems Man 
and Cybernetics, SMC-7(12):868-871, Dec. 1997. 

[LM94a] Christopher L. Lewis and Anthony A. Maciejewski. Dexterity opti
mization of kinematically redundant manipulators in the presence of 
failures. Computers and Electrical Engineering, 20(3):273-288, 1994. 

174 



[LM94b] Christopher L. Lewis and Anthony A. Maciejewski. An example of 
failure tolerant operation of a kinematically redundant manipulator. 
In International Conference on Robotics and Automation, pages 1380-
1387, 1994. 

[LMT87] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthe
sis of fine-motion strategies for robots. Internal Journal of Robotics 
Research, 3(l):3-24, 1987. 

[LP82] T. Lozano-Perez. Robot Motion: Planning and Control, chapter 6. 
MIT Press, 1982. 

[LR91] Rogelio Luck and Asok Ray. Failure detection and isolation of ultra
sonic ranging sensors for robotic applications. IEEE Transactions on 
Systems, Man, and Cybernetics, 21(l):221-227, 1991. 

[Mac90] A. A. Maciejewski. Fault tolerant properties of kinematically redun
dant manipulators. In International Conference on Robotics and Au
tomation, pages 638-642, 1990. 

[Mal91] Raashid Malik. Location by collision. In Proceedings of the IEEE In
ternational Conference on Systems, Man and Cybernetics, V. 2, pages 
877-882, 1991. 

[McK91] Phillip John McKerrow. Introduction to Robotics. Electronic Systems 
Engineering Series. Addison-Wesley Publishing Co., Reading, MA., 
1991. 

[MF68] R. B. McGhee and A. A. Frank. On the stability properties of 
quadruped creeping gaits. Mathematical Biosciences, 3:331-351, 1968. 

[MLS94] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathemat
ical Introduction to Robot Manipulation. CRC Press, Boka Raton, FL, 
1994. 

[MS85] Matthew T. Mason and J. Kenneth Salisbury, Jr. Robot Hands and 
the Mechanics of Manipulation. MIT Press, Cambridge, MA., 1985. 

[Nen89] D. N. Nenchev. Redundancy resolution through local optimization: A 
review. Journal of Robotic Systems, 6(6):769-798, 1989. 

[Pai91] Dinesh K. Pai. Least constraint: A framework for the control of 
complex mechanical systems. In Proceedings of the American Control 
Conference, pages 1615-1621. American Automatic Control Council, 
IEEE, 1991. 

175 



[PAK94] C. J. J. Paredis, W. K. Frederick Au, and P. K. Khosla. Kinematic 
design of fault tolerant manipulators. Computers and Electrical Engi
neering, 20(3), 1994. 

[PBR94] Dinesh K. Pai, Roderick A. Barman, and Scott K. Ralph. Platonic 
beasts: A new family of multilimbed robots. In International Confer
ence on Robotics and Automation, volume 2, pages 1019-1025, 1994. 

[PBR95a] Dinesh K. Pai, Roderick Barman, and Scott K. Ralph. Design and 
programming of symmetric platonic beast robots. In O. Khatib and 
J. K. Salisbury, editors. Experimental Robotics IV. Springer-Verlag, 
1995. Presented at the Fourth International Symposium on Experi
mental Robotics, June 30-July2, 1995. 

[PBR95b] Dinesh K. Pai, Roderick A. Barman, and Scott K. Ralph. Pla
tonic beasts: Spherically symmetric multilimbed robots. Autonomous 
Robots, 3(2):191-202, 1995. 

[PK94] C. J. J. Paredis and P. K. Khosla. Mapping tasks into fault tolerant 
manipulators. In 1994 IEEE International Conference on Robotics and 
Automation, volume 1, pages 696-703, 1994. 

[PK95] Christiaan J. J. Paredis and Pradeep K. Khosla. Global trajectory 
planning for fault tolerant manipulators. In 1995 lEEE/RSJ Interna
tional Conference on Intelligent Robotis and Systems, volume 2, pages 
428-434, 1995. 

[PK96] Christiaan J. J. Paredis and Pradeep K. Khosla. Fault tolerant task 
execution through global trajectory planning. Reliability Engineering 
and System Safety, 53(2):225-236, 1996. 

[PR95] Dinesh K. Pai and L. M. Reissell. Multiresolution rough terrain motion 
planning. In IEEE International Conference on Intelligent Robots and 
Systems (IROS), volume 2, Pittsburgh, PA., 1995. 

[PTTF92] William H. Press, Saul A. Teukolsky, William T. Tetterling, and Brian 
Flannery. Numerical Recipes in C: The Art of Scientific Computing. 
Cambridge University Press, second edition, 1992. 

[PY89] Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths 
without a map (extended abstract). In Proceedings of the 16th ICALP, 
Lecture Notes in Computer Science, No. 372, pages 610-620. Springer 
Verlag, July 1989. 

176 



[Qi94] Runping Qi. Decision Graphs: Algorithms and Applications to Influ
ence Diagram Evaluation and High-Level Path Planning Under Uncer
tainty. PhD thesis, University of British Columbia, 1994. 

[Rai84] M. H. Raibert, editor. International Journal on Robotics Research. 
MIT Press, 1984. Special issue on robot locomotion. 

[Raise] M. H. Raibert. Legged Robots that Ballance. MIT Press, 1986. 

[RP95] Scott K. Ralph and Dinesh K. Pai. Detection and localization of un-
modeled manipulator collisions. In IEEE International Conference on 
Intelligent Robots and Systems (IROS), volume 2, pages 504-509,1995. 

[RP97] Scott K. Ralph and Dinesh K. Pai. Fault tolerant locomotion for walk
ing robots. In 1997 IEEE International Symposium on Computational 
Intelligence in Robotics and Automation, Monterey, CA, pages 130-
137, Monterey, CA, July 10-11 1997. 

[RP99] Scott K. Ralph and Dinesh K. Pai. Computing fault tolerant motions 
for a robot manipulator. In International Conference on Robotics and 
Automation, pages 111-111, 1999. 

[Sal83] J. Kenneth Salisbury, Jr. Interpretation of contact geometries from 
force measurments. In Michael Brady and Richard Paul, editors. 
Robotics Research: the First International Symposium. MIT Press, 
Cambridge, MA., 1983. 

[SH85] G. Sahar and J. Hollerbach. Planning minimum-time trajectories for 
robot arms. In International Conference on Robotics and Automation, 
1985. 

[SPA99] Raymond J. Spiteri, Dinesh K. Pai, and Uri Ascher. Programming and 
control of robots by means of differential algebraic inequalities. IEEE 
Transactions on Robotics and Automation, 1999. To appear. 

[Ste91] R. F. Stengel. Intelligent fault tolerant control. IEEE Control Systems 
Magazine, 11 (4): 14-23, June 1991. 

[Str88] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace 
Jovanovich, Orlando, FL., third edition, 1988. 

[STT94] D. Sreevijayan, Sabri Tosunoglu, and Delbert Tesar. Architectures for 
fault-tolerant mechanical systems. In Proceedings of Mediterranean 
Electrotechnical Conference (MALECON) '94, pages 1029-1033, 1994. 

[SW89] Shin-Min Song and Kenneth J. Waldron. Machines that Walk: The 
Adaptive Suspension Vehicle. MIT Press, 1989. 

177 



[TM089] Shinji Takakura, Toshiyuki Murakami, and Kouhei Ohnishi. An ap
proach to collision detection and recovery motion in industrial robot. 
In Proceedings of the 1989 IEEE lECON, pages 421-426, 1989. 

[TSM83] R. H. Taylor, P. D. Summers, and J. M. Meyer. Ami: A manufactur
ing language. International Journal of Robotics Research, 1(3):19-41, 
1983. 

[Una83] Unamation INC. User's Guide to Val, 1983. 

[vdDP94] Kees van den Doel and Dinesh K. Pai. Constructing performance mea
sures for robot manipulators. In Proceedings of the 1994 International 
Conference on Robotics and Automation, pages 1601-1607, 1994. 

[Vis94] Monica L. Visinsky. Dynamic Fault Detection and Intelligent Fault 
Tolerance for Robotics. PhD thesis. Rice University, 1994. 

[VWC94] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro. New dynamic 
model-based fault detection thresholds for robot manipulators. In In
ternational Conference on Robotics and Automation, pages 1388-1395. 
IEEE, 1994. 

[WDHC91] Eugene Wu, Myron Difler, James Hwang, and J. Chladek. A fault tol
erant joint drive system for the space shuttle remote manipulator sys
tem. In International Conference on Robotics and Automation, pages 
2504-2509, April 1991. 

[Wen78] J. H. Wensley. Sift: Design and analysis of a fault-tolerant computer 
for aircraft control. Proceedings of the IEEE, 66(10):1240-1255, Oct. 
1978. 

[Yos85] T. Yoshikawa. Manipulability of robotic mechanisms. In International 
Journal of Robotics Research, volume 4, pages 3-9, 1985. 

[ZM95] Ying Zhang and Alan K. Mackworth. Hybrid Systems II, chapter Syn
thesis of Hybrid Constraint-Based Controllers, pages 552-567. Num
ber 999 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 
1995. 

178 



Appendix A 

Decomposition of TCT 

Computing the set of vertices 

V = {vi \Cell{vi) C TCT} , 

involves determining, for each cell, v^, whether there exists a point 

(q^t,)GCe^/K), (q\t,)^;^cr. 

We may first determine which cells are not in V by testing a number of 

points (q',ti) in each cell. If any point (q',ii) ^ TCT, then Vi is classified as 

invalid. For a rectangular decomposition we may test some or all of the corners 

of the rectangeloid of the cell's boundary. 

At this point we may do one of two things. First, we may classify as valid all 

cells which are not shown to be invalid using the above test, and rely on a separate 

verification phase where we ensure that recovery motions are feasible. Secondly, 

we may more accurately classify the cells by checking to see which of the cells the 

179 



boundary of TCT intersects. This process is described next. 

The boundary of TCT is a surface that is formed by combining portions of 

constraint function surfaces. These surfaces are of the form 

K = 0. (A.l) 

Determining whether the constraint surface of Eq. A.l passes through a 

given cell Vk requires solving a constrained optimization to find the root of hi 

in the cell's interior. While more sophisticated methods exist (see [PTTF92] for 

a survey), we utilized a simple gradient ascent method to find the root. If the 

constraint surface intersects the boundary of the cell we may still not infer that 

the cell Vk is invalid since the constraint surface need not correspond to a portion 

of the TCT boundary. 

Let H{k) denote the set of constraint functions for which intersect Cell{vkys 

boundary, 

H{k) = {hij eG\3q e CeU{vk), such that hij{q) = 0} . (A.2) 

Any cell v^ for which H{k) = 0 is obviously a valid cell. To determine 

which of the cells are valid that have one or more constraint functions intersect 

them requires that we look closer at the constraint surface. 

Suppose that g* = (q',ti) is a root of the constraint function hi, 

hi{q') = 0. (A.3) 

We can test to see if the point g* corresponds to a TCT boundary by com-

180 



puting the direction of the surface normal 57(9') G l""*"̂ , 

V^{q') = ^K{q'), (A.4) 

and finding a nearby point q^ 

q^ = q' + cfiM). (A.6) 

for some small e > 0. 

If q^ ^ J^CT then q^ is a boundary point, and the cell is classified as invalid. 

If (p G TCT then h may still form part of the valid-space boundary, but not at the 

point q^. 

If hi does form part of the boundary in Cell{vk), then there must exist a 

point q' which lies at the intersection of the hi = 0 surface, and another constraint 

surface 

hj = 0, hj G H{k). 

This is depicted in Fig. A.l. To find q' we must follow the hi = 0 surface 

to find the point where hj = 0. At q' we may again test to see if it is a boundary 

point using a test similar to Eq. A.6. 

181 



hj = 0 

hi = 0 

Tcr 
boundary 

Figure A.l: Computing whether a constraint surface forms part of the TCT bound
ary within a given cell. 

182 



Appendix B 

Computing the Optimal Recovery 

Motion for a Fault 

The following two algorithms are used to compute the optimal recovery motions for 

a fault. Section B.l describes the algorithm for computing the recovery motion for 

a single fault, with a single-source - the vertex in which the fault occurred. Given 

a restricted set of vertices corresponding to a fault scenario, the recovery motions 

can be computed for a set of source vertices simultaneously using the algorithm 

given in Section B.2. 

183 



B.l Computing the Recovery Motion for a Single 

Source Vertex 

The following algorithm finds the optimal recovery motion using a breadth-first 

search [CLR90]. During the execution we will construct an array 7r[i], which gives 

the vertex adjacent to Vi which is used in the recovery motion. Thus the recovery 

path for vertex Vi is given by: 

[vi,v^[il,v^[^li]],---,Vk] , where 7r[/c] == 0. 

The end of the recovery motion is denoted by 7r[A;] = 0. 

Algorithm B. l . Computing a recovery motion, Prm{vi,u>) for a vertex Vk-

RecoveryMotion(Set F of Vertex , Int A''̂ , Vertex Vk) 

/* Given a set of vertices F = ROD(a;), with Np = \F\, 

* compute the recovery motion for the fault u from vertex Vk 

V 
Var visited : Array [1 • • • Np] of Boolean 

TT : Array [1 • • • Np] of Vertex ; 

Q : FIFO Queue; 

1. For i = 1 to Np Do /* initialization */ 

Let visited[i] = False ; 

2. Let Ej - {cij € E \vi e F and Vj e F]; 

3. Let Tx[k] = 0; Let visited[A;] = True ; 

4. AddToFiFoQueue(g,Wfc); 

5. While (-.EmptyQueue(Q)) Do 

6. Let Vi = removeFromQueue(Q) 

7. For Each e^j e Ep Do 

184 



8. If ^visited [j] Then 

9. Let visited[j] = True ; Let 7r[j] = i; 

addToFiloQueue(t;j, Q) 

/* Find the largest utility of those visited /* 

10. Let Vm be largest utility vertex Vj with visited[j] = True ; 

/* Reverse the linked list {vm, u^rH, • • •, ̂ fc} */ 

11. Return ReverseLinkedList(m, TT); 

D 

The While loop of line 5 builds up a linked-list of vertices giving the path 

back to the source vertex Vk- Upon termination of the While loop we find the 

largest utility vertex, Vm, and reverse the path back to Vk to get the optimum 

utility recovery motion from vertex v^. We assume that the procedure to reverse 

the linked list in line 11 modifies the array 7r[]. 

B.2 Computing Recovery Motions for Multiple 

Source Vertices 

Algorithm B.2. Computing Multiple-Source Recovery Motions for a fault u 

AllRecoveryMotion(Set F of Vertex , Int Np) 

/* Given a fault LO for which F = ROD(a;), and |F | = Np, compute 

* the recovery motions for all Vi E F simultaneously. Store the 

* path in an array n[i]. 

V 
Var srt : Array [1 • • • Np] of Vertex ; 

path Jen : Array [1 • • • Np] of Int ; 

pathjutil : Array [1 • • • Np] of Real ; 

185 



n : Array [1 • • • Np] of Vertex ; 

1. Sort Vi G Fin decreasing util(wi) order and store in srtW; 

2. /* Initialize recovery-paths to be null */ 

For z = 1 to NF D O 

Let pathjutil[i] = util(t;i); 

Let pathJen[i] = 0; 

Let 7r[z] = 0 /* Null-path */ 

3. For A; = 1 to Â ^ Do /* Over vertices */ 

4. Let i — srt[k]; /* Vi is the largest utility not yet considered */ 

5. For Each j such that Vj e F and ej^i e E Do /* Over edges Cj^i */ 

6. If {path-util[i] > path-uUl[j]) or 

{{pathjutil[i] = path-util[j]) and 

{pathJen[j] > {pathJen[i] + 1))) Then 

7. Let 7r[j] = z; /* Using edge ê ĵ is better */ 

Let pathJen[j] = pathJen[i] + 1; 

Let pathjutil[j] — path-util[i]; 

8. Return 7r[]; 

D 

The algorithm proceeds as follows. First the vertices are sorted in descending 

order taking 0(A^irlog2 A^F) steps (line 1). Line 2 initializes the paths to be the 

empty path. At all times during the execution of the the For loop in line 3, 7r[] 

stores the best known utility paths of all edges considered thus far. Line 4 then 

considers each vertex Vi and each corresponding edge Cj^i in decreasing order of 

utility. 

186 



Appendix C 

Algorithms for Computing the 

Most Fault Tolerant Trajectory 

The following is a description of the algorithm for computing the sorted-minimum 

fault tolerant paths. The path comparison operator > is described in Section C.l. 

Fault tolerant paths are constructed using the algorithm in Section C.2. We give 

a proof of correctness of the algorithm in Section C.3. 

C.l Algorithm for Sorted-Minimum Path Com

parison Operator 

187 



We will assume that during the computation of the optimal paths, the array 

min[z] 

maintains the minimum performance measure perf(wj) which occurs in the currently 

best-known path from Vi, stored in n[i]. 

Algorithm C.l. Sorted-Minimum Path Comparison Operator > 

Var / * Global Variables */ 

Array mm[l • • • MAX-VERT] of Real ; /* min perf(x;i) */ 
path from vi 

Array 7r[l • • -MAXJVERT] of Vertex ; / * the current best-known paths */ 

Boolean path_comparison(Int i, Int j) 

/* Given two paths path p - {vi, z;̂ [i], u [̂̂ [i]], • • •} and p' = {vj,v„[j], v^i^y]], • • •}, 

Var Array perfJistl[l • --MAX-PLEN] of Real ; /* perfQ along p */ 

Array perfJist2[l • ••MAX.PLEN] of Real ; /* perfQ along p' */ 

1. If (min[i] < min[j]) Then Return False ; /* Distinct minimums */ 

2. If (min[z] > min[j]) Then Return True ; /* Distinct minimums */ 

/* We have identical minimum performance measures along p and p', 

3. Extract path p = {vi, v^^ii], f7r[7r[i]]}, placing perf{vj) in perfJistl[l, • • •, ni], 

let Ui be the path length. 

4. Extract path p' = {wj, t'Tr̂ ], W7r[7r[;]]}, placing perf(ui) in perfJist2[l, • • •, 7̂ 2], 

let 712 be the path length. 

5. Sort(perfJistl,7Zi); Sort(perfJist2, 722); 

188 



6. For k = 1 to min(ni,n2) Do 

If (perfJistl[A;] ^ perfJist2[A;]) Then 

Return (perfJistl[A;] > perfJist2[A;]); 

7. Return {rii < 77.2);' 

C.2 Computing Sorted Minimum Paths 

Algorithm C.2. Optimal Sorted-Miniumum Path 

SortedMinimumPaths(V, T r̂c, Vdst, E) 

/* Given a set of vertices, V, and edges, E, from graph of the 

* valid space TCT, and a measure of the performance, perf{vi) at 

* each vertex, compute the optimal Sorted-Minimum paths for each 

* source vertex Vg G Vgrc, to a destination vertex v^ 6 Vdst- */ 

/* Local Variables */ 

Var PriorityQueue Q; /* P.Q. sorted by > on paths of 7r[]. */ 

/ * Initialize all of the null-paths to from each destination vertex */ 

1. For Each ŵ  e F Do 

If Wj G ^dst Then 

Let 7r[i] = 0; 

AddToPriorityQueue((5, Wi, 7r[]); 

Else Let 7r[z] = _L / * Undefined path */ 

2. Let 5 = 0 

2. While (-EmptyPQ(Q)) Do 

189 



/* Get largest > path from Q */ 

3. Let Vi = RemoveMaxPQ(Q); 

4. Let S = S U {vi}; /* Path from vi is known optimal */ 

5. For Each Vj such that Cj^i e E Do 

6. Relax(?,j); 

Procedure Relax(Int i, Int j) 

r 
update the best known path from Vj. */ 

7. Let p be the path {vj, w,r[j], • • •, 'Wfc} 

8. Let p' be the path {wj, w,, U;r[i], • • •, ^̂ m} 

9. \i p'>p Then 

Let 7r[j] = i\ 

Let min[j] = min(perf(?;j),min[i]); / * Update path min. */ 

10. If 7r[j] = ± Then 

11. AddToPriorityQueue(Q,'yj,7r[]) / * New path - add */ 

Else 

12. ReHeapify((5, j ) ; / * -/Vew path from 7r[j] may 

* disturb ordering */ 

We denote the undefined path by setting 7r[i] = ± , and assume that any 

path is ranked higher (>) than any undefined path. The edge relaxation procedure 

takes a known optimal path from Vi, and updates the currently best known paths 

by considering the addition of the edge BJ^I. At line 6 of the algorithm, we check 

190 



to see if the currently best known path from Vj 

can be improved by using the path through the vertex Vi, 

obtained by prefixing the edge Cj^i to the path from Vi. This is illustrated in 

Fig. C.l. 

Currently 
best known path 
from V 

Considered Optimal path 
Edge e,-, f'̂ O"̂  ̂ ^ 

Figure C.l: Edge Relaxation on edge Cj^i 

The re-ordering operation given by "ReHeapify((5, i ) " of line 12 ensures 

that the heap maintains the property that each element of the heap is at least as 

large as each of its siblings. The re-ordering proceeds by swapping vertices in the 

heap with its parent, until the one storing the path Vj is at its proper location. 

Maintaining the heap structure is crucial for the efficient and correct execution of 

the algorithm. 

191 



c .3 Proof of Correctness of Sorted-Minimum Path 

Algorithm 

Before proving the correctness of the algorithm, we must prove some properties of 

optimal Sorted-Minimum paths. We will use the predicate 

optimal{p), 

to denote that a path p is optimal. 

Lemma C. l . 

Given a path 

and a suffix path r 

then: 

P = {Pi,P2,---,Pn}, Pi^V, 

r = {P2r--,Pn} 

optimal{p) =^ optimal{r). 

Proof: 

It suffices to show that 

-^optimal{r) =^ -^optimal{p). 

-'optimal{r) =^ 3a path s — {p2, • • •, Pn} ¥" P-, with s > r. 

192 



Since the addition of a common vertex pi to two paths cannot alter the Sorted-

Minimum path ordering, we can construct a path t which 

i ^ {Pl,P2,---,Pn} > {Pl,P2,---,Pn} =P 
V ' ^ V ' 
s r 

=> -'optimal{p). 

a 

Lemma C.2. 

Given a path p = {pi,P2, • • • ,Pn},Pi ^ V, then for all paths p' which are suffixes 

oip, 

VI < J < ( n — 1) optimal(p) => optimal(p'). 

Proof: 

Trivially by induction on the j using Lemma C.l. • 

Lemma C.2 shows that our Sorted-Minimum paths will exhibit the "principle 

of optimality" which is common for multistage decision problems of optimal control 

[BDG71]. 

Theorem C . l . Algorithm C.2 produces the set of optimal paths from each vertex 

in V to a vertex in Vjst-

Proof: 

The proof of correctness of the algorithm is performed by proving that at all points 

of the execution of the algorithm, the paths stored in 7r[i] for all Vi E S are optimal. 

193 



By induction on 5, since a new vertex Vi is added at each iteration of the while 

loop, upon termination the optimal paths for all vertices in V are stored in 7r[]. 

The proof is similar in flavor to the proof of correctness of Dijkstra's algorithm 

given in [CLR90]. 

Base Case: 5 = 0. 

Trivially, the set of paths from vertices in S are optimal. 

Inductive Step 

Assume that the paths generated by the algorithm for all vertices Vi E S are 

optimal. We must demonstrate that the execution of lines 3-6 of the While loop 

will result in an optimal sorted-minimum path for vertex Vi, and thus optimal paths 

for {S U {vi}) are generated. 

The algorithm proceeds by finding a new edge ej^i crossing the boundary 

of S {i.e. Vj 0 S and Vi G S). as depicted in Fig. C.2. To prove that the edge 

chosen by the algorithm results in a new optimal path, we will assume that the 

path constructed by adding the edge Cj^i is not optimal, and show that this leads 

to a contradiction. Assume that the path produced by Algm. C.2 is given by p, 

and the optimal path is given by p' where 

p = {vi,Vj,VTr[j],v.^[^[j]],---,Vn}, a n d 

P' = {Vj',---,Vk,Vi,---Vm}-

194 



We will assume that 

/ 0 p >p, (C.l) 

and show that this leads to a contradiction. 

Figure C.2: Proof of correctness of Algm. C.2. The optimal paths for vertices in 
S have been computed, to which we add the vertex Vi. 

We know that Vji ^ S since if it were it would have been selected as the next 

highest sorted-minimum path in the priority queue. Since the vertices in Vdst are 

the first to be included into S, we know that v^ € 5. Therefore there must exist 

an edge ek,i which crosses the boundary of 5 with Vk ^ S and vi E S. 

By the properties of > it is obvious that 

{Vk,Vi,---,Vm} > {Vj'l,--- ,Vk,Vi,--- ,Vm}, (C.2) 

Since the priority queue selects a vertex not in S with greatest Sorted-

Minimum performance, we know that 

p= {Vi,Vj,---,Vn} > {Vk,Vi,---,Vm} > P- (C.3) 

195 



Since Eq. C.3 contradicts our assumption of Eq. C.l, p > p' and p is optimal. 

Since the algorithm produces the optimal path for Vi, the paths for (5 U {vi}) are 

optimal. 

At the termination it is apparent that S = V, and therefore the set of 

optimal Sorted-Minimum paths will be stored in 7r[]. 

n 

196 


