
Iceberg-cube Computation with P C Cluster

by

Yu Yin

B . S c , J i l i n U n i v e r s i t y , 1993

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r o f Sc i ence

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

April 2001

© Yu Y i n , 2001

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements
f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I f u r t h e r agree that permission f o r extensive copying of
t h i s t h e s i s f o r scholarly'purposes may be granted by the head of my
department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood that
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g ain s h a l l not
be allowed without my w r i t t e n permission.

Department of I / w r M W A v i

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date Od <o > ^°°<

Abstract

Iceberg queries constitute one of the most important classes of queries for O L A P
applications. This thesis investigates using low cost P C clusters to parallelize the
computation of iceberg queries. We concentrate on techniques for querying large,
high-dimensional data sets. Our exploration of an algorithmic space considers trade
offs between parallelism, compuation, memory and I /O. The main contribution of
this thesis is the development and evaluation of various novel, parallel algorithms
for C U B E computation and online aggregation. These include the following: one,
the C U B E Algorithm RP, which is a straightforward parallel version of BUC[BR99];
two, the C U B E Algorithm B P P , which attempts to reduce I /O by outputting re
sults in a more efficient way; three, the C U B E Algorithms A S L and A H T , which
maintain cells in a cuboid in a skip list and a hash table respectively, designed
to put the utmost priority on load balancing; four, alternatively, the C U B E Algo
rithm P T load-balances by using binary partitioning to divide the cube lattice as
evenly as possible; and five, the online aggregating algorithm P O L , based on A S L
and sampling technique, which gives back instant response and further progressive
refinement.

We present a thorough performance evaluation of all these algorithms in a
variety of parameters, including the dimensionality and the sparseness the cube, the
selectivity of the constraints, the number of processors, and the size of the data set.
The key to understanding the C U B E algorithms is in that one-algorithm-does-not-
fit-all. We recommend a "recipe" which uses P T as the default algorithm, but may
also deploy A S L or A H T in appropriate circumstances. The online aggregation
algorithm, P O L , is especially suitable for computing a high dimensional query over
a large data set with a cluster of machines connected by high speed networks.

Contents

Abstract »

Contents i"

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

2 Review 7

2.1 Iceberg Query 7

2.2 C U B E Operator 9

2.3 Iceberg-cube Computation 12

2.4 Sequential C U B E Algorithms 12

2.4.1 Top-down C U B E algorithms 13

2.4.2 Bottom-Up C U B E Algorithm 23

3 Parallel Iceberg-cube Algorithms 28

3.1 Algorithm R P 30

3.2 Algorithm B P P 30

3.2.1 Task Definition and Processor Assignment 32

i i i

3.2.2 Breadth-first Writing 34

3.3 Algorithm A S L . . 37

3.3.1 Using Skip lists • 38

3.3.2 Affinity Assignment 39

3.4 Algorithm P T 42

3.5 Hash-based Algorithms 45

3.5.1 Hash Tree Based Algorithm 45

3.5.2 Hash Table Based Algorithm 49

4 Experimental Evaluation 52

4.1 Memory Occupation 52

4.2 Experimental Environment 54

4.3 Load Distribution 55

4.4 Varying the Number of Processors 57

4.5 Varying the Problem Size 58

4.6 Varying the Number of Dimensions 60

4.7 Varying the Minimum Support 61

4.8 Varying the Sparseness of the Dataset 63

4.9 Summary 65

4.9.1 Recipe Recommended 65

4.9.2 Further Improvement 66

5 Online Aggregation 67

5.1 Selective Materialization 67

5.2 Online Aggregate from a Raw Data Set 68

5.3 Parallel Online Aggregation 69

5.3.1 Data Partitioning and Skip List Partitioning 69

5.3.2 Task Definition and Scheduling 70

5.4 Exerimental Evaluation 74

iv

5.4.1 Varying the Number of Processors 74

5.4.2 Varying the Buffer Size 76

6 Conclusion 78

Bibliography 80

v

List of Tables

1.1 Key Features of the Algorithms 4

2.1 Example relation R 8

5.1 Task Array for 4 Processors 70

vi

List of Figures

2.1 Iceberg Query 8

2.2 C U B E Operation on Relation S A L E S [8] . 10

2.3 Cube in Multi-dimensional Array Format [8] 11

2.4 Lattice and Processing Trees for C U B E Computation [4] 14

2.5 A n Example of 4-Dimensional Lattice for Algorithm PipeSort [2] . . 16

2.6 A n Example of Plan and Pipelines for Algorithm PipeSort [2] 17

2.7 PipeHash on a Four Attribute Group-by [2] 19

2.8 Examples for PartitionedCube and MemoryCube Algorithms [14] . . 21

2.9 A Skeleton of B U C 25

2.10 B U C Partitioning 26

3.1 A Skeleton of the Replicated Parallel B U C Algorithm 31

3.2 Task Assignment in Algorithm R P 31

3.3 Task Assignment in B P P 33

3.4 Depth-first Writing vs Breadth-first Writing 34

3.5 A Skeleton of the B P P Algorithm 35

3.6 I /O comparison between B P P (Breadth-first writing) and RP(Depth-

first writing) on 9 dimensions on a dataset with 176,631 tuples, input

size is 10Mbyte and output size is 86Mbyte 36

3.7 Pictorial Description of Steps Involved in Performing an Insertion [22] 38

3.8 A Skeleton of A S L 40

vi i

3.9 Binary Division of the Processing Tree into Four Tasks 43

3.10 A Skeleton of P T 44

3.11 Frequent Itemsets and Strong rules for a Bookstore Database [20] . . 46

3.12 Subset Operation on the Root of a Candidate Hash Tree [23] 47

3.13 A Skeleton of A H T 50

4.1 Load Balancing on 8 Processors 56

4.2 Scalability 57

4.3 Results for varying the dataset size 59

4.4 Results for varying the Number of Cube Dimensions 60

4.5 Results for varying the minimal support 62

4.6 Results for varying the sparseness of the dataset 64

4.7 Recipe for selecting the best algorithm 65

5.1 Tasks Assignment in P O L 71

5.2 A Skeleton of the P O L Algorithm 73

5.3 P O L ' s Scalability with the Number of Processors 75

5.4 Scalability with Buffer Size 77

vi i i

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Alan Wagner, and
professor Dr. Raymond Ng, for helping me in carrying out this research project
and for reading the manuscript of my thesis and offering their valuable comments.
I also would like to thank Kirsty Barclay for reading the manuscript of my thesis
and providing me with her helpful comments.

Y u Y I N

The University of British Columbia
April 2001

ix

Chapter 1

Introduction

As computing and the Internet advance, we see a massive increase in the raw data

available to institutions, corporations, and individuals. For example, large numbers

of radiological images have been generated in hospitals and immense product and

customer databases have been accumulated [1]. Extracting meaningful patterns

and rules from such large data sets is therefore becoming more and more important.

In this context, On-line Analytical Processing (OLAP) has emerged as a powerful

tool for data analysis. In decision support systems, O L A P enables analysts and

managers to obtain insight into data. By interactively posing complex queries, they

can extract different views of data.

In many O L A P applications, aggregation queries constitute a large percent

age of the computation. Many of these queries are only concerned with finding

aggregate values above some specified threshold. We call this kind of query "iceberg

queries". Query results consisting of above-threshold aggregate values are typically

small compared to the total input data (the iceberg).

Through Structured Query Language (SQL) aggregate functions and the

G R O U P B Y operator, O L A P applications can easily produce aggregates for one

group-by, however, most applications need aggregates for a set of group-bys in order

to gain more insight into the data. This necessitates generalization of G R O U P B Y

1

operator. The C U B E operator, defined by Gray et al [8], provides this generaliza

tion. It computes aggregation for every possible combination of a set of specified

attributes. For instance, if C U B E operator is applied on 2 attributes, A and B,

then the aggregates from G R O U P B Y on all, G R O U P B Y on A , G R O U P B Y on B

and G R O U P B Y on A B will be returned together. The computation introduced by

the C U B E operator is huge, because for d specified attributes, 2d G R O U P BYs are

computed. Furthermore, In each cuboid, there are also numerous cells, or partitions,

computed. In C U B E terminology, output for an n-attributes G R O U P B Y is called

an n-dimensional cuboid, also called an n-dimentional group-by. When the C U B E

operator is employed to answer a set of iceberg queries, we call it an "iceberg-cube".

In this thesis, we investigate the algorithms for answering iceberg queries, es

pecially for iceberg-cube computation. Recently, several algorithms have been pro

posed, including the PipeSort and the PipeHash algorithms proposed by Agrawal et

al. [2], the Overlap algorithm proposed by Naughton et al [21], the PartitionedCube

algorithm proposed by K . Ross and D . Srivastava [14] and the Bottom-Up algorithm

(BUC) proposed by Beyer and Ramakrishnan [4]. A l l these algorithms except B U C

are general C U B E computation algorithms, in the regard that they do not specifi

cally target iceberg-cube computation. They proceed in a top-down fashion, that is,

computing from more dimensional group-bys to less dimensional group-bys. Many

of them try to utilize previous sorting in the top-down traversal. B U C provides an

other efficient solution, specifically for threshold-set iceberg queries. It proceeds in

a bottom-up fashion, trying to prune tuples which do not satisfy threshold as early

as possible to reduce computation. We will discuss these two kinds of algorithms in

more detail in Chapter 2 .

We based our work on the algorithms mentioned above, however, we were

interested in providing parallel solutions. The previous C U B E algorithms mainly

proposed for running on stand alone machines were developed to execute on a single

processor, so-called sequential algorithms. In this thesis, we propose several par-

2

allel algorithms for answering iceberg queries, and promote the benefits of using

distributed computing platforms to solve problems. Our underlying architecture is

a dedicated cluster of P C s . W i t h elegant parallel algorithms, these machines have

the potential to achieve the performance of massive parallel machines at a much

lower cost. We focused our work on practical techniques that could be readily im

plemented on low cost P C clusters using open source, L i n u x and public domain

versions of the M P I message passing standard. -

To improve the response time of iceberg .queries, two different solutions are

explored: precomputing and online querying.

Precomputat ion is a common technique used by many O L A P applications.

Usually, precomputation computes a C U B E operator, extract ing multiple aggregates

and saving the results on disks. It supports instant response if the precomputed re

sults match a user's queries. Towards efficient iceberg-cube precomputation wi th

P C clusters, this thesis explores different trade-offs between parallelism, computa

tion and I / O . Assuming input data sets fit in main memory on each machine of the

cluster, we developed several novel, parallel algorithms for iceberg-cube computa

tion and give a comprehensive evaluation in this thesis. Here is a summery of the

parallel algorithms:

• A lgo r i thm R P (Replicated Parallel B U C) , is a straightforward parallel version

of B U C . It is simple and introduces litt le overhead above its sequential version.

However, algori thm R P is poor in dis tr ibut ing tasks and balancing workload.

In an attempt to achieve better load-balancing, algorithm B P P (Breadth-first

writing, Partitioned, Parallel B U C) , was developed. B P P differs from R P in

two key ways. F i r s t , the dataset is range-partitioned and distributed other

than replicated in R P ; second, the output of cuboids is done in a breadth-

first fashion, as opposed to the depth-first wri t ing in R P and B U C . Table 1.1

summarizes the key features of the algorithms.

• Though B P P is better than R P concerning load-balancing, this improvement

3

Algorithms Writing Load Relationship Data
Strategy Balance of cuboids Decomposition

R P depth-first weak bottom-up replicated
B P P breadth-first weak bottom-up partitioned
A S L breadth-first strong top-down replicated
P T breadth-first strong hybrid replicated

Table 1.1: K e y Features of the Algor i thms

is l imited when the raw data set skews on some attributes. Th is is pr imari ly

because the task granularity of R P and B P P is relatively large and uneven.

To consider load balancing as the utmost priority, algori thm A S L (Affinity

SkipList) is developed. In A S L each cuboid is treated as a task. A S L uses an

affinity task scheduling strategy to seek the relationship among tasks assigned

to the same processor and maximize sort sharing among them. Thus A S L

resembles to the top-down algorithms. A S L is also unique in the regard that

it maintains the cells of a cuboid in a different da ta structure, namely a skip

list.

• A lgor i thm P T (Partitioned Tree) is a hybrid algori thm, combining both the

idea of pruning from B U C and affinity scheduling from A S L . It processes

tasks of slightly coarser granularity. The idea is to use binary part i t ioning to

divide the cuboids into tasks as evenly as possible, in order to make the load

well-balanced. The computation in each task proceeds in bottom-up fashion,

however, the task assignment is processed by affinity scheduling in a top-down

fashion.

• T w o other algorithms based on a hash tree and a hash table were also devel

oped. The implementation based on a hash tree used up memory too rapidly

that it fails to process large data set. The hash table based algorithm was im

plemented much like A S L , in terms of task definition and scheduling. However,

its performance is no better than A S L in most cases.

4

T w o questions natually arise at this point: one, which algorithm is the best;

and two, do we really need to know about all these algorithms? In considering the

first question, we present a thorough performance evaluation of all these algorithms

on a variety of parameters. The parameters include the dimensionality, the sparse-

ness of the group-bys, the selectivity of the constraints, the number of processors,

and the sizes of the data sets. W i t h respect to the second question, a key finding of

our evaluation is that when it comes to iceberg-cube computat ion with P C clusters,

it is not a "one-algorithm-fits-all" si tuation. Based on our results, we recommend a

"recipe" which uses P T as the default a lgori thm, but may also deploy A S L under

specific circumstances.

Pu t t i ng parallel iceberg-cube algori thmic development and evaluation aside

temporarily, we next consider the concept of " truly online". Precomputat ion can

answer users' queries instantly if the query pattern can be predicted. However, if

the threshold set by online queries differs from what the precomputation assumed,

precomputed cuboids can no longer be used to answer those queries. Therefore,

those queries have to be computed online. We posit a scenario that the input raw

data set no longer fits in main memory. Only wi th this precondition wil l the query

computat ion be large enough to necessitate applying parallelism. In the online

aggregation framework proposed and studied by Hellerstein, Haas and Wang, an

online query algori thm based on A S L was developed. Using the sampling technique,

a user's online query can be responded to instantly. A n d with more and more data

processed, the answer becomes more and more refined and accurate.

Integrating C U B E precomputation and online querying computat ion together,

this thesis gives a relative complete solution for the special problem domain: iceberg

query computat ion.

The outline of the thesis is as follows. Chapter 2 reviews key concepts and

the main sequential algorithms for iceberg-cube computat ion. Chapter 3 introduces

the various parallel algorithms we developed. Chapter 4 presents a comprehensive

5

experimental evaluation of these algorithms, and concludes with a recipe for pick

ing the best algorithms under various circumstances. Chapter 5 discusses online

processing. F ina l ly , a conclusion is given in Chapter 6.

6

Chapter 2

Review

The background material necessary for understanding the parallel algorithms to

be introduced in Chapter 3 is presented in this chapter. We first discuss iceberg

query, then the C U B E operator. A special C U B E operator, iceberg-cube, is intro

duced seperately. The last part of this chapter, Section 2.4 presents some sequential

algorithms for C U B E and iceberg-cube computat ion.

2.1 Iceberg Query

A n iceberg query is much like a regular aggregate query, except that it eliminates

aggregate values that fall below some specified threshold after it performs an ag

gregate function over an attr ibute or a set of attributes. The prototypical iceberg

query considered in this thesis is as follows for a relation R(targetl, target2, ...,

targetk, rest, aggregateField) and a threshold T.

S E L E C T targetl, target2,..., targetk, SVM(aggregateField)

F R O M R

G R O U P B Y targetl, targets,targetk

H A V I N G count (rest) > T
If the above iceberg query is applied to the relation R in Table 2.1, with T

7

targetl target2 rest aggregate Field
Item Location Customer Sales

Sony 25" T V Seattle Joe 700
J V C 21" T V Vancouver Fred 400
Sony 25" T V Seattle sally TOO
J V C 21" T V L A sally 400
Sony 25" T V Seattle bob 700

Panasonic Hi -F i V C R Vancouver torn 250

Table '2.1: Example relation R

0 \P
Over huge data set

Cut off output by
setting threshold

Iceberg Query

The outpjt is
just the small
tip of the Icebeig

'SELECT A, B, C, COUNTT^
FROM R
GROUP BY A, B, C,

^HAVING COUNT!*) >= 2 j

Figure 2.1: Iceberg Query

= 2 and k = 2, the result would be the tuple <Sony 25" T V , Seattle, 2100>. We

notice that relation R and the number of unique target values are typically huge

(the iceberg), and the answer, that is, the number of frequently occurring targets,

is very small (the tip of the iceberg). This situation is pictured in Figure 2.1.

A n iceberg query becomes especially important when the amount of input

data is tremendous, since data analysts or managers can not possibly go through all

the detailed information within a huge data set. Usually, they only note frequently

occurring behaviors, which are typical ly more important than unusual occurrences.

8

In realistic data analysis, data analysts often execute multiple iceberg queries,

which G R O U P B Y on different number of dimensions. For example, they may want

to know more detailed information if the previous query returns too few results. Af

terward they might like to "dri l l -down" by G R O U P B Y on more attributes. O n the

other hand, if the previous query gives back too detailed and too much information,

they may like to "roll-up" by giving less G R O U P B Y attributes in the upcoming

query. A Generated report containing results from all those queries can be formu

lated in standard S Q L , but its representation is inconvenient. A s well as dri l l -down

and roll-up, some other frequently used queries including histogram and cross-tab

are also difficult to represent in standard S Q L [19].

2.2 C U B E Operator

To exceed the l imi ta t ion posed by the standard S Q L , as mentioned in Section 2.1, the

C U B E operator was introduced in [8] by J . Gray et al . It generalizes the standard

G R O U P B Y operator to compute aggregates for every combination of G R O U P B Y

attributes. For instance, consider the following relation S A L E S (Model , Year, Color ,

Sales), shown in the lefthand table in Figure 2.2. W h e n C U B E is on R wi th G R O U P

B Y attributes M o d e l , Year and Color , aggregate on attr ibute Sales (S U M in this

case), the result returned wil l contain the sum of Sales for the entire relation (i.e. no

G R O U P B Y) , for each i tem: (Model) , (Year), (Color) , for each pair: (Model , Year) ,

(Model , Color) , and (Year, Color) , and finally for each (Model , Year, Co lo r) . The

result is shown in the righthand table in Figure 2.2. Figure 2.3 shows the C U B E in

a multi-dimensional array format.

In O L A P terminology, the G R O U P B Y attributes are called "dimensions",

the attributes that are aggregated are called "measures", and one particular G R O U P

B Y , (e.g., (Model , Year)) , in a C U B E computat ion is called a "cuboid" or simply a

"group-by".

Three types of aggregate functions are identified in [8]. Consider aggregating

9

SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

Relation SALES

SELECT Model, Year, Color

SUM(Sales)

FROM SALES

CUBE BY Model, Year, Color

SALES
Model Year Color Sales
A L L A L L A L L 942

Chevy A L L A L L 510
Ford A L L A L L 432
A L L 1990 A L L ' 343
A L L 1991 A L L 314
A L L 1992 A L L 285
A L L A L L red 165
A L L A L L white 273
A L L A L L blue 339

Chevy 1990 A L L 154
Chevy 1991 A L L 199
Chevy 1992 A L L 157
Ford 1990 A L L 189
Ford 1991 A L L 116
Ford 1992 A L L 128

Chevy A L L red 91
Chevy A L L white 236
Chevy A L L blue 183
Ford A L L red 144
Ford A L L white 133
Ford A L L blue 156
A L L 1990 red 69
A L L 1990 white 149
A L L 1990 blue 125
A L L 1991 red 107
A L L 1991 white 104
A L L 1991 blue 104
A L L 1992 red 59
A L L 1992 white 116
A L L 1992 blue 110

All Tuples in Relation SALES

C U B E of SALES on attributes Model,
Year and Color, where aggregate

attribute is Sales.

Figure 2.2: C U B E Operation on Relat ion S A L E S [8]

10

Aggregate

Sum

Group By
(with total)

By Color

R E D

W H I T E

B L U E Cross Tab
C h e v y Ford ByCobr

R E D
Sum W H I T E

B L U E

By Mike

The Data Cube and
The Sub-Space Aggregates

By Year

By Make & Year

ByCobr&Year

Sum1

t^ByMake&Cobr

By Cobr

Figure 2.3: Cube in Multi-dimensional Array Format [8]

a set of tuples T. Let {Si \ ii = 1. . . n} be any complete set of disjointed subsets of

T such that U; $ = T and (% Si = {}.

• An aggregate function F is distributive if there is a function G such that

F(T) = G{{F(Si) \ i=l,..«}). S U M , M I N and M A X are distributive with

G = F. C O U N T is distributive with G = SUM.

• An aggregate function JF is algebraic if there is an M-tuple valued function

G and a function H such that F(T) = H({G(Si) \ i = 1...»}.)., and M is

constant regardless of \T\ and n. A l l distributive functions are algebraic, as

are Average, standard deviation, M a x N , and MinN. For Average, G produces

the sum and count, and H divides the result.

• An aggregate function F is holistic if it is not algebraic. For example, Median

and Rank are holistic.

1 1

2.3 Iceberg-cube Computation

The basic C U B E problem is to compute all aggregates as efficiently as possible. Its

chief difficulty is that the C U B E computation is exponential with the number of

dimensions: for ci dimensions, 2d group-bys are computed. The size of each group-

by (cuboid) depends upon the cardinalities of its dimensions, possibly the product

of the G R O U P B Y attributes' cardinalities. When the product of the cardinalities

for a group-by is large relative to the number of the cells (partitions) that actually

appear in the cuboid, we say the group-by is "sparse". When the number of sparse

group-bys is large relative to the number of total number of group-bys, we say the.

C U B E is sparse. As is well-recognized, given the large result size of the entire C U B E ,

especially on sparse data set, it is important to identify subsets of interest.

Deriving from this background, the concept of an "iceberg-cube" was intro

duced in [4, 12].

the iceberg-cube was described as a variant of the C U B E problem, which al

lows us to selectively compute cells that satisfy a user-specified aggregate condition.

It is essentially a C U B E for iceberg queries. For example, an iceberg-cube is easily

expressed in SQL with the C U B E B Y clause:

S E L E C T A , B, C, SUM(X)

F R O M R where N is a count condition, called "min-

C U B E B Y A, B, C

H A V I N G COUNT(*) > N
imum support" of a cell, or "minsup" for short. In this thesis, we only discuss this

count condition; other aggregate conditions can be handled as well [4].

2.4 Sequential C U B E Algorithms

Al l C U B E algorithms uses a lattice view for discussion. Figure 2.4(a) depicts a

sample lattice where A , B, C and D are dimensions. Nodes in the lattice represent

12

group-bys (cuboids). The group-bys are labeled according to their G R O U P B Y

attributes. The edges in the lattice show potential computing paths. A l l of the

C U B E algorithms in fact convert this lattice into a directed processing tree. Each

node in a processing tree therefore has no more than one parent, because it is

computed only once from its parent or from the raw data set.

C U B E algorithms are classified into two categories according to their com

putat ion fashion. Algor i thms which follow paths from the raw da ta towards the

to ta l aggregate value are called "top-down" approaches. Algor i thms which compute

paths in the reverse direction are called "bottom-up" approaches. For the exam

ple shown in Figure 2.4(a), a top-down approach computes from A B C D , to A B C ,

to A B and eventually to A ; a bottom-up approach goes in the opposite direction.

Figure 2.4(b) gives a sample processing tree of top-down algori thm. The processing

tree of bottom-up algorithm is il lustrated in Figure 2.4(c).

In the following, we wil l discuss some significant sequential C U B E algorithms

proposed. C U B E algorithms can be viewed as having two stages: the planning stage

and the execution stage. In the planning stage, the algorithms decide how to convert

the lattice into a processing tree; in the execution stage, the algorithm computes

cuboids.

2.4.1 Top-down C U B E algorithms

C U B E algorithms always try to discover and take advantage of commonali ty between

a node and its parent in the lattice view. For many top-down algorithms, they

recognize that group-bys with common attributes can share, sorts, or partial sorts,

and utilize those sharings. Taking the processing tree shown in Figure 2.4(b) as an

example, A D represents the cuboid G R O U P B Y on A and D . If the data set has

been sorted with respect to A and D in order to compute A D , then for computing

cuboid A , the data set does not have to be re-sorted. We can simply accumulate

the sums for each of the values in A . Apparently, cuboid A and A D share sort on

13

ABCD

AB AC AD BC BD CD

(a) 4-Dimension Lattice

ABCD

(b) Sample Processing Tree
of Top-Down Algorithms

5 A B C D

(c) Processing Tree of Bottom-Up Algorithms

Figure 2.4: Lat t ice and Processing Trees for C U B E Computa t ion [4]

14

attribute A .

Besides sort sharing, there are some other commonalities which were ex

ploited by top-down algorithms. Some of these, specified as opt imizat ion techniques,

are listed by Sarawagi [2]:

• Smallest-parent: Th i s aims at computing a group-by from the smallest previ

ously computed group-by. For example, we can compute group-by A B from

group-by A B C and A B D . However, among the two potential parents, only

the one wi th smallest size wil l be selected, because computing from the small

parent wi l l lead to lower cost.

• Cache-results: Th is technique tries to compute a group-by when its parent is

st i l l in memory, hence,.reducing disk I / O .

• Amortize scans: Th i s technique also aims at reducing disk I / O by amort izing

disk reads by computing as many group-bys as possible together in memory.

For instance, during scanning group-by A B C D , we can compute group-bys

A B C , A C D , A B D and B C D at the same time.

• Share-sorts: Sort-based algorithms use this technique to share sorting cost

among multiple group-bys.

• Share-partitions: Th is is specific to the hash-based algori thm. W h e n a hash

table can not fit in the memory, data wil l be partitioned into chunks which do

fit in memory. Once a chunk is read in, multiple group-bys wil l be computed

in order to share the part i t ioning costs.

In the following, we wil l discuss several sequential top-down algorithms.

PipeSort, PipeHash and Overlap

PipeSort and PipeHash algorithms are among the first algorithms for efficient C U B E

computat ion. They were proposed by Sarawagi et al . in [2]. Bo th assume the cost

15

BC AB AC BD AD CD
5 15 5 15 4 14 5 15 5 15 1020

ABC ABD ACD BCD
10 30 15 40 5 20 45 130

ABCD
50 160

Figure 2.5: A n Example of 4-DimensionaI Lat t ice for A lgor i thm PipeSort [2]

of each node in a lattice proportional to the product of the cardinalities of G R O U P

B Y attributes and try to compute each cuboid from a parent having the smallest

cost. However, The data structures of the two algorithms are different: PipeSort

uses array and sorting is done prior to aggregation; PipeHash uses hash tables.

Furthermore, PipeSort considers share-sorts opt imizat ion, t rying to minimize the

number of sorts, whereas PipeHash focuses on share-partitions opt imizat ion.

PipeSort distinguishes between two different costs attached to each node X

in the lattice view: cost A (X) and cost S (X) . A (X) is induced when one child of X

is created through aggregating without any sort on X . Ac tua l ly only one child of

X can be computed with cost A (X) . For instance, for cuboid A B C D , only its child,

cuboid A B C , can be computed without any sort on A B C D . For other children, if

they are computed from A B C D , cost S (A B C D) is induced becasue resort on A B C D

is necessary. In this way, the sorting cost is counted by PipeSort . Assuredly, cost

S (X) is always greater than or equal to A (X) .

In the planning stage, a processing tree with a minimum total cost, taking

both A (X) and S (X) into account, is computed in a level-by-level manner, where

level N contains all A^-dimensinal cuboids. W h e n computing on a level, the algo

r i thm determines what edges between the nodes in this level and the next level in

16

all

t
B A D

1
4 16

f T \

BA 1
AC

1
DB 4 14 5 15

+ _ - - ' ~ ~
L-- "1".'

BAD ACD DBC
15 40 5 20 45 130

CBAD
50 160

i
raw data

(a) Minimum Cost Sort Plan (b) Pipelines Executed

Figure 2.6: A n Example of P l an and Pipelines for Algor i thm PipeSort [2]

the lattice should be left in the final min imum cost tree. Since each edge has a cost

attached, either A (X) or S (X) , the problem is converted into finding the minimum

cost matching in a bipartite graph. Given the lattice shown in Figure 2.5, the final

minimum cost plan becomes that shown in Figure 2.6(a). The pair of numbers un

derneath each group-by in the figure denote the A (X) and S (X) costs. The detailed

plan computat ion is elaborated in [2].

After a plan is created, in the execution stage each path is computed in a

pipeline manner. Figure 2.6(b) shows the pipelines' execution for the generated plan

in Figure 2.6(a). The head of each pipeline implies a re-sort, from its parent in the

processing tree.

Like PipeSort , PipeHash aims at computing cuboids from their smallest par

ents. Since PipeHash takes hash tables as its da ta structure, no sorting is required.

Therefore, each node in the lattice has only one cost, which is similar to A (X) in

PipeSort . In the planning stage of P ipeHash a minimum spanning t r ee (MST) is

computed based on the singular cost of each node. Figure 2.7(a) gives an example

17

of an M S T .

Besides smallest-parent optimization, PipeHash also explores share-partitions

and amortized-scans optimizations. It computes as many cuboids as possible if their

parents are in memory. If the main memory is big enough to hold hash tables for

all cuboids, PipeHash can finish the cube computation in one data scan without

any sorting. If no enough memory is available, PipeHash partitions data on some

selected attribute, then processes each partition independently.

Although data partitioning solve the memory problem, the partitioning at

tribute limits computations to only include group-bys with that particular attribute.

For example, from the M S T in Figure 2.7(a), we compute a C U B E on dimensions

A , B , C and D. If we partition on A , then the partitions are only used to produce

cuboids containing dimension A , including A B C D , A B C , A B D , A B , A C , A D and

A . Other cuboids will be computed afterward from cuboids with attribute A . Ide

ally, they can fit in memory and no further partitioning is necessary. This makes

M S T divide into subtrees, as shown in figure 2.7(b) and (c). By processing as large

a subtree(or a set of subtrees) of the M S T as possible in memory, computing all

nodes in it (or them) simultaneously, PipeHash favors optimizations cache-results

and amortize-scans.

Sarawagi compared PipeSort and PipeHash in [2]. PipeHash suffers two

apparent problems, requiring re-hash for every group-by and requiring a significant

amount of memory. This makes it can only outperform PipeSort as the data is

dense. However, in this thesis, the problem domain is iceberg-cube computation in

which data is supposed to be highly sparse; therefore, hash-based algorithms are not

our major concern. However, we did implement some hash-based algorithms and

they will be discussed in Chapter 3 .

Overlap, proposed in [21], as well as PipeSort, considers sorting cost, but

it deals with it in a different way. It tries to overlap as much sorting as possible

by computing group-by from a parent with the maximum sort-order overlap. The

18

A B C D
2 A / 8 4 ^ 5 V

AB AC BC AD CD BD
10 A If 2 0 ' ^ 20 y 20 • /d 12 20

30
JC ABD ACD BC

^ ^ 9 0 *7 5 0 - ^ 40

ABCD
A IOO
i

Raw Data

(a) Minimum Spanning Tree

A

\
i

A B C ^ AB^D A C D

A B C D

i
Raw Data

(b) Subtree: Parti
tioned on A

n
Ltl * D

>5V

AB \ B C
A

A B C B C D Y
L \ B C D

(c) Remaining Subtrees

Figure 2.7: P ipeHash on a Four At t r ibu te Group-by [2]

19

algori thm recognizes that if a group-by shares a prefix of G R O U P B Y attributes

with its parent, then the parent consists of a number of partit ions, one for each value

of the prefix. For example, since cuboid A B C and cuboid A C share a G R O U P B Y

prefix A , the A B C group-by has | A | partitions that can be sorted independently on

C to produce the A C sort order, where \A\ is the number of values for attr ibute A .

Overlap always selects a parent for a cuboid which shares the longest G R O U P

B Y prefix with that cuboid. Then the size of part i t ion is minimized. If several

potential parents of a group-by share the same length of prefix wi th it , and then the

smallest one wi l l be picked as the final parent. Overlap chooses a sort order for the

root of the processing tree, then all subsequent sorts are some suffix of this order.

The planning stage wi l l build a tree like that shown in Figure 2.4(b). Once

this processing tree is formed, Overlap tries to fit as many partit ions in memory as

possible. If a part i t ion of a group-by can fit in the main memory, then a subtree of

the processing tree rooted by that group-by wil l be computed in a pipeline manner

when the part i t ion is scanned in . Th is is expected to save much I / O costs for wri t ing

intermediate results.

The experiments show that Overlap performs consistently better than PipeSort

and P ipeHash . However, [14] argues that Overlap on sparse C U B E S st i l l produces

a large amount of I / O by sorting intermediate results.

PartitionedCube and MemoryCube

When the above C U B E algorithms are applied to sparse data sets, their performance

becomes poor. Group-bys for sparse data sets are more likely to be large; buffering

intermediate group-bys in memory requires too much memory. If the main memory

is l imited, then intermediate group-bys will be written out and read into memory

multiple times, which increases I / O dramatically. Moreover, predictation of the size

of group-bys becomes very difficult, because the real size of a group-by may not

be proportional to the product of cardinalities of the G R O U P B Y attributes. This

20

makes the cost of computat ion in PipeSort and P ipeHash no longer feasible.

M o r e recently, Ross and Srivastava proposed an efficient top-down algorithm

designed for large, high-dimensional and sparse C U B E s [14]. Thei r algorithm con

sists of two parts: Par t i t ionedCube and M e m o r y C u b e . Par t i t ionedCube partit ions

the data on some attr ibute into memory-sized units and M e m o r y C u b e computes the

C U B E on each in-memory part i t ion.

Par t i t ioning in Par t i t ionedCube is very similar to P ipeHash . The algorithm

chooses an attr ibute to part i t ion input into fragments. Then all cuboids containing

that attribute wi l l be computed on each fragment separately. For example, if C U B E

is to be computed on attributes { A , B , C , D } , we might part i t ion the input relation

on attr ibute A , and get three partit ions. Then , we compute cuboids A B C D , A B C ,

A B D , A C D , A B , A C , A D and A for each part i t ion. B y taking the union of corre

sponding partial cuboids computed from each part i t ion, we get finally the complete

cuboids. Then cuboid A B C D can be taken as the input to compute another cuboid.

Par t i t ionedCube is called recursively if the fragments or cuboid A B C D is st i l l too

big to fit in the memory; in that case, the data wi l l be further partitioned on other

attributes. Figure 2.8(a) gives an i l lustration of this example.

Once the input of Par t i t ionedCube fits in the memory, then M e m o r y C u b e

can be applied. M e m o r y C u b e is a sort-based algori thm, which is its main difference

from PipeHash . Like PipeSort , however, M e m o r y C u b e algorithm takes advantage

of the Pipel in ing technique. It tries to minimize the number of pipelines and hence,

the number of sorts. Its Paths algorithm (not to be discussed in detailed here),

guarantees that the number of pipelines(paths) it generates wi l l be the minimum

number of paths to cover all the nodes in the lattice. Figure 2.8(b) shows the paths

for 4-dimension C U B E computat ion. There are six pipelines in total built from the

input data. The cuboids in boxes are the heads of the pipelines. Sort ing is required

to create the head of the pipeline, which is shown as dash lines in Figure 2.8(b),

however, no sorting is needed in the pipelines.

21

' AB BD i V C D | /

\ A B C AD^B \B^B'
\ \ I / ' ! • /

A B C D

R (Partitioned by A)

T - i
\ i

Cuboid(BCD)(In memroy,
B projected out;

Cube(ABCD) (Partitioned by
B, A projected out)

(a) Partitioning

all

B

AB B C BD
7T~

CD

D

A
D A

BC D C A D DAB

_ —

K B C D

in-memory partition

(b) Paths Found by MemoryCube

Figure 2.8: Examples for Par t i t ionedCube and M e m o r y C u b e Algor i thms [14]

22

Since Par t i t ionedCube only considers pipelines in the M e m o r y C u b e , this

algorithm tries to reduce the amount of I / O for intermediate results, and thus

enhance the performance for sparse C U B E computat ion.

Array-Based Algorithms

W h e n using the array-based algorithms, as one proposed in [13], da ta sets are stored

in a multi-dimension array, where each coordinate matches a C U B E attr ibute. A

tuple's location in the array is determined by its value in each dimension. The algo

r i thm requires no tuple comparison, only array indexing. Unfortunately, if the data

is sparse, the algorithms become infeasible, as the array becomes huge. Therefore,

we find array-based algorithms are too l imited to warrant further discussion here.

2.4.2 Bot tom-Up C U B E Algori thm

Our background search revealed only one bottom-up algori thm. It was introduced

in [4] by K . Beyer and R . Ramakrishnan, and called the B o t t o m U p C u b e , B U C for

short. It especially targets iceberg-cube computat ion.

Sett ing thresholds in iceberg queries always cuts off a lot of cells in general

cuboids. For the data set used in [4], and which was also used in our experiments,

as many as 20% of the group-bys consisted entirely of cells wi th support as one. For

the iceberg queries with minsup higher than 1, those group-bys do not need to be

computed at a l l . Th is makes sense to consider a way to prune as early as possible

in C U B E computat ion. Unfortunately, when we traverse a lattice in a top-down

fashion, we can not prune cells which have insufficient support in any cuboid, until

the last step. For example, suppose the threshold is set by specifying H A V I N G

Count(*) >= 2 in iceberg-cube (the minsup is 2). Before we compute cuboid A B C

from cuboid A B C D , we can not prune the cells with support as in 1, for example,

a l b l c l d l (m i n s u p : l) and a l b l c l d 2 (m i n s u p : l) . Th is is because they contribute to

the cells in A B C , whose supports are bigger than 1, for example, a l b l c l (m i n s u p

23

is 2). However if we compute from cuboid A B C to cuboid A B C D in a bottom-up

fashion, pruning is possible. Al though cuboid A B C D can not be directly computed

from cuboid A B C , we can make sure that tuples which do not contribute to cells

in cuboid A B C wi l l not contribute to cells in A B C D . We could therefore prune out

those tuples in the raw data earlier, before the computation for A B C D proceeds.

Thus, in B U C , a bottom-up approach is adopted. The idea is to combine the

I / O efficiency of the Par t i t ionedCube algori thm, with minimum support pruning.

The processing tree of B U C is il lustrated in Figure 2.4(c). The numbers in Figure 2.9

indicate the order in which B U C visits the group-bys.

A skeleton of B U C is shown in Figure 2.9; we use the notation TA{ to de

note the set of all nodes in the subtree rooted at A t . For the example given in

Figure 2.4(c), TB = {B, BC, BD, BCD}. Prefix in line 9 in Figure 2.9 indicates the

current processed cuboid's G R O U P B Y dimensions.

Take the B U C processing tree in Figure 2.9 as an example: B U C starts with

cuboid all, and then cuboid with G R O U P B Y attribute A . For each value Vj in A , the

data set is parti t ioned. Then for those partit ions with higher support than minsup,

B U C is called recursively in a depth-first manner to process other dimensional group-

bys (in lines 14-16). For example, for part i t ion Aui , in the first further recursion,

B U C proceeds part i t ioning on attr ibute B , producing finer partitions AuiBui to

partitions Av\Bvm. Afterward, B U C is recursively called on those finer partitions

to produce some cells in cuboids A B C , A B C D and A B D . When all recursions for

part i t ion Avi return, B U C proceeds in the same way on other parti t ions for AVJ.

When all partitions based on A finish, B U C continues on attributes B , C and D in

the same way.

Figure 2.10 shows how B U C part i t ioning proceeds. The arrows shows the

part i t ioning order. The gray area depicts those partitions pruned out based on the

constraints(minsup in this case).

Al though B U C can exploit pruning, it can not optimize by share-sort or

24

1. A lgor i thm B U C - M a i n
2. I N P U T : Dataset R wi th dimensions {At, A2,.. .Am},

the min imum support Spt.
3. O U T P U T : Qualified cells in the 2 m cuboids of the cube.
4. P L A N :
5. Star t ing from the bot tom, output the aggregate on " a l l " ,

and then a depth first traversal of the lattice,
induced by {Ay, A2, • • -Am}.

6. f o r e a c h dimension A 2 (?' from 1 to m) d o

B\JC(R,rAnSpt,{})
7. C U B E C O M P U T A T I O N :
8. p r o c e d u r e B\JC(R,TA,, Spt, prefix)
9. . prefix = prefix U{.4;}
10. f o r e a c h combination of values Vj of the attributes

in prefix d o
11. parti t ion R to obtain Rj
12. if (the number of tuples in Rj is > Spt)
13. aggregate Rj, and write out the

aggregation to cuboid with cube
dimensions indicated by prefix

14. f o r e a c h dimension Ak, k from i + 1 to m d o

15. call B\JC(Rj,TAK, Spt, prefix)
16. e n d f o r

17. e n d f o r

Figure 2.9: A Skeleton of B U C

25

Partition on A Partition on AB Partition on ABC Partition on ABCD

b2

b3

b4

b5

Figure 2.10: B U C Par t i t ioning

26

smallest parent techniques.

Paper [4] compares B U C with Par t i t ionedCube. It claimes that B U C per

forms better than Par t i t ionedCube. The pruning significantly reduces running t ime

when the min imum support is above 1. Even with minsup as 1, that is, full C U B E

is computed, B U C st i l l outperforms it.

27

Chapter 3

Parallel Iceberg-cube

Algorithms

The key to success for an online system is the abil i ty to respond to queries in a t imely

fashion. The compute and data intensive nature of iceberg-cube queries necessitates

a high performance machine. In the past, this required expensive platforms, such

as symmetric multiprocessor machines. In recent years, however, a very economical

alternative has emerged: a cluster of low-cost commodi ty processors and disks. P C -

clusters provide several advantages over expensive multiprocessor machines. F i r s t ,

in terms of raw performance, processor speeds are similar to and often exceed those

of multiprocessor architectures. Recent advancements in system area networks, such

as Myr ine t , standards like V I A , and 100Mbit or Gigabi t Ethernet have significantly

improved communication bandwidth and latency. Second, although I / O and the use

of commodity disks are weaknesses in these systems, as we show, parallelism can

easily be exploited. T h i r d , the affordability of PC-clusters makes them attractive

for small to medium sized companies and they have been the dominant parallel

platform used for many applications [5], including association rule mining [18].

In the remainder of this thesis, we wil l discuss various novel algorithms we

have developed for parallelizing iceberg-cube computat ion. Our focus is on practical

28

techniques that can be readily implemented on low cost P C clusters using open

source, Linux and public domain versions of the M P I message passing standard. As

our results apply to low cost clusters, the question arises of how much our results

may generalize to higher cost systems. In Section 4, we examine how the various

algorithms would speed up in* the presence of more nodes/processors in the cluster.

Thus, if the key difference between a low cost and a high cost cluster is only the

number of nodes, then our results will be applicable. However, if the key difference

is on the underlying communication layer, then our results may not be applicable.

A l l of the algorithms to be presented use the basic framework of having

a planning stage and an execution stage. In the case of parallel algorithms, the

planning stage involves (i) breaking down the entire processing into smaller units

called tasks, and (ii) assigning tasks to processors, where now the objective is to

minimize the running time of the processor that takes the longest time to complete

its tasks. To simplify our presentation, we do not include the aggregation for the

node "all" as one of the tasks. This special node can be easily handled. Furthermore,

it is assumed that the initial dataset is either replicated at each of the processors

or partitioned. The output, that is, the cells of cuboids, remains distributed where

processors output to their local disks.

In this section, we introduce the algorithms. As shown in Table 1.1, the

algorithmic space that we explore involves the following issues:

• the first issue is how to write out the cuboids. Because B U C is bottom-up, the

writing of cuboids is done in a depth-first fashion. As will be shown la,ter, this

is not optimized from the point of view of writing performance. This leads us

to develop an alternative breadth-first writing strategy;

• the second issue is the classical issue of load balancing. This issue is intimately

tied to the definition of what a task is. Different algorithms essentially work

with different notions of a task. In general, when the tasks are too coarse

grained, load balancing is not satisfactory. However, if the tasks are too fine-

29

grained, a lot of overhead is incurred;

• when it comes to iceberg-cube computat ion, an important issue is the strategy

for traversing the cube lattice. A s discussed earlier, top-down traversal may

exploit share-sort, whereas bottom-up traversal exploits pruning based on the

constraints. Our algorithms consider these possibilities; in fact, one of the

algorithms combines the two strategies in an interesting way;

• as usual, for parallel computat ion, we explore whether data part i t ioning is

effective.

3.1 Algorithm R P

Recall from Figure 2.4(c) that the processing tree of B U C consists of independent

subtrees rooted at each of the dimensions. Thus, in the algorithm called Replicated

Parallel B U C , R P for short, each of these subtrees becomes a task. In other words,

for a cube query involving m attributes, there are m tasks. Processor assignment

is s imply done in a round-robin fashion. W i t h this simple assignment strategy, if

there are more processors than tasks, some processors will be idle. The data set is

replicated on all machines in a cluster. Each processor reads from its own copy of

the dataset, and outputs the cuboids to its local disk. The skeleton of R P is showed

in Figure 3.1.

Figure 3.2 gives an example of computing a 4-dimensional C U B E on a cluster

of 4 P C s . In total , 4 tasks are created: subtrees rooted by A , B , C and D respectively.

Each machine compute one task.

3.2 Algorithm B P P

While R P is easy to implement, it appears to be vulnerable in at least two of its

aspects. F i r s t , the definition of a task may be too simplistic in R P . The division of

30

1. A lgor i thm R P
2. I N P U T : Dataset R wi th dimensions { A i , A2, • • • Am} and minimum support Spt;
3. O U T P U T : The 2 m cuboids of the data cube.
4. P L A N :
•5. Task definition: identical to B U C , i.e., subtrees rooted at A ,
6. Processor assignment: assign a processor, in round robin fashion, to each

subtree rooted at dimension A ; (i from 1 to ra)
7. C U B E C O M P U T A T I O N (for a processor):
8. paral lel do For each subtree rooted at dimension A ; assigned to the

processor
9. call B\JC(R, TAI , Spt, {}) (with output writ ten on local disks)
10. end do

Figure 3.1: A Skeleton of the Replicated Paral lel B U C Algo r i t hm

Raw Data Replicated

Figure 3.2: Task Assignment in A lgor i thm R P

31

the cube lattice into subtrees is coarse-grained. One consequence is that some tasks

are much bigger than others. For example, the subtree rooted at A , TA, is much

larger than that rooted at C , Tc- Thus, load balancing is poor. Second, B U C is

not optimized in wri t ing performance. To address these problems, we developed the

algori thm called Breadth-first wri t ing Part i t ioned Paral lel B U C , or B P P for short.

3.2.1 T a s k D e f i n i t i o n a n d P r o c e s s o r A s s i g n m e n t

To achieve better load balancing, B P P tries to get finer-grained tasks by range

part i t ioning on each attr ibute. Th is is motivated by Ross and Srivastava's design

of the Par t i t ioned-Cube, which attemps to part i t ion data into chunks which fit in

memory [14]. B P P partit ions data in the following way:

• for a given attr ibute A,-, the dataset R is range-partitioned into n chunks (i.e.,

• •., Ri(n))i where n is the number of processors. Processor Pj keeps its

copy R{(j) on its local disk;

• note that because there are m attributes, the above range part i t ioning is done

for each attribute. Thus , processor Pj keeps m chunks on its local disk (

R\(j), • • •, i ? m (j j) . A n y of these chunks may have some tuples in common;

• range part i t ioning itself for the m attributes can be conducted in parallel, wi th

processor assignment done in a round-robin fashion. For instance, processor i

may part i t ion attr ibute Ai, then A ; + n , and so on. Notice that as far as B P P

execution is concerned, range part i t ioning is basically a pre-processing step.

If there are m cube attributes, then there wil l be a total mxn chunks. Each

chunk corresponds to one task. The processor who has the chunk in the local is

responsible for processing i t . If processor Pj process chunk R^j), where R{(j) is

produced by range part i t ioning on attribute i , Pj computes the (partial) cuboids

in the subtree rooted at A ; . These cuboids are partial because Pj only deals with

32

PO range-partition R on A -BML- , , Ral_ , Ra2_ _Ra3 J
P1 range-partition R on B RbO Rbl Rb2

P2 range-partition R on C Egg E B
L

) I t I I

P3 range-partition R on D -J<1D

Ethernet P O PI P2 P 3

Figure 3.3: Task Assignment in B P P

the part of the data it controls, in this case, R${j\- The cuboids are completed by

merging the output of al l n processors.

Figure 3.3 illustrates task allocation and process in B P P . Each of the 4 pro

cessors in the cluster takes on the responsibility of range part i t ioning the raw data

set R on one dimension and distr ibuting the resulting partitions across the pro

cessors. Since there are 4 cube dimensions in total , after data part i t ioning each

processor gets 4 chunks. D a t a chunks in the same color on the same row are parti

tioned on the same attr ibute and have no overlap. However, data chunks located in

the same processor are partit ioned on different attributes and may have overlap. A

processor takes chunk R^j) to compute subtree %, for example, P I would use Rsi)

to compute subtree 7c-

B y part i t ioning data across processors, B P P achieves better load balancing

than R P . If data can be evenly distributed among processors, then the load may be

very well balanced in a homogeneous environment.

33

Cuboid A Cuboid A B Cuboid A B C

a l -
(D f l >

(10)<2^

a l b l -
(2)<3>

/'""V a l b l c l (3)<7> -,.

> a l b l c 2 (4)<8> <f

S a l b l c 3 (5)<9> ^

a l b 2 c l (7)<10>

alb2c2 (8)<11>^ ;

\ l b 2 c 3 (9)<12> {

Figure 3.4: Depth-first Wr i t i ng vs Breadth-first Wr i t i ng

3.2.2 Breadth-first Writ ing

B U C computes in a bottom-up manner, and the cells of the cuboids are writ ten

out in a depth-first fashion. In the situation shown in Figure 3.4, there are three

attributes A , B and C , where the values of A are a\, a 2 , and so on, values of B

are b\ and 62 1 values of C are c i , C2 and C3. A s shown in Figure 2 .9 , the tuples of

a i are aggregated in line 14 (assuming that the support threshold is met), and the

result is output. The recursive call in line 15 then leads the processing to the cell

a\b\, then to the cell a\b\C\, then to a\b\C2, and so on. In Figure 3.4, the number

in round brackets beside each node denotes the order in which the cell is processed

and the output for depth-first wri t ing; and the black solid lines denote the wri t ing

sequence.

Note that these cells belong to different cuboids. For example, the cell 0,1

belongs to cuboid A , the cell a\b\ to cuboid AB, and the cells a i & i C i and a\b\C2

belong to A B C . Clear ly in depth-first wri t ing, the wr i t ing to the cuboids is scattered.

This incurs a high I / O overhead. We could possibly use buffering to alleviate the

34

file:///lb2c3

1. A l g o r i t h m B P P
2. I N P U T : Dataset R wi th dimensions {A\, A2, • • -A.m} and min imum support

Spt
3. O U T P U T : The 2 m cuboids of the da ta cube
4. P L A N :
5. Task definition: (partial) cuboids of subtrees rooted at A{
6. Processor assignment: as described in Section 3.2.1
7. C U B E C O M P U T A T I O N (for the processor Pj):
8. parallel do
9. for each A,- (i from 1 to TO) do
10. call B P P - B U C (J R i (j) , TAi,Spt, {}) (with output wri t ten on

local disks)
11. end for
12. end do

13. Subroutine B P P - B U C (i ? , TA,:, Spt, prefix)
14. prefix = prefix U { A ; }
15. sort R according to the attributes ordered in prefix
16. R' = R
17. for each combination of values of the attributes in prefix do
18. if (the number of tuples for that combination > Spt)
19. aggregate on those tuples, and write out the aggregation
20. else remove all those tuples from R'
21. end for
22. for each dimension Ak, k from i + 1 to m do
23. call BPP-B\JC{R', TAk, Spt, prefix)
24. end for

Figure 3.5: A Skeleton of the B P P Algor i thm

scattered wri t ing to the disk. However, this requires a large amount of buffering

space, thereby reducing the amount of memory available for the actual computat ion.

Furthermore, many cuboids may need to be maintained in the buffers at the same

time, causing extra management overhead.

In B P P , this problem is solved by breadth-first wri t ing. Returning to the

example in Figure 3.4, B P P completes the wri t ing of a cuboid before moving on

to the next one. For example, the cells a\ and a2, which make up cuboid A , are

first computed and written out. Then all the cells in cuboid A B are outputted, and

35

10 Cost Comparision between RP and BPP

Processors

Figure 3.6: I /O comparison between B P P (Breadth-first writing) and RP(Depth-first
writing) on 9 dimensions on a dataset with 176,631 tuples, input size is 10Mbyte
and output size is 86Mbyte.

so on. In Figure 3.4, the number in angled brackets beside each node denotes the

order in which the cell is processed for breadth-first writing, while the red dash lines

depict its writing sequence.

Figure 3.5 gives a skeleton of B P P . As described in Section 3.2, the pre

processing step of range partitioning the dataset assigns to each processor Pj of the

appropriate tasks.

In the main subroutine B P P - B U C , breadth-first writing is implemented by

first sorting the input dataset on the "prefix" attributes in line 15 in the skeleton. In

our example, if the prefix is A , meaning that the dataset has already been sorted on

A , then line 15 sorts the dataset further on the next attribute B . The loop starting

36

from line 17 then completes breadth-first wri t ing by computing and output t ing the

aggregation of all the cells in the cuboid A B .

Because some cells may not meet the support threshold, there is the extra

complicat ion in B P P - B U C of the need to begin pruning as early as possible. Th is

is the purpose of lines 16 and 20. Note that as opposed to what is presented in line

16 for simplicity, in our implementation we do not actually create a separate copy

of the data. Instead, an index is used to record the start ing and ending positions in

the sorted dataset to indicate that all those tuples should be skipped for subsequent

calls to B P P - B U C .

Breadth-first I / O is a significant improvement over the scattering I / O used

in B U C . For the baseline configuration to be described in Section 4 , the total I / O

time R P took to write the cuboids was more than 5 times greater than the total I / O

time for B P P . Figure 3.6 gives the I / O comparison between R P (depth-first writing)

and B P P (breadth-first wri t ing) .

3.3 Algorithm ASL

Although B P P gives a solution for load balancing, this solution is sti l l not satisfac

tory under some circumstances. The potential downfall of B P P comes from the fact

that the amount of work each processor does is dependent on the ini t ia l part i t ioning

of the data. However, the size of the task depends on the degree of skewness in

the data set and the order in which the dimensions are sorted and partit ioned. If

the skewness is significant, the tasks may vary greatly in size, thereby reducing load

balancing. For example, for an at tr ibute named Gender, only two possible values,

Female and Male , can be assigned to it. Range part i t ioning then can produce only

2 chunks. Even if we have more than 2 processors, only two of them wil l get applied

to chunks; the others wil l be relatively lightly loaded.

This motivates the development of another algori thm, called Affinity Skip

Lis t , or A S L for short. A S L tries to create tasks that are as small as the cube

37

Search Path

25 25 25 25
26

25
26

NIL

Original list, 17 to be inserted

12
17

19 - H H 21
25 25 25 25

26
25

26

NIL

List after insertion

Figure 3.7: P ic tor ia l Descript ion of Steps Involved in Performing an Insertion [22]

lattice allows: each node in the lattice makes a task. Th i s allows efficient use of the

processors, quite independent of the the skewness and dimensionality of the data

set. In the following, two key features of A S L are presented: the data structure

used, and the processor assignment.

3.3.1 Using Skip lists

A skip list is a data structure proposed by W . Pugh [22]. It is much like a linked list

wi th addit ional pointers. Figure 3.7 is an example of a skip list. The lowest levels of

nodes make a linked list, the higher levels of nodes are used for efficient search and

insert operations. A s showed in Figure 3.7, searching or insertion always starts from

the highest level of the head node. If the next link emitted from that level points to

a node that contains an element bigger than the element which is to be inserted or

searched, we drop one level from the starting node, otherwise, we follow the link to

the next node, and try the next step from there. Figure 3.7 shows how an element

with key 16 is added into a skip list. The number of levels a new inserted element

should have is determined randomly, but not allowed to exceed a threshold set by

users.

The benefits of using a skip list are threefold. F i r s t , A S L exhibits good aver

age case behavior for insertion and searching, quite similar to that of a balanced tree,

38

yet the implementation details are much simpler. Second, each node in the struc

ture requires very li t t le storage overhead. T h i r d , skip list incrementally increases as

more elements are added, and the sort order of the list is always guaranteed. Th i s

is very important , because before sorting the da ta set need not be entirely loaded.

A S L uses skip lists to maintain the cells in cuboids. Whi le it scans the raw

data set, A S L builds skip lists incrementally. If there, is a node in the skip list

representing the new read-in tuple, then the aggregates and support counts of that

node are updated; otherwise a new node wil l be inserted into the skip list. In theory,

if there are k cuboids and if there is enough memory, A S L can maintain all k skip

lists simultaneously for one scan of the data set. B u t for the data sets used in our

experiments, this opt imizat ion brings minimal gain, so we did not explore that here.

3.3.2 Affinity Assignment

Now, let's consider the task assignment policy of A S L . In order to achieve good load

balancing, A S L defines tasks with very fine granularity. It takes each cuboid as a task

and assigns it to processors dynamically. Dur ing task scheduling, A S L adopts a top-

down approach to traversing the cube lattice. It always tries to assign uncomplete

high dimensional cuboids to processors, while taking affinity into account. Once a

processor finishes one task, it is assigned a new one which has some kind of affinity

with the previously one.

For example, i f a processor has just created the skip list for the task A B C D ,

then it makes sense for the processor to be assigned the task of computing the

cuboid for A B C . The previous skip list for A B C D can simply be reused to produce

the results for A B C . In the following, we refer to this situation as "prefix affinity".

In another si tuation, if a processor has just created the skip list for A B C D ,

this skip list is st i l l useful if the processor is next assigned the task of computing

the cuboid B C D , because now we need only take the counts of each cell in A B C D ,

and add them to the counts of the appropriate cells in the skip list for B C D . Then

39

Algor i t hm A S L
1. I N P U T : Dataset R cube dimensions { A i , . . . , Am}; min imum support Spt
2. O U T P U T : The 2m cuboids of the data cube
3. P L A N :
4. Task definition: a cuboid in the cube lattice
5. Processor assignment: a processor is assigned the next task based on

prefix or subset affinity, as described in
Section 3.3.2

6. C U B E C O M P U T A T I O N (for a processor):
7. parallel do
8. let the task be with dimensions A , - , . . . , Aj
9. if Ai,..., Aj is the prefix of the previous task or the first task
10. let C denote the skip list from that task
11. call prefix-reuse(C, Spt, Ai,..., Aj);
12. else if { A j , . . . , Aj} is a subset of the set of dimensions of the

previous task, or the set of dimensions of the first task
13. let C denote the skip list from that task
14. call subset-create(C, Spt, Ai,..., Aj)
15. else call subset-create(R, Spt, Ai,..., Aj)
16. end do

17. Subroutine prefix-reuse(C, Spt, Ai,..., Aj)
18. Aggregate C based on A , - , . . . , Aj
19. Wri te out the cells if the support threshold is met

20. Subroutine subset-create(C, Spt, Ai,..., Aj)
21. initialize skip list L
22. for each cell (tuple), in C do
23. find the right cell in L (created if necessary)
24. update the aggregate and the support counts accordingly
25. end for
26. Traverse L , and write out the cells if the support threshold is met

Figure 3.8: A Skeleton of A S L

40

groupings done for the skip list for A B C D are not wasted. For example, suppose

in A B C D , a cell corresponds to the grouping of aib\C\di. For the iv tuples in the

original dataset that belong to this cell, the current aggregate and support counts

can readily be used to update the corresponding counts for the cell b\C\di for BCD.

There is no need to re-read the w tuples and aggregate again. In the following, we

refer to this situation as "subset affinity".

Figure 3.8 shows a skeleton of A l g o r i t h m A S L . To implement prefix or sub

set affinity, a processor is designated the job of being the "manager" responsible

for dynamical ly assigning the next task to a "worker" processor. Specifically, the

manager does the following:

• first tries to exploit prefix affinity, because if that is possible, the worker pro

cessor then has no need to create a new skip list for the current t ask /cuboid .

The previous skip list can be aggregated in a simple way to produce the re

sult for the current task. This is executed by the subroutine prefix-reuse in

Figure 3.8;

• then tries to exploit subset affinity, if prefix affinity is not applicable. Instead

of scanning the dataset, the worker processor can use the previous skip list to

create the skip list for the current task. This is executed by the subroutine

subset-create in Figure 3.8;

• assigns to the worker a remaining cuboid with the largest number of dimen

sions, if neither prefix nor subset affinity can be arranged. In this case, a new

skip list is created from scratch.

Clearly, the last situation ought to be avoided as often as possible. In our implemen

tation of A S L , each worker processor maintains the first skip list it created. Because

A S L is top-down, the first skip list corresponds to a cuboid with a large number of

dimensions. Th is maximizes the chance of prefix and subset affinity.

The affinity scheduling is very helpful for sort-sharing, especially when the

41

number of available processors is small . B u t as more processors are available, the

affinity relationship between tasks assigned to the same processor tends to be weak.

For example, if we have 2 processors, we may very possibly assign both A B C D and

A B C to one machine; however, if we have 16 machines, this possibility becomes

light, since we don't want machines to lie idle just to maintain strong affinity. In

such a case, one processor may compute A B C D and another may compute A B C ,

then both would need to sort on A B C . Duplicated sortings then occur.

Since A S L ' s task scheduling is dynamic, depending on how soon each proces

sor finishes its task, the lattice traversal sequence can not be determined in advance.

Different runnings very likely result in different traversal sequences. Th i s makes A S L

quite different from other top-down algorithms, such as PipeSort or P ipeHash .

3.4 Algorithm PT

B y design, A S L does a very good job of load balancing. However, A S L may be

vulnerable in two areas. F i rs t , the granularity of the tasks may be too fine - to an

extent that too much overhead is incurred. Th is is particularly true where prefix or

subset affinity cannot be well exploited, and thus not much sort sharing is applica

ble. Second, A S L ' s top-down lattice traversal cannot prune those cells which lack

min imum support from skip lists. A s A S L executes, whether a cell has minimum

support or not cannot be determined until the data set has been scanned entirely.

Furthermore, at the end of the scan, even if there is a cell below the minimum

support, this cell sti l l cannot be pruned, because its support may contribute to the

support of another cell in subsequent cuboid processing.

In an effort to combine the advantages of pruning in a bottom-up algorithm

on one hand, with load balancing and sort-sharing of top-down lattice traversal on

the other, we developed the algorithm called Part i t ioned Tree, (P T) .

Recall that in R P and B P P , tasks are at the granularity level of subtrees

rooted at a certain dimension, for example, TA{- In A S L , tasks are merely nodes

42

A B C D ,

ABC ABD / ACD / BCD

AB ' / A C AD / BC BD / CD

D Bottom-Up Cubiod
Computation

Taskl
Task2

/ Task3 N
Task4 Top-Down Affinity

Scheduling

Figure 3.9: B ina ry Div i s ion of the Processing Tree into Four Tasks

in the cube lattice. To strike a balance between the two definitions of tasks, P T

works with tasks that are created by a recursive binary division of a tree into two

subtrees, each having an equal number of nodes. B ina ry division is achieved by

simply cutt ing the farthest left edge emitted from the root in a B U C processing

tree or subtree in recursive callings. For instance, the B U C processing tree shown

in Figure 2.4(c) can be divided into two parts: TA and Taa — TA- A further binary

division on TA creates the two subtrees: TAB and TA — TAB- Similarly, a further

division on Taii — TA creates these two subtrees: TB and Taa — TA — TB- Figure 3.9

shows the four subtrees. Each of these four subtree makes a task.

Obviously, each time binary division is applied, two subtrees of equal size

are produced. Through binary division, we finally achieve tasks of same size and

appropriate granularity. Combin ing dynamic scheduling and binary division nicely

solves the load balancing problem in P T .

Like A S L , P T also exploits affinity scheduling. Dur ing processor assignment,

the manager tries to assign a task to a worker processor that can take advantage of

prefix affinity based on the root of the subtree. Note that in this case, subset affinity

is not applicable. F rom this standpoint, P T is top-down. B u t interestingly, because

43

1. A lgo r i t hm P T
2. I N P U T : Dataset R cube dimensions {A\,..., Am}; min imum support Spt
3. O U T P U T : The 2 m cuboids of the data cube
4. P L A N :
5. Task definition: a subtree created by repeated binary part i t ioning
6. Processor assignment: a processor is assigned the next task based on

prefix affinity on the root of the subtree
7. C U B E C O M P U T A T I O N (for a processor):
8. parallel do
9. let the task be a subtree T
10. sort R on the root of T (exploiting prefix affinity if possible)
11. call B P P - B U C (J R , T, Spt, {})
12. end do

Figure 3.10:' A Skeleton of P T

each task is a subtree, the nodes within the subtree can be traversed/computed in a

bottom-up fashion. In fact, P T calls B P P - B U C , which offers breadth-first wri t ing,

to complete the processing.

In Figure 3.9, the roots of each subtree, enclosed in boxes, actually make up

a small tree. The scheduling just happens on this small tree, similar to A S L . Once

a processor gets a task, that is, a subtree, it computes it in a bottom-up manner,

much like computing an R P ' s task. In this way, we seamlessly combine top-down

and bottom-up methods, getting the benefits of both pruning and sort-sharing.

Figure 3.10 shows a skeleton of P T . The step that requires elaboration is

line 9, namely the exact definition of T • In general, as shown in Figure 3.9, there

are two types of subtrees handled by P T . The first type is a "full" subtree, which

means that all the branches of the subtree are included. For example, TAB is a full

subtree. The second type is a "chopped" subtree, which means that some branches

are not included. The subtrees TA — TAB and T„.u — TA — TB are examples. In line

11, depending on which type of subtree is passed on to B P P - B U C , B P P - B U C may

execute in a slightly different way. Specifically, for the loop shown on line 22 in

Figure 3.5, if a full subtree is given, no change is needed. Otherwise, the loop needs

44

to skip over the chopped branches.

Since P T treats each final subtree resulting from binary division as a task,

in an extreme case binary division wil l eventually create a task as each node in the

cube lattice, as in A S L . Since task granularity in A S L might be too fine, in P T a

parameter is used to determine when binary division stops, thus defining how fine

tasks can be. The parameter is set as the ratio of the number of tasks to the number

of available processors. The higher the ratio, the better the load balancing but the

less pruning can be explored in each. task. Determining the parameter enables a

tradeoff between load balancing and pruning. In Figure 3.9, the dotted line between

" B o t t o m - U p C u b o i d Computa t ion" and "Top-Down Affinity Scheduling" depicts

this tradeoff. M o v i n g up the line means letter load balancing; moving down the

line means more pruning. P T wisely leaves this decision up to applications. For

the experimental results presented later, we used the parameter "32n" to stop the

division, once there are so many tasks (where n is the number of processors).

3.5 Hash-based Algorithms

We also implemented two hash-based C U B E algorithms. In the following, we wil l •

briefly discuss them.

3.5.1 Hash Tree Based Algori thm

This algorithm was developed after B P P proved to ha,ve poor load balancing. Since

B P P ' s performance is greatly affected by data skewness, which we could not change,

it appears there was no way to improve it. However, considering most Associat ion

Rules M i n i n g (A R M) algorithms proceed in a bottom-up fashion, also taking ad

vantage of pruning, we then thought about applying the techniques of parallel A R M

to C U B E computat ion.

The prototypical application of A R M is a "market-basket analysis", where

the items represent products, and the records in a database represent point-of-sales

45

Items Database Frequent itemsets (min_sup = 50%)

Jane Austen A

Agatha Christie C

Sir Arthur Conan Doyle D

Mark Twain T

P.G. Wodehouse W

Transactioi Items

1 A C T W

2 C D W

3 A C T W

4 A C D W

5 A C D T W

6 C D T

Association rules (min_conf = 100%)

A » - C (4/4) A C -
A » - W (4/4) AT "
A * -CW(4 /4) AT—
D * - D (4/4) A W -
T * -C(4 /4) D W -
W * - C (5/5) TW -

- W (4/4)
- C (3/3)
- W (3/3)
- C (4/4)
-C (3/3)
- A (3/3)

TW
AT
TW

A C T

Support Itemsets

100% (6) C

83% (5) W, cw
67% (4) A, D, T, AC, AW

CD, CT, ACW

50% (3) AT, DW, TW, ACT,
ATW, CDW, CTW, ACTW

-»-C(3/3)
-» -CW(3/3)
" * - A C (3/3)
- * - W (3/3)

ATW * - C (3/3)
CTW * - A (3/3)

Figure 3.11: Frequent Itemsets and Strong rules for a Bookstore Database [20]

data at large grocery stores or department stores. Each record contains several

items. The objective of A R M is to generate all rules with specified confidence and

support. A n example rule might be, "90% of customers buying product {A,B,C}

also buy product {D,E} .", where the confidence of the rule is 90%. In A R M

terminoloy, A,B,C,D and E in this rule are called "items"; {A,B,C} and {TJ, E}

are called "itemset". Later, we wil l use "k-itemset" to denote an itemset containing

k items. A s well as C U B E , A R M aslo uses "support" to indicate how frequent an

itemset occurs as a subset in transactions. Users can specify a "minimum support"

(minsup) and "minimum confidence" (minconf) in their queries.

M o s t A R M algorithms involve the following steps:

1. F i n d all frequent itemsets satisfying some specified minimum support .

2. Generate strong rules having minimum confidence from the frequent itemsets.

The first step of A R M is much like a iceberg-cube problem if we imagine items

are attributes with only one value. Then , generating all frequent itemsets means

generating all different dimensional group-bys above a specified threshold(minsup).

Consider the example bookstore-sales database shown in Figure 3.11. There

46

ABCEF
A+_\ BCDE

B +. J CEF

C+ EF

Candidate Hash Tree

Figure 3.12: Subset Operat ion on the Root of a Candidate Hash Tree [23]

are five different items (names of authors the bookstore carries), I = {A, C, D, T, W}.

The database comprises six customers who bought books by these authors. F i g

ure 3.11 shows all the frequent itemsets contained in at least three customer trans

actions, that is, minsup = 50%. The figure also shows the set of all association rules

with minconf = 100%).

The A p r i o r i algorithm by Rakesh Agrawal and colleagues [20] has emerged as

one of the best A R M algorithms, and also serves as the base algorithm for most par

allel algorithms. Apr io r i uses a complete, bottom-up search, iteratively enumerating

from frequent 2-itemsets to higher dimensional frequent itemsets. The algorithm has

three main steps:

1. Generate candidates of length k from the frequent (A;-l)-itemsets, by a self-join

on F f c _ i . For example, for F 2 = {AC, AT, AW,CD,CT,CW,DW,TW}, we

get C3 = {ACT, ACW, ATW, CDT, CDW, CTW).

2. Prune any candidate that has a.t least one infrequent subset. For example,

CDT will be pruned because DT is not frequent.

3. Scan all transactions to obtain candidate supports.

47

These three steps are called iteratively from k=2 until no more new frequent itemset

can be generated.

A p r i o r i stores the candidates in a hash tree for fast support counting. In

a hash tree, itemsets are stored in the leaves; internal nodes contain hash tables

(hashed by items) which direct the search for a candidate. The hash tree structure

of A p r i o r i is very efficient for candidate searching and insertion. Once a transaction

is read in , all of its subsets can be quickly computed and inserted into the hash tree

if they are not there already. Figure 3.12 gives an example of subset operation on

the root of a candidate hash tree.

Obviously, the bottom-up idea behind both A p r i o r and B U C is the same, ex

cept B U C searches the tree in a depth-first order while Apr io r searches in a breadth-

first order. F rom this observation, we developped a C U B E algori thm wi th a similar

hash tree structure as in A p r i o r , and exploit the breadth-first searching in C U B E

computat ion exactly as in A p r i o i r . We kept the major structure of the A p r i o r i algo

r i thm and made only litt le modification to accommodate C U B E computat ion. For

example, since C U B E doesn't assume only a value for each attr ibute (item in A R M) ,

we built a global index table which counts all values of all attributes as items.

For a small da ta set, this algori thm is feasible. However, its performace was

proved unsatisfactory. Breadth-first searching creates too many candidates to be

maintained in the hash tree. Th i s is mainly because the global index table contains

too many items, exactly the sum of the cardinalities of all C U B E attributes. Th is

creates a large amount of candidates. If the C U B E is sparse, the situation is even

worse. Al though we can count on pruning to eliminate many candidates, the hash

tree is st i l l a huge burden before pruning, and quickly consumes all available memory.

Unfortunately, we had to admit this attempt failed. Since the performance

of this hash tree based algorithm lags far behind other algorithms, we omit it from

the following discussion.

48

3.5.2 Hash Table Based Algori thm

After we finished the implementation of A S L , we tried to use the hash table as

an alternative data structure for A S L , to see whether better preformance could be

achieved. Then the Affinity Hash Table based algori thm was developed, A H T for

short. ;

A s with P ipeHash , A H T uses hash tables to maintain cells of nodes in a

lattice, group-bys. However, A H T avoids creating a hash table for each cuboid.

Once subset affinity becomes applicable, it reuses the hash table created for the

previous task. Specifically, A H T builds an index which makes it possible to collapse

the previous hash table whenever subset affinity is found.

For this purpose, each C U B E attribute is assigned several bits which, when

combined, form the complete index of buckets in a hash table. For example, for a

3-dimensional C U B E with attributes A , B and C , we give A three bits, B two bits

and C one bit. Then the hash tables index has 6 bits (in binary) and the size of the

hash table wi l l be 26. Whenever a tuple (cell) is read in , its location in the hashtable

is determined by its values for the C U B E attributes. In this example, for its index,

the first three bits are decided by the value for A , the next two bits are decided by

the value for B , and the last bit is decided by the value for C .

The number of bits assigned to each attribute depends both on the cardinality

of that attribute and on how many tuples are in the raw dataset . Originally, the bits

assigned to an attribute X is log (card(X)), where card(X) is the cardinality of X .

This implies the length of a hash table would be the product of the cardinalities of

all attributes. However, if the data set is sparse, this product would be much larger

than the size of the data set. In this case, the bits assigned to each attribute would

shrink appropriately, in order to define a smaller index. A smaller index, however,

may introduce collisions. Here we simply tradeoff memory occupation with run time.

This tradeoff would introduce severe bucket collision when many cells need to be

maintained by the hash table. It degrades A H T ' s performance severely, especially

49

A l g o r i t h m A H T
1. I N P U T : Dataset R cube dimensions { A i , . . . , Am}; min imum support Spt
2. O U T P U T : The 2 m cuboids of the data cube
3. P L A N :
4. Task definition: a cuboid in the cube lattice
5. Processor assignment: a processor is1 assigned the next task based on

subset affinity
6. C U B E C O M P U T A T I O N (for a processor):
7. parallel do
8. let the task be with dimensions A , - , . . . , Aj
9. if { A j , . . . , Aj} is a subset of the set of dimensions of the

previous task, or the set of dimensions of the first task
10. let C denote the hash table from that task
11. call subset-collapse(C, Spt, Ai,..., Aj)
12. else call subset-newHashTable(i?, Spt, Ai,..., Aj)
13. end do

14. Subroutine subset-collapse(C, Spt, Ai,..., Aj)
15. Collapse C based on A , - , . . . ,.Aj
16. Wri te out the cells if the support threshold is met

17. Subroutine subset-newHashTable(C, Spt, Ai,..., Aj)
18. initialize a hash table i?
19. for each tuple in C do
20. find the right cell in H (created if necessary)
21. update the aggregate and the support counts accordingly
22. end for
23. Traverse H , and write out the cells if the support threshold is met

Figure 3.13: A Skeleton of A H T

50

when problem size increases or a high dimensional C U B E need to be computed. We

wil l discuss this further in Chapter 4.

A s A S L , A H T also takes each group-by as a task. A H T ' s task scheduling is

almost the same as A S L , except A H T does not prcocess prefix affinity differently

from general subset affinity. If a new task's G R O U P B Y attributes make a subset of

those of the previous task, then the hash table already built contains al l cells needed

for the new task. So, we wil l create no new hash table but shrink the existing one

by collapsing some buckets. Further to the example mentioned above, if we've built

the hash table for cuboid A B C , we now get a new task for cuboid A C . The buckets

x x x 00 x, x x x 01 x, x x x 11 x and xxx 10 x are collapsed into x x x 00 x, wi th the

aggregate and the support upgraded at x x x 00 x. Those attributes missing from the

new task (but found in the previous one) determine how many and what buckets wi l l

be collapsed. In this example, C is the missing attr ibute. Since two bits (the forth

and the fifth in the index) are assigned to C , then four buckets wi l l be collapsed into

one bucket.

Since the hash table does not maintain cells in any particular sorting order,

no sorting is needed in A H T . If a sorted cuboid is required by users, the sorting wi l l

be done online when users give their queries. We call this post-sorting.

The skeleton of A H T is shown in Figure 3.13.

51

Chapter 4

Experimental Evaluation

In this Chapter , we give a performance comparison of five algorithms: R P , B P P ,

A S L , P T and A H T . The hash tree based algorithm is not included in this testing

nor in the following discussion, because its performance lags far behind the others.

In order to give, a fair evaluation, we investigate the algori thms' memory

occupation first before explaining the testing environment, and then give our test

results.

4.1 Memory Occupation

In four of the algorithms: R P , A S L , P T and A H T , the raw data set is replicated

among processors. Conversely, B P P partitions the raw data set and distributes the

partit ions among processors. Let 's first discuss data replication based algorithms.

In the simplest algori thm, R P , each processor loads the whole replicated data

set, i? , into its main memory as a large array for later computat ion, according to

the task assigned to it. R P therefore only needs a space the size of R, in the main

memory for each processor.

Another data, replication algori thm, P T , is also an array based algori thm.

Like R P , its memory footprint is not much larger than R for each processor.

A H T uses hash tables as its data structure only to maintain cuboids. Since

52

the cells in a cuboid can be less than tuples in the data set, a hash table may possibly

be much smaller than a data array in an array based algori thm. Besides cells, A H T

needs also to maintain the index table for the hash table in memory. The index

table is fixed-size in A H T ; in other words, the number of buckets in the hash table

is fixed. Th is number greatly affects A H T ' s performance. In order to make the

experiment evaluation reliable, we set the number of buckets in the hash table to

the number of tuples in R. Therefore, A H T ' s memory footprint is not much more

than R. In an extreme case, such as where the cuboid contains all tuples in the raw

data set, each processor of A H T needs space in its main memory for R cells, plus

the \R\ indices for a hash table.

The memory footprint of A S L is the biggest of all the algorithms. It takes

skip lists as its data structure. The memory overhead for each node of a skip list is

mainly decided by the maximum number of forward links it allows a node to have.

In our algori thm, we allow no more than 16 forward links in each node. Therefore,

a node's memory footprint is no more than twice the size of an element of an array

in array based algorithms, such as R P .

Like A H T , A S L does not load the entire data set into memory, but only

maintains cuboids as skip lists. Thus , a skip list may be smaller than a data array.

Even in an extreme case, such that a cuboid contains the whole da ta set, its skip

list size would be no more than twice that of R.

A s well as the current working skip list, each processor maintains a "root"

skip list in its main memory, to maximize sort sharing among local tasks. Then in

an extreme case, A S L ' s memory footprint wi l l be no more than four times of R, for

two skip lists in the memory of each processor.

The data part i t ioning based algori thm: B P P is the most memory-efficient

a lgori thm. Since each processor only works on local chunks, its memory footprint

is the maximum size of its local chunks. Even in an extreme case, where only one

chunk gets produced when range part i t ioning on an attribute, the memory footprint

53

would be no more than R.

4.2 Experimental Environment

The experiments were carried out on a hetergeous P C cluster, consisting of eight

500MHz PHI processors with 256M of main memory and eight 266MHz PII proces

sors with 128M of main memory. Each machine is attached with a 30Gbyte hard

disk and is connected to a lOOMbit/sec Ethernet network.

The C U B E computations were performed on a weather data set containing

weather conditions sent by various weather stations on land. The data set is the

same as that used by Ross and Srivastava [14], and Beyer and Ramakrishnan [4]. It

has 20 dimensions, and is very skewed on some of those dimensions. For example,

partitioning the data on the 11th dimension produces one partition which is 40 times

larger than the smallest one.

In order to compare the effect of varying the different parameters of the

problem, we used a fixed setting and then varied each of the parameters individually.

The fixed setting, or baseline configurat ion for testing the algorithms, was the

following:

• the eight 500MHz processors;

• 176,631 tuples (all from real data);

• 9 dimensions chosen arbitrarily (but with the product of the cardinalities

roughly equal to 10 1 3);

• with minimum support set at two.

For the dynamic scheduling algorithms A S L , P T and A H T , we overlapped

the manager and one worker on one processor. This maximized the usage of the

processor on which the manager resided, leading to a reasonable performance eval

uation.

54

In the experiment, we investigated how the algorithms perform under differ

ent circumstances. We are concerned with the following issues in C U B E computa

t ion:

• load balancing, tested by comparing loads on each processor;

• scalability with processors, tested by varying the number of processors;

• scalability with problem size, tested by varying problem size;

• scalability with dimensions, tested by varying the number of dimensions;

• pruning effects, tested by varying the minimum support;

• accommodation for sparse C U B E computat ion, tested by varying the sparse-

ness of the data set.

In the following figures, "wall clock" time means the maximum time taken

by any processor. It includes both C P U and I / O cost.

4.3 Load Distribution

Figure 4.1 shows the load distr ibution among processors when testing on the baseline

configuration. A S L , A H T and P T have quite an even load distr ibution while the

loads distributed to each processor by R P and B P P vary greatly. For R P , the reason

for the uneven load distr ibution is due to its static task assignment. Al though the

number of tasks is approximately equal, the amount of computat ion and I / O for the

tasks differs significantly. For B P P , the dataset is partitioned statically across all

nodes. Because the data is very skewed on some of the dimensions, the computation

is not well balanced. A S L , A H T and P T decrease the granularity of the tasks to a

single cuboid in A S L and A H T and to a small subtree in P T . The finer granularity

leads to better load balancing, and the use of demand scheduling makes it easier to

maintain balanced even when the da tase t is very skewed.

55

Load on Each Parallel Computing Nodes
1401 1 1 1 1 1 1

1 2 3 4 5 6 7 8
Parallel Computing Nodes

Figure 1.1: Load Balancing on 8 Processors

56

Speedup Comparision
T : 1 1 1 1 1 r

01 i i i i i i i i I
0 2 4 6 8 10 12 14 16 18

Number of Processors

Figure 4.2: Scalabil i ty

4 . 4 Varying the Number of Processors

Figure 4.2 shows the performance of the algorithms when running on different num

bers of processors. The performances' are largely determined by each algori thms'

load balancing abil i ty; generally, the better the load balances, the better the perfor

mance.

R P ' s performance is the worst, no matter how many processors are used.

Besides poor load balancing, R P ' s depth-first wr i t ing strategy exacerbates its poor

performance as well.

B P P does well when running only on 2 processors, where the data part i t ion

ing is done quite evenly. However, as more processors are added to the computing

environment, the da ta part i t ioning becomes uneven. Uneven tasks with coarse gran-

57

ularity quickly upset load balancing. B P P is quickly outperformed by A S L when

four processors are available.

The performance of A S L is poor when run on only two processors. Th is is

largely due to the overhead from creating and maintaining skip lists. When the

number of processors increases, A S L gains from good load balancing and scales very

well.

A H T ' s performance is similar to A S L ' s , because their task definition and

scheduling are almost the same.

P T shows the best performance overall due to both good balancing and

pruning. A S L , A H T and P T use affinity scheduling to take advantage of share-sort

to reduce computat ion. A s we mentioned in section 3.3.2, the affinity relationship

among local tasks on one processor tends to weaken as the number of processors

increases. It is interesting to note that the speedup from eight processors to sixteen

processors is negligible, relatively.

4.5 Varying the Problem Size

Figure 4.3 shows that with increasing problem size, P T and A S L do significantly

better than other algorithms. Bo th P T and A S L appear to grow sublinearly as the

number of tuples increases. Th is is due to two factors. F i r s t , there is an overhead

when creating the 2 9 cuboids, which is independent of the amount of data. Second,

doubling the number of tuples does not change the cardinality of the dimensions

(except for the date field) and does not imply twice the amount of I / O , since more

aggregation may take place.

It is possible to use more processors to solve a fixed problem faster or to

solve a larger problem in the same amount of t ime. The results in Figure 4.3 show-

that P T and A S L scale well with problem size and indicate that these algorithms

could be used, given sufficient memory and disk space, to solve larger problems on

larger cluster machines.

58

Varying Size of Dataset
11001 1 1 1

0 200 400 600 800 1000 1200
Number of Tuples in Dataset (*K)

Figure 4.3: Results for varying the dataset size

59

Varying the Number of Cube Dimensions
50001 1 1 1 1 1 1 r

Number of Cube Dimensions

Figure 4.4: Results for varying the Number of Cube Dimensions

Unl ike other algorithms, A H T scales unpredictably with problem size. O n

one hand, this is because collision within a bucket tends to happen more often,

as more and more cells are maintained by hash tables. Th is damages A H T ' s per

formance severely. On the other hand, the data distr ibution in the raw data set

dramatical ly affects how many collisions may occur. This leads to inconsistent scal

ability in A H T .

4.6 V a r y i n g the N u m b e r of D imens ions

Figure 4.4 shows the effect of increasing the number of dimensions on each algo

r i thm. The wall clock time increases dramatical ly as the number of dimensions'

increases, because the number of cuboids grows exponentially with dimension size.

60

For example, the 13-dimensional C U B E has 8,192 cuboids.

The scalability of A H T with C U B E dimensions is the worst of all the al

gorithms. In fact, in our testing, when the number of C U B E dimensions is set as

13, the hash table size was fixed as ten times the size of the input data set, that is

ten times larger than that in the baseline configuration. Even then, A H T ' s perfor

mance is very poor. There are two main reasons contr ibut ing to this effect. F i r s t ,

as high dimensional C U B E needs to be computed, a large number of cells need to

be maintained in the hash table. Th is introduces a great amount of collisions within

in buckets during insertion and searching operations. Second, since the size of the

hash table is fixed, the index bits assigned to each C U B E attribute are far from

adequate to appropriately collapse the hash table when subset affinity is applicable.

If the data set is skewed on some C U B E attributes, the hash function behaves even

poorer.

The relative performance for the other four algorithms remains the same

except for A S L , where for thirteen dimensions it stops being better than B P P . A S L

is affected more than other algorithms because of its comparison operation. The

comparison operation used to search and insert cells into the skip list becomes more

costly as the length of the key increases. The length of the key grows linearly with

the number of dimensions. Th i s is a significant source of overhead for A S L .

Figure 4.4 also shows that when the number of dimensions is small , R P ,

A S L , A H T and P T all give similar performances. Because the size of the output is

small for a small number of dimensions, the simple R P algorithm can keep up to

the others.

4.7 V a r y i n g the M i n i m u m Suppor t

Figure 4.5 shows the effect of increasing the minimum support . As the minimum

support increases, there is more pruning, and as a result, less I / O . The total output

size for the algorithms given in Figure 4.5 starts at 469Mbyte for a support of

61

Figure 4.5: Results for varying the minimal support

62

one, 86Mbyte for a support of two, 27Mbytes for a support of four, and U M b y t e s

for a support of eight. After eight, very l i t t le additional pruning occurs. Except

between one and two, the output size does not appear to have much affect on overall

performance. Th is is surprising since we expected P T to do better as support

increased, because more pruning should have led to less computat ion. The relative

flatness of the curve for P T is largely due to the order of the dimensions choosen.

For the baseline configuration, the pruning occurs more towards the leaves, where

it does not save as much in computation time.

Notice A S L and A H T can not prune during computat ion; their better per

formance wi th higher minimum support is due only to less I / O cost but not to

pruning.

4.8 Varying the Sparseness of the Dataset

Figure 4.6 shows the effect of sparseness of the data set on the four algorithms.

We consider a data set to be sparse when the number of tuples is small relative

to the product of the number of distinct at tr ibute values for each dimension in

the C U B E . Since the number of tuples in the baseline configuration is fixed, we

can vary the sparseness of the data set by choosing smaller dimensions over larger

cardinali ty dimensions. The three data sets chosen for Figure 4.6 consisted of the

nine dimensions with the smallest cardinalities, the nine dimensions with the largest

cardinalities, and one in between. Note that even for the smallest of the three, there

are st i l l about 10' possible total cells in the cube.

A s shown in Figure 4.6, A H T is apparently more affected by sparseness than

the other algorithms. The more C U B E dimensions, the more collisions happen,

which badly hamper A H T ' s performance. If few collisions occurs, as when dimen

sionality is low, A H T outperforms all others.

A H T and A S L perform well on dense datasets and are more adversely affected

by spareness than others. A S L performs well for dense datasets because each cuboid

63

Varying the Exponent of Cardinality Product of Cube Dimensions
10001 1 1 1 1 1 1

6 8 10 12 14 16 18 20 22
Cardinality Product of Cube Dimensions (Exponent of 10)

Figure 4.6: Results for varying the sparseness of the dataset

64

Situations P T A S L R P B P P A H T
dense cubes V V

small dimensionality (< 5) v 7 V V V
high dimensionality v 7

less memory occupation V
otherwise vV v 7

online support

Figure 4.7: Recipe for selecting the best algori thm

contains relatively few cells, which makes searching or inserting into a skip list

relatively fast. The B U C - b a s e d algorithms have little opportuni ty to take advantage

of density. In fact, the denser the dataset, the less pruning can be done. A s a result,

while traversing the lattice, the B U C - b a s e d algorithms need to sort almost the entire

dataset for many of the cuboids. B P P does particularly poorly for cube dimensions

with small cardinalities because B P P cannot part i t ion the data very evenly, which

leads to serious load imbalance. A S L does worse than the B U C - b a s e d algorithms

when the product of the cardinalities is high, partly because of the amount of pruning

that occurs for the BUC-based algorithms, and partly because A S L has to maintain

larger skip lists.

4.9 S u m m a r y

4.9.1 Recipe Recommended

The experimental results shown thus far explores the different parameters affecting

overall performance. After careful examination, we recommend the "recipe" shown

in Figure 4.7 for selecting the best algori thm in various situations.

It is clear that A H T and A S L dominate all other algorithms when the cube

is dense, or when the total number of cells in the data cube is not too high (e.g.,

< 10 8) . However, A H T is more adversely affected by sparseness and dimensionality.

For data cubes with a small number of dimensions (e.g., < 5), almost all algorithms

65

behave similarly. In this case, R P may have a slight edge in that it is the simplest

algori thm to implement. For all other situations, except when the data cube has a

large number of dimensions, P T , A H T and A S L are relatively close in performance,

wi th P T typically a constant factor faster than A H T and A S L . For cubes of high

dimensionality, there is significant difference among the three, and P T should be

used. The last entry in Figure 4.7 concerns online support. Th is is the topic of the

next section.

4.9.2 Further Improvement

There is st i l l room for improvement in some of the algorithms. W i t h the affinity

scheduling, the current prefix and subset affinity can be expanded to cooperate with

the sorting overlap idea behind the Overlap algori thm, mentioned in Chapter 2.

Therefore, even if we can not assign a task to a processor wi th C U B E dimensions

perfectly prefixing the previous task, we can try to assign a task with the longest

possible prefix of the previous task. This may improve the performance of A S L .

For A H T , we can attemp more sophisticated hash function instead of the

naive M O D hash function currently use. A better hash function may relieve A H T ' s

struggling performance when faced with sparse and high dimensional C U B E com

putat ion.

66

Chapter 5

Online Aggregation

Recall that the C U B E computat ion is just a precomputation designed to instantly

respond to online iceberg queries. However, sometimes a user's query can not be

answered by the precomputed C U B E . W h e n the min imum support for the online

query is lower than that for the precomputation, it is no longer possible to compute

a query, essentially a cuboid, from a precomputed cuboid.

This problem can be solved in two ways. F i r s t , we can choose a small mini

mum support for the precomputation, therefore, most of the queries can be answered

by aggregating from a precomputed cuboid. Second, we can simply aggregate from

the raw data set to answer an unpredictable query online.

In the following sections, we discuss issues concerning these two separate

methods.

5.1 Selective Mater ia l i za t ion

C U B E with low constraints usually produces a large body of result for which the

computation may take a long time and also may not be sa.ved to disk entirely. To

solve this problem, it is natural to consider selecting only one set of cuboids to

materialize instead of all the available cuboids. Al though our experiments show

that in many cases, our parallel algorithms can do well in computing the entire

67

iceberg-cube query from scratch (e.g., < 100 seconds), for t ruly online processing,

selective material ization can st i l l help significantly.

A s an exercise, we compared two different plans for answering online queries

using A S L . The first plan is to simply re-compute the query based on the specified

minimum support. If the min imum support was two, as in Figure 4.5, A S L would

take approximately sixty seconds to complete the entire C U B E .

The second plan consists of a precomputation stage and an online stage. In

the precomputation stage, A S L computes only the leaves of the traversal tree using

the smallest min imum support (i.e., 1). In the online stage, A S L uses top-down

aggregation and returns those cells satisfying the new specified support. In this

second stage, A S L can make returns almost immediately; and interestingly, even for

the precomputation, it only took fifty seconds for the same example. (The value

of fifty seconds was obtained from our addit ional experiment, not directly from

Figure 4.5. The values in Figure 4.5 include the total time for the nodes in the

tree, not just the leaves.) This suggests that even simple selective materialization

can help. It is a topic of future work to develop more intelligent materialization

strategies.

5.2 On l ine Aggrega te f r o m a R a w D a t a Set

Besides selective materialization, in this thesis, we also consider computing online

aggregates from a raw data set. Thus, we manage to provide a comprehensive

solution for the iceberg query problem. Hellerstein, Haas and Wang proposed an

online aggregation framework [11], in which a sampling technique is applied for

instant response and further progressive refinement. We took this framework for

our online aggregate algorithm to allow a user to observe the progress of a query

and dynamically direct or redirect the computat ion. In the case of an iceberg query,

the user would see a rough ini t ia l cuboid which would become more accurate as

more tuples are processed.

68

Like A S L , we took a skip list as the fundamental data structure, making it

possible to construct a cuboid by incrementally inserting tuples into the skip list.

Each tuple can therefore be handled independently. In terms of incremently building

a cuboid, the hash tables used in A H T provides a good alternative. However, since

its performance is too sensitive to dimensionality and data sparseness, as viewed in

Chapter 4, a hash table does not make a good da ta structure for the online aggregate

algori thm. The array based algorithms, R P , B P P and P T , are also difficult to be

extended to handling online issues, mainly because an array does not efficiently

support incrementally insertion. Once query results from new data are computed,

they then have to be merged with the results from the old data. Merg ing operations

introduce addit ional overhead and do not support parallelism well. In fact, the online

advantages of A S L over other algorithms was one of the main motivations for its

development. In the following section, we present our Parallel OnLine aggregation

algorithm (P O L) .

5.3 Parallel Online Aggregation

5.3.1 Data Partitioning and Skip List Partitioning

Online aggregation implies only one group-by need be computed. Usually, comput

ing one group-by is not time consuming. The computation is much smaller than

computing C U B E . To necessitate parallel computat ion, we assume the raw data

set is huge, shown in two aspects. F i r s t , a raw data set is range-partitioned across

processors without any sorting. If there are n processors in a cluster, n partit ions,

Ri to Rn, are produced; processor j gets Rj. Second, neither a processor can load

its local da ta parti t ion entirely into its main memory. A processor has to proceed

the computat ion step by step; at each step, one block of data from its local da ta

part i t ion is loaded and computed. The data block is in fact a sample taken from

the unprocessed part of the processor's local da ta part i t ion.

69

Located on Pi Located on P2 Located on P3 Located on P4
Passed to Pi (Chunkn) (Chunky) (Chunky) (Chunky)
Passed to P2 (Chunk2\) (Chunk'n) (Chunk23) (Chunk 24)
Passed to P 3 (Chunksi) (Chun (132) {Chunk33) (Chunky)
Passed to P4 (Chunk^i) (Chunky) (C'hunk 43) (Chunk44)

Table 5.1: Task A r r a y for 4 Processors

In order to utilize all available machines in a cluster, P O L range-partitions a

skip list to n partitions as well, where n is the number of processors. Each processor,

therefore, maintains only one skip list par t i t ion. P O L determines boundaries of the

skip list partitions assigned to different processors at the beginning of its computa

tion through sampling. Afterward, a processor is only responsible for searching or

inserting cells into its skip list part i t ion as delimited by boundaries.

A s a processor scans its local da ta part i t ion, since it is unsorted, the processor

finds tuples which should be inserted into skip list partitions maintained by other

processors. In such a case, the processor then passes the tuples to other processors

appropriately. If there are n processors in the cluster, one processor might pass (n-

l) / n of its local data to other processors. The overhead from data communication

is then introduced.

5.3.2 Task Definition and Scheduling

A s mentioned above, P O L proceeds with computation step by step. W i t h i n a step,

each processor computes a block of data, and data commutat ion takes place among

processors when necessary. P O L guarantees that one block of data is loaded only

once. Only after all processors complete computing on the tuples in this block, does

the loading processor discard the block and move to the next step. Therefore, pro

cessors proceed with their computat ion synchronously, and synchronizations happen

amongst processors between every two steps.

Tasks are defined in P O L for each step, that is, between synchronizations.

70

Synchronization

' Tasks for P1, from

One Step

£ h u n k j l O i u n k l i r fJiunk3i Chunk4jJ

I Tasks for P2, from (j Chunk22 Chunk32 Chunk42 Chunk22 Chunk32 Chunk42 3!

| Tasks for P3, from
C h u n k l . C 3 Chunk23 C h u n k 3 3 ^ B Chunk43

I Tasks for P4, from Cg^^

Figure 5.1: Tasks Assignment in P O L

Suppose at one step, after the processor P 8 loads in a data block from its local data

part i t ion Rt, it groups the tuples in the block into n chunks, Chunky to Chunkni,

according to the parti t ion boundaries set for the skip list partit ions, where n is the

number of processors. Note that Chunk ji indicates a chunk, which although located

in processor Pt, wi l l be passed to processor Pj to maintain F j ' s skip list parti t ion.

Therefore, for Pu all but one chunk(Chunka) are passed over network and checked

by other processors. For a cluster wi th 4 processors, the task array created for one

step is shown in Table 5.1.

Since there are n processors and each processor has n chunks, n x n chunks

are produced in total . These chunks correspond to n X n tasks, indicated as

t&Bk{Chunkji)(both i and j from 1 to n). Task(Chunkji) is the computation based

on chunk Chnnkji- Notice that at each step, tasks have to be redefined. Tasks in

different steps are separately scheduled.

Like some of C U B E algorithms, in P O L , a manager responsible for task

71

scheduling, and many workers responsible for computing(computing aggregations in

this case). The manager ini t ia l ly assigns a number of tasks to each processor. How

ever, once a processor finishes its assigned tasks, it can then help other processors

finish their tasks.

Originally, processor Pi, are assigned task(Chunkij) (j is from 1 to n). For ex

ample, wi th four processors, P 2 is required to finish t a sk (C7 i tmA:2i) , task(C7imiA:22),

task(Chunk23) and task(C hunk24). For some of these tasks, P 2 has to fetch appro

priate chunks located on other processors. P2 then needs Chunk2\ on Pi to finish

tdisk{Chunk2\), Chunk23 on P 3 to finish task(Chunk23), Chunk24 on P4 to finish

task(Chunk24) and local C'hunk22 to finish task(C/i?mA:22). The sequence for proces

sor Pi to compute its assigned tasks is this: from task(C/i?mA;j,-) to task(Chunkin),

it then wraps back from task(C 'hunkn) to task(Chunki^_1)). Th is sequence maxi

mizes the possibility of each processor working on data located on different proces

sors at one time, thus reducing the possibility of a burst of da ta requests happening

on a particular processor. Figure 5.1 illustrates the original task assignment in P O L

for a computing environment consisting of 4 processors.

To balance the load, a processor is allowed to offload wait ing tasks from busy

processors after it has finished its own assigned tasks. The manager tries to assign

to it those untouched tasks that the processor keep the input data chunk in local.

The processor then compute a new skip list for the task. Once it finishes this task,

or gets a data request from the processor responsible for the task, it passes the skip

list it has already built on to that processor. Then , that processor merges the skip

list wi th its local skip list part i t ion. Apparently, this method of task scheduling

does not introduce additional data communication overhead.

To provide a constant update of query results, a set t imer periodically gives

response back to the user. Whenever the timer expires, the manager collects results

from all workers, displays the results on screen, and resets the timer. If the user

wishes to discontinue the computat ion, he or she can interrupt it at any point.

72

1. A lgor i thm P O L
2. I N P U T : Range-parti t ioned data sets, each located on one processor (processor

Pi has part i t ion Rl;)
G R O U P B Y dimensions { A i , A2,.. -Am} and min imum support
Spt

3. O U T P U T : The iceberg query results
4. O N L I N E A G G R E G A T E :
5. The manager takes a sample, and determines the boundaries of skip list partit ions

assigned to each. processor
6. parallel do
7. while (not all data has been processed)
8. if (worker processors Pi)
9. loads in one block the samples from its local part i ton

which have not been processed
10. it then groups the samples into n chunks, Chunkn, to

Chunkni
11. calls on\'me-s\a,ve(Chunkii,... ,Chunkni, Spt, Ay,..., Am)
12. if(the manager)
13. defines n X n tasks, each for one chunk on workers
14. schedules the tasks, as described in

Section 5.3.2
15. synchronize
16. end while
17. end do
18. Subroutine onl ine-slave(C/i?m/ci j ' , . . . , Chunkni, Spt, A\,..., Am)
19. gets a task from the manger; if there is no uncompleted task at the

manager, return
20. if the task is Task(Chunkij)
21. asks processor Pj for the chunk Chunky
22. updates the local skip list based on Chunkij
23. if the task is Task(C7itmfc7-,-)
24. computes a new skip list from the chunk Chunkji
25. sends the skip list to Pj, then Pj merges it into its

local skip list pari t i ton.
26. during processing, if any request comes from another process asking for a

data chunk, sends it to the processor
27. during processing, if any request comes from the manager for

current result, estimates current minimum support, collects
result and send them to the manager

28. during processing, if any request comes from the manager for
stopping the computation, return

Figure 5.2: A Skeleton of the P O L Algo r i t hm

73

A skeleton of algorithm P O L is shown in Figure 5.2.

5.4 Exerimental Evaluation

The testing environment for P O L is similar to that for the C U B E algorithms, except

that we based our experiments on a larger weather dataset, which contains 1,000,000

tuples. Although the data set is larger, it has the same number of dimensions as

the smaller one used for testing the C U B E algorithms.

We focused on the following issues in P O L during the experiments:

• scalability with the number of processors;

• scalability with the buffer size on each processor.

5.4.1 Varying the Number of Processors

Figure 5.3 shows the performance of P O L with different numbers of processors. In

testing, a 12-dimensional iceberg query was answered online. The minimum support

was set as 2 and the buffer on each processor was set to contain 8000 tuples at each

step. The computation created a huge skip list with 924,585 nodes.

The performance of P O L was tested on three clusters of machines:

• Clusterl consists of eight 500MHz PIIL processors with 256M of main memory

connected by an Ethernet network;

• Cluster2 consists of eight 266MHz PII processors with 128M of main memory

connected by an Ethernet network;

' • Cluster3 consists of eight 266MHz PII processors with 128M of main memory

connected by a higher speed network, Myrinet, which is approximately three

times faster than the Ethernet used in the first two clusters.

Data communication among worker processors is the main factor affecting

POL's performance. If the data distribution is uniform, for each processor nearly

74

150
Varying the Number of Processors

—100

E
t-

O

50

ciusten —e-
Cluster2 —*-
Cluster3 — H

4 5 6
Number of Processors

Figure 5.3: POL ' s Scalability with the Number of Processors

(n — l)/n of data needed are located on other processors, where n is the number of

processors. Apparently, the higher n is, the more data needs to be transfered over the

network. However, adding more machines decreases the computations carried out at

each processor because the work load is shared. Therefore, whether we can achiever

better overall performance with more processors or not remains uncertain. It largely

depends on how much the computation decreases or the communcation increases on

each processor, and which is the dominating factor. Generally, more time spent on

computation versus the less spent on communication, the better performance can

be achieved.

Computing high dimensional queries always implies more computation be

cause a large skip list needs to be maintained. Therefore, we can conclude that P O L

is feasible especially for computing high dimensional queries.

75

Figure 5.3 shows the speedup achieved on Clusters'2 and Cluster3 is better

than on C l u s t e r l , mainly because the computation on the clusters of slow machines

takes up more total run time than on the cluster of fast machines.

Concerning load balancing, dynamic offloading from other busy processors

can balance uneven load resulted from unevenly distributed data among processors.

However, if both the skip list part i t ioning and the data distr ibution are uneven, the

load may be poorly balanced. Fortunately, in our testings, this adverse situation

did not arise.

5.4.2 Varying the Buffer Size

Buffer size l imits the amount of data processed at each step. The larger the buffer

size, the fewer steps are needed in P O L , and thus, less synchronizations and less

sampling happens between steps. Usually, synchronization and sampling mean the

introduction of overhead. Therefore, as shown in Figure 5.4, as the buffer size

increases, performance improves.

76

Figure 5.4: Scalabil i ty with Buffer Size

77

Chapter 6

Conclusion

In this thesis we discuss a collection of novel parallel algorithms we developed di

rected towards online and offline creation of C U B E to support iceberg queries.

We evaluated the C U B E algorithms, R P , B P P , P T , A S L and A H T , across a

variety of parameters to determine the best situations for use. R P has the advantage

of being simple to implement. However, except for cubes with low dimensionality,

R P is outperformed by the other algorithms. B P P is also outperformed; but B P P

reveals that breadth-first wr i t ing is a useful opt imizat ion. A s an extension of B P P ,

P T is the algorithm of choice in most situations. There are, however, two excep

tional situations where A S L and A H T are recommended. A S L and A H T are more

efficient for dense cubes, whereas A S L supports sampling and progressive refinement

especially.

For the online aggregation, we tested our algori thm, P O L , for aggregating

online over a large data set. Experiments revealed that P O L behaves well in a cluster

of machines connected with high speed networks, and is valuable in answering high

dimensional online queries which require more time to complete computat ion.

In future work, we would investigate how the lessons we have learned re

garding parallel iceberg query computat ion can be applied to other tasks in O L A P

computation and data mining. These include (constrained) frequent set queries [24],

78

and O L A P computat ion, taking into account correlations between attributes.

79

Bibliography

[1] M . J . A . Ber ry and G . Linoff. D a t a M i n i n g Techniques: For marketing, Sales,

and Customer Support . John Wi l ey & Sons, New York , 1997

[2] R . Agrawal , S. Agrawal , P. Deshpande, A . Gup ta , J . Naughton, R . Ramakr -

ishnan and S. Sarawagi. O n the computat ion of multidimensional aggregates.

In Proc. 1996 VLDB, pp. 506-521.

[3] E . Baral is , S. Paraboschi and E . Teniente. Mater ial ized view selection in a

multidimensional database. In Proc. 1997 VLDB, pp. 98-112.

[4] K . Beyer and R . Ramakr ishnan. B o t t o m - U p Computa t ion of Sparse and Ice

berg C U B E s . In Proc. 1999 ACM SIGMOD, pp 359-370.

[5] M . Ebe r l , W . K a r l , C . Trini t is , and A . Blaszczyk. Paral lel Compu t ing on

P C Clusters - A n Alternat ive to Supercomputers for Industrial Appl ica t ions .

In Proc. 6th European Parallel Virtual Machine/Message Passing Interface

Conference, L N C S vol . 1697, pp. 493-498, 1999.

[6] M . Fang, N . Shivakumar, H . Garc i a -Mol ina , R . M o t w a n i and J . U l l m a n . C o m

puting iceberg queries efficiently. In Proc. 1998 VLDB, pp. 299-310.

[7] S. G o i l and A . Choudhary. High Performance O L A P and D a t a M i n i n g on

Parallel Computers . In The Journal of Data Mining and Knowledge Discovery,

1, 4, pp. 391-418, 1997.

80

[8] J . Gray, A . Bosworth , A . L a y m a n and H . Pirahesh. Datacube: A relational

aggregation operator generalizing group-by, cross-tab and sub-totals. In Proc.

1996 ICDE, pp. 152-159.

[9] H . G u p t a , V . Harinarayan, A . Rajaraman and J . U l l m a n . Index selction for

O L A P . In Proc. 1997 ICDE, pp. 208-219.

[10] V . Harinarayan, A . Rajaraman and J . U l l m a n . Implementing data cubes

efficiently. In Proc. 1996 ACM SIGMOD, pp. 205-216.

[11] J . Hellerstein, J . Haas and H . Wang . Online Aggregation. In Proc. 1997

SIGMOD, pp. 171-182.

[12] M . Kamber , J . Han and J . Ch iang . Metarule-guided mining of mult i

dimensional association rules using data cubes. In Proc. 1997 KDD, pp. 207-

210.

[13] Y i H o n g Zhao, Prasad Deshpande, and Jeffrey F . Naughton A n Array-based

algorithm for simultaneous Mul t id imensional aggregates.

S I G M O D Conference 1997, pp. 159-170

[14] K . Ross and D . Srivastava. Fast Computa t ion of Sparse Datacubes. In Proc.

1997 VLDB, pp. 116-125.

[15] S. Sarawagi. Expla in ing differences in multidimensional aggregates. In Proc.

1999 VLDB, pp. 42-53.

[16] A . Shukla, P. Deshpande and J . Naughton. Material ized view selection for

multidimensional datasets. In Proc. 1998 VLDB, pp 488-499.

[17] A . Srivasta,va, E . Han, V . K u m a r and V . Singh. Parallel formulations of

decision-tree classification algori thm. In The Journal of Data Mining and

Knowledge Discovery, 3, 3, pp. 237-262, 1999.

81

[18] M . Tamura and M . Kitsuregawa. D y n a m i c Load Balance for Paral lel Associa

tion Rule M i n i n g on Heterogeneous P C Cluster System. In Proc. 1999 VLDB,

pp. 162-173.

[19] Soroush Momen-Pour Paral le l Computa t ion of D a t a Cubes M S c . Thesis,

Universi ty of Br i t i sh Co lumbia , Computer Science Dept . , 1999.

[20] M . Zak i . Paral le l and distributed association mining: a survey. In IEEE

Concurrency, 7, 4, pp. 14-25, 1999.

[21] S. Agarwa l , R . Agrawal , P . M . Deshpande, A . G u p t a , J . F . Naughton,

R .Ramakr i shnan and S. Sarawagi On the Computa t ion of Mul t id imensional

Aggregates. mProc. 1996 VLDB, pp. 506-521.

[22] W . Pugh . Skip Lists : a Probabi l is t ic Al ternat ive to Balance Trees. In Com,-

munications ofthe ACM 1990.

[23] Eur -Hong (Sam) Han , George Karyp i s , V i p i n K u m a r Scalable Paral lel D a t a

M i n i n g for Associat ion Rules Proceedings of the A C M S I G M O D international

conference on Management of data M a y 11 - 15, 1997, Tucson, A Z U S A

[24] R . T . N g , L . V . S . Lakshmanan, J . Han , and A . Pang . Explora tory mining

and pruning optimizations of constrained associations rules. In Proc. 1998

SIGMOD, pp. 13-24.

82

