Iceberg-cube Computation with PC Cluster
by
Yu Yin

B.Sc., Jilin University, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
April 2001
© Yu Yin, 2001

In presenting this thesis in partial fulfilment of the reguirements
for an advanced degree at the University of British Columbia, I
agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of
this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that
copying or publication of this thesis for financial gain shall not
be allowed without my written permission.

Department of C%?h?ﬂ%ef‘ éijeﬂLe—

The University of British Columbia
Vancouver, Canada

pate _Oct 10 . 200

Abstract

Iceberg queries constitute one of the most important classes of queries for OLAP
applications. This thesis investigates using low cost PC clusters to parallelize the
computation of iceberg queries. We concentrate on techniques for querying large,
high-dimensional data sets. Our exploration of an algorithmic space considers trade-
offs between parallelism, compuation, memory and I/O. The main contribution of
this thesis is the development and evaluation of various novel, parallel algorithms
for CUBE computation and online aggregation. These include the following: one,
the CUBE Algorithm RP, which is a straightforward parallel version of BUC[BR99];
two, the CUBE Algorithm BPP, which attempts to reduce I/O by outputting re-
sults in a more efficient way; three, the CUBE Algorithms ASL and AHT, which
maintain cells in a cuboid in a skip list and a hash table respeétively, designed
to put the utmost priority on load balancing; four, alternatively, the CUBE Algo-
rithm PT load-balances by using binary partitioning to divide the cube lattice as
evenly as possible; and five, the online aggregating algorithm POL, based on ASL
and sampling technique, which gives back instant response and further progressive
refinement.

We present a thorough performance evaluation of all these algorithms in a
variety of parameters, including the dimensionality and the sparseness the cube, the
selectivity of the constraints, the number of processors, and the size of the data set.
The key to understanding the CUBE algorithms is in that one-algorithm-does-not-
fit-all. We recommend a “recipe” which uses PT as the default algorithm, but may
also deploy ASL or AHT in appropritate circumstances. The online aggregation
algorithm, POL, is especially suitable for computing a high dimensional query over

a large data set with a cluster of machines connected by high speed networks.

Abstract

Contents

List of Tables

List of Figures
Acknowledgements
1 Imtroduction

2 Review

2.1 Iceberg Query

2.2 CUBE Operator

2.3 Iceberg-cube Computation

2.4 Sequential CUBE Algorithms
2.4.1 Top-down CUBE algorithms
2.4.2 'Bottom-Up CUBE Algorithm

3 Parallel Iceberg-cube Algorithms

3.1 Algorithm RP

3.2 Algorithm BPP

3.2.1 Task Definition and Processor Assignment

Contents

ii

vi
vil

ix

3.2.2 Breadth-first Writing 34

3.3 Algorithm ASL IR I e 37
331 UsingSkiplists.......................... 38
3.3.2 Affinity Assignmento oL 39

34 Algorithm PT.o, e 42

3.5 Hash-based Algorithms. 45
3.5.1 Hash Tree Based Algorithm 45
3.5.2 Hash Table Based Algorithm 49

Experimental Evaluation 52

4.1 Memory Occupation 52

4.2 Experimental Environment, 54

4.3 .Load Distribution. o o oo 55

4.4 Varying the Number of Processors 57

4.5 Varying the Problem Size 58

4.6 Varying the Number of Dimensions 60

4.7 Varying the Minimum Support 61

4.8 Varying the Sparseness of the Dataset 63

4.9 Summary 65
4.9.1 Recipe Recommended 65
4.9.2 Further Improvement 66

Online Aggregation : 67

5.1 Selective Materialization 67

5.2 Online Aggregate froma Raw Data Set 68

5.3 Parallel Online Aggregation 69
5.3.1 Data Partitioning and Skip List Partitioning 69
5.3.2 Task Definition and Scheduling 70

5.4 Exerimental Evaluation 74

v

5.4.1 Varying the Number of Processors

5.4.2 Varying the Buffer Size
6 Conclusion

Bibliography

List of Tables

1.1 Key Features of the Algorithms 4
2.1 Examplerelation R. 8
5.1 Task Array for4 Processors v i v, 70

vi

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

List of Figures

Iceberg Query L o 8
CUBE Operation on Relation SALES [8] 10
Cube in Multi-dimensional Array Format [8] 11
Lattice and Processing Trees for CUBE Computation [4] 14
An Example of 4-Dimensional Lattice for Algorithm PipeSort [2] . . 16
An Example of Plan and Pipelines for Algorithm PipeSort [2] 17
PipeHash on a Four Attribute Group-by [2] 19
Examples for PartitionedCube and MemoryCube Algorithms [14] . . 21
A Skeletonof BUC 25
BUC Partitioning 26
A Skeleton of the Replicated Parallel BUC Algorithm 31
Task Assignment in Algorithm RP 31
Task Assignment in BPP 33
Depth-first Writing vs Breadth-first Writing 34
A Skeleton of the BPP Algorithm 35

I/O comparison between BPP(Breadth-first writing) and RP(Depth-

first writing) on 9 dimensions on a dataset with 176,631 tuples, input

size is 10Mbyte and output size is 86Mbyte. 36

Pictorial Description of Steps Involved in Performing an Insertion [22] 38

A Skeletonof ASL 40
vii

3.9 Binary Division of the Processing Tree into Four Tasks 43

3.10 ASkeleton of PT e 44
3.11 Frequent Itemsets and Strong rules for a Bookstore Database [20] . . 46
3.12 Subset Operation on the Root of a Candidate Hash Tree [23] 47
3.13 A Skeletonof AHT 50
4.1 Load Balancing on 8 Processors 56
4.2 Scalability 57
4.3 Results for varying the dataset size 59
4.4 Results for varying the Number of Cube Dimensions 60
4.5 Results for varying the minimal support 62
4.6 Results for varying the sparseness of the dataset 64
4.7 Recipe for selecting the best algorithm 65
5.1 Tasks Assignment in POL 71
5.2 A Skeleton of the POL Algorithm 73
5.3 POL’s Scalability with the Number of Processors 75
5.4 Scalability with Buffer Size e e e e e e e e e e e e e e e 77

viii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Alan Wagner, and
professor Dr. Raymond Ng, for helping me in carrying out this research project
and for reading the manuscript of my thesis and offering their valuable comments.
I also would like to thank Kirsty Barclay for reading the manuscript of my thesis
and providing me with her helpful comments.

Yu YIN

The University of British Columbia
April 2001

ix

Chapter 1
o Int_vroduction

As computing and the Internet advance, we see a massive increase in the raw data
available to institutions, corporations, and individuals. For example, large numbers
of radiological images have been generated in hospitals and immense product and
customer databases have been accumulated [1]. Extracting meaningful patterns
and rules from such large data sets is therefore becoming more and more important.
In this context, On-line Analytical Processing (OLAP) has emerged as a powefful
tool for data analysis. In decision support systems, OLAP enables analysts and
managers to obtain insight into data. By interactively posing complex queries, they
can extract different views of daté.

In many OLAP applications, aggregation queries constitute a large percent-
age of the computation. Many of these queries are only concerned with finding
aggregate values above some specified threshold. We call this kind of query “iceberg
queries”. Query results consisting of above-threshold aggregate values are typically
small compared to the total input data (the iceberg).

Through Structured Query Language (SQL) aggregate functions and the
GROUP BY operator, OLAP applications can easily produce aggregates for one

group-by, however, most applications need aggregates for a set of group-bys in order

to gain more insight into the data. This necessitates generalization of GROUP BY

operator. The CUBE operator, defined by Gray et al [8], provides this generaliza-
tion. It computes aggregation for every possible combination of a set of specified
attributes. For instance, if CUBE operator is applied on 2 attributes, A and B,
then the aggregates from GROUP BY on all, GROUP BY on A, GROUP BY on B
and GROUP BY on AB will be returned together. The computation introduced by
the CUBE operator is huge, because for d specified attributes, 2¢ GROUP BYs are .
computed. Furthermore, In each cuboid, there are also numerous cells, or partitions,
‘computed. In CUBE terminology, output for an n-attributes GROUP BY is called
an n-dimensional cuboid, also called an n-dimentional group-by. When the CUBE
operator is employed to answer a set of iceberg queries, we call it an “iceberg-cube”.

In this thesis, we investigate the algorithms for answering iceberg queries, es-
pecially for iceberg-cube computation. Recently, several algorithms have been pro-
posed, including the PipeSort and the PipeHash algorithms proposed by Agrawal et -
al. [2], the Overlap algorithm proposed by Naughton et al [21], the PartitionedCube
algorithm proposed by K. Ross and D. Srivastava [14] and the Bottom-Up algorithm
(BUC) proposed by Beyer and Ramakrishnan [4]. All these algorithms except BUC
are general CUBE computation algorithms, in the regard that they do not specifi-
cally target iceberg-cube computation. They proceed in a top-down fashion, that is,
computing from more dimensional group-bys to less dimensional group-bys. Many
of them try to utilize previous sorting in the top-down traversal. BUC provides an-
other efficient solution, specifically for threshold-set iceberg queries. It proceeds in
a bottom-up fashion, trying to prune tuples which do not satisfy threshold as early
as possible to reduce computation. We will discuss these two kinds of algorithms in
more detail in Chapter 2 .

We based our work on the algorithms mentioned above, however, we were
interested in providing parallel solutions. The previous CUBE algorithms mainly

proposed for running on stand alone machines were developed to execute on a single

processor, so-called sequential algorithms. In this thesis, we propose several par-

allel algorithms for answering iceberg queries, and promote the benefits of using
distributed computing plafforms to solve problems. Our underlying architecture is -
a-dedicated cluster of PCs. With elegant parallel algorithms, these machines have -
the potential to achieve the performance of massive parallel machines at a much
lower cost. We focused our work on practical techniques that could be readily im-
. plemented on low cost PC clusters using open source, Linux and public domain
< versions of the MPI message passing standard. .
To improve the response time of iceberg.queries, two different solutions are
. explored: precomputing and online querying.

Precomputation is a common technique used by many OLAP applications.
- Usually, precomputation computes a CUBE operator, extracting multiple aggregates
and saving the results on disks. It supports instant response if the precomputed re-
- sults match a user’s queries. Towards efficient iceberg-cube precomputation with
PC clusters, this thesis explores different trade-offs between parallelism, computa-
tion and I/O. Assuming input data sets fit in main memory on each machine of the
. cluster, we developed several novel, parallel algorithms for iceberg-cube computa-
tion and give a comprehensive ‘evaluation in this thesis. Here is a summery of the

parallel algorithms:

e Algorithm RP (Replicated Parallel BUC), is a straightforward parallel version
of BUC. It is simple and introduces little overhead above its sequential version.
However, algorithm RP is poof in distributing tasks and balancing workload.
In an attempt to achieve better load-balancing, algorithm BPP (Breadth-first
writing, Partitioned, Parallel BUC), was developed. BPP differs from RP in
two key ways. First, the dataset is range-partitioned and distributed other
than replicated in RP; second, the output of cuboids is done in a breadth-
first fashion, as opposed to the depth-first writing in RP and BUC. Table 1.1

summarizes the key features of the algorithms.

e Though BPP is better than RP concerning load-balancing, this improvement

Algorithms Writing | Load Relationship Data
Strategy Balance | of cuboids | Decomposition
RP depth-first weak bottom-up replicated
BPP breadth-first weak bottom-up partitioned
ASL breadth-first | strong | top-down replicated
PT breadth-first | strong hybrid replicated

Table 1.1: Key Features of the Algorithms

is limited when the raw data set skews on some attributes. This is primarily
because the task granularity of RP and BPP is relatively large and uneven.
To consider load balancing as the utmost priority, algorithm ASL (Affinity
SkipList) is developed. In ASL éach cuboid is treated as a task. ASL uses an
affinity task scheduling strategy to seek the 1'elat1611ship among tasks assigned

to the same processor and maximize sort sharing among them. Thus ASL

resembles to the top-down algorithms. ASL is also unique in the regard that

it maintains the cells of a cuboid in a different data structure, namely a skip

Aist.

Algorithm PT (Partitioned Tree) is a hybrid algorithm, combining both the
idea of pruning from BUC and affinity scheduling from ASL. It processes

tasks of slightly coarser granularity. The idea is to use binary partitioning to

divide the cuboids into tasks as evenly as possible, in order to make the load
“well-balanced. The computation in each task proceeds in bottom-up fashion,

however, the task assignment is processed by affinity écheduling in a top-down

fashion.

Two other algorithms based on a hash tree and a hash table were also devel-
oped. The implementation based on a hash tree used up memory too rapidly
that it fails to process large data set. The hash table based algorithm was im-

plemented much like ASL, in terms of task definition and scheduling. However,

its performance is no better than ASL in most cases.

Two questions natually arise at this pbihf: one, which algorithm is the best;
and two, do we really need to know ai;ouf all ‘Lhese algorithms? In considering the
first question, we present a thorough vperfo‘rm_ance evaluation of all these algorithms
on a variety of parameters. The parameters :mclude the dimensionality, the sparse-
ness of the group-bys, the selectivity of the constraints, the number of processors,
and the sizes of the data sets. With respect to the second question, a key finding of
our evaluation is that when it comes to iceberg—cube computation with PC clusters,
it is not a “one- algorithm-fits-all” situation. Based on our results we recommend a

“recipe” which uses PT as the default algorlthm but may also deploy ASL under
spec1ﬁc circumstances. o

Putting parallel iceberg-cube algorlthmlc development and evaluation aside
tempmauly, we next consider the concept of “tluly online”. ,Plecomputatlon can
answer users’ queries instantly if the query pattern can be predicted. However, if
the threshold set by online queries differs frorﬁ what the precomputation assumed,
precomputed cuboids can no longer be used to answer those queries. Therefore,
those queries have to be computed online. We posit a scenario that the input raw
data set no longer fits in main memory. Only ‘with this precondition will the query
computation be large enough to necessitate applying parallelism. In the online
aggregation framework proposed and studied by Hellefstein, Haas and Wang, an
online query algorithm based on ASL was developed. Using the sampling technique,
a user’s online query can be responded to instantly. And with more and more data
processed, the answer becomes more and more refined and accurate.

Integrating CUBE precomputation and online querying computation together,
this thesis gives a relative complete solution for the special problem domain: iceberg
query computation.

The outline of the thesis is as follows. Chapter 2 reviews key concepts and

the main sequential algorithms for iceberg-cube computation. Chapter 3 introduces

the various parallel algorithms we developed. Chapter 4 presents a comprehensive

. experimental evaluation of these algorithms, and concludes with a recipe for pick-

ing the best algorithms under various circumstances. Chapter 5 discusses online

- processing. Finally, a conclusion is given in Chapter 6.

Chapter 2

Review

The background material necessary for understanding the parallel algorithms to
be introduced in Chapter 3 is presented in this chapter.. We first discuss iceberg
query, then the CUBE operator. A special CUBE operator, iceberg-cube, is intro-
duced seperately. The last part of this chapter, Section 2.4 presents some sequential

algorithms for CUBE and iceberg-cube computation.

2.1 Iceberg Query

An iceberg query is much like a regular aggregate query, except that it eliminates
aggregate values that fall below some specified threshold after it performs an ag-
gregate function over an attribute or a set of attributes. The prototypical iceberg
query considered in this thesis is as follows for a relation R(targetl, target2, ...,

targetk, rest, aggregateFreld) and a threshold T.

SELECT targetl, target2, ... targetk, SUM(aggregateField)
FROM R
GROUP BY targetl, target2, ... targetk

HAVING count(rest) > T
If the above iceberg query is applied to the relation R in Table 2.1, with T

” target 1l I target? I rest I aggregate Field ”

” Item I Location | Customer I Sales ”
Sony 25" TV Seattle Joe 700
JVC 217 TV Vancouver Fred 400
Sony 25" TV Seattle sally 700
JVC 21" TV LA sally 400
Sony 25" TV Seattle bob 700
Panasonic Hi-Fi VCR | Vancouver tom 250

Table 2.1: Example relation R

Over huge data set The outpit is
* Cut off output by just the small
setting threshold tip of the Iceberg
Iceberg Query m
SELECT A, B,C, COUNT(™)
FROM R

GROUPBY 4,B,C,
HAVING COUNTY*) »= 2

Figure 2.1: Iceberg Query

= 2 and k = 2, the result would be the tuple <Sony 25” TV, Seattle, 2100>. We
notice that relation R and the number of unique target values are typically huge
(the iceberg), and the answer, that is, the number of frequently occurring targets,
is very small (the tip of the iceberg). This situation is pictured in Figure 2.1.

An iceberg query becomes especially important when the amount of input
data is tremendous, since data analysts or managers can not possibly go through all
the detailed information within a huge data set. Usually, they only note frequently

occurring behaviors, which are typically more important than unusual occurrences.

In realistic data analysis, data analysts often execute mgltiple iceberg queries,
which GROUP BY on diffe?eﬁt 'nu;mber of dimensions. For example, they.fnay want
to know more detailed information if the previoﬁs quéry returns too few results. Af-
terward they might like td “drill-down” by GRQUP BY on more attributes. On the
other hand, if the previous query gives back too detailed a,nd.too much information,
they may like to “roll-up” by giving less GROUP BY attributes in the upcoming
query. A Generated report containing results from all those queries can be formu-
lated in standard SQL, but its representation is inconvenient. As well as drill-down
and roll-up, some other frequently used queries including histogram and cross-tab

are also difficult to represent in standard SQL [19].

- 2.2 CUBE Operator

To exceed the limitation posed by the st‘a"nvdard SQL, as mentioned in Section 2.1, the
CUBE operator was introduced iﬁ (8] by J. Gray et al. It generalizes the standard
GROUP BY operator to computé aggrégates for every combination of GROUP BY
attributes. For instance, consider the fc’)vlblobwing i‘élation SALES(Model, Year, Color,
Sales), shown in the lefthand table in Figure 2.2. When CUBE is on R with GROUP
BY attributes Model, Year and Color, aggregate on attribute Sales (SUM in this
case), the result returned will contain the sum of Sales for the entire relation (i.e. no
GROUP BY), for each item: (Model), (Year), (Color), for each pair: (Model, Year),
(Mod'el, Color), and (Year, Colo‘r), and ﬁnally for each (Model, Year, Color). The
result is shown in the righthand table in Figurei?.?. Figure 2.3 shows the CUBE in
a multi-dimensional array format. |

In OLAP terminology, the GROUP BY attributes are called “dimensions”,
the attributes that are aggregated are called “measures”, and one particular GROUP
BY, (e.g., (Model, Year)), in a CUBE computation is called a “cuboid” or simply a
“group-by”.

Three types of aggregate functions are identified in [8]. Consider aggregating

[SALES]

Model Year Color Sales
ALL ALL ALL 942
3 Lo Chevy ALL ALL 510
[ALES] . ’ Ford ALL ALL 432
Model | Year | Color | Sales ALL 1990 ALL * 343
- . ALL 1991 ALL 314
Chevy | 1990 ’eé 5 : "ALL | 1992 | ALL 285
Chevy | 1990 | white 87 ALL ALL red 165
ALL ALL hi 273
Chevy | 1990 | blue | 62 SELECT Model, Year, Color AUE AL | e FI
Chevy | 1991 red 54
| SUM(SaIes) Chevy 1990 ALL 154
Chevy | 1991 | white 95 Chevy | 1991 ALL 199
Chevy | 1991 blue 49 FROM SALES Chevy 1992 ALL 157
Ford 1990 ALL 189
Chevy | 1992 red 31 CUBE BY Model, Year, Color Ford 1991 | ALL 116
Chevy | 1992 | white 54 g Ford | 1992 ALL 128
. Chevy ALL red 91
Chevy 1992 blue 71 Chevy ALL white 236
Ford [1990 | red 64 ‘ Chevy | ALL | blue 183
Ford 1990 | white 62 Ford ALL red 144
. Ford ALL white 133
Ford 1.990 blue 63) . Ford ALL lue roe
FOYd 1991 red 52 : ALL 1980 red 69
Ford 1991 | white 9 o ALL 1990 | white 149
) . ALL 1990 blue 125
Ford 1991 blue 55 . ALL 1991 Tod o7
Ford 1992 red 27 : ALL 1991 | white 104
Ford 1992 | white 62 ALL 1991 blue 104
Ford | 1992 | blue | 39 N sl B A
ALL 1992 blue 110
Relation SALES All Tuples in Relation SALES

CUBE of SALES on attributes Model,
Year and Color, where aggregate
attribute is Sales.

Figure 2.2: CUBE Operation on Relation SALES [8]

10

BLUE @ Cross Tab

Chevy Ford By Color
RED l The Data Cube and

Sum WHITE The Sub-Space Aggregates

BLUE
O%},’?o A%t
A
T T T N

Swi By Color

Figure 2.3: Cube in Multi-dimensional Array Format [8]

a set of tuples T. Let {S; | 7= 1...n} be any complete set of disjointed subsets of
T such that |J; S; =T and N; S; = {}-

e An aggregate function F' is distributive if there is a function G such that
F(T)=G{F(Si)|i=1...n}). SUM, MIN and MAX are distributive with
G = F. COUNT is distributive with G = SUM.

e An aggregate function F' is algebraic if there is an M-tuple valued function
G and a function H such that F(T) = H{G(S;) | i = 1...n}), and M is
constant regardless of |T'| and n. All distributive functions are algebraic, as
are Average, standard deviation, MaxN, and MinN. For Average, G’ produces

the sum and count, and H divides the result.

o An aggregate function F'is holistic if it is not algebraic. For example, Median

and Rank are holistic.

11

2.3 Iceberg-cube Computation

The basic CUBE problem is to compute all aggregates as efficiently as possible. Its
chief difficulty is that the CUBE computation is exponential with the number of
dimensions: for d dimensions, 2¢ group-bys are computed. The size of each group-
by (cuboid) depends upon the cardinalities of its dimensions, possibly the product
of the GROUP BY attributes’ cardinalities. When the product of the cardinalities
for a group-by is large relative to the number of the cells (partitions) that actually
appear in the cuboid, we say the group-by is “sparse”. When the number of sparse
group-bys is large relative to the number of total number of group-bys, we say the.
CUBE is sparse. As is well-recognized, given the large result size of the entire CUBE,
especially on sparse data set, it is important to identify subsets of interest.

Deriving from this background, the concept of an “iceberg-cube” was intro-
duced in [4, 12].

the iceberg-cube was described as a variant of the CUBE problem, which al-
lows us to selectively compute cells that satisfy a user-specified aggregate condition.
It.is essentially a CUBE for iceberg queries. For example, an iceberg-cube is easily

expressed in SQL with the CUBE BY clause:
SELECT A, B, C, SUM(X)
FROM R where N is a count condition, called “min-
CUBE BY A,B,C

HAVING COUNT(*) > N
imum support” of a cell, or “minsup” for short. In this thesis, we only discuss this

count condition; other aggregate conditions can be handled as well [4].

2.4 Sequential CUBE Algorithms

All CUBE algorithms uses a lattice view for discussion. Figure 2.4(a) depicts a

sample lattice where A, B, C and D are dimensions. Nodes in the lattice represent

12

group-bys (cuboids). The group-bys are labeled according to their GROUP BY
attributes. The edges in the lattice show potential computing paths. All of the
CUBE algorithms in fact convert this lattice into a directed processing tree. Each
node in a processing tree therefore has no more than one parent, because it is
computed only once from its parent or from the raw data set.

CUBE algorithms are classified into two categories accordiﬁg to their com-
putation fashion. Algorithms which folléw paths from the raw data towards the
total aggregate value are called “top—dowﬁ” approaches. Algorithms which compute
paths in the reverse direction are called “bottom-up” approaches. For the exam-
ple shown in Figure 2.4(a), a top-down approach compufes from ABCD, to ABC,
td AB and eventually to A; a bottom-up approach goes in the opposite direction.
Figure 2.4(b) gives a sample processing tree of top-down algorithm. The processing
tree of bottom-up algorithm is illustrated in Figure 2.4(c).

In the following, we will discuss some significant sequential CUBE algorithms
proposed. CUBE algorithms can be viewed as having two stages: the planning stage
and the execution stage. In the planning stage, the algorithms decide how to convert
the lattice into a processing tree; in the execution stage, the algorithm computes

cuboids.

2.4.1 Top-down CUBE algorithms

CUBE algorithms always try to discover and take advantage of commonality between
a node and its parent in the lattice view. For many top-down algorithms, they
recognize that group-bys with common attributes can share, sorts, or partial sorts,
and utilize those sharings. Taking the processing tree shown in Figure 2.4(b) as an
example, AD represents the cuboid GROUP BY on A and D. If the data set has
been sorted with respect to A and D in order to compute AD, then for computing
cuboid A, the data set does not have to be re-sorted. We can simply accumulate

the sums for each of the values in A. Apparently, cuboid A and AD share sort on

13

ABCD

TR

ABC ABD ACD BCD

P

AB AC AD BC BD CD

(a) 4-Dimension Lattice

ABCD

Aij//////éBD ﬁgj://;;ngD
A B C D

—

all

(b) Sample Processing Tree
of Top-Down Algorithms

SABCD
4ABC 6ABD 8ACD 12BCD
3AB 7AC 9AD 11BC I13BD 15CD
2A 10B 14C 16D
tall

(¢) Processing Tree of Bottom-Up Algorithms

Figure 2.4: Lattice and Processing Trees for CUBE Computation [4]

14

attribute A.
Besides sort sharing, there are some other commonalities which were ex-
ploited by top-down algorithms. Some of these, specified as optimization techniques,

are listed by Sarawagi [2]:

o Smallest-parent: This aims at computing a group-by from the smallest previ-
ously computed group-by. For example, we can compute group-by AB from
group-by ABC and ABD. However, among the two potential parents, only
the one with smallest size will be selected, because computing from the small

parent will lead to lower cost.

o (ache-results: This technique tries to compute a group-by when its parent is

still in memory, hence, reducing disk 1/0.

e Amortize scans: This technique also aims at reducing disk I/O by amortizing
disk reads by computing as many group-bys as possible together in memory.
For instance, during scanning group-by ABCD, we can compute group-bys

ABC, ACD, ABD and BCD at the same time.

e Share-sorts: Sort-based algorithms use this technique to share sorting cost

among multiple group-bys.

e Share-partitions: This is specific to the hash-based algorithm. When a hash
table can not fit in the memory, data will be partitioned into chunks which do
fit in memory. Once a chunk is read in, multiple group-bys will be computed

in order to share the partitioning costs.
In the following, we will discuss several sequential top-down algorithms.

PipeSort, PipeHash and Overlap

PipeSort and PipeHash algorithms are among the first algorithms for efficient CUBE

computation. They were proposed by Sarawagi et al. in [2]. Both assume the cost

15

C B
24 58 416 413
BC AB AC BD AD CD

515 515 414 515 515 1020

ABC ABD ACD BCD
1030 15 40 520 45130
: - ABCD .

50 160

Figure 2.5: An Example of 4-Dimensional Lattice fof Algorithm PipeSort [2]

of each node in a lattice proportional to the product of the cardinalities of GROUP
BY attributes and try to compute each cuboid from a parent having the smallest
cost. However, The data structures of the two algorithms are different: PipeSort
uses array and sorting is done prior to aggregation; PipeHash uses hash tables.
Furthermore, PipeSort considers share-sorts optimiza,tioh, trying to minimize the
number of sorts, whereas PipeHash focuses on share-partitions optimization.

PipeSort distinguishes between two different costs attached to each node X
in the lattice view: cost A(X) and cost S(X). A(X) is induced when one child of X
is created through aggregating without any sort on X. Actually only one child of
X can be computed with cost A(X). For instance, for cuboid ABCD, only its child,
‘cubo:ic'l ABC, can be computed without any soi‘t on ABCD. For other children, if
they are computed from ABCD, cost S(ABCD) is induced becasue resort on ABCD
is necessary. In this way, the sorting cost is counted by PipeSort. Assuredly, cost
S(X) is always greater than or equal to A(X).

In the planning stage, a processing tree with a minimum total cost, taking
both A(X) and S(X) into account, is computed in a level-by-level ménner, where
level N contains all N-dimensinal cuboids. When computing on a level, the algo-

rithm determines what edges between the nodes in this level and the next level in

16

all

all

C B A D ‘ ¢
4 58 416 413
R c e P
CB BA AC DB AD CcD T

515 515 414 515 _315 1020 CB B A AD CD DB

] T
A S A N

1030 1540 520 45130 cBA B

A A A

] 1] 1
D ACD DBC
(e by |
P B : '

T

A

ralw data

{(a) Minimum Cost Sort Plan =~ = (b) Pipelines Executed

| Figure 2.6: An Example of Plan and Pipelines for Algorithm PipeSort [2]

the lattice should be left in the final minimum cost tree. Since each edge has a cost
attached, either A(X) or S(X), the problem is converted into finding the minimum
cost matching in a bipartite graph. ‘Given the lattice shown in Figure 2.5, the final
minimum cost plan becomes that shown in Figure 2.6(a). The pair of numbers un-
derneath each group-by in the figure denote the A(X) and S(X) costs. The detailed
plan computation is elaborated in [2].

After a plan is created, in the execution stage each path is computed in a
pipeline manner. Figure 2.6(b) shows the pipelines’ execution for the generated plan
in Figure 2.6(a). The head of each pipeline implies a re-sort, from its parent in the
processing tree.

Like PipeSort, PipeHash aims at computing cuboids from their smallest par-
ents. Since PipeHash takes hash tables as its data structure, no sorting is required.
Therefore, each node in the lattice has only one cost, which is similar to A(X) in
PipeSort. In the planning stage of PipeHash a minimum spanning tree(MST) is

computed based on the singular cost of each node. Figure 2.7(a) gives an example

17

of an MST.

Besides smallest-parent optimization, PipeHash also explores share-partitions
and amortized-scans optimizations. It computes as many cuboids as possible if their
parents are in memory. If the main memory is big enough to hold hash tables for
all cuboids, PipeHash can finish the cube computation in one data scan without
any sorting. If no enough memory is available, PipeHash partitions data on some
selected attribute, then processes each partition independently.

Although data partitioning solve the memory problem, the partitioning at-
tribute limits computations to only include group-bys with that particular attribute.
For example, from the MST in Figure 2.7(a), we com.pute a CUBE on dimensions
A, B, C and D. If we partition on A, then the partitions are only used to produce
cuboids containing dimension A, including ABCD, ABC, ABD, AB, AC, AD and
.A. Other cuboids will be computed afterward from cuboids with attribute A. Ide-
ally, they can fit in memory and no further partitioning is necessary. This makes
MST divide into subtrees, as shown in figure 2.7(b) and (c). By processing as large
a subtree(or a set of subtrees) of the MST as possible in memory, computing all
nodes in it (or them) simultaneously, PipeHash favors optimizations cache-results
and amortize-scans.

Sarawagi compared PipeSort and PipeHash in [2]. PipeHash suffers two
apparent problems, requiring re-hash for every group-by and requiring a significant
amount of memory. This makes it can only outperform PipeSort as the data is
dense. However, in this thesis, the problem domain is iceberg-cube computation in
which data is supposed to be highly sparse; therefore, hash-based algorithms are not
our major concern. However, we did implement some hash-based algorithms and
they will be discussed in Chapter 3 .

Overlap, proposed in [21], as well as PipeSort, considers sorting cost, but
it deals with it in a different way. It tries to overlap as much sorting as possible

by computing group-by from a parent with the maximum sort-order overlap. The

18

i

- A
A D A
2/\ ,}8 4%\\ AN : .
e \\\ A% C ;Cv P/-})
A C C A D D P
10 § /?,20/7520 ,4020 A2 -7 20 ROt ,’/
Lo S LT ABC ARD ACD
ABC ARD ACD ~_BCD SooN %
30 S._ N9 7 50-7 40 _ NN
~ \ 7/ P ~
TN v ABCD
ABCD . A

A 100

! ' * | Raw Data
Raw Data

(b) Subtree: Parti-

a) Minimum Spanning Tree .
(2) mop & tioned on A

B D
It\ C‘\ h \5\\\
! ~a
BAC iD P BD
| I pd
ABC B(A‘D

(c) Remaining Subtrees

Figure 2.7: PipeHash on a Four Attribute Group-by [2]

19

algorithm recognizes that if a group-by shares a prefix of GROUP BY attributes
with its parent, then the parent consists of a number of partitions, one for each value
of the prefix. For example, since cuboid ABC and cuboid AC share a GROUP BY
prefix A, the ABC group-by has |A| partitions that can be sorted independently on
C to produce the AC sort order, where |A| is the number of values for attribute A.

Overlap always selects a parent for a cuboid which shares the longest GROUP
BY prefix with that cuboid. Then the size of partition is minimized. If several
potential parents of a group-by share the same length of prefix with it, and then the
smallest one will be picked as the final parent. Overlap chooses a sort order for the
root of the processing tree, then all subsequent sorts are some suffix of this order.

The planning stage will build a tree like that shown in Figure 2.4(b). Once
this processing tree is formed, Overlap tries to fit as many partitions in memory as
possible. If a partition of a group-by can fit in the main memory, then a subtree of
the processing tree rooted by that group-by will be computed in a pipeline manner
when the partition is scanned in. This is expected to save much [/O costs for writing
intermediate results.

The experiments show that Overlap performs consistently better than PipeSort
and PipeHash. However, [14] argues that Overlap on sparse CUBES still produces

a large amount of 1/O by sorting intermediate results.

PartitionedCube and MemoryCube

When the above CUBE algorithms are applied to sparse data sets, their performance
becomes poor. Group-bys for sparse data sets are more likely to be large; buffering
intermediate group-bys in memory requires too much memory. If the main memory
is limited, then intermediate group-bys will be written out and read into memory
multiple times, which increases /O dramatically. Moreover, predictation of the size
of group-bys becomes very difficult, because the real size of a group-by may not

be proportional to the product of cardinalities of the GROUP BY attributes. This

20

makes the cost of computation in PipeSort and PipeHash no. longer feasible.

More recently, Ross and Srivastava proposed an efficient top-down algorithm
designed for large, high-dimensional and sparse CUBEs [14]. Their algorithm con-
sists of two parts: PartitionedCube and MemoryCube. PartitionedCube partitions
the data on some attribute into memory-sized units and MemoryCube computes the
CUBE on each in-memory partition.

Partitioning in PartitionedCube is very similar to PipeHash. The algorithm
chooses an attribute to partition input into fragments. Then all cuboids containing
that attribute will be computed on each fragment separately. For example, if CUBE
is to be computed on attributes {A, B, C, D}, we might partition the input relation
on attribute A, and get three partitions. Then, we compute cuboids ABCD, ABC,
ABD, ACD, AB, AC, AD and A for each partition. By taking the union of corre-
sponding partial cuboids computed frorﬁ each partition, we get finally the complete
cuboids. Then cuboid ABCD can be taken as the input to compute another cuboid.
PartitionedCube is called recursively if the fragments or cuboid ABCD is still too
big to fit in the memory; in that case, the data will be further partitioned on other
attributes. Figure 2.8(a) gives an illustration of this example.

Once the input of PartitionedCube fits in the memory, then MemoryCube
can be applied. MemoryCube is a sort-based algorithm, which is its main difference
from PipeHash. Like PipeSort, however, MemoryCube algorithm takes advantage
of the Pipelining technique. It tries to minimize the number of pipelines and hence,
the number of sorts. Its Paths algorithm(not to be discussed in detailed here),
guarantees that the number of pipelines(paths) it generates will be the minimum
number of paths to cover all the nodes in the lattice. Figure 2.8(b) shows the paths
for 4-dimension CUBE computation. There are six pipelines in total built from the
input data. The cuboids in boxes are the heads of the pipelines. Sorting is required
to create the head of the pipeline, which is shown as dash lines in Figure 2.8(b),

however, no sorting is needed in the pipelines.

21

N \
N v
BD " \C \ ,’
\ NP
' 41 ! T
Vol
\

A AD ACD, ’ \ BCD' ,’ Cuboid(BCD)(In memroy,
N IF 4C N ‘% o+ B projected out}
\

\ ABCD , ,’ /' Cube(ABCD) (Partitioned by
~ - .\?_ Ao B, A projected out)
Ny

N N7
R (Partitioned by A)

(a) Partitioning

A B D
AB I?PC CA F/[A
ABC [BCD| ICAI;] DAB

T T -
5o

in—memory partition

(b) Paths Found by MemoryCube

Figure 2.8: Examples for PartitionedCube and MemoryCube Algorithms [14]

22

Since PartitionedCube only considers pipelines in the MemoryCube, this
algorithm tries to reduce the amount of 1/O for intermediate results, and thus

enhance the performance for sparse CUBE computation.

Array-Based Algorithms

When using the array-based algorithms, as one proposed in [13], data sets are stored
in a multi-dimension array, where each coordinate matches a CUBE attribute. A
tuple’s location in the array is determined by its value in each dimension. The algo-
rithm requires no tuple comparison, only array indexing. Unfortunately, if the data
is sparse, the algorithms become infeasible, as the dfray becomes huge. Therefore,

we find array-based algorithms are too limited to warrant further discussion here.

2.4.2 Bottom-Up CUBE Algorithm

Our background search revealed only one bottom-up algorithm. It was introduced
in ' [4] by K. Beyer and R. Ramakrishnan, and called the BottomUpCube, BUC for
short. It especially targets iceberg-cube computation. -

Setting thresholds in iceberg queries always cuts off a lot of cells in general
cuboids. For the data set used in [4], and which was also used in our experiments,
as many as 20% of the group-bys consisted entirely of cells with support as one. For
the iceberg queries with minsup higher than 1, those group-bys do not need to be
computed at all. This makes sense to consider a way to prune as early as possible
in CUBE computation. Unfortunately, when we traverse a lattice in a top-down
fashion, we can not prune cells which have insufficient support in any cuboid, until
the last step. For example, suppose the threshold is set by specifying HAVING
Count(*) >= 2 in iceberg-cube (the minsup is 2). Before we compute cuboid ABC
from cuboid ABCD, we can not prune the cells with support as in 1, for example,
albleldl(minsup:1) and alblcld2(minsup:1). This is because they contribute to

the cells in ABC, whose supports are bigger than 1, for example, alblcl(minsup

23

is 2). However if we compute from cuboid ABC to cuboid ABCD in a bottom-up
fashion, pruning is bossible. Although cuboid ABCD can not be directly computed
from cuboid ABC, we can make sure that tuples which do not contribute to cells
in cuboid ABC will not contribute to cells in ABCD. We could therefore prune out .
those tuples in the raw data earlier, before the computation for ABCD proceeds.

Thus, in BUC, a bottom-up approach is adopted. The idea is to combine the
[/O efficiency of the PartitionedCube algorithm, with minimum support pruning.
The processing tree of BUC is illustrated in Figure 2.4(c). The numbers in Figure 2.9
indicate the order in which BUC visits the group-bys.

A skeleton of BUC is shown in Figure 2.9; we use the notation 74, to de-
_ note the set of all nodes in the subtree rooted at A;. For the example given in
Figure 2.4(c), Tg = {B, BC, BD, BCD}. Prefix in line 9 in Figure 2.9 indicates the
current processed cuboid’s GROUP BY dimensions. |

Take the BUC processing tree in Figure 2.9 as an example: BUC starts with
cuboid all, and then cuboid with GROUP BY attribute A. For each value v; in A, the
data set is partitioned. Then for those partitions with higher support than minsup,
B,UC is called recursively in a depth-first manner to process other dimensional group-
bys (in lines 14-16). For example, for partition Avy, in the first further recursion,
BUC proceeds partitioning on attribute B, producing finer partitions Av;Buv; to
partitions Av,Bu,,. Afterwdrd, BUC is recursively called on those finer partitions
to produce some cells in cuboids ABC, ABCD and ABD. When all recursions for
partition Av; return, BUC proceeds in the same way on other partitions for Av;.
When all partitions based on A finish, BUC continues on attributes B, C and D in
the same way.

Figure 2.10 shows how BUC partitioning proceeds. The arrows shows the
partitioning order. The gray area depicts those partitions pruned out based on the
constraints(minsup in this case).

Although BUC can exploit pruning, it can not optimize by share-sort or

24

— © o =~

12.
13.

14.
15.
16.
17.

Algorithm BUC-Main

INPUT: Dataset R with dimensions {41, Az, ... An },
the minimum support Spt.

OUTPUT: Qualified cells in the 2™ cuboids of the cube.

PLAN:

Starting from the bottom, output the aggregate on “all”,
and then a depth first traversal of the lattice.
induced by {A;, Ay, ... Am}.

for each dimension A; (¢ from 1 to m) do
BUC(R, Ta,, Spt, {})

CUBE COMPUTATION:
procedure BUC(R,T4,, Spt, prefix)
. prefix = prefix U{A;}
for each combination of values v; of the attributes
in prefix do
partition R to obtain R
if (the number of tuples in R; is > Spt)
aggregate R;, and write out the
aggregation to cuboid with cube
dimensions indicated by prefix
for each dimension Aj, k from i+ 1 to m do
call BUC(R;,Ta,, Spt, prefix)
end for
end for

Figure 2.9: A Skeleton of BUC

25

Partition on A Partition on AB Partition on ABC Partition on ABCD

i S R e L ==

al

alb2

a2

a2bl

4 amrl
a3 a2b2 a2b2cl a2b2cld2

a2 b2c2 [aZbhZcdl 1|
L_aZbl2c7d7 |

A TS 3 S SR

it2 I e s 3
a3b3 a3b3cl \»%
a3b3c2

Partition on B

bl

b2

b3

b4

b5

Figure 2.10: BUC Partitioning

26

smallest parent techniques.
Paper [4] compares BUC with PartitionedCube. It claimes that BUC per-
forms better than PartitionedCube. The pruning significantly reduces running time

when the minimum support is above 1. Even with minsup as 1, that is, full CUBE

is computed, BUC still outperforms it.

Chapter 3

Parallel Iceberg-cube
Algorithms

The key to success for an online system is the ability to respond to queries in a timely
fashion. The compute and data intensive nature of iceberg-cube queries necessitates
a high performance machine. In the past, this required expensive platforms, such
as symmetric multiprocessor machines. In recent years, however, a very economical
alternative has emerged: a cluster of low-cost commodity processors and disks. PC-
clusters provide several advantages over expensive multiprocéssor machines. First,
in terms of raw performance, processor speeds are similar to and often exceed those
of multiprocessor architectures. Recent advancements in system area networks, such
as Myrinet, standards like VIA, and 100Mbit or Gigabit Ethernet have significantly
improved communication bandwidth and latency. Second, although 1/O and the use
of commodity disks are weaknesses in these systems, as we show, parallelism can
easily be exploited. Third, the affordability of PC-clusters makes them attractive
for small to medium sized companies and they have been the dominant parallel
platform used for many applications [5], including association rule mining [18].

In the remainder of this thesis, we will discuss various novel algorithms we

have developed for parallelizing iceberg-cube computation. Our focus is on practical

28

techniques that can be readily implemented on low cost PC clusters using open
source, Linux and public domain versions of the MPI message passing standard. As
our results apply to low cost clusters, the question arises of how much our results
may generalize to higher cost systems. In Section 4, we examine how the various
algorithms would speed up in. the presence of more nodes/processors in the cluster.
Thus, if the key difference between a low cost and a hi‘gh cost cluster is only the .
number of nodes, then our results will be applicable. However, if the key difference
is on the underlying communication layer, then our results may not be applicable.

All of the algorithms to be presented use the basic framework of having
a planning stage and an execution stage. In the case of parallel algorithms, the
planning stage involves (i) breaking down the entire processing into smaller units
called tasks, and (ii) assigning tasks to processors, where now the objective is to
minimize the running time of the processor that takes the longest time to complete
its tasks. To simplify our presentation, we do not include the aggregation for the
node “all” as one of the tasks. This special node can be easily handled. Furthermore,
it is assumed that the initial dataset is either replicated at each of the processors
or partitioned. The output, that is, the cells of cuboids, remains distributed where
processors output to their local disks.

In this section, we introduce the algorithms. As shown in Table 1.1, the

algorithmic space that we explore involves the following issues:

e the first issue is how to write out the cuboids. Because BUC is bottom-up, the
writing of cuboids is done in a depth-first fashion. As will be shown later, this
is not optimized from the point of view of writing performance. This leads us

to develop an alternative breadth-first writing strategy;

o the second issue is the classical issue of load balancing. This issue is intimately
tied to the definition of what a task is. Different algorithms essentially work
with different notions of a task. In general, when the tasks are too coarse-

grained, load balancing is not satisfactory. However, if the tasks are too fine-

29

grained, a lot of overhead is incurred;

e when it comes to iceberg-cube complu'tation, an important issue is the strategy
for traversing the cube lattice. As discussed earlier, top-down traversal may
exploit share-sort, whereas bottom-up traversal exploits pruning based on the
constraints. Our algorithms considér these possibilities; in fact, one of the

algorithms combines the two strategies in an interesting way;

e as usual, for parallel computation, we explore whether data partitioning is

effective.

3.1 Algorithm RP

Recall from Figure 2.4(c) that the proces}é‘ing tree of BUC consists of independent
subtrees rooted at each of the dimensions. Thus, in the algorithm called Replicated
Parallel BUC, RP for short, each of these subtrees becomes a task. In other words,
for a cube query involving m attributes, there are m tasks. Processor assignment
is simply done in a round-robin fashion. With this vsimple assignment strategy, if
there are more processors than tasks, some processors will be idle. The data set is
replicated on all machines in a cluster. Bach processor reads from its own copy of
the dataset, and outputs the cuboids to its local disk. The skeleton of RP is showed
in Figure 3.1. |

Figure 3.2 g‘ives an example of computing a 4-dimensional CUBE on a cluster
of 4 PCs. In total, 4 tasks are created: subtrees rooted by A, B, C and D respectively.

Each machine compute one task.

3.2 Algorithm BPP

While RP is easy to implement, it appears to be vulnerable in at least two of its

aspects. First, the definition of a task may be too simplistic in RP. The division of

30

1. Algorithm RP , : : .
2. INPUT: Dataset R with dimensions {Ay, Az, ... A, } and minimum support Spt;
3. OUTPUT: The 2™ cuboids of the data cube.
4. PLAN: o
5. Task definition: identical to BUC, i.e., subtrees rooted at A;
6. Processor assignment: assign a processor, in round robin fashion, to each
subtree rooted at dimension A; (¢ from 1 to m)

7. CUBE COMPUTATION (for a processor):
8. parallel do For each subtree rooted at dimension A; assigned to the

processor ' |
9. call BUC(R, T4,, Spt, {}) (with output written on local disks) }
10. end do : |

Figure 3.1: A Skeleton of the Replicated Parallel BUC Algorithm

Raw Data Replicated

-
-2 To~a

Ethernet A
1
)
Taskl
T mep T Task2
.7 ARCD . |
/ /w N Lo
ARC A - oy , T
/! ,\!l‘i(... ///_;Bl)’ ACD N ; B'%l
. o
VAR AC s o
\\ ‘Q\/d/”- // \\\ |_§’
N eesiIiIiIiIIE
oSl e =T

Figure 3.2: Task Assignment in Algorithm RP

31

the cube lattice into subtrees is coarse-grained. One consequence is that some tasks
are much bigger than others. For example, the subtree rooted at A, Ta, is much
larger than that rooted at C, T¢. Thus, load balancing is poor. Second, BUC is
- not optimized in writing performance. To address these problems, we developed the

algorithm called Breadth-first writing Partitioned Parallel BUC, or BPP for short.

'3.2.1 Task Definition and Processor Assignment

~To achieve better load balancing, BPP tries to get finer-grained tasks by range
partitioning on each attribute. This is motivated by Ross and Srivastava’s design
of the Partitioned-Cube, which attemps to partition data into chunks which fit in

memory [14]. BPP partitions data in the following way:

e for a given attribute A;, the dataset R is range-partitioned into n chunks (i.e.,
Riy, -+, Bi(n)), where n is the number of processors. Processor P; keeps its

copy R;(;) on its local disk;

e note that because there are m attributes, the above range partitioning is done
for each attribute. Thus, processor P; keeps m chunks on its local disk (

Riys -+ B(j))- Any of these chunks may have some tuples in common;

e range partitioning itself for the m attributes can be‘conducted in parallel, with
processor assignment done in a round-robin fashion. For instance, processor i
may partition attribute A;, then A;,,, and so on. Notice that as far as BPP

execution is concerned, range partitioning is basically a pre-processing step.

If there are m cube attributes, then there will be a total m x n chunks. Each
chunk corresponds to one task. The processor who has the chunk in the local is
responsible for processing it. If processor P; process chunk R;;), where R;; is
produced by range partitioning on attribute i, P; computes the (partial) cuboids

in the subtree rooted at A;. These cuboids are partial because P; only deals with

32

axfv

Figure 3.3: Task Assignment in BPP

the part of the data it controls, in this case, R;;). The cuboids are completed by
merging the output of all n processors.

Figure 3.3 illustrates task allocation and process in BPP. Each of the 4 pro-
cessors in the cluster takes on the responsibility of range partitioning the raw data
set R on one dimension and distributing the resulting partitions across the pro-
cessors. Since there are 4 cube dimensions in total, after data partitioning each
processor gets 4 chunks. Data chunks in the same color on the same row are parti-
tioned on the same attribute and have no overlap. However, data chunks located in
the same processor are partitioned on different attributes and may have overlap. A
processor takes chunk R;(;) to compute subtree 7;, for example, P1 would use R
to compute subtree ¢

By partitioning data across processors, BPP achieves better load balancing
than RP. If data can be evenly distributed among processors, then the load may be

very well balanced in a homogeneous environment.

33

Cuboid A Cuboid AB Cuboid ABC

al 2 albl —3 alblcl (3)<T> .
. K 1

(<> 7 (2)!<3>' /’ alblc2 (4)<8> <
Lo ' alble3 (5)<9>

:/' alb2 /f\zalbkl (M<10> !,
(6)f4> i alb2c2

;o : < (8)<11},~;
' + alb2c3 (9)<12>./__

Y ; ,
a2 < > a2bl — - -
(10)<2$’ (1 1)*<5> R
v '
b by E— y

: ’.-‘" (12)<6> ‘,"'I :
i .

Figure 3.4: Depth-first Writing' vs Breadth-first Writing

3.2.2 Breadth-first Writing

BUC computes in a bottom-up manner, and the cells of the cuboids are written
out in a depth-first fashion. In the situation shown in Figure 3.4, there are three
attributes A, B and C, where the values of A are ay, ag, and so on, values of B
are b; and b, , values of C are ¢y, ¢ and c3. As shown in Figure 2.9, the tuples of
ay are aggregated in line 14 (assuming that the support threshold is met), and the
result is output. The recursive call in line 15 then leads the processing to the cell
ayby, then to the cell aybycy, then to a;byce, and so on. In Figure 3.4, the number
in round brackets beside each node denotes the order in which the cell is processed
and the output for depth-first writing; and the black solid lines denote the writing
sequence.

Note that these cells belong to different cuboids. For example, the cell a;
belongs to cuboid A, the cell a1b; to cuboid AB, and the cells a;bi¢c; and «1bycy
belong to ABC. Clearly in depth-first writing, the writing to the cuboids is scattered.

This incurs a high 1/O overhead. We could possibly use buffering to alleviate the

34

file:///lb2c3

1. Algorithm BPP
2. INPUT: Dataset R with dimensions {41, Ay, ... A} and minimum support
Spt

3. OUTPUT: The 2™ cuboids of the data cube

4. PLAN: :

5. Task definition: (partial) cuboids of subtrees rooted at A4;

6. Processor assignment: as described in Section 3.2.1

7. CUBE COMPUTATION (for the processor F;):

8. parallel do

9. for each A; (i from 1 to m) do

10. ‘call BPP-BUC(R;(;), Ta;, Spt, {}) (with output written on
local disks) :

11. end for

12. end do

13. Subroutine BPP-BUC(R, T4, Spt, prefix)

14. prefix = prefix U{4;}

15. sort R according to the attributes ordered in prefix

16. R' =R

17. for each combination of values of the attributes in prefix do
18. if (the number of tuples for that combination > Spt)
19. ' aggregate on those tuples, and write out the aggregation
20. else remove all those tuples from R’

21. end for

22. for each dimension Ag, k from i+ 1 to m do

23. call BPP-BUC(R', Ta,, Spt, prefix)

24. end for

Figure 3.5: A Skeleton of the BPP Algorithm

scattered Writing~ to the disk. However, this requires a large amount of buffering
space, thereby reducing the amount of memory available for the actual computation.
Furthermore, many cubotds may need to be maintained in the buffers at the same
time, causing extra management overhead.

In BPP, this problem is solved by breadth-first writing. Returning to the
example in Figure 3.4, BPP completes the writing of a cuboid before moving on
to the next one. For example, the cells ¢; and ag, which make up cuboid A, are

first computed and written out. Then all the cells in cuboid AB are outputted, and

35

10 Cost Comparision between RP and BPP
50 T T T T T T T

T

N RP
[BPP
45t 1

5F _
0 l Im ll—\ Iﬂ R I Y ﬂ
1 2 3 4 5 6 7

8

Wall Clock Time (seconds)
a 8 & 8 & 8
T T T T T T
| 1 1 L

-
o
T

Processors

Figure 3.6: I/O comparison between BPP (Breadth-first writing) and RP(Depth-first
writing) on 9 dimensions on a dataset with 176,631 tuples, input size is 10Mbyte
and output size is 86Mbyte.

so on. In Figure 3.4, the number in angled brackets beside each node denotes the
order in which the cell is processed for breadth-first writing, while the red dash lines
depict its writing sequence.

Figure 3.5 gives a skeleton of BPP. As described in Section 3.2, the pre-
processing step of range partitioning the dataset assigns to each processor P; of the
appropriate tasks.

In the main subroutine BPP-BUC, breadth-first writing is implemented by
first sorting the input dataset on the “prefix” attributes in line 15 in the skeleton. In
our example, if the prefix is A, meaning that the dataset has already been sorted on

A, then line 15 sorts the dataset further on the next attribute B. The loop starting

36

from line 17 then completes breadth-first writing by computing and outputting the
aggregation of all the cells in the cuboid AB.

| Because some cells may not meet the support threshold, there is the extra
complication in BPP-BUC of the need to begin pruning as early as possible. This
is the purpose of lines 16 and 20. Note that as opposed to what is presented in line
16 for simplicity, in our implementation we do not actually create a separate copy
of the data. Instead, an index is used to record the starting and ending positions in
the sorted dataset to indicate that all those tuples should be skipped for subsequent
calls to BPP-BUC.

Breadth-first /O is a significant improvement over the scattering 1/O used

in BUC. For the baseline configuration to be described in Section 4, the total I/O
time RP took to write the cuboids was more than 5 times greater than the total I/O
time for BPP. Figure 3.6 gives the I/O comparison between RP(depth-first writing)
and BPP(breadth-first writing).

3.3 Algorithm ASL

Although BPP gives a solution for load balancing, this solution is still not satisfac-
tory under some circumstances. The potential downfall of BPP comes from the fact
thét the amount of work each prbgessor does is dependent on the initial partitioning
of the data. However, the size of the task depends on‘the degree of skewness in
the data set and the order in which the dimensions are sorted and partitioned. If
the skewness is significant, the tasks may vary greatly in size, thereby reducing load
balancing. For example, for an attribute named Gender, only two possible values,
Female and Male, can be assigned to it. Range partitioning then can produce only
2 chunks. Even if we have more than 2 processors, only two of them will get applied
to chunks; the others will be relatively lightly loaded.

This motivates the development of another algorithm, called Affinity Skip

List, or ASL for short. ASL tries to create tasks that are as small as the cube

37

Search Path

- NIL

25
21 1 26 i

Original list, 17 to be inserted

: NIL
6] -
, 2
— 91— 71 T 15
3] = U717 1127 : 119 21 126 7

List after insertion

Figure 3.7: Pictorial Description of Steps Involved in Performing an Insertion [22]

lattice allows: each node in the lattice makes a task. This allows efficient use of the
processors, quite independent of the the skewness and dimensionality of the data
set. In the following, two key features of ASL are presented: the data structure

used, and the processor assignment.

3.3.1 Using Skip lists

A skip list is a data structure proposed by W. Pugh [22]. It is much like a linked list
with additional pointers. Figure 3.7 is an example of a skip list. The lowest levels of
nodes make a linked list, the higher levels of nodes are used for efficient search and
insert operations. As showed in Figure 3.7, searching or insertion always starts from
the highest level of the head node. If the next link emitted from that level points to
a node that contains an element bigger than the element which is to be inserted or
searched, we drop one level from the starting node, otherwise, we follow the link to
the next node, and try the next step from there. Figure 3.7 shows how an element
with key 16 is added into a skip list. The number of levels a new inserted element
should have is determined randomly, but not allowed to exceed a threshold set by
users.

The benefits of using a skip list are threefold. First, ASL exhibits good aver-

age case behavior for insertion and searching, quite similar to that of a balanced tree,

38

yet the implementation details are much simpler. Second, each node in the struc-
ture requires very little storage overhead. Third, skip list incrementally increases as
more elements are added, and the sort order of the. list is always guaranteed. This
is very important, because before sorting the data set need not be entirely loaded.

ASL uses skip lists to maintain the cells in cuboids. While it séans the raw
data set, ASL builds skip lists incrementally. If there is a node in the skip list
representing the new read-in tuple, then the aggregates and suppdrt counts of that
node are updated; otherwise a new‘ node will be inserted intb the skip list. In theory,
. if there are k cuboids and if there is enough memory, ASL can maintain all & skip
lists simultaneously for one scan of the data set. But for the data sets used in our

experiments, this optimization brings minimal gain, so we did not explore that here.

3.3.2 Affinity Assignment

Now, let’s consider the task assignment policy of ASL. In order to achieve good load
balancing, ASL defines tasks with very fine granularity. It takes each cuboid as a task
and assigns it to processors dynamically. During task scheduling, ASL adopts a top-
down approach to traversing the cube lattice. It always tries to assign uncomplete
high dimensional cuboids to processors, while taking affinity into account. Once a
processor finishes one task, it is assigned a new one which has some kind of affinity
with the previously one.

For example, if a processor has just created the skip list for the task ABCD,
then it makes sense for the procéssor to be assigned the task of computing the
cuboid for ABC. The previous skip list for ABCD can simply be reused to produce
the results for ABC. In the following, we refer to this situation as “prefix affinity”.

In another situation, if a processor has just created the skip list for ABCD,
this skip list is still useful if the processor is next assigned the task of cémputing
the cuboid BCD, because now we need only take the counts of each cell in ABCD,

and add them to the counts of the appropriate cells in the skip list for BCD. Then

39

Algorithm ASL :

Ot W N

® N o

11.
12.

13.
14.
15.
16.

17

18.
19.

20

21.
29.
23.
24.
25.
26.

INPUT: Dataset R cube dimensions {Ay, ..., A, }; minimum support Spt
OUTPUT: The 2™ cuboids of the data cube
- PLAN:
Task definition: a cuboid in the cube lattice
Processor assignment: a processor is assigned the next task based on
prefix or subset affinity, as described in
Section 3.3.2
- CUBE COMPUTATION (for a processor):
parallel do : .
let the task be with dimensions A;,..., A;
if A;,..., A; is the prefix of the previous task or the first task
let C' denote the skip list from that task
call prefix-reuse(C, Spt, A;, ..., A;j);
else if {A4;,..., A,} is a subset of the set of dimensions of the
previous task, or the set of dimensions of the first task
let C' denote the skip list from that task
call subset-create(C, Spt, A;, ..., A;)
else call subset-create(R, Spt, A, ..., A;)
end do '

. Subroutine prefix-reuse(C, Spt, A;, ..., A;)
Aggregate C' based on A4;,..., 4;
Write out the cells if the support threshold is met

. Subroutine subset-create(C, Spt, A;, ..., A;)
initialize skip list L
for each cell (tuple) in C do
find the right cell in L (created if necessary)
update the aggregate and the support counts accordingly
end for
Traverse L, and write out the cells if the support threshold is met

Figure 3.8: A Skeleton of ASL L

40

groupings done for the skip list for ABCD are not wasted. For example, suppose
in ABCD, a cell corresponds to the grouping of a;b1¢1dy. For the w tuples in the
original dataset that belong to this cell, the current aggregate and support counts
can readily be used to update the corresponding counts for the cell bycyd; for BC'D.
There is no need to re-read the w tuples and aggregate again. In the following, we

&

refer to this situation as “subset affinity”.

Figure 3.8 shows a skeleton of Algorithm ASL. To implement prefix or sub-
set affinity, a processor is designated the job of being the “manager” responsible
for dynamically assigning the next task to d “worker” processor. . Specifically, the

manager does the following:

o first tries to exploit prefix affinity, because if that is possible, the worker pro-
cessor then has no need to create a new skip list for the current task/cuboid.
The previous skip list can be aggregated in a simple way to produce the re-
sult for the current task. This is executed by the subroutine prefix-reuse in

Figure 3.8;

e then tries to exploit subset affinity, if prefix affinity is not applicable. Instead
of scanning the dataset, the worker processor can use the previous skip list to
create the skip list for the current task. This is executed by the subroutine

subset-create in Figure 3.8;

e assigns to the worker a remaining cuboid with the largest number of dimen-
sions, if neither prefix nor subset affinity can be arranged. In this case, a new

skip list is created from scratch.

Clearly, the last situation ought to be avoided as often as possible. In our implemen-
tation of ASL, each worker processor maintains the first skip list it created. Because
ASL is top-down, the first skip list corresponds to a cuboid with a large number of
dimensions. This maximizes the chance of prefix and subset affinity.

The affinity scheduling is very helpful for sort-sharing, especially when the

41

number of available processors is small. But as more processors are available, the
affinity relationship between tasks assigned to the same processor tends to be weak.
For example, if we have 2 processors, we may very possibly assign both ABCD and
ABC to one machine; however, if we have 16 machines, this possibility becomes
~light, since we don’t want machines to lie idle just to maintain strong affinity. In
such a case, one processor may compute ABCD and another may compute ABC,
then both would need to sort on ABC. Duplicated sortings then occur.

Since ASL’s task scheduling is dynamic, depending on how soon each proces-
sor finishes its task, the lattice traversal sequence can not be determined in advance.
Different runnings very likely result in different trav-ersal sequences. This makes ASL

quite different from other top-down algorithms, such as PipeSort or PipeHash.

3.4 Algorithm PT

By design, ASL does a very good job of load balancing. However, ASL may be
vulnerable in two areas. First, the granularity of the tasks may be too fine — to an
extent that too much overhead is incurred. This is particularly true where prefix or
subset affinity cannot be well exploited, and thus not much sort sharing is applica-
ble. Second, ASL’s top-down lattice traversal cannot prune those cells which lack
minimum support from skip lists. As ASL executes, whether a cell has minimum
support or not cannot be determined until the data set has been scanned entirely.
Furthermore, at the end of the scan, even if there is a cell below the minimum
support, this cell still cannot be pruned, because its support may contribute to the
support of another cell in subsequent cuboid processing.

In an effort to combine the advantages of pruning in a bottom-up algorithm
on one hand, with load balancing and sort-sharing of top-down lattice traversal on
the other, we developed the algorithm called Partitioned Tree, (PT).

Recall that in RP and BPP, tasks are at the granularity level of subtrees

rooted at a certain dimension, for example, T4,. In ASL, tasks are merely nodes

42

Bottom-Up Cubiod
Computation

Top-Down Affinity
’ Task3 ~_ - ~ Scheduling

’

Figure 3.9: Binary Division of the Processing Tree into Four Tasks

in the cube lattice. To strike a balance betweeﬁ the two definitions of tasks, PT
works with tasks that are created by a recursive binary division of a tree into two
subtrees, each having an equal number of nodes. Binary division is achieved by
simply cutting the farthest left edge emitted from the root in a BUC processing
tree or subtree in recursive callings. For instance, the BUC processing tree shown
in Figure 2.4(c) can be divided into two parts: 74 and T,y — T4. A further binary
division on T4 creates the two subtrees: Tap and T4 — Tap. Similarly, a further
division on Ty — T4 creates these two subtrees: 7g and 7;” — Ta — Tp. Figure 3.9
shows the four subtrees. Each of these four subtree makes a task.

Obviously, each time binary division is applied, two subtrees of equal size
are produced. Through binary division, we finally achieve tasks of same size and
appropriate granularity. Combining dynamic scheduling and binary division nicely
solves the load balancing problem in PT.

Like ASL, PT also exploits affinity scheduling. During processor assignment,
the manager tries to assign a task to a worker processor that can take advantage of
prefix affinity based on the root of the subtree. Note that in this case, subset affinity

is not applicable. From this standpoint, PT is top-down. But interestingly, because

43

1. Algorithm PT

2. INPUT: Dataset R cube dimensions {A;, ..., A, }; minimum support Spt

3. OUTPUT: The 2™ cuboids of the data cube

4. PLAN:

5. Task definition: a subtree created by repeated binary partitioning

6. Processor assignment: a processor is assigned the next task based on
prefix affinity on the root of the subtree

7. CUBE COMPUTATION (for a processor):

8. parallel do '

9. let the task be a subtree T

10. sort K on the root of 7 (exploiting prefix affinity if possible)

11. call BPP-BUC(R, T, Spt, {})

12. end do

Figure 3.10: A Skeleton of PT

each task is a subtree, the nodes within the subtree can be traversed/computed in a
_bottom-up fashion. In fact, PT calls BPP-BUC, which offers breadth-first writing,
to complete the processing.

In Figure 3.9, the roots of each subtree, enclosed in boxes, actually make up
a small tree. The scheduling just happens on this small tree, similar to ASL. Once
~ a processor gets a task, that is, a subtree, it computes it in a bottom-up manner,
much like computing an RP’s task. In this way, we seamlessly combine top-down
and bottom-up methods, getting the benefits of both pruning and sort-sharing.

Figure 3.10 shows a skeleton of PT. The step that requires elaboration is
. line 9, namely the exact definition of 7. In general, as shown in Figure 3.9, there
are two types of subtrees handled by PT. The first type is a “full” subtree, which
means that all the bra.nch(;s of the subtree are included. For example, 7T4p is a full
subtree. The second type is a “chopped” subtree, which means that some branches
are not included. The subtreeé Ta— Tap and Ty — T4 — Tp are examples. In line
11, depending on which type of subtree is passed on to BPP-BUC, BPP-BUC may
execute in a slightly different way. Specifically, for the loop shown on line 22 in

Figure 3.5, if a full subtree is given, no change is needed. Otherwise, the loop needs

44

to skip over the chopped branches.

Since PT treats each final subtree resulting from binary division as a task,
in an extreme case binary division will eventually Créate a task as each node in the
cube ldttice, as in ASL. Since task granularity in ASL might be too fine, in PT a
parameter is used to determine when binary division stops, thus defining how fine
tasks can be. The parameter is set as the ratio of the number of tasks to the number
of available processors. The higher the ratio, the better the load balancing but the
less pruning can be explored in eachjtask. Determining the parameter enables a
tradeoff between load balancing and pruning. In Figure 3.9, the dotted line between
“Bottom-Up Cuboid Computation” and “Top-Down Affinity Scheduling” depicts
this tradeoff. Moving up the line means letter load balancing; moving down the
line means more pruning. PT wisely leaves this decision up to applications. For
the experimental results presented later, we used the parameter “32n” to stop the

division, once there are so many tasks (where n is the number of processors).

3.5 Hash-based Algorithms

We also implemented two hash-based CUBE algorithms. In the foHowing, we will -

briefly discuss them.

3.5.1 Hash Tree Based Algorithm

This algorithm was developed after BPP proved to have poor load balancing. Since
BPP’s performance is greatly affected by data skewness, which we could not change,
it appears there was no way to improve it. However, considering most Association
Rules Mining (ARM) algorithms proceed in a bottom-up fashion, also taking ad-
vantage of pruning, we then thought about applying the techniques of parallel ARM
to CUBE computation.

The prototypical application of ARM is a “market-basket analysis”, where

the items represent products, and the records in a database represent point-of-sales

45

Items Database Frequent itemsets (min_sup = 50%)

Jane Austen A Transactioy Items Support Itemsets

"Agatha Christie C 1 ACTW 100% (6) C

Sir Arthur Conan Doyle | D 2 CDW 83%(5)y | W, CW

Mark Twain T 3 ACTW 67% (4) A,D, T,AC, AW

P.G. Wodehouse W 4 ACDW CD, CT. ACW
5 ACDTW s0% 3y | AT DW.TW, ACT,

IATW, CDW, CTW, ACTW

6 CDT

Association rules (min_conf = 100%)

AT (C(4/4) AC — W (4/4) TW —>C(3/3)
A—> W (4/4) AT —>C (3/3) AT —>CW(3/3)
A CW (4/4) AT—>W (3/3) TW —™AC(3/3)
D—> D 4/4) AW—>C (4/4) ACT — W (3/3)
T—> C(4/4) DW—C (3/3) ATW—>C (3/3)
W—> C (5/5) TW —A (3/.3) CTW—>A (3/3)

Figure 3.11: Frequent Itemsets and Strong rules for a Bookstore Database [20]

data at large grocery stores or departmentA stores. Fach record contains several
items. The objective of ARM is to generate all rules with specified confidence and
support. An example rule might be, “90% of customers buying product {A, B,C}
also buy product {D,E} .”, where the confidence of the rule is 90%. In ARM
terminoloy, A, B,C, D and E in this rule are called “items”; {A, B,C} and {D, E'}
are called “itemset”. Later, we will use “k-itemset” to denote an itemset containing
k items. As well as CUBE, ARM aslo uses “‘support” to indicate how frequent an
itemset occurs as a subset in transactions. Users can specify a “minimum support”
(minsup) and “minimum confidence” (minconf) in their queries.

Most ARM algorithms involve the following steps:
1. Find all frequent itemsets satisfying some specified minimum support.
2. Generate strong rules having minimum confidence from the frequent itemsets.

The first step of ARM is much like a iceberg-cube problem if we imagine items
are attributes with only one value. Then, generating all frequent itemsets means
generating all different dimensional group-bys above a specified threshold(minsup).

Consider the example bookstore-sales database shown in Figure 3.11. There

46

ABCEF [~~~-._ T - Hash Function

A,D, CFl

CEF
) . B,EH
N e

/I

7

’

/

Candidate Hash Tree

| apE | acF | | coE | CFG
CEG | | CFH

aBD | | aBE | | a1 | FHI

DEG | | DEH

Figure 3.12: Subset Operation on the Root of a Candidate Hash Tree [23]

are five different items (names of authors the bookstore carries), I = {A,C, D, T, W}.
The database comprises six customers who bought books by these authors. Fig-
ure 3.11 shows all the frequent itemsets contained in at least three customer trans-
actions, that is, minsup = 50%. The figure also shows the set of all association rules
with minconf = 100%.

| The Apriori algorithm by Rakesh Agrawal and colleagues [20] has emerged as
one of the best ARM algorithms, and also serves as the base algorithm for most par-
allel algorithms. Apriori uses a complete, bottom-up search, iteratively enumerating
from frequent 2-itemsets to higher dimensional frequent itemsets. The algorithm has

three main steps:

1. Generate candidates of length k from the frequent (k-1)-itemsets, by a self-join
on Fy_y. For example, for F;, = {AC, AT, AW,CD,CT,CW,DW,TW}, we
get Cs = {ACT, ACW, ATW . CDT,CDW,CTW }.

2. Prune any candidate that has at least one infrequent subset. For example,

C DT will be pruned because DT is not frequent.

3. Scan all transactions to obtain candidate supports.

47

These three steps are called iteratively from k=2 until no more new frequent itemset
can be generated.

Apriori stores the candidates in a hash tree for fast support counting. In
a hash tree, itemsets are stored.in the leaves; internal nodes contain hash tables
(hashed by items) which direct the search for a candidate. The hash tree structure
of Apriori is very efficient for candidate searching and insertion. Once a transaction
is read in, all of its subsets can be quickly computed and inserted into the hash tree
if they are not there already. Figure 3.12 gives an example of subset operation on
the root of a candidate hash treé. V

Obviously, the bottom-up idea behind both Aprior and BUC is the same, ex-
cept BUC searches the tree in a depth-first order while Apr.ior searches in a breadth-
first order. From this observation, we developped a CUBE algorithm with a similar
hash tree structure as in Aprior, and exploit the breadth-first searching in CUBE
computation exactly as in Aprioir. We kept the major structure of the Apriori algo-
rithm and made only little modification to accommodate CUBE computation. For
example, since CUBE doesn’t assume only a value for each attribute (item in ARM),
we built a global index table which counts all values of all attributes as items.

For a small data set, this algorithm is feasible. However, its performace was
proved unsatisfactory. Breadth-first searching creates too many candidates to be
m.aintained in the hash tree. This is mainly because the global index table contains
too many items, exactly the sum of the cardinalities of all CUBE attributes. This
creates a large amount of candidates. If the CUBE is sparse, the situation is even
worse. Although we can count on pruning to eliminate many candidates, the hash
tree is still a huge burden before pruning, and quickly consumes all available memory.

Unfortunately, we had to admit this attempt failed. Since the performance
of this hash tree based algorithm lags far behind other algorithms, we omit it from

the following discussion.

48

3.5.2 Hash Table Based Algorithm

After we finished the implementation of ASL, we tried to use the hash table as
an alternative data structure for ASL, to see whether better preformance could be
achieved. Then the Affinity Hash Table based algorithm was developed, AHT for
short.

~ As with PipeHash, AHT uses hash tables to maintain cells of nodes in a
lattice, group-bys. However, AHT avoids creating a hash table for each cuboid.
Once subset affinity becomes applicable, it reuses the hash table creatéd for the
previous task. Specifically, AHT builds an index which makes it possible to collapse
the previous hash table whenever subset afﬁnity is found.

For this purpose, each CUBE attribute is assigned several bits which, when
combined, form the complete index of buckets in a hash table. For example, for a
3-dimensional CUBE with attributes A, B and C, we give A three bits, B two bits
and C one bit. Then the hash tables index has 6 bits (in binary) and the size of the
hash table will be 2°. Whenever a tuple (cell) is read in, its location in the hashtable
is determined by its values for the CUBE attributes. In this example, for its index,
the first three bits are decided by the value for A, the next two bits are decided by
the value for B, and the last bit is decided by the value for C.

The number of bits assigned to each attribute depends both on the cardinality
of that attribute and on how many tuples are in the raw data set. Originally, the bits
assigned to an attribute X is log (card(X)), where card(X) is the cardinality of X.
This implies the length.of a hash table would be the product of the cardinalities of
all attributes. However, if the data set is sparse, this product would be much larger
than the size of the data set. In this casé, the bits assigned to each attribute would
shrink appropriately, in order to define a smaller index. A smaller index, however,
may introduce collisions. Here we simply tradeoff memory occupation with run time.
This tradeoff would introduce severe bucket collision when many cells need to be

maintained by the hash table. It degrades AHT’s performance severely, especially

49

Algorithm AHT

1. INPUT: Dataset R cube dimensions {4y, ..., A, }; minimum support Spt

2. OUTPUT: The 2™ cuboids of the data cube

3. PLAN:

4. Task definition: a cuboid in the cube lattice

5. Processor assignment: a processor is assigned the next task based on
subset affinity

6. CUBE COMPUTATION (for a processor):

7. parallel do ‘

8 let the task be with dimensions A;,..., 4;

9 if {A;,...,A;} is a subset of the set of dimensions of the

previous task, or the set of dimensions of the first task

10. let C' denote the hash table from that task

11. call subset-collapse(C, Spt, A4;, ..., A;)

12. else call subset-newHashTable(R, Spt, A, ..., 4;)

13. end do

" 14. Subroutine subset-collapse(C, Spt, A;, ..., A;)
15. Collapse C based on A;, ..., A;
16. . Write out thecells if the support threshold is met

17. Subroutine subset-newHashTable(C, Spt, A;, ..., A;)

18. initialize a hash table H

19. for each tuple in C do

20. find the right cell in H (created if necessary)

21. update the aggregate and the support counts accordingly
- 22. end for ;
- 23. Traverse H, and write out the cells if the support threshold is met

Figure 3.13: A Skeleton of AHT

50

when problem size increases or a high dimensional CUBE need to be computed. We
will discuss this further in Chapter 4.

As ASL, AHT also takes each group-by as a task. AHT’s task scheduling is
almost the same as ASL, except AHT does not prcocess prefix affinity differently
from general subset affinity. If a new task’s GROUP BY attributes make a subset of
those of the previous task, then the hash table already built contains all cells needed
for the new task. So, we will create no new hash table but shrink the existing' one
by collapsing some buckets. Further to the example mentioned above, if we’ve built
the hash table for cuboid ABC, we now get a nl_ew task' for cuboid AC. The buckets
xxx 00 x, xxx 01 x, xxx 11 x and xxx 10 x are collapsed into xxx 00 x, with the
aggregate and the support upgraded at xxx 00 x. Those attributes missing from the
new task (but found in the previous one) determine how many and what buckets will
be collapsed. In this example, C is the missing attribute. Since two bits (the forth
and the fifth in the index) are assigned to C, then four buckets will be collapsed into
one bucket. |

Since the hash table does not maintain cells in any particular sorting order,
no sorting is needed in AHT. If a sorted cuboid is required by users, the sorting will
be done online when users give their queries.” We call this post-sorting.

The skeleton of AHT is shown in Figure 3.13.

51

Chapter 4
Experimental Evaluation

In this Chapter, we give a performance comparison of five algorithms: RP, BPP,
ASL, PT and AHT. The hash tree based algorithni is not included in this testing
nor in the following discussion, because its performance lags far behind the others.

In order to give a fair evaluation, we investigate the algorithms’ memory
occupation first before explaining the testing environment, and then give our test

results.

4.1 Memory Occupation

In four of the algorithms: RP, ASL, PT and AHT, the raw data set is replicated
among processors. Conversely, BPP partitions the raw data set and distributes the
partitions among processors. Let’s first discuss data replication based algorithms.
In the simplest algorithm, RP, each processor loads the whole replicated data

set, R, into its main memory as a large array for later computation, according to
the task assigned to it. RP therefore only needs a space the size of K in the main
memory for each processor.

| Another data replication algorithm, PT, is also an array based algorithm.
Like RP, its memory footprint is not much larger than R for each processor.

AHT uses hash tables as its data structure only to maintain cuboids. Since

52

the cells in a cuboid can be less than tuples in the data set, a hash table may possibly
be much smaller than a data array in an array based algorithm. Besides cells, AHT
needs also to maintain the index table for the hash table in memory. The index
table is fixed-size in AHT; in other words, the number of buckets in the hash table
is fixed. This number greatly affects AHT’s performance. In order to make the
experiment evaluation reliable, we set the number of buckets in the hash table to
the number of tuples in R. Therefore, AHT’s memory footprint is not much more
“than R. In an extreme case, such as where the cuboid contains all tuples in the raw
data set, each processor of AHT needs space in its main memory for R cells, plus
the |R| indices for a hash table.

- The memory footprint of ASL is the biggest of all the algorithms. It takes
skip lists as its da‘pa structure. The memory overhead for each node of a skip list is
mainly decided by the maximum number of forward links it allows a node to have.
In our algorithm, we allow no more than 16 forward links in each node. Therefore,
a node’s memory footprint is no more than twice the size of an element of an array
in array based algorithms, such as RP.

Like AHT, ASL does not load the entire data set into memory, but only
maintains cuboids as skip lists. Thus, a skip list may be smaller than a data array.
Even in an extreme case, such that a cuboid contains the whole data set, its skip
list size would be no more than twice that of R.

As well as the current working skip list, each processbr maintains a “root”
skip list in its main memory, to maximize sort sharing among loca1 tasks. Then in
an extreme case, ASL’s memory footprint will be no more than four times of R, for
two skip lists in the memory of each processor.

The data partitioning based algorithm: BPP is the most memory-efficient
algorithm. Since each processor only works on local chunks, its memory footprint
is the maximum size of its local chunks. Even in an extreme case, where only one

chunk gets produced when range partitioning on an attribute, the memory footprint

53

would be no more than R.

4.2 Experimental Environment

The experiments were carried out on a hetergeous PC cluster, consisting of eight
500MHz PIII processors with 256M of main memory and eight 266MHz PII proces-
sors with 128M of main memory. Each machine is attached with a 30Gbyte hard
disk and is connected to a 100Mbit/sec Ethernet network.

The CUBE computations were performed on a weather data set containing
weather conditions sent by various weather stations on lalld. The data set is the
same as that used by Ross and Srivastava [14], and Beyer and Ramakrishnan [4]. It
has 20 dimensions, and is very skewed on some of those dimensions. For example,
partitioning the data on the 11¢* dimension produces one partition which is 40 times
larger than the smallest one.

In order to compare the effect of varying the different parameters of the
problem, we used a fixed setting and then varied each of the parameters individually.
The fixed setting, or baseline configuration for testing the algorithms, was the

following;:

the eight 500MHz processors;

176,631 tuples (all from real data);

9 dimensions chosen arbitrarily (but with the product of the cardinalities

roughly equal to 10'3);
e with minimum support set at two.

For the dynamic scheduling algorithms ASL, PT and AHT, we overlapped
the manager and one worker on one processor. This maximized the usage of the
processor on which the manager resided, leading to a reasonable performance eval-

uation.

54

In the experiment, we investigated how the algorithms perform under differ-
ent circumstances. We are concerned with the following issues in CUBE computa-

tion:
e load balancing, tested by.coAmparing loads on each processor;
e scalability with processors, tested by varying the number of processors;
e scalability with problem siz_e, fesped by varying probiem size;
e.scalability with dimensions, tested by varying the number of dimensions;
e pruning effects, tested by varying the miniﬁlum suppal't;

e accommodation for sparse CUBE computation, tested by varying the sparse-

ness of the data set.

In the following figures, “wall clock” time means the maximum time taken

by any processor. It includes both CPU and I/O cost.

4.3 Load Distribution

Figure 4.1 shows the load distribution among processors when testing on the baseline
configuration. ASL, AHT and PT have quite an even load distribution while the
loads distributed to each processor by RP and BPP vary greatly. For RP, the reason
for the uneven load distribution is due to its static task assignment. Although the
number of tasks is approximately equal, the amount of computation and 1/0 for the
tasks differs significantly. For BPP, the dataset is partitioned statically across all
nodes. Because the data is very skewed on some of the dimensions, the com pu'ta,tion
is not well balanced. ASL, AHT and PT decrease the granularity of the tasks to a
single cuboid in ASL and AHT and to a small subtree in PT. The finer granularity
leads to better load balancing, and the use of demand scheduling makes it easier to

maintain balanced even when the data set is very skewed.

55

Wall Clock Time (seconds)

140

100

o]
o

)]
o

F-3
(=]

20

Load on Each Paraltel Computing Nodes

120¢

T T T

1

EE RP
E BFP
ASL
AHT U
PT

5

Paraliel Computing Nodes

Figure 4.1: Load Balancing on 8 Processors

56

Speedup Comparision

T T B T T T T T T

200

150 F

100+

Wall Clock Time (seconds)

50

0 2 4 6 8 10 12 "4 16 18
' Number of Processors

Figure 4.2: Scalability

4.4 Varying the Number of Processors

Figure 4.2 shows the performance of the algorithms when running on different num-
bers of processors. The performances’ é,re largely determined by each a,lgorithms’
load balancing ability; generally, the better the load balances, the better the perfor-
mance.

RP’s performance is the worst, no matter how many processors are used.
Besides poor load balancing, RP’s depth-first writing strategy exacerbates its poor
performance as well.

BPP does well when running only on 2 processors, where the data partition-
ing is done quite evenly. However, as more processors are added to the computing

environment, the data partitioning becomes uneven. Uneven tasks with coarse gran-

57

ularity quickly upset load balancing. BPP is quickly outperformed by ASL when
four processors are available.

The performance of ASL is poor when run on only two processors. This is
largely due to the overhead from creating and maintaining skip lists. When the
number of processors increases, ASL gains from good load balancing and scales very
well.

AHT’s performance is similar to ASL’s, because their task definition and
scheduling are almost the same. ,

PT shows the best performance overall due to both good balancing and
pruning. ASL, AHT and PT use affinity scheduling to take advantage of share-sort
to reduce computation. As we mentioned in section 3.3.2, the affinity relationship
among local tasks on one processor tends to weaken as the number of processors
increases. It is interesting to note that the speedup from eight processors to sixteen

processors is negligible, relatively.

4.5 Varying the Problem Size

Figure 4.3 shows that with increasing problem size, PT and ASL do significantly
better than other algorithms. Both PT and ASL appear to grow sublinearly as the
number of tuples increases. This is due to two factors. First, there is an overhead
when creating the 22 cuboids, which is independent of the amount of data. Second,
doubling the number of tuples does not change the cardinality of the dimensions
(except for the date field) and does not imply twice the amount of I/O, since more
aggregation may take place.

It is possible to use more processors to solve a fixed problem faster or to
solve a larger problem in the same amount of time. The results in Figure 4.3 show
that PT and ASL scale well with problem size and indicate that these algorithms
could be used, given sufficient memory and disk space, to solve larger problems on

larger cluster machines.

58

Wall Clock Time (seconds)

Varying Size of Dataset

1100

1000

900

800

700

600

500

400

300

200

100

T

T T

RP
BPP
ASL
PT

AHT

200 400 600 800 1000
Number of Tuples in Dataset (*K)

Figure 4.3. Results for varying the dataset size

1200

59

Varying the Number of Cube Dimensions -

5000 T T T T T T T T T
RP ——
4500 |- BPP — -
ASL ——
PT ——
4000 AHT —o— =
3500 .
i
=]
c
8 3000 e
[}
@
£
£ 2500 4
X
[5]
o
O 2000} -
©
=
1500 4
1000 e
500 -
0 & — L
4 5 6 7 8 9 10 1 12 13 14

Number of Cube Dimensions

Figure 4.4: Results for varying the Number of Cube Dimensions

Unlike other algorithms, AHT scales unpredictably with problem size. On
one hand, this is because collision within a bucket tends to happen more often,
as more and more cells are maintained by hash tables. This damages AHT’s per-
formance severely. On the other hand; the data distribution in the raw data set
dramatically affects how many collisions may occur. This leads to inconsistent scal-

ability in AHT.

4.6 Varying the Number of Dimensions

Figure 4.4 shows the effect of increasing the number of dimensions on each algo-
rithm. The wall clock time increases dramatically as the number of dimensions’

increases, because the number of cuboids grows exponentially with dimension size.

60

For example, the 13-dimensional CUBE has 8,192 cuboids.

The scalability of AHT with CUBE dimensions is the worst of‘ all the al-
gorithms. In fact, in our testing, when the number of CUBE dimensions is set as
13, the hash table size was fixed as ten times the size of the input data set, that is
ten times larger than that in the baseline configuration. Even then, AHT’s perfor-
rﬁance is very poor. There are two main reasons contributing to this effect. First,
as high dimensional CUBE needs to be computed, a large number of cells need to
be maintained in the hash table. This introduces a great amount of collisions within
in buckets during insertion and searching operations. Second, since the size of the
hash table is fixed, the index bits assigned to each CUBE attribute are far from
adequate to appropriately collapse the hash table when subset affinity is applicable.
If the data set is skewed on some CUBE attributes, the hash function behaves even
poorer.

The relative performance for the other four algorithms remains the same
except for ASL, where for thirteen dimensions it stops being better than BPP. ASL
is affected more than other algorithms because of its comparison operation. The
comparison operation used to search and insert cells into the skip list becomes more
costly as the length of the key increasés. The length of the key grows linearly with
the number of dimensions. This is a significant source of overhead for ASL.

Figure 4.4 also shows that when thg number of dimensions is srﬁall, RP,
ASL, AHT and PT all give similar performances. Because the size of the output is
small for a small number of dimensions, the simple RP algorithm can keep up to

the others.

4.7 Varying the Minimum Support

Figure 4.5 shows the effect of increasing the minimum support. As the minimum
support increases, there is more pruning, and as a result, less [/O. The total output

size for the algorithms given in Figure 4.5 starts at 469Mbyte for a support of

61

Varying Minimum Support
200 T T T T T T T
RP goes to 549.15 secs RP —6—

180 when minimum support is 1 BPP ——

160

120

100

Wall Clock Time (seconds)

*

0 1 1 | L 1
0 1 2 3 4 5 6 7 8 9

Minimum Support

Figure 4.5: Results for varying the minimal support

62

one, 836Mbyte for a support of two, 27Mbytes for a support of four, and 11Mbytes
for a support of eight. After eight, very little additional pruning occurs. Except
between one and two, the output size does not éppear'to have much affect on overall
performance. This is surprising since we expected PT to do better as support
increased, becaﬂse‘ more pruning should hhave led to less compufation. The relative
flatness of the curve for PT is largely due to the order of the dimensions choosen.
For the baseline configuration, the pruning occurs more towards the leaves, where
it does not save as much in computation time.

Notice ASL and AHT can not prune during computation; their better per-
formance with higher minimum support is due only to less I/O cost but not to

pruning.

4.8 Varying the Sparseness of the Dataset

Figure 4.6 shows the effect of sparseness of the data set on the four algorithms.
We consider a data set to be sparse when the number of tuples is small relative
to the product of the number of distinct attribute values for each dimension in
the CUBE. Since the number of tuples in the baseline configuration is fixed, we
can vary the sparseness of the data set by choosing smaller dimensions over larger .
cardinality dimensions. The three data sets chosen for Figure 4.6 consisted of the
nine dimensions with the smallest cardinalities, the nine d'imensions with the largest
cardinalities, and one in between. Note that even for the smallest of the three, there
are still about 107 possible total cells in the cube.’ ‘

As shown in Figure 4.6, AHT is apparently more affected by sparseness than
the other algorithms. The more CUBE dimensions, the more collisions happen,
which badly hamper AHT’s performance. If few collisions occurs, as when dimen-
sionality is low, AHT outperforms all others.

AHT and ASL perform well on dense datasets and are more adversely affected

by spareness than others. ASL performs well for dense datasets because each cuboid

63

Varying the Exponent of Cardinality Product of Cube Dimensions
1000 T T T T T T T

900

800

700+

600

500

400

Wali Clock Time (seconds)

300

200

100

1
6 8 10 12 14 16 .18 20 22
Cardinality Product of Cube Dimensions (Exponent of 10)

Figure 4.6: Results for varying the sparseness of the dataset

| Situations ” PT] ASL] RP [BPP l AHT |

dense cubes Vv Vv
small dimensionality (< 5) || N Vv Vv
high dimensionality Vv
less memory occupation Vv
otherwise VvV oV
l online support | | v | [] |

Figure 4.7: Recipe for selecting the best algorithm

contains relatively few cells, which makes searching or inserting into a skip list
relatively fast. The BUC—ba,sed algorithms have little opportunity to take advantage
of density. In fact, the denser the dataset, the less pruning can be done. As a result,
while traversing the lattice, the BUC-based algorithms need to sort almost the entire
dataset for many of the cuboids. BPP does particularly poorly for cube dimensions
with small cardinalities because BPP cannot partition the data very evenly, which
leads to serious load imbalance. ASL does worse than the BUC-based algorithms
when the product of the cardinalities is high, partly because of the amount of pruning
that occurs for the BUC-based algorithms, and partly because ASL has to maintain

larger skip lists.

4.9 Summary

4.9.1 Recipe Recommended

The experimental results shown thus far explores the different parameters affecting
overall performance. After careful examination, we recommend the “recipe” shown
in Figure 4.7 for selecting the best algorithm in various situations.

It is clear that AHT and ASL dominate all other algorithms when the cube
is dense, or when the total number of cells in the data cube is not too high (e.g.,

< 10%). However, AHT is more adversely affected by sparseness and dimensionality.

For data cubes with a small number of dimensions (e.g., < 5), almost all algorithms

behave similarly. In this case, RP may have a slight edge in that it is the sinﬁplest
algorithm to implement. For all other situations, except when the data cube has a
large number of dimensions, PT, AHT and ASL are relatively close in performance,
with PT typically a constant factor faster than-AHT and ASL. For cubes of high
dimensionality, there is significant difference among the three, and PT should be
used. The last entry in Figure 4.7 concerns online support. This is the topic of the

next section.

4.9.2 Further Improvement

There is still room for improvement in some of the algorithms. With the affinity
scheduling, the current prefix and subset affinity can be expanded to cooperate with
the sorting overlap idea behind the Overlap algorithm, mentioned in Chapter 2.
Therefore, even if we can not assign a task to a processor with CUBE dimensions
perfectly prefixing the previous task, we can try to assign a task with the longest
possible prefix of the previous task. This may improve the performance of ASL.
For AHT, we can attemp more sophisticated hash function instead of the
naive MOD hash function currently use. A better hash function may relieve AHT’s

struggling performance when faced with sparse and high dimensional CUBE com-

putation.

Chapter 5

Online Aggregation

Recall that the CUBE computation is just a precomputation designed to instantly
respond to online iceberg queries. However, sometimes a user’s query can not be
answered by the precomputed CUBE. When the minimum support for the online
query is lower than that for the precomputation, it is no longer possible to compute
a query, essentially a cuboid, from a precomputed cuboid.

This problem can be solved in two ways. First, we can choose a small mini-
mum support for the precomputation, therefore, most of the queries can be answered
by aggregating from a precomputed cuboid. Second, we can simply aggregate from
the raw data set to answer an unpredictable query online.

In the following sections, we discuss issues concerning these two separate

methods.

5.1 Selective Materialization

CUBE with low constraints usually produces a large body of result for which the
computation may take a long time and also may not be saved to disk entirely. To
solve this problem, it is natural to consider selecting only one set of cuboids to
materialize instead of all the available cuboids. Although our experiments show

that in many cases, our parallel algorithms can do well in computing the entire

67

iceberg-cube query from scratch (e.g., < 100 seconds), for truly online processing,
selective materialization can still help significantly.

As an exercise, we compared two different plans for answering online queries
using ASL. The first plan is to simply re-compute the query based on the specified
minimum support. If the minimum support was two, as in Figure 4.5, ASL would
take approximately sixty seconds to complete the entire CUBE.

The second plan consists of a precomputation stage and an online stage. In
the precomputation stage, ASL computes only the leaves of the traversal tree using
the smallest minimum support (i.e., 1). In the online stage, ASL uses top—doWn
aggregation and returns those cells satisfying the new specified support. In this
second stage, ASL can make returns almost immediately; and interestingly, even for
the precomputation, it only took fifty seconds for the same example. (The value
of fifty seconds was obtained from our additional experiment, not directly from
Figure 4.5. The values in Figure 4.5 include the total time for the nodes in the
tree, not just the leaves.) This suggests that even simple selective materialization
can help. It is a topic of future work to develop more intelligent materialization

strategies.

5.2 Online Aggregate from a Raw Data Set

Besides selective materialization, in this thesis, we also consider computing online
aggregates from a raw data set. Thus, we manage to provide a comprehensive
solution for the iceberg query problem. Hellerstein, Haas and Wang proposed an
online aggregation framework [11], in which a sampling technique is applied for
instant response and further progressive refinement. We took this framework for
our online aggregate algorithm to allow a user to observe the progress of a query

and dynamically direct or redirect the computation. In the case of an iceberg query,

the user would see a rough initial cuboid which would become more accurate as

more tuples are processed.

Like ASL, we took a skip list as the fundamental data structure, making it
possible to construct a cuboid by incrementally inserting tuples into the skip list.
Each tuple can therefore be handled independently. In terms of incremently building
a cuboid, the hash tables used in AHT provides a good alternative. However, since
its performance is too sensitive to dimensionality and data sparseness, as viewed in
Chapter 4, a hash table does not make a good data structure for the online aggregate
algorithm. The array based algorithms, RP, BPP.and PT, are also difficult to be
extended to handling online issues, mainly because an array does not efficiently
support incrementally insertion. Once query -results from new data are computed,
they then have to be merged with the results from the old data. Merging operations
introduce additional overhead and do not support parallelism well. In fact, the online
advantages of ASL over other algorithms was one of the main motivations for its
development. In the following section, we present our Parallel OnLine aggregation

algorithm (POL).

5.3 Parallel Online Aggregation

5.3.1 Data Partitioning and Skip List Partitioning

Online aggregation implies only one group-by need be computed. Usually, comput-
ing one group-by is not time consuming. The computation is much smaller than
computing CUBE. To necessitate parallel computation, we assume the raw data
set is huge, shown in two aspects. First, a raw data set is range-partitioned across
processors without any sorting. If there are n processors in a cluster, n partitions,
R, to R,, are produced; processor j gets R;. Second, neither a processor can load
its local data partition entirely into its main lhemory. A processor hasl to proceed
the computation step by step; at each step, one block of data from its local data

partition is loaded and computed. The data block is in fact a sample taken from

the unprocessed part of the processor’s local data partition.

” ” Located on P; I Located on P, | Located on Py | Located on P;4 ”

Passed to P; (Chunki,) (Chunkys) (C'hunki3) (Chunki4)
Passed to P (Chunks) (Chunkss) (Chunkss) (Chunksyy)
Passed to Ps (Chunks,) (Chunksa) (Chunkss) (Chunksq)
Passed to Py (Chunka) (Chunkas) (Chunkas) (

Table 5.1: Task Ari‘av for 4 Processors

In order to utilize all available machines in a cluster, POL range-partitions a
skip list to n partitions as well, where n is the number of processors. Each pi‘ocessor,
therefore, maintains only one skip list partition. POL determines boundaries of the
skip list partitions assigned to different processors at the beginning of its computa-
tion through sampling. Afterward, a processor is only responsible for searching or
i.nserting cells into its skip list partition as delimited by boundaries.

As a processor scans its local data partition, since it is unsorted, the processor
finds tuples which should be inserted into skip list partitions maintained by other
processors. In such a case, the processor then passes the tuples to other processors
appropriately. If there are n processors in the cluster, one processor might pass (n-
1)/n of its local data to other processors. The overhead from data communication

is then introduced.

5.3.2 Task Definition and Scheduling

As mentioned above, POL proceeds with computation step by step. Within a step,
each processor computes a block of data, and data commutation takes place among
processors when necessary. POL guarantees that one block of data is loaded only
once. Only after all processors complete computing on the tuples in this block, does
the loading processor discard the block and move to the next step. Therefore, pro-
cessors proceed with their computation synchronously, and synchronizations happen
amongst processors between every two steps.

Tasks are defined in POL for each step, that is, between synchronizations.

70

Synchronization One Step

Figure 5.1: Tasks Assignment in POL

" Suppose at one step, after the processor P; loads in a data block from its local data

partition R;, it groups the tuples in the block into n chunks, Chunky; to Chunk,;,
according to the partition boundaries set for the skip list partitions, where n is the
number of processors. Note that C’hunk;; indicates a chunk, which although located
in processor P, will be passed to processor P; to maintain P;’s skip list partition.
Therefore, for P;, all but one chunk(Chunk;;) are passed over network and checked
by other processors. For a cluster with 4 processors, the task array created for one
step is shown in Table 5.1.

Since there are n processors and each processor has n chunks, n x n chunks
are produced in total. These chunks correspond to m x n tasks, indicated as
task(C'hunk;;)(both i and j from 1 to n). Task(C'hunk;;) is the computation based
on chunk C'hunk;;. Notice that at each step, tasks have to be redefined. Tasks in
different steps are separately scheduled.

Like some of CUBE algorithms, in POL, a manager responsible for task

71

scheduling, and many workers responsible for computing(computing aggregations in
this case). The manager initially assigns a number of tasks to each processor. How-
ever, once a processor finishes its assigned tasks, it can then help other processors
finish their tasks.

Originally, processor P;, are assigned task(Chunk;;) (jis from 1 to n). For ex-
ample, with four processors, P, is required to finish task(Chunkay), task(C'ﬁunkgg),
task(C'hunksys) and task(Chunkqs). For some of these tésks, P, has to fetch appro-
priate chunks located on other processors. P, then needs C'hunky; on Py to finish
task(Chunkqy), Chunkses on P to finish task(Chunksys), Chunkayy on Py to finish
task(Chunkqy) and local Chunksyg to finish task(Chunkse). The sequence for proces-
sor P; to compute its assigned tasks is this: from task(Chunk;) to task(Chunk,),
it then wraps back from task(Chunk;;) to task(Chunk;;_q)). This sequence maxi-
mizes the possibility of each processor working on data located on different proces-
sors at one time, thus reducing the possibility of a burst of data requests happening
on a particular processor. Figure 5.1 illustrates the original task assignment in POL
for a computing environment consisting of 4 processors.

To balance the load, a processor is allowed to offload waiting tasks from busy
processors after it has finished its own assigned tasks. The manager tries to assign
to it those untouched tasks that the processor keep the input data chunk in local.
The processor then compute a new skip list for the task. Once it finishes this task,
or gets a data request from the processor responsible for the task, it passes the skip
list it has already built on to that processor. Then, that processor merges the skip
list with its local skip list partition. Apparently, this method of task scheduling
does not introduce additional data communication overhead.

To provide a constant update of query results, a set timer periodically gives
response back to the user. Whenever the timer expires, the manager collects results

from all workers, displays the results on screen, and resets the timer. If the user

wishes to discontinue the computation, he or she can interrupt it at any point.

72

oo

O o0~ O

11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.
22,
23.

24.
25.

26.

217.

28.

Algorithm POL
INPUT: Range-partitioned data sets, each located on one processor (processor
P; has partition R;)
GROUP BY dimensions {A1, Az, ... A, } and minimum support
Spt
OUTPUT: The iceberg query results
ONLINE AGGREGATE:
The manager takes a sample, and determines the boundaries of skip list partitions
assigned to each.processor
parallel do ,
while (not all data has been processed)
if (worker processors P;)
loads in one block the samples from its local partiton
~ which have not been processed
it then groups the samples into n chunks, C'hunky;, to
Chunk,;
calls online-slave(C'hunky;, ..., Chunk,;, Spt, A1, ..., An)
if(the manager)
defines n x n tasks, each for one chunk on workers
schedules the tasks, as described in
Section 5.3.2
synchronize
end while
end do
Subroutine online-slave(Chunky;, . ..,Chunk,;, Spt, A, ..., An)
gets a task from the manger; if there is no uncompleted task at the
manager, return
if the task is Task(Chunk;;)
asks processor P; for the chunk Chunk;;
updates the local skip list based on C'hunk;;
if the task is Task(Chunk;;)
computes a new skip list from the chunk Chunk;;
sends the skip list to P;, then P; merges it into its
_ local skip list parititon.
during processing, if any request comes from another process asking for a
data chunk, sends it to the processor
during processing, if any request comes from the manager for
current result, estimates current minimum support, collects
result and send them to the manager
during processing, if any request comes from the manager for
stopping the computation, return

Figure 5.2: A Skeleton of the POL Algorithm

73

A skeleton of algorithm POL is shown in Figure 5.2.

5.4 Exerimental Evaluation

The testing environment for POL is similar to that for the CUBE algorithms, except
that we based our experiments on a larger weather data set, which contains 1,000,000
) tuples. Although the data set is larger, it has the same number of dimensions as
the smaller one used for testing the CUBE algorithms.

We focused on the following issues in POL during the experiments:

e scalability with the number of processors;

e scalability with the buffer size on each processor.

5.4.1 Varying the Number of Processors

Figure 5.3 shows the performance of POL with different numbers of processors. In
testing, a 12-dimensional iceberg query was answered online. The minimum support
was set as 2 and the buffer on each processor was set to contain 8000 tuples at each
step. The computation created a huge skip list with 924,585 nodes.

The performance of POL was tested on three clusters of machines:

e Cluster] consists of eight 500MHz PIII. processors with 256M of main memory

connected by an Ethernet network;

e Cluster2 consists of eight 266MHz PII processors with 128M of main memory

connected by an Ethernet network;

"o Cluster3 consists of eight 266MHz P11 processors with 128M of main memory
connected by a higher speed network, Myrinet, which is approximately three

times faster than the Ethernet used in the first two clusters.

Data communication among worker processors is the main factor affecting

POL’s performance. If the data distribution is uniform, for each processor nearly

74

Varying the Number of Processors

150 T T T T T T T
Cluster1 ——
Cluster2 ——
Cluster3 —
- 100} -
e
c
Q
Q
(0]
L
()]
£
',_.
=
©
2
O
©
= sof]
0 1 1 1 i 1 1 1
1 2 3 4 5 6 7 8 . 9

Number of Processors

Figure 5.3: POL’s Scalability with the Number of Processors

(n —1)/n of data needed are located on other processors, where n is the number of
processors. Apparently, the higher n is, the more data needs to be transfered over the
network. However, adding more machines decreases the computations carried out at
each processor because the work load is shared. Therefore, whether we can achiever
better overall performance with more processors or not remains uncertain. It largely
depends on how much the computation decreases or the communcation increases on
each processor, and which is the dominating factor. Generally, more time spent on
computation versus the less spent on communication, the better performance can
be achieved.

Computing high dimensional queries always implies more computation be-
cause a large skip list needs to be maintained. Therefore, we can conclude that POL

is feasible especially for computing high dimensional queries.

75

Figure 5.3 shows the speedup achieved on Clusters2 and Cluster3 is better
than on Clusterl, mainly because the computation on the clusters of slow machines
takes up more total run time than on the cluster of fast machines.

Concerning load balancing, dynamic offloading from other busy processors
can balance uneven load resulted from unevenly distributed data among processors.
However, if both the skip list partitioning and the data distribution are uneven, the
load may be poorly balanced. Fortunately, in our testings, this adverse situation

did not arise.

5.4.2 Varying the Buffer Size

Buffer size limits the amount of data processed at each step. The larger the buffer
size, the fewer steps are needed in POL, and thus, less synchronizations and less
sampling happens between steps. Usually, synchronization and sampling mean the

introduction of overhead. Therefore, as shown in Figure 5.4, as the buffer size

increases, performance improves.

Varying the Number of Processors
220 T T T T T T T

BufferSize: 2000 tuples —e—
200+ BufterSize: 4000 tuples —e— -
BufferSize: 8000 tuples —
BufferSize: 16000 tuples

180

160+

140

120 ’]

100]

Walt Clock Time (seconds)
@
o
T
1

[o2]
(=]
T
1

Py
[=]
T

1

0 1 1 i 1 1
1 2 3 4 5 6 7 8 9

Number of Processors

Figure 5.4: Scalability with Buffer Size

Chapter 6

Conclusion

In this thesis we discuss a collection of novel parallel algorithms we developed di-
rected towards online and offline creation of CUBE to support iceberg queries.

We evaluated the CUBE algorithms, RP, BPP, PT, ASL and AHT, across a
variety of parameters to determine the best situations for use. RP has the advantage
of being simple to implement. However, except for cubes with low dimensionality,
RP is outperformed by the other algorithms. BPP is also outperformed; but BPP
reveals that breadth-first writing is a useful optimization. As an extension of BPP,
PT is the algorithm of choice in most situations. There are, however, two excep-
tional situations where ASL and AHT are recommended. ASL and AHT are more
efficient for dense cubes, whereas ASL supports sampling and progressive refinement
especially.

For the online aggregation, we tested our algorithm, POL, for aggregating
online over a large data set. Experiments revealed that POL behaves well in a cluster
of machines connected with high speed networks, and is valuable in answering high
dimensional online queries which require more time to complete computation.

In future work, we would illvestigate how the lessons we have learned re-
garding parallel iceberg query computation can be applied to other tasks in OLAP

computation and data mining. These include (constrained) frequent set queries [24],

78

and OLAP computation, taking into account correlations between attributes.

79

[1]

[2]

[5]

Bibliography

M.J.A. Berry and G. Linoff. Data Mining Techniques: For marketing, Sales,
and Customer Support. John Wiley & Sons, New York, 1997

R. Agrawal, S. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakr-

ishnan and S. Sarawagi. On the computation of multidimensional aggregates.

In Proc. 1996 VLDB, pp. 506-521.

E. Baralis, S. Paraboschi and E. Teniente. Materialized view selection in a

multidimensional database. In Proc. 1997 VLDB, pp. 98-112.

K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Ice-
berg CUBEs. In Proc. 1999 ACM SIGMOD, pp 359-370.

M. Eberl, W. Karl, C. Trinitis, and A. Blaszeczyk. Parallel Computing on
PC Clusters — An Alternative to Supercomputers for Industrial Applications.
In Proc. 6th Furopean Parallel Virtual Machine/Message Passing Interface
Conference, LNCS vol. 1697, pp. 493-498, 1999.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani and J. Ullman. Com-
puting iceberg queries efficiently. In Proc. 1998 VLDB, pp. 299-310.

S. Goil and A. Choudhary. High Performance OLAP and Data Mining on
Parallel Computers. In The Journal of Data Mining and Knowledge Discovery,

1, 4, pp. 391-418, 1997.

80

(8]

[9]

[10]

[11]

[12]

J. Gray, A. Bosworth, A. Layman and H. Pirahesh. Datacube: A relational
aggregation operator generalizing group-by, cross-tab and sub-totals. In Proc.

1996 ICDE, pp. 152-159.

H. Gupta, V. Harinarayan, A. Rajaraman and J. Ullman. Index selction for .

OLAP. In Proc. 1997 ICDE, pp. 208-219.

V. Harinarayan, A. Rajaraman and J. Ullman. Implementing data cubes

efficiently. In Proc. 1996 ACM SIGMOD, pp. 205-216.

J. Hellerstein, J. Haas and” H. Wang. Online Aggrégation. In Proc. 1997
SIGMOD, pp. 171-182.

M. Kamber, J. Han and J. Chiang. Metarule-guided mining of multi-
dimensional association rules using data cubes. In Proc. 1997 KDD, pp. 207-

210.

YiHong Zhao, Prasad Deshpande, and Jeffrey F. Naughton An Array-based

algorithm for simultaneous Multidimensional aggregates.

SIGMOD Conference 1997, pp. 159-170

K. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proc.

1997 VLDB, pp. 116-125.

S. Sarawagi. Explaining differences in multidimensional aggregates. In Proc.

1999 VLDB, pp. 42-53.

A. Shukla, P. Deshpande and J. Naughton. Materialized view selection for

multidimensional datasets. In Proc. 1998 VLDB, pp 488-499.

7] A. Srivastava, E. Han, V. Kumar and V. Singh. Parallel formulations of

decision-tree classification algorithm. 1In The Journal of Data Mining and

Knowledge Discovery, 3, 3, pp. 237-262, 1999.

81

[18]

M. Tamura and M. Kitsuregawa. Dynamic Load Balance for Parallel Associa-
tion Rule Mining on Heterogeneous PC Cluster System. In Proc. 1999 VL DB,
pp. 162-173.

Soroush Momen-Pour Parallel Computation of Data Cubes MSc. Thesis,

University of British Columbia, Computer Science Dept., 1999.

M. Zaki. Parallel and distributed association mining: a survey. In IFFE

Concurrency, 7, 4, pp- 14-25, 1999.

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton,
R.Ramakrishnan and S. Sarawagi On the Computation of Multidimensional

Aggregates. inProc. 1996 VLDB, pp. 506-521.

W. Pugh. Skip Lists: a Probabilistic Alternative to Balance Trees. In Com-

munications of the ACM 1990.

Eur-Hong (Sam) Han, George Karypis, Vipin Kumar Scalable Parallel Data
Mining for Association Rules Proceedings of the ACM SIGMOD international
conference on Management of data May 11 - 15, 1997, Tucson, AZ USA

R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining
and pruning optimizations of constrained associations rules. In Proc. 1998

SIGMOD, pp. 13-24.

82

