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Abstract

S-R-T division, as it was discovered in the late 1950s [4, 19, 23], represented
an important improvement in the speed of division algorithms for computers
at the time. A variant of S-R-T division is still commonly implemented in
computers today. Although some bounds on the performance of the original
S-R-T division method were obtained, a great many questions remained unan-
swered. In this thesis, S-R-T division is described as a dynamical system.
This enables us to bring modern dynamical systems theory, a relatively new
development in mathematics, to bear on an older problem. In doing so, we
are able to show that S-R-T division is ergodic, and is even Bernoulli, for all
real divisors and dividends.
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Chapter 1

Introduction and Background

1.1 Introduction to S-R-T Division

“S-R-T division” roughly refers to a class of non-restoring, binary division
algorithms that have been designed for floating-point computers [3, 5, 6, 7, 14,
22]. The term “non-restoring” refers to the fact that partial remainders are
allowed to range freely through the interval (—1,1), rather than being restored
to the positive realm before proceeding to the next step. This feature reduces
uses of the adder by about fifty percent. An equally important feature of
this algorithm is the “S-R-T” optimization from whence the algorithm gets
its name. In the late 1950’s, Sweeney [4], Robertson [19], and Tocher [23]

independently made the observation that whenever a partial remainder is in

the range (—3, 1), there will be one or more leading zeros that can be shifted
through in a very short amount of time (usually one cycle). The more leading
zeros in a given step, the more the algorithm can avoid costly uses of the
adder. A further development of this original algorithm, which is still called
S-R-T division, is the algorithm most often implemented in modern floating-

point units. In modern S-R-T division, a fixed number of quotient digits

are produced every cycle as opposed to a variable number [5, pp. 37-62].




An example of modern S-R-T division in use is Intel’s first release of the
Pentium™ CPU with its infamous “Pentium Bug,” which was really just a small
error in its S-R-T division implementation. This thesis will restrict its attention to
the original version of S-R-T division.

To present the simplest type of S-R-T division, we begin with a few definitions
for an algorithm similar to that presented by Shively [22, pp. 3-4]:

(a) n represents the number of iterations performed in the algorithm.

(b) po is the dividend (or initial partial remainder) nqrmalized so that pg € [%, 1).
(c) p; € (—1,1), 7 € N, is the partial remainder after the ith step.

(d) D is the divisor normalized to (3, 1).

(e) g € {-1,0,1} (i € {0,...,n — 1}) is the quotient digit generated by the ith

step.
n—-1
) @, = % s the “rounded off” quotient generated after n steps of the
9i 8
1=0
algorithm.

Given the above definitions, after n steps of the division algorithm, we would

like it to be true that
po =DQn + 5(”)

where £(n) is a term that goes to zero as n goes to infinity.

A recurrence relation for the S-R-T division algorithm can be stated as

2p; ©pil < %
Pi+1=942(pi—D) : |pil>5andpi>0
2(pi+ D) : |pi| > % and p; <0,




and

0 lps| < 2
q = 1 |pz|>%andpz>0
-1 lp;| > 5 and p; <0
By observing that
2(0: = (0)D) : |pl <3
Pi+1= {2(pi— (1)D) : |p|>3 andp; >0
2(pi — (-1)D) : |pi| > 5 and p; <O,
we can rewrite the definition of p;4; as
pi+1 = 2(pi — ¢;D).
After n steps have been completed, we have
n=2"po — 2°qD — 2" "'qnD — -+ = 2'qn 1D,

and then after dividing by 2" and solving for pp we find that

Now let e(n) = p"/2" and let Q* = limp_00 @n. Since |py| < 1, in the limit as n
goes to inﬁﬂity
- DpQ*.
The quotient bits being generated are not in a standard binary representa-
tion, but it is a simple matter to convert the answer back to standard binary without
using any expensive operations. Figure 1.1 shows a simple pseudo state-machine (re-

ally a push-down automaton) that converts positive floating-point numbers in the

{-1,0,1} representation into binary.




0/0

1/e

f \KJ

Figure 1.1: A pseudo state-machine for converting sequences of {—1,0,1} into

sequences of {0,1} (binary). We assume that the input sequence
corresponds to a positive number. The letter ‘Z’ is used to indicate
that the end of the sequence has been reached, and the symbol ¢
represents the null string. We represent a run of m zeros as 0---0

and a run of m ones as 1---1. Sequences of symbols should be read
m

- . A .
from left to right. For example, the expression 1/10---0 means: if a

1 is encountered in the input sequénce, write a 1 followed by m zeros.

The above conversion automaton implies that conversion happens after the
calculation is completed. In reality, the conversion from the generated quotient bits
to standard binary is done in hardware on-the-fly, using registers to convert runs of
zeros into runs of zeros or ones in parallel, or by performing a single subtraction.

Figure 1.2 shows an example of using the S-R-T division algorithm to divide
0.67 by 0.75. The steps that produce non-zero quotient bits have been shown. In
this example, after six uses of the adder, the quotient (0.893) has been determined

to four digits of precision.



po = 0.67 = 0.67

p1 = 2(0.67 — D) =016 | @ = 1 | Q =1

pe =2(22(—0.16) + D)= 022 | ¢g =—1 | Q3 =0875

pr =2(22(022)—D) = 026 | g = 1 | Qs =0.890625

po =2(24(0.26)— D) =-046 | gg = 1 | Qs =0.89453125
pi = 2(2(—0.46) + D) = —0.34 | qo=—1 | Q0 = 0.8935546875
pi3 =2(21(~0.34) + D)= 0.14 | go=-1 | Qi = 0.8933105469

Figure 1.2: An example of S-R-T division when the dividend py = 0.67, and the
divisor D = 0.75. The quotient Q* is 0.893.

Now, with this simple system of division in hand, we might want to ask
certain questions about its performénce. For example, we could ask “How many bits
of precision are generated per iteration of the algorithm on average?” To answer
this question, we must look at the magnitude of |Q* — Q| = |pn/2"|. The number
of bits of precision on the nth step is then n — log, p,. In the worst case, p, is close
to 1, and therefore we get at least one bit of precision per iteration of the algorithm,
regardless of the values of D or py. Of course, a designer of actual floating-point
hardware probably wants to know the expected performance based on the expected
values of p,. To answer the many variants of this type of question, it is clear that we
must know something about the distribution of partial remainders over time. The
remainder of this thesis is devoted to extending what is known about the answer to

this type of question as it relates to S-R-T division and its variants.

1.2 S-R-T Division as a Dynamical System

The example in figure 1.2 makes it clear that keeping track of the signs of successive

partial remainders is irrelevant in determining how many times the adder will be
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used for a particular calculation. For this reason, we only need to consider the
magnitudes of successive partial remainders. We now give a reformulation of S-R-T

division that will allow us to look at division as a dynamical system.

Definition 1 (S-R-T Division Transformation). For D € [1,1), we define the
function Tp : [0,1) — [0,1) as

2z

o
IA

Tz <

[N

Tp(z) = 2(D - z)

IN

z<D

BI—

2z-D) : D<z<1.

This transformation of the unit interval represents the successive partial remainders
that arise as S-R-T division is carried out by a divisor D on a dividend z. D is
normalized to [%, 1). The dividend z is normalized to [%, 1) initially, while each of

the successive partial remainders T%(z) (n € N) subsequently ranges through {0, 1).

By using the characteristic function for a set A defined as

1 : z€eA
Ia(z) =
0 : €A,
we can rewrite Tp as
Tp(z) =2z - 1[0,%)(37) + 2(D —1z)- 1[%’D)(m) + 2(z — D) - 1jp1)(z) . (1.1)

If we plot equation 1.1 on the unit interval, we obtain a very useful visual-
ization of our transformation. Figure 1.3 shows the plot of Ty 75(z) combined with a
plot of the successive partial remainders that arise while dividing 0.67 by 0.75. This
is the same system that was presented earlier in figure 1.2. Notice that a vertical

line in the interval [%,D) corresponds to a subsequent flip in the sign of the next

partial remainder.




0.75
3 ) |p10|
B 0.5 I
= |ps] i 6|
0.25 F \
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0 0.25 0.5 0.75 1

T
Figure 1.3: An example of following partial remainder magnitudes graphically for
D = 0.75 and py = 0.67. The heavy solid lines represent the trans-
formation Tp.75, while the abscissa of the thin vertical lines represent

successive partial remainder magnitudes.

Figure 1.3 shows an example of following the trajectory of a single partial
remainder for a particular divisor. After ten applications of the Tp 75, there is not
any obvious regular pattern, although we expect to see one eventually since the
quotient is rational in this case. Of course, most numbers are not rational and we
can deduce that for most numbers, the transformation will never exhibit a repeating
pattern. In figures 1.4 and 1.5, we see that a very small change in the value of the
initial partial remainder quickly produces large differences in the observed behaviour
of the subsequent partial remainders. Our system appears to be chaotic (it certainly
has sensitive dependence on initial conditions and is topologically transitive), and,

if this the case, we will gain little understanding by studying the trajectories of



individual partial remainders. The logical next step is to study the behaviour of

distributions of points over the whole interval.

l_

0 20 20 60 80 100
n

Figure 1.4: The result of applying Ty/5 to z = 7 one hundred times.

0 20 20 60 80 100
n

Figure 1.5: The result of applying Ty/5 to z = % + 0.00001 one hundred times.

The area of understanding the behaviour of ensembles of points under re-
peated transformation is the realm of dynamical systems theory. For the remainder

of this thesis, we assume a certain amount of familiarity with the fundamentals of
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dynamical systems theory (or ergodic theory), which requires some basic under-
standing of measure theory. We will include a few helpful background material
definitions as they are needed, but mostly we will provide references. A very good
introduction to the study of chaotic systems is Lasota and Mackey’s book Chaos,
Fractals, and Noise [11]. For a more detailed introduction to ergodic theory (along
with the necessary measure theory needed to understand this-thesis), Peter Wal-
ters’s book An Introduction to Ergodic Theory [24] and Karl Petersen’s book Ergodic
Theory [18] are highly recommended.

Definition 2 (Probability Space). If B is a o-algebra on subsets of a set X and if
m is a measure on B where m(X) = 1, then the triple (X, B, m) is called a probability
space. (See [24, pp. 3-9] and [11, pp. 19-31] for a good overview of basic measure

theory and Lebesgue integration.)

Definition 3 (Stationary Distribution). Let (X, B, m) be a probability space, let
P be the Perron-Frobenius operator associated with a non-singular transformation
T : X — X, and let L' denote the L! space of (X,B,m)!. If f € L' is such that
Pf = f.} then f is called a stationary distribution of T.

Definition 4 (Perron-Frobenius operator). For a probability space (X, B, m),
the Perron-Frobenius operator associated with a non-singular transformation 71" :
X — X is defined by
/Pf(m)dm: f(z)dm, for BeB.
B T-1(B)
For a piecewise C?% transformation T with n pieces, we can give an explicit
formula for the Perron-Frobenius operator. Let A = {41, As, ..., An} be the parti-

tion of X which separates T into n pieces. For i € {1,...,n}, let t;(z) represent the

tFor a probability space (X, B, m), the L! space of (X,B,m) is the set of f : X = R
satisfying [, |f(z)|dm < oo.

!The o symbol will be used to indicate that a given relation holds except possibly on a
set of measure zero.

§C? denotes the set of all functions with two continuous derivatives.




natural extension of the ith C? function 7(z)|4,. The Perron-Frobenius operator

for T is then

n

<x>| (7 @) - 1o an @) -

+ 3f(D = 4z) - Loap_1)(z) + 5F(D + 5z) - Lp2-apy(z) . (1.2)

With equation 1.2 we can show precisely what happens to an initial dis-
tribution of points (described by an integrable function) after they are repeatedly
transformed under Tp. Figures 1.6 and 1.7 show what happens to two different
initial distribution of points after five applications of the Perron-Frobenius operator
associated with T3/5(x). By the fifth application, the distributions look remarkably
similar. One might guess that they are both approaching the same final distribution.
This situation is in marked contrast to chaotic behaviour observed in ﬁgures 1.4 and

1.5.
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Figure 1.6: The result of applying the Perron-Frobenius operator P associated
with Ty/5 to f(z) = 1 six times.
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Figure 1.7: The result of applying the Perron-Frobenius operator P associated
' 1 b dz
— six times.

with T3/5 to f(.’E) = @ /2 T

1.3 Shift Average for D € [3,1)

An exact equation for the stationary distribution when D € [;i—, 1) was first given by

Freiman [6] and is restated by Shively [22] as .

1 1

flz)= 51[0,2D—1) (z) + ‘231[2D—1,1)(x) : (1.3)

To verify that this is a stationary distribution function, we begin by applying

the Perron-Frobenius operator as given in equation 1.2 to equation 1.3 and verifying
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that Pf(z) = f(z). So then, applying P to f we get

1 1
Pf(z) = 3 (51[0,20—1)(%35) + ‘2—51[2D—1,1)(%$)> Lo,1y()

1 1
(51[0,21)—1)(17 T) + 5‘51[2D-1,1)(D - %m)) Lo,20-1)()
) Ljo,2—20)(T) -

1
—1[0,2D—1) (D =+ %il)) + _1[2D—1,1)(D + %JJ)
D 2D

Assuming that D € [1,1), and observing that = € [0, 1),

1/1 1
Pf(z) = 5 (51[0,4D—2)(-'L') + ﬁl[tiD-—Z,l)(m)) 1jo,1)(z)

1/1 1

+3 (51(2—20,1)( )+ 55 02-20) (@ )) Lo2p-1(#)
1/ 1

+ 2 (ﬁl[ogD—l)(ﬂU)) Lio,2-2D) (z) -

Finally, assuming that D € [2,1), we have

1 1
Pf(z) = lpy(z) + 2D1(2—2D,2D—1]( z) + El(o 2—2p)(7) + —1[02 20y ()

1
2D
3 1

iD Ljp2—2p)(z) + 1D L(02-2D] (z)

1 1
+ ﬁlp-w,gn—l)(ﬂ?) + E1(2—2D,20—11($)

1
+ El[2D—1,1)(z)
. 1 1

= 51[0,2D—1)( T) + 5p 12D~ 1,n(z) = f(z).

One of the primary uses of having a formula for the distribution of partial
remainders is for calculating the shift average for a given divisor. The shift average
is the average number uses of the shift register (single shift or multiplication by two)
between uses of the adder. Under the assumption that a register shift is a much faster
operation than using the adder, the shift average gives a useful characterization of
the expected performance of our algorithm for a given divisor. With equation 1.3,
we know the fraction of bits that require the use of the adder. To calculate the

average number of zero bits generated between non-zero bits (bits requiring use of
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the adder), we take the reciprocal of the fraction of bits that require the adder. We

calculate the shift average for a divisor D € [%, 1) to be

1 2D
- = _
1-.5 2D-1

s(D) (1.4)

Since have not proven that the stationary distributions from S-R-T division
are unique, we have no way of knowing whether or not a shift average calculation
in equation 1.4 is correct. To prove that all stationary distributions are unique, we
need to show that Tp is ergodic for all D € [3,1). Freiman [6] shows that Tp is
ergodic for rational D, but we extend this result for real D. In the next section we
éhow that all Tp are Bernoulli and it is known that having the Bernoulli property
implies ergodicity.

Before concluding this chapter with a definition for ergodicity, we will briefly
comment on the derivation of stationary distributions for D € [1,3). For D € [£,3),
the stationary distribution functions have been.derived, and their associated shift
average functions have been shown to be constantly three [6, 22]. The layout of
stationary distribution functions in the region D € [%, %) has several surprising

properties and is far from being fully understood. We discuss the calculation of

shift averages as an interesting area for future investigation in Chapter 4.

Definition 5 (Ergodic [11]). Let (X, B, m) be a probability space and let a non-
singular transformation T : X — X be given. Then T is ergodic if for every set

B € B such that T~!(B) = B, either m(B) =0 or m(X \ B) = 0.
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Chapter 2

Bernoulli Property

In this chapter, we will prove that the class of transformations of the interval that
characterizes the S-R-T division for all real divisors D has the property that each
transformation Tp is Bernoulli. Although the basic concept of a Bernoulli shift (the
things to which transformations having a Bernoulli property are isomorphic to) is
not difficult, a complete definition requires enough auxiliary concepts from measure
theory (concepts not used anywhere else in this thesis) that we chose to refer the
interested reader to [17, 18, 21, 24] and other selections listed in the Bibliography.
Neither an understanding of Bernoulli shifts, nor a formal definition of what it
means to be Bernoulli is required to follow the proofs in this chapter. Having said
this, we should mention informally the connection between Bernoulli shifts and
transformations having the Bernoulli property.

The transformation Tp is an non-invertible endomorphism of the unit inter-
val. This means that from a given partial remainder we can predict all future partial
remainders, but we cannot uniquely predict past partial remainders. There is a nat-
ural way (called the natural extension) to make our transformation invertible (an
automorphism) on a larger space. Specifically, each non-invertible transformation
Tp having the Bernoulli property has an extension to an automorphic transforma-

tion, isomorphic to a two-sided Bernoulli shift [18, pp. 13,276]. From the way that
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entropy for a transformation is defined, the entropy for an automorphic Bernoulli
transformation associated with a non-invertible Bernoulli transformation is the same
as the entropy for the non-invertible Bernoulli transformation. By proving that all
transformations Tp are Bernoulli, and by proving that entropy of each Tp is the
same, we will be able to conclude that the natural extensions of S-R-T division

algorithms are isomorphic to each other for all divisors.

2.1 Proof of Bernoulliness

Definition 6 (of Bowen [1], Expanding). We will say that a transformation T
on an interval is ezpanding if it has the property that sup, o u#(T"U) = 1 for all open
intervals U with u(U) > 0, where u is any normalized measure that is absolutely

continuous with respect to Lebesgue measure.

Definition 7 (Straddle). Let U be an interval of reals (either open, closed, or half
open) and let p € RT. If p € U°,! then we say that U straddles p.

Theorem 1. The S-R-T division transformation is expanding for all real divisors.

Proof. Let (X,B,m) be a probability space where X = [0,1), B is the Borel o-
algebra on X and m is the Lebesgue measure on Bt Let Tp : X — X be the S-R-T

division transformation for a given normalized divisor D as defined in equation 1.1.

tThe symbol o as the exponent of an interval denotes an open version of the interval.
For an interval [a, b], the Lebesgue measure is defined as m([a,b]) = b — a.
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Let us define an infinite sequence of intervals U = {U;}cn as

Uy=U and
(T () L Urcd)  orUz i)
Tp(U;N[0,3) : U Z0,3)and U ¢ [3,1) and
Uirr = 4 m(U; N[0, 3)) > m(U; N [3,1))

ToW;n[L,1)) : USZ[0,1)and UP € [3,1) and
m(U; N[0, %)) <m(U; N [%, 1)).

\
Property 1. For all U; such that 3 ¢ U? and D ¢ UY, m(Uiy1) = 2m(U;).

Proof. If a U? is a subset of either [0, %), [3,D), or [D,1), then we are in the first
case of the I definition and we apply Tp directly. Since each of the three cases of the

Tp expand an interval by a factor of two, it is clear that m(Tp(U;)) = m(Uiy1) =

2m(U;).
Property 2. For all U; where D & U;, m(U;+1) > m(U;).

Proof. Assume that D € U;. If % ¢ U, then according to Property 1, U;4+; doubles.
Otherwise, % € U; and therefore, to find U;4 1, we must consider the secqnd and third
cases of the U sequence. In the worst case, m(U; N [0,1)) = m(U; N [%,D)), and
regardless of which half we choose, m(U; N[0, 3)) = m(U; N [1,D)) = 3m(U;). By
applying Tp to this truncated interval, we double what we halved so that m(U;) =
m(Uit1).

By way of contradiction, let us assume that there exists a sequence of i that
never expands to fill X. Such a sequence can never include the point D and the

following Property will hold:

Property 3. There exists N such that for alli > N

(a) m(U;N[0, %)),m(Uiﬂ[%, 1)) > 0 (in other words, all subsequent intervals must
straddle ), and




() m(U;N[0,1)) < m(UiN[},1)) (in other words, all subsequent U; must be such
that the right half of U; is not discarded by the definition of U).

Proof of Property 8(a) Property 1 says that the only way not to double is to straddle
%. Therefore, at a minimum, it must be the case that —% is eventually included every
time or else the interval will double a sufficient number of times to include D which

would be a contradiction.

Proof of Property 3(b) If m(U; N[0, 3)) > m(U; N [,1)), then we have U; = (-
g,3 +¢') where € > €. Now U1 = Tp(U;) = Tp(3 —¢,3) = (1 — 2¢,1). But,
since D is not in U;y1, 3 cannot be in Uj;; and Property 3(a) fails, resulting in a

contradiction.

By Property 3, we will eventually be in a situation where U; = (% -, %—i—s),

¢! < g, and Property 3 will hold for every subsequent interval. So then
U =Tp(-€ 1 +e)=Tp[}, i +e)=(2D - 1- 2'5,.2D - 1)
by Property 3(b). But again by Property 3,
Uita = Tp(2D — 1 -2¢,2D — 1] =Tp[3,2D - 1] = [2—2D,2D — 1].

It is now clear that % is at the midpoint of U;;2 and that we must now pick the left
half of the interval which contradicts Property 3(b). Therefore, D will eventually

be included in an interval and the sequence will expand to fill all of X. O

We can now prove that the S-R-T division process is weak-mixing, and there-

fore Bernoulli, by two theorems of Bowen [1].

Theorem 2 (of Bowen [1]). Let T be a piecewise C? map of [0,1], u be a smooth

T-invariant probability measure, and A = infocz<i |f'(z)| > 1. If the dynamical

system (T, p) is weak-mizing, then the natural extension of (T, ) is Bernoulli.




We mention here that the natural extensions of (T, p) is the associated au-
tomorphic transformation that we alluded to at the beginning of this chapter. See

Petersen [18, p. 13] for an exact definition.

Theorem 3 (of Bowen [1]). With T and p as in Theorem 2, (T, p) will be weak-

mazing if T is expanding.

Theorem 4 (of Lasota and Yorke [10]). Let (X,B,m) be a probability space
and let T : X — X be a piecewise C? function such that inf|T’| > 1. If P is the
Perron-Frobenius operator associated with T, then for any f € L', the sequence
(% Zz;é PEfY> | is convergent in norm to a function f* € Ly. The limit function
f* has the property that Pf* = f* and consequently, the measure du* = f*dm s

invariant under T.

Having established that Tp is expanding, we now use the above three theo-

rems to prove the central result of this thesis.
Theorem 5. Tp is Bernoulli.

Proof. From the definition of T, we see that Tp is C? and that info<z<1 [T (2)| =
2 > 1 since |Tp'(z)| = 2 for all z for which the derivative is defined. Since
info<z<1 |Tp'(z)| > 1, by Theorem 4 there exists at least one p such that p is a
smooth T'p-invariant probability measure. By Theorem 1, we see that Theorem 3

“holds. Hence, (Tp, ) is weak-mixing and, by Theorem 2 (Tp, i) is Bernoulli. [

2.2 Entropy of Tp

Knowing that all Tp are Bernoulli is a very useful property because we can use en-
tropy as a complete invariant to show isomorphism amongst the two-sided Bernoulli
shifts associated with Tp that have the same entropy. This comes from the contri-

bution of Ornstein to the Kolmogorov-Ornstein Theorem.
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Theorem 6 (of Kolmogorov [8, 9] and Ornstein [16]). Two Bernoulli shifts

are tsomorphic if and only if they have the same entropy.

The purpose of this section is to calculate the entropy of Tp. We begin with
a multi-part definition of entropy along with some supporting definitions that follow

the development presented by Walters [24, pp. 75-87].

Definition 8 (Partition). A partition of (X, B,m) is a disjoint collection of ele-

ments of B whose union is X.

Definition 9 (Join). Let P and Q be finite partitions of (X, B, m). Then PV Q =
{PNQ : PeP,and Q € Q} is called the join of P and Q. Note that PV Q is also

a finite partition of (X, B, m).

Definition 10 (Entropy of a partition). Let (X, B,m) be a probability space
and let P = {Py,..., P} be a finite partition of (X,B,m). The entropy of the
partition is defined as

k
H(P) =~ m(P)logm(P,).

=1
Definition 11 (Entropy of a transformation with respect to a partition).
Suppose T': X — X is a measure-preserving transformation of the probability space

(X,B,m). If P is a finite partition of (X, B,m), then

n—1
R(T,P) = lim g (\/ T—i7>>

is called the entropy of T' with respect to partition P.

Definition 12 (Entropy of a transformation). Let T : X — X be a measure-

preserving transformation of the probability space (X, B,m) and suppose h(T) =

sup h(T,P), where the supremum is taken over all finite partitions P of (X, B,m).
Then A(T) is called the entropy of T




The following definitions and theorems involving C-maps and PC-maps are

taken from a paper of Ledrappier [12] and have been streamlined for our argument.

Definition 13 (of Ledrappier [12], C-map). A real function f defined on an
interval [a, b] is said to be a C-map if f is continuously differentiable and its derivative

f' has the following properties:
(a) f' satisfies a Holder condition$ of order € > 0.

(b) There are only a finite number of points = € [a, b] where f'(z) = 0. We denote

them by a < a; < as... < a, <bwith f'(a;) =0 for 0 <i < n.

(c) There exist positive numbers k; (k;}) such that |log —MI—(:—_)-'(JF—) is bounded in

z—al"i

a left (right) neighborhood of a;.

Definition 14 (of Ledrappier [12], PC-map). A map f : [0,1) — [0,1) is called
a PC-map if there exists a finite partition 0 < b; < by... < by, < 1 such that f is a

C-map from [bj, bj41] into [0, 1), for any j.

Theorem 7 (of Ledrappier [12]). Let f be a PC-map. If 1 is an a.c.i.m. (abso-

lutely continuous invariant measure), then Rohlin’s formula [20] is true:

() = [1og]f'| du

Theorem 8. The entropy h(Tp), of Tp for D € [3,1) is equal to [log|Tp'| du =

log 2.

Proof. We begin by showing that Tp is a PC-map. By the definition of a PC-map,
Tp is a PC-map if each of the three functions TDI[O’%) 7TD’[%,D), and TD|[D’1) is a
C-map.

Trivially, each Tp restricted to any of the three domains [0, %), [%,D), or

[D, 1) satisfies a Holder condition of order € = 1 because each piece of Tp is just a

$A function f(z) defined on an interval [a, b] satisfies a Holder condition of order e € Rt if
there exists ¢ € RT such that for any two points p1,ps € [a,b], |f(p1) — f(p2)| < ¢lp1 — p2|°.
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line of slope two. Thus condition (a) of Definition 13 is satisfied. Condition (b) is
satisfied because there are no points for which the derivative is equal to zero within
a given line segment. Therefore, condition (c) is trivially satisfied. Thus each of the
three segments of Tp are C-maps and by Definition 14, Tp is a PC-map.

Now, since each Tp is Bernoulli, there exists a unique a.c.i.m., call it pu, for

each Tp. By Theorem 7, we can use Rohlin’s formula to calculate the entropy:

hTp) = /IOg |TD'[du=10g2/du= log 2.
O

With the proof of Theorem 8 we have established isomorphism amongst the
automorphic transformations (or natural extension) associated with simple S-R-T
division transformations by an application of the Kolmogorov-Ornstein Theorem.
The key to obtaining this result was being able to shdw that Tp has Bowen’s ex-

panding property. In Chapter 3, we extend the results of this chapter to a more

general type of S-R-T division.




Chapter 3

Extensions to Multi-Divisor

S-R-T Division

3.1 Multi-Divisor S-R-T Division

A common optimization to the S-R-T division algorithm is the inclusion of additional
divisors to increase the shift average. In this section, we prove that all such division
algorithms with reasonable assumptions on the separation of the divisor multiples
have the expanding property. It will be useful to define precisely a class of multi-

divisor S-R-T division transformations.
Definition 15. Let o € R* be such that
(a) 0< a1 <ag <...<ap,and
(b) For all z, D € [3,1), there exists i € {1,...,n} such that|o;D — z| < 3.

We define 2, to be the set of all a € R", satisfying conditions (a) and (b). Also,
Q«[ = UnEN Q(n.

Definition 16 (Peaks and Valleys). Given an a € 2;,>2, the point of intersection

‘between two lines f(z) = 2(z — o; D) and g(z) = 2(a;41D — z) will be called a peak
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and is denoted by ; = (%D(aiﬂ +a;), D(aj+1 — ;). For convenience, we will refer
to the abscissa as 9] = %‘D(ai+1 + @;), and to the ordinate as ¢y = D(aiy1 — o).
The point of intersection of the two lines f(z) = 2(e; D — z) and g(z) = 2(z — a; D)
is (; D, 0) and will be called a valley.

Definition 17. For a D € [},1) and a € 2, define the transformation Tp «(z) :

[0,1) = [0,1). For o € 2;, we get the familiar transformation

2z 0<z< —é—
Tp,a(z) =
|2(D — z)| ;<z<l1
For a € Yo,
2z 0<z<}
Tp,a(z) = { |2(ayD — )| l<z<y?
[2(aa D — z)| t<zandyf<z<1.
For o € Q[nzg,
p
2z : 0<z < %
|2(a1 D — z))| % <z < Yf
TD,a(fL') =9
|2(c; D — )| I <zandyf <z <Yf,
\|2(anD—a:)| Ll<zandyZ_ ,<z<l.

Definition 18. Define M, = {ITpo : D € (%,1], a € 2A,} and define M =
Unen T We call M, the set of all n-divisor S-R-T division transformations and

we call M the set of multi-divisor S-R-T division transformations.

Condition (b) in Definition 15 guarantees that the division algorithm gener-
ates a new quotient bit every step. Although the condition makes intuitive sense, it
is not immediately obvious if an « satisfies the condition just by inspection. Lemma

10 below provides an easier way to check.
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Lemma 9. If a = (1), then condition (b) of Definition 15 is satisfied if and only
’Lf ] = 1.

Proof. 1If o = 1, then maxp z¢f1/2,1) lon D — z| < % Now consider the cases when
a1 #1and e € RT. If o = 1+¢, then when D = ﬁ and z = %, lonD - z| =
1—%=%7( % Ontheotherhand,ifa1=1—5,thenwhenD——-%andzzl—%,
oD ~z|=1-5-(1-¢e)i=31+¢3. O
Lemma 10. An o € U, that satisfies condition (a) of Definition 15 also satisfies

condition (b) if and only if for some 1,5 € {1,...,n} (possibly i = j), either

(i) a; € (0,3] and a; € [1,1 + o), or

(it) a; € [3,1] and a; € [1,304).

Proof (Sketch). Lemma 9 has shown that a single component o of @ with a =1 is
sufficient to ensure that the range of f(z) = 2|aD — z| is equal to [0,1) as # and D
range over [%, 1). It is easy. to see based on the proof of Lemma 9 that if there does
not exist i € {1,...,n} such that a; = 1, then there must exist 4,5 € {1,...,n}
(1 < j) where a; < 1 and o > 1.

Let us assume that i is the largest value where o; < 1, and let us assume that
j is the smallest value where a; > 1 (therefore j = i+ 1). We make this assumption
because no other scalars of D will have an influence on whether or not condition (b)
is satisfied. Consider the case where o; € (0, 1]. In this case where a; € (0, 1], when
D is close enough to 1, some of the line f(z) = 2(z — o;D) appears in the region
(denoted R) where 3 < z < 1, 0 < Ty(z) < 1. When a portion of the line f(z)
appears in region R, we must put restrictions on ¢; in terms of ¢; so that the peak
1, is always in R. 9! is greatest when D = 1. We find the maximum allowable

value of o by setting D = 1 and solving ¥¢ =1 for q;:
Y=1 = Dlogj-o)=1 = oj=o0;+1.

Therefore, if a; € (0,1], then a; € [1,1 + ).
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In the case where a; € [3,1], for large enough values of D, the line f(z) =
2(z — Do) crosses the line z = 1 in the range [0, 1). Because of this, we must loosen
the restriction that a; € [1,1 + a;]. It is straightforward to calculate that f(z)

begins to cross the line z = 1 in the range [0,1) when D = —2—(1;— We can ensure that

as D becomes smaller, the peak 1p; will always be in region R by solving 97 = 1 for

. _ 1.
a]whenD—2a

i

1
d’iy:l = D(aj—ai)zl = Tw(aj_ai)zl = o5 = 30;.
1

Therefore, if o; € [%, 1], then o € [1,3w;). 0O

Definition 19 (Separation). For a € U,, we define the separation in a as

. ;

separation(a) = ma Saan i)
i€{l,....n—1} @y
Limiting the separation is a convenient way to restrict the subset of 2 being consid-
ered. If separation(a) = r, we say that “the divisor multiples in « are separated

by at most a factor of r.”

Figure 3.1 shows an example of multi-divisor S-R-T division. This example
is performing the same calculation as in figure 1.2, but it has computed the dividend
with twice as many digits of precision with the same effective number of uses of the
adders. We say “effective” because in multi-divisor S-R-T division, there are several
adders working in parallel. In a real implementation of multi-divisor S-R-T division,
the values for a must be carefully chosen so that not too much overhead is required
to select a good partial remainder. There is also a tradeoff between the amount of

overhead in choosing a good partial remainder and the precision to with which a

good partial remainder is selected.




p1 = 2(0.67 — ayD) =-016 | g = a2 | Qo =1

(
pa = 2(22(—0.16) + a1 D) = —0.155 | ¢3 = -y | Q3 = 0.90625
pr = 2(22(=0.155) + ay D) = —0.115 | g5 = —a1 | Qs = 0.89453125
pi1 = 2(25(=0.115) + asD) = 0.035 | quo = —a3 | Q1o = 0.8933105469
pis = 2(24(0.035) — ayD) =—0.005 | s = a; | Qs = 0.8933334351
Paa = 2(27(0.005) + ;D) = —0.155 | gos = —a; | Qa3 = 0.8933333456

Figure 3.1: An example of S-R-T division where three multiples of the divisor
are used. In this example the dividend py = 0.67, and the divisor
D = 0.75 with divisor multiples o = (0.75,1,1.25). The quotient Q*
is 0.893.

3.2 Proof of Bernoulliness

In this section, we will show that all multi-divisor S-R-T division transfoi‘mations
are Bernoulli, given a necessary restriction on the multiples of the divisor. As in the
case for a single divisor, it will be useful to define a sequence of intervals that are
subsets of the sequence of sets that would arise from repeatedly applying Tp o to an
initial open interval. Unless otherwise noted, assume that the function m denotes

the Lebesgue measure.

Definition 20. Given an initial open interval U C [0,1) and Tp o € 90, we define
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the infinite sequence of intervals U = {U; }ien as

U1 = U and
4
Tp.a0) vred) etz
Tpo(U;N[0,4) : UL Z0,3)and UP € [1,1) and
Vit = m(U; N[0, 1)) > m(U; N [4,1))

Tpa(U;N[3,1)) = U2 Z[0,3) and U7 Z [5,1) and
m(U; N [0, %)) <m(U; N [%, 1)).

\

Definition 21 (Critical Points). For a given Tp o where a € 2,,, define the set
C={c:i€{l,...,m},c; € BU{0,3,1}}

where B={b: 1 <b<landbe {auD,...,anD}U{yf,...,4%_,}} and c; <

co < ... < 1. C is called the set of critical points for Tp .

Lemma 11 (Doubling). Given Tp o € M, let the sequence of intervals U be defined
as in Definition 20 and let U; be some interval in the sequence. Furthermore, let
C = {ci,.-.,cm} be the set of critical points for Tpo. If U; C [cj,cj+1] for some
j€{L,...,m—1}, then m(Ui;1) = 2m(U;).

Proof. Since U; C [cj,cj+1] for some j € {1,...,m — 1}, because we are in the first
case of the definition of U, either U7 C [0, %) or U7 C [%, 1). By simple inspection of
the individual cases that define Tp o, it is apparent that all of U;, éxcept possibly
the points ¢; and c¢;j41, fall within the same case of Tp o. Therefore, the resulting

interval U;;1 will be double the length of U;. ]
Definition 22 (Active Valleys). Given Tp o € M,,, define

V={aD:i€{l,...,n} and 3 < ;D < 1}.

V is called the set of active valleys for T q.




Definition 23 (Active Peaks). Given Tp o € My, define
P={¢f :ie{l,...,n—1}and } < yF < 1}.
P is called the set of active peaks for Tp q.

Lemma 12 (Non-shrinking). Given Tp o € M, with separation(a) < %, let
the sequence of intervals {U;}ien be defined as above and let V denote the set of
active valleys for Tpq. For any interval U; € U such that V NU; = &, either

m(UiH) > m(U,) or m(Ui+2) > m(U,)

Proof. separation(a) < g implies that a;41 < 3a;. For a given separation, the

o

value of 97 is maximized when ¢¥ = 1. This implies that a; = %. We calculate

the value of ¢! with the assumption that 97 = 1 to get a bound on ¢! for D < 1:

(=

¥} < D(§ai — ) = D(§0s) = D(

W

D) =3

Case 1: Consider when U; C [0, 1]. In this case, m(Uit1) = 2m(U;).

Case 2: Consider when U; C [%, 1). The interval U; can spah at most one
peak. Therefore, m(Uiy1) > m(U;). A further observation is that since Ui41 C [0, 3],
m(Uiy2) = 2m(U;). .

Case 8: Consider when U; € [0, 3] and U; € [£,1). In this case, U; straddles
%. From the definition of U, we see that in the worst case we might throw away up
to half of U;. Call the part not thrown away U;’ and observe that m(U;') > %m(Uz)
Now, either U; C [0,3] or Uy C [3,1). If U;’ C [0, §], then m(Uiy1) = 2m(Uy') >
m(U;). f U C [5,1), then m(Ujy2) = 2m(Uy") > m(U;). O

Lemma 13. A multi-divisor S-R-T division transformation Tp o € M is expanding

- 5
when separation(a) < 3.

Proof. Let V be the set of active valleys (as defined in Definition 22) for a Tp o. Let
P be the set of active peaks (as defined in Definition 23) for a Tp . Let U = {U; }ien

be the sequence of intervals associated with a Tp o and an initial interval U.
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By way of contradiction, assume that a T o is not expanding. This means
that for some Tp o, there does not exist an interval U; where any of the points in V
are contained in U;. Thjs is true because if any of the valley points are in U;, then
Ui+1 = [0,¢) or U;41 = [0,¢], and after a finite number of steps, U; will have grown
to include all of [0, 1).

If there is a sequence I that avoids all points in V', then by Lemma 12 it must
be true that the intervals in the sequence can only double a finite number of times.
Let ¢ € N be the first index for which there is no j > ¢ such that m(U;) > 2m(U;).
It now follows that U; straddles %— The proof for Lemma 12 reveals that this is the
only situation where it is not necessarily the case that either m(U;+1) = 2m(U;)
or m(U;y2) = 2m(U;). In fact, U; must straddle both % and min P. If minP is
not straddled and m(U; N [0, %)) < m(U; N [3,1)), then either m(U;y2) > 2m(U;)
or m(Us;y3) > 2m(U;). In the other possibility where min P is not straddled and
m(U; N[0, 1)) > m(U; N [3,1)), we find that m(Ui4z) > 2m(U5).

Assuming that U; straddles both % and min P, we also observe that there can
be no j > 4 such that m(U; N [0, 3)) > m(U; N [3,1)) because this quickly leads to
doubling. In other words, the right side must be larger than the left side whenever

we straddle % Therefore, we must be in the situation where
U=(3-¢,5+¢), e <e
U1 = (min{2(3 — 2 D), 2(as1D — (3 +€))}, )
Uitz = (2min{2(3 — aiD), 2(ai1 D — (5 +€))}, 247)
Uits = (min{2(3 — aiD), 2(i1 D — 24)},97)
(
(

Uita = (2min{2(3 — D), 2(ai11 D — 29¥)}, 297

R

Uirs = (min{2(3 - o;D), 2(ai1D — 29¢)},4Y) = Uiya .

It is apparent that the interval represented by U4 will re-occur every other
interval ad infinitum. We now use this interval to show that in fact such a sequence

of non-expanding intervals is not possible.
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Since Uj44 straddles %, we can compare the length of the left and right sides
of Uira. Let R = [3,2¢Y) denote the right side and let L = (4(3 — o;D), 3) and
L' = (4(ai1D — 2¢Y), %) denote the two possibilities for the left side. The length
of the right side is

m(R) = 2} -

29

while the length of the left side is the larger of two possible lengths
m(L) =1 - 4(% — a;D)

and
m(L') = § — 4(eip1D — 297) .
We then compare the differences between the right side and each of the two possible
left sides. The first possibility is
m(R) = m(L) = 20! = £ = (§ - 4(} - D))
= 2D(aj41 — ) — 1+ 2 — 4oy D

= 2ai+1D et 6a1D + 1 ,

while the second possibility is

= 2D(ai+1 - ai) -1+ 4(ai+1D - 2D(ai+1 — az))

= —-2011+1D =+ 6aiD -1.
It is now clear that
m(R) — m(L) = — (m(R) —m(L")) .

But this means that the length of the left side is always greater than or equal to the
length of the right side, which contradicts our assumption that the right side must

be bigger than the left side whenever the interval straddles %

|
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Theorem 14. Tp o € M is Bernoulli when separation(a) <

Proof. Let T = Tp o. From the definition of T, we see that Tp o is C? and that
info<g<1 |T'(x)] = 2 > 1 since |T'(z)| = 2 for all z for which the derivative is defined.
Since info<z<1 |T"(z)| > 1, by Theorem 4, there exists at least one y such that u is
a smooth T-invariant probability measure. By Lemma 13 we see that Theorem 3
holds when separation(a) < g Hence, (T, p) is weak-mixing and by Theorem 2,

(T, 1) is Bernoulli when separation(a) < g a

3.3 Some Restrictions on «

In section 3.2, we showed that if all Tp o € M, if separation(a) < g, then Tp o is
Bernoulli. In this section, we construct examples of T' € 9,,, for every n, that fail

to be Bernoulli when the restriction that separation(a) < 2 is relaxed.

Theorem 15. For Tp o € My>4, if separation(a) > g, then for each D € [%,1),

there exist uncountably many o for which Tp o is not ergodic.

Proof. We begin this proof by considering T' € 9,,—4.
Assume that we relax the restrictions on a by € > 0. This means that
separation(a) < 2 + ¢ and that no peak can be above the line f(z) = 48‘1%. With

this relaxation, we can define a = (a1, a2, a3, a4) with respect to a given D so that

a subset of {0,1) is non-expanding. We let a; = ﬁ%, oy = %%, o3 =

30-9¢
40D+-24D¢g>

that conditions (a) and (b) of Definition 15 hold. Condition (a) requires that the

— _504+2le .
and a4 = rprs4ps- For our constructed a to be valid, we must be careful

components of & remain in ascending order. This is satisfied when € € (0, 1%] Since
ordering is maintained, separation(a) < 3, and minpe(i/2,1),cc(0,2/15 ¥4 = 1.2 >1,
to verify that condition (b) of Definition 15 holds, it is sufficient to show (by Lemma
10) that for all values of D and ¢, either oy, a, or a3z € [%, 1]. By maximizing and

minimizing over ¢ and D, we find that oy € [0.375,0.7] and a9 € [0.625,1.3]. Figure
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3.2 provides a visual proof that as ¢ is varied over [0, 2] and D is varied over [1,1],
it is never the case that both o; < % and as > 1. Therefore, it is always the case
that either oy or ap € [3,1]. |

Having verified that our defined o satisfies Definition 15, we calculate that

__ (20+21e 10+415¢ _. (2043 10+15¢ : : T4
peak ¥ = (555> qo104c) and peak V3 = (35775 so113¢)- With this definition for

a, and our assumption that e € [0, 15) the point 15 will always touch the line f(z)
while remaining above the line g(z) = %, and the point v; will always be slightly
below f(z) while remaining above the line g(z) = l. All of the definitions have been
chosen so that we are in a situation where 1 — 9§ = ¢§ — 5 = 2(¢7 — —) =2(¢¥ — —).
Another important feature in this construction is the interval between apD and a3 D.
Since 1), is not used in our construction, it is possible to insert an arbitrary number
of divisor multiples between asD and a3D. Thus, the results in this proof apply
to T € M, for arbitrarily large n. Figure 3.3 illustrates the type of transformation
that we have constructed.

We are now in a position to show that there exists a set of points A with
0 < m(A) < 1, for which Tp o(A4) = A. ThlS is the definition of a transformatlon
being non-ergodic [11, p. 59] Define A = A; U Ao U A3 where A; = [§ — (47 -
D+ @ =D A =[5 - 297 — ), 5 +2(F - 3)), and A = [1 - 2(1 - %), 1],
It can be shown by calculation that Tp (A1) = Aé, Tp,a(A2) = Ay U Az, and
Tp,a(A3) = Az. Therefore, Tp o(A) = A, and by definition, Tp o is non-ergodic or

non-expanding. O
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Figure 3.2: Combined plot of the regions where a;(e, D) < 3 and as(e,D) > 1.
Over the domain ¢ € [0, 2] and D € [3,1], it is never true that both

alg%andaQZI.

X

Figure 3.3: An example of a non-ergodic system for Tp o € My>4. In this ex-
(37,2 1 50

667 22 ,33), and Separation(a) =

amplen=4,D=%,a=
g + ;—1 The thick lines represent Tp o. The coarse dashed line
represents the necessary separation restriction on a to guarantee
that Tp o is ergodic. In this case, partial remainders in the set
A= B BIy[Z 2)y[$,1) are mapped back to A by Tp o This
means that Tp o is not ergodic, and therefore not Bernoulli.
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Theorem 16. For Tp o € M3, if separation(a) > %, then for each D € [—21-,1),

there ezists an a for which Tp o is not ergodic.

Proof. The proof for this theorem comes as a special case from the proof for The-
orem 15. Consider a = (aj, a9, a3,04) as defined in the proof for 15. When
separation(a) = % = % + 12—5, we are in the special situation where ay = a3. Since
all of the results for the proof of Theorem 15 still hold, we now have an example
transformation 7" with only three unique multiples of D and this T has been proven

to be non-ergodic. Figure 3.4 gives an example of a non-ergodic transformation for

= T
D=7L. 0
1r
0.75
roun
8
~—
g“ o.5r 1 | AHpmmmmeemeenmeen -
&~ =
-~
-
-
-
0.25} N
P .
- .
- .
. - .
S '
o’/ :
0 1 |
0 0.25 0.5 0.75 1
T

Figure 3.4: An example of a non-ergodic system for Tp o € M3. In this example,

D = -1—75 and a = (%, %, —%—‘%). The thick lines represent Tp o. The

coarse dashed line represents the necessary separation restriction on
a to guarantee that T o is ergodic. In this case, partial remainders
in the set A = [f‘g, f—s]u[%, %]U[%, 1) are mapped back to A by Tp q.

This means that Tp o is not ergodic, and therefore not Bernoulli.
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Theorem 17. For Tp o € My, if separation(a) > 3, then for some D € (3,1),

there exist uncountably many a for which Tp o is not ergodic.

Proof. Assume that separation(a) < 3+¢ and D € (%, 24&) First, we choose
o) = % so that oy D = i and o9 = 1 + ay. Our restriction on D in terms of € has
been chosen so that az/a; < 3+ € when az = 1+ «a;. Since ap > «j, condition
(a) of Definition 15 is satisfied. Since o1 € (3, 3), and a2 € (1,1 + o], by Lemma
10, condition (b) of Definition 15 is satisfied. Thus, our defined @ is always valid.
Define A = [, D]. We now apply T = Tp q to A:

T[%, D] =[min{2(3 — a1 D), 2(aaD — D)}, 9}]

Now, since 3 < D < 1, 0 < m(A) < 1 and Tp a4 = A, by Definition Tp,q is not

ergodic. O
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Figure 3.5: An example of a non-ergodic system for Tp o € My. In this example,
D= % and o = (%, %) The thick lines represent Tp . The coarse
dashed line represents the necessary separation restriction on a to
guarantee that Ty is ergodic. In this case, partial remainders within
the interval [%,2] map back to [}, 2] and which means Tp q is not

ergodic, and therefore not Bernoulli.

3.4 Entropy of Multi-Divisor S-R-T Division

The calculation for entropy in multi-divisor S-R-T division follows the same method

used for single divisor S-R-T division. We begin by showing that T o is a PC-map.
Lemma 18. Tp o € M is a PC-map (as defined in Definition 14).

Proof. By inspection, each Tp 4 is a finite collection of line segments each with slope
2. Each of these line segments is a C-map by the same argument used in the proof

for Theorem 8. Therefore, by definition, each T o is a PC-map. O

Theorem 19. The entropy of any Tp o € M with separation(a) < g 1s log 2.
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Proof. By Lemma 18, all Tp o € 91 are PC-maps. By Theorem 14, Tp o is Bernoulli
when separation(a) < % and hence there exists a unique a.c.i.m. g. Theorem 7

says that Rohlin’s formula for the entropy is true and therefore:

h(Tp.a) = /log lTD,all dp = log2/du = log 2.
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Chapter 4

Future Work

The original question that inspired this thesis was “Is simple S-R-T division ergodic
for all real divisors?” In pursuing the answer to this problem, we discovered that
not only is simple S-R-T division ergodic for all divisors, but it is also Bernoulli.
Having established a Bernoulli property, and having calculated the entropy for our
transformations, we were able to use the Kolmogorov-Ornstein theorem to conclude
that our transformations are isomorphic to each other. In proving these important
properties for simple S-R-T division, we made extensive use of more general results
from dynamical systems theory. Consequently, our results were shown to be easily
extensible to more general division systems. In general, it is difficult to prove that
a particular class of transformations are ergodic or Bernoulli. Our results have
provided an effective means of proving both of these properties for a large class of
S-R-T-like division algorithms.

From the standpoint of understanding an algorithm’s expected performance,
it is necessary to know that when a stationary distribution is found, it is unique.
Having established the uniqueness of stationary distributions, the next step is to find
the actual stationary distribution for as wide a class of transformations as possible.
In section 1.3, we verified a known expression for the stationary distribution function

for Tp where D € [%, 1). In addition, many of the stationary distribution functions
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have been classified by Shively and Freiman for D € [2, 3], although the derivations

are not nearly as simple as for D € [2,1). It turns out that things become very
complicated when D € [%, %] In his thesis [22], Shively shows many interesting
properties for the stationary distribution functions in this region. For example, he
shows that there are many different intervals of D where there are an infinite number
of different stationary distribution equations. As such, the graph of the shift average
for D € [%, %] is far from complete and appears to have a*complex pattern (from the
few points that have been plotted in this region). This is surprising considering the
simplicity of the underlying transformation. A better understanding of this final
region of simple S-R-T division would be an interesting goal to pursue.

In the work of Freiman [6], it was first shown that the shift average for
De [%, 31 is constantly 3, which can be easily shown to be the maximum possible
shift average. This property was then used by Metze [15] to obtain a version of
S-R-T division that has an expected shift average of 3 for all divisors. Another area
to pursue would be to explore shift averages for multi-divisor S-R-T division and, if
other plateaus are found, they could possibly be used to obtain higher expected shift
averages for all possible divisors. Undoubtedly, obtaining a complete understanding
of the stationary distribution functions for multi-divisor division would be even more
difficult than it is for simple S-R-T division. It is possible that such results in this

area could lead to improvements in modern S-R-T division. Related to this, it

would be interesting to attempt to extend the results of this thesis to modern S-R-T

division.
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