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Abstract 

Most of the existing analyses on admission control and buffer management 

for continuous media streams assume fixed rate da ta compression. This assumption 

is invalid for M P E G streams, which have variable bit rate (VBR) compression. With 

the increased acceptance of VBR compression and the development of new, more 

efficient VBR techniques, there is a need for new models, analyses and algorithms 

for streams with variable compression. The Central Limit Theorem of Statistics has 

been proposed for use at the granularity level of da ta streams to handle admission 

control of concurrent variably compressed streams. The implication here is that the 

total amount of buffer space required by all streams in the system at a particu

lar point in time is approximately normally distributed. In this thesis we develop 

a model for MPEG streams that applies the Central Limit Theorem at the finer 

granularity level of frames. This gives a stronger and more general result: tha t the 

amount of buffer space required for each stream approximates a normal distribu

tion. Using this model we develop several admission control algorithms tha t provide 

user-selectable, individual non-overflow guarantee levels by computing the amount 

of exclusive buffers needed to provide these guarantees. Experimental results in

dicate that the buffer space overhead required to support individual guarantees is 
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fairly small and worthwhile. We also investigate the feasibility of providing an ad

ditional q% system-wide non-overflow guarantee on top of the individual guarantees 

through the use of shared buffers. Experimental results indicate that the buffer 

space overhead is again quite small but very successful in enhancing the reliability 

and quality of service to the user. 
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Chapter 1 

Introduction 

1.1 Video on Demand Systems 

The term multimedia refers to the simultaneous presentation of multiple media such 

as text, graphics, video, audio and animation. In recent years, as the storage and 

processing capabilities of computers have increased, and networking and I /O tech

nologies have improved, the use of digital multimedia has been gaining in popularity. 

The number and types of multimedia applications is on the rise. Multimedia is used 

in various areas including education, entertainment and business or scientific presen

tations. Computer games, computerized courses used in distance education, news 

on demand and video on demand systems are some examples of applications which 

are gaining in importance. Cable companies are investing large amounts of money 

to install the equipment that will give them the capability to show digital movies 

as part of video on demand systems. Considering all these developments, provid

ing effective multimedia support for computer systems has become a topic of great 

interest and value. 
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A Video on Demand (VOD) system consists of a multimedia server serving 

multiple clients, whether local or remote. Each client or user can request to view 

one of a number of digital movies available to the server. The system may or may 

not also provide VCR-like capabilities such as pause, rewind or fast forward. 

Digital movies are an example of what is called continuous multimedia (CM). 

Continuous multimedia is delay sensitive. It has continuity and real time require

ments. By this we mean that once display has been started, it should not be stopped 

until the end of the da ta stream has been reached. In addition, the display must be 

continued at a particular rate. For instance, if the requested rate is 30 frames per 

second, dropping down to 10 frames per second would not be acceptable. 

The goal of a VOD server is to serve as many users as possible (maximizing 

throughput) , while ensuring that the continuity and real time requirements of the 

requested movies are maintained. When a new user requests a movie, the server 

must assess the current usage of system resources such as memory and disk band

width. It must then decide whether this request can be granted without violating 

the continuity and real time requirements of all the users already in the system. If 

the requirements of this new user can be met while maintaining those of already 

existing users, the new user is admitted into the system. Otherwise, it is forced to 

wait until enough resources become available. This process is known as admission 

control. 

It is clear that effective admission control mechanisms are essential to a 

multimedia server. The server must be able to admit the maximum possible number 

of users, so as not to waste resources. But it must also be capable of maintaining 

the continuity and real time requirements of the multimedia streams. 
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Another factor which affects the capabilities of a multimedia server is the 

fact that digital multimedia makes heavy demands on computer resources such as 

storage and disk bandwidth. This has increased the importance of da ta compression. 

Traditionally, digital da ta has been compressed using fixed rate compression. More 

recently, however, variable bit rate compression (VBR) has become popular. 

Of greatest relevance to the topic area of this thesis are studies relating to 

buffer allocation. But most of the available studies are concerned with multimedia 

streams compressed using fixed rate compression schemes. To make up for this lack, 

this thesis focuses on admission control of continuous multimedia streams which 

have been compressed using variable bit rate compression techniques. In the rest 

of this chapter, we first discuss the importance of compression (and especially VBR 

compression) in economizing resources for multimedia systems. We then discuss 

some of the difficulties that arise when allocating resources for variably compressed 

multimedia. We then briefly review the admission control needs of continuous mul

timedia streams and discuss how VBR compression complicates the issue. Finally, 

we review the statistical approach of Vin et al., which a t tempts to solve some of 

these problems, and then discuss the capabilities not made available by their ap

proach. The chapter is concluded by a brief discussion of the problems addressed 

and contributions made by this thesis. 

1.2 Data Compression: Fixed versus Variable Rate Sys

tems 

Digital multimedia makes heavy demands on computer resources such as storage, 

memory and disk bandwidth. This has increased the importance of da ta compres-
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sion, which enables the system to save on not only permanent storage but disk 

bandwidth and memory allocation as well. Here we assume tha t da ta would be 

transferred from storage and placed in memory buffers in its encoded form. The 

user process would be responsible for decoding the buffered da ta at its own rate. 

Even compressed multimedia can be extremely resource-intensive. For ex

ample, a two hour movie, needing to be displayed at a rate of 30 frames per second, 

would take 2 gigabits, even in a compressed form.1 At this same rate of 30 frames 

per second, a movie encoded by the J -PEG method would require disk bandwidth 

(and memory buffers) of 7 megabits per second. The need to economize on resources 

has led to the development of more efficient compression schemes. 

The earliest da ta compression schemes employed fixed rate compression. This 

means that the size of each compressed frame is a fixed percentage of tha t of the 

original frame. With fixed rate compression, it is easy to predict resources needed 

during playback, such as disk bandwidth and memory. 

Variable bit rate (VBR) compression schemes such as M P E G are one a t tempt 

to increase compression efficiency. Their main characteristic is tha t the sizes of 

compressed frames are not a fixed fraction of their original size. Instead, they can 

vary widely based on the content of frames and the methods by which they are 

compressed. 

Since its arrival, MPEG has quickly established itself as one of the standards 

for compression [20, 35]. MPEG, based on delta compression, is a scheme tha t uses 

VBR compression (see Section 3.1 for more details). In general, when compared 

with schemes such as J P E G that use a fixed compression rate for a stream, variable 

bit rate compression schemes have the advantage of being typically more effective 

' in this thesis we consider only video compression. 
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in their compressions. For instance, at the rate of 30 frames per second, an MPEG-

encoded stream requires only 1.5 mbits/sec versus the 7 mbits/sec required by J P E G 

streams. The advantages of such improved compression efficiency are obvious: de

mands on resources are greatly decreased, allowing more streams to be stored, and 

more users to access the system at the same time. 

On the other hand, there are disadvantages to the use of variable bit rate 

compression. To achieve satisfactory results, a fixed frame rate (usually 30 frames 

per second) must be maintained. But since compressed frames vary widely in size, 

it is difficult to predict exact resource needs. So the allocation of resources, such 

as buffer space and disk bandwidth, is more complicated for streams using VBR 

compression than for streams using fixed rate compression. For instance, if the 

average frame size is used as the basis for allocation, overflows may occur. Overflows 

can be defined as situations where the actual amount of compressed da ta exceeds 

the amount of allocated resources. If the maximum frame size is used instead, while 

overflows are avoided, resources may be over-allocated and severely under-utilized, 

as the actual size of a frame may vary greatly from the maximum frame size. Yet 

another approach is to record the size of each and every compressed frame. But 

this may involve a significant amount of bookkeeping and overhead, particularly for 

long streams such as movies (at rate of thirty frames per second, a two hour movie 

contains 216 000 frames). 
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1.3 Admission Control of VBR-compressed Continuous 

Multimedia 

As discussed in the previous section, it can be difficult to predict the exact resource 

needs for a variably compressed stream. However it is essential tha t some prediction 

be made so that the server can determine how much to allocate to a given stream. 

We recall tha t the goal of admission control for a multimedia server dealing 

with continuous multimedia is to maximize throughput while ensuring tha t continu

ity and real time requirements of all streams in the system are met. Consequently 

service interruptions are not acceptable. Frames must be supplied to the user at the 

prescribed rate, and there should be no degradation in quality. This last condition 

is easy for streams using fixed rate compression, but quite difficult to achieve for 

streams using VBR compression. Since exact resource needs cannot be predicted, 

some estimation must be performed. Recall from the previous section tha t this is 

quite complicated: If allocation is made on the basis of average frame size, over

flows may occur, so that some data is lost and degradation of quality results. If 

the maximum frame size is used as a basis for allocation, each stream is given a lot 

more resources than it really needs most of the time, so tha t the system throughput 

decreases. The other possibility of recording the size of every compressed frame 

can give rise to unacceptable amounts of bookkeeping and overhead. It is therefore 

essential to find a solution to the problem that steers somewhere between these ex

tremes and yet allows the system to take advantage of the considerable benefits of 

VBR compression. 
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1.4 Statistical Admission Control 

Given its nature, a variably compressed stream can be modeled statistically. Vin et 

al. use a random variable 6; to represent the total disk bandwidth (and similarly, the 

total buffer space) required by a variably compressed stream Sti over a certain time 

period [49]. By applying the Central Limit Theorem of statistics [6, 9], the total 

buffer space required by n streams b\ + .. . + bn approximates a normal distribution, 

for sufficiently large values of n. With the normal distribution, a server can provide 

statistical non-overflow guarantee on a per system basis (e.g., 99% non-overflow 

guarantee). 

Intuitively, statistical guarantees can be explained as follows: The assump

tion made, is tha t not all the streams will require the maximum amount of resources 

at the same time. Some may require the average, and others require amounts rang

ing between the minimum and the maximum. Therefore, the total requirement for 

resources can be estimated assuming a normal distribution, in the expectation tha t 

the high values will usually be balanced out by the low. 

When trying to provide statistical performance guarantees, the fundamental 

question is: 

What is a minimized amount of resources required to guarantee non-overflow 

q% of the time ? 2 

We call this the non-overflow guarantee (NOG) problem. In practice, q% need not 

be 100%, and smaller values of q may also make sense. In many cases, a user may 

trade off the highest quality for a lower cost. While Vin et al. [50] suggest policies 

We do not use the word "minimum" because, given the statistical nature of the problem, a 
proof of optimality may be too hard to achieve. Instead, we weaken the question by the word 
"minimized". 

7 



on how to choose frames to discard when overflows do occur, they do not address 

the issue of selecting how m,any frames to discard from which of the streams. Thus, 

there is an issue of fairness involved. One simple way to ensure fairness is to force 

every stream to discard a similar number of frames. This solution would work 

reasonably well if all streams are equal or similar. However, if the streams vary in 

their characteristics, such as their average frame sizes or priorities, this solution is 

too simplistic. 

1.5 Problem Definition 

In this section we briefly describe the problems addressed by this thesis. As men

tioned in the previous section, by applying the Central Limit Theorem of statis

tics [6, 9], Vin et al. develop a framework that provides a non-overflow guarantee on 

the total amount of resources required by all the active streams in the system [49]. 

In other words, the non-overflow guarantee is provided at the granularity level of 

the entire system. This framework is too coarse to support non-overflow guarantee 

on a per stream basis. Hence, without some additional schemes to ensure fairness 

to all users, this framework cannot guarantee a reliable level of performance to any 

given user. On the other hand, it could be highly desirable to have individual non-

overflow guarantees (NOGs) provided to each user. User needs vary. A given user 

might want to select a NOG level based on stream characteristics such as average 

frame size or a balance between his/her tolerance for degradation in quality and the 

cost of different levels of NOG. 

1. The first problem addressed by this thesis is whether the non-overflow guar

antee problem can be solved directly at the granularity level of individual 

8 



streams. More specifically, is it possible to develop a framework which will en

able the system to provide an individual non-overflow guarantee to each user, 

so that a user can specify the desired non-overflow guarantee level p% directly 

for his/her particular stream? This means tha t the stream is guaranteed not 

to overflow its allocated resources p% of the time, and a user can select this 

value based on his/her own needs and preferences. In order to do this we need 

a statistical model not only on the level of the aggregation of n streams, but 

also on the finer granularity level of each individual stream. The key question 

here is how to provide a statistical model for the size of M P E G compressed 

frames, which would enable the system to calculate resource needs and al

locate them in a way that would ensure individual non-overflow guarantees. 

This would be desirable as it ensures fairness. 

2. Assuming this is feasible, the next problem addressed is whether this can be 

achieved at a reasonable cost or whether providing individual guarantees may 

prove too expensive. The term "reasonable cost" may appear vague, and what 

may be acceptable for one system may not necessarily be so for another. Here 

we use the term to mean that no more than 5% additional resources need be 

allocated to provide individual guarantees than would be required for system 

level guarantees. 

3. Assuming that providing individual non-overflow guarantees is feasible, a nat

ural question to then ask is whether a further q% system-wide guarantee can 

be supported, on top of the individual guarantee (q% > p%). This could be 

done via a pool of shared buffers, which could be used by streams overflowing 

their allocated resources. The goal here is to decrease the number of overflows 
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and/or da ta lost by each stream even beyond what is achieved by the individ

ual non-overflow guarantee. Such an additional system-wide guarantee can be 

highly desirable as it can help to enhance reliability and the quality of service 

to the user. 

4. Lastly, since the general goal is to enhance quality of service at as low a cost as 

possible, this work investigates the cost of providing such additional system-

wide guarantees. Again, we take 5% additional resource use as "reasonable 

cost" when evaluating the performance of different algorithms. 

1.6 Contributions of this Thesis 

The key contributions of this work are as follows. 

1. By making use of a specific version of the Central Limit Theorem, we de

velop a statistical model tha t approximates the total size of several adjacent 

compressed frames as normally distributed. This allows us to determine the 

amount of buffer space 3 necessary to provide a p% non-overflow guarantee, 

for any p value chosen by the user. 

2. We develop the admission control Algorithm CLT(E) tha t supports individual 

non-overflow guarantee on a per stream basis, through the use of buffer space 

allocated exclusively to the stream. More specifically, Algorithm CLT(E) ap

plies our statistical model to compute the required amount of buffer space for 

a p% individual guarantee. 

3. Our experimental results indicate that CLT(E) is effective and tha t individual 

The focus of this work is on buffer space management. But at the modeling level, disk band
width allocation can be dealt with in a similar way. 
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non-overflow guarantees can be provided at a very low cost-less than 5% extra 

buffer space. 

4. We develop several admission control algorithms that are capable of providing 

both a p% individual guarantee and an additional q% system-wide guarantee 

(<7% > P%)- This guarantee is implemented through the use of buffer space 

shared by all streams tha t overflow their exclusive buffers. Two of these algo

rithms are for the homogeneous case, tha t is, the case where all streams have 

identical characteristics such as the average and distribution of frame sizes, 

and the selected p value is also the same. The others are for the heteroge

neous case, tha t is, the case where stream characteristics and p values differ 

from stream to stream. 

5. We evaluate the performance of these algorithms by simulation experiments. 

Our experimental results indicate tha t the two homogeneous case algorithms, 

while they have their relative advantages and disadvantages, are both very 

effective in providing both kinds of guarantees at a reasonable cost. Our ex

perimental results also help us identify among the many heterogeneous case 

algorithms, those which are both efficient in providing the two types of guar

antees and acceptable in terms of cost to the system. In other words, the 

additional system-wide guarantee can be provided at a very low cost, and is 

effective in enhancing the quality of service delivered to the user. 

1.7 Overview 

The rest of this document is organized as follows: Chapter 2 reviews related works 

including papers on resource management of continuous multimedia and papers on 
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admission control of multimedia streams. It also gives a description of the major 

characteristics of M P E G streams which affect the way they must be modeled. Chap

ter 3 discusses the Central Limit Theorem (CLT). It then presents a statistical model 

for the buffer space requirement of a variably compressed stream, based on a spe

cific form of the CLT. Chapter 4 describes Algorithm CLT(E) which uses exclusive 

buffers to implement individual non-overflow guarantees. Chapters 5 and 6 present 

algorithms which use shared buffers to provide additional system-wide guarantees. 

Chapter 5 presents Algorithms CLT(Sn) and CLT(Sm) which were developed for 

the homogeneous case, where all streams have the same characteristics and guar

antee levels. Chapter 6 discusses the algorithms developed for the heterogeneous 

case, where streams have different characteristics and non-overflow guarantee levels. 

Chapter 7 presents the simulation experiments used to analyze the behavior of the 

algorithms, gives details of the implementation and discusses experimental results. 

Our conclusions and possibilities for future work are presented in Chapter 8. 
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Chapter 2 

Background and Related Works 

This chapter provides background information necessary for understanding the ma

terial in this work. In addition some works relating to the topic of this thesis will 

be reviewed. More specifically the following topics will be covered: 

1. We discuss in greater detail the nature of continuous multimedia and the 

requirements tha t a CM server must fulfill. 

2. We review some of the work relating to the design of CM servers. We dis

cuss issues that arise in this design and some of the schemes tha t have been 

proposed for solving the problems. 

3. We review works concerned with the design and implementation of CM servers 

tha t handle compressed data. Most of these studies are concerned with da ta 

compressed at a fixed rate. However some discuss issues that must be ad

dressed when dealing with variable bit rate (VBR) compression. Studies about 

CM servers handling VBR compressed da ta fall into two categories: those pro

viding deterministic quality of service (QoS) guarantees and those presenting 
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statistical approaches. We discuss how these studies relate to the topic of this 

thesis and how they differ from our approach. 

2.1 Requirements of Continuous Multimedia Streams 

A number of studies identify the characteristics of continuous multimedia data , and 

analyze the requirements for the storage and retrieval of such data . In this section 

we review these works and discuss some of the issues they address. 

Gemmel and Christodoulakis [15] describe CM da ta as "delay sensitive". By 

this they mean that there are "real time deadlines for the presentation of successive 

units of the data" . CM da ta can be thought of as consisting of a sequence of 

individual units of da ta which must be displayed continuously in time. These units 

can be pictures or frames for video or animation, or audio samples in the case of 

digital audio. In order to be of an acceptable quality to users, media units must 

be presented at a precise pre- determined rate (usually the rate at which they were 

recorded). If audio samples are not presented at the correct rate, pops or sound 

distortions are likely to occur. Similarly, if video or animation is displayed at the 

wrong rate, motion can appear jerky or otherwise unnatural. To avoid such problems 

and to provide acceptable QoS to users the system must ensure that all real time 

deadlines are met and tha t media units are presented at the correct rate, neither 

too fast nor too slow. Continuous presentation of the da ta is also essential. Service 

interruptions are not acceptable. Therefore, works in the field agree that CM da ta 

must meet continuity and real time requirements [3, 5, 7, 8, 10, 13, 15, 14, 16, 34, 

26, 33, 44, 41, 42]. x 

'As these works point out, the same requirements apply to both the storage and the retrieval 
and presentation of CM data. But this thesis will only focus on the retrieval aspects. 
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There are two other major difficulties that a continuous multimedia system 

must handle: synchronization and coping with massive amounts of data . Synchro

nizing the various strands of a multimedia stream is an important and complex task. 

The several channels for multi-channel audio must be coordinated and synchronized. 

The sound track for a video movie must not only be presented at the correct rate 

but must also correspond to the appropriate frames or pictures in the movie. 

A number of works are concerned with synchronization of CM data . Syn

chronization can be achieved via time stamps and the relative position of da ta in a 

stream, as with the M P E G system [20]. Rangan et al [42] propose a method of syn

chronization for the case where CM da ta is not displayed by an integrated system, 

but by unrelated pieces of equipment ("media phones") receiving da ta directly from 

a server. Brief feedback messages are sent to the server by the individual display 

units. Using this feedback information, the server can determine if resynchroniza-

tion is necessary and adjusts its transmissions accordingly. Since synchronization is 

not related to the topic of this thesis we limit our coverage of the issue to this brief 

discussion. 

The final important problem which must be addressed when working with 

continuous multimedia is that massive amounts of da ta may need to be stored, 

retrieved, and transmitted [42, 16, 33]. As pointed out in the previous chapter, a 

two hour digital movie displayed at the rate of thirty frames per second contains 

two hundred and sixteen thousand frames. Frames can vary in size depending on 

the requirements of the application. But if we take as an example uncompressed 

frames consisting of 516 by 640 pixels and 24 bits per pixel, we see tha t a digital 

movie, even without considering sound track and any other associated media, could 

be gigabytes in length. These facts serve to emphasize the crucial need for effective 
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data compression. 

Handling CM da ta can make heavy demands on computing resources such 

as disk bandwidth, memory, CPU and storage. Data compression can reduce the 

problem by one or more orders of magnitude. As pointed out previously, even 

compressed da ta can make heavy demands on resources but the problem is greatly 

reduced. If a system has a fixed amount of resources, the number of clients that 

can be served is greatly increased when compressed da ta is used. Variable bit rate 

compression is much more efficient than fixed rate compression. This maximizes 

the use of server resources so tha t the increase in overhead caused by VBR da ta is 

worthwhile. 

To summarize, in this section we have discussed the three main requirements 

of continuous multimedia data: the need to meet continuity and real time require

ments, the needs for synchronization, and the fact tha t large amounts of da ta may 

need to be stored, retrieved and transmitted. These requirements and characteris

tics affect the way in which CM servers must be designed in order to meet the QoS 

needs of clients. In the next section we review some of the studies which address 

these issues. 

2.2 Design of Continuous Multimedia Servers 

In the previous section, we discussed the three main requirements and characteris

tics of continuous multimedia data , namely continuity and real time requirements, 

synchronization of media strands, and the large size of da ta streams. In this section 

we review some of the works which address these issues when designing continuous 

multimedia servers. 
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We consider the implications of CM characteristics in multimedia server de

sign. The system needs to retrieve and transmit da ta at the correct rate to provide 

acceptable QoS to the user, since media units must be displayed at the correct 

rate and there must be no interruptions. In addition, the proper synchronization 

of multiple strands of da ta has to be performed. The large amounts of da ta as

sociated with each CM stream necessitate the high speed retrieval, transmission, 

and/or storage of the da ta and make the use of compression schemes highly desir

able. All these facts are true when the system deals with a single user requesting a 

CM stream. However, the storage capabilities of a system and the disk transfer rates 

are higher than a single stream can use. Consequently, the usual architecture is to 

have continuous multimedia servers that can service multiple clients simultaneously. 

Clients can be local or remote, the latter type being connected to the server via 

high speed networks. The CM server stores continuous multimedia da ta on disks 

or other storage devices and handles client requests for the retrieval of the stored 

data. It retrieves the da ta from disk or other devices and places the da ta in buffers 

for the clients. Clients then access the da ta from the buffers at an appropriate real 

time rate [16, 14]. The aim of CM servers is to serve as many clients as possible 

while still maintaining the QoS requirements of individual users. 

As discussed in the previous chapter, a CM server must use admission control 

policies. When a new client makes a request, admission control policies enable the 

server to decide whether or not to admit the client into the system. If the request 
C 

can be served while maintaining the continuity and real time requirements for all 

clients already in the system, then the new client is admitted for service. Otherwise, 

the new client must wait until enough resources become available. Two factors are 

therefore important in the design of CM servers. 
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1. For effective admission control policies to be in place, the system must be 

able to accurately estimate the resource needs of a given client and the total 

resource needs of a large number of clients. 

2. The system must also have mechanisms to minimize these resource needs by 

such means as more efficient disk scheduling, placement of da ta on disk, and 

more efficient buffer management. 

Below we discuss the approaches taken by some of the works in the field. 

We recall tha t CM da ta consists of media units such as frames or audio 

samples and must be displayed as a sequence of such units. However there is not 

always a one to one correspondence between media units and storage blocks. The 

da ta can be stored in blocks containing more than one media unit, or alternatively 

a video frame can be stored in several disk blocks. Retrieval must be performed 

in blocks based on the organization of da ta blocks on disk and the disk scheduling 

performed by the system. At the same time it is essential for da ta to be available to 

the client based on the display schedule of the application. Hence retrieval of CM 

data is usually "bursty". This means that retrieval can be at an irregular rate. But 

since retrieval must keep ahead of consumption by the client, one or more blocks 

may be retrieved for a stream before they are ready to be used. For this reason, 

servers must place retrieved da ta into buffers which the clients access depending on 

the playback rate required by their applications. 

Servers usually process client requests in rounds. A round or cycle is a 

period of time during which the server processes the needs of each client exactly 

once. Enough da ta must retrieved for each client before each round in order to 

meet client's needs during that entire round. The number of clients that can be 
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served at any one time is limited by the availability of certain resources such as disk 

bandwidth and buffer space. So in order to admit as many clients as possible, the 

server must minimize the resources allocated to each client while still meeting its 

continuity and real time requirements. 

The disk bandwidth and buffer requirements for a client can be analyzed 

based on its playback rate, as well as, the average seek time, rotational latency, 

disk transfer times, and the amount of total buffer space available to the system. A 

number of disk scheduling algorithms have been proposed to improve the efficiency 

of the disk operations of the server. But these may involve tradeoffs in terms of 

buffer space requirement. The most traditional algorithm is the "round robin" 

algorithm which processes client requests in a fixed order during each time period. 

This can be inefficient in terms of disk usage because it may require larger disk 

head movements. An alternative is the scan scheduling algorithm. This involves 

starting the disk head at one end and moving the head in one direction, retrieving 

blocks belonging to the different clients as they are encountered. When the head 

reaches the other end, the direction is reversed and the same process is repeated. 

Since the amount of head movements and hence seek time is greatly reduced, this 

algorithm can significantly decrease the round length. However, the order in which 

each client's da ta will be encountered on the disk cannot be pre-determined. It is 

possible for a given client to be served at the beginning of one round and not again 

until the end of the next. Thus, this algorithm requires twice as many buffers as the 

round robin algorithm. On the other hand, round lengths for the scan algorithms 

are usually shorter, because of the decrease in seek time. Consequently, smaller 

buffers may be required for each stream, and the total amount of buffer space may 

not necessarily be twice the round robin amount [16]. 
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To exploit the potential benefits of both of the above disk scheduling algo

rithms, a new algorithm which is a compromise between the two has been devised. 

This is the grouped sweeping scheduling algorithm (GSS) [12]. For this scheme the 

clients in the system are partitioned into several groups. The groups are processed 

in round robin order but within each group the scan algorithm is performed. This 

scheme is equivalent to the scan algorithm if only one group is used and is equivalent 

to the round robin algorithm if each group contains only one client. One potential 

drawback to this scheme is tha t determining the composition of each group may 

require complex computations [34]. 

In addition to disk scheduling algorithms, a variety of da ta placement schemes 

have been proposed for improving the efficiency of disk operations. These can be 

used in conjunction with appropriate disk scheduling algorithms to decrease disk 

bandwidth requirements for CM files. The most common da ta placement solution 

is contiguous placement of da ta belonging to a file. This method eliminates intra-

file seeks. It works well with read-only systems, but is inefficient for read-write 

systems requiring a great deal of da ta copying for inserts and deletes [16]. When 

large amounts of da ta are transferred from contiguously placed data , disk rotation 

times and inter-track seeks also become significant. To deal with these problems, 

files can be distributed on large arrays of inexpensive disks [16]. Multiple copies 

of an entire file can be stored redundantly on several disks, or alternatively, pieces 

of a file can be distributed across a number of disks. This last approach uses two 

different techniques: da ta striping, where disk heads are synchronized, with con

secutive blocks being read in parallel; and data interleaving, where the disk heads 

are not synchronized, so tha t reads of consecutive blocks are not simultaneous but 

staggered. Since this thesis is mainly concerned with buffer management we do not 
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cover disk scheduling and da ta placement schemes in any detail. However, for the 

purpose of this thesis it is assumed that clients will be served in round robin order, 

and that da ta will be placed on disks contiguously or in clusters to minimize disk 

operations. 

Another variable tha t needs to be minimized is the s tar t up latency for a 

new stream requesting service. The safest way to ensure continuity and real time 

requirements would be to buffer the entire stream before starting the display to 

the client. But this would lead to very high star t up latencies for long streams 

such as movies. It also wastes buffer space resources. In a multi-user system, this 

means that fewer streams can be processed. A balance needs to be achieved between 

the continuity and real time needs of the stream, and the availability of resources 

such as disk bandwidth and memory buffers. This is why the method of processing 

clients in rounds has been generally adopted. It allows the server to share resources 

equitably among all the clients in the system. In the case where a new client requests 

admission to the system, enough da ta must be buffered for the new stream as well 

as for all existing clients for one round or cycle before the client can be admitted 

for service. Assuming the client to be otherwise admissible, no more buffer space 

than this is needed to s tar t processing. Thus s tar tup latency is minimized without 

compromising continuity requirements. 

To summarize, works concerned with continuous multimedia server design 

emphasize the following points: 

1. Efficient storage and correct placement of da ta on disk to ensure high speed 

retrieval and manipulation of the data. 

2. Compression of da ta to ensure economizing of resources. 
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3. Efficient disk scheduling techniques tha t can meet the needs of continuous 

multimedia data. 

4. Admission control algorithms that enable a CM server to serve as many clients 

as possible while meeting their continuity and real time requirements. 

In the next section we review some of the admission control policies tha t 

have been proposed for CM servers. 

2.3 Admission Control for CM Servers 

As has been discussed earlier, the role of an admission control policy is to enable the 

CM server to serve as many clients as possible while ensuring tha t their continuity 

and real time needs are met. This means tha t the server must allocate enough 

resources to each client to prevent service interruptions or a decrease in QoS. At the 

same time, the server must not allocate too many resources to any one client as this 

would mean tha t fewer clients could be accepted. In this section we discuss some of 

the admission control policies that have been proposed for CM servers. 

A number of authors point out tha t the most efficient way for a CM server 

to serve multiple users is for the server to proceed in cycles or rounds [41, 15]. For 

each client, enough multimedia data must be retrieved from disk and placed into 

memory buffers to meet its needs during that entire round. This involves calculating 

each client's disk bandwidth requirements for a given time period, based on the 

client streams play back rate, average disk seek times, rotational latency, and disk 

transfer rates. In addition, the total system requirements for memory buffers and 

disk bandwidth, and the appropriate cycle time must be calculated. 

When considering admission control, many studies assume the availability 
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of appropriate amounts of buffer space in the system. But the amount of buffer 

space available can have an effect on disk utilization. Thus, it is important to 

take both these factors into account when making admission control decisions. As 

Yang [53] points out, faster disk rates imply that smaller amounts of buffers are 

needed. Conversely, larger buffers, in conjunction with contiguous or clustered data , 

improve disk utilization, since fewer seeks are needed. 

Some of the earlier studies on admission control [15, 41] consider simple 

cases where all client streams have the same playback rates and the same size da ta 

blocks. Later studies consider servers processing more varied client needs. Here 

client streams can have different playback rates, and da ta blocks need not be of a 

uniform size. Rangan et al [42] propose a "quality proportional multi-subscriber 

servicing" (QPMS) scheme. In this scheme da ta read for each client during any 

given round is proportional to the client's playback rate. Gemmel et al [16]. point 

out tha t this appears to be the most efficient way to service multiple clients during 

rounds. However, Rangan et al's [42] approach is somewhat awkward when new 

clients are admitted into the system. They note that when a new client is admitted 

the cycle length may need to change and therefore enough da ta must be buffered 

for each existing client as well as the new client before the new client can s tar t 

being serviced. They make the appropriate changes by adding a single block to the 

requirements of each client, during each cycle, which leads to fairly long transition 

periods. 

Ng and Yang [31, 32] have an improved approach which considers both disk 

bandwidth and buffer resources when calculating client needs and cycle lengths. 

They agree with other researchers that in order to minimize buffer requirements, 

the disk reading time for each stream during a round must be proportional to its con-
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sumption (playback) rate. They are able to significantly reduce buffer requirements 

\ 
by allowing buffer sharing among streams. In this scheme, buffers whose da ta has 

been consumed are freed for use by other streams. They also propose a method for 

decreasing s tar tup latencies and improving on transition periods when new streams 

are admitted by pre-fetching appropriate amounts of da ta for streams waiting for 

admission. However, all the above studies are concerned with either uncompressed 

da ta or da ta compressed at a fixed rate. 

Recall tha t variable bit rate compression provides much greater efficiency. 

But VBR compressed data is more difficult to process since the amount of da ta for 

any given frame can vary widely. Two ways have been proposed for dealing with 

this problem. One is to store and transmit VBR compressed da ta in packets tha t 

add padding to equalize the size of da ta corresponding to a certain length of time. 

Since frame sizes can vary greatly, this method can waste a lot of resources. The 

other method for handling the variability in frame sizes is to store and retrieve the 

da ta in its VBR compressed form. 

Two approaches have been proposed for admission control schemes that 

handle VBR compressed streams: deterministic and statistical. Deterministic ap

proaches ensure that all continuity and real time requirements for the streams are 

fully met. This necessitates calculating resources based on worst case expectations. 

Statistical approaches provide the user with probability based QoS guaran

tees. Peaks in the da ta consumption rate of one stream can be balanced by troughs 

in those of other streams, hence, the system can afford to allocate much less than the 

maximum rate to each stream and more clients can be served simultaneously. Over

flows and da ta loss do occur but many users are willing to tolerate some degradation 

in quality, especially if it can be offset by a reduction in cost. Some statistical ap-
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proaches base their calculations on general information about statistics for the given 

media. Other approaches provide greater accuracy by using da ta rate histograms 

or frame or block size information for the entire stream. 

Deterministic admission control policies must guarantee that resource needs 

are fully met at all times. This means basing calculations on worst case assumptions. 

Disk bandwidth and buffer space must be allocated assuming the largest frame size, 

and the maximum consumption rate for resources. Pan et al. [34] have tried to 

optimize deterministic admission control in two ways. They developed a "time-scale 

dependent buffer inventory based dynamic scheduling scheme" (cr-BIDS). Each client 

has dedicated buffers allotted to it. Instead of retrieving a fixed amount for a given 

stream during each round, Pan at al. keep an inventory of the buffers allocated to 

the stream and only top up what has been consumed. This avoids two potential 

problems. The first is the loss of da ta due to buffer overflow. Second, in the absence 

of such a topping up policy, if the system is to keep up with da ta retrieved at the 

maximum consumption rate it would be necessary to constantly increase buffers 

allocated to a stream. The other contribution of these authors is the a t tempt to 

smooth out the maximum consumption rate (MCR) by using a larger time scale. 

They note tha t the MCR can be more than 10 times the average rate in MPEG, if 

1/30 sec (one frame length time interval) is considered. So using the MCR can be 

too conservative. But the MCR can be smoothed out considerably using a longer 

cycle length of, for example, 5 to 20 seconds. So this method requires computations 

of the MCRs for each stream over various time intervals and somewhat large buffers 

(150-600 frames). 

Like the above study, Biersack et al.'s approach [7, 8] also involves gathering 

detailed data about the stored streams. But their admission control algorithm is 
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statistical rather than deterministic. They compute da ta rate histograms for each 

stored stream at the time of storage. They are able to make precise estimates of the 

total resource needs of the system by performing histogram convolutions. They then 

estimate the probability of overflows when a new client requests admission to the 

system, by convolving the new client's histogram with the system load histogram to 

obtain the da ta rate histogram for the new system load. Biersack et al. note tha t this 

statistical approach works for medium sized servers since they have fairly accurate 

information about the behaviour of each client stream. Their experimental results 

show that this statistical approach can nearly double the number of clients admitted 

by the system when compared to deterministic approaches. But the actual amount 

of gain is greatest when the ratio of the largest da ta block to the mean bit rate is 

the highest. This is because when there are wide variations in the bit rate, more 

sharing of resources can occur. The system is able take advantage of resources not 

used by streams whose needs are low during a given round, in order to accommodate 

streams whose demands are higher. 

Another statistical approach is the dynamic QoS scheduling discussed in [48]. 

This study adopts an optimistic resource allocation strategy. The user specifies a 

minimum and maximum acceptable QoS level. The system uses average resource 

needs calculations for the admission control policy. When a new application re

quests admission, average figures are considered. However, this could lead to fre

quent overflows. The study tries to solve this problem by dynamic QoS scheduling. 

Applications can be given service within the QoS range specified. Clients with the 

most stringent requirements are given the highest priority. The server dynamically 

adjusts a client's QoS based on current load. This policy could lead to unpredictable 

shifts in quality or even possible discontinuities for clients. 
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Another statistical approach is tha t presented by Vin et al. [49]. This ap

proach models the disk bandwidth requirements for a continuous multimedia stream 

over a certain period of time as a random variable. The Central Limit Theorem of 

probability theory is then applied, so that the sum of disk bandwidth requirements 

for all streams in the system can be said to approximate a normal random vari

able. System load predictions can then be made using a normal distribution. This 

approach is an improvement in quality over the "optimistic" approach, which al

locates resources based on average requirements. It also needs much less record 

keeping than the MCR recording and da ta rate histogram methods. However, it 

has two drawbacks. First, since the Central Limit Theorem is applied to the entire 

system, it only gives accurate predictions when there are a large number of clients. 

Second, since it works at the granularity level of streams, it predicts the entire sys

tem load and therefore cannot provide user-selectable QoS guarantees. Our own 

approach, which works at the granularity level of frames, is an a t tempt to solve 

both these problems. Our model allows clients to specify individual non-overflow 

guarantee levels, and works well even when the system has only one or two streams. 

2.4 Summary: This Thesis in the Context of its Back

ground 

This chapter has presented background information necessary to the understanding 

of the material in this thesis. It has briefly reviewed works in the area of continuous 

multimedia, CM server design, and admission control for CM servers. As this thesis 

is concerned with CM compressed using the variable bit rate method, this chapter 

has also covered works dealing with admission control for VBR streams. In this 
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section we briefly review the important points covered in this chapter and discuss 

how they relate to the work of this thesis. 

Continuous multimedia has three major characteristics which affect the de

sign of CM servers. It has continuity and real time requirements. As well, CM 

servers must be able to synchronize the various strands of da ta comprising a stream 

and handle da ta in large quantities. The aim of a CM server is to service as many 

clients as possible, while maintaining their continuity and real time requirements, or 

providing an acceptable quality of service. This necessitates minimizing resources al

located to each client. Admission control policies are needed to decide if a new client 

can be admitted for service without violating the requirements of clients already in 

the system. 

Admission control is complicated when dealing with variably compressed 

data , because it is hard to make precise estimates of resource needs for VBR com

pressed streams. But the extra amount of overhead required for handling VBR is 

worthwhile, as the savings in resources is much greater than with fixed rate com

pression. 

Admission control with VBR da ta can be deterministic or statistical. De

terministic admission control involves making worst-case estimates of client needs, 

which can be very wasteful of server resources. By contrast, statistical admission 

control provides probability-based quality of service guarantees to clients. Several 

statistical admission control algorithms were reviewed. Some of these estimate re

source needs based on average consumption rate, which can lead to overflows and 

unpredictable degradation of quality to the user. Other approaches provide better 

QoS but involve a great deal of record keeping, such as, frame size information or 

da ta rate histograms for every stream. Vin et al.'s algorithm uses the Central Limit 
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Theorem, to model the total resource requirements for all the streams in a system 

as a normal random variable. Total resource needs are then estimated using the 

properties of a normal distribution. This algorithm works best with a large number 

of clients and can only provide system-wide QoS guarantees, rather than guarantees 

to individual clients. 

The algorithms in this thesis are an a t tempt to solve some of the problems 

presented by the above approaches. They provide better QoS than the average re

source allocation policy but still avoid the cumbersome task of recording of detailed 

data about each stream. Similar to Vin's approach, we use the Central Limit The

orem but individual M P E G streams are modeled as normally distributed random 

variables, so tha t it is possible to provide user-selectable QoS guarantees. In addi

tion, some of our algorithms work regardless of the number of clients in the system. 

In chapter 3, we discuss the Central Limit Theorem, and how this theorem and 

the characteristics of M P E G can be used to produce statistical models of M P E G 

streams. In chapter 4, this statistical model will be used in developing admission 

control policies which provide individual QoS guarantees to clients. 

29 



Chapter 3 

Statistical Modeling of MPEG 

Streams 

In the previous chapter we discussed admission control algorithms which a t tempt 

to deal with continuous multimedia da ta compressed with the variable bit rate 

method. M P E G is one of the most well known standards for variable bit rate 

compression and many studies consider its characteristics when presenting their 

statistical approaches. In the first section of this chapter we will give an overview of 

the characteristics of M P E G which assist in the statistical modeling of streams and 

the estimation of resource needs for clients. In the second section we give a general 

discussion on the Central Limit Theorem. Then we present a statistical model of 

M P E G streams which makes use of this theorem. 

3.1 MPEG Video Compression 

In this section, we will discuss those characteristics of the M P E G compression system 

which assist in modeling M P E G compressed streams. M P E G takes advantage of 
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certain characteristics of the human visual and auditory systems, and the properties 

of continuous media in order to improve compression efficiency. 

M P E G selectively compresses visual and audio data in greater or less detail, 

depending on what is most perceivable by human senses. The visual system is less 

sensitive to high frequencies, so high frequency da ta is compressed much more than 

the lower frequencies. Similarly, audio information not perceivable by the human 

ear, can be ignored or compressed much more coarsely. In this work we concentrate 

only on the video component of M P E G compression. 

The M P E G standard for video compression takes advantage of the fact tha t 

adjacent frames in a continuous video stream are often similar [20, 35]. The time 

interval between frames can be very small, for example, one thirtieth of a second 

or less. Usually the background in a frame will remain static. As the time interval 

is so small, persons and objects in the foreground are likely to move only slightly 

from one frame to the next. To take advantage of the similarity of adjacent frames, 

M P E G uses two types of compression. Some of the frames, called I frames, are 

"intra-coded". This means that reconstruction of I frames depends entirely on 

the information they keep. However, most M P E G frames are "delta" compressed. 

Their reconstruction depends not only on the information they keep, but also on 

the information kept by some previous and/or subsequent frames. Simply put, 

delta compressed frames primarily encode changes between frames and depend upon 

nearby frames for information that has not changed. This avoids the repetition of 

redundant information and greatly increases compression efficiency. 

M P E G provides two kinds of "delta" compressed frames. First, there are 

the predictive P frames, which are coded with reference to a previous I or P frame. 

Second, there are the bi-directional B frames, which are coded with reference to a 
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previous and a subsequent I or P frame. 

The basic unit of M P E G video is the single picture or frame. M P E G com

presses each frame individually. There are several layers of coding. Each frame 

consists of slices (horizontal strips in a frame). Slices consist of macro blocks, which 

in turn consist of four 8*8 blocks of luminance pixels and two 8*8 blocks of chromi

nance pixels. All variable bit rate coding is done at the macro block level. The P 

and B frames have motion compensation applied to them; each frame is processed 

block by block. Each block is first transformed using Discrete Cosine Transforma

tion (DCT) which yields a matrix. Coefficients from this matrix are then quantized 

yielding sequences of zeros and ones. Then all frames are further compressed using 

Huffman coding for the sequences of zeros and ones. If a code exists for a given 

pattern this code is transmitted yielding variable rate compression. If there is no 

code for a given pattern it is transmitted at a fixed rate. 

As is clear from the above description of the process, all M P E G frames are 

variably compressed. The P frames use some intra-coding and also some inter-frame 

coding, while the B frames only use inter-frame coding. This enables the B frames 

to convey a lot more information with smaller amounts of data . 

The main advantage of a B frame is that it is the most highly compressed and 

the smallest in size of the three types of M P E G frames. By contrast, an I frame is the 

least compressed and largest in size of the 3 types. Indeed, the B frame is the main 

reason why an M P E G compressed stream typically requires less space than the same 

stream compressed by J P E G or other schemes that give constant compression rates. 

However, a major disadvantage of a B frame is that it is incapable of supporting 

random access. This is because a B frame only makes sense in the context of the 

I or P frame used to encode it. The loss of an I frame would make all B frames 
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referencing it unusable. So to view a particular B frame the appropriate I and P 

frames also need to be retrieved. This limits flexibility in access when performing 

VCR-like operations. 

In order to strike a healthy balance between compression efficiency and flexi

bility in access, the video part of an M P E G stream usually contains limited numbers 

of B frames in between I and P frames. The needs of the application determine 

the proportions of I, P and B frames, though there are usually many more delta-

compressed frames than intra-coded frames. In a majority of the M P E G streams 

we encountered, a high percentage (70-80%) of compressed da ta consist of delta-

compressed B and P frames. MPEG streams generally consist of frame sequences 

of the form: IBBBPBBBIBBBPBBBI. . . or IBBPBBPBBPBBI. . . The exact order 

and number of B frames in between I and P frames varies from application to ap

plication, and is determined at compression time. In general, compression efficiency 

is increased when there is a higher number of B frames compared to I or P frames. 

Furthermore, according to [20], the higher the number of B frames compared to I 

and P frames, the smaller is the correlation of B frames with their referenced I and 

P frames. This factor will assist in the statistical modeling of M P E G streams which 

will be discussed in section 3.3.2. 

To summarize, in this section we have described the M P E G method for video 

compression. M P E G takes advantage of the similarity between adjacent frames in 

continuous video to increase compression efficiency. M P E G streams have intra-coded 

I frames and delta coded B and P frames, which primarily encode the differences 

between nearby frames. All three types of M P E G frames use variable rate com

pression. It is therefore possible to model the three types of frames using the same 

statistical principles. Given the importance of the role played by B frames, and the 
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fact tha t P and I frames can be modeled in a similar way, we simplify the discussion 

in this work by focusing on B frames only. In the next section we will discuss the 

Central Limit Theorem which can be used to provide a statistical model for M P E G 

streams. 

3.2 The Central Limit Theorem 

The term "Central Limit Theorem" (CLT) refers to a set of theorems in probability 

theory, which are concerned with the asymptotic behaviour of a sum of random vari

ables. Intuitively, the theorem states that , provided certain conditions are satisfied, 

as the number of random variables gets sufficiently large, the probability distribu

tion of their sum approaches a normal distribution, regardless of the probability 

distributions of the individual random variables. There are many versions of the 

Central Limit Theorem, as the topic has been the subject of active research in prob

ability theory for many years. In the following, we give an overview of the standard 

versions of the CLT. For more details, see [6, 9]. 

Let a and a be real numbers with a > 0. Let N(a,a2) be the probability 

distribution with density: —L==e-(
x-a)'2li2"2). For n — 1,2,.., let <&n be a finite 

(TV 27T 

set of random variables on some probability space and let Sn = 52xe$nX- For 

each positive number r , let xT be defined as: xT — x, if \x\ < r , but xT = 0 

otherwise. Then let 5„ iT be defined as ]T]xe$
 XT- Further assume tha t for each n, 

$ „ is an independent set of random variables. Assume also tha t for all e > 0 and 

some r > 0, the following conditions hold: (i) lirrin^.^ J2xe$n P(\x\ > e) = 0; (ii) 

/i?nri_>c<,JB(5„iT) = a; and (iii) limn^00V{SntT) = a2. Then N(a,a2) is the weak 

limit of the probability distributions of the Sn. 
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We can paraphrase the above formalization of the Central Limit Theorem 

as follows. Let S be the sum of many small independent random variables. If the 

first and second moments of S and the Gaussian distribution N(a,a2) coincide, 

then S is approximated by N(a, a2) - regardless of what the original distribution is. 

Some of the above conditions are difficult to verify. However, there are a number 

of alternative versions of the CLT which allow some of the necessary conditions 

to be replaced by equivalent conditions. The most well-known alternatives are the 

Lindeberg condition and the Lyapounov condition. 

1. The Lindeberg Condition: 

In the theorem above, we allow the case r = +00 under the assumption that 

x 6 <frn are square integrable. Assume also that E(x) = 0. Then the above 

condition (i) of the CLT can be replaced by: 

limn-too Yl E((x~ xi)2) = ° 

for all e > 0. 

2. The Lyapounov Condition: 

The Lindeberg condition is implied by the following condition: 

lim^oo J2 E(\x\2+S) = 0 

for some 8 > 0. 

The main point to note here is that independence of random variables alone 

is not sufficient for the CLT to hold, and the satisfaction of other conditions, such 

as the Lindeberg condition or the Lyapounov condition, is required. However, these 

conditions are often difficult to verify for any given distribution. Fortunately, there 
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is the following Lindeberg-Levy theorem, which defines a general class of random 

variables that satisfy the Lindeberg condition and the Lyapounov condition. 

T h e o r e m 1 (Lindeberg-Levy Central Limit T h e o r e m [6, 9]) L e t X i , . . . , X ^ 

be independent variables having the same distribution with mean fi and finite posi

tive variance a2. Then for sufficiently large n, (X\ + . . . + Xn — nn)/{ay/n) follows 

a standard normal distribution iV(0,1). 

The above theorem, which is one of the most well-known and widely applied versions 

of the CLT, states tha t the sum of n identically distributed independent random 

variables is approximately normally distributed, as long as n is sufficiently large. 

For many applications, it has been found empirically tha t the theorem gives a good 

approximation even with as few as 10 to 25 random variables [22]. Finally, it is im

portant to note that for the CLT to hold, the actual distribution is immaterial. The 

above theorem only requires the mean and the variance of the distribution. Con

sequently, the theorem is extremely useful in providing approximations to certain 

sampling distributions, particularly when the distributions are unknown or diffi

cult to compute [22]. In the next section we discuss how an M P E G stream can be 

modeled using the Central Limit Theorem. 

3.3 Statistical Model for Multimedia Streams Using the 

Central Limit Theorem 

In the previous section we gave an overview of the CLT, which can provide ap

proximations to the distribution of random variables. The Theorem states that the 

sum of n random variables is approximately normally distributed, provided tha t 

n is sufficiently large and that the random variables satisfy certain conditions. In 
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this section, we first show how Vin et al. [49] use the Central Limit Theorem to 

approximate the disk bandwidth requirements for a continuous multimedia server. 

We point out that this model provides an approximation at the granularity level of 

streams. Consequently, this method can only provide non-overflow guarantees at 

the level of the entire system. In the following subsection we show how the CLT 

and the properties of M P E G streams can be used to provide an approximation at 

the granularity of frames. In the Chapter 4, we show that this model can be used to 

provide non-overflow guarantees to individual users rather than to the entire system. 

3.3.1 Vin's Statist ical Model ing of a C M S y s t e m 

In this section we review the statistical model of a continuous multimedia system 

proposed by Vin et al. In [49], Vin et al. use a random variable B{ to represent 

the total disk bandwidth required by Stream St{ over a certain period of time. 

Then by arguing that B\,.. .,Bn are independent, they apply the CLT to model 

Bi + . . . + Bn as a normally distributed variable. This enables them to give a good 

approximation for the behavior of the system when there are a large number of 

streams. The total disk bandwidth requirements for this system can be calculated 

using the mean and standard deviation for the normal random variable B\-\-.. .-\-Bn 

and the non-overflow guarantee level specified for the system. 

However, a problem with this approach is that , as discussed in section 3.2, 

independence of random variables is not a sufficient condition for the CLT to hold. 

Apart from independence, the random variables need to satisfy one of the following: 

the Lindeberg condition, the Lyapounov condition, or the condition that the random 

variables are identically distributed. Since the framework of Vin et al. allows streams 

with different statistical characteristics to be served simultaneously, the variables 
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B\,..., Bn need not be identically distributed. This being the case, to approximate 

Bx + ... + B n as a normally distributed variable, the variables must satisfy either 

the Lindeberg or the Lyapounov conditions. However, this point is not discussed at 

all in [49]. 

Two other disadvantages of this approach should be mentioned briefly: As 

discussed earlier, because Vin et al. use random variables at the granularity level 

of streams, the non-overflow guarantee thus obtained is on a per system basis. This 

is not refined enough to support the approach of allowing an individual user to 

select a non-overflow guarantee on a per stream basis. In addition, because the CLT 

is applied at the level of streams, this method works best when there are a large 

number of streams in the system. In Section 3.3.2 we discuss a more refined model of 

M P E G streams which enables us to provide user selectable non-overflow guarantees. 

Since, for this model, the CLT is applied at the level of frames, a single stream's 

resource requirements can be represented as a normal random variable. Hence, the 

model works when there are only a few, or even a single stream in the system. 

3.3.2 Statist ical Model for M P E G Streams Proposed by this Thesis 

In the previous section we discussed Vin et al.'s Statistical Model for a continu

ous multimedia system which enables good approximations for resource needs on a 

per system basis. Since this model is at the granularity level of streams, the ap

proximations of resource requirements are only reasonably accurate when a large 

number of streams are involved. In this section we present a more refined model 

for M P E G streams, which works at the granularity level of frames, and makes it 

possible to provide good approximations of resource requirements at the individual 

stream level. The first step towards supporting the latter kind of guarantee is to 
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use a random variable Sij to denote the size of the j ' - th compressed B frame of 

Stream St;. * Then our hope is to apply the Central Limit Theorem to approxi

mate B{ — Sij + . . . + Sij+k a s a normally distributed variable. In the following, we 

examine whether it is valid to do so. 

First, our random variables S{j,..., Si,j+/t are identically distributed. This is 

the case because these random variables correspond to B frames of the same stream, 

but not of different streams. One may ask what actual distribution the random 

variables follow. [35] presents empirical evidence, both positive and negative, of a 

gamma distribution. But the results are not conclusive. However, as discussed in 

Section 3.2, for the CLT to hold, the actual distribution does not matter . So long as 

the random variables follow the same distribution, all tha t is needed are the mean 

and the variance of the distribution. Both can be computed easily at the time the 

stream is compressed. 

Second, as stated in Theorem 1, the CLT requires that the random variables 

be independent. However, recall from Section 3.1 that a B frame is obtained with 

reference to a previous and a subsequent I or P frame. Thus, two adjacent B frames 

may be correlated directly in their contents and indirectly in their sizes. In other 

words, Sij and st',j+i cannot be assumed independent. Fortunately, there are some 

versions of the CLT which allows the independence requirement to be relaxed. For 

the purpose of this thesis it suffices to state here tha t the Central Limit Theorem 

still holds if the random variables far apart from each other are nearly independent. 

Refer to [6, 9] for formal details. In other words, even if s , - j , . . . , st',j+A; are not 

'Strictly speaking, a similar approach can be applied to I and P frames as well. But as discussed 
in Section 3.1, the number of B frames typically far exceeds the numbers of I and P frames. In 
addition, the proportion of data stored in delta-coded B and P frames is usually high (70-80%), 
and all three types of frames can be approached in a similar fashion. So, to simplify our discussion, 
here we deal with B frames only. 
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Average Correlation of Frame Sizes vs Intervals Between Frames 
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Figure 3.1: Average Degree of Correlation with Different Values of k 

entirely independent, it is sufficient to have the degree of dependence between s,j 

and Sij+k decrease as k increases. 

To verify the above condition, we performed experiments by acquiring from 

a variety of sources (e.g., Internet) 30 MPEG streams. Figure 3.1 shows the average 

degree of correlation between Sij and s,-j+k as k increases. (This is the average over 

all B frames in several randomly picked streams.) Indeed, for adjacent B frames 

(i.e., k — 1), the degree of correlation is quite high, i.e., exceeding 0.7. But as k 
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increases, the degree decreases. The rate of decrease varies from stream to stream. 

In Figure 3.1, when k = 10, the degree of correlation drops to around 0.4, which is 

an acceptable level of "near independence". Throughout the rest of this paper, we 

use ko to denote the minimum value of k for the correlation to drop below a certain 

threshold. As will be shown in Section 7.2.1, our experimental results show tha t 

ko = 10 can already give very good behaviour for buffer allocation. 

To summarize, in this section we presented a statistical model for M P E G 

streams. We applied a special form of the Central Limit Theorem tha t relaxes the 

independence assumption imposed on the random variables. We have shown that , 

B{ = Sij + .. .-j-Sij+ko c a n be approximated as a normally distributed variable. Since 

the sum of normal variables is a normal variable [6, 9], B\ + . . . + Bn is normally 

distributed—even when n = 2. This strictly generalizes the model of Vin et al., for 

in their case, n needs to be sufficiently large for the Central Limit Theorem to be in 

effect. Note that having normally distributed random variables also enables us to 

sum J3;'s corresponding to different types of frames. In the next chapter we use the 

model we just developed in calculating resource needs for individual streams. We 

also develop an admission control algorithm that makes use of the statistical model 

to provide for user-selectable non-overflow guarantee levels on a per-stream basis. 
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Chapter 4 

Providing Individual 

Non-overflow Guarantees: 

Algorithm CLT(E) 

In the previous chapter, we presented a statistical model for MPEG streams, using a 

special form of the Central Limit Theorem that relaxes the independence assumption 

imposed on the random variables. In this chapter, we first review the issues that are 

important in developing admission control algorithms for continuous multimedia 

servers. We then present the Algorithm CLT(E) that uses this statistical model 

to provide for individual non-overflow guarantees. In Chapter 7, we will present 

experimental results evaluating the effectiveness of CLT(E), particularly on the issue 

of whether or not it would be too expensive to provide individual guarantees. 
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4.1 Issues in Developing Admission Control Algorithms 

In this section, we review the questions that must be addressed when developing 

admission control algorithms for servers tha t serve multiple clients requesting con

tinuous multimedia. The servers are assumed to have a fixed amount of resources: 

CPU, disk bandwidth, memory buffer space. In general, the purpose of an admis

sion control algorithm is to determine, given tha t there are already n active streams 

in the system, whether or not there are enough resources to admit the (n + l )s t 

stream. For systems that support only streams with constant compression rates, 

the typical goal of an admission control algorithm is to maximize throughput, while 

guaranteeing that the continuity requirements of clients are fully satisfied. The 

latter is rather easy to do for streams with constant compression rates. See, for 

example, [41, 31, 32]. The situation is far more complicated for M P E G streams, 

which use variable bit rate compression. Since the exact resource needs for a VBR 

compressed stream cannot be predicted, the system must perform some estimation. 

There are issues which should be considered when deciding what approach to adopt 

when making such estimations. On the one hand, the allocation of resources based 

on the minimum compression rate (maximum frame size) will lead to the waste of re

sources. Keeping in mind the goal of maximizing throughput, this is not acceptable 

to the system. On the other hand, allocation based on the average compression rate 

may lead to frequent da ta overflows, possible discontinuities and severe degradation 

in quality. This is not acceptable to the user. And if the system were to keep track 

of the exact size of each frame of each stream, the overhead involved in admission 

can be substantial, again not acceptable to the system. 

We recall from Chapter 2 that admission control algorithms dealing with 
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VBR-compressed da ta can have either deterministic or statistical approaches. De

terministic algorithms guarantee that all resource needs will be fully met. They 

allocate resources based on a worst case estimate of resource needs, hence using 

maximum frame sizes in their calculations. Statistical algorithms, on the other 

hand rely on the fact that peaks and troughs in the da ta consumption rate can 

often balance each other. They provide a probability-based quality of service guar

antee. One way of expressing such a statistical QoS guarantee is exemplified by the 

non-overflow guarantee problem introduced in Chapter 1. The system calculates a 

"minimized " amount of resources required to guarantee that the stream does not 

overflow its allocated resources p% of the time. This non-overflow guarantee need 

not be 100%. 

Given variable compression rates within one stream, the question is how much 

guarantee on the continuity requirements is desirable or practicable. With regard to 

the question of how much non-overflow guarantee is desirable, the approach of this 

thesis is to let the user, rather than the admission control algorithm, decide what 

an acceptable level to the user is. The job of the admission control algorithm is 

then to deliver the specified level of guarantee or quality, while trying to maximize 

throughput. 

Below we will present Algorithm CLT(E), which supports the above notion 

of user-selectable non-overflow guarantee by the allocation of exclusive buffers to 

each user. 
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4.2 Algorithm CLT(E) 

In this section we present Algorithm CLT(E), which provides user-selectable non-

overflow guarantees to clients using the CLT-based statistical model of M P E G 

streams developed in the last chapter. This algorithm allocates exclusive buffers 

to each client admitted to the system. 

The approach taken by Algorithm CLT(E) is to allow the non-overflow guar

antee to be made at the finer granularity level of streams rather than at the coarser 

granularity of the entire system. Algorithm CLT(E) does so by first using the sta

tistical model developed in the previous chapter to compute the amount of buffer 

space Bp tha t gives the p% guarantee requested by the user. If there is more than 

Bp buffer space available, CLT(E) activates the stream and enforces the individual 

guarantee by ensuring that all of the B!r buffer space can only be used exclusively by 

this particular stream. Hereafter, B&
v is referred to as the "exclusive buffers" for the 

stream. It is important to note here that the p% guarantee cannot be insured if an 

algorithm such as Vin et al's is used, where total system requirements are calculated 

using the properties of a normal distribution, and buffers are shared by all streams. 

As an example, consider the case where the joint system requirements for providing 

p% guarantee to all clients is 16 buffers. If the system has 5 streams where providing 

the p% guarantee to each stream requires 4 buffers, the system cannot enforce the 

p% to every stream in situations where all streams require their 4 buffers. Hence, 

the additional amount of resources needed to provide exclusive buffers is essential if 

each client is to receive the guaranteed QoS. 

The details of Algorithm CLT(E) are as follows (where "CLT" stands for the 

Central Limit Theorem and "E" stands for exclusive). 
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A l g o r i t h m CLT(E) 

Let St be the stream considered for admission. Let p% be the non-overflow guarantee 

level requested for St. Let fi and a be the mean and the standard deviation of the 

size of the frames of St. 

1. From the standard normal probability table [22], find zp such that prob(Z < 

zp) = p%, where Z denotes a standard normal random variable. 

2. Compute the amount of the exclusive buffer space required: 

Bs
p = k0* fi + zp* ay/k0', (4.1) 

where as introduced in Section 3.3.2, UQ denotes the number of adjacent frames 

needed for the Central Limit Theorem to be applicable. 

3. If the remaining buffer space of the system is less than Bp, the stream St must 

wait. Otherwise, St is admitted with an allocation of Be buffer space reserved 

solely for the use of St. 

The following explains the steps of Algorithm CLT(E). As discussed in Sec

tion 3.3.2, the total size of ko successive frames, s^j+i + . . . + Sij+fc0, can be 

approximated as a normally distributed random variable. Then by Theorem 1, 

(si,j+i + • • . + Sij+fc0 —ko*fi) /(ay/ko) follows a standard normal distribution. Thus, 

to find Bp such that prob((siJ+i + . . . + Sij+fa) < B^) = p%, it is sufficient to 

consider and manipulate prob((sij+i + . . . + Si,j+fc0 — ko * fi) /(ay/ko) < zv) = p%. 

Re-arranging the terms in the latter probability statement gives the definition of Bp 

in Step 2 of the above algorithm. 

Algorithm CLT(E) (as well as our other admission control algorithms to 

be introduced later) adopts the simple policy of considering admissions on a FIFO 
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fashion. While this policy may not be optimal, it does ensure fairness in the simplest 

way. Furthermore, once a stream is determined to be admissible, Algorithm CLT(E) 

reserves the appropriate amount of buffer space for the stream. This amount of 

buffer space is released only when the stream exits the system. 

As discussed earlier, Algorithm CLT(E) considers B frames only. Because a 

typical M P E G stream consists of mainly B frames, this is a reasonable simplifica

tion for easier presentation. For the sake of brevity, the more complete version of 

Algorithm CLT(E), which uses a similar approach to deal with I and P frames, will 

not be covered in this thesis. But it should be noted here tha t the exclusive buffers 

for a stream in fact consist of the sum of the B'L allocations, calculated separately 

for its I, P, and B frames. Also since the three types of frames are usually in a fixed 

proportion to one another within a stream, the ko values for B and P frames may 

need to be revised upwards to maintain the correct ratio of I to P to B frames. 

Furthermore, as presented above, Algorithm CLT(E) regards buffer space as 

the only resource. In reality, there are other resources, such as disk bandwidth, 

that should also be considered during admission control. Again, the consideration 

of these resources is omitted for brevity. But it should be clear that the allocation 

of disk bandwidth for M P E G streams can be handled in exactly the same way as 

the allocation of buffer space detailed in the above algorithm. 

Notice tha t as far as buffer allocation is concerned, the focus of this thesis 

is on deciding how much buffer space is required to support a certain level of non-

overflow guarantee. In situations where the allocated buffer space is less than the 

actual space required by a certain group of frames, it is necessary to decide which 

frames or which parts of the frames can be dropped to fit into the allocated buffer 

space. We do not address this issue here in this thesis; we only refer the readers 
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to [50] tha t proposes an interesting method to choose parts of the frames to be 

discarded. In Section 8.2.1, we will discuss related implementation issues. 

It is important to note tha t Algorithm CLT(E) allows a heterogeneous mix of 

streams - that is, with different values of fi, a, k0 and p - to be active simultaneously 

in the system. More details will be given Chapter 6, but we note here that this is 

due to the fact that the amount of exclusive buffer space is calculated based on 

random variables representing the sizes of frames in the same stream. Since frames 

of a given type in the same stream have identical compression characteristics, the 

condition that the random variables must be identically distributed is satisfied. The 

Central Limit Theorem is applied on an individual stream basis and separately to 

each type of frame. Therefore streams with different characteristics and guarantee 

levels do not affect the application of the CLT(E) Algorithm. 

In this section we have presented Algorithm CLT(E) which allocates exclusive 

buffers to client streams consisting of M P E G encoded data . CLT(E) estimates 

resource needs of streams based on the user-selected non-overflow guarantee level. 

It uses the Central Limit Theorem and the statistical model of MPEG streams 

developed in the previous chapter when performing its calculations. If there are 

enough resources in the system to cover the calculated needs of a new stream, the 

client will be admitted. Otherwise, the client must wait until enough resources 

are freed up. Our experimental results show that CLT(E) is able to provide these 

individual non-overflow guarantees at a reasonable cost. In the next chapter we 

present algorithms which can enhance user satisfaction by providing system-wide 

non-overflow guarantees in addition to the exclusive buffers allocated by CLT(E). 
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Chapter 5 

Providing Additional 

System-wide Non-overflow 

Guarantees: Algorithms 

CLT(Sn) and CLT(Sm) 

In the previous chapter, we introduced Algorithm CLT(E), a statistical admission 

control policy that provides user-selectable non-overflow guarantees to individual 

streams via the allocation of exclusive buffers. Under this algorithm, the quality of 

service received by the user is exactly what the user asks for. That is to say, if the p% 

individual guarantee turns out to be unsatisfactory, the user can only blame his/her 

own choice. In this chapter, we study how the system can enhance user satisfaction 

and the quality of service by providing additional non-overflow guarantees. The key 

question that needs to be answered is whether or not such additional guarantee can 

be provided at a low cost, while still being effective in reducing overflows. 
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The approach we take is to provide a system-wide non-overflow guarantee 

level q% (e.g., 99%), on top of the exclusive guarantee provided to each individual 

stream by Algorithm CLT(E). This is achieved by providing shared buffers, which 

can be used by any stream tha t overflows its exclusive buffers. At admission control 

time, the system computes two buffer space requirements B!r and B* for the stream 

seeking admission. The first quantity, B^, is the amount of exclusive buffer space 

which would provide a p% non-overflow guarantee, as requested by the user. This 

is given by Equation (4.1). The second buffer space requirement, Bs
q, is the amount 

of buffer space that must be added to the shared pool to maintain the system-wide 

non-overflow guarantee. (Here "s" stands for "shared".) The sum of these two 

requirements is the total amount of buffer space that needs to be available in order 

for this stream to be admitted, ff it does not exceed remaining available buffer 

space, the stream will be admitted. Otherwise, the stream must wait. 

fn the remainder of this chapter, we present two different ways to compute 

the amount of additional space to be added to the shared buffer pool. The two 

different ways give rise to two different admission control algorithms called CLT(Sn) 

and CLT(Sm). In Chapter 7, we will present experimental results evaluating the 

effectiveness of these two algorithms. 

An important fact to note is that in this chapter, we only consider the situa

tion where every stream in the system has identical compression characteristics and 

requires the same individual non-overflow guarantee level. We refer to this as the 

homogeneous case. In Chapter 6, we will discuss whether and how these two algo

rithms can be generalized to deal with situations where streams can have different 

compression characteristics and/or request different levels of individual guarantee. 

This will be referred to as the heterogeneous case. 
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5.1 Algorithm CLT(Sn) 

In this section we describe one of the two homogeneous case algorithms which provide 

a pool of buffers shared by all streams in the system, in addition to the exclusive 

buffers provided by Algorithm CLT(E). As noted above, when a stream is considered 

for admission, two quantities are calculated for estimating its resource needs. The 

first is the quantity Bp, which gives the amount of exclusive buffers provided by 

CLT(E). The second is the amount of buffers to be added to the shared buffer pool 

provided for the system. 

For the purpose of computing the amount of additional space to be added to 

the shared buffer pool, we define an overflow random variable Ov{ for each stream 

SU as follows: 

0 if Bi < B% 
Ovi = I " v (5.1) 

B{ — Bp otherwise 

where, as defined and studied in Section 3.3.2, J3; is a normally distributed random 

variable that represents the buffer space required by stream St{ for several adjacent 

frames, and B^ is the amount of exclusive buffers for the stream. The meaning 

of Equation (5.1) is as follows. When the amount B{ of buffer space required is 

less than the amount of exclusive buffers, there is no overflow caused by the stream. 

However, when Bi exceeds the exclusive buffer space, the extra amount is the amount 

of overflow buffer space required. 

Ovi has an interesting probability density function. For the value 0, the 

probability density is p%. This is because, by the definition of Equation (4.1), there 

is p% chance that Bi < Bp. Then for all positive values of Bi — Be, the density 

function is exactly the same as the tail of the normal distribution to the right of zp. 
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Though not standard, this density function is still a valid one as it integrates to 1. 

As motivated above, the idea of providing an additional system-wide non-

overflow guarantee level, say q% (e.g,, 99%), is achieved through the use of overflow 

buffers shared by all streams. If there are n active streams in the system, the 

amount of shared overflow space required is given by Ov\ + . . . + Ovn. In order 

to provide a q% overall guarantee, it is imperative tha t the distribution of Ov\ + 

... + Ov n be known. It is obvious that all the Ovi variables are independent of 

each other. In addition, given the fact that in this chapter, we are dealing with 

streams with identical characteristics and non-overflow guarantee requirements, all 

the Ovi variables are identically distributed. Thus, the version of the Central Limit 

Theorem described by Theorem 1 is again applicable. In other words, for sufficiently 

large n, (Ov\ + . . . + Ovn — n^ov)/{aovy/n) follows a standard normal distribution, 

where fiov and o2
0v are the mean and variance of Ov{. 

We can now define the quantity Bs
q of buffer space needed to add to the 

shared buffer pool if the number of active streams is to increase from n to n + 1. 

For n streams, the amount of shared buffer space to give an overall non-overflow 

guarantee level of q% is given by: 

Bq,n = nf-lov + Zq* ° ovyfn 

Similarly, for n + 1 streams, the corresponding amount is: 

Bq,n+1 - (n + 1)MO-« + Zq * OovyJU + 1 

Thus, the additional amount of shared buffer space required to admit one more 

stream into the system is: 

Bq = Bq,n+i ~ Bq,n = Vov + zq * am[y/n + l - y/n) (5.2) 
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Below we show the steps of Algorithm CLT(Sn). This algorithm performs 

admission control and buffer allocation with both exclusive and shared overflow 

buffers as described above. The letter "S" stands for "shared", and the letter "n" 

represents the fact that all n active streams are involved in the computation of the 

amount of shared overflow buffers. 

A l g o r i t h m CLT(Sn) 

Let St be the stream considered for admission. Let p% be the individual non-

overflow guarantee level requested for St. Let q% be the system-wide non-overflow 

guarantee level. 

1. Compute the amount of the exclusive buffer space B^ as defined in Equation 

(4.1). 

2. Compute the amount of additional shared overflow buffer space B^ as defined 

in Equation (5.2). 

3. If the remaining buffer space of the system is less than B^ + B^, the stream 

St must wait. Otherwise, St is admitted with an allocation of B^ buffer space 

reserved solely for the use of St, and with B^ buffer space added to the shared 

overflow buffer pool. 

Algorithm CLT(Sn), as defined above, requires that a stream be admitted only 

if there are enough exclusive and shared buffers available. Strictly speaking, the 

additional system-wide guarantee may be implemented as a bonus, rather than 

a necessity. In other words, a variant of CLT(Sn) may admit a stream even if 

there is not enough shared buffers. The reason why CLT(Sn) is defined in the way 

shown above is that this allows for a fair comparison between CLT(Sn) and other 

algorithms. See Chapter 7 for details. 
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5.2 Algorithm CLT(Sm) 

In this section we discuss Algorithm CLT(Sm). Like Algorithm CLT(Sn), this algo

rithm allocates exclusive buffers to each stream and additional buffers that can be 

shared among streams, as discussed above. The difference between CLT(Sm) and 

CLT(Sn) is that they use different methods for calculating the amount of shared 

buffers. 

The CLT(Sm) way to compute the amount of additional space to be added 

to the shared buffer pool aims to estimate more precisely the number of streams, out 

of the n active streams, that actually overflow their exclusive buffers. (Hereafter, 

we use m to denote this number.) More specifically, let pr(i) denote the probability 

that exactly i of n streams overflow, for all 0 < i < n. Then to provide a q% 

system-wide non-overflow guarantee level, m can be defined as the smallest positive 

integer that satisfies the constraint: 

p r ( 0 ) + p r ( l ) + . . . + pr (m) > q% (5.3) 

To compute m as defined above, it is necessary to observe that pr ( i ) ' s follow a 

binomial distribution, with 1 — p% being the probability that each stream overflows. 

Thus, pr(i) is given by: 

pr(i) = (1 - p%y {p%)n~l (5.4) 

For large values of n, computing the value of m through Equations (5.3) and (5.4) 

could be computationally intensive. But for a given value of p%, we can pre-compute 

the m value for every value of n, say from 1 to some maximum number depending 

on the capability of the system. In this way, no computation of m is needed by the 

admission controller. 
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Like the case analyzed in Section 5.1, the next step is to set up overflow 

variables. But there are two key differences between the current and previous cases. 

First, instead of n overflow variables, here there are only m such variables, as the 

analysis given in the previous paragraph dictates that there are at most m s treams 

tha t actually overflow. More importantly, unlike the overflow variable Ovi defined 

in Equation (5.1), here the overflow variable Ov[ (1 < i < m) need not deal with the 

situation when there is no overflow (i.e., Bi < B^). In other words, Ov\ is simply 

defined as: 

Ov'i = Bi-Be
p (5.5) 

As discussed in Section 5.1, the probability density function of Ov[ corresponds to 

the tail of the normal distribution to the right of zp. But caution must be taken 

because, as it stands, this density function is not valid, for it only integrates to 

1 — p%, instead of 1. Thus, it is necessary to normalize the density function with 

1 - p%. 

Like the situation for Ov\ + . . . + Ovn, the sum Ov[ + . . . + Ov'm can also 

be approximated by a normal distribution, since the Central Limit Theorem applies 

in both cases. As in the derivation of Equation (5.2), when additional buffer space 

needs to be added to the shared buffer pool, the additional amount is given by: 

Bq = Mot/ + zq * <W Wm + 1 - y/rn) (5.6) 

where \iovi and o2
0V, denote the mean and variance of the variable Ov' defined in 

Equation (5.5). 

We are now ready to present Algorithm CLT(Sm), another homogeneous 

case algorithm that performs admission control and buffer allocation with both 
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exclusive and shared overflow buffers. Unlike Algorithm CLT(Sn) introduced before, 

Algorithm CLT(Sm) bases its computation on only the in streams tha t may actually 

overflow. 

A l g o r i t h m C L T ( S m ) 

Let St be the stream considered for admission. Let n be the number of active 

streams in the system, and m be the number corresponding to n as defined by 

Equation (5.3). Let p% be the individual non-overflow guarantee level requested for 

St. Let q% be the system-wide non-overflow guarantee level. 

1. Compute the amount of the exclusive buffer space Be
v as defined in Equation 

(4.1). 

2. Compute the value m! based on Equations (5.3) and (5.4), with n in Equation 

(5.4) replaced by n + 1. 

3. If m' is the same as m, no additional shared buffer space is needed, i.e., Bq — 0. 

Otherwise, compute Bs
q as given in Equation (5.6). 

4. If the remaining buffer space of the system is less than Be
v + Bs

q , the stream 

St must wait. Otherwise, St is admitted with an allocation of B^ buffer space 

reserved solely for the use of St, and with Bs
q (if greater than zero) buffer 

space added to the shared overflow buffer pool. 

As discussed earlier, Step 2 can be optimized by pre-computing for all values of 

n, the corresponding m values. Step 2, then, becomes a simple table lookup. As 

opposed to Algorithm CLT(Sn), the current algorithm enjoys the advantage tha t 

as indicated in Step 3, there are times when no additional shared buffer space is 

needed. 1 This saves administrative overhead. 

' in fact, the larger the value of n, the more likely it is that m stays the same rather than 
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Thus far, we have developed three different admission control and buffer 

allocation algorithms: CLT(E), CLT(Sn) and CLT(Sm). While all three provide in

dividual non-overfiow guarantees by allocating exclusive buffer space to each stream, 

the latter two also deliver additional system-wide non-overflow guarantee by allo

cating overflow buffer space to be shared by all streams. Two important questions 

to consider at this point are: 

1. How much extra buffer space do CLT(Sn) and CLT(Sm) require, in addition 

to the space allocated by CLT(E)? 

2. How well does the extra space reduce overflows and da ta loss. i.e. is the extra 

space justified? 

In Chapter 7 we present experimental results that answer these questions. 

Finally, we also recall tha t Algorithm CLT(Sn) and CLT(Sm) are both based 

on the assumption that all streams have the same compression characteristics (the 

same mean and standard deviation for frame sizes) and all request the same non-

overflow guarantee level. Applications where this occurs are not common but do 

exist. An example could be the case where a number of students are viewing the same 

multimedia course material. Students could be viewing different parts of the same 

stream, so tha t the stream characteristics would be the same, and the guarantee level 

could be determined by the system. The more general case is when viewers request 

different movies and request different guarantee levels based on their tolerance for 

quality degradation or their wish to reduce costs. Though several people could be 

watching the same stream, streams with a variety of characteristics could be active 

in the system at any given time. In the next chapter we discuss issues that must 

increasing by 1, when n increases to n 4- 1. 
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be addressed when streams have different characteristics and different non-overflow 

guarantee levels. We also describe heuristic techniques developed for admission 

control policies handling a heterogeneous mix of streams. 
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Chapter 6 

Supporting Heterogeneous 

Requirements 

As discussed in Chapter 5, algorithms CLT(Sn) and CLT(Sm) consider only the 

situation where every stream in the system has identical compression characteristics 

and requires the same individual non-overflow guarantee level p%. In contrast to 

this, as mentioned in Chapter 4, algorithm CLT(E) works with a heterogeneous mix 

of streams, which can have different compression characteristics and individual non-

overflow guarantee levels. In this chapter, we first discuss issues involved in applying 

our algorithms to a heterogeneous mix of streams. We explain why Algorithm 

CLT(E) works in both the homogeneous and the heterogeneous cases. Then we 

outline how algorithms CLT(Sn) and CLT(Sm) can be extended to deal with the 

most general situation, where different streams in the system may differ in: 

• their compression characteristics: mean fi, s tandard deviation a, and the value 

ko; and/or 

• their requested individual non-overflow guarantees p%. 
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The main complication in extending our algorithms to deal with the most 

general situation is that differing characteristics and/or requested guarantee levels 

may invalidate the application of the Central Limit Theorem in our computation 

of exclusive or shared buffer space. This is because random variables must be 

identically distributed in order to apply Theorem 1. To check whether this identical 

distribution condition is satisfied, we take a close look at where the Central Limit 

Theorem is applied in each of our three algorithms. 

6.1 CLT(E): Applies in the Heterogeneous Case 

As discussed in Chapter 4, Algorithm CLT(E) applies in both the homogeneous and 

heterogeneous cases without any modifications. The reasons for this are presented 

below. As formalized in Equation (4.1), the calculation of the amount of exclusive 

buffer space is based on random variables representing the sizes of different frames 

in the same stream. Frames of the same stream have the same compression charac

teristics 1 . Thus, the identical distribution condition is satisfied, and the application 

of the Central Limit Theorem is not affected at all by the presence of streams having 

different compression characteristics and requesting different individual guarantees. 

In other words, different sets of values of fj,, a, ko and p from different streams can 

be used independently and correctly with Equation (4.1). Hence, as presented in 

Chapter 4, CLT(E) can be readily applied to handle heterogeneous requirements 

without any change to the algorithm. 

As mentioned before, we divide B, P, I frames into three different groups. Frames within each 
group have the same compression characteristics. 
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6.2 CLT(Sn): Heuristics to Homogenize Overflow Vari

ables 

As discussed in Chapter 5, Algorithm CLT(Sn) assumes tha t all streams have the 

same compression characteristics and non-overflow guarantee levels. In this section 

we first consider how this algorithm can be extended to work with a heterogeneous 

mix of streams. We then describe some admission control policies which make use 

of these extensions. 

Algorithm CLT(Sn) applies the Central Limit Theorem in two different in

stances: to compute the exclusive and the shared buffer space requirements. As 

shown in Section 6.1 above, no change is required in the computation of exclusive 

buffer space to handle heterogeneous case requirements. Unfortunately, the same 

cannot be said about the computation of shared buffer space. As formalized in 

Equation (5.2), the computation of the shared buffer space requires tha t all overflow 

variables Ovi be identically distributed. For streams having different characteristics 

and requesting different individual guarantees, their B^s and B^s may be different, 

causing their overflow variables Ov^s to have different distributions as well. 

In addition to the above, there is another complication due to differing indi

vidual guarantee levels. In Chapter 5, we discussed how to upgrade the individual 

guarantee of p% with an additional system-wide guarantee to q% to enhance user 

satisfaction at a reasonable cost. The situation becomes more complex when users 

can request different p values. For instance, if p\ = 60% and p2 = 90%, it does not 

make sense to provide a universal system-wide guarantee of q = 99% to both. This 

is essentially an issue of fairness, because the upgrade to p\ is much larger than 

that to p2. Thus, we further enrich our framework by allowing different q levels to 
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be defined based on the corresponding p levels. More specifically, for any individ

ual guarantee level pi chosen by a user, the system can choose to upgrade pi to </; 

(<li •> Pi) with the following semantics. The stream can use: 

• its exclusive buffers up to a level corresponding to p,-, and 

• shared buffers, but no more than a total level corresponding to m. 

This is formalized in the following definition of an overflow variable, which extends 

the one defined in Equation (5.1): 

Ov" = I 

o if B, < B;% 

Bi - Be
pt if B%. < Bi < Be

q% (6.1) 

Bi.. — Bi. otherwise 

As discussed at the beginning of this section, different overflow variables Ov" 

can have different distributions, means and standard deviations. Thus, the Central 

Limit Theorem and Equation (5.2) cannot be applied directly. In order to deal 

with this complication, we "homogenize" all overflow variables Ov" by the heuristic 

of taking the average mean and average standard deviation over all Ov" 's. More 

precisely, let the means and standard deviations of Ov",.. ., Ov" be (i\,..., (in and 

<7i, . . . , an respectively. Then we homogenize Ov",..., Ov" by assuming tha t all of 

them are identically distributed with mean /j,ov — avg{^\,..., fin} and standard 

deviation aov = avg{o~i,.. .,crn}. With this heuristic, Equation (5.2) and Algorithm 

CLT(Sn) operate as before, with q — avg{q\,.. .,qn}. The homogenizing can also 

be done using the max or min functions instead of taking the average of the means, 

standard deviations and ^ ' s . 

Algorithm CLT(Sn) can therefore be extended as follows: 
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Heuris t ic CLT(n) 

Let St be the stream considered for admission. Let p% be the individual non-

overflow guarantee level requested for St. Let qst% be the non-overflow guarantee 

level tha t the system assigns for additional system-wide guarantees, as corresponding 

to the user-selected p. Let n be the number of streams already in the system. 

1. Compute the amount of the exclusive buffer space B* as defined in Equation 

(4.1). 

2. Homogenize the q values for all the streams in the system using some function 

such as avg, min or max. 

3. Homogenize the overflow variables. Assume they are identically distributed 

with mean \xov and standard deviation aov as discussed above. (fiov can be 

the minimum, average or maximum of the overflow means, depending on the 

particular heuristic being used. Similarly aov can be the minimum, average or 

maximum of the standard deviations of the overflow variables.) 

4. Compute the amount of additional shared overflow buffer space Bs
q as defined 

in Equation (5.2). 

5. If the remaining buffer space of the system is less than Be + ]3* the stream 

St must wait. Otherwise, St is admitted with an allocation of B^ buffer space 

reserved solely for the use of St, and with Bs buffer space added to the shared 

overflow buffer pool. 
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6.3 CLT(Sm): Complication Due to Binomial Calcula

tion 

The heuristic described above for CLT(Sn) obviously applies to CLT(Sm) as well. 

But for CLT(Sm), there is an extra complication due to the binomial computation 

of the value of m. As formalized in Equation (5.4), the computation of m relies on a 

fixed p. There are limited applications where this condition holds, e.g. when the p 

and q values are fixed by the system. But the more general case is where each user 

can select a different p value. It is not clear how multiple p values can be used in the 

binomial computation. One heuristic approach is to divide all streams into distinct 

groups according to their p values, and apply CLT(Sm) separately on each group. 

Since the m value (number of streams likely to overflow), is determined by the p 

guarantee level, and the number of users n in the group, the m value for each group 

can be calculated. The tails for each group can then be homogenized as described 

in the previous section, and the algorithm CLT(Sm) can be extended in a similar 

way. Future extensions to this project should include evaluating how effective this 

approach could be, as well as investigating other ways to extend CLT(Sm) to handle 

multiple p values. 

To summarize, in this chapter, we have discussed how the admission control 

algorithms developed in the previous chapters can be extended to work when the 

streams in the system have different characteristics and non-overflow guarantees. 

Algorithm CLT(E) works without modification, since the Central Limit Theorem 

is applied to a group of frames which are identically distributed. For algorithms 

CLT(Sn) and CLT(Sm), the allocation of exclusive buffers remains unmodified, as 

it works in exactly the same way as with algorithm CLT(E). However, the overflow 
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variables are not identically distributed. We therefore homogenize these by adopting 

the heuristic approach of using the average, minimum or maximum values of the 

overflow means and standard deviations. We also "homogenize" the q system-wide 

non-overflow guarantee level in a similar way. Preliminary experimental results 

indicate tha t our heuristic approach works well in extending CLT(Sn) to handle 

heterogeneous requirements. We have experimented with a variety of heuristics, 

such as using the average, minimum or maximum of the overflow variables and q 

values or various combinations of these. The goal is to find a good balance between 

minimizing the buffer space overhead for providing the two kinds of non-overflow 

guarantees and minimizing the frequency of overflows. In the next chapter, we give 

experimental results showing that our heuristic approach to CLT(Sn) can provide 

appropriate QoS guarantees at a reasonable cost. 
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Chapter 7 

Experimental Results 

In this section, we present experimental results evaluating the effectiveness of algo

rithms developed in the previous chapters. We evaluate these algorithms on: 

1. their buffer space requirements 

2. their behaviours with increasing numbers of concurrent users 

3. their frequencies of overflows 

4. the amounts of da ta loss 

We verify whether the algorithms in fact provide the non-overflow guarantee 

promised. We also compare our algorithms with an existing statistical algorithm 

that provides buffers shared by all streams and does not support individual non-

overflow guarantees. This is done to check whether or not individual guarantees are 

too expensive to provide. 
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7.1 Overview of the Implementation and Experimental 

Setup 

In this section we discuss the experimental setup used to evaluate the algorithms 

developed in previous chapters. We describe our simulation experiments, and briefly 

discuss how da ta was acquired to test our algorithms. 

7.1.1 Exper imenta l Data 

Data for our simulation experiments was acquired by collecting M P E G videos from 

various Internet sites, including university ftp sites and Space archives. Our object 

was to gather movies typical of the variety of M P E G videos that are generally 

encountered. We did not actually make the videos. It was difficult to find videos of 

any great length, but about 30 were collected, representing various characteristics. 

The videos differ widely in their compression characteristics, the number of frames 

they contain, the number of B frames between adjacent I or P frames, and the mean 

and standard deviation for the frame sizes. The movies also differ widely in the 

variability of B frame sizes. This can be seen in comparisons between the maximum 

and average frame sizes, or in the ratio of a : \x. For example, one of the videos has 

1,171 B frames, with 4 B frames between I frames and with a mean and a standard 

deviation of 3,511 and 634 bits (after compression) respectively. Its a : \i ratio is 

1:5.56. The ratio of its maximum to minimum frame size is 3.84:1, and its maximum 

to average frame ratio is 2.14:1. Another video has 2,591 B frames, with 10 B frames 

between I frames, and a mean and standard deviation of 1,367 and 764 bits. Its 

a : n ratio is 1:1.79. Its maximum to minimum frame size ratio is 11.75:1, and 

its maximum to average frame size ratio is 3.92:1. The experimental results to be 
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presented are based on a subset of the videos collected. However, the observations 

and conclusions that will be drawn are applicable to other videos as well. 

7.1.2 Simulation Exper iments 

All the algorithms were implemented in C. The mean /i and standard deviation a 

used in computing Equation (4.1) were determined easily for each stream, with the 

usual mean and standard deviation calculations. However, there is much greater 

complexity in the computation of f.iov, fiovi, aov, oov< for the overflow variables intro

duced in Equations (5.1) and (5.5). These required mathematical integration on the 

tail of a standard normal curve. Mathematica was used to handle this task. Since 

sample sizes varied widely among streams, it was necessary to select a uniform sta

tistical confidence level, so that meaningful comparisons could be made. Thus all 

means and standard deviations were determined based on a confidence interval of 

95%. 

In order to evaluate whether or not individual non-overflow guarantees and 

exclusive buffers are too costly to provide, we needed some basis for comparison. For 

this purpose we implemented another algorithm, hereafter referred to as the "Joint" 

algorithm, that is a variant of the algorithm proposed by Vin et al [49]. The Joint 

algorithm essentially applies the Central Limit Theorem to all the streams together, 

rather than to each stream individually. With this algorithm, the full amount of 

the allocated buffer space is shared by all the streams, without any support for 

individual non-overflow guarantee. 

To evaluate the effectiveness of the different algorithms, a simulation was 

designed and implemented in C. Using a modified version of the M P E G Statistical 

Analyzer developed at the University of California at Berkeley, files were created 
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containing the sizes and sequence of each type of frame in the M P E G streams in our 

collection. Buffer allocation requirements for each algorithm were calculated using 

the da ta in the frame size files. The simulation then used the frame size files to 

evaluate the behavior of the algorithms, calculating the frequency and amount of 

overflow for each algorithm. Note that all calculations of buffer allocation and da ta 

loss were made in terms of bits, rather than number of blocks. The decisions about 

selecting an appropriate block size are left to an actual implementation and will be 

discussed in Section 8.2.1. 

Our experiments try to simulate a scenario where multiple users are served 

simultaneously. We performed experiments both for the homogeneous case where all 

users are viewing the same stream and for the heterogeneous case where users access 

streams with different characteristics and guarantee levels. In the homogeneous case 

experiments, all users access the same stream and have the same guarantee level. 

But they need not view the same part of the stream at the same time, and the 

viewing time lengths may vary. To simulate this condition, our program randomly 

assigns a starting frame to each user as well as the number of frames ( nframes < 

total number of frames in the stream) during which the user will be active. If a 

user reaches the end of the stream before covering its assigned number of frames, 

it cycles back to the beginning of the stream and continues from there until it has 

read the appropriate total number of frames. If a client's run terminates before the 

end of the simulation, another user is started by the same procedure to keep the 

number of users constant for the evaluation of the algorithm. The heterogeneous 

case algorithms work in a similar way. However, for these experiments users are also 

randomly assigned to their streams and guarantee levels. 

69 



7.2 Evaluation of Homogeneous Case Algorithms 

7.2.1 Relat ive Buffer Requirements 

We compare the four homogeneous case algorithms on the amount of buffer space 

they require. We are interested in how buffer space requirements vary with the 

number of concurrent users and with the number of adjacent B frames used in the 

computation. First, holding the number of users constant, we consider the effects of 

varying the number of frames. The two graphs shown in Figure 7.1 are based on the 

buffer requirements for 100 concurrent users (i.e., n = 100). The first graph is for 

an individual guarantee level of p = 90% (for which m — 27), and the second is for 

p = 80% (for which m = 41). In both cases, the q value is set at 99.9%. The x-axes 

of the two graphs represent the value of ko, which as introduced in Section 3.3.2, 

denotes the minimum value of k so that the average correlation between frame Sij 

and Sij+k drops below a certain threshold. In both graphs, ko varies from 1 to 30. 

The y-axes represent the buffer requirements of the algorithms relative to tha t of 

CLT(E). This explains why in both graphs, the curves for CLT(E) are flat lines at 

100%. 1 An analysis of the graphs gives the following key findings: 

1. The Cost of Supporting Individual Non-overflow Guarantees 

Recall tha t the Joint algorithm, CLT(Sn), and CLT(Sm) all provide a q% 

(99.9% in the simulation experiments summarized in this figure) system-wide 

guarantee. But only the latter two algorithms also provide an individual guar

antee of p% (80% or 90% in the figure). Thus, the difference in buffer space 

requirement between Algorithms CLT(Sn), CLT(Sm) and the Joint algorithm 

represents the amount of extra buffer space needed to support individual non-

If the y-axes were to represent buffer requirements in absolute terms, all curves would be 
increasing with increasing values of ko-

70 



overflow guarantees. In both graphs in Figure 7.1, the amount of extra space 

needed is less than 5%. This strongly indicates that individual guarantees can 

be provided with a very low buffer space overhead. Note that the difference 

in buffer space requirements between Algorithm CLT(E) and the Joint Algo

rithm is even less than 5%. But care must be taken when interpreting this 

difference. The key observation is tha t CLT(E) provides either a 80% or 90% 

individual guarantee. But the Joint algorithm provides a 99.9% system-wide 

guarantee. Thus, the quality of service delivered by these two algorithms is 

rather different. And the curves for CLT(E) and the Joint algorithm in the 

graphs should not be compared directly. 

2. The Cost of Supporting an Additional System-wide Non-overflow Guarantee 

As discussed in Chapters 4 and 5, Algorithms CLT(E), CLT(Sn) and CLT(Sm) 

all provide a p% individual guarantee. But only the latter two algorithms also 

provide an additional system-wide guarantee of q%. Therefore, the difference 

in buffer space requirement between Algorithms CLT(Sn), CLT(Sm) and Algo

rithm CLT(E) represents the amount of extra buffer space needed to support 

the additional system-wide guarantee. In Figure 7.1a, the extra amount is 

slightly more than 1% for CLT(Sn), and around 2% for CLT(Sm). In Figure 

7.1b, the extra amounts are around 3% and 4% for CLT(Sn) and CLT(Sm) 

respectively. Thus, the two graphs strongly suggest tha t providing an addi

tional system-wide non-overflow guarantee is very inexpensive. In general, as 

the individual guarantee p% drops, the buffer requirement for CLT(E) drops, 

and the gaps between CLT(E) and the two other algorithms grow. However, 

as will be shown in Section 7.2.4, CLT(Sn) and CLT(Sm) are much more effec

tive in reducing overflows and da ta loss. A more detailed comparison between 
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CLT(Sn) and CLT(Sm) will be given later. 

3. The Value of ko 

As the value of fco increases, the gaps between CLT(E), CLT(Sn) and CLT(Sm) 

remain the same. This strongly suggests that there is little reason to use a 

value of k0 larger than 10. 

7.2.2 Relat ive Buffer Requirements with Respec t to N u m b e r of 

Concurrent Users 

The two graphs in Figure 7.1 are based on 100 concurrent users (i.e., n — 100). For 

the graphs in Figure 7.2 ko = 10. Figure 7.2 shows how the buffer requirements of 

Joint, CLT(Sn), and CLT(Sm) vary relative to tha t of CLT(E), as the number of 

concurrent users changes. The x-axes of the graphs represent the number of users, 

ranging from 1 to 100. And the y-axes are the same as those in Figure 7.1. 

By definition, since they provide shared buffers in addition to the exclusive 

space allocated by CLT(E), CLT(Sn) and CLT(Sm) always use more buffers than 

CLT(E). But the graphs in Figure 7.2 show that as the number of concurrent users 

increases, the gaps between CLT(E) and the two algorithms narrow. Initially for 

n = 20, the differences can be as large as 7%. But when n increases to 100, the 

differences are already within 5%. For larger values of n, the gaps will become 

negligible. This trend is due to the fact that the more concurrent users there are 

in the system, the more sharing can take place in the overflow buffer pool. In 

other words, the amount of overflow buffer that is required to provide the system-

wide guarantee becomes less in comparison to the total amount of exclusive buffers. 

Hence, the provision of the system-wide guarantee becomes even more attractive. 
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In comparison with CLT(E), the Joint algorithm also requires less buffer 

space as the number of concurrent users increases. Similar to the situation for 

CLT(Sn) and CLT(Sm), larger values of n provide greater possibilities for buffer 

sharing. Hence for these three algorithms the buffer requirements in absolute terms 

do not grow linearly with n. The buffer percentage of Joint relative to CLT(E) drops 

as n increases. It is interesting to note from Figure 7.2 that for a small number of 

users (e.g., n < 40), CLT(E) actually requires less buffer space than the Joint 

algorithm, even though CLT(E) provides an individual non-overflow guarantee that 

the Joint algorithm is not capable of. However, this observation should be treated 

with caution, as the guarantee levels provided by the two algorithms are not the 

same. 

7.2.3 Service Guarantees to Individual Users: Evaluation of CLT(E) 

It is important to determine whether or not our algorithms actually deliver the ser

vice guarantees promised to users. In later sections, we will present a comparative 

analysis of the algorithms in terms of percentage of overflow cycles and amounts 

of da ta loss. But in this section, we focus only on a performance evaluation from 

the point of view of the user. We consider two performance measures for Algorithm 

CLT(E): frequency of overflows experienced by individual users and the amounts of 

da ta loss when overflows do occur. Recall tha t CLT(E) allocates buffers exclusively 

to each user. Hence, the behaviour of the algorithm is independent of the number 

of users in the system, as long as system capacity is not exceeded. It also works re

gardless of whether users access the same stream or a heterogeneous mix of streams. 

So the questions that need to be addressed here are: 

1. Does CLT(E) provide the promised guarantees to individual users, as seen in 
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the percentages of overflows and amounts of da ta loss they experience? 

2. How does the algorithm behave with streams of different characteristics and 

variability? 

3. How does the algorithm's behaviour change with varying values of ko2? 

We investigated the frequency of overflows and the amounts of da ta lost for 

streams of large and small variability, as the value of ko changes. Our observations 

show reasonable results, but not as positive as we had hoped. Figure 7.3 shows 

the frequency of overflows for a high and a low variability stream for p = 80% and 

p = 90%. Here, the frequency of overflows is the percentage of cycles in which the 

stream experiences an overflow. Figure 7.4 shows the average amount of da ta lost by 

an overflowing stream. The following trends can be observed from these graphs: For 

p = 80% the percentage of overflows for our stream with high variability increases 

for low values of ko. It then stabilizes at around 20% when ko > 12, as could be 

predicted from the guarantee level. For the low variability stream, the percentage of 

overflows again increases, and eventually stabilizes, but not at a level corresponding 

to the p value. Instead, the percentage of overflows seems to stabilize around the 

TO value corresponding to the p level (the number of streams out of 100 tha t could 

be expected to overflow, given the p guarantee level). However, it is essential to 

note that the number of frames for our low variability stream is much smaller than 

for the high variability stream. So the reliability of these results above k0 = 10 is 

somewhat questionable. For p = 90%, the low variability stream shows a similar 

trend. However, the percentage of overflows for the high variability stream stabilizes 

2ko is the number of consecutive frames which are grouped together when computing buffer 
allocations. As introduced in Section 3.3.2, fco denotes the minimum value of k so that the average 
correlation between frame Sij and Sij+k drops below a certain threshold 
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at a level somewhat higher than could be expected from the p value: around 16% 

for 10 < k0 < 20 and 17-18% when k0 > 20. 

Figure 7.4 shows the opposite trend with respect to the amount of da ta 

loss in overflow situations. With the small variability stream, the amount of da ta 

loss shows a slow but steady decrease as ko increases, and always stays within the 

amount of da ta loss that could be expected from the guarantee level. By contrast, 

the high variability stream, whose frequency of overflows is closer to what could be 

expected from the guarantee level, consistently loses a much higher percentage of 

da ta than predicted from the p level. This result is understandable. For a file with 

large variability, if an overflow occurs, it is reasonable that the amount of da ta loss 

would also be high. 

We obtained somewhat better results (actually quite positive) when frames 

were taken in groups of ko, and the mean and variance calculated based on the 

groups of frames. But this procedure is similar to smoothing the da ta consumption 

rate discussed in Chapter 2, which uses a different algorithm, so that it would not 

be a fair assessment of the use of the CLT. In addition, the problem is still not 

entirely solved because when the number of frame groups is increased, the same 

pattern emerges as with frame groups of size one. 

It was difficult to determine the exact causes of our problem. One obvious 

explanation may be the smallness of our samples. As k0 increases, the reliability of 

our results is bound to decrease. This is due to the fact that , as frames are taken in 

larger and larger groups, fewer cycles are possible before the stream is exhausted. 

For instance, at 25 frames, our high variability stream can only provide 103 full 

cycles, while our low variability stream yields no more than 46. Increasing the 

number of cycles without regard to the stream length would not improve reliability, 
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since the simulation would simply have to go through the same stream over and over 

again. Hence, our experiments would have to be repeated with much larger samples 

in order to assess the influence of this factor. 

Another possible explanation for the results in this section may be the fact 

that , since frame sizes cannot have negative values, and in fact, must be considerably 

larger than 0 bytes to store any meaningful information, the frame size samples yield 

fairly skewed distributions, with long tails to the right. Consequently, the minimum 

frame size may be comparatively quite close to the mean, while the maximum frame 

size can be several times larger. Because of this, the standard deviation may not be 

capturing as much of the stream characteristics as we would like. This may have led 

us to somewhat underestimate resource needs, when computing how much buffer 

space to allocate for each of our algorithms. In fact, a small amount of additional 

buffer space does bring frequencies of overflow and da ta loss to well within acceptable 

levels for CLT(E), but since we have not ruled out the possible effects of the smallness 

of the sample size, we cannot be sure which explanation is the correct one. 

7.2.4 Effectiveness in Handl ing Overflows: CLT(Sn) vs CLT(Sm) 

We have seen that the three homogeneous case algorithms we developed are ranked 

CLT(E), CLT(Sn) and CLT(Sm) in ascending order of buffer space requirement. 

We have also seen tha t CLT(E) is able to provide user selectable guarantees for the 

amounts of overflows. In this section we also consider the frequency and severity of 

situations where not enough buffer space has been allocated. This is an important 

measure of performance because these situations are undesirable for a number of 

reasons. First, overflows and da ta loss cause degradation of quality for the user, 

as considered in the previous section. Second, handling overflows can result in 
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CLT(Sm) 
CLT(Sn) 

p = 90% 
56.8% 
94.9% 

p = 80% 
5.1% 

61.0% 

Table 7.1: Frequencies of Overflow 

considerable system overhead. So it is useful to consider how well our algorithms 

avoid such situations. We define an overflow round or cycle as follows: For CLT(E), 

we say that an overflow round occurs if any one of the concurrent users runs out 

of its exclusive buffers. For CLT(Sn) and CLT(Sm), we say that an overflow round 

occurs if any one of the concurrent users runs out of its exclusive buffers, and is not 

allocated enough buffer space from the shared pool due to the total consumption of 

the shared pool. For the Joint algorithm, an overflow cycle occurs when any one of 

the users runs out of buffer space due to the exhaustion of the shared buffer pool. 

Note that all our measurements are in absolute terms. An overflow cycle occurs if 

any one of the concurrent users loses any data . 3 

Table 7.1 shows the percentage of times an overflow occurs, for p = 90% or 

80% and n = 100. An analysis of the table produces the following observations: 

1. On Varying the Individual Non-overflow Guarantee p 

For a large p, such as 90%, most of the allocated buffer space is designated 

as exclusive buffer space. Thus, the percentage of shared buffer space is low. 

For this reason, once a user has exhausted its exclusive buffer space, there is 

a good chance that relief cannot be obtained from the shared buffer pool. In 

contrast, for a low value of p, the percentage of shared buffer space is high. 

3This makes our results not totally comparable to some other studies, where overflow cycles are 
defined differently, e.g. Vin at al first discard an appropriate percentage of frames based on the 
guarantee level. They then define an overflow round as one in which the system resources are still 
insufficient despite the discarded frames. 
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CLT(Sm) 
CLT(Sn) 

p = 90% 
0.5% 

0.91% 

p = 80% 
0.38% 
0.61% 

Table 7.2: Average Percentage of Da ta Loss for an Overflowed Stream 

Even though it is expected tha t more users compete for the shared buffer space 

(i.e., as shown above, m = 27 for p = 90%, and m = 41 for p — 80%), the 

competition is still less intense than that for a large p. Table 7.1 exemplifies 

this fact. For both CLT(Sn) and CLT(Sm), as p drops from 90% to 80%, the 

frequency of overflow cycles drops accordingly. The drop for CLT(Sm) is more 

dramatic than tha t of CLT(Sn). 

2. On Comparing CLT(Sm), CLT(Sn) and CLT(E) for a Fixed p 

For a fixed p, the frequency of overflow cycles for CLT(Sm) is always lower 

than that of CLT(Sn). This is simply due to the fact that , as shown in Fig

ures 7.1 and 7.2, CLT(Sm) requires more buffer space than CLT(Sn). By the 

same reasoning, the frequency of overflow cycles for CLT(E) is the highest 

among the three homogeneous case algorithms. In most cases, the frequency 

of overflow cycles for CLT(E) is 100%. Recall tha t whenever an overflow oc

curs, administrative overhead is incurred, and some user da ta are lost (even 

though it is by the user's choice tha t a value p < 100% is selected). Thus, for 

a small additional amount of buffer space (cf: Figures 7.1 and 7.2), it seems 

worthwhile to reduce the frequency of overflow cycles to well below 100%. 

Hence, CLT(Sm) looks the most attractive. 

Table 7.2 shows the average percentage of da ta loss by an overflowed user 

(i.e., a user tha t has exhausted its exclusive buffers, and is not allocated enough 
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buffer space from the shared pool due to the total consumption of the shared pool). 

As in the situation of the frequency of overflow, the percentages of da ta loss for 

both algorithms drop a s p decreases. And as before, CLT(Sm) performs better than 

CLT(Sn). However, the key observation from Table 7.2 is that even for CLT(Sn), 

the average amount of da ta loss in an overflow is very small, less than 1%. This 

strongly indicates tha t even for p = 80%, both CLT(Sn) and CLT(Sm) are capable 

of delivering excellent non-overflow guarantee to all users. 

7.3 Heterogeneous Case Algorithms 

For the heterogeneous case, we investigated the behaviour of the Joint, CLT(E) 

and CLT(Sn) extensions discussed in Chapter 6. We did not study extensions of 

CLT(Sm) for the heterogeneous case. The simulations were performed as for the 

homogeneous case, but with the following differences: 

1. Number of Streams Used: 

During the simulation, each user was randomly assigned to one of two streams. 

For the sake of consistency, and to make the results easier to compare, the two 

streams were the same as the high and low variability streams studied in the 

homogeneous case. 

2. Guarantee Levels: 

Users were randomly assigned to one of two p% guarantee levels: 80% and 

90%. 

3. Maximum Data Utilization Based on Guarantee Levels: 

As mentioned in Chapter 6, we added an additional condition to ensure fair

ness: Each user had the user selectable p% guarantee. But in addition, the 
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system enforced a maximum buffer utilization limit for each user. This was 

calculated using a q% guarantee level based on the user-selected p% level. A 

user requesting 80% guarantee was allowed to use only up to a 95% guaran

tee level from shared buffers in an overflow situation. Da ta above this limit 

was discarded even if additional buffer space was available. A user requesting 

90% was allowed up to 99%. This scheme has some similarity to Vin et al.'s 

method, though they discard da ta above the minimum p% level, while our 

method allows da ta to be kept up to a maximum q > p% level. 

4. Homogenizing the Overflow Variables (Tails of the Normal Distributions): 

The overflow variables were homogenized as described in Chapter 6. Various 

combinations of the maximum, average or minimum values for mean and stan

dard deviation were used in homogenizing the overflow variables. However, in 

homogenizing the system guarantee level q to calculate the shared buffers, the 

average of the q values was used for all algorithms. 

5. Comparisons with Joint: 

For each algorithm using shared buffers, a corresponding version of the Joint 

Algorithm, using maximum, minimum or average for mean and standard de

viation, was also evaluated as a comparison. Again the averaged q value was 

used in calculating shared buffers. 

6. Buffer Utilization Histograms: 

Buffer utilization histograms were produced for each algorithm, to show the 

proportion of the cycles in which various percentages of allocated buffers were 

used. 
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7.3.1 Buffer Al locat ion for Heterogeneous Case Algor i thms 

Many similar trends were observed regarding buffer allocation in the heterogeneous 

case as had been observed in the homogeneous. In this section, we review these 

trends, point out the similarities and differences between the homogeneous and het

erogeneous cases, and then give a comparative analysis of the various heterogeneous 

case extensions for CLT(Sn) and Joint with regard to buffer allocation. 

1. The relative buffer requirements of the various CLT(Sn) extensions with re

spect to CLT(E), dropped as the number of concurrent users increased. For 

instance, the algorithm using the maximum for both the mean and standard 

deviation of the overflow variables required 5.85% more buffers than CLT(E) 

for 25 users, 4.53% more for 50 users and 3.97 % more for 100 users. This 

reflects the fact tha t the Central Limit Theorem was used in computing buffer 

allocations, so tha t the amount of buffer space does not grow linearly with the 

number of users. Also, as with the homogeneous case, more sharing can occur 

when there is a larger number of users. 

2. Table 7.3 shows the relative buffer requirements of the various CLT(Sn) ex

tensions with respect to CLT(E) and also with respect to the corresponding 

versions of Joint. These results are for 100 concurrent users and k0 = 10 

frames. Note that all results are given in terms of percentages, and not in 

absolute values. For the CLT(E) comparison, the value for CLT(E) is 100%. 

For the comparison to the Joint algorithm, the value for the corresponding 

version of Joint is 100%. Also note that the mean and standard deviation 

refer to overflow variables for the CLT(Sn) extensions and to actual frame 

sizes for the Joint. As can be expected, the various extensions of CLT(E) 
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Means 
max 
max 
avg 
max 
avg 
avg 
min 

SDs 
max 
avg 
min 
min 
max 
avg 
min 

CLT(Sn) ext. 
103.97 
103.58 
102.40 
103.45 
102.65 
102.52 
101.38 

Joint ext. 
-

76.52 
111.62 

-
-

111.66 
190.82 

Table 7.3: Buffer requirements re. CLT(E) and Joint for Extensions of CLT(Sn) 

can be ranked in terms of buffer requirements according to whether they use 

maximum, average or minimum values for the mean and standard deviation. 

3. Similar trends are observed with the various versions of the Joint algorithm, 

both in their behaviours with increasing numbers of concurrent users, and 

in their comparative ranking. However, as can be seen from table 7.3, the 

variability among the different versions of Joint is much greater than among the 

CLT(Sn) extensions. This is because the minimums, maximums or averages 

of whole frame sizes are used in the Joint algorithms, while the CLT(Sn) 

extensions only use the overflow variables, which are a good deal smaller. In 

addition, the majority of buffers allocated by the CLT(Sn) extensions consist 

of exclusive buffers. Thus, the effect of shared buffers on the absolute resource 

requirements is relatively small. These facts make the various extensions of 

Joint less useful for comparison purposes, and perhaps other heuristics for 

extending Joint should be considered. 
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Means 
max 
max 
avg 
max 
avg 
avg 
min 

SDs 
max 
avg 
min 
min 
max 
avg 
min 

CLT(Sn) ext. 
0.00 
0.00 
0.10 
0.00 
0.00 
0.00 

51.60 

Joint ext. 
-

0.00 
0.00 

-
-

0.00 
100.00 

Table 7.4: Percentage of Overflow Cycles for Heterogeneous Case Algorithms 

7.3.2 Overflows and Actual Shared Buffer Uti l izat ion for CLT(Sn) 

Extens ions for the Heterogeneous Case 

Our observations produced the following results: 

1. All our algorithms, except the min-min version were successful in keeping the 

frequency of overflows low. 

2. The amount of da ta loss was also very low or 0, except in the case of the 

min-min algorithm. 

3. The buffer utilization histograms showed that the shared buffers for the max-

max algorithm were frequently under-utilized. In over 90 % of the cycles, 

between 20 and 60 % of allocated shared buffers were used. In less than 3 % 

of the cycles, buffer utilization fell between 60 and 80 % of allocated resources, 

and none of the cycles utilized more than 80 % of shared resources. Hence, 

this algorithm would waste buffer space. 

It is interesting to consider why the CLT(Sn) extensions perform so much 

better in the heterogeneous case than CLT(Sn) did in the homogeneous case. Three 
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factors contribute to this result: First, the amounts of buffers allocated in the 

heterogeneous case are generally higher than in the homogeneous case. In fact, 

except for the min-min extension, the amounts are comparable to CLT(Sm), which, 

as we saw earlier, allocated more buffers and hence performed considerably better 

than CLT(Sn). The second factor is that , in the heterogeneous case, we are using 

more than one stream, and at two different guarantee levels. As we noted in the 

homogeneous case, both CLT(Sn) and CLT(Sm) performed better for p = 80% than 

for p = 90%. So, having a heterogeneous mix of streams means that more sharing 

and better performance is possible. The third and very important element is the 

maximum buffer utilization limit imposed when streams access the shared buffer 

pool. Because of this cap on the use of shared resources, a stream that overflows 

by a very large amount over its exclusive allotment can expect to lose some da ta 

even after accessing the shared pool. But it will not be able to consume so much 

of the shared buffers that several other streams overflow as well. This is the main 

reason why even the min-min extension performs better than the homogeneous case 

CLT(Sn) algorithm, though the heterogeneous mix also contributes to the positive 

result. On the other hand, the cap on resource use also leads to the under-utilization 

of the shared pool in the max-max case. So, the effects and desirability of this factor 

must be carefully considered if it is to be used in an actual implementation. 

7.4 Summary of Experimental Results 

In the homogeneous case, we have compared CLT(E), CLT(Sn), CLT(Sm) and the 

Joint Algorithm on their buffer space requirements, their behaviour with increasing 

numbers of concurrent users, their frequencies of overflows, and the amounts of da ta 

loss. There are several major observations. First, CLT(E), CLT(Sn) and CLT(Sm) 
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are effective in delivering individual non-overflow guarantee at a low cost. The buffer 

space overhead is less than 5%. 

Second, CLT(Sn) and CLT(Sm) are effective in delivering a system-wide 

guarantee on top of the individual guarantee provided by CLT(E). The extra amount 

of buffer space required by CLT(Sn) and CLT(Sm) is very small-less than 5%. Also, 

as the number of concurrent users increases, the percentage of additional space 

overhead decreases. The additional shared buffer space appears to be more than 

worthwhile as it considerably reduces the frequency of overflows and the amount of 

da ta loss. 

While CLT(Sn) appears to deliver good performance, its only drawback is 

that the frequency of overflow can be high - even though the amount of da ta loss 

is still very low. This increases administrative overhead. Since a small amount of 

additional buffer space is available (e.g., 2% more), CLT(Sm) is even more attractive 

than CLT(Sn). The small amount of extra space helps to further reduce both 

frequency of overflow and amount of da ta loss. 

Finally, we have investigated the performance of CLT(Sn) as extended for 

the heterogeneous case. We found tha t the algorithm works quite effectively, except 

in the min-min case, which produces too many overflows, and the max-max case, 

which wastes buffer resources. 
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Chapter 8 

Conclusions and Future Work 

8.1 Summary 

With the increasingly widespread use of multimedia, providing systems support for 

continuous multimedia servers has become a very important task. The server's 

job is to serve as many users as possible while maintaining their continuity and 

real time requirements. Recently, this task has become further complicated by the 

increased popularity of variable bit rate compression over the more traditional fixed 

rate compression. VBR compression greatly economizes on computing resources, 

but complicates the task of the CM server, as resource needs are difficult to predict. 

A number of admission control schemes have been proposed for CM servers 

dealing with VBR compressed streams. Many suffer from the disadvantages of 

inaccurate predictions or a great deal of system overhead. Vin et al. propose 

a statistical admission control algorithm that uses the Central Limit Theorem to 

model the disk bandwidth utilization of a CM server at a particular point in time, 

as a normal random variable. This allows them to offer QoS guarantees at the 
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granularity level of the entire system. Unfortunately, this method cannot provide 

adequate QoS to individual users. In this thesis, we study how to provide non-

overflow guarantees to M P E G streams, which use VBR compression. One of the 

main contributions of this thesis is the support of non-overflow guarantee at the 

granularity level of individual streams. By applying a specific version of the Central 

Limit Theorem, we develop a statistical model that approximates the total size of 

several adjacent compressed frames as normally distributed. This enables us to 

compute the amount of exclusive buffers needed to provide a p% individual non-

overflow guarantee, for any p value chosen by the user. All our admission control 

algorithms are capable of providing individual guarantees. Our experimental results 

indicate that the buffer space overhead required to support individual guarantees is 

very small (less than 5%). 

We also investigate the feasibility of providing an additional q% system-wide 

non-overflow guarantee, on top of the individual guarantees. For the homogeneous 

case, algorithms CLT(Sn) and CLT(Sm) represent two different ways of providing 

such an additional guarantee through the use of shared buffers. Our experimental 

results indicate that the buffer space overhead required to provide the additional 

system-wide guarantee is again very small (less than 5%). But this small amount 

of extra buffer space is very effective in reducing the frequency of overflows and the 

amount of da ta loss. Thus, both CLT(Sn) and CLT(Sm) are very successful and 

economical in enhancing the reliability and the quality of service delivered to the 

user. CLT(Sm) requires a little more buffer space than CLT(Sn) (about 2%), but 

the extra space helps to further reduce the frequency of overflow and associated 

administrative overhead, as well as, the amount of da ta loss. 

Finally, we study the behaviour of our algorithms in the most general situa-
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tion, where streams can have different characteristics and guarantee levels. Our al

gorithm CLT(E), which provides individual non-overflow guarantees to users, works 

without modification in this situation. Algorithms CLT(Sn) and CLT(Sm) can be 

extended by homogenizing the overflow variables, thus making the Central Limit 

Theorem applicable. We studied the behaviour of various extensions of CLT(Sn), 

and were able to determine which extensions work best in terms of both reducing 

the amount of extra buffers, and minimizing overflows and da ta loss. 

8.2 Future Work 

Future work on the topic of this thesis might include the following: 

1. Extending the algorithms to deal with other resources such as disk bandwidth. 

2. Evaluating various heuristic approaches tha t extend CLT(Sm), as discussed in 

Chapter 6. 

3. Developing an actual implementation of the algorithms, or incorporating them 

into an already existing CM server implementation. 

4. Investigating whether the techniques and algorithms in this thesis can be ap

plied to other types of compressed CM data, such as audio. 

5. Extending the algorithms to deal with situations where the video da ta must 

be synchronized with other types of compressed data. 

The first two are reasonably routine extensions of the work in this thesis. 

Developing an efficient CM server implementation is a more complex task. Imple

mentation issues are discussed in the next section. The fourth problem involves 
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studying the characteristics of specific types of compressed da ta to see if the Cen

tral Limit Theorem can be applied. The issue of synchronization will not be covered 

here as it is beyond the scope of this thesis. 

8.2.1 Implementat ion Issues 

When incorporating the algorithms in this thesis into a new or existing CM server 

implementation, it is essential to consider a number of issues. One key implemen

tation issue is the handling of overflows. Two elements are involved in this task. 

First, when the user's da ta overflows allocated buffers it may be necessary to discard 

parts of the frames. Vin et al. [50] cover how to select the parts of the frames to 

be discarded. There is also the issue of exactly how to accomplish this task with 

a minimum amount of overhead. One obvious way is to read da ta from disk to a 

system area tha t can give absolute non-overflow guarantee. In this area we can ver

ify whether the actual amount exceeds the allocated amount. If so, then a selection 

module must be invoked to choose parts of the da ta to discard. 

Once the overflow da ta has been discarded the next step is to copy the 

data from the system area to the user space. However, this kind of copying may 

be too costly. A possible way to deal with this problem is not to designate any 

particular part of the main memory as the system area. After reading da ta from 

disk, if there is no overflow, the address of the buffer space is simply returned to 

the user. Otherwise, the unwanted parts of the frames can be discarded by freeing 

the appropriate sections of the buffer space. The selection module then returns the 

list of addresses and sizes of the remaining pieces of buffer space to the requesting 

user. This, however, can cause serious memory fragmentation problems. Thus, 

some amount of memory management, such as packing, will be essential in order to 
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reclaim the wasted space. 

The choice of block size is also an important issue. If the block size is small, 

then the overflowed da ta can be discarded as units of blocks. This would simplify 

the kind of overflow da ta management discussed above. However, for multimedia 

data , the block size should not be too small, as this would involve to much overhead 

for the system. A good balance needs to be struck to minimize the total overhead. 

8.3 Conclusions 

In this thesis, we have developed a statistical model for MPEG streams using the 

Central Limit Theorem. This has enabled us to represent the resource requirements 

for a stream as a normal random variable and thus to provide user selectable non-

overflow guarantees. We have also presented algorithms which provide additional 

system wide guarantees using shared buffers. Our simulation experiments have 

shown that all these algorithms are effective in providing the non-overflow guarantees 

at a reasonable cost. 

The algorithms presented here have only dealt with buffer allocation. To 

make them more complete, they should be extended to deal with other server re

sources such as disk bandwidth. It is also essential to deal with other types of da ta 

such as audio and to consider the problems that might arise in synchronizing various 

types of multimedia data. All these points will be important when developing an 

efficient implementation for a CM server that incorporates these algorithms. 
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