
Mobile J: System Support for Dynamic Application
Partitioning in the Mobile Environment

by

Geoffrey L l o y d Bur i an

B . S c . (Hons), The Univers i ty of Br i t i sh C o l u m b i a

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Maste r o f Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Compute r Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
October 1998

© Geoffrey L l o y d Bur i an , 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of 0<J)nnpxdjttr ^Oi&^c^e

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

W i t h the increasing proliferation of mobile computing devices comes the need

for operating system software which supports applications running in the mobile en

vironment. The computational environment of a mobile computer is typical ly more

constrained than that of a stat ionary computer, having a less powerful C P U , less

available memory, and being connected v ia a network wi th less available bandwidth

and higher latency. Various software systems have been developed which at tempt to

compensate for these l imitat ions; these may be characterised in terms of how much

they hide the mobile environment from applications (mobile-transparency) and the

degree to which they can dynamical ly locate application functions between the mo

bile machine and a stat ionary server in order to adapt to changes in the environment.

The M o b i l e J system is one which supports mobile-transparent, dynamical ly par t i

tioned applications for use in the mobile environment. B y instrumenting Java class

files (object code) and replacing all type references wi th those of proxy classes, the

M o b i l e J system provides the basis for runtime control over placement of objects

without requiring application programmers to change source code. M o b i l e J pro

vides a mechanism to be used in the investigation of object placement policies for

use in applications running in the mobile comput ing environment.

i i

Contents

Abstract ii

Contents iii

List of Tables vii

List of Figures viii

Acknowledgements x

1 Introduction 1

1.1 Mobi l e C o m p u t i n g Characterist ics 1

1.2 System Support For Mobi le Appl ica t ions 3

1.2.1 Mob i l e Transparency vs. Mob i l e Awareness 3

1.2.2 Appl ica t ion Par t i t ion ing : 5

1.2.3 A Taxonomy of Systems 8

1.3 Mot iva t ion and Purpose 10

2 MobileJ Architecture and Overview 13

2.1 General Archi tecture and Overview 13

2.2 Stat ic D a t a and M e t h o d Design 15

i i i

2.3 Introduction to Java Concepts 16

3 MobileJ Runtime 21

3.1 Management Layer 21

3.1.1 Runt ime Parameters 21

3.1.2 Object Placement Pol icy 22

3.2 Dis t r ibu t ion Layer 23

3.2.1 Object Creat ion 23

3.2.2 M e t h o d Invocation 24

3.2.3 Object M o b i l i t y 25

3.3 Nat ive L ib ra ry 25

4 Class File Instrumentation Design and Implementation 27

4.1 Introduction 27

4.1.1 Chapter Overview 29

4.2 Class Level Changes 30

4.2.1 Class Names 30

4.2.2 Interfaces 30

4.3 A r r a y s . 31

4.3.1 Design 32

4.3.2 Creat ion 35

4.3.3 Access 40

4.4 M e t h o d Invocation and Return 42

4.4.1 M e t h o d Headers 42

4.4.2 Invocation and Re turn 44

4.5 Object Creat ion and Init ial ization 50

iv

4.6 F ie ld Access 51

4.6.1 F ie ld Signatures 51

4.6.2 Accessor Methods 51

4.6.3 Static Fields 52

4.6.4 Instance Fields 56

4.7 Miscellaneous Changes and Except ional Cases 58

4.7.1 Except ion Classes 58

4.7.2 Strings 59

4.7.3 Type Checking Instructions 63

4.7.4 j a v a . l a n g . C l a s s and Reflection 63

4.7.5 j a v a . l a n g . C h a r a c t e r Class Initializer 64

4.7.6 j a v a . l a n g . R u n t i m e l o a d L i b r a r y M e t h o d 65

4.8 Crea t ing Proxy Classes . . 66

4.9 Implementing Bytecode Instrumentation 67

4.9.1 Main ta in ing F l o w Con t ro l 67

4.9.2 Debugging Support 69

4.10 Summary 70

5 Related Research 71

5.1 J V M Class Instrumentation Tools 71

5.1.1 Bytecode Instrumenting Too l (B I T) 71

5.1.2 Java Object Instrumentation Environment (JOIE) 72

5.1.3 Binary Component Adap ta t ion 72

5.2 Systems Support ing Mob i l e Appl ica t ions 73

5.2.1 Stat ical ly Par t i t ioned Systems 73

5.2.2 Dynamica l ly Par t i t ioned Systems 76

v

6 Conclusions 81

6.1 Summary 81

6.2 Future Work 82

6.2.1 Por t ing A W T Native Methods 82

6.2.2 M o r e Efficient Dis t r ibu t ion Layer 83

6.2.3 D y n a m i c Moni to r ing and Object Placement Pol icy Modules 83

6.2.4 Study of Appl ica t ions and Object Placement Policies 84

6.3 F i n a l Conclusions 84

Bibliography 85

vi i i

List of Tables

1.1 Resource Constraints Influencing an Appl i ca t ion Par t i t ion ing Pol icy 8

1.2 A Taxonomy of Systems Support ing Mob i l e Appl ica t ions 9

2.1 Java T y p e Descriptors 18

4.1 Java A r r a y Access Instructions and Thei r Corresponding

A r r a y W r a p p e r Methods 41

vi i

List of Figures

1.1 Possible Appl ica t ion Par t i t ion Points 6

2.1 M o b i l e J System Archi tecture 14

2.2 Stat ic D a t a Design 16

4.1 A r r a y Wrapper Class Hierarchy 34

4.2 D a t a Structure and Element Types of a Wrapped Three Dimensional

A r r a y of Integers 36

4.3 Instructions Replacing n e w a r r a y . 37

4.4 Instructions Replacing a n e w a r r a y 38

4.5 Instructions Replacing m u l t i a n e w a r r a y 39

4.6 Runt ime Check For " t h i s " A s a Parameter: < s t a c k B i t F i e l d > and

<numWords> are integers determined by the Instrument utili ty. . . . 46

4.7 Runt ime Check For " t h i s " A s a M e t h o d Invocation Target 47

4.8 Bytecode Inserted After an Invocation of c l o n e 49

4.9 Bytecode Instrumentation of Constructor Invocation 50

4.10 Static, and Non-Stat ic F ie ld Accessor M e t h o d Names 52

4.11 Bytecode Replacing an Ini t ial izing p u t s t a t i c O f Object Fields . . . 53

4.12 Bytecode Replacing a Non-Ini t ia l iz ing p u t s t a t i c O f Object Fields . 54

vi i i

4.13 Bytecode Replacing a Non-Initializing puts ta t i c Of Primitive Fields 55

4.14 Bytecode Replacing a ge t s ta t i c Of Primitive Fields 56

4.15 Runtime Check For "this" As a Field Access Target 57

4.16 Class Hierarchy For Instrumented Exception Classes 59

4.17 f orStr ing Method Signature and Bytecode 61

4.18 toRealStr ing Method Signature and Bytecode 62

ix

Acknowledgements

Though my name appears as the author of this work, many have supported me

through the past two years as I completed this degree and thesis. .

Thanks are due to Professor M i k e Feeley for helping me learn and for en

couraging, understanding, and support ing me during part icularly stressful times.

Thanks also to my supervisor, Professor N o r m Hutchinson for his support , direc

t ion, and feedback on my ideas during the formulation of this thesis.

I'd also like to thank my parents, both those who have been there since the

beginning, and those more recently acquired. Thank-you for your love and support

(financial and otherwise!), especially over the past two years.

B u t most of all I would like to thank my wife, A m y - L y n n . Thanks for your

love, patience, and encouragement as I finished my schooling. Thanks for sharing

this adventure wi th me!

G E O F F R E Y L L O Y D B U R I A N

Vancouver, British Columbia

October 1998

x

Chapter 1

Introduction

1.1 Mobile Computing Characteristics

W i t h i n contemporary distributed computing, the term mobile computing has come

to refer to environments where computat ional devices have the abili ty to function at

arbitrary, as opposed to fixed, physical locations. Whereas t radi t ional distr ibuted

computing models have assumed that machines typical ly remained at a fixed location

for long periods of t ime, mobile computing assumes they have the abil i ty to change

their physical and possibly their logical (or network) locat ion.

A t least three trends have contributed to the emergence of mobile comput ing .

F i r s t , the increasing proliferation of computat ional devices has meant that more

t radi t ional ly mobile, yet non-computerized tools, are being made available. For

example, personal appointment books, once handled solely by pencil and paper,

are now often kept entirely using a digi tal computer. Second, the shrinking size

of relatively powerful computat ional devices is making them much easier to move

around. W h a t was once too large to conveniently carry now fits easily in the palm of

1

a user's hand. T h i r d , wireless networks and associated communications protocols are

enabling applications requiring a network connection to run on computers without

requiring them to be physically connected by a wire.

Whi l e we have solved some of the technical challenges involved in creating

computat ional devices small enough to move around yet powerful enough to be

useful, there remain many issues inherent to mobile computing which must be in

vestigated further [Sat96]. F i r s t , mobile computing devices wi l l always have fewer

resources (for funds spent) compared to stat ionary devices. They wi l l have less mem

ory, less powerful C P U s , and likely be connected by networks wi th lower available

bandwidth and higher latency than stat ionary devices.

Second, the computational environment, meaning pr imari ly the C P U power,

available memory, and network connection quality, wi l l usually be highly variable.

A s we move from environments where users control few stationary computers (or,

often, a single computer) , to one in which users access many different computat ional

devices from many locations, more variabil i ty is inevitable. A s people are enabled

to access their home environment from a variety of physical locations, so to wil l

their computat ional environment vary.

For example, even when using the same computat ional device, the connec

tion to a mobile host can vary between being completely disconnected, and being

connected v i a a relatively reliable wired L A N . Wireless networks have inherent prob

lems wi th performance and reliabili ty because their physical transport medium, ra

dio waves, can and does interact wi th its environment. A s a mobile computer moves

while accessing a wireless network, its environment changes, and thus the quali ty

of its network connection changes as well . Because of the usually lower perfor

mance of a wireless network, users of mobile computers should be given the option

2

of being connected by a high-performance wired link; this also creates variabil i ty in

connection quality.

A number of other differences exist between the mobile comput ing environ

ment and the stat ionary environment, however, the two mentioned above wi l l be

the focus of this thesis. The following two sections discuss different approaches to

these challenges, and introduces the particular technique described in the remainder

of this thesis.

1.2 System Support For Mobile Applications

Given the unique characteristics of the mobile comput ing environment mentioned

above, many applications designed for use in a stat ionary environment wi l l not

perform well. Thus various application design frameworks and system software

services have been developed for creating or adapting applications for use in the

mobile computing environment.

1.2.1 M o b i l e Transparency vs. M o b i l e Awareness

A pr imary concern in the design of any software system support ing mobile applica

tions, is the degree to which it is transparent to the application [Sat96]. A t one end

of the spectrum are "ad-hoc" solutions, whereby individual applications implement

the services necessary for them to function well on a mobile computer. These appli

cations are completely mobile-aware because the software which supports operation

on a mobile host is integrated wi th the software which performs normal application

logic. Th i s solution has the advantage of being tailored exactly to a part icular ap

plication's needs, but has a major disadvantage in that code support ing mobil i ty

is duplicated for each applicat ion. Not only is more memory (and possibly other

3

resources) required to run multiple applications on the mobile computer, but much

more development t ime is needed by the application designer and implementer; this

effect is mult ipl ied by the number of mobile applications created. Th i s problem

is merely a part icular case of the argument for the existence of operating system

services in the more general case.

A t the other end of the spectrum are systems which allow applications to

run without modification on a mobile computer. Usual ly this is done by redesigning

system software such that it takes the mobile comput ing environment into consid

eration. The application is not, for the most .part , aware that it is running on a

mobile host, and is designated mobile-transparent. Th i s solution has the advantage

of allowing many applications not designed for mobile comput ing to run on a mo

bile computer, and also does not require major application software reengineering

efforts; application engineers can continue to build applications as if they were cre

ating software for stat ionary computers. The possible disadvantage of this approach

is that it may not be possible to implement system software in such a way as to

foresee and compensate for the impact of mobile comput ing for al l applications. The

way the mobile comput ing environment impacts one part icular application may be

quite different than for another applicat ion.

In the middle of this continuum lie strategies which provide system software

services for aiding applications to function in the mobile comput ing environment.

Th is strategy attempts to merge the advantages of both ends of the spectrum to

achieve an ideal solution. Therefore, current applications would require a certain

amount of redesign in order to work on mobile hosts, but the application designer

would have control over what services were used by the application and under which

circumstances. M o s t of the software support ing mobi l i ty would be shared by mobile

4

applications, but they would be able to use it in ways specific to their needs. Th i s

strategy creates applications which are mobile-transparent to the extent that the

system software hides the mobile comput ing environment. The difficulty inherent

to this approach is the same as for any implementer of system software, that being

how to design services such that the system is capable of support ing the needs of all

applications, while also not being too complex or cumbersome to use and maintain .

1.2.2 Application Partitioning

M o s t software that enables applications to be built or modified for use in the mo

bile comput ing environment can be described in terms of application partitioning

[Wat95]. A parti t ioned application is one in which the user interface and possibly

some part of the general application logic executes on a mobile host, while another

part executes on a more powerful, stat ionary host. The two parts are typical ly

connected by a wireless network l ink. The part i t ion is created in such a way as to

minimize reliance on the scarce resources of the mobile host and the low bandwidth

and high latency wireless network connection. The ideal part i t ion is one in which

large da ta sets and functions requiring high computat ional power are located on

the relatively large and powerful s tat ionary host, while communicat ion between the

hosts is optimized for the poor performing wireless network. For example, the Sci-

encePad system described in [D W J + 9 6] at tempts to provide a "ubiquitous problem

solving environment" for scientists by par t i t ioning applications between a small , mo

bile host used to display the user-interface and more powerful hosts used to perform

computat ion.

5

user
interface

GUI pixels UFS, NFS

X Windows
protocol

dynamic
partitioning sockets

filesystem
interface

OS I/O
interfaces

network
interface

Figure 1.1: Possible Appl ica t ion Par t i t ion Points

Partitioning Point

A n application can be parti t ioned at many different points as i l lustrated in F i g

ure 1.1. A n application can be parti t ioned at some layer of its user-interface code,

as described in [R S F W H 9 8] . However, depending on the point at which the part i

t ion is implemented, this scheme may require many interactions between the mobile

and stat ionary hosts as the user controls the application, part icularly if a modern,

graphical user interface is used. Therefore, performance over a high latency wireless'

network would not be op t imal . A l s o , if the part i t ion involves sending pixel images

of the user's display, the low bandwidth restrictions of a wireless network may make

adequate performance difficult to achieve, as noted in [K D F + 9 3] .

Alternat ively, an application can be partit ioned at the filesystem or network

access level. However, this assumes that the mobile host is powerful enough and has

a large enough memory to accommodate the execution of most of the applicat ion.

Th i s scheme may be appropriate for a relatively powerful mobile host which needs

access to a large data set, but may not be appropriate for use on smaller, less

powerful mobile hosts.

6

Static vs. Dynamic Partitioning

Appl ica t ion part i t ioning can be implemented in either a static or dynamic fashion.

A static part i t ion is one in which the part i t ion point stays fixed during application

execution and over consecutive executions of the application. A dynamic part i t ion

is one in which the part i t ion point can change between consecutive executions of

the applicat ion, or even during the execution of the application.

A static part i t ioning scheme is very similar to the t radi t ional client-server

model of network applications, though the placement of functionality may be differ

ent to compensate for the differences between a powerful, well-connected client and

a small , poorly connected mobile host [Sat96]. Stat ic part i t ioning usually implies

some degree of mobile awareness on the part of the application and thus of the

application developer. It may also assume the application wi l l always execute on a

mobile host of a particular computat ional performance, memory size, and connected

by a wireless network.

A dynamic part i t ioning scheme, on the other hand, allows for more flexibili ty

than a static par t i t ion. A s noted in Section 1.1, the mobile comput ing environment

is characterised by high variabil i ty in C P U power, available memory, and network

connection qual i ty-var iabi l i ty that is likely to increase in the future as users are

enabled to become less tied to a physical location in order to access their home

environment. A s the computat ional environment changes, it may be desirable to

change an application's part i t ion point: one part i t ioning configuration may not be

suitable for all environmental configurations.

7

Resource Cond i t ion Po l i cy
network high latency migrate objects wi th many interactions to the

same host
network

low bandwidth migrate objects wi th high bandwidth interac
tion to the same host

mobile C P U high load migrate/create computat ional ly expensive ob
jects t o / a t stationary host
migrate/create threads to /a t stationary host

mobile memory memory full migrate/create large objects to /a t s tat ionary
host

Table 1.1: Resource Constraints Influencing an Appl ica t ion Par t i t ion ing Pol icy

Partitioning Policy

In designing a parti t ioned applicat ion, or system support for part i t ioning, decisions

must be made on an appropriate distr ibution of application data and function exe

cution between the mobile and fixed hosts. Table 1.1 displays the factors which can

influence these decisions. (Table 1.1 expresses application components in terms of

object instances, where object location implies both da ta and computat ion location.)

It should be noted that in a completely mobile environment, the conditions

of all resources can change both between executions of an application, and during

its execution. A s a particular resource becomes more constrained, so too does its

relative importance to an application part i t ioning policy. A l so , for resources which

are "equally" constrained (for some definition of "equal"), a part i t ioning policy must

weigh the relative influence of each resource condit ion when choosing where to place

an object.

1.2.3 A Taxonomy of Systems

Table 1.2 shows a taxonomy of systems wi th some degree of support for mobile

applications. The systems are categorized according to the s ta t ic /dynamic nature of

8

Static Pa r t i t i on D y n a m i c P a r t i t i o n
M o b i l e - A w a r e

• Odyssey [Nob98,
NSN+97 , NPS95]

• Well ing 's system
[WB98, W B 9 7]

• Rover [J T K 9 7 , J K 9 6 ,
Tau96, JdT+95]

• Sumat ra [ARS97,
R A S S 9 7 , R A S 9 6]

• Wi t [Wat95 , Wat94b,
Wat94a]

Mobile-Transparent

• wireless X [KDF+93]
[Dan94]

• V N C
[R S F W H 9 8 , W R B + 9 7]

• A M I G O S
[H R A J 9 8 , H R 9 6 , G M 9 5]

• M A F [HR97]

• M o b i l e J

• M - M a i l [Lo97, L K 9 6]

• Coign
[HS98b, HS98a , HS97]

Table 1.2: A Taxonomy of Systems Support ing Mobi le Appl ica t ions

their application part i t ion and the degree to which they hide the mobile environment

from applications.

Stat ical ly partit ioned systems tend to be implemented at either the network

or file system interface, or at some layer of the user-interface/graphical display layer.

For example, Odyssey concentrates on mobile file access, while the wireless X and

V N C systems focus on re-direction of an application's user-interface to a mobile host.

Dynamica l ly part i t ioned systems, for example Rover, Sumatra , W i t , and M o b i l e J ,

often rely on a software interpreter for dynamical ly moving and loading code and

data .

These systems are described more fully in Section 5.2, beginning on page 73.

9

1.3 Motivation and Purpose

This thesis describes the design and implementation of M o b i l e J , a mobile-transparent

system which can be used to create dynamical ly partit ioned applications for exe

cution on the Java V i r t u a l Machine . M o s t other systems for support ing mobile

applications are either mobile-aware or use static part i t ioning (or both) , however,

dynamical ly part i t ioned, mobile-transparent systems have significant potential ad

vantages over these systems and more research is needed to further characterise and

verify their potential .

A s discussed above, a disadvantage of mobile-aware systems is the need for

application engineers to concentrate on both t radi t ional application design and i m

plementation, as well as issues related to the mobile nature of the applicat ion.

Mobile-transparent systems free software engineers from concern about these is

sues, allowing them to continue developing applications for the mobile environment

as they* have for the stationary environment. Th is promotes quicker development

of new applications for use in the mobile environment, and allows for applications

previously developed for the stat ionary environment to be used on a mobile host.

The major potential disadvantage of mobile-transparent systems is that the

system may not be able to compensate for the mobile environment enough for al l

applications to achieve adequate performance. In this case, and especially when the

system also allows for dynamic par t i t ioning as does M o b i l e J , mobile-transparent

systems st i l l provide a platform for development of application prototypes where

various configurations can be rapidly tested. A good understanding of how the

application should be opt imally configured for use in the mobile environment can

thus be achieved quickly.

Whi l e the current version of M o b i l e J does not implement completely auto-

10

matic, runtime control of dis t r ibut ion, it does provide the basis for implementation

of specific object placement policies. In particular, M o b i l e J can be used as a tool to

investigate at least three research questions concerning the part i t ioning of mobile

applications. F i r s t , there is a need to determine at what point various types of appli

cations should be parti t ioned for best performance in a mobile environment. W i t h

M o b i l e J , there is the possibility of testing many applications built wi thout explicit

support for mobil i ty to determine an opt imal object placement configuration.

Second, there is a need to investigate to what extent various resource con

straints inherent to the mobile environment should influence part i t ioning policies.

For example, moving an object from the mobile host to a stationary host frees mem

ory on the mobile host, but the cost of t ransport ing the object over a low bandwidth

wireless network may not make the transfer worthwhile. Given the highly variable

nature of the mobile computing environment, there is a need to understand a vari

ety of environmental configurations and how applications should be parti t ioned for

each.

T h i r d , M o b i l e J can be used to explore the possibility of runtime control over

part i t ioning policy. W i t h the addit ion of a resource monitor ing module, M o b i l e J

could be used to control all object placement decisions for a running application

according to a set of rules. It remains to be determined, however, if the advantages

of this strategy wi l l outweigh its possible disadvantages compared to more mobile-

aware methods.

M o s t systems which support mobile-transparent application part i t ioning do

so by changing or adding to operating system or l ibrary code. Do ing so places

constraints on where a part i t ion can be made and also on how dynamic the par t i t ion

can be. M o s t systems which implement a dynamic par t i t ion, however, also create

11

a mobile-aware system, where application programmers must consider how their

application wi l l be affected by the mobile environment.

A s an alternative design, instrumenting application executable code, as is

done in M o b i l e J , has the advantage of part i t ioning an application at an arbi trary

point, under runtime control . A s no source code is changed, using instrumenta

tion also enables a mobile-transparent system to be created; ideally the application

programmer need not concern himself wi th the details of application distr ibution

between hosts. It is the intent of the Mob i l e J project to create a software infrastruc

ture whereby one can investigate how far the mobile-transparent approach can go in

terms of adjusting to the constraints of the mobile environment, and in part i t ioning

applications not necessarily designed for the mobile environment. The Java V i r t u a l

Machine (J V M) class file (object code) format provides an excellent basis for such

a project, as wi l l be described in the following section.

12

Chapter 2

Mobi le J Architecture and

Overview

2.1 General Architecture and Overview

Figure 2.1 (page 14) shows the overall system architecture of the M o b i l e J system.

Java class files (object code), as produced by a Java language compiler or assembler,

are first processed by the Mob i l e J Instrument tool , creating instrumented bytecode

in the form of addit ional class files. The instrumented code, along with the MobileJ

Runtime, is executed on a Java V i r t u a l Machine (J V M) , wi th the assistance of a

native l ibrary.

Typical ly , a running M o b i l e J system consists of a single client and a single

server which communicate v ia a T C P / I P network connection. It is also possible

for the client and server to run on the same J V M , i.e., the client host and server

host are the same. The only difference between running M o b i l e J as a client and

running M o b i l e J as a server is that when running as a client, the m a i n () method of

13

Application Executable

MobileJ Runtime

Instrument Tool

J
Instrumented MobileJ Application

Management Layer Native
Distribution Layer

Java Virtual Machine

Library

Figure 2 . 1 : Mob i l e J System Archi tecture

a specified application is invoked, while when running as a server it is not.

When running as the client, the Mob i l e J Runt ime supports execution of a

single application; similarly, when running as a server, Mob i l e J supports connection

wi th a single client. A l s o , Mob i l e J currently has support for a single server per

client application, but it is possible that this could be extended to support multiple

servers per client applicat ion.

The Mob i l e J Runt ime is responsible for distr ibution of objects created by

the instrumented application between the client (mobile) and server (fixed) hosts

on the network. In particular, the management layer manages an object placement

policy, while the dis tr ibut ion layer is responsible for implementing the policy of the

management layer-moving objects between the two hosts.

Mob i l e J makes use of proxy objects to maintain location transparency of

application objects. Each proxy object is an instance of a proxy class, of which there

is one corresponding to each instrumented class used under M o b i l e J 1 . P roxy objects

'Exceptions to this are instrumented versions of java.lang.String, and subclasses of
Java. lang.Throwable. No proxy classes are created for these classes. The reasons for these naming
exceptions are described in sections 4.7.2 and 4.7.1.

M

form part of the M o b i l e J Runt ime Dis t r ibu t ion Layer (see Section 3.2, page 23).

The Mob i l e J Instrument tool changes class files such that their code manip

ulates proxy objects almost exclusively; nearly all objects created and manipulated

by an application running under M o b i l e J are proxy objects. A l l instance method

invocations are done through a proxy object which invokes the method on a local

object i f the object resides on the local host, or on a remote object, if the object

associated wi th the proxy resides on the remote host. Constructors (init ialization

methods called at object creation time) of proxy classes create non-proxy (real)

objects on either the mobile or fixed host, as determined by the M o b i l e J Runt ime.

B o t h the Mob i l e J Instrument tool and Runt ime are wri t ten entirely in Java,

wi th the Runt ime requiring support from a native code l ibrary wri t ten in C . The

native l ibrary is necessary because of the tight integration between certain classes

in the Java standard l ibrary wi th the J V M , and also to implement native methods

of the instrumented versions of the standard Java classes.

2.2 Static Data and Method Design

A n application running under M o b i l e J executes as if it were executing on a single

host. Because there are two Java V M s operating concurrently in a typical config

uration of M o b i l e J , there are two copies of static da ta and two possible locations

where static methods may be invoked.

To preserve the semantics of a Java application executing on a single host,

M o b i l e J identifies the server host as the static host in the M o b i l e J system. Figure 2.2

(page 16) shows the design of M o b i l e J static data . A l l object type static fields

created in a static initializer method are created, by default, on the static host. (This

placement can be changed according to the Object Placement Policy, as described

15

®
®

Non-Static Host Static Host

proxy object

static field (non-proxy object)

Figure 2.2: Stat ic D a t a Design

in Section 3.1.2, page 22.) P r imi t ive type static fields are located, by default, on

the static host and cannot be moved.

Object type static fields are accessed v ia a local reference to a proxy object,

while pr imit ive type static fields are accessed v ia static accessor methods added to

a class during instrumentat ion, as described in Section 4.6.3, page 52.

Stat ic methods are always executed on the host where the invocation begins

because this does not change the semantics of static method invocation for a Java

application running on a single host.

2.3 Introduction to Java Concepts

This section presents an introduct ion to the Java language, runtime environment,

and class file (object code) format. Fur ther sections of this thesis assume knowledge

of these concepts.

Java [Fla97] is an object-oriented programming language and runtime envi-

16

ronment invented by engineers at Sun Microsystems. Java A S C I I text source files

are compiled by the j a v a c compiler into class files containing bytecode instructions.

The bytecode is interpreted by the Java Virtual Machine (J V M) [MD97] , an efficient

runtime environment implemented in software atop various hardware and operating

system platforms. Because its object code format, class files, can be executed on

any machine architecture and operating system to which the J V M has been ported,

Java is said to be architecture independent and portable.

D a t a in Java programs is either of a pr imit ive type, handled by value, or

a reference type. P r imi t ive types include shorts, integers, longs, floats, doubles,

characters, bytes, and booleans. Reference types are either arrays or objects which

are instances of classes declared in Java source code.

A s wi th many object-oriented languages, Java classes exist in an inheritance

hierarchy, rooted at the class J a v a . l a n g . O b j e c t . Classes must inherit from only

one super-class, but may implement any number of interfaces (see below). Classes

are grouped into packages; the full name of a class consists of the package name

and the class' simple name. For example, J a v a . l a n g . O b j e c t is in the package

J a v a . l a n g and its simple name is O b j e c t .

Java classes contain procedures, called methods, and variables, called fields.

Java methods may be either constructors, instance methods, or static methods. C o n

structors are invoked (called) to init ial ize a new class instance (object). Instance

methods, when invoked, are impl ic i t ly passed a reference to a part icular object by

which instance fields may be referenced. Stat ic methods, sometimes referred to as

class methods, are not passed a reference to a particular object when invoked.

17

T y p e Desc r ip to r

P r i m i t i v e Types byte B
char C
double D
float F
int I
long J
short S
boolean Z

Reference Types class LXc lass name>;
array [<type>

Table 2.1: Java Type Descriptors

In the class file format, methods are identified by name and type descriptor,

or signature. A method type descriptor is of the form:

(<parameter types>)<return type>

where <parameter types> is a concatenation of the type descriptors of

all parameters for the method, and <return type> is the type descriptor of the

method's result. Table 2.1 shows the type descriptors of all Java pr imit ive and

reference types.

Whi le most methods in a Java program are defined wi th bytecode instruc

tions interpreted by the v i r tua l machine, methods may also be declared as na t i ve ,

in which case they are defined by code compiled to the instruction set of the par

t icular hardware C P U on which the v i r tua l machine is executing. The use of native

methods l imits the portabi l i ty of a Java class because a different object code rep

resentation is needed for each machine architecture and operating system on which

the code is to run.

Java methods may "throw" any number of exceptions. Except ions are objects

which inherit from the class java. lang.Throwable. Exceptions propagate from the

18

point they are thrown, up through the method call stack unti l they are trapped by

an exception handler for their type, or they reach the top of the stack, at which

point the J V M halts execution.

Java fields may be either instance fields or static fields. Each object created

by a Java program may have a number of associated instance fields allocated wi th

i t . These may be of pr imit ive or reference type. Static fields are allocated on a

per-class basis and may optionally be init ialized when the class is loaded into the

v i r tua l machine v i a a static init ializer method.

A Java class may implement any number of interfaces, which are declarations

of methods and constant static fields. The names, parameter types, and return type

of each method is declared in an interface, and a class which implements the interface

must contain implementations of these methods.

• * Java source code is compiled into an object code format known as class files.

Each class file contains the executable code and structure for one Java class or

interface. W i t h i n a class file is a constant pool in which is stored all constant da ta

such as class names, method names, and string and numerical constants referred to

by various structures and executable code in the remainder of the class file. The large

amount of symbolic information retained in a class file facilitates dynamic l inking of

code both locally or even over a network. It also makes this executable format easier

to instrument compared to more t radi t ional operating system executable formats.

The J V M loads class files on demand and interprets method bytecode in

structions. The J V M is a stack-based vi r tual machine; the J V M instruction set

contains many instructions for manipulat ing data on the stack, as well as fairly

high-level instructions, for example, to invoke a method. Being stack-based also

makes instrumentation of bytecode somewhat easier as code can be inserted while

19

retaining the current stack state.

Whi l e the bulk of most Java applications consists of bytecode interpreted

by the J V M , a Java Nat ive Interface (JNI) [Sun97] also exists to allow l inking of

methods compiled to the instruction set of the hardware on which the J V M is

executing.

20

Chapter 3

Mobi le J Runtime

3.1 Management Layer

The Mob i l e J Management Layer is the portion of the Runt ime which is responsible

for application s tar tup and for controll ing any runtime decisions regarding object

placement between the two hosts in a Mob i l e J system. T h e Management Layer uses

the services of the Dis t r ibu t ion Layer to implement its policies.

3.1.1 R u n t i m e Parameters

The Mob i l e J Runt ime system may be invoked wi th a number of parameters which

control the configuration and operation of the system:

• - p o r t < p o r t numbe r> - T C P port number identifying this Mob i l e J Runt ime

instance

• - c l i e n t < c l i e n t - a d d r e s s : p o r t > - domain name or IP address and T C P

port number of the M o b i l e J client; specified when running as a server

21

• - s e r v e r < s e r v e r - a d d r e s s : p o r t > - domain name or IP address and T C P

port number o f the Mob i l e J server; specified when running as a client

• - m a i n < m a i n - c l a s s > - name of the proxy class containing the main() method

of the application to be run; this is only specified when running in client mode

and must be the final M o b i l e J argument on the command line, after which al l

application specific arguments must be placed

• - t r a c e < t r a c e - f i l e > - name of a file to which all M o b i l e J method call trace

output should be directed

Thus , specifying a client address starts M o b i l e J in server mode, while speci

fying a server address starts M o b i l e J in client mode.

3.1.2 Object Placement Policy

A s discussed in Section 1.3 (page 10), many environmental factors could influence

an object placement policy used for application par t i t ioning in a mobile computing

environment. M o b i l e J currently supports placement policies based on Object Type

only, though other, more sophisticated policies could be added with relative ease,

(see Section 6.2, page 82).

The M o b i l e J Runt ime has a number of static (Java class) fields which may

be referenced by an executing M o b i l e J applicat ion. References to these fields are

placed in instrumented code as required. Par t icular uses of these fields are described

in Chapter 4, which begins o n page 27. The following static fields are referenced by

instrumented application code:

The first four fields store the Internet domain name and T C P port number

of an instance of the M o b i l e J Runt ime:

22

• S t r i n g STATIC-HOST - host where static field da ta is stored by default

• S t r i n g CL IENT_H0ST - host where Mobi l e J runs in client mode

• S t r i n g SERVER_HOST - host where Mobi l e J runs in server mode

• S t r i n g OTHERJ IOST- same as SERVER J iOST when running in client mode; same

as CL IENT_HOST when running in server mode

Three fields store boolean values which may be checked in instrumented

application code:

• b o o l e a n i s S e r v e r H o s t - true if the instance of M o b i l e J is running in server

mode

• b o o l e a n i s C l i e n t H o s t - true if the instance of M o b i l e J is running in client

mode

• b o o l e a n i s S t a t i c H o s t - true if the instance of Mob i l e J is the static host

3.2 Distribution Layer

The M o b i l e J Dis t r ibu t ion Layer is responsible for implementing location transpar

ent method invocation v i a proxy objects. The general format of proxy classes is

described in Section 4.8, page 66. The current implementation of M o b i l e J uses Voy

ager [Obj97] as its Dis t r ibu t ion Layer, but this could be replaced in the future (see

Section 6.2.2, page 83).

3.2.1 Object Crea t ion

W h e n a new instance of a proxy object is created (by code which has been processed

by the Instrument tool) , it must, as part of its ini t ia l izat ion, create an instance of

23

the class for which it is a proxy. The non-proxy instance can be created either on

the local machine or on a remote machine, depending on the location passed to

the proxy constructor. Wherever the non-proxy object is created, the proxy object

maintains a way to reference this object for further method invocations. The proxy

object is able to find its corresponding non-proxy object even after being cloned

or serialized and sent to a remote machine, as happens when proxies are sent as

arguments in method invocations to a remote machine.

3.2.2 M e t h o d Invocation

Appl ica t ion code which invokes an instance method or constructor does so using a

reference to a local proxy object. The proxy object method must first determine i f its

non-proxy object is local or remote. If the object is local , it invokes the appropriate

method in the non-proxy object, passing any arguments as supplied by the caller.

If the method has a result, it is returned by the proxy method to the application

code.

If the object is remote, the proxy object serializes all method arguments

(using standard Java object serialization [RWW96]) , i f any, and sends them in a

method invocation request to the remote Mob i l e J host.

Upon receiving an invocation request and its associated arguments, M o b i l e J

deserializes all method arguments, finds the non-proxy object for the invocation, and

invokes the method, passing all method arguments. Since all object type arguments,

including references to arrays, are proxy objects, serialization and deserialization

only creates a copy of the proxy objects, not the objects they represent, preserving

method invocation semantics for remote calls.

W h e n the method returns, a reply, including any result value, is sent back

24

to the original Mob i l e J host. The result value is deserialized and returned to the

invoking application code by the proxy method.

If the remote method throws an unhandled exception, this is caught by M o

bileJ on the remote side, sent back to the original host, where it is re-thrown to the

application code making the method cal l .

3.2.3 Object M o b i l i t y

In addit ion to remote object construction and method invocation, the M o b i l e J D i s

t r ibut ion Layer also supports moving an object between hosts once created. A proxy

object can be directed to move the instance it represents to a specific M o b i l e J host

and port by invoking its moveTo method. The M o b i l e J Runt ime is passed a reference

to all proxy objects when created so that an object placement policy module can

move objects between hosts as desired.

After moving an object, al l proxies which exist for the object must s t i l l be

able to find the object. Th is is accomplished in the current implementat ion of

M o b i l e J (i.e., in Voyager) by forwarding all method invocations from the previous

host to the new host, and returning the new location when sending the invocation

result.

3.3 Native Library

Though , where possible, the M o b i l e J Runt ime is implemented in Java, a native

code l ibrary consisting of compiled C code is also required. This is needed pr imar i ly

to supply definitions of native methods in instrumented versions of classes in the

standard Java Class Library .

T w o native methods which access Java V i r t u a l Machine da ta structures,

25

c h e c k F o r T h i s P a r a m and c h e c k F o r T h i s T a r g e t , are also found in the M o b i l e J N a

tive Library . These methods are described in Section 4.4.2, page 44.

26

Chapter 4

Class File Instrumentation

Design and Implementation

4.1 Introduction

The M o b i l e J system includes an applicat ion, the Instrument tool , which processes

zip (or jar) format files containing Java class files. In converting Java class files

for use under M o b i l e J , the pr imary job of the Instrument tool is to change most

type (class) references such that they are references to proxy classes. Because Java

objects are handled by reference, proxy objects may be passed to and returned from

method invocations, even between hosts, wi thout changing the semantics of method

invocations.

The Instrument tool processes class files in two steps. The first step converts

class files for use wi th the Mob i l e J Runt ime (see Chapter 3, beginning on page 21).

The second step creates a proxy class based on the instrumented version of the

original Java class.

27

B y using proxy classes, object creation and method invocations may be inter

cepted and re-directed to the appropriate host. However, not all accesses to objects

are done through method invocations. F i r s t , arrays are objects in Java, but have

special J V M instructions which create and manipulate them. For dealing wi th ar

rays, the M o b i l e J Instrument tool creates wrapper classes, through which a l l arrays

are accessed, as described in Section 4.3 (page 31). Second, fields are also manipu

lated directly by J V M instructions. The Instrument tool creates accessor methods

for fields so that accesses to fields can be intercepted by proxy objects in the same

way as method invocations (see Section 4.6, page 51).

Because all Java applications depend on the standard Java Class Library ,

this l ibrary was instrumented to create instrumented classes and proxy classes which

correspond to all classes in the library. A l l instrumented classes and proxy classes

eventually inherit from j a v a . l a n g . O b j e c t , thus this class is not instrumented.

To support an Object T y p e object placement policy (Section 3.1.2, page 22),

the Instrument tool accepts a parameter file as input when instrumenting a set

of class files which indicates on which host, client or server, particular types of

objects should be created. Specifying these parameters at instrumentation t ime

means re-instrumenting classes to change these parameters, however, specifying this

information stat ically makes for a much more efficient implementat ion. W i t h a

static implementat ion, object location names may be specified by referencing one

of either CL IENT_HOST or SERVER-HOST variables in the M o b i l e J Runt ime. However,

indicat ing object creation location at run t ime would require an extra method cal l

and hashtable lookup every t ime an object was created, even for locally created

objects. Furthermore, the host a particular type of object is created on, i f it is

specified at a l l , is unlikely to change unless the class changes, which would require

28

re-instrumentation anyways.

Objects of types not specified in the instrumentation parameter file are al

ways created on the local host, i.e., the host where the thread is running. Thus ,

by specifying where objects of a part icular type are created, one can specify where

most other objects created by objects of this type are created.

4.1.1 Chapter Overview

This chapter describes the changes made to class files by the Instrument tool in

order to prepare them for execution wi th M o b i l e J . P r imar i l y this involves changing

all references to classes into references to proxy classes (Section 4.2). Since arrays

are created and manipulated directly by J V M instructions, a method was needed

to intercept these operations and allow for location transparent access to arrays, as

described in Section 4.3. Section 4.4 describes how method invocation was made

location transparent by making most method invocations go through a proxy object.

Section 4.5 describes tiow proxy objects are created in instrumented bytecode so that

nearly al l objects manipulated by a M o b i l e J application are proxy objects. Because

fields are also manipulated directly by J V M instructions, these instructions are

generally transformed into method invocations through a proxy object, as described

in Section 4.6. Section 4.7 details a number of miscellaneous changes required to

allow instrumented class files to run under M o b i l e J . F inal ly , sections 4.8 and 4.9

provide an overview of how proxy classes are created and discussion of two issues

pertaining to the implementation of bytecode instrumentat ion, repectively.

29

4.2 Class Level Changes

4.2.1 Class Names

The most fundamental change to al l instrumented classes is their change of

name. M o b i l e J instrumented classes are given a new name by being placed in

a new package which has " u b c . m j . " prepended to the original package name.

For example, the instrumented version of the class j a v a . l a n g . S y s t e m becomes

u b c . m j . j a v a . l a n g . S y s t e m .

Proxy classes are also named by prepending " u b c . m j . " to the original pack

age name, but in addit ion have " V " 1 prepended to the original simple class name.

For example, the proxy class corresponding to the original j a v a . l a n g . S y s t e m class

is named u b c . m j . j a v a . l a n g . V S y s t e m .

M o s t class names referenced in class files are changed to their equivalent

proxy class name; exceptions to this rule include j a v a . l a n g . S t r i n g and all Java

exception classes, i.e., subclasses of J a v a . l a n g . T h r o w a b l e which are described in

sections 4.7.1 (page 58) and 4.7.2 (page 59). A l so , as all instrumented and proxy

objects eventually inherit from j a v a . l a n g . O b j e c t , neither a proxy class nor instru

mented class is created for O b j e c t .

4.2.2 Interfaces

Because Java interfaces have corresponding class files which are instrumented, the

interfaces implemented by a part icular class must have their names changed as well .

A class is changed such that it implements instrumented interfaces correspond

ing to its original interfaces. The only exception to this is the marker interface

'The "V" stands for "virtual class", which is the terminology adopted by Voyager for referring
to proxy classes.

30

J a v a . l a n g . C l o n e a b l e , which is left as being implemented so that it continues to

indicate to the J V M that the class's instances may be cloned.

M o s t objects of instrumented classes need to support being moved be

tween machines; this is accomplished by the M o b i l e J Dis t r ibu t ion Layer which,

in turn , uses Java object serialization to serialize object da ta for transmis

sion over the network. Therefore, all instrumented classes must implement the

J a v a , i o . S e r i a l i z a b l e interface, indicating that they may be serialized. Th i s is

ensured by the Instrument tool .

4.3 Arrays

A s noted above, M o b i l e J makes use of proxy objects to hide the location of the "real"

objects referenced by them. Because objects are handled by reference in Java, the

proxy objects can effectively direct method invocations to the appropriate "real"

object, whether on the local machine or a remote one-either way, the semantics of

Java method invocation are preserved. W i t h the addit ion of accessor methods for

object fields, al l object state manipulat ion can be trapped by proxy objects at the

method invocation level.

Like "normal" objects, Java arrays are also manipulated by reference, how

ever, there are two pr imary differences relevant to M o b i l e J between arrays and

normal objects. F i r s t , Java array classes are created dynamically, at run time, by

the J V M , and not stored in class files. Thus no array class files exist upon which an

instrumented version of the array class or proxy class can be based. Second, there

are a number of J V M bytecode instructions which create and operate on arrays;

these cannot be "trapped" by proxy objects without modifications to the J V M .

31

4.3.1 Design

To solve the problems noted above, Mob i l e J makes use of a hierarchy of wrapper

classes, instances of which reference real Java arrays. These wrapper classes include

constructors for creating "wrapped" array objects, as well as accessor methods for

setting and getting array elements. A proxy class is also created based on the

wrapper class. Therefore, all Java array operations can be converted to method

invocations through a proxy object, as wi th field access operations on normal Java

objects.

The J V M creates a different array class for each combinat ion of array base

type and number of dimensions. For example, a two dimensional array of integers is

of a different class than a single dimensional array of integers. To mimic this wi th the

array wrapper class, the Instrument ut i l i ty creates multiple wrapper classes which

inherit from the base array wrapper class, ub c m j . a r r a y . A r r a y W r a p p e r . A s code

is being instrumented, the Instrument tool keeps track of al l references to arrays

and, after finishing the main instrumentation process, creates any A r r a y W r a p p e r

sub-classes and proxy classes required.

A r r a y W r a p p e r sub-classes are named according to the formula:

_ < n > _ < t > < c o m p o n e n t _ c l a s s _ n a m e >

where:

• <n> is the number of dimensions of this array class

• <t> is either a pr imit ive type descriptor, if the array's component 's are pr im

itives, or " L " if the array's components are objects

32

• < c o m p o n e n t _ c l a s s _ n a m e > is the fully qualified class name of the object

type component, wi th all periods (.) replaced with underscores (_); the

< c o m p o n e n t _ c l a s s _ n a m e > is only needed (and used) if the array component

type is an object type

Though many A r r a y W r a p p e r sub-classes are created, all functionality is in

herited from the A r r a y W r a p p e r class-the sub-classes exist only to distinguish array

types to the J V M .

W h e n checking if one array variable is assignment compatible wi th another

array variable, Java checks the assignment compatibi l i ty of the arrays ' elements. To

conform wi th this definition of compatibi l i ty , the inheritance hierarchy of M o b i l e J

array wrapper classes is as displayed in Figure 4.1.

This inheritance hierarchy ensures that references to array wrapper objects

are assignment compatible in the same way as instances of normal Java arrays.

There is one l imi ta t ion of this design1 worth noting. Java interfaces can inherit

from multiple other interfaces, therefore, for array wrapper classes to wrap arrays of

interfaces, they would need to inherit from multiple other classes. Java only allows

single inheritance for classes, therefore a M o b i l e J array wrapper class which wraps

an interface array may only inherit from a single interface array wrapper class. The

Instrument ut i l i ty selects the first inherited interface declared as the one inherited

by the array wrapper class.

33

ArrayWrapper

_1_Lj ava_lang_Obj ect

Y
_1_Lj ava_util_Vector

_1_L j ava_util_Stack

_2_L j ava_lang_Obj ect

Y
_ 2_Lj ava_util_Vector

_2_Lj ava_util_Stack

1 B

1 C
1 -D arrays

1 D

2 B

2 C
2-D arrays

2 D

Figure 4.1: Array Wrapper Class Hierarchy

34

Multidimensional Arrays

In Java, multidimensional arrays are created as arrays o f arrays, i.e., elements of

multidimensional arrays are other arrays. For example, a two dimensional array

twoD could be assigned as an element of the three dimensional array t h r e e D :

i n t [] [] twoD = new i n t [10] [10] ;

i n t [] [] t h r e e D = new i n t [10] [] [] ;

t h r e e D [5] = t w o D ;

The data structure arrangement and element types for a wrapped three d i

mensional array of integers are pictured in Figure 4.2 (page 36).

Because the sub-arrays of a mult idimensional array are also arrays, and han

dled by reference, when wrapped, the elements of lower dimensional sub-arrays of a

multidimensional array are instances of V A r r a y W r a p p e r sub-classes.

4.3.2 Creation

Java arrays may be created by the J V M using three different bytecode instructions:

n e w a r r a y , a n e w a r r a y , and m u l t i a n e w a r r a y . The instrumentat ion and correspond

ing A r r a y W r a p p e r constructor used when replacing each instruction in instrumented

code is discussed below.

Creation with n e w a r r a y

The simplest form of array creation is done wi th n e w a r r a y , which creates a single

dimension array of pr imit ive component type, n e w a r r a y takes the top stack word,

n, and creates an array of n whose components wi l l be of a pr imit ive type indicated

by a byte which is part of the instruct ion.

35

i

(V _ 2 _ I
\ / 1 1

t / \

_2. _ I
V)

v i i_ .1
) l 1

t \

_ 1 _ I
/

\

V_3 _ I
/ 1 1

t / \

_3. _ I
V /

V _ 2 _ I

i
i
t

_2 . _ I
\)

/

V _ 2 _ I
\

i
i
t /

_2. _ I
\

Key: object

object reference

** indirect reference

array of object references

array of integers

Figure 4.2: D a t a Structure and Element Types of a Wrapped Three Dimensional
A r r a y of Integers

36

new <VArrayWrapper-sub-class>
dup_xl
swap
ldc <type-code>
<load-obj ect-host>
invokespecial <VArrayWrapper-sub-class>(IILjava/lang/String;)

Figure 4.3: Instructions Replacing newarray

To emulate this instruction using the ArrayWrapper class, the newarray

instruction is replaced wi th the instructions shown in Figure 4.3.

The new instruction creates an uninit ial ized instance of the appropriate

VArrayWrapper sub-class. The dup_xl and swap instructions arrange the stack

such that the reference to the VArrayWrapper object is below the array size (in

teger), placed on the stack by code immediately preceding this. The first ldc in

struction loads an integer, the array type-code, indicat ing the array component 's

pr imit ive type, and the instruction indicated by <load-obj ect-host> is either an

ldc instruction or a getstatic instruction which loads the host name on which this

array should be created (usually it wi l l be "localhost") . F inal ly , the last instruc

tion invokes the appropriate VArrayWrapper constructor to initialize the array. The

ArrayWrapper constructor which is eventually invoked creates a real Java array of

the type specified by the <type-code> value.

Creation with anewarray

The second Java bytecode instruction used to create arrays is the anewarray in

struct ion. This instruction is used to create a single dimension array of objects,

anewarray takes the top stack word, n, and creates an array of n elements whose

component type is indicated by a reference, as part of the instruction, to a Class

37

new < V A r r a y W r a p p e r - s u b - c l a s s >
d u p _ x l
swap
l d c < b a s e - t y p e - s t r i n g >
< l o a d - o b j e c t - h o s t >
i n v o k e s p e c i a l

< V A r r a y W r a p p e r - s u b - c l a s s > (I L j a v a / l a n g / S t r i n g ; L j a v a / l a n g / S t r i n g ;) V

Figure 4.4: Instructions Replacing a n e w a r r a y

entry in the constant pool.

A s shown in Figure 4.4 (page 38), the code which emulates the a n e w a r r a y

instruction is very similar to the code which emulates n e w a r r a y . Therefore, only

the differences wi l l be discussed below.

Instead of indicat ing the array's component type by a type code value passed

to the A r r a y W r a p p e r constructor, the bytecode passes a " < b a s e - t y p e - s t r i n g > " .

This is a Java string indicat ing the appropriate M o b i l e J class to use for components

of the array. Usual ly this wi l l be a proxy class (except where a proxy class is not

used in M o b i l e J , as discussed previously). If the a n e w a r r a y instruction is being

used to create the first dimension of a mult idimensional array, the component type

wi l l be an appropriate sub-class of V A r r a y W r a p p e r . The A r r a y W r a p p e r constructor

creates a real Java array of the type specified by the < b a s e - t y p e - s t r i n g > .

C r e a t i o n w i t h m u l t i a n e w a r r a y

The final instruction which can create arrays in Java bytecode is the m u l t i a n e w a r r a y

instruction, which is used to create a multi-dimensional array, m u l t i a n e w a r r a y cre

ates an array of n dimensions where n is indicated as part of the instruction. A l s o

as part of the instruction is a reference to a Class constant pool entry indicat ing the

38

i s t o r e 2 5 5
i s t o r e 2 5 4

i s t o r e < 2 5 5 - (n - l) >
i s t o r e <255-n>
new < V A r r a y W r a p p e r - s u b - c l a s s >
dup
i l o a d <255-n>
i l o a d < 2 5 5 - (n - l) >

i l o a d 2 5 4
i l o a d 2 5 5
l d c < w r a p p e r - b a s e - t y p e - s t r i n g >
l d c < b a s e - t y p e - s t r i n g >
< l o a d - o b j e c t - h o s t >
i n v o k e s p e c i a l < V A r r a y W r a p p e r - s u b - c l a s s > (I i . . .In L j a v a / l a n g / S t r i n g ;

L j a v a / l a n g / S t r i n g ;) V

Figure 4.5: Instructions Replacing m u l t i a n e w a r r a y

type descriptor for the array being created. The instruction expects n integers on

the top of the stack, each of which indicates the size of one dimension of the array.

To emulate this instruction using the A r r a y W r a p p e r class, the

m u l t i a n e w a r r a y instruction is replaced with the instructions shown in Figure 4.5

(page 39).

The m u l t i a n e w a r r a y instruction is more awkward to emulate because at

the point where the instruction is encountered in bytecode, n (where 1 < n < 255)

integer words are on top of the stack, one for each dimension of the array. These

integers, representing the size of each array dimension, must be passed as arguments

to a V A r r a y W r a p p e r constructor, however, to do so, a reference to the uninit ial ized

V A r r a y W r a p p e r object must be placed beneath the integers.

The solution taken is to first store the n integers in local variables numbered

from 255 downward, create the V A r r a y W r a p p e r instance, and then load the n integers

39

back on to the stack. Th i s assumes the method involved does not use more than

(255 - n) local variable slots. It also assumes that A r r a y W r a p p e r has as many

constructors of this type as the number of dimensions of the maximal ly dimensioned

array instance that needs to be created. 2

After re-loading the n integers, the instrumented code loads a

" w r a p p e r - b a s e - t y p e - s t r i n g > " from the constant pool . Th is is a Java string which

is used by the A r r a y W r a p p e r constructor in creating instances of the appropriate

V A r r a y W r a p p e r sub-class which wi l l be elements of the created A r r a y W r a p p e r in

stance (because the created array is mult idimensional) . Th i s str ing is the same as

the A r r a y W r a p p e r sub-class name, but without the " _<n>" (number of dimensions

prefix) which wi l l be different for each dimension of the array. This str ing could

be computed at run t ime by the A r r a y W r a p p e r constructor, but it is more efficient

to compute it statically, at instrumentation time, and pass it recursively as the

multi-dimensioned array is created.

The " < b a s e - t y p e - s t r i n g > " passed to the constructor is the same as that

which is passed when emulating the a n e w a r r a y instruct ion, except in this case the

string usually indicates another V A r r a y W r a p p e r sub-class, which would be the type

of elements in the second dimension of the array being created. The A r r a y W r a p p e r

constructor recursively creates the n dimensions of the multi-dimensional array.

4.3.3 Access

The J V M has a number of instructions which are used to load elements from an

array to the stack, and store elements from the stack to a part icular array element.

There is also an instruction to retrieve the length of an array. There are different

2In the current implementation of MobileJ, ArrayWrapper has enough constructors for a ten
dimensional array, though more could easily be added, up to the required 255.

40

E l e m e n t T y p e I n s t r u c t i o n M e t h o d a n d S i g n a t u r e
integer i a l o a d g e t l n t (l) l

i a s t o r e s e t I n t (I I) V
long l a l o a d g e t L o n g (I) J

I a s t o r e s e t L o n g (I J) V
float f a l o a d g e t F l o a t (I) F

f a s t o r e s e t F l o a t (I F) V
double d a l o a d g e t D o u b l e (I) D

d a s t o r e s e t D o u b l e (I D) V
object reference a a l o a d g e t (I) L j a v a / l a n g / O b j e c t ;

a a s t o r e s e t (I L j a v a / l a n g / O b j e c t ;) V
byte/boolean b a l o a d g e t B y t e (I) B

b a s t o r e s e t B y t e (I B) V
character c a l o a d g e t C h a r (I) C

c a s t o r e s e t C h a r (I C) V
short s a l o a d g e t S h o r t (I) S

s a s t o r e s e t S h o r t (I S) V
a r r a y l e n g t h g e t L e n g t h O I

Table 4.1: Java A r r a y Access Instructions and Their Corresponding A r r a y W r a p p e r
Methods

load and store instructions for each Java primitive type (except boolean values,

which use the instructions for byte types), and for object reference elements.

To mimic the array access instructions, the A r r a y W r a p p e r class provides

corresponding methods to load from and store to the underlying Java array which

its instances wrap. It also provides a g e t L e n g t h method which may be used to get

the size of the array. The Instrument tool replaces al l array access instructions with

an invocation of their corresponding A r r a y W r a p p e r method. Table 4.1 summarizes

the methods which replace array access instructions.

41

4.4 Method Invocation and Return

4.4.1 M e t h o d Headers

In addit ion to a method's bytecode, various entities of a Java class file method table

are changed when instrumented for use with M o b i l e J ; these changes are described

in this section.

Names

W h e n the Instrument tool creates a proxy class, the names and signatures of its

methods are made the same as its corresponding "real" class. However, as all proxy

objects inherit from the class V O b j e c t , any method names which are the same as

methods of V O b j e c t must be changed. 3 M e t h o d names which would potentially

override methods of V O b j e c t are changed by prepending " m j _ " to them in the in

strumented class and its proxy class. Exceptions to this are the standard t o S t r i n g

and c l o n e methods which may be overridden in the proxy class.

One other exception to the method naming convention relates to Java ex

ception classes and is described in Section 4.7.1, on page 58.

Signatures

M o s t of the objects handled by instrumented code are referenced through a proxy

object, thus method parameter and return types are changed in the instrumented

code. This requires changing the signature of al l methods which accept or return

objects, including arrays.

3This is not strictly true: actually, any methods with the same name and the same parameters
must have their names changed in the instrumented class; otherwise, the methods in sub-classes
would override the methods of VObject. For ease of implementation, however, the current Instru
ment utility only checks the method's name.

42

A l l Java primit ive type descriptors in a method's signature are left unchanged

as these parameters are passed by value. A r r a y type descriptors are changed to their

equivalent array proxy class type descriptor (as described in Section 4.3, page 31).

A l l other object type descriptors are changed to descriptors of their equivalent proxy

object type, except for those classes without proxy classes, in which case the de

scriptor is changed to one of the corresponding instrumented class. Descriptors for

j a v a . l a n g . O b j e c t are left unchanged.

Access Restrictions

Java class methods may be designated " p r i v a t e " , " p r o t e c t e d " , " p u b l i c " , or left

wi th no designation, meaning "package" level access for the method. In addi t ion,

methods may be either instance methods or static (class) methods.

M o b i l e J requires that all instance methods and constructors be made p u b l i c .

Th i s comes as a direct result of using proxy objects for location transparent method

invocat ion. Because a proxy object is of a different class than its corresponding

"real" (instrumented) object, access to its methods cannot be restricted using or

dinary method access flags, as wi th ordinary Java objects: the J V M doesn't know

that the proxy objects should be regarded as being in the same "protection domain"

as the non-proxy objects when determining i f a method should be accessible from a

certain context.

43

For example, if a method of class f o o accepts " b a r " , an argument of class

f o o , this method is allowed to invoke any private instance method of the b a r because

it is of the same class as itself. However, when instrumented, the argument b a r takes

on the type Vfoo (the proxy class of foo) ; thus, to the J V M , its private methods

are no longer accessible to the method. M a k i n g all instance methods public gets

around this problem.

Exceptions Thrown

A s Java exception classes are instrumented, the exceptions thrown by a method also

have their names changed to those of the new, instrumented exception types.

4.4.2 Invocation and Return

General Cases

W h e n instrumenting a bytecode instruction which invokes a method, the invoking

instruction must be made to reference a new Methodref entry in the constant pool

whose referenced class, method name, and method signatures have been changed

according to Mobi l e J ' s conventions. These conventions have been previously de

scribed in sections 4.2.1 (page 30) and 4.4.1 (page 42), and wi l l not be described

here. Generally, this means that most method invocations are made to go through

a proxy object, also described previously.

However, there are a number of special cases which must be handled for

method invocation to function properly and follow the semantics of normal Java

method invocation; these are described below.

44

Invocat ion and R e t u r n F r o m W i t h i n an Instance M e t h o d

M o s t references to objects handled by instrumented code in M o b i l e J are to proxy

objects. However, al l instance methods, including those in instrumented classes,

are impl ic i t ly passed a reference to the object which is the target of the invocation

(the " t h i s " parameter) by the J V M . W i t h i n instrumented classes, this object wi l l

never be a proxy object, and must be handled differently when being passed as an

argument in further method invocations, used as the target of an invocation, or

returned from the instance method. In the first and last instances, the reference to

t h i s must be converted to a reference to a proxy object (which, in turn, references

t h i s) ; in the second case, the method referenced must be in a "real" class and not

a proxy class as wi th most method invocations.

Because static analysis of where the t h i s reference is being used in method

bytecode is quite difficult (and impossible in the general case), the Instrument ut i l i ty

inserts bytecode to perform run t ime checks for usages of t h i s in cases where it can

determine that the check is necessary.

W h e n checking i f t h i s is passed as an argument to a method, the types of

all method parameters, as specified in the method's signature, are check to see if

they are the same as or super classes of the invoking method's class (i.e., the class

of the t h i s object). If any parameters could be a reference to t h i s (based on their

type), code to perform a run t ime check for t h i s being passed as a parameter is

inserted. Figure 4.6 shows the bytecode that is inserted immediately before the

method invocation instruct ion.

The c h e c k F o r T h i s P a r a m method is a native static method in the Mob i l e J

Runt ime. Th i s method scans the Java stack for references to t h i s and replaces them

wi th references to proxy objects by invoking V O b j e c t . f o r D b j e c t which creates an

45

l d c < s t a c k B i t F i e l d >
b i p u s h <numWords>
i n v o k e s t a t i c u b c / m j / M o b i l e J a v a / c h e c k F o r T h i s P a r a m (I I) V

Figure 4.6: Runt ime Check For " t h i s " A s a Parameter: < s t a c k B i t F i e l d > and
<numWords> are integers determined by the Instrument uti l i ty.

appropriate proxy object for a particular "real" object. The c h e c k F o r T h i s P a r a m

method is dependant on the particular J V M implementat ion running M o b i l e J . 4

Because it needs quick access to words on the Java stack below the top one, this

method is implemented in C , and is part of the M o b i l e J Nat ive Library .

The < s t a c k B i t F i e l d > and <numWords> integer values are determined by

the Instrument ut i l i ty by analysing the parameters of the method being invoked.

< s t a c k B i t F i e l d > is an integer bit-field specifying which words on the Java stack

may hold references to the t h i s parameter (as determined by the analysis of param

eter types described above). The c h e c k F o r T h i s P a r a m method only checks words on

the stack for which the corresponding bits of < s t a c k B i t F i e l d > are on. <numWords>

indicates the max imum depth, in words, c h e c k F o r T h i s P a r a m should scan the stack

looking for a reference to t h i s . Using these parameters, the stack may be efficiently

scanned for references to t h i s passed in a method invocat ion.

Because a reference to t h i s can also be returned from an instance method,

the Instrument tool inserts code to ensure that these are converted to refer

ences to proxy objects when returned by the a r e t u r n instruct ion. Since the

c h e c k F o r T h i s P a r a m method works perfectly well for this case as well, the code

in Figure 4.6 is inserted immediately before the a r e t u r n instruction i f the Instru

ment tool determines, by comparing the return type in the method's signature wi th

4The current version of MobileJ supports version 1.1.5 of Sun Microsystem's implementation of
the VM on Solaris and a port of Sun's VM on Linux.

46

bipush <n>
i nvokes ta t i c ubc/mj /Mobi leJava/checkForThisTarget (I)Z
i f e q L a b e l l
i n v o k e v i r t u a l < ' t h i s ' ob ject method>
goto Label2

L a b e l l :
i n v o k e v i r t u a l <proxy object method>

Labe l2 :

Figure 4.7: Runt ime Check For " t h i s " A s a M e t h o d Invocation Target

the method's class, that the reference returned could possibly be a reference to t h i s .

In this case, <s tackBi tF ie ld> and numWords are both equal to 1.

W h e n checking if t h i s is the target of a method invocation, the Instrument

tool checks if the method is in the same class or a super-class of the current class.

If this is the case, then it is possible that the target of the invocation (the object

whose method is being invoked) is the current method's object, i.e., the t h i s ob

ject. Figure 4.7 (page 47) shows the bytecode that replaces the method invocation

instruction in this case.

A s wi th the checkForThisParam method, the checkForThisTarget method

is a native static method in the M o b i l e J Runt ime. This method examines the Java

stack word indicated by its integer argument, returning the boolean value t rue i f

this word is a reference to t h i s , and f a l s e if not. The Instrument tool determines

which word could be a reference to t h i s by counting the number of words making

up parameters according to the method's signature. The target of the invocation is

one word below the first argument word.

47

If the target of the invocation is t h i s , the first invocation instruct ion, which

references a method in the same class as the current method wi l l be executed.

Otherwise, the second invocation instruct ion, which references a method in a proxy

class, wi l l execute.

Static Method Invocation

Stat ic (or class) methods are invoked in much the same way as instance methods,

except that they are not passed an instance of the method's class. A s discussed in

Section 2.2 (page 15), static method invocations need not go through a proxy class,

but, rather, are called directly. Stat ic methods are invoked wi th the i n v o k e s t a t i c

instruction, and each instance must have its referenced class and method signature

changed by the Instrument tool . The tool changes referenced class names to their

corresponding instrumented class names as well as changing the types of parameters

according to the Mob i l e J conventions discussed earlier (see Section 4.2.1 for details).

Other Special Cases

A part icular case of invoking wi th in an instance method where the target is t h i s

happens when a constructor calls a super-class constructor. The Java Language

Specification [GJS96] states that the first statement in a constructor must be a call

to a super-class constructor, and even i f it does not exist in the source code, a call to

the super-class constructor wi th no arguments is inserted impl ic i t ly in the bytecode

by the compiler.

The Instrument tool can thus determine when this is happening in a construc

tor 's bytecode and ensure that the constructor in a M o b i l e J instrumented class is

called, rather than a constructor in a proxy class as would happen without checking

48

d u p
i n s t a n c e o f V O b j e c t
i f n e L a b e l l
i n v o k e s t a t i c VOb j e c t / f o r O b j e c t (L j a v a / l a n g / O b j e c t ;) L V O b j e c t ;

L a b e l l :

Figure 4.8: Bytecode Inserted After an Invocation of c l o n e .

for this special case.

Another case of method invocation which is handled as a special case when

instrumenting bytecode is invocation of an object's g e t C l a s s method. Because

this method, when invoked on a proxy object, would return the real Java C l a s s

object representing the proxy's class, it must be changed such that an instance of

u b c . m j . J a v a . l a n g . V C l a s s is returned instead.

The Instrument tool replaces the invocation of

g e t C l a s s wi th an invocation of the static method

f o r O b j e c t (L j a v a / l a n g / O b j e c t ;) L u b c / m j / j a v a / l a n g / V C l a s s ; in the instru

mented version of J a v a . l a n g . C l a s s . Th is method is added to the instrumented

version of J a v a . l a n g . C l a s s by the Instrument tool , as wi l l be described in

Section 4.7.4 (page 63).

A th i rd case of method invocation handled as a special case is invocation of

an object 's c l o n e method. The Instrument tool inserts code after the invocation

of c l o n e to ensure that the object returned is an instance of a proxy class; these

instructions are displayed in Figure 4.8.

This code checks i f the instance returned by c l o n e is an instance of V O b j e c t ,

the super-class of all proxy objects. If not, it calls the static method f o r O b j e c t to

convert the reference from a "real" Java object to a reference to a proxy object.

49

< l o a d - o b j e c t - h o s t >
i n v o k e s p e c i a l V O b j e c t / < i n i t > (. . . L j a v a / l a n g / S t r i n g ;) V
dup
i n v o k e s t a t i c u b c / m j / M o b i l e J a v a / r e g i s t e r O b j e c t (L V O b j e c t ;) V

Figure 4.9: Bytecode Instrumentation of Constructor Invocation

If the invocation is made to the c l o n e method in j a v a . l a n g . O b j e c t v ia an

i n v o k e s p e c i a l instruction, the Instrument tool assumes that a clone of the current

object (the t h i s object) is created and omits the type-checking code, inserting the

call to f o r O b j e c t directly after the call to c l o n e .

The final special case of method invocation is invocation of an object's

t o S t r i n g method. This wi l l be discussed in Section 4.7.2 (page 59).

4.5 Object Creation and Initialization

Objects are allocated in Java bytecode by the new instruct ion. Th i s instruction

references a Class entry in the constant pool , describing the class of the object to

be created. The Instrument tool changes this class to the appropriate proxy class

when it encounters a new instruct ion.

After al locating a new object wi th new, one of the object's constructors is

called to initialize the object. In addit ion to changes made to the bytecode because

this is a method invocation (as described in Section 4.4.2, page 44), the Instrument

tool must decide on what machine the object should be created, and pass a reference

to the proxy object to the M o b i l e J Runt ime system. Figure 4.9 shows an example

of a constructor invocation after instrumentat ion.

If the type of object being init ialized has been designated as being created at

50

either the client or server host, the g e t s t a t i c instruction retrieves the appropriate

host name and port number from the Mob i l e J Runt ime. Otherwise the object is

created on the current host, thus < l o a d - o b j e c t - h o s t > becomes l d c " l o c a l h o s t " .

The final parameter of a proxy object's constructor is always a s t r ing in which is

passed the host name and port number of the location to create the object at.

F ina l ly , the Instrument tool adds a call to the r e g i s t e r O b j e c t method in

the Mob i l e J Runt ime so that it can move the object in the future according to its

object placement policy.

4.6 Field Access

4.6.1 F i e l d Signatures

A s M o b i l e J applications handle objects through proxy objects, the type signature

of object fields, including arrays, must be changed. The modification of field type

signatures is exactly the same as for that of method signatures, as described in

Section 4.4.1 (page 42), i.e., most object types are changed to their corresponding

proxy object type.

4.6.2 Accessor Me thods

W h e n the Instrument tool examines a class, it adds two accessor methods for every

field (both static and non-static); these are used to set and retrieve field values as

wi l l be described in the next two sections.

51

Stat ic fields:

g e t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e >
p u t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e >

Non-stat ic fields:

g e t F i e l d _ < c l a s s - n a m e > _ < f i e l d - n a m e >
p u t F i e l d _ < c l a s s - n a m e > _ < f i e l d - n a m e >

Figure 4.10: Static and Non-Stat ic F ie ld Accessor M e t h o d Names

F ie ld accessor methods are named according to the general form shown in

Figure 4.10. Here < c l a s s - n a m e > is the fully qualified class name of the class being

instrumented wi th all periods (.) replaced wi th underscores (_). < f i e l d - n a m e > is

the name of the field.

4.6 .3 Static Fields

The J V M has two instructions for accessing static fields: g e t s t a t i c and p u t s t a t i c .

Because of the design of static da ta in Mob i l e J (Section 2.2, page 15), there are six

different cases of use which are instrumented differently:

Initializing p u t s t a t i c Of Object Fields

A n "ini t ia l iz ing p u t s t a t i c " instruction is one which stores the ini t ia l value of a

static field, and is contained in a class' static initializer method (named " < c l i n i t > ") .

This method is run impl ic i t ly by the J V M when the class is loaded. Figure 4.11

shows the bytecode which replaces an instance of an ini t ia l iz ing p u t s t a t i c instruc

tion which works wi th Object fields.

The ini t ial izat ion of static object data wi th in a static intializer method hap

pens in two steps: first the object is created and its constructor invoked. For an

52

g e t s t a t i c u b c / m j / M o b i l e J a v a / i s S t a t i c H o s t
i f n e L a b e l l
p o p
g e t s t a t i c u b c / m j / M o b i 1 e J a v a / O T H E R _ H O S T
i n v o k e s t a t i c g e t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e > ()

L a b e l l :
p u t s t a t i c < s t a t i c - f i e l d >

Figure 4.11: Bytecode Replacing an Ini t ial izing p u t s t a t i c O f Object Fields

instrumented class, this wi l l (generally) create a reference to a proxy object on

the top of the stack. Second, this reference is stored in a static variable using the

p u t s t a t i c instruct ion. This second step happens differently depending on if the

static init ializer is executing on the static host or not. (This is tested for using the

first two instructions in Figure 4.11.)

If the static initializer is executing on the static host, the reference to the

proxy object is copied to the static variable wi th p u t s t a t i c just as it would be

in non-instrumented code. However, if the static initializer is executing on the

non-static host, the reference to the proxy object is popped off the stack and the

proxy object for this static field is obtained from the static host by invoking a

g e t S t a t i c _ . . . type accessor method. The returned proxy object, which references

the "real" object created by the static init ializer on the static host, is stored in the

local static variable.

Th i s design has the disadvantage that ini t ial izat ion of static objects happens

twice, wi th one copy not used. However, given the inherent difficulties of analyzing

the da ta flow of methods, this solution was chosen. It is difficult to determine, in the

general case, where a reference to an object wi l l eventually be stored in a method.

53

(l d c < s t a c k B i t F i e l d >
b i p u s h <numWords>
i n v o k e s t a t i c u b c / m j / M o b i l e J a v a / c h e c k F o r T h i s P a r a m (I I) V

d u p
g e t s t a t i c u b c / m j / M o b i l e J a v a / 0 T H E R _ H 0 S T

i n v o k e s t a t i c p u t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e > (. . .)
p u t s t a t i c < f i e l d >

Figure 4.12: Bytecode Replacing a Non-Ini t ia l iz ing p u t s t a t i c O f Object Fields

I n i t i a l i z i n g p u t s t a t i c o f P r i m i t i v e F i e l d s

Since pr imit ive type fields are handled by value and not reference, their ini t ia l izat ion

is t r iv i a l . The Instrument tool does not need to change the p u t s t a t i c instruction

which initializes a primitive static field. In effect, these fields are replicated on each

M o b i l e J host.

N o n - I n i t i a l i z i n g p u t s t a t i c o f O b j e c t F i e l d s

A p u t s t a t i c instruction not wi th in a static intializer method which operates on an

object type field must be handled differently than i f it were in a static intializer.

The code which replaces such an access is shown in Figure 4.12.

The first three instructions in Figure 4.12 are the same as those used to

check if t h i s is being passed as a parameter in a method invocation. It is pos

sible for them to be necessary here under the same circumstances as discussed in

Section 4.4.2 (page 44) because the p u t s t a t i c instruction is being replaced wi th a

method invocation.

A t the point of the dup instruct ion, the top stack word wi l l be a reference

to a proxy object. The remaining instructions store a reference to the proxy object

on both the opposite Mob i l e J host, and the current host. F i r s t a p u t s t a t i c . . .

style accessor method is invoked on the opposite host, storing a reference there, and

54

finally the p u t s t a t i c instruction stores a reference to the proxy on the local host.

N o n - I n i t i a l i z i n g p u t s t a t i c o f P r i m i t i v e F i e l d s

A p u t s t a t i c instruction not wi th in a static intializer method which operates on a

primit ive type field must be handled differently than i f it were in a static intializer.

The code which replaces such an access is shown in Figure 4.13.

This code simply invokes the appropriate p u t S t a t i c _ . . . style method on

the static host to change the field value.

O b j e c t T y p e g e t s t a t i c

Other than changing the type descriptor referenced in the instruct ion, instances of

g e t s t a t i c which operate on object type fields are left alone by the Instrument tool .

Once init ial ized, static object type fields on either M o b i l e J host are proxy objects

which refer to the same "real" object. Therefore, a reference to the proxy object

may be obtained locally, wi thout invoking an accessor method.

P r i m i t i v e T y p e g e t s t a t i c

The bytecode which replaces an instance of g e t s t a t i c which operates on a pr im

itive type field is shown in Figure 4.14. This code s imply invokes the appropriate

g e t s t a t i c . . . style method on the static host to retrieve the field value.

g e t s t a t i c u b c / m j / M o b i l e J a v a / S T A T I C _ H O S T
i n v o k e s t a t i c p u t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e > ()

Figure 4.13: Bytecode Replacing a Non-Ini t ia l iz ing p u t s t a t i c O f P r imi t ive Fields

55

g e t s t a t i c u b c / m j / M o b i l e J a v a / S T A T I C _ H O S T
i n v o k e s t a t i c g e t S t a t i c _ < c l a s s - n a m e > _ < f i e l d - n a m e > ()

Figure 4.14: Bytecode Replacing a g e t s t a t i c O f Pr imi t ive Fields

4.6.4 I n s t a n c e Fields

The J V M has two instructions for accessing object fields: g e t f i e l d and p u t f i e l d .

These instructions must be replaced by method invocations so that field access can

be made to go through a proxy object.

General Case

Generally, each instance of p u t f i e l d is replaced wi th an invocation of a

p u t F i e l d _ . . . style accessor method. Similarly, each instance of a g e t f i e l d is

replaced wi th an invocation of the appropriate g e t F i e l d _ . . . accessor method. In

this way, field accesses are made to go through proxy objects.

There are two special cases which must be handled somewhat differently;

these are explained below.

p u t f i e l d with " t h i s "

The first special case of instance field access has to do wi th the possibility of storing

a reference to t h i s in a field. The Instrument tool checks all instances of p u t f i e l d

within an instance method to see, based on the field type and type of t h i s , i f a

reference to t h i s could be stored in the field by the p u t f i e l d instruct ion. If this

is possible, the Instrument tool adds bytecode to perform a runtime check for this

condit ion. Th i s is similar to the check inserted to ensure that a reference to t h i s

passed in a method invocation is converted to a reference to a proxy object (see

56

bipush <n>
i nvokes ta t i c ubc/mj /Mobi leJava/checkForThisTarget (I)Z
i f e q L a b e l l
g e t f i e l d <f ie ld>
goto Label2

L a b e l l :
i n v o k e v i r t u a l g e t F i e l d _ . . . ()

Labe l2 :

Figure 4.15: Runt ime Check For " t h i s " A s a F ie ld Access Target

Section 4.4.2, page 44). In the case of put f i e l d , the code in Figure 4.6 (page 46)

is inserted just before the invocation of the appropriate pu tF ie ld_ . . . accessor

method.

Access of F i e l d in " t h i s "

If the Instrument tool determines from the class referenced in the put f i e l d or

g e t f i e l d instruction that the field being accessed may be in the current, or t h i s ,

object, some instructions must be inserted to check for this condit ion at runtime.

Th i s is done because access of fields of the current object can be done without going

through a proxy object. Th is is similar to the check done before some method

invocations where the invocation might go to the current object (see Section 4.4.2,

page 44).

Figure 4.15 shows the bytecode replacing an instance of a field access where

the access could possibly be to a field of t h i s . The same M o b i l e J Runt ime method,

checkForThisTarget, is called to check i f the word at location <n> is a reference to

t h i s . If it is, a g e t f i e l d instruction is used to retrieve the field value, otherwise a

ge tF ie ld_ . . . method is called to retrieve the field value v i a a proxy object. Th is

runtime check is also used for similar instances of put f i e l d .

57

4.7 Miscellaneous Changes and Exceptional Cases

4.7.1 E x c e p t i o n C l a s s e s

A s noted earlier, in Section 4.2.1 (page 30), Java exception classes (i.e.,

J a v a . l a n g . T h r o w a b l e and its subclasses) have corresponding instrumented ver

sions created by the Instrument tool . However, proxy classes are not created for

these classes because of the way they are used in Java applications. F i r s t , instances

of exception classes are thrown by the a t h r o w bytecode instruction which expects

a j a v a . l a n g . T h r o w a b l e object to th row; 5 proxy classes cannot be sub-classes of

J a v a . l a n g . T h r o w a b l e . Second, exception objects are typical ly used as short-lived,

error status carrying objects, therefore there is l i t t le need for their location to be

transparent to application programs.

W h e n instrumenting the Java Class Library , the Instrument tool creates in

strumented version of all exception classes, including j a v a . l a n g . T h r o w a b l e . F i g

ure 4.16 shows the inheritance hierarchy of instrumented exception classes in M o

bi leJ .

A l l instrumented exception classes inherit from their appropriate (instru

mented) super-class, except u b c . m j . j a v a . l a n g . T h r o w a b l e , which inherits from

j a v a . l a n g . E x c e p t i o n . 6 Th is allows instances to be thrown wi th a t h r o w .

5The VM used for developing MobileJ, a port of Sun's version 1.1.5 JDK, actually allows any
type of object to be thrown, i.e., it does not do a runtime check of the object type when executing
the athrow instruction. This would, however, cause bytecode verification to fail.

6These classes could inherit from java.lang.Throwable, however a limitation of the cur
rent MobileJ Distribution Layer implementation (i.e., Voyager) requires them to inherit from
java.lang.Exception.

58

j ava.lang.Throwable

j ava.lang.Exception j ava.lang.Error

V
ubc.mj.java.lang.Throwable

ubc.mj.java.lang.Exception ubc.mj.java.lang.Error

\i \i

instrumented instrumented
exception classes error classes

Figure 4.16: Class Hierarchy For Instrumented Except ion Classes

To ensure that methods in u b c .mj . J a v a . l a n g . T h r o w a b l e don' t over

ride those in J a v a . l a n g . T h r o w a b l e , certain method names have their names

changed by prepending " m j _ " to them; these methods are: f i l l l n S t a c k T r a c e ,

g e t L o c a l i z e d M e s s a g e , a n d g e t M e s s a g e .

4.7.2 Strings

Introduction

W h i l e most classes instrumented for use wi th M o b i l e J have proxy classes, the instru

mented version of J a v a . l a n g . S t r i n g does not. Since Java strings are immutable ,

they may be passed by value in method invocations which traverse machine bound

aries without interfering wi th Java invocation semantics. Furthermore, s tr ing in

stances are often small , short-lived objects, and removing the need for invocations

to go through proxy objects improves the performance of str ing handling code.

Though it does not require a proxy class, the str ing class does need to

59

be instrumented. The class J a v a . l a n g . S t r i n g contains methods wi th parame

ters, which, when instrumented, have their types changed to proxy classes. If

J a v a . l a n g . S t r i n g was not instrumented, these methods would be incompatible

with other instrumented bytecode.

It should be noted that while the class u b c . m j . J a v a . l a n g . S t r i n g does not

have a corresponding proxy class, its underlying character array field is wrapped in

an V A r r a y W r a p p e r subclass, and thus accessed through a proxy object.

Conversion Methods

The Instrument tool adds two static conversion methods to the class

u b c . m j . J a v a . l a n g . S t r i n g for converting between instances of J a v a . l a n g . S t r i n g

and instances of u b c . m j . J a v a . l a n g . S t r i n g . These are used when loading str ing

constants from the constant pool , when invoking t o S t r i n g methods, and in some

native methods which accept str ing parameters.

The first two cases are described in the following sections; the use wi th in

native methods is pr imari ly of the t o R e a l S t r i n g method, converting instances of

u b c . mj . j a v a . l a n g . S t r i n g to instances of j a v a . l a n g . S t r i n g . Th i s is done so that

J N I functions may be used in Mob i l e J ' s Nat ive L ib ra ry which return the C "array

of bytes" representation of a Java str ing instance.

The f o r S t r i n g method is used to convert from a J a v a . l a n g . S t r i n g to a

u b c . m j . j a v a . l a n g . S t r i n g . The signature and bytecode for this method is shown

in Figure 4.17. This method works by converting the str ing to a character array,

wrapping this character array in a proxy object, and invoking the appropriate con

structor of u b c . m j . j a v a . l a n g . S t r i n g .

The t o R e a l S t r i n g method is used to convert from a

60

Signature: (Lj ava / l ang /S t r i ng ;) Lubc /m j / j a v a / l a n g / S t r i n g ;

Bytecode: new u b c / m j / j a v a / l a n g / S t r i n g
dup
new ubc/mj /a r ray /V_ l_C
dup
aload_0
i n v o k e v i r t u a l j a v a / l a n g / S t r i n g / t o C h a r A r r a y O [C
ldc_w " l o c a l h o s t "
i nvokespec ia l ubc /mj /a r ray /V_ l_C/< in i t>

(L j a v a / l a n g / O b j e c t ; L j a v a / l a n g / S t r i n g ;) V
invokespec ia l ubc /m j / j ava / l ang /S t r i ng /< in i t >

(Lubc /mj /a r ray /V_ l_C;)V
are turn

Figure 4.17: f o r S t r i n g M e t h o d Signature and Bytecode

ubc.mj . j a v a . l a n g . S t r i n g to a j a v a . l a n g . S t r i n g . The signature and bytecode

for this method is shown in Figure 4.18. Th i s method works by obtaining the

underlying character array, offset value, and character count for the str ing, and

passing them to the appropriate constructor of j a v a . l a n g . S t r i n g .

String Constants

The J V M has support for loading constant string values from the constant pool for

a class. Us ing the l dc (or ldc_w) instruction and referencing a constant St r ing entry

in the constant pool causes the J V M to create a new instance of j a v a . l a n g . S t r i n g

and place a reference to it on the stack.

These references to "real" Java strings must be converted to references to

instances of ubc.mj . j a v a . l a n g . S t r i n g . Th i s is accomplished by inserting an in

vocation instruction which calls the f o r S t r i n g method described above.

61

Signature: (L u b c / m j / j a v a / l a n g / S t r i n g ;) L j a v a / l a n g / S t r i n g ;

Bytecode: new j a v a / l a n g / S t r i n g
dup
aload_0
g e t f i e l d ubc /m j / j a va / l ang /S t r i ng / va l ue
i n v o k e v i r t u a l ubc/mj/array/VArrayWrapper/getData

()L java / l ang /Ob jec t ;
aload_0
get f i e l d ubc/mj / j a v a / l a i i g / S t r i n g / o f f set
aload_0
g e t f i e l d ubc /m j / j ava / l ang /S t r i ng /coun t
invokespec ia l j ava / l ang /S t r i ng .< in i t > ([C I I)V
are turn

Figure 4.18: t oRea lS t r i ng M e t h o d Signature and Bytecode

toString Method Invocation

The way the method t oS t r i ng , which returns the string representation of an

object, is handled in Java requires special attention in M o b i l e J . Instrument

ing this method in the normal way causes its return type to be changed to

ubc.mj . j a v a . l a n g . S t r i n g ; this causes a conflict wi th t o S t r i n g as defined in

j ava . l ang .Ob jec t , from which all classes inherit . 7

Therefore, the return type for all t o S t r i n g methods instrumented for use

wi th M o b i l e J is kept as a j a v a . l a n g . S t r i n g . Th i s requires a call to t o R e a l S t r i n g

to be inserted in al l t o S t r i n g methods to convert its result to a "real" Java str ing,

and a call to f o r S t r i n g to be inserted after all invocations of t o S t r i n g to convert

the returned str ing back to a M o b i l e J s tr ing.

This is because a method in a sub-class cannot have the same name and parameter types while
also having a different return type as a method in a super-class; one cannot overload a method by
only changing its return type.

6 2

4.7.3 T y p e Checking Instructions

T w o bytecode instructions, which have not previously been mentioned, also need

to be instrumented for use wi th M o b i l e J : c h e c k c a s t and i n s t a n c e o f . B o t h of

these instructions reference a Class entry in the constant pool; the Instrument tool

changes the class referenced such that it is the equivalent class used under M o b i l e J ,

which is usually a proxy class.

4.7.4 j a v a . l a n g . C l a s s and Reflect ion

The capabilities in Java for reflection require special attention in order to func

tion correctly under M o b i l e J . The current implementation of M o b i l e J supports

a certain amount of the reflection A P I found in the j a v a . l a n g . C l a s s and

j a v a . l a n g . r e f l e c t . C o n s t r u c t o r classes, but this could be extended to fully sup

port the use of reflection under M o b i l e J . The current level of support is necessary

in order to allow the j a v a . l a n g . S y s t e m class to load and basic applications to run.

A l l loaded Java classes have a corresponding instance of j a v a . l a n g . C l a s s

which represents them and can be used to invoke reflection capabilities. The na

tive methods which support reflection under M o b i l e J must also use C l a s s objects

to reference classes as requested by M o b i l e J applications which use the Java reflec

tion A P I . However, to be consistent, instrumented M o b i l e J application code should

only reference instances of the proxy class u b c . m j . j a v a . l a n g . V C l a s s , not "real"

j a v a . l a n g . C l a s s objects. Thus, dur ing instrumentat ion of j a v a . l a n g . C l a s s , a

private instance field, named r e a l C l a s s and of type j a v a . l a n g . C l a s s , is added in

order to "wrap" the real C l a s s object. The native methods implementing reflec

tion under M o b i l e J know about this field and use it to invoke the underlying Java

reflection A P I as needed.

63

The r e a l C l a s s field is assigned whenever a method that returns a C l a s s

object is invoked. The most commonly used method for this purpose is the static

method C l a s s . f o r N a m e which returns an instance of C l a s s given a particular class

name, passed as a str ing. Since this is a native method, it needed to be reimple-

mented for the corresponding instrumented version of class C l a s s .

However, i f the new version of f o r N a m e returned the C l a s s object indicated

by its s tr ing argument, it would become possible for the program to create an

instance of this class, which would not be an instance of a proxy class. Therefore,

the new version of f o r N a m e first converts the name passed to it into the equivalent

Mob i l e J proxy class name, as described in Section 4.2.1. A j a v a . l a n g . C l a s s object

representing the proxy class is then created.

A new instance of u b c . m j . j a v a . l a n g . C l a s s is also created and the real

C l a s s object assigned to its r e a l C l a s s field. F inal ly , a proxy instance referring

to the u b c . m j . j a v a . l a n g . C l a s s object is then created, a reference to which is

returned by f o r N a m e .

A similar scheme is used to implement the Mob i l e J equivalent of the

j a v a . l a n g . r e f l e c t . C o n s t r u c t o r class; a field named r e a l C o n s t r u c t o r of type

j a v a . l a n g . r e f l e c t . C o n s t r u c t o r is added while instrumenting the C o n s t r u c t o r

class. It is believed this method of "wrapping" real Java reflection classes in their

instrumented versions wi l l work for other reflection classes, and thus fully support

reflection under M o b i l e J .

4.7.5 j a v a . l a n g . C h a r a c t e r Class Initializer

Dur ing development of M o b i l e J it was discovered that normal instrumentation of the

static init ializer method of class j a v a . l a n g . C h a r a c t e r produced a method whose

64

bytecode was greater than 65535 bytes in length, larger than the max imum allowed

in the class file format specification. A s a consequence, the J V M would refuse to

run this method. The method is so large because this class contains three rather

large private static arrays and all static data in Java is initialized through code

in the class' static initializer; the more static da ta for a class, the larger the class

init ializer.

To work around this l imi ta t ion , the static init ial izer in the instrumented ver

sion of j a v a . l a n g . C h a r a c t e r is changed so that it s imply calls a method in the

Mob i l e J Runt ime. If the method is run on the static host, it wraps a reference to the

instance of each array in j a v a . l a n g . C h a r a c t e r 8 in an appropriate V A r r a y W r a p p e r

instance and assigns this to the array field in u b c . m j . j a v a . l a n g . C h a r a c t e r . Thus

the actual pr imit ive type data for these arrays is shared between the real and in

strumented versions of j a v a . l a n g . C h a r a c t e r ; this works because these arrays are

only read from and not wri t ten to once ini t ial ized.

If run on the non-static host, this method retrieves a reference to the field

on the static host, i.e., a proxy object, and assigns it to the field on the non-static

host.

4.7.6 j a v a . l a n g . R u n t i m e l o a d L i b r a r y M e t h o d

To simplify the implementation, the instrumented version of the

j a v a . l a n g . R u n t i m e . l o a d L i b r a r y method is turned into a null method which

simply returns when called. Since applications which rely on native code won' t

work with M o b i l e J anyways, this method does not need to be supported. Code in

the instrumented versions of the standard Java libraries which calls this method

8Because they are private fields, these references can only be retrieved through use of a native
method.

65

doesn't require it to do anything either, as al l native methods for these classes are

contained in the M o b i l e J Nat ive Library , loaded when it starts up.

4.8 Creating Proxy Classes

In addition to creating instrumented versions of class files, the Mob i l e J Instru

ment tool must create proxy classes corresponding to each instrumented class and

ArrayWrapper subclass. The current implementat ion uses Voyager's vcc tool for

creating proxy classes, but a custom tool could also be created i f Voyager were re

placed by a custom M o b i l e J Dis t r ibu t ion Layer . (See Section 6.2.2 on page 83 for

discussion of replacing Voyager.)

Proxies are created according to the following format: 9

• the class naming conventions described in Section 4.2.1 are followed, e.g., the

proxy of class j ava. u t i l .Vector is named ubc.mj . java.ut i l .VVector.

• the class hierarchy for proxy classes mirrors the class hierarchy

of instrumented classes, e.g., since java.ut i l .Stack inherits from

java.ut i l .Vector, the proxy class ubc .mj . java.ut i l .VStack inherits from

ubc.mj.java.util.VVector.

• a proxy class implements the same interfaces as the instrumented class it is a

proxy for

• the same exceptions thrown by methods, including constructors, in an instru

mented class are thrown by methods in its associated proxy class

9These specifications closely follow the format of Voyager "virtual classes" [Obj97, pages 46-47]
because the current implementation of MobileJ uses Voyager as its Distribution Layer.

66

• for every instance method in the instrumented class, the proxy class contains

an instance method of the same name, and wi th the same type signature

• for every constructor in the instrumented class, the proxy class contains a

constructor wi th the same type signature and an addit ional S t r i n g parameter,

used to designate the M o b i l e J host and port number on which to construct an

instance of the class

• both static and instance fields, as well as static methods 1 0 do not have an

equivalent in M o b i l e J proxy classes because fields are accessed through accessor

methods, as discussed in Section 4.6, page 51

Since proxy classes form part of Mob i l e J ' s Dis t r ibu t ion Layer, a description

of what functionality they must implement is found in Section 3.2, page 23.

4.9 Implementing Bytecode Instrumentation

Creat ing a tool which instruments Java bytecode is challenging for a number of

reasons; two issues in particular are described below.

4.9.1 Maintaining Flow Control

Branch instructions in Java bytecode indicate branch targets using relative offsets;

inserting or deleting instructions, as required by M o b i l e J , requires re-setting these

offset values for instructions affected.

To implement this, an I n s t r u c t i o n V e c t o r class was created which mod

elled method bytecode as a vector of instructions. A s wi th standard Java V e c t o r s ,

10Voyager creates equivalent static methods when it creates its "virtual classes", but these are
not used in the current implementation of MobileJ.

67

InstructionVectors can have individual elements (instructions) added, changed,

or removed. They can also emit a version of the vector as an array of bytes, for

inclusion in a class file. W h e n this final version of the method bytecode is requested,

the InstructionVector re-sets al l relative offsets.

The Instruct ionVector accomplishes this by maintaining a mapping be

tween original code position and new code position in the instruction vector. Thus

all new relative offset values can be determined by looking up the equivalent old ab

solute offset, retrieving the new absolute offset, and deriving the new relative offset

given the current instruction posit ion.

However, if code is inserted before the target of a branch it is sometimes the

intention of the instrumenting code to have the target be re-directed to the start of

the newly inserted code. To handle this case, every map entry has a previous field,

which is either null or references the previous instruction in the Instruct ionVector.

W h e n inserting an instruct ion, instrumenting code can choose to have the previous

field set for the instruction being inserted before. Th i s re-directs branch targets to

the newly inserted instruct ion.

Using this design also requires that, for a block of instructions being inserted,

the instructions be inserted in reverse order of their execution in bytecode in order

for the previous fields to be linked in a chain. Th i s ensures that the first instruction

in the block wi l l become the new target of any branches originally intended for the

instruction the block was inserted before.

Bytecode offset values in a method's exception handler table are also changed

according to the mapping maintained in the Instruct ionVector.

6 8

4.9.2 Debugging Support

Due to the relative immatur i ty of Java in general, there do not exist many tools

(especially freely available tools) for debugging Java bytecode. It would be much

easier to debug a tool such as the Mob i l e J Instrument ut i l i ty if a debugger which

could control Java execution at the bytecode level were available. M o s t available de

buggers, including Sun's j d b util i ty, are meant pr imari ly for source level debugging,

and don't allow for much control at the bytecode level.

To aid debugging of M o b i l e J an option to output method call t racing was

added to the Mob i l e J Runt ime and Instrument tool . W h e n turned on, the Instru

ment tool inserts calls to methods in the M o b i l e J Runt ime at the start of each

method and before any return instructions in the method. The M o b i l e J Runt ime

methods output tracing information to a file, showing the stack depth and the

method being entered or returned from, similar to what is output when Sun's im

plementation of the J V M is started wi th method tracing enabled.. (The trace output

directly from the J V M was not useful because it traced not only instrumented meth

ods but also methods of classes in the M o b i l e J Dis t r ibu t ion Layer, making these

traces difficult to understand.)

T w o tools which were of great help when debugging Mobi l e J ' s instrumen

tat ion were a bytecode disassembler and assembler. Using the disassembler, the

Java "assembly" version of instrumented bytecode code could be created, and thus

edited by hand in a text editor. Th i s allowed one to insert code to print messages,

including variable values, to the screen (or a file). The assembly code could then be

run through the assembler to produce a debugging version of the original class file.

Though tedious, this was often the only way to debug instrumented bytecode. How

ever, a debugger wi th good bytecode level support would remove the need to work

69

with bytecode disassemblers and assemblers when debugging instrumented code.

4.10 Summary

In order to facilitate location transparent access to objects, class files are instru

mented such that nearly all objects manipulated by a Mob i l e J application are proxy

objects. These proxy objects redirect all method invocations to the "real" objects

which they represent, either on the local machine or a remote one. Th i s way, the M o

bileJ Runt ime can move objects at wi l l between machines without the application's

knowledge.

However, since both arrays and fields are handled directly by J V M instruc

tions, access to them is transformed into method invocations through proxy objects,

allowing for location transparent access by the same mechanism used for explicit

method invocation.

The M o b i l e J Instrument tool processes class files, including bytecode in

structions. Whi l e it is possible to imagine a tool that could s imilar ly process other

executable formats, the large amount of symbolic information present in class files

makes a project such as this more feasible. The class file format and J V M require

storage of symbolic information pr imari ly to support dynamic code l inking, but

this design also allows for other applications, of which the Instrument tool is one

example. (See Section 5.1, page 71 for other examples.)

70

Chapter 5

Related Research

5.1 J V M Class Instrumentation Tools

A t least three other tools have been developed which allow instrumentat ion of J V M

class files; these are described below.

5.1.1 Bytecode Instrumenting Tool (BIT)

B I T , as described in [LZ97], is a toolki t for instrumenting Java bytecode. B I T was

created as a tool to aid analysis of dynamic program execution behaviour. A s such, it

provides the abil i ty to insert invocations of user-supplied static methods at part icular

points in method bytecode, for example, at the beginning and end of a method or

basic block, or after certain types of instructions. Th is type of instrumentat ion is

very useful for implementing various forms of code profiling, but B I T could not be

used as a tool to implement the instrumentat ion needed for M o b i l e J because it does

not support changing of the J V M class file structure, references to constant pool

entries, or insertion of arbi trary instructions. B I T is meant to be used in situations

71

where the semantic behaviour of an instrumented program is preserved.

5.1.2 J a v a O b j e c t I n s t r u m e n t a t i o n E n v i r o n m e n t (J O I E)

The J O I E system, as described in [CC98], is a tool for J V M class file instrumentat ion

which can perform load-time transformation of class files. J O I E is implemented as a

Java class loader instance, and all instrumentat ion is performed at class load time,

before the J V M begins interpreting any bytecode of the class. Users of J O I E cre

ate transformers, Java classes implementing the interface j o i e . C l a s s T r a n s f o r m e r

which operate on class files when called upon by the J O I E class loader.

The capabilities of J O I E are more extensive than those of B I T , al lowing for

changes to every aspect of class file structure and bytecode instructions. J O I E even

allows for changes to a method's frame, or local variable storage area, by adding and

removing method parameters and local variables. It also deals wi th resetting of rel

ative branch targets and exception handler ranges (as does the Mob i l e J Instrument

ut i l i ty) .

J O I E could be used to implement the instrumentation required by M o b i l e J ,

however, doing so would require a high overhead (for instrumentation) each t ime

a Mob i l e J application was run, without providing many inherent advantages. The

extensive changes required of class files for use wi th M o b i l e J makes static instru

mentation the best opt ion.

5.1.3 B i n a r y C o m p o n e n t A d a p t a t i o n

A prototype B ina ry Component Adap ta t ion (B C A) system for J V M class files is

described in [KH.98]. Th i s B C A system works very similarly to J O I E , transforming

class files at load t ime. However, the B C A system uses delta files and associated delta

72

file compiler instead of transformer classes to customize the code transformation.

De l t a files describe the types of transformations required (using a specific syntax)

which the compiler converts to J V M class files for loading and invocation by the

B C A ' s custom class loader.

Th i s B C A system does not appear to support adding or removing arbi t rary

bytecodes from a method, therefore it would not be suitable for implementing the

type of bytecode instrumentation required by M o b i l e J . B C A is intended to support

less comprehensive modifications to class files than those required by M o b i l e J .

5 .2 Systems Supporting Mobile Applications

M a n y systems have been developed to assist application developers in creating pro

grams for the mobile computing environment. Some are implemented purely at the

t radi t ional operating system level, while others are frameworks for building part i

tioned applications.

A s described in Section 1.2.2 (page 5), systems can be classified based on

whether they implement a static or dynamic application part i t ion, and to what

extent the system attempts to hide the constraints of the mobile computing envi

ronment from the application; a sampling of systems are described below.

5.2.1 S ta t ica l ly Par t i t ioned Systems

Mobile-Aware Systems

Odyssey [Nob98, NSN+97 , NPS95] is a system support ing mobile information ac

cess, created at Carnegie Mel lon University. Specifically, it is an extension of the

N e t B S D (Unix) file system support ing file access from mobile computers. T h e

73

Odyssey project examines issues such as consistency of mobile data, coordinated

management of resources on a mobile host, and application agility, or, the abi l i ty

of the application to adapt to changes in resource availability. Whi l e the system

allocates resources and monitors their availability, it assumes each application pro

vides functionality for adapting to changes in resource constraints. Odyssey notifies

applications when resource constraints change, for example, when the available net

work bandwidth decreases. Thus applications cooperate wi th the operating system

in adapting to the varying mobile environment, and makes Odyssey applications

mobile-aware.

Another stat ically part i t ioned, mobile-aware architecture is presented by

Well ing and Badr ina th in [WB98, W B 9 7] . Th i s system focusses on providing an

appropriate framework for delivering environment related events to applications ex

ecuting on mobile computers. A s wi th Odyssey, events associated wi th changes in

resource availability are delivered to applications using this framework, where they

are handled in an application specific way.

Whi l e not explici t ly required by their implementation, Wel l ing and B a d r i

nath suggest isolating the modules which implement an application's environmental

adaptat ion policies, and avoid incorporat ing adaptat ion code in all modules, re

sult ing in a form of "spaghetti code". They note that not only does this result

in a more maintainable applicat ion, but also that it eases reengineering of existing

applications to support functioning in a mobile environment. Prototypes of this

architecture have been implemented in M a c h 3.0 and Java [WB98] .

74

Mobile-Transparent Systems

Stat ical ly part i t ioned, mobile-transparent systems are most easily implemented at

either some layer of the user-interface, or at the filesystem or network access oper

ating system interface, corresponding wi th the left and right extremes, respectively,

of Figure 1.1 (page 6).

Implementations of the X - W i n d o w s protocol have been adapted to function in

the low-bandwidth, high-latency environment typical of wireless networks. However,

the X - W i n d o w s network protocol and architecture were noted in [KDF+93] as being

part icularly difficult to adapt to a wireless environment because of the bandwidth

and latency constraints: they concluded by remarking, "We are not at all convinced

that using X for pen-based mobile/wireless computing is a good idea."

Further work, described in [Dan94], shows a compression ratio of 7.5:1 is

possible for the X - W i n d o w s protocol, yielding, for example, a six second transfer

time when viewing a text document wi th Ghostv iew. The author notes that this

is likely to improve as the compression is tuned, however, it remains that the X -

Windows protocol was designed in the context of relatively high-bandwidth, low-

latency Ethernet networks. Highly interactive applications, especially those wi th

graphical user interfaces are unlikely to achieve acceptable performance using X

over wireless networks.

Implemented at a slightly different layer of the user-interface, the V i r t u a l

Network Compute r system [WRB+97 , R S F W H 9 8] operates by t ransmit t ing an en

coded version of a user's screen from a server to a thin client (the Java client is a

2 0 K b applet). The system is intended to promote access to a user's "home comput

ing environment" from a variety of comput ing devices.

T w o l imitat ions of the V N C system appear to be client computat ional power,

75

and available network bandwidth and latency-basically the same problems noted

when using X - W i n d o w s over poor links, although a client is currently being devel

oped for the 3 C O M P a l m P i lo t , connected by a wireless modem [Min98]. Whi l e

V N C may be appropriate for use by mobile users wi th access to many wirelessly

connected workstations in the same metropoli tan area, it does not appear workable

when the bandwidth and latency restrictions of the network being used approach

those of wireless networks.

Systems which function at the filesystem and network O S interface include

the Mobi le Appl ica t ion Framework (M A F) described in [HR97], and the Advanced

Mobi l e Integration in General Operat ing Systems (A M I G O S) project [H R A J 9 8 ,

H R 9 6 , G M 9 5] . For network communicat ion, M A F optimizes T C P network connec

tions by replacing recognized application level protocols, for example "ftp", wi th an

optimized data transfer protocol over the wireless portion of a T C P connection. The

A M I G O S "Spli t -Connect ion T C P " design [H R A J 9 8 , HR96] allows for transparent

changing of the link-layer connection without disconnection of the T C P layer con

nection. Therefore a mobile host can move between a wireless network and a wired

L A N without disrupt ing active T C P connections.

5.2.2 Dynamically Partitioned Systems

Mobile-Aware Systems

W i t [Wat94b, Wat94a, Wat95] was one of the earliest systems designed to support

mobile applications through part i t ioning an application between a small , mobile

client and server. The W i t system provides a T e l interpreter on both the mobile

host (H P 1 0 0 L X palmtops running D O S 5.0) and proxy server host. The W i t A P I

provides for remote execution of T e l scripts from both the mobile unit and proxy

76

applicat ion, thus allowing dynamic part i t ioning though runtime decisions about

where a procedure should execute, but the intention seems to be to have most

application functionality be statically part i t ioned.

In [Wat95], a scheme for describing application data in terms of hyperobjects

is presented; data, for example, world-wide-web pages, could be presented to the

system as a set of hierarchically linked hyperobjects. The system would use this

structure to make decisions about which parts of data requested at the mobile host

to transfer, and also which to prefetch.

Similar to W i t , Rover [J T K 9 7 , J K 9 6 , Tau96, JdT+95] is an application de

velopment framework designed wi th the constraints of the mobile comput ing envi

ronment in mind . A s wi th W i t , designing a Rover application, or port ing an appli

cation to use Rover, involves spl i t t ing application functionality between the mobile

and fixed hosts, and defining application da ta in terms of relocatable data objects

(R D O s) which can be passed between the mobile and fixed hosts. The two halves of

the program communicate v i a a queued remote procedure call protocol, which pro

vides for queuing and logging of asynchronous R P C requests while the mobile host

is disconnected, and flushing of the log to the fixed host upon re-connection. A p

plications can decide where their various R D O s should be placed (at the mobile or

fixed host) and when they should be moved, however, it appears that the part i t ion

between mobile and fixed host is intended to be fairly static for most applications.

Sumat ra [ARS97 , R A S S 9 7 , R A S 9 6] is a distr ibuted object system based on

Java designed for building resource-aware applications. Sumatra extends Java wi th

the abi l i ty to group objects, move object groups between hosts, create threads on

remote hosts, and migrate threads between hosts. These capabilities are coupled

wi th a distributed resource monitor which allows applications to be notified regard-

77

ing resource constraints such as network latency and bandwidth, and host C P U

load (although the most recently described implementation monitors only network

latency). Al though its developers do not appear to have targeted applications de

ployed to mobile computers, applications built wi th Sumat ra have the abi l i ty to

adapt to changes in their computat ional environment through moving parts of (or

all of) the application to different hosts, for example, to minimize latency between

hosts for some interaction. The designers describe an Internet chat server which can

migrate between hosts based on the latency observed between it and client hosts, in

an at tempt to optimize its location for all users.

Mobile-Transparent Systems

M - M a i l [Lo97, L K 9 6] , an email system designed for use in the mobile environment,

serves as a case study on dynamic, mobile-transparent application par t i t ioning. M -

M a i l uses the Men ta t P rogramming Language (M P L) , a language based on C + + ,

and the Menta t Run -T ime System (M R T S) for distributed object creation and in

vocat ion. M - M a i l also makes use of a specific A P I [NKB96] for moni tor ing network

conditions (e.g., bandwidth, latency, error rate) at run time.

The M P L and M R T S support creation of large grained objects, each created

as a separate U n i x process. M - M a i l creates a separate Menta t object for each folder

of email messages a user has. The objective of the M - M a i l project was to derive

an appropriate object placement a lgori thm based on run t ime network conditions.

A s the M R T S does not have support for object migrat ion, al l placement decisions

are made at object creation t ime (when the M - M a i l application starts up), however,

a history of the number and frequency of object invocations for each object (i.e.,

email folder) is recorded and stored between executions of M - M a i l .

78

Al though M - M a i l is one of few studies concentrating on deriving appropriate

object placement policies for the mobile computing environment, it is difficult to

see how the large grained objects used in the M R T S can be used to compose other

applications. Further study is also needed to determine appropriate algorithms for

use when object migration is available.

Though not designed for use specifically in a mobile-computing environment,

Coign [HS98b, HS98a, HS97] is an implementation of application part i t ioning for

Microsoft C O M based applications. Like M o b i l e J , Coign combines application bi

nary instrumentation wi th runtime dis tr ibut ion control, to produce a system which

can part i t ion an application without access to application source code.

Using Coign involves instrumenting an application binary, adding profiling

code which records al l C O M component instantiations and inter-component func

tion calls. The application is then run (on a single machine) through any number of

profiling scenarios, where information is collected by the instrumented version of the

applicat ion. After the profiling scenarios have been run, a separate application anal

yses the collected profiling data, and determines an op t imum configuration based on

the number of bytes transferred between components, the number of machines in the

distr ibuted system, and possibly other factors, such as network condit ion between

hosts. The analysis involves creating a connected graph consisting of component

instances as vertices and inter-component communicat ion cost as edges, and cut t ing

the graph so as to minimize communicat ion between machines. For a client-server

configuration, the analysis takes into account that certain components (e.g., G U I

controls) must always be placed on the client. The application is then run, wi th the

Coign runtime system instantiat ing a distributed configuration of the applicat ion,

based on the results of the graph par t i t ioning analysis.

79

The most difficult task for the Coign runtime during distr ibuted execution

is matching component instantiations wi th those recorded during profiling, in order

to achieve the op t imum distr ibut ion found during analysis. Since Co ign separates

profiling execution from distr ibuted execution, i f the distr ibuted execution varies

too greatly from the scenario profiled, Coign wi l l not be able to achieve an op t imum

dis t r ibut ion. The advantage of this design, however, is that the runtime system has

to do less work during distr ibuted execution, exacting only a 3% overhead during

these executions [HS98a]. The use of static profiling also means that Coign is unable

to migrate component instances once created; all configuration decisions are made

statically, at analysis t ime.

80

Chapter 6

Conclusions

6.1 Summary

The M o b i l e J system is designed to support dynamic part i t ioning of J V M appli

cations between a smaller, less powerful mobile host and a larger, more powerful

stat ionary host. B y using class file (object code) instrumentation, M o b i l e J hides

the details of part i t ioning from the application programmer, making the system

mobile-transparent.

The Mob i l e J system consists of an Instrument tool and Runt ime, including

a native library. The Instrument tool transforms class files such that their bytecode

manipulates "proxy" objects instead of "real" objects. M e t h o d invocations are made

to go through these proxy objects, which redirect them to the application objects

they represent. In this way, application objects may be placed on either the mobile

host or the stationary host under runtime control , their location being transparent

to the instrumented application code.

The M o b i l e J Runt ime handles application startup, and is responsible for

81

maintaining a part i t ioning policy. Whi l e the current implementation parti t ions ap

plications based on object type only, creating a static par t i t ion, the Runt ime may

be extended by adding an object placement policy module. Th i s module would

maintain references to al l application objects and make decisions on where objects

should be placed and under what circumstances.

It is intended that M o b i l e J serve as a basis for experimentation and further

research into object placement policies for mobile applications. Whi l e Mob i l e J pro

vides the mechanism for dynamic part i t ioning of applications, it is st i l l unclear how

to best part i t ion applications in the mobile environment.

6.2 Future Work

A s wi th most systems research projects, there is much that could be done to extend

the work presented here. Th i s section describes a number of possible extensions for

future work.

6.2.1 Po r t i ng A W T Na t ive Me thods

The current implementation of M o b i l e J does not support running Java applications

ut i l izing a graphical user interface (G U I) , unfortunately perhaps the majori ty of

applications wri t ten wi th Java. To do so, the native methods implementing Java

A W T "peers" need to be ported to work with M o b i l e J . Th i s is necessary because

the native methods manipulate objects, and are not expecting proxy objects to be

passed as parameters.

Th i s task is more tedious than it is difficult, as all method invocations and

field accesses from native code must be changed such that they work wi th the rest

of M o b i l e J , i.e., they access proxy objects instead of "real" objects. The Instrument

82

tool only processes Java bytecode; native method code must be changed "by hand" .

Por t ing the A W T to work wi th M o b i l e J would allow most Java applications to be

run under M o b i l e J .

6.2.2 M o r e Efficient D i s t r i bu t i on Layer

The performance of Mob i l e J is pr imari ly dependent on the efficiency of the M o b i l e J

Dis t r ibu t ion Layer (see Section 3.2). The current implementation, ut i l iz ing Voyager

[Obj97], is not very efficient because Voyager is not optimized for local method invo

cations. A new implementation, built specifically with the requirements of Mob i l e J

in mind and optimized for local invocations, could perform much better.

6.2.3 D y n a m i c M o n i t o r i n g and Object Placement P o l i c y Modu le s

M o b i l e J currently lacks modules to monitor the computat ional environment and

object interactions, and an object placement policy module. The environment mon

i tor ing module would watch such environmental factors as C P U load and available

network bandwidth and latency, providing an indication of the current computa

t ional and network environment to the policy module (as in the M - M a i l system

described in Section 5.2.2, page 76). The object interaction module would keep

track of the frequency of interaction as well as the amount of da ta transferred be

tween objects, also providing this data to the object placement policy module.

The object placement policy module would combine da ta from the two mon

i toring modules to optimize object placement for a running appl icat ion. The policy

module would work similarly to Coign ' s analysis program (see Section 5.2.2), creat

ing a connected graph of objects in the applicat ion, except that the complete graph

would be distributed between the mobile client and fixed server and would be up-

83

dated continuously while the application is running. Ideally the placement policy

could be configured by describing a relative weighting between environmental fac

tors and object characteristics (size, invocation frequency and bandwidth) in order

to facilitate experimentation wi th different applications and policies.

6.2.4 Study of Appl ica t ions and Object Placement Policies

Given the modules described in the previous section, a study of a variety of applica

tions and object placement policies would be enlightening. Whi l e similar in flavour

to the M - M a i l study [Lo97], such an investigation would show where different types

of applications should be parti t ioned and under what circumstances. It might also

attempt to determine which factors should have the greatest influence on object

placement policies, and derive a well-performing object placement a lgori thm. If

mobile computers are to become more ubiquitous, a greater understanding of how

particular types of applications should be built for use in this environment needs to

be achieved.

6.3 Final Conclusions

The Mob i l e J system provides a basis for further investigation of dynamic, mobile-

transparent application par t i t ioning for the mobile environment. Whi l e the benefits

of having completely transparent, runtime controlled object placement for mobile

applications remains to be verified, Mob i l e J is a step in this direction. It is hoped

that further investigations may reveal the extent to which runtime systems can adapt

to changes in the mobile environment through dynamical ly monitor ing application

behaviour.

84

Bibl iography

[ARS97] A n u r a g Acharya , M . Ranganathan, and Joel Saltz. Sumatra :
A Language for Resource-aware Mob i l e Programs. In J . V i t e k
and C . Tschudin, editors, Mobile Object Systems, volume 1222
of Lecture Notes in Computer Science. Springer Verlag, 1997.
h t t p : / / w w w . cs .umd.edu/~acha/papers / lncs97- l . h tml .

[Bha97] Vaduvur Bharghavan. Challenges and Solutions to

Adap t ive Compu t ing and Seamless M o b i l i t y over Het
erogeneous Wireless Networks. International Jour
nal on Wireless Personal Communications, M a r c h 1997.
h t tp : / / t imely .c rhc .u iuc .edu/Papers /Abs t rac t s /CS_abs t rac t .h tml .

[CC98] Geoff A . Cohen and Jeffrey S. Chase. Au toma t i c Program Transfor
mation wi th J O I E . In Proceedings of the USENIX Annual Technical
Conference, New Orleans, L A , U S A , June 1998.

[Dan94] John Moffat t Dansk in . Compressing the X Graphics Protocol. P h D

thesis, Pr inceton Universi ty, November 1994.

[Dea98] A l a n Dearie. Toward Ubiqui tous Environments for Mob i l e Users. IEEE
Internet Computing, 2 (l) :22-32 , Jan-Feb 1998.

[Duc92] D a n Duchamp. Issues in Wireless Mob i l e Comput ing . In Proceedings of
the Third IEEE Workshop on Workstation Operating Systems, pages

2-10, A p r i l 1992.

[DWJ+96] Tzvetan T . Drashansky, Sanjiva Weerawarana, A n u p a m Joshi , R a n -

jeewa A . Weerasinghe, and El ias N . Houstis . Software Archi tecture of

Ubiqui tous Scientific C o m p u t i n g Environments for Mob i l e Pla t forms.

ACM Mobile Networks and Applications, 1(4), 1996.

[Fla97] D a v i d Flanagan. Java in a Nutshell. O 'Re i l l y and Associates, Se-

bastopol, C A , U S A , 2nd edition, M a y 1997.

85

http://www
http://cs.umd.edu/~acha/papers/lncs97-l
http://timely.crhc.uiuc.edu/Papers/Abstracts/CS_abstract.html

[FZ94] George H . Forman and John Zahorjan. The Challenges of Mobi le C o m

puting. Technical Report U W - C S E - 9 3 - 1 1 - 0 3 , Department of Computer

Science and Engineering, Universi ty of Washington, Seattle, W A , U S A ,

M a r c h 1994.

[GJS96] James Gosl ing, B i l l Joy, and G u y Steele. The Java Language Specifi
cation. Addison-Wesley, Reading, M A , U S A , 1996.

[GM95] V i t o r Guedes and Francisco M o u r a . Repl ica Con t ro l in M I o - N F S . In
Proceedings of the ECOOP 1995 Workshop on Mobility and Replica
tion, Aarhus , Denmark , August 1995.

[HR96] J0rgen Svaerke Hansen and Torben Reich . Semi-Connected T C P / I P
in a Mobi le C o m p u t i n g Environment . Master ' s thesis, Department of
Computer Science, Univers i ty of Copenhagen, Copenhagen, Denmark,
June 1996.

[HR97] Stefan G . H i l d and Peter Robinson. Mob i l i z ing Appl ica t ions . IEEE
Personal Communications, 4(5):26-34, October 1997.

[H R A J 9 8] J0rgen Svaerke Hansen, Torben Reich, Birger Andersen, and E r i c J u l .
Dynamic Adap ta t ion of Network Connections in Mobi le Environments .
IEEE Internet Computing, 2(1), Jan-Feb 1998.

[HS97] Galen C . Hunt and Michae l L . Scott . Co ign : Efficient Instrumentation
for Inter-Component Communica t ion Analys i s . Technical Report 648,
Department of Computer Science, Universi ty of Rochester, Rochester,
N Y , U S A , February 1997.

[HS98a] Galen C . Hunt and Michae l L . Scott . A Guided T o u r of the Coign
Au tomat i c Dis t r ibuted Par t i t ion ing System. Technical Report M S R -
TR-98-32, Microsoft Research, Microsoft Corpora t ion , Redmond, W A ,
U S A , Ju ly 1998.

[HS98b] Galen C . Hunt and Michae l L . Scott . The Coign A u t o m a t i c Dis t r ibuted

Par t i t ioning System. Technical Report M S R - T R - 9 8 - 4 0 , Microsoft Re

search, Microsoft Corpora t ion , Redmond, W A , U S A , Augus t 1998.

[J d T + 9 5] Anthony D . Joseph, A l a n F . deLespinasse, Joshua A . Tauber, D a v i d K .

Gifford, and M . Frans Kaashoek. Rover: A Too lk i t for Mob i l e Informa

tion Access. In Proceedings of the 15th ACM Symposium on Operating
System Principles, Copper Moun ta in Resort, Colorado, U S A , Decem

ber 1995.

86

[JK96] An thony D . Joseph and M . Frans Kaashoek. Bui ld ing Reliable Mobi le -

Aware Appl ica t ions using the Rover Too lk i t . In Proceedings of the
Second ACM International Conference on Mobile Computing and Net
working, November 1996.

[JTK97] An thony D . Joseph, Joshua A . Tauber, and M . Frans Kaashoek. Mob i l e
Compu t ing with the Rover Too lk i t . IEEE Transactions on Computers,
46(3), M a r c h 1997.

[Kat94] Randy H . K a t z . Adap ta t ion and M o b i l i t y in Wireless Information

Systems. IEEE Personal Communications, 1(1):6-17, 1994.

[K D F + 9 3] Chris topher Kent Kantar j iev, A l a n Demers, Ron Frederick, Rober t T .

Kr ivac ic , and M a r k Weiser. Experiences wi th X in a Wireless E n
vironment. In Proceedings of the USENIX Mobile and Location-
Independent Computing Symposium, Cambridge, Massachusetts, U S A ,
August 1993.

[KH98] Ra lph Keller and Urs Holzle . B ina ry Component Adap ta t ion . In Pro
ceedings of the 12th European Conference on Object-Oriented Program
ming, Brussels, Be lg ium, Ju ly 1998.

[LK96] H a i Y a n L o and Thomas K u n z . A Case Study of D y n a m i c Appl i ca t ion

Par t i t ion ing in Mob i l e C o m p u t i n g - A n E-ma i l Browser. In Proceed
ings of the Workshop on Object Replication and Mobile Computing of
OOPSLA 1996, San Jose, C A , U S A , October 1996.

[Lo97] H a i Y a n L o . M - M a i l : A Case Study of Dynamic Appl i ca t ion Par t i t ion

ing in Mobi le Compu t ing . Master ' s thesis, Department of Compute r

Science, Universi ty of Water loo, Waterloo, O N , Canada , 1997.

[LZ97] Han Bok Lee and Benjamin G . Zorn . B I T : A T o o l for Instrumenting

Java Bytecodes. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, C A , U S A , December 1997.

[MD97] Jon Meyer and Troy Downing . Java Virtual Machine. O ' R e i l l y and

Associates, Sebastopol, C A , U S A , 1997.

[MDC93] Br i an M a r s h , Fred Douglis , and R a m o n Caceres. Systems Issues in

Mobi le Comput ing . Technical Report M I T L - T R - 5 0 - 9 3 , Ma t sush i t a

Information Technology Laboratory, Princeton, N J , U S A , February

1993.

87

[Min98] V l a d i m i r Minenko . V i r t u a l Network Compu t

ing Client for P a l m Pla t form, September 1998.

h t tp : / /www.ics i .berke ley .edu/~minenko/Palm V N C .

[NKB96] Michae l N i d d , Thomas K u n z , and James P. Black . Wireless A p p l i c a

t ion and A P I Design. In Proceedings of the Fourth International IFIP
Workshop on Quality of Service, Paris , France, M a r c h 1996.

[Nob98] B r i a n D . Noble. Mobile Data Access. P h D thesis, School of Compute r
Science, Carnegie Mel lon Universi ty, P i t t sburg , P A , U S A , M a y 1998.
Avai lable as technical report C M U - C S - 9 8 - 1 1 8 .

[NPS95] B r i a n D . Noble, M o r g a n Pr ice , and M . Satyanarayanan. A Program
ming Interface for Appl ica t ion-Aware Adap ta t ion in Mob i l e Compu t
ing. In Proceedings of the Second USENIX Symposium on Mobile and
Location-Independent Computing, A n n A r b o r , M I , U S A , A p r i l 1995.

[N S N + 9 7] B r i a n D . Noble, M . Satyanarayanan, Dushyanth Narayanan,
James Er i c T i l t o n , Jason F l i n n , and K e v i n R . Walker . Agi le
Appl ica t ion-Aware Adap ta t ion for Mob i l i t y . In Proceedings of the 16th
ACM Symposium on Operating System Principles, St. M a l o , France,
October 1997.

[Obj97] ObjectSpace, Inc. Voyager Core Technology User Guide. ObjectSpace,

Inc., 1.0.0 edition, 1997.

[RAS96] M . Ranganathan, A n u r a g Acha rya , and Joel Sal tz . Dis t r ibuted Re

source Moni to r s for Mob i l e Objects . In Proceedings of the Fifth IEEE
International Workshop on Object-Orientation in Operating Systems,
Seattle, W A , U S A , October 1996.

[RASS97] M . Ranganathan, A n u r a g A c h a r y a , Shamik D . Sharma, and Joel Sal tz .

Network-aware Mobi le Programs. In Proceedings of the USENIX An
nual Technical Conference, Anahe im, C A , U S A , January 1997.

[R S F W H 9 8] Tr is tan Richardson, Quentin Stafford-Fraser, Kenneth R . W o o d , and

A n d y Hopper. V i r t u a l Network Compu t ing . IEEE Internet Comput
ing, 2 (l) :33-38 , Jan-Feb 1998.

[RWW96] Roger Riggs, J i m Waldo , and A n n Wol l r a th . P ick l ing State in the Java

System. In Proceedings of the USENIX 1996 Conference on Object-

Oriented Technologies, Toronto, O N , Canada , June 1996.

88

http://www.icsi.berkeley.edu/~minenko/Palm

[Sat93] M . Satyanarayanan. Mob i l e Comput ing . IEEE Computer, 26(9),

September 1993.

[Sat96] M . Satyanarayanan. Fundamental Challenges in Mob i l e Compu t ing .

In Proceedings of the 15th ACM Symposium on the Principles of Dis
tributed Computing, Phi ladelphia , P A , U S A , M a y 1996.

[Sun97] Sun Microsystems, Inc. Java Native Interface Specification, Release
1.1. Sun Microsystems, Inc., Moun ta in View, C A , U S A , M a y 1997.

[Tau96] Joshua A . Tauber. Issues in Bu i ld ing Mobi le -Aware Appl ica t ions wi th
the Rover Too lk i t . Master ' s thesis, Department of Electr ical E n g i
neering and Computer Science, Massachusetts Institute of Technology,
June 1996.

[Wat94a] Terr i Watson. App l i ca t ion Design for Wireless Compu t ing . In Pro
ceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, Santa C r u z , C A , U S A , December 1994.

[Wat94b] Terr i Watson. W i t : A n Infrastructure for Wireless Pa lmtop Comput
ing. Technical Report U W - C S E - 9 4 - 1 1 - 0 8 , Department of Computer
Science and Engineering, Univers i ty of Washington, Seattle, W A , U S A ,
November 1994.

[Wat95] Terr i Watson. Effective Wireless Communica t ion Through Appl i ca t ion

Par t i t ion ing . In Proceedings of the Fifth Workshop on Not Topics in
Operating Systems, Orcas Island, W A , U S A , M a y 1995.

[WB97] Gi r i sh Well ing and B . R . Badr ina th . A Framework for Environment

Aware Mobi le Appl ica t ions . In Proceedings of the 17th International

Conference on Distributed Computing Systems, pages 384-391, B a l t i

more, M D , U S A , M a y 1997.

[WB98] Gi r i sh Well ing and B . R . Badr ina th . A n Archi tecture for Expo r t i ng

Environment Awareness to Mob i l e Compu t ing Appl ica t ions . IEEE
Transactions on Software Engineering, 24(5):391-400, M a y 1998.

[WRB+97] Kenneth R . W o o d , Tris tan Richardson, Frazer Bennet, A n d y Harter ,

and A n d y Hopper . G l o b a l Teleporting with Java: Toward Ub iqu i

tous Personalized Compu t ing . IEEE Computer, 30(2):53-59, February

1997.

89

