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Abstract 

This thesis presents a software framework and distributed execution system that 
allows developers to create control systems for autonomous robots. These control systems 
are behavior-based, and developers define them using networks of software components. 
The systems allow sequencing of behavior execution without coupling task sequencers with 
specific behaviors, and they allow groups of behaviors to be managed as single, cohesive, 
units. The presented software framework leverages the computational power of the Java 
programming language, while shielding developers from network communication details. 
In addition, it facilitates the development of high quality control systems, where quality 
refers to system usefulness and development ease. 

The presented software framework supports the functionality required to create con­
trol systems that allow robots to perform human-like tasks in environments inhabited by 
humans. Most importantly, it supports both deliberation and reactivity, along with task 
sequencing and the coordination of action requests. A navigation system for a simulated 
mobile robot, developed using this software framework, shows the usefulness of the frame­
work and execution system. The framework does show weaknesses, however, in areas such 
as robustness, efficiency, and synchronization. Nonetheless, these weaknesses can be over­
come, and the software framework and execution system, as a whole, show great potential. 
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Chapter 1 

Introduction 

An autonomous robot is a stand-alone computer system that, without external intervention, 

performs tasks in a physical environment. Such tasks require the robot to sense the state of 

its environment and to interact with, and manipulate, its environment. A control system for 

an autonomous robot processes the sensed information and chooses the physical actions the 

robot must take to complete its assigned tasks. Robot control systems can be implemented 

in both hardware and software. For extra processing power, their functionality can be dis­

tributed amongst different processing units, which may exist outside the physical robot. 

Processes that execute on different computer systems can communicate over a computer 

network. 

For my thesis project, my main goal was to formulate a method for people to de­

velop distributed control systems for autonomous robots. This method would leverage the 

computational power of common high-level programming languages, while shielding de­

velopers from network communication details. In addition, it would facilitate the devel­

opment of high quality control systems that allow robots to perform human-like tasks in 

environments inhabited by humans. 

The remainder of this chapter introduces my thesis in four parts. Section 1.1 gives 

a motivational example that indicates the type of functionality my development method 

should support. Section 1.2 discusses the importance of software quality and describes the 
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Figure 1.1: A Delivery Robot in Action 

characteristics of a high quality software system. Section 1.3 gives an overview of my 

contributions to the field of developing control systems for autonomous robots. Section 1.4 

outlines the contents of the remaining chapters. 

1.1 Motivational Example 

An example of an autonomous robot is one that performs delivery tasks in an office build­

ing. For these tasks, the robot must carry packages, through offices and corridors, to their 

destinations. The building contains working people, who may cross the path of the robot at 

any time. The robot must move quickly and smoothly while avoiding collisions with people 

and other obstacles. 

Figure 1.1 depicts a robot performing a delivery task. In this example, the robot, 

starting in Room 106, must pick up a package in Room 103 and deliver it to Room 107. 

First, the robot must plan a path to Room 103 and follow it, while avoiding moving people. 

Upon reaching that room, it is given the package, and must move to Room 107 in the same 

manner. When the robot reaches Room 107, the recipient takes the package, and the task 
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is complete. More complex examples are possible, where the robot must manage several 

delivery tasks simultaneously. 

To perform its tasks autonomously, the robot must sense its environment to detect 

the locations of obstacles and its own location. It must rely on internal maps so that it may 

plan paths to its destinations. In addition, it must drive its motors properly such that it 

makes forward progress, while avoiding danger. 

1.2 Software Quality 

Robot control systems can consist of a huge number of heterogeneous parts that are ar­

ranged at various time and space scales and interact with each other in various ways. The 

many software parts may be implemented by different people using different programming 

languages and technologies. In addition, depending on the application, robot control sys­

tems may be used, and maintained, by different people for significant lengths of time. Such 

robot control systems, to be accepted by their users and developers, must consist of software 

parts that have high quality. 

The quality of a software system has both external measures and internal measures, 

which are mostly qualitative. Software engineering textbooks commonly refer to these 

measures [McC93]. The external measures, such as efficiency and robustness, apply to users 

and how they perceive the software system. The internal measures apply to developers, and 

are related to the ease in developing, and maintaining, the system. High quality software 

systems rate high with respect to most, if not all, of these measures. Generally, such systems 

achieve a good balance among all the different measures. 

The best software systems support all the functionality required by their users, while 

still maintaining high quality. Modern software engineering practice helps developers to 

construct high quality systems. It also allows developers to redesign existing systems such 

that they have higher quality. Software frameworks allow developers to implement the 

software components of a system in a common, consistent, way. Thus, they facilitate the 

development of high quality systems. 
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1.3 Thesis Contributions 

For my thesis project, I created a software framework for developing distributed control 

systems for autonomous robots. This framework allows developers to specify models that 

define robot control systems as networks of software components. Along with the frame­

work, I developed an execution system that has the ability to execute the systems that these 

models define. I implemented my software framework and execution system using the Java 

programming language. However, this does not imply that Java is the only possible choice. 

I claim that my software framework, with its execution system, satisfies the goals 

of my thesis. First, it allows people to develop distributed control systems for autonomous 

robots. Second, it leverages the computational power of the Java programming language, 

while shielding developers from network communication details. I claim that my software 

framework facilitates the development of high quality control systems that allow robots to 

perform human-like tasks in environments inhabited by humans. However, because of time 

constraints, my software framework and execution system do have specific weaknesses. 

Nonetheless, I claim that, with particular additions and modifications, these weaknesses 

can be overcome. 

1.4 Thesis Outline 

This thesis presents my software framework and execution system, and it evaluates them 

to support my claims. Chapter 2 puts into perspective the field of creating control systems 

for autonomous robots. In particular, it gives an overview of the field, and it gives exam­

ples of existing robot control systems. Chapter 3 establishes several criteria for evaluating 

robot control systems. With the evaluation criteria, it provides a more formal definition of 

a software framework. Chapter 4 derives my software framework based on issues that I 

believed were most important. This derivation is conceptual in that it does not commit to 

any specific programming language or execution system. 

Chapter 5 of this thesis describes my software framework and execution system 
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implementation. In addition, it explains my reasons for choosing Java as the implementa­

tion language. Chapter 6 describes a robot control system I developed to demonstrate the 

usefulness of my software framework and execution system. This system allows a robot 

to perform navigation tasks. Chapter 7 evaluates my software framework and execution 

system in terms of the criteria established in Chapter 2. Chapter 8 makes additional notes, 

including suggestions for improving my framework and execution system. Chapter 9 con­

cludes this thesis. 
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Chapter 2 

Autonomous Robot Control Systems 

Researchers have arrived at two main conclusions about control systems for autonomous 

robots [Ark98]. First, they have concluded that for a robot to complete complex tasks, 

which require proper sequencing of subtasks, that robot must use deliberative control, or 

deliberation. Second, they have concluded that for a robot to successfully inhabit dynamic, 

unpredictable, environments, that robot must use reactive control, or reactivity. Hybrid 

systems, which combine deliberation and reactivity, often work best in practice [AB97, 

BFG+97, KM96, SGH+97]. 

This chapter puts into perspective the field of creating control systems for au­

tonomous robots. In particular, Section 2.1 describes the general capabilities of autonomous 

robots, focussing on robots that perform navigation tasks. Section 2.2 describes deliberative 

systems and gives specific examples of deliberative systems and architectures. Likewise, 

Section 2.3 describes reactive systems. That section also introduces behaviors, which are 

components often used in reactive systems. Section 2.4 describes hybrid systems and gives 

specific examples. Section 2.5 summarizes this chapter. 

2.1 Autonomous Robots 

As stated in the introduction to this thesis, an autonomous robot performs tasks that require 

it to sense the state of its environment and to interact with its environment. An autonomous 
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robot senses the state of its environment through specialized hardware components called 

sensors. Similarly, it interacts with its environment through specialized hardware com­

ponents called actuators. Often, these components have associated software that provide 

access to them at a more abstract level. 

Many types of sensors and actuators exist. All sensors have a degree of uncertainty 

in their readings, which depends on the particular sensor and the operating environment. 

This means that the sensor readings are often not accurate. Actuators have similar uncertain­

ties, since an actuator may not always do exactly what it is instructed to do. de Weerdt et al. 

provide a listing of the different sources of uncertainty for a mobile robot [dWdBvdHM98]. 

These uncertainties increase the difficulty for a robot to accurately model, and interact with, 

its environment. 

Autonomous robots that can perform human-like navigation tasks in physical envi­

ronments must have basic motion capabilities. Common actuators for robot motion include 

wheels, driven by motors [Nil84, SGH+97], and leg-like structures [Bro89, Sim94]. Sen­

sors that detect distances to solid objects are extremely useful for any autonomous robot 

that must navigate through an unpredictable environment. Knowing the distances to objects 

allows a robot to create maps of its environment [Elf89, Thr02] and localize itself within 

those maps [FBT99, SLL02]. Knowing that information also allows a robot to plan paths 

to its goal locations [LRDG90, MJ97], and detect oncoming obstacles [FBT98, Sim96]. 

Useful sensors for detecting distances to objects include vision sensors and sonar sensors. 

Vision sensors use video cameras to acquire environment descriptions, which in­

clude distances to solid objects. They repeatedly capture images, where each image gener­

ally consists of a grid of pixels, and each pixel has a different color or intensity. An image 

from a video camera consists of a grid of pixels, where each pixel has a different color or 

intensity. With two or more cameras that view the volume of interest, a vision sensing sys­

tem can estimate the distances to all points viewed in that volume [ML98]. The uncertainty 

in the distance measurements depend on the particular arrangement of the pixels in the 

cameras. Texture and reflection often have a significant impact on the estimated distances. 
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Sonar sensors find distances to objects using sound, where each sensor emits a 

sound signal in the direction it faces and then waits for that signal to return. When the 

sonar sensor detects the return of the sound signal, it can compute an upper bound on the 

distance to the closest object in the direction of emission. Factors such as the roughness and 

absorbency of surfaces, as well as the orientation of surfaces relative to the sensors, cause 

sonar sensors to yield excessive distance measurements. 

Autonomous robots that perform navigation tasks should detect when they have 

collided with a solid object, or obstacle. Bump sensors provide one way to detect collisions. 

They are panels or extrusions on the surface of a robot that, when struck, declare that 

they are in contact with an obstacle. Robots often have several bump sensors spread about 

their surfaces so that they can detect collisions from a sufficient sampling of directions. 

Autonomous robots can benefit from sensing their internal properties, such as battery levels 

and odometry. 

2.2 Deliberative Systems 

The term deliberation indicates thorough thinking and planning. A deliberative robot care­

fully considers the results of all possible actions before choosing its next action. In general, 

it works within the sense-model-plan-act (SMPA) framework [Bro91]. Within this frame­

work, a robot repeats a cycle, as depicted in Figure 2.1, that begins with sensing its environ­

ment (sense) and updating models of that environment (model). The cycle continues with 

planning sequences of tasks to achieve goals (plan) and issuing motor commands to per­

form those tasks (act). This section begins by describing the characteristics of deliberative 

systems. After that, it describes notable deliberative systems and architectures. 

2.2.1 Characteristics 

Arkin identifies the following five common characteristics of deliberative reasoning systems 

[Ark98]. 
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Figure 2.1: A Sense-Model-Plan-Act (SMPA) Cycle 

• "They are hierarchical in structure with a clearly identifiable subdivision of function­

ality, similar to the organization of commercial businesses or military command." 

• "Communication and control occurs in a predictable and predetermined manner, 

flowing up and down the hierarchy, with little if any lateral movement." 

• "Higher levels in the hierarchy provide subgoals for lower subordinate levels." 

• "Planning scope, both spatial and temporal, changes during descent in the hierarchy. 

Time requirements are shorter and spatial considerations are more local at the lower 

levels." 

• "They rely heavily on symbolic representation world models." 

Recall that deliberation allows a robot to complete complex tasks, which require 

proper sequencing of subtasks. An example of such a task, as described in the introduction, 

is a delivery task where a robot begins in a particular room and must deliver a package to 

a person in a different room. For simplicity, assume that the robot can predict, exactly, the 
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outcomes of its actions and the movements of people and objects. This delivery task is 

extremely difficult unless the robot knows its own motion dynamics and the layout of the 

office building. For timely completion, it requires deliberation. 

The control system for the delivery robot can be implemented as a hierarchy of 

planners. Planners take high-level goals and select partial orderings of tasks for achieving 

those goals. To do this, they generally employ thorough search strategies for finding the 

best sequence of tasks for achieving the goals. A classic example of a planner is STRIPS, 

which did planning for Shakey the Robot [Nil84]. 

STRIPS maintains a list of assertions that describe the current situation in a sym­

bolic form. An example of an assertion is on (A , B ) , which indicates that object A is resting 

on object B. The goal for planning is a logical combination of such assertions. Each action 

in STRIPS has preconditions, based on the assertions, which determine when the action 

can be applied. When STRIPS tests an applicable action, it modifies the list of assertions 

accordingly. Weld [Wel99] gives a survey of more recent planning systems. 

In a hierarchy of planners, higher level planners take goals and select partial order­

ings of tasks to be handled by lower level planners. Each task may have its own goals, 

and lower level planners process these goals in the same manner. For the delivery task, the 

goal is to have a specific person receive the package carried by the robot. At this level of 

detail, a planner can select the tasks of picking up the item, moving the robot to the destina­

tion office, and giving the item to the specified person. The planner need not be concerned 

with low-level motor controls. Essentially, dividing planning systems into hierarchies of 

individual planners significantly simplifies the search space at each level. 

For the delivery robot, a lower level planner can process the task of moving the robot 

to the destination office. The goal of this task is the robot being at its required destination. 

This goal can be achieved by selecting a series of local waypoints that the robot must pass 

to reach its destination. Planners at the lowest level of the planner hierarchy can output spe­

cific actuator commands for controlling the robot. This includes selecting the motor speed 

combinations that allow the robot to reach each waypoint. Clearly, from these descriptions, 
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control flows down the hierarchy, and it becomes more localized at lower levels. 

As Arkin stated, deliberative systems rely heavily on symbolic representations. 

These representations include models of the environment inhabited by the robot. They 

also include models of the robot, itself, since each action may affect the robot in a different 

way. Often, a robot requires more than its immediate perception of its environment. The 

delivery robot, for example, requires internal maps of the office building so it can plan paths 

to its destination. For optimal performance, the robot must be able to predict the actions of 

its environment, relative to its own actions. 

Each level of the planner hierarchy depends on suitable abstractions of environ­

ment representations. For example, at a higher level, an office building can be represented 

as, simply, a collection of rooms and corridors, with connections among them. At this 

level, considering details such as the exact contents of rooms could make the planning tasks 

intractable. These details, however, may be useful at a lower level. At all levels of abstrac­

tion, accurate planning requires that these representations accurately reflect the real world. 

Deliberative systems utilize processes that take environment representations, starting from 

actual sensor readings, and create suitable abstractions for the different planners. 

2.2.2 Examples 

Probably the most notable example of a deliberative robot system is Shakey [Nil84]. A more 

recent architecture for developing deliberative robot systems is NASREM, the NASA/NBS 

Standard Reference Model [AML87]. The following paragraphs describe, and compare, 

Shakey and NASREM. 

Shakey 

Shakey [Nil84] was developed in the late 1960s at the Stanford Research Institute (now 

known as SRI International). Shakey could move throughout its environment using wheels 

driven by two independent motors. Its sensors included a video camera, an optical range 

finder (for measuring distance), and whisker-like bump sensors. It performed tasks such as 
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pushing a solid block to a given location, and it planned these tasks using STRIPS, which 

executed on an external computer system. 

Shakey was inherently slow at completing tasks. This slowness partly reflects com­

puting technology of its time. Regardless of computational speed, Shakey was slow because 

it was completely deliberative, and it strictly followed the SMPA cycle. In other words, it 

fully constructed plans to achieve its goals before executing those plans. Shakey was tested 

in environments that were fabricated for its tasks, and it was successful in these environ­

ments. 

NASREM 

NASREM [AML87] defines a hierarchy of layers, where each layer consists of a sensory 

module, a world modeling module, and a planning module. Each sensory module, go­

ing up the hierarchy, forms more-abstract representations of sensor readings and updates 

environment models stored in global memory. Each planning module, going down the hi­

erarchy, decomposes goals into lower level tasks. Each world modeling module allows its 

corresponding planning module to make queries about the current environment state, and it 

provide prediction and evaluation functionality. 

Systems developed using NASREM are generally faster than Shakey at completing 

tasks. They are faster because, rather than executing one large SMPA cycle, they essentially 

execute a different SMPA cycle at each layer. Each layer, going up the hierarchy, executes 

its cycle at an increasing time scale. Lower levels, for controlling motors, execute with 

short time constraints, while higher levels have longer cycles. 

2.3 Reactive Systems 

The main problem with deliberative robot control systems is that, while they are effective in 

predictable environments, they fail in dynamic, unpredictable, environments [Bro91]. An 

example of an unpredictable environment is a large, crowded, room filled with randomly-

moving people. Suppose a robot had recently moved from the Northwest corner of the 

12 



room to the Southeast corner. Because of the random motion of people, any information the 

robot had about the locations of people in the Northwest corner is no longer valid. Internal 

representations of these dynamic, unpredictable, environments quickly become inaccurate 

and useless. Therefore, only immediate sensor data can be assumed to be valid. 

Recall that a robot in a dynamic, unpredictable, environment must be able to quickly 

react to changes in that environment. For example, the robot must react quickly to avoid 

randomly-moving people. To react as quickly as possible, a robot control system must 

directly map environmental stimuli to physical actions. That is, it must quickly, and repeat­

edly, read input data from its sensors and, based on that data, send appropriate commands 

to its actuators. Such a robot control system is called a reactive system. This section de­

scribes characteristics of reactive systems, followed by descriptions of notable architectures 

for developing reactive systems. 

2.3.1 Characteristics 

Brooks [Bro91] has advocated the development of robot control systems that are, predom­

inantly, reactive. Using his Subsumption architecture, he was successful in developing 

robots that exhibited basic animal behavior such as locomotion and object recognition. 

However, his robots do not have the planning capabilities made directly possible by delib­

erative robot control systems. He notes four important characteristics of reactive behavior-

based systems. These are situatedness, embodiment, intelligence, and emergence. 

• Situatedness means that a robot exists at a specific location, and in a specific con­

figuration, in a physical environment. Purely reactive systems do not maintain any 

internal environment representations. Instead, they make decisions based on their 

immediate environments. 

• Embodiment means that a robot is a physical being within its environment. Robots 

can sense their environments, and their actions directly influence their environments. 

A l l computation has a grounding in the real world, unlike in many symbolic reasoning 

systems. 
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• Intelligence means that a robot, to its observers, appears to employ complex reason­

ing and representation. However, reactive systems do not have complex reasoning 

abilities, and they do not maintain complex internal representations of their environ­

ments. Their perceived complexity, then, comes from their interactions with their 

environments. 

• Emergence means that a robot, through interactions among its internal components, 

forms an overall intelligence. In other words, the apparent intelligence of purely re­

active systems arises from these interactions. Complex reasoning and representation 

result from these interactions. 

Behaviors 

Behaviors are components that, depending on their perceived stimuli, give specific re­

sponses [Ark98]. Researchers have used other terms, such as "schema" [Ark98] and "skills" 

[BFG+97], to describe this type of component. In software, behaviors are generally threads 

or processes that repeatedly read input data from specific sources, process that data, and 

send their results to specific destinations. An example of a behavior is one that uses input 

from vision sensors to compute commands for controlling the speed and heading of a robot. 

For tight reactivity, behaviors interact directly with sensors and actuators. That 

is, their input sources are sensors, which provide representations of sensed data, and their 

output destinations are actuators, which accept commands. Behaviors can be used at higher 

levels of a robot control system. For example, Lenser et al. [LBV02] describe how they use 

"virtual" sensors and actuators for Carnegie Mellon University's entry at RoboCup 2000. Its 

behaviors retrieve abstract representations of sensor readings from the virtual sensors, and 

they issue high-level commands to virtual actuators. Low-level behaviors update virtual 

sensors based on real sensor data, and they break down virtual actuator commands into 

commands that can be executed on a physical robot. Still, behavior inputs and outputs are 

not restricted to abstractions of sensors and actuators. 

Simple tasks can be performed by collections of behaviors executing concurrently, 
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Figure 2.2: A Behavior-based Robot Control System 

as indicated by Figure 2.2. For example, the task of moving a robot to a given location 

requires the robot to make progress toward that location, maintain smooth motion, and 

avoid obstacles. This navigation task can be achieved through the simultaneous execution 

of behaviors for each of these requirements. A robot can, then, perform more complex 

tasks by sequencing these simple tasks. Behavior-based systems perform tasks through the 

appropriate enabling and disabling of their behaviors. 

Coordination 

One inherent problem with robot control systems is that several components may be allowed 

to send output to the same destination. This destination may be an actuator, where different 

components may send different commands to that actuator, or it may be a data structure that 

is accessible by the different components. This problem can, particularly, arise in behavior-

based systems, where several behavior may execute asynchronously. Such systems require 

coordination mechanisms that make the robot take appropriate actions in these situations. 

These coordination mechanisms generally require that each behavior has a weight, or a 
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priority, with respect to other behaviors. Pirjanian [Pir99] gives a survey of coordination 

mechanisms. 

Consider a behavior-based navigator robot that has two behaviors. Suppose that 

one behavior attempts to move the robot toward its goal location and the other attempts 

to move the robot away from oncoming people. It is possible that these two behaviors 

may, simultaneously, attempt to make the robot move in opposite directions. One behavior 

may set the direction first, and the other behavior may, quickly, cancel that setting. If each 

behavior repeatedly tries to set the direction, then the robot may viciously cycle between the 

two directions and yield unwanted actions. This robot requires a coordination mechanism. 

2.3.2 Examples 

Probably the most notable example of an architecture for developing reactive systems is 

Subsumption [Bro86] A more recent example is the Distributed Architecture for Mobile 

Navigation (DAMN) [Ros95]. The following paragraphs describe both of these architec­

tures. 

Subsumption 

The Subsumption architecture [Bro86] was developed by Brooks in the 1980s at the MIT 

Artificial Intelligence Laboratory. It allows developers to specify robot control systems as 

layers of behaviors, where higher layers "subsume", or augment, lower layers. Each new 

layer gives a robot a higher level of competence. For example, the lowest layer could be 

responsible for making the robot avoid contact with obstacles. A higher layer would add 

the capability of wandering, such that the robot wanders without colliding with obstacles. 

In the Subsumption architecture, each behavior is, essentially, a finite state machine 

with input ports and output ports. Repeatedly, each behavior reads its inputs, writes new 

data to its output ports, and updates its state. Each input port in each behavior is connected 

to a sensor or the output port of another behavior. Likewise, each output port is connected 

to an actuator or the input port of another behavior. A layer of a robot control system, then, 
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consists of a collection of behaviors and their interconnections. Connections between these 

behaviors are low-bandwidth data channels. 

Behaviors in higher layers augment behaviors in lower layers by writing data to the 

ports of the lower level behaviors. Whenever two behaviors write data to the same input 

port of another behavior, the higher level signal dominates. In particular, the higher level 

signal suppresses the lower level signal for a specified time period. Similarly, a behavior 

in a higher layer can inhibit the outputs of a behavior in a lower layer by writing to its 

output port. Thus, the coordination mechanism used in the Subsumption architecture is 

priority-based. 

D A M N 

DAMN [Ros95] was developed by Rosenblatt in the 1990s. It uses a vote-based coordi­

nation mechanism that overcomes problems caused by each input source specifying only a 

single preferred value. In a navigator robot, for example, if each behavior chooses a sin­

gle rotational velocity, then the robot cannot make a mutually satisfactory control choice. 

Instead, through a priority-based mechanism or a blending mechanism, it may choose a 

bad command that, for example, makes the robot collide with an obstacle. Systems devel­

oped using DAMN make more informed choices of actions, which satisfy all contributing 

behaviors. 

In DAMN, each behavior issues a vote value for each command in a set of possible 

commands. A set of commands, for example, may be a discretization of the velocities at 

which a robot can travel. For each command, a component, called the "arbiter", computes 

a weighted average over all vote values received for that command. It then applies, to 

the physical robot, the command with the highest average. Another component, called 

the "mode manager", provides the weights for each contributing behavior. These weights 

depend on the changing goals of the robot. 

Rosenblatt mentions that work must be done to allow both coupled and independent 

voting. For example, votes for the translational velocity of a robot may depend on the rota-
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tional velocity, since certain combinations may be unsafe. Generally, both velocities should 

be reasoned about together (coupled voting), but behaviors should have the ability to work 

with only one (independent voting). Rosenblatt has formulated a different coordination 

technique that is based on utility fusion [RosOO]. With utility fusion, each behavior outputs 

desirabilities for different states that are reachable by the robot. The robot then chooses the 

commands that best satisfy the desirabilities of all the behaviors. 

2.4 Hybrid Systems 

Real-world environments are not completely predictable. In an office building, for example, 

the specific movements of people cannot be correctly predicted at all times. Therefore, 

representations of these environments always have a degree of uncertainty, which can cause 

robots to choose sequences of tasks that do not help it achieve its goals. However, real-

world environments do have a sufficient level of predictability, which allows robots to make 

correct decisions most of the time. For example, office buildings have walls and desks that 

rarely move, so these objects can be considered to be static objects. In addition, the motions 

of people and other obstacles generally follow the laws of physics, so they can be correctly 

predicted within those constraints. 

Recall that deliberative systems work well in predictable environments where robots 

must perform complex tasks. Reactive systems work better in unpredictable environments 

where robots must quickly react to environment changes. For real-world environments, 

which have a balance of predictability and unpredictability, systems that combine deliber­

ation and reactivity should work well. Following this argument, researchers have created 

successful hybrid systems [AB97, BFG+97, K M 9 6 , SGH+97]. This section describes char­

acteristics of hybrid systems, followed by descriptions of notable hybrid systems. 
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Figure 2.3: A Three-layered Hybrid System 

2.4.1 Characteristics 

Recall that hybrid systems combine deliberation with reactivity. The exact division between 

deliberation and reactivity, however, is different with each system and architecture. Layered 

approaches have been proven successful for developing hybrid systems [AB97, BFG + 97, 

SGH+97]. Three-layered systems, for example, are common [BFG +97, SA98], where each 

layer may be subdivided into further layers. 

In a three-layered hybrid system, as depicted in Figure 2.3, the lowest layer is the 

reactive layer. This layer communicates directly with sensors and actuators and provides 

immediate responses to environmental stimuli. It can be behavior-based, which means 

that it consists of behaviors that work together to perform tasks. The highest layer is the 

deliberative layer, which takes goals and computes sequences of tasks for achieving these 

goals. It maintains the accurate representations of the robot and its environment. 

The middle layer of a three-layered hybrid system connects the deliberative layer 

with the reactive layer. In particular, it takes abstractions of sensor data from the reactive 

layer and provides the deliberative layer with symbolic representations of them. It also takes 
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sequences of tasks from the deliberative layer instantiates the execution of those tasks at the 

reactive layer. Essentially, it mediates between the symbolic task descriptions, at the de­

liberative layer, and primitive actions at the reactive layer. For behavior-based systems, the 

middle layer often enables and disables behaviors in the reactive layer, and it may compute 

their relative weights for coordination. 

In the field, the middle layer has been given different names, such as the "task se­

quencer" [BFG+97, Kon97] and the "executive" layer [SA98]. For this thesis, I use the 

term task sequencer. Examples of good task sequencing implementations are Reactive Ac­

tion Packages (RAPs) [Fir89], Colbert [Kon97], and the Task Description Language (TDL) 

[SA98]. Each of these provides a language that allows developers to specify the task se­

quencing functionality. This functionality includes task decomposition, task synchroniza­

tion, execution monitoring, and exception handling [SA98], as will be described in Section 

3.2. 

Task sequencers should be able to work within time constraints. Before choosing 

subtasks, a task sequencer should be able to retrieve estimates of the time required to com­

plete each subtask. That way, it can choose the sequence of subtasks that best satisfy its time 

constraints. Tsotsos, in his S* Proposal [Tso97], describes one good strategy for selecting 

sequences of tasks under time constraints. 

2.4.2 Examples 

One of the first robot control architectures to take the hybrid approach is AuRA [AB97]. A 

more recent, and widely used, architecture is Saphira [KM96]. One architecture that I have 

worked closely with is that used in Jose and Eric [ML98, EHL + 02, EHL03], two mobile 

robots at the University of British Columbia. The following paragraphs describe each of 

these systems in the order given. 
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A u R A 

AuRA, the Autonomous Robot Architecture [AB97], was developed by Arkin in the 1980s 

as a hybrid approach to robot navigation. It combines a hierarchical layer of planners with 

a behavior-based reactive component. The original formulation of AuRA consisted of three 

planning layers. The top layer managed goals, which are, in this case, the locations to 

which a robot must move. The middle layer computed sequences of straight path legs that 

the robot must follow to reach its goal. The bottom layer selected appropriate subsets of 

behaviors that, together, control the motion of the robot. 

AuRA defines different types of behaviors, which execute asynchronously. Most 

notably, it defines "motor schemas", which are behaviors that control the motors of a robot, 

given environmental stimuli. More specifically, each motor schema generates a force vector 

which indicates its desired direction and speed for the robot. For coordination, AuRA uses 

a weighted sum to combine the outputs of each motor schema into a single force vector. It 

then uses this vector to set the physical motor velocities. Developed motor schemas include 

those for moving a robot toward a goal point, keeping a robot on a desired path, and moving 

a robot away from sensed obstacles. 

S a p h i r a 

Saphira is an "integrated sensing and control system for robotics applications" [KM96] that 

was developed in the 1990s at SRI International's Artificial Intelligence Center. It was orig­

inally developed for use with Flakey the robot, but is now distributed with several commer­

cial robots. Saphira gave Flakey capabilities such as attending to, and following, humans, 

taking verbal advice from humans, and performing delivery tasks in an office building. 

The central component in the Saphira architecture is a database, called the Local 

Perceptual Space (LPS), which maintains representations of the environment inhabited by 

a robot. Its representations have different levels of abstraction, and they include sensor 

readings, maps, and other useful data. For reasoning, the LPS maintains "artifacts", which 

are representations of physical, and artificial, entities. The LPS can maintain topological 
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maps, for example, using artifacts that represent doors, corridors, and junctions. A task 

sequencer, called Colbert [Kon97], controls the execution of reactive behaviors. 

Behaviors in Saphira are specified using fuzzy control rules, which map logical 

combinations of fuzzy variables to control commands. Fuzzy variables have values (be­

tween 0 and 1) that, generally, indicate the likelihood of a condition being true. Behaviors 

compute these values using information in the LPS. Applying a fuzzy control rule yields 

a value (between 0 and 1) that indicates the preference for the corresponding control com­

mand. An example of a fuzzy control rule is the following. 

front-right-blocked OK front-left-blocked => slow down 

This rule has fuzzy variables front-right-blocked and front-left-blocked, and its con­

trol command is slow down. It states that a robot should slow down if the space in front of it 

(to both sides) is occupied. Saphira combines the results of all control rules from all behav­

iors to choose the actual control commands to apply. It uses "context-dependent blending" 

to weight each behavior based on the current situation. 

Jose and Eric 

Jose and Eric [ML98, EHL+02, EHL03] are modified Real World Interface B14 mobile 

robots. They are approximately one metre high, without peripherals, and they are cylin­

drical in shape with 14-inch diameters. They can move forward and backward, and they 

can rotate left and right, all at various speeds. Each B14 robot is equipped with six bump 

sensors, distributed around its base, which allow it to detect collisions with solid objects. 

In addition, each robot is equipped with sonar sensors and infrared distance sensors, which 

are unused. Each robot houses a standard computer system that runs the Linux operating 

system and communicates with other computer systems over a wireless network connection. 

Jose and Eric have been used for many types of scenarios, where each scenario re­

quired different modifications to the basic B14 robot. In all scenarios, both robots required 

vision capabilities. In particular, each robot has been configured with different vision sen­

sors, including the Triclops, Digiclops, and Bumblebee stereo vision modules manufactured 
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Figure 2.4: Jose, the Robot Waiter 

by Point Grey Research. Probably the most famous incarnation of these robots is Jose, the 

Robot Waiter, which was UBC's winning entry into the 2001 A A A I Hors d'Oeuvres Any­

one? competition [EHL + 02]. For this competition, Jose could carry a food tray into a room 

of people, find groups of people to serve, detect when people have taken food from the tray, 

and return to its home base when its food tray became empty. Figure 2.4 contains a picture 

of Jose in its waiter configuration. 

Jose and Eric have behavior-based control systems. Each behavior (or module) exe­

cutes as an individual process on either the robot hardware or an external computer system. 

Each onboard module can read input from the sensors and send commands to the actua­

tors. Communication among different modules may take place through sockets. Modules 

executing on the robot hardware can, alternately, communicate through a shared memory 

structure. This shared memory contains abstract representations of sensor readings, such as 

occupancy maps [ML98] and robot locations. 

Control systems for Jose and Eric generally have a supervisor module that controls 

the other modules, via sockets, by sending data to them [EHL + 02]. Data sent by the su-
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pervisor modules includes commands for enabling and disabling the modules. For each 

module, developers must write code that initializes communication with other modules. 

This may require code for setting up socket connections and acquiring references to data in 

shared memory. Communication over sockets requires that modules listen to those sockets 

for commands and data sent by other modules. 

It is possible for different modules to, concurrently, send commands to the same 

actuator or update the same shared memory entity. Therefore, their control systems require 

a coordination mechanism. Some investigation had been done, however, into a coordination 

mechanism where behaviors construct bids for actions [SM94]. For improved efficiency, 

Eric has recently been equipped with extra processing units [EHL03]. These units allow 

modules to execute in parallel within the robot hardware, itself. However, Eric requires a 

control system that takes advantage of these processing units. 

2.5 Summary 

This chapter has shown that robot control systems, to be successful in real-world environ­

ments, must be both deliberative and reactive. Regardless of their specific architectures, 

they must coordinate the processing of sensor data, and the controlling of actuators, such 

that robots can perform useful tasks. Deliberative systems, such as Shakey [Nil84], gener­

ally do this by following the sense-model-plan-act framework. Reactive systems, such as 

those developed using the Subsumption architecture [Bro86], do this by directly mapping 

environmental stimuli to physical actions. Hybrid systems, such as AuRA [AB97], combine 

both of these extremes. 
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Chapter 3 

Evaluation Criteria 

This chapter presents my criteria for evaluating control systems for autonomous robots. As 

stated in the introduction, I use these criteria to evaluate my software framework and ex­

ecution system. It begins, in Section 3.1, by presenting criteria related to the quality of 

software systems. There, it presents successful coding practices that developers use to cre­

ate high quality software systems. Since most control systems for autonomous robots are, 

indeed, software systems, these criteria and coding practices apply. This chapter continues 

by presenting criteria specific to robot control systems. In particular, Section 3.2 presents 

criteria that have been established by four significant researchers in the field. Section 3.3 

summarizes this chapter. 

3.1 General Quality Criteria 

Recall that software quality has both external measures and internal measures. High quality 

software systems satisfy these measures, as a whole. This section, first, presents the mea­

sures of external software quality. Then, it presents the measures of internal software qual­

ity. I base these measures of software quality on measures defined by McConnell [McC93] 

After listing the measures of software quality, this section presents the successful coding 

practices. For examples, it frequently refers to Jose and Eric [EHL +02], as described in 

Section 2.4, since I am familiar with their source code. 
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3.1.1 External Quality Measures 

McConnell [McC93] defines eight measures of external software quality. They are correct­

ness, usability, efficiency, reliability, integrity, adaptability, accuracy, and robustness. The 

following paragraphs explain each of these measures in the given order. 

Correctness 

Correctness is a measure of how well a software system adheres to its specification. If 

the system does not perform its intended tasks correctly, then it is not useful. As a simple 

example, if a system must add two numbers together and, instead, it multiplies them, then 

the system is not correct. A system, as a whole, can be either correct or incorrect. Large 

software systems, however, tend to have small errors that manifest themselves only in rare 

cases. Therefore, correctness can be measured more as an estimate of how often an error 

does occur during general usage. In high quality systems, errors either do not occur, or 

their occurrences are extremely rare. Many software systems, such as the control systems 

for Jose and Eric, are not thoroughly tested for correctness. Such systems may contain 

unidentified errors that can cause problems. 

Usability 

Usability is a measure of how easily a person can use, and learn to use, a software system. 

Consider two software applications that provide the same functionality, where the user must 

issue commands to call on that functionality. The first application requires the user to 

memorize dozens of text commands. The second application requires the user to select 

commands from well-organized, hierarchical, menus. When a user is first presented with 

both applications, that person may prefer to use the menu-based one, as it requires less 

effort to learn. However, after learning some text commands, the user may begin to prefer 

the application with text commands, as typing in commands may be quicker than navigating 

menus. For this example, perhaps the ideal software application would mix both options. 

In any case, high quality software systems are easy to learn and use. 
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Jose and Eric have, in some respects, good usability. Different people have devel­

oped different graphical user interfaces for controlling these robots. These graphical user 

interfaces allow users to, besides issue motor commands, visualize internal state represen­

tations such as occupancy grid maps and abstractions of sensor data. The usability for Jose 

and Eric is probably weakest in the startup sequence. It is weak here because users, when 

starting each control system, must start each module separately, and in a particular order. 

Efficiency 

Efficiency is a measure of the resources that a software system requires to complete its 

tasks. An efficient system minimizes the amount of time, memory, and hardware resources 

required to perform these tasks. For example, a system that takes one second to complete 

a task is much more efficient than a system that takes ten minutes, when both tasks yield 

identical results and require identical memory and hardware resources. Often, developers 

must sacrifice efficiency to create a system that is satisfactory with respect to the other 

measures. For example, to achieve numerical results with greater accuracy, a system may 

require more computation time. 

The control systems in Jose and Eric support high efficiency. Each module, itself, 

can be implemented in a suitable language for maximum efficiency. Shared memory and 

hard-coded socket protocols allow for highly-efficient communications between different 

modules. 

Reliability 

Reliability is a measure of the ability of a software system to perform its tasks for long 

periods of time without failure. A system is more reliable than another if, when under 

expected conditions, it fails less often. For example, a system that is proven to fail, on 

average, once a year, is more reliable than a system that is proven to fail once a week. 

Jose and Eric, depending on the application, can have low reliability. For example, 

Jose, when acting as a robot waiter, frequently suffered from broken socket connections 
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over its wireless network. These situations generally caused its entire control system to fail. 

Thus, the reliability of Jose depended on the reliability of its wireless network, which was 

often unreliable. 

Integrity 

Integrity is a measure of how well a software system ensures that its data remains consistent, 

valid, and correct. A system with high integrity utilizes mechanisms to prevent unautho­

rized access to its data. These mechanisms include encrypting data files, such that their 

data cannot be decoded outside the software system, and requiring that users specify valid 

passwords. 

A system with high integrity ensures that if pieces of data depend on one another, 

then a change in one piece will result in the appropriate change in the other. For example, 

consider a system that maintains a Boolean field that is true if and only if a particular 

integer field has a positive value. The system must update the Boolean field appropriately 

whenever the integer value changes between negative and positive. A system with high 

integrity ensures that its data values have the appropriate format and are within the required 

range. For example, if an integer field must contain a positive value, then the system should 

not allow it to take a negative value. 

The control systems in Jose and Eric support high integrity in different ways. For 

example, developers can code system parts such that each executing module, itself, has 

high integrity. In addition, whenever a module writes to a block of shared memory, it can 

temporarily lock that memory. That way, other modules, assuming that they use the same 

locking mechanism, cannot concurrently write to the shared memory. 

Although Jose and Eric have mechanisms for maintaining high integrity, their con­

trol systems can be further improved in terms of integrity. For example, their shared mem­

ory systems do not fully protect against misuse. Any module, if it has the correct numerical 

key, can access the shared memory and damage the data within it. In addition, modules that 

communicate through sockets do not authenticate one another. They require mechanisms 
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to ensure that they are communicating with the expected modules. 

Adaptability 

Adaptability is a measure of how well a software system can be used in other, unintended, 

configurations and environments. If a system can be used, without modification, in new con­

figurations and environments, then it has high adaptability. For example, a highly adaptable 

system is one that works with new input devices without significant external modification. 

Jose and Eric have high adaptability in the sense that they can be reconfigured with different 

camera systems, and other hardware, without significant external modification. 

Accuracy 

Accuracy is a measure of the closeness of the results generated by a software system to the 

actual results. Whereas for correctness, results are either be right or wrong, the accuracy 

measure applies to results that are generally correct, within a certain range. Accuracy is 

most often a factor when software systems use continuously varying quantities. Because 

computers cannot represent these quantities exactly, results of calculations often differ sig­

nificantly from the theoretical results. In any case, high quality software systems can nor­

mally guarantee the accuracy of their results to within a specific range. The accuracy of a 

robot control system, such as that used in Jose and Eric, depends upon the specific applica­

tion. For a navigation task, an accuracy measure could be the distance from a robot to its 

goal location, after that task has completed. 

Robustness 

Robustness is a measure of how well a software system responds to extreme or unexpected 

conditions, such as the failure of system parts. To be robust, a system must be able to rec­

ognize these conditions and handle them gracefully. For example, if the system encounters 

an error, it should not terminate harshly. In addition, it should not continue to execute if the 

error causes the system to perform its tasks incorrectly. Instead, the system should either 
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try to recover from the error, or it should terminate in a way that is acceptable to users. 

Acceptable termination may include printing a message that explains why the execution 

terminated and providing a way for the user to recover the previous state of the system. 

Jose and Eric have significant weaknesses with respect to robustness. If a module 

terminates unexpectedly, or a socket connection breaks, their control systems make no at­

tempt to recover the broken parts. To resume normal operation, the user must, tediously, 

restart these control systems. Recall that Jose, when acting as a robot waiter, frequently 

suffered from broken socket connections over its wireless network. Its control system did 

not attempt to reconnect the disconnected pieces. 

3.1.2 Internal Quality Measures 

McConnell [McC93] defines seven measures of internal software quality. They are main­

tainability, flexibility, portability, reusability, readability, testability, and understandability. 

The following paragraphs explain each of these measures in the given order. 

Maintainability 

Maintainability is a measure of how easily a software system can be improved, modified, 

and extended. If a system is not easily maintainable, then its developers will require more 

time and energy to do their work. The source code of a system should be written in a way 

that helps to make errors easy to find. In addition, the source code should be written in a 

way that allows parts of it to be easily changed, and it should allow new parts to be easily 

added. Knowledge of good coding practices makes these requirements easier to satisfy. 

Jose and Eric have high maintainability with respect to the modularity of their con­

trol systems. Recall that their control systems consist of several modules that communicate 

with each other. The addition of new modules is relatively simple, despite the fact that 

their source code must contain special code for connecting to shared memory and estab­

lishing socket connections. Besides that initial setup, and the knowledge of communication 

protocols, developers have no additional restrictions. 
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Jose and Eric have low maintainability with respect to the inconsistencies across 

different module implementations. Over the years, different people have contributed to the 

development of different parts of their control systems. Each developer used his, or her, 

own coding style, which made source code increasingly difficult to understand. In addition, 

developers often created unnecessary coupling between different source code parts in their 

attempts to give the robots improved capabilities. 

Flexibility 

Flexibility is a measure of how easily a software system can be changed such that it can be 

used for different purposes. It is similar to adaptability, but it applies to the source code. A 

flexible system allows parts of a system to be changed such that the effects on the remainder 

of the system are minimized. An example of a flexible system is one that has been coded 

such that it works with different video display configurations. 

Jose and Eric have high flexibility because of the modularity of their control sys­

tems. Developers can easily add new modules, or modify the source code for existing ones, 

to give the robots new capabilities. However, each module is tightly coupled with specific 

communication media. In particular, each module communicates directly through sockets 

and shared memory. Because of this tight coupling, any changes to the communication me­

dia would require changes to the modules, themselves. Flexibility can be further improved 

by reducing this coupling. 

Portability 

Portability is a measure of how easily a software system can be modified such that it can 

operate in completely different execution environments. A portable system has the poten­

tial for more widespread usage. An example of a portable system is one that can execute 

properly on Linux systems and Microsoft Windows systems, where both versions share the 

same source code. Portability is achieved by avoiding the usage of system-dependent source 

code and libraries. When system dependence is required, the system-dependent source code 
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should be separated from the non system-dependent source code. 

Many of the modules within the control systems of Jose and Eric are not widely 

portable. This is mainly because they use a shared memory implementation that is sup­

ported only by specific operating systems. Porting their control systems from Linux to 

Microsoft Windows, for example, would require a complete rewriting of any source code 

based on shared memory. Luckily, the parts that use shared memory execute only on the 

robot hardware, and would never have any need for porting. Most parts that can execute 

outside the robot hardware can, without significant modification, be ported to different op­

erating systems. 

Reusability 

Reusability is a measure of the usefulness of parts of a software system in different con­

figurations. A high quality system consists of components that can be reused elsewhere in 

the system, or in different systems. For example, if a system has source code for creating 

and maintaining a linked list data structure, then many parts of that same system can make 

use of that code whenever they need linked list functionality. In addition, other systems 

can make use of that same source code. Most software compilers are distributed with li­

braries that provide useful functionality that developers can use in their source code. These 

libraries have been thoroughly tested for errors, and are guaranteed to be correct. By calling 

on prewritten routines, developers can avoid the errors that they can create when they write 

the routines themselves. 

The individual modules within the control systems of Jose and Eric have high 

reusability. This is because each module operates independently, and each module can be 

inserted wherever its communication requirements are satisfied. If one module uses shared 

memory, then it can work with any shared memory implementation that has the same in­

terface. Likewise, if it must establish a socket connection with a specific type of module, 

then a module of that type must be ready for connection and must support the same pro­

tocol. Modules with increased numbers of connections with other modules generally have 
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decreased reusability. 

Readability 

Readability is a measure of how easily the source code of a software system can be under­

stood by other developers, at the level of individual statements. Each identifier should have 

a self-descriptive name, and each statement should be formatted with appropriate spacing. 

Groups of statements should be accompanied by comments when those statements require 

further clarification. If a software system has good readability, then less time is wasted by 

developers that must learn how the source code works. The source code for Jose and Eric 

has high readability in some parts and low readability in others. This is reflected by the fact 

that many people contributed to writing the source code. 

Testability 

Testability is a measure of how easily a software system can be tested for errors. Developers 

can make a system more testable by breaking it up into small routines that have clear input 

and output specifications. They can test these routines using unit testing techniques. That 

is, for each routine, they can invoke the routine with inputs that exploit identified test cases. 

With each routine invocation, they can verify that the routine returns the correct value or 

performs the correct action. The source code for Jose and Eric has high testability in some 

parts and low testability in others. Differences in programming style among the different 

developers contributes to this variation. 

Understandability 

Understandability is a measure of how easily the overall structure of a software system can 

be understood through its source code. This measure is similar to readability, except that it 

applies on a more abstract, structural, level. If a software system has good understandability, 

then less time is wasted by coders that must learn the overall structure of the software 

system. Coders can make systems more understandable by dividing their source code into 
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separate source files, modules, and routines. Each structural part of the source code should 

be accompanied by comments that give an overview of that part. While proper design 

documentation helps coders to understand the structure of software systems, appropriate 

coding practices help coders to create a close mapping between the source code and its 

documentation. 

The source code for Jose and Eric has high understandability in terms of its modu­

larity. The division of system parts into independent modules is a large contributing factor 

for this understandability. The quality of internal documentation, however, varies from 

module to module. Thus, some modules have better understandability than others. 

3.1.3 Successful Coding Practices 

Software engineers have identified successful coding practices that allow developers to cre­

ate high quality software systems [McC93]. First, they have established the fact that soft­

ware systems can be divided into smaller parts, where each part shares common function­

ality or data. These parts can be further broken down until a level is reached where all 

parts are simple routines. In each system, relationships and dependencies exist within parts 

and among different parts. Proper management of these relationships and dependencies is 

crucial to the development of high quality software systems. 

Cohesion and coupling are two relevant terms in the management of relationships 

and dependencies among parts of a software system. The following paragraphs show how 

these terms apply. They also show how object-oriented programming helps developers to 

create systems that have strong cohesion and loose coupling. Such systems are generally 

high quality systems, with respect to the internal quality measures. Design patterns and 

software frameworks, which are also described in the following paragraphs, help to improve 

the quality of object-oriented software systems. 
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Cohesion and Coupling 

Cohesion is the measure of the strength of relationships within individual parts of a software 

system. Recall that high quality systems have "strong" cohesion. This means that each part 

of the system consists only of subparts that are closely related. The relationships between 

subparts can be functional, where their routines have similar functionality. For example, 

math libraries consists of routines that perform mathematical functions. Similarly, relation­

ships can be data-based, where all all routines act on the same data. For example, a part of 

a system can consist of a collection of routines for managing a linked list data structure. 

Coupling is the measure of the number of dependencies among different parts of 

a software system. Recall that high quality systems have "loose" coupling. This means 

that dependencies among different system parts are minimized. As with the relationships 

within a system part, these dependencies can be functional, where one part calls routines 

that are defined in another part. Similarly, the dependencies can be data-based, where one 

part references variables defined in another part. It is important that systems are structured 

such that most dependencies are kept within the same parts of the system. 

Figure 3.1 depicts a system that has strong cohesion and loose coupling. Each larger 

rectangle represents a cohesive part of the system, which consists of subparts (the smaller 

rectangles) that are closely related. An arrow between two rectangles indicates that one 

subpart depends upon the other subpart. The minimal number of arrows between the larger 

system parts indicates a low number of associations and, hence, loose coupling. 

Strong cohesion and loose coupling result in high maintainability because systems 

with these properties localize functionality and data. If a system has an error that is related 

to specific functionality or data, the coder is likely to find the error in the part of the system 

that defines that functionality and data. If a part of a loosely coupled system is changed, 

that that change breaks a minimal number of dependencies. Loosely coupled systems result 

in high flexibility because they are structured such that if one part of a system must change, 

the other parts are affected minimally. 

Systems that have strong cohesion and loose coupling have high portability when 
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Figure 3.1: Strong Cohesion and Loose Coupling 

they decouple system-dependent code from non system-dependent code. They have high 

reusability because, except for a minimal number of dependencies, large parts of the sys­

tems can be used in other parts, and within other systems, without change. They have high 

testability because they can be divided into mostly-independent parts that are easily testable. 

They have high understandability because a coder can understand each part of each system 

by looking at a minimal number of depended-upon parts. 

Object-oriented Programming 

Object-oriented programming is a common approach to developing high quality software 

systems [BDOO]. It allows representations of complex entities to be packaged into cohe­

sive data structures. Object-oriented software systems are viewed as collections of objects, 

where objects are these cohesive data structures. Each object encapsulates a collection of 

member variables, which define the state of the entity it represents. In addition, each object 

provides a collection of methods, which are routines that act on the object state. 

Each object in an object-oriented software system is an instance of a class. Figure 
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Ball 

Public Methods: 
s e t L o c a t i o n ( L o c a t i o n l o c ) 
t h e L o c a t i o n ( ) : L o c a t i o n 
s e t C o l o r ( C o l o r c ) 
t h e C o l o r ( ) : C o l o r 

Private Member Variables: 
l o c a t i o n : L o c a t i o n 
c o l o r : C o l o r 

Figure 3.2: A Ball Class 

3.2 depicts a class that is used to define ball objects. Each class defines the member variables 

and methods that comprise its instances. In addition, each class specifies which member 

variables and methods may be accessed from source code outside the class. In the figure, 

the ball class defines private member variables that store the location and color of a ball. The 

ball class also defines public methods that are used for setting and retrieving the information 

about the ball. Classes often define constructors, which are special methods that are invoked 

upon object creation to initialize the objects. 

The object-oriented programming paradigm facilitates reusability because it allows 

each class to be used to create any number of objects. It also facilitates reusability by allow­

ing developers to define new classes that are extensions of existing classes. By extending 

classes, developers form class hierarchies, where the superclass is the original class, and the 

subclass is the new class formed by extending the superclass. Figure 3.3 depicts a sample 

hierarchy, where class (Ball) is a subclass of class Item. Class B a l l has two subclasses 

— G o l f B a l l and T e n n i s B a l l — which are two different kinds of balls. One advan­

tage of extending a class is that instances of subclasses can be used wherever instances of 

37 



Is Subclass Of 

GolfBall 

Item 

Is Subclass Of 

Ball 

Is Subclass Of 

TennisBall 

Figure 3.3: A Sample Class Hierarchy 

their superclasses are required. Instances of class G o l f B a l l , for example, can be used 

wherever an instance of class B a l l is required. This allows the same source code to be 

used to interact with all subclasses of the required class. 

Through class hierarchies, the object-oriented programming paradigm supports the 

declaration of interfaces, which provide common protocols for interacting with parts of a 

system. If two parts share a common interface, then one part can be substituted with the 

other part without affecting the remainder of the system implementation. In a class hierar­

chy, each superclass can act as a common interface for instances of all its subclasses. The 

subclass instances can be assigned to any variable that expects an instance of the super­

class. Thus, parts of a software system that use these subclass instances, through superclass 

variables, are decoupled from specific subclass implementations. Some programming lan­

guages, like Java, provide direct support for interfaces by allowing developers to declare 

them as special types of superclasses. 

Objects support strong cohesion, since they can represent single entities within a 

software system. For strong cohesion, objects should maintain an internal state that consists 
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of data directly related to the represented entity. In Figure 3.2, for example, the color and 

location properties are directly related to the concept of a ball. For strong cohesion, each 

method should act on the internal state of the object in ways that are directly related to the 

represented entity. In the figure, method se tLoca t ion , which places the ball at a given 

location, is appropriate for the ball object. 

Objects support loose coupling, since they can encapsulate data and prevent in­

stances of other classes from directly accessing this data. Instead of providing direct access 

to member variables, an object can provide methods that return or modify the values stored 

in these member variables. This alternative yields developers the flexibility to change the 

representation of the stored data without requiring changes in parts of software systems that 

use its class. In the ball example, the location of the ball can easily be given a new data 

type, or a new name, if other parts of the system do not have direct access to that data. 

Design Patterns 

Design patterns are templates for class hierarchies and dependencies that provide reusable 

solutions for common design problems [GHJV95]. Thus, they help to improve the quality 

of object-oriented software systems. The two design patterns that are most significant to 

my thesis project are the proxy pattern and the observer pattern. 

In the proxy pattern, as depicted in Figure 3.4, a special object acts as an interme­

diate layer between a method caller and the object that provides the required method. This 

special object, called the proxy object, provides methods with the same declarations as the 

public methods provided by the target object. The method caller holds a reference to the 

proxy object that, to the method caller, is identical to the target object. Rather than call 

methods directly on the target object, the method caller calls methods on the proxy object, 

which delegates the method call to the target object. Interface superclasses generally facili­

tate this substitution, which decouples the method caller from the specific target object. 

The proxy pattern has several applications, which depend on how the proxy object 

handles its method calls. For my thesis, the most significant application is remote method 
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Figure 3.4: The Proxy Pattern 

invocation, which allows methods to be called on objects that may exist on other computer 

systems. In this case, the proxy object has the ability to, through a medium unknown to the 

caller (such as sockets), initiate the invocation of the remote method. Generally, a collab­

orating object, on the remote side, must process the transferred data and make the actual 

method call. Each proxy method, then, forwards its argument values to the corresponding 

target method and returns the value that has been returned by that target method. Other 

applications of the proxy pattern include encryption of argument data, caching of method 

call results, and access restriction. 

In the observer pattern, one or more objects register themselves as observers of a 

source object. When a specific event occurs in the source object, that object notifies all of 

its observers so that they may act appropriately. Figure 3.5 depicts the observer pattern. In 

particular, it shows an object notifying three of its observers. 
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Observer Observer Observer 

Figure 3.5: The Observer Pattern 

Software Frameworks 

A software framework is a reusable collection of related classes and class hierarchies. By 

extending the framework classes, developers can define subclasses that have a common 

structure. For example, these new subclasses may share common method declarations. 

Because of this common structure, systems that know about the framework can work with 

these subclasses, and their instances, in a consistent manner. A software framework may 

be accompanied by additional classes, such as classes that define useful data types and 

classes for organizing instances of the new subclasses. Software frameworks can be used to 

implement generic code for design patterns. 

3.2 Robot-specific Criteria 

This section presents evaluation criteria that have been established, separately, by Ronald 

Arkin, Rodney Brooks, Kurt Konolige, and Reid Simmons. It presents them in that order, 

referring back to the systems described in Chapter 2 for examples. 
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3.2.1 Arkin's Criteria 

Arkin [Ark98] gives eight criteria for evaluating architectures that are used to develop robot 

control systems. Although he focuses on behavior-based architectures, his criteria can be 

used to evaluate any autonomous robot control system. His eight criteria are support for 

parallelism, hardware targetability, niche targetability, support for modularity, robustness, 

timeliness in development, run time flexibility, and performance effectiveness. Good sys­

tems generally satisfy most, if not all, of them. The following paragraphs discuss, in order, 

each of these eight criteria. 

Support for Parallelism 

An architecture supports parallelism if systems developed using that architecture can be 

easily divided into components that can execute in parallel. Such systems can complete 

more work, in less time, than systems that must execute entirely on the same processing 

unit. Consider a robot control system that must perform both vision processing and motion 

control. If a separate component can be developed for each of these tasks, and each com­

ponent can execute independently, then the system will be able to do vision processing at 

the same time that it does motion control. If both components are implemented in software, 

then the vision processing software can execute on one processor, and the motion control 

software can execute on a different processor. 

Executing different software tasks on different processors can be more efficient, in 

terms of time, than executing both tasks such that they share the same processor. Behavior-

based systems generally have a good support for parallelism, since each behavior can exe­

cute asynchronously on a different processor. Thus, architectures like Subsumption [Bro86] 

and DAMN [Ros95], and the reactive components of AuRA [AB97] and Saphira [KM96], 

have good support for parallelism. Deliberative architectures, such as that used in Shakey 

[Nil84], often have less parallelism support. 
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Hardware Targetability 

An architecture has good hardware targetability if it can be mapped easily onto the hardware 

of a real robot system. An example of an architecture with good hardware targetability is 

one where software interfaces to sensors and actuators can map directly to physical sensors 

and actuators. Software systems can interact with the virtual sensors and actuators as if 

they were the real, physical, ones. Less coding effort is required for such systems, since 

the mappings between the software and hardware are implicit in the system design. In 

this sense, reactive systems, which often work directly with sensors and actuators, have 

better hardware targetability than deliberative systems, which often work with symbolic 

representations. 

An architecture also has good hardware targetability if systems developed using that 

architecture consist of components that can be implemented in hardware. Because hardware 

implementations generally execute faster than software implementations, systems with this 

type of hardware targetability have the potential to be more efficient. Architectures based 

on simple components, such as Subsumption [Bro86], have good hardware targetability in 

this sense. However, they lack the level of expressiveness provided by architectures such as 

Saphira [KM96], which are based on complex control and representation. 

Niche Targetability 

An ecological niche for a robot is defined by the relationships between a robot and its envi­

ronment. An architecture has good niche targetability if it has the following two properties. 

First, the architecture must provide ways to express the required relationships. Second, 

the architecture must allow developers to, without significant effort, modify systems for 

operation in different environments. Robots, like animals, must adapt to changes in their 

environments in order to survive. If a human would rather do a task, rather than let a robot 

do the task, then the robot does not have good niche targetability with respect to that task. 

Behavior-based architectures, such as Subsumption [Bro86], generally have good 

niche targetability. Their mappings from environmental stimuli to actuator responses clearly 
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reflect the relationships between a robot and its environment. In addition, their modular­

ity helps their configurability for different environments. Deliberative architectures, like 

NASREM [AML87], have lower niche targetability as they may require different types of 

representations for different environments. These different representations can require sig­

nificant changes to system components, such as the global memory representations and 

world modeling modules in NASREM. For example, a navigator robot that stores two-

dimensional occupancy maps of a flat ground plane may work well in an office building. 

For the robot to work well in the wilderness, full three-dimensional maps may be more 

useful. However, the robot would require significant changes to any components that work 

with the maps and derived representations. 

Support for Modularity 

An architecture supports modularity if systems developed using that architecture provide 

abstractions for collections of lower level components. Modules are collections of com­

ponents that allow access to these components at an abstract level. In object-oriented pro­

gramming, for example, objects are modules that provide methods that can be called, but 

the implementations of these methods are hidden and irrelevant. A modular architecture 

"makes a developer's task easier and facilitates software reuse" [Ark98]. If a module is 

designed appropriately, then a developer can easily reuse the same module within the same 

system or within a completely different system. 

Consider a robot system that contains a motion controller module, where that mod­

ule calls on a vision module to determine where the robot can safely move. The motion 

controller module does not need to know the specific implementation of the vision module. 

Instead, it needs to know, only, that it can call on the vision module to retrieve a description 

of what is seen by the robot. If the vision module implementation changes, but the interface 

to that module remains the same, then the motion controller should not require any changes. 

Behavior-based architectures generally have good modularity because each behav­

ior is an independent unit with clear input and output requirements. However, specific 
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dependences on other behaviors, as occurs in Subsumption [Bro86] when new layers aug­

ment existing layers, reduces this modularity. DAMN [Ros95] has better modularity, in this 

sense. Deliberative architectures, such as Shakey [Nil84], which have large planners that 

work with complex world models, have poorer modularity. NASREM [AML87], with its 

hierarchy of planners, has somewhat better modularity. 

Robustness 

Robustness was defined in Section 3.1 in the context of software quality. Consider a mobile 

robot whose vision sensor becomes damaged. This damage prevents the robot from per­

ceiving obstacles in its environment. In a system that is not robust, the robot may continue 

to move, thinking nothing is in its way, toward imminent collision. The control system for 

this robot would be more robust if it could recognize that the vision hardware did not work 

properly. Then, it could compensate for that loss by moving toward its target at a speed that 

is too slow to cause damage. The system would be even more robust if it could repair, or 

replace, the damaged component. 

Architectures that allow developers to use general purpose programming languages, 

such as Saphira [Act99], have a greater risk of error introduction. Thus, they may lack the 

robustness provided by architectures, such as Subsumption [Bro86], that use specialized 

languages with simpler semantics. Nonetheless, with proper design, such systems can be 

implemented such that they localize the effects of failures. 

Timeliness in Development 

An architecture supports timeliness in development if robot systems can be developed 

quickly and easily using the architecture. The development time for these systems can be 

reduced if tools are available that simplify the work of the developer. Useful tools include 

specification languages and graphical editors. Some architectures, such as those modeled 

after complex biological systems, are philosophical in nature. Such architectures cannot be 

easily implemented on real systems, so they do not support timeliness in development. 

45 



Architectures based on networks of components, such as Subsumption [Bro86], 

have good support for timeliness in development. These architectures can allow develop­

ers to create graphical tools for connecting the different components. The timeliness in 

development for individual components often depends on the specification semantics. Ar­

chitectures, such as Saphira [Act99], that are based on common programming languages 

can rely on available tools for those languages, including editors and debuggers. Simpler 

languages allow such tools to be developed more quickly. Architectures with good support 

for modularity facilitate code reuse and, therefore, timeliness in development. 

Run Time Flexibility 

An architecture supports run time flexibility if systems developed using that architecture 

can be easily reconfigured during execution. A robot-related example is a system that has 

a component for planning an optimal path to a given destination. That system has good 

run time flexibility if it allows the path planning component to be reconfigured, at run time, 

such that it uses a different algorithm or different input parameters. It can have better run 

time flexibility if it can reconfigure itself. The robot system can apply learning algorithms 

such that it can learn the best ways to reconfigure itself for specific situations. 

Saphira [KM96], with its context-dependent blending, has good support for run 

time flexibility. It allows its behaviors to be weighted differently depending on the current 

situation. DAMN [Ros95] has similar support for run time flexibility. Systems developed 

using hard-wired networks, such as those developed using the Subsumption architecture 

[Bro86], have poorer run time flexibility. 

Performance Effectiveness 

Performance effectiveness is a measure of how well a robot performs the tasks it was devel­

oped for. How well a robot performs a given task can be measured in different ways, which 

depend on the particular task. Consider a robot that must move to a given goal location. 

For this robot, useful performance measures are the elapsed time, the path smoothness, the 
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energy consumed, and the clearance from obstacles. A robot with optimal performance 

effectiveness would reach its goal location quickly, along a smooth path, while minimizing 

energy consumption and avoiding obstacles. 

The performance effectiveness of a robot control architecture depends on the spe­

cific implementation and the specific task. Recall that deliberative architectures, such as 

that used for Shakey [Nil84], work best in predictable environments where a robot must 

perform complex tasks. Reactive architectures, such as Subsumption [Bro86], work best 

in dynamic, unpredictable, environments where the maintaining of internal representations 

does not help. 

3.2.2 Brooks' Criteria 

Brooks [Bro86] gives four criteria should must be satisfied by a control system for an au­

tonomous robot. They are multiple goals, multiple sensors, robustness, and additivity. The 

following paragraphs discuss them in that order. Robustness was discussed previously in 

this section, so it will not be discussed again here. 

Multiple Goals 

A robot control system should be able to manage several concurrent goals, which may exist 

at different levels in a control hierarchy. For example, the goal of moving a robot to a goal 

location requires the subgoals of moving to waypoints along a path and avoiding obstacles. 

A control system must maintain a balance among the different goals it attempts to achieve 

at any time. It must eventually satisfy its high-level goals, but certain situations may require 

it to temporarily drop those goals to satisfy lower level goals. For example, if a large object, 

like a vehicle, quickly approaches the robot, then the robot should favor moving out of the 

path of the object. 

Brooks claims that his Subsumption architecture [Bro86] has good support for mul­

tiple goals. In particular, each layer can work independently on its own goals. Architectures 

with hierarchical components, such as NASREM [AML87] and AuRA [AB97], have good 
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support for managing goals at different levels. Architectures with behavior-based com­

ponents, such as DAMN [Ros95] and AuRA [AB97], have good suppport for managing 

concurrent goals at the same level. 

Multiple Sensors 

Autonomous robots often have multiple sensors, and these sensors have uncertainties in 

their readings. A robot control system must work with thes uncertainties so that it can make 

better decisions. Sensor readings may have particular interpretations only in certain con­

texts. For example, vision sensors do not provide good distance measurements, using com­

mon techniques [OK93], in environments with reflection and insufficient texture. Brooks 

claims that his Subsumption architecture [Bro86] has good support for multiple sensors. In 

particular, each layer can process data, in its own way, from any sensor. 

Additivity 

Additivity refers to the addition of new sensors, actuators, capabilities, and processing units. 

A robot control system should be designed such that these new parts can be added without 

significant effort. Brooks claims that his Subsumption architecture [Bro86] has good addi­

tivity because different layers can execute on different processors. In addition, it can allow 

support for more sensors and actuators through additions to existing networks. Generally, 

systems with good support for modularity have good support for additivity. 

3.2.3 Konolige's Criteria 

Konolige and Myers [KM96] give three criteria for a mobile robot that must perform tasks 

in an "open-ended scenario". Their example of an "open-ended scenario" is one where 

a robot is led through a regular office building, with working people. In that scenario, 

the robot must learn to identify people and locations in the building, and then perform 

delivery tasks. Their three criteria, which they refer to as the "three C's", are coordination, 

coherence, and communication. The following paragraphs discuss, in order, these criteria. 
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Coordination 

Control systems for autonomous robots must deal with functionality on many different 

levels. The lowest level consists of components that read data directly from sensors and 

send commands directly to actuators. Higher levels consist of components that plan and 

sequence tasks so that a robot can achieve its goals. The specific interactions between the 

different levels depend on the environment inhabited by the robot. In each environment, 

the robot may have different goals and different tasks for achieving them. Each task may 

require certain functionality from the low-level components. However, when a robot must 

perform several tasks at once, these low-level components must be properly coordinated 

such that, together, they aid in the completion of the tasks. 

Coordination, in this context, is different from what was described in Section 2.3. 

Here, it refers to the structuring of a robot control system. Konolige and Myers [KM96] 

have determined that a "layered abstraction approach" is the best approach for structuring 

a control system for an autonomous robot. In this approach, high-level functionality is 

achieved through the proper coordination of lower level components. For example, moving 

a robot to a goal location requires the use of sensing components (for avoiding obstacles) 

and components that control the primitive motions. Architectures with hierarchical compo­

nents, such as NASREM [AML87] and AuRA [AB97], have the this type of structure. 

Coherence 

As stated in Section 2.1, robot systems must combine deliberation and reactivity so that 

they can achieve complex goals while remaining reactive to unexpected events. For robots 

to survive in complex environments, they must model their environments as accurately as 

possible. Accurate environment representations allow robot control systems to make more 

informed choices to better achieve their goals. Thus, robot control systems must maintain 

a strong coherence between their internal representations and their physical environments. 

While accurate, complex, representations allow robot systems to complete com­

plex tasks in complex environments, the maintenance of these representations has negative 
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impacts on a robot. In particular, the time required to construct a complete environment 

representation is not adequate when the robot must be able to immediately react to unex­

pected events. For example, if a dangerous object quickly approaches the robot, and the 

robot uses its complex representations to detect oncoming objects, then the robot may not 

react in time to avoid collision. 

Following the above, robot control systems must maintain, along with their com­

plex environment models, simple models based on immediately sensed data. These simple 

models allow for immediate reaction to sensed events. The proper balance of complex and 

simple environment models results in the required balance of deliberation and reactivity. 

Saphira [KM96], with its LPS, maintains environment representations at different levels of 

abstraction. NASREM [AML87], with its hierarchical sensory and world modeling mod­

ules, also allows for such representation. 

Communication 

Robots that operate in environments inhabited by humans should be able to communicate 

with those humans. In particular, they should be able to receive, and understand, commands 

and information given by humans. They should update their internal models based on the 

information given by humans, and they should use the commands given by humans to form 

goals that they must achieve. Besides understanding humans, a robot should be able to 

give information back to humans. This information includes the knowledge acquired by the 

robot, along with its current goals. 

Complex speech recognition and synthesis systems provide the ideal level of com­

munication between robots and humans. However, simpler communication protocols, such 

as gestures and typed text, are often adequate. For robots to communicate effectively with 

humans, they must be preprogrammed with basic concepts and language primitives. Each 

robot should, for example, have an understanding of its own identity, relative to people 

and other objects. Saphira [KM96] was developed with such communication as a require­

ment. Speech recognition and synthesis require a level of processing provided by common 
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programming languages. This level of processing would be difficult, if not impossible, to 

achieve with architectures like Subsumption [Bro86], which use simpler semantics. 

3.2.4 Simmons' Criteria 

Simmons' criteria relate to the middle layer in a three-layered hybrid system. To reiterate, 

this middle layer takes sequences of tasks, from the deliberative layer, and instantiates the 

execution of those tasks at the reactive layer. To do this, task sequencers must interpret the 

state of a robot and its environment, and they must make decisions based on that state. 

Simmons identifies four main areas of functionality that a task sequencer must pro­

vide [SA98]. These are task decomposition, task synchronization, execution monitoring, 

and exception handling. The following paragraphs describe these four criteria in detail, re­

ferring to the three task sequencer implementations noted in Section 2.4. Once again, the 

task sequencing mechanisms are RAPs [Fir89], Colbert [Kon97], and TDL [SA98]. 

Task Decomposition 

Task decomposition allows a task sequencer to further break down sequences of tasks it 

retrieves from a planner. This division is important because tasks specified by the planner 

are often too abstract to map directly to low-level actions. Suppose, for example, that a task 

sequencer receives the task of moving the robot ahead by a particular distance. That task 

sequencer must break that task down into sequences of velocity commands for the robot. In 

a behavior-based system, the task sequencer would enable the behaviors required to control 

the robot motors. 

For task decomposition, RAPs uses a Lisp-like language that specifies different 

alternatives for each task. Each alternative has a defined context under which it is applied, 

and it has constructs for starting sequences of subtasks. Colbert and TDL both use C-like 

languages, where developers write a different function to handle each task. These functions 

use conditional constructs ("if" statements) to decide which subtasks to start. 
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Task Synchronization 

Task synchronization allows a task sequencer to execute subtasks and and low-level actions 

in series and in parallel. It is important because complex tasks often require the coordination 

of concurrently-executing low-level processes. In behavior-based systems, parallel execu­

tion allows different subsets of behaviors to execute for different tasks. RAPs, Colbert, and 

TDL all have constructs for starting subtasks in series and in parallel. More complex task 

synchronization is possible, which allows the task sequencer to apply time constraints to 

the execution of low-level processes. TDL provides a rich set of constructs based on time, 

such as those for terminating task execution after a specified time. 

Execution Monitoring 

Execution monitoring allows a task sequencer to await a specific condition before taking 

particular actions. For example, if the robot must wait for its batteries to be charged before 

moving, a task sequencer can wait for that condition to become true. In addition, if the robot 

must move to a specific location, a task sequencer can detect when that destination has been 

reached. RAPs have support for monitoring subtasks. Colbert and TDL allow developers 

to write specialized monitor functions, which are called repeatedly. 

Exception Handling 

Exception handling allows a task sequencer to quickly recover at higher levels, when lower 

level tasks fail. In object-oriented programming languages, such as Java, a method "throws" 

an exception when it encounters a situation that it cannot handle appropriately. When a 

method throws an exception, control flow returns up the method call chain to an ancestor 

that can "catch" the exception. Upon catching the exception, the catcher can take appro­

priate action, which depends on the specific application. Any time a task sequencer detects 

that it cannot perform a task, given its constraints, it should throw an exception. 

An example of an exceptional situation is depicted in Figure 3.6, where a robot 

has a long wall between itself and its nearby goal location. This goal location is provided 
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by a path planner, which computes sequences of waypoints a robot must pass to reach its 

ultimate goal. Suppose the robot has a reactive behavior that translates the goal location and 

nearby obstacles into attractive and repulsive forces, respectively. The exceptional situation 

arises from the robot being unable to make forward progress as a result of the attractive 

forces cancelling out the repulsive forces. In that case, the behavior can request that the 

path planner generates a new sequence of waypoints that can be reached. 

RAPs provides exception handling in the sense that if a task fails, the RAP inter­

preter chooses another alternative for handling the task. Colbert does not provide explicit 

support for exception handling. TDL provides support for exception handling in a way 

similar to that provided by the Java programming language. 

3.3 Summary 

This chapter presented my criteria for evaluating robot control systems, which are based 

on criteria specified by other researchers and professionals. The chapter started with the 

general quality criteria and established object-oriented programming as a mechanism for 
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developing high quality software systems. It continued with the robot-specific criteria, 

which indicate the types of structure and functionality my software framework and execu­

tion system should support. 
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Chapter 4 

Framework Derivation 

This chapter derives my software framework by resolving the specific issues that I believed 

were most important, based on the criteria outlined in Chapter 3. Recall that my software 

framework allows developers to specify robot control systems as networks of software com­

ponents. This chapter, through its derivation, introduces the types of software components 

that are part of my framework. Figure 4.1 depicts a network that can be created with these 

types of components, where the arrows indicate the predominant direction of data flow be­

tween components. As stated in the introduction, this chapter derives my software frame­

work at only a conceptual level, without giving specific programming language details. 

In this chapter, Section 4.1 resolves the first issue, which is representing a robot and 

its environment. It introduces state objects, which facilitate the required representations. 

Section 4.2 resolves the issue of providing proxies for communicating with state objects 

over a computer network. It introduces state object interfaces, which are specialized inter­

faces for this purpose. Section 4.3 resolves the issue of providing access to physical sensors 

and actuators. It describes how state objects can provide this access. 

Section 4.4 resolves the issue of providing reactivity. For this purpose, just as dif­

ferent architectures define behaviors differently, my software framework defines its own 

type of behavior. Not surprisingly, I refer to these behaviors as behaviors. Section 4.5 

resolves the issue of updating internal representations. It describes how behaviors can be 
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Figure 4.1: A Network of Framework Components 

used to update the representations stored within state objects. Section 4.6 resolves the issue 

of coordinating competing modifications to state objects. It introduces filters, which are 

components that facilitate this coordination. 

Section 4.7 resolves the issue of providing deliberation. It describes how behav­

iors can be given capabilities for planning and task sequencing. Section 4.8 presents the 

issue of decoupling task sequencers from specific target behaviors. This decoupling al­

lows one or more target behaviors to replace an existing behavior without affecting its task 

sequencers. That section introduces skills, which force this decoupling by acting as abstrac­

tions to groups of behaviors. Skills, in this context, are not to be confused with skills as 

used in 3T [BFG+97] and other architectures. Section 4.9 summarizes this chapter. 
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4.1 Representing a Robot and its Environment: 

State Objects 

A robot must maintain accurate representations of its own state and the state of its envi­

ronment. As stated in Chapter 2, these accurate representations allow a robot to construct 

informed plans to achieve long term goals. Different alternatives exist for representing, and 

providing access to, the state of a robot and its environment. Saphira [KM96], as described 

in Section 2.4, uses its LPS to maintain environment representations at different levels of 

abstraction. Jose and Eric store occupancy maps, and other abstractions of sensor read­

ings, within their shared memory systems. As explained in Section 3.1, object-oriented 

programming provides a good representation strategy. 

Following the successful object-oriented approach to software development, my 

software framework uses objects to represent a robot and its environment. In particular, it 

provides state objects, which are components that store, and provide access to, the required 

data. In object-oriented programming terms, each state object is an instance of a class, 

where all state object classes are derived from a common class that is exclusive to state 

objects. 

State objects, like other objects in object-oriented programming, provide access to 

their data through methods that other components can call. To prevent synchronization 

issues, a state object, using a locking mechanism, handles only one method call at a time. 

For increased integrity and looser coupling, they do not allow other components to directly 

access their member variables. State objects are passive components, which means that 

they do not initiate interactions with any other components. Instead, other components may 

freely initiate interactions with state objects, if they are connected within the component 

network, by calling their methods. Thus, state objects are self-contained components that 

do not depend, directly, on any other components. 

Figure 4.2 depicts a sample state object, whose name is ob j e c t l . The core part 

of the state object is represented by the inner ellipse, and it is an instance of class C_-
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Figure 4.2: A Sample State Object 

Ob j-Sample. The outer ellipse, with the dashed boundary, indicates that the state object 

exists within a protective shell. Suppose that this state object holds a single integer value. 

Also, suppose that it provides two methods: one method for changing the value (called 

setValue) and one method for retrieving it (called theValue). This state object, with 

its two methods, will be referenced in the remaining sections of this chapter. 

Because state objects are ordinary objects, from object-oriented programming, they 

inherit all the quality benefits described in Section 3.1. Because state objects are self con­

tained, they have extremely high reusability. Their implementations can be reused within 

the same system, and within other systems, without dependencies on any other compo­

nents. In addition, the fact that they do not initiate interactions with other components 

helps to simplify the possible communication pathways within a robot control system. 
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4.2 Providing Proxies for Communicating with State Objects: 

State Object Interfaces 

Section 3.1 introduced the proxy pattern, which is useful for remote method invocation. Be­

cause state objects are ordinary objects, and they may exist on different computer systems 

than the components that call their methods, they can benefit greatly from the proxy pat­

tern. To use the proxy pattern, state objects require superclasses that declare the common 

methods provided by the state object and its proxy. In my software framework, state object 

interfaces take on this role. 

With my software framework, different components may call different subsets of the 

methods provided by a state object. I believe that, to minimize coupling and simplify usage, 

components should have access to only the state object methods they need. For example, if a 

state object stores the robot location and heading, then a component should not have access 

to the heading if only the robot location is relevant. Following this argument, my software 

framework allows each state object to have more than one interface. Each state object 

interface, then, declares a different subset of the methods provided by its corresponding 

state objects. 

In a network of components, such as one defined using my software framework, 

developers may find it useful to specify, and visualize, the communication pathways be­

tween components. In particular, they may wish to visualize, for each component, which 

components it reads data from and to which components it writes data. For example, in 

reactive robot control systems, behaviors read input data from particular sensors and send 

commands to particular actuators. In that case, a developer may wish to visualize, using 

directed edges, the flow of data from sensor, to behavior, to actuator. 

For better visualization and understandability, my software framework defines two 

main types of state object interfaces. These are the read interfaces and the write interfaces. 

Read interfaces declare methods that retrieve data from state objects. These methods, which 

facilitate the flow of data out of a state object, should not modify the state objects in any 
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Figure 4.3: A State Object with Two Interfaces 

way. Write interfaces declare the methods that may modify state objects. They, generally, 

facilitate the flow of data into a state object. Each state object may have associated interfaces 

of both types. 

Figure 4.3 depicts state object o b j e c t l , as described in Section 4.1. Here, this 

state object has two associated interfaces, where one is a read interface (I _Ob j -Samp 1 e _-

Read) and the other is a write interface (I_Ob j-Sample-Write). The arrow from the 

state object to the read interface indicates data flow out of the state object, and the arrow 

from the write interface to the state object indicates data flow into the state object. Suppose 

that the read interface declares method the Value and the write interface declares method 

setValue. This indicates that some components will be responsible for setting the stored 

value, and other components will only retrieve the value. 
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4.3 Providing Access to Physical Sensors and Actuators: 

State Objects 

Access to physical sensors and actuators is crucial because my software framework is in­

tended for controlling a physical robot. State objects can provide this access through meth­

ods that communicate with these sensors and actuators. Specifically, state objects for sen­

sors can provide methods that return abstract representations of the data retrieved from 

sensors. For example, a state object could provide methods for reading images from a vi­

sion sensor. Likewise, state objects for actuators can provide methods that control actuators 

based on their arguments. For example, a state object could provide methods for setting the 

velocities for a robot. 

State objects for sensors and actuators must have particular media and protocols 

for communicating with hardware components. These communication media and protocols 

generally depend on the specific robot configuration. State objects, with their interfaces, 

provide flexible mechanisms for adapting to configuration changes. Because state objects 

can take on any implementation that adheres to the same interfaces, appropriate changes 

can be made without affecting other parts of a robot control system. 

4.4 Providing Reactivity: 

Behaviors 

Robot control systems, to work effectively in unpredictable environments, require compo­

nents that provide reactivity. In particular, these components, as stated in Section 2.3, must 

send appropriate commands to actuators, given sensor readings. Behaviors are commonly 

used for this functionality, where each robot control system defines behaviors in a differ­

ent way. For example, Subsumption [Bro86], as stated in Section 2.4, defines behaviors as 

finite state machines. Saphira [KM96], in contrast, uses fuzzy control rules. 

Recall that my software framework provides its own definition for behaviors and 
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that I refer to these components as behaviors. For reactivity, behaviors must have the ability 

to read data from sensors and control actuators. Section 4.3 described how state objects can 

provide access to physical sensors and actuators. Thus, behaviors in my software framework 

communicate with sensors and actuators by calling methods on state objects. Like state 

objects, behaviors are ordinary objects, as defined in object-oriented programming, and 

each behavior is an instance of a class. 

To respond quickly to environmental stimuli, behaviors in my software framework 

must frequently poll sensors for new data and compute new commands for actuators. To 

facilitate this repeated cycle, behaviors must provide a method that can be called repeatedly 

to perform this reactive functionality. In my software framework, this method is referred to 

as the reaction method. To communicate with sensors and actuators, the reaction method 

must take, as arguments, interfaces for the corresponding state objects. Generally, it must 

take read interfaces for sensor state objects, and it must take write interfaces for actuator 

state objects. In reality, behaviors take proxy objects as arguments, but to each behavior, 

each argument is an interface to a state object. 

4.5 Updating Internal Representations: 

Behaviors 

The representations of a robot and its environment are useless if no system components 

update them. Luckily, behaviors can take on this updating role. Section 4.4 showed how 

behaviors can call methods on state objects for accessing sensors and actuators. However, 

these state objects need not be those that provide methods for interacting with sensors and 

actuators. In fact, my software framework allows any behavior to take any kind of state 

object as a reaction method argument. Different behaviors may have different requirements 

with respect to how often their reaction methods must be called. For example, a path plan­

ning behavior may not need to execute as often as a behavior that sets robot velocities. 

Thus, my software framework allows for different call rates. 
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Figure 4.4: A Sample Behavior with Two State Objects 

Figure 4.4 depicts a sample behavior, named b e h a v i o r l , that is an instance of 

class C_Beh_Sample . This behavior has a reaction method that takes, through parameter 

i n , a read interface to o b j e c t l . The reaction method also takes, through parameter o u t , 

a write interface to equivalently-defined o b j e c t 2 . The exact identities of o b j e c t l and 

o b j e c t 2, which could be the same state object, are irrelevant to the behavior. 

4.6 Coordinating Competing Modifications to State Objects: 

Filters 

Because my software framework allows different behaviors to concurrently modify the 

same state object, the affected state objects require a coordination mechanism. Chap­

ter 2 described coordination mechanisms that have been used in successful robot control 

systems. To reiterate, Subsumption [Bro86] uses signal overriding, DAMN [Ros95] uses 

vote-based arbitration, AuRA [AB97] uses vector summation, and Saphira [KM96] uses 

weighted blending. A robot control system should use a coordination mechanism that is 
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suitable for its architecture and task requirements. 

State objects can provide their own coordination functionality. However, because 

that would couple each state object with one specific coordination algorithm, it decreases 

the flexibility of that state object. In addition, it could, undesirably, require that state objects 

have the ability to distinguish among calling behaviors. A more flexible approach, for each 

state object, is to define a separate component that provides the required functionality. The 

state object, and the behaviors that interact with it, should have no dependence upon the 

existence of this component. Because communication with state objects is method call-

based, this component must, then, intercept method calls and interact with the state objects 

accordingly. 

In my software framework, filters are the components that implement coordination 

mechanisms. Filters are objects that, essentially, "filter" the arguments passed into a state 

object method. In the object-oriented programming sense, filters contain the same method 

declarations as their corresponding state objects. When a behavior attempts to call a method 

on an object that has an attached filter, the behavior actually calls the corresponding filter 

method. That filter method, if it desires, calls the underlying state object method with, pos­

sibly, modified arguments. When the method call is complete, the filter returns control to the 

calling behavior. Filtering of arguments, then, occurs in the sense that the filter checks each 

argument, does some processing, and calls the target method with new argument values. 

To facilitate coordination, each behavior can have attached properties that corre­

spond to each of its reaction method arguments. If a state object has a filter, then that filter 

can, for each method call, retrieve the property values for the calling behavior. Examples of 

useful properties are the behavior identifiers, the method call times, and the relative weights 

of the behaviors. The required selection of properties depends on the specific configuration 

of components. In any case, filters allow for the implementation of different coordination 

mechanisms, such as priority-based selection and weighted averaging. 

Figure 4.5 depicts a state object (ob j ect 1, as defined previously), whose methods 

can be called by two different behaviors (behav io r l and behavior2). Both behaviors, 
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Figure 4.5: A Sample Filter in Action 

through their write interface arguments (which have been omitted for simplicity), attempt 

to set the value stored by the state object. In particular, b e h a v i o r l attempts to set the 

value to 3, while behavior2 attempts to set the value to 2. They set these values by 

calling method set Value, where calls to that method are routed through filter f i l t e r l , 

an instance of class C_Fi It-Sample. Although the diagram, for simplicity, indicates 

simultaneous calling of method s e t V a l u e by both behaviors, the filter and state object 

handle one method call at a time. 

Suppose that f i l t e r l , in Figure 4.5, uses behavior priority as its coordination 

mechanism. In addition, suppose that b e h a v i o r l has priority over behavior2 such 

that if b e h a v i o r l had recently called setValue, the filter will block behavior2 

calls from reaching the state object. If b e h a v i o r l calls s e t V a l u e immediately before 

behavior2, then the filter prevents the state object from receiving the second method call. 

Hence, the state object receives only one method call (from b e h a v i o r l ) , and it receives 

only one value (3). 

For simplicity and efficiency, my software framework utilizes filters only for method 
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calls through write interfaces. Read interfaces, which generally declare methods that do not 

modify state objects, can benefit from the reduced method call overhead. Besides coordi­

nation, filters can be used for shielding state objects from extraneous argument values. For 

example, consider a state object that allows behaviors to control the speed of a robot. If 

the behavior attempts to set the speed to an unsafe value, then a filter can recognize that 

and pass a safer value to the state object. By providing this protection, filters facilitate 

robustness. 

4.7 Providing Deliberation: 

Task Sequencing Behaviors 

At this point in the derivation, my software framework supports reactivity through the inter­

actions of behaviors and state objects. Simple, reactive, tasks can be performed by collec­

tions of behaviors executing concurrently. The derivation did not, however, describe how 

my software framework can support deliberation, which allows a robot to complete tasks 

that are more complex. To support deliberation, my software framework must allow devel­

opers to define components that do high level planning. These components must interact 

with the state objects to access representations of a robot and its environment. More impor­

tantly, my software framework must allow developers to define task sequencing components 

that control behavior execution. 

My software framework facilitates deliberation through the collaboration of behav­

iors and state objects. Certain behaviors can take low level data representations and convert 

them to representations that are suitable for high level planning. Other behaviors can break 

tasks down into sequences of subtasks that can be performed by lower level behaviors. At 

the lowest level, behaviors can convert subtasks into commands for controlling actuators. 

In essence, behaviors and state objects work together to complete the SMPA cycle, as de­

scribed in Section 2.2. 

Behaviors can construct plans to achieve goals by computing sequences of subtasks 

66 



and updating state objects that store the current sequences of subtasks. Behaviors can do 

task sequencing by reading these subtasks and deciding which reactive behaviors they re­

quire. Task sequencing behaviors can control the execution of other behaviors in two main 

ways. Both ways, which are based on the information stored in polled state objects, have 

severe drawbacks. 

The first way a task sequencing behavior can control another behavior is by updating 

a state object that identifies the current task. The target behavior can repeatedly poll this 

state object for new task requests and act accordingly. The drawback with this option is 

that it requires each target behavior to be encoded, at design time, with knowledge of all 

the possible tasks. In addition, for behaviors to support new tasks, developers must change 

the behavior implementations. To decrease unnecessary coupling, a different component 

should control the response of a behavior to each task request. 

The second way a task sequencing behavior can control another behavior is by 

deciding, themselves, exactly which behaviors must execute for each task. The task se­

quencing behavior, then, updates state objects that indicate exactly which behaviors should 

execute. For flexibility, my software framework must allow developers to easily add new 

behaviors to a robot control system. Thus, it is impossible for a task sequencing behav­

ior to anticipate, in its implementation, the exact behavior implementations that it requires. 

Nonetheless, task sequencing behaviors require enough information about their target be­

haviors so that they can make decisions about them. In addition, they must enable and 

disable target behaviors in a way that does not couple them with specific behaviors. 

Unlike reactive behaviors, certain behaviors may not require repeated execution to 

complete their tasks. Instead, each time a behavior is enabled by a task sequencer, it may 

require only a single execution of its reaction method. For example, a behavior that makes a 

robot emit a sound need only execute when it receives that task request. Once it has emitted 

the sound once, it need not repeat. Similarly, a reaction method could, possibly, need re­

calling until a particular condition becomes true. My software framework allows behaviors 

to decide, within each reaction method invocation, whether their execution will repeat. If 
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a behavior decides not to repeat, it signals that it has completed its task. Task sequencing 

behaviors should have the ability to recognize this completion. 

4.8 Decoupling Task Sequencers from Specific Targets: 

Skills 

The previous section noted that behaviors can act as task sequencers, but it presented solu­

tions that had low quality. These solutions resulted in unnecessary coupling between task 

sequencing behaviors and their target behaviors. An additional option is to use interfaces 

for behaviors, but that does not allow a task sequencer to reference multiple behaviors as if 

they were a single behavior. This section introduces skills, which are components that help 

to reduce the unnecessary coupling. After introducing skills, this section describes how 

robot control systems use them for task sequencing. 

4.8.1 Overview of Skills 

A skill, in essence, is a general notion of a robot ability. This ability is described by the 

types of data required for input and the types of generated output. For example, a skill for 

a vision-based mobile robot may take vision data as input and compute motion commands 

for output. A skill does not describe, in any way, how it processes the data. It may, for 

example, use the vision data for sensing, and moving away from, obstacles. Instead, the 

skill may ignore the vision data and attempt to keep the robot moving forward. In my 

software framework, behaviors provide the specific functionality for a skill. 

Each skill contains a collection of functionally-similar behaviors. The behaviors in 

each skill share a common superset of state objects that they interact with for input and 

output. My software framework enforces that each behavior instance is assigned to a skill, 

where that skill allows the state object accesses required by the behavior. That is, the state 

objects connected to the skill provide the interfaces required by the behavior. Each behavior 

defines its required state object accesses with the parameters of its reaction method. 
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Consider a reaction method for an obstacle avoidance behavior, where this method 

declares two parameters. The first parameter for this method requires a read interface for a 

state object that provides access to a vision sensor. The second parameter requires a write 

interface for a state object that provides access to an actuator for controlling motion. The 

behavior must be added to a skill that allows input from a vision sensor, through the same 

read interface, and, likewise, allows output to a motion actuator. 

The general ability of each skill is defined with a collection of state object interfaces. 

In particular, each skill has ports, where each port specifies a specific state object interface. 

Within each skill, each reaction method parameter, from each behavior, maps to a particular 

port. In addition, each port connects to a state object that supports the interface specified 

by the port. Thus, all connections between behaviors and state objects are routed through 

specific skill ports. 

Figure 4.6 depicts a sample skill. This skill defines two ports, i n and out, where 

port i n takes read interface I_Ob j_Sample_Read and port out takes write interface 

I_Ob j_Sample_Write. The skill also defines two behaviors, b e h a v i o r l and be-

h a v i o r 2 , where each of their reaction method parameters map to a specific port. These 

mappings are depicted by arrows, and their directions depend on whether the given port 

takes a read interface or a write interface. Parameter i n in b e h a v i o r l , for example, 

maps to port i n for reading. Parameter ob j in b e h a v i o r 2 maps to port out for writing. 

By restricting the behavior inputs and outputs to those allowed by the enclosing 

skill, my software framework minimizes the associations between behaviors and state ob­

jects. Thus, it helps to minimize coupling between behaviors and state objects. Without 

these restrictions, behaviors would be able to take, into their reaction methods, interfaces 

for any state object. This freedom to choose any state object could overwhelm the developer 

who implements the behaviors. Along with the restrictions on reaction method parameters, 

the routing of connections through skill ports also help to minimize the coupling between 

behaviors and state objects. Skills help to promote cohesion by grouping behaviors into 

functionally-similar units. Thus, skills act as abstractions to groups of behaviors. 
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Figure 4.6: A Sample Skill 

4.8.2 Task Sequencing with Skills 

Within a skill, subsets of behaviors can execute concurrently to perform tasks. For exam­

ple, a skill may have both a goal-seeking behavior and an obstacle avoidance behavior that, 

together, move a robot to its goal location while avoiding obstacles. However, the skills re­

quire a task sequencing component that selects individual behaviors for execution. Section 

4.7 described how robot control systems, developed using my software framework, can use 

behaviors for task sequencing. However, it acknowledged that task sequencing behaviors 

should not, themselves, be coupled with individual target behaviors. Instead, my software 

framework couples task sequencing behaviors with skills, which are coupled with the target 

behaviors. 

In my software framework, each behavior in each skill is assigned a specific task 

under which it will execute. Each behavior may have a different task, and a skill may have 

several behaviors assigned to the same task. Task sequencing behaviors, instead of interact­

ing, directly, with their target behaviors, send task requests to skills. In particular, each task 

sequencing behavior specifies, to its target skill, which task that skill should perform. When 
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a skill accepts a task request, it enables the behaviors assigned to the specified task and dis­

ables the remaining behaviors. The introduction of skills to my software framework yields 

increased flexibility because the number of skills is less than the number of behaviors, and 

the available tasks are less likely to be changed. 

For simplicity, task sequencing behaviors interact with individual skills in the same 

way that they interact with state objects. That is, task sequencing behaviors call methods 

through skill interfaces, and their reaction methods take, as arguments, these interfaces. My 

software framework does not make any explicit distinction between task sequencing behav­

iors, which interact with skills, and behaviors that do not interact with skills. Both types 

of behaviors can take regular state object interfaces as their reaction method arguments. In 

addition, both types can be assigned to a single skill. 

All skill interfaces share the same method declarations, and all skills share the 

same implementation. Therefore, developers do not supply special skill implementations. 

Through a skill interface, task sequencing behaviors can query the set of tasks that can 

be performed by the skill. They can also query whether the skill can perform a specified 

task, which is indicated by the presence of behaviors assigned to the task. Task sequencing 

behaviors can specify which task a skill will execute, and they can retrieve the identity of 

the task that is currently executing. In addition, they can query whether the currently exe­

cuting task has completed its work. Task completion is signalled by the completion of all 

behaviors assigned to the executing task. 

Figure 4.7 depicts a behavior setting a task for a skill. In particular, the behavior 

(taskSequencer) attempts to set the current task in skill s k i l l 2 to the task named 

"TI". Skill s k i 112 defines two tasks: "TI" and "T2". Task "TI" has two associated 

behaviors, b e h a v i o r l l and b e h a v i o r l 2 , which are enabled whenever the current task 

is set to "T1 1 1 . Likewise, task "T2" has one associated behavior, behavior21, which is 

enabled whenever the current task is set to " T2". 
A realistic robot control system could consist of dozens of skills, from those respon­

sible for high-level planning, down to those responsible for low-level reactivity. In such a 
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Figure 4.7: A Behavior Setting a Task for a Skill 

system, a single task sequencer that controls all skills would be quite complex. Thus, task 

sequencing activities should be divided amongst several different task sequencing behav­

iors. With my software framework, developers can construct hierarchies of task sequencing 

behaviors. In these hierarchies, higher level task sequencers set tasks that result in the 

enabling of lower level task sequencers. 

4.9 Summary 

This chapter described my software framework, which allows developers to define robot 

control systems as networks of components. Each network can be represented as a directed 

graph, where the vertices correspond to the components, and the edges correspond to con­

nections between components. The vertices can be either state objects or skills. Filters and 

behaviors augment these vertices, respectively. Communication between components takes 

place across edges and is based on method calls. State object interfaces define the allowable 

method calls. 

State objects store, and provide access to, data within a robot control system. They 
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may also provide access to external entities such as sensors and actuators. Skills are col­

lections of behaviors, where all behaviors call methods on the same subset of state objects 

through the same interfaces. Method calls through read interfaces, which generally return 

data to the calling behavior, are represented by edges from the state object to the enclosing 

skill. Similarly, method calls through write interfaces, which generally modify state objects, 

are represented by edges from the skill to the state object. 

Within a skill, each behavior is assigned to a particular task. Through skill inter­

faces, behaviors can sequence the tasks to be executed by other skills. This task sequencing 

control is represented by an edge between the task sequencing skill, which contains the 

task sequencing behavior, and the target skill. Each state object may have a filter, which 

intercepts method calls to the state object and modifies its arguments. Filters facilitate the 

coordination of competing modifications to state objects. 
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Chapter 5 

Implementation Details 

The development of a robot control system, using my software framework, requires the 

assignment of people to different roles. These roles are the coder, the designer, and the 

user. The coder uses a programming language to implement the functionality provided 

by the individual components, such as state objects and behaviors. The designer creates 

the model specification, which defines the robot control system in terms of its components 

and their interconnections. The user, through an execution system, starts and monitors the 

execution of the robot control system. 

My software framework has two main parts, which, as stated in the introduction, 

I implemented using the Java programming language. First, it contains a collection of 

Java classes that coders extend to implement classes for individual components. Second, it 

contains a collection of Java classes for creating model specifications. These model speci­

fications use the component classes to fully specify components and their interconnections. 

My execution system, also implemented in Java, has the ability to execute robot control 

systems defined using these model specification classes. 

This chapter describes, in detail, the implementation of my software framework 

and execution system. Section 5.1, to provide context for the following sections, gives an 

overview of my execution system. Section 5.2 explains why I chose to use Java as the 

implementation language, and it describes the most useful features of Java. Section 5.3 
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explains how coders use my software framework to define components. 

Section 5.4 describes the classes for creating model specifications, and it explains 

how designers use these classes to specify complete robot control systems. Section 5.5 

describes the low-level details of my execution system, which includes intercomponent 

communication. Section 5.6 describes the high-level details of my execution system, which 

includes the main parts and user interaction. Section 5.7 summarizes this chapter. 

5.1 Execution System Overview 

Recall that the purpose of my execution system is to execute robot control systems that are 

defined in model specifications. The execution system consists of a collection of execution 

nodes, called executors, and a central controller, called the execution manager. Executors 

hold executing components, and the execution manager controls the execution of compo­

nents in the executors. Figure 5.1 depicts a simple execution system. Note that in this 

implementation, skills execute separately from their enclosed behaviors, and they may each 

execute within a different executor. An arrow from a skill to a behavior denotes skill con­

tainment. Also note that, for efficiency, behaviors communicate directly with state objects, 

rather than through their parent skills. 

All executors run in their own, separate, processes, which may exist on different 

computer systems. Likewise, the execution manager runs in a different process, which 

may exist on its own computer system. The execution manager provides the main point 

of contact for users of the execution system. Through the execution manager, users can 

load new model specifications, control the execution of the specified systems, and retrieve 

information about executing systems. Generally, users communicate with the execution 

manager through client applications, which may exist on different computer systems. 

The execution manager and its executors are Java applications. Thus, users start 

them just like any other Java application. However, users must start the execution manager 

before any of its associated executors. After starting the execution manager, users can start 

executor processes, which register themselves with the execution manager. Users supply 
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Figure 5.1: Execution System Components 

each executor with a unique name that allows the execution manager to identify it. 

When a user loads a new model specification into the execution system, the execu­

tion manager instructs the executors to create the required components. Each executor holds 

its own disjoint subset of these components. The execution manager distributes components 

to different executors based on preferences indicated in the model specification. After com­

pleting component creation, the execution manager connects the components, as indicated. 

After the execution manager connects the components, the specified robot control system 

is ready for execution. 

5.2 Implementation Language: Java 

I chose Java as my implementation language because I knew it well and because it has 

features that simplify the development of my software framework and execution system. 

This section describes the features of Java that I found most useful and are referenced in 

later sections of this chapter. It starts with the more basic features and continues with 

Remote Method Invocation (RMI) and Reflection. 
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5.2.1 Basic Features 

Probably the most significant feature of Java that makes it suitable for implementing my 

software framework and execution system is that it is an object-oriented programming lan­

guage. For my software framework, this feature allows coders to define behaviors, state 

objects, and filters, using Java classes. Within an executor, then, component instances are 

instances of these classes. Java allows coders to define special classes, called interfaces, 

where each Java interface formally declares the public methods for all of its subclasses. 

Each subclass of a Java interface is said to "implement" that interface. My software frame­

work uses Java interfaces to define state object interfaces. 

Java source code compiles into "byte code", which is executed using a Java Virtual 

Machine (JVM). Java byte code is stored within a Java class file (a file with a ".class" 

extension), where each class file contains all the information about a single Java class. In 

general, the J V M is a regular software application that interprets the byte code defined in 

class files. Because byte code is interpreted, the execution of a Java application is generally 

slower than the execution of an equivalent implementation that has been compiled into 

native code. However, with few exceptions, this slowness is outweighed by the fact that a 

single implementation of any Java application will execute equally on any computer system 

that provides a JVM. A significant exception to the portability of Java byte code arises with 

threading, which is partially handled by the underlying operating system. 

Threading allows my execution system to execute multiple components concur­

rently, without requiring that the user start a separate Java application for each component. 

Most importantly, Java allows my execution system to start new threads, and it allows my 

execution system to schedule methods for execution at a fixed time rate. However, Java 

provides no accepted way to stop an executing thread. Thus, threads must be coded care­

fully such that they do not steal excessive processor time from other threads. If they cannot 

perform their functions quickly, they should be coded such that they frequently relinquish 

control to other threads. 

Java, like many other programming languages, has a standard collection of classes 
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that is available with every compiler. Specifically, each Java Development Kit (JDK) is 

distributed with the Java API (Application Programmers' Interface), which provides useful 

classes and methods. Different vendors, such as Sun Microsystems, release their own im­

plementations of the JDK and API. My execution system implementation uses the Java API 

extensively. Within the API, collections of classes are arranged into packages, which allow 

classes to be organized by common function and help to prevent class naming conflicts. 

Although my software framework and execution system are Java-based, the coder 

is not required to code exclusively in Java. The Java Native Interface (JNI) allows a Java ap­

plication to invoke routines that have been written in other programming languages. Thus, 

the coder can make use of routines written in other languages without needing to rewrite 

them in Java. Also, the native code runs more efficiently than Java byte code because it does 

not require interpreting by a virtual machine. However, if the routines require the passing 

of anything more complex than primitive types, the code on the native side must do extra 

work to put the data into a usable form. This extra processing can often outweigh the speed 

benefits. 

5.2.2 Remote Method Invocation 

Remote method invocation in Java allows methods in one virtual machine to invoke methods 

on objects that may exist in another virtual machine. Such functionality is required in 

my execution system because it allows components to exist within different executors and 

still be able to communicate with each other. Java's RMI system provides an easy way to 

facilitate this functionality. 

RMI is made possible through the proxy pattern, which was described in Section 

3.1. When the method caller invokes a remote method, it really invokes a method defined 

in a proxy object. This proxy object is known as the stub, and it exists within the same 

virtual machine as the method caller. The stub, via a socket connection, sends the required 

information, such as argument values, to a receiving object in the target virtual machine. 

This receiving object is known as the skeleton, and it makes the actual method call on the 
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Figure 5.2: Remote Method Invocation in Java 

target object. When the method call is complete, control returns to the method caller, with 

any return values. Figure 5.2 depicts the execution of a remote method call in RMI. 

For an object to have its methods accessed remotely, the coder must define its class 

in a certain way. In particular, using classes defined in package Java . rmi, the coder must 

write the class for the remote object, plus the interface that it shares with its stub object. In 

addition, coders must use a separate compiler (rmic) to generate classes for the stub and 

skeleton objects. In an executing system, a method caller must retrieve the stub required 

to call its desired remote method. In general, the process that creates the remote object 

registers the stub with a naming service. However, that process can, instead, retrieve the 

stub directly and send it to the method caller. The stub has all the information required to 

locate the skeleton, which listens for socket connections on a network port. 

5.2.3 Reflection 

Reflection allows a Java application to gather information about the classes and interfaces 

that it uses. This information is accessible through an object of class C l a s s (in package 
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Java . lang), and it includes a listing of the methods and variables that are members of the 

class or interface. In addition, it includes the access specifiers (public, private, etc.) and the 

superclass information, among other class properties. For each method, Reflection allows 

an application to retrieve information about the parameter types and the return type. It also 

allows an application to retrieve information such as exception types, the access specifier, 

and other modifiers. For each member variable, Reflection allows an application to retrieve 

information such as the variable type and access specifier. 

In general, Reflection is useful because it allows an application to create, and use, 

an object of a particular class without the name, and implementation, being known at com­

pile time. An application can, then, use the Reflection facilities to create an instance of that 

given class and then assign that object to a variable of a superclass type. This allows the 

application to interact with the object normally, as an instance of the superclass. If neces­

sary, an application can use the Reflection facilities to call particular methods on objects. 

My software framework uses Reflection to create objects and call methods, as described, as 

well as to generate specialized classes that hide communication details from coder-supplied 

classes. 

5.3 Component Coding 

Coders define state objects, filters, and behaviors, by writing Java classes that extend classes 

from Package R o b o t C o n t r o l . Framework. Designers can define several components, 

in model specifications, using the same class, where each component has its own instance 

of the class. Package R o b o t C o n t r o l . Framework also contains interfaces for creating 

state object interfaces, and it contains an interface that allows behaviors, and system users, 

to control skills. This section describes how coders use the classes and interfaces in that 

package to define the software components in a robot control system. 
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5.3.1 State Objects 

In my software framework, coders implement state objects using Java classes that extend 

class C_AbstractOb j e c t . Besides that distinction, state objects must satisfy two other 

requirements. First, all non-primitive parameter types and return types in all public methods 

must be descendants of class S e r i a l i z a b l e (in package Java . i o ) . This ensures that 

their values can be properly passed between a state object and the calling behaviors. Second, 

the no-argument constructor of the class must be publicly accessible so that the execution 

system can create an instance of the defined class. This requires that the coder writes no 

constructors at all, such that the no-argument constructor becomes implicit, or that the coder 

explicitly provides that constructor. 

Figure 5.3 gives source code for a sample state object implementation. This code 

defines a class, called C_Ob j .Sample, for a state object that stores a value. This class pro­

vides method s e t V a l u e , which changes the stored value, and method t h e V a l u e , which 

returns the stored value. Note that this code, except for its extension of C A b s t r a c t -

Object, gives no hint that it will be used to define remote objects. Also note that the 

defined class does not implement any interfaces that identify the publicly-accessible meth­

ods. This exclusion does not break the proxy pattern, assuming that each proxy object is 

coupled, in some way, with a specific state object class. Specific interfaces are assigned in 

the model specification, which makes it easier for designers to add new interfaces to a state 

object. 

5.3.2 State Object Interfaces 

In my software framework, coders can implement three types of interfaces for state objects. 

Two types of interfaces, the read interfaces and the write interfaces, were described in Sec­

tion 4.2. The third type of interface, called the user interface, declares methods that are 

available to external client applications so that users can inspect and modify state objects. 

Read interfaces must extend interface I_Ob ject-Read, write interfaces must extend in­

terface I_Ob j e c t _ W r i t e , and user interfaces must extend interface I_Ob j e c t _ U s e r . 
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ A b s t r a c t O b j e c t ; 

p u b l i c c l a s s C _ O b j _ S a m p l e e x t e n d s C _ A b s t r a c t O b j e c t { 

p u b l i c v o i d s e t V a l u e ( i n t v a l u e ) { 

_ v a l u e = v a l u e ; 

} 
p u b l i c i n t t h e V a l u e ( ) { 

r e t u r n _ v a l u e ; 
} 

p r i v a t e i n t _ v a l u e = 0 ; 

} 

Figure 5.3: A Sample State Object Implementation 

i m p o r t R o b o t C o n t r o l . F r a m e w o r k . I _ O b j e c t _ R e a d ; 

p u b l i c i n t e r f a c e I _ O b j _ S a m p l e _ R e a d 

e x t e n d s I _ O b j e c t _ R e a d { 

p u b l i c i n t t h e V a l u e ( ) ; 

} 

Figure 5.4: A Sample Read Interface Implementation 

Figures 5.4, 5.5, and 5.6 give source code for state object interface implementa­

tions. Each of the defined interfaces may be used to communicate with the sample state 

object defined in Figure 5.3. Figure 5.4 gives a read interface implementation that de­

clares method t h e V a l u e . Figure 5.5 gives a write interface implementation that declares 

method s e t V a l u e . Figure 5.6 gives a user interface implementation that declares methods 

s e t V a l u e and t h e V a l u e . 
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . I _ O b j e c t _ W r i t e ; 

p u b l i c i n t e r f a c e I_Obj_Sample_Write 
extends I _ O b j e c t _ W r i t e { 

p u b l i c v o i d s e t V a l u e ( i n t v a l u e ) ; 
} 

Figure 5.5: A Sample Write Interface Implementation 

i m p o r t R o b o t C o n t r o l . F r a m e w o r k . I _ O b j e c t _ U s e r ; 

p u b l i c i n t e r f a c e I_Obj_Sample_User 
extends I _ O b j e c t _ U s e r { 

p u b l i c v o i d s e t V a l u e ( i n t v a l u e ) ; 
p u b l i c i n t t h e V a l u e ( ) ; 

} 

Figure 5.6: A Sample User Interface Implementation 

5.3.3 Filters 

Coders implement filters using Java classes that extend class C _ A . b s t r a c t F i l t e r . Filter 

classes do not have any other restrictions, except that their no-argument constructors must 

be publicly accessible. During a method call to a state object, through a write interface, the 

execution system will call the corresponding filter method, if it exists. This filter method 

must have the following format. 

p u b l i c < return_type> <method_name>( <parameters>, 
< m e t h o d _ c a l l _ i n f o > , < s t a t e _ o b j e c t > ) 

Each filter method corresponds to a state object method with the same name, where 

this name is given by <method_name>. The filter method must have the same return 

type as its corresponding state object method (<return_type>). In addition, the filter 
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ M e t h o d C a l l I n f o ; 

p u b l i c c l a s s C _ C a l l I n f o _ S a m p l e 
extends C _ M e t h o d C a l l I n f o { 

p u b l i c v o i d s e t M u l t i p l i e r V a l u e ( i n t m u l t i p l i e r ) { 
_ m u l t i p l i e r = m u l t i p l i e r ; 

} 
p u b l i c i n t t h e M u l t i p l i e r V a l u e ( ) { 

r e t u r n _ m u l t i p l i e r ; 
} 

p r i v a t e i n t _ m u l t i p l i e r = 1; 
} 

Figure 5.7: A Sample Method Call Information Class 

method must declare the same parameters (<parameters>) at the same locations in its 

parameter list. Besides these corresponding parameters, the filter method must declare two 

extra parameters. The first parameter (<method_call_inf o>) requires an object that 

contains information about the method caller. The second parameter (<state_ob ject>) 
requires the state object that is the target for the method call. 

The object that contains information about the method caller allows a filter to han­

dle method calls differently for each caller. That object is an instance of a class that ex­

tends class C J y i e t h o d C a l l l n f o. Its class has no other restrictions, but it should declare 

methods for retrieving relevant information about each method caller, which may include 

identifiers and weights. A filter can use this information to aid in coordination. Figure 5.7 

gives source code for a method call information class. This class ( C - C a l l l n f o-Sample) 
is for an object that stores a multiplier value. It is intended that filter methods multiply this 

value against their argument values to produce new arguments for the state object method. 

Figure 5.8 gives source code for a sample filter implementation. Instances of the 

defined class (C_Filt_Sample) may be used to create filters for the sample state object 

defined in Figure 5.3. In particular, the filter class contains a method that is called in place 
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ A b s t r a c t F i l t e r ; 

p u b l i c c l a s s C _ F i l t _ S a m p l e extends C _ A b s t r a c t F i l t e r { 
p u b l i c v o i d s e t V a l u e ( i n t v a l u e , 

C _ C a l l I n f o _ S a m p l e c a l l l n f o , 
C_Obj_Sample o b j e c t ) { 

i n t newValue = v a l u e * 
c a l l l n f o . t h e M u l t i p l i e r V a l u e ( ) ; 

o b j e c t . s e t V a l u e ( newValue ); 
} 

} 

Figure 5.8: A Sample Filter Implementation 

of state object method s e t V a l u e . This filter method applies the multiplier value, as de­

scribed in the previous paragraph, to the input argument value, and it calls the state object 

method with the new value. 

5.3.4 Behaviors 

Coders implement behaviors using Java classes that extend class C _ A b s t r a c t B e h a v i o r . 
As with state objects and filters, each behavior class must have a publicly-accessible no-

argument constructor. In addition, each behavior must provide a properly-defined reaction 

method, called d o R e a c t i o n , which is called by the execution system. Optionally, a be­

havior class may override methods onEnable and o n D i s a b l e , where both methods 

take no arguments and return no value. These optional methods allow behaviors to do any 

initialization and cleanup, respectively, when they are enabled and disabled. 

Each reaction method declares a list of parameters, where each parameter may take 

a state object interface or a skill interface. State object interface arguments must be either 

read interfaces or write interfaces. Skill interfaces are have type I _ S k i l l _ T a s k S e q , 
and they declare methods that allow a behavior to control the corresponding skill. Each 

reaction method returns a b o o l e a n value that indicates whether the execution system 

85 



i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ A b s t r a c t B e h a v i o r ; 

p u b l i c c l a s s C_Beh_Sample extends C _ A b s t r a c t B e h a v i o r { 
p u b l i c b o o l e a n d o R e a c t i o n ( 

I_Obj_Sample_Read o b j l n , 
I_Obj_Sample_Write objOut ) { 

o b j O u t . s e t V a l u e ( 2 * o b j I n . t h e V a l u e ( ) ) ; 
r e t u r n t r u e ; 

} 
} 

Figure 5.9: A Sample Behavior Implementation 

should continue to call it for the current task. If this method returns f a l s e , the execution 

system will not call it again until its task is reset. This return value accounts for the fact 

that some tasks may consist of a single action that occurs once and stops, and other tasks 

consist of an action that is continuously repeated. 

Figure 5.9 gives source code for a sample behavior implementation. The behav­

ior class, C_Beh_Sample, declares a reaction method with two parameters. The first 

parameter, o b j l n , takes an interface as defined in Figure 5.4. The second parameter, 

objOut, takes an interface as defined in Figure 5.5. The reaction method sets its out­

put value (objOut) to be twice its input value ( o b j l n ) . It always returns t r u e , which 

indicates that the execution system can continue to call it for the current task. 

Figure 5.10 gives source code that shows the usefulness of overriding method on-
Enable. In this example, class C_Beh_Sample2 declares a reaction method with one 

parameter. This parameter, objOut, takes an interface as defined in Figure 5.5. The 

reaction method updates objOut with its current counter value (in .counter) and then 

increments that counter value. It returns t r u e until the counter value reaches 100. Method 

onEnable is responsible for resetting the counter value to 0 at the beginning of a new 

task. The defined behavior, essentially, counts from 0 to 99 for its task. 

It is important to note that behavior implementations do not require any special net-
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ A b s t r a c t B e h a v i o r ; 

p u b l i c c l a s s C _ B e h _ S a m p l e 2 e x t e n d s C _ A b s t r a c t B e h a v i o r { 

p u b l i c v o i d o n E n a b l e O { 

_ c o u n t e r = 0 ; 

} 

p u b l i c b o o l e a n d o R e a c t i o n ( 

I _ O b j _ S a m p l e _ W r i t e o b j O u t ) { 

o b j O u t . s e t V a l u e ( _ c o u n t e r ) ; 

+ + _ c o u n t e r ; 

r e t u r n ( _ c o u n t e r < 1 0 0 ) ; 

} 

p r i v a t e i n t _ c o u n t e r ; 

} 

Figure 5.10: Another Sample Behavior Implementation 

working code to communicate with state objects. As with state objects, remote method call 

functionality is handled by the execution system. This allows behavior implementations to 

focus on core functionality. How the method call reaches the target state object is irrelevant 

to the behavior. However, if the target state object does not exist, or cannot be contacted, 

my execution system throws an exception of type C_Ob j e c t A c c e s s E x c e p t i o n , which 

can be caught by the behavior. 

Inevitably, behavior code will be executed within a thread in a particular virtual 

machine. When the execution system disables a behavior, it allows the reaction method 

to return normally, if it is executing, rather than stop its execution in the middle of an 

operation. Thus, to not starve other threads, and to allow prompt thread stoppage, reaction 

methods should not execute for significant periods of time without returning. If a reaction 

method takes too long to execute, the coder should change its implementation such that it 

divides its functionality over successive reaction method invocations. 
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5.3.5 Skill Interfaces 

Recall that behaviors can take skill interfaces as arguments, where these interfaces have 

type I _ S k i l l _ T a s k S e q and declare methods for controlling a skill. This interface type 

is also available to client applications so that users can monitor and control task execution. 

Registration of behaviors with tasks is specified in the model specification and cannot be 

controlled through these skill interfaces. Each task has a name, which is a S t r i n g that 

uniquely identifies the task within its skill. The following paragraphs describe the different 

methods that behaviors and system users can call through skill interfaces. 

S t r i n g [ ] t h e T a s k N a m e s ( ) 

Returns the names of all defined tasks, where each task has at least one behavior 

registered with it. This method is useful if the task sequencer does not know exactly 

which tasks are available for execution. It is especially useful for system users, if 

they wish to control the skill, since it gives them a list of tasks to select from. 

v o i d s e t C u r r e n t T a s k ( S t r i n g t a s k N a m e ) 

Sets the current task to that specified by the given name. If the specified task does 

not exist, or does not have any behaviors registered with it, then any current task will 

be deactivated. A task name that is n u l l also results in task deactivation. 

S t r i n g t h e C u r r e n t T a s k ( ) 

Returns the name of the task that is currently set for execution, regardless of whether 

the task is complete. If no task has been set, this method returns n u l l . 

b o o l e a n i s T a s k C o m p l e t e ( ) 

Returns t r u e if and only if the currently set task is complete. A task is complete 

if all its behaviors have completed their work, which is indicated by their reaction 

methods returning f a l s e . In addition, if no current task is set, task completion is 

assumed to be t r u e . Task completion is a good indication, to the task sequencer, 

that it should set a new current task, or take a particular action. 
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b o o l e a n c a n D o T a s k ( S t r i n g t a s k N a m e ) 

Returns t r u e if and only if the specified task can be completed, given the current 

skill configuration. This method helps the task sequencer to decide which task it will 

set as the current task. If the skill cannot perform the given task (it does not have any 

assigned behaviors), the task sequencer can, instead, consider other tasks. 

Figure 5.11 gives source code for a task sequencing behavior class named ( C _ B e h _ -

T a s k S e q ) . Its reaction method takes interface o b j I n as input and uses it to help choose 

a new task for s k i l l . It makes its decision according to the following conditions, which it 

applies in the order given. If the stored value is greater than or equal to 0, it sets the task to 

" T 1 " . If the current task is " T 1 " , it sets the task to " T 2 " . If the skill can do task " T 3 ", 

the reaction method sets the task to " T 3 " . Finally, if the current task is complete, it sets the 

task to " T I " . 
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i m p o r t R o b o t C o n t r o l . F r a m e w o r k . C _ A b s t r a c t B e h a v i o r ; 

i m p o r t R o b o t C o n t r o l . F r a m e w o r k . I _ S k i l l _ T a s k S e q ; 

p u b l i c c l a s s C _ B e h _ T a s k S e q e x t e n d s C _ A b s t r a c t B e h a v i o r { 

p u b l i c b o o l e a n d o R e a c t i o n ( I _ O b j _ S a m p l e _ R e a d o b j l n , 

I _ S k i l l _ T a s k S e q s k i l l ) { 

i n t v a l u e = o b j I n . t h e V a l u e ( ) ; 

i f ( v a l u e >= 0 ) { 

s k i l l . s e t C u r r e n t T a s k ( " T I " ) ; 

} 
e l s e i f ( s k i l l . 

t h e C u r r e n t T a s k ( ) . e q u a l s ( " T I " ) ) { 

s k i l l . s e t C u r r e n t T a s k ( " T 2 " ) ; 

} 
e l s e i f ( s k i l l . c a n D o T a s k ( " T 3 " ) ) { 

s k i l l . s e t C u r r e n t T a s k ( "T3" ); 
} 
e l s e i f ( s k i l l . i s T a s k C o m p l e t e () ) { 

s k i l l . s e t C u r r e n t T a s k ( " T I " ) ; 
} 
r e t u r n t r u e ; 

Figure 5.11: A Task Sequencing Behavior Implementation 

5.4 Model Specification 

I chose to define the model specification format using a hierarchy of composition, where 

specification layers are composed of other specification layers. Although many alterna­

tives existed, I found that this particular representation, when implemented in Java, allowed 

the execution manager to process model specifications with greatest efficiency. Designers 

must define model specifications using Java source code, where this code references classes 

defined in package R o b o t C o n t r o l . M o d e l . A model specification, as accepted by the 

execution manager, contains collections of state object specifications, skill specifications, 

and connection specifications. The following paragraphs describe the model specification 
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Figure 5.12: The State Object Specification 

format in more detail, starting with the descriptions of its subparts, and ending with the 

model specification as a whole. 

5.4.1 State Object Specification 

Figure 5.12 depicts the composition of a state object specification. Each state object specifi­

cation defines a single state object, with its interfaces and optional filter. More specifically, 

each state object specification has the following four properties, which must be configured 

appropriately. First, it has a unique name ( o b j e c t N a m e ) that allows the specified state 

object to be distinguished from other state objects. Second, it has the name of the preferred 

executor ( e x e c u t o r N a m e ) that will create and hold the state object. Third, it has the state 

object class ( o b j e c t C l a s s ) , which provides the coder-supplied implementation of the 

state object. Finally, it has the filter class ( f i l t e r C l a s s ) , which may be n u l l if the 

state object does not have a filter. Along with these properties, it defines the read, write, 

and user, interfaces that allow communication with the defined state object. 

Each state object specification, in Java source code, is an instance of class C _ -
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Figure 5.13: The Skill Specification 

O b j e c t S p e c i f i c a t i o n . This class provides the methods for configuring, and inspect­

ing, the different parts of a state object specification. For organization purposes, the con­

structor provides the only way to set the state object name. 

5.4.2 Skill Specification 

Figure 5.13 depicts the composition of a skill specification. Each skill specification defines 

a single skill, and it consists of four main parts. First, it has a unique name ( s k i l l N a m e ) 

that allows the specified skill to be distinguished from other skills. Second, it has the name 

of the preferred executor ( e x e c u t o r N a m e ) that will create and hold the skill. Third, it has 

a set of port specifications, which defines the possible connections with other components. 

Finally, it has a set of behavior specifications, where each specified behavior is part of the 

specified skill. 

Each skill specification, in Java source code, is an instance of class C J S k i l l -

S p e c i f i c a t i o n . This class provides the methods for configuring, and inspecting, the 

different parts of a skill specification. Similar to state object specification class, and all other 
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named specification classes, the constructor provides the only way to set the skill name. The 

following paragraphs describe the port specification, and the behavior specification, in more 

detail. 

P o r t Specification 

Each port specification has a name ( p o r t N a m e ) that is unique in relation to the other 

port specifications from the same skill. Each port specification also has an interface class, 

which defines either a read interface, a write interface, or a skill (task sequencing) inter­

face. Each port specification, in Java source code, is an instance of class C _ S k i l l P o r t -

S p e c i f i c a t i o n , and this class defines methods for setting these two properties. 

B e h a v i o r Specification 

Figure 5.14 depicts the composition of a behavior specification. Each behavior specification 

has the following five basic properties. First, it has a name ( b e h a v i o r N a m e ) that is unique 

in relation to the other behavior specifications from the same skill. Second, it has the name 

of the preferred executor ( e x e c u t o r N a m e ) that will create and hold the behavior. Third, 

it has the name of the task ( t a s k N a m e ) under which the behavior will execute. Fourth, 

it has the behavior class ( b e h a v i o r C l a s s ) , which defines the reaction method for the 

specified behavior. Fifth, it has an integer ( i n v o k e P e r i o d ) that represents the desired 

number of milliseconds between consecutive reaction method invocations. 

Along with the five basic properties, each behavior specification has two parallel 

arrays that correspond to the reaction method parameters. The first array is an array of port 

names, where each reaction method parameter maps to a specific port in its parent skill. 

Each reaction method parameter must have an interface type that is compatible with the 

type defined in its corresponding port specification. The second array is an array of method 

call information objects. It defines the information that is passed with method calls through 

write interfaces and is processed by compatible filter methods. Array entries should be left 

n u l l for parameters that that do not take write interfaces. Each behavior specification, in 
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Figure 5.14: The Behavior Specification 

Java source code, is an instance of class C _ B e h a v i o r S p e c i f i c a t i o n , and this class 

defines methods for setting the forementioned properties. 

5.4.3 Connection Specification 

Each connection specification specifies a connection between a skill (the source) and either 

a state object or another skill (the target). In these connections, the source skill is the 

active component, and its behaviors call methods on the target component (which is passive) 

through a specific port. The connection is defined by the name of the source component, the 

name of the target component, and the name of the port. For each connection specification, 

the specified port must be defined for the source skill, and it must have an interface for 

communicating with the target component. Each connection specification, in Java source 

code, is an instance of class C _ S k i l l C o n n e c t S p e c . This class takes property values 

through its constructor, and it provides methods for retrieving these values. 

Has Array Of 
Skill Port Name^) 

One Per Reaction 
Method Parameter 

Has Array Of 
Method Call Info. 
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Figure 5.15: The Model Specification 

5.4.4 M o d e l Specification 

Figure 5.15 depicts the composition of a model specification. Each model specification has 

a name, which allows the execution manager, and system users, to identify it. As stated 

previously, it has collections of state object specifications and skill specifications. These 

collections are sets, and each set must not have more than one state object specification, or 

skill specification, with the same name. 

Each model specification has three sets of connection specifications, which link 

skills to state objects and other skills. The first set is for read connections between skills 

and state objects, where the behaviors in each skill communicate with the connected state 

object using its read interface. The second set is for write connections between skills and 

state objects, where the behaviors in each skill communicate with the connected state object 

using its write interface. The third set is for task sequencing connections, where behaviors 

in the source skill, through a skill interface, set tasks for the target skill. 

Each model specification, in Java source code, is an instance of class C _ R o b o t -

C o n t r o l M o d e l . This class provides the methods for configuring, and inspecting, the 
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different parts of a model specification. For organization purposes, the constructor provides 

the only way to set the model specification name. 

5.5 Low-level Details 

Recall that a major goal in developing my software framework and execution system is 

ensuring that the coder is shielded from network communication details. For example, 

behaviors should be able to call state object methods remotely without any network com­

munication details in their coder-supplied implementations. Section 5.3 showed how coders 

write component implementations that do not have such details. The execution system must 

provide these details, and my execution system implementation is successful at doing that. 

This section first describes how my execution system handles interactions with state objects, 

followed by a description of how filters fit in. After that, it describes how my execution sys­

tem handles calling reaction methods for behaviors, considering that each reaction method 

declares different parameters. 

5.5.1 Interactions with State Objects 

As stated in Section 5.2, Java provides RMI and Reflection, which allow my software 

framework and execution system to hide networking details from coders. RMI, on its own, 

does some of the work by creating socket connections and sending data over them. How­

ever, RMI requires the remote object implementation to include special code for extending 

classes and throwing exceptions. Likewise, it requires the method caller to explicitly catch 

the thrown exceptions. All this extra code is RMI-specific and hinders the flexibility of 

developed systems. Reflection allows my execution system to regain that flexibility. 

Figure 5.16 depicts a behavior calling a method on a state object. It suggests how 

the RMI-specific code can be hidden from coder-supplied code through the application of 

a new proxy layer on top of the RMI proxy. This proxy layer defines two components: the 

proxy and the wrapper. The proxy is an ordinary proxy object that mirrors the target state 
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Figure 5.16: State Object Method Invocation 

object. The wrapper is an RMI remote object that encloses, or "wraps", the state object. It 

is these two objects that take care of the RMI details. In the depicted scenario, the behavior 

first calls the proxy method, which matches, in declaration, the target state object method. 

The proxy method, using RMI, calls the corresponding wrapper method, which directly 

calls the target method. 

For the new proxy layer to work, my execution system must have the ability to gen­

erate classes for the proxy objects and wrapper objects. Because behaviors communicate 

with state objects through their interfaces, each interface requires a proxy object that imple­

ments it. These proxy objects would, then, be passed into behavior reaction methods where 

they require state object interfaces. My execution system can generate the required classes 

using Reflection, where each state object has a different proxy-wrapper pair for each of its 

interfaces. For proxy classes, it uses Reflection to analyze each state object interface and 

then uses that information to generate the source code for the proxy class. The same proxy 

class implementation can be shared by all state objects that require it, since the proxy object 

is not directly coupled with concrete state object implementations. 
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Generating classes for wrapper objects requires more work. First, because the wrap­

per objects are RMI remote objects, the execution system must generate an appropriate re­

mote interface, as required by RMI. The wrapper class must implement this interface, which 

is used by the corresponding proxy object to call wrapper methods. Second, the execution 

system must generate the wrapper class. As with the proxy classes, the execution system 

generates the wrapper classes, and interfaces, using the state object interfaces. Proper wrap­

per class generation requires the name of the target state object so that the wrapper object 

can call its methods. Thus, the same wrapper interface can be shared by all state objects 

that need it, but a different wrapper class must be generated for each state object class. 

The preceding paragraphs described how my execution system can generate source 

code for the required classes. It writes this source code to files that must be compiled 

and loaded. The execution system compiles the source code by issuing operating system 

commands. Specifically, it invokes the javac compiler for all source code, and it invokes 

the rmic compiler for RMI classes. Both compilers must be accessible from the command 

line, like through the system path or a symbolic link. Reflection allows the execution system 

to load the generated classes and create instances of them. 

5.5.2 Filter Method Invocation 

Recall that each state object can have a filter, which intercepts method calls through write 

interfaces. To facilitate filters, the wrapper object for each write interface must have the 

ability to call the correct filter method. Recall that my software framework does not require 

filters to implement all the methods provided by their corresponding state objects. Because 

wrapper implementations cannot anticipate, at compile time, the concrete filter class, the 

wrapper objects cannot call filter methods directly. While the wrappers can make method 

calls through Reflection, that would be several times slower than a direct method call. 

My execution system overcomes the problem of calling filter methods by generating 

filter wrappers, which are customized for each triplet of write interface, filter class, and 

state object class. Each filter wrapper, generated using Reflection, provides all the methods 
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Figure 5.17: Filter Method Invocation 

declared by the write interface. For each filter wrapper method, if the filter provides a 

compatible method, the filter wrapper calls that filter method. Otherwise, the filter wrapper 

bypasses the filter and calls the corresponding state object method directly. If no filter exists 

at all, the state object wrapper bypasses the filter wrapper and calls the state object method 

directly. Figure 5.17 depicts the method call situation. 

Recall, from Section 5.3, that each filter method must take a method call information 

object. In addition, for a filter method to be called, that object must be assignable to the 

type required by the filter method. Because each filter method receives a different object 

for each calling behavior, this object should originate on the behavior side of a method 

call. To facilitate this, my execution system generates each wrapper method such that it 

takes an extra argument, which is the method call information object (of type C - M e t h o d -

C a l l l n f o). Each proxy method, then, passes this object when calling the corresponding 

wrapper method. Each behavior, then, receives its own instance of the required proxy class, 

and each instance contains the respective method call information object. 
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5.5.3 Reaction Method Invocation 

My execution system must be able to repeatedly call the reaction method of each behav­

ior with the proper arguments. The required number of arguments, and the type of each 

argument, differs with each behavior. Because the execution system cannot anticipate, at 

compile time, the concrete behavior class, it cannot call reaction methods directly. As with 

filter implementations, using Reflection to make method calls is too slow. However, us­

ing Reflection to generate custom classes results in faster reaction method calls. For each 

behavior class, my execution system generates a class (called the behavior method caller) 

that provides a single method. This method, which is provided by all such classes, takes an 

array of arguments, and it makes a direct call to the corresponding reaction method using 

the argument values. 

5.6 High-level Details 

This section describes the implementation of my execution system at a higher level than 

that described in Section 5.5. Specifically, it describes the individual processes that work 

together to execute robot control systems. It first describes the implementation of executors, 

followed by the implementation of the execution manager. 

5.6.1 Executor Implementation 

Each executor is a Java RMI remote object, and it provides methods for controlling the ex­

ecution of state objects, behaviors, and skills. Its remote interface, I - E x e c u t o r , provides 

four methods for each component type, along with a method for retrieving the executor 

name. The first method, for each component type, creates an instance of the specified com­

ponent and returns a remote interface for controlling the created component. I refer to 

these interfaces as the state object control, behavior control, and skill control, respectively. 

Each creation method takes an object of type C . C o m p o n e n t L o c a t o r , which is used to 

identify, and locate, the specified component within a model specification. 
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The second method, provided by the executor for each component type, returns a 

list of component locators that correspond to created components of the respective type. 

The third method returns the appropriate control interface, given the component locator. 

The fourth method destroys a component instance, given its component locator. The fol­

lowing paragraphs give more details about component creation and control, starting with 

state objects, and continuing with behaviors and skills. 

State Object Creation and Control 

State object creation requires the specification of a state object class and a filter class. The 

state object control interface, which has type I _ O b j e c t C o n t r o l , provides methods re­

lated to wrapper objects. Most importantly, for each interface type (read, write, and user), 

it provides methods for creating a wrapper object, given the wrapper class. Write wrapper 

creation, along with the wrapper class, also requires the filter wrapper class, which may 

be n u l l . The state object control interface also provides methods for retrieving a list of 

wrapper names, retrieving a specific wrapper interface, and destroying a specific wrapper. 

Behavior Creation and Control 

Behavior creation requires the specification of a behavior class and a class, as described 

in Section 5.5, that is customized to call the corresponding reaction method. The behavior 

control interface, which has type I _ B e h a v i o r C o n t r o l , has two superinterfaces. One 

( I _ B e h C o n t r o l _ E x e c M a n ) provides methods useful to the execution manager, and the 

other ( I _ B e h C o n t r o l _ S k i l l ) provides methods useful to the parent skill. The following 

paragraphs describe the methods from both interfaces. 

Methods for Execution Manager: 

i n t n u m R e q u i r e d A r g u m e n t s ( ) 

Returns the number of arguments required by the reaction method. 
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s e t B e h a v i o r A r g u m e n t ( i n t i n d e x , I _ B e h a v i o r A r g u m e n t a r g ) 

Sets the argument value that will be passed into the reaction method at the given 

parameter index. The argument parameter, essentially, accepts a proxy to a state 

object or a skill. 

I _ B e h a v i o r A r g u m e n t t h e B e h a v i o r A r g u m e n t ( i n t i n d e x ) 

Returns the argument value, as set by the previous method. 

v o i d s e t l n v o k e T i m e P e r i o d ( i n t m i l l i s ) 

Sets the time period (in milliseconds) between reaction method invocations. 

i n t t h e l n v o k e T i m e P e r i o d ( ) 

Returns the value as set in the previous method. 

v o i d a l l o w E x e c u t i o n () 

Allows behaviors to execute, such that their reaction methods will be called when 

they are enabled. 

v o i d b l o c k E x e c u t i o n () 

Blocks behavior execution, overriding the enabled status set by skills. This method 

complements the previous method. 

b o o l e a n i s E x e c u t i o n B l o c k e d ( ) 

Returns t r u e if and only if reaction method execution is blocked. 

b o o l e a n i s R e a c t i o n E x e c u t i n g ( ) 

Returns t r u e if and only if the reaction method is executing. This allows the execu­

tion system to wait for the reaction method to stop executing. 

Methods for Skills: 

v o i d e n a b l e B e h a v i o r ( ) 

Enables a behavior such that, if execution is not blocked, the execution system will 

call its reaction method. This sets the behavior completion status to incomplete. 
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v o i d d i s a b l e B e h a v i o r () 

Disables a behavior such that the execution system will stop calling its reaction 

method until it is re-enabled. This sets the behavior completion status to complete. 

b o o l e a n i s B e h a v i o r E n a b l e d ( ) 

Returns t r u e if and only if the behavior is enabled. 

b o o l e a n i s E x e c u t i o n C o m p l e t e ( ) 

Returns t r u e if and only if behavior execution has completed. Completion is sig­

naled by the reaction method returning f a l s e since the behavior was last enabled. 

Skil l Creation and Control 

Skill creation does not require the specification of any implementation classes, since the 

execution system provides its own skill implementation. Thus, the skill creation method 

takes only a skill locator. The skill control interface, which has type I _ S k i l l C o n t r o l , 

provides two methods, where each method returns a different interface for interacting with 

the skill. The first method returns an interface that is used by a skill proxy to communicate 

with the skill. That interface provides methods that correspond to the task sequencing 

methods described in Section 5.3. Figure 5.18 clarifies the skill communication situation. 

The second method provided by the skill control interface returns an interface that 

is used by the execution manager to configure a skill. That returned interface provides the 

following methods. 

S t r i n g [ ] t h e T a s k N a m e s ( ) 

Returns an array containing the names of all tasks defined for the skill, where each 

task has at least one behavior registered with it. 

v o i d a d d B e h a v i o r T o T a s k ( S t r i n g t a s k N a m e , 

C L C o m p o n e n t L o c a t o r l o c a t o r , 

I _ B e h C o n t r o l _ S k i l l b e h C o n t ) 

Registers the given behavior with the specified task such that it is enabled whenever 
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Figure 5.18: Skill Method Invocation 

the current task is set to be that specified task. The locator is required for identifying 

the behavior, and the behavior is given by its control interface. Adding a behavior to 

a non-existant task results in the creation of a new task. 

C - C o m p o n e n t L o c a t o r [ ] t h e B e h a v i o r L o c a t o r s ( S t r i n g t a s k N a m e ) 

Returns an array containing the locators for the behaviors that have been registered 

with the specified task. 

I _ B e h C o n t r o l - S k i l l t h e B e h a v i o r C o n t r o l ( 

S t r i n g t a s k N a m e , C - C o m p o n e n t L o c a t o r l o c a t o r ) 

Returns the behavior control interface for the specified behavior, registered with the 

specified task. It returns n u l l if no behavior with the given locator has been regis­

tered with the task. 

v o i d r e m o v e B e h a v i o r F r o m T a s k ( 

S t r i n g t a s k N a m e , C - C o m p o n e n t L o c a t o r l o c a t o r ) 

Removes the specified behavior from the specified task. It removes the task if that 
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task would have no remaining behaviors. 

5.6.2 Execution Manager Implementation 

The execution manager is an RMI remote object that is registered with a naming service 

such that executors and client applications can access its functionality. For executors, it 

has an interface that provides a single method. This method allows an executor process 

to register its executor stub with the execution manager so that the execution manager can 

communicate with the executor. If the new executor has the same name as a previous ex­

ecutor, it will replace that previous executor. For users (through client applications), the 

execution manager provides several methods, which are described in the following para­

graphs. These method descriptions are followed by a description of the steps required to 

load a model specification. 

Execution Manager Methods 

v o i d l o a d N e w M o d e l ( I _ R o b o t C o n t r o l M o d e l _ R e a d m o d e l ) 

Loads the given model specification into the execution system. This stops execution 

of any existing model and unloads it. 

b o o l e a n i s M o d e l L o a d e d ( ) 

Returns t r u e if and only if a model is currently loaded into the execution system. 

I _ R o b o t C o n t r o l M o d e l _ R e a d t h e L o a d e d M o d e l ( ) 

Returns a copy of the model that is currently loaded. It returns n u l l if no model is 

loaded. 

v o i d u n l o a d C u r r e n t M o d e l ( ) 

Unloads any model that is currently loaded. 

v o i d s t a r t M o d e l E x e c u t i o n () 

Starts the execution of the loaded model by allowing all of its behaviors to execute 

(through a l l o w E x e c u t i o n ) . This method does nothing if no model is loaded. 
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b o o l e a n i s M o d e l E x e c u t i n g ( ) 

Returns t r u e if the loaded model is executing and f a l s e if no model is loaded. 

v o i d s t o p M o d e l E x e c u t i o n () 

Stops the execution of the loaded model by blocking the execution of all its behaviors 

(through b l o c k E x e c u t i o n ) . This method does nothing if no model is loaded. 

I _ O b j e c t J J s e r t h e U s e r l n t e r f a c e ( C - C o m p o n e n t L o c a t o r l o c a t o r , 

C l a s s i n t e r f C l a s s ) 

Returns the user interface for the state object identified by the given locator. The 

specific interface is identified by the given C l a s s object. 

I _ S k i l l _ T a s k S e q t h e S k i l l l n t e r f a c e ( 

C - C o m p o n e n t L o c a t o r l o c a t o r ) 

Returns the skill (task sequencing) interface for the specified skill, if it is part of the 

loaded model. It returns n u l l if the skill does not exist. This method allows users 

(through client applications) to control the execution of a skill. For any behaviors 

to execute, client applications must control at least one skill in a given robot control 

system. These skills can, then, have behaviors that set tasks for other skills. 

Model Specification Loading 

The loading of a model specification involves four main steps. First, the execution manager 

must generate all the classes required to fill the communication gaps, as described in Section 

5.5. Second, it must create all state objects, and through their control interfaces, it must 

create the required wrapper objects. Third, it must create all skills, and for each skill, it 

must create the required behaviors and register them with the specified tasks. Finally, it must 

configure the reaction method parameters for each behavior by creating the required proxy 

objects (for state objects and skills) and passing them into the behavior control interface. 

When assigning components to executors, the execution manager uses the executor 

designated in the model specification. However, for the cases when that executor is not ac-
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cessible, the execution manager provides its own executor, within the same virtual machine, 

for component execution. Thus, a robot control system can always execute despite missing 

executors. The default executor is useful during system development, when the user does 

not have access to all machines (like the physical robot) or does not want to start up all 

required executors. 

5.7 Summary 

This chapter described how developers create robot control systems using my software 

framework, how they execute these systems with my execution system, and how that ex­

ecution system works. In particular, it described how coders write Java classes for state 

objects, filters, and behaviors, and it described how designers compose them into model 

specification objects. It also described how my execution system consists of a central ex­

ecution manager, which controls the execution of components that reside within executor 

processes. Communication among components is provided by the execution system and 

it is facilitated by classes generated at runtime. These generated classes handle network 

communication details to promote system flexibility and to allow coder-supplied imple­

mentations to focus on core functionality. 
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Chapter 6 

Example System 

Chapter 5 demonstrated that my software framework and execution system can actually be 

implemented in software. However, that chapter did not demonstrate how well my execu­

tion system works, if it works at all. In addition, it did not demonstrate how well robot 

control systems work when developed using my software framework. Thus, I performed 

tests to prove my claims that my software framework and execution system facilitate the ex­

ecution of robot control systems. As stated in the introduction, I developed a robot control 

system that performs navigation tasks, where the robot must move to a given goal location. 

In this chapter, Section 6.1 gives an overview of the navigation system I developed 

to test my software framework and execution system. Section 6.2 describes this navigation 

system at a greater level of detail, focussing on its state objects and skills. Section 6.3 

discusses the results I obtained from testing my navigation system. Section 6.4 summarizes 

this chapter. 

6.1 System Overview 

A robot control system that demonstrates the usefulness of my software framework and 

execution system must exploit the various features they provide. To show reactivity, the 

robot control system must use state objects to provide access to sensors and actuators, and 

it must use behaviors to interact with those state objects. To show deliberation, the system 
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must use state objects to store environment representations, and it must use behaviors for 

planning and task sequencing. To show task sequencing with skills, the system must have 

behaviors that control skills, and different skills must contain different combinations of 

behaviors and tasks. To show coordination, the system must use filters to manage method 

calls originating from different behaviors. 

Recall that the robot control system that I chose for a demonstration is one that 

performs navigation tasks, where the robot must move to a given goal location. As in the 

motivational example in the thesis introduction, the robot must move quickly and smoothly 

while avoiding collisions with people and other obstacles. The target robots for this demon­

stration are Jose and Eric, which were described in Section 2.4. Different researchers have 

attempted to implement, and improve, navigation systems for these robots [ML98, Pou98, 

CarOl]. The remainder of this section describes existing implementations for Jose and Eric, 

which have influenced my example system, followed by an overview of my own implemen­

tation. 

6.1.1 Existing Navigation Systems for Jose and Eric 

Each navigation system implementation uses the same basic architecture described in Sec­

tion 2.4, and each implementation uses the same data structures in shared memory. Most 

notably, they have access to an occupancy map [ML98], which is a two-dimensional grid 

that represents the space along the horizontal plane of robot motion. In addition, they have 

access to a radial map, which is a robot-centered representation of the space around the 

robot. Both the occupancy map and radial map are constructed using data from vision 

sensors, and the radial map, which represents the most recent data, is used to update the 

occupancy map. Besides the occupancy map and radial map, each implementation has ac­

cess to path plans, which are sequences of waypoints that the robot must follow to reach its 

goal location. Figure 6.1 depicts a path plan for a robot, where the robot must pass three 

waypoints on its way to the goal. A path planning module computes these path plans using 

data in the occupancy map. 
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Figure 6.1: A Robot Following a Path 

Each navigation system implementation makes the robot follow the sequences of 

waypoints computed by the path planning module. They differ in how they make the robot 

follow these paths. Murray's implementation [ML98] makes the robot follow the given path 

exactly, using straight line segments between waypoints, and assuming the environment is 

static. Poupart's implementation [Pou98], using data from sonar sensors, attempts to make 

the robot follow a smoother path, while being reactive to dynamic changes in its environ­

ment. Carbonetto's implementation [CarOl] provides a similar smooth path follower, but it 

uses data from vision sensors rather than from sonar sensors. 

Poupart and Carbonetto both based their implementations on the Dynamic Window 

technique proposed by Fox et al. [FBT97]. Poupart uses that technique in conjunction 

with the Pure Pursuit technique proposed by Coulter [Cou92]. The following paragraphs 

describe both of these techniques, as they relate to the two implementations. 
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The Dynamic Window Technique 

The Dynamic Window technique [FBT97] works for robots with non-holonomic motion, 

such as Jose and Eric, that can move only in the direction that they face. These robots have a 

translational velocity and a rotational velocity that can be set only at fixed time rates. Thus, 

within each time step, the robot motion can be estimated to be a circular arc (or curvature) 

that is defined by the velocity pair. 

The dynamic window algorithm, for each time step, finds the optimal velocity pair 

that allows the robot to make progress toward a goal location while avoiding obstacles. 

The "dynamic window", itself, refers to the fact that within each time step, the robot can 

safely reach velocities within a given range from its current velocities. Thus, to simplify the 

search space, the algorithm evaluates only velocities within the allowable range, or dynamic 

window. 

The dynamic window algorithm evaluates a fixed number of velocity pairs within 

the dynamic window. The velocity pair it applies to the robot motors is the one that receives 

the highest score from an objective function. This objective function has the following form 

[FBT97], as demonstrated in Figure 6.2. 

G(v, ijj) = a(a • heading(v, OJ) + ft • dist(v, ui) + 7 • velocity(v, u>)) 

This objective function computes, and smooths, the weighted sum of three terms, 

where each term depends on the translational velocity (v) and the rotational velocity (w). 

The first term is for keeping the robot headed toward its goal location. The function heading, 

then, returns a measure of the closeness of the robot heading with respect to the angle to the 

goal location. It is evaluated at the extrapolated robot heading, after the robot has moved at 

the evaluated velocities for a given time interval. 

The second term in the objective function is for maximizing the clearance from 

obstacles. The function dist, then, returns a measure of the closeness to obstacles along 

the curvature defined by the given velocity pair. The third term, through function velocity, 

attempts to maximize the translational velocity so that the robot reaches its goal location as 

quickly as possible. To avoid near misses, function a smooths the weighted sum of the three 
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Figure 6.2: The Dynamic Window Objective Function 

terms. Poupart and Carbonetto use their own variations of the objective function provided 

with the dynamic window algorithm. 

The dynamic window algorithm is intended for a robot moving toward a single, 

static, goal point. On its own, it does not work well in cases when the optimal path to the 

goal location involves the robot turning away from that goal location. Such a situation was 

depicted in Figure 3.6, in the context of exception handling. Using individual waypoints as 

goal locations, where the robot must reach one at a time, works better but has significant 

drawbacks. If the navigation algorithm advances to the next waypoint only when the robot 

reaches the current waypoint, the robot motion will not be smooth at the waypoints. If the 

navigation algorithm advances to the next waypoint too early, then the robot may turn too 

far inside of the corner made by the straight line segments. 

The Pure Pursuit Technique 

The Pure Pursuit Path Tracking Algorithm [Cou92] provides a local goal location that it 

modifies as the robot moves. This local goal location is a point, a fixed distance ahead of 
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Figure 6.3: The Pure Pursuit Path Tracking Algorithm 

the robot, along the path of straight line segments. Choosing a suitable distance allows the 

robot to pass each waypoint such that it maintains its speed, rotates smoothly, and stays 

close to the path of straight line segments. Poupart uses this algorithm to compute local 

goal locations for the dynamic window algorithm. Figure 6.3 demonstrates how the pure 

pursuit technique works. In this figure, the dashed line indicates the smooth path traversed 

by the robot, where the robot attempts to reach the constantly-updated local goal. 

6.1.2 The Example Navigation System 

I based my navigation system design on that provided by Poupart [Pou98], which com­

bines the dynamic window technique [FBT97] with the pure pursuit technique [Cou92]. 

My design, however, incorporates vision sensors instead of sonar sensors. To demonstrate 

coordination with filters, my design incorporates a variant of the objective function that 

is provided with the dynamic window technique. In particular, my design uses a separate 

behavior — a "curvature evaluator" — for each term of the function. Each behavior takes 

input from a state object that indicates the curvatures for evaluation (the dynamic window). 
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This dynamic window is computed by a different behavior: the "dynamic window finder". 

Each curvature evaluator computes a score for each curvature in the dynamic window and 

writes that score to a state object that maps curvatures to scores: the "curvature score map". 

The curvature score map has a filter that handles the case when different behaviors 

write different scores for the same curvature. Each curvature evaluator has an associated 

weight, and a unique identifier, that are defined within its method call information object. 

The filter uses this information to compute a weighted mean for each curvature, where the 

resulting value is sent to the underlying state object. A different behavior — the "motion 

updater" — finds the curvature with the highest score and uses that curvature to control the 

robot motors. 

A task sequencing behavior — the "motion controller" — controls the execution of 

the forementioned behaviors, which are related to the dynamic window algorithm. Another 

task sequencing behavior — the "navigation controller" — controls the execution of the 

motion controller and some higher level behaviors. These higher level behaviors provide 

path planning and mapping functionality, along with the pure pursuit functionality. 

6.2 System Specifics 

Figures 6.4 and 6.5 depict my navigation system design. In these figures, ellipses repre­

sent state objects, parallelograms represent filters, and rectangles represent skills. Arrows 

indicate the components with which behaviors in each skill can interact. In particular, solid 

arrows indicate the flow of data between skills and state objects. Of these, arrows into a 

skill represent communication through a read interface, and outward arrows represent com­

munication through a write interface. Thicker, dashed, arrows indicate that behaviors in the 

source skill can set tasks for the target skill. 

Part 1 of my navigation system design (in Figure 6.4) contains the higher level 

skills, with their associated state objects. Because of time constraints, I did not implement 

this part of the navigation system. Part 2 of my navigation system design (in Figure 6.5) 

contains the skills associated with the dynamic window algorithm. I implemented most of 
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this part, with exception to subparts that depend on Part 1. With my navigation system 

implementation, I developed a simple client application that allows users to control system 

execution and monitor the robot location, heading, and velocities. This section continues by 

describing the individual state objects, followed by the skills. After that, it suggests further 

extensions to the design. 
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Nav iga t ion Cont ro l le r 

Figure 6.5: The Navigation System Model, Part 2 
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6.2.1 State Objects 

Figures 6.4 and 6.5 depict eleven state objects in total. One additional state object, R o b o t -

P r o p s , was omitted for diagram simplification purposes. The following paragraphs de­

scribe these state objects in alphabetical order. 

CurvScore 

State object C u r v S c o r e stores the curvature score map, which provides a mapping from 

curvatures (velocity pairs) to their corresponding scores. Curvature scores are values be­

tween 0.0 and 1.0, where higher scores indicate better curvatures. By default, curvatures 

without explicit scores receive a score of 0.0. This state object, which is defined using class 

C_Ob j - C u r v a t u r e S c o r e M a p , provides one read interface and three write interfaces. 

The read interface ( I _ O b j _ C u r v S c o r e M a p _ R e a d ) is used by the motion updater so that 

it can read the score associated with each curvature. 

The first write interface for the curvature score map ( I _ O b j _ C u r v S c o r e M a p _ -

W r i t e ) is used by the curvature evaluators to set the score mappings. The second write 

interface ( l _ O b j _ C u r v S c o r e M a p _ T i c k ) is used by the motion updater to signal that it 

is finished with the current set of scores. This allows the curvature score map to flush, 

or empty, its data to prevent the motion updater from working with outdated scores. The 

third write interface ( I _ O b j _ C u r v S c o r e M a p _ I n i t ) provides a method for initializing 

the curvature score map to an empty state. The curvature score map has a filter ( C J T i l t _-

C u r v a t u r e S c o r e M a p ) , which was briefly described in Section 6.1. The method call 

information objects for this filter are instances of class C _ M e t h o d C a l l I n f o l u r v , and 

they store the behavior identifiers and weights. 

D y n Window 

State object D y n W i n d o w stores the dynamic window. It provides one read interface and 

two write interfaces. The read interface ( I _ O b j _ D y n a m i c W i n d o w _ R e a d ) provides a 

method that returns all the candidate curvatures within the dynamic window. One write 
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interface (I_Ob j _ D y n a m i c W i n d o w _ W r i t e ) allows the dynamic window finder to set 

the dynamic window. It provides a method that takes the translational velocity range as 

input and converts the range endpoints into a pair of indices into the static velocity quan­

tization. It also provides an equivalent method for the rotational velocity. The other write 

interface ( I _ O b j _ D y n a m i c W i n d o w _ I n i t ) provides methods for configuring the velocity 

quantization. 

The static velocity quantization is necessary not only for simplifying the search 

space for the curvature evaluators. It also forces the curvature evaluators to work with 

discrete velocities so that the curvature score map does not need to provide special handling 

for curvatures that differ by minute fractions. Consider a robot that accelerates very slowly, 

where its dynamic window quantization shifts with the robot velocity. The continuous 

nature of this dynamic window could result in a huge growth in the number of curvatures 

with associated scores. The static quantization provides a manageable upper bound for the 

total number of curvature score mappings at any time. 

Goal 

State object G o a l stores the goal for navigation, with respect to the coordinate system 

used by the occupancy map ( M a p ) . It is defined using class C_Ob j _ L o c a t i o n H e a d i n g , 

which provides methods for storing a location and a heading. The robot must move to the 

location defined within this state object, and upon reaching that location, the robot must be 

oriented according to the defined heading. My current implementation, however, ignores 

the heading request. This state object has a read interface ( I _Ob j _ L o c a t i o n H e a d i n g _ -

R e a d ) for retrieving the goal. The goal can either be set by a system user, through a given 

user interface ( I _ O b j _ L o c a t i o n H e a d i n g _ U s e r ) , or by any robot control system that 

encloses this navigation system. 
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LocalGoal 

State object L o c a l G o a l stores the local goal, which is the goal for the dynamic window 

algorithm. As with G o a l , this state object is defined using class C _ O b j - L o c a t i o n -

H e a d i n g . It provides a read interface ( l _ O b j _ L o c a t i o n H e a d i n g _ R e a d ) for retriev­

ing the goal and a write interface ( I _ O b j _ L o c a t i o n H e a d i n g _ W r i t e ) for setting the 

goal. This local goal is defined in a coordinate system, with the same scale as that used for 

G o a l , where the axes coincide with the robot. 

LocalMap 

State object L o c a l M a p provides a representation of the space around the robot in terms of 

its occupancy. It is similar to the main occupancy map, except that its coordinate system 

coincides with the robot, it is smaller in size, and it is not represented as a grid. It is based 

on a fusion of current vision data (from V i s i o n ) with data from the long term occupancy 

map ( M a p ) . Because of time constraints, I did not implement this state object, so no further 

details exist. 

LocHead 

State object L o c H e a d provides access to the current location, and heading, of the robot. 

For a real robot, this state object would be implemented using a class that interacts with 

the low level robot software, which is outside of my execution system. However, because 

of time constraints, I implemented only a version for a simulated robot. The implemented 

version uses class C_Ob j _ L o c a t i o n H e a d i n g to define the state object. Nonetheless, 

that class can be easily replaced by a class that works with a real robot. 

Map 

State object M a p provides access to the occupancy map. Recall that the occupancy map is 

a two-dimensional grid, where each cell indicates the likelihood of that cell being occupied 

by an obstacle. My navigation system design assumes that the map is generated outside of 
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my execution system. This assumption would be true for Jose and Eric, which have good 

existing mapping systems. For these robots, this state object would — possibly through the 

Java Native Interface (JNI) — read map data as it is stored in shared memory. Because of 

time constraints, I did not implement this state object. 

MotionActuator 

State object M o t i o n A c t u a t o r allows behaviors to control the robot motors. Specifi­

cally, its write interface ( I _ O b j _ M o t i o n A c t u a t o r . W r i t e ) allows behaviors to set the 

translational and rotational velocities for the robot. For a real robot, this state object, as 

with L o c H e a d , would be implemented using a class that interacts with the low level robot 

software, which is outside of my execution system. However, because of time constraints, 

I implemented only a version for a simulated robot. The implemented version uses class 

C_Ob j - M o t i o n A c t u a t o r - S i m to define the state object. In addition, it provides a read 

interface ( I _ O b j _ M o t i o n A c t u a t o r _ R e a d ) that allows the robot simulator to retrieve 

the velocity settings. 

MotionSensor 

State object M o t i o n S e n s o r allows behaviors to retrieve the translational and rotational 

velocities for the robot. It provides this access through its read interface ( I _ O b j _ M o t i o n -

S e n s o r - R e a d ) . As with L o c H e a d and M o t i o n A c t u a t o r , I implemented this state 

object using a class ( C _ O b j _ M o t i o n S e n s o r J 3 i m ) that works with only a simulated 

robot. Using a write interface ( I _ O b j J M o t i o n S e n s o r _ W r i t e ) , the robot simulator can 

provide the state object with artificial velocity readings. 

Path 

State object P a t h stores a path from the robot location to the goal location ( G o a l ) . This 

path is a sequence of waypoints, where the robot must pass each waypoint, in order, to 

reach the goal. The path planner determines the exact sequence of waypoints, where the 
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coordinates are relative to the occupancy map ( M a p ) . Because of time constraints, I did not 

implement this state object. 

RobotProps 

State object R o b o t P r o p s stores information about the specific robot used. Its read in­

terface ( I _ O b j _ R o b o t P r o p e r t i e s _ R e a d ) allows behaviors to retrieve values for these 

properties. The stored information includes the velocity and acceleration constraints for 

the robot, along with quantization parameters for the dynamic window. It also includes the 

time that must elapse between successive updates to the robot velocities. For Jose and Eric, 

class C_Ob j - R o b o t P r o p e r t i ' e s_B 14 provides the state object implementation. Defined 

within this class, based on information by Poupart [Pou98], the maximum translational ve­

locity is 0.3ra/s, and the maximum translational acceleration is 0.2ra/s2. The maximum 

rotational velocity is (ir/6)rad/'s, the maximum rotational acceleration is (ir/9)rad/'s, and 

the time step for velocity updates is 0.1 seconds. 

Vision 

State object V i s i o n allows behaviors to retrieve information based on vision sensor read­

ings. In particular, it provides occupancy information about the space currently viewed by 

the vision sensors. For Jose and Eric, the radial map provides the required information. 

Because of time constraints, I did not implement this state object. 

6.2.2 Skills 

Figures 6.4 and 6.5 depict eight skills in total. One additional skill, S i m u l a t o r , provides 

a simulated robot to work in place of a physical robot. The following paragraphs describe 

these skills in alphabetical order, where each skill defines only one task. 
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CurvatureEvaluator 

Skill C u r v a t u r e E v a l u a t o r allows behaviors that act as curvature evaluators. These 

behaviors retrieve information from different state objects and use it to evaluate each curva­

ture within the dynamic window. The following paragraphs describe the behaviors within 

my navigation system design, where each behavior has a reaction method that executes 

repeatedly to compute scores for all possible curvatures. Each behavior takes a write inter­

face to a curvature score map. In addition, each behavior has an associated object of type 

C _ M e t h o d C a l l I n f o - C u r v , which is passed with method calls to the curvature score 

map. This object, as described with the curvature score map, stores behavior identifiers and 

weights. More behaviors can be added to give more complexity to the robot motion. 

A n g l e M i n i m i z e r (class C _ B e h _ A n g l e M i n i m i z e r ) : 

This behavior gives high scores to velocity pairs that, within the next time step, turn 

the robot toward the local goal location. It is similar to the heading term defined 

for the dynamic window algorithm [FBT97]. For input, it takes the local goal, the 

dynamic window, and the robot properties. The angle score is computed as the dif­

ference between the robot heading and the angle to the local goal, and it is normalized 

against the range of all possible angle differences. It prunes (by giving a score of 0.0) 

any curvatures that, given the acceleration constraints, would not allow the robot to 

stop at the desired heading. 

D i s t a n c e M i n i m i z e r (class C J 3 e h _ D i s t a n c e M i n i m i z e r ) : 

This behavior gives high scores to velocity pairs that, within the next time step, move 

the robot closer to the local goal location. It is similar to the velocity term denned for 

the dynamic window algorithm [FBT97]. As with A n g l e M i n i m i z e r , it takes the 

local goal, the dynamic window, and the robot properties. The distance score is com­

puted as the distance away from the local goal location, and it is normalized against 

the range of all possible distances. It prunes any curvatures that, given the accelera­

tion constraints, would not allow the robot to stop immediately when it reaches the 
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goal location. 

O b s t a c l e A v o i d e r (class C _ B e h _ O b s t a c l e A v o i d e r ) : 

This behavior gives high scores to curvatures that allow the robot to travel for the 

longest time without intersecting an obstacle. It is similar to the dist term defined for 

the dynamic window algorithm [FBT97]. For input, it takes the dynamic window, the 

local map, and the robot properties. Because I did not implement the local map, I did 

not fully implement this behavior. 

DynamicWindowFinder 

Skill D y n a m i c W i n d o w F i n d e r allows behaviors that maintain the velocity ranges for 

the dynamic window. To compute these ranges, the behaviors can use the current robot 

velocities (from the motion sensor) and the motion constraints for the the robot (from the 

robot properties). I implemented the following behavior for this skill. 

D y n W i n d o w F i n d e r (class C _ B e h _ D y n W i n d o w F i n d e r ) 

This behavior computes the velocity ranges based on the current robot velocities and 

the motion constraints. Its reaction method executes repeatedly, computing a new 

velocity range during each iteration. This range is defined by the velocities the robot 

can safely reach within the next time step. 

LocalGoalUpdater 

Skill L o c a l G o a l U p d a t e r allows behaviors that repeatedly update the local goal for the 

robot. Normally, this skill would have one behavior, which uses the pure pursuit technique 

to choose a location that is along the path computed by the path planner. However, because 

I did not implement the path planner, I implemented the following behavior, which could 

be used in situations when a path is not available. 

L o c a l G o a l U p d a t e r (class C _ B e h _ L o c a l G o a l U p d a t e r ) 

This behavior, given the global goal and the robot location and heading, outputs the 
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equivalent goal, converted to the local coordinate system. Its reaction method exe­

cutes repeatedly, computing a new local goal during each iteration. 

LocalMapper 

Skill L o c a l M a p p e r allows behaviors that update the local map, where these behaviors 

may take input from the vision sensor and the global occupancy map. I did not implement 

this skill, which would have a behavior that fuses the current vision sensor data with the 

long-term occupancy map data. 

MotionController 

Skill M o t i o n C o n t r o l l e r allows behaviors that set tasks for the remaining skills de­

picted in Figure 6.5. I implemented the following behavior for this skill. 

M o t i o n C o n t r o l l e r (class C B e h J M o t i o n C o n t r o l l e r ) 

This behavior, when first enabled, configures the dynamic window quantization and 

clears the curvature score map. Its reaction method executes repeatedly, where on 

each invocation, it ensures that each skill is performing its only task. 

MotionUpdater 

Skill M o t i o n U p d a t e r allows behaviors that set the velocities for the motion actuator 

based on information in the curvature score map. I implemented the following behavior for 

this skill. 

M o t i o n U p d a t e r (class C _ B e h _ M o t i o n U p d a t e r ) 

This behavior reads all the curvature scores from the curvature score map and finds 

the highest score. It then instructs the motion actuator to set the robot velocities 

according to the corresponding curvature. Its reaction method executes repeatedly, 

choosing a new curvature during each iteration. 
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NavigationController 

Skill N a v i g a t i o n C o n t r o l l e r allows behaviors that set tasks for the remaining skills 

depicted in Figure 6.4. I did not implement this skill, which would have a behavior that 

makes control choices on each reaction method invocation. First, whenever that behavior is 

enabled, it would assume that the goal is valid and that the robot should move to its location. 

At that time, the navigation controller should instruct the path planner to start its planning 

task. Once path planning is complete, the behavior should instruct the remainder of the 

skills to start their tasks, although these could be started while the path planner is working. 

When the robot reaches the goal location, the behavior can disable all the skills. 

PathPlanner 

Skill P a t h P l a n n e r allows behaviors to update the path for the robot to follow, given the 

goal, the robot location, and the occupancy grid. I did not implement this skill, which would 

have a behavior that does the required path planning. 

Simulator 

Skill S i m u l a t o r acts as a simulated robot by reading from the actuator state objects and 

writing to the sensor state objects. A simulator was necessary because I did not implement 

enough of my navigation system to make it work with a physical robot. I implemented the 

following behavior for this skill. 

S i m u l a t o r (class C _ B e h _ R o b o t S i m u l a t o r ) 

This behavior simply reads the new velocity settings from the motion actuator and 

estimates, given the motion constraints, where the robot would move in the respective 

time step. It then updates the robot location and heading, along with the velocities 

for the motion sensor. Its reaction method executes repeatedly, updating the robot 

location, heading, and velocities, during each iteration. 
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6.2.3 Extensions 

One useful extension to my navigation system design would be the addition of a purely 

reactive behavior to the motion updater skill. This behavior would map immediate vision 

sensor data to velocities for the motion actuator. It would be especially useful when the 

behaviors in the other skills fail to operate properly. Another useful extension would be 

the implementation of the vision processing and global mapping functionality using my 

software framework. 

Recall that my navigation system design defined a single task for each skill. Thus, 

task switching within a skill, where one set of behaviors must be disabled and another set of 

behaviors must be enabled, was not an issue. With a separate example system, based on the 

components defined in Section 5.3,1 verified that task switching does work properly when 

a skill has more than one task. 

In a more complex navigation system, the need for task switching could arise. Con­

sider a navigator robot that has two different modes of operation. Its first mode is the 

normal mode, which works as I have previously defined. Its second mode is a "danger 

mode", which is set whenever the robot is in a dangerous situation. For navigation, the 

robot is in a dangerous situation when a collision is likely to occur and when a collision has 

recently occurred. Thus, when the robot first encounters a dangerous situation, it enters its 

danger mode, where it acts more cautiously until the situation improves. 

To support this danger mode, I can extend specific skills in my navigation system 

design such that they define a danger task. Skill C u r v a t u r e E v a l u a t o r can, for ex­

ample, keep the same behavior implementations, but it can use behavior weights that put 

more emphasis on obstacle avoidance. A new path planner behavior can generate paths that 

move the robot out of the dangerous situation. The navigation controller, and the motion 

controller, should set the danger task for skills in the navigation system. Of course, the nav­

igation controller must detect these dangerous situations so it can take appropriate action. It 

can detect recent collisions through bump sensors, and it can use data from vision sensors 

to help it detect likely collisions. 
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6.3 Test Results 

The completed part of my navigation system allows a simulated robot to move smoothly to a 

given goal location, without regarding obstacles. This section reveals the results I obtained 

from executing this navigation system within my execution system. For my tests, I used my 

home computer, which has a 700MHz Pentium III processor and 256MB of RAM. This 

section begins with discussions on synchronization and efficiency, which both hindered the 

performance of my navigation system. It then gives the results from successful test runs. 

6.3.1 Synchronization Issues 

For simplicity, I decided to make each behavior in my navigation system have its reaction 

method invoked at the same fixed rate. To mimic the motion requirements of Jose and Eric, I 

set the time period between successive invocations to 0.1 seconds. However, at this rate, the 

navigation system seemed to yield random velocity settings for the simulated robot, and the 

robot never did reach the goal locations I set for it. I determined that this poor performance 

was partly related to the fact that each behavior executes in a separate thread, which runs 

asynchronously in relation to the other behaviors. Most significantly, the repeated flushing 

of the curvature score map, with the asynchronous curvature evaluators and motion updater, 

caused the motion updater to make bad choices. The paragraphs that follow will elaborate 

on this. 

My initial navigation system design had a separate behavior responsible for initi­

ating the flushing of the curvature score map. In that case, if the motion updater starts 

executing before the curvature evaluator completes its work, the motion updater may re­

ceive scores only for a subset of the curvatures. This unwanted occurrence is worsened by 

the fact that the curvature score map can be flushed before the motion updater can retrieve 

all of its scores. Such occurrences result in the motion updater choosing an undesired curva­

ture, since the curvature score map may not have a score for the optimal curvature. During 

initial testing, I found that this unwanted situation occurred frequently. 

My first attempt to overcome the synchronization problems was letting the curvature 
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score map retain, separately, the score mappings that were set during the previous time step. 

The curvature score map, then, provides the previous score for a given curvature if a newer 

score does not exist. If the curvature evaluators execute at the same rate as the motion 

updater (or faster), then either the current mapping or the previous mapping should have a 

score for each curvature. This claim is not true if the curvature score map is flushed twice 

between motion updater executions. In addition, this may not be true if, after the curvature 

score map is flushed, the motion updater executes before the curvature evaluators. I found, 

during testing, that these unwanted situations occur with this first attempted solution. 

A small improvement to the first synchronization attempt, as noted with the cur­

vature score map description, had the motion updater initiate the flushing of the curvature 

score map. This attempt, while achieving slightly better results, still suffered from the same 

synchronization problems. Figure 6.6 gives results, edited for clarity, that I obtained from 

a test run. During this test run, the motion updater and one of the curvature evaluators, 

at the beginning of their reaction methods, printed the current time in milliseconds. The 

most important point to note is that the motion updater can execute multiple times between 

consecutive curvature evaluator executions. This means that the motion updater often gets 

scores of 0.0 for all curvatures within the dynamic window. 

One main reason for my one-step history solution failing is related to the fact that 

behaviors execute as threads. In a single processing unit, only one thread may execute at 

a time, and threads will not always execute as scheduled. The Java virtual machine uses a 

round-robin scheduling algorithm that, depending on the underlying operating system, may 

use time slicing. Either way, the Java virtual machine cannot reliably maintain the order of 

behavior execution between consecutive reaction method invocations. One additional point 

to note from Figure 6.6 is that each behavior appears to execute at a rate that, on average, 

is approximately four times slower than expected. This indicates that the reaction methods 

have large execution times in relation to the chosen time step. 

Slowing down the execution rate for each behavior improves synchronization, at a 

cost of real time efficiency. Figure 6.7 shows much better results for a time step of 1.0 
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E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 6 9 7 1 9 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 6 9 7 5 9 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 6 9 8 8 5 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 0 3 2 1 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 0 8 0 1 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 1 1 4 7 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 1 3 1 8 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 1 4 8 3 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 1 5 6 1 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 1 7 8 9 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 2 1 4 1 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 2 4 2 2 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 2 5 2 1 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 2 6 8 2 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 2 8 6 1 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 2 9 8 5 

E N T E R E D M O T I O N U P D A T E R A T [ . . . ] 7 3 1 0 7 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 3 2 7 7 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 3 4 7 6 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 7 3 6 5 3 

Figure 6.6: Behavior Synchronization Problems 

seconds. It does not show perfect synchronization, however, since the motion updater occa­

sionally executes twice between consecutive curvature evaluator executions. Nonetheless, 

the one-step history provided by the curvature score map should counteract these occur­

rences. In addition, if these occurrences are rare, the navigation system can move the robot 

back on track. With a second curvature evaluator, a time step of 1.5 seconds works well. 

Still, when the system cannot execute at the desired speed, it should maintain a suitable 

ordering of behavior executions. 

My navigation system can, to some extent, maintain the proper ordering of behavior 

executions on its own. The motion controller can, for example, start the curvature evaluator 

skill and repeatedly poll for its completion status. When the curvature evaluator is complete, 

the motion controller can then start the motion updater. While this sequencing strategy 
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E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 1 3 8 2 

E N T E R E D MOTION UPDATER AT [ . . . ] 3 1 3 9 4 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 2 3 8 2 

E N T E R E D MOTION UPDATER AT [ . . . ] 3 2 3 9 3 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 3 3 8 2 

E N T E R E D MOTION U P D A T E R AT [ . . . ] 3 3 3 9 5 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 4 3 8 2 

E N T E R E D MOTION UPDATER AT [ . . . ] 3 4 3 9 2 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 54 2 6 

E N T E R E D MOTION UPDATER AT [ . . . ] 3 5 4 2 9 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 6 3 8 2 

E N T E R E D MOTION UPDATER AT [ . . . ] 3 6 3 9 4 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 7 3 8 2 

E N T E R E D MOTION U P D A T E R AT [ . . . ] 3 7 3 9 4 

E N T E R E D C U R V A T U R E E V A L U A T O R A T [ . . . ] 3 8 3 9 0 

E N T E R E D MOTION U P D A T E R AT [ . . . ] 3 8 3 9 2 

E N T E R E D MOTION U P D A T E R A T [ . . . ] 3 9 3 8 2 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 3 9 3 8 2 

E N T E R E D C U R V A T U R E E V A L U A T O R AT [ . . . ] 4 0 3 8 2 

E N T E R E D MOTION U P D A T E R AT [ . . . ] 4 0 3 9 3 

Figure 6.7: Improved Behavior Synchronization 

works, the act of polling can steal valuable execution time away from other behaviors. A 

better approach would be to improve my software framework and execution system such 

that the motion controller awakens upon the occurrences of specific events. For sequencing 

of skills, the event of interest would be the completion of reaction method execution. 

6.3.2 Efficiency Issues 

The investigation on synchronization issues revealed that the behavior reaction methods 

took excessive amounts of time to execute. Given the speed of my microprocessor (700 

MHz) and the amount of computation required for each time step, each reaction method 

should, in theory, take well under a millisecond to execute. In reality, they often took hun­

dreds of milliseconds to execute. My hypothesis was that the most significant contributing 
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factor to this execution time is the time required for remote method calls to reach the desti­

nation objects. 

My original navigation system implementation made approximately 180 remote 

method calls within each time step. Most of these method calls were related to the dy­

namic window and the curvature score map. My dynamic window used 49 curvatures for 

evaluation, which includes all combinations of 7 translational velocities with 7 rotational 

velocities. For each curvature, the two curvature evaluators updated the curvature score 

map with an individual method call. In addition, the motion updater retrieved each curva­

ture score with an individual method call. Thus, 147 remote method calls, per time step, 

were related to setting and retrieving curvature score mappings. 

I added new methods to my curvature score map implementation so that it would 

allow all the curvature score mappings to be set and retrieved with a single method call. 

Then, I changed my curvature evaluators and motion updater such that they took advantage 

of these new methods. My changes reduced the number of remote method calls, per time 

step, by 144 (48 curvatures by 3 behaviors). More importantly, it allowed successful execu­

tion at a time step of 0.2 seconds, which is several times faster than 1.5 seconds. However, 

these test results show only a dependence on the number of remote method calls. They do 

not indicate which parts of the remote method calls are responsible for the time differences. 

Recall that when a behavior calls a state object method, the behavior really calls a 

proxy method that initiates a chain of method calls and network transfers. In particular, a 

method call must pass through a proxy object, an RMI stub object, a socket connection, 

an RMI skeleton object, and a wrapper object (with an optional filter). Researchers have 

shown that the standard RMI implementation provides an extreme bottleneck [PHN00]. 

This bottleneck is mainly due to the fact that RMI opens socket connections for transferring 

data and that it uses Reflection to determine how to serialize the method call arguments. 

Tests on my home computer, alone, confirmed that the standard RMI implementa­

tion was responsible for the slowness of remote method calls within my execution system. 

Method calls through the forementioned communication chain, for the state object imple-
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mentation given in Figure 5.3, took an average of 0.9 milliseconds. Method calls through 

the same chain, where the proxy method made direct calls to the wrapper method — with­

out RMI — took an average of 0.1 microseconds. Thus, RMI increased the method call 

time by a factor of approximately 9,000. This huge difference can cause my execution 

system to have poor real time performance when it must make a large number of remote 

method calls. I conclude that for optimal performance, behaviors and state objects should 

be designed such that remote method calls are minimized. 

6.3.3 Goal Seeking Results 

I ran two major tests to show that my navigation system works. The fact that the robot 

reaches its goal location quickly and smoothly indicates that all behaviors worked properly. 

My first test had the robot move toward a goal location that is 5.0 metres straight ahead. 

My second test had the robot move toward a goal location that is 3.0 metres ahead and 2.0 

metres to its left. Figures 6.8 and 6.9 depict the results of these two tests, respectively. In 

these figures, the thick line indicates the path traversed by the robot, and the vertical bars, 

where they cross the path line, indicate the location of the robot at each second of simulated 

time. In both tests, the robot initially faces toward the right. 

For the first test, the robot should, in theory, move forward at maximum speed, with 

no rotation, and stop at the goal location. With minor deviations from the straight line, the 

robot did exactly that. It successfully increased its translational velocity at the beginning of 

the trip, maintained a straight path toward the goal location, and decreased its speed to stop 

at the goal location. For the second test, the robot should, while moving forward, orient 

itself such that it travels toward the goal location. The robot was successful, as it quickly 

achieved the proper heading for reaching the goal location. The robot did sway slightly off 

course at times, but it was always able to recover its heading. 
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Figure 6.8: A Simulated Robot Moving Straight Ahead 
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Figure 6.9: A Simulated Robot Turning to Reach a Goal Location 
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6.4 Summary 

This chapter described a small robot control system that I developed using my software 

framework. This system allows a simulated robot to move quickly and smoothly to a given 

goal location. Although this system works only for a simulated robot, it demonstrates 

that my software framework and execution system facilitate the execution of robot control 

systems. Problems with synchronization and efficiency, however, hinder possibilities for 

real time execution. 
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Chapter 7 

Evaluation 

This chapter evaluates my software framework and execution system using the criteria es­

tablished in Chapter 3. In particular, Section 7.1, uses the general quality criteria, from 

Section 3.1, to evaluate them. Section 7.2 uses the robot-specific criteria, from Section 3.2, 

to evaluate them. Section 7.3 summarizes this chapter. 

7.1 General Quality Criteria 

As stated in Section 3.1, software quality has both external measures and internal measures. 

This section first evaluates my software framework and execution system using the external 

quality measures. It then evaluates them using the internal quality measures. 

7.1.1 External Quality Measures 

Once again, the measures for external software quality are correctness, usability, efficiency, 

reliability, integrity, adaptability, accuracy, and robustness. The following paragraphs in­

vestigate these measures in the order given. 
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Correctness 

Correctness, inherently, depends on the programmed functionality. My software frame­

work allows for the development of an unlimited number of different robot control systems. 

Coders who develop systems using my framework can ensure, themselves, that their sys­

tems are correct, according to their specifications. It is impossible for my execution system 

to ensure that correctness. However, by taking care of networking details, my execution 

system removes significant sources of error from robot control systems. 

Although I cannot predict the correctness of robot control systems developed using 

my software framework, I can, however, attempt to measure the correctness of my execution 

system, itself. The correctness of my execution system is crucial to the correctness of 

complete robot control systems that use it. It is crucial because any error in my execution 

system can manifest itself as an error in a complete system. 

To help ensure the correctness of my execution system, I have applied unit testing. 

However, this testing is not thorough, as I have sacrificed the testing of some of the trickier 

test cases for a shorter total development time. In addition, I did not do any unit testing for 

some of the higher level classes. Instead, I judged the correctness of their implementations 

by observing the example robot control system in action. 

Usability 

My software framework, on its own, has good usability. By extending base classes and 

interfaces, and obeying simple restrictions, coders can easily write classes for behaviors, 

state objects, interfaces, and filters. The usability of systems developed using my framework 

is generally irrelevant, as all contact with developed systems goes through my execution 

system. Nonetheless, designers can add, and extend, user interfaces for state objects so that 

users of the systems can gain more external control. 

My execution systems shows good usability in terms of clients interacting with the 

execution manager. It shows good usability because the execution manager provides a small 

number of methods for starting and controlling the execution of a robot control system. 
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However, these client applications must be appropriately designed such that users can easily 

interact with them. My software framework lacks usability with respect to designers, who 

must create model specifications. As stated in Section 5.4, designers must create these 

model specifications using Java source code. The process of creating model specifications, 

through source code, is tedious and error-prone. Thus, work must be done to improve the 

ease in creating model specifications. 

Efficiency 

The efficiency of systems developed using my software framework depends on both the 

coder-supplied component implementations and my execution system. With respect to the 

amount of memory resources used, my execution system has good efficiency. My execution 

system has no control over the efficiency of the coder-supplied component implementations, 

so those cannot affect the potential efficiency of developed systems. However, the imple­

mented components communicate with each other through my execution system, which 

should provide negligible communication overhead. Section 6.3 showed that the commu­

nication overhead is not negligible. In fact, the communication overhead generally takes 

much more processor time than the core functionality. Thus, my execution system, as a 

whole, has poor efficiency with respect to processing time. 

Reliability 

I did not do a complete investigation into the reliability of my execution system. In my 

navigation system, however, my execution system showed poor reliability with respect to 

synchronization of behavior execution. The reliability of my execution system, alone, is 

more important than the reliability of robot control systems that use it. This is because my 

execution system cannot control the latter reliability. 
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Integrity 

My execution system has good integrity with respect to state objects. Each state object is 

implemented using a Java class that defines methods for accessing its data. State objects, by 

not allowing direct access to their data (through member variables), protect their data from 

misuse. The execution manager allows only behaviors to access state objects through their 

read interfaces and write interfaces. In addition, the execution manager allows only client 

applications to access state objects through their user interfaces. This constraining of state 

object use to particular parts of a system helps to boost system integrity. 

As with state objects, integrity is similarly good with respect to behaviors, filters, 

and skills. The reaction method of each behavior assumes that its arguments are interfaces 

for communicating with valid state objects and skills. Likewise, each filter method assumes 

that its arguments came from valid behaviors and valid state object wrappers. Each skill 

assumes that each of its behaviors are valid behaviors that have been appropriately config­

ured. 

The preceding arguments are true only under the assumptions that coder-supplied 

implementations have the required structure, and that the execution system operates as ex­

pected. Unfortunately, these assumptions are not generally true, and it is in these assump­

tions that the integrity of my execution system suffers. It is possible for applications to 

register different, unintended, executor implementations with an execution manager. The 

execution manager communicates with these implementations through the same interface 

implemented by the regular executors. However, these implementations may provide actual 

functionality that is quite different from what a valid executor provides. 

Because the execution manager allows client applications to retrieve user interfaces 

for specified state objects, it opens up another threat to its integrity. Specifically, users may 

attempt to damage the data stored within state objects or cause the robot to execute harmful 

tasks. The execution manager should provide a way to verify, as well as possible, that its 

users will not attempt to harm the execution of a robot control system. 
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A d a p t a b i l i t y 

My execution system has good adaptability in the sense that it allows robot control systems 

to be changed such that they operate properly in different environments. For instance, my 

example system can perform navigation tasks regardless of whether it interacts with a real 

robot or a simulation. To adapt a navigator model such that it works with a simulation, and 

not a real robot, a designer must simply change the specifications for the state objects that 

interact with the physical sensors and actuators. The remainder of the system remains the 

same, including the interfaces for communicating with the state objects. 

A c c u r a c y 

Accuracy does not apply to my software framework and execution system. It, instead, 

applies to specific implementations of robot control systems that require accurate results. 

For my example system, accuracy can be measured in several ways. One such way is 

through the closeness of the actual paths traversed by the robot to the planned paths. 

Robustness 

My software framework facilitates robustness in different ways. Most notably, it allows 

filters to prevent state object methods from receiving harmful argument values. In addition, 

behaviors can be coded to detect, through exception catching, broken network connections 

and missing state objects and skills. My execution system is robust in selected areas, such 

as the execution manager startup phase, where it detects, and handles, illegal user inputs. 

The robustness of my execution system, because of my time constraints, leaves 

much room for improvement. First, any error in coder-supplied implementations, and model 

specifications, can cause the complete failure of the execution system. For example, a 

behavior that has a malformed reaction method can cause the failure of its executor, which 

can cause the failure of the execution manager. System boundaries must be strengthened 

such that they do not allow invalid data into the system. Various run time errors, such as 

network connection breakages, illegal memory accesses, and memory exhaustion, can also 
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cause a similar failure to the execution system. 

If a component fails to operate properly, or its data becomes corrupted, it affects 

every component that depends on it. For example, if a state object fails to operate properly, 

then all behaviors reading from that state object will perform computations with invalid 

data. This, in turn, negatively affects any state objects that receive any data computed by 

the affected behavior. If a behavior fails to operate properly, then a similar chaining of 

invalid state object data can occur. Section 3.1 stated that if a part of a system breaks, 

the system should either recover from that breakage or notify the user that a problem has 

occurred. Although component implementations can provide some protection, they cannot, 

explicitly, verify and restore broken components. M y execution system should provide 

these capabilities, as well as the ability to restore the previous state of the data within a 

robot control system. 

7.1.2 Internal Quality Measures 

Once again, the measures for internal software quality are maintainability, flexibility, porta­

bility, reusability, readability, testability, and understandability. The following paragraphs 

investigate these measures in the order given. 

Maintainability 

M y software framework and execution system facilitates the development of robot con­

trol systems with high maintainability. Designers can introduce new implementations of 

existing components by making simple changes to model specifications. In particular, a 

designer can change the class fields within a model specification such that they are as­

signed the replacement classes. The new classes must, however, be consistent with the 

remainder of the respective component specification. Any other changes and additions to 

the model specifications are similarly straightforward. Designers must, simply, update the 

model specification until the desired robot control system is achieved. 
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Flexibility 

My software framework and execution system have good flexibility in the sense that coders 

can easily change the implementations of components without affecting the remainder of 

a robot control system. These changes allow a robot to perform new tasks and to operate 

under different configurations. The example for adaptability applies here, except that it 

applies to the coder and not the designer. To change a navigation system such that it works 

with a simulation, and not a real robot, the coder can modify the source code for the state 

objects that represent sensors and actuators. The coder would not need to change any other 

existing parts. 

Portability 

My software framework has good portability. This is because it can be executed on any 

computer system that has a supporting execution system. I claim that my current execution 

system can execute on any operating system that has a Java runtime environment with a 

version that is at least 1.4. My version requirements exist because my implementation uses 

code specific to Java 1.4. In addition, my claim is supported by the fact that I did not use any 

operating system-dependent code. I did not perform thorough tests to determine how my 

execution system works under different operating systems and Java runtime environments. 

Reusability 

My software framework has good reusability because software frameworks are, in essence, 

collections of reusable classes and class hierarchies that new classes can extend. The sub­

classes, because they use the framework, have a common structure and usage and can be 

processed by a supporting execution system. My framework can be used to define classes 

and interfaces, for behaviors, state objects, and other components, that can readily be pro­

cessed by the execution system. 

My model specification structure has advantages with respect to reusability. One 

major advantage is that the same class or interface can be used throughout the model spec-
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ification. For example, any number of state objects that define the locations of different 

obstacles can share the same implementation class. These classes and interfaces can be 

used within other robot control systems. For example, different robot control systems can 

use the same location class. 

A second advantage of my model specification structure is that, in source code, 

designers can use of class hierarchies to define extensions of model parts. My naviga­

tion system, described in Chapter 6, took advantage of such class hierarchies. In partic­

ular, it defined class C _ A b s t r a c t N a v i g a t o r M o d e l , which extended framework class 

C - R o b o t C o n t r o l M o d e l . The subclass specified an incomplete navigator model that 

consisted of the main components and connections shared by all navigator models. Class 

C _ N a v i g a t o r M o d e l _ S i m extended the model defined by class C _ A . b s t r a c t N a v i g -

a t o r M o d e l to yield complete model specifications for a simulated robot. A different 

subclass could easily define model specifications for a physical robot. 

My software framework can have improved reusability with respect to modularity. 

With my software framework, designers may define different parts of a robot control system 

that have the same functionality and structure. Specifically, these different parts may have 

identically-defined state objects, skills, and connections. For example, if a robot system has 

two identical arms, its control system may use identical sets of component specifications 

to define the functionality for both arms. Duplication of these identical specifications is 

unnecessary. Thus, my software framework requires a way to define sub-networks, such 

that their specifications can be reused within the same robot control system and within 

other systems. 

Readability 

The readability of source code for a particular robot control system depends on the coder 

who wrote it. My software framework not have any significant impact on the readability of 

that source code, besides providing a common structure. I claim that my execution system 

implementation has good readability. 
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Testability 

M y software framework allows individual components to be tested outside of the execution 

system. For each component class, coders can apply unit testing techniques to ensure the 

correctness and accuracy of its methods. Users of a robot control system can test that 

system, as a whole, through client applications. These applications, with user interfaces 

for state objects, can present the users with graphical interfaces that allow them to control 

and monitor system execution. These applications may also write, to files, records of state 

object values such that users can analyze the data with other applications. 

Understandability 

M y software framework facilitates the writing of source code that is easy to understand. 

When a coder writes a class definition for a state object, the general usage of that class is 

clear. Specifically, each instance will be remotely available for access by behaviors and 

client applications. In addition, it will provide methods that those behaviors and client ap­

plications can call through specific interfaces. Each state object interface clearly designates 

the general flow of data between a behavior and a state object. 

As with state objects and their interfaces, all behaviors and filters have clear class 

definitions. Each behavior has a reaction method whose parameters are interfaces to state 

objects and skills. Each filter has methods that, essentially, are called in place of their 

corresponding state object methods. These filter methods normally process their given pa­

rameters and method call information structures and then call the corresponding methods 

on given state objects. 

7.2 Robot-specific Criteria 

This section evaluates my software framework and execution system using the criteria es­

tablished by Ronald Arkin, Rodney Brooks, Kurt Konolige, and Reid Simmons. It investi­

gates these criteria in that order, as given in Section 3.2. 
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7.2.1 Arkin's Criteria 

Once again, the eight criteria given by Arkin [Ark98] are support for parallelism, hardware 

targetability, niche targetability, support for modularity, robustness, timeliness in develop­

ment, run time flexibility, and performance effectiveness. This following paragraphs use 

these criteria to evaluate my software framework and execution system. They skip robust­

ness because Section 7.1 already addressed that quality measure. In addition, they skip 

support for modularity because Section 7.1 addressed reusability, which covers support for 

modularity. 

Support for Parallelism 

My software framework and execution system have excellent support for parallelism. My 

software framework supports parallelism because it allows a robot control system to be 

defined as a group of components, where each component can execute independently. My 

execution system can start components within different executors that run in parallel on 

different computer systems. Each behavior, for example, can execute within a different 

executor. 

Hardware Targetability 

My software framework has good hardware targetability in the sense that it can be mapped 

easily onto the hardware of a real robot system. My navigation system demonstrated how 

state objects could act as abstractions of physical sensors and actuators. On the other hand, 

my software framework does not have good hardware targetability in the sense that it cannot 

be easily mapped onto hardware components. This difficulty in mapping results mainly 

from the fact that my communication protocol is based on method calls, which are difficult 

to implement without software. The high level of processing used by my execution system 

and components is too complex to be easily implemented in physical hardware. I accept 

this fact because, by sacrificing hardware targetability, I developed an easy to use software 

framework and execution system. 
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Niche Targetability 

My software framework has good niche targetability in the sense that it provides ways to ex­

press the important relationships between a robot and its environment. Coders can express 

these relationships by implementing suitable state objects. My framework has moderate 

niche targetability with respect to the ability for robots to adapt to fit their operating envi­

ronments. Section 7.1 claimed that designers can adapt robot control systems, developed 

using my framework, such that they can operate in new environments. However, my system 

does not fully allow robots to adapt themselves. 

Timeliness in Development 

My software framework has good support for timeliness in development. This is because it 

allows components to be coded with a common, reusable, structure. Overall, it satisfies the 

criteria for internal software quality, which lead to shorter development times. The lack of 

model checking and error reporting, within my execution system, does hinder development 

times. In addition, the current process for specifying system models — through Java source 

code — also hinders development times. 

Run Time Flexibility 

My software framework and execution system can facilitate run time flexibility, in terms 

of learning, through the clever use of state objects and behaviors. In particular, the robot 

can learn combinations of behaviors that are useful for each task by maintaining state ob­

jects that store the relevant information. Individual behaviors can, from these state objects, 

retrieve values that indicate whether they should perform their intended tasks. For this 

functionality, the control system must have behaviors that evaluate, and regulate, different 

combinations of behaviors in different situations. 

Although the forementioned learning technique may work well, it provides unnec­

essary coupling with the target behaviors. In any case, my software framework does not 

provide any explicit support for run time evaluation. Although filters may work with use-

146 



ful information, such as behavior weights, my current implementation does not allow this 

information to be configured at run time. 

Performance Effectiveness 

The performance effectiveness of my software framework and execution system depends on 

the complete robot control system. Therefore, this quality cannot be generally measured. 

Nonetheless, my test results in Section 6.3 showed that my example navigation system has 

good performance effectiveness, despite problems with synchronization and efficiency. In 

particular, it made the robot move to its goal locations smoothly and efficiently. 

7.2.2 Brooks' Criteria 

Once again, the four criteria given by Brooks [Bro86] are multiple goals, multiple sensors, 

robustness, and additivity. The following paragraphs use these criteria to evaluate my soft­

ware framework and execution system. They skip robustness because Section 7.1 already 

addressed that quality measure. 

Multiple Goals 

My software framework has excellent support for multiple goals. It allows multiple be­

haviors to execute concurrently, attempting to achieve their own goals. For example, one 

behavior may try to achieve the goal of moving a robot to a goal location, while another 

robot may try to achieve the goal of avoiding collisions. Some behaviors can attempt to 

achieve high level goals, at the symbolic level, and other behaviors can attempt to achieve 

lower level goals, at the actuator control level. 

Multiple Sensors 

My software framework has excellent support for multiple sensors. Each sensor can have 

a corresponding state object, through which behaviors read sensed data. For example, one 

state object may provide access to a vision sensor, while another state object may provide 
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access to a sonar sensor. Different state objects may maintain representations of sensed data 

at different levels of abstraction, and different behaviors may use this data differently. 

Additivity 

My software framework has good support for additivity. Designers can add new compo­

nents, such as state objects and skills, to a model specification. In addition, they can specify 

new executors, which can take part of the processing load. However, my software frame­

work does not allow such additions at run time. 

7.2.3 Konolige's Criteria 

Once again, the three criteria given by Konolige (and Myers) [KM96] are coordination, 

coherence, and communication. The following paragraphs use these criteria to evaluate my 

software framework and execution system. 

Coordination 

Robot control systems developed using my software framework have the ability to coordi­

nate their activity at different levels. Although the levels of control are not explicit, it is 

possible to group skills into layers where behaviors have the ability to set tasks for lower 

level skills. High-level behaviors can perform deliberative tasks, such as constructing plans 

for achieving goals. In my navigation system, for instance, the motion controller sequences 

tasks for the other skills. Low-level behaviors can perform reactive tasks, where they inter­

act directly with state objects that communicate with sensors and actuators. In my naviga­

tion system, the behavior in the motion updater skill interacts with the motion actuator. 

Coherence 

Robot control systems developed using my software framework can represent their operat­

ing environments at different levels of abstraction. If my navigation system, for instance, 

was expanded such that it performed lower level vision processing, then it would have state 
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objects for accessing several levels of vision-based data. The lowest level would have the 

camera images, and the highest level would have the occupancy maps. 

Communication 

My execution system can allow users to give commands to a robot through interfaces to state 

objects and skills. However, robots should, preferably, have the ability to autonomously de­

termine their commands and goals. Fortunately, my software framework allows designers 

and coders to develop networks of state objects and skills that provide this functionality. 

In addition, it allows them to develop networks that provide robots with the ability to re­

spond to humans. Behaviors and state objects are free to, through their own communication 

pathways, interact with existing software packages for speech recognition and synthesis. 

7.2.4 Simmons' Criteria 

Once again, the four criteria given by Simmons [SA98] are task decomposition, task syn­

chronization, execution monitoring, and exception handling. The following paragraphs use 

these criteria to evaluate my software framework and execution system. 

Task Decomposition 

My software framework supports task decomposition through interactions among behav­

iors and skills. It allows skills to be, implicitly, arranged into hierarchies where higher 

level skills have behaviors that decompose tasks into sequences of subtasks for lower level 

skills. The semantics of the Java programming language allows behaviors to evaluate con­

ditions, based on their reaction method arguments, and to choose the appropriate sequence 

of subtasks. 

Task Synchronization 

My software framework supports task synchronization. First, it allows the parallel execu­

tion of behaviors that, together, allow a robot to perform specific tasks. These behaviors 
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may be part of the same skill, and they may be distributed amongst different skills. Second, 

my framework allows task sequencing behaviors, through the Java programming language, 

to impose timing constraints upon the skills they control. Specifically, the task sequencing 

behaviors can evaluate conditions with respect to task completion and any other information 

useful to task sequencing. 

Execution Monitoring 

My software framework, implicitly, supports execution monitoring. Behaviors, with re­

peated execution of their reaction methods, can evaluate conditions. Based on the results 

of those conditions, they can take appropriate action. For example, my navigation system 

may incorporate a behavior that detects when a robot has reached its goal location. When 

the robot does reach that location, the behavior can set a task that stops robot motion. 

Exception Handling 

My software framework supports exception handling in the sense that, through Java ex­

ceptions, behaviors can detect if a method call, to a state object or skill, failed. However, 

beyond that, it does not provide any explicit support for exception handling. Most signifi­

cantly, it provides no explicit way for behaviors to signal, to their task sequencers, that an 

exceptional situation has occurred. Behaviors must do this implicitly through appropriately-

defined state objects. 

7.3 Summary 

This section evaluated my software framework and execution system using the criteria es­

tablished in Chapter 3. It claimed that my software framework and execution system mea­

sured high in terms of most of the general quality criteria. Most significantly, they satisfied 

all of the internal criteria, despite the fact that reusability can be greatly improved. With 

respect to the external criteria, usability, efficiency, reliability, integrity, and robustness 
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showed need for improvement. My framework and execution system satisfied all of the 

robot-specific criteria, except for run time flexibility. In addition, they require more work 

with respect to task sequencing. With more work, my software framework and execution 

system can better satisfy all the criteria investigated in this chapter. 
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Chapter 8 

Additional Notes 

This chapter presents important information that was not presented in the earlier chapters 

of this thesis. In particular, Section 8.1 suggests specific ways that my software framework 

and execution system can be improved. Section 8.2 compares my framework and execution 

system with implementations not yet mentioned in this thesis. Section 8.3 summarizes this 

chapter. 

8.1 Future Work 

This section suggests, in three main areas, improvements for my software framework and 

execution system. The first area, which I believe is most important, is robustness. The sec­

ond area is general software quality, excluding robustness. The third area is robot-specific 

and relates to the functionality requirements of robot control systems. Probably the most 

important work that should be done with my software framework and execution system is 

testing them with a physical robot that has real sensors and actuators. Such testing may 

reveal further strengths and weaknesses in my implementation. 

8.1.1 Robustness Improvements 

My execution system, with more coding effort, can attain a high level of robustness. I have 

identified three specific areas where robustness can be improved. First, system boundaries 
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must be strengthened such that they do not allow improper usage. Second, my execution 

system must facilitate recovery from failures. Third, my execution system must allow users 

to restore the previous internal state of an executing robot control system. The following 

paragraphs discuss these three areas of improvement in that order. 

Strengthening System Boundaries 

System boundaries are generally parts of a system that cannot safely assume that they will 

be used appropriately. For example, publicly-available remote objects may be accessed by 

different, unknown, processes. These remote objects likely require protective functionality 

that ensures that they are used correctly and that their inputs are valid. This protective 

functionality includes argument checking and error reporting. It is important to note that 

only system boundaries require this protective functionality. All other system parts are 

inherently protected by their boundaries, and can trust that they will be used appropriately. 

Therefore, adding protective functionality to non-boundary system parts is generally a waste 

of programming effort that results in reduced system efficiency. 

As stated in Section 5.1, the execution manager provides the main point of contact 

for users of my execution system. Thus, it is the most important system boundary. Client 

applications connect to the execution manager, and these applications allow users to load 

new models of robot control systems and control their execution. These interactions occur 

through method calls on the execution manager object. Since the execution manager cannot 

anticipate which client applications will connect to it, and what data they will send to it, it 

must expect the worst from these client applications. 

The execution manager should expect that its client applications may call its meth­

ods inappropriately. For example, it should expect that client applications may attempt to 

pass it an invalid model specification. In fact, it is quite likely for client applications -

especially untested ones - to give invalid information to the execution manager. This in­

valid information may cause the execution manager, or its executors, to perform incorrectly, 

or terminate abruptly, if it is not handled appropriately. Therefore, the execution manager 
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requires a way to verify that its methods are called appropriately, with valid arguments. 

For maximum protection, the execution manager should not attempt to load any 

model specification that is not completely valid. Section 5.4 described the valid specifi­

cation format, in terms of Java class definitions. The execution manager should, instead, 

signal back to client applications that the model specification is invalid. In addition, the 

client applications should have the ability to retrieve, from the execution manager, infor­

mation about why a particular model specification was invalid. This allows designers and 

coders to, more easily, debug their implementations. Preferably, the execution manager, 

upon recognizing an error in a system model, should throw an exception that contains the 

information required by client applications. 

The interfaces used by the execution manager to interact with executors define sys­

tem boundaries that may require protection. With a single execution manager, where the 

executor initiates the connection to that execution manager, protection for the executor is 

not required. It is not required because the executor is, simply, a passive component that 

obeys its execution manager. If the execution manager is valid, then the executor will not 

be harmed by improper usage. If the execution manager is not valid, then any harm to the 

executor is irrelevant, since no other execution managers can be affected. 

If my executor implementation was extended such that it could receive requests 

from more than one execution manager, then its interfaces would require protective func­

tionality. This would prevent one execution manager from destroying any work done by 

other execution managers. Regardless of whether the executor boundaries require protec­

tion, the execution manager must be protected from invalid executors. Most importantly, 

the execution manager must, somehow, verify the validity of the values returned by its ex­

ecutors. Currently, these values would be the component control interfaces. Without proper 

protection, one invalid executor could cause the entire execution system to fail. 
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Facilitating Recovery from Failures 

When a failure occurs in part of an executing robot control system, that failure has different 

effects on the system, depending on its type. For example, if a state object terminates 

unexpectly, then all behaviors that depend on it will not be able to call its methods. In my 

implementation, if this situation occurs, the execution system will throw an exception that 

can be caught by thte calling behavior. If the behavior does not handle these exceptions, 

then its reaction method will exit and will be recalled as scheduled. If a behavior terminates 

unexpectedly, then the robot may not be able to complete its tasks. 

Preferably, when a part of a behavior, state object, or skill, fails to operate properly, 

my execution system should be able to detect that occurrence and recreate the component. 

However, it does not attempt to detect component failure, and it does not attempt any com­

ponent recreation. My execution system requires a way to provide this functionality in a 

way that does not negatively affect the executing robot control system. 

When a network connection fails, between two components, these components can­

not call remote methods on each other. For example, if a connection fails between a behav­

ior and its state object, then the behavior cannot properly call methods on the state object. 

My execution system requires a way to recognize these network failures and handle them 

appropriately. Preferably, it should be able to reconnect components. One advantage of 

Java's RMI implementation is that it does not create hard links between stub objects and 

their corresponding skeleton objects. Instead, the stub object knows the host name and port 

number that it can use to find the skeleton object for each remote method call. Therefore, 

connections between components can resume normal operation, without special reconnec-

tion, when the network begins working normally. 

If an executor terminates abruptly, then all components that execute within that 

executor are immediately destroyed. When this occurs, my execution system should do 

one of two things. First, it can wait for a user to restart the executor and reconnect it 

to the execution manager. Second, it can recreate the missing components within different 

executors. Currently, my execution system cannot perform any of these alternatives without 
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reloading and restarting the entire robot control system. Preferably, any repair should take 

place without affecting the execution of the remainder of the robot control system. 

If the execution manager terminates abruptly, the remainder of the system will con­

tinue to function normally. This is because all components execute within executors, and 

these components do not depend on the execution manager. Users, however, will not be 

able to access any functionality provided by the execution manager, such as stopping the 

executing robot control system. Preferably, the execution manager, when restarted, should 

be able to reconnect to its executors and restore its previous state. However, my execution 

manager does not have these capabilities. 

Facilitating State Restoration 

If a part of a system fails and must be restarted, my execution system should attempt to 

restore its previous state. It should, most importantly, recover data stored in state objects. 

However, other information, such as model specifications and task histories may also be 

useful. To facilitate this state restoration, my execution system requires a serialization 

mechanism that writes state object data to files so that it can be used later. Fortunately, 

The Java API provides classes that know how to serialize data in this manner. These classes 

require that state object classes implement interface S e r i a l i z a b l e . 
One important question that arises is when to serialize data. It is important to note 

that for good maintainability, the coder-supplied state object classes should not be respon­

sible for providing serialization functionality. I have identified two alternatives for when 

to initiate serialization. The first alternative is to let the state object wrappers initiate the 

serializaton when their methods are called. Since the read wrapper methods, generally, do 

not modify state objects, they would not require this functionality, and can execute more 

efficiently without it. The second alternative is to let the execution manager initiate serial­

ization at timed intervals. Each state object could have its own time interval, since different 

state objects may change more frequently than others. Both alternatives work well, depend­

ing on how often serialization is required and whether every state change must be recorded. 
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A second question that arises is where to serialize data. Each state object file must 

exist on a particular computer system. Since the execution manager provides centralized 

control, it makes sense for state object files to be saved on the same computer system as the 

execution manager. These files should have names and locations that uniquely identify the 

state object within its model instance. In addition, the file names should have information 

that distinguishes different times that a state object is serialized. Preferably, each model 

instance should have its own hierarchy of folders that reflect the component hierarchies in 

the model specification. 

8.1.2 Other Quality Improvements 

Further improvements to execution system quality can be made in the areas of usability, 

efficiency, integrity, and reusability. The following paragraphs describe how. 

Usability 

The usability of my software framework and execution system can be greatly improved 

with the addition of appropriate graphical user interfaces. Most importantly, my execution 

system requires a graphical configuration management tool that allows designers to define 

model specifications. This tool would allow designers to specify components and connect 

them together within a network. It would also allow designers to save their networks to 

files, such that these files can be loaded by client applications and passed to the execution 

manager. 

Another useful graphical tool is one that allows users to monitor the execution of 

any robot control system. This tool would allow users to browse the state objects, behaviors, 

and skills, that are part of an executing system. For each state object, users would be able 

to retrieve its properties. They would also be able to retrieve, and interact with, graphical 

representations of its user interfaces. Users would be able to configure the graphical tool 

such that it knows the graphical components that correspond to the different user interfaces. 

For each behavior, users would be able to retrieve its properties, including whether the 

157 



behavior is currently enabled, and whether its current task is complete. For each skill, users 

would be able to view its tasks, identify the currently executing task, and specify new tasks 

for execution. 

Efficiency 

The most significant efficiency bottleneck in my execution system is the RMI communi­

cation between components. Thus, work must be done to find an alternate communication 

mechanism. Because my software framework implementation decouples coder-supplied 

implementations from specific communication mechanisms, it can easily use something 

other than RMI. My execution system should be tested with different alternatives to deter­

mine which one provides the fastest, and most reliable, communication. 

One common alternative to RMI is CORBA, the Common Object Request Bro­

ker Architecture. CORBA, created by the Object Management Group (OMG), specifies 

an interface definition language and protocols that allow remote method invocation to take 

place. Unlike RMI, which is strictly Java-based, CORBA does not have any strict program­

ming language dependence. Software components in any language can interoperate within 

a CORBA system if they obey the protocol specifications. While CORBA can be more 

efficient than RMI, it can be more complex to use. Nonetheless, Java's RMI system has 

support for interacting with CORBA, so CORBA can be used as the main remote method 

invocation mechanism with minimal changes to existing code. 

Other alternatives to RMI include Java Web Services and the Remoting Framework 

in .NET. Java Web Services are geared more toward businesses sharing data, and provide 

excessive functionality beyond simple remote method calls. The Remoting Framework in 

.NET, is Microsoft's attempt to support remote method invocation in a style similar to RMI. 

While these alternatives look promising, I would prefer to incorporate a mechanism that is 

as easy to use as RMI. In response to the slowness of RMI, researchers have implemented 

more efficient replacements, which are identical in usage. Philippsen et al. [PHNOO], for 

example, implemented KaRMI, which completes remote method calls several times faster 
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than the existing RMI implementation. 

Integrity 

For improved integrity, my execution system requires the implementation of a protocol to 

prevent impostors from accessing a robot control system. This would provide the execution 

manager with the ability to recognize valid executors and client applications. A password 

system can help the execution manager with this. A sample scenario is one where a client 

application passes a new model specification to the execution manager. However, with 

that model specification, the client application can specify a password. Any application 

that wishes to control an instance of the given model specification must know that specified 

password. Another useful improvement, for integrity, would be the addition of a mechanism 

for verifying the integrity of existing data within a robot control system. 

Reusability 

For improved reusability, my software framework should allow designers to package parts 

of a model specification into modules. In fact, it should allow designers to define hierarchies 

of modules, where modules can contain other modules. Each module should represent parts 

of a system as a single unit that can be integrated within an existing model specification. 

In other words, modules should be structural abstractions of system parts, and they should 

not provide any functionality not representable by existing component types. For this to be 

true, a module-less system must allow the formation of distinct module boundaries. 

Module boundaries can be formed by breaking connections between components 

and replacing them such that those broken connections go through a module port. Thus, 

each component outside a given module connects to components within the module through 

one of these ports. Once the ports are defined, modules can be clearly defined as single units, 

where external components connect to the modules through the defined ports. The exact 

internal composition of each module is irrelevant to the components outside of the module. 

Similarly, the exact external components that are connected to the module are irrelevant 
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Figure 8.1: A Module with Different Port Connections 

to the module. All that is important is that one component provides an interface that is 

specified by the port and the other component communicates with the former component 

using that interface. More briefly, the interface types must match. 

The previous paragraph established that connections must be broken to define mod­

ule boundaries. Any type of broken connection is possible, as depicted in Figure 8.1. First, 

an external behavior can access a state object inside the module (as in P o r t A). Second, an 

external behavior can set tasks for a skill inside the module (as in PortB). Third, a behav­

ior inside the module can read input from an external state object (as in PortC). Fourth, 

a behavior inside the module can modify an external state object (as in PortD). Finally, a 

behavior inside the module can set tasks for an external skill (as in PortE). Each port may 

have any number of source components, which call methods, but it must have exactly one 

target component. 

My model specifications should allow designers to define modules as separate en­

tities that are not part of any specific model specification. This allows designers to insert 

modules into existing model specifications to yield larger robot control systems. Obviously, 
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when inserting a module, the designer must connect the module ports to the necessary state 

objects and skills. It is possible to think of a complete robot control system as a single 

module that has no ports. In that sense, a robot control system can be defined, simply, as 

a hierarchy of modules, where the modules contain all the system components and their 

interconnections. 

Work should be done to determine the ease of my execution system interacting with 

external planners, task sequencers, and robot control systems. Perhaps, for particular func­

tionality, external systems may work better. In some cases, using these external systems, in 

collaboration with my own system, may result in reduced coding effort. In any case, my 

software framework and execution system should, whenever possible, allow the leveraging 

of existing technologies. 

8.1.3 Robot-specific Improvements 

Further improvements to my software framework can be made in the areas of task sequenc­

ing, synchronization, and self-adaptation. The following paragraphs describe how. 

Task Sequencing 

My software framework allows multiple behaviors to set tasks for a single skill. This works 

well when at most one of these behaviors is enabled at any given time, since when a behavior 

sets a task for a skill, it is assured that no other behavior will modify that task setting. Thus, 

when the behavior polls the skill for its task completion status, and other information, the 

behavior is assured that the returned information is related to the expected task. These 

assurances disappear when multiple behaviors concurrently control the same skill. 

Perhaps these task coordination problems can be reduced if a skill can perform 

multiple tasks simultaneously. One possibility is allowing each skill to maintain a collection 

of tasks, where the skill enables the union of all its set tasks. With each task, the skill can 

store a value that identifies the behavior that set the task. That way, each task sequencing 

behavior has its own view of its target skill. 
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Another possiblity for task coordination is allowing each skill to maintain a single 

task, where each behavior can query whether the current task was set by that specific behav­

ior. A coordination mechanism would help in this case, such as one that assigns priorities 

to task sequencing behaviors. Allowing each behavior to be registered with more than one 

task can smoothen task switching, as not all behaviors would need to stop at once. A re­

lated problem that must be handled is stopping an executing task when its task sequencer 

becomes disabled. 

As described in Section 7.2, my software framework requires greater support for 

exception handling. If a behavior sets a task for a skill, and the skill cannot complete the 

task, then the skill should be able to signal the task sequencing behavior. This requires that 

the skill has the ability to identify which behaviors set its tasks. It also requires that the 

task sequencing behaviors have special methods that are configured to handle exceptions 

related to the specific task. Along with exception handling, skills should provide more 

ways to detect task completion, beyond the completion of all behaviors. For example, if the 

behaviors yield the same result, but with different algorithms, the first behavior completion 

should be enough to signal task completion. 

Synchronization 

Section 6.3 noted synchronization issues within my execution system. In particular, it does 

not guarantee the required ordering of behavior executions when a behavior in one skill 

depends on the completion of behaviors in other skills. The likelihood of achieving the 

proper ordering decreases as the time period decreases between successive reaction method 

invocations. Thus, my navigation system had to use a slower time rate in order to yield satis­

factory results. As a solution to the synchronization issues, Section 6.3 suggested allowing 

behaviors to be awakened when specific events occur. 

Currently, behaviors in skills have their reaction methods invoked at, approximately, 

fixed time rates. My software framework could, instead, allow designers to specify events 

that trigger the reaction method invocations. These events would be based on the state 
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objects and skills with which the given behavior can interact. For example, if the behavior 

takes a state object interface as its reaction method argument, then the designer would be 

able to use the modification of that state object as such an event. Likewise, if the behavior 

takes a skill interface, then the designer would be able to use task switches and completions 

as events. Instead of triggering reaction method invocations, these events could, instead, 

trigger the invocation of special handler methods written by the coder. The observer pattern 

would be useful here. 

For better control over behavior synchronization, my execution system should per­

form its own sequencing of reaction method invocations, rather than let the Java API handle 

it. This would ensure that behaviors are executed in the same order each time when they 

have the same invocation rates. Each executor could, for example, maintain a list, ordered 

by time, where each entry maps a time to a specific behavior. For each entry, the executor 

would invoke, at the specified time, the reaction method for the specified behavior. If the 

reaction method for a given behavior is still executing when it is scheduled to be reinvoked, 

then the executor could wait for that reaction method to return. It would then increase 

the times in the list to maintain the order of reaction method invocations. Alternately, the 

executor could skip the reinvocation of a reaction method that is still executing. 

Self-adaptation 

Self-adaptation allows a robot control system to reconfigure itself, at run time, for different 

situations. My software framework can support this self-adaptation with two main improve­

ments, First, it should allow robot control systems to learn appropriate combinations of be­

haviors for different tasks. This requires components that know about specific behaviors 

within skills and have the ability to reconfigure skills. Essentially, these components would 

need to configure different behavior combinations and evaluate their overall performances. 

The second improvement is allowing the forementioned components to modify the 

method call information that is passed into filters. These components can, similarly, try dif­

ferent values for different behaviors and evaluate which ones yield the best overall perfor-
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mance for particular tasks. My navigation system, for example, could benefit from learning 

appropriate weightings for the behaviors that evaluate the possible curvatures. 

8.2 Comparison with Existing Implementations 

My work was influenced by three existing implementations not mentioned previously in 

this thesis. The first is Mobility (TM) [Rea99], which consists of a software framework and 

execution system for developing robot control systems. The second is ArchJava [ASCN03], 

which is an extension to the Java programming language. The third is CNJ [Son02], which 

provides a graphical tool and interchange format for developing robot control systems using 

constraint nets. This section compares my software framework and execution system with 

these three implementations, in the order given. 

8.2.1 Mobility 

Mobility [Rea99] is distributed by iRobot for use with their mobile robot systems. Similar 

to my software framework, the software framework provided by Mobility allows coders to 

define components (with the C++ language) that are executed within its execution system. 

The execution system in Mobility provides a graphical user interface that allows users to 

browse through the executing components. For each component, Mobility allows users to 

interact with, and monitor, that component through the graphical user interface. 

Robot control systems developed using Mobility can be spread over several process­

ing units. Components in Mobility communicate using CORBA, which provides remote 

method invocation. One drawback with Mobility is that coders must write CORBA-specific 

code to access remote objects. In my Java RMI-based implementation, users do not write 

special code for remote object access. 

Mobility has the advantage of being widespread in the sense that researchers around 

the world have used it to develop control systems for autonomous robots. In addition, it is 

unlikely that these researchers will rewrite their entire Mobility implementations for use 
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with my execution system. Therefore, integration of my execution system with Mobility 

may yield favorable results. Research should be done to investigate the ability to integrate 

my execution system with Mobility and other systems. 

8.2.2 Archjava 

ArchJava [ASCN03] was developed by Aldrich et al. to add architecture specification fea­

tures to the Java programming language. It allows coders to define ports, through which 

objects communicate with other objects. It also provides constructs that allow coders to 

connect specific objects together, via their ports. Unlike my software framework, ArchJava 

utilizes extensions to the basic Java syntax. Thus, ArchJava source code does not facilitate 

the advantages provided by common Java debugging tools. 

ArchJava allows coders to define connections such that objects can communicate 

without knowing the concrete connection type. Thus, it promotes flexibility by decoupling 

objects from specific communication protocols and the objects they are connected to. My 

software framework provides similar decoupling through state object interfaces and skills. 

However, users of my software framework define connections through the model specifica­

tion, where ArchJava allows connections to be defined directly in the main application code. 

In this respect, my software framework facilitates further reusability, through decoupling, 

but ArchJava has the advantage of providing direct support for runtime flexibility. 

8.2.3 C N J 

CNJ (Constraint Nets in Java) [Son02] is a Java-based solution for specifying and execut­

ing constraint nets. Constraint nets were developed by Zhang and Mackworth [ZM93] as a 

constraint-based approach to robot control. A constraint net can be thought of as a directed 

graph, where the nodes can be either locations or transductions, and data flows in the di­

rection of the edges. Locations are components that maintain the state of a constraint net 

by holding values. Transductions are components that, given values from input locations, 

compute new values for output locations. When compared with my software framework, 
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locations are similar to state objects, and transductions are similar to behaviors. 

CNJ has several main features that are of interest to my software framework. First, 

CNJ provides a visual programming environment, which allows developers to specify, and 

connect, locations and transductions, as well as execute constraint nets. My software frame­

work and execution system require a similar environment, as described in Section 8.1. Sec­

ond, CNJ leverages JavaBeans, which is an API for developing component-based software 

systems. Perhaps JavaBeans may be useful in my implementation. 

The third interesting feature provided by CNJ is a portable XML-based interchange 

format. My software framework requires a similar interchange format for model speci­

fications. Fourth, CNJ allows the definition of modules, which are similar to what was 

described in Section 8.1. Finally, to ensure proper data flow, CNJ executes transductions 

in an order based on topological sorting. My execution system may benefit from such an 

ordering. 

8.3 Summary 

This chapter noted work that should be done to improve my software framework and execu­

tion system. It began with robustness improvements, which require boundary strengthening 

and the addition of mechanisms for error recovery and serialization. It continued with 

improvements for usability, efficiency, integrity, and reusability, as well as improvements 

related to task sequencing, synchronization, and self-adaptation. After noting future work, 

this chapter described Mobility, ArchJava, and CNJ, which provide features similar to those 

provided by my software framework and execution system. 
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Chapter 9 

Conclusion 

For my thesis project, I developed a software framework and distributed execution sys­

tem that allows developers to create high quality control systems for autonomous robots. 

Systems developed using this framework are behavior-based, but these behaviors provide 

support for deliberative reasoning. Specifically, systems consist of networks of skills and 

state objects, where skills have behaviors, and state objects have interfaces and filters. 

Interactions among behaviors and state objects provide reactivity and deliberation. 

Skills, with task sequencing behaviors, simplify the development of deliberative systems 

and promote strong cohesion and loose coupling. Filters facilitate coordination of state ob­

ject inputs and can help state object robustness. State object interfaces are crucial for remote 

method invocation, and they decouple behaviors from specific state object implementations. 

My example navigation system demonstrated the usefulness of my software frame­

work and execution system. It showed how developers can create complete, distributed, 

robot control systems without including any networking code. Features of the Java pro­

gramming language made this possible. However, my framework and execution system do 

require considerable work. Most importantly, their robustness, efficiency, and reusability, 

can be greatly improved. In addition, they require better ways to keep behaviors synchro­

nized with one another. Nonetheless, I believe that my software framework and execution 

system do show great potential. 
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