
Network Virtual Memory

by

Joon Suan Ong

B.Eng. (Hons), Nanyang Technological University, Singapore, 1994.

M . S c , University of Bradford, United Kingdom, 1995.

A THESIS SUBMITTED IN P A R T I A L F U L F I L L M E N T OF

THE REQUIREMENTS FOR THE D E G R E E OF

Doctor of Philosophy

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

The University of British Columbia

July 2003

© Joon Suan Ong, 2003

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely avail­

able for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the Head of my department or by his or

her representatives. It is understood that copying or publication of this thesis for financial

gain shall not be allowed without my written permission.

Department of Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, BC

Canada V6T 1Z4

Date

Abstract

User-mode access, zero-copy transfer, and sender-managed communication have emerged as
essential for improving communication performance in workstation and PC clusters. The goal of
these techniques is to provide application-level DAAA to remote memory. Achieving this goal is
difficult, however, because the network interface accesses physical rather than virtual mem­
ory. As a result, previous systems have confined source and destination data to pages in pinned
physical memory. Unfortunately, this approach increases application complexity and reduces
memory-management effectiveness.

This thesis describes the design and implementation of NetVM, which is a network interface
that supports user-mode access, zero-copy transfer and sender-managed communication with­
out pinning source or destination memory. To do this, the network interface maintains a
shadow page table, which the host operating system updates whenever it maps or unmaps a
page in host memory. The network interface uses this table to briefly lock and translate the
virtual address of a page when it accesses that page for DAAA transfer. The operating system is
prevented from replacing a page in the short interval that the network interface has locked
that page. If a destination page is not resident in memory, the network interface redirects the
data to an intermediate system buffer, which the operating system uses to complete the trans­
fer with a single host-to-host memory copy after fetching in the required page. A credit-based
flow-control scheme prevents the system buffer from overflowing.

Application-level DAAA transfers only data. To support control transfers, NetVM implements a
counter-based notification mechanism for applications to issue and detect notifications. The
sending application increments an event counter by specifying its identifier in an RDAAA write
operation. The receiving application detects this event by busy waiting, block waiting or trig­
gering a user-defined handler whenever the notifying write completes. This range of detection
mechanisms allows the application to decide appropriate tradeoffs between reducing signaling
latency and reducing processor overhead. NetVM enforces ordered notifications over an out-of-
order delivery network by using a sequence window.

NetVM supports efficient mutual-exclusion, wait-queue and semaphore synchronization imple­
mentations. It augments the network interface with atomic operation primitives, which have
low overhead, to provide MCS-lock-inspired scalable and efficient high-level synchronization for
applications. As a result, these operations require lower latency and fewer network transac­
tions to complete compared with the traditional implementations.

The NetVM prototype is implemented in firmware for the Myrinet LANai-9.2 and integrated with
the FreeBSD 4.6 virtual memory system. NetVM's memory-management overhead is low; it adds
only less than 5.0% write latency compared to a static pinning approach and has a lower pin­
ning cost compared to a dynamic pinning approach that has up to 94.5% hit rate in the pinned-
page cache. Minimum write latency is 5.56us and maximum throughput is 155.46MB/s, which is
97.2% of the link bandwidth. Transferring control through notification adds between 2.96us and
17.49us to the write operation, depending on the detection mechanism used. Compared to
standard low-level atomic operations, NetVM adds only up to 18.2% and 12.6% to application
latencies for high-level wait-queue and counting-semaphore operations respectively.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

Acknowledgements ix

1 Introduction 1

1.1 High-performance networks 2

1.2 Existing state-of-the-art approaches 2

1.2.1 User-mode access and zero-copy transfer 3

1.2.2 Sender-managed communication 4

1.3 Pinning for RDMA 5

1.3.1 RDMA without pinning 7

1.4 Synchronization with RDAAA communication 8

1.4.1 Blocking and busy waiting 9

1.4.2 Transfer of control 9

1.4.3 Synchronization idioms 11

1.5 Protection , 13

1.6 Research contributions 14

1.7 Thesis organization 15

2 Background and related work 16

2.1 System-area networks and user-level network interfaces 16

2.2 DMA-registration strategies 19

2.2.1 Static Pinning 20

2.2.2 Dynamic Pinning 22

2.2.3 NetVM per-page locking 26

2.3 Address-translation mechanisms 27

2.4 Synchronization 29

i i i

2.4.1 Notification 29

2.4.2 Mutual exclusion 31

2.5 Summary 33

3 Overview 34

3.1 Design goals 34

3.1.1 Data-transfer objectives 34

3.1.2 Control-transfer objectives 34

3.1.3 Synchronization objectives 35

3.1.4 Protection objectives 35

3.2 Key operations 35

3.2.1 Initialization and segment export/import 36

3.2.2 Remote memory access 37

3.2.3 Detecting notifications 37

3.2.4 Atomic and synchronization operations 38

3.3 System architecture 39

3.4 Myrinet programmable network interface 39

3.4.1 Programmed-IO-host-DMA tradeoff 41

3.5 Summary 42

4 Memory management 43

4.1 Import-Export memory segments 43

4.1.1 Import-Export API 43

4.1.2 Import-Export maps 44

4.1.3 Import-Export operations 45

4.2 Host VM-system integration 46

4.2.1 FreeBSD VM-system operation 46

4.2.2 NetVM VM-System interface 47

4.2.3 Host VM-system modifications 48

4.2.4 Translating OS page-fault parameters into NetVM mapPage arguments 49

4.3 Network-interface page table and physical map 50

4.3.1 Page table 50

4.3.2 Physical map ; 54

4.3.3 Address translation and page locking 57

4.4 Host-NI synchronization 58

4.5 Summary 60

iv

5 Data-transfer operations 61

5.1 Data-transfer API 61

5.2 User-library operations 63

5.3 Application command queuing and dispatching 64

5.3.1 Flow control over the command queue 65

5.4 Write operation on the network interfaces 65

5.5 Read operation on the network interfaces 68

5.6 Bounce buffer 69

5.6.1 Scalability of the bounce-buffer mechanism 70

5.7 Summary 70

6 Control-transfer Operations 72

6.1 Notification 72

6.1.1 Notification API 73

6.1.2 Data structures and operations 74

6.1.3 Synchronous notification detection 77

6.1.4 One-shot notifications 77

6.2 Delivery order 78

6.2.1 Sequence windows 79

6.2.2 Notification reordering 80

6.2.3 Integration with the bounce buffer 81

6.2.4 Scalability of the delivery-ordering mechanism 81

6.3 Summary 83

7 Channels 84

7.1 Summary 87

8 Atomic and synchronization operations 88

8.1 Standard atomic operations 90

8.2 Mutual-exclusion locks 92

8.3 Wait Queues 94

8.3.1 Monitors 98

8.4 Semaphores 99

8.5 Summary 100

9 Evaluation 102

v

9.1 Memory-management overhead 103

9.1.1 Comparison with dynamic pinning 104

9.2 Data-transfer operations ••••• 108

9.2.1 RDMA write 108

9.2.2 RDMA read 109

9.2.3 Large-message latency and throughput 110

9.2.4 Misaligned transfers 114

9.3 Control-transfer operations 117

9.4 Channels , 119

9.5 Atomic and synchronization operations 120

9.5.1 Atomic operations 121

9.5.2 Synchronization operations 122

10 Conclusion and future work 125

10.1 Summary 125

10.2 Future work 127

Bibliography 130

Appendix A Pipelined DMA transfer model 135
A.1 Model Representation 136

A.2 Model Results 138

vi

List of Tables

Table 1. Key DAAA-registration strategies 20

Table 2. Three general address naming and translation mechanisms 27

Table 3. Miss handling on Nl-based page tables 28

Table 4. Key operations in the NetVM API 35

Table 5. NetVM import-export operations 43

Table 6. Host page-mapping operations 47

Table 7. NI page-locking operations 57

Table 8. Host unmapPPN and NI lockPPN synchronization implementation 59

Table 9. RDMA write, read and flush API. [*] source-side fencing only 61

Table 10. Format of the write-command descriptor 63

Table 11. Format of the read-command descriptor 68

Table 12. NetVM notification handling operations 73

Table 13. NI and application notification dispatch implementation 75

Table 14. Channel send and recv implementation. API calls simplified for clarity 85

Table 15. General atomic operations 90

Table 16. Format of the atomic-operation descriptor 91

Table 17. Lock acquire and release implementation. API calls simplified for clarity 93

Table 18. NI and user-library wait-queue operations 94

Table 19. Wait-queue implementation on the network interface 96

Table 20. Wait-queue implementation in the user library. API calls simplified for clarity 97

Table 21. Monitor implementation 98

Table 22. Semaphore implementation in the network interface 99

Table 23. Semaphore implementation in the user library. API calls simplified for clarity 100

Table 24. Host and NI page-table operations 103

Table 25. Host-based dynamic page-pinning vs NetVM Nl-based page-locking costs 105

Table 26. Latency and throughput for 4-byte and 4-KB transfers 108

Table 27. Latency for NetVM notification mechanisms 117

Table 28. Overhead for NetVM notification-detection mechanisms 119

Table 29. Latency and throughput for NetVM channels 119

Table 30. Application Latency and NI overhead for atomic operations 121

Table 31. Application overhead for synchronization operations 122

Table 32. Pipelined DMA-transfer model parameters 137

vii

List of Figures

Figure 1. Traditional kernel network transport vs. user-mode access and zero-copy transfer. ...3

Figure 2. NetVM module block diagram 39

Figure 3. General architecture of the Myrinet LANai-9 network interface 40

Figure 4. Latency and throughput of programmed-IO vs. host-DMA transfers 42

Figure 5. NetVM import and export maps 44

Figure 6. FreeBSD VM-System page queues 47

Figure 7. Translating application page-fault parameters into NetVM mapPage arguments 49

Figure 8. Page-table organization on the network interface 50

Figure 9. Probability that NI lookup hits an evicted entry in the hash table 53

Figure 10. PMAP organization on the network interface 54

Figure 11. Page-dirty state bit arrays 56

Figure 12. Address translation and page locking on the network interface 58

Figure 13. Three possible outcomes when the host and NI synchronize over the same page.. . . 59

Figure 14. Application-NI interface and command dispatching 64

Figure 15. Operation of RDMA-write on source network interface 66

Figure 16. Operation of write on destination network interface 67

Figure 17. Data structures and function handlers for the notification mechanism 74

Figure 18. Sequence window example that tracks arriving messages from one remote node. . . 79

Figure 19. Channel data structures 85

Figure 20. MCS distributed lock-chain example 92

Figure 21. Distributed wait queue example 95

Figure 22. Average pinning latency based on pinned-page cache hit rate 106

Figure 23. Latency of page-aligned write and read for 4-byte to 8-KB transfers 111

Figure 24. Throughput of page-aligned write and read for 4-byte to 8-KB transfers 113

Figure 25. Transferring a 4-KB data block in two fragments 114

Figure 26. Latency for 4-KB write as a function of page offset 115

Figure 27. Throughput for 4-KB write as a function of page offset 116

Figure 28. Maximum single- and multiple-application operation rates 124

Figure 29. 2-fragment pipelined DMA-transfer model 136

Figure 30. Model results for the latency of each pipelined-DMA stage 138

Figure 31. DMA operation timeline in the first segment (e.g. offset = 500) 139

Figure 32. DMA operation timeline in the second segment (e.g. offset = 2000) 140

Figure 33. DMA operation timeline in the third segment (e.g. offset = 3500) 141

viii

Acknowledgements

Working on a Ph.D. is not only an academic exercise, it is also a personal journey. I have been

privileged to embark on this journey surrounded with the greatest people. There are so many

people to thank and so much to say. These few words below cannot fully express my gratitude,

which I owe to every one of them.

To Mike Feeley, for supervising and guiding me through this journey, for his incredible insight

into both academic and nonacademic matters, for his unwavering support through the rough

periods, for being an example and setting the standard for me to strive for, and for always re­

minding me to ask the perennial "Why?" question. To Norman Hutchinson, for his humor and

friendship, for being a patient listener and accommodating my endless ramblings about my

work, and for reminding me that I'm done with his quotation in Chapter 10. To Alan Wagner,

for playing the devil's advocate and bringing a different and valuable perspective to the re­

search, for encouraging me during the final stretch, and for all the pleasant and enlightening

conversations over the years.

The Distributed Systems Group Laboratory is like a second home to me. I am fortunate and

honored have everyone in the lab as friends: Elisa Baniassad, Alex 6t Dima Brodsky, Yvonne Co-

ady, Chamath Keppitiyagama, Jan (Matt) Pederson and many others. To the gang, for the

brainstorming sessions that sometimes lead into cool ideas (and many oddball ones), for re­

minding me that the answer to the ultimate question has always been forty two, for formulat­

ing the four axioms of Operating Systems research (which are still consistent), for helping me

rediscover the wonders of coffee, and for the friendship, support and encouragement through

these years. Also, to Holly Mitchell, for her cheerful smiles and kindness, and to Tsang Kay

Mak, for always lending a hand whenever the Myrinet cluster misbehaved.

And most important, to my parents, for encouraging me to begin this journey, and for support­

ing me throughout all these years.

Joon Suan Ong

The University of British Columbia
July 2003

ix

1 Introduction

New applications demand increasingly high bandwidth and low latency communication. As host

and network hardware improves, communication software must capitalize on these advances to

meet these demands.

Data transfer and synchronization are two key aspects in network communications. Existing

state-of-the-art systems improve data transfer by tightly coupling the application with the

network interface, which allows the network to directly access application data efficiently.

However, this tight coupling also places significant constraints on memory management for ap­

plications and the operating system. As a result, applications must adapt to these constraints

and the operating system must cope with reduced resource control to benefit from these new

networks. Synchronization is a basic problem in concurrent programming. In particular, effi­

cient synchronization is essential for applications that exhibit fine-grained interaction in order

to benefit from low-latency networks. However, existing schemes that do not exploit the un­

derlying network hardware cannot provide the most scalable and efficient implementations. As

a result, applications that rely on traditional implementation of synchronization schemes can­

not fully take advantage of improved network performance.

This thesis examines the use of intelligent programmable network interfaces to improve data

transfer and synchronization with two key contributions. The first contribution is a network-

interface design that provides efficient data transfer without the existing memory-management

constraints. The second contribution is a design that exploits intelligent network interfaces by

augmenting them with efficient primitives that optimize common synchronization idioms. The

thesis demonstrates that, by providing suitable functionality on the network interface, data

transfer and synchronization operations can be efficient, easy to implement, and incur low

overhead.

1

1.1 High-performance networks
The performance of modern local area network hardware has improved to a point where soft­

ware overhead is now a dominant factor in the communication performance for distributed ap­

plications. Traditional network architectures can no longer deliver the full performance poten­

tial of the underlying hardware to applications due to the high host-processor overheads in ker­

nel-based transport stacks.

These traditional kernel-based network architectures severely limit application communication

throughput and latency, as well as increase the processor load on the host. The bandwidth for

network hardware is improving by an order of magnitude with each new generation (for exam­

ple: in 10M, 100M and 1Gbps Ethernet). However, the software overhead in the network stack

remains roughly unchanged, because host-processor improvements do not directly translate

into higher throughput. Other system components, such as host memory bus and IO bus, have

not kept up with the network hardware improvements. Throughput is thus limited to the rate

at which the kernel is able to transfer data through the network stack.

The kernel protocol-processing and interrupt-handling overheads now dominate the communi­

cation latency. An application invoking a system call into the kernel to handle data transmis­

sion or a network interface interrupting the kernel to handle data reception will significantly

increase the application's end-to-end messaging latency, especially for small transfers. Low

latency is particularly critical to the scalability of distributed applications that need to syn­

chronize over the network. These time-sensitive synchronization operations are not bandwidth

bound, because they usually do not contain much data.

Interrupting the host processor to handle network messaging is costly, especially on modern

processors. Newer host-processor architectures achieve higher performance using sophisticated

parallelism techniques such as deep pipelines, out-of-order execution and speculative branch­

ing. However, they also suffer from higher penalties during an interrupt because they have to

flush all their internal state before servicing the interrupt. The processor time incurred during

an interrupt is often unfairly accounted to the unfortunate process that is currently scheduled.

1.2 Existing state-of-the-art approaches

Three important approaches have emerged for high performance communication. They are

user-mode access, zero-copy transfer and sender-managed communication. The first two ap­

proaches are now widely recognized as essential for lowering communication overheads. Both

2

of these approaches move the network Interface closer to the application by removing the host

processor and operating system from the communication critical path. The third approach,

while less widely accepted, allows applications to directly access memory in remote applica­

tions.

1 . 2 . 1 User-mode access and zero-copy transfer

(control path) (data.path)_

application
code

application
buffers

.- A -
kernel

transport
system
buffers

- 4 ~
network

controller
network
buffers

application

kernel

network
interface

traditional kernel transport stack

(control path) (data path)

application
code

application
buffers

user-mode
access

network
controller

application

kernel
zero;copy

J transfer

network
buffers

network
interface

user-mode access and zero-copy transfer

Figure 1 . Traditional kernel network transport vs. user-mode access and zero-copy transfer.

Figure 1 shows the comparison between the traditional kernel-based network transport and the

existing state-of-the-art user-mode access and zero-copy transfer approaches. In the tradi­

tional approach, an application sends data by invoking the operating system kernel through a

system call. The kernel transfers the application data into the network interface through a se­

ries of host-processor copy operations; it first transfers the data from the application memory

into the system buffer in kernel memory and then from a system buffer into the network inter­

face. Finally, it initiates the network controller to send out the message onto the network.

When a message arrives from the network, the network interface interrupts the kernel to

transfer the data from the network interface into a system buffer. The kernel determines the

location of the data and transfers it to final destination in application memory. It then sched­

ules the blocked application that was waiting for the data to arrive. In both sends and receives,

the kernel may need to copy the data several times among the system buffers as it shepherds

the data through the different network software layers.

Zero-copy transfer and user-mode access and bypass the kernel in the data path and the con­

trol path to the network interface respectively.

3

Zero-copy transfer allows a network interface to transfer data directly between the application

buffers and the network hardware, using Direct Memory Access (DAAA), instead of requiring the

kernel copy it among application and system buffers. This technique has two advantages. First,

DAAA transfers are very efficient, often operating at the bandwidth of the connecting 10 bus.

Second, the CPU does not need to explicitly copy data between application memory and the

system buffers, or between the system buffers and network hardware. Host-processor copy op­

erations are expensive; they interfere with and pollute the cache, they significantly increase

the memory bus bandwidth by handling the data several times in host memory, and they are

far less efficient than DAAA transfers. Zero-copy transfer is thus essential to maximize commu­

nication throughput.

User-mode access allows an application to bypass the operating system and directly communi­

cate with the network interface controller. Removing the control transfer through the kernel

from the messaging critical path improves latency, especially for small messages. User-mode

access is thus essential to minimize communication latency.

Taken together, user-mode access and zero-copy transfer significantly reduce latency and in­

crease throughput.

1.2.2 Sender-managed communication

Apart from user-mode access and zero-copy transfer, the third approach that is equally impor­

tant for many applications is adopting the sender-managed, or Remote DAAA (RDAAA), communi­

cation model. In this model, an application can directly write to, and in some cases read from,

the memory of a remote application, by specifying both local and remote addresses in a data-

transfer operation. The remote host processor is not involved in the transfer operation; the

data is simply copied into, or out of, its memory via zero-copy DAAA transfers. These remote

read and write operations either augment or replace the send-receive operations found on tra­

ditional network interfaces.

In contrast to sender-managed communication, send-receive communication has more familiar

semantics. In this model, the receiving application explicitly performs a receive operation for

each data transfer. The sending application specifies only the local source address of the data.

The completion of the receive operation indicates that the data has arrived in the destination

memory. For point-to-point send-receive operations, each receive must match a corresponding

send. The model is receiver-managed if the application specifies the destination address during

4

each receive operation. The alternative is that the receive operation returns to the application

the address of the received data, which is determined by the communication system.

Sender-managed communication has two key advantages. The first advantage is that it allows

an application to transfer data without transferring control. This separation of data and control

flow substantially improves the performance for network operations that require only data

flow, by allowing an application to transfer data without interrupting or involving the remote

host processor [75]. In contrast, send-receive semantics typically require that the remote proc­

essor post a blocking receive operation. The arrival of the message interrupts the host proces­

sor to match the message with the receive operation and schedule the blocked application. The

second advantage of sender-managed communication is that it avoids the possibility of a buffer

overrun on the receiver because the sender always specifies the destination address in the re­

ceiver's address space, which only has a finite range. Therefore, there is no need to buffer

data on the receiver for flow control because the network interface can always deliver every

incoming message to its predetermined location. In contrast, the send-receive model requires

the receiver to buffer messages that do not yet have a corresponding receive posted. Flow con­

trol between the communication parties is necessary to avoid any buffer overruns on the re­

ceiver.

1.3 Pinning for RDMA

This thesis addresses a key problem with RDMA communication, which is that the memory-

addressing models used by the applications and the network interfaces are mismatched. On the

one hand, applications name memory using virtual addresses. The memory-management unit

(MMU) in the host processor and the VM-system page table in the operating system transpar­

ently translate virtual addresses into their corresponding physical addresses for the application.

On the other hand, network interfaces name memory using physical addresses when accessing

host memory using DMA. DMA is essential for good performance when sending messages larger

than several hundred bytes and when receiving messages of any size. Traditionally, IO devices

use DMA to only access physical memory buffers managed only by the operating system. Appli­
cation-level DMA for zero-copy transfers breaks this tradition; the network interface can no

longer act as a simple system-IO device. Instead, it must independently determine the physical

memory location of the application data in host memory to support zero-copy transfers.

Application-level DMA faces two key issues. First, the network interface must translate the vir­

tual address of an application page into its corresponding physical address before accessing the

page. Second, the network interface must ensure that the address translation remains valid for

5

the entire duration of the DAAA data transfer. Thus, the operating system cannot remove or re­

place its page mapping without first synchronizing with the network interface.

Previous systems that supported zero-copy transfer ensure address-translation consistency by

requiring the operating system pin pages before handing their physical addresses to the net­

work interface. Once a page is pinned, the operating system cannot remove it or replace it

without first revoking its mapping from the network interface. To unpin a page, the operating

system synchronizes with network interface to invalidate its mapping. Two traditional ap­

proaches to pinning memory are static pinning and dynamic pinning.

In the static pinning approach, applications call the operating system to statically pre-pin con­

tiguous blocks of physical memory, typically to serve as communication buffers. Applications

must restrict the source and destination addresses in an RDMA transfer only to these pre-pinned

pages. Thus, static pinning is effective for applications that confine communication between

relatively small and well-known portions of their virtual address spaces. However, it is less

suitable for applications that require complex data-sharing patterns. Applications that share a

large virtual address space or are unable to predetermine the source and destination addresses

will find it impractical to pin all of its memory for communication.

Static pinning limits the usefulness of application-level- DMA because it requires applications

that transfer data between memory resident data structures also ensure that these data struc­

tures reside only in pinned memory. There are two problems with this requirement. First, ap­

plications may have to pin large portions of its heap and possibly stack to accommodate the

required data structures. Pre-pinning large blocks of memory can significantly interfere with

the operating system's ability to effectively manage memory for all applications running on the

host. The operating system cannot use application-pinned pages for any other purpose until it

reclaims them from the application. A single application pinning large blocks of memory or a

few applications simultaneously pinning smaller blocks of memory will quickly exhaust all us­

able physical memory on the host. Second, application programmers face a significant burden

to decide which pages must be pinned and to design network-addressable data structures that

fit in pinned memory. These data structures may be scattered throughout the application vir­

tual address space, programmers have to either locate the pages they reside in and pin them,

or reorganize and coalesce them into fewer pinned memory regions. In any case, static pinning

breaks the well-understood virtual memory abstraction, by forcing the programmer to view

application memory in terms of the underlying physical memory resources.

6

Dynamic pinning is an alternative to static pinning. In this approach, the operating system pins

pages when the application accesses them for communication and maintains a cache of re­

cently pinned pages to amortize the pinning costs. Dynamically pinning source pages is rela­

tively simple, because the operating system can always pin the required pages only when the

application accesses them and guarantee that the local network interface can always locate

the pages in host memory. However, poor access locality resulting in a low hit rate in the

pinned-page cache will slow down the communication rate, because the overhead of invoking

the system call to pin source pages appears in the critical path of message transfer. Dynami­

cally pinning destination pages is problematic, the network interface may have insufficient

time in the critical path of a message reception to interrupt the host to pin the destination

pages and still guarantee that it does not drop the message. As a result, systems, such as

UNet/MM [78], that dynamically pin destination pages cannot support sender-managed commu­

nication. They also require additional flow control to prevent message loss due to receiver

buffer overrun.

1.3.1 RDAAA without pinning

The key contribution of this thesis is the design, implementation and evaluation of the NetVM
network interface. NetVM provides user-level access, zero-copy transfer and sender-managed

communication without requiring the operating system to pin source or destination memory. An

application can transfer data from any virtual address on the source node to any virtual address

on the destination node, if it has obtained the appropriate access permissions. These source

and destination pages are never pinned by the host operating system.

NetVM integrates with the host virtual memory system to maintain a shadow page table on the

network interface. The host operating system updates the page table, using programmed-IO

writes, whenever it pages data in or out of memory. The network interface stores a lock flag

for each host physical page entry in the table. It activates a page's lock flag only for a brief

interval during an active DMA transfer on that page, which typically lasts only a few microsec­

onds. The operating system checks, using programmed-IO reads, for an inactive lock flag before

replacing the page mapping. Thus, the network interface can prevent the operating system

from replacing a page simply by locally modifying its lock flag.

NetVM's page-locking scheme is fast enough to lie in the critical path of message reception. As

long as the shadow page table stores an address translation entry for the destination page, the

interface can complete a zero-copy transfer on the page without involving the host processor.

If the entry is not present in the table, NetVM resorts to a one-copy scheme to transfer the

7

data. It first transfers the page to a system bounce buffer and interrupts the host processor.

The host processor then fetches the destination page into host memory and copies the data

from the bounce buffer. The cost of redirecting the data through the bounce buffer is small

compared to the cost of retrieving the page from the backing store. NetVM uses credit-based

flow control to prevent the bounce buffer from overflowing. A sending node must possess suffi­

cient credits for the bounce buffer on the receiving node before it can transmit any data to

that node. In the common case, the bounce buffer is not used and these credits are efficiently

recycled.

1.4 Synchronization with RDMA communication

In addition to data transfer, synchronization is also an important aspect of network communi­

cation. The RDMA model separates data and control transfer; it specifies only remote memory

access semantics without explicitly defining any synchronization semantics. For example, the

RDMA write operations only transfer data to a remote memory location. The remote applica­

tion, or even the host processor, does not know when the data actually arrives in its memory.

Applications require synchronization support to coordinate with each other.

Efficient synchronization is essential for concurrent applications that exhibit fine-grained in­

teraction in a low-latency network. Synchronization schemes should exploit the underlying

hardware capabilities to provide the most efficient implementations to applications. Two fea­

tures influence the implementation of these schemes in NetVM.

The first feature is that NetVM provides remote memory access semantics. Therefore, synchro­

nization schemes that apply to traditional shared memory multiprocessors also apply to NetVM.

Some of these schemes can potentially offer lower latency than an equivalent host-based

scheme using send-receive communication because remote memory access is significantly

faster than invoking a remote host process.

The second feature is that NetVM can deploy custom synchronization primitives in the network

hardware to optimize key operations in the synchronization schemes. It already uses the pro­

grammable network interface to effectively implement memory-management support for RDMA

data transfers. The network-interface design constraints that apply to RDMA data transfers also

apply to synchronization primitives; network interfaces have limited local memory and limited

processor capability. Thus, designing primitives that do not stress these limitations is impor­

tant.

8

1.4.1 Blocking and busy waiting

Two mechanisms for applications to detect synchronization events, such as the arrival of a con­

trol message, are blocking and busy waiting. With blocking, an application deschedules itself

by calling into the operating system and blocks waiting for the event. The operating system

wakes up and reschedules the application once the event occurs. Blocking, however, can add

significant overheads in two ways. First, the application always incurs the overhead of the

blocking system call, even if the event it is waiting for has already occurred. Second, the appli­

cation incurs high response latency, as the network interface has to interrupt the kernel, which

then has to wake up and schedule the blocked application. This increased latency is significant

compared to a remote write and is undesirable for applications that require fine-grained syn­

chronization. Send-receive communication systems typically use blocking, a return from the

receive call implicitly synchronizes with the corresponding sent message. Many RDMA systems

also implement standard send-receive operations for synchronization in addition to the RDMA-

specific mechanism described in the following paragraph.

Alternatively, an application can busy wait or spin on a shared variable until it is updated with

a specific value indicating that the synchronization event has occurred. This approach is only

possible in environments that support globally addressable shared data structures, such as

shared memory and RDMA systems. Traditionally, busy waiting is essential for parallel pro­

gramming shared memory multiprocessors, when the expected wait time is smaller than the

scheduling overhead or when keeping the processor busy waiting is acceptable. Busy waiting

only on local memory, and not on remote memory, is essential for RDMA systems, because it

incurs a lower latency and avoids congesting the network. Busy waiting on remote memory re­

quires a roundtrip network transaction for each polling operation, which quickly generates hot-

spots and saturates the interconnection network even if just a few applications busy wait si­

multaneously. Furthermore, busy waiting on cached local memory even avoids stressing the

local memory bus if the IO system supports cache-coherent DMA. An application can strike a

compromise between consuming processor cycles due to busy waiting and increasing latency

due to blocking. It busy waits for a brief period during fine-grained synchronization operations,

but reverts to block waiting if the wait time exceeds the process-scheduling overhead [20].

1.4.2 Transfer of control

A NetVM application transfers control by notifying a remote application. The semantics of

NetVM notifications are similar to Eventcounts by Reed et al. [67]. Every receiving application

manages a set of notification objects, each named by a notification identifier and comprised of

a pair of signal and acknowledge event counters. A sending application signals an event by

9

specifying its notification identifier in a data-transfer operation, which increments the signal

counter when the data transfer completes. The receiving application detects this event by

finding a signal count higher than the acknowledge count. It subsequently acknowledges the

event by incrementing the acknowledge counter.

NetVM counter-based notifications have three advantages over the send-receive blocking and

the busy-wait alternatives. The first advantage is that an application can selectively transfer

control when transferring data. This separation of control and data flow substantially improves

the performance of network operations that require only data flow [75], by allowing an appli­

cation to access remote memory without involving the remote host processor. In contrast, the

send-receive model requires the remote host processor to execute a receive operation, which

either busy waits for the arrival of the message or block waits for a host interrupt. Because not

all NetVM data transfers need to carry a notification, the system incurs the overhead to man­

age the event counters only when necessary. When notifications do exist, the network inter­

face accumulates these events efficiently without any host-processor intervention, by storing

and incrementing the signal counters in its local memory. The receiving application does not

need to explicitly synchronize on each event. It checks the counter values only when required,

without any riskof dropping an event. With send-receive messaging, synchronization is implicit

with the return from a blocking receive call. The application needs to make the receive call to

match every message, even if they do not carry useful data. High numbers of messages result in

high overhead on the host to match these messages and to provide flow control over the re­

ceive queue.

The second advantage of NetVM notifications is that the receiving application can choose to

selectively wait for a particular event. While it waits, other incoming notifying transfers with

different notification identifiers continue to increment their respective signal counters and do

not affect the waiting application. With send-receive blocking, the application typically has

only a single queue to receive incoming messages to accept, buffer and track all messages, to

prevent the receive queue from overflowing and to prevent dropping out-of-order signal

events.

The final advantage of NetVM notifications is that the receiving application can choose to busy

or block wait for events, or even do both. This choice allows the application to decide the ap­

propriate tradeoffs between reducing detection latency and reducing host-processor overhead.

It has four ways to detect notifications. First, it can selectively compare the signal and ac­

knowledge counters in network interface memory, only when necessary, to determine the

number of pending notifications. Second, it can direct the network interface to update a

10

shadow signal counter in host memory when it receives a notification. The application busy

waits on this shadow counter to synchronously detect the notification with low latency at the

expense of consuming processor cycles during the busy wait. Third, it can direct the network

interface to interrupt the operating system each time it receives a notification. The application

blocks waiting for the wakeup from the operating system without consuming the host proces­

sor, but at the expense of higher detection latency. Finally, it can register a notification-

handling procedure that will execute whenever a notifying transfer completes. Thus, like UNIX

signals, the application can continue processing while asynchronously handling incoming notifi­

cations.

To support notifications over an out-of-order delivery network, NetVM defines ordering seman­

tics that relate synchronized with unsynchronized transfers. Specifically, NetVM guarantees

that the receiving application only detects the notification for a current transfer after it has

received all previous data transfers and notifications from the same sender. The data-transfer

operations themselves can complete out of order, NetVM only enforces the invariant for the

partial order between the current notification and preceding data transfers. To do this, NetVM

maintains a sequence window to track incoming messages and buffer notifications but not the

data. It delivers a notification to the application only after processing all preceding messages.

Therefore, an application that receives a notification can safely assume that it has also re­

ceived all the data that the sending application transmitted to it before issuing that notifica­

tion. As a result, the receiving node avoids data buffering and reordering while it provides sim­

ple delivery-ordering semantics for applications.

1.4.3 Synchronization idioms

NetVM implements three general synchronization idioms that are useful to applications: mu­

tual-exclusion, wait queue and semaphore. There are many alternatives to implementing them

in a globally addressable memory machine. However, NetVM offers specific features, which

exploit the underlying hardware, to provide a more efficient implementation. Section 1.4 de­

scribed two of these features, which are remote memory access and network-hardware pro-

grammability. A third feature is also useful, which is that applications can use the notification

mechanism to adaptively switch between busy waiting and blocking. Many traditional local-spin

synchronization algorithms for shared memory multiprocessors require applications to busy wait

for synchronization events. This approach provides lower detection latency but also consumes

host-processor cycles. NetVM allows applications to do both busy and block waiting using the

same underlying notification mechanism. Thus, it enables applications to attain low response

latency as well as incur low processor overhead whenever appropriate.

11

NetVM implements a mutual-exclusion synchronization construct based on the MCS [51] distrib­

uted lock. Briefly, a central data structure in globally addressable memory stores the state of

the lock, which is either available or points to the last process in a queue trying to gain the

lock. An application performs read-modify-write operations on the central data structure to

acquire or release the lock. Multiple applications waiting to acquire the lock form a queue with

a distributed linked list. Each one busy waits on a local flag until its predecessor hands over the

lock by updating that flag with a remote write. NetVM improves on the original design by allow­

ing the waiting application to adaptively switch between busy waiting and block waiting, which

reduces host-processor overhead.

To support the read-modify-write operations required by MCS locks, NetVM implements a set of

standard atomic operations commonly found on multiprocessor systems. These operations are

useful for implementing many synchronization algorithms that already exist for non-cache-

coherent multiprocessor systems. Atomic operations are similar to read operations. The appli­

cation first sends a request message to the remote node. The remote network interface re­

sponds by transferring the operand from host memory into its local memory, performing the

specific atomic operation, writing the result back to host memory, and sending a reply to the

requesting node. The requesting application, in the meantime, busy waits locally until it re­

ceives the reply from its network interface.

NetVM implements the wait queue and semaphore synchronization idioms with an MCS-lock-

inspired approach. Like MCS locks, applications using the wait queue or semaphore atomically

update a central data structure and form a distributed queue when necessary. However, the

standard atomic operations are insufficient to support these idioms while reducing the number

of required network transactions, because they cannot atomically update all the necessary

state information in the central data structure with a single network transaction. As a result,

traditional algorithms use a three-phase approach to implement these synchronization opera­

tions [21]: the first phase acquires exclusive access to the central data structure. The second

phase manipulates these data structures, which may require several network transactions, and

the third phase releases exclusive access. To efficiently implement these idioms, NetVM aug­

ments the network interface with synchronization primitives that optimize key synchronization

operations. These extended atomic operations essentially combine the key steps in the three

phases into a single network transaction. They are also lightweight and thus do not incur sig­

nificant overhead over standard atomic operations. Thus, applications require fewer network

transactions to perform the synchronization operations, resulting in lower operation latency,

lower overhead on the network interface and improved scalability.

12

1.5 Protection
Communication protection mechanisms prevent applications from gaining unauthorized access

to local and remote memory. These mechanisms are especially important for systems that sup­

port user-mode access and sender-managed semantics for two reasons. First, user-mode access

allows applications to directly interact with the network interface. In some cases, these appli­

cations can overwrite the firmware on the network interface, or direct the on-board DMA en­

gine to inadvertently or maliciously transfer data from system memory areas. Many research

communication systems that support user-mode access into the network interface avoid the

protection problem by assuming a trusted communicating application on the host. Second,

sender-managed semantics allow applications to directly access remote memory. Without en­

forcing remote access permissions, applications can interfere with the memory in all other re­

mote applications on the network.

To address these problems, NetVM provides protection at the local access and remote access
levels. NetVM uses a VM-based approach to enforce local access protection. An application only

obtains a small virtual address window into the network interface to communicate with the

NetVM network controller. Each isolated application acquires its own separate window; it can­

not access data structures that belong to the system or other applications. NetVM uses a capa­

bility-based mechanism, similar to Hamlyn [12], to enforce remote access protection. An appli­

cation can access remote memory only after it has acquired the protection key for that mem­

ory. The remote network interface verifies the keys for every data transfer. If the underlying

network is physically secure, an application that cannot obtain a valid key also cannot forge a

message to access remote memory.

13

1.6 Research contributions
This thesis makes the following research contributions:

1. It describes the design and implementation of integrating the virtual-memory-

management system with the network interface to support reliable zero-copy transfers

without the need to pin host pages. This integration allows the operating system to re­

tain full control over host memory without incurring significant overheads. The evalua­

tion examines the costs and benefits of using this approach and shows that, compared

to the static and dynamic pinning approaches, NetVM does not significantly affect op­

erating system operations, incurs a low overhead on the network interface compared to

static pinning, and performs favorably compared to dynamic pinning.

2. It describes the design and implementation of a flexible control-transfer mechanism

that allows applications to selectively issue and detect notifications with a tradeoff be­

tween reducing control-transfer latency and reducing host-processor overhead. This

mechanism supports ordered notifications over an out-of-order delivery network. The

evaluation highlights the tradeoffs in signaling latency for three notification-detection

alternatives: busy waiting, block waiting, and triggering a user-defined handler.

3. It describes the design and implementation of scalable low-latency and low-overhead

wait-queue and counting-semaphore operations. This design reduces the required num­

ber of network transactions by augmenting the network interface with synchronization

primitives, which are easy to implement. The evaluation demonstrates that these op­

erations have low latency for the application and incur low overhead on the network

interface.

Thus, the thesis makes the following statement:

Intelligent network interfaces provide an efficient mechanism for data transfer and synchroni­
zation. Integrating memory management with the network interface enables fast data trans­
fer without significant overheads on the network processor, or restrictive constraints on ap­
plications or the operating system. Embedding key synchronization primitives on the network
interface facilitates scalable synchronization idioms with low latency and low overhead.

14

1.7 Thesis organization
Chapter 2 describes the background of the thesis and the work related to it. It introduces the

system-area network and user-level network interfaces, presents existing memory-management

strategies and address translation techniques in these network interfaces, and looks at hard­

ware-based synchronization alternatives for notification and mutual exclusion. Chapter 3 pre­

sents an overview of NetVM. It lists the design goals, introduces the user API, describes the sys­

tem architecture and briefly examines the Myrinet programmable network interface.

Chapters 4 to 8 present a detailed design description of NetVM. Chapter 4 describes the mem­

ory-management functionality in NetVM, which is a key contribution of this thesis. Chapters 5

and 6 describe the data and control (notification) transfer operations respectively. Chapter 7

presents a user-level implementation of channels using the NetVM API. Chapter 8 examines the

design of three general synchronization idioms: mutual-exclusion, wait queues, and counting

semaphores.

Chapter 9 presents a detailed evaluation of a complete working prototype. It examines the

costs and benefits of NetVM's memory-management approach, presents the performance re­

sults for data transfers, notifications and channels. It also analyzes the performance and over­

head of NetVM's atomic and synchronization operations. Finally, Chapter 10 concludes this the­

sis with a brief summary of the key points. It also discusses research directions and future work

in this area.

15

2 Background and related work

This section describes the background of the thesis and work related to it in four broad areas.

The first part introduces system-area networks and user-level network interfaces. The second

part reviews page-pinning strategies in user-level communication systems. The third part sum­

marizes address-translation mechanisms in network interfaces. Finally, the fourth part de­

scribes the synchronization and mutual-exclusion alternatives for non-cache-coherent global

address space and shared memory architectures.

2.1 System-area networks and user-level network interfaces
New applications demand increasingly high bandwidth and low latency communication. These

applications, such as databases, parallel simulations and backend servers, access large amounts

of data and require significant compute capability. The uniprocessor machine is increasingly

unable to meet these demanding requirements in terms of computation, memory and IO per­

formance. Parallel computers can help by distributing the workload over multiple machines.

Two common types of parallel architectures have emerged: the Symmetric Multiprocessor
(SMP) and the computer cluster [65]. The SMP extends the traditional uniprocessor architecture

with multiple processors on the single system bus, thus improving the total compute capability

of a single machine. However, this approach is not scalable as only a limited number of proces­

sors can share the system bus. The computer cluster addresses this limitation by linking multi­

ple uniprocessor or SMP machines together with a high-bandwidth and low-latency network,

which is the System Area Network (SAN) [7].

Traditional local area networks (LANs) cannot the provide communication performance re­

quired by these demanding applications. LANs have significantly higher latency and lower

bandwidth compared to an SMP system bus. SANs bridge this performance gap between LANs

and system memory buses; they deliver lower latencies and higher bandwidths that are several

orders of magnitudes better than LANs. Examples of SANs include the Myrinet [10], Virtual In­

terface Architecture (VIA) [17], Infiniband [40], Meiko Computing Surface (CS-2) [14, 38, 49],

16

Quadrics QNet [63, 64], DEC Memory Channel (MC and MC2) [28, 31], Scalable Coherent Inter­

face (SCI) [34, 35] and the IBM SP2 [72].
i

A key benefit of SANs is that they can achieve very low communication latencies. Application-

to-application latencies can be several microseconds with bandwidths as high as the connecting

IO bus. Low latency is essential to applications that require fine-grained communication; re­

quest-response protocols, database queries and scalable group synchronization all communi­

cate using small messages and are thus sensitive to the performance of low-latency fine­

grained messaging. For examples, Kay et al. [42] suggest that the majority of NFS traffic con­

sists of small messages less than 200 bytes. DAFS [19] relies on the underlying low-latency

VIA [25] network to efficiently access client file buffers with RDMA transfers and achieve good

performance for network storage operations. Network-bound applications that stall waiting for

remote responses, exchange small amounts of data at runtime, or rely heavily on group syn­

chronization, benefit most from improvements provided by SANs.

Deploying a SAN alone is insufficient for applications to achieve good communication perform­

ance. Traditional kernel-based network transports do not take advantage of the new SAN bene­

fits, because they are designed to provide protected communication over unreliable LANs. Con­

sequently, applications suffer from poor performance when they rely on the kernel for commu­

nication. User-level network interfaces allow applications to bypass the kernel in the control

and data path to the network by directly accessing the network interface for communication.

Lightweight communication protocols support these applications by bringing the application

closer to the network.

Three factors dominate communication latency on a LAN or SAN: the protocol control path

through the communication system, the data-transfer path between application memory and

network interface, and the latency of the network hardware. Traditional heavyweight proto­

cols, such as TCP/IP, that were previously suitable for LANs are now no longer suitable for SANs

due to their excessive software overheads in two areas. First, legacy protocols typically assume

that LANs are unreliable and can therefore arbitrarily delay, drop or corrupt packets. This as­

sumption results in complex software protocols that incur high overheads to handle these data

transmission contingencies. Second, legacy protocols route all data through the operating sys­

tem. Context switching between the application and the operating system [5] for fine-grained

communication or shepherding data through the transport stack for large data messages is ex­

pensive. This situation is worsening because operating system improvements cannot keep up

with host-processor improvements [58].

17

Lightweight communication protocols using user-level network interfaces in a SAN environment

eliminate the overheads described in the preceding paragraph. SANs offer a good compromise

between LANs, which provide good scalability and flexibility, and memory buses, which provide

performance and reliability. They are reusable and configurable in different systems and envi­

ronments, they scale to very large cluster networks, they are sufficiently fast for applications

that require fine-grained communication and they are sufficiently reliable to require only

minimal error detection and correction. User-level network interfaces allow an application to

directly access the network hardware without relying on the operating system. Bypassing the

operating system in the communication control and data paths eliminates traditional software

protocol overhead in the kernel transport. For examples, the Thinking Machines Corporation

Connection Machine 5 (CM-5) allows protected user-mode access to the underlying network

hardware by mapping the interface registers into the application address space. The DEC Mem­

ory Channel maps the global address space managed by the network interface into the applica­

tion address space, thus allowing the application to access global memory simply by reading

from or writing to the mapped region. VIA and many research-oriented communication proto­

cols on programmable network interfaces allow applications to interact directly with the net­

work interface firmware to initiate a data-transfer operation. Because SAN interconnects offer

better performance and reliability, and because user-level network interfaces offer more effi­

cient and direct access to the hardware, lightweight communication protocols on SAN-based

user-level networks are simpler and more efficient than traditional kernel-based protocols.

Thus, they offer good communication performance with little software overhead. Mukherjee et

al. [52] and Bhoedjang et al. [8] provide a general survey of design issues for user-level net­

work interfaces.

Two alternative mechanisms for communication systems to transfer data between application

host memory and the network interface memory are Programmed 10 (PIO) and Direct Memory
Access (DMA). With Programmed 10, the host processor individually transfers each word be­

tween host memory and the network interface. With DMA, the host or NI processor initiates the

data transfer between host memory and the network interface, usually in a series of transfer

bursts. Once initiated, the DMA engine operates autonomously until the entire transfer com­

pletes. Thus, DMA is the preferred alternative for large data transfers. For small data transfers,

the overhead of setting up the DMA engine registers typically exceeds the latency to copy the

data through the host processor. Thus, programmed 10 is the preferred alternative for small

data transfers.

Communication systems often use a combination of programmed 10 and DMA. For systems with­

out bidirectional DMA support, such as MC, or systems that do not support application-level

18

send-side DMA, such as FM, programmed 10 is the only alternative to moving data into the net­

work interface. Programmed 10 is also preferred for group operations, because they are typi­

cally latency sensitive and require only small messages. For host-to-NI transfers, many commu­

nication systems, such as VNTP [24], Hamlyn [12], BIP [66] and NetVM, adaptively switch be­

tween programmed 10 for small transfers and DMA for large transfers. For Nl-to-host data

transfers, DMA is the only alternative to transfer data without involving the host processor.

Most RDMA systems use DMA transfers on the receiving node regardless of transfer size. Only a

few systems, such as AM-II, use programmed 10 to receive small messages.

NetVM is a user-level zero-copy communication system for the Myrinet SAN. Applications di­

rectly interact with and share access to the network interface. All data transfers bypass the

kernel whenever possible. NetVM uses programmed 10 for small outgoing transfers but adap­

tively switches to zero-copy DMA for larger transfers. NetVM always uses DMA on the receiving

side. In the common case, the network interface delivers data directly to the application

buffer with zero-copy transfers. However, NetVM switches to a combination of DMA and host-

buffer copying by the kernel when the application buffer is not directly accessible by the net­

work interface.

2.2 DMA-registration strategies

A key contribution of NetVM is the design of an Nl-based page-locking mechanism that avoids

the need for the operating system to pin pages for DMA transfers. This section describes other

page-pinning alternatives used in user-level communication systems. Application-level DMA

faces two key requirements. First, the communication system has to provide the physical ad­

dresses of all pages serving as communication buffers to the DMA engine. Second, the system

has to ensure that the operating system does not replace a page in host memory during a DMA

transfer on that page. To do this, systems typically pin pages and hand their physical addresses

to the network interface.

As described in Section 1.3, communication systems either statically pin or dynamically pin

pages for DMA transfers. With static pinning, the system statically pre-pins all communication

buffers, usually for the entire duration of the application (an application may also explicitly pin

and unpin buffers for each major phase in its execution). With dynamic pinning, the system

manages a dynamic set of pinned pages, which it pins and unpins as necessary throughout the

entire duration of the application. Table 1 on the following page shows the variations in each

of the two page-pinning alternatives and the NetVM Nl-based page-locking approach.

19

Pinning Strategy Examples

Static system buffers
user buffers

FM
BIP, GM, Hamlyn, Trapeze, VIA, SCI, Infiniband, VMMC-1
DVMA, FLASH, ELAN (CS-2 and QNet), MC, MC2

Dynamic on-demand
pinned-page cache

BIP, GM, Panda
Firehose, Pin-down Cache (PM), VNTP,
U-Net/MM, VMMC-1, UTLB (VMMC-2)

Nl-based Locking per-page locking NetVM

Table 1. Key DMA-registration strategies.

2.2.1 Static Pinning

A system that uses static pinning can either pin system buffers or pin user buffers. Pinning sys­

tem buffers is the simpler, but less flexible, approach. Pinning user buffers allows true zero-

copy transfers, but it also requires additional support for the network interface to directly ac­

cess the pinned user pages.

2.2.1.1 Statically pinning system buffers

In this approach, the communication system pre-allocates pinned buffers in kernel memory to

serve as host-DMA staging areas for data transfers. This approach is akin to the traditional ker­

nel-based transport-stack where all network-bound data must transit through unpageable ker­

nel buffers for DMA transfer. The key difference is that, in this case, the operating system

maps the staging area into the application address space, thus exposing the system buffer to

the application and allowing it to directly access this pinned staging area. To transmit data into

the network, the application has to copy the data from its original location into this system

buffer before initiating the DMA transfer from the pinned area. To receive data from the net­

work, the application has to copy the data from the system buffer to the final destination, or

consume it in place, after the network interface has completed the DMA transfer to the pinned

area.

FM [59-61] uses the system buffer to store the receive queue for incoming messages to support

stream-oriented active-message-style [26] communication. When a message arrives from the

network, FM executes a function handler specified in the message header, which may copy the

data from the system buffer to the destination data structures in application memory. Thus, FM

does not support zero-copy receive operations. FM does not rely on a pinned system buffer for

sending messages. Instead, it splits messages into 128-byte packets and transfers each frag­

ment directly into the network interface using programmed IO. For this small fragment size,

using programmed-IO writes is faster that using a two-step process of first copying the data to

the system buffer and then transferring it by DMA to the network interface. It also allows FM to

20

better pipeline these fragments through the network interface. FM does not rely on pro­

grammed 10 for receiving messages, because uncached programmed-10 reads are significantly

slower than programmed-10 writes. Furthermore, the network interface is able to autono­

mously transfer data to the receive queue without any host-processor intervention. To prevent

the receive queue from overflowing, FM uses a return-to-sender protocol to reflect the mes­

sage back to the sending network interface if the queue is full. The sending network interface

has to reserve sufficient space, enough to accommodate all unacknowledged messages, in its

local memory to handle this contingency.

There are three key problems with using this intermediate pinned system-buffer approach.

First, zero-copy transfer is not possible; all DMA-transferred data must pass through the system

buffer. Second, the remote network interface typically has to interrupt the host processor to

copy the data from the pinned buffer to the final destination and signal the application, thus

increasing the latency and host-processor overhead [15]. Third, the communication system usu­

ally supports only a single trusted application, because the operating system has to expose the

system buffer to the application. Thus, sharing the buffer among multiple applications with

protection is difficult. VNTP [15, 47] allocates a dedicated, but pageable, system buffer for

each communicating application.

2.2.1.2 Statically pinning user buffers

In this approach, the application statically allocates pinned user memory to serve as communi­

cation buffers. Many user-level communication systems belong to this category. They usually

provide a special memory allocator that assigns typically contiguous physical memory to the

application. The application must register all locally and remotely accessible memory segments

before initiating any DMA transfer with them. The network interface directly accesses these

registered memory segments with zero-copy transfers.

Applications must register communication buffers before performing any zero-copy data trans­

fer on them. The application typically registers the memory during program initialization or

before the first API call that accesses that memory. Some systems, such as BIP, are slightly

more dynamic and maintain a list of pinned buffers in the communication library. When a BIP

application transmits a buffer that is not currently pinned, the library pins the buffer and

leaves it pinned for the remainder of the program execution. Static pinning is desirable if the

working set of the communicating application can fit within available host memory. Once pages

are pinned, the operating system cannot remove or replace them without first synchronizing

with the network interface, usually when the program terminates.

21

Sender-managed communication systems, such as Hamlyn [12], VIA, Infiniband and SCI, main­

tain a translation table on the network interface to map each registered memory segment to

their corresponding physical addresses. Any incoming network message that can name the

memory segment can also access it from the network interface. Trapeze [3, 80] maintains an

incoming payload table to store the physical addresses for reply buffers used by the page-based

request-reply protocol in GMS [27]. VMMC-1 [9, 24] also stores a per-application translation ta­

ble for all registered memory segments that the application exports to remote processes.

There are two key problems with static pinning for user buffers. First, allocating per-

application pinned memory is not scalable; too many applications requesting pinned memory

will quickly exhaust the available physical memory on the host. Consequently, applications us­

ing this approach can only pin a limited amount of memory each. Second, communication is

restricted to the pinned buffers. Applications must allocate network-addressable data struc­

tures only within these buffers. The network interface usually drops any message directed to

an unpinned page because it does not have the physical address of that page. Some systems

prevent this message drop. VMMC-2 redirects any data that does not yet have a receiving ad­

dress into a default buffer. When the application eventually posts the receive operation,

VMMC-2 immediately copies the data from the default buffer into the final posted receive ad­

dress. NetVM redirects the data to its bounce buffer and directs the operating system to fetch

the destination page from the backing store and copy the data to that page.

2.2.2 Dynamic Pinning

A system that uses dynamic pinning manages a dynamic set of pinned pages. The application,

or the communication system, pins and unpins pages as necessary to limit the total number of

pinned pages in host memory. There are two alternatives for dynamic pinning: on-demand pin­

ning and pinned-page caching.

2.2.2.1 On-demand pinning

On-demand pinning only pins pages when the application is ready to transmit or receive the

data. This approach is usually only suitable for large messages because the pinning costs on

both nodes amortize over the large amount of data to transfer. In the two-step rendezvous [6]

protocol, the requesting application first handshakes with the remote application to indicate

the set of buffers it has pinned or it needs the remote application to pin. For remote writes,

the remote application pins the requested buffer and responds to the sending application,

which completes the operation by transmitting the data. Remote writes, therefore, require a

22

roundtrip network transaction that involves both host processors for the rendezvous protocol

just to pin the target buffer. As a latency optimization, the requesting application can concur­

rently pin its local source buffer while waiting for the rendezvous reply. For remote reads, the

remote application pins its source buffers and responds with the requested data to the sending

application, which must have already pinned the target pages. In both cases, this pinning over­

head is always in the critical path of the data transfer.

On-demand pinning can be lazy. After a rendezvous, applications may continue to access the

pinned buffers and thus delay the unpinning step. Unpinning is problematic, because it requires

another rendezvous for both applications to synchronize and invalidate the set of pinned buff­

ers. Therefore, some systems, such as GM [55], avoid unpinning buffers until the application

terminates, which essentially suffers the disadvantages of the static pinning approach. As a

compromise to optimize bandwidth, communication systems may use a one-copy scheme with a

small statically pinned buffer for small messages and a zero-copy scheme with rendezvous for

large messages. In this case, small data transfers, although not zero copy, incur relatively little

host-processor overhead to copy the small data, and large transfers, although requiring a

roundtrip rendezvous, complete with zero-copy DMA transfers. Nieplocha et al. [56] show that

this tradeoff is critically dependent on the relative overheads of the network hardware and

operating system support.

2.2.2.2 Pinned-page caching

Pinned-page caching manages a dynamic set of pinned pages for the application. The applica­

tion or system library pins buffers when they are required in a DMA transfer, either transpar­

ently when the application or network interface accesses them, or explicitly when the applica­

tion anticipates receiving data on them. In order to limit the total number of pages pinned by

an application on the host, the cache-replacement policy unpins and ejects the least valuable

pages from the cache whenever it needs to pin and add new pages into a full cache. Pinned-

page caching, like all other caches, only works well if there is locality in the accesses. Depend­

ing on the application workload and access pattern, a poor hit rate in the pinned-page cache

results in a high overhead for pinning and unpinning pages.

Pinned-page caching for sending data is straightforward. Whenever an application attempts to

send data from buffers that are not pinned, the system pins them, after unpinning other buff­

ers if necessary, and obtains their corresponding physical addresses. The PM user library uses

the pin-down cache [74] to manage the set of pinned pages. An application sending a message

from an unpinned buffer calls the PM kernel module to pin the page and hand its physical ad-

23

dress to the network interface. The kernel module maintains the cache of pinned pages and

defers application requests to unpin pages if possible. Doing so reduces the overhead if the ap­

plication repeatedly requests to pin and unpin the same set of pages. However, the application

always incurs the system-call overhead in the critical path of the send operation.

Firehose [6] maintains data structures to track the locally and remotely pinned pages. When

the application attempts to access a remote page that is not pinned, it rendezvous with the

remote application to pin the target page and stores the mapping in a remote-page table. Fire­

hose holds a reference to the remote page and caches the page mapping to amortize the syn­

chronization and pinning costs for frequently accessed pages. In order to manage the total

number of pinned local and remote pages, Firehose applications synchronize with each other to

remove their page references and unpin the least recently accessed pinned pages.

The network interface for VMMC-1 maintains an outgoing page table to store the mappings of

all pinned pages on the host. If it cannot locate the mapping for a page to access via DAAA, it

interrupts the host kernel to pin the page and restart the transfer. The overhead of the host-

processor interrupt on the sending node is not detrimental, because it simply delays the DAAA

transfer of the data from host memory into the network interface without the possibility of

losing any data. VNTP shares multiple virtual endpoints, each belonging to an application, on a

single network interface. When a local application touches any registered segment belonging to

an endpoint that is not resident, the page-fault handler in VNTP fetches the endpoint into the

network interface, including the physical addresses of all the pinned pages belonging to the

endpoint. Similar to host-processor interrupt overhead in VMMC-1, this endpoint-fetching over­

head is also not detrimental on the sending node. It is, however, detrimental on the receiving

node. Thus, VNTP drops the message whenever the receiving node is too late in paging in the

endpoint and relies on a retransmission mechanism to ensure that the sending network inter­

face retries the operation.

There are three general alternatives for a receiving network interface to recover when it does

not know the physical address of the target buffer. The first alternative is to interrupt the host

processor for the operating system to fetch the buffer, pin it and provide the network interface

with its physical address. The second alternative is to either drop the message or reflect it

back to the sender, and then rely on a higher-level flow-control protocol to resend the data.

The third alternative is to redirect the data into a temporary pinned buffer on the receiving

host if the target page is not pinned. The operating system then copies the data to the final

destination.

24

UNet/MM uses the first alternative described in the preceding paragraph. It maintains a pre-

translated pinned free buffer queue for each application. When a message arrives from the

network, the network interface transfers the data to the first buffer and informs the applica­

tion of the address of the buffer. If the free buffer queue is empty, the network interface in­

terrupts the kernel to pin more pages for the queue, but will drop the message if the kernel

cannot respond in time. UNet/MM, like FM and VNTP, does not support receiver-managed

communication, because the receiving application cannot control the destination address of a

message. Instead, it obtains the address from the communication system and then copies the

data to its final destination.

Pinning pages in the messaging critical path is difficult. The key problem is that the overhead

to interrupt the host processor to pin the page, possibly after fetching it from the backing

store, and to install the page mapping into the network interface is too high to guarantee that

the network interface will not drop the message due to insufficient local memory. The limited

memory available on the network interface cannot sustain large delays to the data-transfer

pipeline, especially if the target page is not resident. For example, incoming data at 1-Gb/s

consumes 8-MB of network-interface memory in only 6.3ms, which is less than the page-in time

even for a single page and negligible compared to the time for the worst-case scenario to fetch

8MB of data, or 2048 4-KB pages, from the backing store. Pinning resident pages, however, re­

quires a much lower time (on the order of microseconds per page), because the page mapping

already exists in the host VM page table. Therefore, it may be possible to pin resident pages in

the critical path and provide the translation to the network interface in time. However, this

minimum time is not guaranteed, because other host interrupts and operating system activity

may delay this time-critical pinning operation sufficiently to force the network interface, such

as in UNet/MM, to abort waiting for the translation and drop the message.

The network interfaces in PM and VNTP drop the message if they cannot locate the target page

in host memory. The receiving application is responsible for pinning the pages before the mes­

sage arrives from the network. VNTP sends a NAK to the sending network interface if the re­

ceiving endpoint is currently paged out, PM sends a NAK if the target page is not pinned. Thus,

they both require a messaging flow-control mechanism to handle data retransmissions.

VMMC-2 redirects the message to a default buffer if the network interface cannot locate the

target page in host memory. Its UTLB [13] mechanism maintains a per-process translation table

in host memory, which the network interface can directly access and cache. The application

pins the target pages on demand and updates the kernel-protected table in host memory. The

network interface redirects the data into the default buffer if it receives a message without a

25

matching posted receive. When the application finally posts the receive operation, the user

library copies the redirected data from the default buffer to the target address. A credit-based

flow-control scheme prevents the default buffer from overflowing. If the network interface

receives a message with a matching posted receive, it looks up its cached translation table to

locate and transfer the data directly to the target page in host memory via DAAA. The lookup

may result in a cache miss. In this case, the network interface fetches the updated mappings,

via DAAA, from the kernel-protected table in host memory, which the application must have

previously updated by pinning the pages before posting the receive operation. The fixed cache-

miss-handling time to fetch the mapping is small and thus the network interface will never

need to drop the message.

2.2.3 NetVM per-page locking

NetVAA does not need to statically or dynamically pin application buffers. Instead, it relies on

the host VAA system to track all resident pages that the applications export for communication.

The host kernel uses programmed-IO to update a shadow page table, which is stored on the

network interface, whenever it maps or unmaps an exported page in host memory. As long as

the required page is resident, the network interface simply sets its lock bit in the shadow page

table before accessing it with a DAAA transfer. This brief locking operation incurs a low over­

head on the network interface. To ensure translation consistency, the host kernel synchronizes

with the network interface when it unmaps a page from the shadow page table.

The VAA system in NetVM performs a similar function to the cache controller in the pinned-page

cache approach. In this case, it treats the entire host memory as one large cache. The network

interface can access any exported page as long as it is resident in host memory. This situation

is equivalent to a hit in the pinned-page cache, except that NetVM does not require any resi­

dent pages to be pinned, which is necessary in the pinned-page cache, and the VM system can

thus replace them at any time. Because the VM system naturally retains pages that are fre­

quently accessed locally or remotely in host memory, NetVM applications do not need to ex­

plicitly manage pages for communication.

The network interface relies on a one-copy scheme if the target page is not resident. In this

case, the network interface avoids dropping the message by redirecting the message into a

shared pinned system buffer and interrupting the kernel. The kernel fetches the required page

and copies the data from the system buffer to its final destination. NetVM implements a credit-

based flow-control protocol to prevent the shared system buffer from overflowing.

26

2.3 Address-translation mechanisms

Address Translation Description

physical address application/kernel hands physical address to NI
segment table NI maintains a segment translation table
translation lookaside buffer (TLB) NI maintains a TLB data structure

Table 2. Three general address naming and translation mechanisms.

For the network interface to access application pages in host memory using DMA, it must trans­

late the name of a user buffer into its corresponding physical address. This name can be as

simple as the actual physical address of the buffer, or in the form of a named segment identify­

ing the buffer, or even be the virtual address of the buffer in the application address space.

Table 2 summarizes the three general address-translation alternatives.

The first alternative is for the application to hand the physical addresses over to the network

interface after obtaining the mapping from the operating system. BIP, FM and LFC applications

call a kernel driver to pin the requested pages and return the corresponding physical addresses,

which applications pass to the network interface for DMA transfers. This approach, although

fast and simple, is only suitable for trusted applications, because the network interface usually

cannot verify the physical addresses that it received from the applications.

The second alternative is for the network interface to store a translation table to map a named

region of host memory to its corresponding physical address. Many communication systems,

such as Hamlyn, VIA, SCI, GM, Trapeze and VMMC-1, use this approach. The named region may

or may not be physically contiguous in host memory. The key difference is that, for physically

contiguous regions, the network interface stores only the base physical address and size of the

region. Otherwise, it has to store a mapping entry for each page in the named region. In either

case, every page in the named region must be pinned in host memory and mapped into the

network interface.

The third alternative is for the network interface to store a translation-lookaside buffer (TLB)

data structure, which maps an application's virtual addresses into their corresponding physical

addresses. Network coprocessors, such as the Stanford FLASH [43], Sun DVMA [73], ELAN (Meiko

CS-2 and Quadrics QNet) [50] implement the TLB in hardware. Communications systems using

programmable network interfaces, such as UTLB (VMMC-2), UNet/MM and Pin-down Cache (PM),

implement the TLB in software. In either case, the TLB cannot store the mapping of every vir­

tual page belonging to every communicating application, therefore these systems cache the

27

mappings and require a miss-handling mechanism to lookup a mapping and update the TLB if

the network interface cannot locate the required entry in the TLB.

NetVM maintains a shadow page table on the network interface to store page mappings for

resident pages that applications export. Unlike the TLB approach, NetVM never suffers from

capacity misses because the shadow page table is large enough to accommodate the mapping

of every physical, not virtual, exported page on the host. However, it does suffer rarely from

conflict misses because individual buckets in the page table, which is a hash table, can over­

flow when inserting a new page mapping. Finally, compulsory misses occur with the required

page is not resident in host memory. Thus, NetVM handles these misses by redirecting the

transfer to the kernel without dropping the message.

Miss Handling Description

interrupt interrupt host to install page mapping (UNet/MM, FLASH, DVMA)
fetch entries from host fetch page mapping from host data structure (UTLB)
drop message abort the transfer (PM, VNTP)

Table 3. Miss handling on Nl-based page tables.

Table 3 shows the three general alternatives for the network interface to handle TLB misses. In

the first alternative, the network interface interrupts the host operating system to install the

mapping into the TLB. The operating system looks up its page table to locate the physical ad­

dress of the required page to update the TLB. A problem with this alternative is that the high

latency required to interrupt the host processor and update the TLB may cause the network

interface to drop the message if it cannot obtain the translation in time.

NetVM uses a variation of the first alternative. If the network interface cannot locate the

translation in its shadow page table, it redirects the transfer to a system bounce buffer and

interrupts the kernel. The kernel first fetches the required page and installs the page mapping

into the shadow page table. Thus, the network interface will find the translation for the same

page in subsequent lookups. The kernel also completes the transfer by copying the data from

the bounce buffer to the final destination. The bounce buffer ensures that NetVM does not

need to drop the message due to translation miss on the shadow page table.

In the second alternative, the network interface autonomously fetches the updated entry from

a pre-defined page-table data structure in host memory. This alternative requires that the op­

erating system and the network interface agree on the location and data structure format of

28

the reference page table in host memory. It also requires that the system has currently pinned

all pages mapped by the reference page table.

In the third alternative, the network interface simply drops the message if it cannot find the

mapping in the TLB. UNet/MM and BIP also drop the message if the receiving application is too

late in replenishing the free queue or posting the receive operation and providing a target

physical address to the network interface respectively. VNTP drops the message if the destina­

tion endpoint is not resident.

Schoinas et al. [69] describe different address-translation mechanisms based on hardware-

based and software-based approaches.

2.4 Synchronization

Synchronization between concurrent threads is a basic problem in multithreaded programming.

Since Dijkstra's 1968 paper on concurrent programming [22], only a small number of basic syn­

chronization mechanisms has been recognized as fundamentally essential to multithreading.

They include mutexes [79], condition variables [36], monitors [37], semaphores [23], event-

counts [67], barriers [46] and rendezvous [2]. Each mechanism is suited for a particular syn­

chronization pattern; no one mechanism provides the ideal solution for all patterns. The trade­

off between them is usually the level of abstraction that they provide and the efficiency with

which they are implemented.

2.4.1 Notification

A basic aspect of synchronization is notification. An application notifies a remote application

by signaling an event that the remote application detects. NetVM's notification mechanism is

similar to eventcounts and monotonic counters [76]. An eventcount is an object that keeps a

count of the number of events in a particular class that have occurred during program execu­

tion (for example, in producer-consumer problems). It has a monotonically increasing integer

variable with three operations on the variable, advance(eventcount) signals the occurrence of

an event associated with a particular eventcount, by atomically increasing the variable by one.

Thus, the eventcount variable tracks the total number of advance operations performed on it.

await(eventcount,wakeup) and read(eventcount) respectively blocks on and polls the event-

count variable, await blocks until the eventcount variable is greater than or equal to the speci­

fied wakeup argument, read simply returns the current value of the eventcount variable. In

NetVM, applications signal an event by including a notification number, which specifies the

29

event, in a remote write operation. Only the receiving application that owns the notification

counters can poll, wait for, or handle the incoming event. Thus, the NetVM notification mecha­

nism is limited to between a set of senders and a single receiver. The semantics of eventcount

and monotonic counters do not impose this single-receiver restriction. Thornley et al. [76] de­

scribe monotonic counters as the mechanism to support a range of synchronization patterns,

including barriers, mutual-exclusion and single-writer-multiple-reader problems. In each pat­

tern, participating processes wait on, and signal, monotonic counters to synchronize with each

other.

In a shared memory multiprocessor environment, an application detects events either by busy

waiting or by block waiting for the event to occur. On the one hand, busy waiting achieves

lower latency at the cost of increased processor degradation [4] because all busy-waiting proc­

esses consume host processor time while waiting for the event. On the other hand, block wait­

ing allows other processes to perform useful work while waiting for the event at the cost of

increased latency to schedule the process when the event occurs. The usual compromise is to

busy wait for the period equal to the scheduling overhead before falling back to block wait­

ing [20]. The polling watchdog [48] mechanism combines polling and interrupts for efficient

message handling.

The IVY [44, 45] and IVY II DSM (Distributed Shared Memory) systems use eventcounts for syn­

chronization, which the underlying Aegis operating system natively supports. The original IVY

system accessed eventcounts using remote procedure calls; incrementing and checking an

eventcount required a blocking request-response operation directed to the kernel managing the

eventcount to update the variable in its local memory. IVY II switched to a shared memory up­

date approach. In this case, processes can busy wait on a cached eventcount variable for a sig­

naling process to increment it. Li showed that this newer alternative provides cleaner seman­

tics and is more efficient than the RPC version, especially if there are multiple processes spin­

ning on the eventcount variable that is cached on the same node.

The Tripwire [68] synchronization mechanism allows applications to detect when a remote ap­

plication accesses its local memory. Each tripwire is associated with a local or remote memory

location and fires when that location is read from, or written to, by the network interface,

which monitors all incoming and outgoing packets. When a tripwire is activated, the network

interface can either interrupt the host processor to invoke the device driver, update a bitmap

in host memory, or increment an event counter in host memory. Thus, this mechanism allows

applications to busy wait or block wait for tripwire activations.

30

2.4.2 Mutual exclusion

Mutual-exclusion algorithms allow concurrent asynchronous processes to resolve conflicting ac­

cesses (to shared resources. In the mutual exclusion problem, a process accesses a shared re­

source only by executing a critical section of code. Critical sections are exclusive; at most only

one process executes its critical section at any time.

Mutual exclusion in send-receive messaging systems requires that applications send a request

message to server processes running on the host. These servers may be centralized or distrib­

uted throughout the network. In both cases, a request message typically interrupts the host

processor, which schedules the server process to handle the message. In contrast, mutual-

exclusion operations in globally addressable memory systems use only remote memory opera­

tions on shared data structures. These individual remote memory operations are usually signifi­

cantly faster than the request-reply operations. Many algorithms that apply to non-cache-

coherent DSMs also apply to RDMA systems; RDMA essentially provides non-cache-coherent

global addressable memory with the weak-ordering [1] memory consistency model.

Using mutual-exclusion algorithms that busy wait locally is essential for non-cache-coherent

shared memory architectures. In these algorithms, processes busy wait only on local variables

without causing an interconnect traversal. Remote processes may share synchronization vari­

ables on cache-coherent machines, because these machines allow all processes to spin on the

local cached copy of the variable while ensuring consistency during an update. However, spin­

ning on shared synchronization variables on non-cache-coherent machines is not practical, be­

cause each access generates a network transaction. Thus, spinning will quickly generate hot-

spots and saturate the network. Craig [18] characterized various spinlock schemes based on

five traits (memory architecture, atomic instruction set, operation order, interconnect load,

and data structure size) and compared various spinlock algorithms using these traits.

A classic paper by Crummey et al. [51] concluded that software synchronization algorithms can

exploit the memory hierarchy in shared memory multiprocessors to implement scalable syn­

chronization operations, without the need for specialized synchronization hardware support.

Their MCS lock mechanism, which is the basis for the NetVM distributed lock, executes in 0(1)

network transactions for both acquire and release operations, requires 0(1) storage space per

application, and supports FIFO ordering of requests. Motivated from this work, other research­

ers have investigated other techniques to reduce the number of remote memory accesses

needed to implement synchronization primitives on multiprocessor systems [30, 39].

31

Specialized hardware support for synchronization is an active topic of research especially in the

area of interconnection networks. On the one hand, the key concern with using hardware-

based synchronization is the high implementation cost and thus state-of-the-art shared memory

multiprocessor systems tend to support only standard atomic operation primitives and imple­

ment the synchronization operations in software. On the other hand, using hardware-based

synchronization can significantly reduce the latency for these time-sensitive operations. Fur­

thermore, implementing these operations on programmable network hardware comes at a

much lower cost than on host processors or fixed-function network coprocessors.

The Queue on Lock Bit (QOLB) mechanism [32] is a hardware version of a list-based queuing

lock with local busy waiting. The hardware customization allows the processor that holds the

lock to transfer it to another processor with only a single cache-to-cache transfer. As a result,

QOLB requires an absolute minimum number of remote messages for an acquire-release pair of

operations. However, it also has a high implementation cost and complexity, because it re­

quires significant modifications to the processor's instruction set, cache controller and cache-

coherence protocol [41].

Bradford et al. [11] presented a hardware-based semaphore synchronization scheme. Their de­

sign added two additional semaphore instructions and a hardware semaphore unit to the proc­

essor. The semaphore unit maintains the status of blocked threads waiting on a semaphore. On

a semaphore P operation, the processor decrements the semaphore value and blocks the re­

questing thread if the result is negative, by storing the semaphore address and the necessary

information about the thread in the semaphore unit. On a semaphore V operation, the proces­

sor checks the semaphore unit for any blocked threads on the requested semaphore and un­

blocks the first thread blocked on it. Using the hardware-based processor modifications and

semaphore unit significantly reduce the overhead for thread management. However, a sema­

phore unit can only support a single semaphore and scaling this approach to support a large

number of semaphores is expensive.

Nikolopoulos et al. [57] described a methodology to implement fast synchronization operations

on multiprocessor machines that support both cache-coherent and non-cache-coherent atomic

read-modify-write operations. They observed that efficient software synchronization primitives

fail to scale well on cache-coherent multiprocessors due to high latency for atomic operations

on cached memory in the critical path of the synchronization operation. These atomic opera­

tions interfere with the directory-based cache-coherence protocols and place undue overheads

on the network, especially under heavy contention for the synchronization variables. They pre­

sented a systematic methodology for transforming any software synchronization primitive into

32

a hybrid one that uses both cached and uncached atomic operations. Thus, it exploits uncached

accesses to reduce latency during the arbitration phase, when many processors try to modify

the synchronization variable, and exploits cached access to reduce the network traffic with

fewer remote memory accesses.

NetVM supports fine-grained synchronization operations by implementing a standard and ex­

tended set of atomic operations on the programmable network interface. This approach does

not require any hardware modification to the host, but only to the firmware on the network

interface. Programmability provides the opportunity to implement and evaluate different syn­

chronization schemes with little turnaround overhead. In this case, NetVM implements the

common set of atomic operation primitives to support traditional higher-level synchronization

operations. In addition, NetVM also implements new atomic operation primitives that directly

support wait queues and counting semaphores. Unlike QOLB and hardware semaphore units,

NetVM's approach requires only firmware changes to the network interface.

2.5 Summary

User-level network interfaces and system-area networks are increasingly essential to supporting

demanding applications that require high-performance communication. Two traditional mem­

ory-management techniques to support zero-copy DMA transfers are static and dynamic pin­

ning. NetVM introduced a new page-locking approach that does not require pinning. To enable

DMA transfers, the network interface also has to translate the address of the user buffer into

its physical address. Existing techniques typically name a buffer either by its physical address,

by its segment name, or by its virtual address. The first two techniques are straightforward;

the third requires a page table or TLB on the network interface. NetVM implements a shadow

page table to store the physical page mappings for all exported pages that are resident on the

host.

Synchronization is a basic problem in concurrent programming. Applications typically detect

events either by busy waiting or by block waiting. The tradeoff between the two is a lower re­

sponse latency for busy waiting against a lower host-processor overhead for block waiting.

NetVM's notification mechanism is based on eventcounts. Non-cache-coherent remote memory

systems typically implement synchronization operations using local-spin algorithms imple­

mented with atomic read-modify-write operations. Some systems augment the host processor,

cache or memory controller to optimize for these fine-grained operations. NetVM implements

new atomic operation primitives on the programmable network interface to directly support

wait queues and counting semaphores.

33

3 Overview

This chapter provides an overview of NetVM. It first lists the major design goals in four areas:

data transfer, control transfer, synchronization and protection. It then summarizes the key op­

erations available to applications. It also describes a high-level view of the system architec­

ture. Finally, it introduces the Myrinet programmable network interface.

3.1 Design goals

NetVM has nine key design objectives in four areas.

3.1.1 Data-transfer objectives

• Write to, and read from, virtually-addressed memory. An application can name un­

pinned source and destination memory using virtual addresses or using named segments

imported from remote memories. To directly evaluate NetVM's page-locking approach

against a static pinning approach, NetVM also provides an alternative for applications

to name pinned memory using physical addresses.

• Guarantee reliable delivery. Assuming that the underlying network hardware is reli­

able, NetVM guarantees reliable data transfer without data buffering for retransmis­

sion. This guarantee holds even if the source or destination memory is not resident.

3.1.2 Control-transfer objectives

• Optionally notify a remote application. Using RDMA writes means that a receiver will

never know when a sender updates its memory. NetVM provides a notification mecha­

nism for a sender to signal a control transfer when delivering the data.

• Selectively detect notifications. An application can selectively detect notifications only

when necessary and can detect them with different latency-overhead tradeoffs. It can

synchronously busy wait or block wait for the notification or it can register a user-

defined handler to execute whenever the notification arrives.

34

• Support out-of-order delivery networks. NetVM ensures that a remote application re­

ceives a notification only after all previous updates from the same sender have com­

pleted, regardless of the order in which they arrive at the remote node.

3.1.3 Synchronization objectives

• Provide standard atomic operations. NetVM implements a set of standard low-latency

atomic operations that applications can use to build higher-level synchronization op­

erations (e.g., the MCS distributed lock).

• Natively support wait queues and semaphores. NetVM provides an extended set of

atomic operations to implement wait queues and semaphores with low latency, by re­

ducing the number of required network transactions.

3.1.4 Protection objectives

• Enforce local access protection. NetVM uses VM-based protection to prevent local ap­

plications from interfering with other local applications, with the kernel, or with the

network interface.

• Enforce remote access protection. NetVM uses capability-based protection to prevent

applications from interfering with remote memory. Assuming the network is physically

secure, an application can only access remote memory if it has obtained the proper au­

thorization.

3.2 Key operations
Type Operation Description

initialization and
segment setup

register
export/unexport
import/unimport

initialize with NetVM
declare/revoke a local segment for data transfer
declare/revoke a remote segment for data transfer

remote memory
access

write[F][N]
read[F]
flush [R][W]

transfer to remote segment [F=fenced][N=notification]
transfer from remote segment [F=fenced]
wait for transfer completion on local node
[R=read][W=write]

notification notfTest/ notf Spin / notfWait
notfArm/notfDisarm

poll/spin-wait/block-wait for a notification event
register/deregister notification handler

atomic and
synchronization
operations

swap/cswap/testandset/incr/decr
acquire/release
insert Q/waitQ/removeQ.
mbegin/mend/cvwait/cvsignal
Swait/Ssignal

standard atomic operations
acquire/release mutual-exclusive lock
enqueue-onto/wait-on/dequeue-from wait queue
begin/end monitor, wait-on/signal condition variable
wait-on/signal semaphore

Table 4. Key operations in the NetVM API.

Table 4 shows the key operations in the NI Application Programming Interface (API). NetVM ex­

ports these operations to applications through a user-level library. The table has four sections.

35

The first section describes operations that applications use to register with NetVM and to de­

clare local and remote memory regions for communication. The second section describes the

remote memory access operations that write to, or read from, remote memory. The third sec­

tion describes the notification operations that applications use to detect, handle and acknowl­

edge incoming notification signals. The final section describes the NetVM synchronization op­

erations.

3.2.1 Initialization and segment export/import

The first section of Table 4 describes operations that applications use to register with NetVM

and to declare local and remote memory regions for communication. An application initializes

with NetVM by calling register, specifying an available NetVM port number and the size of a

notification queue. This port number together with the node number uniquely identifies the

application within the network. The notification queue supports the notification mechanism,

which Section 6.1 describes.

An application calls export to make a contiguous virtual address range in local memory acces­

sible to NetVM as a source or destination for network data-transfer operations. The application

specifies the address range and assigns a name for the segment in the export call. NetVM as­

signs an export handle and a random 64-bit protection key for each exported segment. The ap­

plication revokes an export by calling unexport with the export handle, which immediately

disables remote access to that segment. NetVM will also abort an active transfer in progress

involving any memory that has just been unexported.

An application binds to a remote segment by calling import, supplying the remote node, port

and name of the exported segment. The importing application sends an import message to the

operating system of the remote node, which matches the segment name and responds with the

virtual address range and protection key of the requested segment. The user library in the re­

questing application assigns an import handle for each imported segment. The application re­

vokes an import by calling unimport with the import handle, which immediately disables its

own access to the remote segment.

The application can name a remote address in two ways. The first way is by its import handle-
offset pair, which comprises the handle and offset into the imported segment. The second way

is by its full remote memory address, which comprises the remote node and port number, and

the virtual address in the remote exported segment.

36

3.2.2 Remote memory access

The second section of Table 4 describes the remote memory access operations that write to, or

read from, remote memory. An application accesses remote memory by issuing write or read

calls directly to the network interface. Both sender-managed data-transfer calls must specify

the local virtual address and the remote address in the form of an import handle-offset pair.

Alternatively, a helper function converts a full remote memory address into its corresponding

import handle-offset pair, write transfers data from the local source address to the remote

destination address, read transfers data in the opposite direction.

An application detects the completion of a write or read operation using the writeF, readF and

flush[R][W] calls. writeF, or fenced write, extends write and returns to the calling application

only after the network interface has processed the current and all preceding write calls.

writeF provides source-side fencing; a return only implies that the application can safely reuse

and overwrite all previously transmitted buffers on the source node, it does not imply that the

data has arrived at the destination memory. readF, or fenced read, extends read and returns

to the calling application only after the current and all preceding read operations have com­

pleted. flush[R][W] busy waits until all active read (R), write (W), or both (RW), calls have

completed on the local node.

A local application can optionally transfer control to a remote application by including a notifi­

cation identifier using the writeN call. The remote application has four alternatives to detect

and handle the notification, which the following section will describe.

3.2.3 Detecting notifications

The third section of Table 4 describes the notification operations that applications use to de­

tect, handle and acknowledge incoming notification signals. An application has four alterna­

tives to detect notifications from a remote application. It can call notfTest to poll the notifica­

tion counters and determine if there are any pending signals, it can call notfSpin to busy wait

for the signal, it can call notfWait to block wait for the signal, or it can call notfArm to regis­

ter a notification handler procedure, which will automatically execute whenever a relevant

signal-carrying message arrives. notfDisarm deregisters the notification handler procedure

from NetVM.

37

3.2.4 Atomic and synchronization operations

The final section of Table 4 describes the synchronization operations, which are divided into

five groups. The first group consists of a set of five standard atomic operations that an applica­

tion can access, swap atomically exchanges a local operand with a remote 32-bit word, cswap

takes in a compare and a replace argument. It matches the remote word with the compare ar­

gument and overwrites it with the replace argument if they match. It also returns the original

value of the remote word regardless of the outcome, incr and deer atomically increments and

decrements a remote 32-bit integer respectively, testandset conditionally sets a remote word

to a nonzero value if it was previously zero and returns the result of the test in either case.

The second group is a set of two operations for an MCS-lock-based distributed mutual-exclusion

lock. An application calls acquire to gain mutual-exclusive access to a locked resource. It calls

release to return and release the lock, which also wakes up the next application waiting to

acquire the lock.

The third group is a set of three operations for a NetVM distributed wait queue. An application

calls insertQ to insert itself into a NetVM wait queue. It then calls waitQ to busy or block wait

for a signal on the wait queue. A remote application calls removeQ to signal the wait queue,

which wakes up the front application waiting in the queue.

The fourth group is a set of four operations for Mesa monitors implemented using NetVM dis­

tributed locks and wait queues. An application calls mbegin and mend to enter and to exit the

monitor respectively. Within a monitor, it calls cvwait on a condition variable to place itself on

the wait queue for that condition variable. A signaling application calls cvsignal to signal the

first, if any, application waiting on the specified condition variable.

The final group is a set of two operations for NetVM counting semaphores implemented by ex­

tending the wait queue design. An application calls Swait to wait on a semaphore, which blocks

if the semaphore count is previously zero. It calls Ssignal to signal a semaphore, which wakes

the first blocked application, if any, waiting on the semaphore.

38

3.3 System architecture

firmware ii
network interface

Figure 2. NetVM module block diagram.

Figure 2 shows the basic architecture of NetVM. At the top of the diagram, an application links

against the user library to access the NetVM API. The user library parses application requests

into either system calls for the NetVM kernel driver or command descriptors for the network

interface firmware. The FreeBSD [29] kernel driver has three modules. First, the system-call
module handles application requests to initialize, export and import memory segments. Sec­

ond, the VM module extends the kernel VM system to provide memory-management support for

the network interface. Third, the interrupt handler services interrupts from the network inter­

face. At the bottom of the diagram, the firmware for the Myrinet network interface exports a

set of operations that applications invoke, through the user library, for accessing remote mem­

ory.

3.4 Myrinet programmable network interface

Figure 3 on the following page shows the general architecture of the Myrinet programmable

network interface [10, 54]. The network interface connects to the host computer through a 64-

bit 66-MHz PCI IO bus and to the network through a 1.28+1.28Gb/s link interface. The main

components onboard are a network processor and local memory to execute host programmable

firmware, and three DMA engines to transfer data between host and local memory, and be­

tween local memory and the network.

39

PCI
bus

PCI interface
andihost-

DMA engine

1 ' host i»ANai-9
mm interface network

processor

i (L B U S)

j xm't. wire- i
' DAAA engine

rev. wire- ^
- DMA engine i

packet interface

I network
link

Figure 3. General architecture of the Myrinet LANai-9 network interface.

At the core of the network interface is a 132-MHz LANai-9.2 RISC processor [53]. It executes a

Myrinet control program that the operating system downloads into the onboard SRAM. The 8-MB

64-bit SRAM connects to the processor through a local data bus (LBUS), which operates at twice

the clock rate of the network processor. The network interface arbitrates and interleaves LBUS

access to the local memory among the network processor and DMA engines with the following

decreasing priority order: host DMA, receive-wire DMA, transmit-wire DMA and network proces­

sor. Therefore, it is possible for active DMA operations to stall the network processor trying to

access local memory.

The network interface connects to the PCI bus through a PCI interface and a host-DMA engine.
The theoretical peak DMA bandwidth over a 64-bit 66-MHz PCI bus is 528MB/s. However, most

systems cannot achieve this peak bandwidth due to overheads in the interconnection between

system memory and the PCI bus on the host. The host interface module connects the DMA en­

gine to the SRAM, which completes the data path between host memory and local memory. The

network processor initiates the host-DMA engine to transfer data from any physical address on

the host to any SRAM address on the network interface.

The PCI interface supports memory-mapped IO. An operating system can map a region of the

host PCI addressing space onto the local memory and register area on the network interface.

Thus, the host processor can directly access -the entire SRAM, using programmed IO, through

this memory-mapped window. Similarly, the operating system can also allow an application to

map a restricted window into the interface so that the application can directly interact with

the network controller without relying on a system call into the kernel to communicate with

the controller.

The PCI interface also supports a doorbell mechanism, which is a FIFO queue in the network

interface. This mechanism allows multiple applications on the host to safely multiplex control

40

words into the network interface. The host processor executing the application writes the con­

trol word anywhere within the shared PCI address range allocated to the doorbell, the network

interface redirects the address and data of the programmed-10 write operation into a prede­

termined queue in local memory. In this way, the network processor needs only to check a sin­

gle location for new control words from any application on the host.

The network interface connects to the network link through a packet interface. This packet

interface comprises two independent wire-DMA engines: one for transmitting data to the net­

work link and one for receiving data from the link. Each engine operates at 1.28Gb/s.

3.4.1 Programmed-IO—host-DAAA tradeoff

Two mechanisms to transfer data between host memory and the network interface are pro­

grammed IO and host DMA [71]. With programmed IO, the host processor accesses network in­

terface memory by directly accessing the memory-mapped addresses. With DMA, the host or

network processor programs the DMA engine on the network interface to transfer data in bulk.

DMA transfers have much higher bandwidth than corresponding programmed-IO transfers. How­

ever, they also require a setup time to program the transfer parameters for source and desti­

nation addresses and data size into the DMA engine registers. As a result, programmed-IO trans­

fers are better suited for host-processor-initiated small transfers, whereas DMA transfers are

better suited for large transfers, or are required when the network interface initiates transfers

without any host-processor intervention. The LANai-9 network processor can only access host

memory through its DMA engine and thus will always incur the DMA setup overhead whenever it

initiates a transfer between host memory and the network interface.

Figure 4 on the following page shows the measured latency and throughput for various transfer

sizes using programmed-IO and host-DMA transfers on the existing hardware prototype. In both

host-to-network (H2N) and network-to-host (N2H) transfers, the latency and throughput of

host-DMA operations are significantly better than programmed-IO operations for most transfers.

Specifically, the programmed-IO transfers are only better than host-DMA transfers when the

transfer size is less than 112 bytes for host-to-network (H2N) transfers and less than 8 bytes for

network-to-host (N2H) transfers. NetVM uses this result to optimize the latency for small mes­

sages, by adaptively switching between programmed-IO and DMA transfers depending on the

message size.

41

Figure 4. Latency and throughput of programmed-10 vs. host-DMA transfers.

3.5 Summary

NetVM allows applications to access data in virtually-addressed remote memories in a reliable

and protected way. In addition, an application can optionally notify a remote application dur­

ing a data transfer. The remote application detects these notifications either by busy waiting,

by block waiting, or by triggering a handler to process them. NetVM delivers notifications in

issue order even over an out-of-order delivery network. Finally, NetVM directly supports effi­

cient wait queues and counting semaphores by implementing new atomic operations that re­

duce the number of network transactions required for synchronization operations.

The NetVM architecture consists of three key modules. First, the application links against the

user library to access the NetVM API, which provides the interface to the functionality summed

up in the preceding paragraph. Second, the kernel device driver handles application system

call requests through the API, integrates with the VM system to manage the shadow page table,

and implements the interrupt handler for the network interface. Finally, the firmware on the

network interface handles direct application requests through the API and messages from the

network.

NetVM is implemented with the Myrinet programmable network interface. This interface con­

sists of the LANai-9 processor, on-board SRAM and three DMA engines to access host memory

and a bidirectional network link. On this particular interface, DMA is more efficient for bulk

data transfers across the PCI 10 bus, but programmed 10 is more suited for small transfers due

to the high setup overhead for the DMA engine.

42

4 Memory management

A central feature of NetVM is that applications can directly access unpinned virtual memory. To

do this, NetVM shadows portions of the host page table on the network interface by intercept­

ing key host VM-system operations. The VM module maintains this shadow page table for all

pages that local NetVM applications export. The NI uses this table to lock and obtain the physi­

cal address of a page before accessing it with a DMA transfer. Both host and NI synchronize on

individual page table entries to ensure translation consistency. The host VM system delays re­

moving a page mapping if the NI has current locked the same page for a DMA transfer.

4.1 Import-Export memory segments

NetVM transfers data only between local memory segments that an application exports and

memory segments that it imports from remote applications. The user library provides an im­

port-export API to manage these segments, it maintains the import map and an export map

required to support the data-transfer operations. The kernel driver also maintains a copy of the

export map required to update the shadow page table and to handle remote import requests.

4.1.1 Import-Export API

Type Operation Return Description

export export(name, addr, size)
unexport(seg)
exportjookup(addr)

seg

(seg, offset)

export local virtual-address range
remove exported segment
convert local virtual address to segment-offset

import import(node, port, name)
unimport(seg)
import_lookup(node, port, addr)

seg

(seg, offset)

bind remote exported segment
remove imported segment
convert remote virtual address to segment-offset

Table 5. NetVM import-export operations.

An application exports a virtual address range, or memory segment, to allow remote applica­

tions to access it, and to allow the network interface to transfer data to or from it via host

43

DAAA. The application imports a remote exported segment before accessing that memory. Table

5 shows the import-export API that the NetVM user library provides to applications in two sec­

tions. The first section lists the export operations. The export system call specifies the base

address, size and a 64-bit name of a virtual memory segment and returns an handle for the

newly exported segment, unexport unmaps an exported segment and immediately prevents

NetVM, and remote applications, from accessing it. export_lookup maps a local virtual address

into its associated segment-offset pair, which is the exported segment handle and the offset

into that segment.

The second section of the table lists the import operations. An application calls import to bind

to a named remotely exported segment. A successful import returns a local handle that the

application uses to refer to the imported segment, unimport unbinds an existing import and

immediately prevents the application from accessing the remote segment. import_lookup

maps a remote application address, specified by the node, port and virtual address, into its

associated import segment-offset pair. NetVM data-transfer API calls require the application to

specify the segment-offset pair to name remote memory. import_lookup provides a convenient

alternative to map a global remote application virtual address into the required arguments for

those calls.

4.1.2 Import-Export maps

segment-range table segment-metadata table

min max seg
handle

seg
handle

metadata

global segment
virtual address handle

(index)

segment
metadata

node port base virt addr

64-bit global virtual-address format

node port addr range protKey

segment-metadata fields

Figure 5. NetVM import and export maps.

Figure 5 shows the data structures that NetVM uses to maintain the application imports and

exports. Each application stores an import map and an export map, which have identical for­

mats. The user library uses the maps to obtain the required location and protection information

and construct the data-transfer commands for the network interface. The kernel also stores a

44

copy of the export map for each application. It uses the map to handle remote import requests

and to handle the shadow page-table updates during page faults. Both import and export maps

have identical formats, they respectively store only remote or local mappings.

The import or export map consists of a segment-range table and a segment-metadata table.
The segment-range table is a binary-search table (BST) that maps non-overlapping global vir­

tual-address ranges into their corresponding segment handles. The system-wide unique 64-bit

global virtual address is the concatenation of the 16-bit node number, 16-bit port number, and

32-bit base (or limit) virtual address of a segment. The segment handle is also the index into

the segment-metadata table. This table stores attributes about each segment, including its

location in the network, virtual address range and protection key.

Using a BST efficiently obtains the segment metadata from the unique global virtual address in

O(logS) time where S is the number of segments. This fast look up is important because it is in

the critical path of a data-transfer or page-fault operation. Using a hash table is insufficient,

because the table would need to store each individual page address as a hash key to fully map

a segment.

4.1.3 Import-Export operations

An application exports a segment by calling the NetVM export system call with the virtual ad­

dress range and name of the segment. The system-call module first verifies that the address

range is not overlapping with existing exported segments. It then generates a random 64-bit

protection key for the segment and inserts a new entry into the kernel's copy of the export

map. Finally, it returns the local handle of the newly exported segment, which is the index into

the segment-metadata table, together with the generated protection key to the application.

The application uses the returned results to update its own identical copy of the export map.

The NetVM unexport system call revokes a local exported segment. In addition to deleting the

segment entry from the export map, the kernel module also scans the set of resident pages and

removes any mapped pages that belong to the segment from the shadow page table, so that

NetVM cannot access them from the network interface. The kernel synchronizes with the net­

work interface to remove page mappings from the shadow page table to ensure translation

consistency.

The NetVM kernel module intercepts the process-exit code to clean up after a NetVM applica­

tion that either crashed or exited without properly closing the NetVM port. The module calls

45

unexport for each exported segment in the exiting application's export map, which removes

the page mappings in the shadow page table for any resident pages in the exported segment.

An application imports a segment by specifying a node, port and the segment name in an im­

port request message to the remote kernel module. The kernel module on the remote node

uses the NetVM port and segment name to locate and look up the kernel copy of the requested

application's export map. If the named entry exists, it replies to the importing application with

the attributes, including the virtual address range and protection key, of the exported seg­

ment. The importing application updates its import map with the returned attributes of the

newly imported segment, unimport simply removes the entry from the import map.

4.2 Host VM-system integration

NetVM intercepts key VM system operations to update the shadow page table on the network

interface. The NetVM VM module provides three operations for the host to manage the page

table: insert a page mapping whenever the host pages in a NetVM application page; remove the

mapping whenever the host pages out or frees the page; and detect if the network interface

has modified a mapped page. NetVM requires only four simple changes to the host VM system,

each change calls one or more of the three exported operations.

To support the page-mapping operations, the NetVM VM module maintains a system-wide proc­

ess mapping table and a copy of the export map for each application. During a page fault,

these tables translate the operating system's page-fault parameters, available only to the host

VM system, into the arguments required by the NetVM VM module to update the shadow page

table.

4.2.1 FreeBSD VM-system operation

Figure 6 on the following page shows the key operations on the FreeBSD VM system that are

pertinent to NetVM. The host VM system manages the host pages in VM page queues using an

approximate LRU policy. Pages on the host are in one of five possible states: active, inactive,

cache, free and wired. With the exception of wired, the state of a page determines the queue

that stores it. Initially, all pages belong to the free list.

46

host VM operation
(NetVM operation)

free page
C unmapPage+isPageDirty)

active queue ^>«SE-^> ;inactiyefq^ieO?>SB^^>[cache queuei^>

fault in page deactivate page
(mapPage) (isPageDirty) cache or

clean page
(isPageDirty+unmapPage+isPageDirty)

' v
free list

Figure 6. FreeBSD VM-System page queues.

When an application faults on a nonresident page, the page-fault handler allocates a free page

for the application and places it into the active queue. To balance the size of the queues, the

page-deactivation routine deactivates dormant pages in the active queue and moves them into

the inactive queue. If the system has insufficient available pages, the page cleaner scans the

inactive queue and either frees unused pages, transfers clean pages into the cache queue, or

flushes modified pages to the backing store. An exiting application releases all its allocated

pages back to the free list.

NetVM intercepts key VM operations to maintain the shadow page table on the network inter­

face. These changes call corresponding NetVM operations shown in parenthesis in Figure 6. The

remaining sections describe the NetVM interface and the required modifications to the host VM

system.

4.2.2 NetVM VM-System interface

Operation Return Description

mapPage(VPN, vmpage, protKey) - insert a page mapping
unmapPage(vmpage) SUCCESS or LOCKED conditionally remove a page mapping
isPageDirty(vmpage) DIRTY or CLEAN test if NI has modified a page and reset its state

Table 6. Host page-mapping operations.

Table 6 lists the operations that NetVM exports to the host VM system to manage the shadow

page table in the network interface. mapPage inserts a new page mapping of an application

virtual page number (VPN), which is a node-wide unique page identifier, into the page table.

The vmpage argument is an operating system metadata structure that describes a host page

including its physical address and modification state. unmapPage conditionally removes a page

47

mapping, this operation may fail if the NI has currently locked that page. isPageDirty returns

DIRTY and updates the operating system state for an Nl-dirtied page, which the NI has modified

since the previous isPageDirty call for the same page. As a side effect, it also resets the modi­

fication state for that page to CLEAN.

4.2.3 Host VM-system modifications

NetVM requires four simple changes to the host VM system. Also shown in Figure 6, these

changes correspond to the page-state transitions, by the VM system, of all NetVM exported

pages. Each change amounted to adding a single block statement to call the appropriate stub

function in the NetVM kernel driver and to redirect the VM operation when necessary. The first

change is that the page-fault handler calls mapPage to insert a new page mapping whenever it

pages in an exported page into host memory.

The second change is that the page-deactivation routine in the pageout daemon calls isPage­

Dirty, to test if the NI has modified an exported page, just before deactivating an exported

page. If the NI has modified the page, the daemon skips this page and selects another one to

deactivate. Otherwise, it deactivates the page by moving it to the inactive queue.

The third change is that the page cleaner calls isPageDirty and, if the NI has modified the

page, reactivates the page by moving it to the active queue. If, however, the page was clean,

the cleaner calls unmapPage to remove the page mapping from the network interface in

preparation for moving it out of the inactive queue. unmapPage may fail because the NI has

locked the page. In this case, the cleaner also simply reactivates the page, which acknowledges

that the page is still active. Immediately after successfully calling unmapPage, the cleaner

calls isPageDirty, a second time, to update the dirty state in the host page-table entry. Using

this updated state, the cleaner either flushes a modified page to the backing store, or moves a

clean page into the cache queue. This second isPageDirty call is necessary because the NI may

have modified the page between the first isPageDirty and unmapPage calls. NetVM must re­

flect this modification by updating the host page-table entry with the second isPageDirty call.

The final change is that the page-free routine calls unmapPage and isPageDirty to remove its

page mapping and to reset its modification state. If unmapPage fails, the kernel spins, retrying

the operation, until it succeeds in forcibly removing the page mapping from the network inter­

face. This spinning is not detrimental because it occurs only when the NI is currently perform­

ing DMA on the same page. In any case, the failed call will succeed as soon as the DMA opera­

tion completes, which is a delay of at most 9.4us on the current hardware prototype.

48

4.2.4 Translating OS page-fault parameters into NetVM mapPage arguments

page-fault
handler

t .vmmap

virtAddr

vmpage

NetVM port
number

vmmap
hash table

application export map

segment-
range
table segment

index

segment­
al metadata

table

mapPage ,

t protKey

VPN

-> vmpage

Figure 7. Translating application page-fault parameters into NetVM mapPage arguments.

The mapPage operation requires the VPN, physical address and protection key of a faulting

page to insert its mapping into the network interface. However, the VM system page-fault han­

dler has access to only the process vmmap, the faulting page's virtual address and its corre­

sponding physical address. The host obtains the required arguments for mapPage through a

series of lookup operations shown in Figure 7.

The NetVM system-call module maintains a system-wide vmmap hash table for each node and

an export map for each application on the node. The vmmap table maps a registered process's

vmmap pointer to its NetVM port number. The system-call module updates this table whenever

an application opens or closes a NetVM port. It also maintains an export map, described in Sec­

tion 4.1, to store the metadata describing each segment that the application exports.

The page-fault handler obtains the protection key for a faulting page in three steps. First, it

uses the faulting process's vmmap pointer to search the vmmap hash table and obtain its asso­

ciated NetVM port number. Second, the handler uses the faulting virtual address to search the

application export map, identified by the port number, for the index of the segment containing

the faulting page. Finally, it uses the index to look up the segment-metadata table and obtain

the protection key for the faulting page in the exported segment.

The page-fault handler concatenates the process's NetVM port number with the faulting virtual

page number to compute the node-wide unique VPN. This VPN, together with the protection

key and the original vmpage parameter, make up the required arguments for the mapPage op­

eration.

49

4.3 Network-interface page table and physical map
The shadow page table on the network interface consists of two data structures: a page table

(PT), which stores mappings from NetVM virtual page numbers (VPNs) to physical page numbers

(PPNs), and a physical map (PMAP), which stores NetVM metadata including the reverse map­

ping for all resident pages that NetVM applications export on the host.

The design of the data structures faces two important constraints. First, they must be compact

to fit in the limited memory on the network interface. The data structure sizes on the network

interface should scale with available memory on the host, assuming that available network-

interface memory grows proportionally with available host memory. Second, they must allow

concurrent access by the host and network interface processors.

4.3.1 Page table

R/W access

host W

NI R

indexed
by hashkey
=hash(VPN)

hash-table row example~^~~

PPN, PPN2 PPN3 PPN4

VPN, to VPN 4 all hash to the same row

Figure 8. Page-table organization on the network interface.

Figure 8 shows the page table on the network interface. It is a fixed hash table organized as a

2D array. The index into the hash table is the VPN hash key, which the host computes by hash­

ing the VPN. Each hash row stores a fixed number of contiguous 32-bit PPN entries terminated

by a zero value. Requiring contiguous entries in the row speeds up the lookup operation by the

network interface because the NI can retrieve all valid row entries without scanning the entire

row. The VPN itself is not included in the table to conserve space; instead, it is stored in the

PMAP as a reverse mapping.

5 0

Only the host modifies the page table, using programmed 10, to insert and remove page map­

pings. The network interface reads from, but does not modify, the table to translate addresses.

This asymmetry is necessary to allow concurrent access to the page table by the host and net­

work interface without needing each other to synchronize. It is still possible for the network

interface to read an invalid mapping if the host is simultaneously changing that mapping.

NetVM uses the PMAP to detect this error and discard the mapping.

The mapPage operation inserts a new entry for a page into the page table by first hashing its

VPN to locate the hash row and then inserting its PPN at the end of the row. To eliminate the

cost of linear probing with programmed 10 on network interface memory, NetVM maintains an

array of counters in host memory that records the number of entries in each hash row. In the

rare chance that the row is already full, mapPage replaces a randomly selected victim, from

the same row, with the new entry. If the NI later tries to access but cannot find the victim

page in the page table, it redirects the operation to the host kernel, which will reinsert the old

page mapping and, if necessary, select another victim entry.

The unmapPage operation removes a page-table entry by simply replacing it with the last en­

try of the hash row to maintain the invariant of contiguous row entries. Because only the physi­

cal address PPN is available as an argument, unmapPage uses the reverse mapping in the PMAP

to first obtain the VPN and compute the hash row. It then linearly scans the row, searching for

the matching PPN entry, to remove it.

4.3.1.1 Hash-table analysis

There is a probability that the NI cannot locate a previously inserted entry in the hash table.

When the host inserts a new entry into a full row, it evicts and replaces a random victim in the

same row with the new entry. The NI will not be able to locate the evicted entry in the hash

table and has to redirect its operation to the host kernel. The following paragraphs present a

simple hash-table analysis to determine the likelihood of this event occurring based on the

hash-table parameters and load.

For the analysis, assume that the hash function that maps the VPN into the hash-table index

has a uniform distribution. Assume also that the NI is equally likely to look up any of the previ­

ously inserted entries, but will not look up uninserted entries.

51

f M f i - l]
I m)

n-i
(i f i - l]

I m) i J

The probability that the NI cannot locate a hash-table entry due to eviction is

n

P(evicted) - ^
<=rf+i

where

m is the number of hash-table rows,

d is the number of entries in a hash-table row, and

n is the number of entries inserted into the hash table.

Proof:

Consider a row k.

1
The probability that a single entry hashes to row A: is p - — . For a sequence of n insertions

m

into the hash table, the probability that i entries hash to row k is p ' (l - p) " ' . Because the

number of possible sequences that lead to the same outcome is

tions occurring in row k after n insertions into the hash table is

, the probability of / inser-

If i<d, the row stores all i entries and thus the NI can always locate the required entry. If

d <i<n, the NI has an equal probability to look for any entry in the row, whether it is

evicted or not. Therefore, the probability that the NI cannot locate the required entry in that

row in this case is bounded by

inserted entry in the row)

i-d
(it is zero only if the required entry is the most recent

Hence, after n insertions into the hash table, the probability that NI cannot locate the required

entry in a row that has exactly / insertions is

0 (/ < d)
P(evictedj) - P%-PT i-d

\ i J
(d<i<n)'

52

Summing up for all i between d+1 and n inclusive, the probability that the NI cannot locate

i-d
the required entry in a row due to eviction is P(evicted) = V p)n

i=d+l V I J

Because the NI is equally likely to index into any of the m rows during a lookup (uniform hash

distribution), therefore the probability that the NI cannot locate a hash-table entry due to

eviction is the same as the probability for a single row, which is

P(evicted) = V
i=d+l

1-
i Y ~ Y / - ^
m) V i J

load factor (%)

Figure 9. Probability that NI lookup hits an evicted entry in the hash table.

Figure 9 shows the computed probability, for different hash-table configurations, that the NI

lookup will hit an evicted entry in the hash table for a range of load factors. The load factor is

the ratio of n to M, where M is the total number of host memory pages. To recall, n is the

number of inserted entries, m is the number of hash-table rows and d is the size of a hash-

table row.

53

The three solid lines show the results for three hash-table configurations that occupy the same

total storage space of 4M (md=4M in each case). A higher row depth, with a correspondingly

lower row count, results in a smaller probability of looking up an evicted entry. However, the

same trend also results in a higher average number of entries per row, which increases the

lookup time. NetVM uses (m=M, d=4) as a compromise, because the estimated cost of redi­

recting the operation to the host, due to eviction, is less than 103 times the cost for the NI to

complete the operation. In this configuration, the average number of entries per row is 1 and

the probability of a not finding a previously mapped entry in a fully loaded hash table is less

than 10"3. For a half-loaded hash table, this probability drops to less than 4x10"5.

4.3.2 Physical map

R/W access

host W W R W R

NI R R W R W

indexed •-
by PPN !

VPN prot
Key

invalidated by
host

lock
bit

host
mgd

Nl-
mgd mgd = managed

] single
> physical page entry

locked by
NI

page-dirty
state

Figure 10. PMAP organization on the network interface.

Figure 10 shows the PMAP data structure on the network interface. The PMAP stores the meta­

data for physical pages on the host that NetVM has currently mapped into the network inter­

face.

The PMAP consists of five separate arrays all indexed by the PPN. The VPN array stores the 32-

bit reverse mappings for the page table. Each physical page has only one VPN and, therefore,

has only one reverse mapping. The protection key (protKey) array stores the 64-bit protection

keys that the NI uses to verify that a remote application has the right to access the requested

pages by matching them with the keys carried in the request message. The lock-bit array stores

one flag for each page, which the NI uses to indicate its intent to lock a page in host memory.

54

Finally, the page-dirty state table actually consists of two bit arrays: host-managed and Nl-

managed. Section 4.3.2.1 describes host how these two arrays work together to maintain the

list of Nl-modified pages. The size of the PMAP on the network interface is proportional to the

physical memory on the host, each physical page entry requires only 99 bits: 32 bits for the

VPN, 64 bits for the protection key and 1 bit each for the page-lock flag, host-managed and Nl-

managed page-dirty states.

The shadow page table currently supports only a 1:1 mapping between an application VPN and

PPN. On the one hand, this approach limits the data structure sizes so that they scale linearly

with the amount of physical memory on the host. On the other hand, NetVM applications can­

not share access to physical pages on the host. Extending the design to support an M:1 map­

ping, for a small fixed value of M, is straightforward and requires only two changes to the data

structures. The first change is to increase the size of the page table by up to M times to sup­

port more virtual-to-physical page mappings. The second change is to increase the number of

reverse mappings and protection keys by including M, instead of one, VPN and protKey arrays in

the PMAP.

Also shown in Figure 10, either the host or the NI, but not both, modifies each array in the

PMAP. Ensuring a single writer for each data structure allows concurrent access by the host and

NI. However, both the host and NI need to synchronize with each other when the host wants to

remove a mapping for a page that the NI wants to lock. Section 4.4 describes this host-NI syn­

chronization in detail.

4.3.2.1 Page-dirty state table

Figure 11 on the following page shows the operation of the page-dirty state table on the net­

work interface. It consists of two bit arrays: host-managed and Nl-managed. Only the host

writes to the host-managed bit array and, likewise, only the NI writes to the Nl-managed bit

array. With this scheme, corresponding bits with equal value (both 0 or both 1) in the two ar­

rays indicate that the NI has modified that page. The NetVM driver initially sets all the bits in

the host-managed array and clears all the bits in the Nl-managed array. The NI unlockPage-

Dirty marks a page modified, after a DMA transfer to the host page, by copying the host-

managed bit to the Nl-managed bit. The host tests and marks a page clean, within isPageDirty,

by copying the complement of the Nl-managed bit to the host-managed bit.

55

R/W access

host W R

NI R W

mgd = managed

page is clean

NI copies bit to
mark the page dirty

host copies complement bit to
mark the page clean

X * Y => page is clean
X = Y => page is dirty

Figure 1 1 . Page-dirty state bit arrays.

A possible race condition occurs when the host tests and marks a page clean at the same time

that the NI marks a page modified. This race does not affect the correct operation of the page-

dirty state table because the host test will never detect a modified page as clean. However,

the final state of a modified page may still be dirty even after the host marks it clean, depend­

ing on the relative ordering between the host and NI operations. Recall from Figure 6 on

page 47 that the host VM system calls isPageDirty at four places: once each in the page-free

and page-deactivation routines, and twice in the page cleaner. In the page-free routine and

after unmapPage in the page cleaner, the host calls isPageDirty only after it has unmapped

the page. Therefore, the NI cannot mark a page modification during that time because it can­

not acquire the unmapped page. For the remaining two places, the host will reactivate the

page if it detects a modified page. The page's modification state may remain dirty if the host

calls isPageDirty in a race. This situation is not detrimental because, in the worst case, the

page-deactivation routine unnecessarily reactivates the page when it calls isPageDirty the next

time, even if the NI has not modified the page.

NetVM uses two separate bit arrays to store the page-dirty state to conserve limited memory

space in the network interface while allowing concurrent updates by the host and NI. Reasona­

bly, each page requires only one bit to store the modification state. However, NetVM cannot

simply store all the modification flags in a single packed bit array on the network interface be­

cause both host and NI processors cannot atomically, and concurrently, update individual bits

in the same memory word. Neither processor can perform a read-modify-write operation on a

single bit in network-interface memory and the smallest data unit that both processors can

indexed
by PPN

host
mgd

1

Nl-
mgd

56

modify is a 32-bit word. An alternative to storing the page-dirty table, which uses more mem­

ory space, is to allocate an entire 32-bit word to store the modification state for each page.

This word granularity ensures that both processors can update the states for different pages

without possibly interfering with each other. A better alternative is to use two separate bit

arrays and ensuring there is only one writer for each array. This double-array approach reduces

the storage on the network interface by a factor of 16, from 32 bits to only two bits per page.

4.3.3 Address translation and page locking

Operation Return Description

lockPage(VPN, hash_key) PPN or fail translate address and lock page
unlockPage(PPN) - unlock page
unlockPageDirty(PPN) - unlock page and set modified bit

Table 7. NI page-locking operations.

Table 7 lists the operations for the network interface to access the shadow page table. lock-

Page translates the virtual address of a page into its physical address in host memory and locks

the page to prevent the host from unmapping it. The NI calls lockPage, in the critical path of

any NetVM data-transfer operation, to acquire the page before accessing it using DMA. There­

fore, minimizing the latency of lockPage is important, especially for small data transfers. The

NI calls unlockPage to release the page lock after it completes a DMA read transfer from the

page in host memory. unlockPageDirty is similar to unlockPage except that, in addition to

unlocking the page, it also sets the modification state for that page after a DMA write transfer

to the page in host memory.

Figure 12 on the following page shows the lockPage operation by the network interface. This

procedure requires the VPN and VPN hash key of the page. It will return the PPN of the page in

host memory, which the DMA transfer requires, if the operation was successful, or it will return

NOT_FOUND if the page is not resident in host memory. lockPage first uses the VPN hash key to

locate the page-table hash row containing all the PPN entries that potentially correspond to

the requested VPN. For each PPN, lockPage attempts to lock the page by first setting the lock

flag for the page in the PMAP and then verifying that the requested VPN matches the reverse

mapping also in the PMAP. The NI successfully acquires the page if the VPNs match and returns

the PPN value. If the VPNs do not match, the NI resets the lock flag for the page and tries the

next PPN in the hash row. When there are no more entries to try, lockPage returns

NOT_FOUND to indicate that it cannot locate the page in host memory.

57

lockPage(VPN, hashkey) : return PPN or NOT_FOUND

PPN = PT-.lookup(hashkey)

PMAP.lock(PPN)

..-•"•""^ VPN>
..PMAP.getvpn(PPN)?,

T PPN = PT.lookupnext(hashkey) ;

virtual page VPN
is locked at
physical page PPN

virtual page VPN
is not found
(not resident)

Figure 12. Address translation and page locking on the network interface.

4 .4 Host-NI synchronization
Both host and NI cooperate with each other when updating a PMAP page entry to ensure PMAP

consistency. The host mapPage operation does not require explicit synchronization because it

orders the updates by writing the PPN into the page table last, after updating the PMAP fields.

As a result, any PPN that the NI reads from the page table will already have a corresponding

updated, and coherent, VPN in the PMAP.

The host unmapPage and NI lockPage operations need to synchronize with each other. A race

condition arises if the host is removing the page mapping of a page that the NI is locking at the

same time. If both operations had succeeded, the NI would perform a DMA transfer using a

stale virtual-to-physical mapping. NetVM prevents this situation by using a mutual exclusion

algorithm, based on Peterson [62], to ensure at most only one operation succeeds in a race

over the same page. NetVM uses the two-word Peterson-based approach instead of a single-

word test-and-set lock because PCI [70] does not support atomic read-modify-write operations

across the IO bus.

58

HOST unmapPPN(PPN) NI lockPPN(PPN, VPNREQUIRED)

save and clear P M A P . V P N [P P N] set P M A P . lock[PPN] = T R U E
if PMAP . l ock [PPN] is T R U E if P M A P . V P N [P P N] * VPNREQUIRED

restore P M A P . V P N [P P N] restore PMAP . l ock [PPN] = F A L S E
return P A G E _ L O C K E D return P A G E N O T M A P P E D

return U N M A P P E D _ P A G E return L O C K E D P A G E

Table 8. Host unmapPPN and NI lockPPN synchronization implementation.

Table 8 shows the synchronization operations unmapPPN and lockPPN on the host and NI re­

spectively. unmapPage calls unmapPPN to remove a physical page mapping by first clearing its

VPN field and then finding its lock flag clear. It restores the VPN and returns PAGE_LOCKED if

the lock flag is set. Correspondingly, lockPage calls lockPPN to lock a physical page by first

setting its lock flag and then finding a valid VPN for the page, as described in Section 4.3.3. It

clears the lock flag and returns PAGE_NOT_MAPPED, indicating that this page is not resident, if

it found an invalid VPN.

host P M A P NI

invalidate "
VPN

"* find lock
clear

"* find lock
clear set lock

"* find lock
clear

find VPN "
invalid

"* find lock
clear

" clear lock

host
unmaps
page

0)
host unmaps page

NI fails
to lock
page

host P M A P NI

V
set lock

find VPN "
valid invalidate "

VPN

find VPN "
valid

^ find lock
set

find VPN "
valid

restore VPN^

find VPN "
valid

host P M A P NI
page entry

invalidate "
VPN

entry

invalidate "
VPN " set lock

~~ find lock
set

" set lock
~~ find lock

set find VPN
invalid restore VPN''

find VPN
invalid restore VPN''

" clear lock

host fails
to unmap

page
(»)

NI locks page

NI
locks
page

neither host nor NI acquires page

(iii)
neither acquires page

Figure 13. Three possible outcomes when the host and NI synchronize over the same page.

Figure 13 shows the three possible outcomes when the host and NI both try to acquire the same

physical page simultaneously. In the first outcome (i), the host successfully removes a page

mapping by invalidating the VPN and finding a clear lock flag before the NI can set it. The NI

interprets this page as nonresident, because of its invalid VPN, and continues to scan the page

table for additional PPN entries to try. The NI redirects the transfer to the bounce buffer only

when there are no more entries in the page-table hash row.

In the second outcome (ii), the NI successfully locks the page by setting the lock flag and

matching the required VPN in the PMAP before the host can invalidate the VPN. The host has

two options depending on the VM operation that called unmapPage. In the first option, the

59

page-deactivation routine correctly treats this page as active and simply leaves it in the active

queue before selecting another one to deactivate. In the second option, the page-free routine

forcibly removes the page mapping by retrying the unmapPage operation until it succeeds. To

do this, it leaves the VPN invalidated, preventing the NI from reacquiring the page, and spins,

reading the lock flag, until the DAAA transfer completes and the NI unlocks the page by clearing

the flag.

In the third outcome (iii), neither the host nor the NI successfully acquires the page. In this

rare case, the host invalidates the VPN but finds a set lock flag and the NI sets the lock flag but

find an invalid VPN. Both host and NI take the same recovery actions described in the previous

two outcomes. This third outcome is not detrimental because the NI simply redirects the trans­

fer to the bounce buffer, which results in a less efficient one-copy operation instead of a zero-

copy transfer even though the page is already mapped on network interface.

4.5 Summary
Integrating memory management between the host operating system and the network interface

is a key function in NetVM. NetVM transfers data only between memory segments that an appli­

cation exports and imports. The kernel module integrates with the host operating system to

update and maintain a shadow page table on the network interface by intercepting four key VM

system operations. The network interface stores a hash table that tracks virtual-to-physical

page mappings and a PMAP that tracks reverse page mappings and page metadata. It uses these

data structures to lock and obtain the physical address of a required page before accessing it

for DMA transfer. Both host and NI synchronize on individual page entries to ensure translation

consistency. The host delays removing a page mapping if the NI has currently locked it for DMA

transfer.

60

5 Data-transfer operations

A NetVM application writes to, and reads from, remote application memory by issuing write

and read commands directly to the network interface. The user library exports a read-write

API and converts application requests into command descriptors for the network interface. The

network interfaces on the local and remote nodes coordinate with each other to process the

transfer operation. They locate and lock resident host pages through the shadow page table

and directly transfer the requested data using a zero-copy scheme with the host DMA. If the

required page is not resident, the NI redirects the transfer to a system bounce buffer on the

host. The kernel driver fetches the page from the backing store and completes the transfer

using a single host-to-host memory copy operation.

5.1 Data-transfer API

Type Operation Return Description

write write(seg, offset, addr, size)
writeF(seg, offset, addr, size)
writeN(seg, offset, addr, size, notf)
writeFN(seg, offset, addr, size, notf)

-
write to remote memory
fenced-write[*] to remote memory
notifying write to remote memory
notifying fenced-write[*] to remote memory

read read (seg, offset, addr, size)
readF(seg, offset, addr, size)

read from remote memory
fenced-read from remote memory

fence flushRO
flushWO
flushRW()

-
spin until all reads complete
spin until all writes complete locally[*]
spin until all reads and writesf] complete locally

map import_lookup(node, port, addr) (seg, offset) convert remote virtual address to segment-offset

Table 9. RDMA write, read and flush API.

[*] source-side fencing only.

Table 9 shows the data-transfer API that the NetVM user library exports to applications in four

sections. The first section shows four different write* calls. Each write call requires the im­

ported segment (seg) and offset into the destination remote segment, and the address (addr)

and size of the source data in local memory. The basic write call posts the command into the

network interface and returns immediately. writeF, or fenced write, is similar to write except

that it returns only after the current and all previous writes from the sender have completed

61

on the source network interface, thus allowing the application to safely reuse the source buff­

ers. writeN, or notifying write, attaches a notification signal not /with the message, which no­

tifies the remote application once all current and all previous writes from the sender have ar­

rived at the remote application. writeFN, or notifying-fenced write, combines writeF and

writeN into a single API call.

The second section of the table shows two different read* calls. Both read calls require the

imported segment and offset of the source remote memory location, and the address and size

of the destination in local memory. The basic read call posts the command into the network

interface and returns immediately. The network interfaces will complete the read operation

without any intervention by, or indication to, the requesting application. readF, or fenced

read, returns only after the current and all previous read requests have completed.

The third section of the table shows three different flush* calls. These calls provide an alterna­

tive to the fenced modifier in the writeF, writeFN and readF calls. flushR and flushW spin

until all active read and write operations have completed respectively. flushRW combines

flushR and flushW. For example, an application can issue a series of asynchronous read and

write calls, followed by a flushRW before continuing, to ensure that all requested reads have

completed and that it can reuse all source buffers.

Finally, the fourth section of the table repeats the import_lookup API from Table 5 on

page 43. This operation maps a remote address, using the node, port and virtual address in the

remote application, into the import segment-offset pair that the read* and write* calls require

for naming remote memory.

62

5.2 User-library operations

write-command Descriptor

Myrinet wormhole route (8 bytes)
Myrinet message tag (NETVM) (padding)

sending node sending node sequence number
source VPN source VPN hash key

source protection key (64 bits)
source page offset and length destination node

destination VPN destination VPN hash key
destination protection key (64 bits)

destination page offset and length notification
command (WRITE) (padding)

small-message payload
(up to 64 bytes)

Table 10. Format of the write-command descriptor.

The NetVM user library handles the read-write API calls by constructing command descriptors

and issuing them into the network interface. Table 10 shows the write-command descriptor

format. Each field is a 32-bit word except for the Myrinet route and protection keys, which are

64 bits each. The user library assigns only the shaded fields, which are specific to the write

operation; the network interface assigns the unshaded system-dependent fields.

The user library splits a large application request into multiple smaller transfer commands for

the network interface. The read-write API calls specify local and remote virtual address ranges,

which may span multiple pages and may be unaligned. However, the network interface handles

only up to page-sized page-aligned transfers, no transfer can cross either a local or remote

page boundary. The user library fragments a large unaligned transfer into multiple smaller

page-granular units and constructs a command descriptor for each unit. It computes the subse­

quent VPN, VPN hash key, page offset and length fields of the source and destination pages in

each descriptor.

Each descriptor also specifies the protection keys for the source and destination pages so that

the NI can access those host pages. To obtain the keys, the user library looks up its export map

to retrieve the key for the local page and looks up its import map to retrieve the key for the

remote page. Section 4.1 on page 43 described the import-export maps in detail.

The write-command descriptor includes a 96-byte small-message payload. The user library cop­

ies the data for small transfers, using programmed IO, directly into the payload field instead of

relying on the host-DMA mechanism on the network interface. The network-processor overhead

for setting up the host-DMA operation for a small data transfer, including address translation,

63

page locking and DMA-engine setup, exceeds the host-processor overhead of writing the same

data directly into network-interface memory. The read-command descriptor does not include a

payload field, because it is the network interface, and not the application, on the remote node

that transfers the data from host memory into network interface memory.

5.3 Application command queuing and dispatching

! application*
shadow s

i completion
counters

pS'mappecTinto userCspace-^ . . network interface

write handler •

read handler

others..

Figure 14. Application-NI interface and command dispatching.

Figure 14 shows the key data structures for applications to issue command descriptors directly

into the network interface, and for the firmware to dispatch them to the respective command

handlers. NetVM allocates a private page-aligned region of network interface memory for each

application to store the command queue and a set of completion counters. It also maps shared

the write-only hardware FIFO that all applications use to signal the NI whenever they insert an

entry into their private command queues. The dispatch table stores function pointers to the

command handlers, which allows the NI to quickly dispatch a command descriptor to its respec­

tive handler. The application also stores a set of shadow completion counters, which the NI

directly updates, to enable flow control over the command queue.

An application issues a command to the network interface by first inserting the descriptor into

its command queue and then writing its NetVM port number into the shared hardware FIFO.

The NI polls this FIFO to determine the command queue that has a ready descriptor. Without

this FIFO, the NI has to repeatedly scan the queues of all registered applications, which is slow

when there are many NetVM processes on the node. The NI uses the command field in the de­

scriptor as an index into the dispatch table to obtain the address to its associated handler. Fi­

nally, the NI calls the handler to process the command descriptor.

1 for each j |
registered -s ,',

application L_

command completion i
i [•

dispatch
queue counters • \ table

shared hardware FIFO 1

64

5.3.1 Flow control over the command queue

NetVM maintains a stepping window, using the completion counters, to provide flow control

over the 64-entry command queue. Each time a handler completes a command in the queue, it

increments a completion counter associated with that queue on the network interface. After

every 32 completions, the NI transfers the completion counter value, via host DMA, to a shadow

counter in the application host memory, thus freeing up 32 entries in the queue. The applica­

tion tracks the total number of commands it has issued and polls this shadow counter to de­

termine if the queue is full. It spins on the shadow counter, if necessary, until entries are avail­

able. This flow-control scheme allows an application to issue at least 32, and up to 64, com­

mands into the queue whenever the NI updates the shadow counter. Using a step size of 32,

instead of one, amortizes the cost of the host-DMA updates while freeing up sufficient entries

in the queue on each update.

The application spins on the shadow completion counter in host memory because it is ineffi­

cient to spin on the counter in network-interface memory. The host processor requires an ex­

pensive lO-bus transaction for each poll on network-interface memory. The network processor

also stores its working data and executes its firmware code off the same memory. Using the

host processor to spin on network-interface memory ties up the IO bus and slows down the

network processor due to increased memory-bus contention on the network interface. Having

the host processor spin on host memory avoids tying up either the IO or the host memory bus.

Host-DMA transfers from the network interface are cache coherent. The host processor spins on

a cached copy of the shadow counter until the NI invalidates the associated cache line by up­

dating the counter in host memory via host DMA. The next read after the update causes the

memory controller to fetch the new value from the host memory.

5.4 Write operation on the network interfaces

Figure 15 on the following page shows the write operation on the source network interface.

The NI write-command handler uses the VPN and VPN hash key fields in the descriptor to look

up the source page in the shadow page table and obtain its physical address (PPN) and protec­

tion key, and to lock the page in host memory. Section 4.3.3 described this address translation

and page locking operation in detail. After matching the protection key from the PMAP with the

key in the descriptor, the NI initiates a host-DMA transfer from the source page at host physical

address PPN into the DMA staging buffer. At the same, it also transfers the write message

header, by wire-DMA, onto the wire after updating the system-dependent fields (e.g. route and

sequence number) in the header. When the host-DMA transfer completes, the NI appends the

65

message header with the source data by transferring it, also by wire DMA, from the staging

area onto the wire. Finally, it unlocks the page in the shadow page table and, if necessary, no­

tifies the application of the local completion of this write command.

user Ubary queues
write command

virtual page VPN at
physical page PPN

application
virtual

memory

write

J DMA staging area

© D M A page to wire

© translate VPN
and lock PPN '_-

DMA message header to wire

Figure 15. Operation of RDMA-write on source network interface.

The NI interrupts the kernel driver if cannot locate the source page mapping in the page table.

The kernel driver responds by first fetching the nonresident source page from the backing store

and inserting its page mapping into the shadow page table. It then restarts the write operation

on the network interface. This case is rare, because the application touches each source page,

causing a page fault if necessary, immediately before issuing the write command for it.

After the write operation completes, the NI increments the write-completion counter in the

network interface and, if requested by the application, updates a shadow counter in host

memory via host DMA. The application spins on this shadow counter to determine when the

operation completes and, more importantly, when it can reuse the source buffer. The applica­

tion requests for this notification by incrementing a private write-completion counter and writ­

ing the required count into the network interface. The NI notifies the application only when

the counters match. For a multi-page write operation, the application only needs to request

the notification for the last write command in the group, because NetVM processes a command

queue in FIFO order. This write-completion notification mechanism therefore provides source-

side write fencing because the completion of write j, with respect to the sending application,

also implies the completion of write / for a l l ; < j in time.

NetVM uses the small-message-payload field in the descriptor for small messages. For messages

that are less or equal to 96 bytes, the user library copies the data, using programmed IO, di-

66

rectly into the payload field. Doing so, especially for small transfers, avoids the higher over­

head from the address translation, page locking and host-DMA setup operations required on the

source network interface. Section 3.4.1 on page 41 shows this trade off between using pro­

grammed IO and host DMA for transferring data for various sizes, between 4 bytes and 4KB,

from host memory into the network interface.

virtual page VPN at
physical page PPN

translate VPN-.-
- . © and lock PPN -

'VPN,
hashkey>

page table
and PMAP

application

virtual

memory

<PPN>
OR

A DMA page to
host page PPN

'i if PPN found

kernel

. • bounce |
buffer,

Q write message arrives from wire

^network

interface

| A DMA message to
• bounce buffer

if PPN not found

Figure 16. Operation of write on destination network interface.

Figure 16 shows the write operation on the destination network interface. The NI starts exam­

ining the message header once it receives sufficient data from the wire. It uses the VPN and

VPN hash-key fields in the header to translate the address of and lock the page in host mem­

ory. After matching the protection keys and waiting for the message payload to completely

transfer into the network interface from the wire, the NI initiates a host-DMA transfer from the

network interface into the host page. When the DMA transfer completes, the NI marks the page

as dirty and unlocks it in the shadow page table. If the write operation requires notifying the

receiving application, the NI transfers a notification record to the application notification

queue and optionally interrupts the host to signal the application. Section 6.1 describes this

notification mechanism in detail.

The NI transfers the entire message into the bounce buffer and interrupts the kernel if it can­

not locate the destination page mapping in the page table. The kernel driver fetches the non­

resident destination page from the backing store and transfers the data, on behalf of the NI,

from the bounce buffer into the application page.

67

The NI aborts the transfer if the protection checks fail. The write-command descriptor carries

the protection keys for both source and destination pages. The NI compares the keys with those

in the shadow page table after successfully locking and obtaining the PMAP entry for the page.

These checks ensure that the application cannot inadvertently access a remote segment that it

did not import. Using 64-bit wide protection keys also prevents an application from easily forg­

ing a key in the command descriptor and thereby gaining unauthorized access to a remote

memory segment.

5.5 Read operation on the network interfaces

read-command Descriptor

Myrinet wormhole route (8 bytes)
Myrinet message tag (NETVM) (padding)

sending node sending node sequence number
destination port destination node
destination VPN destination VPN hash key

destination protection key (64 bits)
destination page offset and length source node

source VPN source VPN hash key
source protection key (64 bits)

source page offset and length (padding)
command (READ) (padding)

Table 11. Format of the read-command descriptor.

Table 11 shows the RDMA-read command descriptor format. The read operation transfers data

from the remote source memory location to the local destination address. Like the write op­

eration, the application initiates a read request by constructing the read-command descriptor,

inserting it into the command queue, and signaling the shared hardware FIFO.

The read operation is similar to write. The requesting NI first forwards the entire read mes­

sage to the remote source node. The source NI processes the message and replies to the desti­

nation node with the requested data, similar to the write operation on the source network in­

terface, without any host intervention as long as the target page is resident. If the page not

resident, the NI redirects the read request to the kernel, which will fetch the page and restart

the reply transfer. When the reply message arrives at the destination node, the NI transfers the

data directly to the destination page, similar to the write operation on the destination network

interface. Again, if the page is not resident, the NI redirects the data to the bounce buffer and

interrupts the kernel, which will fetch the page and complete the transfer.

68

After the read operation completes on the destination node, the NI increments the read-

completion counter in the network interface and, if requested by the application, also updates

a shadow counter in host memory. This read-fencing mechanism allows the application to spin

on the shadow counter to determine when all active read operations have completed, even if

they complete out of order. The application requests this notification by incrementing a pri­

vate completion counter whenever it issues a read command and updating the requested count

value into the network interface after the final issue. The NI updates the application shadow

counter only when the requested count value matches read-completion counter.

The read operation provides the same protection mechanisms as write to prevent inadvertent

and unauthorized access to a remote memory segment.

5.6 Bounce buffer

The NetVM kernel driver in each node maintains a system bounce buffer, which is a physically

contiguous and pinned circular queue in host memory. The NI redirects write and read opera­

tions that refer to nonresident application pages to the bounce buffer as described in the pre­

vious two sections. Therefore, assuming reliable network hardware, NetVM avoids the need to

buffer messages for retransmission due to overruns on the receiving network interface. A

credit-based flow-control mechanism protects the bounce buffer itself from buffer overruns.

During initialization, NetVM partitions its bounce buffer among all the other nodes in the sys­

tem. Before sending a message that potentially uses the bounce buffer, the NI checks that it

has sufficient credits for the remote node and consumes a credit unit after sending the mes­

sage. Without sufficient credits, the NI delays the message until it receives new credit replen­

ishments from the remote node. This delay does not affect other transfers from the sending

node to other destination nodes that have sufficient available credits. The destination NI im­

mediately frees the credit for a message that bypasses the bounce buffer. Otherwise, the ker­

nel driver frees the credit, for the NI, once it processes the message in the bounce buffer. The

driver interrupt handler wakes up a separate kernel paging thread to scan the bounce buffer,

perform the paging, and transfer the data, so that the interrupt handler can process other

nonblocking interrupt operations concurrently with the paging thread. Once the destination NI

accumulates sufficient freed credits, it sends a replenishment message back to the sending NI.

This credit-based scheme also integrates with the delivery-order scheme, which provides order­

ing guarantees for notification delivery, described in Section 6.2 on page 78.

69

The read operation checks for bounce buffer credits at two places: on the requesting NI and on

the remote NI. The remote source page or the local destination page, or even both pages, may

not be resident in host memory.

The requesting NI needs a bounce buffer credit for the remote node in case the remote NI has

to redirect the read request to the bounce buffer because the source page is not resident.

Similarly, the remote NI needs a bounce buffer credit for the requesting node in case the local

NI has to redirect the read reply to bounce buffer because the destination page is not resident.

The second case is rare, however, because the requesting application touches each destination

page, thus setting its referenced bit in the host page-table entry, before issuing the read-

command descriptor for that page. Setting the page's referenced bit marks it as recently used,

which significantly increases the likelihood that the page is resident when the read reply ar­

rives. If the remote NI has insufficient credits for the bounce buffer on the requesting node, it

redirects the read reply to its kernel driver, which will defer the reply operation until the re­

questing node replenishes it with enough credits.

5.6.1 Scalability of the bounce-buffer mechanism

NetVM currently tracks credits only at the node level. Applications on the same node that send

messages to a common remote node consume credits from a shared pool. On the one hand,

managing credits at the node level limits the amount of bounce buffer space in host memory,

and metadata in network memory, to O(N) where N is the number of nodes in the system. On

the other hand, it is possible for a single application to stall other applications that are sharing

its credits if it repeatedly accesses nonresident remote pages. The remote kernel has to fetch

the accessed pages from the backing store and thus requires a much longer time to complete

the transfer and release the credits. Using a per-application credit allocation scheme addresses

this sharing problem. However, it will also increase the memory required for the bounce buffer

on each node to a nonscalable OiNP2), where P is the number of NetVM processes per node.

5.7 Summary

Data-transfer operations originate in the application. The user library exports a data-transfer

API for NetVM applications to access by interacting directly with the network interface. The

user library manages the import-export tables to verify address ranges and to obtain the pro­

tection keys for each transfer. It also reformats large transfer requests into page-sized frag­

ments for the network interface. Multiple applications interact with the network through the

doorbell mechanism, which multiplexes application requests into a single hardware FIFO for the

7 0

firmware to process. Each application also maintains a stepping window for flow control over

its own command queue.

The network interface handles all data transfer requests directly from applications. For write

operations, it adaptively switches between programmed 10 for small transfers and DMA for lar­

ger transfers above 96 bytes. For read operations, it forwards the request to the remote net­

work interface, which uses DMA to fetch data from host memory. To access a page using DMA,

the NI looks up the shadow page table and the PMAP to lock the page and obtain its physical

address. The NI maintains completion counters for each application to support fenced reads

and source-side fenced writes.

If a destination page is not resident, the NI redirects the entire transfer into a system bounce

buffer in host memory and interrupts the kernel to complete the operation. The interrupt han­

dler fetches the required page and copies the data from the bounce buffer to the target page.

NetVM implements a credit-based flow-control scheme for the bounce buffer to avoid the need

to buffer messages for retransmission due to overruns on the receiving network interface.

71

6 Control-transfer Operations

The NetVM notification mechanism allows an application to transfer control to a remote appli­

cation. The basic write operation transfers only data; the receiving application cannot tell

when that data arrives into its memory. A sending application additionally notifies a remote

application by including a nonzero notification number in a write[F]N operation. The receiving

application detects the notification synchronously by polling, spinning on host memory, or

block waiting for a notifying write to complete. Alternatively, it can arm a local procedure to

automatically execute whenever a notifying write completes.

An out-of-order delivery network may deliver fragments of a large transfer in a different order

that they originated from the sending node. The NetVM delivery-order semantics defines the

relationship between notifying and nonnotifying transfers. The semantics guarantee that an

application receives a notification for a transfer after it receives all fragments of the transfer,

even if they arrive out of order. Furthermore, the semantics also guarantee that the applica­

tion receives that notification after all previous transfers from the same sender have also ar­

rived. To do this, the NI maintains a sequence window in the network interface to track mes­

sage packets that have arrived from a sending node. The sending NI allocates a slot in the re­

mote sequence window each time it transmits a packet to that node. The receiving NI marks

the slot when it receives the packet, but defers any associated notification until all preceding

packets have arrived. To provide flow control, the receiving NI recycles portions of the window

to the sending NI once it marks and frees sufficient slots.

6.1 Notification

NetVM notifications have event-counter semantics. An application maintains a set of notifica­

tion objects. Each object, which is identified by a notification number, includes a signal count

and an acknowledge count. A sending application signals an event, which increments the signal

count, by specifying the notification number in the write*N operation. A receiving application

finds a pending signal if the signal count exceeds the acknowledge count. It handles and ac­

knowledges an event by incrementing the acknowledge count.

72

The application detects notifications in four possible ways. First, it can directly poll the signal

and acknowledge counters to compute the number of pending signals for a particular notifica­

tion number. Second, it can direct the network interface to update a shadow signal counter in

host memory each time it receives a notification. The application spins on this shadow counter

until the notification arrives. Third, it can direct the network interface to interrupt the operat­

ing system each time it receives a notification. The application blocks waiting for a wakeup

from the operating system. Finally, it can register a notification-handling procedure that will

execute whenever a notifying transfer completes.

A NetVM application allocates a physically contiguous circular notification queue in host mem­

ory when it opens a NetVM port. This queue multiplexes signals with different notification

numbers into a single pipe to the application. Thus, the user library needs to only test the head

of the queue to determine which notification has arrived. NetVM bounds the size of the notifi­

cation queue by coalescing multiple events with the same notification identifier into a single

entry in the queue. The user library compares the signal and acknowledge counts to determine

the number of pending signals for that notification identifier in the queue.

6 . 1 . 1 Notification API

Type Operation Return Description

Notification
queue

notfQRemove()
notfQWait(timeout)

notf or EMPTY
notf or TIMEOUT

dequeue notification entry
wait to dequeue notification entry

Notification
handlers

notfArm(notf, handler)
notf Disarm (notf)

register a notification handler
deregister a notification handler

Synchronous
operations

notfTest(notf)
notfSpin(notf, timeout)
notfWait(notf, timeout)
notf Ack (notf)

number pending
SUCCESS or TIMEOUT
SUCCESS or TIMEOUT

test for pending notifications
spin until notification arrives
wait until notification arrives
acknowledge a notification

Table 12. NetVM notification handling operations.

Table 12 shows the operations that NetVM applications use to handle notifications in three sec­

tions. The first section lists the operations for the notification queue. notfQRemove dequeues

and returns the first available notification-number entry from the notification queue, or re­

turns EMPTY if there are none. notfQWait blocks and waits until the notification queue has an

entry. It returns the first notification-number entry in the queue, or TIMEOUT if the application

did not receive any notifications.

The second section lists the operations to register and deregister a notification handler, not-

fArm specifies the notification number and application-defined procedure that will handle the

73

notification when it arrives. Once armed, NetVM calls the handler, exactly once, for each noti­

fying data transfer with a matching notification number. If pending signals already exist during

the arming operation, notfArm immediately calls the handler to process each of those signals.

notfDisarm simply unbinds the registered notification-handler procedure with the given notifi­

cation number.

The third section lists the operations that synchronously test for and handle notifications.

notfTest polls the signal and acknowledge counts for the specified notification number to de­

termine if there are pending signals. notfSpin spins on host memory until a new notification

arrives. The application calls notfAck to acknowledge the notification after processing it.

6.1.2 Data structures and operations

shadow
sig. counters

"mapped into .
user space

notification
sig. and ack.

counters

application

^notification
' queue

dispatch
table

handler 1 dispatch
table

handler 1 dispatch
table

handler 2 handler 2

network interface

Figure 17. Data structures and function handlers for the notification mechanism.

Figure 17 shows the notification data structures in both network interface and application

memory. The NI memory stores a pair of signal (sig.) and acknowledge (ack.) counters for each

of the 1023 notification numbers available to each registered application on the local node.

The application memory stores shadow signal counters and the notification queue that the NI

can directly access. It also stores a notification-handler dispatch table that binds notification

numbers to their registered handler procedures. To support concurrent access to the notifica­

tion counters, only the NI updates the signal counters and only the application updates the ac­
knowledge counters on the network interface.

74

NI write handler Application notification dispatcher

notify[ID] = notify[ID] + 1
>/notify[ID] == acknowledge[ID] + 1

enqueuefnotfQ, ID)
interrupt host

while / empty (notfOJ
ID = dequeue('notfOJ
while acknowledge[ID] < notify[ID]

call handler[ID]
acknowledge[ID] = acknowledge[ID] + 1

Table 13. NI and application notification dispatch implementation.

The application arms a notification by registering a user-defined handler with the dispatch ta­

ble and setting an interrupt-enable flag for the specified notification number on the network

interface. Table 13 shows the operations for the NI to dispatch a notification to the applica­

tion. When the NI receives a message carrying a notification number that is armed, it incre­

ments the signal counter and compares it with the acknowledge counter. If the signal count

exceeds the acknowledge count by exactly one, the NI adds a notification-number entry, using

host DMA, into the notification queue and interrupts the kernel driver. Subsequent arriving no­

tifications will only increment the signal counter, without interrupting the host, as long as

there are pending signals that the application has not acknowledged. Doing so will coalesce

multiple arrivals of the same notification number into a single queue entry. The kernel inter­

rupt handler signals the application notification dispatcher, which is a SIGUSR2 signal handler

that the NetVM user library registers during its initialization. This dispatcher dequeues the noti­

fication-number entry from the notification queue and uses it to look up the dispatch table.

The dispatcher calls the handler exactly once for each pending signal by incrementing the ac­

knowledge count after each call until the signal and acknowledge counters match.

A race condition exists that can cause both the application arming operation and the NI to trig­

ger the handler for the same single notification signal. An application arms the handler by first

setting the interrupt-enable flag on the network interface and then checking for any pending

signal for that notification number. It immediately calls the handler if pending signals exist in­

stead of relying on the notification dispatcher, because the NI will interrupt the host only for

new signals, when the signal count is exactly one greater than the acknowledge count, and only

after the interrupt-enable flag is set by the arming operation. However, a race occurs when

the NI receives a notifying message immediately after the application sets the interrupt-enable

flag, but before the application tests for pending signals. In this case, the application will find

a pending signal and directly call the handler, and the NI will find a new, interrupt-enabled,

notification and invoke the dispatcher to call the handler too. NetVM ensures exactly-once han­

dler-calling semantics through two ways. First, the arming operation delays the dispatcher until

it completes calling the handler for any pending events. Second, shown in Table 13, the dis­

patcher verifies that the signal count exceeds the acknowledge count each time before calling

75

the handler. Therefore, it avoids calling the handler if the arming operation has already ac­

knowledged any pending signals.

NetVM relies on the BSD signal-handling semantics to simplify its notification mechanism. In

particular, the operating system blocks, but does not drop, new signals when the application is

busy executing the signal handler. There are two benefits to this behavior. First, notification

handlers can be nonreentrant because the operating system will not recursively invoke a signal

handler and, hence, the dispatcher can not recursively call notification handlers. Second, the

signal handler will not lose any notifications from the NI. A race condition exists when the NI

posts a signal just after the dispatcher finds no entry in the notification FIFO, but just before

the signal handler exits. This second notification will be lost if the operating system drops the

Nl-posted signal. However, the operating system, with BSD signal-handling semantics, simply

invokes the signal handler again to restart the dispatcher. If the operating system uses System

V signal-handling semantics, the signal handler first needs to reinitialize the signal vector each

time it executes to avoiding dropping new signals. It also needs to handle recursive signal invo­

cations by ensuring that it does not recursively call the notification handlers.

The NetVM signal handler should not interrupt critical sections in nonreentrant operations that

both the main application thread and notification handler use. An example is the write opera­

tion; a notification handler that calls write in the middle of an active write by the interrupted

application thread may corrupt the command queue. A notification handler calling these non-

reentrant operations does not need to synchronize because its execution is uninterruptible by

the application thread. However, the application thread must synchronize with the notification

handlers, by delaying the signal handling, while it is in a critical section. One approach is to

temporarily disable the dispatcher by blocking SIGUSR2 signals with the sigsetmask system call.

NetVM uses an alternative optimistic approach (assuming that signals occur much less fre­

quently than critical sections) that avoids the system call overhead by incrementing a shared

lock-count variable when the application thread enters a critical section and decrementing the

variable when it leaves. If the SIGUSR2 signal handler executes while the application thread is

in a critical section, it finds a nonzero lock count and defers its execution by setting a signal-

pending flag and then exiting immediately. When the application thread finally exits the criti­

cal section with a zero lock-count and finds a set signal-pending flag, it explicitly restarts the

signal handler.

76

6.1.3 Synchronous notification detection

An application synchronously detects notifications using the API calls listed in the third section

of Table 12 on page 73. notfTest computes the number of pending signals for the specified no­

tification number by subtracting the acknowledge count from the signal count after reading

them from the network interface using programmed IO. notfSpin first directs the NI to update

the shadow signal counter in application memory, via host DAAA, each time it updates the signal
counter in network interface memory. notfSpin then spins on this shadow counter until the NI

updates it with the new value when a notification arrives. notfWait sets the interrupt-enable

flag in the network interface and makes a system call to block waiting for the notification to

arrive. When the NI receives the notification, it interrupts the kernel, which wakes up the ap­

plication. Finally, notfAck increments the acknowledge count by one to indicate to the NI that

the application has processed a single occurrence of the signal.

6.1.4 One-shot notifications

NetVAA implements a second simple one-shot notification mechanism. This scheme utilizes the

notification queue to receive ordered notifying single-word messages from a remote applica­

tion. The notifying application specifies a notification number of 1024 or above in the write

operation. The receiving NI adds the entry, for each one-shot notification that it receives, into

the notification queue. Thus, multiple notifications, even with the same number, result in mul­

tiple entries in the queue. Therefore, the remote applications must implement flow control

with the receiving application to ensure that they do not overflow its notification queue. An

application can also control the size of its notification queue by specifying the minimum num­

ber of entries when it opens a NetVM port.

There is a tradeoff between using event-counting notifications and one-shot notifications.

Event-counting notifications are useful for resource management, where applications need to

track a large number of events in a specific class that have occurred. An example is the pro­

ducer-consumer problem: a sending application signals an event each time it produces a data

unit and the receiving application reads the event counters to determine when and how many

units are ready from the sender. However, the total number of such notifications is limited,

because NetVM needs O(nP) storage in network interface memory, where n is the number of

notifications per NetVM process and P is the number of NetVM processes per node. NetVM cur­

rently supports only 1023 event-counting notifications per application due to the limited net­

work-interface memory. One-shot notifications do not require any storage on the network in­

terface. However, they do require a word entry in the notification queue for every notifying

write from the remote application. They are useful for applications to synchronize with each

77

other by signaling with named events, because the name space for one-shot notifications is

large, which is from 1024 to 2 3 2 -1.

6.2 Delivery order

With an out-of-order delivery network, it is insufficient for the sending node to attach the noti­

fication number to the final message of a large fragmented transfer and for the receiving NI to

deliver the notification on receiving that message. The final message may arrive before the

other associated messages in the same transfer group. NetVM ensures that the application re­

ceives the notification only after it receives all the fragments in the group. The application can

therefore safely access the preceding sent data without the need to explicitly check that the

entire group has, in fact, arrived. NetVM also ensures that the application receives notifica­

tions in the same order that the sending application issues them. This ordered-notification de­

livery simplifies an application's reasoning about multiple transfers in pipelined operations

such as data streaming.

NetVM transfers data and control in a notifying write operation by including the payload, a no­

tification number, or both, in a write message. The delivery semantics of NetVM specify that,

if a sending application issues two notifying writes (i and j) with the same notification number

to a receiving application, NetVM will deliver the notification for write j after it

1. delivers the data for write i for all i < j and

2. delivers the notification for write i for all i < j .

In other words, NetVM delivers the notification for a write only after it has delivered the no­

tification and data for all preceding writes from the same sender. The first requirement speci­

fies that NetVM delivers a notification only after it has delivered the data from the current and

all previous write transfers. The second requirement specifies that NetVM delivers a notifica­

tion only after it has delivered all previous same-numbered notifications. The delivery order

between two different-numbered notifications, even from the same sender, is undefined.

Within the constraints of both requirements, NetVM does not control the delivery order for

data, which depends only on the underlying network.

These semantics allow a receiving application to determine when multiple write transfers that

belong to a group have all completed. There are three cases where ordered grouped notifica­

tions are important. The first case is during a single large transfer; an application issues a large

multi-page notifying writeN to a remote application. The NetVM user library splits this large

78

transfer into page-sized fragments and sends a write message for all but the last fragment, and

sends a writeN message for the last fragment. The remote NI notifies the receiving application

only after delivering all the fragments for the transfer. The second case is during multiple

small scattered transfers; an application issues multiple writes to scattered locations in the

remote application and notifies it only after issuing the last writeN. NetVM notifies the receiv­

ing application only after all the write transfers have all arrived to their respective destina­

tions, even if they arrived out of order. The third case is during multiple large transfers in a

pipeline; an application issues a series of large, possibly multi-page, notifying transfers to a

remote application in a pipeline. NetVM delivers each notification, after transferring the asso­

ciated data, in the same order that the sender streams them. The receiving application relies

on these ordered notifications to expect the next ready data in the pipeline whenever it re­

ceives a new notification.

6.2.1 Sequence windows

1st half (32 entries)

delivered
only data

2nd half (32 entries)

message has not
arrived yet

r J | 1 1~ 1 I 1
D N D DN D D N DN

delivered
only notification LSN free 1st half

when LSN is here
delivered data

and notification

D => data only
N => notification only

j DN => data and notification

delivered data only,
delay notification
until LSN is here

no data,
delay notification
until LSN is here

delivered only data,
no notification

Figure 18. Sequence window example that tracks arriving messages from one remote node.

Shown in Figure 18, NetVM maintains a 64-entry circular sequence window in the network inter­

face for each node in the system. This window tracks arriving messages from the remote node

to implement the delivery-ordering mechanism. The sending node maintains a monotonically

increasing sequence number, for each remote node, that corresponds to an entry in the se­

quence window. The receiving node uses this sequence number and the write message type (D

for data only, N for notification only, or DN for both) to record a flag into the corresponding

entry in the sequence window. A Lowest Sequence Number (LSN) cursor tracks the minimum

sequence number of messages that have not yet arrived at the node. When the LSN crosses into

7 9

the second half of the window, the NI frees the first half by sending an acknowledgement to

the sending node, thus allowing it to reuse the first half of the window for new messages. Simi­

larly, the NI frees the second half of the window when the LSN wraps around into the first half.

NetVM delivers data in message arrival order but delivers notifications in increasing sequence-

number order. The NI immediately delivers data in a write message regardless of the message's

position in the sequence window. It delivers the notification in a message only if its position

matches the LSN. In either case, the NI increments the LSN if it matches the received mes­

sage's sequence number. If the NI redirected the message to the bounce buffer, the kernel

driver updates the flags, on behalf of the NI, for that window entry once it fetches the re­

quired page and completes the transfer from the bounce buffer.

There is a tradeoff between imposing too much ordering, which slows throughput due to the

flow-control overheads in buffering and acknowledgements, and imposing too little ordering,

which increases complexity for applications that need to reason about the delivery order.

NetVM attempts to strike a balance with three levels of ordering: enforcing total order for noti­

fications with the same notification number, partial order for notifications with respect to data

by delivering the notification after delivering the associated data, and no order for data by de­

livering it the moment it arrives into network interface from the wire. The current bounce

buffer mechanism already avoids the need to buffer data on the sender for flow control. The

ordering mechanism preserves this feature by buffering only a small amount of state informa­

tion to provide ordered deliveries for notifications. It also reduces the number of acknowl­

edgement messages for flow control, without stalling the sender, by maintaining a sufficiently

large sequence window and sending an acknowledgement only after freeing half the window.

6.2.2 Notification reordering

NetVM does not order event-counting notifications that specify different notification numbers,

even if they originate from the same application. Although the sequence-window mechanism

guarantees that NetVM delivers notifications to the host in increasing LSN order, the notifica­

tion queue mechanism coalesces multiple same-numbered notifications into a single entry.

Therefore, if a pending notification already exists, the NI appends the new notification by sim­

ply incrementing the signal count, without adding a new entry into the queue. This notification

coalescing, in effect, may allow a new notification to overtake an earlier, but different-

numbered, notification waiting in the queue. The notification dispatcher repeatedly calls the

handler until there are no more pending signals for the associated notification number before it

examines the next entry in the queue to dispatch new notifications.

80

One-shot notifications do not suffer from this notification-reordering problem. NetVM does not

coalesce one-shot notifications, but adds an entry into the notification queue each time it re­

ceives a notifying message. The dispatcher finds these notifications in the same order that they

arrive into the queue. Therefore, NetVM delivers one-shot notifications in strict issue order

from the sender. This one-to-one mapping between incoming one-shot notifications and entries

in the notification queue imposes a constraint on remote applications; they must provide flow

control with the notified application to ensure that they do not overflow its notification queue.

6.2.3 Integration with the bounce buffer

The delivery-order and bounce-buffer mechanisms are integrated. Each entry in the sequence

window corresponds to a credit in the bounce buffer. Therefore, a sending node that has an

available entry in the sequence window on the remote node also has a credit for that message.

Consequently, an acknowledgement message freeing up half the sequence window also replen­

ishes 32 credit units.

This integration also means that NetVM does not require more than 64 credit units of bounce-

buffer space for each remote node, because the sequence window prevents the sending node

from issuing more than 64 messages without receiving an acknowledgement message. Reducing

the sequence window size reduces the number of bounce buffer credits needed on the host at

the expense of increasing the acknowledgement rate.

6.2.4 Scalability of the delivery-ordering mechanism

The delivery-ordering mechanism operates at the node level. Applications on a node that send

data to a common remote node also share the sequence number allocation. This sharing does

not allow a slow sending application to affect others on the same node, because NetVM only

allocates the sending sequence number after the message, already on the network interface, is

ready to transfer onto the wire. However, an application can stall other local applications

sending to the same remote node, due to the node-level bounce-buffer mechanism, if it re­

peatedly accesses nonresident remote pages. These nonresident transfers cause the kernel

driver to take a longer time to fetch the page, complete the transfer, and recycle the bounce-

buffer credit by updating the sequence window.

In the worst case, an application can stall other local applications sending to the same remote

node if it accesses just one nonresident page even if the others are busy sending data to only

resident pages. The sequence window mechanism only allows at least 32, and up to 63, trans-

81

fers to complete while waiting for the kernel to complete the transfer to the nonresident page.

After that, the sending NI defers sending new messages to the remote node until the remote NI

recycles the half window containing the sequence number for the nonresident transfer and re­

plies with an acknowledgement message. In the meantime, it can still send a message to all

other nodes that have available sequence-window entries.

Similar to the bounce-buffer sharing issue, using a per-application sequence window will de­

couple the delivery dependence between applications. Rather than storing flow-control state

for each pair of nodes, an alternative is to require each pair of applications to store the state

instead. The tradeoff in maintaining application-level state is that the sequence windows re­

quires a nonscalable OiNP2) storage on the network interface, where N is the number of nodes

in the system and P is the number of NetVM processes per node. One way to address the stor­

age problem is to cache active sequence windows on the network interface, assuming that the

host has sufficient memory to store every sequence window for every NetVM application in the

system. The NI uses the host memory as a backing store and caches only active windows in net­

work interface memory. The cost of this approach is that the NI may have to fetch the 256-byte

sequence window from host memory in the critical path of an incoming message. Overlapping

the host-DMA transfer for the miss handling with the wire-DMA transfer for a large message

payload mitigates this cost.

An alternate scheme for group notification in Hamlyn [12] uses an accumulator to track the

number of arriving fragments in a group. All but the last fragment in the group carry a count

value of -1 and the last one carries a count value of N-1, where N is the number of fragments in

the group. The receiver accumulates these count values as it receives the fragments and finds

that the entire group has arrived when the accumulator sums to zero. This scheme, although

efficient and elegant, has three disadvantages. First, each individual sending application has to

generate these count values. Therefore, the receiving network interface has to maintain, for

every local application, an accumulator for every remote application in the system, requiring a

nonscalable Of/VP2) storage space on the network interface to store these accumulators. Sec­

ond, the network interface must store multiple accumulators per remote application if the

sending application needs to consecutively issue multiple groups. In any case, it has to wait for

an acknowledgement for an accumulator before reusing it for a new group. Third, it is not pos­

sible to order group notifications. A notification occurs only when all the fragments in that

group arrives, independent of the arrival of fragments in other groups. Thus, an application

cannot raise a.sequence of ordered events at the remote destination.

82

6.3 Summary
NetVM uses a scheme based on eventcounts to allow an application to signal events to a remote

application, by including a notification number in a data-transfer operation. The user-library

API allows the remote application to detect these events by busy waiting, block waiting, or

triggering a user-defined handler to process them. Synchronous notification detection is

straightforward; the application spins on host memory or blocks in the kernel, waiting for the

event to occur. Dispatching notifications to registered handlers, however, is slightly more com­

plicated. The library maintains a notification queue and a SIGUSR2 dispatcher signal handler to

process signals destined for registered handlers. NetVM ensures mutual exclusion between the

application thread and signaled handlers by delaying notification dispatching whenever the ap­

plication thread is in a critical section updating the command queue.

To support out-of-order delivery networks, NetVM implements a sequence window on the net­

work interface to track arriving synchronized and unsynchronized transfer messages. It only

delivers the notification for a write only after it has delivered the notification and data for all

preceding writes from the same sender. Thus, NetVM delivers notifications in the same order

that the sending application issues them. To avoid the need for data buffering, the network

interface delivers data in the order that it receives them from the network, regardless of the

order that they were sent.

The next chapter describes a user-level implementation for channels, which provide stream-

oriented communication between two applications, using only the NetVM API.

83

7 Channels

A receiving application cannot determine the target location of a NetVM RDMA write operation.

It can only determine when the transfer completes using the notification mechanism. The

stream-oriented send-receive model, however, allows the receiving application to control

where data should arrive. In addition, it can explicitly wait for and receive data in FIFO order

from the sender.

NetVM implements channels to support stream-oriented communication. The receiving applica­

tion exports a message queue that the sending application directly accesses and updates when­

ever it sends a message through the channel. NetVM channels are not receiver-managed; the

receiving application cannot specify the exact location of the arriving message. Instead, it ob­

tains the address of the message in the queue on returning from a successful receive operation.

It then either processes the message in place, or copies it to a new location for post process­

ing. NetVM uses event-count notifications to implement flow control over the channel.

Flow control over a NetVM channel is based on the producer-consumer model. Both sender and

receiver track the number of free, sent (produced) and received (consumed) messages in the

message queue to ensure that it does not overflow or underflow. The receiver blocks during a

receive operation until the queue is not empty. It refills the sender each time after consuming

sufficient messages in the queue. The sender blocks during a send operation, waiting for a refill

from the receiver, if the queue is full.

NetVM implements channels at the user level. It transfers data to the application message

queue using the notifying writeN operation and implements flow control using two event-count

notifications. Figure 19 on the following page shows the key data structures required to imple­

ment channels.

84

Sender Receiver

snext

buf

replenish sent
notification notification

I n
rnext

exported
message queue
(NUM_BUF entries)

» not sent yet

, sent but
not consumed

» consumed

Figure 19. Channel data structures.

The receiver first exports a memory segment that stores the circular message queue containing

NUM_BUF entries. Each fixed-sized message entry accommodates the largest message that a

sender may transfer, which may span multiple pages. The receiver also allocates a sent notifi­

cation that triggers each time the sender delivers a message. A pending signal on the sent noti­

fication indicates that the channel is ready with a message in the queue at the read cursor

(rnext). The sender uses a write cursor (snext) to determine the destination location in the

queue for the next transfer. It also allocates a replenish notification that triggers each time

the receiver delivers a replenishment message. The receiver sends the replenishment every

time it consumes and frees a sufficient (REFILL) number of messages.

send(msg) recv(Saddr)

if avail == 0 notfSpin(sent) then notfWait(sent)
notfWait(replenish) freed = freed + 1
avail = avail + REFILL if freed % REFILL == 0

avail = avail - 1 writeN (sender, replenish)

writeN (buf [snext], msg, sent) addr = buf [rnext]
snext = (snext + 1) % NUM_BUF rnext = (rnext + 1) % NUM_BUF

Table 14. Channel send and recv implementation.

API calls simplified for clarity.

Table 14 shows the channel send and recv operations. On the sender, send first verifies that it

has sufficient credits using an avail counter, initialized to NUM_BUF-1, to track the free entries

in the queue. If the queue is full, send will wait for a replenishment notification from the re­

ceiver, which will credit it with REFILL entries in the queue. Once there is sufficient space,

send consumes a credit and writes the message, together with a sent notification, to the mes­

sage buffer indexed by snext into remote queue. On the receiver, recv first waits for a mes­

sage in the queue by spin waiting, then block waiting, for a sent notification. The receiving NI

85

delivers this notification only after the message completely arrives into the destination queue.

After recv accepts the notification, it checks if the sender requires replenishment by incre­

menting the freed counter and comparing it with the REFILL threshold. After every REFILL in­

crements, recv returns credits to the sender by simply sending it a replenish notification. Fi­

nally, recv returns the address of the message, indexed by rnext into the queue, to the calling

application.

The REFILL threshold should be large enough to reduce the rate of replenishment notifications,

but small enough to improve the channel utilization and keep the pipeline full. On the one

hand, this value ensures that the sender can send at least REFILL, and up to NUM_BUF-1, mes­

sages each time it receives a replenishment update. On the other hand, the receiver must send

a replenishment notification every time it consumes REFILL messages. The sending and receiv­

ing applications can decide on the appropriate REFILL threshold.

Relying on NetVM's ordered notification delivery simplifies the channel implementation. If

NetVM did not deliver notifications in total order, then write j sent after, but arriving before,

write /' will trigger a notification causing recv to incorrectly assume that write / has arrived. In

this case, recv has to additionally check that the correct, and complete, data had indeed ar­

rived into the queue. Fortunately, NetVM delivers ordered notifications. Thus, it will delay the

notification for write until after it has delivered both data and notification for write / and

the data for write j .

send never completely fills up the remote message queue. It always reserves one available en­

try on the receiver because avail counter is initially NUM_BUF-1 instead of NUM_BUF. This sub­

tle but important behavior is due to the semantics of recv. recv returns the address of the

newly received message and allows the application to process it in place or copy it into a pri­

vate buffer. Therefore, the channel must guarantee that the sender cannot overwrite that

message until the application calls recv for the next message, which implicitly frees the pre­

ceding message.

Supporting many-to-one communication requires a channel for each sender. Each sender-

receiver pair sets up a separate channel with a unique sent-notification ID, which also identi­

fies the channel. To determine which sender has sent a message, the receiver first checks the

notification FIFO to obtain the identifier of the channel with a ready message. It then calls

recv on specified channel to locate the address of the message in the queue. Alternatively, the

receiver can also register a handler for each senr-notification. NetVM will call the correspond-

86

ing notification handler whenever a message belonging to any one of the registered channels

arrives.

7.1 Summary
User-level channels provide one-way stream-oriented communication between a pair of com­

municating applications. The receiving application exports a message queue, which the sending

application can directly access. Both applications track the total sent and consumed messages

and implement flow control over the channel using notifications. NetVM's ordered notification

delivery simplifies the flow-control protocol by guaranteeing that all previously sent data has

arrived into the destination memory before delivering the notification. Channels are not re­

ceiver managed; the receiving application has to either process the received message in place

or copy it to separate buffer before freeing the associated channel slot.

87

8 Atomic and synchronization
operations

Synchronization is an important aspect for concurrent applications. In particular, efficient syn­

chronization is essential for applications that exhibit fine-grained interaction in a SAN environ­

ment. Synchronization schemes that exploit the underlying network hardware can provide more

efficient synchronization support for these applications. This section briefly examines existing

implementations for three common synchronization idioms (mutual-exclusion locks, wait

queues, and semaphores) and proposes a new implementation that extends the network inter­

face to support these constructs more efficiently.

For centralized synchronization schemes, a key question is the location of the central arbitra­

tor process. The first alternative is to assign a server process in the host to arbitrate synchroni­

zation requests from the network. Send-receive communication systems typically use this ap­

proach; the process blocks on a request queue waiting for application synchronization requests.

NetVM channels, which are implemented with only RDMA data transfers and notifications, can

also easily support this approach. However, this approach also has two problems. First, invok­

ing a server process typically requires the network interface to interrupt the kernel to wake up

the process, which increases the response latency for the operation and is thus undesirable for

fine-grained synchronization. Second, frequently interrupting the kernel to schedule the server

process affects other applications running on the same host. Coady et al. [16] showed that

these fine-grained operations could slow down other unrelated CPU-intensive applications by

17%.

The second alternative is to process the synchronization requests using the network processor.

This approach avoids the need to invoke the host processor and can result in lower response

latency, especially if the synchronization operations are lightweight. However, this approach is

also not scalable. Network processors are usually significantly slower than host processors, thus

they are easy to overstress with too many requests. Network interfaces also have limited mem­

ory, thus they cannot support potentially large or many data structures in local memory.

88

Synchronization schemes that apply to traditional shared memory multiprocessors also apply to

NetVM. These multiprocessors typically implement a standard set of atomic operation primi­

tives to support various synchronization implementations. This approach is particularly suitable

for NetVM because it already supports remote memory read/write access, which is readily ex­

tendable to also include remote memory read-modify-write access.

There are many well-known algorithms for implementing mutual-exclusion using standard

atomic operations. NetVM adopts the scalable MCS distributed lock for mutual exclusion be­

cause it has four desirable properties. First, applications busy wait only on local memory and

not on remote memory. Busy waiting on non-cache-coherent remote memory quickly saturates

the network and causes congestion. Second, an application only requires a constant number of

network transactions to acquire and then release a lock regardless of the number of partici­

pants in the network, which is important for scaling. Third, an application only requires a con­

stant-sized data structure in its local memory to support the distributed lock, regardless of the

number of participants in the network, which is also important for scaling. Finally, lock acquisi­

tions occur in FIFO request order. MCS locks require only the standard swap and compare-and-

swap atomic operations, which NetVM needs to implement on the network interface. However,

the original algorithm only allows applications to busy wait to acquire the lock, modifying it to

support a hybrid busy-block waiting is straightforward using NetVM notifications.

Implementing wait queues and semaphores using only standard atomic operations is also possi­

ble. Typically, a synchronization operation occurs in three phases [21]. The first phase acquires

mutual-exclusive access to the shared synchronization data structure, using MCS locks de­

scribed in the preceding paragraph or a simpler mechanism such as test-and-set operations.

The second phase manipulates the data structure, which may involve signaling other processes

in the network. The third phase releases mutual-exclusive access to the data structure. This

conventional three-phase approach is not efficient compared to the MCS lock in terms of net­

work transactions, operation latency and network-processor overhead. The problem is that the

standard atomic operations alone are not ideal for implementing these synchronization con­

structs efficiently, because these operations individually cannot atomically update all the nec­

essary state information in the shared data structure.

NetVM augments the network interface with an extended set of atomic operations to support

wait queues and semaphores. With this new set of operations, wait-queue and semaphore op­

erations can complete with fewer network transactions, thus reducing operation latency and

network-processor overhead. This augmentation does not amount to implementing a central­

ized network-processor-based server; the network interface does not maintain any state for the

8 9

synchronization constructs. The new synchronization primitives are simply more sophisticated

fetch_and_0 operations, which are easy to implement and execute efficiently. As a result,

NetVM can implement efficient wait queues and semaphores using the MCS-lock-inspired ap­

proach and benefit from the same efficiency, scalability and fairness properties of MCS locks.

The remainder of this section describes the implementation of the NetVM synchronization op­

erations in four parts. The first part describes the standard atomic operations common to mul­

tiprocessor systems. The second part describes the MCS lock and its NetVM extension. The third

and final parts describe the wait-queue and semaphore synchronization idioms respectively.

8.1 Standard atomic operations

Operation Return Description

testandset(seg, offset) TRUE if set test and set
incr(seg, offset) old value increment by one
decr(seg, offset) old value decrement by one
swap(seg, offset, new) old value swap
cswap(seg, offset, cmp, new) old value conditional swap

Table 15. General atomic operations.

Table 15 shows the standard atomic fetch_and_&operations that are available to NetVM appli­

cations. These operations are synchronous; an application can perform only one atomic opera­

tion at a time. In each operation, {seg, offset) specifies the location of the remote memory-

word operand, testandset atomically tests a remote word and sets it to a nonzero value if it

was previously zero. In either case, it returns the result of the comparison test to the caller,

incr and deer respectively increment and decrement a remote 32-bit word and return its origi­

nal value, swap atomically exchanges a remote word with the new argument and also returns

its original value. Finally, cswap compares a remote word with the cmp argument and swaps it

with the new argument if they match. In either case, cswap returns the original word before

the comparison.

90

Atomic-Operation Descriptor

Myrinet wormhole route (8 bytes)
Myrinet message tag (NETVM) (padding)

sending node sending node sequence number
source protection key (64 bits)

source port atomic operation
argument 0 argument 1
argument 2 destination node

destination VPN destination VPN hash key
destination protection key (64 bits)

destination page offset and length (padding)
command (ATOM) (padding)

Table 16. Format of the atomic-operation descriptor.

Atomic operations are similar to small read operations. Table 16 shows the atomic-operation

descriptor format. The requesting application first queues the atomic-operation descriptor into

the command queue. The NI on the local node forwards the message, unmodified, to the re­

mote NI. The command handler on the remote network interface first fetches the requested

operand from the target application virtual memory into a local buffer in the network inter­

face. Leaving the host page locked, it then updates the local copy of the operand depending on

the specific atomic operation. Finally, it sends the reply message with the result of the opera­

tion to the requesting node. At the same time, it also transfers the updated operand to the

application memory and unlocks the page after the host-DMA transfer completes. When the

requesting NI receives the reply message, it transfers only the result of the atomic operation

into a pinned reply buffer using host DMA. NetVM allocates this reply buffer, used only to store

the result of an atomic operation, when the application registers. After issuing the request, the

application spins on this buffer until the result arrives into host memory.

The incr and deer operations require endian conversion on the network interface. The Myrinet

network processor is big endian but the Intel host processor is little endian. To correctly incre­

ment or decrement a 32-bit little-endian word on the host, the NI has to convert the operand

to big endian before performing the actual operation and convert it back to little endian before

updating the result to host memory. Unfortunately, the network processor does not have hard­

ware support for the two endian conversions. Therefore, the NI performs them in software,

through a series of four bit mask and shift operations for each conversion.

A race condition exists if the host and NI both try to perform an atomic operation on the same

operand simultaneously. This condition occurs when the NI receives multiple atomic-operation

messages for the same nonresident operand. The NI redirects the first operation to the bounce

buffer because the requested page is not resident. The kernel driver fetches the page and

completes the operation. However, the NI could receive a second message during this time and

91

try to update the same operand as well. To prevent this race, the kernel driver and NI imple­

ment per-application spin locks to ensure mutual exclusion during atomic operations. This ap­

proach is similar to the host-NI synchronization scheme for the shadow page table described in

Section 4.4 on page 58.

8.2 Mutual-exclusion locks
An MCS lock is a scalable distributed lock mechanism that allows applications to acquire a lock

in FIFO order with low latency. It is particularly suitable for NetVM remote memory access se­

mantics because of two properties. First, the operations require at most two, but possibly one,

network transactions to acquire or release a lock. These efficient transactions involve only

atomic and notifying updates on remote memory. Centralized lock servers are unnecessary.

Second, the operations busy wait only on local memory, which is important in a LAN environ­

ment where spinning on remote memory costs significantly more than spinning on local mem­

ory. To reduce the need for the original algorithm to consume the host processor while busy

waiting on local memory, a NetVM extension allows an application to block waiting to acquire a

lock after a busy-wait timeout. Thus, it will free up the processor to schedule other applica­

tions on the same host.

tail (P2)

lock

next(P1) next(P2)

G D [notf

Process PO
1 (lock holder)-

Process P1

next (-1)

notf

Process P2

Figure 20. MCS distributed lock-chain example.

Figure 20 shows the data structures for a NetVM distributed lock-chain example. A globally ad­

dressable centralized data structure (box lock) stores the tail variable to track the current tail

process (P2) of the lock chain. There are three participating processes (boxes PO to P2), each

process stores a data structure in its globally addressable virtual address space that contains a

next field, which points to its successor in the lock chain, and a notf notification triggered

when its predecessor hands over the lock.

92

acquire(lock) release(lock)

next = EMPTY
tail = swap(lock->tail, me)
if tail == EMPTY

if next == EMPTY
tail = cswap(lock->tail, me, EMPTY)
if tail == me

write(tail->next, me)
notfSpin(notf)/notfWait(notf)

return return
spin until next * EMPTY

writeN(next->next, notf)

Table 17. Lock acquire and release implementation.

API calls simplified for clarity.

Table 17 shows the lock acquire and release operations. Initially, the lock tail value is EMPTY

to indicate that no process is holding the lock. To acquire the lock, an application atomically

swaps the tail value with its own identifier (me). A swap result of EMPTY indicates that it is the

only acquirer in the chain and, hence, it obtains the lock. If another application now tries to

acquire the lock, it will find the identifier of the lock holder, instead of EMPTY, or the last of

multiple requestors that have previously chained into the queue. In this case, it now knows the

predecessor in the wait queue and writes its own identifier into the predecessor's next field to

link itself into the chain. Finally, it spins, then blocks waiting after a spin timeout, for a notifi­

cation from the predecessor, which will release the lock with a notifying write to it.

To release the lock, the current holder first checks its next field for a successor in the lock

chain. If one is waiting, the holder simply hands over the lock to the successor by sending it a

notification. Otherwise, it releases the lock back to the central lock data structure by condi­

tionally swapping EMPTY with the lock tail only if the existing tail value is itself (me). A suc­

cessful update indicates that no other applications have chained into the lock queue and the

release operation exits. If, however, there is a race and the conditional swap operation fails,

the holder now knows the new requestor that will be chaining itself into the lock queue shortly

by writing into the holder's next field. Therefore, the holder spins until its next field is up­

dated by that new requestor and sends a notification to release the lock to it.

The key difference between NetVM locks and MCS locks is that, with MCS locks, an acquiring

process only spins on a local nonzero locked flag until it acquires the lock. The releasing proc­

ess transfers the lock by writing a zero value into this flag on its successor in the wait queue.

With NetVM, the releasing process uses a notifying writeN to transfer the lock. The acquiring

process initially spins on shadow copy of the notify count in host memory for a short period be­

fore falling back to blocking mode. In this way, it will acquire the lock without rescheduling if

the wait interval is small, or revert to block waiting to avoid consuming the CPU for a long pe­

riod [20].

93

8.3 Wait Queues
A NetVM wait queue allows processes to wait in a FIFO queue for a specific event. Any process

can wake up exactly one process at the head of the queue by signaling an event on the queue.

Wait queues are useful to implement synchronization operations that involve a set of queuing

processes waiting for events triggered externally by other processes. In particular, NetVM uses

wait queues to implement condition variables in monitors.

NetVM wait queues differ from lock chains in two ways. First, only the lock holder can signal

the process at the head of a lock chain, no other process knows the identity of the front proc­

ess in the chain and, thus, cannot signal it. In contrast, any process can wake up the front

process in the wait queue. Second, a process trying to acquire a lock cannot continue until it

has successfully obtained the lock. In contrast, a process can place itself on a wait queue and

defer waiting for the event associated with the queue. This deferment is necessary to correctly

implement condition variables with Mesa monitor semantics described later in Section 8.3.1.

The NetVM wait-queue mechanism shares several advantages with the NetVM distributed lock.

It requires only a small centralized control structure to store the state of the queue. Each par­

ticipating application also needs to store only a small constant-sized data structure as part of

the distributed queue. A remote queue server is unnecessary; all operations require at most

three remote-memory network transactions to place or remove a process from the queue. A

queued process can spin on local memory or block waiting for the wakeup event.

Type Operation Return Description

NI atomic enqueue(seg, offset, id) tail add tail entry
operations dequeue(seg, offset) (head, count) remove head entry

newhead(seg, offset, newhead) (pend, count) set new head entry
user library insertQO - enqueue self
API waitQO - wait for wakeup

removeQ.() - signal front process

Table 18. NI and user-library wait-queue operations.

NetVM implements the wait queue in two levels through the interfaces shown in Table 18. The

network interface implements three new atomic operations for the centralized queue data

structure. These new operations extend the standard atomic operations in Table 15 and include

procedures that, although slightly more sophisticated than the standard operations, still exe­

cute in constant time, enqueue updates the tail queue so as to chain the calling process to the

end of the wait queue, dequeue removes the front queue entry so that the signaling applica­

tion can wake up the front waiting process, newhead updates the front queue entry with the

94

successor to the signaled process in the wait queue. If the wait queue received a second inter­

vening dequeue request, newhead will indicate that the signaled process should also immedi­

ately wake up its successor as well. These three operations alone only apply to the centralized

queue control structure and are still insufficient to fully implement the wait queue.

The user library completes the implementation by managing the distributed queue in applica­

tion memory and the transfer of control between the signaling and waiting processes. It im­

plements three API operations for applications to access: insertQ inserts the calling process

identifier into the wait queue and returns immediately. waitQ performs the actual wait by

spinning, or blocking, on the wakeup event that will eventually signal the waiting application.

removeQ removes and signals the front process waiting in the queue. Conforming to monitor

semantics, this signal is lost if the queue is currently empty. Both local and remote processes

must access the centralized control structure using the user-library API. Even though the local

process may have direct access to the individual fields, the network interface serializes all ac­

cesses to the control structure through the atomic operations.

wait queue Q

C (3)

H (PO)

Process PO

P(0)

H: head
T: tail
C: queue size
P: pending wakeup

T(P2)

front waiting
process

NXT (P1) NXT (P2) •I ^ i -

NXT (-1) NXT (P1)
W

NXT (P2)
w

NXT (-1)

CNT ' -j CNT CNT

H

I notf - i notf notf

Process P.1 Process P2

back waiting
process

Figure 21. Distributed wait queue example.

Figure 21 shows the data structures for the distributed wait queue example. The globally ad­

dressable centralized data structure, box Q, contains the state of the wait queue. Specifically,

it stores the head (H) and tail (T) pointers that point to the first and last processes in the wait

queue respectively. It also stores a queue-size counter (C), which tracks the number of waiting

processes in the queue, and a pending-wakeup counter (P), which NetVM uses to handle races

95

between signaling and signaled processes that may leave the queue temporarily inconsistent. In

the figure, head pointer H points to the front process PO, tail pointer T points to the last proc­

ess P2, queue size C = 3 indicates there are three waiting processes in the queue, and P = 0

indicates that there are no pending wakeups and the wait queue is consistent.

Each participating process (boxes PO to P2) in the wait queue stores two globally accessible

variables and a notification. The next pointer (NXT) points to its successor in the wait queue. A

new queuing process updates this pointer in its predecessor (e.g. P2 sets P1—>NXT = P2) unless

it is the first process in the queue. The count variable (CNT) indicates if a process has, or will

soon have, a successor in the wait queue. The signaling process updates this variable with a

notifying writeN that signals the waiting process. The signaled process must also update any

existing, or imminent, successor as the new front process in the queue (Q—>H). Finally, each

process allocates a notification (notf) triggered by a signaling process.

<t> = enqueue(id) <h, c> = dequeueQ <p, c> = newhead(h)

C = C + 1 if C = 0 if P > 0
if C = 1 reply < EMPTY, -1> P = P -1

H = T = id if H * EMPTY C = C - 1
reply <EMPTY> C = C - 1 reply <TRUE, C>

else reply <H, C> else
reply <T> H = EMPTY H = h
T = id else reply <FALSE, C>

P = P + 1
reply <EMPTY, C>

Table 19. Wait-queue implementation on the network interface.

Table 19 shows the three NI atomic operations on the wait-queue control structure. The NI

command handler processes them similarly to the standard atomic operations. It first fetches

the entire 4-word control structure from application host memory into a local buffer. After

completing the specific operation, it replies to the caller with the result and transfers the up­

dated structure back to application host memory. Initially, both head (H) and tail (T) pointers

contain EMPTY, and the queue-size (C) and pending-wakeup (P) counters contain zero.

The enqueue operation first increments the queue-size counter, which tracks the number of

waiting processes in the queue. If only one process is waiting, enqueue sets the head and tail

pointers to that process identifier. Otherwise, it replaces the existing tail pointer with the new

process identifier and returns the old tail pointer (t), so that the new process can chain itself

into the wait queue.

96

The dequeue operation first checks the queue size and aborts the operation on an empty

queue. If the current head pointer is valid, dequeue invalidates it and decrements the queue-

size counter to reflect the removal of the front entry. It returns the old head pointer and new

queue size to the caller to wake up the front waiting process, dequeue finds an invalid head

pointer if the previously signaled process has not yet updated the new head pointer with the

successor. In this case, dequeue records the deficit state by incrementing the pending-wakeup

counter, which tracks the number of front processes that should immediately wake up when­

ever the head pointer is updated.

The newhead operation performs this deficit check when a signaled process updates the head

pointer with the successor in the wait queue. If there is a pending wakeup, newhead simply

decrements both pending-wakeup and queue-size counters, and returns a code (TRUE) indicat­

ing that the new front process should also be immediately signaled. If there is no pending

wakeup, newhead simply updates the head pointer with the provided value. In either case,

newhead also returns the number of waiting processes in the queue.

insert Q_ removeQ waitQ

NXT = EMPTY <h, c> = dequeueQ notf Spin (notf) then notfWait(notf)
CNT = 0 if h * EMPTY if CNT > 0

t = enqueue(me) writeN(h->CNT, c, notf) spin until NXT * EMPTY
if t * EMPTY <p, c> = newhead(NXT)

write(t->NXT, me) if p = TRUE
writeN(NXT—>CNT, c, notf)

Table 20. Wait-queue implementation in the user library.

API calls simplified for clarity.

Table 20 shows the three user-library operations for the wait queue. The insertQ operation

calls enqueue update the calling process identifier into the wait queue. If the return tail

pointer (t) is not EMPTY, insertQ chains the calling process into the wait queue by writing its

identifier into the NXT field in its predecessor, which is stored in the tail pointer.

The removeQ operation calls dequeue to remove the head entry from the wait queue. If the

returned head pointer is valid, removeQ performs a notifying writeN to the CNT field of the

head process. This writeN serves two functions: it wakes up the front waiting process and it

updates the waking process with the updated number of queue entries (zero if the waking

process was the only one in the queue). removeQ may receive an EMPTY head pointer and

hence cannot wake up the unknown process for two possible reasons: either because the wait

queue was previously empty, or because the previously signaled process has not yet updated

97

the head pointer. In the second case, NetVM defers the wakeup until the signaled process up­

dates the head pointer.

The waitQ operation first spins, and then blocks, for the notification that wakes it up. Once

notified, a CNT value greater than zero means that it must update the head pointer with its

successor by calling newhead. To do this, it spins waiting until its NXT field is updated by the

successor in the wait queue before updating the head pointer. In the common case, the succes­

sor would have already updated the NXT field when it called insertQ. If newhead indicates

that another removeQ request had already occurred (when there is at least one pending

wakeup), waitQ also performs the deferred wakeup, on behalf of removeQ, with a notifying

writeN to its successor.

NetVM relies on the pending-wakeup counter to address a race condition that can occur over

the head pointer (H) between a signaling process and a signaled process during multiple wake-

ups. A signaling process accesses the head pointer to wake up the front waiting process; a sig­

naled process updates the same pointer with its successor in the wait queue. However, a sec­

ond signaling process will find an invalid head pointer if the previously signaled process is slow

in updating the new value. The nonzero pending-wakeup counter (P) tracks this deficit condi­

tion and informs the signaled process, when it updates the head pointer, that it should also

immediately wake up its successor.

8.3.1 Monitors

Mesa monitors are straightforward to implement in NetVM using the available mutual-exclusion

lock and wait-queue mechanisms. A monitor requires a mutual-exclusion lock to ensure that

only one process can enter a monitor at any one time. It also requires a wait queue for each

condition variable associated with the monitor.

mbegin(mon) mend(mon) cvwait(mon, cv) cvsignal(mon, cv)

acquire(mon) release(mon) insertQ(cv) removeQ(cv)
release(mon)
waitQ(cv)
acquire(mon)

Table 21. Monitor implementation.

Table 21 shows the operations of the NetVM monitor. A process enters the monitor after calling

mbegin to acquire the monitor mutual exclusion lock; it calls mend to exit the monitor after

releasing the same lock, cvwait waits on a condition variable associated with the monitor. It

98

first inserts the calling process into the wait queue. It then releases the monitor and waits for

the signal on the condition variable. When the signal arrives, cvwait reenters the monitor by

reacquiring the monitor lock. Finally, cvsignal signals an event on a condition variable to wake

up the first waiting process waiting, or drops the signal if there is none. A process should im­

mediately exit the monitor after calling cvsignal.

NetVM monitors implement Mesa semantics. A process in a monitor that signals a condition

variable continues to execute until it releases the monitor lock. The signaled process must re­

acquire the lock before reentering the monitor. However, the signaled process may not be the

first in the monitor-lock queue, a different process can enter the monitor and steal the sig­

naled resource. Therefore, the signaled process must verify that the signaled condition is still

valid once it reenters the monitor.

8.4 Semaphores

The NetVM counting semaphore is a simple extension of a wait queue. The semaphore imple­

mentation adds a count integer in the wait-queue data structure to store the semaphore count

value. NetVM also adds two constant-time atomic operations, semP and semV on the network

interface semP extends enqueue by conditionally queuing the process only if the semaphore

count is zero. semV extends dequeue by conditionally dequeuing the front process of a non­

empty wait queue. To complete the implementation, NetVM adds two API functions, Swait and

Ssignal, in the user library.

<t, s> = semP(id) <h, c, s> = semV()

s = S if C > 0
if S > 0 <h, o = dequeue))

S = S -1 else
else S = S+ 1

<t> = enqueue(id) reply <h, c, S>
reply <t, s>

Table 22. Semaphore implementation in the network interface.

Table 22 shows the two semaphore atomic operations on the network interface. semP either

decrements a positive semaphore count by one, or calls enqueue to place the process identi­

fier into the wait queue if the count is zero. semV either calls dequeue to signal the first proc­

ess of a nonempty wait queue, or increments the semaphore count by one. Note that, like en­

queue and dequeue, semP and semV requires newhead, which is unmodified from the wait

queue, to complete the implementation on the network interface.

99

<s> = Swait() <s> = Ssignal()

<t, s> = semP(me) <h, c, s> = semV()
if s > 0 if s = 0

return s writeN (h->CNT, c, notf)
if t * EMPTY return s

write (t->NXT, me)
waitQ()
return s

Table 23. Semaphore implementation in the user library.

API calls simplified for clarity.

Table 23 shows the two user-library operations for semaphores. Swait calls semP to condition­

ally decrement the semaphore count and returns the pre-decremented value if it is positive.

Otherwise, Swait chains the process to the end of the wait queue, as in insertQ, and then im­

mediately calls waitQ to wait for the wakeup signal. Ssignal calls semV to conditionally incre­

ment the semaphore count and returns the post-incremented value if there are no processes

waiting on the semaphore. Otherwise, Ssignal wakes up the first waiting process in the queue

with a notifying write, as in removeQ.

8 . 5 Summary
The network interface implements atomic read-modify-write operations, which are similar to

the read operation but with two key differences. The first difference is that the remote net­

work interface, instead of simply replying with the requested data, also processes the atomic

operation and writes the updated result back to the host memory. The second difference is

that the requesting application always busy waits on a reply buffer waiting for the atomic op­

eration to complete.

NetVM implements an MCS-based distributed lock using only two standard atomic operations:

swap and cswap. The counter-based notification mechanism simplifies the implementation

and, unlike the original MCS design, allows an application to block wait, in addition to busy

wait, to acquire the lock.

The wait-queue mechanism requires three new atomic operations on the network interface.

These operations allow NetVM applications to enqueue and dequeue themselves with a reduced

number of network transactions compared to the traditional shared-memory-based implemen­

tation using standard atomic operations. With the wait queue in place to support condition

variables, Mesa monitors are straightforward to implement using both distributed lock and

wait-queue mechanisms.

100

Finally, the counting-semaphore mechanism requires two new atomic operations that extend

the existing wait-queue atomic operations. NetVM implements the counting semaphore essen­

tially as a conditional wait queue with an additional counter to track the semaphore value.

The next chapter presents an evaluation of a working prototype based on the design descrip­

tion in Chapters 4 to 8.

101

9 Evaluation

This section presents an evaluation of a complete implementation of NetVM in five sections.

The first section examines the costs and benefits of using NetVM's memory-management ap­

proach. It measures the host overhead for integrating NetVM with the host VM system and the

network interface overhead for page-locking operations. It also compares the page-locking ap­

proach with the traditional host-based dynamic page-pinning techniques. The second section

measures the performance for small and large data transfers. It compares the cost of NetVM

page locking to an efficient static pinning approach that allows applications to hand physical

addresses directly to the network interface. It also examines the impact of NetVM's page frag­

mentation on misaligned data transfers. The third section reports the latencies and overheads

for control transfers using each of the notification-detection mechanisms described in the de­

sign. They include synchronously busy waiting, block waiting, and triggering a handler to proc­

ess a notification. The fourth section presents the performance for application-level channels,

which provides stream-oriented data transfers. Finally, the fifth section examines the atomic

and synchronization operations. In particular, it investigates the overheads of these operations

over the basic remote read, which has a similar implementation. It also demonstrates that

NetVM's synchronization operations are both scalable and add low overhead.

The experimental prototype consists of a cluster of 1-GHz Intel Pentium III PCs, each with

512MB of PC133 SDR SDRAM running the FreeBSD 4.6R operating system. The Myrinet network

connecting the PCs has a peak bidirectional bandwidth of 1.28Gb/s (160MB/s) and a minimum

point-to-point latency of 100ns. Each network interface contains a 132-MHz LANai 9.2 network

processor and 8MB of 64-bit SRAM onboard. A 64-bit 66-MHz PCI bus connects the network in­

terface to the host motherboard and has a peak bandwidth of 528MB/S. The measured host-

DMA bandwidth of 4-KB transfers is 437MB/S from host to network interface and 492MB/S from

network interface to host. With larger host-DMA transfers, the asymptotic bandwidth is

515MB/S for host to network interface and 527MB/S for network interface to host. The meas­

ured wire-DMA bandwidth is 160MB/S.

102

All timing measurements use a combination of the Pentium cycle counter on the host and the

LANai CPU counter on the network interface. The resolutions of the host and NI counters are

1ns and 15ns respectively. The reported latency numbers represent the median of at least 1000

trials of each experiment.

9.1 Memory-management overhead

Type Operation Latency (us)

kernel mapPage 0.31
unmapPage (success) 1.44
unmapPage (PAGEJ.OCKED) 0.73
isPageDirty (CLEAN) 0.55
isPageDirty (DIRTY) 0.60

NI lockPage (success) 0.33
lockPage (PAGE_NOT_MAPPED) 0.39
unlockPage 0.13
unlockPageDirty 0.27

Table 24. Host and NI page-table operations.

Table 24 shows the NetVM memory-management overhead to manage the shadow page table on

the network interface in two sections. The first section shows the operations in the kernel.

mapPage requires 0.31 us to insert a page mapping into the shadow page table. This overhead

is insignificant compared to the 10-20ms required to fetch the page from the backing store.

However, it is 10.61% of the 2.92us required to map a zero-filled page into application memory

for the first time. This first-time-access overhead is not detrimental, because the total number

of such faults is limited to the size of the application in available physical memory on the host.

For example, an application that exports 128MB of memory requires only an additional 10.16ms

to map the pages into the shadow page table for the first time, 0.31 us for each of the

32768 pages.

unmapPage requires 1.44us to successfully remove a page mapping from the shadow page ta­

ble, or 0.73us to detect that the NI has locked the page for a DMA transfer. This overhead is

also insignificant compared to the cost of replacing a page in host memory, especially if the

kernel has to write a modified page to the backing store. Furthermore, in the steady state, the

VM system pairs the unmapping of one page with the mapping of another. Thus, the total cost

of an unmapPage-mapPage pair is insignificant compared to the cost of writing a modified

page to the disk and fetching the new one. When an application terminates, NetVM unmaps all

its resident exported pages in bulk. For example, an exiting application that mapped 128MB of

exported memory requires only an additional 45.88ms to unmap its pages from the shadow

page table.

103

Finally, isPageDirty requires 0.55us to detect a clean mapped page and 0.60us to detect and

clean a mapped page modified by the NI. This overhead occurs in the page-out daemon and in

the page-free routine, when the kernel needs to replace or free a page.

The second section of Table 24 shows the memory-management operations on the network in­

terface. lockPage requires 0.33us to successfully translate the virtual address and lock a

mapped page in the shadow page table, or 0.39us to detect that the host has unmapped the

page and reverse the locking operation. Minimizing the lockPage time is important because this

operation lies in the critical path of a message transfer on the receiving node for small trans­

fers and on the sending node for large transfers. For small transfers, the application copies the

data from host memory into the source network interface using programmed 10, therefore the

NI does not need to pin the page for a DMA transfer. For large transfers, lockPage is required

on both sending and receiving nodes. However, because the receiving NI processes a message

as soon as the message header arrives from the wire, the lockPage operation on the receiving

node overlaps with the wire-DMA transfer of the data from the network link and thus does not

lie in the message critical path when measuring latency.

unlockPage requires 0.13us to unlock the page in the shadow page table after a host-DMA

transfer from host memory into network interface memory on the source node. unlockPage-

Dirty requires 0.27us to unlock the page and mark it as modified after the host-DMA transfer

from network interface memory into host memory on the destination node. Both unlockPage

and unlockPageDirty do not lie in the latency critical path of the message transfer.

9.1.1 Comparison with dynamic pinning

Table 25 on the following page compares two different host-based dynamic page-pinning

mechanisms to the NetVM Nl-based page locking in three sections. The first two sections show

the potential benefit from using a host-based approach to pin and unpin a cluster of pages (1-8

virtually contiguous pages) in a single request. Batch pinning reduces the average per-page

overhead by amortizing the cost of the application system call, host interrupt and kernel page-

table lookup for a cluster of pages into a single operation. However, batch pinning is effective

only if there is spatial locality in the accesses, poor locality actually increases the per-page

overhead by unnecessarily pinning unrelated pages. For example, the per-page cost to pin and

unpin eight pages individually using an application-based approach is 4.21 us. If these pages be­

long to the same 8-page cluster (87.5% hit rate), then the average per-page cost falls to 1.30us.

If these pages are spatially unrelated however (0% hit rate), then the per-page cost rises to

10.41 us, which is the time to pin and unpin each 8-page cluster.

104

Operation Cluster Latency Per-page Hit Rate

Size Overhead

(pages) (MS) (us/page) (%)

application 1 4.21 4.21 0.0
system call 2 5.13 2.57 50.0

4 7.05 1.76 75.0
8 10.41 1.30 87.5

interrupt host 1 4.92 4.92 0.0
2 5.37 2.69 50.0
4 7.42 1.86 75.0
8 10.96 1.37 87.5

NetVM - 0.60 0.60 0.0

Table 25. Host-based dynamic page-pinning vs NetVM Nl-based page-locking costs.

The first section shows the latency of the system-call-based approach used by systems such as

Pin-down Cache. In this approach, the application calls the mlock and munlock system calls to

manage a pinned-page cache in host memory. It then supplies the network interface with the

physical address of the pages after obtaining the address translations for those pages from the

operating system. To replace a pinned page in the cache, the application simply unpins a vic­

tim page (or cluster) and pins the replacement page. An application requires 4.21 us to pin and

unpin a single page, but requires 10.41 us to pin and unpin an 8-page cluster. Therefore, the

per-page cost drops to 1.30us if the 8-page cluster is accessed eight times, which corresponds

to an 87.5% hit rate. The reported timings include only the basic mlock and munlock system

calls; they do not include any application time to obtain the physical address translations or to

manage a pinned-page cache, which are part of the total cost of using this approach.

The second section shows the latency of an interrupt-based approach to page pinning using by

systems such as VMMC-1 and U-Net. In this approach, the NI maintains the cache of pinned

pages and interrupts the host whenever it needs to replace a page in the cache with a new

page. The NI supplies the kernel with the victim and replacement pages during the interrupt.

The kernel responds by unpinning the victim page (or cluster) and pinning the replacement

page. It then supplies the NI with the physical address of the replacement page, which the NI

uses for the DMA transfer. The reported timings only include the interrupt latency, which is

2.31 us, and the kernel-based pinning and unpinning operations; they do not include the full

interrupt-handling overhead on the host or any time to manage the pinned-page cache on the

network interface, which are part of the total cost of using this approach.

The third section shows the latency of the NetVM page-locking operations. It requires a fixed

per-page cost of 0.60us, which is the sum of lockPage and unlockPageDirty, to lock and unlock

a page and set its modification state.

105

The measurements in Table 25 also show the tradeoff between using the NetVM network-

interface-based page-locking approach and the host-based dynamic pinning approaches. On the

one hand, NetVM is significantly more efficient than host-based dynamic pinning when pinning

single pages, NetVM's latency is only 14.3% and 12.2% of the system-call-based and interrupt-

based approaches respectively. On the other hand, the effectiveness of the host-based ap­

proaches largely depends on the hit rate in the pinned-page cache. For 8-page clusters with an

access hit rate of 87.5%, NetVM's overhead increases to 46.2% and 43.8% of the system-call-

based and interrupt-based approaches respectively. If the hit rate is sufficiently high, NetVM's

pinning overhead will eventually exceed the host-based approaches, because NetVM incurs the

pinning cost on each page access, but the host-based approaches only incur the pinning cost on

each pinned-page cache miss.

Figure 22. Average pinning latency based on pinned-page cache hit rate.

Figure 22 shows the average pinning latency based on the hit rate. Only single-page and 8-page

cluster sizes are shown for the host-based approaches. A hit rate of 0% means that the page, or

n-page cluster, is pinned once each time to access the page. A hit rate of 100% means that the

page or cluster is pinned only once and then accessed an infinite number of times. NetVM has a

fixed cost of 0.60us independent of the hit rate, as explained in the preceding paragraph. From

the figure, the system-called-based approach will require a minimum hit rate of 85.7% and

94.2% for single-page and 8-page clusters respectively to provide a lower amortized pinning

106

cost compared to NetVM. Similarly, the interrupt-based approach will require a minimum hit

rate of 87.8% and 94.5% for single-page and 8-page clusters respectively. As a comparison, se­

quentially accessing a cluster of eight pages results in a hit rate of 0% with a single-page clus­

ter size and a hit rate of 87.5% with an 8-page cluster size.

The measurements in Table 25 show a second tradeoff between using a host-based dynamic

page-pinning approach and using the NetVM Nl-based page-locking approach. Unlike the dy­

namic page-pinning operations, the page-locking operations in NetVM can always lie in the

critical path of a message transfer on both sending and receiving nodes.

In the system-call-based approach, the application can pin pages in the critical path of a mes­

sage transmission on the sending node, but cannot to do the same for the receiving node be­

cause it has insufficient time to detect the message arrival and still guarantee that it can pin

the required page in time. A key problem is that the operating system may deschedule the ap­

plication at any time, particularly at the critical moment before it can pin the page. Therefore,

a pinned-page cache miss can cause the network interface to drop the message or buffer it in

host memory.

Similar to the system-call approach, an NI using the interrupt-based approach also cannot guar­

antee that it can pin the required page in time on the receiving node. There are three reasons

for this situation: First, the host interrupt latency is not always predictable. The measured

value on the prototype is 2.31 us in the common case, but rises to above 10us occasionally. Sec­

ond, other higher-priority IO interrupts may intervene and prevent the critical page-pinning

operations from completing in a timely fashion. Third, interrupt-based pinning for larger clus­

ter sizes requires a significantly longer time to pin the required page (e.g., 10.96us for an 8-

page cluster). Thus, these factors can cause a detrimental delay for the NI, because it only has

limited local memory to buffer messages from the network while waiting for the interrupt han­

dler to provide the address translation. For example, a 10-Gb/s network requires only about

3us to transfer a 4-KB page into the network interface. As a result, a relatively slow interrupt-

based page-pinning rate will exhaust all available buffers on the network interface.

In contrast to the host-based dynamic page-pinning approach, NetVM only requires fixed 0.60ps

per page to lock and unlock a single page. This fixed cost guarantees that, as long as the page

is resident in host memory and its page mapping is found in the shadow page table, NetVM can

always lock the page and access it via host DMA.

107

Another issue with Nl-based pinned-page caching is that, like NetVM, the NI always incurs a

fixed cost to look up the cache in the critical path of every message. This cost is roughly similar

to the fixed page-locking cost in NetVM. If the pinned-page cache lookup time is factored in,

the minimum hit rate required by the interrupt-based approach will further increase to a point

where it can do no better than NetVM when its pinned-page cache management overhead ex­

ceeds NetVM's page-locking overhead of 0.60us.

9.2 Data-transfer operations

Operation Size Latency Throughput Link Utilization

(bytes) (MS) (MB/s) (%of 160MB/S)

write 4 5.56 1.26 -
writeP 4 5.28 1.51 -
read 4 9.25 0.81 -
readP 4 8.79 0.88 -
write 4K 47.79 155.46 97.2
writeP 4K 47.08 155.36 97.1
read 4K 50.05 147.09 91.9
readP 4K 49.99 147.24 92.0

Table 26. Latency and throughput for 4-byte and 4-KB transfers.

Table 26 shows the latency and throughput of 4-byte and 4-KB transfers, write and read trans­

fer data between unpinned virtual-memory addresses, writeP and readP transfer data between

pinned physical-memory addresses.

NetVM implements writeP and readP to approximate data transfer using a static pinning ap­

proach. The key difference between writeP and write is that the application calling writeP

specifies the physical addresses of pinned source and destination memory. Thus, the NI as­

sumes that the required pages are always resident and locked in host memory and avoids the

address-translation and page-locking call to lockPage and the corresponding unlockPage op­

eration. It directly uses the provided address for the host-DMA transfers.

9.2.1 RDMA write

The reported write and writeP timings are the one-way median latencies, which are half of the

round-trip latencies measured in a ping-pong fashion using symmetrical writes on two nodes.

An application on the first node writes to an application on the second node and then spins

reading its local memory until it receives a corresponding update from the second node. The

108

remote application on the second node starts by spinning on its own local memory until it re­

ceives the update and then writes the data back to the application on the first node.

A 4-byte write requires 5.56us and a 4-byte writeP requires only 5.28us. The 0.28us differ­

ence, which is 5.0% of the write latency, is due to the additional overhead in using unpinned

virtual memory for write over using pre-pinned physical addresses for writeP. write has to lock

and translate the address of the target page on the destination network interface. The source

network interface does not incur this overhead because the application transfers the data into

the network interface using programmed 10, instead of host DMA, for small writes.

A 4-KB write requires 47.79us and a 4-KB writeP requires only 47.08us. The 1.5% difference is

mainly due to the lockPage overhead the source network interface. For writes above 96 bytes,

NetVM adaptively switches from using programmed IO to using host DMA on the source node to

transfer the data from host memory into the network interface.

The throughputs for 4-byte write and writeP are 1.26MB/S and 1.51MB/S respectively. With

small transfers, the overhead of processing the write command descriptors on the source node

and write messages on the destination node dominates the throughput performance. This over­

head is larger for write compared to writeP due to the lockPage operation, resulting in 19.8%

lower throughput.

The throughputs for 4-KB write and writeP are 155.46MB/S and 155.36MB/S respectively. These

results are virtually equal with only 0.06% difference between them. With large transfers, the

160MB/S network link is the throughput bottleneck, both write and writeP can achieve about

97% link utilization. NetVM is able keep the wire-DMA stage continuously busy by overlapping

the host and wire-DMA transfer operations. The lockPage and unlockPage overheads do not

significantly affect throughput because, on both source and destination network interfaces, the

NI has to stall waiting for the wire-DMA engine to complete before it can proceed. This stalling

effectively negates the small overheads introduced by lockPage and unlockPage.

9.2.2 RDAAA read

The reported read and readP timings are the median times required to read a 4-byte or 4-KB

block of remote data. An application on the first node initiates a remote read operation and

then spins reading its local memory until the last byte of the requested data arrives in its

memory.

109

A 4-byte read requires 9.25us. This time is 3.69us slower than the 4-byte write due to two rea­

sons. First, read is a round-trip operation, which requires two network messages. Second, both

source and destination network interfaces require a host-DMA transfer. The local destination-

node DMA is necessary because read transfers data into, and not out of, host memory on the

requesting node. The remote source-node DMA transfers data from host memory without inter­

vention from the host processor. A 4-byte read is thus 0.46us, or 4.9%, slower than readP. A 4-

KB read requires 50.05us and a 4-KB readP requires 49.99us. These latencies are virtually equal

with only 0.12% difference between them. With large transfers, the lockPage operation on the

requesting node overlaps with the arrival of the data from the wire.

The throughputs for 4-byte read and readP are 0.81MB/S and 0.88MB/S respectively. Similar to

the 4-byte write and writeP operations, small-message throughput is dominated by the net­

work processor time to handle the command descriptor, the request and the response mes­

sages. The additional overhead in read over readP thus results in an 8.6% lower throughput.

The throughputs for 4-KB read and readP are 147.09MB/S and 147.24MB/S respectively, both of

which are about 92% link utilization. The values are virtually the same, because the wire-DMA

transfer also dominates large-message throughput for reads.

9.2.3 Large-message latency and throughput

This section presents the latency and throughput for large transfer sizes to examine two key

design tradeoffs in NetVM. Recall from Section 5.2 on page 63 that the NetVM user library frag­

ments a large transfer request into individual page-sized page-aligned requests because the NI

handles memory-management operations in page-sized units. Thus, this section only focuses on

the results of transfer sizes from 4 bytes to 8-KB as the performance characteristics repeat on

every 4-KB boundary. Also, recall from Section 5.4 on page 65 and Section 5.5 on page 68 that

the NI transfers data through the DMA stages using a store-and-forward approach. Thus, the

DMA stage of a fragment can only affect the same stage of the next immediate fragment. The

following paragraphs describe how these two design choices affect NetVM performance.

Figure 23 in the following page shows the read and write latency for page-aligned transfers as a

function of data size, ranging from 4 to 8K bytes. Latency increases linearly from 4 to 4096

bytes with the starting and ending values reported in the preceding section. Because the NI

transfers data through the DMA stages using a store-and-forward approach, the total time spent

by the data in these stages determines the gradient of this first segment of the graph, which is

10.3ns/byte. Summing the reciprocals of the measured source-host DMA, wire-DMA and desti-

110

nation-host DAAA bandwidths results in an expected gradient of 10.6ns/byte, which is within

2.9% of the observed gradient.

Figure 23. Latency of page-aligned write and read for 4-byte to 8-KB transfers.

Latency increases in a stepwise fashion when the transfer size transits from 4096 to 4100 bytes.

The stepwise increases of 3.22us for write and 3.55us for read are due to the way the NetVM

user library fragments the transfer. Transferring a region that spans multiple pages in either

source or destination memory results in separate write or read calls. This design choice is mo­

tivated by an end-to-end argument to keep page-sized page-aligned transfers as fast as possi­

ble. However, this choice also incurs a performance cost for nonaligned transfers, which the

stepwise increases show. For 4100-byte write transfers in Figure 23, the user library breaks the

request into a 4-KB transfer and by a 4-byte transfer for the following page. Thus, the addi­

tional 3.22us latency over a 4-KB transfer is due to the 5.56us latency for the 4-byte transfer

partially overlapped with the preceding 4-KB transfer.

When the transfer size is between 4100 and about 5600 bytes, latency increases only at a

smaller rate compared to the first segment of the graph for two reasons. First, the NI on the

source node is able to completely overlap the host-DMA transfer for the smaller second write

with the wire-DMA transfer for the first 4-KB write, because the host-DMA stage is both faster

and smaller than the 4-KB wire-DMA stage. It is able to send the second message out onto the

111

wire as soon as its wire-DMA engine completes and is ready again. Therefore, the host DMA on

the source node for the second fragment adds virtually no additional latency to the transfer.

Second, the reception of the data from the second write message also overlaps with the host

DMA, into host memory, for the first 4-KB write. Any increase in latency is mainly due to the

additional time required by the host-DMA transfer for the second write. The gradient in this

segment of the graph is 1.7ns/byte to 1.8ns/byte, which is within 15% of the expected

2.0ns/byte by taking the reciprocal of the host-DMA bandwidth on the destination node.

Latency also increases linearly in the third segment of the graph when the transfer size is be­

tween about 5600 and 8192 bytes. In this case, the wire-DMA stage for the second write is sig­

nificantly large enough that the destination-host DMA is no longer the dominant factor. The NI

on the destination node has to wait for the second wire-DMA transfer to complete before it can

initiate the host-DMA transfer for the data. Therefore, both wire-DMA and destination-host DMA

stages dominate the transfer. The gradient of this segment is 8.2ns/byte, which corresponds to

within 1.2% of the expected 8.3ns/byte derived by summing the reciprocals of the wire-DMA

and destination-host DMA bandwidths.

Figure 24 on the following page shows the write and read throughput for page-aligned transfers

as a function of data size, ranging from 4 to 8K bytes. The throughput for reads is lower than

for writes due to the higher network processor overheads on both source and destination nodes

for handling the read and readP operations.

The throughput for small writes and reads is, as expected, substantially less than the through­

put for 4-KB and 8-KB transfers. This low throughput is due to the dominating overhead for

processing the individual command descriptors and messages relative to the required time to

transfer the actual data.

Throughput rapidly rises with increasing data size from 4-byte transfers until about 1-KB trans­

fers and then bends sharply towards the 4-KB throughput values. The network link essentially

limits throughput from the knee of the graph, at about 1KB, to 4KB.

Throughput drops sharply when the transfer size is at the 4096-4100-byte boundary, similar to

the stepwise increase in latency seen in Figure 23. For example, in the worst-case 4100-byte

transfers, the NetVM user library splits the transfer into a 4096-byte transfer followed by a 4-

byte transfer. From the leftmost part of Figure 24, small 4-byte transfers achieve very low

throughput. As a result, the throughput for 4100-byte writes is 107.47MB/S, which is 30.9% less

112

than for 4096-byte writes. Similarly, the throughput for 4100-byte reads is 103.68MB/s, which

is 29.5% less than for 4096-byte reads.

Figure 24. Throughput of page-aligned write and read for 4-byte to 8-KB transfers.

When the transfer size is between 4100 and about 5900 bytes, throughput increases linearly
until it reaches its maximum value limited by the network link bandwidth. The linear extrapo­

lated write and read throughput lines also intercept the origin, indicating that an incremental

increase in the data size does not increase in the time required to transfer the data. Within

this 4100-5900-byte range, the network-processor overhead in handling the smaller second

message exceeds the wire-DAAA time to receive it from the wire. Therefore, increasing the size

of the second message does not significantly affect the overall time it requires to transfer the

data, because the data from the second message from the wire would have completely arrived

into network interface memory by the time the NI has processed its message header and is

ready to initiate the host-DMA transfer.

Finally, when the transfer size is between about 5900 and 8192 bytes, the network link limits

the throughput again, similar to the situation when the transfer size was between 1KB and 4KB.

113

9.2.4 Misaligned transfers

offset x

size
4 KB

destination
memory

write transfer

size
x

size
(4KB - x)

3 •

1st page

2nd page

Figure 25. Transferring a 4-KB data block in two fragments.

This section presents the latency and throughput results for non-page-aligned 4-KB write trans­

fers fragmented into two smaller transfers. If either the source or the destination data region

spans a page boundary, the NetVM user library splits the transfer at the page boundary, even if

the total data size is less than a single page. In this experiment, the application on the source

node writes a 4-KB data block with varying page offsets into remote destination memory. In

each write, NetVM splits the transfer into two fragments; the first fragment is (4KB - offset)
bytes large at offset bytes from the start of the first page and the second fragment is offset
bytes large from the start of the subsequent page, shown in Figure 25.

Figure 26 in the following page shows the measured write latency as a function of page offset.

The horizontal axis indicates the amount of alignment offset from the start of the first page. As

a reference, the horizontal broken line shows the 47.79us latency for a 4-KB page-aligned

write, which NetVM transfers using only one fragment instead of two.

From the figure, the 4-KB 2-fragment write latency is a 3-segment linear trough line. The

shape of this line is due to the interaction among the DMA stages for each of the two frag­

ments. Recall from the NI operation description in Section 5.4 on page 65 that a write opera­

tion for a single fragment requires three DMA stages: source-host DMA from source host mem­

ory to network interface, wire DMA from source to destination network interface, and destina­
tion-host DMA from destination network interface to target host memory. The time required

for each stage depends on both the size of transferred fragment and the completion time of

any preceding dependent stages.

114

Figure 26. Latency for 4-KB write as a function of page offset.

Appendix A on page 135 describes a model that characterizes this pipelined-DMA transfer and

provides a detailed analysis of the DMA engine interactions for each of the three segments. The

following paragraphs briefly describe the interactions to provide a general insight into these

interactions.

In the first segment of the graph when offset is less than 1200 bytes, latency decreases as off­

set increases. In this segment, the relatively large first fragment dominates latency; the criti­

cal path of the transfer passes through its three DMA stages (source-host, wire and destination-

host DMA). Increasing the offset reduces the size of the first fragment but adds equally to the

size of the second fragment. Thus, the critical path of the first fragment reduces, which re­

duces latency. The source-host and wire-DMA stages for the growing second fragment are able

to completely overlap with wire and destination-host DMA stages for the first fragment respec­

tively and, therefore, do not contribute to the total latency.

In the second segment of the graph when offset is between 1200 and 2800 bytes, latency re­

mains unchanged at about 41 us. Within this range, the critical path of the transfer passes

through the source-host DMA stage for the first fragment, the wire-DMA stages for both frag­

ments, and the destination-host DMA stage for the second fragment. Therefore, a lower source-

host DMA time for the shrinking first fragment is negated by a higher destination-host DMA time

for the growing second fragment, causing the total latency to remain the same.

115

In the third segment of the graph when offset is greater than 2800 bytes, latency increases as

offset increases. In contrast with the first segment, the relatively large second fragment now

dominates latency. Increasing the offset adds to the size of the second fragment and increases

the critical path, and hence latency, through its DMA stages.

From the figure, the 2-fragment write latency when offset is between 400 and 3600 bytes is

lower than the 47.79us single-fragment write. The minimum latency is 40.60us, or 15% faster

than the single-fragment write, when offset ranges from 1200 to 2800 bytes. Thus, a potential

improvement to the user library is that, when appropriate, the library can adaptively fragment

large transfers, even if they fit within a single page, to improve the DMA engine and pipeline

overlap and, hence, to reduce latency.

The cause of the spikes at the 4000-byte offset is unclear. The spikes are consistently repeat-

able and only occur at those offsets. The most likely cause is due to hardware idiosyncrasies in

the DMA engines on the network interface.

Figure 27. Throughput for 4-KB write as a function of page offset.

Figure 27 shows the measured write throughput as a function of page offset. As a reference,

the horizontal broken line shows the 155.46MB/S throughput for a 4-KB page-aligned write,

which NetVM transfers using only one fragment instead of two.

116

The shape of the throughput graph is largely determined by the DAAA overlap in the transfer

pipeline and the presence of any bottlenecked DAAA stage. A high DAAA overlap results in a high

DAAA pipeline utilization, which indicates that the DAAA engines are more efficient in pushing

data through the pipeline. In the first segment of Figure 27, increasing offset increases the DAAA

overlap between the two fragments and, thus, throughput. The opposite is true in the third

segment of the graph; increasing offset reduces the DAAA overlap and throughput. In the second

segment of the graph, the wire-DAAA stage is the bottleneck and throughput is limited by the

network link bandwidth.

Unlike the write latency results, the 2-fragment write throughput is never higher than the

155.46AAB/S single-fragment write throughput. This lower throughput is due to the additional

processor overheads to handle the second fragment. These overheads introduce additional

bubbles in the DAAA-transfer pipeline compared to the single-fragment write, which results in a

lower DAAA engine and pipeline utilization and, hence, in a lower throughput.

9.3 Control-transfer operations

Operation Detection mode Size Latency Difference
(bytes) (MS) over write

MS %

write data only 4 5.56 0.0 0.0
writeN notfSpin 4 8.52 2.96 53.2
writeN notfWait 4 16.61 11.05 198.7
writeN notification handler 4 31.14 25.58 460.1
write data only 4K 47.79 0.0 0.0
writeN notfSpin 4K 50.68 2.89 6.0
writeN notfWait 4K 58.73 10.94 22.9
writeN notification handler 4K 73.16 25.37 53.1

Table 27. Latency for NetVM notification mechanisms.

Table 27 shows the latency for a sending application to transfer control to a remote application

using three different notification mechanisms. The table has two sections and each section lists

four different cases. The first case in both sections serves as the base case for comparing with

the other three notification mechanisms. In this first case, the sending application issues a 4-

byte or 4-KB data-only write to the remote memory address. The receiving application spins

waiting on its local memory until it detects that all the data has arrived. In the three remaining

cases, the sending application issues a 4-byte or 4-KB notifying writeN to the remote memory

address. Specifically, the receiving application in the second case calls notfSpin, which directs

the NI to update the shadow signal counter and spins waiting on the shadow counter for the

117

arriving notification. The receiving application in the third case calls the notfWait system call,

which blocks waiting for the notification. When the notification arrives, the NI interrupts the

kernel to wake up and notify the blocked application. Finally, the receiving application in the

last case registers a notification handler to handle the notification. When the notification ar­

rives, the NI interrupts the kernel to invoke the application signal handler, which executes the

registered notification handler.

The first section in Table 27 reports the 4-byte write and writeN latencies for the four cases.

The 5.56us 4-byte write latency is taken from the results reported previously in Table 26. From

the current table, an application requires 8.52us for a 4-byte notifying writeN to a remote ap­

plication that uses notfSpin to detect the arriving notification. Like write, the receiving NI re­

quires 5.56us to transfer the 4-byte data payload into the destination host memory. However,

it also requires additional 2.96us, or 53.2% more time, to update the sequence window and the

shadow signal counter in host memory so that notfSpin can detect the new signal count.

An application requires 16.61 pis for a 4-byte notifying writeN to a remote application that uses

notfWait to detect the arriving notification. This latency is almost triple the 4-byte write la­

tency and is almost double the 4-byte writeN latency using notfSpin. This large latency differ­

ence highlights the significant overhead in placing the critical path for control transfer through

the kernel. With notfWait, NetVM requires additional 11.05us over the base data-only case for

the receiving NI to process the sequence window and interrupt the kernel, and for the kernel to

wake up and schedule the blocked application.

Finally, an application requires 31.14ps for a 4-byte notifying writeN to a remote application

that registers a notification handler to process incoming notifications. NetVM requires addi­

tional 25.58us for the receiving NI to process the sequence window, update the notification

queue and interrupt the kernel, for the kernel to schedule the application and invoke its signal

handler, and for the notification dispatcher in the signal handler to read the notification queue

and execute the notification handler.

The second section in Table 27 reports the 4-KB write and writeN latencies for the same four

cases in the first section. The absolute time difference between each of the three notification

mechanisms and the base case is similar for both 4-byte and 4-KB transfers, because the notifi­

cation overheads are fixed regardless of the transfer size. As a result, the corresponding rela­

tive differences are significantly lower for 4-KB transfers in the second section of the table as

total latency is now dominated by the 47.79us required to transfer the 4-KB data block.

118

Detection mode Overhead (us)

notfSpin 2.29
notfWait 3.67
notification dispatcher (notfTest) 1.07
notfAck 0.69

Table 28. Overhead for NetVM notification-detection mechanisms.

Table 28 shows the host-processor overhead for detecting a pending signal using each of the

three detection mechanisms. Recall from Section 6.1.2 oh page 74 that the NI efficiently ac­

cumulates notifications using a signal counter on the network interface. It conditionally up­

dates the host memory and interrupts the kernel only for the first pending notification; subse­

quent notifications only increment the signal count. Therefore, an application can detect pend­

ing signals without incurring the high host-interrupt and kernel-processing overheads. Hence,

the overheads of notfSpin, notfWait and the main loop in the notification dispatcher deter­

mines the time required to detect these pending notifications.

From the table, notfSpin requires only 2.29us to detect a pending notification; notfWait re­

quires 3.67us, or 60.3% longer, to detect the same notification. The difference is mainly due

the system-call overhead into the kernel required by notfWait. The main loop in the notifica­

tion dispatcher requires only 1.07us to detect any pending notification. This operation is

1.22us, or 53.3%, faster than notfSpin because it does not need to direct the NI to update the

shadow signal counter or need to acknowledge the signal. Instead, it simply calls notfTest to

compare the appropriate signal and acknowledge counters on the network interface. Finally,

notfSpin and notfWait, but not notfTest, includes the call to notfAck, which requires 0.69us

to acknowledge a signal by incrementing the corresponding acknowledge count on the network

interface by one.

9.4 Channels

Detection mode size (bytes) Latency (u.s) Throughput(MB/s)

spin (notfSpin) 4 9.55 1.03
block (notfWait) 4 17.34 0.79
block (notfWait) 4K 59.01 155.36

Table 29. Latency and throughput for NetVM channels.

Table 29 shows the NetVM channel latency and throughput for 4-byte and 4-KB transfers. Recall

from the description of the channel operations in Table 14 on page 85 that the key data-

119

transfer operation is a notifying writeN by the sending application. As a result, NetVM requires

9.55us to send a 4-byte packet through the channel if the receiving application is spin waiting

for the data with notfSpin. This latency is 1.03us more than the 8.52us required by the corre­

sponding 4-byte writeN reported in Table 27. The sending application requires this additional

time for flow control over the channel to ensure that it has sufficient credits on the receiver to

send the packet. Similarly, the channel requires 17.34us to send the same 4-byte packet if the

receiver is block waiting for the data with notfWait, which is 0.73us more than the correspond­

ing 4-byte writeN. Finally, NetVM channels require 59.01 us to transfer a 4-KB packet.

Throughputs for 4-byte data transfers through the channel are very low, as expected, at

1.03MB/s and 0.79MB/S for the notfSpin and notfWait approaches respectively. The throughput

for 4-KB packets through the channel is much higher at 155.36MB/S, which is almost equal to

the 155.46-MB/s 4-KB data-only write throughput reported in Table 26, indicating that the

channel flow-control overhead has an insignificant effect on large-packet throughput.

9.5 Atomic and synchronization operations

This section presents the latency and overhead for NetVM's atomic and synchronization opera­

tions. In particular, it compares the overheads with the basic remote read. Recall from Sec­

tion 8.1 on page 91 that the network interface extends remote reads to implement atomic op­

erations. It fetches the operand from host memory, performs the atomic operation and writes

the result to host memory, in addition to sending the reply back to the requesting node. The

requesting application spins on its local reply buffer until the result returns. Thus, the decoding

and execution time for an atomic operation on the network interface dominates the additional

latency over the basic read. Furthermore, this duration together with the host-DMA operation

to write the updated result to host memory dominates the additional overhead on the network

interface.

This section evaluates the atomic and synchronization operations in two parts. This first part

reports the latency and overhead of standard and extended atomic operations, and compares

them with remote read. The second part reports the MCS lock, wait queue and semaphore syn­

chronization operations.

120

9.5.1 Atomic operations

Type Operation Application Latency NI Overhead

(MS) (MS)

Standard test_and_set 10.50 4.20
incr 10.55 4.31
deer 10.55 4.31
swap 10.52 4.19
cswap 10.50 4.30

Wait Queue enqueue 10.52 4.30
dequeue 10.74 4.30
newhead 10.52 4.28

Semaphore semP 10.52 4.37
semV 10.80 4.54

Data only 4-byte read 9.25 2.72

Table 30. Application Latency and NI overhead for atomic operations.

Table 30 shows the application latency and the NI overhead for both standard and extended

atomic operations in three sections and for the basic 4-byte read in the fourth section. The

application latency measurement is the complete time required by an application to issue an

atomic operation on a remote operand and obtain the result by spin waiting on the reply buffer

in its local host memory. The NI overhead measurement is the total duration for the network

processor on the remote node to fetch the operation from host memory, perform the actual

operation, reply to the requesting node, and write the result, if necessary, back to host mem­

ory.

The first section lists the standard atomic operations described in Section 8.1 on page 90. The

application latencies are almost equal, ranging from 10.50us to 10.55us, with only an insignifi­

cant 0.5% difference among them. The NI overheads are also similar, ranging from 4.19us to

4.31 us, with only 2.9% difference among them.

More important, the atomic operations add at most 1.30us, or only 14.1%, to the 9.25us appli­

cation latency over a comparable 4-byte application read. However, they add a much higher

54.0% to 58.5% to the NI read overhead. On the one hand, atomic and 4-byte read operations

are similar. Both require a roundtrip network transaction, both access a 4-byte remote word

operand, and both spin on local host memory waiting for the operation to complete. On the

other hand, the remote NI incurs a significantly higher overhead, up to 1.59us, for processing

an atomic operation compared to processing a read operation.

The second and third sections list the extended NetVM wait-queue and semaphore atomic op­

erations described in Sections 8.3 and 8.4 on pages 94 and 99 respectively. From the table,

121

these operations do not add significant application latency or NI overhead over standard atomic

operations. The results represent the maximum timings, which traces through the longest code

path for each operation. The application latencies are only between 0.2% and 2.9% slower than

the fastest standard atomic operation, or are between 13.7% and 16.8% slower than the 4-byte

read. Similarly, the NI overheads are only between 2.6% and 8.4% higher than the smallest

overheads for standard atomic operations, but they are between 57.4% and 66.9% higher than

the read overhead.

The NetVM extended atomic operations add only a small latency and overhead compared to

standard atomic operations. The extended operations fetch a larger operand (up to five words

instead of one) from host memory, perform a slightly more complex operation on the network

interface, and return a larger result (up to three words instead of one) to the requesting appli­

cation. However, they add only up to 2.9% to the application latency and up to 16.8% to the NI

overhead over standard atomic operations.

9.5.2 Synchronization operations

Type Operation Overhead (ps)

MCS Lock acquire 10.53
release 10.55

(no successor)
0.67

(signal successor)
Wait Queue insertQ 11.87

(first in queue)
12.47

(append to predecessor)
removeQ 11.64

Semaphore Swait 10.55
Ssignal 10.55

(no waiter)
11.88

(signal waiter)

Table 31. Application overhead for synchronization operations.

Table 31 shows the total application overhead for the NetVM synchronization operations in

three sections. These operations build on the atomic operations reported in the preceding sec­

tion. If there are two numbers reported in the third column of the table, the second measure­

ment on the right represents the total overhead including issuing the write or writeN required

by the operation to synchronize with a remote process. The actual latency to transfer control

depends on the notification-detection mechanism used by the waiting process, which Sec­

tion 9.3 reported.

The first section of the table lists the results for MCS lock operations, acquire requires 10.53us

to call swap and acquire an available lock, release requires 10.55us to call cswap and return

122

the lock back to the central lock data structure when there are no successors in the lock chain.

If one is present instead, the releasing application only requires 0.67us overhead to issue a no­

tifying writeN to hand over the lock to the successor. Recall that release does not need to call

cswap to update the lock data structure if it detects a successor in its local host memory.

The second section of the table lists the results for the wait-queue operations. insertQ requires

11.87us to call enqueue and insert the calling application as the first process in the wait

queue. If the queue is not empty, insertQ requires 12.47us to additionally append the calling

application to the wait queue instead. The 0.6us difference is the additional time required by

insertQ to issue the write that updates its predecessor, which is the current tail of the queue.

removeQ requires 11.64us to call dequeue, which obtains the current front process of the

queue, and to issue a notifying writeN to wake it up.

The third section of the table lists the results for the semaphore operations. Swait requires

10.55us to perform a semaphore P operation on a positive semaphore count. If the count was

zero, Swait will block waiting for a wakeup notification from an Ssignal by another process.

Ssignal requires 10.55us to perform a semaphore V operation if there are no processes blocked

on the semaphore. If there is at least one process blocked waiting on the semaphore, Ssignal

requires 11.88us for the NI to dequeue that process and for the signaling application to issue a

notifying writeN to it.

Table 31 also shows the advantage of using NetVM's approach to implementing wait queues and

semaphores by minimizing the total number of network transactions. Each of these operations

require only one roundtrip network transaction, in the common case, and possibly an additional

remote write or writeN to signal or append to a remote process. Thus, the latencies for these

operations are approximately equal to the latency of a standard atomic operation. The tradi­

tional approach for implementing wait queues and semaphores on non-cache-coherent shared

memory machines require at least three phases: acquire, manipulate and release a shared syn­

chronization data structure. Each phase would normally require one, but usually more, round-

trip atomic and regular operations. Thus, the total latency for the traditional approach can be

significantly higher than the NetVM approach.

123

400

350 + -

:300 CL
O

LJ
ro

250

o 200
re
(U
g-150

E
iioo
'I
E

50

single • group

standard acquire release insertQ removeQ semP semV
atom ops M C S L o c k W a i t Queue Semaphore

4-byte
read

Figure 28. Maximum single- and multiple-application operation rates.

Figure 28 shows the maximum operation rate that a single application or a group of applica­

tions can generate. For a single application, the total overhead reported in Table 31 limits its

maximum rate, because it can only issue a new operation once the previous one completes.

Hence, the rate is computed by taking the reciprocal of the corresponding worst-case applica­

tion overhead in Table 31. However, a group of applications can issue atomic operations in par­

allel. The network interface on the node that stores the shared synchronization data structures

has to serialize all the atomic operations on that data structure. Hence, the NI overhead for

sequentially processing the atomic operations limits the maximum rate, which is computed by

taking reciprocal of the corresponding NI overhead in Table 30.

Figure 28 also shows that the maximum operation rates for NetVM-specific operations are ap­

proximately equal to the standard atomic operation rate and are not significantly slower than

even the basic remote read rate. The read rate reflects the absolute maximum achievable rate

with the current implementation and the standard atomic operation rate reflect the maximum

rate if the network interface has to additionally parse, execute and update the remote oper­

and. From the figure, the rates for standard atomic operation are slower than read by 12.0%

and 35.1% for single and multiple application requests respectively. The rates for NetVM-

specific synchronization operations, including all application-level overheads, are slower than

standard atomic operations only by up to 15.8% and 7.9% for single and multiple application

requests respectively. Thus, NetVM is able to support high-level synchronization operations that

execute close to the maximum rate achievable by the network hardware.

124

10 Conclusion and future work

"i implemented, i measured, i'm done"

norm hutchinson

This chapter provides a summary of the thesis and discusses the possible research directions

and future work for NetVM.

10.1 Summary

User-mode access, zero-copy transfer, and sender-managed communication are recognized as

essential to high-performance communication. The main challenge for application-level DMA is

to resolve the addressing mismatch between user-space applications and the network inter­

face. Existing systems pre-pin a set of buffers in physical memory and confine both source and

target data to these pinned buffers. This approach has two drawbacks: it hinders the operating

system from managing memory effectively and it places a burden on the programmer to ensure

network-addressable data structures are stored in pinned memory.

NetVM integrates the network interface with the host virtual memory system to provide a sim­

ple and powerful communication model with minimal host software overhead. It allows an ap­

plication with the appropriate permissions to achieve zero-copy data transfer between any vir­

tual address on the source to any virtual address on the destination, without requiring the op­

erating system to pre-pin any of the pages. NetVM addresses the issue of pinning by maintain­

ing a shadow page table on the network interface that the operating system updates whenever

it maps or unmaps a page in host memory. The NI uses the table to briefly lock and translate

the virtual address of the page whenever it accesses that page with a DMA transfer. This Nl-

initiated page lookup and locking mechanism is fast enough to lie in the critical path and, thus,

NetVM can zero-copy transfer data to and from any unpinned resident page in host memory.

The NI redirects transfers destined to nonresident pages through an intermediate system

buffer, where the operating system completes the transfer in a one-copy scheme after paging

in the target page. Thus, NetVM ensures reliable delivery without data re-transmission proto­

cols. Integration with the host VM system required only four simple changes, these changes are

easy to interject and add little overhead.

125

The evaluation of the prototype implementation for the Myrinet network hardware highlights

the costs and benefits of using the NetVM memory-management approach. NetVM adds only

10.61% overhead to the initial application page fault on a zero-filled page. The Nl-based page-

locking cost is significantly lower than the host-based dynamic pinning approaches. The analysis

indicates that the pinned-page cache's hit rate must be sufficiently high, up to 94.5%, before it

can better NetVM's pinning cost. Compared to the static pinning approaches, NetVM adds only

a modest 1.5% to 5.0% to write latency and adds virtually no overhead to throughput.

The basic RDMA communication model supports only data transfer. To support control transfer,

NetVM implements eventcount-based notifications for applications to detect the completion of

a data transfer or the arrival of a remote signal event. The sending application selectively sig­

nals a notification by including its identifier in a write; the receiving application detects the

notification either by busy waiting, by block waiting, or by registering a handler to trigger

whenever a notifying writeN completes. A sequence window enforces ordered notifications for

synchronized writes over an out-of-order delivery network.

The range of notification-detection mechanisms allows an application to make the appropriate

tradeoffs when waiting for remote signals. On the one hand, it can busy wait, which consumes

host processor time, to detect notifications with low latency (2.96us higher than a 4-byte data-

only write). On the other hand, it can block wait, which does not consume host processor time,

to detect notifications with 8.09us higher detection latency compared to busy waiting. A third

alternative is to asynchronously register a user handler, which automatically triggers when a

notification arrives, with 14.53us higher detection latency compared to block waiting.

Traditional synchronization algorithms for non-cache-coherent multiprocessors that use stan­

dard atomic operations typically require several network transactions to complete a synchroni­

zation operation. NetVM exploits the programmable network hardware by augmenting the net­

work interface with synchronization primitives and using them in the user library to support

higher-level wait-queue and counting-semaphore operations. As a result, application-level syn­

chronization operations require a reduced number of network transactions to complete. The

synchronization primitives have a low implementation and execution cost. The measurements

indicate that application latencies for the high-level wait queue and semaphore operations are

less than 18.2% slower than the low-level standard atomic operations, which in turn are only

less than 14.1% slower than the basic remote read. Thus, NetVM significantly reduces the ap­

plication latencies and network-interface overheads for these high-level synchronization con­

structs.

126

NetVM supports all the benefits of user-mode-access and zero-copy-transfer communications

without the cost of pinning host memory. It provides programmers with a natural view for re­

mote memory. It requires only minor changes, without introducing significant overheads, to the

host operating system and still allows the operating system to retain full control over its host

memory. NetVM also supports a range of control-transfer strategies that allow the application

to tradeoff reducing signaling latency for reducing host-processor overhead. Finally, NetVM

supports fine-grained high-level synchronization operations while reducing the required number

of network transactions. It only requires minor extensions to the network interface, which are

easy to implement and have low overheads.

10.2 Future work

Many interesting issues arose during the design and implementation of NetVM. The following

paragraphs examine some potential research directions from this thesis work and some possible

improvements to NetVM.

The challenge of implementing higher-level protocols on programmable network interfaces has

been around for some time. There is a constant tension between implementing too much,

which overloads the network processor, and implementing too little, which provides insuffi­

cient benefit to applications. Often, the tradeoffs depend on the capabilities of the network

interface, the overhead of the intended operation and the cooperation between the host and

NI processors to implement the operation. In the case of NetVM, the host operating system per­

forms all the necessary work to update the shadow page table, which is completely stored and

maintained on the network interface. Thus, the NI operations to access the data structures are

relatively lightweight. The extended atomic operations on the network interface are also

lightweight. However, they can provide substantial performance improvement because of their

tight coupling with the host operations. As network hardware improves, this delicate balance

between host and NI processing is likely to shift in favor to migrating more functionality to the

network hardware. Thus, it is important to understand the characteristics of workloads and

operations that make them suitable for deploying in the network hardware.

NetVM demonstrated that it is possible to significantly improve the latency of synchronization

operations by augmenting the network interface with simple operation-specific extensions that

are easy to implement, execute efficiently, and have low overhead. In particular, NetVM im­

plements the operations to support wait queues and counting semaphores, which includes only

five simple atomic operations on the network interface. Other synchronization operations can

also benefit from this approach. Indeed, current research is looking into using the network in-

127

terface to assist group operations such as barriers, reductions, and broadcasts. However, a key

issue to supporting these operations is the relatively slow processor and small memory avail­

able on the network interface. Thus, designing strategies that are both scalable and efficient

on the network interface is important. The MCS-inspired approach in NetVM is only one possible

strategy, investigating alternate strategies and tradeoffs can be interesting.

An application may require better access control over its exported segments. Currently, a re­

mote application has full read-write access to an imported segment. The exporting application

has no way to limit remote applications to read-only access, for example, when it wants to

publish data that remote applications can look up but not modify. Adding page-access attrib­

utes to NetVM is relatively straightforward; the shadow page table additionally stores the page-

access mode for each page, which the NI verifies before accessing the page with DMA. The host

VM module updates the page table based on the access-mode arguments in the export system

call. To achieve even finer-grained access control, the import-export module can export differ­

ent export names, each with a different access mode, to the same virtual address range. In this

way, an application can allow some remote applications to acquire read-only access and other

applications to acquire read-write access over the same exported memory.

The current implementation for atomic operations requires the NI to fetch the operand from

host memory, perform the operation and then write it back to host memory. The DMA transfer

times to fetch and write back the operand is a significant overhead on the network interface.

For frequent fine-grained synchronization operations, caching the operand on the network in­

terface can significantly reduce the overhead by eliminating the two small DMA transfers for

frequently accessed data structures used in atomic operations.

NetVM does not support shared virtual memory queues. Currently, the receiving application has

to set up a dedicated channel for each sender to implement many-to-one communication. To

implement shared queues, the network interface has to multiplex messages from different

senders into a single virtual memory queue in host memory. Thus, it needs to maintain meta­

data for the host queue, which includes the base virtual address, size and write cursor. Be­

cause the sending applications do not know, in advance, the final addresses of the messages

that are deposited into the queue, the network interface has to maintain the write cursor in

order to determine the virtual, and hence physical, address to update in the queue. A key issue

is dealing with the high Nl-processor overhead to compute the VPN-hashkey from the write cur­

sor. Caching the result and recomputing it only when the cursor crosses a virtual page boundary

mitigates some of the overhead, especially for small messages.

128

Related to shared virtual-memory queues is receiver-managed queues with send-receive se­

mantics. To implement receiver-managed queues, the network interface has to maintain a re­

ceive queue of virtual-address pointers and match them against incoming messages. The appli­

cation posts a receive operation by appending the computed VPN-hashkey and the size of the

buffer in the receive queue. The NI consumes an entry from the receive queue whenever a

message destined for the queue arrives from the network. A key issue is dealing with underflow

of the receive queue and using a redirection buffer, such as in VMMC-2, can help.

NetVM is a low-level communication layer. Although applications can directly use NetVM to

communicate, many parallel and distributed applications use higher-level libraries, such as MPI

or OpenMP, to simply the implementation and to improve portability. Hence, it may be useful

to implement these libraries on top of NetVM. Previously, Gu implemented MPIN [33] for an

earlier version of NetVM using only RDMA write for data transfer and busy waiting for synchro­

nization. MPIN can be revised to take advantage of the richer API provided by the current ver­

sion of NetVM.

129

Bibliography

1. Adve, S. V. and K. Gharachorloo, Shared Memory Consistency Models: A Tutorial. IEEE

Computer, 1996. 29(12): p. 66-76.

2. American National Standards Institute, The Programming Language Ada Reference
Manual. ANSI/MIL-STD-1815A. 1983.

3. Anderson, D., et al. Cheating the I/O Bottleneck: Network Storage with Tra­
peze/Myrinet. in Usenix Technical Conference. 1998.

4. Anderson, T. E., E. D. Lazowska, and H. M. Levy, The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors. Performance

Evaluation Review, 1989. 17: p. 49-60.

5. Anderson, Thomas E., et al. The Interaction of Architecture and Operating System De­
sign, in 4th International Conference on Architectural Support for Programming Lan­
guages and Operating Systems (ASPLOS IV). 1991.

6. Bell, Christian and Dan Bonachea. A New DMA Registration Strategy for Pinning-Based
High Performance Networks, in Workshop on Communication Architecture for Clusters
(CAC'03). 2003.

7. Bell, Gordon, 7995 Observations on Supercomputing Alternatives: Did the MPP Band­
wagon Lead to a Cul-de-Sac? Communications of the ACM, 1996. 39(3): p. 11-15.

8. Bhoedjang, R. A. F., T. Ruhl, and H. Bal, Design Issues for User-Level Network Inter­
face Protocols on Myrinet. IEEE Computer, 1998.

9. Blumrich, M., et al. Virtual Memory Mapped Network Interface for the SHRIMP Multi­
computer, in International Symposium on Computer Architecture. 1994.

10. Boden, Nanette J . , et a l . , Myrinet: A Gigabit-per-Second Local Area Network. IEEE Mi­

cro, 1995. 15(1): p. 29-36.

11. Bradford, Jeffrey P. and Seth Abraham. Efficient Synchronization for Multithreaded
Processors, in Workshop on Multithreaded Execution, Architecture and Compilation
(MTEAC) held in conjunction with the 4th International Symposium on High-
Performance Computer Architecture (HPCA). 1998.

12. Buzzard, Gregory D., et al. An Implementation of the Hamlyn Sender-Managed Inter­
face Architecture, in Operating Systems Design and Implementation. 1996.

13. Chen, Yuqun, et al. UTLB: A Mechanism for Address Translation on Network Interfaces.
in Architectural Support for Programming Languages and Operating Systems. 1998.

14. Chesney. The Meiko CS-2 System Architecture, in ACM Symposium on Parallel Algo­
rithms and Architectures. 1993.

130

15. Chun, Brent N., A. M. Mainwaring, and D. E. Culler, Virtual Network Transport Proto­

cols for Myrinet. IEEE Micro, 1998. 18(1).

16. Coady, Yvonne, Joon Suan Ong, and Michael J . Feeley. Using Embedded Network Proc­

essors to Implement Global Memory Management in a Workstation Cluster, in IEEE

Symposium on High Performance Distributed Computing. 1999.

17. Compaq, Intel and Microsoft,. Virtual Interface Architecture Specification 1.0.

http://www.viaarch.org. 1997.

18. Craig, Travis S., TR 93-02-02: Building FIFO and Priority-Queuing Spin Locks from

Atomic Swap. 1993, University of Washington: Seattle, Washington.

19. DAFS Collaborative. Direct Access File System Protocol v1.0.

http://dafscollaborative.org. 2001.

20. Damianakis, Stefanos N., Yuqun Chen, and Edward W. Felten, TR-525-96: Reducing

Waiting Costs in User-Level Communication. 1996, Princeton University: New Jersey.

21. Denning, Peter J . , T. Don Dennis, and Jeffery A. Brumfield, Low Contention Sema­

phores and Ready Lists. Communications of the ACM, 1981. 24(10): p. 687-699.

22. Dijkstra, E. W., Co-operating Sequential Processes, in Programming Languages, F.

Genuys, Editor. 1968, Academic Press: New York. p. 43-112.

23. Dijkstra, E. W., The Structure of the "THE" Multiprogramming System. Communica­

tions of the ACM, 1968. 11(5): p. 341-346.

24. Dubnicki, C , et al. Design and Implementation of Virtual Memory-Mapped Communica­

tion on Myrinet. in 11th International Parallel Processing Symposium. 1997.

25. Dunning, D., et al . , The Virtual Interface Architecture. IEEE Micro, 1998. 18(2).

26. Eicken, T. von, et al. Active Messages: A Mechanism for Integrated Communication and

Computation, in International Symposium on Computer Architecture. 1992.

27. Feeley, Michael J . , et al. Implementing Global Memory Management in a Workstation

Cluster, in Symposium on Operating Systems Principles. 1996.

28. Fillo, Marco and Richard B. Gillet, Architecture and Implementation of MEMORY

CHANNEL 2. Digital Technical Journal, 1997. 9(1): p. 27-41.

29. FreeBSD. http://www.freebsd.org.

30. Fu, S. and N. Tzeng, A Circular List-Based Mutual Exclusion Scheme for Large Shared-

Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1997.

8(6): p. 628-639.

31. Gillett, Richard B., Memory Channel Network for PCI. IEEE Micro, 1996. 16(1): p. 12-

18.

32. Goodman, J . , M. Vernon, and P. Woest. Efficient Synchronization Primitives for Large-

Scale Cache-Coherent Shared-Memory Multiprocessors, in 3rd International Conference

on Architectural Support for Programming Languages and Operating Systems. 1989.

131

http://www.viaarch.org
http://dafscollaborative.org
http://www.freebsd.org

33. Gu, YanPing, The MPI Implementation on NetVM. MSc Thesis, in Department of Com­
puter Science. 2000, University of British Columbia: Vancouver.

34. Gustavson, David B., The Scalable Coherent Interface and Related Standards Projects.
IEEE Micro, 1992. 12(1): p. 10-22.

35. Gustavson, David B. and OJang Li. Local-Area Multiprocessor: the Scalable Coherent
Interface, in SCIzzL, The Association of SCI Local-Area Multiprocessor Users, Develop­
ers, and Manufacturers (1994). 1994.

36. Hansen, Per Brinch, Operating System Principles. 1973, Englewood Cliffs, New Jersey:

Prentice-Hall.

37. Hoare, C. A. R., Monitors: An Operating System Structuring Concept. Communications

of the ACM, 1974. 17(10): p. 549-557.

38. Homewood, M. and M. McLaren. Meiko CS-2 interconnect Elan Elite design, in IEEE Hot
Interconnects Symposium. 1993.

39. Huang, T. Fast and Fair Mutual Exclusion for Shared Memory Systems, in 19th IEEE
Conference on Distributed Computing Systems. 1999.

40. InfiniBand Trade Association, InfiniBand Architecture Specification Volume 1, Release
1.0.a. 2001.

41. Kagi, A. and J . Goodman. Efficient Synchronization: Let Them Eat QOLB. in 24th Inter­
national Symposium on Computer Architecture. 1997.

42. Kay, Jonathan and Joseph Pasquale. The Importance of Non Data Touching Processing
Overheads in TCP/IP. in SIGCOMM93. 1993.

43. Kuskin, Jeffrey, et al. The Stanford FLASH Multiprocessor, in 27sr International Sympo­
sium on Computer Architecture. 1994.

44. Li, Kai, Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD Thesis. 1986,
Yale University.

45. Li, Kai. A Shared Virtual Memory System for Parallel Computing, in Proceedings of the
International Conference on Parallel Processing. 1988.

46. Lubachevsky, B., An Approach to Automating the Verification of Compact Parallel Co­
ordination Programs. Acta Informatica, 1984. 14: p. 125-169.

47. Mainwaring, Alan M. and David E. Culler. Design Challenges of Virtual Networks: Fast
General-Purpose Communication, in 7th Symposium on Principles and Practices of Par­
allel Programming. 1999.

48. Maquelin, Olivier, et al. Polling Watchdog: Combining Polling and Interrupts for Effi­
cient Message Handling, in International Symposium on Computer Architecture. 1996.

49. Meiko Scientific, Meiko CS-2 Communications Processor.
http:// www. meiko, com I info I CommsProcessorI CommsProcessor. html.

50. Meiko Scientific, ELAN Communications Processor Reference Manual. 1993.

132

http://

51. Mellor-Crummey, J . and M. Scott, Algorithms for Scalable Synchronization on Shared-

Memory Multiprocessors. ACM Transactions on Computer Systems, 1991. 9(1): p. 21-65.

52. Mukherjee, Shubhendu S. and Mark D. Hill, TR #1340: A Survey of User-Level Network

Interfaces for System Area Networks. 1997, Computer Science Department, University

of Wisconsin-Madison, p. 26.

53. Myricom, Myrinet Lanai9 Programmer's Documentation, http: / /www.myri .com/vlsi /

LANai9.pdf, 2000.

54. Myricom, Myrinet PCI64 Programmer's Documentation, http:/ /www.myri.com/myrinet/

PCI64/PCI64-programming.pdf, 2001.

55. Myricom. The GM Message Passing System. 2002.

56. Nieplocha, J . , V. Tipparaju, and D. Panda. Protocols and strategies for optimizing per­

formance of remote memory operations on clusters, in Workshop Communication Ar­

chitecture for Clusters (CAC02) of IPDPS02. 2002.

57. Nikolopoulos, Dimitrios S. and Theodore S. Papatheodorou. Fast Synchronization on

Scalable Cache-Coherent Multiprocessors using Hybrid Primitives, in 14th International

Conference on Parallel and Distributed Processing Symposium. 2000.

58. Osterhout, John K. Why Aren't Operating Systems Getting Faster as Fast as Hardware?

in USENIX Summer Conference. 1990.

59. Pakin, S., M. Lauria, and A. Chien. High Performance Messaging on Workstations: Illi­

nois Fast Messages (FM) for Myrinet. in Supercomputing. 1995.

60. Pakin, S., M. Lauria, and A. Chien. The Fast Messages (FM) 2.0 Streaming Interface, in

Usenix'97. 1996.

61. Pakin, Scott, Vijay Karamcheti, and Andrew Chien, Fast Messages: Efficient, Portable

Communication for Workstation Clusters and MPPs. IEEE Concurrency, 1997. 5: p. 60-

73.

62. Peterson, G. L., Myths about the Mutual Exclusion Problem. Information Processing

Letters, 1981. 12(3): p. 115-116.

63. Petrini, Fabrizio, et al. The Quadrics Network: High-Performance Clustering Technol­

ogy, in Hot Interconnects 9. 2001.

64. Petrini, Fabrizio, et al . , The Quadrics Network: High-Performance Clustering Technol­

ogy. IEEE Micro, 2002. 22(1): p. 46-57.

65. Pfister, Gregory F., In Search of Clusters. 2nd ed. 1998, New Jersey: Prentice Hall.

66. Prylli, L. and B. Tourancheau, BIP: A New Protocol Designed for High Performance

Networking on Myrinet. Lecture Notes in Computer Science, 1998. 1388: p. 472-485.

67. Reed, David P. and Rajendra K. Konadia, Synchronization with Eventcounts and Se­

quencers. Communications of the ACM, 1979. 22(2): p. 115-123.

133

http://www.myri.com/vlsi/
http://www.myri.com/myrinet/

68. Riddoch, David, et a l . , Tripwire: A Synchronization Primitive for Virtual Memory

Mapped Communication. Journal of Interconnection Networks, 2001. 2(3): p. 345-364.

69. Schoinas, loannis and Mark D. Hill. Address Translation Mechanisms In Network Inter­

faces, in 4th International Symposium on High Performance Computer Architecture.

1998.

70. Shanley, Tom and Don Anderson, PCI System Architecture. 3rd ed. 1995: Addison-

Wesley.

71. Steenkiste, P.A., A Systematic Approach to Host Interface Design for High-Speed Net­

works. IEEE Computer, 1994. 27(3): p. 47-57.

72. Stunkel, Craig, The SP2 High-Performance Switch. IBM System Journal, 1995. 34(2).

73. Sun Microsystems, Inc, SBus UltraSPARC Port Architecture to SBus Interface Chip (U2S)

Manual, http://www.sun.com/embedded/databook/pdf/manuals/805-0168-01.pdf.

1997.

74. Tezuka, H., et al. Pin-Down Cache: A Virtual Memory Management Technique for Zero-

Copy Communication, in 12th International Parallel Processing Symposium. 1998.

75. Thekkath, Chandramohan A. , Henry M. Levy, and Edward D. Lazowska. Separating Data

and Control Transfer in Distributed Operating Systems, in Sixth International Confer­

ence on Architectural Support for Programming Languages and Operating Systems.

1994.

76. Thornley, John and K. Mani Chandy. Monotonic Counters: A New Mechanism for Thread

Synchronization, in 14th International Parallel and Distributed Processing Symposium.

2000.

77. Wang, R. Y., et al. Modeling and Optimizing Communication Pipelines, in ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems. 1998.

78. Welsh, M., A. Basu, and T. von Eicken. Incorporating Memory Management into User-

Level Network Interfaces, in Hot Interconnects V. 1997.

79. Wirth, N., On Multiprogramming, Machine Coding, and Computer Organization. Com­

munications of the ACM, 1969. 12(9): p. 489-498.

80. Yocum, Ken, et al. Cut-Through Delivery in Trapeze: An Exercise in Low-Latency Mes­

saging, in High-Performance Distributed Computing. 1997.

134

http://www.sun.com/embedded/databook/pdf/manuals/805-0168-01.pdf

Appendix A
Pipelined DMA transfer model

This section presents the description and results of a simple pipelined DMA-transfer model that

characterizes a NetVM 2-fragment RDMA write. The goal of this model is to analyze the costs

and benefits of fragmenting a transfer, which was evaluated in Section 9.2.4 on page 114. Re­

call, from Section 5.2 on page 63, that the NetVM user library splits a large transfer into multi­

ple page-aligned fragments. A 4096-byte write that spans the page boundary in the source or

destination memory will divide into two, or possibly three, fragments. Also recall from the NI

operation description in Section 5.4 on page 65 that, in general, a write operation for a single

fragment requires three DMA stages: source-host DMA from source host memory into the net­

work interface, wire-DMA transfer from source to destination network interface, and destina­

tion-host DMA transfer from the destination network interface to target host memory. For small

fragments less than or equal to 96 bytes, a programmed-IO transfer from source host memory

into network interface memory replaces the source-host DMA transfer. Wang et al. [77] provide

a comprehensive analysis for modeling and optimizing general communication pipelines.

This model makes three assumptions. First, it assumes that the host and network processors are

infinitely fast and require zero time to handle the command descriptor and network message.

The DMA transfer stages dominate the total latency of a large write; the combined processor

overheads add only a small constant time to the latency. Furthermore, some of these over­

heads overlap with the DMA transfer of preceding stages and thus do not contribute to the total

latency.

Second, the model assumes that the first stage is always a source-host DMA transfer, instead of

adaptively switching between programmed IO and host DMA depending on the fragment size.

This assumption simplifies the computation required for that stage and results in only a small

135

time difference based on the programmed-IO-host-DMA comparison in Section 3.4.1 on

page 41.

Third, the model assumes that the network link is not congested and that the fragments do not

reorder in transit. A fragment that leaves the source network interface immediately arrives

into the destination network interface, ignoring the negligible network propagation delay.

A. 1 Model Representation

hdmal{f\) = hL-L-
tp(hdmal)

wdma(fl) = hdmal(fl) + slzeW

hdmalifi) = wdma(fl) +

hdmaHfl) = hdma\(f\) +

tp(wdma)
size(fl)

tpQidmal)
size(fl)

tpQidmaX)

wdma(f2) = xmx(hdma\(f2), wdma(fl)) + s l z e ^ T)

tpiwdma)
hdma2(f2) = max(wdma(f2), hdma2(fl)) + slzeW

tp(hdma2)

Figure 29. 2-fragment pipelined DAAA-transfer model.

Figure 29 shows the 2-fragment pipelined DMA-transfer model. The model computes the com­

pletion times for each DMA stage for the two fragments. size(F) is the size of fragment F, f1 for

the first and f2 for the second. tp(S) is the measured throughput for DMA stage S, the source-

host DMA stage is h d m a l , the wire-DMA stage is wdma, and the destination-host DMA stage is

hdma2. The ratio of size(F) over tp(S) is simply the duration required for a particular DMA

stage S to transfer fragment F.

Each line in Figure 29 computes the completion time of a DMA-transfer stage. For example,

hdmal (f1) is the completion time of the source-host DMA transfer for first fragment. Similarly,

wdma(f2) is the computed completion time of the wire-DMA transfer for the second fragment,

relative to the start of the source-host DMA for the first fragment. The total latency of the

complete transfer is hdma2(f2), which is the completion time for the destination-host transfer

of the second fragment into the destination host memory.

There are two key DMA-transfer constraints represented in the model. First, the wire-DMA

stage for the second fragment, wdma(f2), cannot begin until its preceding source-host DMA

136

stage completes at time hdma1(f2) and the wire-DMA engine is available after transferring the

first fragment onto the wire at time wdma(f1). The second to last equation in Figure 29 repre­

sents this constraint; it uses the slower of the two dependent preceding stages, hdmal (f2) and

wdma(f1), as the starting time for the wdma(f2) stage.

Second, the destination-host DMA stage for the second fragment, hdma2(f2), cannot begin un­

til its preceding wire-DMA stage completes at time wdma(f2) and the host-DMA engine on the

destination network interface is available after transferring the first fragment to host memory

at time hdma2(f1). The last equation in the same figure represents this constraint, this time it

uses the slower of the two dependent preceding stages, wdma(f2) and hdma2(f1), as the start­

ing time for the hdma2(f2) stage.

Parameter Value

size(f1) (4096 - offset) bytes
size(f2) offset bytes
tp(hdmal) 437 MB/s
tp(wdma) 160 MB/s
tp(hdma2) 492 MB/s

Table 32. Pipelined DMA-transfer model parameters.

Table 32 lists the input parameters to the model. size(f1) and size(f2) are the sizes of the first

and second fragments respectively. The input sizes are based on the misaligned-large-transfers

experiment performed in Section 9.2.4 on page 114. In that experiment, the application on the

source node writes a 4-KB data block with varying page offsets into remote destination mem­

ory. In each write, NetVM splits the transfer into two fragments; the first fragment is (4096 -

offset) bytes large at offset bytes from the start of the first page and the second fragment is

offset bytes large from the start of the subsequent page.

tp(hdmal), tp(wdma) and tp(hdma2) are the measured 4096-byte throughput of the source-

host DMA, the wire DMA, and the destination-host DMA stages respectively. For simplicity, the

model uses only the best-case throughput for these parameters, which underestimates the ac­

tual DMA-setup time for smaller transfers.

137

A.2 Model Results
hdma2(f2)

— - — -wdma(f2)
- •hdma1(f2)

hdma2(f1)
wdma(f1)
hdma1(f1)

_ ^

' — _ T~
i i — — — •— i— .̂ -"

-

~
- L

^ ^ ^ ^ ^

0 1024 2048 3072 4096
offset (bytes)

Figure 30. Model results for the latency of each pipelined-DMA stage.

Figure 30 shows the results of the model with the input page offset ranging from 0 to 4096

bytes. Each line in the figure represents the computed completion time of a DMA stage. The

topmost line, which is hdma2(f2), represents the total latency of the 2-fragment write trans­

fer. This three-segment trough line has a similar shape to the measured latency, shown in

Figure 26 on page 115, of the real system with the same offset input.

The three segments of the latency line represent three distinct configurations in the overlap

among the DMA stages. The left box in Figure 30 shows the crossover condition from the first

segment to the second segment, when wdma(f2) exceeds hdma1(f1). Similarly, the right box in

the same figure shows the crossover condition from the second segment to the third segment,

when hdma1(f2) exceeds wdma(f1). The following paragraphs describe the DMA pipeline inter­

action in each of these three segments.

138

!hdma1(f1) !wdma(f1) !hdma2(f1)

f1 i hdmal wdma , i hdma2

f2 | hdmal i |hdma2 r r i H r a , p a t h

1 . T r- — I T — —i i I I I

i t ime Ihdmal (f2) Ihdma2(f2) (latency)

] !max[wdma(f2), hdma2(f1)]

|wdma(f2)

!max[hdma1(f2), wdma(f1)]

Figure 31. DMA operation timeline in the first segment (e.g. offset = 500).

Figure 31 shows the DMA-transfer timeline in the first segment of the hdma2(f2) line in Figure

30. The timeline shows the DMA transfer pipeline for each of the two fragments, f1 and f2.

Each pipeline has three stages (hdmal , wdma and hdma2) and each stage can only transfer

one fragment at any one time. A DMA stage can only begin when its dependent preceding stage

for the same fragment completes and when the DMA engine is available. The thick solid line

indicates the latency critical path of the transfer, terminating at time hdma2(f2).

From Figure 31, NetVM transfers a large first fragment followed by a smaller second fragment.

For a fixed 4096-byte write, increasing the offset reduces the size of the first fragment but

adds to the size of the second fragment by the same amount. A smaller first fragment shortens

the entire f1 pipeline. As a result, the hdmal (f2) and wdma(f2) stages begin earlier and over­

lap more with the wdma(f1) and hdma2(f1) stages respectively. The hdma2(f2) stage also be­

gins earlier but requires a slightly longer time to complete because of an increasing fragment

size. However, the contracting DMA pipeline for the first fragment still dominates the latency

critical path. Hence, the overall effect is a reduction in total latency and an increase in DMA

overlap between the two fragments.

139

!hdma1(f1)
i

wdma(f1) jhdma2(f1)

f1 i hdmal wdma hdma2 ~j
J. -

|~ wdma Thdma2 r r i H „ i n a t h f2 ! hdmal |~ wdma Thdma2 r r i H „ i n a t h
J ,

| |
.'time !hdma1(f2) !wdma(f2) !hdma2(f2) (latency)

|max[wdma(f2), hdma2(f1)]

max[hdma1 (f2), wdma(fl)]

Figure 32. DAAA operation timeline in the second segment (e.g. offset = 2000).

Figure 32 shows the DAAA-transfer timeline in the second segment of the hdma2(f2) line in

Figure 30. At the transition between the first and second segments, the completion time

wdma(f2) exceeds hdma2(f1), indicated by the left box in Figure 30. Past this point, the NI on

the destination node now has to wait for the entire second fragment to arrive from the wire,

instead of previously waiting for the destination-host DAAA for the first fragment to complete,

before it can initiate the destination-host DAAA transfer for the second fragment.

Increasing the offset does not significantly affect the latency in this segment. The latency criti­

cal path now passes through hdmal (f1), wdma(fl) , wdma(f2) and hdma2(f2) stages. The total

time in the wire-DAAA stages for both fragments is fixed. Increasing the offset reduces the first

fragment size, which further shortens the f1 pipeline. However, any latency savings from a

shorter hdmal (f1) stage is negated by an equally lengthening hdma2(f2) stage. Therefore, the

net effect is that latency remains about the same throughout the second segment. Interest­

ingly, the model predicts that total latency should actually decrease slightly as offset increases

because the destination-host DAAA has a slightly higher throughput than the source-host DAAA.

However, the actual experiment did not detect this small effect, probably because the model

overestimated the actual throughput difference between the two host-DAAA stages.

140

|hdma1(f1)

iwdma(fl)

!hdma2(f1)

, ,J 1

fl ; hdmal wdma |hdma2

f2 ! hdmal T wdma hdma2 r r i H r a l n , t h

_
Itime ihdmal (f2)

1 1

!wdma(f2) !hdma2(f2) (latency)

|max[hdma1(f2), wdma(f1)] !max[wdma(f2), hdma2(f1)]

Figure 33. DMA operation timeline in the third segment (e.g. offset = 3500).

Figure 33 shows the DMA-transfer timeline in the third segment of the hdma2(f2) line in Figure

30. At the transition between the second and third segments, the completion time hdmal (f2)

exceeds wdma(f1), indicated by the right box in Figure 30. Past this point, the NI now has to

wait for the entire second fragment to arrive from host memory, instead of previously waiting

for the wire DMA for the first fragment to complete, before it can initiate the wire-DMA trans­

fer for the second fragment. Increasing the offset increases the total latency in this segment.

The expanding DMA pipeline for the second fragment now dominates the latency critical path.

The net effect of increasing offset is an increase in total latency and a decrease in DMA overlap

between the two fragments.

Although the modeled-system latency in Figure 30 is similar in shape to the measured real-

system latency in Figure 26 on page 115, there are two key differences in the graphs. First, the

modeled latency is about 6us lower than the real system, because the model ignores all the

processor overheads required to handle the command descriptor and network message. Second,

the slopes of the first and third segments of the modeled-system trough line is steeper com­

pared to the real system, because the model underestimates the DMA-setup time by using only

the best-case throughput as the model input parameter for each DMA stage. As a result, the

model predicts a greater incremental latency improvement in the first segment of the graph

and a greater incremental latency increase in the third segment compared to the measured

real system.

141

