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Abstract 

Ever-growing complexity is forcing logic design to move above the register transfer 

level (RTL). For example, functional specifications are being written in software. 

These specifications are written for clarity, and are not optimized or intended for 

synthesis. Since the software is the target of functional validation, equivalence ver

ification between the software specification and the RTL implementation is needed. 

This thesis introduces new techniques to reduce the complexity of this veri

fication and increase the capability of current verification techniques. 

The first contribution improves the efficiency of sequential equivalence verifi

cation. I introduce a partitioned model checking approach using Annotated Control 

Flow Graphs (ACFG) to represent software specifications for sequential circuits. 

The approach partitions the software and hardware states based on the structure of 

the ACFG, and uses the flow and the edge annotations in the ACFG to guide the 

state-space exploration. Experimental results show that the new partitioned model 

checking approach runs faster than the standard global reachability analysis. 

The second contribution increases the scalability of combinational equiva

lence verification between a high-level software specification and RTL. Unlike con

ventional RTL-to-gate combinational equivalence verification, there are fewer struc

tural similarities between the two models, and it is harder to find equivalent points. 

Furthermore, each path through the software can compute a different result, and 

there are an exponential number of paths. I first adapt the concept of cutpoints 

from hardware verification and define the analogous concept of software cutpoints, 
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then implement a proof-of-concept cutpoint approach in my verification tool for the 

TI C6x family of DSPs. Experimental results show large improvements in both 

runtime and memory usage. Next, I introduce outpoints into the equivalence verifi

cation of software specifications vs. hardware implementations. I present a novel way 

to introduce cutpoints early, during the analysis of the software, rather than after a 

low-level hardware-equivalent has been generated, thereby avoiding the exponential 

enumeration of software paths as well as the logic blow-up of tracking merged paths. 

I evaluate this method on a challenge problem suggested by colleagues in industry. 

Experimental results show large improvements in runtime and memory usage due 

to the early cutpoint insertion. 
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Chapter 1 

Introduction 

1.1 Motivation 

The traditional digital integrated circuit design process starts with a rough, high-

level description that gives the functionality of the circuit. The functional descrip

tion can be defined using timing charts, state transition graphs, hardware description 

languages (e.g., Verilog or VHDL), or recent high-level design languages (SystemC, 

System Verilog, SpecC, etc.). After that, this functional specification is transformed 

into more detailed descriptions step-by-step. The steps include the following: archi

tecture analysis, logic design, logic synthesis, and physical design. 

Architecture analysis is the first step in the design flow. In this step, the 

human designers explore different architectural requirements, such as performance, 

area, and power. After that, the designers generate a behavior-level design, which 

describes the functionality of each unit, the interconnections, and the resource al

locations. Scheduling (the task of determining start times of operations subject 

to precedence) and resource binding (the task of determining which modules will 

execute these operations) are two important steps for architecture analysis. After 

architecture analysis finishes, logic design is undertaken. In this step, the Register 

Transfer Level (RTL) of the design is manually generated. This RTL design includes 

Boolean formulas and timing information. 
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Logic synthesis takes the output of logic design, i.e., RTL descriptions, and 

generates an optimized technology-specific network (netlist) of logic primitive mod

ules (AND, OR, etc.) in a particular library. This step is often automatically 

executed by logic synthesis tools. Synthesis techniques of this step differ according 

to the nature of the circuit (combinational or sequential) or the intended implemen

tation architecture (multilevel logic, PLA (Programmable Logic Array), or FPGA 

(Field Programmable Gate Array)). 

Physical design is the last step in the design process. Design tools or humans 

generate the geometric patterns that define the physical circuit details that will 

be implemented on silicon. During this step, procedures such as floorplanning, 

placement, and routing are performed. 

All the steps of the design process need equivalence verification checking to 

ensure that the implementation follows the specification and that there are no bugs 

introduced by manual design optimization or synthesis tools. For RTL or below, 

abundant research and tools are available to do these jobs. They have proven to 

be successful for many practical circuits. Considering the complexity of the design 

process and circuits, a new trend of design methodology is moving design and ver

ification to higher levels. This is because with the increasing complexity of circuit 

design, functional verification is becoming more and more difficult. RTL simulation 

and verification have emerged as a major bottleneck of the design cycle. Increas

ingly, companies are writing high-level functional specifications in software, to allow 

much faster preliminary simulation. Such high-level functional specifications usually 

start in G or C-like languages. These specifications can be efficiently compiled into 

executable machine code to enable fast simulation [98], In addition, these high-level 

specifications axe flexible for modification and easy to maintain. Therefore, during 

the phases of architectural analysis and high-level design, the system designers can 

play with software specifications to achieve better performance or other goals by fast 

simulation. Just as the widespread adoption of logic synthesis generates the need 
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for R T L - t o - g a t e ve r i f i ca t ion , analogously , the use of a h igh- leve l des ign m e t h o d o l 

ogy in t roduces a need for S o f t w a r e - t o - R T L ver i f i ca t ion . T h u s , i t is necessary to use 

ver i f i ca t ion tools to de t e rmine the equivalence of software a n d ha rdware . 

1.2 Contributions 

A d d r e s s i n g f o r m a l equivalence check ing of software speci f ica t ions vs . h a r d w a r e i m 

p lementa t ions , m y thesis focuses o n r e d u c i n g the c o m p l e x i t y of th i s ve r i f i ca t ion a n d 

inc reas ing the c a p a b i l i t y of cur ren t ve r i f i ca t ion techniques . I have two m a j o r con

t r i b u t i o n s : A C F G - b a s e d p a r t i t i o n e d m o d e l check ing a n d c u t p o i n t s for equivalence 

check ing w i t h software mode l s . 

1.2.1 A C F G - B a s e d P a r t i t i o n e d M o d e l C h e c k i n g 

In [38], I i n t r o d u c e d a p a r t i t i o n e d m o d e l check ing a p p r o a c h u s i n g Annotated Control 

Flow Graphs ( A C F G ) to represent software speci f ica t ions for sequent ia l c i r cu i t s . T o 

m o d e l check the ha rdware i m p l e m e n t a t i o n agains t the A C F G , the s t a n d a r d a p p r o a c h 

is to b u i l d a s ingle p r o d u c t a u t o m a t o n c o m b i n i n g the A C F G a n d the h a r d w a r e m o d e l 

a n d then p e r f o r m i n g r eachab i l i t y ana lys is on the c o m b i n e d m o d e l . However , such 

an a p p r o a c h is p rone to the s tate exp los ion p r o b l e m . 

M y m o d e l check ing s o l u t i o n , ins tead , is based o n G S T E - s t y l e m o d e l check ing 

p roposed i n [96]. T h e key i d e a is to p a r t i t i o n the software states a n d the h a r d w a r e 

states based on the s t ruc tu re of the A C F G , a n d use the flow a n d the a n n o t a t i o n o n 

edges i n the A C F G to gu ide a n d t a i lo r the s tate space e x p l o r a t i o n . M o r e specif ical ly , 

I c o m p u t e a s i m u l a t i o n r e l a t i o n sim(e) for each edge e i n the A C F G , such t h a t the 

s i m u l a t i o n r e l a t ion tells us (1) w h a t is the set of states the software m o d e l c a n be 

i n o n the p a r t i c u l a r edge e, a n d (2) for each such state, w h a t is the c o r r e s p o n d i n g 

set of poss ib le states i n the ha rdware m o d e l . T h e consequent on the edge is t hen 

checked against the s i m u l a t i o n r e l a t ion . 

T h e e x p e r i m e n t a l resul ts show tha t i n a l l test cases, the new p a r t i t i o n e d 
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model checking approach runs faster, sometimes much faster, than global reachabil

ity analysis. 

1.2.2 O u t p o i n t s fo r E m b e d d e d S o f t w a r e 

Most work in my thesis is inspired by the success of RTL vs. gate-level combina

tional equivalence checking. A key technique behind this success is the idea of cut-

points [9, 12]: since the two combinational circuits are presumed to be structurally 

similar, there should be intermediate points in the two circuits that are logically 

equivalent. Heuristics search for such possibly equivalent intermediate points, and 

the tool first tries to prove such points equivalent. If successful, the equivalent logic 

behind the cutpoints is removed and replaced by a new primary input, thereby sim

plifying the verification problem. In general, the method is conservative (i.e., success 

proves equivalence, but failure doesn't prove inequivalence) because constraints on 

the cutpoint "inputs" are lost; various techniques re-introduce constraints to reduce 

this problem, e.g., [12]. 

We can see that cutpoints exploit the structural similarity of two combina

tional circuits, and therefore, simplify the verification. I believe that in verification 

of software specifications vs. hardware implementations, there exists a certain de

gree of similarity between the software model and the hardware implementation due 

to the similar functionality they have. Such similarities imply the existence of cut-

points. I give a definition of cutpoints for software: a cutpoint in software is some 

part of the program state at some point in one program, which is provably equal to 

some part of the program state at some point in another program. 

Based on the above definition, I first apply software cutpoint theory to formal 

equivalence verification of embedded software to see the consequence of cutpoint 

insertion. In [36], I address several novel problems: how detailed will the cutpoint 

analysis be, how to find candidate cutpoints, and how to reduce false inequivalence. 

Then, I give solutions for the above questions and implemented a proof-of-concept 
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cutpoint approach in my prototype verification tool for the Texas Instruments (TI) 

C6x family of very long instruction word (VLIW) digital signal processors (DSPs). 

I have run experiments using several test cases which include compiler-

optimized code and some expert hand-tuned DSP signal-processing routines from 

a Tl-supplied library. Experimental results on these test cases show large improve

ments in runtime and memory usage over the previous state-of-the-art [60]. 

1.2.3 Early Cutpoint Insertion for Combinational Circuits 

Building on the success of adapting the cutpoint idea to embedded software, I further 

introduce cutpoints into the formal equivalence verification of software specifications 

vs. hardware implementations [37]. 

Unlike the work for embedded DSP software, software paths in software spec

ifications of hardware are more complicated. There are fewer similarities between 

the software specifications and hardware implementations — the same functionality 

is easy to describe sequentially in software,, but it will be executed on.highly parallel 

hardware. In addition, enumerating paths becomes difficult and suffers from expo

nential blow-up in the number of paths, and the corresponding equivalent points 

between the software and the hardware are not at all obvious. Fortunately, an 

analysis of the software can give us many high-level heuristics to guide the space 

exploration and abstraction. The first phase of my approach uses preliminary soft

ware analysis to unroll loops, merge paths as much as possible, and generate an 

unrolled graph. The second phase verifies the equivalence of the software and the 

hardware, while inserting cutpoints during the processing of the unrolled graph. 

The construction of the unrolled graph is linear in the size of the software (with all 

loop bodies instantiated). There is no exponential blow-up of path enumeration. In 

the formal equivalence checking phase, path conditions are computed on-the-fly. If 

some part of the program state at some point in the software is provably equal to 

some wire in the hardware, a new primary input is introduced in its place. This 
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reduces the complexity of both hardware and software. If this process can be con

tinued to the outputs of the software specification and hardware implementation, 

then equivalence has been formally verified. 

I have run experiments on an industry-suggested challenge problem. Exper i 

mental results show that early cutpoint insertion can complete more instances than 

previous approaches. O n those instances that the previous approaches can complete, 

the early cutpoint insertion achieves typically a lOOx improvement in runtime and 

a 20x improvement in memory usage. 

1.3 Thesis Outline 

Chapter 2 provides a brief overview of background material. The next three chapters 

(Chapter 3, 4, and 5) present thesis contributions. Chapter 3 describes the A C F G -

based partitioned model checking approach. In Chapter 4, I introduce a definition 

of cutpoints for software and apply it to embedded software. Chapter 5 explains 

the early cutpoint insertion approach for verifying software against combinational 

circuits. Chapter 6 contains my conclusions and suggestions for future research 

directions. 
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Chapter 2 

Background 

This chapter provides the background material for my research. This background is 

drawn from two areas: formal verification and program analysis. Formal verification 

is a broad area and has many subtopics. To limit the scope of this thesis, I present 

only the background that is related to the problems addressed in my thesis. As for 

program analysis, I apply simple, light-weight, static analysis techniques: depen

dence analysis and data-flow analysis. Therefore, I provide only a brief material 

to program analysis. This chapter gives the general background of my thesis; the 

specific related work for Chapters 3 - 5 is in each chapter. 

2.1 Formal Verification 

Formal verification is a technique to prove (or in some cases, disprove) the valid

ity of an implementation with respect to a given specification using mathematical 

methods. The term implementation refers to the actual model of the system. Spec

ification, on the other hand, refers to certain properties of the system. Such prop

erties are described using formal methods (e.g., logic languages, state graphs, etc.). 

Compared with traditional simulation-based testing and other general reliability 

measures, formal verification is precise, well-defined, and assures a small probability 

of bugs slipping through unnoticed. 
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There are two major formal verification approaches: theorem proving and 

model checking. 

In theorem proving, also known as deductive reasoning, the verification prob

lem is described as a theorem in a formal theory. Given a set of axioms and a set 

of inference rules, the proof that the implementation realizes the specification is 

semi-automatically constructed and mechanically checked by a theorem prover (e.g., 

PVS [76], ACL2 [58], HOL [42], etc.) using deductive reasoning. With sufficient 

human ingenuity, any true (provable with the axiom system) theorem can eventu

ally be proven. However, this approach is often time-consuming and is known to be 

labour-intensive, requiring considerable person-time to learn and use. In addition, 

there is no guarantee that the proving procedure will terminate. 

Model checking; on the other hand, is less expressive, but can be fully au

tomated and requires little time to learn. It is a technique to prove correctness 

of finite state concurrent systems. To be specific, the goal of model checking is to 

check whether a given model satisfies a given property using automatic decision pro

cedures. Therefore, it guarantees termination. It has been successfully applied to 

digital sequential circuits and communication protocols. Since the focus of my thesis 

is on automatic formal verification, model checking is the more relevant approach 

to my work. 

2.2 Model Checking Introduction 

Model checking [24, 78] is a technique for automated verification of an implemen

tation with respect to a specification. In order to perform model checking, three 

steps are performed: modeling, specification, and verification. In the step of mod

eling, we describe the system and convert the system into a formalism. Usually, 

the implementation of the system is described as a finite-state system (automaton). 

In the step of specification, we formulate properties as formulas in temporal logic 

(e.g., CTL, LTL, etc. described later) or some other formal description. At the last 
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step, verification, efficient algorithms are used to traverse the model defined by the 

system and check if the specification holds or not. Commonly, a model-checking 

tool accepts an implementation and a property that the system is expected to sat

isfy. Then, the tool outputs "yes" if the given model satisfies the given properties. 

Otherwise, it generates a particular counterexample in the form of a sequence of 

states that violates the properties. 

2.2.1 Model ing and Specification 

Kripke Structure 

First, I introduce how to do the modeling. The implementation, which is also 

referred to as a design, system, or model in this thesis, is usually some sort of 

a finite-state automaton, which is represented as a Kripke structure in the model 

checking domain. 

A Kripke structure is a model used to give semantics (definitions of when 

a specified property holds) for modeling temporal logics. In the model checking 

domain, a Kripke structure is a graph having the states of the system as nodes and 

state transitions of the system as edges. It also contains labelings of the states in 

the structure with properties that hold in each state. The following is the formal 

definition. 

Definition 2.1 (Kripke Structure) Let AP be a non-empty finite set of atomic 

propositions that denotes the properties of individual states we are interested in. A 

Kripke structure is a four tuple M = (S, Sinn,R, L), where 

• S is a finite set of states, 

• sinit € S is the initial state, 

• R C S x S is a transition relation, 
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• L : S —> 2AP is a labeling function that attaches observations to the system. 

For a state s € S, L{s) is the atomic propositions that hold in state s. 

A path is an infinite sequence of states TT — 7To, TT\, 7T2, ^ 3 . . . where (7^ € 

S) A ((7Tj,7Ti + i ) S i?) for i > 0. 7Tj is forward reachable from 7T, iff there exists a path 

to TTJ and this path starts from 7Tj. 7^ is backward reachable from 7^ iff 7Tj is forward 

reachable from 7Tj. 

The Kripke structure can be unwound into an infinite tree with the initial 

state Sinn as the root, and each path in the tree represents a possible sequence of 

computation. Figure 2.1 shows a Kripke structure and its equivalent infinite com

putation tree. There are three states in this Kripke structure {so, si, 52}- The initial 

state is so. The transition relations R is the set {(sn> si)> (so> S2), (si> s 2 ) , ( s 2 i s 2 ) , (s2> so 

The labeling function L = {L(s0) = {P0,P2},L{Sl) = {Pi},L{s2) = {Pi,P2}}, 

where Pi (0 < i < 2) is an atomic proposition. 

Figure 2.1: Kripke Structure and Computation Tree 

Specification — Temporal Logic 

Now that we have the model defined, we can introduce properties to characterize 

paths on a Kripke structure. 

In order to capture the properties, temporal logic — a formalism used to 

describe how system states will change over time — is used as the specification 
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language. In this thesis, I concentrate on Computation Tree Logic (CTL). It is 

a propositional, branching-time, temporal logic proposed by Clarke and Emerson 

in 1981 [24]. CTL, one of the most popular logics for practical model checking, 

uses atomic propositions as the basis, and formulas are constructed from logical 

operators, temporal operators and path quantifiers to make statements about the 

Kripke structure. 

First, I will introduce the CTL* (pronounced "CTL-star") logic [32]. CTL 

is a restricted subset of CTL* where each of the temporal operators must be imme

diately preceded by a path quantifier. Informally, the operators are as follows. 

• logical operators: V, 

• temporal operators: 

- Unary operators: 

* X$- Next (3> has to hold at the next state) 

* G $ - Globally (<I> has to hold on the entire subsequent path) 

* F<5- Finally ($ eventually has to hold on the subsequent path) 

- Binary operators: 

* $ U * - Until ($ has to hold on the subsequent path until at some 

position $ holds) 

• path quantifiers: 

- A : All (for all computation paths from the current state) 

- E: Exists (for at least one path from the current state) 

The above operators and quantifiers can be used to express temporal prop

erties of a Kripke structure. We are now ready to formally define the syntax of 

CTL*. 

There are two types of formulas over the Kripke structure — state formulas 

and path formulas. 
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Definition 2.2 If f is a CTL* state formula, it must be constructed by one of the 

following rules: 

• f is an atomic proposition. 

• / = ->g, where g is a state formula. 

• / = gW h, where 9, h are state formulas. 

• / = Ap, where p is a path formula. 

• / = Ep, where p is a path formula. 

Definition 2.3 If p is a CTL* path formula, it must be constructed by one of the 

following rules: 

• p is a state formula. 

• p = where q is a path formula. 

• p = qV r, where q, r are path formulas. 

• p = Xq, where q is a path formula. 

• p — Gq, where q is a path formula. 

• p = Fq, where 'q is a path formula. : 

• p — qUr, where q,r are path formulas. 

CTL* is the set of finite-length state formulas that can be constructed by 

applying the above rules. Here are two examples of CTL* formulas.1 

• AG(Req => AFAck): if a Req (Request) occurs, then it will be eventually 

acknowledged (Ack). This is a liveness property. A liveness property declares 

'In fact, these two formulas are also C T L formulas. 
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what should eventually happen. A simple counterexample to liveness proper

ties is a path to a loop that does not contain the desired state, as such a loop 

represents an infinite path that never reaches the specified state. 

• AG(-i(pci = CR\) V - i ( p c 2 = CR2)): processes (pci,pc2) will never be in their 

critical section (CRi,CR2) simultaneously. This is a safety property for a 

concurrent system. A safety property declares that something bad will never 

happen (or equivalently, what should always happen). Each violation of a 

safety property can be observed by looking at a finite history of the system 

behavior. 

Before giving the semantics of CTL*, I will define the meaning of the (= 

relation. 

Definition 2.4 If f is a CTL* state formula, and M is a Kripke structure, the 

formula M,s \= f denotes that f holds at state s in the Kripke structure M. 

Definition 2.5 If f is a CTL* path formula, M is a Kripke structure, and IT is a 

path, the formula M, TT (= / denotes that f holds along path TT in the Kripke structure 

M. 

Now, we are ready to define the semantics of CTL*. Definition 2.6 gives the 

formal semantics of CTL* over the Kripke structure. 

Definition 2.6 The relation (= is defined inductively as follows. In the following 

definitions, s is a state, M is a Kripke structure, fi, fi are state formulas, p\, p2 are 

path formulas, TT71 is the suffix of the path TT that begins at wn. 

• If fxe AP, then M, s (= /1 /1 G L{s). 

• A f , s | = - . / 1 « > M , s £ / i . 

• M,s^f1Vf2&M,s\=f1 orM,s^f2. 
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• M,s \= A(p\) for all paths TT starting with s, such that M, TT (= p\. 

• M,s \= E(p\) there exists a path TT starting with s, such that M,TT (= p\. 

• M,IT \= fi <=> s is the first state of TT and M, s f= f\. i.e., each state formula 

is also a path formula. 

• M, TT (= -ipx M, TT Y= pi. 

• M, TT (= pi V P2 <=> M, TT \= pi Or M, TT |= P2-

• M, TT |= -Xpi M , 7 T 1 |= pi. 

• M, TT |= Gpi 4=> /or a// A; > 0, M , 7r f c (= pi. 

• M, TT |= .Fpi i/iere exists a k>0, M,irk \=p\. 

• M,TT |= pi Up2 <=> i/iere exisis a k > 0 such that M, irk \= P2 and for all 

0<j<k, M,TTj \= pi. 

After such definitions, the model checking problem is reduced to: given an 

implementation represented by a Kripke structure M, and a specified property <f> in 

a certain temporal logic, determine whether M, Sinu (= 4>-

As I said at the beginning of this section, CTL is more popular in the model 

checking domain due to its efficiency. Unlike CTL*, in which a formula can be 

composed of arbitrary combinations of temporal operators and path quantifiers, 

the logic CTL, on the other hand, given the constraint that each of the temporal 

operators must be immediately preceded by a path quantifier, ends up with only 

8 basic operators: A X and E X ; A G and E G ; A F and E F ; A U and E U . It 

is proven that the model checking problem for CTL* is in PSPACE and can be 

solved in time 2 ° ^ x 0{\S\ + \R\) [33], which is exponential in the size of the 

property's formula. In contrast with CTL*, the model checking problem for CTL 

is P-hard and can be solved in time 0(|<?!>| x + \R\)), which is linear in the size 

of the Kripke structure and is linear in the size of the property's formula. This 
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exponential time vs. linear time difference is due to CTL*'s arbitrary combinations 

of temporal operators and path quantifiers, which introduces more expressive power 

but more expensive computations as well. 

There is another temporal logic — linear temporal logic (LTL [77], proposed 

by Pnueli) which is also frequently used in the model checking. It is also a subset of 

CTL*. Unlike CTL, the formulas of LTL don't have path quantifiers. Instead, LTL 

formulas are global, which means that every formula of LTL implicitly has the path 

quantifier A before it. Therefore, the holding of an LTL formula means the formula 

holds on all paths. It is impossible to say "there exists a path such that...". The 

complexity of LTL model checking is the same as that of CTL*, however, LTL has 

less expressive power. Figure 2.2 shows the relationship of the expressive powers 

of CTL*, CTL, and LTL. For example, there is no CTL formula that is equivalent 

to the LTL formula FGp (or A(FGp) if we add the path quantifier A to avoid 

confusion). Likewise, there is no LTL formula that is equivalent to the CTL formula 

AG{EFp). The disjunction A(FGp) V AG(EFp) is a CTL* formula that is not 

expressible in either CTL or LTL. 

Figure 2.2: Expressive Powers of Three Logics 
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2.2.2 Verification Algorithms 

Fixpoint Characterization 

After we have defined the model (e.g., Kripke structure) and the specified properties 

(e.g., CTL*, CTL, or LTL formulas) on this model, the model checking algorithm 

will exhaustively search the state space of the model to determine the truth of the 

specification. For example, we want to check whether EGf holds at the initial 

state, i.e., we want to check whether there exists an infinite path (starting from 

the initial state), along which / is always true at all future states. In order to do 

that, we need to compute the set of states that / holds at the current state and 

EGf holds for some successors (/ holds at the first two states of the infinite path), 

i.e., Q\ = / A EX EGf. For the successors in Q\, we also need to check whether 

EGf holds or not for their successors. Then, we keep doing the same computation, 

Q2 — f r\EXEG(Q\), etc., until we reach a set Qi+i where Q%+\ = Qi- We call this 

a fixpoint. If the initial state is inside the fixpoint, we have proven that EGf holds 

at the initial state. After some preliminary definitions [31], I will show how to use 

the fixpoint characterization for CTL operators. 

Definition 2.7 (Predicate) Given a Kripke structure M — (S, Sjmt, R, L) and 

x € 2 s, the set of states x defines a predicate PRED(x) on S. A state s satisfies 

PRED(x) iff s £ x. A set of predicates comes with a natural partial order due to 

set inclusion/implication. 

For example, a state formula 0 in CTL is a predicate. If x is the set of states 

satisfying 0, then M, s [= </> s e x, where M is the given Kripke structure. 

Definition 2.8 (Predicate Transformer) A predicate transformer T is a func

tion that maps a predicate to another predicate, i.e, T: PRED(2 s) —> PRED(2 S). 
The predicate transformer r is said to be monotonic, if P => Q implies T(P) T(Q). 
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1: function lfp(r) 
2: Q := False; 
3: Q' = r(Q); 
4: while (Q ^ Q') do 
5: Q := Q'\ 
6: Q' = r(Q); 
7: end while 
8: return (Q); 

Figure 2.3: Algorithm to Compute the Least Fixpoint 

For example, the operator E X in CTL is a predicate transformer that maps 

<f> to EX0, where <j> is a CTL formula. 

Definition 2.9 (Fixpoint) A fixpoint of a predicate transformer r is a predicate 

Q such that T(Q) = Q. i.e, if a predicate Q doesn't change by applying the predicate 

transformer r, the predicate Q is a fixpoint ofr. The theorem of Tarski-Knaster [91] 

ensures that a monotonic function r always has a least fixpoint (IfpZ.r(Z) = f\{Q : 

T(Q) = Q}), and a greatest fixpoint (gfpZ.r(Z) = V{Q :  T(Q) = Q})-

Figure 2.3 lists the algorithm for computing the least fixpoint for the predi

cate transformer r. 2 For finite-state model checking, the algorithm terminates due 

to the fact that the model is a finite state system. 

As I have mentioned, given a Kripke structure M = (S,Sinit,R,L) and a 

CTL formula 4>, the model checking algorithm checks whether M, Smit \= <t>- This 

algorithm is equivalent finding the fixpoint Q for the predicate transformer corre

sponding to (f>, and then checking whether Sinu satisfies Q to ensure that the formula 

4> holds at the initial state Sinu. 

2Unlike the algorithm that computes the least fixpoint, the algorithm for computing the 
greatest fixpoint gives the initial value of Q an assignment True instead of False in line 
2 of Figure 2.3. The other lines are the same. In practical model checking problems, r is 
always monotonic. 
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• pAVq = lfp Z[q V ( p A A X Z ) ] 

• pEUg = lfp Z[q V (p A E X Z ) ] 

• AFp = lfp Z[pV A X Z ] 

• EFp = lfp Z[pVEXZ] 

• AGp = gfp 2(pAAXZ] 

• EGp = gfp Z\pAEXZ] 

Figure 2.4: Fixpoint Characterization of CTL Operators 

Each of the CTL operators can be elegantly characterized as the least or 

greatest fixpoint of an appropriate predicate transformer, as shown in Figure 2.4 [31]. 

Therefore, the problem of finding the set of states that satisfies a CTL formula for a 

given Kripke structure is the same as the problem of finding a fixpoint for a predicate 

transformer using the algorithm in Figure 2.3. The computations for E X and A X 

in Figure 2.4 are as follows: 

• Af, s (= EXp s 6 {s : 3s'.R(s, s') A (Af, s' (= p)}, or equivalently 

EXp = PRED{{s : 3s'.R{s, s') A (Af, s' |= p)}) 

• Af, s (= AXp s e {s : Vs'.R(s, s') A (Af, s' (= p)}, or equivalently 

AXp = PRED({s : W.R{s, s') A (Af, s' f= p)}) 

As an example, consider the E G operator. According to Figure 2.4, EGp = 

gfpZ[p A EXZ]. We need to compute the greatest fixpoint for E G using the algo

rithm from Figure 2.3, except we start QQ with an initial assignment True. The 

sequence of computations is: 

• Qo = True 

• Qj = p A E X ( Q 0 ) =p 

• Q2=pA EX(Qi) = p A EX(p) 
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• Q3 = p A EX(Q 2 ) = P A EX(p A EX(p)) 

• ... 

• until Qi+i — Qi 

When we reach this fixpoint Qi, every state that satisfies Qi has a successor that 

satisfies p in the Kripke structure. In other words, for every state that satisfies Qi, 

there is an infinite path starting from the state and p always holds on the path. 

Explicit Model Checking Algorithm 

A direct implementation of the fixpoint characterization is explicit state enumerat

ing, i.e., we use some data structure to explicitly store states and use graph traversal 

algorithms to find the states which satisfy the formulas. I will give a short descrip

tion for such an algorithm in this section. 

Such an algorithm is presented as three steps below. Just as in graph colour

ing, the algorithm marks the set of states where each CTL subformula holds. 

First, we can rewrite the formula </> to <j>trans which contains only atomic 

operators like ->, V, E X , E U , E G . The other CTL operators can be rewritten as 

follows: 

• A X p ^ - . E X - n p 

• AGp -.EF-.p 

• AFp -lEG-ip 

• EFp true EU-ip 

• pAVq -i(->p EU-.(p V ? ) V E G - K ? ) 

Second, for each subformula 4>sub of farcins, if <f>sub is an atomic proposition 

or a formula which has already been handled, the algorithm marks the set of states 

that satisfies the subformula <t>sub; if (f>Sub is a formula which hasn't been handled, the 
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algorithm recursively handles the subformula (paub- This step will terminate when 

the whole formula 4>trans has been handled. 

Third, the algorithm checks whether the initial state is inside the final set of 

satisfied states, i.e., whether the formula <p holds at the initial state Sinu-

I take the E U operator as an example to explain how the second step works 

(the handling of the logic operators is straightforward according to their meanings, 

and handling of the atomic propositions is just a simple searching and marking 

algorithm). 

The input is: a set of states Sp that satisfies formula p and a set of states Sq 

that satisfies the formula q (i.e., assume p and q have been handled). We need the 

set of states where p E U q holds. 

function EV(Sp,Sq) 
mark states Sq; 
while new state is found do 

if there is a state in Sp that has some successor state marked then 
mark it; 

end if 
end while 
return all marked states; 

Figure 2.5: Algorithm to Compute E U Operator 

Figure 2.5 shows the algorithm, which starts from Sq, and performs backward 

reachability using only states in Sp. It terminates because it is a monotonic function 

in the finite state space of the Kripke structure. We can see that the algorithm makes 

progress of at least one state per iteration, and for each iteration, it visits each state 

and edge at most once. Therefore, the algorithm is quadratic in the size of the 

Kripke structure, i.e., the complexity of the simple depth-first algorithm for the E U 

operator is 0(|5| x (\S\ + \R\)), where |5| is the size of the state space and \R\ is 

the number of edges in the Kripke structure. A more efficient algorithm is realized 

by remembering visited states and using backward breadth-first searching. Such an 

20 



algorithm avoids visiting any state twice. The improved algorithm has complexity 

0 ( | 5 | + |iJ|). 

Similarly, we can introduce algorithms for the E X and E G operators. The 

algorithm for EXp is easy. It simply marks all predecessors of states Sp. An efficient 

algorithm for EGp is a little bit complicated. It needs to find an infinite path on 

which p always holds. In order to do that, we first restrict the Kripke structure 

to states satisfying p (i.e., remove all the other states and edges), then identify 

the maximal non-trivial Strongly Connected Components (SCC).3 On such SCCs, 

EGp holds. By doing so, our problem is reduced to finding a path from the initial 

state to such SCCs on which p always holds (such a path is finite!). We can use 

a breath-first searching on the simplified Kripke structure. This algorithm has the 

same complexity as the efficient algorithm for the E U operator. 

Therfore, the complexity of the model checking algorithm for a CTL formula 

(j) is O(|0| x (\S\ + \R\)), i.e., it is linear in the size of the formula, and is linear in 

the size of the Kripke structure. 

Although the CTL model checking algorithm is linear in the size of the 

Kripke structure, the size of the Kripke structure is exponential in the number 

of variables and concurrent components. For example, given a concurrent system 

with n components and m local states inside each component, the Kripke structure 

for such a system will have mn global states! Such an exponential state space may 

introduce the biggest limitation of model checking, which is called the state explosion 

problem. With this state explosion, explicitly representing states often turns out 

to be impractical. In order to attack this problem, techniques, such as Boolean 

algebra, are used to implicitly represent sets of states and transition relations. By 

using Boolean formulas, the size of states that model checking can handle is greatly 

increased. In the next section, I will present such an approach. 
3 A component is strongly connected iff every node can be reached from every other node. 

Non-trivial means this SCC has > 2 states or has one state with a self-loop 
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2.3 Symbolic Model Checking 

Symbolic Model Checking usually uses BDDs, SAT, or mixed BDDs and SAT to 

prove the validity or to represent states and transition relations. In this section, I 

will introduce BDDs and SAT first. After that, I will explain the symbolic model 

checking approach by using an example. 

2.3.1 B D D s and S A T 

BDDs 

In 1986, Bryant [14] proposed Reduced Ordered Binary Decision Diagrams (ROB-

DDs, or BDDs for short) by imposing restrictions on the representation first in

troduced by Lee [64] and Akers [2]. BDDs are efficient representations for Boolean 

formulas due to their compactness and canonicity. Canonicity is particularly useful: 

given equivalent Boolean formulas, BDDs for these formulas will be identical (for 

the same BDD variable ordering, described later). Therefore, the equivalence of two 

Boolean formulas can be reduced to comparisons of BDDs which can be checked 

in constant time. This canonicity, therefore, allows substantial subformula sharing, 

often resulting in the compactness of BDDs. 

BDDs originate from ordered binary decision trees. Figure 2.6 is an example 

of an ordered binary decision tree for the Boolean function /(#, y, z) = (xy+xz+yz). 

The variable ordering is given as x < y < z. 

In Figure 2.6, each non-terminal vertex is labeled by a variable name x,y,z 

and has two children: one child is the case that the variable is assigned to the value 

0 (0-arc, dashed lines), the other child is the case that the variable is assigned to 

the value 1 (1-arc, solid lines). Each terminal vertex is labeled 0 or 1 which is 

determined by the function / . 
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Figure 2.6: Ordered Binary Decision Tree Example 

A BDD is an ordered decision tree where we remove duplicate terminals, 

remove duplicate nonterminals, and remove redundant vertices, i.e. all isomorphic 

subtrees are combined, all nodes with isomorphic children are eliminated. Figure 2.7 

shows how to do these steps. After these simplifications, the BDD is canonical under 

a given variable ordering. The BDD for function / is given in Figure 2.7(c). The 

size of a BDD can be further reduced by introducing complement arcs, which point 

to the negation of the original function. To keep the canonicity, a complement arc 

can only be assigned to the pre-specified arc, i.e., we only do negation for the case 

when a variable is assigned to the value 0. For example, a more simplified BDD 

(Figure 2.7(d)) is given by introducing complement arcs to 0-arc (dotted lines). 

BDDs have proven to be a successful representation for model checking on 

many practical systems. However, for larger industry-size systems, the BDD-based 

verification tools can not produce results due to the exponentially increasing BDD 

size, which blows up beyond the memory capabilities of most machines. This is 

commonly known as the BDD blow-up problem. 
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(c) Remove redundant vertex (d) Introduce complement arcs 

Figure 2.7: Reduction of Figure 2.6 to BDD 
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(a) BDD Graph Using Ordering 0 (b) BDD Graph Using 
Ordering 1 

Figure 2.8: BDDs with Different Orderings for Function / 

Another limitation of BDD-based approaches is that the size of the BDD 

depends heavily on the variable ordering. For example, the 3-bit comparator func

tion f(xQ,xi,X2,yo,yi,U2) = (XQ yo) A (xi <-> 3/1) A (x2 <-> 3/2) has different BDD 

graphs given different variable orderings. For example, given a variable ordering 

XQ < x\ < x2 < yo < yi < 3/2 (Ordering 0), we have a BDD graph Figure 2.8(a); 

given another variable ordering xo < yo < %i < 3/i < 2̂ < 2/2 (Ordering 1), we 

have a BDD graph Figure 2.8(b). These two BDD graphs were generated using the 

CUDD package [89] and dot [41]. 

Finding the best variable ordering is an NP-complete problem. Moreover, 

there exist some functions (such as the middle output of a combinational circuit to 

multiply integers) that can not be represented efficiently regardless of the variable 

ordering. Several BDD ordering techniques including static and dynamic ones have 

been proposed to try to solve the BDD blow-up problem, e.g., [69, 79, 80]. 
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SAT 

For large systems, where BDDs blow up, Boolean satisfiability (SAT) solvers can 

be an alternative to manipulate Boolean formulas. SAT has received much atten

tion by the scientific community since any NP problem can be translated into an 

equivalent SAT problem in polynomial time (Cook's theorem [27]). Aside from its 

important position in complexity theory, SAT techniques are widely used in elec

tronic design automation, especially in the formal verification domain, e.g., such 

applications include ATPG (Automatic Test Pattern Generation) [20], Symbolic 

Model Checking [10], Bounded Model Checking [88], etc. 

Unlike BDDs, the direct representation of the model as Boolean formulas does 

not suffer from the space explosion, but it is not canonical and requires additional 

efforts to check the equivalence of the formulas. SAT is still an active research area 

and for certain classes of problems, modern state-of-the-art SAT solvers can greatly 

outperform BDDs. 

In the following standard definitions, e.g, [52], I will give the basic concepts 

of the SAT problem. 

Definition 2.10 (Literal) A literal is either a variable p or its negation ->p. The 

first case is called a positive literal; the second is called a negative literal. 

Definition 2.11 (Clause) A clause is a finite disjunction of literals, e.g., Ii V/2V 

Z3..., where l{ is a literal. 

Definition 2.12 (Conjunctive Normal Form) A propositional formula is in Con

junctive Normal Form (CNF) if it is a finite conjunction of clauses, e.g., C\ A C2 A 

C 3 . . . , where d is a clause. 

Definition 2.13 (CNF SAT Problem) Given a propositional formula F in CNF, 

the SAT problem consists of assigning values to a set of Boolean variables of F, such 
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that they satisfy F, i.e., a CNF formula is satisfiable if at least one set of assign

ments to the variables of the formula makes it evaluate to true. 

Given the above definitions. I will use simple AND and OR gates to show 

how to use SAT to represent states and do equivalence checking. 

(a) Two-input AND Gate (b) Two-input OR Gate 

Figure 2.9: Simple Gate Examples for SAT 

In Figure 2.9(a), we have a two-input AND gate. A logic formula for this 

gate is (a —> c) A (b —> c) A (a A b —> c) (If any input is equal to 0, the output is 0. 

If both inputs are equal to 1, the output is 1). After simplifying this expression, we 

get a CNF formula: 

F = (a V c) A {b V c) A (a V b V c). 

This propositional formula has three variables (a,b,c) and three clauses. Assign

ments (0,1,0), (1,0,0), (1,1,1), (0,0,0) to the 3-tuple (a,b,c) are satisfying assign

ments of F. These assignments essentially are the truth table for this AND gate, 

i.e., the state space of it. 

Using the same approach, the logic formula for the two-input OR gate in 

Figure 2.9(b) is: 

G = (a V d) A (b V d) A (a V b V d). 

Having these two propositional formulas in CNF form for our AND gate and OR 

gate, we can do equivalence checking of the outputs, i.e., whether c is equivalent 

to d given the same inputs a and b (a trivial example, but it illustrates the point). 

What we need to do is to check: 
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AND(a,b) = OR{a,b) 

*=>(c = AND(a, b)) A [d = OR{a, b)) A (c = d) 

<==> F A G A (d V c) A (J V c) 

Obviously, we need to check all possible values of a and b, i.e., 

Va, 6; AND (a, 6) = OR(a,b). 

However, SAT solvers usually give a satisfying assignment for a propositional formula 

in CNF and can not prove the above formula directly. Fortunately, such a universal-

quantified logic formula is logically equivalent to the negation of an existential-

quantified logic formula. So, in practice, we check its equivalent form, i.e., 

Va,b;AND(a,b) = OR(a,b) 

<==> -(-(Va, b; AND(a, b) = OR{a, b)) 

<=> -(3a, 6; AND(a, b) ^ OR{a, b)) 

-(3a, 6; (c - AND(a, b)) A (d = OR(a, b)) A (c ̂  d)) 

-(3a, 6; F A G A (d V c) A (d V c)) 

Therefore, if we can find a satisfying assignment for 

F A G A ( d V c ) A(dVc), 

it will be a counterexample to falsify the property (c = d) that we want to prove. 

If such an assignment doesn't exist, we prove the equivalence. In our example, 

assignments (0, 1, 0, 1) and (1, 0, 0, 1) to the 4-tuple (a, b, c, d) are satisfying 

assignments for the above CNF. They are the counterexamples for the equivalence 

checking of our AND gate and OR gate. 

The above simple example shows the basic approach of formal verification 

using SAT. It can be easily applied to large circuits. A combinational circuit can be 

represented by a conjunction of CNF formulas of its gates. A sequential circuit can 

be unrolled a finite number of times. Then, the resulting combinational circuit is 

converted to CNF and handed to a SAT decision procedure to find a counterexample 
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whose length is less than the number of unrollings. (Note that this approach is 

bounded model checking (BMC), described later) 

In order to find a satisfying assignment to a CNF formula, SAT procedures 

need to explore the search tree. In such a search tree, nodes are variables and 

edges are assignments (either 1 or 0 for each variable). A solution is given by a 

sequence of nodes and edges (variables and assignments). The search tree can be 

very large. Numerous techniques have been proposed to prune the search tree. Just 

as in BDD-based techniques, SAT solvers are also heavily effected by the variable 

ordering. 

There is much research carried out for high-speed SAT solvers (e.g., [71, 66, 

99]). This field is active and researchers are continuing to make progress toward 

their goals. 

2 .3 .2 E x a m p l e fo r S y m b o l i c M o d e l C h e c k i n g 

With the help of BDDs or SAT for Boolean formulas, we can proceed to symbolic 

model checking [68]. Symbolic model checking algorithms operate on sets of states 

instead of individual states. Therefore, some regularities in the structures of the 

sets can be exploited. Intuitively, the "complexity" of representing the state space 

is much less with symbolic representations as opposed to enumerating individual 

states. 

In this section, I will give an example to show how to do symbolic model 

checking. As mentioned in the previous section, BDDs and SAT are commonly used 

techniques to handle Boolean formulas. Especially BDDs traditionally have been 

used as the underlying representation for symbolic model checkers (e.g., SMV [21], 

VIS [13], Bebop [5], Ever [50], etc.) for their efficiency. In this section, I will focus 

on BDD-based unbounded symbolic model checking. SAT-based bounded model 

checking will be introduced in the next section. 
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Figure 2.10: Symbolic Model Checking Example 

Consider a simple example that illustrates the basic ideas of BDD-based 

symbolic model checking. In Figure 2.10, instead of enumerating the explicit states 

a,b, and c, two state variables, xt,X2, are introduced. We encode states as follows: 

a = x~\x~2 

b = X\X2 

C — X\X2 

Therefore, the state transition relation of this state graph is 

R = (xix2 A X1X2) 

V {x~\X~2 A X\X2) 

V (x~ix2 Axi'x2') 

V (x~iX2 A X1X2) 

where xi,X2 represent the current states and x\ ,x2 represent the next states. 

Now, we have Boolean encodings for states and the state transition relation 

which all can be represented as BDDs. Then, we will apply the core operation of 

symbolic model checking — image computation. Image computation computes the 

set of states that are reachable in one step from another set of states. The definitions 

of post-image and pre-image are as follows: 

post-image(S) := {s' \ 3s.R(s, s') A s G 5} 
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pre-image(S) := {s | 3s'.i?(s,s') A s' € 5} 

where is the transition relation, s, s' are states. 

From the definitions, we can find that post-image and pre-image computes 

the successors and predecessors respectively for a set of states. In addition, from 

the definition of the CTL operator EX, we also find that EX is the pre-image 

computation. 

I take the post-image computation as an example. In Figure 2.10, if we 

start from state a (i.e., x~ixi), and compute the next states of a by applying the 

transition relation R. We just compute the conjunction (x\x~2) A R and get (x~\x~2 A 

X1X2) V (x~iX2 A X1X2'). After that, we need to do Existential Quantification on the 

current variables. The definition of existential quantification is: 3x.f = / x^oV/ x < _ i . 

i.e., compute the cases when x is equal to 0 and 1 respectively, then combine the 

two cases together. In this way, we can remove the variable x. After quantifying 

out all the current state variables, we get the successors of state a, which satisfy 

x\X2 V x\'x2- (In Figure 2.10, they are states b and c.) If we need to change the 

next states as our new current states, we also need to swap x and x' and then get 

X\X2 V X\X2-

The pre-image computation is similar to the post-image computation, except 

quantification is on the next-state variables. Instead of computing the next states, 

pre-image computes previous states. 

As shown in our example, post-image and pre-image computations can be 

used for forward reachability analysis and backward reachability analysis respec

tively. Reachability analysis iteratively performs the above image computations 

until a fixpoint is reached. In addition to its essential computation in model check

ing algorithms, pre-image (i.e., EX) can also be used in counterexample generation. 

Once a bad state is forward reached, the formal verification tools can give a sequence 

of states that leads to this bad state using backward image computation. 

Image computation is one of the major bottlenecks in symbolic formal verifi-
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cation core. There are many techniques to address it, such as partitioned transition 

relation [17] and early quantification [48]. Partitioned transition relation is a tech

nique, in which instead of a monolithic transition relation R, some small pieces of 

relations are given. Image computation uses these pieces to compute images, then 

conjoins the results. Early quantification means that instead of quantifying vari

ables after conjoining the entire transition relation, we quantify them early when 

they can be safely quantified. 

2.4 Industrially Scalable Verification Techniques 

Symbolic model checking has been proven to be very successful when applied to 

hardware system [18, 19, 68]. However, the state explosion of model checking still 

prevents it scaling to large designs (either out of memory due to BDD blow-up or 

time out for SAT solvers). In industry, there are some other techniques which are 

widely used to attack state explosion. In the next section, I will present some of 

them that are related to my thesis. 

2 . 4 . 1 B o u n d e d M o d e l C h e c k i n g 

We have known that in symbolic model checking, if the number of state variables is 

big, the BDDs for the transition relation and for sets of states are likely to be big. 

Symbolic model checking on such a model may become impossible due to the BDD 

blow-up. To avoid this problem, we can do bounded model checking instead of full 

model checking. Bounded Model Checking (BMC) was first proposed by Biere et 

al. in 1999 [10]. By using SAT procedures, it presents another approach for model 

checking. The basic idea of BMC is to search for a counterexample in executions 

whose length is bounded by some integer k. If no bug is found then BMC increases 

A; until either a bug is found, or some pre-specified upper bound (Completeness 

Threshold) is reached (or in practice, until the tool runs out of time). The BMC 

problem can be efficiently reduced to a satisfiability problem, and can therefore be 
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solved by SAT methods rather than BDDs. 

Copty et al. [28] give a detailed comparison of performing BMC on top of 

a SAT solver (SIMO), and performing symbolic model checking on top of a BDD 

package, in an industrial setting. The designs are taken from Intel's Pentium 4, with 

over 1000 model variables. The experiments clearly show that BMC has advantages 

in both capacity and productivity over BDD-based symbolic model checkers for most 

cases. The improved productivity comes from the fact that normally BDD-based 

techniques need more manual guidance in order to optimize their performance. Now, 

BMC is a complementary technique to symbolic model checking. 

However, the bound introduced in BMC also brings drawbacks for this ap

proach. Determining whether a completeness threshold is large enough to find the 

inconsistencies is a hard problem. If the completeness threshold is not big enough, 

BMC is incomplete. And from the experiment results, if the bound k is big, BMC 

cannot outperform BDD-based techniques [28]. 

2 .4 .2 S y m b o l i c S i m u l a t i o n 

For large circuits where formal verification fails, there is simulation, which is the 

traditional method for testing and debugging hardware designs. In conventional 

simulation, one simulation run can only verify one test case. In order to fully verify 

a design, the simulation tool must exhaustively simulate the entire set of test cases, 

which is too expensive. In symbolic simulation [15], the set of test values is encoded 

symbolically to represent any value instead of being a specific element of the set. 

This allows the simulation tool to compute information on the entire set of values 

in a single simulation run. Such symbolic simulators can greatly accelerate the 

simulation. 

For example, a 2-input AND gate has two inputs A and B. The output is 

C. In order to completely simulate the gate, a conventional simulator would try all 

possible input cases {(A = 0, B = 0), (A = 0, B = I), {A = 1, B = 0), {A = 1, B = 
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1)}. The symbolic simulator, on the other hand, treats the inputs symbolically 

(A, B) and gives an output C = A A B by one simulation run. 

In order to prove the equivalence of two circuits, decision procedures need 

to verify the symbolic-simulation outputs, which usually are represented as Boolean 

expressions. Traditionally, BDDs are the most popular technique for decision pro

cedures due to their canonicity. To avoid BDD blow-up, SAT-based techniques are 

another candidate for some applications. More general-purpose decision procedures, 

which handle logics beyond Boolean logic are also available. For example, SVC 

(Stanford Validity Checker) [7] is an automatic decision procedure for quantifier-

free first order formulas with equality, uninterpreted functions, and arrays. 

In addition to hardware verification, software verification also can be ad

dressed by symbolic simulation. In my thesis, I need to verify software specifications 

vs. hardware implementations. It is possible to do symbolic simulation for both the 

software specifications and hardware implementations. Just as for hardware, sym

bolic simulation on software could greatly accelerate the simulation. 

However, symbolic simulation for software introduces many challenges. The 

inherent exponential complexity of verification can not be avoided. Such a com

plexity may appear in the length of output expressions and causes memory blow 

up; or may appear in decision procedures and causes time out or memory blow up. 

Furthermore, loop handling may be impossible. If the symbolic simulator cannot 

determine the termination condition for a loop, it will iterate the loop infinitely 

which eventually causes memory blow up if there is no other technique to exit the 

loop. 

In spite of the above limitations, symbolic simulation is an efficient approach 

to do verification for some problems. It is one of the techniques that I rely on for 

my research. 

34 



2 .4 .3 C o m b i n a t i o n a l E q u i v a l e n c e C h e c k i n g 

Most work in my thesis leverages the success of RTL vs. gate-level equivalence 

checking of combinational circuits (e.g., [55] is a good survey). In this section, I will 

introduce some basic background for combinational equivalence checking. 

The goal of combinational equivalence checking is to check whether two com

binational circuits are functionally equivalent (i.e., for all possible inputs, both 

combinational" circuits have the same outputs). The basic mathematical tool for 

reasoning about digital circuits is Boolean algebra (using BDD or SAT). There

fore, the equivalence of two circuits corresponds to the problem of determining the 

equivalence of Boolean formulas. 

Combinational equivalence checking is a co-NP complete problem. Hence, 

finding a method with polynomial worst-case time complexity to solve this problem 

is extremely unlikely. However, practical instances of the problem are often more 

tractable. Usually, two combinational circuits being verified have a certain degree 

of similarity due to the steps of synthesis or optimization. There is some success

ful research to develop techniques that yield acceptable performance for verifying 

practical combinational circuits of realistic size [39, 56]. 

BDD-based techniques are commonly used for combinational equivalence 

checking. As I mentioned in previous sections, BDDs are canonical representa

tions of Boolean formulas. By building BDDs for the two circuits, equivalence can 

be proven if the BDDs for the outputs of both circuits are identical. 

To be specific, the BDD approach is normally as follows: For circuit C\ and 

C2, we build a circuit C which merges the primary inputs of C\ and C2 together 

and has separate primary outputs for C\ and C2. Then, we construct BDDs for 

the primary outputs of C, and compare BDDs for the corresponding primary out

puts. The equivalence (or nonequivalence) of circuits is proven by the results of the 

comparison. 
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Figure 2.11: Combinational Equivalence Checking Example 

For example, as shown in Figure 2.11, circuit C merges the primary inputs 

of Ci and C2 together as xi,x2, and £3. The output variables are 2/1,2/2, 21, and z2. 

After that, we construct BDDs for circuit C. If the BDDs for yi and Zj are identical 

(i = 1,2), we can declare that circuits Ci and C2 are equivalent. 

The size of the BDDs is determined by the types of functions and the selected 

variable ordering. In practice, the BDDs for big circuits are beyond the memory 

capability of current computers. Many abstraction techniques have been applied to 

attack this problem. As I mentioned at the beginning of this section, the design 

procedure often results in some similarities of the two circuits being verified. By 

identifying and exploiting these structural similarities, a combinational equivalence 

checking tool can greatly reduce the complexity of verification. 

One of these techniques is cutpoint theory [9, 12]. I use an example to 

describe the theory. In Figure 2.12, we have two circuits F and G. The points 

zi and z2 are internal cutpoints for circuit F and circuit G respectively. The 

primary outputs of circuit F and circuit G are another pair of cutpoints called 

external cutpoints. If we can prove that Vx, fi(x) = gi{x), i.e., zi = z2, we in

troduce another primary input variable z to substitute z\ and z2. Then we have 

Vz, 2/, f2{z, y) = g2{z,y) => F = G. i.e., if we can prove all the cutpoints are 
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equivalent, so are the functions. In general, the method is conservative (i.e., suc
cess proves equivalence, but failure doesn't prove inequivalence) because constraints 
on the cutpoint "inputs" are lost. The situation that two circuits are equivalent 
but verification reports inequivalence is called false negative or false inequivalence. 

Minimizing this false inequivalence/negative problem has been an active research 
area. The general solution is to re-introduce constraints on the cutpoints, either in 
advance [12] or as needed [56, 62]. 
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Figure 2.12: Cutpoint Example 

2.4.4 GSTE 

As mentioned in the section on symbolic simulation, there are many symbolic simu
lation techniques available. Among them, is GSTE (Generalized Symbolic Trajectory 

Evaluation [96, 97, 95]), developed at Intel. GSTE has been used extensively and 
successfully [8]. The user can write specifications in a restricted temporal logic 
specifying the behavior over trajectories (sequences of circuit states), then verifies 
the implementation with respect to the specifications. The specification in GSTE 
is described as an automaton, to be specific, an assertion graph. The goal of GSTE 
verification is to prove that a hardware implementation obeys an assertion graph. 
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Figure 2.13: Generic Example Circuit 

a = A & b = B /true 

©—-—Kx> 
o 

stall = 1 / true 

stall = 0 /out = A + B 

Figure 2.14: Generic Example Assertion Graph 

The assertion graph is a variant of V-automata [65]. By introducing assertion 

graphs, GSTE significantly extends classical symbolic trajectory evaluation [85]. 

Such an extension gives GSTE more expressive power. At Intel, GSTE has proven 

to be a success on leading-edge designs (e.g., [8, 83]). Details on the theory of GSTE 

and assertion graphs can be found elsewhere [96]. In this section, I will give a simple 

assertion graph example to show the underlying ideas of GSTE. 

Figure 2.13 gives a simple sequential pipelined adder with two data inputs 

a and b, a stall input stall, and a data output out. This adder loads input data at 

the first cycle, and outputs the result a + b at the second cycle. If the stall signal is 

enabled, the adder will hold the result until stall is disabled. 

Figure 2.14 gives an assertion graph for this pipelined adder with each edge 

corresponding to a clock cycle. Each edge in the assertion graph is labeled with 

an antecedent and a consequent, which are Boolean formulas of the circuit signals, 

e.g., the label for edge(v\,v<i) is stall = 0/out = A + B. The part before "/" is the 
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antecedent and out = A + B is the consequent. In this example, A and B are 32-bit 

input data. Furthermore, some edges can be labeled as terminal edges (edge(v\,V2) 

is a terminal edge in my example). Every path starting from the initial vertex 

(vertex VQ in this example) and ending on a terminal edge represents a distinct 

temporal assertion. For example, the path that goes from VQ to v\, loops back to v\, 

and then proceeds to v2 corresponds to the temporal assertion "If a = A&cb = B 

holds on the first cycle, and stall = 1 holds on the second cycle, and stall — 0 

holds on the third cycle, then out = A + B must hold on the third cycle." If at 

least one antecedent fails (i.e., the assertion is satisfied vacuously due to a failure 

of the preconditions) or all antecedents and consequents are satisfied on a path of 

the assertion graph, we can say that the run of the circuit satisfies this path. If a 

circuit run satisfies every path from initial vertex to terminal edge, it satisfies the 

assertion graph. 

2.5 More Abstraction Techniques 

In this section, I will present additional abstraction techniques that are used in re

lated work to address the equivalence checking of software specification vs. hardware 

implementations. 

The basic idea of such abstractions is: if the property holds on the abstract 

model, it also holds on the concrete model. If the property doesn't hold on the 

abstract model, the model checker uses the counterexample to re-simulate on the 

concrete model. If the simulation is successful, a concrete counterexample is found, 

otherwise, the abstract counterexample is spurious, and the abstraction needs to be 

refined. This procedure is called Counterexample Guided Abstraction Refinement 

(CEGAR) [4, 25, 6]. 
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2.5.1 Uninterpreted Functions 

Usually, symbolic simulation tools can use uninterpreted functions to improve effi

ciency. Uninterpreted functions are a powerful abstraction mechanism for symbolic 

simulation. In this approach, meaningless function symbols replace actual compu

tations. The function symbol is "uninterpreted" and can represent any function, 

similar to how a variable symbol represents any value. Therefore, verification can 

avoid the complex details of the actual computations. 

For example, if a — x, b = y, and / is an uninterpreted function, then we 

know that 7(a, b) = f(x, y) without knowing the meaning of the function / . 

Decision procedures (e.g., SVC [7], CVC [90] UCLID [16]) based on unin

terpreted functions are available and have proven successful for many verification 

problems. 

2.5.2 Predicate Abstraction 

For the software specifications against hardware implementations verification prob

lem, if the two models are too big for verification tools to handle, we need to create 

abstract models that are amenable to available model checking techniques. Predicate 

abstraction [43] is a technique that arises from the software verification domain. For 

example, Ball and Rajamani at Microsoft [4, 6] employ this technique in the SLAM 

project to verify that Windows device drivers obey API conventions. The SLAM 

project found many bugs in large software program. Inspired by the great success 

of such a method in software, Jain, Kroening, and Clarke [54] have introduced pred

icate abstraction into the software specifications against hardware implementations 

verification problem. Predicate abstraction shows promise to reduce the complexity 

of the models. 

The approach of predicate abstraction is to use Boolean variables to replace 

the variables of the concrete model. These Boolean variables correspond to predi

cates of the concrete model. 
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For example, here is a simple piece of C code. It is a concrete model. The 

parts represent code that doesn't change the values of variables p and q, and 

doesn't effect the control flow of the program. 

function(){ 

int p, q; 

p = l ; 

q = rand()*10 - 5; 

while (p >= 0){ 

if (q < 0) 
p = p - q; 

else 

p = p + q; 

} 

} 

We want to prove that the program can not terminate. The set of predicates can 

be {p > 0, q < 0, q > 0}. Associated with each predicate in the above set, we have 

Boolean variables ai,a2, and 03. e.g., a\ is true if and only if p > 0 is true. 

Therefore, the original program can be abstracted into a Boolean program 

that only has these above Boolean variables. 

function(){ 

bool al , a2, a3; 

al = true; 
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a2 = rand{true, false};// a2 can be randomly i n i t i a l i z e d 

/ / t o true or false. 

while (al){ 

i f (a2) 

al = true; 

i f (a3) 

al = true; 

} 

} 

Using the three Boolean variables as the state variables, we can have a state-

transition graph for this abstract model. The verification problem is abstracted to 

a reachability problem — is there a path from the initial state (a\ = true, a2 = 

X,az — X) to (ai = false,a2 = X,a^ = X)? 4 

In our example, the forward reachability analysis on the abstracted model 

can prove a\ = true for all the reachable states, so non-termination of this program 

is proven. 

We can see that predicate abstraction can greatly reduce the state space and 

enable property verification for big systems. However, such an abstraction is very 

coarse — it abstracts software to Boolean programs, which restricts the properties 

that can be checked. In addition, finding the set of predicates to prove a property 

is a highly challenging job. In some cases, domain experts need to be involved to 

provide good heuristics. 

AX denotes a "don't care" — it can be either true or false. 
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2.6 Program Analysis 

This section provides the second part of the background for the thesis, program 

analysis. 

Since I want to prove the equivalence of software specifications and hardware 

implementations, I need to study not only hardware but also software. The natural 

way that a software specification expresses a functionality is very different from the 

way hardware does. For example, given a multiplication function that is executed in 

one cycle, the software specification will naturally give a loop with shift-add compu

tations, and the hardware implementation, on the other hand, will parallelize all the 

additions of partial products. Although there are many differences, fundamentally, 

the software specification and the hardware implementation are both just computa

tions of a functionality — either in serial or in parallel. In order to understand how 

serial computations in software can be executed on hardware in parallel, we need to 

analyze software specifications and identify the instructions which can be reordered 

or executed in parallel, i.e., we need program analyses which can give execution-

order constraints for instructions. Usually, such constraints are approximations of 

the precise constraints. This is because program analysis is a static technique which 

analyzes software without actually running it. 

In this section, I will give some basic definitions of program analysis — de

pendence analysis (to be specific, control dependence and data dependence analysis) 

and data flow analysis. These are standard definitions; more details and advanced 

topics can be found in [59, 72]. 

I would like to give the definition of control flow graph first. 

Control Flow Graphs 

A control flow graph (CFG) is a graph G = (V,E), with V the set of vertices, and 

E the set of edges. Each vertex is a block of straight-line code (a basic block), 

and an edge is a jump in the control flow. Multiple outgoing edges from a vertex 
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indicates conditional branching. C F G s are a standard way to describe the behavior 

of software, representing all alternatives of control flow. 

W i t h C F G s to represent the software, I continue to give dependence analysis 

and data flow analysis. 

2.6.1 Dependence Analysis 

For dependence analysis, I wi l l cover control dependence and data dependence. 

Control Dependence 

Control dependence identifies the conditions that may affect instructions, which is 

very useful for instruction scheduling. In addition, such control dependences may 

appear in hardware implementations as control logic, so they could be possible 

correspondences between software and hardware. 

Definition 2.14 (Control Dependence) An instruction ii is control dependent 

on another instruction i\ if and only if ii is conditionally guarded by i\. 

For example, in the following code, 

i f (x > 0) f o o ( ) ; 

else b a r ( ) ; 

the call of the foo function is control dependent on the condition x > 0, The bar 

function is control dependent on x < 0. In a hardware implementation, the condition 

might be an internal wire c (for logic x > 0), the logic for the above functionality 

might be (c A fooQ) V (c A bar()). 

Data Dependence 

Other than control dependence, we need data dependence to show relations when 

. two instructions read or write the same variable. According to positions of the two 
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instructions and whether these instructions write or read the variable, there are four 

classes of data dependence: 

• flow dependence (read after write) 

• antidependence (write after read). 

• output dependence (write after write) 

• input dependence (read after read) • 

Definition 2.15 (Flow Dependence) An instruction i2 is flow dependent on i\ 

if and only if i\ writes a variable that i2 reads and i\ precedes i2 in execution. 

The following is an example of a flow dependence: 

11 x = 0; 

12 y = x + 1; 

Definition 2.16 (Antidependence) An instruction i2 is antidependent on i\ if 

and only ifi2 writes a variable that i\ reads and i\ precedes i2 in execution. 

The following is an example of an antidependence: 

11 x := y + 1; 

12 y := 0; 

Here, i2 writes the value of y but i\ reads the old value of y. 

Definition 2.17 (Output Dependence) An instruction i2 is output dependent 

on ii if and only ifi\ and i2 write the same variable and i\ precedes i2 in execution. 

The following is an example of an output dependence: 

11 x := 0; 

12 x := 1; 
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Here, i2 and i\ both write the same variable x. 

Definition 2.18 (Input Dependence) An instruction i2 is input dependent on 

i\ if and only if i\ and i2 read the same variable and i\ precedes i2 in execution. 

This is not a dependence compared to the other dependence relations, be

cause it does not constrain the execution order of two instructions. 

The following is an example of an input dependence: 

11 y := x + 1; 

12 z := x + 2; 

In this example, i2 reads the variable x after i\ reads it. Thus, i2 and i\ 

don't depend on each other. Some compiler optimizations can make use of this input 

dependence to reorder instructions. In hardware implementation, such computations 

can be scheduled in parallel. 

2 .6 .2 D a t a F l o w A n a l y s i s 

In addition to dependence analysis, we also need data flow analysis to track how soft

ware manipulates its data, which we can use to simplify the software and bridge the 

gap between software and hardware. For example, we can do dead-code elimination, 

constant propagation, and path merging. In this section, I will explain forward anal

ysis and backward analysis, and use reaching definitions and live variables analysis 

as examples respectively. 

Forward Analysis 

In forward analysis, data flow analysis determines certain properties of a program in 

the direction of program execution (i.e., forward). Usually, such a data flow analysis 

will compute a fixpoint of basic blocks on the CFG by using information passing 

from the predecessors of a block to the block itself. 
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Example: Reaching Definitions 

Definition 2.19 (Reaching Definitions) A "definition" of a variable is an in

struction that either initializes or assigns the variable. Reaching definitions give the 

set of possible definitions which can reach a given point in the program. 

From the above definition, we can see that a definition d reaches a point p 

if there exists a path from the point d to the point p and the definition d is not 

canceled (or killed) by some other definitions along that path. 

The algorithm that computes reaching definitions uses forward analysis and 

conservatively simulates the program until it reaches a least fixed point. Before 

giving the algorithm, I define: 

B is a basic block on the control flow graph for the program; 

GEN(B) is the set of definitions that are generated at B, i.e., it is the set of 

definitions within B, and such definitions are not subsequently followed by 

other definitions to the same variables within B; 

KILL(B) is the set of definitions that are killed at B, i.e., for a definition in 

KILL(B), there is a definition to the same variable within B. 

With such definitions, the algorithm for reaching definitions is shown in Figure 2.15. 

We can see that at each iteration, the computation is from the predecessors of current 

block to itself, i.e., the direction of computations is forward. 
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1: function ReachingDefinitions(CFG) /* Compute reaching definitions at the 
entrance for each block (B) of CFG */ 

/ * Initialize RD and taskQueue */ 
2: taskQueue := 0; 
3: for all blocks B of CFG do 
4: RD(B) := 0; 
5 : add B into taskQueue; 
6: end for 

/* update RD and taskQueue */ 
7: while taskQueue ^ 0 do 
8: taskQueuel := 0; 
9: for each block B of taskQueue do 

10: remove B; 
/* Pred(B) is the set of predecessors of B */ 

11: RD(B) := \JB,ePred{B){GEN{B>) V (RD(B') - KILL(B')); 
12: if there is a change in RD(B) then 
13: put all successors of B into taskQueuel; 
14: end if 
1 5 : end for 
16: taskQueue := taskQueuel; 
17: end while 

Figure 2.15: Algorithm for Reaching Definitions 
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Here is a simple example. 

1: cout = 2; 

2: i f (foo) 

3: bar = 1; 

4: else 

5: bar = 2; 

6: endif 

7: while (cout <= 4) 

8: cout +=bar; 

The reaching definitions at line 6 are the instructions {11,13,15}- The reaching 

definitions at line 7 are the instructions {*i,*3,is,*s} 

We can use the result of reaching definitions to partition the state space 

to minimize communications between sub-state spaces (e.g., [1]). For example, in 

the above example, at line 6, the value of variable "bar" is defined by its reaching 

definitions {13,15}. We can case-split the consequent executions into two cases: get 

the definition from line 3 (i.e., "bar = 1"), or from line 5 (i.e., "bar = 2"). 

Backward Analysis 

Unlike forward analysis, which computes a fixpoint using information passing from 

the predecessors of a block to the block itself, backward analysis computes informa

tion from the successors of the block, i.e., the direction of computations is backward. 

I use live variable analysis as an example to show backward analysis. 

Example: Live Variables Analysis 

Definition 2.20 (Live Variables) A variable is live at a given program location 

if the value of the variable is used along some path starting at this location. 

The live variable analysis determines whether a variable at a program location may 

be potentially read afterwards before its next write update. It is useful for my 
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research because such live variables in software specifications might be allocated 

to registers in hardware implementations. In addition, I can combine information 

from live variables and reaching definitions to do path merging. For example, in the 

following code, 

1: wrap = 0; 

2: while (wrap <=3){ 

3: cout[wrap] =1; /* live = {wrap, in} */ 

4: i f (in[wrap] == 10) 

5: wrap +=3; 

6: else 

7: wrap ++; 

8: } 

9: cout[wrap] = 1; 

10: exitO; 

the set of live variables at line 3 is {wrap, in}, i.e., any other variables are not read 

in future computations. Therefore, any two computation paths that reach line 2 

and have the same the values for both "wrap" and "in" can be safely merged. This 

technique is very useful to simplify software when there are an exponential number 

of paths in software specifications. 

The algorithm to compute live variables is almost the same as Figure 2.15, 

except the direction of computations. 

Before giving the algorithm, I re-define the meaning of GEN and KILL func

tions: 

GEN(B) is the set of variables that are used (read) within B prior to any definition 

of that variable within B; 

KILL(B) is the set of variables that are written within B prior to any read of the 

variable within B; 
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With such definitions, the algorithm for live variables at the exit point of a basic 

block is shown in Figure 2.16. 

1: function Live Variables (CFG) /* Compute live variables at the exit point for 
each block (B) of CFG */ 

/* Initialize LV and taskQueue */. 
2: taskQueue := 0; 
3: for all blocks B of CFG do 
4: LV(B) := 0; 
5: add B into taskQueue; 
6: end for 

/* update LV and taskQueue */ 
7: while taskQueue ^ 0 do 
8: taskQueuel := 0; 
9: for each block B of taskQueue do 

10: remove B; 
/* Succ(B) is the set of successors of B */ 

11: LV(B) := VB>eSucc(B)(GEN(B') V (LV(B') - KILL(B')); 
12: if there is a change in LV(B) then 
13: put all predecessors of B into taskQueuel; 
14: end if 
15: end for 
16: taskQueue := taskQueuel; 
17: end while 

Figure 2.16: Algorithm for Live Variables 

We can see that, compared to the algorithm for reaching definitions, the 

algorithm for live variables swaps predecessors and successors. Therefore, it changes 

the direction of computations from forward analysis to backward analysis. 

51 



Chapter 3 

ACFG-Based Partitioned Model 

Checking 

This chapter is based on a paper that was published in the 10th Asia Pacific Design 
Automation Conference (ASPDAC'05) [38]. I propose a natural way to formalize 
a cycle-accurate software specification as an annotated control flow graph (ACFG), 
and then I introduce the first partitioned model checking approach that exploits 
the ACFG for formal equivalence checking of software specifications vs. sequential 
hardware implementations. Experimental results show that my new method is faster 
than standard model checking. 

3.1 Introduction 

In Section 2.4.4, I mentioned the efficiency of GSTE model checking. GSTE has 
proven very successful in industry [8], but GSTE is fundamentally an approach 
for circuit verification. It doesn't handle complicated software/hardware verifica
tion, because assertion graphs were not designed to model software. For example, 
assertion graphs contain "symbolic constants" that are used somewhat like local 
variables, but the value of a symbolic constant does not change, whereas the basic 
idea of software and CFGs is the assignment of new values to variables — the asser-
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tion graph is declarative, whereas software is imperative. Furthermore, there are no 

internal variables in an assertion graph; the circuit and the assertion graph share all 

the same state variables. For a specification written in software, the circuit and the 

specification need to have their own, separate variables. To solve these problems, I 

combine ideas from CFGs and GSTE assertion graphs to form my ACFG structure. 

3.2 Related Work 

In this section, I give the related work, which has two parts. One is the related work 

on formal verification of software specifications vs. sequential circuits. The other is 

the related work on partitioned model checking. 

3.2.1 Software Specifications vs. Sequential Circuits 

Researchers have previously considered formal verification of software specifications 

vs. hardware implementations. I will introduce the related work on combinational 

circuits in Chapter 5. In this section, I survey only the related work on sequential 

circuits. 

Semeria et al. [86] reported verifying C against Verilog as part of a C-based 

design flow. However, their C model was already in RTL C, so the problem is 

basically RTL-to-RTL verification, and standard RTL-to-RTL commercial tools were 

used. 

When the software specifications are higher-level than RTL, more complex 

approaches are needed. Verification tools can put restrictions on the problem, and 

give feasible solutions. 

If the high-level and low-level models are very close, there are some techniques 

that exploits the similarity. For example, Matsumoto, Saito, and Fujita compare 

two C-based hardware descriptions [67]. In order to verify large C descriptions 

efficiently, they rely on scanning for textual differences to reduce problem complex

ity, then enumerate execution paths and apply symbolic simulation and word-level 
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uninterpreted functions. 

If the software is arbitrary, high-level code, then full formal verification 

is undecidable, but bounded-length verification is possible using symbolic execu

tion [22, 23, 61]. Kroening, Clarke and Yorav [61] apply BMC (Bounded Model 

Checking) to both a circuit and a C program. Their tool provides full support for 

arbitrary code in full ANSI-C, also via path enumeration and symbolic simulation, 

but at a fully bit-accurate level and using SAT as the computation engine. How

ever, this method shows only the absence of inconsistencies up to a given bound. 

Furthermore, the method enumerates all execution paths in the software, and the 

number of paths grows exponentially in the number of branches. In addition, no 

abstraction techniques are used to reduce the state space. 

In order to avoid the state space explosion problem of full formal verification, 

Jain, Kroening, and Clarke [54] introduce predicate abstraction for hardware im

plementations against software specifications. This approach can greatly reduce the 

size of the state space and verify certain properties for large circuits. The strength 

of that work is powerful abstraction techniques that reduce the complexity of the 

software specifications. However, such abstraction techniques can be too coarse, and 

finding good predicates is highly challenging. These weaknesses restrict the prop

erties that can be checked, and it is not suitable for many instances of equivalence 

checking of software specifications vs. hardware implementations. In addition, they 

use standard symbolic model checking for the verification. In contrast, I concentrate 

on improving the core model checking. I believe that both abstraction and improved 

model checking are necessary in practice. 

3.2 .2 P a r t i t i o n e d M o d e l C h e c k i n g 

I categorize ACFG-based model checking as a partitioned model checking approach. 

Partitioned model checking is an approach to attack the state space explosion prob

lem. Such an approach dynamically breaks down a large model checking data struc-
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ture into several smaller data structures (partitions), then implicitly combines the 

partitions to represent the large model checking data structure. 

For example, Burch, Clarke, and Long [17] gave an approach to represent 

the transition relation by using a list of BDDs instead of using a monolithic BDD. 

BDDs on the list are implicitly conjoined/disjoined. Many optimizations, such as 

early quantification [48] (see Section 2.3.2), can be done for image computations. 

Instead of partitioning the transition relation, Hu, York, and Dill [49, 51] 

used a list of BDDs for the set of reachable states instead of a monolithic BDD. 

Each BDD on the list represents a partition. Therefore, the BDDs on the list are 

implicitly conjoined to represent the large monolithic BDD. By using implicitly 

conjoined BDDs, they can avoid BDD blow-up in some cases. In addition, BDD 

image computations (To be specific, in [49, 51], the backward image computation for 

the CTL operator AX) might be localized to each partition, so, image computations 

can be faster. Narayan, Jain, Fujita, and Sangiovanni-Vincentelli [73] also divided 

the reachable states into several partitions. BDDs for different partitions are allowed 

to have different variable orderings. Therefore, building BDDs for all partitions can 

use much less memory than just building a monolithic BDD. 

In [84], which appeared contemporaneously with my work, Sebastiani et al. 

showed that GSTE is partitioned model checking (GSTE partitions reachable states, 

and the partitionings are driven by the property being verified). My approach takes 

advantage of this GSTE-style partitioning, and further exploits the control flow 

graph of the software specification to do partitioned model checking. 

3.3 Annotated Control Flow Graph 

In order to harness GSTE for software specifications, I combine ideas from CFGs and 

GSTE assertion graphs to form my ACFG structure. As in GSTE assertion graphs 

(see Section 2.4.4), the edges are labeled, rather than the vertices, as in CFGs. 

(CFGs are a standard way to describe the behavior of software. See Section 2.6.) 
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However, paths through an ACFG, like paths through a standard CFG, correspond 

to control flow through a program. The labels include antecedents and consequents, 

as in GSTE assertion graphs. However, I also introduce assignments, which assign 

new values to variables. 

For example, Figure 3.1 shows a simple ACFG which describes a counter 

circuit that counts up to 4. The ACFG has a 1-bit input load, a 3-bit input D, 

and a 3-bit state variable and output X. (The circuit being verified is assumed to 

have the same I/O signals, but it's internal state might be different. The user 

declares which variables are inputs, outputs, and state variables, as.well as the 

correspondence between ACFG and circuit signals.) Each edge label has three parts: 

antecedent/assignment/consequent. The concept of antecedents and consequents 

come from GSTE: they are Boolean-valued formulas over the variables. Intuitively, 

the antecedent is a condition that must be true in order to follow that edge, and the 

consequent is a condition that the verification tool must check if the computation 

follows that edge. The assignment computes values for the variables and updates 

them. The example ACFG loads a 3-bit number, saves it to the internal variables 

X[0..2] at the entry vertex (vertex 0). X[0..2] are also output variables. 

After the number is loaded, the control flow of the ACFG will jump to vertex 

1, and branch based on the value of the number. If the number is less than 4, it 

increases by one for each cycle until it hits 4. If the current counter output is equal 

or greater than 4, it holds that value for consequent cycles on the terminate vertex 

(vertex 2 on the graph). 
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load: 1 bit 
X, D: 3 bits load=true/X:= D/c 

>=4 &load = false/_ Ic 

X <4 & load = false/X:=X+l/c True & load = false/_ /c 

c: X_circuit ?= X_acfg 

/_/: no assignment 

Figure 3.1: A C F G ' for a Counter Circui t 

More formally, an A C F G is an edge-labeled, directed graph, wi th a dis

tinguished ini t ia l vertex vj. Each edge e is labeled wi th an antecedent ant(e), 

an assignment assign(e), and a consequent cons(e). Bo th ant(e) and cons(e) are 

propositional formulas over inputs and state variables. The assignment assign(e) 

associates a formula over the current variables to each state variable. (For variables 

that do not change value on an edge, the formula is simply the variable itself.) When 

an assignment is executed, the formulas are evaluated using the current values of 

the variables, and then the variables are updated wi th the value of the associated 

formula. When the flow of control is at a vertex Vi, an edge e (vi —> Vj) can execute 

the assignment assign(e) iff it satisfies the ant(e). The consequent cons(e) is a 

property that is expected to hold after the assign(e) execution. 

Intuitively, an A C F G is used as a reference model for the hardware. In my 

examples, only input variables are shared between the A C F G and the hardware. 

The A C F G and the hardware each have their own internal state variables and out

put variables. Therefore, assignments cannot update the state variables of the 
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hardware and cannot update the shared input variables either. Antecedents can 

read A C F G state variables and shared input variables only.1 However, in order to 

check the consistency of the reference model and the hardware, consequents can 

read all variables of the A C F G and the hardware. We can see that antecedents and 

consequents are read-only, while assignments can read and write variables. 

In order to map the cycle-accurate-execution of circuits to ACFGs, I define 

that each edge of the A C F G takes one clock cycle. For convenience, I allow a 

sequence of assignment statements on each edge, but the entire sequence is executed 

in one clock cycle. In general, any software that has a finite number of paths can be 

put on an edge label as an assignment (e.g., if-then-else, loops that can be completely 

unrolled, etc.). 

With the above definitions, I give the following acceptance condition of an 

A C F G . A trace of the circuit under verification obeys the property specified by the 

A C F G graph if and only if on every finite path (starting from the entry vertex) of the 

same length as the trace, if the antecedents on all edges are satisfied, the consequents 

are satisfied as well. Like GSTE, the A C F G is a variant of V-automata [65], i.e., 

the model checking algorithm check a trace of the circuit against all paths in the 

A C F G . 

3 . 4 ACFG-Based Model Checking 

I start by first defining a simple computation model. Let IG, SG, and OG be the sets 

of Boolean input, state, and output variables in the A C F G . Similarly, let Ic, Sc, 

and Oc be those in the implementation circuit model (IG = Ic)- For simplicity, I 

assume that there is a one-to-one mapping between the interface (i.e., input, output 

variables) of the high level model captured by the A C F G and the interface of the 

circuit model. Model M is the product model of the A C F G specification and the 
!This restriction can be relaxed if the ACFG is used to represent properties (instead 

of having a reference model) of the hardware. I conjecture that the ACFG-based model 
checking algorithm in the next section would still work for such ACFG representations. 

58 



circuit, i.e., M = G x C. A state in a model M is simply a Boolean assignment 

to the input and state variables V~M — IM U SM in the model (IM — IG = Ic, and 

SM — 5G U SC)-

For the ACFG, the set of assignments assign(e) on each edge e defines a 

state transition relation in the software specification associated with e. From now 

on, I shall denote such a transition relation as assign(e)(Vc, S'G) where S'G is a copy 

of SG for holding the values after the transition and VQ — 5G U J G - We can see 

that we don't allow any assignments on input variables. For the circuit model, let 

RC(VC,S'Q) be the single state transition relation where Vc = Sc U Ic-

To model check the circuit implementation against the ACFG, the standard 

approach is to build the single product automaton M combining the ACFG and the 

circuit model, and then to perform reachability analysis on the combined model. 

However, such an approach is prone to the state explosion problem. 

My model checking solution, instead, is based on GSTE-style model checking 

proposed in [96]. The key idea is to partition the software states and the circuit 

states based on the structure of the ACFG, and use the flow and the antecedents in 

the ACFG to guide and tailor the state space exploration. More specifically, I would 

like to compute a simulation relation sim(e)(VG, Vc) for each edge e in the ACFG, 

such that the simulation relation tells us (1) what is the set of states the software 

specification can be in on the particular edge e, and (2) for each such state, what 

is the corresponding set of possible states in the circuit model. The consequent on 

the edge is then checked against the simulation relation. 

Before describing the model checking algorithm, I first define two partial 

post-image transformers (each does a part of post-image computation for model M). 

The first one is the post-image computation for the ACFG software specification. 

It computes the set of states that are reachable by one edge of the ACFG from 

the current state Sc- (The circuit states are unchanged, since assign(e) involves 

only variables for the ACFG software specification.) Given a global state predicate 
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P(VG,VC), the partial post-image transformer of the predicate with respect to an 

edge e in the ACFG is: 

post(e)(P(VG,Vc)) = 

(3VG.P(VG,Vc)/\a8sign(e)(VG,S'G))[S'G/Sc] 

where 5^/SG denotes the substitution of every variable v' in copy S'G with its original 

variable v in SG- Similarly, the partial post-image transformer of the predicate with 

respect to the circuit is 

postc(P(VG,Vc)) = 

(3VC.P(VG, VC) A Rc(Vc, S'C))[S'C/SC]. 

It computes the set of states that are reachable in one cycle from the current Sc-

(ACFG states are unchanged, since Rc involves only variables for circuits.) There

fore, 

post(e)(postc(P(VG,Vc))) 

is the set of states that are reachable in one cycle for the product model M. 

Figure 3.2 lists my GSTE-style model-checking algorithm in its entirety. Line 

4 applies antecedents from the ACFG to the circuit being verified. The rest of the 

lines 2-12 simply initialize the computation, with initial task queue entries from the 

initial vertex. The main verification loop in lines 13-24 propagates newly discovered 

relations between graph edges and circuit states in an event-driven manner, until 

a fixpoint is reached (or a bug is found). The typical cons(e) checked in line 15 

would be that the corresponding outputs agree, but more general properties can be 

verified. The partitioning occurs because I compute separate BDDs for each sim(e). 

Because the algorithm is very similar to GSTE-model checking, I hope in the 

future to exploit GSTE-style abstraction for higher capacity. 
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1: function ModelCheck(ACFG, postc) 
/* Incorporate mapped antecedents to the circuit and 

initialize the simulation relation */ 
2: for all edges e of ACFG graph do 
3: /* applies antecedents to both ACFG and the circuit */ 
4: ant(e) := ant(e)/\ant(e)[Ic/Ic][OG/Oc]', 
5: if e is from the entry vertex then 
6: /* stm(e) is the set of reachable states of the product model at edge 
7: sim(e) : = post(e)(ant(e)); 
8: add e into taskQueue; 
9: else 

10: sim(e) : = 0; 
11: end if 
12: end for 

/* Compute simulation relation and check consequents */ 
13; while taskQueue ^ 0 do 
14: remove an edge e from taskQueue; • ' 
15: if sim(e) cons(e) then 
16: return (a counter-example trace); 
17: end if 
18: for each successor edge e' of e do 
19: sim(e') := sim(e') V post(e)(postc(sim(e)) A ant(e'))\ 
20: if there is a change in sim(e') then 
21: put e' into taskQueue; 
22: end if 
23: end for 
24: end while 
25: return(succeed); 

Figure 3.2: A Partitioned Model Checking Algorithm for ACFG 
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3.5 Experimental Results 

I have conducted experiments to test the performance of my model-checking 

algorithm. As my test case, I use a radix-2 SRT unsigned fractional division circuit. 

(An example circuit with 8-bit dividend and 4-bit divisor in modified ISCAS'89 

format can be found at Appendix B). Figure 3.3 shows the algorithm.2 There are 

several reasons for choosing this circuit. One reason is that the SRT algorithm 

is well-known and widely used in practice, and the circuit is fairly small, but the 

specification still has for-loops and if-then-else branches. Modeling such kinds of 

control flow is the goal of using ACFGs. Another reason is that the example is 

scalable, so I can test the capability of my verification tool. I have a parameterized 

circuit generator tool that builds a divider circuit with 2Ar-bit dividend and Af-bit 

divisor for any N\ As is done in practice, the circuit uses a redundant representation 

for the partial remainder to avoid needing a long carry chain, which is the advantage 

of SRT division. 

By using an ACFG to describe the algorithm, I can have local variables for 

the specification, and a flexible control-flow graph structure to describe the control 

flow. I define the single-cycle operations on each edge. The operations are an ordered 

sequence of assignments. As noted earlier, these sequences are just a convenience 

to make it is easy to define a complicated, single-cycle operation without writing a 

hard-to-understand single-assignment. The key idea is that the specification model 

should be easy to maintain and change. 

2 SRT division in general allows many implementations, because the redundant quotient 
representation allows some freedom in selecting the next quotient digit. This thesis is about 
equivalence checking, so I check the equivalence between specific implementations of the 
software and the hardware. Thus, Figure 3.3 gives one particular implementation of the 
SRT division. 
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1: function SRT_Division(dimdend, divisor, N) 
2: P° = dividend; 
3: for i = 1 to N do 
4: if 2 P i _ 1 > 0.5 then 
5: QN—i = 1; 
6: Pi = 2 P i _ 1 - divisor; 
7: else 
8: if 2 P i _ 1 < -0.5 then 
9: qN-i = -1; 
10: Pi = 2 P i _ 1 + divisor; 
11: else 
12: = 0; 
13: P i = 2P <- 1; 
14: end if 
15: end if 
16: end for 
17: if PN < 0 then 
18: PN = PN + divisor; 
19: q = q- 1; 
20: end if 

Figure 3.3: SRT Unsigned Fractional Division Algorithm 

(Input_enable = false) && 
(2p(i-l) >= 1/2) , 

Input_enable = true 

(Input_enable = false) && 
(2p(i-l)<-l/2) 

(Input_enable = false) && 
(-l/2=<2p(i-l)< 1/2) 

Figure 3.4: ACFG for SRT Algorithm. For brevity, only antecedents are shown. 
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—>P := P - di v i s o r 
—>qp := qp + qp && qn := qn 
—>qp := qp xor 1 
~>P[2*N] == 0 

kk remainder := P[2*N-1. 
kk quotient := qp - qn 
I I 
P[2*N] ==1 
kk remainder := P[2*N-1. 
kk quotient := qp - qn -

// —> one step of assignments 
qn kk P:= P + P // l e f t s h i f t by one 
// set quotient b i t 
// i f P i s a pos i t i v e number 

• N] 

. N] 
1 

// i f P i s 
+ d i v i s o r 

a negative number 

Figure 3.5: A Example of ACFG Assignments. It is for the edge when 2P% 1 > 0.5 
in Figure 3.4. There are four ordered steps in this sequence assignment. 

Figure 3.4 sketches the main part of the specification ACFG. The three self-

loop edges correspond to the 3-way branch structure in the loop on lines 3-16 of 

Figure 3.3. The remainder and quotient are the outputs. They are the final results 

after N+l cycle. However, because the specification is cycle-accurate, I check the 

intermediate results for each cycle by using the consequents in the ACFG. 

A simple textual syntax makes it possible to write an ACFG model in a text 

file. I will use one edge to explain the syntax. The complete ACFG specification is 

in Appendix A. 

Figure 3.5 is a code segment taken from the specification of the edge where 

2pi-i > 0.5 in Figure 3.4. It is for lines 5 - 6 in Figure 3.3. P is the partial 

remainder. The variable qp is the bit to record that the next quotient bit gets an 

assignment 1; The variable qn is the case for -1. After each cycle, they all shift left 

by one bit. There are four ordered steps in this sequence assignment, indicated by 

the —> operator. Inside each step, the order of assignments doesn't matter. 

Step 4 has predicated assignments. If the sign bit of P is 0 (positive), 

remainder := P[2*N-1..N] 
kk quotient := qp - qn 

will be executed. If not, then 
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remainder := P[2*N-1..N] + divisor 

&& quotient := qp - qn - 1 

will be executed. 

All experiments were run on a 2.6Ghz Pentium 4 with 4GB of RAM. When 

running with a reasonable BDD variable order, run time rather than memory was 

always the limiting factor. BDD-based model checking is extremely sensitive to the 

variable order. I have not found an obviously good variable order, and I feared that 

I might inadvertently bias my experiments if I chose a static order that is better 

for one method over the other. Instead, I ran my experiments with dynamic BDD 

variable reordering enabled, using CUDD_REORDER_SIFT in the CUDD BDD 

package. (I tried other reordering methods, e.g., CUDD.REORDER_SYMM.SIFT 

or CUDD_REORDER_ANNEALING. They showed similar trends, but with larger 

runtime and bigger BDD sizes.) The initial order was arbitrary, except that I put 

the variables that symbolically encode the graph (in the standard method without 

partitioning) at the top of the order. Doing so makes the initial BDD sizes similar 

for the standard method and my new partitioned method.3 

Table 3.1 shows results for this experiment. BDD sizes varied, but were 

generally similar between the two methods, as expected. However, in all cases, 

the new partitioned model checking approach ran faster, sometimes much faster. 

Strangely, sometimes larger instances required less time and/or smaller BDDs. I 

believe this is due to dynamic reordering, and note that the dynamic reordering 

time dominated total runtime. 

3 In a paper at C A V 2004, Sebastiani et al. presented impressive results showing an expo
nential improvement in memory usage for GSTE-style partitioned model checking applied 
to conventional L T L model-checking [84]. Discussion at the conference, however, indicated 
that most or all of the memory usage improvement would disappear with a variable or
der that put at the top the BDD variables that symbolically encode the graph. My work 
partitions the model checking similarly to theirs, hence, my choice of initial variable order. 

65 

http://CUDD.REORDER_SYMM.SIFT


Without Partitioning ACFG Partitioning 
N Time(s) BDD 

size 
reorder Time(s) BDD 

size 
reorder Speedup 

7 12.27 5390 95.2% 6.99 7462 94.4% 1.76x 
8 32.31 10307 95.7% 18.41 14635 95.6% 1.76x 
9 21.89 8982 95.8% 14.97 9770 96.6% 1.46x 

10 50.62 6619 74.9% 26.26 15566 93.1% 1.93x 
11 392.66 10915 98.3% 379.52 59125 97.8% 1.03x 
12 727.43 19722 98.1% 484.12 29792 98.0% 1.50x 
13 1854.62 63555 95.9% 877.29 38756 97.1% 2.11x 
14 950.25 22262 95.9% 633.86 44919 96.2% 1.50x 
15 452.57 20036 97.6% 193.19 56982 96.4% 2.34x 

Table 3.1: Unpartitioned Model Checking vs. ACFG Partitioned Model Checking. 
The results are with dynamic variable reordering. In all examples in this thesis, 
runtimes are measured using "the system call "gettimeofday", which has microsecond-
level resolution. Obviously, other factors (e.g, I/O, multitasking, clock accuracy, 
thermal effects, etc.) make measurement accuracy much less. For uniformity of 
presentation in this thesis, I round runtime to two digits after the decimal point for 
all results. 

As an aside, I note that GSTE-style pruning using the antecedents is very 

helpful. If I complete the graph in Figure 3.4 with all the edges for when the 

antecedents are false as well as true, as would be needed in a standard CFG, the 

model checking is much more expensive (Table 3.2). 
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ACFG Partitioning without 
Antecedent Pruning 

N Time(s) : BDD size reorder 
7 25.33 6363 89.2% 
8 40.49 6503 80.8% 
9 3270 24481 91.8% 

10 time out 
11 1461.98 9132 44.4% 
12 time out 
13 time out 
14 time out 
15 time out 

Table 3.2: ACFG Partitioned Model Checking on Complete CFG. Run time limit 
is set to 1 hour. The model checking without antecedent pruning is much more 
expensive. 
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Chapter 4 

Cutpoints for Embedded 

Software 

This chapter is based on a paper published in the 5th ACM Conference on Embedded 

Software (EMSOFT'05) [36]. I give experimental results on applying cutpoint theory 

(see Section 2.4.3) to software verification. To be specific, I am focusing on formal 

equivalence checking of embedded software. . 

There were two reasons for me to try this theory first on the embedded 

software vs. embedded software problem instead of the software specification vs. 

hardware implementation problem, which is the main direction of my thesis. First, 

I already had implemented a prototype verification tool for the TI (Texas Instru

ments) C6x family of VLIW (Very Long Instruction Word) DSPs [34, 35], which 

was very handy to start my research. Second, there are some similarities between 

embedded software and the software specifications of hardware. Therefore, study

ing the equivalence checking of embedded software was a good starting point to 

gain a better understanding of the equivalence checking of software specifications 

vs. hardware implementations. 
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4.1 Introduction 

Embedded software shares with hardware — and differs from desktop and enterprise 

software — the frequent need for extreme optimization. The software must hit hard 

performance, power consumption, and code-size targets. Code that is slightly too 

big might necessitate moving to a larger, more expensive device, or code that is 

slightly too slow might result in unacceptable, non-real-time performance. There

fore, very aggressive optimization is the norm, including possible manual tuning 

of synthesis (hardware)/compiler (software) output. Compounding the problem, the 

underlying embedded processor is. often designed with similar optimization goals — 

maximum performance at lowest cost or power, with minimal consideration to the 

ease of writing or understanding code. The instruction set of embedded processors 

(including DSPs) often are highly non-orthogonal, have many specialized instruc

tions, and perform many operations in parallel, with the resulting artifacts (exposed 

pipelines, long branch delays, VLIW, etc.). All of these features enable very highly 

optimized, high-performance code, but they also greatly complicate code genera

tion and optimization. Finally, the embedded market is less tolerant of defective 

software than some other software markets, because patching embedded software 

in the field can be too difficult, too expensive, or unacceptable to customers. All 

of these factors point toward very demanding verification requirements. I focus on 

a particular verification problem: verifying the functional equivalence of two simi

lar segments of low-level code, as would be needed, for example, after hand-tuning 

compiler-generated code. 

Inspired by the success of applying cutpoint theory (mentioned in Section 

2.4.3) into formal equivalence verification of combinational hardware, I introduce 

cutpoint-style analysis into the formal equivalence verification of embedded software. 

I have implemented the ideas in my proof-of-concept verification tool targeting the 

Texas Instruments C6x family of VLIW DSPs. My experimental results show large 

improvements in memory usage and runtime over earlier methods. 
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4.2 Related Work 

Automatic formal verification of software has been enjoying a renaissance lately, 
with much of the focus on extending finite-state model checking [24] — which has 
been successfully applied to sequential circuits, protocols, and other reactive systems 
— to software, viewed at a system-level as a reactive (non-terminating) system (e.g., 
[6, 47, 94]). 

A complementary line of work, more relevant to my work, has focused on 
formally verifying the equivalence of low-level code, e.g., to higher-level specifica
tions [93, 3, 46], to other versions of low-level code [30, 35], or to hardware [22, 81]. 
In the compiler-research community, the work of validation of compiler optimiza
tions [82, 74, 100] is also relevant to my work. 

The above research of equivalence checking typically verifies a relatively small 
segment of code as a transformational rather than reactive system, i.e., the code 
computes a result and terminates, analogous to a combinational circuit in hard
ware. The basic approach is to use symbolic execution of the code to compute the 
formal relationship between inputs and outputs, and then prove that the outputs 
are always equivalent. The lower-level emphasis is well-suited for the verification 
of optimizations needed for embedded systems. For example, Currie and Hu have 
demonstrated this approach successfully verifying (or finding bugs in) code optimiza
tions for complex embedded processors [30]. Unfortunately, the basic approach is 
not scalable: the representation of the input/output relationship or the complexity 
of deciding equivalence blows up in memory, runtime, or both. In one embarrass
ing example, a 47-line assembly language routine required 15 hours to verify [30]! 
(Granted, the dynamic instruction count after loop-unrolling was a few thousand 
instructions, and the verification would have run much faster had certain expensive, 
but unnecessary, optimizations been disabled.) 
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4.3 Basic Verification Approach 

I briefly mentioned some general approaches for symbolic simulation in Section 2.4.2. 

In this section, I focus on a specific application of symbolic simulation — for

mal equivalence verification of embedded software. I will first give a domain-

specific review of this problem. More extensive introductions are available elsewhere 

(e.g., [11, 29]). 

The verification task is to take two assembly-language routines that compute 

some values and terminate, and verify that they are equivalent. The user specifies 

what inputs are initially equal and what outputs should be equal when the routines 

terminate. The assumption is that the two routines have very similar control-flow 

(basically, along corresponding paths of two routines, the branches that are encoun

tered are equivalent. See [29, p. 67] for details.). If this assumption is violated, 

the verifier might declare inequivalent two routines that actually compute the same 

value, but it will not claim equivalence for two routines that are not. As in previ

ous work [30, 35, 29], some additional simplifying assumptions are needed (e.g., no 

self-modifying code, no recursion, etc.). I do not repeat them here. 

The verification procedure requires a simple model of the processor at the 

instruction set architecture level, and then uses this model to simulate the two 

routines. However, instead of computing actual values, the simulator is symbolic 

and computes expressions that denote the values as a function of the initial inputs 

and states. For example, consider the following (TI C6200) code segment: 

ADD .L2 Bl, BO, B2 ; B2:=B1+B0 

ADD .L2 B2, BO, B3 ; B3:=B2+B0 

If I denote the initial values of registers BO, Bl , and B2 as J30rj, Bio, and B2o, 

then after these two instructions execute, the simulator will compute the "values" in 

registers B2 and B3 to be symbolic expressions aBlo+B0o" and "(Blo+B0o)+B0o". 

I call the above style of symbolic simulation functional translation, because 
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it computes the values at each point as a function of the initial values. An alterna

tive, which I call relational translation, computes for each instruction a clause that 

relates the values before and after execution. For example, for the above code, I 

would generate the relation (B2X = 51 0 + 500) A(S3i = 52i + 500). The functional 

translation can have worst-case exponentially-sized expressions; the relational trans

lation guarantees an expression size linear in the length of the execution sequence, 

but at the cost of many more variables, which blows up the complexity of deciding 

equivalence. Others have argued for the superiority of the relational translation [11]; 

I will revisit this issue later. 

To keep the equivalence of symbolic expressions decidable, only constant 

propagation and linear arithmetic (i.e., symbolic expressions can be added together 

and multiplied by constants) are interpreted. More complex operations (e.g., multi

plication of symbolic expressions, or any arbitrarily complex operations) are treated 

as uninterpreted functions (See Section 2.5.1). This abstraction hides datapath 

complexity and is safe, but sometimes too conservative — being unable to prove the 

equivalence of a shift and a divide-by-2, for example — so additional domain-specific 

rewriting rules are needed to handle those cases. I also use special interpreted func

tions read — which given a memory and an address, denotes the value at that 

address — and write — which given a memory, an address, and a value, denotes 

an updated memory in which the value has been written to the address. The key 

axiom is that 

To successfully verify low-level code, I have found it necessary to model memory 

layout accurately. In particular, when verifying software written in a high-level 

language, arrays are often assumed to be disjoint, so the read/write functions can 

be applied to each array separately (e.g., a write to an array A does not change 

the state of array B). In contrast, I model all of memory (or each bank of mem-

read(m, a2) 

if al = a2 

otherwise 
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ory in a system with multiple banks) as a single array with all reads and writes 

directed at this array. This approach accurately models low-level memory layout, 

such as relative addressing (e.g., address arithmetic performed on index registers, 

based on knowing the layout of data in memory). However, the approach leads 

to large symbolic expressions, so I rely on some rewriting optimizations to try to 

keep expression size manageable [30, 29]. Efficient decision procedures exist for this 

combined logic (linear arithmetic, uninterpreted functions, and read/write); I use 

the Stanford Validity Checker (SVC) [7]. 

fuse simple techniques to handle control flow. These techniques have proven 

adequate to handle the bottom-level, highly-optimized computational kernels I am 

targeting. For backward branches, the analysis essentially unrolls loops: if the 

decision procedure can prove that the branch is taken, the tool takes the branch; 

if the decision procedure can prove that the branch is not taken, the tool doesn't 

take it; otherwise, the tool declares that the code contains branching that it can 

not handle and gives up. All fixed-iteration loops, which are the common case 

in low-level DSP code, can be handled this way. For forward branches, the tool 

also first tries to prove the branch as taken or not taken. Otherwise, it case-splits. 

Based on my assumption that the two routines being compared have similar control 

structure, I require that the two routines encounter "compatible" forward branches 

in the same order: the two branches must always branch the same way or always 

branch opposite ways (to allow reordering taken/not-taken paths). With compatible 

branches, my tool proceeds to verify that the routines are equivalent along both 

paths. With incompatible branches, my tool declares that it cannot verify the 

routines equivalent. In the C6x family, all instructions are predicated, so I rarely 

encounter forward branches. 

Overall, I have found it straightforward to build symbolic simulators, even for 

complex processors. The basic verification approach works well on small, intricately 

optimized code segments. However, as mentioned earlier, the basic approach does 
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not scale well to longer segments of code. 

4.4 Cutpoints for Software 

Analogously to formal equivalence verification of combinational circuits, I would like 

to use cutpoints to gain scalability. Obviously, the method needs to be conservative 

— it should not declare equivalence when the code segments are not equivalent — 

but I must also avoid introducing too many false inequivalences. 

The most fundamental question is how to define cutpoints for software. In a 

combinational circuit, values flow along wires, from the inputs to the outputs, with 

gates performing computation along the way. Similarly, in software, values flow 

through the code in the program state (variables for high-level software; registers, 

internal buffers, memory, and other machine state for low-level software), with each 

instruction performing some computation on the values as they pass by. Thus, a 

cutpoint in software is some part of the program state at some point in a program 

that is provably equal to some part of the program state at some point in the other 

program. In a combinational circuit, a verification tool can ignore the logic driving 

the cutpoint and insert a new primary input. Instead, for software, a tool can discard 

the symbolic expression computed for the value at the cutpoint and replace it with 

a new symbolic variable. If the tool can verify equivalence using the cutpoint, then 

the original circuits or programs were equivalent. 

Control flow adds a wrinkle to the above definition. In combinational hard

ware, every wire always has a value for every possible input value. In software, some 

instructions may never be executed for some input values, and other instructions 

may be executed multiple times. Therefore, the value of the program state at a 

given point in a program isn't always well-defined. For example, a variable at a 

given point has no value if the point hasn't been reached; alternatively, if a path 

revisits the point, the variable could have different values each time. The solution 

is to define software cutpoints dynamically, based on each dynamic execution path, 
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rather than on the static code. 

Definition 4.1 (Software Cutpoint) A cutpoint in software is some part of the 

program state at some point on an execution path in a program, which is provably 

equal to some part of the program state at some point on an execution path in the 

other program. 

I will use the existing verification approach to enumerate paths and attempt to use 

cutpoints to make the verification of each path much more efficient. 

Example: Consider a short loop that zeroes out a 1024-word block of mem

ory. As a simple example, I will verify the equivalence of the loop to itself. Unrolling 

the loop, the instruction stream is simply 1024 store instructions: 

STW . D l AO, *A4++ 

STW . D l AO, *A4++ 

STW . D l AO, *A4++ 

where register AO has been initialized to 0, and register A4 indexes through the 

memory block using auto-increment. Using my basic verification approach, after i 

iterations, the symbolic expression for memory will be: 

write (... write (write (mo, A40,0), A4o + 4,0)..., A4 0 + 4(i - 1), 0) 

where mo and A4Q are the initial values of memory and register A4. The expression 

grows linearly with iteration count. Using the relational translation would also give 

linear-size expressions (linear number of constant-size clauses), plus a linear number 

of new variables. However, if I use cutpoints, I find that the machine states of the 

"two" programs (the two copies of itself) agree completely after each instruction. 

Hence, after each instruction, I could introduce a new cutpoint memory variable 

trii and a new cutpoint address value A4;, and then at the next instruction have to 

prove only the equivalence of write(mj, A4j, 0) in the two code segments. 
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The above example is contrived, but it serves to highlight the key design 

decisions in trying to apply cutpoints to software: 

• Where and how fine-grained to look for cutpoints? In the above example, after 

every instruction, the entire machine state matched between the programs 

being compared, so I could cut the entire state between instructions. That 

would work for the simple example, but would produce false inequivalence for 

anything non-trivial. On the other extreme, I could try to match each register 

and memory location, or even each bit of each register and memory location for 

interpreted values at each instruction, as a possible cutpoint. Finer-grained 

cutpoints allow more flexibility and improve the possibility of matches, but 

they result in an exploding set of possible matches to be considered. Also, 

I may not want to look for or insert cutpoints for some parts of the state: 

for example, in the simple example, if I make the loop induction variable a 

cutpoint, I lose the ability to prove termination. 

• How to find cutpoints? In the simple example, the two programs were syn

chronized in lock-step, so I was able to execute a single instruction from each 

and find matching cutpoints. In general, however, computations will be re

ordered and instructions will be optimized away, so I need techniques to look 

for possible cutpoints. 

• Whether to do the cut? This is the dynamic version of the first question. Once 

I find (and prove) a cutpoint, I may choose not to use it, perhaps to avoid 

false inequivalences. A verification tool would need a heuristic to make this 

decision. 

• How to do the cut? By definition, I create a new symbolic variable to take 

the place of the expression computed for the cutpoint. But how aggressively 

do I propagate this new cutpoint variable? By the time the tool discovers a 

cutpoint, the symbolic simulator may have already computed other symbolic 
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expressions, for other parts of the machine state, based on the symbolic ex

pression being cut out. Should I track down these dependent expressions? 

How? 

• How to reduce false inequivalences ? The previous questions will affect the false 

negative rate, but this question is important enough to consider independently. 

Should I add constraints on newly introduced cutpoint variables? How do I 

save those constraints. Are there other ways to reduce false inequivalences? 

Any implementation of software cutpoints must answer the above questions. Ulti

mately, the real question is "Do the answers to the above questions allow verifying 

real code more efficiently and with an acceptable level of false inequivalences?" 

4.5 Proof-of-Concept Implementation 

To test the effectiveness of software cutpoints, I have implemented an instance of 

the idea. My proof-of-concept implementation is built on top of my existing tool, 

which uses the basic verification approach from Section 4.3 and targets assembly 

code for the Texas Instruments C6x family of VLIW DSPs [35]. In this section, I 

discuss my answers to the design questions raised above. 

Where and how fine-grained to look for cutpoints? I check the symbolic 

expressions for only the memory, and treat the entire memory as a single possible 

cutpoint. 

I do not look for cutpoints between registers or other parts of the machine 

state due to the following three reasons. First, the embedded software examples 

being verified compute and save results into memory, then terminate. Such pro

grams use registers only to storage temporary results. The equivalence of such two 

programs is proven by checking the memory contents after they terminate. Second, 

if the verification algorithm inserts cutpoints for registers, it is possible that loop 
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induction variables can be cut off. Therefore, the symbolic simulation might not 

terminate any more. Third, my experience indicated that the symbolic expressions 

for memory are the primary source of blow-up in the basic verification approach. 

I treat the entire memory as a single possible cutpoint when looking for 

cutpoints for memory expressions, i.e. during symbolic simulation, only when two 

embedded software programs have equivalent symbolic expressions for the whole 

memory, does my algorithm look for and insert cutpoints. Such coarse-grained 

cutpoints can greatly simplify the task of searching for cutpoints — the verification 

algorithm doesn't need to find cutpoints for specific memory locations. 

How to find cutpoints ? Checking only the entire memory makes this task much 

easier. The symbolic expression for memory changes only after a store instruction, 

so I keep a history buffer of the memory expressions from the last k stores, for some 

depth k. The verification tool simulates one program through k stores, then the 

other program through k stores, then calls the decision procedure to find the most 

recent match (if any) of the k2 possibilities. 

A large value of k can save time on decision procedure calls. For example, 

consider two programs P\ and P 2 being verified. Program Pi has one order of 

computations (each computation stores results into memory), CQ, C \ , C 2 , C3, C4, 
c5, c 2 n, c 2 n + i . Program P 2 has another ordering, ci, CQ, C 3 , C 2 , C 5 , C 4 , c 2 n + 1 , 

c 2 n. A buffer size of k = 4 reduces the number of decision procedure calls by half 

compared to a buffer size of k = 2, because the tool compares memory only after 

every fourth store. 

However, k should not be too large. Otherwise, it can slow down the tool 

due to the following reasons. First, the cost of saving the history buffer is not 

trivial. Second, in order to find a most resent match, the tool has to check the two 

history buffers of the two programs. The worst case complexity is 0(k2) decision 

procedure calls, which is expensive for large k. Third, the memory expression can 

grow exponentially with k. 
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Consequently, I informally tried several values of fc, and chose k = 10 for all 

of my experiments. 

Whether to do the cut? When I find a cutpoint, I always do the cut. Again, 

this is motivated because memory expressions tend to blow up, and because I am 

matching only memory, so loop induction variables in registers won't be cut. 

How to do the cut? I could conceivably match a memory expression fc stores 

earlier, which could be an unbounded number of (non-store) instructions in the 

past. It's hard to imagine trying to compute directly the effect of introducing the 

cut variable on all the values (and control flow!) that may have been computed 

subsequently. Furthermore, the C6x family has very deep pipelines, so searching 

through all the symbolic expressions in the pipeline and reasoning about any pipeline 

interactions is a daunting task. Instead, I simply leverage the fact that I already 

have a symbolic simulator for the processor. After each store instruction, I record 

in the history buffer the entire machine state, not just the expression for memory. 

When I find a cutpoint, I roll back the simulation to the cutpoint, and re-simulate 

any subsequent instructions. 

How to reduce false inequivalences? This is the most complex question to 

answer. The simplest answer is to do nothing special. I implemented that choice 

and found that it worked successfully, and very efficiently, on some examples (e.g., 

the industrial-inspired "Hup" example in Section 4.6), but produced too many false 

inequivalences (e.g., on the software pipelining example in Section 4.6). The funda

mental problem is the inability to handle reordering of independent memory accesses. 

For example, consider verifying 

LDW .Dl *A3++, A l 

NOP 4 ; 4 cyc le NOP f o r load to complete 

STW .Dl AO, *A4++ 
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versus 

STW .Dl AO, *A4++ 

LDW .Dl *A3++, Al 

NOP 4 ; 4 cycle NOP for load to complete 

If I know that registers A3 and A4 point to different locations, then the two code seg

ments are equivalent, and the basic verification approach would successfully verify 

that. Using my simple cutpoint approach, however, I would introduce a cutpoint af

ter the STW instructions. The value of A l at the end of the first code segment, there

fore, will be based on the pre-cutpoint memory expression, e.g., read(m0j^,^43o), 

whereas the value of A l at the end of the second code segment will be based on the 

post-cutpoint memory expression, e.g., read(mnew, ^3o), which aren't equivalent. 

The verification returns a false inequivalence. 

I introduced two ways to eliminate these false inequivalences. I call the 

first "memory look-through". In this approach, the verification tool records the 

address written for every store instruction. For each load instruction, the tool tries 

to prove the independence of the address being read from the addresses that have 

been written. The read expression that is generated can read from any version of 

memory back to the most recent store that cannot be proven independent of the 

address being read. For my implementation, it turned out to be faster to first ask 

SVC to prove that the load address is independent of all stores, in a single decision 

procedure call. If this succeeds, the read expression reads from the initial memory. 

Otherwise, the read expression reads from the most recent store that cannot be 

proven independent of the address being read. In the example above, if the address 

ranges for A3 and A4 provably never overlap, then the value loaded into A l will 

always be read(mo, A3i), where mo is the initial memory. This method reduces, but 

does not eliminate false inequivalences. 

The other approach I tried completely eliminates false inequivalence (from 

the cutpoints — obviously, false inequivalence from other aspects of the verification 
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approach, such as uninterpreted functions, remain). When a new cutpoint variable 

is introduced, I add an assertion to the decision procedure that the new cutpoint 

variable is equal to one of the two (proven equivalent) expressions that it is replac

ing. This assertion guarantees that the cutpoint variable will always be properly 

constrained. I call this approach "memory assertions", and it is analogous to the 

combinational circuit equivalence technique in which, rather than introducing a new 

primary input at the cutpoint, I simply drive the cutpoints in both circuits from the 

same circuitry in one [12]. 

With plausible answers to all the design decisions, I can proceed to the real 

question: does it work on real code? 

4.6 Experimental Results 

I have run experiments using several test cases. They are all small computational 

kernels that performs computations over arrays, where I can scale the difficulty 

of the example by adjusting the loop count. In each case, I verified the equiv

alence of unoptimized and highly optimized versions of the code. I compare the 

performance of four different methods: the basic verification approach, using the 

functional translation; the basic verification approach, using the relational transla

tion; the functional translation with cutpoints, using memory look-through; and the 

functional translation with cutpoints, using memory assertions. For the functional 

translation methods, I use memory rewriting optimizations to try to reduce blow

up [30, 29], but I enable only the rewrites that actually help in the examples. Doing 

so helps the basic functional translation, but makes no difference for the cutpoint 

methods. This biases the experiments against the cutpoint methods. 
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(... linkage and initialization omitted. 
BO is the loop counter ...) 

13 L12: ; PIPED LOOP KERNEL 
14 LDW .D2 *B5++,B4 
15 1 LDW .Dl *A3++,A0 
16 NOP 2 
17 [ BO]SUB .L2 B0,1,B0 
18 [ B0]B .S2 L12 
19 MPYSP .MIX B4,A0,A0 
20 NOP 3 
21 STW .Dl A0,*A4++ 
(. subroutine return omitted 

Figure 4.1: Unpipelined Assembly Code. The vertical bars indicate instructions 
executed in parallel. LDW (load word) has 4 delay slots, branches have 5 delay 
slots, and MPYSP (single-precision multiply) has 3 delay slots. The code point-wise 
multiplies two arrays, storing the result in a third array. The code takes 10 cycles 
per iteration. (Listing taken from [75].) 

The first test case is taken from an article on DSP code optimization, ex

plaining how to optimize code for high-performance DSPs [75]. The example demon

strates software pipelining a short loop, targeting the C67x. Software pipelining is 

a powerful instruction scheduling technique that exposes additional parallelism in 

loops, thereby improving performance [63]. The basic idea of software pipelining 

is to rearrange the computation such that portions of different loop iterations exe

cute at once, similarly to hardware pipelining. A prologue is required to start the 

pipelined computation, and an epilogue is required to "flush the pipeline" at the end 

of the computation. Figure 4.1 shows the unpipelined code, and Figure 4.2 gives 

the software pipelined code. The task is to verify the equivalence of the two. 

82 



(...linkage & i n i t i a l i z a t i o n omitted. 41 ;** 
BO i s the loop counter ...) 42 L9: , PIPED LOOP KERNEL 

15 L8 PIPED LOOP PROLOG 43 
16 44 [BO] B .S2 L9 ;®9 
17 LDW .D2 *B5++,B4 ; 45 1 1 LDW .D2 *B5++,B4 ;999® 
18 II LDW .Dl •A3++.A0 ; 46 1 1 LDW .Dl •A3++.A0 ;9999 
19 47 
20 NOP 1 48 STW .Dl A5,*A4++ ; 
21 49 1 1 MPYSP .MIX B4.A0.A5 ;Q® 
22 LDW .D2 *B5++,B4 ;9 50 II [BO] SUB .L2 BO.l.BO ;999 
23 1 1 LDW .Dl •A3++.A0 ;9 51 
24 52 ;** 
25 [BO] SUB .L2 BO.l.BO ; 53 L10: ; PIPED LOOP EPILOG 
26 54 NOP 1 
27 [BO] B .S2 L9 ; 55 
28 1 1 LDW .D2 *B5++,B4 ;9S 56 STW .Dl A5,*A4++ ;® 
29 1 1 LDW .Dl •A3++.A0 ;99 57 1 1 MPYSP .MIX B4.A0.A5 ;999 
30 58 
31 MPYSP .MIX B4.A0.A5 ; 59 NOP 1 
32 1 1 [BO] SUB .L2 B0.1.B0 ;9 60 
33 61 STW .Dl A5,*A4++ ;99 
34 [BO] B .S2 L9 ;® 62 1 1 MPYSP .MIX B4,A0,A5 ;9999 
35 1 1 LDW .D2 *B5++,B4 ;®G 9 64 NOP 1 
36 1 1 LDW .Dl •A3++.A0 ;9« 9 65 STW .Dl A5,*A4++ ;999 
37 66 NOP 1 
38 MPYSP .MIX B4.A0.A5 ;9 67 STW .Dl A5,*A4++ ;®9®9 
39 1 1 [BO] SUB .L2 B0.1.B0 ;®« (. . subroutine return omitted ...) 
40 

Figure 4.2: Software Pipelined Assembly Code. If the inputs are declared to be 
const, the compiler does software pipelining, improving performance to 2 cycles 
per iteration. But, does this do the same thing as Figure 4.1? (Listing taken 
from [75].) 
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Functional w/o Cutpoints Functional with Cutpoints 
Loop Count Time(s) Memory(MB) Time(s) Memory(MB) 
200 6.13 10.6 6.29 5.3 
400 24.32 27.1 24.49 6.0 
600 54.50 53.7 54.65 6.7 
800 97.22 90.0 96.84 7.6 
1000 149.96 132 150.13 8.7 
2000 600.98 513 596.47 13.7 
3000 1425.63 1150 1363.85 23.4 
4000 2461.32 2023 2490.58 27.6 
5000 mem out 3939.21 29.3 

Table 4.1: Software Pipeline Detailed Results. Memory limit is set to 2 GB. 

I had previously been able to verify this example, using the basic verification 

approach (without cutpoints). Using cutpoints, I was still able to verify equiva

lence of the two versions, taken unmodified from the article. Because the cutpoint 

methods are conservative, successfully proving equivalence shows the cutpoints were 

sufficiently accurate and did not create false inequivalences. Figure 4.3 shows the 

performance trends as I scaled the number of loop iterations. The relational trans

lation performs strikingly poorly: the run time blows up immediately, but surpris

ingly, so does the memory usage. Apparently, the theoretically linear expression size 

growth of the relational translation is not competitive with the savings possible with 

the memory rewriting optimizations of the functional translation. The method us

ing cutpoints and memory assertions also times out on small instances. Apparently, 

forcing the decision procedure to reason about all the cutpoint variables is causing 

blow-up, similar to the relational approach. Perhaps a newer decision procedure 

would help, as SVC is several years old. Nonetheless, on this example, cutpoints 

provide a vast improvement in memory usage at a small cost in run time. 
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Figure 4.3: Software Pipeline Results. The relational translation times out even 
for minuscule numbers of iterations, and the functional translation with cutpoints 
and memory assertions times out quickly, too. My previous functional translation 
method without cutpoints is fastest, but the memory usage blows up. The new 
cutpoint method with memory look-through is almost as fast and uses very little 
memory. Run time limit is set to 1 hour and memory limit is set to 2 GB 
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The preceding experiment used compiler-optimized code. For a harder ex

periment, I ran experiments on expert, hand-optimized code. Texas Instruments 

provides the TMS320C67x DSP Library (DSPLIB), a freely downloadable library of 

commonly-used DSP signal-processing routines hand-tuned by TI experts to achieve 

optimal execution speed [92]. Furthermore, each library function includes an equiva

lent C reference model, which I can compile using TI's TMS320C6x ANSI C compiler 

to get an equivalent, non-optimized version. For my experiments, I selected three 

simple routines with numerous memory writes (the main source of expression size 

blow-up) from the library: block move (DSPF_sp_blk_move, 43 lines of code), convo

lution (DSPF_sp_convol, 101 lines of code), and FIR filtering (DSPF_sp_f ir_r2, 270 

lines of code). 

On my initial attempt to verify these examples, the cutpoint methods failed 

immediately with false inequivalences. The problem is that the hand-tuned code's 

subroutine linkage is different from the compiler-generated code: caller state is saved 

and restored slightly differently. This highlights the immaturity of my initial heuris

tics — a small change was able to foil my cutpoint implementation. More sophisti

cated heuristics will obviously be needed in practice. 

Fortunately, the subroutine linkage code was easy to remove, so I was able to 

try the verification (expert-hand-tuned vs. compiler-generated) on only the compu

tational kernels of each routine. I manually replaced the linkage code with NOPs, 

added assertions to the decision procedure to initialize the two routines in the same 

way, and re-ran the verification tool. This time, I was able to verify equivalence fully 

automatically, demonstrating that my cutpoint heuristics were accuratê  enough for 

the computational kernels of my test cases. Figures 4.4, 4.5, and 4.6 show the per

formance trends for these examples. On the block move example, the performance is 

very similar to the software pipelining example: the relational translation times out 

immediately; the cutpoints method with memory assertions times out quickly, too; 

the basic functional translation is fastest, but blows up in memory; and the cutpoint 
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method with memory look-through is almost as fast and doesn't suffer memory blow 

up. On the convolution and FIR examples, though, the results are even better: now, 

the cutpoint method with memory look-through is roughly twice as fast as the ba

sic functional translation. The reason for this performance difference appears to be 

that in the hand-optimized convolution and FIR examples, the computation is much 

more highly reordered, resulting in a much harder equivalence expression for the de

cision procedure. The overhead of finding cutpoints is swamped by the savings of a 

simpler final verification problem. To test this hypothesis, I ran experiments using 

larger convolutions and more FIR filter coefficients and found that the performance 

advantage of the cutpoint method increased. Conversely, the block move example 

has no computation at all, simplifying the final verification problem, so the relative 

overhead of the cutpoints is higher. 

In all the test cases, the cutpoint method with memory look-through vastly 

reduced memory usage. Run time ranged from a minor increase to a significant 

decrease. Accuracy was good enough to verify all of the computational kernels. 

Clearly, cutpoints can be very effective. 

Tables 4.1, 4.2, 4.3, and 4.4 give detailed results comparing the two compet

itive methods: my original basic verification approach, without cutpoints, using the 

functional translation and memory rewriting, and my new cutpoint-based method, 

using the functional translation and memory look-through. All experiments were 

run on a 2.6Ghz Pentium 4 with 4GB of RAM. I set the run time limit to 1 hour. 
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Figure 4.4: Block Move Results. Performance trends are similar to Fig. 4.3, except 
that the time overhead of cutpoints is larger. The relational translation times out 
at the very beginning and is not shown in this figure. Run time limit is set to 1 
hour and memory limit is set to 2 GB. 
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Figure 4.5: Convolution Results. Here, not only does the cutpoint method with 
memory look-through have the lowest memory consumption, but it is fastest, too. 
The relational translation times out at the very beginning and is not shown in this 
figure. The runs were with the number of impulse response samples set to 8. Run 
time limit is set to 1 hour and memory limit is set to 2 GB. 
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Figure 4.6: FIR Filter Results. Performance trends are similar to Fig. 4.5: cutpoints 
with memory look-through was fastest and used vastly less memory. The relational 
translation times out at the very beginning and is not shown in this figure. I set the 
number of filter coefficients to 8. Run time limit is set to 1 hour and memory limit 
is set to 2 GB. 
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Functional w/o Cutpoints Functional with Cutpoints 
Loop Count Time(s) Memory(MB) Time(s) Memory(MB) 

200 3.59 8.7 4.15 5.0 
400 14.05 20.3 15.99 5.6 
600 31.53 39.1 35.90 6.1 
800 56.00 64.6 63.65 6.7 
1000 87.22 96.5 99.04 7.3 
2000 349.06 353 395.70 10.2 
3000 793.32 796 903.46 16.1 
4000 1420.66 1401 1665.15 19.3 
5000 mem out 2615.88 21.0 

Table 4.2: Block Move Detailed Results. Run time limit is set to 1 hour and memory 
limit is set to 2 GB. 

Functional w/o Cutpoints Functional with Cutpoints 
Loop Count Time(s) Memory (MB) Time(s) Memory(MB) 

100 23.32 12.5 11.34 6.0 
200 91.64 33.7 41.96 7.2 
300 204.96 67.1 91.42 8.5 
400 363.38 111 159.91 9.7 
500 569.05 169 -247.60 10.9 
600 818.84 240 354.77 12.2 
700 1109.54 323 481.52 13.4 
800 1451.09 418 627.45 14.6 
900 183678 526 792.95 . 15.9. 
1000 2267.42 646 976.55 17.1 

Table 4.3: Convolution Detailed Results 
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Functional w/o Cutpoints Functional with Cutpoints 
Loop Count Time(s) Memory (MB) Time(s) Memory(MB) 

100 22.83 12.4 10.72 6.0 
200 88.01 33.6 39.38 7.3 
300 195.28 66.4 85.21 8.6 
400 345.95 110 149.41 9.7 
500 539.08 167 231.48 11.0 
600 776.26 237 332.31 12.2 
700 1058.00 320 451.26 13.4 
800 1381.92 414 587.61 14.6 
900 1752.31 521 742.46 15.9 
1000 2216.26 640 915.77 17.1 

Table 4.4: FIR Filter Detailed Results 
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Chapter 5 

C u t p o i n t s f o r S o f t w a r e v s . 

C o m b i n a t i o n a l C i r c u i t s 

Motivated by my adaptation of the cutpoint idea to software, I return to the orig

inal problem — equivalence verification of software specifications vs. hardware im

plementations. In this chapter, which is based on my paper published in the 43rd 

Design Automation Conference (DAC'06) [37], I will give the early cutpoint inser

tion approach for equivalence checking of software specifications vs. combinational 

circuits. 

5.1 Introduction 

One approach to verifying a hardware implementation against a software specifica

tion is first to convert the high-level software into RTL or gate-level hardware, and 

then to leverage standard techniques from RTL or gate-level combinational equiv

alence verification — in particular, the introduction of cutpoints — to verify the 

equivalence of the two low-level models. Unfortunately, as Gupta et al. [44] point 

out, most high-level synthesis has targeted creating multicycle, resource-constrained 

designs, rather than creating single-cycle hardware from software specifications with 

complex control flow. As a result, off-the-shelf high-level synthesis isn't applicable 
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to my problem. 

Instead of high-level synthesis, the alternative is symbolic simulation. With 

symbolic simulation, the challenge is complexity blow-up. To handle the control 

flow of software, symbolic simulation must explore all paths through the code. If 

this exploration is done explicitly, execution time can blow up with the exponential 

number of paths. If paths are merged to avoid this blow-up, then there is a potential 

blow-up in the expressions that track the different results that are computed on the 

different paths. 

The principle contribution of my early cutpoint insertion approach is a novel 

way to introduce cutpoints early, during the analysis of the software specification, 

rather than after a low-level hardware-equivalent has been generated. By doing so, 

I avoid the exponential enumeration of software paths as well as the logic blow-up 

of tracking merged paths. I evaluate my method on a challenge problem suggested 

to us by colleagues in industry: a family of instruction length decoders for varying 

subsets of the IA-32 instruction set architecture. Experimental results show large 

reductions in runtime and memory usage due to my early insertion of cutpoints. 

5.2 Related Work 

Unlike most high-level synthesis systems, Gupta et al.'s Spark system was specifi

cally designed for the sorts of high-level models I need (highly unoptimized, complex 

software into single-cycle hardware) [44], Indeed, they demonstrated the capabilities 

of their system on a IA-32 instruction length decoder, the same challenge problem 

I use. Their decoder is much simpler than mine, but with the same essential char

acteristics. Unfortunately, the current version of Spark was not able to handle my 

examples, so I cannot evaluate how well this approach would work.1 In my ini

tial software analysis phase, I assume that certain standard program analyses (e.g., 

*Spark vl.2, released Feb 5, 2004. It would generate only multi-cycle implementations 
for my examples. Even the tool's author could not get it to generate a combinational circuit 
implementation. . . • 
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CFG construction, data flow analyses) have been done. I believe optimizations and 

analyses as done in Spark could enhance the initial phases of my verification flow. 

In Chapter 3, I reviewed the closely related work on formal verification of 

software specifications vs. sequential circuits. Here, I will focus on related work that 

can handle software with complex control flow for combinational circuits. 

Fujita gave a related approach by using virtual controllers and datapaths [40]. 

Instead of generating hardware from the software specification, he proposed to map 

both the software model and hardware model to virtual controllers and datapaths, 

essentially synthesizing the models onto a specific structure. Therefore, the equiva

lence checking problem is reduced to checking the equivalence of the data transfers 

that are controlled by the virtual controllers. However, when the software and hard

ware are very different, the correspondences between the two datapaths and virtual 

controllers for the software and hardware are not obvious at all. 

Instead of synthesis, Kroening, Clarke and Yorav [61] (see Section 3.2) give an 

approach using symbolic simulation with bounded model checking to both a circuit 

and a C program. In practice, their tool (hw-CBMC) can handle the same kinds of 

problems as mine. However, hw-CBMC does explicit path enumeration. Therefore, 

the execution time blows up with the exponential number of paths (experimental 

results are given later). 

An alternative to path enumeration is to merge execution paths as much as 

possible, keeping track of the different path conditions and possible values in the 

symbolic expressions. Consider the following block of code: 

i f (cl) x=a; 

else x=b; 

i f (c2) x++; 

else x—; 

Rather than analyzing each of the four execution paths separately, we could com

pute some sort of symbolic expression for x after the first i f statement that merges 
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the two branches, e.g., ite(cl,a,6), and then merge again after the second i f state

ment, producing ite(c2, ite(cl, a, b) + 1, ite(cl, a, b) — 1). Merging paths converts the 

exponential complexity of path enumeration into logical complexity in the symbolic 

expressions. Early work along these lines [50, 70] suffered from BDD blow-up for 

non-trivial software models. 

Recently, Koelbl and Pixley have proposed a more scalable approach [60]. 

They symbolically simulate C++ software specifications at the word level and use 

an acyclic circuit representation (a data flow graph) for the symbolic expressions. 

Starting from this data flow graph, they can do synthesis and verification. This 

approach greatly reduces blow-up. Furthermore, blow-up of the path conditions 

is reduced by a two-level representation: branching conditions in the program are 

abstracted as Boolean variables, and the path condition is stored as a BDD over 

those variables. This two-level representation allows fast approximate reasoning, 

but accurate computation of path conditions is expensive, requiring a combined 

decision procedure for — or else flattening — the two-level representation. No 

implementation is publicly available, but the published theory is unable to handle 

loop complexity like that found in the challenge problem below. 

5.3 Challenge Problem: Instruction Length Decoder 

Academic research on software-to-RTL verification has been stymied by the lack of 

good benchmark examples. Companies are reluctant to make public valuable intel

lectual property, and substantial engineering effort is required to create examples. I 

was fortunate to have a well-defined, industrial challenge problem suggested to me, 

which epitomizes this class of verification problem: an instruction length decoder 

for Intel's IA-32 (Intel Architecture, 32-bit) instruction set architecture [53]. The 

functionality of such a circuit (described below) is conceptually simple and easy to 

describe in software, although the actual code is long and has complex control flow. 

The RTL implementation does not resemble the high-level software. I have created 
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a set of example software and RTL models, implementing increasingly larger and 

more complete decoders, and released them publicly to help other researchers.2 (See 

Section 5.5.) 

The IA-32 instruction set architecture (ISA) descends directly from the 16-

bit Intel 8086/8088 through the latest Pentium processors. This family of processors 

has dominated desktop computing for over two decades and several orders of mag

nitude increase in processing power. Backwards software compatibility has always 

been important, so the ISA has grown by accretion, resulting in extremely complex 

instruction encodings. Instructions can range from 1 byte to over 15 bytes in length. 

All IA-32 instruction encodings obey the format shown as Figure 5.1. The actual 

length of an IA-32 instruction depends on the operating mode (protected mode, 

real-address mode and system management mode), the prefix bytes (if any), the op

code byte(s), the ModR/M byte (if present), and the Scale Index Base (SIB) byte (if 

present). For example, in protected mode, the default operand and address sizes are 

both 32 bits. But the operand-size override prefix (66H) and the address-size over

ride prefix (67h) allow a program to switch to non-default operand and addressing 

sizes, which are 16 bits. For some instructions, with a current operand-size attribute 

determined by the operating mode and operand-size override prefix (if present), the 

size of operands can further be changed by the operand size bit (w) of the opcode. 

If w is 0, the operand size is 1 byte regardless of the current operand-size attribute. 

If w is 1, it has no effect on the current operand size. In addition, if there is a 

ModR/M byte field in an instruction, the 256 values of ModR/M will define dif

ferent addressing forms which wiD affect the length of the displacement field and 

decide whether there is an SIB byte to follow. The addressing forms are different 

for different addressing modes (16-bit or 32-bit). 

2Examples are available at http://www.cs.ubc.ca/~ajh. 
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Prefix Opcode ModR/M SIB Displacement Immediate Data 

Prefix: 0-4 Bytes SIB: 0-1 Byte 
Opcode: 1-2 Bytes Displacement: 0-4 Bytes 
ModR/M: 0-1 Byte Immediate: 0-4 Bytes 

Figure 5.1: IA-32 General Instruction Format 

Because of the complex instruction encoding, a high-performance IA-32 im

plementation must pipeline instruction decoding. A piece of this puzzle is the in

struction length decoder (ILD). (My description is based on [57].) Each cycle, the 

ILD is given an n-byte parcel of the next bytes in the instruction stream, enough 

additional lookahead bytes in the instruction stream to determine the end of the last 

instruction in the current parcel (which can extend into the next parcel), and a wrap 

pointer that indicates how far the last instruction from the previous parcel extends 

into this parcel. The output is two n-bit vectors begin and end, which indicate the 

beginning and end of each instruction in the parcel, and the wrap pointer for the 

next parcel. 

A high-level software specification of the ILD is straightforward, if a bit 

convoluted. The software simply starts at the wrap pointer and scans the parcel 

byte-by-byte, parsing each instruction one at a time. Figure 5.2 gives pseudocode 

for the main loop of the software ILD (my complete C code has about 500 lines). 
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while (wrap < PARCEL.SIZE) { 
begin[wrap]=1; /* Start of instruction */ 

/* Set default sizes. */ 
operand.mode = INIT_OPERAND_MODE; 
address_mode = INIT_ADDRESS_MODE; 

get_next_byte(); 
ret = handle_prefixes(); 
/* If there were any prefixes, 

get the next byte for opcode. */ 
i f (ret) get_next_byte(); 

i f (current_byte != ESCAPE) { 
handle_one_byte_opcodes(); 

} else { /* Escape to two-byte opcode */ 
/* Skip over the escape code. */ 
get_next_byte(); 
handle_two_byte_opcodes(); 

} 

} 

Figure 5.2: Software Model Main Loop Pseudocode 
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The loop body is basically a simple syntax-directed parser for the instruction 

format, with the various functions communicating via global variables, such as wrap 

pointing to the current location in the parcel or the lookahead bytes, current_byte 

being the content of that location, and the _mode variables remembering the current 

operand and address sizes. The handle, helper functions consist of nested if state

ments that continue the parsing for as many bytes as needed into the details of the 

instruction format. Note that the loop body can end with wrap being incremented 

by many different values, from 1 to the longest instruction length, depending on the 

context of the input parcel. 

The hardware implementation is very different. For performance reasons, all 

decoding must be done in parallel. The logic required to decode the length of an 

instruction starting at a fixed location is straightforward. This logic is replicated for 

each possible instruction alignment in the parcel, speculatively computing the length 

assuming that an instruction starts there. A priority-encoding network determines 

which blocks of instruction-length logic are the valid ones: the length computed at 

the input wrap position is valid, and the length starting at a position j is valid iff the 

length starting at a position i is valid and j = i + length-from(i). Given the large 

difference between software specification and hardware implementation, verifying 

functional equivalence is a challenge. 

5.4 Verification Algorithm 

The verification algorithm I have implemented compares a high-level model, given 

as an annotated control-flow graph (ACFG), to a gate-level model, given in BLIF 

(Berkeley Logic Interchange Format [87]). The translation from a programming 

language like C or C++ to a CFG is standard and well-known. Starting from 

the CFG keeps my tool language-neutral and saves considerable implementation 

effort in the front-end. I also assume that all functions have been inlined, and a 

simple, intraprocedural dataflow analysis has been done, i.e., the analyses of reaching 
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definitions and live variables have been done. Algorithms for these steps are available 

in any compiler reference, e.g., [72], 

Proceeding from the annotated CFG, the verification algorithm has two main 

phases: a preliminary analysis of the software to unroll loops, merging paths as much 

as possible; and the actual formal equivalence check, where the algorithm tries to 

insert cutpoints during the processing of the unrolled CFG. 

5.4.1 Preliminary Software Analysis 

My tool handles loops in the software by unrolling. Simple loops, e.g., with constant 

bounds or simple dependencies, can be unrolled in the obvious manner (cf. [60]). 

The main instruction length decoder loop (Figure 5.2), however, has a very complex 

structure, so I devised a more elaborate means to perform the unrolling. Advanced 

compiler/synthesis optimization techniques can achieve the same result [44]. 

In my method, the dataflow analysis determines that wrap is the only loop-

carried dependence (i.e., dependence between instructions from different iterations 

of a loop). In addition, live variable analysis shows that wrap is the only live variable 

besides the input variables, and input variables are read-only. Therefore, wrap is 

the only information that must be tracked in distinguishing different iterations of 

the loop body. (The paths beyond a merge point that have the same value of wrap 

will have equivalent future executions.) Accordingly, as the tool unrolls the loop, 

any two paths that (re)enter the loop with the same value of wrap can be merged 

safely. The net result is that the tool automatically unrolls the original CFG into 

the graph shown in Figure 5.3.3 

3 In [45], the authors use caching and summaries to merge paths on a particular abstrac
tion model. The path merging uses standard approaches of data flow analysis to merge 
paths that have the same program states. Compared to this work, the novelty of my path 
merging is that my approach employs live variable analysis and merges paths that have the 
same values for live variables. In addition, my approach maintains full bit-accuracy. 
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Figure 5.3: Unrolled and Merged Control Flow Graph. C(i,j) denotes the logical condition such that the loop iteration 
with wrap = i will continue to the loop iteration with wrap = j. For clarity, I haven't drawn the graph edges and vertices 
inside the loop bodies; the actual C F G , of course, does have those details. 



There are two key points about the method. First is that the graph construc

tion, and the resulting graph itself is linear in the size of the software (once the loops 

are unrolled). There is no exponential blow-up of path enumeration, because the 

algorithm explores each edge once, not each path. The second key point is that the 

tool hasn't performed a full symbolic simulation yet. Symbolic simulation would 

compute expressions giving the values of all the variables of the circuit, e.g., the 

begin and end vectors. These outputs do depend on the path taken to reach a given 

point in the graph. For example, whether the kth byte in a parcel is the start of 

an instruction depends on where the previous valid instruction ended. Thus, sym

bolic simulation requires computing, for each variable at each point in the unrolled 

graph, a logical expression that gives the correct value depending on the path taken 

to arrive there. These expressions are liable to blow-up. 

5.4.2 Formal Equivalence Check 

I now proceed to the main phase of the verification algorithm. To formally verify 

equivalence between the software and hardware models, the algorithm must derive 

some representation of the function computed at the output of each model. For both 

gate-level hardware or an execution path in software, symbolic simulation is the 

standard method to derive these representations. I will use BDDs [14] to represent 

the functions in symbolic simulation: they are empirically efficient, and canonicity 

makes proving equivalence in constant time, which facilitates finding cutpoints. 

As mentioned above, the value of a variable at a given point in the program 

depends on the path taken through the program to reach that point. The verification 

algorithm, therefore, must compute the logic that indicates whether any given path 

is taken. For example, in Figure 5.3, the software code in loop body k will be 

executed (and thereby affects the values of any program variables) iff the execution 

starting from the initial value of w r a p followed a path that eventually reached loop 

body k, i.e., there exists some sequence of values VQ,...,VI, where VQ equals the 
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initial value of wrap when the code starts, vi = k, and for all i, the edge conditions 

C(vi,Vi+i) are all true. (And the conditions for control flow within the loop bodies, 

not drawn in Figure 5.3, have to be true as well.) 

Fortunately, path merging avoids enumerating the exponential number of 

paths. In fact, the logic that indicates whether a given basic block executes can 

be computed linearly in the graph size. The algorithm works as follows: Let P{k) 

denote the path condition for basic block k, i.e., the logical expression that indicates 

what inputs will cause the software to execute basic block k. Logic P{k) can be 

computed recursively: 

P(k) = \/(P(i)AC(i,k)) 
i 

i.e., for basic block k to execute, it must be true that some basic block i executed 

and then the branching condition C(i,k) that control flowed from i to k was also 

true. Because the unrolled CFG is acyclic, this computation examines each edge 

exactly once, yielding the linear complexity. 

The above linear construction is a state-of-the-art symbolic simulation ap

proach to converting the software specification into BDDs or some other function 

representation. We are now ready to consider early cutpoint insertion. 

The key idea of early cutpoint insertion is to look for cutpoints during the 

above computation of P{k) rather than after it is completed. If the tool finds some 

P(i) or other BDD that is equal to some point in the gate-level circuit, it cuts 

out the equivalent logic in the software and the hardware, and introduce a new 

primary input in its place. This eliminates the complexity of the logic for P(i) in 

subsequent computations. As with gate-level cutpoints, if this process continues to 

the outputs (of the software and hardware) and the representations of the outputs 

(of the software and hardware) are equivalent, then the tool has formally verified 

equivalence. 
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For example, Figure 5.4 shows some cutpoints added to Figure 5.3. If the 

tool proves that the path condition for loop body 0 is the same as some logic in the 

gate-level circuit, It can cut out the logic and introduce a new primary input XQ at 

the cut. Repeating the process introduces cuts at x\, x2, etc. With cutpoints, the 

logic for path condition P(k) is simplified from 

\J(P(i)AC(i,k)) 

i 

to: 

\f(xiAC(i,k)). 
i 

Like most cutpoint methods, this approach is conservative: introducing cut-

points loses information and may result in being unable to prove equivalent models 

equivalent. In the other direction, cutpoints won't erroneously prove inequivalent 

models equivalent, but the algorithm may not find enough cutpoints to reduce verifi

cation complexity. Either failing is a theoretical possibility; the only way to evaluate 

practical usefulness is via experiments. 
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Figure 5.4: Early Cutpoint Insertion. Possible cutpoints, like x0, etc., are checked against the hardware model and 
cutpoints are inserted during the analysis of the software, not after. 



Instruction Encoding Immediate Data Instruction Length 

add(ADD) 00 0 1 

add immediate(ADDI) 01 2 3 

move(MOV) 10 0 1 
move immediate(MOVI) 1100 2 4 

store(ST) 1101 0 2 
store immediate(STI) 1110 2 4 

Table 5.1: Toy Example 

5.5 Experimental Results 

A s mentioned in Section 5.3, when I started my thesis, there were no publicly avail

able industrial examples of non-synthesizable software and corresponding hardware 

implementations. Accordingly, I was forced to implement such examples by myself. 

I have created a set of instruction length decoders of increasing size of complexity 

for my experiments. 4 

T O Y is an example taken from [57] to describe what an instruction length de

coder looks like. This toy example (Table 5.1) has only 6 instructions: 3 

one-byte opcode instructions, and 3 two-byte opcode instructions. To simplify 

the problem further, the size of a "byte" in T O Y is only 2 bits, and there are 

no prefixes, M o d R / M , or displacement bytes. The two-byte opcode instruc

tion format consists of an escape opcode byte as the primary opcode and a 

second opcode byte. Figure 5.5 and Figure 5.6 give the C function for this 

T O Y example wi th the parcel size set to 4 2-bit "bytes". For this example, I 

have 4 sets of data with parcel sizes of 8, 16 and 32 2-bit "bytes". 

Examples are available at http://www.cs.ubc.ca/~ajh. 
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void length_decoder( 
char *parcel , 
char 
char 
char 
char 
char 

int 
int 
int 

•nextparcel , 
•wrapin, 
•begin, 
•end, 
•wrapout 

wrap = 0; 
b i t p a i r ; 
i ; 

/ • 4 "bitpair" parcel • / 
/ • 4 "bitpair" next parcel (needed lookahead) +/ 
/ • 4 "bit" input of wrap pointer • / 
/ • 4 "bit" output of ins truct ion s tar t s . • / 
/ • 4 "bit" output of ins truct ion ends. • / 
/ • 4 "bit" output of wrap pointer. • / 

/ • wrap locat ion as integer • / 
/ • integer value of b i t p a i r • / 

for (i=0; i<4; i++) { 
begin[i]=0; 
end[i]=0; 

} 
while (wrapin[wrap]==0) { 

begin[wrap]=0; 
end[wrap] =0; 
wrap++; 

} 
i f (wrap>0) end[wrap-l] =1; 

Figure 5.5: C Code for TOY Example — Part 1 
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while (wrap<=3) { 
begin[wrap]=1; 

b i t p a i r = 2*parcel[wrap*2] + parcel[wrap*2+l]; 
switch (bitpair) { 
case 0: /* ADD */ 
case 2: /* MOV */ 

wrap++; 
end[wrap-l]=l; 
break; 

case 1: /* ADDI */ 
wrap += 3; 
i f (wrap-l<4) end[wrap-1]=1; 
break; 

case 3: /* Escape */ 
wrap ++; 
i f (wrap <=3) 

bi t p a i r = 2*parcel[wrap*2] + parcel[wrap*2+l]; 
else 

b i t p a i r = 2*nextparcel[0] + nextparcel[1]; 
switch (bitpair) { 
case 0: /* MOVI */ 
case 2: /* STI */ 

wrap += 3; 
i f (wrap-l<4) end[wrap-1]=1; • 
break; 

case 1: /* ST */ 
wrap++; 
i f (wrap-l<4) end[wrap-1]=1; 
break; 

case 3: /* ILLEGAL */ 
p r i n t f ( " I l l e g a l instruction!\n"); 
wrap++; 
i f (wrap-l<4) end[wrap-1]=1; 
break; 

} 
break; 

} 

} 

wrap -= 4; /* Scale wrap back into range. */ 
for (i=0; i<4; i++) 

wrapout[i] = (wrap==i); 

Figure 5.6: C Code for TOY Example — Part 2 
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EX20 has 20 IA-32 instructions with lengths from 1 to 6 (8-bit) bytes. It includes 

three instruction formats. The first is a simple one-byte opcode instruction 

form without ModR/M, immediate, or displacement fields. The second is a 

simple two-byte opcode instruction form without ModR/M, immediate, or 

displacement field. The third is a one-byte opcode instruction with w bit in 

its opcode and with immediate data, but without ModR/M or displacement 

fields. 

EX97 has 97 instructions (lengths from 1-8 bytes). It includes all the forms of 

EX20 and a new form that has a one-byte opcode instruction and ModR/M 

byte field. 

EX251 has 251 instructions (lengths between 1-11 bytes). It includes all forms of 

EX97 plus a form that allows immediate data after the ModR/M byte field. 

All IA-32 examples allow operand-size override and address-size override prefixes. I 

have created 4 different parcel sizes for each of the IA-32 examples: 8 or 12, 16, 32, 

and 64 bytes. (The parcel size must be larger than the longest instruction, so the 

smallest version of EX251 uses a 12-byte parcel.) 

The high-level software is given in C code, then manually translated into my 

ACFG intermediate format (as defined in Chapter 3, except that the entire graph 

is executed in one cycle). The hardware model is given in Verilog. I use VIS [13] 

to translate it into BLIF and then SIS [87] with script.rugged to do optimization. 

As a rough indicator of complexity, I have also mapped the optimized circuits into 

4-input lookup tables using Flowmap/Flowpack [26] (Table 5.2). 
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Example Size 
TOY-8 138 
TOY-16 331 
TOY-32 723 
EX20-8 467 
EX20-16 912 
EX20-32 2251 
EX20-64 9012 

Example Size 
EX97-8 1637 
EX97-16 3255 
EX97-32 6448 
EX97-64 17540 
EX251-12 6199 
EX251-16 8312 
EX251-32 16770 
EX251-64 131002 

Table 5.2: Circuit Sizes of Examples. Size is the number of 4-LUTs for the synthe
sized hardware model. 

A l l experiments were run on a 2.6Ghz Pentium 4 with 4GB of R A M . I set the 

runtime limit to 2 hours and the memory usage limit to 2GB. Memory usage is the 

peak as reported by top. For BDD experiments, memory usage varies depending 

on machine memory size, because the CUDD package [89] aggressively pre-allocates 

memory. However, runs with different memory sizes produced the same comparative 

results. A l l times are for the full verification. The verification tool proves equivalence 

on all examples, showing that the abstraction introduced by the cutpoints was not 

too conservative. 

5.5.1 Avoiding Path Enumeration 

As mentioned earlier, we can always enumerate execution paths in the software 

specification, and prove the equivalence for each path. This is done by proving 

under the same path condition and same inputs that the software and hardware 

models have equivalent outputs. 

The first experiment is to compare path enumeration with the linear BDD 

construction from Section 5.4.2. This measures the effect of path merging in elim

inating the exponential path enumeration at the cost of a possible expression-size 

blow-up. Table 5.3 gives the results. The execution time of path enumeration blows 

up all but small instances. The linear-time BDD building runs much faster by 
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avoiding explicit exploration of the paths. 

Path Enumeration Linear BDD 
Example Time(s) Mem (MB) Time(s) Mem(MB) 
TOY-8 2.25 57 0.02 56 
TOY-16 time out 5.35 56 
TOY-32 time out mem out 
EX20-8 241.24 28 0.28 61 
EX20-16 time out 89.01 1746 
EX20-32 time out mem out 
EX20-64 time out mem out 
EX97-8 4229.44 183 1.46 92 
EX97-16 time out 1187.72 1800 
EX97-32 time out mem out 
EX97-64 time out mem out 
EX251-12 time out 309.18 1843 
EX251-16 time out mem out 
EX251-32 time out mem out 
EX251-64 time out mem out 

Table 5.3: Path Enumeration vs. Linear BDD. Run time limit is set to 2 hour and 
memory limit is set to 2 GB. 
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5.5.2 Effect of Early Cutpoints 

Next, I examine the effect of inserting cutpoints early. Table 5.4 compares my 

verification tool using the linear BDD construction without and with early cutpoint 

insertion. We see that the early cutpoint method vastly reduces both memory usage 

and run time. 

Linear BDD Early Cutpoint 
Example Time(s) Mem(MB) Time(s) Mem(MB) 
TOY-8 0.02 56 0.01 56 
TOY-16 5.35 56 0.02 56 
TOY-32 mem out 0.06 56 
EX20-8 0.28 61 0.11 58 
EX20-16 89.01 1746 0.24 60 
EX20-32 mem out 0.53 64 
EX20-64 mem out 1.35 72 
EX97-8 1.46 92 0.51 64 
EX97-16 1187.72 1800 1.10 73 
EX97-32 mem out 2.35 95 
EX97-64 mem out 5.41 136 
EX251-12 309.18 1843 0.64 66 
EX251-16 mem out 1.09 71 
EX251-32 mem out 7.45 170 
EX251-64 mem out 16.81 327 

Table 5.4: Linear BDD vs. Early Cutpoint. Run time limit is set to 2 hour and 
memory limit is set to 2 GB. 
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5.5.3 Comparison wi th Other Tools 

I know of only one freely available software-to-RTL verification tool that can handle 

the software complexity of my challenge problem: hw-CBMC.5 As mentioned earlier, 

hw-CBMC does path enumeration [23], so it can handle only the smaller instances of 

my TOY example. Table 5.5 shows results compared to my early cutpoint method. 

This is not a fair comparison, since hw-CBMC parses arbitrary ANSI-C, whereas 

my tool starts from a CFG and exploits some assumptions about program structure. 

Nevertheless, the benefit of early cutpoint insertion and not enumerating paths is 

clear. 

hw-CBMC Early Cutpoint 
Example Time(s) Mem(MB) Time(s) Mem(MB) 
TOY-8 6.84 38 0.01 56 
TOY-16 502.59 522 0.02 56 
TOY-32 time out 0.06 56 

Table 5.5: hw-CBMC vs. Early Cutpoints. Run time limit is set to 2 hour and 
memory limit is set to 2 GB. 

5Version 1.6 from http://www.cs.cmu.edu/~modelcheck/cbmc. 
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Chapter 6 

Conclusion and Future Work 

6.1 Contributions 

Addressing the formal equivalence checking of software specification vs. hardware 

implementations, I have presented two major contributions to increase the capability 

of current verification techniques: partitioned model checking and cutpoints for 

equivalence checking with software models. 

My first contribution, the partitioned model checking approach, uses Anno

tated Control Flow Graphs (ACFG) to represent cycle-accurate software specifica

tions for sequential circuits. I have introduced a novel, partitioned model checking 

algorithm for verifying RTL hardware against cycle-accurate software. In my exper

imental results, ACFG model checking runs 1.3x to 2.Ox faster than standard model 

checking. 

My second contribution, cutpoints for equivalence checking with software 

models, was inspired by the efficiency of combinational equivalence checking using 

cutpoints. I give a definition of cutpoints for software and show vast improve

ments on the formal equivalence checking of embedded software. Furthermore, I 

introduce early cutpoint insertion into the formal equivalence verification of soft

ware specifications vs. hardware implementations. I have run experiments for an 

industry-suggested challenge problem. Experimental results show that early cut-
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point insertion has orders of magnitude improvements in both runtime and mem

ory usage, enabling verification of all of my 15 instances of the challenge problem, 

whereas previous methods solve only 7 of them. 

6.2 Future Work 

ACFG partitioned model checking and early cutpoint insertion are first steps to

wards the general problem of verifying RTL hardware against higher-level, but cycle-

accurate, specifications. This section considers several future research directions. 

More Hints from Program Analysis and Compiler Optimization 

Since a software specification gives a high-level abstraction of a hardware implemen

tation, good understandings of the software can help us to find the correspondences 

between the software and the high-quality hardware implementation. For example, 

in my examples, the big difference of the software specification and the hardware 

implementation is the amount of parallelism. The hardware implementation ex

poses as much parallelism as possible for performance reasons. The software, on the 

contrary, gives serial computations for easy coding. 

I believe that with the help of software analysis and compiler optimizations, 

which have been studied extensively for a long time, we can have more general 

approaches to handle complicated control structures and extract more parallelism 

from the software specification. Therefore, we can catch more similarities between 

the software specification and the hardware implementation. As a result, more 

cutpoints can be used to reduce the complexity of verification. 

Heuristics for Finding Candidate Cutpoints 

My current approach relies on structural information for candidate cutpoints. More 

general approaches are needed to identify the candidate cutpoints automatically. 
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There are several possible solutions to find candidate cutpoints. Like hard

ware combinational equivalence checking, we can run random simulation on both-

software specifications and hardware implementations and use signature-based ap

proaches to find candidate cutpoints. However, random simulation on software 

cannot give good coverage. For example, at each branch, random simulation must 

make a single choice. Therefore, random simulation can not cover some piece of code 

in the software. How to combine fast random simulations with candidate cutpoints 

identification is still very challenging and needs research. 

False Inequivalence Handling 

Just like the work for embedded software, I need to handle false inequivalences for 

the early cutpoint approach in equivalence checking of software specifications vs. 

hardware implementations. But, in my test case, I don't have false inequivalences, 

so I didn't deal with this problem. 

The obvious approach is to apply standard techniques from combinational 

equivalence checking to handle false inequivalences by re-introducing constraints 

on the cutpoints. Future work would investigate whether there are optimizations 

specifically based on the software specification. 

Integration with Other Advances 

Partitioned model checking and early cutpoint insertion improve two aspects of 

the overall equivalence verification flow. Important future work will be to com

bine them with the best ideas for other parts of this flow, e.g., preliminary textual 

pruning [81], a full-fledged software front-end [23], powerful software analyses and 

optimizations [44], and more general and efficient symbolic representations [60]. 

Industrial-strength high-level-to-RTL equivalence verification will require many ad

vances; ACFG-based partitioned model checking and early cutpoint insertion are 

two of them. 
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Appendix A 

A C F G Specification of 

SRT Divider 

// ACFG specification for a SRT unsigned divider for Chapter 3 

#define N = 4 // 2N-bit dividend, N-bit divisor 

Vertex: 2 // number of vertices 

Edge: 4 // number of edges 

Var: 9 // number of variables 

// input variables 

input_enable: reg [0..0]; 

dividend: reg[2*N-l..0]; 

divisor: reg[N-l..0]; 

// output variables 

quotient: reg[N-l..0]; 

remainder: reg[N-l..0]; 

// internal variables 

P: reg[2*N..0]; 
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qp: reg[N-l..0]; 

qn: reg[N-l..0]; 

// define inputs and outputs 

Input_pin[3]: dividend,divisor,input_enable; 

Output_pin[2]: remainder, quotient; 

I n i t i a l : Vertex_0; // entry vertex 

// Define ACFG edges 

Edge_0: Vertex.O -> Vertex_l 

input_enable == 1 // antecedent 

==> 

qp := 0 && qn := 0 // assignments 

—> P[2*N-1..0]:= dividend kk P[2*N] := 0 

—> remainder := P[2*N-1..N]&& quotient := qp - qn; 

// -1 case 

Edge.l: Vertex_l -> Vertex_l 

P < 7*2"(2*N - 2) kk P > 2~(2*N) && input_enable == 

==> 

P[2*N-1..N-l] :=P[2*N-1.. N-l] + divisor 

—>qp := qp + qp && qn := qn + qn kk P:=P+P 

—>qn := qn xor 1 

~>P[2*N] ==0 

&& remainder := P[2*N-1..N] && quotient := qp - qn 

I I 
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P[2*N] ==1 

kk remainder := P[2*N-1..N] + divisor kk quotient := qp -

// 0 case 

Edge_2: Vertex_l -> Vertex_l 

(P < 2~(2*N -2) I I P >= 7*2"(2*N - 2)) kk input_enable == 

==> 

qp := qp + qp kk qn := qn + qn && P:=P+P 

—>P[2*N] ==0 

kk remainder := P[2*N-1..N] kk quotient := qp - qn 

I I 

P[2*N] ==1 
&& remainder := P[2*N-1..N] + divisor kk quotient := qp 

// 1 case 

Edge_3: Vertex_l -> Vertex.1 

P >= 2"(2*N -2) kk P < 2~(2*N) kk input_enable == 0 

==> 

P[2*N-1..N-l] :=P[2*N-1.. N-l] - divisor 

—>qp := qp + qp kk qn := qn + qn kk P:=P+P 

—>qp := qp xor 1 

—>P[2*N] ==0 

kk remainder := P[2*N-1..N] kk quotient := qp - qn 

I I 
P[2*N] ==1 
&& remainder := P[2*N-1..N] + divisor && quotient := qp 

end 
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Appendix B 

SRT Divider Gate-Level Circuit 

# Example c i r c u i t for Chapter 3 

# Circuit i s written in modified ISCAS'89 format 

# Inputs are dividend_2N-l downto dividend_0 

# and divisor_N-l downto divisor_0 

# Results pop out N+l clock cycles later in 

# quotient_N-l downto quotient_0 

# and remainder_N-l downto remainder_0 

# divisor must be normalized (leading bit 1) 

# not checking for overflow 

# Be sure to i n i t i a l i z e the input_enable latch to 1. 

# P is 2N bi t pa r t i a l remainder (P_2N i s extra sign bit) 

# D i s N bi t divisor 

# QP is N bi t positive quotient bits 

# QN i s N bit negative quotient bits 
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# In this c i r c u i t example, N = 4. It i s easy to get c i r c u i t s 

# for different N from the pattern of this c i r c u i t . 

# PREAMBLE 

# Declare Inputs and Outputs 

INPUT(dividend_7) 

INPUT(dividend_6) 

INPUT(dividend_5) 

INPUT(dividend_4) 

INPUT(dividend_3) 

INPUT(d iv idend_2) 

INPUT(dividend_l) 

INPUT(dividend_0) 

INPUT(divisor_3) 

INPUT(divisor_2) 

INPUT(divisor_l) 

INPUT(divisor_0) 

INPUT(input.enable) 

OUTPUT(quot i ent _ 3) 

0UTPUT(quotient_2) 

OUTPUT(quotient_l) 

OUTPUT(quot i ent _ 0) 

OUTPUT(remainder_3) 

OUTPUT(remainder_2) 

OUTPUT(remainder.1) 

OUTPUT(remainder_0) 
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# Load logic for registers 

input_disable = NOT(input_enable) 

LDW = AND(input_enable,input_disable) 

# Load enabled values 

sel_load_P_8 = AND(input_enable,input_disable) 

sel_load_P_7 = AND(input_enable,dividend_7) 

sel_load_P_6 = AND(input_enable,dividend_6) 

sel_load_P_5 = AND(input_enable,dividend_5) 

sel_load_P_4 = AND(input_enable,dividend_4) 

sel_load_P_3 = AND(input_enable,dividend_3) 

sel_load_P_2 = AND(input_enable,dividend_2) 

sel_load_P_l = AND(input_enable,dividend_l) 

sel_load_P_0 = AND(input_enable,dividend_0) 

sel_load_D_3 = AND(input_enable,divisor_3) 

sel_load_D_2 = AND(input_enable,divisor_2) 

sel_load_D_l = AND(input_enable,divisor_l) 

sel_load_D_0 = AND(input_enable,divisor_0) 

sel_load_QP_3 = AND(input_enable,input_disable) 

sel_load_QP_2 = AND(input_enable,input.disable) 

sel_load_QP_l = AND(input_enable,input_disable) 

sel_load_QP_0 = AND(input_enable,input.disable) 

sel_load_QN_3 = AND(input_enable,input.disable) 

sel_load_QN_2 = AND(input_enable,input_disable) 

sel_load_QN_l = AND(input_enable,input_disable) 

sel_load_QN_0 = AND(input_enable,input_disable) 

sel_load_DIVIDEND_7 = AND(input_enable,dividend_7) 

sel_load_DIVIDEND_6 = AND(input_enable,dividend_6) 

136 



sel_load_DIVIDEND_5 = AND(input_enable,dividend_5) 

sel_load_DIVIDEND_4 = AND(input_enable,dividend_4) 

sel_load_DIVIDEND_3 = AND(input_enable,dividend_3) 

sel_load_DIVTDEND_2 = AND(input_enable,dividend_2) 

sel_load_DIVIDEND_l = AND(input_enable,dividend.1) 

sel_load_DIVIDEND_0 = AND(input_enable,dividend_0) 

# Run-the-divider values 

sel_run_P_8 = AND(input_disable,stage0_new_4) 

sel_run_P_7 = AND(input.disable,stage0_new_3) 

sel_run_P_6 = AND(input.disable,stage0_new_2) 

sel_run_P_5 = AND(input_disable,stageO_new_l) 

sel_run_P_4 = AND(input_disable,stageO_new_0) 

sel_run_P_3 = AND(input_disable,stageO_P_2) 

sel_run_P_2 = AND(input_disable,stageO_P_l) 

sel_run_P_l = AND(input.disable,stageO_P_0) 

sel_run_P_0 = AND(input.disable,input_enable) 

sel_run_D_3 = AND(input_disable,stageO_D_3) 

sel_run_D_2 = AND(input.disable,stageO_D_2) 

sel_run_D_l = AND(input_disable,stageO_D_l) 

sel_run_D_0 = AND(input.disable,stageO_D_0) 

sel_run_QP_3 = AND(input_disable,stageO_QP_2) 

sel_run_QP_2 = AND(input.disable,stageO_QP_l) 

sel_run_QP_l = AND(input_disable,stageO_QP_0) 

sel_run_QP_0 = AND(input_disable,stageO_qbl) 

sel_run_QN_3 = AND(input_disable,stageO_QN_2) 

sel_run_QN_2 = AND(input_disable,stageO_QN_l) 

sel_run_QN_l = AND(input_disable,stageO_QN_0) 

sel_run_QN_0 = AND(input_disable,stageO_qbnl) 
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sel_run_DIVIDEND_7 = AND(input_disable,stageO_DIVIDEND_7) 

sel_run_DIVIDEND_6 = AND(input_disable,stageO_DIVIDEND_6) 

sel_run_DIVIDEND_5 = AND(input_disable,stageO_DIVIDEND_5) 

sel_run_DIVIDEND_4 = AND(input_disable,stageO_DIVIDEND_4) 

sel_run_DIVIDEND_3 = AND(input_disable,stageO_DIVIDEND_3) 

sel_run_DIVIDEND_2 = AND(input_disable,stageO_DIVIDEND_2) 

sel_run_DIVIDEND_l = AND(input _disable,stageO_DIVIDEND_1) 

sel_run_DIVIDEND_0 = AND(input_disable,stageO_DIVIDEND_0) 

mux_P_8 = OR(sel load_P 8,sel_run_P_8) 
r 

mux_P_7 = 0R(sel_load_P_7,sel_run_P_7) 

mux_P_6 = 0R(sel_load_P_6,sel_run_P_6) 

mux_P_5 = 0R(sel_load_P_5,sel_run_P_5) 

mux_P_4 = 0R(sel_load_P_4,sel_run_P_4) 

mux_P_3 = DR(sel_load_P_3,sel_run_P_3) 

mux_P_2 = 0R(sel_load_P_2,sel_run_P_2) 

mux_P_l = OR(sel_load_P_l,sel_run_P_l) 

mux_P_0 = OR(sel_load_P_0,sel_run_P_0) 

mux_D_3 = 0R(sel_load_D_3,sel_run_D_3) 

mux_D_2 = 0R(sel_load_D_2,sel_run_D_2) 

mux_D_l = OR(sel_load_D_l,sel_run_D_l) 

mux_D_0 = OR(sel_load_D_0,sel_run_D_0) 

mux_QP_3 = DR(sel_load_QP_3,sel_run_QP_3) 

mux_QP_2 = 0R(sel_load_QP_2,sel_run_QP_2) 

mux_QP_l = OR(sel_load_QP_l,sel_run_QP_l) 

mux_QP_0 = OR(sel_load_qP_0,sel_run_QP_0) 

mux_QN_3 = 0R(sel_load_QN_3,sel_run_QN_3) 

mux_QN_2 = 0R(sel_load_QN_2,sel_run_QN_2) 

mux_QN_l = OR(sel_load_QN_l,sel_run_QN_l) 
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mux_QN_0 = OR(sel_load_QN_0,sel_run_QN_0) 

mux_DIVIDEND_7 = 0R(sel_load_DIVIDEND_7,sel_run_DIVIDEND_7) 

mux_DIVIDEND_6 = 0R(sel_load_DIVIDEND_6,sel_run_DIVIDEND_6) 

mux_DIVIDEND_5 = 0R(sel_load_DIVIDEND_5,sel_run_DIVIDEND_5) 

mux_DIVIDEND_4 = 0R(sel_load_DIVIDEND_4,sel_run_DIVIDEND_4) 

mux_DIVIDEND_3 = DR(sel_load_DIVIDEND_3,sel_run_DIVIDEND_3) 

mux_DIVIDEND_2 = 0R(sel_load_DIVIDEND_2,sel_run_DIVIDEND_2) 

mux_DIVIDEND_l = OR(sel_load_DIVIDEND_l,sel_run_DIVIDEND_l) 

mux_DIVIDEND_0 = OR(sel_load_DIVIDEND_0,sel_run_DIVIDEND_0) 

stageO_P_8 = DFF(mux_P_8) 

stageO_P_7 = DFF(mux_P_7) 

stageO_P_6 = DFF(mux_P_6) 

stageO_P_5 = DFF(mux_P_5) 

stageO_P_4 = DFF(mux_P_4) 

stageO_P_3 = DFF(mux_P_3) 

stageO_P_2 = DFF(mux_P_2) 

stageO_P_l = DFF(mux_P_l) 

stageO_P_0 = DFF(mux_P_0) 

stageO_D_3 = DFF(mux_D_3) 

stageO_D_2 = DFF(mux_D_2) 

stageO_D_l = DFF(mux_D_l) 

stageO_D_0 = DFF(mux_D_0) 

stageO_QP_3 = DFF(mux_QP_3) 

stageO_QP_2 = DFF(mux_QP_2) 

stageO_QP_l = DFF(mux_QP_l) 

stageO_QP_0 = DFF(mux_QP_0) 

stageO_QN_3 = DFF(mux_QN_3) 

stageO_QN_2 = DFF(mux_QN_2) 
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stageO_QN_l = DFF(mux_QN_l) 

stageO_C)N_0 = DFF(mux_QN_0) 

# save dividend to simplify ver i f i c a t i o n 

stageO_DIVTDEND_7 = DFF(mux_DIVIDEND_7) 

stageO_DIVIDEND_6 = DFF(mux_DIVIDEND_6) 

stageO_DIVIDEND_5 = DFF(mux_DIVIDEND_5) 

stageO_DIVIDEND_4 = DFF(mux_DIVIDEND_4) 

stageO_DIVIDEND_3 = DFF(mux_DIVIDEND_3) 

stageO_DIVIDEND_2 = DFF(mux_DIVIDEND_2) 

stageO_DIVIDEND_l = DFF(mux_DIVIDEND_l) 

stageO_DIVIDEND_0 = DFF(mux_DIVIDEND_0) 

# NEXT STATE LOGIC 

# Compute quotient b i t in redundant form 

stageO.eql = XN0R(stage0_P_8,stage0_P_7) 

stage0_eq2 = XN0R(stage0_P_7,stage0_P_6) 

stageO_qbO = AND(stageO_eql,stageO_eq2) 

stageO.qbl = N0R(stage0_qb0,stage0_P_8) 

stageO_qbnl = N0R(stage0_qb0,stageO_qbl) 

# Compute off = +d, -d, or 0 in preparation for addition 

stage0_selposd_4 = AND(stage0_qbnl,L0W) 

stage0_selposd_3 = AND(stageO_qbnl,stageO_D_3) 

stage0_selposd_2 = AND(stageO_qbnl,stageO_D_2) 

stageO_selposd_l = AND(stageO_qbnl,stageO_D_l) 

stageO_selposd_0 = AND(stageO_qbnl,stageO_D_0) 

stage0_negd_4 = NOT(LOW) 

stage0_negd_3 = N0T(stage0_D_3) 
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stage0_negd_2 = N0T(stage0_D_2) 

stageO_negd_l = NDT(stageO_D_l) 

stageO_negd_0 = NOT(stageO_D_0) 

stage0_selnegd_4 = AND(stageO_qbl,stage0_negd_4) 

stage0_selnegd_3 = AND(stageO_qbl,stage0_negd_3) 

stage0_selnegd_2 = AND(stage0_qbl,stage0_negd_2) 

stageO_selnegd_l = AND(stageO_qbl,stageO_negd_l) 

stageO_selnegd_0 = AND(stageO_qbl,stageO_negd_0) 

stage0_off_4 = 0R(stage0_selposd_4,stage0_selnegd_4) 

stage0_off_3 = 0R(stage0_selposd_3,stage0_selnegd_3) 

stage0_off_2 = 0R(stage0_selposd_2,stage0_selnegd_2) 

stageO_off_l = OR(stageO_selposd_l,stageO_selnegd_l) 

stageO_off_0 = OR(stageO_selposd_0,stageO_selnegd_0) 

# Adds the quotient bit times divisor to p a r t i a l remainder 

stageO_new_0 = SUM(stage0_P_3,stage0_off_0,stageO_qbl) 

stageO_co_0 = CARRY(stageO_P_3,stageO_off_0,stageO_qbl) 

stageO_new_l = SUM(stageO_P_4,stageO_off_l,stageO_co_0) 

stageO_co_l = CARRY(stageO_P_4,stageO_off_l,stageO_co_0) 

stage0_new_2 = SUM(stage0_P_5,stageO.off_2,stage0_co_l) 

stage0_co_2 = CARRY(stage0_P_5,stage0_off_2,stageO_co_l) 

stage0_new_3 = SUM(stageO_P_6,stageO_off_3,stage0_co_2) 

stage0_co_3 = CARRY(stageO_P_6,stage0_off_3,stage0_co_2) 

stage0_new_4 = SUM(stage0_P_7,stage0_off_4,stage0_co_3) 

stage0_co_4 = CARRY(stageO_P_7,stageO_off_4,stage0_co_3) 

# OUTPUT LOGIC 

# Subtract QN from QP to get non-redundant quotient 
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negQN_0 = NOT(stageO_QN_0) 

negQN.l = NOT(stageO_QN_l) 

negQN_2 = N0T(stage0_QN_2) 

negQN_3 = N0T(stage0_QN_3) 

pos_r = N0T(stage0_P_8) # adjust for neg remainder 

quotient_0 = SUM(stageO_QP_0,negQN_0,pos_r) 

qnr_co_0 = CARRY(stageO_QP_0,negQN_0,pos_r) 

quotient_l = SUM(stageO_QP_l,negQN_l,qnr_co_0) 

qnr_co_l = CARRY(stageO_QP_l,negQN_l,qnr_co_0) 

quotient_2 = SUM(stageO_QP_2,negQN_2,qnr_co_l) 

qnr_co_2 = CARRY(stageO_QP_2,negQN_2,qnr_co_l) 

quotient_3 = SUM(stageO_QP_3,negQN_3,qnr_co_2) 

qnr_co_3 = CARRY(stageO_QP_3,negQN_3,qnr_co_2) 

# Add divisor back into remainder i f remainder i s negative 

neg_r = N0T(pos_r) 

masked_d_0 = AND(stageO_D_0, neg_r) 

masked_d_l = AND(stageO_D_l, neg_r) 

masked_d_2 = AND(stageO_D_2, neg_r) 

masked_d_3 = AND(stageO_D_3, neg_r) 

remainder.O = SUM(stageO_P_4,masked_d_0,L0W) 

rem_co_0 = CARRY(stage0_P_4,masked_d_0,L0W) 

remainder_l = SUM(stageO_P_5,masked_d_l,rem_co_0) 

rem_co_l = CARRY(stageO_P_5,masked_d_l,rem_co_0) 

remainder_2 = SUM(stageO_P_6,masked_d_2,rem_co_l) 

rem_co_2 = CARRY(stageO_P_6,masked_d_2,rem_co_l) 

remainder_3 = SUM(stageO_P_7,masked_d_3,rem_co_2) 

rem_co_3 = CARRY(stageO_P_7,masked_d_3,rem_co_2) 
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