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Abstract 

The robot control system is a subsystem of a robot designed to regulate its 

behaviours to meet certain requirements. For a mobile robot performing in a real-world 

environment, its control system must have the capability to be both deliberative and 

reactive. In addition to this fundamental requirement, robustness, timely response and: 

coordination among multiple goals are also desirable for a mobile robot control system. 

This thesis addresses these requirements in building a mobile robot control system and 

proposes an Event-based Robot Control Architecture (ERA). . . v 

The unpredictable nature of the real-world environment leads to the development 

of our Event-based Robot Control Architecture. All communications inside the control: 

architecture are done in the form of events. Our focus for the mobile robot control 

architecture is on using an exception mechanism for error recovery. Exceptions are one 

kind of events. We present a general design and a system prototype for an Event-based 

Robot Control Architecture. The implementation was used to conduct experiments ,and 

identify the benefits and limitations of the proposed paradigm. It was found that a mobile 

robot using this Event-based Robot Control Architecture meets the previously 

established requirements. 
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Chapter One 

Introduction 

r For the past three decades, researchers have been working on building autonomous 

mobile robots in real-world environments. Wide varieties of mobile robot applications 

range from domestic robotics, warehouse management, to space and military purposes. It 

is generally desirable to have a robot assistant performing tasks such as mail delivery, 

trash collection or museum guidance. In situations where it would be dangerous or impos­

sible for a human to do the task, mobile robots become the right choice. 

This thesis presents a design for a mobile robot control architecture named ERA. 

ERA stands for Event-based Robot Control Architecture. The primary purpose of the 

project is to explore a robot control architecture which interleaves planning with reactive 

characteristic. The emphasis of this thesis is on the design and evaluation of the system in 

a real-world implementation. 

1.1 Robot Control Architecture 

In [ZM98], a robotic system is the coupling of a robot to its environment. A robot 

is an integrated system, with a robot controller embedded in its plant. A robot controller 

(or control system) is a subsystem of a robot, designed to regulate its behaviour to meet 

certain requirements. The planner generates plans and the robot control system actually 

carries out actions in the environment. Since each robotic system has its own require­

ments, it is quite difficult to apply a generic control system to all robotic systems. Differ­

ent robot control architectures provide us different designs for a robot controller. In this 

thesis, robot control architecture is the primary topic. The topic refers to the software and 

hardware framework for controlling robots, in our case, a mobile robot. Different robot 
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control architectures will be briefly compared. 

As mobile robots are used to accomplish complex tasks in a dynamic environment, 

a processor running C code to turn motors does not really constitute a control architecture 

by itself anymore. Both the development of code modules and communication between 

those modules begin to define the robot control architecture. 

1.2 Motivation 

This thesis was motivated by the work done at the University of British Columbia, 

Laboratory for Computational Intelligence on a stereoscopic visually guided mobile robot. 

Don Murray [Murray97], implemented a mobile robot named Jose developed in LCI. The 

mobile robot, Jose, embodies a sophisticated real-time vision system for the control of a 

responsive mobile robot. Dynamic environments are unpredictable, asynchronous, and 

require a low latency in response, while visual information processing requires high data-

rate communications and significant computation. The aim of Jose is to explore the possi­

bility of using the vision information to guide mobile robot's behaviour. The robot's func­

tions that have been completed to date include mapping, navigation, exploration, and 

simple manipulation. 

The original robot system developed in LCI consists of the mobile robot Jose and a 

host Sol. The communication between them is through a radio modem. Since the radio 

modem is much slower than ethernet, efforts were made to reduce the amount of data sent 

to the host. Image data captured from the cameras were influenced by this intention. 

Instead of transmitting whole images over from Jose to Sol, a radial map is built on Jose 

and then sent to Sol. Thus, the amount of data to be transmitted is significantly reduced. 

Detailed information on how to build such a radial map is described in [Murray97]. How­

ever this enhancement in communication reduces the flexibility of the whole system. Jose 

can hardly do any other tasks besides navigation. 

The goal of this thesis is to add more complexity and flexibility to the existing 
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robot system. We hope that Jose can do more tasks such as tracking a person. To achieve 

such behaviour as tracking, the most important issue is to add image processing capability 

to the whole system. In addition, the system should retain the ability to avoid obstacles. 

This thesis is motivated by the above considerations. Research has been done to build a 

robot control architecture aimed at solving these problems. 

1.3 Thesis Contribution 

To provide more complexity and flexibility to the mobile robot system in LGI, one 

of the possible ways is to extend the current vision system. The vision system is now used 

to build a 2-D map of the environment for the mobile robot. This 2-D map is actually an 

integration of different radial maps over time. Extension of this vision system can be done 

to include direct image understanding from the images that are grabbed from the cameras. 

Thus, more complex tasks such as looking for a cup can be accomplished. One of the 

contributions of this thesis is this extension of the vision system. 

The primary contribution of this thesis is to build a robot control system. Our 

mobile robot is supposed to survive in a dynamic real-world environment. This brings up 

several considerations for designing such a robot control system. First, in order for the 

mobile robot to accomplish tasks in a dynamic environment, it is very important for the 

robot to have both deliberative and reactive behaviours. Deliberative behaviours are 

goal-oriented. With reactive behaviours, the mobile robot can react to unpredictable 

events during its tasks' execution. Second, the robot must be robust and capable of error 

recovery. Especially for a mobile robot with more than one sensor, inconsistent or conflict­

ing sensor readings have to be resolved in the robot control system. Finally, timely 

response is also a major consideration in designing the robot control system. Our attempt 

to have image understanding in the robot control system requires careful consideration to 

meet this timely response requirement. 

We propose in this thesis an event-based robot control architecture (ERA). The 

design of the ERA is based on the considerations mentioned above. The real-world is not 
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static. Any environmental changes may cause failures for the robot's current task. These 

failures usually are not predictable. Since it is impossible to design a control architecture 

that can avoid all failures, exceptions are incorporated into this architecture to inform the 

robot of failures. Thus, failures can be handled in a proper way. The whole system can 

finally recover from failures. 

The thesis has sub-emphasis on the implementation of systems using asynchro­

nous data flow paradigms instead of procedural decomposition. In addition, coordination 

among subtasks is resolved by priority based scheduling. 

A prototype of ERA design has been implemented on the current mobile robot 

Eric and robot host Sol. Eric is a cylindrical mobile robot, from Real World Interfaces Ltd. 

It was built upon the current existing software developed in LCI. Java is chosen as the 

implementation programming language because it provides a mechanism for handling 

events. Finally, tracking experiments are performed to test the ERA. 

1.4 Thesis outline 

Chapter 2 presents a discussion of issues relevant to robot control architecture: It 

also summarizes several notable papers that present typical robot control architectures. 

Chapter 3 first proposes the specifications for the robot control architecture. Some 

design considerations are also described. Finally an overview of our event-based robot 

control architecture is presented. 

Chapter 4 gives a few detailed design issues. Solutions for these issues are pro­

vided as well. Issues discussed are world presentation, virtual robot, sensor fusion, and 

finally each module is briefly introduced. 

Chapter 5 presents a prototype implementation of our robot control architecture. 

The hardware and software environment of the prototype is introduced. A person tracking 



experiment is performed using radial maps to demonstrate our Event-based Robot Control 

Architecture. 

Chapter 6 presents the conclusions inferred from the experiment in Chapter 5, and 

future work is proposed for improving the system. 
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Chapter Two 

Previous Work 

Early robot control systems attempted to plan a complete list of actions in advance 

of execution. Those plans are generated based only on the collection of the world informa­

tion. It makes sense to construct a detailed plan well ahead only if the world situation is 

highly predictable and can be fully controlled. The most typical system of this kind is usu­

ally referred as a functional decomposition or centralized system. In 1985, Rodney 

Brooks[Brooks86] published a report on a completely new robot control architecture 

called "reactive systems". Rather than attempting to model the world in advance, reactive 

systems had multiple task modules which are named behaviours, reacting directly to the 

sensory information. 

The limitations of the above two systems are obvious. For the functional decompo­

sition control system, it could only survive in an artificially created domain such as in a 

laboratory or on a factory floor. However, in a more dynamic world, where actions cannot 

be anticipated, the situation at execution time cannot be controlled, and a detailed plan 

cannot be built. The control system proposed by Brooks is a purely reactive system which 

can only wander around safely but aimlessly. In order for the robot to do some real world 

tasks, recent discussion on robot control architecture tends to combine planning and reac­

tive behaviours together into one system. Most of the systems start with one approach and 

try to push their capabilities toward the other one. 

In some circumstances, real-world systems not only are complex but also have 

hard real-time deadlines. This becomes a significant challenge for the AI community. Tra­

ditionally, AI techniques aim to provide careful and complete plans for a task. This con-
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sideration retains both reactive and unpredictable mechanisms but does not guarantee hard 

real-time responses. To enable a control system to meet hard deadlines, some of the 

researchers are trying to embed real time control system into artificial intelligence domain. 

The main part of this chapter describes some of the existing approaches to build 

robot control architecture. Section 2.1 describes the planning control systems. The reac­

tive control systems are presented in Section 2.2. Section 2.3 gives three well-known 

hybrid robot architectures which have already been implemented and the S * proposal. 

Finally in Section 2.4, a brief discussion of real-time robot control architectures is pre­

sented. 

2.1 Planning Control Systems 

' Planning control systems reason about and plan every action before task execution. 

These control architectures usually have a sophisticated world model and reason about 

how to accomplish the task goal based on this world model. The general approach is to 

sense the world, build a world model, plan actions which aim to achieve the goal, and 

finally execute the actions via sending commands to robot motor system. Classically the 

problem of planning control system has been addressed within a framework of functional 

decomposition into sensing, planning, and acting components (e.g., [Nilsson84], 

[Moravec83], [Crowley85]). Rodney Brooks [Brooks86] described such a system which 

decomposed the problem into a series of functional units as illustrated by a series of verti­

cal slices. Figure 1 presents such a decomposition. 
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Figure 1: Functional Decomposition of A Mobile Robot Control System 
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Elaborate reasoning and planning, on one hand, demonstrate a high level of 

sophistication for robots. But on the other hand, they also require an accurate world 

model. Dynamic environments and sensor noise always make it unreliable. The planning 

control system is only applicable in a controlled situation. Additionally, because of elabo­

rate reasoning and planning, the system is generally not fast enough to be used in real-

world mobile robots. 

2.2 Reactive Control Systems 

In response to the lack of flexibility and reaction to the dynamic world existing in a 

planning control system, attempts were made to completely abandon the planning 

approach. A behaviour-based control architecture was proposed by Rodney Brooks in 

1985. Brooks demonstrated his theory by using the behaviour-based control system on 

several mobile robots developed at the Artificial Intelligence Laboratory, Massachusetts 

Institute of Technology [Brooks 86]. This reactive control system provides fast reactions 

to a dynamically changing environment by short control loops. 

The foundation for the reactive control architecture is the idea of "behaviour". As 

indicated in Section 2.1, a planning control architecture was split into functional tasks 

namely sensing, world modeling, planning and execution. In contrast to this, the reactive 

control architecture has multiple independent tasks running in parallel. These independent 

tasks are called behaviours, for example, avoiding obstacles, moving forward and follow­

ing a target. Each behaviour decides by itself what is the relevant sensory information and 

is activated by this specific sensory information. Therefore, behaviours are triggered 

immediately to react to their environment. Response time is significantly decreased from 

the time in a functional-oriented architecture. 

As Figure 2 indicated, the architecture proposed by Brooks took a radical depar­

ture from the traditional functional-oriented control systems. Instead of organizing the 

system from horizontal components, the behaviour-based control architecture is vertical. 

Each individual layer has an associated task and issues motor commands independently. In 
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order to coordinate among these motor commands, high level layers could subsume the 

lower level ones. Or the conflicts are resolved through the priority of the levels. The capa­

bility to override other commands is known as subsumption. Thus a reactive control sys­

tem is a collection of competing behaviours. In the eye of an observer, it is a coherent 

pattern of behaviours. 

reason about behaviour of objects 

plan changes to the world 

identify objects 

monitor changes 
Sensors ^ ' ^ Actuators 

build map 

explore 

wander 

avoid objects 
Figure 2: A Decomposition Based on Task Achieving Behaviours 

Many systems are implemented based on this reactive control architecture, for 

example, six-legged walking robots and remote-controlled cars. They demonstrated navi­

gation capabilities that were quicker and more capable than those of planning control sys­

tems. However, the architecture is not perfect. Mobile robots implemented in this 

architecture could only wander around safely but aimlessly. It is difficult to achieve high 

level interesting performance. Such systems are purely reactive, and lack the ability of 

sophisticated planning. [Tsotsos98] provides a strong theoretical argument that reactive 

control systems are only appropriate for a very limited domain of behaviours. 
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2.3 Hybrid Control Systems 

Since the weaknesses of planning control systems and the reactive control systems 

are apparent, researchers began to move away from purely planning or purely reactive 

control systems and towards hybrid plan/reactive systems. A hybrid control system allows 

researchers to explore the benefits of each approach. To demonstrate the possibility and 

feasibility of such a hybrid architecture, several control architectures such as [Firby87], 

[Thorpe88], [Simmons90] have been proposed and implemented over the years. 

2.3.1 A Blackboard Architecture 

The Navlab developed of CMU is a mobile robot using a blackboard architecture 

as its control system. Figure 3 describes the blackboard control architecture. It was devel­

oped as a part of the CODGER (Communication Database with Geometric Reasoning) 

system[Shafer86]. 

Blackboard Interface 

Captain 

Blackboard Interface 

Pilot 

BLACKBOARD 

Blackboard Interface 

Map Navigator 

Figure 3: Navlab Robot Control Architecture ([Thorpe88]) 

The whole system consists of one central database and five modules. The central 

database is called the Local Map and is managed by Local Map Builder (LMB). The mod­

ules are Caption, Pilot, Lookout, Map Navigator, and Perception Subsystem. The 

Blackboard Interface 

Lookout 

Blackboard Interface 

Perception 
Subsystem 
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C a p t i o n is the overall supervisor for the system. The P i l o t is the low level path planner 

and motor controller. The L o o k o u t monitors the environment for landmarks. The M a p 

N a v i g a t o r is a high level path planner. The P e r c e p t i o n S u b s y s t e m accepts the raw 

input from multiple sensors and integrates them into a coherent representation. In C O D ­

G E R , each module is a separate, continuously running program. Communication among 

modules are done by storing and retrieving data in the central database through a set of 

subroutines called L M B interface. Synchronization is achieved by the facilities provided 

in L M B interface. 

The blackboard control architecture integrates planning and reactive behaviour 

into one system. Planning was done by P i l o t and M a p N a v i g a t o r . L o o k o u t and P e r c e p ­

t i o n S u b s y s t e m gave the Navlab the ability to react to the outside world. 

2.3.2 Reactive Action Package 

In the late 80s, R. James Firby of Yale University proposed a concept of reactive 

planning [Firby87]. In contrast to strategic planning, in which the system is required to 

look ahead and detect failure situations before they occur, reactive planning systems gen­

erate or change their plans only in response to the shifting situation at execution time. A l l 

of the planning will take place during execution when the situation can be decided and not 

on anticipated states. 

The whole reactive planning system was built on a mechanism called reactive 

action packages or RAPs. Each R A P is an independent entity competing with other RAPs 

and pursuing a planning goal. It will not stop until the goal is achieved or every possibility 

has been tried. Figure 4 shows a R A P execution environment. The current world represen­

tation is stored in the world model. The hardware interface controls the communication 

between the R A P interpreter and the world model. While each R A P executes, it can 

change the world representation. This modification is done through the hardware inter­

face. Any hardware information change such as sonar information or visual information 

will be sent to the world model as well. The R A P interpreter and execution queue main-
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tain the relationship between different RAPs. 

The execution of the RAP queue is organized in a hierarchical style. Whenever 

there is a task to achieve, a RAP is chosen to start execution. Each RAP consists of two 

parts: goal check and task net selector. A task net is a partially ordered network of sub-

tasks. All goal check does is to consult the world model and see whether the task has been 

achieved. If not, a collection of task nets are selected and inserted into the RAP execution 

queue. The set of task nets are essential elements to complete the task. These task net ele­

ments can be primitive commands or subtasks of the original task. When a primitive com­

mand is scheduled and sent to the interpreter, it will be passed onto hardware through the 

hardware interface. When a subtask is activated, it essentially invokes another RAP. Fig­

ure 5 is an illustration of RAP execution. 

World Model 

RAP Execution Queue 

Figure 4: The RAP Execution Environment ([Firby87]) 
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Figure 5: An Illustration of RAP Execution ([Firby87]) 

The advantage of this reactive planner is its adaptability in an uncertain domain. 

The shortcoming of the reactive planning system is also obvious. It cannot deal with prob­

lems that require thinking ahead. For example, for a robot on a searching crew, its 

expected behaviour is to bring a flashlight with it since it will get dark outside soon. But 

for a reactive planning system, it is not going to think about the future at all. Based on the 

current light condition, it will not bring the flashlight. 

2.3.3 Task Control Architecture 

Xavier, an office delivery robot developed at CMU, has been in daily use since 

December 1995 [Simmons97]. This mobile robot has to perform many tasks such as deter­

mining the order of the offices to visit, planning path to those offices, following path 

exactly and avoiding obstacles on its way. Xavier has to deal with incomplete environment 

information, dynamic situation as well as sensor noise. 

A layered architecture is designed for the office delivery robot. The architecture 

consists of four abstraction layers: Obstacle Avoidance, Navigation, Path Planning, 

and Task Scheduling. The Obstacle Avoidance module keeps the robot moving in the 

desired direction without bumping into static or dynamic obstacles. The Navigation mod-
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ule follows the paths generated by path planning module. The Path Planning module 

decides how to travel from one location to another efficiently. The Task Scheduling 

module determines the order of the offices to be visited. In Xavier, a higher layer works 

with more abstract representation and provides guidance to lower layers. Each layer is 

implemented as a separate code process. Interprocess communication and synchronization 

are provided by TCA (Task Control Architecture). 

The Task Control Architecture aimed at exploiting a facility to combine reactivity 

within a planning framework. The Task Control Architecture was built around the frame­

work of hierarchical task trees. Example of a task tree is shown in Figure 6. A task tree 

stands for the parent/child relationships between messages. A nonleaf node denotes a sub-

task or monitor. Leaf nodes are effector commands or queries to read sensors. There are 

two kinds of temporal constraints between nodes in a task tree: sequential-achievement 

and delay-planning. For the sequential-achievement constraint, the second task cannot 

begin until all the leaf nodes of the first task are executed. Delay-planning constraints 

indicate that the previous task should be completely achieved before the subsequent goal 

can be handled. TCA also defines facilities to kill subtrees, add new nodes and change 

temporal constraints. 

Go to position 

turn right 

Put into trash bin 

Figure 6: A Task Tree in Task Control Architecture 
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The Task Control Architecture successfully demonstrated its four main capabili­

ties: interleaving planning and execution, change detection, error recovery, and coordina­

tion between multiple tasks. The first capability enables robot systems to act on partically 

specified plans, allowing them to plan in advance in spite of uncertainty. The other three 

capabilities enable systems to detect and intelligently handle plan failures, unexpected 

opportunities and contigencies. 

2.3.4 S* Proposal 

[Tsotsos98] proposes a control strategy S* which integrates an active vision syŝ  

tern. He claims that S* combines deliberative as well as reactive behaviours by using 

visual attention. 

The basic elements in the proposed S* control strategy actually are behaviours. 

The behaviours act on either an internal representation or an external representation. Each 

of the representation is a part of the world model. Thus each behaviour in S* is presented 

as an SMPA-W cycle, in another word, sense-model-plan-action-world cycle. Figure 7 

shows this five nodes framework. The world node provides the inputs and outputs for a 

behaviour. 

Figure 7: The SMPA-W cycle showing the world node ([Tsotsos98] 

To be reactive to a dynamic environment and to recover from a failure, the S* pro-
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posal uses exceptions in an active vision task. Failures might happen during the execution 

of a behaviour. Whenever a failure is detected, an exception will occur and another 

behaviour would be triggered to handle the failures. Examples of behaviours and their 

exceptions can be found in [Tsotsos98]. 

2.4 Real-time Robot Control System 

To be reactive is one of the important aspects for a mobile robot to survive in a 

dynamic, uncertain real world. In addition, we also have to consider how to make a rapid 

reaction. This requirement is quite obvious. For example, for a completely autonomous 

vehicle, it must plan new paths and react quickly enough to avoid bumping into people in 

front of it. This raises another topic in the mobile robot control system-real time control. 

In AI research, there has always been building systems that are capable of providing solu­

tions as perfectly as it can. This results in a unbounded retrieval and response time which 

implies unpredictability. On the other hand, in the real-time camp, the goal is to clearly 

define the resources and capabilities in order to predict the important deadlines and time 

constraints. 

Edmund H. Durfee's definition for real-time control system [Durfee90] is: 

We mean that a system must carry out its actions before the environ­

ment has a chance to change substantially. Put another way, a system 

must act on its environment more quickly than its environment can 

unpredictably act on it. 

Traditionally, there are two ways to deal with real time AI systems. One approach 

is to engineer AI systems to meet real-time deadlines [Laffey88]. The other approach is to 

tune the AI algorithm so that the plans it developed could meet the desired time con­

straints [BD89] [Horvitz87]. Durfee presented an alternative approach CIRCA (A cooper­

ative Intelligent Real-time Control Architecture) in [Durfee90]. In CIRCA, real-time and 

AI components are treated as two separate, concurrent and asynchronous systems. The AI 
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system could still generate plans that do not satisfy real-time guarantees. Real-time system 

will ensure those time constraints on its own. This approach provides more flexibility to 

build a robot control system than the previous two. 

In 1998, a group of researchers from NASA Ames Research Center describe a 

remote agent architecture in [Williams98]. This is a specific autonomous agent architec­

ture which integrates constraint-based temporal planning and scheduling, robust multi­

threaded execution, and model-based mode identification and reconfiguration. It also 

addesses the unique characteristics in a spacecraft domain. Such a spacecraft domain 

requires highly reliable autonomous operations over a long period of time with tight hard 

deadlines and resource constraints. The real time control is accomplished by using a tem­

poral Planner/Scheduler (PS), with an associated mission manager (MM) which manages 

resources and develops plans that achieve goals in a timely manner. 

2.5 Summary 

We went through a brief history for the development of a robot control architecture 

in this chapter. Advantages and disadvantages of each system were discussed. 

Early functional decomposition control architecture is inappropriate for mobile 

robots because it is not capable of reacting to a dynamic real-world environment. To over­

come its problem, the classical purely reactive control system was proposed by Brooks in 

1985. This reactive control system is based on the idea of "behaviours". Each behaviour 

reacts to the environment very well, but the robot using this control system lacks the abil­

ity of planning. 

Researchers have been working on building hybrid systems which combine plan­

ning with reactive behaviours. Three well-known control systems are CMU's Navlab 

blackboard architecture, Firby's reactive action package, and CMU's Xavier's task control 

architecture. To integrate active vision systems with robot control systems, Tsotsos pre­

sented a S* proposal which currently does not have any implementation. 
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Finally, CIRCA and a remote agent architecture were introduced to explore a robot 

control system which at the same time has time critical requirements. 
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Chapter Three 

System Architecture 

The prime goal of this thesis is to explore the design and implementation of a robot 

control architecture that is capable of detecting and responding to a changing environ­

ment. This chapter presents the specifications of the required system, a discussion of 

important design considerations, and an overview of the final design. The detailed design 

issues will be presented in the next chapter. 

3.1 System Specifications 

Since the real world is a complex, dynamic environment for mobile robots, it is 

useful for us to list some requirements of a mobile robot. These requirements are the pri­

mary considerations in the design and implementation of a robot control architecture. 

Meeting those requirements is important to ensure that mobile robots will survive in a 

world full of tigers. 

3.1.1 Robustness & Error Recovery 

The mobile robot should be robust. It should not fail because of some minor 

changes in its environment. It should have some facilities to deal with unexpected events 

as well. When the environment changes, it should still be able to achieve some reasonable 

behavior and function well enough, rather than just wandering around aimlessly. 

Inconsistent information from multiple sensors has been one of the problems chal­

lenging the robustness of a mobile robot. In the past, most typical mobile robots contain 

one visual sensor and one simple motion encoding mechanism. Planning is done off-line 

and the control system is straightforward. Those old-fashioned architectural features can-
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not support perception and control in complex dynamic real world environments with very 

general task specifications. In more complex systems, there is a need to use multiple sen­

sors such as a camera, a laser range finder, and sonar array together at the same time. Only 

by using multiple sensors, can a system provide a map of its environment with sufficient 

resolution and reliability to control a mobile robot on a complex mission. For example, a 

task might require avoiding obstacles along the way, which is best performed with a sen­

sor such as sonar array; the same task might also require tracing a target such as a person 

wearing a T-shirt of a certain color, which is beyond the effective range of a sonar array 

yet is easily detected by a color camera. This type of trade-off occurs at all scales of per­

ception, and the only solution currently available is to incorporate multiple sensors on a 

single mobile robot. As soon as multiple sensors are deployed, the system architecture 

requirements become very demanding. Sensor data from different times has to be inte­

grated into a single coherent interpretation. Otherwise, the robot might be confused by the 

inconsistent information and fail to function accordingly. 

When contradictory sensor readings occur, the control system should be able to 

detect an invalid world representation. Error recovery strategies can be employed to 

change the plan to reflect the current real world situation. In another word, the robot can 

act even when presented with incomplete and unreliable information. 

3.1.2 Deliberative & Reactive 

The architecture must accommodate deliberative and reactive behavior. In a 

dynamic real-world environment, all of the circumstances of the robot's operations can 

never be fully predicated. Thus, it is infeasible to have a complete course of action in 

advance. The robot has to coordinate the actions it deliberately undertakes to achieve its 

designated objective with the reactions forced on it by the environment. As an example, 

deliberative behaviour of an office mail delivery robot is to deliver a letter to Professor As 

office. While on its way to that office, it has to react to avoid obstacles such as students 

walking around in the building. It should not bump into any obstacle on its way. More 

importantly, it should not lose its target, in this case Professor As office, after giving way 
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to those students. This "postman" should be able to find a path to Professor A's office. 

3.1.3 Timely Response 

To survive in a highly dynamic environment, timely response and actions are nec­

essary. For a soccer player mobile robot, it would be nonsense if its response time is 10 

seconds. The soccer ball would have already moved when it tries to kick it. The time 

available for it to make a decision is limited. A mobile robot has to operate at the pace of 

its environment. Speeding up the hardware could make this issue less critical, but current 

technology still cannot meet our expectations. For robotics, the current solution is to use a 

compact, real-time operating system with high level programming languages; used to pro­

gram a control architecture capable of dealing with interrupts from the outside world. 

3.1.4 Coordinate Among Multiple Goals, Competing Activities and Functions 

Often the robot will have multiple goals that it is trying to achieve. Some of the 

goals may conflict with each other. In some situations, some of the actions can be carried 

but concurrently while others have to carried out in sequence. A mobile robot might be 

trying to reach a certain point ahead of it while avoiding local obstacles. The control sys­

tem must be responsive to both of the goals. In other cases, when it is impossible for the 

control system to ensure both of the goal at the same time, it should have some principles 

to decide which one has to achieve first. 

3.1.5 Extensibility 

The architecture must give certain flexibility to the designer to develop new fea­

tures. Application development for mobile robots frequently requires experimentation and 

re-configuration. Changes in the task may also result in system modification. Easy extensi­

bility is one of the considerations in the design and implementation of the robot control 

architecture. 
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3.2 Design Issues 

Many robot control architectures have been developed in the AI community espe­

cially for indoor and outdoor mobile robots. Implementation of those control architectures 

usually involves a large amount of code. In addition, researchers in the mobile robot area 

tend to implement first a prototype, and then gradually evolve it into a complete system. 

These considerations lead to the following principles in the design of our system. 

3.2.1 Modularity 

Modularity is very important in current software engineering. A system is broken 

down into several components, each of which has a particular task. One of the goals for 

modularity is to reduce the duplicate knowledge among different components. For 

instance, rectified images from cameras are only necessary for a tracking module, but not 

for path planning module. In this case, there is absolutely no need to inform the path plan­

ning module of the newly arrived images. 

Another critical issue in modularity is how to keep the interface between different 

modules simple. When building a system of many parts, one must pay attention to the 

interfaces. Poorly designed interfaces will cause heavy communications between mod­

ules. This definitely has to be avoided to ensure timely responsiveness for mobile robots. 

Either the interface needs to be redesigned or the decomposition of the components of the 

system needs redoing whenever a particular interface begins to challenge the simplicity of 

the components. 

For our system, modularity provides another convenience. Each component can be 

programmed in the language which is the most appropriate and efficient. Different mod­

ules could also locate on separate processors. Therefore, parallel processing is possible 

and helps increase the computational ability of the whole system. 
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3.2.2 Virtual Robot 

The concept of virtual robot is not original. It was put forward by Charles E. 

Thorpe in [Thorpe88]. They suggested that the details of the vehicles should be hidden.. 

Under this consideration, "virtual robot" was proposed to hide the details of sensing and 

motion of the vehicle. It is actually an interface between the control system and the physi­

cal vehicle. 

Our consideration of a simple interface for control of the mobile robot incorporates 

the idea of a virtual robot. In this way, the mobile robot will start moving forward only by 

a simple command such as "forward". The high-level programmers do not have to know 

every detail such as the trajectory to tell the robot to move. 

3.2.3 Distributed Control 

Early control systems expected a central module called master to know everything 

about how to make things work. This traditional control method is usually called central­

ized control in early blackboard architectures. The master module is in charge of schedul­

ing other modules. It knows exactly when and how to execute each of the other functional 

components. The problem for this centralized control is obvious. As more and more com­

ponents are involved, this central module could become a bottleneck. Systems built in this 

pattern will be difficult to expand. 

In order to overcome this shortcoming in centralized control, researchers naturally 

began to think of ways to build a distributed control system. In a distributed control sys­

tem, each individual module becomes an autonomous component. It decides by itself 

when to start or finish execution; however, proper inputs and outputs for each module 

must be carefully defined. Input for one module could be the output from another module. 

Distributed Control gives the system flexibility and solves the bottleneck problem, 

but on the other hand, it brings forward other issues such as communication and synchro­

nization between relevant modules. 
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3.2.4 Effective Communication 

Inevitably, communication is one of the most significant issues resulting from dis­

tributed control architecture. To communicate effectively, it is worthwhile to find a way to 

exchange information as fast as it can. Communication could take place either within mul­

tiple processes on one machine or among processes which reside on different machines. 

One of the issues in the design of our robot control system is how to coordinate 

between low bandwidth and high bandwidth sensor readings. This problem arose when 

using radio modem to communicate between the physical robot and the host. High band­

width communication is usually involved in passing a large amount of data from the robot 

to the host or around in the control system. Rectified images and disparity images are 

examples of high bandwidth sensor readings. There is no such heavy burden on radio 

modem about the communication and computation time for low bandwidth sensor read­

ings. For example, power supply for the mobile robot could be expressed using an 8 bit 

integer. Since transmitting high bandwidth sensor readings requires much more time than 

transmitting low bandwidth readings, the high bandwidth data will block the low band­

width data without any special consideration. We need to find a way to transmit the low 

bandwidth data in between the high bandwidth ones. Our solution for this problem is quite 

simple. The high bandwidth data will be divided into several segments. Each segment will 

be sent separately. Therefore, it gives some time gap between two consecutive parts and 

this time gap can be used to send low bandwidth sensor readings. 

Our consideration to divide the whole system into several modules brought for­

ward another issue — communication among modules on the same machine. The tradi­

tional solution for communication among processes on the same machine includes 

message queue, shared memory, or message passing. However, our design consideration is 

moving toward an event driven system. All of the messages passing within the system are 

in the form of events. 
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3.2.5 Synchronization 

Two issues are involved in synchronization. One is how to synchronize the execu­

tion of multiple modules. There are times when one module has to wait for another to fin­

ish.; This can be solved by using signal and wait mechanism. The other issue is how to 

synchronize the simultaneous access to a database from multiple threads of execution. The 

most common solution for this is to add a lock-step before and an unlock-step after access 

to the database. 

3.3 A Few Definitions 

To avoid any ambiguity which may occur in the following description, we provide 

some definitions first. 

World Representation: This is where world information is stored. Not only external 

information but also information about robot itself are included in this world represen­

tation. From here, a mobile robot gets to know its environment and acts accordingly. A 

model of the environment is built and stored in this world representation. 

Behaviour: The idea of a behaviour-based robot first appeared in [J3rooks86]. Each 

behaviour is responsible for a particular goal such as avoid obstacle, follow wall and 

move forward. A set of related behaviours running concurrently and coordinating 

together result in the completion of certain task such as tracking a target. Originally, 

behaviour is used in a layered architecture. Each layer has one or more behaviours run­

ning concurrently. 

Tasks and Subtasks: A task is what the mobile robot is trying to accomplish. Exam­

ples are person tracking, mail delivery and trash collection. A task could be divided 

into several parts. These parts are called subtasks. For example, a person tracking task 

consists of two steps (subtasks). They are looking for the person and visually focusing 

on the person respectively. 
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Plans: Plans are generated by the planner using various AI techniques. Plans are a 

set of subtasks aimed to accomplish a certain task. 

Atomic action: An atomic action is a primitive operation on the world presentation 

by effector. No further decomposition of the action can be performed. It will result in 

the change of the internal or external representation. Telling the robot to go forward, 

backward, turn left or turn right are examples for atomic actions. Behaviours consists 

of a sequence of atomic actions. 

3.4 System Overview 

The goal of our control architecture design is to have a mobile robot that can sur­

vive in a real world environment and accomplish certain tasks. Since a mobile robot's 

environment is no longer static, or artificial, interaction between the mobile robot itself 

and the environment must be carefully investigated. In Section 3.1, we provide a brief dis­

cussion of these interactions while presenting the first two specifications. To let the con­

trol system have the ability to be reactive to the dynamic world and recover from error, 

exceptions are incorporated into the system as our fundamental mechanism. This section 

first presents the exceptions and exception handlers. The exception mechanism is that a 

part of the system throws an exception to be caught by an exception handler. An overview 

of the ERA (Event-based Robot Control Architecture) is presented as well. A comparison 

between our exception mechanism with [Tsotsos98] comes later in this section. 

3.4.1 Exception Mechanism 

The world representations store the internal and external information for a mobile 

robot. During the execution of a task, these world representations are continuously 

updated to reflect the robot's environment at that time. The mobile robot draws conclu­

sion about its environment and carries out tasks based on these world representations. 

Even a trivial change of the environment may have a great impact on the robot's executing 

task. Some of the changes may result in the failure of the current executing task. An 
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exception occurs whenever a failure is detected by the robot. For example, for a visual 

tracking task, a failure takes place when the object moves out of the robot's viewpoint. 

This failure fires an exception. 

The exception mechanism consists of two parts, because the robot control system 

should be capable of not only discovering a failure but also recovering from it. These two 

parts are the exception itself and the exception handlers respectively. Each exception has a 

corresponding exception handler. The exception handlers are responsible for recovering 

from failures. To recover from a failure in our robot control domain is to generate a set of 

new plans which still aim to achieve the current task goal under the new circumstance. 

The relationship between exceptions and exception handlers is depicted in Figure 8. 
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Figure 8: Exception Mechanism 

3.4.2 Using Exceptions in an Active Visual Task 

One interesting task for a mobile robot to accomplish is to play Find and Follow 

with human. As an example, we explain our exception mechanism used in such a task. A 

Find and Follow task usually is composed of several subtasks such as "searching for the 

person" and "following the person". At one time, there is only one subtask being exe­

cuted. During the execution of a subtask, exceptions might occur. After a specific excep­

tion is fired, its handler is supposed to do replanning and another subtask will finally be 

triggered into action. 
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Figure 9: Exceptions and Subtask Transitions 

Figure 9 shows the exceptions and subtask transitions in a Find and Follow task. 

The subtasks are "searching for the person", "planning a path to the person", "going to the 

person", "planning a path to base", and actually "going back to the base". As the figure 

indicates, for the "going to the person" subtask, there are three possible exceptions. They 

are Obstacle Exception, Person Lost Exception, and Low Voltage Exception. If the Obsta­

cle Exception is detected, "Planning a Path to the Person" is triggered. If Low Voltage 

Exception is detected, "Planning a Path to Base" is triggered to direct the robot to go back 

to base to recharge the battery. If Person Lost Exception occurs, it will begin to search for 

the person again. This principle obviously applies to other exceptions in Figure 9. 

3.4.3 ERA Overview 

This section briefly describes the Event-based Control Architecture as a whole for 

mobile robots in a dynamic and uncertain environment. Figure 10 presents a robot control 

28 



system using the Event-based Robot Control Architecture embedded in a mobile robot. 

With the help of ERA, a mobile robot is able to explore reliably, and safely in real world 

environment. The embedded Event-based Control Architecture is capable of reacting to 

the dynamic environment, recovering from failures, and resolving conflict among sub-

tasks. 

Based on the task to achieve, the Planner generates using various AI techniques a 

sequence of subtasks for the ERA to carry out. A discussion of the Planner is beyond this 

thesis. We will only focus on the ERA itself. After the ERA receives a set of new subtasks 

from the Planner, it consults the current world representation, decomposes each subtask 

into atomic actions, and actually sends commands to the robot hardware via virtual robot 

interfaces. 

Planner 

...,. X.., 
ERA 

_v VirtualRobot 
World Presentation Robot Hardware 

Figure 10: An Embedded Event-based Robot Control Architecture 

Figure 11 depicts internal structure for the Event-based Robot Control Architec­

ture. The ERA consists of six modules. They are Sensor, Effector, Monitor, Executor, 

Exception Manager and Scheduler. 

The Event-based Robot Control Architecture is based on the exception mechanism 

described earlier. The Monitor keeps watch on the sensor readings. When it detects a fail­

ure, it fires an exception. There are several exception handlers registered in the Exception 

Manager module. Each one of them handles one specific exception from the Monitor. 

The Exception Manager is responsible for handling the exceptions and generating new 
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plans based on the current task and situation. 

Therefore, there are two sources generating new plans. One is from the Planner, 

the other one is from the Exception Manager. Each of the plans contains a sequence of 

subtasks. All of the subtasks are inputs for Scheduler. To coordinate the subtasks from 

these two sources, each of the subtasks is assigned a priority. Subtasks with higher priority 

will be scheduled first. Those subtasks with the same priority are scheduled based on their 

order. 

The communication between the modules is performed in the form of events. One 

nice aspect of using events instead of message passing is that a module does not have to sit 

in a loop waiting for information it is expecting. Obviously, sitting in a loop and waiting 

uses a lot of CPU cycles. By using events, the modules will be activated only when new 

information arrives. 

Exceptions 

Planner i 
Virtual 
Robot 

Figure 11: An Event-based Control Architecture 

3.4.4 Tsotsos' Active Vision 

A brief introduction for Tsotsos's Active Vision has been presented in Section 
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2.3.4. Here, a further explanation about exceptions in his proposal is presented. 

In the proposed S* control architecture, Tsotsos indicates that failures during the 

execution of a behaivour must be detected. One of the representations in his architecture is 

Exception Record (ER). This exception record encodes the information to detect failures. 

Each exception contains a specification of what must be sensed in order to confirm that the 

exception occurred, the identity of the behaviour for which it occurred and a start time and 

expiry time. While being executed, a behaviour reads the representations and decides if 

the current situation is consistent with the description in the exception records. If it is, an 

exception is triggered and the system should react accordingly. 

3.4.5 Comparison between ERA and Tsotsos's Active Vision. 

[Tsotsos98] provides a distributed action vision framework using attention. He 

provided a new point of view for the original functional-oriented decomposition which 

they call SMPA (sense-model-plan-act). They used this decomposition for every behavior 

and added the world into this cycle, thus formed a new framework as SMPA-W. In their 

description, they used exception records to detect failures. The difference between our 

framework and theirs is that instead of having an exception detector for each behavior, our 

failure detector and handlers are on a subtask level. Since there are usually multiple 

behaviors working together in one subtask and each of the behaviours has its own excep­

tion detectors, it is highly possible that extra copies of detectors exist in SMPA-W system. 

3.5 Summary 

The specifications for developing a robot control architecture are discussed first in 

this chapter. They are robustness and error recovery, deliberative and reactive, timely 

response, coordination between multiple goals and functions, and extensibility respec­

tively. 

Five design issues, namely modularity, virtual robot, distributed control, effective 

communication and synchronization are also presented. Some of the solutions are pro-
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vided. 

A system overview indicates that our control system is built upon the exception 

mechanism. All the communications inside the control system are in the form of events. 

The exception mechanism is explained and a comparison between our ERA and Tsotsos's 

S* proposal is made. 
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Chapter Four 

System Details 

This chapter provides a detailed description of our Event-based Robot Control 

Architecture. 

4.1 World Representation 

The definition of world representation was first given in Section 3.3. In this sec­

tion, we will further discuss on this topic. Both the internal representation and external 

representation are presented in the following paragraphs. 

4.1.1 Internal Representation 

A collection of information supports the internal representations of a mobile robot. 

The most common information used is: 

Robot Position: The current position helps a mobile robot locate itself in its envi­

ronment. It could be depicted in a triple (X, Y, H). X, Y are the world coordinates 

for the robot and H describes the orientation of the robot. 

Power Status: Its value indicates the voltage level for the robot. Once the power 

status is below a certain value, the robot should stop and get the battery recharged. 

This piece of information is nontrivial and useful while implementing a robot con­

trol architecture on a mobile robot. For instance, a mobile robot working in deep 

water should be able to come back when it is about to run out of power. We cer­

tainly do not want it to sit in the bottom of the sea waiting for someone else to get it 

back. 

Robot Mode: It would be nice if the mobile robot could either be operated manually 
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autonomously. The robot mode indicates the situation of the robot. In our system, 

the robot mode could be one of four choices: manual, explore, directed, or speci­

fied. 

Robot Command: This stands for the current execution command. This information 

is necessary when an exception occurs. How to recovery from the failure largely 

depends on what the robot currently is doing. 

4.1.2 External Representation 

In order for the mobile robot to complete a task in a dynamic environment, interac­

tion with its environment is inevitable. It is also important for the robot to build a map of 

its environment. Thus, several facilities are developed as external representation of the 

world model. 

Sonar Array: Sixteen sonar sensors continuously send out sonars and try to pro­

tect the robot by detecting any obstacle around. Sonar sensor readings are stored 

in an array which can be read by robot control system through some interface to 

the world representation. This interface is called the virtual robot and will be 

explained later in Section 4 . 2 . 

Camera Images: These are the largest pieces of information in the world model. 

Each image is a two dimensional array capturing the real world ahead of the 

robot. Each pixel in the image represents intensity. Figure 12 shows a real camera 

image. 

Figure 1 2 : A Real Camera Image 
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Disparity Image: In addition to the above camera images, there is a disparity 

image resulting from a stereo vision algorithm. This is also a 160X120 array 

([Tucakov97], [Murray97]). Some of the pixels could be invalid information. The 

value of each valid pixel represents the disparity. The larger the value, the closer 

the object. Figure 13 shows a disparity image. 

Figure 13: A Disparity Image 

Radial Map: Since the disparity image consists of a large amount of data, it would 

be slow to pass the whole image around in the control system. A radial map is 

built instead. Details on how to build the radial map could be found in 

[Murray97]. It is a one dimensional array consisting of 160 elements. Each pixel 

in the radial map is projected column by column from the disparity map. It takes 

the maximum valid disparity in each column. Similar to disparity image, objects 

which are closer to the robot will have larger value in radial map. Figure 14 shows 

a radial map. 

Figure 14: A Radial Map 

Maps: There are a total of four maps, namely, zoom map, plan map, obstacle map 

and distance map. They are gradually built as the robot moves around in its envi­

ronment. Occupancy grid map reflects the robot's understanding of the world 

([ME85], [Elfes89]). The pixels in the map are put into the following three cate­

gories. Black pixels in the map means that those places are occupied by obstacles. 

The robot cannot go to those areas. Clear areas without obstacles are depicted as 

white pixels. The area the robot has not yet seen and does not know about is 
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shown as grey. The algorithm to build such a map is described in [Murray97]. Fig­

ure 15 depicts a map generated during exploration. 

Figure 15: A Map Generated During Exploration 

4.2 Virtual Robot 

Access to robot control processors and sensor data takes place through a set of sub­

routines called the virtual robot. These virtual robot subroutines are divided into two 

groups, one for robot control and the other for retrieving world representation. 

4.2.1 Robot Control 

Robot control commands are messages sent from the control system to the hard­

ware to control actions of a mobile robot. There are altogether six control commands. The 

first five commands will lead to either orientation or world coordinates changes 

1. forward: Move forward until the control system tells the robot to stop; the orien­

tation of the robot does not change. 

2 . backward: Move backward until the control system tells the robot to stop; the 

orientation of the robot does not change. 

3. turn left: Turn left until the control system tells the robot to stop; the orientation 

of the robot changes while world coordinates do not. 
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4. turn right: Turn right until the control system tells the robot to stop; the orienta­

tion of the robot changes while world coordinates do not. 

5. turn 360: Turn around for 360 degrees and stop when the orientation of the robot 

is back to the original position. The world coordinates do not change. 

6. halt: Halt the robot immediately. 

Controlling the movement of the mobile robot is simply calling these six subrou­

tines. This hides away complicated details of moving the robot around. 

4.2.2 World Representation Retrieval 

Subroutines are also available to retrieve information from the world representa­

tion database such as maps, images, and sonar readings. 

4.2.2.1 Internal Representation 

Subroutines designed for getting internal representation are simple. A l l you need 

are getVoltage/RobotPosition/CurrentCommand/CurrentMode subroutines. 

4.2.2.2 External Representation 

1. Map 

updateZoomMap/updatePlanMap/updateObstacleMap/updateDistanceMap: These 

subroutines update the control system's copy of the specified map. 

2. Image 

updatelmage: Given the image type which is specified as a parameter, this subrou­

tine updates the control system's copy of the specified image. The image size is 160X120. 
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updatelmageNRows/NCols/RowInc: Given the image type, these subroutines 

update the number of rows/number of columns/row increment of specified image. 

updatelmageRows: Give the image type, starting row and number of rows N as 

parameters, updatelmageRows will update the control system's copy of the specified 

image but only updates N rows from the starting row. This is necessary in order to reduce 

the time spent on copy image from one block of memory to another. If carefully used, it 

will help improve the responsiveness of the control system. 

3. Radial Map 

getRadial: retrieve radial map from database. 

4. Sonar Readings 

As sonars are used to detect obstacles around the robot, and the robot can only 

move forward or backward, it is not necessary to pass the whole sonar array within the 

system. What we want to know are only two values, in another word, whether there is 

obstacle in front or behind the robot. A notify flag is sufficient to hold this information. A 

subroutine called getNotifyFlag is designed to interpret the sonar readings. 

4.3 Sensor Fusion 

As presented in Section 3.1, current mobile robot systems incorporate multiple 

sensors at the same time to achieve reliable performance. Usually, sonar sensors, laser 

ranger finder, tactile and cameras will be mounted together on one mobile robot. There­

fore, when some objects are beyond one sensor's capability, other sensors could be com­

plementary to it. For example, cameras can detect an object at least half meter away from 

robot, while sonar is functional to find the object within the range of half meter. Figure 16 

shows a system with multiple sensors. 
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Figure 16: A System with Multiple Sensors 

4.3.1 Sensor Fusion Methods 

Since there is more than one sensor in one system, the issue of how to coordinate 

among them is brought up. This issue is called sensor fusion and discussed in [CY90] in 

detail. Three primary methods for sensor fusion were discussed in [Shafer86]. 

Competitive: Competitive fusion is typically used for sensors that generate the 

same type of data such as two sonar sensors. Each of the sonar sensor will produce a 

hypothesis. Two sensor readings may conflict or reinforce with each other during the 

process of fusion. 

Complementary: Each individual sensor is used differently. The aim of using dif­

ferent kinds of sensors is to enhance the advantages and cover the disadvantages of 

each of them. The best example of this type is using sonar with camera together as we 

have already discussed earlier. 

Independent: In this method, a sensor is used independently for a specific task. It 

provides enough information for that task. 

When designing our robot control system, we believe all the complex tasks the 

robot aim to achieve need more than one sensor. Either competitive or complementary 

sensor fusion method is used in different situations. 
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4.3.2 Sensor Invocation 

In [Shafer86], the strategies used to invoke sensors in sensor fusion are also dis­

cussed. 

Fixed: This strategy embodied in special-purpose code that specifically invokes sen­

sor processing. 

Language-Driven: A strategy defined in a general "perceptual language"; each 

object in the object will have a description of how to recognize that object. 

Adaptive: A language-driven system with the ability to select alternative plans based 

on the current status of sensor processing or the vehicle's environment. 

However, our design involves two ways to invoke sensors. We call them polling 

and adaptive invocation. 

Polling: the sensor module issues the condition queries at a fixed frequency. For 

example, we use a polling invocation that reads the mobile robot's power supply at a 

fixed time interval. This time interval can be set dynamically. Whenever the power is 

below certain threshold, the control system would detect it and replan to recharge the 

battery. 

Adaptive Invocation: In this method, sensors will only be invoked when needed. Sen­

sors are triggered and cancelled on demand. For example, the perception system 

needs to be directed and controlled by the agent's current action and task. Especially 

for a sensor which needs high bandwidth communication such as cameras, it is better 

to turn it on only when necessary. 

4.3.3 Selective Attention 

When discussing effective communication in Section 3.2.4, we give a solution to 
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coordinate between high bandwidth and low bandwidth sensor readings in order to pro­

vide timely response. In addition to that, selective attention is also an effective way to 

reduce communication and computation time. Especially for the rectified images and dis­

parity image, usually not all of the 160X120 pixels are needed in the image processing at 

the same time. Thus retrieving region of interest (ROI) is much more efficient than getting 

the entire 160X120 images. 

4.4 Event-Driven Communication 

There are mainly six modules in our Event-based Robot Control Architecture. 

Effective communication between these components certainly contributes to the feasibil­

ity of this control architecture. 

The nature of a dynamic and uncertain world is its unpredictability. It is not desir­

able to have a busy waiting process running in each module waiting for incoming mes­

sages. When there is no environmental change for a period of time, using a daemon 

process would exhaust much of the CPU time. Therefore, an event-driven communication 

is employed in our control architecture. 

4.4.1 Event and Event Handler 

Everything passing around within the control architecture is in the form of an 

event. An event is generated by a sender component, and thrown to a receiver component 

or multiple components in the system. An event carries the information needed by the 

receivers such as control command, sonar readings and so on. An event handler is in the 

receiver component. As the name indicates, its responsibility is to handle a specified 

event. The components which are expecting an event are the event's listeners. Each sender 

component maintains a list of event listeners for each event that it will possibly fire. Each 

receiver component has one or more exception handlers. 
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4.4.2 Events 

All the events are put into four categories according to the type of information they 

are carrying. 

ActionEvent: This kind of events is fired by Executor and handled by Effector. Its 

information is the atomic action such as moving forward and backward which is to be 

carried out on the physical mobile robot. 

SubtaskEvent: SubtaskEvent is fired by Scheduler and handled by Exception 

Manager. It includes the information about the current executing subtask of the 

robot. Exception Manager uses this piece of information to decide what kinds of 

exception it is expecting. 

DataEvent: World representation of the mobile robot is wrapped in this event. Data 

in DataEvent could be sonar readings, voltage, radial map, or even images. 

ExceptionEvent: Each exception is also an event in our ERA. It is fired by Monitor 
and handled by Exception Manager. 

Events can also be categorized as unicast events and multicast events. Figure 17 

shows a unicast event. Figure 18 shows a multicast event. 

ActionEvent 
Executor Effector 

Figure 17: A Unicast Event 

Executor 

Monitor 
Sensor 

Figure 18: A Multicast Event 
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If there is only one event listener registered for an event, this event is a unicast 

event. If there is more than one event listener registered for the event, the event is a mul­

ticast one. 

4.5 Modules 

In this section, each of the modules introduced in Section 3.4.3 is explained in 

detail. As we mentioned in Section 4.4, communication between these modules is in the 

form of events. 

4.5.1 Effector 

The Effector has almost no intelligence in it. Its main job is to perform atomic 

actions. Those atomic actions are received as action events from the Executor. The 

Effector sends commands to the robot hardware via the virtual robot interface. The 

Effector spends most of its time in sleep mode. It only wakes up when an action event 

arrives. After the atomic actions are carried out, the world representation, either external 

or internal, will be modified to keep it consistent with the real world. 

4.5.2 Sensor 

The Sensor is responsible for reading world representations and forwarding this 

information to the Monitor. There are two ways to invoke the sensor readings, namely 

polling and adaptive invocation. Therefore, there is always a daemon running inside the 

Sensor. It reads world representation at fixed frequency. The other part of the Sensor 

retrieves information from the world representation only on demand. The sensor readings 

are sent to the Monitor by DataEvent. However, not all of the readings are sent to the 

Monitor. Given the current subtask being executed, only those that the Monitor is inter­

ested in and has been waiting for will be sent. In the case of safe navigation task, prevent­

ing the mobile robot from bumping into obstacles is indispensable. During navigation, the 

pieces of information that the Monitor is interested in are sonar map and radial map. They 

will be sent to the Monitor as events. Other information such as the disparity image is not 
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necessary for the navigation task, thus it will not be sent over to the Monitor. 

4.5.3 Monitor 

The Monitor module is an essential part of the active control system. This is where 

any failure is detected and where the exceptions occur. Whenever a new task or subtask is 

executing, it dynamically registers its intention to the Sensor The Monitor is activated 

only when DataEvents come in. After its activation, it processes the data and fires an 

exception to the Exception Manager if any failure is detected. For instance, for a visual 

orienting task, the Monitor receives images as incoming events. It generates an exception 

when the object moves out of its view area. 

4.5.4 Exception Manager 

In fact, the Exception Manager is a goal-oriented replanning mechanism. Its 

inputs are the exceptions generated by the Monitor. Its output is a set of new subtasks. 

These new subtasks are generated based on the current world representation and the cur­

rent designated task. The replanning in the Exception Manager makes the system reac­

tive to environmental changes. For example, while the mobile robot is on its way to an 

office, an exception occurs indicating that there is an obstacle ahead. After receiving the 

exception from the Monitor, the Exception Manager generates a new path leading the 

robot to the previously given office. 

4.5.5 Scheduler 

This part of the system handles the coordination, scheduling and arbitration among 

competing subtasks. These competing subtasks may be derived solely from the Planner 

or may come from both the Planner and the Exception Manager. An example in terms 

of scheduling is as follows. The Scheduler receives "visually pursue moving object" 

from Planner and at the same time, gets a subtask from Exception Manager telling it to 

go back to the starting point because of low battery warning. In this situation, the Sched­

uler has to decide which one will be executed. 
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The subtasks are basically scheduled based on first come first serve principle. But 

some of the subtasks might be more urgent than others. For example, usually those com­

ing from the Exception Manager have to be scheduled first to avoid fatal errors. This 

coordination among subtasks can be realized using priority-based method. A priority is 

attached with every subtask. Those with higher priority will be scheduled first. Those with 

the same priority, subtask will be scheduled according to their sequence. 

4.5.6 Executor 

The Executor is where the subtasks are actually carried out. Concurrent execution 

of subtasks would need more than one executors. It is activated when a subtask is sched­

uled to be executed. After being triggered, the Executor parses subtasks into atomic 

actions and sends those atomic actions to effector. 

4.7 Summary 

A few issues are discussed in the previous sections. Internal and external world 

representation are described in the first section. A virtual robot is designed to abstact 

away the hardware details. Robot control can be achieved by control subroutines. World 

representations can be retrieved by a set of retrieving subroutines. Three issues are pre­

sented and solutions for them are provided in the section of sensor fusion. An event-

driven communication mechanism is introduced in Section 4.4. Finally, each of the six 

modules in our ERA is discussed in detail. 
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Chapter Five 

Prototype Implementation 

The prototype described here is produced as proof-of-concept demonstration of the 

ERA's feasibility. The programming goal of the implementation is to conduct experiments 

and identify the benefits and limitations of the proposed paradigm. Experiments are 

described later in this chapter. 

5.1 Implementation Environment 

This section introduces the hardware and the software environment in which a pro­

totype of an Event-based Robot Control Architecture is implemented. 

5.1.1. Hardware 

We use a Real World Interfaces (RWI) B-14 mobile robot, Eric, to conduct our 

experiments for our Event-based Robot Control Architecture. Eric is equipped with a Pen­

t ium™ PC running the Linux operating system as its onboard processing. It also has an 

Aironet ethernet radio modem that allows communication to a host computer Sol. A Tri-

clops trinocular stereo vision camera is mounted on top of the mobile robot. Figure 19 

shows our mobile robot Eric. 

Figure 19: A Mobile Robot Eric 
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Active Vision of our system is achieved by using the Triclops stereo vision camera 

[Murray98]. Figure 20 illustrates a Triclops stereo head. The Triclops stereo vision mod­

ule was developed at the U B C Laboratory for Computational Intelligence (LCI) and is 

being marketed by Point Grey Research, Inc (www.ptgrey.com). The stereo vision module 

has 3 identical wide angle (90 degrees field of view) cameras. The system is calibrated 

using Tsai's approach [Tsai87]. Correction for lens distortion, as well as misalignment of 

the cameras, is performed in software to yield three corrected images. These corrected 

images conform to a pinhole camera model with square pixels. The camera coordinate 

frames are co-planar and aligned so that the epipolar lines of the camera pairs lie along the 

rows and columns of the images. 

Figure 20: The triclops stereo head 

To easily debug the system and monitor the progress during the experiment, we 

implement most of the control system on our host machine Sol. The host Sol is a also Pen­

t i u m ™ P C with Linux operating system installed. 

5.1.2 Software Environment 

The prototype of the robot control system on Eric is not implemented from 

scratch, but based on existing software modules developed by Don Murray, L C I . This sec­

tion gives a brief introduction for the previous software architecture and its important 

modules. 

5.1.2.1 Software Architecture 
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Figure 21 presents the software architecture. The dashed line in the figure repre­

sents the physical separation between the robot and the host. Communication between 

these two parts is implemented by sockets. 

The software implemented on the robot is in charge of sensing and control. The 

RadialServer continuously grabs images from the triclops camera, generates radial maps 

and stores the radial maps into shared memory. The RobotServer, on the one hand, 

receives commands from the host and sends them to the robot motor, and on the other 

hand, collects information about the robot such as radial maps and sends it to the host. The 

software implemented on the host does data integration, reasoning, and interacts with a 

human operator. As the figure indicates, all the modules on the host exchange their knowl­

edge through the shared memory. 

RobotServerj 

I 
Shared Memory 

I 
RadialServer 

Robot I Host 
i 

Figure 21: Previous Software Architecture 

5.1.2.2 Important Modules 

1. Mapper 

The Mapper integrates radial maps over time into a 2-D map represented by an 
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occupancy grid. The value of each grid is related to the probability that this space is occu­

pied by any part of an obstacle. The Mapper initializes the map to contain only values at 

50% probability, indicating that the entire space is unknown. As new radial maps arrive, 

the Mapper updates the occupancy grid so that each cell contains an updated probability 

that the cell is occupied by an object. Every point between the current position of the robot 

and the nearest obstacle in a given direction is marked clear. Cells beyond the object 

detected are unaffected. 

2. Path Planner 

The Path Planner produces paths for the robot to follow. These paths are used to 

move the robot from one position to another. The inputs for the Path Planner are a map 

of the environment produced by the Mapper, a goal position, and an initial position. The 

output for the Path Planner is a sequence of significant waypoints along the path. The 

path is generated by a simple wavefront expansion algorithm. This algorithm is briefly 

described in [Murray98]. 

3. Explorer 

The grid locations are classified into three basic types: blocked, clear and 

unknown. The goal of Explorer is to reduce all unknown regions until all reachable areas 

are either clear or blocked. This was implemented by re-using our path planning algo­

rithm. The robot will be guided to the nearest accessible unknown region. With periodic 

reevaluation and re-planning, the robot will explore from unknown region to unknown 

region until no more unknown regions are reachable. 

5.2 Implementation 

5.2.1 Software Architecture 

With the robot control system, the software architecture is described in Figure 22. 

Instead of having a RadialServer, a new module called ImageServer is implemented. 
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The ImageServer grabs images from camera and generates radial maps. Both the images 

and radial maps are stored in the shared memory. In addition, a control system based on 

the ERA idea and a user interface are added on the host side. The internal structure of con­

trol system has been described in Section 3.4.3. The control system and user interface are 

implemented in Java. The Sensor, Effector, Monitor, Exception Manager, Scheduler 

and Executor are all implemented as threads. The virtual robot is actually an interface 

between the shared memory and the control system. 

i 

Robot i Host ^ ^ 

Figure 22: Software Architecture with Control System 

5.2.2 Event and Event Handler in Java 

It is not complicated to implement events and event handlers in Java. Figure 23 

describes the relationship between an event and its event handler. 
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public interface ObjectLostListener extends EventListener{ 
public void handleObjectLost(ObjecfLostExceptionEvent e); 

Monitor 
I 

Vector objectLostListeners; 

Obj ectLostExceptionEvent 

Figure 23: Event and Event Handler 

Vector objectLostListeners is a list of registered exception event listeners on the 

Monitor side. The Exception Manager is one of the listeners for ObjectLostException-

Event. It has a method called handleObjectLost which will be triggered when ObjectLos-

tExceptionEvent arrives. The Monitor and the Exception Manager Modules are 

described in Section 4.5. 

5.3 Experiment 

5.3.1 Using Radial Map 

In the experiment, our mobile robot Eric tracks a person in a real environment. To 

track a person, the fundamental method is to transfer images, grabbed from the camera, 

from the mobile robot itself to the host Sol where the control system is currently located. 

Then image understanding is performed for the consecutive images to locate the person in 

each image. The difficulties for this method are obvious. Each of the images has 120X160 

pixels. It takes a significant portion of time for the control system to actually process these 

images. One way to reduce this large amount of data is to use ROI (Region of Interest) in 

which only a relative small portion of the data will be transferred and processed. But still a 

significant amount of data has to be transferred. The timely response requirement of the 
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system is affected. 

To reduce the amount of data that has to be processed during the tracking and to 

meet the real-time requirement, we use the radial maps instead of real images to conduct 

the tracking experiment. The person being tracked is depicted as (Disparity, Column) in a 

radial map. The Disparity illustrates how far the person is from the robot. The Column 

indicates the vertical position of the person in the robot's view point. From these two val­

ues, the person's position in the robot's coordinates can be calculated. Thus, during the 

next time step, searching is performed around the this position to locate the person. Figure 

24 shows an example of a radial map. The person in the radial map is described as (13, 

80). 

Figure 24: A Radial Map: Disparity vs. Column 

5.3.2 Description of Tracking 

The goal of our experimental task is to track a person in a real-world. This tracking 

task thus can be divided into two steps since the mobile robot has to find the target person 

first and then begin to track the person. Therefore, two major subtasks are searching for 
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the target person and moving toward the target person. To keep the target person in the 

middle of the robot's viewpoint, there are two other subtasks, namely, tracking by turning 

left and tracking by turning right. 

At the beginning of the tracking task, the searching for the target person subtask is 

scheduled to execute by the Scheduler module. During the execution of this subtask, real 

images are grabbed and sent over to the robot host at fixed time interval while the mobile 

robot is spinning around and trying to locate the person in its viewpoint. To simplify the 

person recognition processing, the target person holds a concentric circle sign as its identi­

fication. Figure 25 shows the concentric circle. Simple image understanding is performed 

to detect the circle instead of the person himself. Once the person is located in the mobile 

robot's viewpoint, the searching for the target person subtask finishes and the second sub-

task moving toward the target person will be executed. At the same time, the position of 

the target person in the radial map is recorded as (disparity, column). 

Figure 25: The Concentric Circle Sign 

During the execution of the moving toward the target person subtask, only radial 

maps are used to locate the person in the robot's viewpoint. The robot moves toward the 

target person while keeping him in the center of its viewpoint. In this process, various 

exceptions could occur. For example, the exceptions indicate that the robot is running out 

of power, or sonar is blocked, or most importantly, the target person is moving out of the 

robot's viewpoint. When these exceptions are generated by the Monitor module, they are 

sent to the Exception Manager module. The Exception Manager generates new sub-

tasks based on the current robot's subtask and the incoming exceptions. These new sub-
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tasks might change the current goal. 

Either the tracking by turning left subtask or the tracking by turning right subtask 

is executed to keep the target person in the middle of the robot's viewpoint. Each of them 

begins executing when the target is in the robot's viewpoint but not in the middle of it. It 

will finish executing when the target moves into the middle of the robot's viewpoint. 

5.3.3 Events 

5.3.3.1 Action Events 

An action event is fired by the Executor and handled by the Effector. Its informa­

tion is one of the atomic actions such as moving forward and backward which is to be car­

ried out on the physical mobile robot. 

For the searching for the target person subtask of our tracking experiment, there 

are two action events. One of them lets the robot spin around once it is received and car­

ried out by the Effector. The other one sends a command and asks the robot to grab the 

real images from the camera. 

For the moving toward the target person subtask of our tracking experiment, the 

action event carries the command to tell the robot to move forward. 

For the tracking by turning left subtask, the action event carries the command of 

turning left. For the tracking by turning right subtask, the action event carries the com­

mand of turning right. 

5.3.3.2 Subtask Events 

The subtask events are fired by the Planner and handled by the Scheduler when a 

new plan is generated. A subtask event is also fired from the Scheduler to the Exception 

Manager when one subtask begins execution. Each subtask event includes the informa-
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tion about the current executing subtask of the robot. The Exception Manager uses this 

piece of information to decide which kinds of exception it is expecting. 

: Since there are searching for the target person, moving toward the target person, 

tracking by turning left and tracking by turning right subtasks to complete the tracking 

task, in total four subtask events are needed. Each one of them corresponds to a subtask. 

5.3.3.3 Data Events 

The world representation of the mobile robot is wrapped in this kind of event. The 

data in data events could be the sonar readings, the power reading, the robot position, the 

radial maps, or the images. Mainly it would be fired by the Sensor and handled by the 

Monitor. 

For the searching for the target person subtask, there are two kinds of data events. 

Each of them carries a real image grabbed from the camera or the power reading. 

For the moving toward the target person subtask, there are three kinds of data 

events. Each of them carries a radial map, the power reading or the sonar readings. 

For the tracking by turning left and tracking by turning right subtasks, there are 

two kinds of data events. They are for the radial maps and power reading respectively. 

5.3.3.4 Exception Events 

Exceptions are generated when the Monitor module detects any failure. Each 

exception is also an event in our ERA. It is fired by the Monitor and handled by the 

Exception Manager. After receiving an exception, the Exception Manager will generate 

new subtasks according to the current subtask and the exception. 

For all of the subtasks, one failure which could happen is that the voltage is dan­

gerously low. After the Monitor reads the power reading and detects the failure, a Power-
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LowException is fired and leads the robot to a final stop. 

For the moving toward the target person subtask, other exceptions that could be 

fired by the Monitor are the TargetLostException, the TargetNotlnMiddleException, and 

the SonarBlockException. The TargetLostException and the SonarBlockException will 

lead the mobile robot to search for the target person again. To recover from the Target­

NotlnMiddleException, the mobile robot will execute either the tracking by turning left 

subtask or the tracking by turning right subtask depends on the tendency of the target per­

son's moving. 

For the tracking by turning left and tracking by turning right subtasks, another 

exception is the TargetLostException. This also leads the robot to search for the target per­

son again. 

5.3.4. State Transition 

While the robot is executing a subtask, it is in a state observed by us. This robot 

state has two aspects. One is the robot's current pursuing goal, the other is its current 

action. Whenever it changes its current executing subtask, the robot has a state transition. 

Two of the above four events could finally result in such a state transition. They are the 

subtask events and the exception events. Since an action event results in the change of the 

robot's action only, it is not considered as one of the causes of the state transition. When 

new subtasks are executed, they always result in a robot's state transition. The exception 

events do not cause state transition directly, but they do let the control system generate 

new subtasks to recover from failure. These new subtasks will finally be executed. Thus, 

the robot will have a state transition. Figure 26 describes the state transition of the tracking 

task. 

The person tracking experiment successfully demonstrates the feasibility of the 

Event-based Robot Control Architecture. 
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5.4 Summary 

This chapter gave an implementation of our prototype for an Exception-based 

Robot Control Architecture. The control system is built on top of the previous system 

developed by Don Murray. A RWI mobile robot Eric is used to conduct a person tracking 

experiment. The exceptions that might happen during tracking are described as well. 
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Chapter Six 

Conclusion and Future Work 

In this chapter, the system presented will be evaluated with comparison to the 

specifications outlined in Section 3.1. These comparisons will show that the current proto­

type implementation meet those system specifications. More work, however, could be 

done to improve the performance. 

6.1 Specification Evaluation 

This section evaluates the current E R A implementation against each of the specifi­

cations outlined in Section 3.1. 

6.1.1 Robustness and Error Recovery 

Our prototype implementation of the Event-based Robot Control Architecture 

demonstrates that minor changes in the environment will not cause fatal errors for the 

mobile robot. Neither will the robot end up wandering aimlessly while encountering 

changes. 

Once an error is detected, efforts are made to recover from it instead of just giving 

up the current task. This error recovery is accomplished by using the exception mecha­

nism. The system will generate a new set of subtasks to achieve the current goal based on 

this exception information. The tracking experiment fully demonstrates that our control 

system meets this specification. 

6.1.2 Deliberative and Reactive 

Neither a purely deliberative nor a purely reactive control system fits the current 

requirement for a mobile robot. The Event-based Robot Control System combines both 
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deliberative and reactive characteristics into one system. The deliberative aspect of the 

system carries out the plans toward the goal. Meanwhile, the reactive aspect of the system 

adapts the mobile robot to the continuously changing environment. As the tracking exper­

iment shows, the mobile robot reacts to the real-world very well while keeping the delib­

erative goal. 

6.1.3 Timely Response 

In order to meet this specification, some of the time-consuming processing has 

been addressed earlier in this thesis. To reduce the time which the low bandwidth data 

waiting for its turn to transmit through radio-modem, high-bandwidth data is cut into 

pieces to be transmitted. To reduce both the transmission time and computation time, 

images are retrieved based on ROI (Region of Interest). 

In addition to ensure timely response for subtasks that handle urgent situations, 

high priority is assigned to those subtasks that have to be executed first. 

The prototype implementation of the Event-based Robot Control Architecture 

shows that these methods do have positive effect on the timely response issue. On the 

other hand, more improvement could result in abetter response especially if the system 

has hard real-time deadlines. 

6.1.4 Coordination Among Competing Activities 

At the same time, there might have several subtasks waiting to be executed. Con­

flicts among these subtasks are resolved by assigning a priority to each of the subtask. The 

high priority ones will be executed first. Subtasks with the same priority are executed 

according to the first come first serve principle. The implementation indicates that this pri­

ority-based scheduling meets our specification and works well in our experiment domain. 

6.1.5 Extensibility 

By using event-driven communication between different modules, we are hoping 
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to extend the system without much difficulty later on. To extend the system to a larger 

scale, all that must be done is to add more events in one module and corresponding event 

handlers in other modules. 

There is also a limitation in terms of extensibility in the Event-based Robot Con­

trol Architecture. It results from the nature of the exceptions. Every replanning process for 

recovery from a failure is based on both the failure and the current executing subtask. And 

every replanning leads the system to execute a new subtask. Thus, the relationship 

between subtasks is a network structure. To extend the system, the relationships between 

subtasks must be carefully considered. 

6.2 Future Work 

This section enumerates several improvements that could be made to the current 

architecture. 

6.2.1 Real Time Control 

Moving our mobile robot to a new environment with strict hard deadlines would 

require more consideration on real-time controlling. One possible solution to extend our 

system into a real-time control system is to have a real time scheduling algorithm. This 

could be done by improving the module Scheduler. Each of the subtasks which have hard 

deadlines requirement should have a deadline attached to it in addition to its priority. 

Thus, the subtasks will be executed according to not only its priority but also its deadline. 

The scheduler should be able to deal with the situation when some subtasks fail to be exe­

cuted before its hard deadline. At least, it should be capable of halting the whole system 

and waiting for the command from human operator. 

6.2.2 Coordination Among Multiple Subtasks 

Our current Event-based Robot Control Architecture coordinates multiple subtasks 

based on their priorities. Let us consider the case where the robot is asked to go to two 
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places. The implemented ERA will schedule the two subtasks by their priorities. The one 

with higher priority will be scheduled first. If they have the same priority, the one that 

arrives earlier is executed first. Ideally we would like the system to evaluate the cost to go 

to these two places and to execute these two subtasks that could minimize the cost. 

Another example in terms of coordination is as follows, the Scheduler receives 

"go to Office A" from the Planner and, at the same time, gets a subtask from the Excep­

tion Manager telling it to go back to the starting point to recharge the battery. Since the 

latter one has higher priority, the system will give up executing the former subtask and 

guide the robot to go back to its base. Improvement could be done to evaluate the voltage 

value first, decide whether the robot can go to Office A and go back to the base before the 

battery becomes dangerously low. If it can, the system should guide the robot to Office A 

first and then the starting point. It will only give up when the evaluation becomes false. 

6.2.3 Using RAP in ERA 

We gave a brief introduction in Section 2.3.2 about the RAP (Reactive Action 

Package) by R. James Firby. The execution of RAP queue is organized in a hierarchical 

style. When a primitive command is scheduled and sent to the RAP interpreter, it will be 

passed onto hardware through the hardware interface. 

The world model in RAP is actually the world representation in ERA. The hard­

ware interface to the robot becomes the virtual robot in ERA. The RAP execution queue 

could replace the priority queues of the Scheduler module in ERA. Subtasks in ERA are 

replaced by RAP. While each RAP is executing, exceptions in ERA could be used to 

detect failures and new RAPs will be generated and added to the RAP execution queue. 

6.3 Summary 

Each of the specification in Section 3.1 is evaluated first in this chapter. Section 6.2 

provides the possible future work that could be done to the current Event-based Robot 

Control System. Issues discussed are real-time control, coordination among multiple sub-
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tasks, and using RAP in our ERA. 
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Appendix A: A Few Issues For Programming the Robot 

a. Off-board vs. On-board 

It is always desirable to have all the system on-board, in another word, all the 

code located on the mobile robot itself. But in reality, having the whole system on-board 

causes difficulties in debugging the system. Therefore, during our implementation, most 

of the control system is off-board and located on the host. Although this separation helps 

with the debugging, it needs more consideration on the communication through radio-

modem. Transferring large image data between the host and the robot via radio-modem 

will lead to a delay for the process of image understanding. To speed up the system, we 

could always develop and debug our system on the remote host, and migrate the system 

to the robot later on. It doesn't matter whether the current system is in Java or not, 

because the robot itself is also a Pentium machine running LINUX. However, the current 

program module robotServer on the robot must encounter some changes to communicate 

directly with the control system instead of via radio-modem through sockets. 

b. Remote Invocation 

The current Java robot APIs do not support remote invocation. This could be 

done by using Java RMI. Since the Java robot APIs are implemented by calling JNI 

(Java Native Interface) to access the shared memory which is implemented in C++, 

remote invocation might cause a security problem. My suggestion to this problem is to 

investigate the SecurityManager class in Java. 

c. Temporal Facilities 

Temporal facilities are useful while developing a system with hard real-time 

requirements. The current system has the temporal facilities. They are implemented as 

the timestamps for each commands and each piece of information received by the host. 

They are located in the shared memory. 
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d. Exception Class 

The Exception Class in the current implementation inherits from EventObject 

class. Different exceptions simply inherit again from Exception Class. Each exception 

hot only has a name to indicate the type of the exception but also carries the information 

which describes the failures. This information can be simply implemented as variables in 

the Exception Class. 

e. Efficiency 

One problem in building this Java control system on top of C++ code is its 

efficiency. In order to get information such as image data from shared memory to the 

Java program, it is inevitable to have memory copies. In terms of efficiency, it might be 

better to develop the whole system in C++. 

f. Java Robot API 

Different systems can be built upon the following basic Java Robot APIs. They 

are interfaces to the shared memory developed in C++. 
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A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index 

Class robot Jmage.ImageMemory 
j a v a . l a n g . O b j e c t 

+ r o b o t . image . ImageMemory 

public class ImageMemory 
extends Object 
The methods in ImageMemory class are interfaces to the shared memory which stores the 
image information. Through this class, images can be requested and retrieved from these 
methods. 

• disp 
The disparity image. 
. leftRaw 
The left raw image. 
. left Rect 
The right rectified image. 
• rightRaw 
The right raw image. 
• rightRect 
The right rectified image. 
• topRaw 
The top raw image. 
• topRect 
The top rectified image. 

»ImageMemoryO 
Attach to the image shared memory created already in other program modules. 
»ImageMemory(boolean) 
Create the image shared memory or attached to the image shared memory that has already 
created by other program module. 

To 



Method /*fde\ 
» destroyO 
Destroy the image shared memory. 
» detachQ 
Detach from the image shared memory. 
» getlmage(int) 
Return one of the image. 
• getUpdate() 
Update the shared memory pointer. 
» requestlmages(int, int) 
Request specific image. 
» requestlmages(int, int, int, int, int, int) 
Request specific image based on Region of Interest. 
» requestReady() 
Return whether the image requested is available to be retrieved or not. 
• setBaseline(floaf) 
Set baseline. 
• setComplete(boolean) 
When the requested image arrives, set complete flag in the shared memory. 
» setFocalLength(float) 
Set focallength. 
• setResolution(int, int) 
Set resolution. 
• updatelmage(int) 
Copy the specific image data from the shared memory to the corresponding variable. 
• updatelmageNCols(int) 
Copy the number of columns of the specific image from the shared memory to the 
corresponding variable. 
• updatelmageNRows(int) 
Copy the number of rows of the specific image from the shared memory to the 
corresponding variable. 
» updatelmageStartCol(int) 
Copy the starting column of the specific image from the shared memory to the corresponding 
variable in case of retrieving ROI only. 
»updatelmageStartRow(int) 
Copy the starting row of the specific image from the shared memory to the corresponding 
variable in case of retrieving ROI only. 

• disp 

p u b l i c I m a g e l n f o d i s p 
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The disparity image. 

• rightRect 

p u b l i c I m a g e l n f o r i g h t R e c t 

The right rectified image. 

• leftRect 

p u b l i c I m a g e l n f o l e f t R e c t 

The left rectified image. 

• topRect 

p u b l i c I m a g e l n f o t o p R e c t 

The top rectified image. 

• rightRaw 

p u b l i c I m a g e l n f o r i g h t R a w 

The right raw image. 

• left Raw 

p u b l i c I m a g e l n f o l e f t R a w 

The left raw image. 

• topRaw 

p u b l i c I m a g e l n f o topRaw 

The top raw image. 

SI ImageMemory 

p u b l i c ImageMemory() throws M e m N o t A t t a c h a b l e E x c e p t i o n 

Attach to the image shared memory that has already created by another program module. 
Throws: MemNotAttachableException 
if the shared memory can not be attached. 

• ImageMemory 



public ImageMemory(boolean create) throws MemNotAttachableException 
Create the image shared memory or attach to the image shared memory that has already created by 
another program module. 
Parameters: 
create - a boolean indicates whether to create or to attach to the shared memory. If it is true, create 
the shared memory. 
Throws: MemNotAttachableException 
if the shared memory can not be attached. 

Methods 
• destroy 

p u b l i c b o o l e a n d e s t r o y ( ) throws CanNotDestroyMemException 

Destroy the image shared memory. 
Throws: CanNotDestroyMemException 
if the image shared memory can not be destroyed. 

• requestlmages 

p u b l i c s y n c h r o n i z e d b o o l e a n r e q u e s t l m a g e s ( i n t r o b o t , 
i n t images) 

Request specific images. 
Parameters: 
robot - which robot's image is going to request, 
images - which image is being requested. 
Returns: 
true if the request is sent to the image shared memory successfully, 
false if the request can not be sent to the image shared memory. 

• requestlmages 

p u b l i c s y n c h r o n i z e d b o o l e a n r e q u e s t l m a g e s ( i n t r o b o t , 
i n t images, 
i n t r , 
i n t c, 
i n t rows, 
i n t c o l s ) 

Request specific images based on ROI (Region of Interest). 
Parameters: 
robot - which robot's image is going to request, 
images - which image is being request, 
r - start row of the requested image 
c - start column of the requested image 
rows - number of rows of the requested image 
cols - number of columns of the requested image 
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Returns: 
true if the request is sent to the image shared memory successfully, 
false if the request can not be sent to the image shared memory. 

• setComplete 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t C o m p l e t e ( b o o l e a n c omplete) 

When the requested image arrives, set complete flag to true in the shared memory to indicate that 
the image is ready to be retrieved. After the image request is sent, the complete flag is set to false. 
Parameters: 
complete - whether the requested image is available or not. 
Returns: 
true if the flag is set successfullly. 
false if the flag can not be set. 

• updatelmageStartRow 

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a t e l m a g e S t a r t R o w ( i n t image) 

Copy the starting row of the specific image from the shared memory to the corresponding variable 
in case of retrieving ROI only. 
Parameters: 
image - the image type 
Returns: 
true if update is done. 
false if update can not be done. 

9 updatelmageStartCol 

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a t e l m a g e S t a r t C o l ( i n t image) ; 

Copy the starting column of the specific image from the shared memory to the corresponding 
variable in case of retrieving ROI only. 
Parameters: 
image - the image type 
Returns: 
true if update is done. 
false if update can not be done. 

• updatelmageNRows 

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a telmageNRows(int image) 

Copy the number of rows of the specific image from the shared memory to the corresponding 
variable in case of retrieving ROI only. 
Paramters: 
image - image type. 
Returns: 
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true if update is done. 
false if update can not be done. 

9 updatelmageNCols 

p u b l i c synchronized boolean updatelmageNCols(int image) 

Copy the number of columns of the specific image from the shared memory to the corresponding 
variable in case of retrieving ROI only. 
Parameters: 
image - image type 
Returns: 
true if update is done. 
false if update can not be done. 

• updatelmage 

p u b l i c synchronized boolean updatelmage(int image) 

Copy the specific image data from the shared memory to the corresponding variable. 
Parameters: 
image - image type 
Returns: 
true if update is done. 
false if update can not be done. 

• requestReady 

p u b l i c synchronized boolean requestReady() 

When the requested image is completely transfered from the robotServer to the host side, a 
complete flag in the shared memory is set to true. This method returns the complete flag to 
indicate whether the image is avaible or not. 
Returns: 
true if the specific image is available, 
false if the specific image is not avaible. 

® getUpdate 

p u b l i c synchronized boolean getUpdate() 

Update the shared memory pointer 
Returns: 
true if the update is done. 
false if the update can not be done. 

• setResolution 

p u b l i c synchronized boolean s e t R e s o l u t i o n ( i n t nrows, 
i n t ncols) 
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Set resolution 
Parameters: 
nrows - rows of the image 
ncols - columns of the image 
Returns: 
true if resolution is set in the shared memory successfully, 
false if resolution can not be set. 

• setBaseline 

p u b l i c synchronized boolean s e t B a s e l i n e ( f l o a t b) 

Set baseline 
Parameters: 
b - baseline 
Returns: 
true if baseline is set in the shared memory successfully, 
false if baseline can not be set. 

® setFocalLength 

p u b l i c synchronized boolean setFocalLength(float f) 

Set focallength 
Parameters: 
f - focallength 
Returns: 
true if focallength is set in the shared memory successfully 
false if focallength can not be set. 

• getlmage 

p u b l i c Imagelnfo getlmage(int imgType) throws NoSuchlmageException 

return one of the image variable of this class. 
Parameters: 
imgType - image type 
Throws: NoSuchlmageException 
if there is no such a image, or in another word, the image type is not valid. 
Returns: 
the specified image 

• detach 

p u b l i c boolean detach() throws MemNotDetachableException 

Detach the image shared memory. 
Throws: MemNotDetachableException 
if the image shared memory can not be detached. 

it 



Returns: 
true if detach is done successfully, 
false if detach can not be done. 

A l l Packages Class Hierarchy This Package Previous Next Index 
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A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index 

Class robot.info.InfoMemory 
J a v a . l a n g . O b j e c t 

+ r o b o t . i n f o . I n f o M e m o r y 

public class InfoMemory 
extends Object 
The methods in this class are interfaces to the shared memory that stores the robot 
information such as robot position, power information and radial map. 

, InfoMemory(boolean, ImageMemory) 
Create the robot info shared memory or attach to the shared memory that has already been 
created by other program modules. 
»InfoMemory(ImageMemory) 
Attach to the robot info shared memory that has already been created by other program 
modules. 

. getNotifyFlag(int) 
Get sonar information . 
»getPlan(int) 
Get path plan information. 
• getRadiallnfo(int) 
return radial map. 
• getRobotPosition(int) 
Get robot position. 
• getVoItage(int) 
Get robot's voltage information. 
• setBackward(int) 
Set command backward. 
» setForward(int) 
Set command forward. 
» setGoaI(int, int, int) 
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Set robot's goal position. 
• setGoal(int, RobotPosition) 
Set robot's goal position. 
. setHalt(int) 
Set command halt. 
• setLeft(int) 
Set command turn left. 
» setMode(int, int) 
Set robot's mode. 
• setNotifyFlag(int, long) 
Set robot's notifyFlag. 
• setPlan(int, PathPlan) 
Set path plan. 
• setRight(int) 
Set command turn right. 
• setTurn360(int) 
Set command turn 360. 
» updateRadial(int) 
Update radial map. 

S> InfoMemory 

p u b l i c InfoMemory(ImageMemory imageMem) throws M e m N o t A t t a c h a b l e E x c e p t i o n 1 

Attach to the robot info shared memory that has already been created by another program module. 
Paramters: 
imageMem - image shared memory 
Throws: MemNotAttachableException 
if the shared memory can not be attached. 

fi InfoMemory 

p u b l i c I n f o M e m o r y ( b o o l e a n c r e a t e , 
ImageMemory imageMem) throws M e m N o t A t t a c h a b l e E x c e p t i o n 

Create the robot info shared memory or attach to the shared memory that has already been created 
by another program module. 
Parameters: 
create - A boolean indicates whether to create or to attach to the shared memory. If it is ture, robot 
info shared memory will be created. 
imageMem - image shared memory 
Throws: MemNotAttachableException 
if the shared memory can not be attached. 



• getVoltage 

p u b l i c s y n c h r o n i z e d i n t g e t V o l t a g e ( i n t r o b o t ) 

Get robot power information. 
Parameters: 
robot - which robot's power information is requested, eric or jose? 
Returns: 

the power of the specific robot. 

SI getRobotPosition 
p u b l i c s y n c h r o n i z e d R o b o t P o s i t i o n g e t R o b o t P o s i t i o n ( i n t r o b o t ) throws GetRobotP< 

Get robot's current position (X, Y, H). 
Parameters: 
robot - which robot's position is requested, eric or jose? 
Throws: GetRobotPositionException 
if getRobotPosition cannot be finished successfully by calling Java native method. 
Returns: 
the robot's current position. 

• updateRadial 

p u b l i c s y n c h r o n i z e d R a d i a l l n f o u p d a t e R a d i a l ( i n t r o b o t ) throws' G e t R a d i a l l n f o E x c f 

Copy the robot's radial map from the shared memory to the object of this class. 
Parameters: 
robot - which robot's radial map is requested, eric or jose? 
Throws: GetRadiallnfoException 
if getRadiallnfo cannot be finished successfully by calling java native method. 
Returns: 
the robot's radial map. 

• getPlan 

p u b l i c s y n c h r o n i z e d P a t h P l a n g e t P l a n ( i n t r o b o t ) throws G e t P a t h E x c e p t i o n 

Get robot's path plan. This path plan is generated by another program module planner. 
Parameters: 
robot - which robot's path plan is requested, eric or jose? 
Throws: GetPathException 
if getPath cannot be finished succesfully by calling java native method. 
Returns: 
the robot's current path plan. 

• setPlan 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t P l a n ( i n t r o b o t , 
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P a t h P l a n p l a n ) 

Set robot's path plan. 
Parameters: 
robot - which robot's path plan is going to be set, eric or jose? 
plan - the path plan that is going to be set for the robot. 
Returns: 
true if plan is set successfully to the shared memory, 
false if plan cannot be set to the shared memory. 

• setTurn360 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t T u r n 3 6 0 ( i n t r o b o t ) 

Set command turn 360 to the shared memory. After this command is read by proxy module, it will 
be sent over to the physical robot. The robot will turn until it finishes 360 degrees. 
Parameters: 
robot - the robot which wiil turn 360. 
Returns: 
true if command is set successfully to the shared memory 
false if command cannot be set to the shared memory. 

• setHalt 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t H a l t ( i n t r o b o t ) 

Set command halt to the shared memory. After this command is read by proxy module, it will be 
sent over to the physical robot. The robot will stop its current movement. 
Paramters: 
robot - the robot which will halt. 
Returns: 
true if command is set successfully to the shared memory, 
false if command cannot be set to the shared memory. 

• setForward 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t F o r w a r d ( i n t r o b o t ) 

Set command forward to the shared memory. After this command is read by proxy module, it will 
be sent over to the physical robot. The robot will move forward. 
Parameters: 
robot - the robot which will move forward. 
Returns: 
true if command is set successfully to the shared memory, 
false if command cannot be set to the shared memory. 

if setBackward 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t B a c k w a r d ( i n t r o b o t ) 



Set command backward to the shared memory. After this command is read by proxy module, it 
will be sent over to the physical robot. The robot will move backward. 
Parameters: 
robot - the robot which will move backward. 
Returns: 
true if command is set successfully to the shared memory, 
false if command cannot be set to the shared memory. 

# setLeft 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t L e f t ( i n t r o b o t ) 

Set command turn left to the shared memory. After this command is read by proxy module, it will 
be sent over to the physical robot. The robot will turn left. 
Paramters: 
robot - the robot which will turn left. 
Returns: 
true if command is set successfully to the shared memory, 
false if command cannot be set to the shared memory. 

dsetRight 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t R i g h t f i n t r o b o t ) 

Set command turn left to the shared memory. After this command is read by proxy modules, it will 
be sent over to the physical robot. The robot will turn right. 
Parameters: 
robot - the robot which will turn right. 
Returns: 
true if command is set successfully to the shared memory, 
false if command cannot be set to the shared memory. 

® setMode 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t M o d e ( i n t r o b o t , 
i n t mode) throws NoSuchRobotModeException 

Set mode to the shared memory. Current modes are manual, explore, directed. 
Parameters: 
robot - indicates which robot's mode is going to change. 
mode - which mode is going to be sent over to the robot. One of the above current modes. 
Throws: NoSuchRobotModeException 
if it is not a valid mode. 
Returns: 
true if the mode is set successfully to the shared memory, 
false if the mode cannot be set to the shared memory. 

A setGoal 
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p u b l i c s y n c h r o n i z e d b o o l e a n s e t G o a l ( i n t r o b o t , 
R o b o t P o s i t i o n g o a l ) 

Set robot's goal position to the shared memory. This is only effective while the robot is in directed 
mode. 
Parameters: 
robot - indicates which robot's goal position is going to be set. 
goal - the goal position in (X, Y, H). 
Returns: 
true if the goal position is set successfully to the shared memory, 
false if the goal position cannot be set to the shared memory. 

• setGoal 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t G o a l ( i n t r o b o t , 
i n t x, 
i n t y) 

Set robot's goal position to the shared memory. This is only effective while the robot is in directed 
mode. 
Parameters: 
robot - indicates which robot's goal position is going to be set. 
x - the X of the goal position (X, Y, H). 
y - the Y of the goal position (X, Y, H). 
Returns: 
true if the goal position is set successfully to the shared memory, 
false if the goal position cannot be set to the shared memory. 

• setNotifyFlag 

p u b l i c s y n c h r o n i z e d b o o l e a n s e t N o t i f y F l a g ( i n t r o b o t , 
l o n g f l a g ) 

Set Notifyflag in the shared memory. 
Parameters: 
robot - indicates which robot's notifyflag is going to be set. 
flag - the notify flag. 
Returns: 
true if the flag is set successfully to the shared memory, 
false if the flag cannot be set to the shared memory. 

• getNotifyFlag 

p u b l i c s y n c h r o n i z e d i n t g e t N o t i f y F l a g ( i n t r o b o t ) 

Get Notifyflag from the shared memory. This is used to get the sonar information. 
Parameters: 
robot - indicates which robot's notifyflag is going to get. 
Returns: 
the notifyflag. 
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• getRadiallnfo 

p u b l i c R a d i a l l n f o g e t R a d i a l l n f o ( i n t r o b o t ) 

Return the robot's radial map. 
Paramters: 
robot - indicates which robot's radial map is being asked for. 
Returns: 
the specific robot's radial map. 
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Class robot.map.MapMemory 
j a v a . l a n g . O b j e c t 

I 
+ robot.map.MapMemory 

public class MapMemory 
extends Object 
The methods in this class are interfaces to the shared memory that stores the maps such as 
plan map, zoom map, obstacle map and distance map. 

»MapMemory() 
Attach to the robot map shared memory. 

• getDistMapO 
Return distance map. 
» getEricZoomMapO 
Return eric zoom map. 
»getJoseZoomMapO 
Return jose zoom map. 
»getObstMap() 
Return obstacle map. 
• getPlanMap() 
Return plan map. 
• mapCentre(int) 
Get the center coordinates of the map. 
• mapToWorld(int, int, int) 
Transform the map coordinates (row, column) to world coordinates (X, Y): 
• recentre(int, int, int) 
Recenter the map. 
• recentre(int, int, Maplnfo) 
Recenter the map. 
» updateDistMap(int, int, int, int) 
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Copy the distance map from the shared memory to the object of this class. 
• updateEricZoomMapO 
Copy the eric zoom map from the shared memory to the object of this class, 
a updateJoseZoomMapQ 
Copy the jose zoom map from the shared memory to the object of this class. 
• updateObstMap(int, int, int, int) 
Copy the obstacle map from the shared memory to the object of this class. 
• updatePlanMap(int, int, int, int) 
Copy the plan map from the shared memory to the object of this class. 
• worldToMap(int, int, int) 

Transform the world coordinates (X, Y) to the map coordinates (row, column), 

ft MapMemory 

p u b l i c MapMemory() throws M e m N o t A t t a c h a b l e E x c e p t i o n 
Attach to the robot map shared memory. 
Throws: MemNotAttachableException 
if the shared memory cannot be attached. 

AddMads 
ft updateJoseZoomMap 

p u b l i c b o o l e a n updateJoseZoomMap() throws G e t M a p E r r o r E x c e p t i o n 

Copy the jose zoom map from the shared memory to the object of this class. 
Throws: GetMapErrorException 
if map cannot be get by calling java native method. 
Returns: 
true if map is successfully updated 
false if map cannot be udpated. 

ft updateEricZoomMap 

p u b l i c b o o l e a n updateEricZoomMap() throws G e t M a p E r r o r E x c e p t i o n 

Copy the eric zoom map from the shared memory to the object of this class. 
Throws: GetMapErrorException 
if map cannot be get by calling java native method. 
Returns: 
true if map is successfully updated, 
false if map cannot be updated. 
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• updatePlanMap 

p u b l i c b o o l e a n u p d a t e P l a n M a p ( i n t r , 
i n t c, 
i n t g e t r , 
i n t g e t c ) throws G e t M a p E r r o r E x c e p t i o n 

Copy the plan map from the shared memory to the object of this class. 
Parameters: 
r - row of the center of the map 
c - column of the center of the map 
getr - the number of rows to be updated 
getc - the number of columns to be updated 
Throws: GetMapErrorException 
if map cannot be get by calling java native method 
Returns: 
true if map is successfully updated, 
false if map cannot be updated. 

• updateObstM ap 

p u b l i c b o o l e a n u p d a t e O b s t M a p ( i n t r , 
i n t c, 
i n t g e t r , 
i n t g e t c ) throws G e t M a p E r r o r E x c e p t i o n 

Copy the obstacle map from the shared memory to the object of this class. 
Parameters: 
r - row of the center of the map 
c - column of the center of the map 
getr - the number of rows to be updated 
getc - the number of columns to be updated. 
Throws: GetMapErrorException 
if map cannot be get by calling java native method 
Returns: 
true if map is successfully updated, 
false if map cannot be udpated. 

9 updateDistMap 

p u b l i c b o o l e a n u p d a t e D i s t M a p ( i n t r , 
i n t c, 
i n t g e t r , 
i n t g e t c ) throws G e t M a p E r r o r E x c e p t i o n 

Copy the distance map from the shared memory to the object of this class. 
Parameters: 
r - row of the center of the map 
c - column of the center of the map 
getr - the number of rows to be updated 
getc - the number of columns to be updated 
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Throws: GetMapErrorException 
if map cannot be get by calling java native method 
Returns: 
true if map is successfully updated, 
false if map cannot be updated. 

® getJoseZoomMap 

p u b l i c M a p l n f o getJoseZoomMap() throws NoMapException 

Return the jose zoom map. 
Throws: NoMapException 
if no jose zoom map is available. 
Returns: 

the jose zoom map. 

• getEricZoomMap 
p u b l i c M a p l n f o getEricZoomMap() throws NoMapException 

Return the eric zoom map. 
Throws: NoMapException 
if no eric zoom map is available. 
Returns: 

the eric zoom map. 

9 getPlanMap 
p u b l i c M a p l n f o g e t P l a n M a p ( ) throws NoMapException 

Return the plan map. 
Throws: NoMapException 
if no plan map is available. 
Returns: 
the plan map. 

fl> getObstMap 

p u b l i c M a p l n f o getObstMap() throws NoMapException 

Return the obstacle map. 
Throws: NoMapException 
if no obstacle map is available. 
Returns: 
the obstacle map. 

fl getDistMap 

p u b l i c M a p l n f o g e t D i s t M a p ( ) throws NoMapException 



Return the distance map. 
Throws: NoMapException 
if no distance map is available. 
Returns: 
the distance map. 

® worldToMap 

p u b l i c MapPoint w o r l d T o M a p ( i n t mapType, 
i n t x, 
i n t y) 

Change a position from world coordinates (X, Y) to map coordinates (rows, column). 
Parameters: 
mapType - map type 
x - X in world coordinates (X, Y). 
y - Y in world coordinates (X, Y). 
Returns: 
the map coordinates (row, column) of (X, Y). 

SI mapToWorld 

p u b l i c W o r l d P o i n t m a p T o W o r l d ( i n t mapType, 
i n t row, 
i n t c o l ) 

Change a position from map coordinates (row, column) to world coordinates (X, Y). 
Parameters: 
mapType - map type 
row - row in map coordinates (row, column), 
col - column in map coordinates (row, column). 
Returns: 
the world coordinates (X, Y) of (row, column). 

• mapCentre 

p u b l i c W o r l d P o i n t m a p C e n t r e ( i n t mapType) 

Get the map center in world coordinates of a specific map. 
Parameters: 
mapType - map type 
Returns: 
the world coordinates of the center of the map. 

• recentre 

p u b l i c v o i d r e c e n t r e ( i n t mapType, 
i n t x, 
i n t y) 

R e c e n t e r t h e s p e c i f i c map t o (X, Y ) . 



Parameters: 
mapType - map type 
x - X coordinate of new center (X, Y) 
y - Y coordinate of new center (X, Y) 

fl> recentre 

p u b l i c void r e c e n t r e ( i n t x, 
in t y, 
Maplnfo plan) 

Recenter the plan map to (X, Y). 
Parameters: 
x - X coordinate of new center (X, Y) 
y - Y coordinate of new center (X, Y) 
plan - plan map 
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