
An Event-based Robot Control Architecture

by

Jie Yu

B.Sc, Xi'an Jiaotong University, P.R.China, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as confirming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 1999

© Jie Yu, 1999

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this thesis

for scholarly purposes may be granted by the head of my department or by his or her rep­

resentatives. It is understood that copying or publication of this thesis for financial gain

shall not be allowed without my written permission.

Department of Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, BC, Canada

V6T 1Z4

Date: (7 W 16, /W)

Abstract

The robot control system is a subsystem of a robot designed to regulate its

behaviours to meet certain requirements. For a mobile robot performing in a real-world

environment, its control system must have the capability to be both deliberative and

reactive. In addition to this fundamental requirement, robustness, timely response and:

coordination among multiple goals are also desirable for a mobile robot control system.

This thesis addresses these requirements in building a mobile robot control system and

proposes an Event-based Robot Control Architecture (ERA). . . v

The unpredictable nature of the real-world environment leads to the development

of our Event-based Robot Control Architecture. All communications inside the control:

architecture are done in the form of events. Our focus for the mobile robot control

architecture is on using an exception mechanism for error recovery. Exceptions are one

kind of events. We present a general design and a system prototype for an Event-based

Robot Control Architecture. The implementation was used to conduct experiments ,and

identify the benefits and limitations of the proposed paradigm. It was found that a mobile

robot using this Event-based Robot Control Architecture meets the previously

established requirements.

i i

TABLE OF CONTENTS

ABSTRACT ...1
TABLE OF CONTENTS h
LIST OF FIGURES .' •«
ACKNOWLEDGMENT .y

1. Introduction 1
1.1 Robot Control Architecture '. .1
1.2 Motivation .2
1.3 Thesis Contribution -3
1.4 Thesis outline :. :4

2. Previous Work 6
2.1 Planning Control Systems 7

. .2.2 Reactive Control Systems •. ;-8
2.3 Hybrid Control Systems ,. 10

2.3.1 A Blackboard Architecture 10
2.3.2 Reactive Action Package 11
2.3.3 Task Control Architecture 13
2.3.4 S* Proposal .„ 15

2.4 Real-time Robot Control System : 16
2.5 Summary 17

3. System Architecture , 19
3.1 System Specifications 19

3.1.1 Robustness & Error Recovery '. 19
3.1.2 Deliberative & Reactive 20
3.1.3 Timely Response 21
3.1.4 Coordinate Among Multiple Goals, Competing Activities and Functions ... 21
3.1.5 Extensibility 21

3.2 Design Issues 22
3.2.1 Modularity 22
3.2.2 Virtual Robot 23
3.2.3 Distributed Control 23
3.2.4 Effective Communication 24
3.2.5 Synchronization 25

3.3 A Few Definitions 25
3.4 System Overview 26

3.4.1 Exception Mechanism 26
3.4.2 Using Exceptions in an Active Visual Task 27
3.4.3 ERA Overview 28

3.4.4 Tsotsos' Active Vision ; 30
3.4.5 Comparison between ERA and Tsotsos's Active Vision 31

3.5 Summary 31

4. System Details 33
4.1 World Representation 33

4.1.1 Internal Representation 33
4.1.2 External Representation 34

4.2 Virtual Robot 36
,4.2.1 Robot Control • -36
4.2.2 World Representation Retrieval 37

4.3 Sensor Fusion .38
, 4.3.1 Sensor Fusion Methods -39
4.3.2 Sensor Invocation -40
4.3.3 Selective Attention .40

4.4 Event-Driven Communication .41
4.4.1 Event and Event Handler 41
4.4.2 Events -42

4.5 Modules 43
4.5.1 Effector -43

"; 4.5.2 Sensor '.. .'..43
4.5.3 Monitor ; 44
4.5.4 Exception Manager •• 44
4.5.5 Scheduler /. ..44
4.5.6 Executor 45

4.7 Summary • 45

5. Prototype Implementation 46
5.1 Implementation Environment .\ 46
, 5.1.1. Hardware 46

5.1.2 Software Environment 47
5.2 Implementation 49

5.2.1 Software Architecture ..49
5.2.2 Event and Event Handler in Java 50

5.3 Experiment ...51
5.3.1 Using Radial Map 51
5.3.2 Description of Tracking 52
5.3.3 Events 54
5.3.4. State Transition 56

5.4 Summary 57

6. Conclusion and Future Work 59
6.1 Specification Evaluation 59

6.1.1 Robustness and Error Recovery 59

iV

6.1.2 Deliberative and Reactive 59
6.1.3 Timely Response 60
6.1.4 Coordination Among Competing Activities ..60
6.1.5 Extensibility 60

6.2 Future Work ...61
6.2.1 Real Time Control 61
6.2.2 Coordination Among Multiple Subtasks 61
6.2.3 Using RAP in ERA 62

6.3 Summary62

Bibliography 64

Appendix A: A Few Issues For Programming The Robot 68
a. Off-board vs. On-board 68
b. Remote Invocation 68
c. Temporal Facilities ..68
d. Exception Class 69
e. Efficiency 69
f. Java Robot API 69

V

L I S T O F F I G U R E S

Figure 1: Functional Decomposition of A Mobile Robot Control System 7
Figure 2: A Decomposition Based on Task Achieving Behaviour : 9
Figure 3: Navlab Robot Control Architecture ([Thorpe88]) 10
Figure 4: The RAP Execution Environment ([Firby87]) 12
Figure 5: An Illustration of RAP Execution ([Firby87]) 13
Figure 6: A Task Tree in Task Control Architecture14
Figure 7: The SMPA-W cycle showing the world node ([Tsotsos98] 15
Figure 8: Exception Mechanism 27
Figure 9: Exceptions and Subtask Transitions : 28
Figure 10: An Embedded Event-based Robot Control Architecture 29
Figure 11: An Event-based Control Architecture 30
Figure 12: A Real Camera Image '.. 34
Figure 13: A Disparity Image : 35
Figure 14: A Radial Map : : 35
Figure 15: A Map Generated During Exploration 36
Figure 16: A System with Multiple Sensors 39
Figure 17: A Unicast Event 42
Figure 18: A Multicast Event 42
Figure 19: A Mobile Robot Eric 46
Figure 20: The triclops stereo head 47
Figure 21: Previous Software Architecture 48
Figure 22: Software Architecture with Control System 50
Figure 23: Event and Event Handler 51
Figure 24: A Radial Map: Disparity vs. Column 52
Figure 25: The Co-centric Circle Sign 53
Figure 26: State Transition in Tracking Experiment 58

Acknowledgment

I owe Dr. James Little, my supervisor, a great deal of gratitude for the completion

of this work. The time he committed to me and his genuine interest in my work helped me

greatly. I am especially grateful for his encouragements that brought me to the world of

computer vision and mobile robots.

I would also like to thank the reviewing reader, Dr. Alan Mackworth, for taking the

time to review this thesis.

I take this opportunity to thank Don Murray, without whom my thesis would not

have been done. His great patience and suggestions have always been my hope. Many

thanks also go to Cullen Jennings, Rob Barman and Steward Kingdon for their kind help.

This thesis is dedicated to my family. All these could have not been possible with­

out the love and support from them. They have always been there when I was lost in the

darkness.

Thanks to everyone who has contributed to make my experience at UBC a very

rewarding one. I have certainly learned a lot and have benefited greatly from the entire

experience.

Chapter One

Introduction

r For the past three decades, researchers have been working on building autonomous

mobile robots in real-world environments. Wide varieties of mobile robot applications

range from domestic robotics, warehouse management, to space and military purposes. It

is generally desirable to have a robot assistant performing tasks such as mail delivery,

trash collection or museum guidance. In situations where it would be dangerous or impos­

sible for a human to do the task, mobile robots become the right choice.

This thesis presents a design for a mobile robot control architecture named ERA.

ERA stands for Event-based Robot Control Architecture. The primary purpose of the

project is to explore a robot control architecture which interleaves planning with reactive

characteristic. The emphasis of this thesis is on the design and evaluation of the system in

a real-world implementation.

1.1 Robot Control Architecture

In [ZM98], a robotic system is the coupling of a robot to its environment. A robot

is an integrated system, with a robot controller embedded in its plant. A robot controller

(or control system) is a subsystem of a robot, designed to regulate its behaviour to meet

certain requirements. The planner generates plans and the robot control system actually

carries out actions in the environment. Since each robotic system has its own require­

ments, it is quite difficult to apply a generic control system to all robotic systems. Differ­

ent robot control architectures provide us different designs for a robot controller. In this

thesis, robot control architecture is the primary topic. The topic refers to the software and

hardware framework for controlling robots, in our case, a mobile robot. Different robot

1

control architectures will be briefly compared.

As mobile robots are used to accomplish complex tasks in a dynamic environment,

a processor running C code to turn motors does not really constitute a control architecture

by itself anymore. Both the development of code modules and communication between

those modules begin to define the robot control architecture.

1.2 Motivation

This thesis was motivated by the work done at the University of British Columbia,

Laboratory for Computational Intelligence on a stereoscopic visually guided mobile robot.

Don Murray [Murray97], implemented a mobile robot named Jose developed in LCI. The

mobile robot, Jose, embodies a sophisticated real-time vision system for the control of a

responsive mobile robot. Dynamic environments are unpredictable, asynchronous, and

require a low latency in response, while visual information processing requires high data-

rate communications and significant computation. The aim of Jose is to explore the possi­

bility of using the vision information to guide mobile robot's behaviour. The robot's func­

tions that have been completed to date include mapping, navigation, exploration, and

simple manipulation.

The original robot system developed in LCI consists of the mobile robot Jose and a

host Sol. The communication between them is through a radio modem. Since the radio

modem is much slower than ethernet, efforts were made to reduce the amount of data sent

to the host. Image data captured from the cameras were influenced by this intention.

Instead of transmitting whole images over from Jose to Sol, a radial map is built on Jose

and then sent to Sol. Thus, the amount of data to be transmitted is significantly reduced.

Detailed information on how to build such a radial map is described in [Murray97]. How­

ever this enhancement in communication reduces the flexibility of the whole system. Jose

can hardly do any other tasks besides navigation.

The goal of this thesis is to add more complexity and flexibility to the existing

2

robot system. We hope that Jose can do more tasks such as tracking a person. To achieve

such behaviour as tracking, the most important issue is to add image processing capability

to the whole system. In addition, the system should retain the ability to avoid obstacles.

This thesis is motivated by the above considerations. Research has been done to build a

robot control architecture aimed at solving these problems.

1.3 Thesis Contribution

To provide more complexity and flexibility to the mobile robot system in LGI, one

of the possible ways is to extend the current vision system. The vision system is now used

to build a 2-D map of the environment for the mobile robot. This 2-D map is actually an

integration of different radial maps over time. Extension of this vision system can be done

to include direct image understanding from the images that are grabbed from the cameras.

Thus, more complex tasks such as looking for a cup can be accomplished. One of the

contributions of this thesis is this extension of the vision system.

The primary contribution of this thesis is to build a robot control system. Our

mobile robot is supposed to survive in a dynamic real-world environment. This brings up

several considerations for designing such a robot control system. First, in order for the

mobile robot to accomplish tasks in a dynamic environment, it is very important for the

robot to have both deliberative and reactive behaviours. Deliberative behaviours are

goal-oriented. With reactive behaviours, the mobile robot can react to unpredictable

events during its tasks' execution. Second, the robot must be robust and capable of error

recovery. Especially for a mobile robot with more than one sensor, inconsistent or conflict­

ing sensor readings have to be resolved in the robot control system. Finally, timely

response is also a major consideration in designing the robot control system. Our attempt

to have image understanding in the robot control system requires careful consideration to

meet this timely response requirement.

We propose in this thesis an event-based robot control architecture (ERA). The

design of the ERA is based on the considerations mentioned above. The real-world is not

3

static. Any environmental changes may cause failures for the robot's current task. These

failures usually are not predictable. Since it is impossible to design a control architecture

that can avoid all failures, exceptions are incorporated into this architecture to inform the

robot of failures. Thus, failures can be handled in a proper way. The whole system can

finally recover from failures.

The thesis has sub-emphasis on the implementation of systems using asynchro­

nous data flow paradigms instead of procedural decomposition. In addition, coordination

among subtasks is resolved by priority based scheduling.

A prototype of ERA design has been implemented on the current mobile robot

Eric and robot host Sol. Eric is a cylindrical mobile robot, from Real World Interfaces Ltd.

It was built upon the current existing software developed in LCI. Java is chosen as the

implementation programming language because it provides a mechanism for handling

events. Finally, tracking experiments are performed to test the ERA.

1.4 Thesis outline

Chapter 2 presents a discussion of issues relevant to robot control architecture: It

also summarizes several notable papers that present typical robot control architectures.

Chapter 3 first proposes the specifications for the robot control architecture. Some

design considerations are also described. Finally an overview of our event-based robot

control architecture is presented.

Chapter 4 gives a few detailed design issues. Solutions for these issues are pro­

vided as well. Issues discussed are world presentation, virtual robot, sensor fusion, and

finally each module is briefly introduced.

Chapter 5 presents a prototype implementation of our robot control architecture.

The hardware and software environment of the prototype is introduced. A person tracking

experiment is performed using radial maps to demonstrate our Event-based Robot Control

Architecture.

Chapter 6 presents the conclusions inferred from the experiment in Chapter 5, and

future work is proposed for improving the system.

5

Chapter Two

Previous Work

Early robot control systems attempted to plan a complete list of actions in advance

of execution. Those plans are generated based only on the collection of the world informa­

tion. It makes sense to construct a detailed plan well ahead only if the world situation is

highly predictable and can be fully controlled. The most typical system of this kind is usu­

ally referred as a functional decomposition or centralized system. In 1985, Rodney

Brooks[Brooks86] published a report on a completely new robot control architecture

called "reactive systems". Rather than attempting to model the world in advance, reactive

systems had multiple task modules which are named behaviours, reacting directly to the

sensory information.

The limitations of the above two systems are obvious. For the functional decompo­

sition control system, it could only survive in an artificially created domain such as in a

laboratory or on a factory floor. However, in a more dynamic world, where actions cannot

be anticipated, the situation at execution time cannot be controlled, and a detailed plan

cannot be built. The control system proposed by Brooks is a purely reactive system which

can only wander around safely but aimlessly. In order for the robot to do some real world

tasks, recent discussion on robot control architecture tends to combine planning and reac­

tive behaviours together into one system. Most of the systems start with one approach and

try to push their capabilities toward the other one.

In some circumstances, real-world systems not only are complex but also have

hard real-time deadlines. This becomes a significant challenge for the AI community. Tra­

ditionally, AI techniques aim to provide careful and complete plans for a task. This con-

6

sideration retains both reactive and unpredictable mechanisms but does not guarantee hard

real-time responses. To enable a control system to meet hard deadlines, some of the

researchers are trying to embed real time control system into artificial intelligence domain.

The main part of this chapter describes some of the existing approaches to build

robot control architecture. Section 2.1 describes the planning control systems. The reac­

tive control systems are presented in Section 2.2. Section 2.3 gives three well-known

hybrid robot architectures which have already been implemented and the S * proposal.

Finally in Section 2.4, a brief discussion of real-time robot control architectures is pre­

sented.

2.1 Planning Control Systems

' Planning control systems reason about and plan every action before task execution.

These control architectures usually have a sophisticated world model and reason about

how to accomplish the task goal based on this world model. The general approach is to

sense the world, build a world model, plan actions which aim to achieve the goal, and

finally execute the actions via sending commands to robot motor system. Classically the

problem of planning control system has been addressed within a framework of functional

decomposition into sensing, planning, and acting components (e.g., [Nilsson84],

[Moravec83], [Crowley85]). Rodney Brooks [Brooks86] described such a system which

decomposed the problem into a series of functional units as illustrated by a series of verti­

cal slices. Figure 1 presents such a decomposition.

Sensor.

e
>

d i
<D
O
I-i
CD

OH

S3
O

60
- 4 — *

60 3
C CJ

od
el

an
ni

ex
ei

ta

sk

a o o
Ul

O
»

O

Actuators

Figure 1: Functional Decomposition of A Mobile Robot Control System

7

Elaborate reasoning and planning, on one hand, demonstrate a high level of

sophistication for robots. But on the other hand, they also require an accurate world

model. Dynamic environments and sensor noise always make it unreliable. The planning

control system is only applicable in a controlled situation. Additionally, because of elabo­

rate reasoning and planning, the system is generally not fast enough to be used in real-

world mobile robots.

2.2 Reactive Control Systems

In response to the lack of flexibility and reaction to the dynamic world existing in a

planning control system, attempts were made to completely abandon the planning

approach. A behaviour-based control architecture was proposed by Rodney Brooks in

1985. Brooks demonstrated his theory by using the behaviour-based control system on

several mobile robots developed at the Artificial Intelligence Laboratory, Massachusetts

Institute of Technology [Brooks 86]. This reactive control system provides fast reactions

to a dynamically changing environment by short control loops.

The foundation for the reactive control architecture is the idea of "behaviour". As

indicated in Section 2.1, a planning control architecture was split into functional tasks

namely sensing, world modeling, planning and execution. In contrast to this, the reactive

control architecture has multiple independent tasks running in parallel. These independent

tasks are called behaviours, for example, avoiding obstacles, moving forward and follow­

ing a target. Each behaviour decides by itself what is the relevant sensory information and

is activated by this specific sensory information. Therefore, behaviours are triggered

immediately to react to their environment. Response time is significantly decreased from

the time in a functional-oriented architecture.

As Figure 2 indicated, the architecture proposed by Brooks took a radical depar­

ture from the traditional functional-oriented control systems. Instead of organizing the

system from horizontal components, the behaviour-based control architecture is vertical.

Each individual layer has an associated task and issues motor commands independently. In

8

order to coordinate among these motor commands, high level layers could subsume the

lower level ones. Or the conflicts are resolved through the priority of the levels. The capa­

bility to override other commands is known as subsumption. Thus a reactive control sys­

tem is a collection of competing behaviours. In the eye of an observer, it is a coherent

pattern of behaviours.

reason about behaviour of objects

plan changes to the world

identify objects

monitor changes
Sensors ^ ' ^ Actuators

build map

explore

wander

avoid objects
Figure 2: A Decomposition Based on Task Achieving Behaviours

Many systems are implemented based on this reactive control architecture, for

example, six-legged walking robots and remote-controlled cars. They demonstrated navi­

gation capabilities that were quicker and more capable than those of planning control sys­

tems. However, the architecture is not perfect. Mobile robots implemented in this

architecture could only wander around safely but aimlessly. It is difficult to achieve high

level interesting performance. Such systems are purely reactive, and lack the ability of

sophisticated planning. [Tsotsos98] provides a strong theoretical argument that reactive

control systems are only appropriate for a very limited domain of behaviours.

9

2.3 Hybrid Control Systems

Since the weaknesses of planning control systems and the reactive control systems

are apparent, researchers began to move away from purely planning or purely reactive

control systems and towards hybrid plan/reactive systems. A hybrid control system allows

researchers to explore the benefits of each approach. To demonstrate the possibility and

feasibility of such a hybrid architecture, several control architectures such as [Firby87],

[Thorpe88], [Simmons90] have been proposed and implemented over the years.

2.3.1 A Blackboard Architecture

The Navlab developed of CMU is a mobile robot using a blackboard architecture

as its control system. Figure 3 describes the blackboard control architecture. It was devel­

oped as a part of the CODGER (Communication Database with Geometric Reasoning)

system[Shafer86].

Blackboard Interface

Captain

Blackboard Interface

Pilot

BLACKBOARD

Blackboard Interface

Map Navigator

Figure 3: Navlab Robot Control Architecture ([Thorpe88])

The whole system consists of one central database and five modules. The central

database is called the Local Map and is managed by Local Map Builder (LMB). The mod­

ules are Caption, Pilot, Lookout, Map Navigator, and Perception Subsystem. The

Blackboard Interface

Lookout

Blackboard Interface

Perception
Subsystem

10

C a p t i o n is the overall supervisor for the system. The P i l o t is the low level path planner

and motor controller. The L o o k o u t monitors the environment for landmarks. The M a p

N a v i g a t o r is a high level path planner. The P e r c e p t i o n S u b s y s t e m accepts the raw

input from multiple sensors and integrates them into a coherent representation. In C O D ­

G E R , each module is a separate, continuously running program. Communication among

modules are done by storing and retrieving data in the central database through a set of

subroutines called L M B interface. Synchronization is achieved by the facilities provided

in L M B interface.

The blackboard control architecture integrates planning and reactive behaviour

into one system. Planning was done by P i l o t and M a p N a v i g a t o r . L o o k o u t and P e r c e p ­

t i o n S u b s y s t e m gave the Navlab the ability to react to the outside world.

2.3.2 Reactive Action Package

In the late 80s, R. James Firby of Yale University proposed a concept of reactive

planning [Firby87]. In contrast to strategic planning, in which the system is required to

look ahead and detect failure situations before they occur, reactive planning systems gen­

erate or change their plans only in response to the shifting situation at execution time. A l l

of the planning will take place during execution when the situation can be decided and not

on anticipated states.

The whole reactive planning system was built on a mechanism called reactive

action packages or RAPs. Each R A P is an independent entity competing with other RAPs

and pursuing a planning goal. It will not stop until the goal is achieved or every possibility

has been tried. Figure 4 shows a R A P execution environment. The current world represen­

tation is stored in the world model. The hardware interface controls the communication

between the R A P interpreter and the world model. While each R A P executes, it can

change the world representation. This modification is done through the hardware inter­

face. Any hardware information change such as sonar information or visual information

will be sent to the world model as well. The R A P interpreter and execution queue main-

11

tain the relationship between different RAPs.

The execution of the RAP queue is organized in a hierarchical style. Whenever

there is a task to achieve, a RAP is chosen to start execution. Each RAP consists of two

parts: goal check and task net selector. A task net is a partially ordered network of sub-

tasks. All goal check does is to consult the world model and see whether the task has been

achieved. If not, a collection of task nets are selected and inserted into the RAP execution

queue. The set of task nets are essential elements to complete the task. These task net ele­

ments can be primitive commands or subtasks of the original task. When a primitive com­

mand is scheduled and sent to the interpreter, it will be passed onto hardware through the

hardware interface. When a subtask is activated, it essentially invokes another RAP. Fig­

ure 5 is an illustration of RAP execution.

World Model

RAP Execution Queue

Figure 4: The RAP Execution Environment ([Firby87])

12

Figure 5: An Illustration of RAP Execution ([Firby87])

The advantage of this reactive planner is its adaptability in an uncertain domain.

The shortcoming of the reactive planning system is also obvious. It cannot deal with prob­

lems that require thinking ahead. For example, for a robot on a searching crew, its

expected behaviour is to bring a flashlight with it since it will get dark outside soon. But

for a reactive planning system, it is not going to think about the future at all. Based on the

current light condition, it will not bring the flashlight.

2.3.3 Task Control Architecture

Xavier, an office delivery robot developed at CMU, has been in daily use since

December 1995 [Simmons97]. This mobile robot has to perform many tasks such as deter­

mining the order of the offices to visit, planning path to those offices, following path

exactly and avoiding obstacles on its way. Xavier has to deal with incomplete environment

information, dynamic situation as well as sensor noise.

A layered architecture is designed for the office delivery robot. The architecture

consists of four abstraction layers: Obstacle Avoidance, Navigation, Path Planning,

and Task Scheduling. The Obstacle Avoidance module keeps the robot moving in the

desired direction without bumping into static or dynamic obstacles. The Navigation mod-

13

ule follows the paths generated by path planning module. The Path Planning module

decides how to travel from one location to another efficiently. The Task Scheduling

module determines the order of the offices to be visited. In Xavier, a higher layer works

with more abstract representation and provides guidance to lower layers. Each layer is

implemented as a separate code process. Interprocess communication and synchronization

are provided by TCA (Task Control Architecture).

The Task Control Architecture aimed at exploiting a facility to combine reactivity

within a planning framework. The Task Control Architecture was built around the frame­

work of hierarchical task trees. Example of a task tree is shown in Figure 6. A task tree

stands for the parent/child relationships between messages. A nonleaf node denotes a sub-

task or monitor. Leaf nodes are effector commands or queries to read sensors. There are

two kinds of temporal constraints between nodes in a task tree: sequential-achievement

and delay-planning. For the sequential-achievement constraint, the second task cannot

begin until all the leaf nodes of the first task are executed. Delay-planning constraints

indicate that the previous task should be completely achieved before the subsequent goal

can be handled. TCA also defines facilities to kill subtrees, add new nodes and change

temporal constraints.

Go to position

turn right

Put into trash bin

Figure 6: A Task Tree in Task Control Architecture

14

The Task Control Architecture successfully demonstrated its four main capabili­

ties: interleaving planning and execution, change detection, error recovery, and coordina­

tion between multiple tasks. The first capability enables robot systems to act on partically

specified plans, allowing them to plan in advance in spite of uncertainty. The other three

capabilities enable systems to detect and intelligently handle plan failures, unexpected

opportunities and contigencies.

2.3.4 S* Proposal

[Tsotsos98] proposes a control strategy S* which integrates an active vision syŝ

tern. He claims that S* combines deliberative as well as reactive behaviours by using

visual attention.

The basic elements in the proposed S* control strategy actually are behaviours.

The behaviours act on either an internal representation or an external representation. Each

of the representation is a part of the world model. Thus each behaviour in S* is presented

as an SMPA-W cycle, in another word, sense-model-plan-action-world cycle. Figure 7

shows this five nodes framework. The world node provides the inputs and outputs for a

behaviour.

Figure 7: The SMPA-W cycle showing the world node ([Tsotsos98]

To be reactive to a dynamic environment and to recover from a failure, the S* pro-

15

posal uses exceptions in an active vision task. Failures might happen during the execution

of a behaviour. Whenever a failure is detected, an exception will occur and another

behaviour would be triggered to handle the failures. Examples of behaviours and their

exceptions can be found in [Tsotsos98].

2.4 Real-time Robot Control System

To be reactive is one of the important aspects for a mobile robot to survive in a

dynamic, uncertain real world. In addition, we also have to consider how to make a rapid

reaction. This requirement is quite obvious. For example, for a completely autonomous

vehicle, it must plan new paths and react quickly enough to avoid bumping into people in

front of it. This raises another topic in the mobile robot control system-real time control.

In AI research, there has always been building systems that are capable of providing solu­

tions as perfectly as it can. This results in a unbounded retrieval and response time which

implies unpredictability. On the other hand, in the real-time camp, the goal is to clearly

define the resources and capabilities in order to predict the important deadlines and time

constraints.

Edmund H. Durfee's definition for real-time control system [Durfee90] is:

We mean that a system must carry out its actions before the environ­

ment has a chance to change substantially. Put another way, a system

must act on its environment more quickly than its environment can

unpredictably act on it.

Traditionally, there are two ways to deal with real time AI systems. One approach

is to engineer AI systems to meet real-time deadlines [Laffey88]. The other approach is to

tune the AI algorithm so that the plans it developed could meet the desired time con­

straints [BD89] [Horvitz87]. Durfee presented an alternative approach CIRCA (A cooper­

ative Intelligent Real-time Control Architecture) in [Durfee90]. In CIRCA, real-time and

AI components are treated as two separate, concurrent and asynchronous systems. The AI

16

system could still generate plans that do not satisfy real-time guarantees. Real-time system

will ensure those time constraints on its own. This approach provides more flexibility to

build a robot control system than the previous two.

In 1998, a group of researchers from NASA Ames Research Center describe a

remote agent architecture in [Williams98]. This is a specific autonomous agent architec­

ture which integrates constraint-based temporal planning and scheduling, robust multi­

threaded execution, and model-based mode identification and reconfiguration. It also

addesses the unique characteristics in a spacecraft domain. Such a spacecraft domain

requires highly reliable autonomous operations over a long period of time with tight hard

deadlines and resource constraints. The real time control is accomplished by using a tem­

poral Planner/Scheduler (PS), with an associated mission manager (MM) which manages

resources and develops plans that achieve goals in a timely manner.

2.5 Summary

We went through a brief history for the development of a robot control architecture

in this chapter. Advantages and disadvantages of each system were discussed.

Early functional decomposition control architecture is inappropriate for mobile

robots because it is not capable of reacting to a dynamic real-world environment. To over­

come its problem, the classical purely reactive control system was proposed by Brooks in

1985. This reactive control system is based on the idea of "behaviours". Each behaviour

reacts to the environment very well, but the robot using this control system lacks the abil­

ity of planning.

Researchers have been working on building hybrid systems which combine plan­

ning with reactive behaviours. Three well-known control systems are CMU's Navlab

blackboard architecture, Firby's reactive action package, and CMU's Xavier's task control

architecture. To integrate active vision systems with robot control systems, Tsotsos pre­

sented a S* proposal which currently does not have any implementation.

17

Finally, CIRCA and a remote agent architecture were introduced to explore a robot

control system which at the same time has time critical requirements.

18

Chapter Three

System Architecture

The prime goal of this thesis is to explore the design and implementation of a robot

control architecture that is capable of detecting and responding to a changing environ­

ment. This chapter presents the specifications of the required system, a discussion of

important design considerations, and an overview of the final design. The detailed design

issues will be presented in the next chapter.

3.1 System Specifications

Since the real world is a complex, dynamic environment for mobile robots, it is

useful for us to list some requirements of a mobile robot. These requirements are the pri­

mary considerations in the design and implementation of a robot control architecture.

Meeting those requirements is important to ensure that mobile robots will survive in a

world full of tigers.

3.1.1 Robustness & Error Recovery

The mobile robot should be robust. It should not fail because of some minor

changes in its environment. It should have some facilities to deal with unexpected events

as well. When the environment changes, it should still be able to achieve some reasonable

behavior and function well enough, rather than just wandering around aimlessly.

Inconsistent information from multiple sensors has been one of the problems chal­

lenging the robustness of a mobile robot. In the past, most typical mobile robots contain

one visual sensor and one simple motion encoding mechanism. Planning is done off-line

and the control system is straightforward. Those old-fashioned architectural features can-

19

not support perception and control in complex dynamic real world environments with very

general task specifications. In more complex systems, there is a need to use multiple sen­

sors such as a camera, a laser range finder, and sonar array together at the same time. Only

by using multiple sensors, can a system provide a map of its environment with sufficient

resolution and reliability to control a mobile robot on a complex mission. For example, a

task might require avoiding obstacles along the way, which is best performed with a sen­

sor such as sonar array; the same task might also require tracing a target such as a person

wearing a T-shirt of a certain color, which is beyond the effective range of a sonar array

yet is easily detected by a color camera. This type of trade-off occurs at all scales of per­

ception, and the only solution currently available is to incorporate multiple sensors on a

single mobile robot. As soon as multiple sensors are deployed, the system architecture

requirements become very demanding. Sensor data from different times has to be inte­

grated into a single coherent interpretation. Otherwise, the robot might be confused by the

inconsistent information and fail to function accordingly.

When contradictory sensor readings occur, the control system should be able to

detect an invalid world representation. Error recovery strategies can be employed to

change the plan to reflect the current real world situation. In another word, the robot can

act even when presented with incomplete and unreliable information.

3.1.2 Deliberative & Reactive

The architecture must accommodate deliberative and reactive behavior. In a

dynamic real-world environment, all of the circumstances of the robot's operations can

never be fully predicated. Thus, it is infeasible to have a complete course of action in

advance. The robot has to coordinate the actions it deliberately undertakes to achieve its

designated objective with the reactions forced on it by the environment. As an example,

deliberative behaviour of an office mail delivery robot is to deliver a letter to Professor As

office. While on its way to that office, it has to react to avoid obstacles such as students

walking around in the building. It should not bump into any obstacle on its way. More

importantly, it should not lose its target, in this case Professor As office, after giving way

20

to those students. This "postman" should be able to find a path to Professor A's office.

3.1.3 Timely Response

To survive in a highly dynamic environment, timely response and actions are nec­

essary. For a soccer player mobile robot, it would be nonsense if its response time is 10

seconds. The soccer ball would have already moved when it tries to kick it. The time

available for it to make a decision is limited. A mobile robot has to operate at the pace of

its environment. Speeding up the hardware could make this issue less critical, but current

technology still cannot meet our expectations. For robotics, the current solution is to use a

compact, real-time operating system with high level programming languages; used to pro­

gram a control architecture capable of dealing with interrupts from the outside world.

3.1.4 Coordinate Among Multiple Goals, Competing Activities and Functions

Often the robot will have multiple goals that it is trying to achieve. Some of the

goals may conflict with each other. In some situations, some of the actions can be carried

but concurrently while others have to carried out in sequence. A mobile robot might be

trying to reach a certain point ahead of it while avoiding local obstacles. The control sys­

tem must be responsive to both of the goals. In other cases, when it is impossible for the

control system to ensure both of the goal at the same time, it should have some principles

to decide which one has to achieve first.

3.1.5 Extensibility

The architecture must give certain flexibility to the designer to develop new fea­

tures. Application development for mobile robots frequently requires experimentation and

re-configuration. Changes in the task may also result in system modification. Easy extensi­

bility is one of the considerations in the design and implementation of the robot control

architecture.

21

3.2 Design Issues

Many robot control architectures have been developed in the AI community espe­

cially for indoor and outdoor mobile robots. Implementation of those control architectures

usually involves a large amount of code. In addition, researchers in the mobile robot area

tend to implement first a prototype, and then gradually evolve it into a complete system.

These considerations lead to the following principles in the design of our system.

3.2.1 Modularity

Modularity is very important in current software engineering. A system is broken

down into several components, each of which has a particular task. One of the goals for

modularity is to reduce the duplicate knowledge among different components. For

instance, rectified images from cameras are only necessary for a tracking module, but not

for path planning module. In this case, there is absolutely no need to inform the path plan­

ning module of the newly arrived images.

Another critical issue in modularity is how to keep the interface between different

modules simple. When building a system of many parts, one must pay attention to the

interfaces. Poorly designed interfaces will cause heavy communications between mod­

ules. This definitely has to be avoided to ensure timely responsiveness for mobile robots.

Either the interface needs to be redesigned or the decomposition of the components of the

system needs redoing whenever a particular interface begins to challenge the simplicity of

the components.

For our system, modularity provides another convenience. Each component can be

programmed in the language which is the most appropriate and efficient. Different mod­

ules could also locate on separate processors. Therefore, parallel processing is possible

and helps increase the computational ability of the whole system.

22

3.2.2 Virtual Robot

The concept of virtual robot is not original. It was put forward by Charles E.

Thorpe in [Thorpe88]. They suggested that the details of the vehicles should be hidden..

Under this consideration, "virtual robot" was proposed to hide the details of sensing and

motion of the vehicle. It is actually an interface between the control system and the physi­

cal vehicle.

Our consideration of a simple interface for control of the mobile robot incorporates

the idea of a virtual robot. In this way, the mobile robot will start moving forward only by

a simple command such as "forward". The high-level programmers do not have to know

every detail such as the trajectory to tell the robot to move.

3.2.3 Distributed Control

Early control systems expected a central module called master to know everything

about how to make things work. This traditional control method is usually called central­

ized control in early blackboard architectures. The master module is in charge of schedul­

ing other modules. It knows exactly when and how to execute each of the other functional

components. The problem for this centralized control is obvious. As more and more com­

ponents are involved, this central module could become a bottleneck. Systems built in this

pattern will be difficult to expand.

In order to overcome this shortcoming in centralized control, researchers naturally

began to think of ways to build a distributed control system. In a distributed control sys­

tem, each individual module becomes an autonomous component. It decides by itself

when to start or finish execution; however, proper inputs and outputs for each module

must be carefully defined. Input for one module could be the output from another module.

Distributed Control gives the system flexibility and solves the bottleneck problem,

but on the other hand, it brings forward other issues such as communication and synchro­

nization between relevant modules.

23

3.2.4 Effective Communication

Inevitably, communication is one of the most significant issues resulting from dis­

tributed control architecture. To communicate effectively, it is worthwhile to find a way to

exchange information as fast as it can. Communication could take place either within mul­

tiple processes on one machine or among processes which reside on different machines.

One of the issues in the design of our robot control system is how to coordinate

between low bandwidth and high bandwidth sensor readings. This problem arose when

using radio modem to communicate between the physical robot and the host. High band­

width communication is usually involved in passing a large amount of data from the robot

to the host or around in the control system. Rectified images and disparity images are

examples of high bandwidth sensor readings. There is no such heavy burden on radio

modem about the communication and computation time for low bandwidth sensor read­

ings. For example, power supply for the mobile robot could be expressed using an 8 bit

integer. Since transmitting high bandwidth sensor readings requires much more time than

transmitting low bandwidth readings, the high bandwidth data will block the low band­

width data without any special consideration. We need to find a way to transmit the low

bandwidth data in between the high bandwidth ones. Our solution for this problem is quite

simple. The high bandwidth data will be divided into several segments. Each segment will

be sent separately. Therefore, it gives some time gap between two consecutive parts and

this time gap can be used to send low bandwidth sensor readings.

Our consideration to divide the whole system into several modules brought for­

ward another issue — communication among modules on the same machine. The tradi­

tional solution for communication among processes on the same machine includes

message queue, shared memory, or message passing. However, our design consideration is

moving toward an event driven system. All of the messages passing within the system are

in the form of events.

24

3.2.5 Synchronization

Two issues are involved in synchronization. One is how to synchronize the execu­

tion of multiple modules. There are times when one module has to wait for another to fin­

ish.; This can be solved by using signal and wait mechanism. The other issue is how to

synchronize the simultaneous access to a database from multiple threads of execution. The

most common solution for this is to add a lock-step before and an unlock-step after access

to the database.

3.3 A Few Definitions

To avoid any ambiguity which may occur in the following description, we provide

some definitions first.

World Representation: This is where world information is stored. Not only external

information but also information about robot itself are included in this world represen­

tation. From here, a mobile robot gets to know its environment and acts accordingly. A

model of the environment is built and stored in this world representation.

Behaviour: The idea of a behaviour-based robot first appeared in [J3rooks86]. Each

behaviour is responsible for a particular goal such as avoid obstacle, follow wall and

move forward. A set of related behaviours running concurrently and coordinating

together result in the completion of certain task such as tracking a target. Originally,

behaviour is used in a layered architecture. Each layer has one or more behaviours run­

ning concurrently.

Tasks and Subtasks: A task is what the mobile robot is trying to accomplish. Exam­

ples are person tracking, mail delivery and trash collection. A task could be divided

into several parts. These parts are called subtasks. For example, a person tracking task

consists of two steps (subtasks). They are looking for the person and visually focusing

on the person respectively.

25

Plans: Plans are generated by the planner using various AI techniques. Plans are a

set of subtasks aimed to accomplish a certain task.

Atomic action: An atomic action is a primitive operation on the world presentation

by effector. No further decomposition of the action can be performed. It will result in

the change of the internal or external representation. Telling the robot to go forward,

backward, turn left or turn right are examples for atomic actions. Behaviours consists

of a sequence of atomic actions.

3.4 System Overview

The goal of our control architecture design is to have a mobile robot that can sur­

vive in a real world environment and accomplish certain tasks. Since a mobile robot's

environment is no longer static, or artificial, interaction between the mobile robot itself

and the environment must be carefully investigated. In Section 3.1, we provide a brief dis­

cussion of these interactions while presenting the first two specifications. To let the con­

trol system have the ability to be reactive to the dynamic world and recover from error,

exceptions are incorporated into the system as our fundamental mechanism. This section

first presents the exceptions and exception handlers. The exception mechanism is that a

part of the system throws an exception to be caught by an exception handler. An overview

of the ERA (Event-based Robot Control Architecture) is presented as well. A comparison

between our exception mechanism with [Tsotsos98] comes later in this section.

3.4.1 Exception Mechanism

The world representations store the internal and external information for a mobile

robot. During the execution of a task, these world representations are continuously

updated to reflect the robot's environment at that time. The mobile robot draws conclu­

sion about its environment and carries out tasks based on these world representations.

Even a trivial change of the environment may have a great impact on the robot's executing

task. Some of the changes may result in the failure of the current executing task. An

26

exception occurs whenever a failure is detected by the robot. For example, for a visual

tracking task, a failure takes place when the object moves out of the robot's viewpoint.

This failure fires an exception.

The exception mechanism consists of two parts, because the robot control system

should be capable of not only discovering a failure but also recovering from it. These two

parts are the exception itself and the exception handlers respectively. Each exception has a

corresponding exception handler. The exception handlers are responsible for recovering

from failures. To recover from a failure in our robot control domain is to generate a set of

new plans which still aim to achieve the current task goal under the new circumstance.

The relationship between exceptions and exception handlers is depicted in Figure 8.

ta
tio

ns

G
en

er
at

or

•es
en

l

G
en

er
at

or

Re
pi

tio
ns

W
or

ld

Ex
ce

pt

Exception 1 Handler

Exception2 Handler

Exception3 Handler

New Plans

New Plans

New Plans

Figure 8: Exception Mechanism

3.4.2 Using Exceptions in an Active Visual Task

One interesting task for a mobile robot to accomplish is to play Find and Follow

with human. As an example, we explain our exception mechanism used in such a task. A

Find and Follow task usually is composed of several subtasks such as "searching for the

person" and "following the person". At one time, there is only one subtask being exe­

cuted. During the execution of a subtask, exceptions might occur. After a specific excep­

tion is fired, its handler is supposed to do replanning and another subtask will finally be

triggered into action.

27

Searching for the Person
Low Voltage Exception

Planning a Path to Base

Planning a Path to the Person

Finish

V
Obstacle
Exception

Finish Obstacle Exception

Low Voltage Exception
Following the Person

Person Lost Exception Going Back to Base

Figure 9: Exceptions and Subtask Transitions

Figure 9 shows the exceptions and subtask transitions in a Find and Follow task.

The subtasks are "searching for the person", "planning a path to the person", "going to the

person", "planning a path to base", and actually "going back to the base". As the figure

indicates, for the "going to the person" subtask, there are three possible exceptions. They

are Obstacle Exception, Person Lost Exception, and Low Voltage Exception. If the Obsta­

cle Exception is detected, "Planning a Path to the Person" is triggered. If Low Voltage

Exception is detected, "Planning a Path to Base" is triggered to direct the robot to go back

to base to recharge the battery. If Person Lost Exception occurs, it will begin to search for

the person again. This principle obviously applies to other exceptions in Figure 9.

3.4.3 ERA Overview

This section briefly describes the Event-based Control Architecture as a whole for

mobile robots in a dynamic and uncertain environment. Figure 10 presents a robot control

28

system using the Event-based Robot Control Architecture embedded in a mobile robot.

With the help of ERA, a mobile robot is able to explore reliably, and safely in real world

environment. The embedded Event-based Control Architecture is capable of reacting to

the dynamic environment, recovering from failures, and resolving conflict among sub-

tasks.

Based on the task to achieve, the Planner generates using various AI techniques a

sequence of subtasks for the ERA to carry out. A discussion of the Planner is beyond this

thesis. We will only focus on the ERA itself. After the ERA receives a set of new subtasks

from the Planner, it consults the current world representation, decomposes each subtask

into atomic actions, and actually sends commands to the robot hardware via virtual robot

interfaces.

Planner

...,. X..,
ERA

_v VirtualRobot
World Presentation Robot Hardware

Figure 10: An Embedded Event-based Robot Control Architecture

Figure 11 depicts internal structure for the Event-based Robot Control Architec­

ture. The ERA consists of six modules. They are Sensor, Effector, Monitor, Executor,

Exception Manager and Scheduler.

The Event-based Robot Control Architecture is based on the exception mechanism

described earlier. The Monitor keeps watch on the sensor readings. When it detects a fail­

ure, it fires an exception. There are several exception handlers registered in the Exception

Manager module. Each one of them handles one specific exception from the Monitor.

The Exception Manager is responsible for handling the exceptions and generating new

29

plans based on the current task and situation.

Therefore, there are two sources generating new plans. One is from the Planner,

the other one is from the Exception Manager. Each of the plans contains a sequence of

subtasks. All of the subtasks are inputs for Scheduler. To coordinate the subtasks from

these two sources, each of the subtasks is assigned a priority. Subtasks with higher priority

will be scheduled first. Those subtasks with the same priority are scheduled based on their

order.

The communication between the modules is performed in the form of events. One

nice aspect of using events instead of message passing is that a module does not have to sit

in a loop waiting for information it is expecting. Obviously, sitting in a loop and waiting

uses a lot of CPU cycles. By using events, the modules will be activated only when new

information arrives.

Exceptions

Planner i
Virtual
Robot

Figure 11: An Event-based Control Architecture

3.4.4 Tsotsos' Active Vision

A brief introduction for Tsotsos's Active Vision has been presented in Section

30

2.3.4. Here, a further explanation about exceptions in his proposal is presented.

In the proposed S* control architecture, Tsotsos indicates that failures during the

execution of a behaivour must be detected. One of the representations in his architecture is

Exception Record (ER). This exception record encodes the information to detect failures.

Each exception contains a specification of what must be sensed in order to confirm that the

exception occurred, the identity of the behaviour for which it occurred and a start time and

expiry time. While being executed, a behaviour reads the representations and decides if

the current situation is consistent with the description in the exception records. If it is, an

exception is triggered and the system should react accordingly.

3.4.5 Comparison between ERA and Tsotsos's Active Vision.

[Tsotsos98] provides a distributed action vision framework using attention. He

provided a new point of view for the original functional-oriented decomposition which

they call SMPA (sense-model-plan-act). They used this decomposition for every behavior

and added the world into this cycle, thus formed a new framework as SMPA-W. In their

description, they used exception records to detect failures. The difference between our

framework and theirs is that instead of having an exception detector for each behavior, our

failure detector and handlers are on a subtask level. Since there are usually multiple

behaviors working together in one subtask and each of the behaviours has its own excep­

tion detectors, it is highly possible that extra copies of detectors exist in SMPA-W system.

3.5 Summary

The specifications for developing a robot control architecture are discussed first in

this chapter. They are robustness and error recovery, deliberative and reactive, timely

response, coordination between multiple goals and functions, and extensibility respec­

tively.

Five design issues, namely modularity, virtual robot, distributed control, effective

communication and synchronization are also presented. Some of the solutions are pro-

31

vided.

A system overview indicates that our control system is built upon the exception

mechanism. All the communications inside the control system are in the form of events.

The exception mechanism is explained and a comparison between our ERA and Tsotsos's

S* proposal is made.

32

Chapter Four

System Details

This chapter provides a detailed description of our Event-based Robot Control

Architecture.

4.1 World Representation

The definition of world representation was first given in Section 3.3. In this sec­

tion, we will further discuss on this topic. Both the internal representation and external

representation are presented in the following paragraphs.

4.1.1 Internal Representation

A collection of information supports the internal representations of a mobile robot.

The most common information used is:

Robot Position: The current position helps a mobile robot locate itself in its envi­

ronment. It could be depicted in a triple (X, Y, H). X, Y are the world coordinates

for the robot and H describes the orientation of the robot.

Power Status: Its value indicates the voltage level for the robot. Once the power

status is below a certain value, the robot should stop and get the battery recharged.

This piece of information is nontrivial and useful while implementing a robot con­

trol architecture on a mobile robot. For instance, a mobile robot working in deep

water should be able to come back when it is about to run out of power. We cer­

tainly do not want it to sit in the bottom of the sea waiting for someone else to get it

back.

Robot Mode: It would be nice if the mobile robot could either be operated manually

33

autonomously. The robot mode indicates the situation of the robot. In our system,

the robot mode could be one of four choices: manual, explore, directed, or speci­

fied.

Robot Command: This stands for the current execution command. This information

is necessary when an exception occurs. How to recovery from the failure largely

depends on what the robot currently is doing.

4.1.2 External Representation

In order for the mobile robot to complete a task in a dynamic environment, interac­

tion with its environment is inevitable. It is also important for the robot to build a map of

its environment. Thus, several facilities are developed as external representation of the

world model.

Sonar Array: Sixteen sonar sensors continuously send out sonars and try to pro­

tect the robot by detecting any obstacle around. Sonar sensor readings are stored

in an array which can be read by robot control system through some interface to

the world representation. This interface is called the virtual robot and will be

explained later in Section 4 . 2 .

Camera Images: These are the largest pieces of information in the world model.

Each image is a two dimensional array capturing the real world ahead of the

robot. Each pixel in the image represents intensity. Figure 12 shows a real camera

image.

Figure 1 2 : A Real Camera Image

34

Disparity Image: In addition to the above camera images, there is a disparity

image resulting from a stereo vision algorithm. This is also a 160X120 array

([Tucakov97], [Murray97]). Some of the pixels could be invalid information. The

value of each valid pixel represents the disparity. The larger the value, the closer

the object. Figure 13 shows a disparity image.

Figure 13: A Disparity Image

Radial Map: Since the disparity image consists of a large amount of data, it would

be slow to pass the whole image around in the control system. A radial map is

built instead. Details on how to build the radial map could be found in

[Murray97]. It is a one dimensional array consisting of 160 elements. Each pixel

in the radial map is projected column by column from the disparity map. It takes

the maximum valid disparity in each column. Similar to disparity image, objects

which are closer to the robot will have larger value in radial map. Figure 14 shows

a radial map.

Figure 14: A Radial Map

Maps: There are a total of four maps, namely, zoom map, plan map, obstacle map

and distance map. They are gradually built as the robot moves around in its envi­

ronment. Occupancy grid map reflects the robot's understanding of the world

([ME85], [Elfes89]). The pixels in the map are put into the following three cate­

gories. Black pixels in the map means that those places are occupied by obstacles.

The robot cannot go to those areas. Clear areas without obstacles are depicted as

white pixels. The area the robot has not yet seen and does not know about is

35

shown as grey. The algorithm to build such a map is described in [Murray97]. Fig­

ure 15 depicts a map generated during exploration.

Figure 15: A Map Generated During Exploration

4.2 Virtual Robot

Access to robot control processors and sensor data takes place through a set of sub­

routines called the virtual robot. These virtual robot subroutines are divided into two

groups, one for robot control and the other for retrieving world representation.

4.2.1 Robot Control

Robot control commands are messages sent from the control system to the hard­

ware to control actions of a mobile robot. There are altogether six control commands. The

first five commands will lead to either orientation or world coordinates changes

1. forward: Move forward until the control system tells the robot to stop; the orien­

tation of the robot does not change.

2 . backward: Move backward until the control system tells the robot to stop; the

orientation of the robot does not change.

3. turn left: Turn left until the control system tells the robot to stop; the orientation

of the robot changes while world coordinates do not.

36

4. turn right: Turn right until the control system tells the robot to stop; the orienta­

tion of the robot changes while world coordinates do not.

5. turn 360: Turn around for 360 degrees and stop when the orientation of the robot

is back to the original position. The world coordinates do not change.

6. halt: Halt the robot immediately.

Controlling the movement of the mobile robot is simply calling these six subrou­

tines. This hides away complicated details of moving the robot around.

4.2.2 World Representation Retrieval

Subroutines are also available to retrieve information from the world representa­

tion database such as maps, images, and sonar readings.

4.2.2.1 Internal Representation

Subroutines designed for getting internal representation are simple. A l l you need

are getVoltage/RobotPosition/CurrentCommand/CurrentMode subroutines.

4.2.2.2 External Representation

1. Map

updateZoomMap/updatePlanMap/updateObstacleMap/updateDistanceMap: These

subroutines update the control system's copy of the specified map.

2. Image

updatelmage: Given the image type which is specified as a parameter, this subrou­

tine updates the control system's copy of the specified image. The image size is 160X120.

37

updatelmageNRows/NCols/RowInc: Given the image type, these subroutines

update the number of rows/number of columns/row increment of specified image.

updatelmageRows: Give the image type, starting row and number of rows N as

parameters, updatelmageRows will update the control system's copy of the specified

image but only updates N rows from the starting row. This is necessary in order to reduce

the time spent on copy image from one block of memory to another. If carefully used, it

will help improve the responsiveness of the control system.

3. Radial Map

getRadial: retrieve radial map from database.

4. Sonar Readings

As sonars are used to detect obstacles around the robot, and the robot can only

move forward or backward, it is not necessary to pass the whole sonar array within the

system. What we want to know are only two values, in another word, whether there is

obstacle in front or behind the robot. A notify flag is sufficient to hold this information. A

subroutine called getNotifyFlag is designed to interpret the sonar readings.

4.3 Sensor Fusion

As presented in Section 3.1, current mobile robot systems incorporate multiple

sensors at the same time to achieve reliable performance. Usually, sonar sensors, laser

ranger finder, tactile and cameras will be mounted together on one mobile robot. There­

fore, when some objects are beyond one sensor's capability, other sensors could be com­

plementary to it. For example, cameras can detect an object at least half meter away from

robot, while sonar is functional to find the object within the range of half meter. Figure 16

shows a system with multiple sensors.

38

\

Camera

Sonar

Laser

Infrared

Bumper I

Figure 16: A System with Multiple Sensors

4.3.1 Sensor Fusion Methods

Since there is more than one sensor in one system, the issue of how to coordinate

among them is brought up. This issue is called sensor fusion and discussed in [CY90] in

detail. Three primary methods for sensor fusion were discussed in [Shafer86].

Competitive: Competitive fusion is typically used for sensors that generate the

same type of data such as two sonar sensors. Each of the sonar sensor will produce a

hypothesis. Two sensor readings may conflict or reinforce with each other during the

process of fusion.

Complementary: Each individual sensor is used differently. The aim of using dif­

ferent kinds of sensors is to enhance the advantages and cover the disadvantages of

each of them. The best example of this type is using sonar with camera together as we

have already discussed earlier.

Independent: In this method, a sensor is used independently for a specific task. It

provides enough information for that task.

When designing our robot control system, we believe all the complex tasks the

robot aim to achieve need more than one sensor. Either competitive or complementary

sensor fusion method is used in different situations.

39

4.3.2 Sensor Invocation

In [Shafer86], the strategies used to invoke sensors in sensor fusion are also dis­

cussed.

Fixed: This strategy embodied in special-purpose code that specifically invokes sen­

sor processing.

Language-Driven: A strategy defined in a general "perceptual language"; each

object in the object will have a description of how to recognize that object.

Adaptive: A language-driven system with the ability to select alternative plans based

on the current status of sensor processing or the vehicle's environment.

However, our design involves two ways to invoke sensors. We call them polling

and adaptive invocation.

Polling: the sensor module issues the condition queries at a fixed frequency. For

example, we use a polling invocation that reads the mobile robot's power supply at a

fixed time interval. This time interval can be set dynamically. Whenever the power is

below certain threshold, the control system would detect it and replan to recharge the

battery.

Adaptive Invocation: In this method, sensors will only be invoked when needed. Sen­

sors are triggered and cancelled on demand. For example, the perception system

needs to be directed and controlled by the agent's current action and task. Especially

for a sensor which needs high bandwidth communication such as cameras, it is better

to turn it on only when necessary.

4.3.3 Selective Attention

When discussing effective communication in Section 3.2.4, we give a solution to

40

coordinate between high bandwidth and low bandwidth sensor readings in order to pro­

vide timely response. In addition to that, selective attention is also an effective way to

reduce communication and computation time. Especially for the rectified images and dis­

parity image, usually not all of the 160X120 pixels are needed in the image processing at

the same time. Thus retrieving region of interest (ROI) is much more efficient than getting

the entire 160X120 images.

4.4 Event-Driven Communication

There are mainly six modules in our Event-based Robot Control Architecture.

Effective communication between these components certainly contributes to the feasibil­

ity of this control architecture.

The nature of a dynamic and uncertain world is its unpredictability. It is not desir­

able to have a busy waiting process running in each module waiting for incoming mes­

sages. When there is no environmental change for a period of time, using a daemon

process would exhaust much of the CPU time. Therefore, an event-driven communication

is employed in our control architecture.

4.4.1 Event and Event Handler

Everything passing around within the control architecture is in the form of an

event. An event is generated by a sender component, and thrown to a receiver component

or multiple components in the system. An event carries the information needed by the

receivers such as control command, sonar readings and so on. An event handler is in the

receiver component. As the name indicates, its responsibility is to handle a specified

event. The components which are expecting an event are the event's listeners. Each sender

component maintains a list of event listeners for each event that it will possibly fire. Each

receiver component has one or more exception handlers.

41

4.4.2 Events

All the events are put into four categories according to the type of information they

are carrying.

ActionEvent: This kind of events is fired by Executor and handled by Effector. Its

information is the atomic action such as moving forward and backward which is to be

carried out on the physical mobile robot.

SubtaskEvent: SubtaskEvent is fired by Scheduler and handled by Exception

Manager. It includes the information about the current executing subtask of the

robot. Exception Manager uses this piece of information to decide what kinds of

exception it is expecting.

DataEvent: World representation of the mobile robot is wrapped in this event. Data

in DataEvent could be sonar readings, voltage, radial map, or even images.

ExceptionEvent: Each exception is also an event in our ERA. It is fired by Monitor
and handled by Exception Manager.

Events can also be categorized as unicast events and multicast events. Figure 17

shows a unicast event. Figure 18 shows a multicast event.

ActionEvent
Executor Effector

Figure 17: A Unicast Event

Executor

Monitor
Sensor

Figure 18: A Multicast Event

42

If there is only one event listener registered for an event, this event is a unicast

event. If there is more than one event listener registered for the event, the event is a mul­

ticast one.

4.5 Modules

In this section, each of the modules introduced in Section 3.4.3 is explained in

detail. As we mentioned in Section 4.4, communication between these modules is in the

form of events.

4.5.1 Effector

The Effector has almost no intelligence in it. Its main job is to perform atomic

actions. Those atomic actions are received as action events from the Executor. The

Effector sends commands to the robot hardware via the virtual robot interface. The

Effector spends most of its time in sleep mode. It only wakes up when an action event

arrives. After the atomic actions are carried out, the world representation, either external

or internal, will be modified to keep it consistent with the real world.

4.5.2 Sensor

The Sensor is responsible for reading world representations and forwarding this

information to the Monitor. There are two ways to invoke the sensor readings, namely

polling and adaptive invocation. Therefore, there is always a daemon running inside the

Sensor. It reads world representation at fixed frequency. The other part of the Sensor

retrieves information from the world representation only on demand. The sensor readings

are sent to the Monitor by DataEvent. However, not all of the readings are sent to the

Monitor. Given the current subtask being executed, only those that the Monitor is inter­

ested in and has been waiting for will be sent. In the case of safe navigation task, prevent­

ing the mobile robot from bumping into obstacles is indispensable. During navigation, the

pieces of information that the Monitor is interested in are sonar map and radial map. They

will be sent to the Monitor as events. Other information such as the disparity image is not

43

necessary for the navigation task, thus it will not be sent over to the Monitor.

4.5.3 Monitor

The Monitor module is an essential part of the active control system. This is where

any failure is detected and where the exceptions occur. Whenever a new task or subtask is

executing, it dynamically registers its intention to the Sensor The Monitor is activated

only when DataEvents come in. After its activation, it processes the data and fires an

exception to the Exception Manager if any failure is detected. For instance, for a visual

orienting task, the Monitor receives images as incoming events. It generates an exception

when the object moves out of its view area.

4.5.4 Exception Manager

In fact, the Exception Manager is a goal-oriented replanning mechanism. Its

inputs are the exceptions generated by the Monitor. Its output is a set of new subtasks.

These new subtasks are generated based on the current world representation and the cur­

rent designated task. The replanning in the Exception Manager makes the system reac­

tive to environmental changes. For example, while the mobile robot is on its way to an

office, an exception occurs indicating that there is an obstacle ahead. After receiving the

exception from the Monitor, the Exception Manager generates a new path leading the

robot to the previously given office.

4.5.5 Scheduler

This part of the system handles the coordination, scheduling and arbitration among

competing subtasks. These competing subtasks may be derived solely from the Planner

or may come from both the Planner and the Exception Manager. An example in terms

of scheduling is as follows. The Scheduler receives "visually pursue moving object"

from Planner and at the same time, gets a subtask from Exception Manager telling it to

go back to the starting point because of low battery warning. In this situation, the Sched­

uler has to decide which one will be executed.

44

The subtasks are basically scheduled based on first come first serve principle. But

some of the subtasks might be more urgent than others. For example, usually those com­

ing from the Exception Manager have to be scheduled first to avoid fatal errors. This

coordination among subtasks can be realized using priority-based method. A priority is

attached with every subtask. Those with higher priority will be scheduled first. Those with

the same priority, subtask will be scheduled according to their sequence.

4.5.6 Executor

The Executor is where the subtasks are actually carried out. Concurrent execution

of subtasks would need more than one executors. It is activated when a subtask is sched­

uled to be executed. After being triggered, the Executor parses subtasks into atomic

actions and sends those atomic actions to effector.

4.7 Summary

A few issues are discussed in the previous sections. Internal and external world

representation are described in the first section. A virtual robot is designed to abstact

away the hardware details. Robot control can be achieved by control subroutines. World

representations can be retrieved by a set of retrieving subroutines. Three issues are pre­

sented and solutions for them are provided in the section of sensor fusion. An event-

driven communication mechanism is introduced in Section 4.4. Finally, each of the six

modules in our ERA is discussed in detail.

45

Chapter Five

Prototype Implementation

The prototype described here is produced as proof-of-concept demonstration of the

ERA's feasibility. The programming goal of the implementation is to conduct experiments

and identify the benefits and limitations of the proposed paradigm. Experiments are

described later in this chapter.

5.1 Implementation Environment

This section introduces the hardware and the software environment in which a pro­

totype of an Event-based Robot Control Architecture is implemented.

5.1.1. Hardware

We use a Real World Interfaces (RWI) B-14 mobile robot, Eric, to conduct our

experiments for our Event-based Robot Control Architecture. Eric is equipped with a Pen­

t ium™ PC running the Linux operating system as its onboard processing. It also has an

Aironet ethernet radio modem that allows communication to a host computer Sol. A Tri-

clops trinocular stereo vision camera is mounted on top of the mobile robot. Figure 19

shows our mobile robot Eric.

Figure 19: A Mobile Robot Eric

46

Active Vision of our system is achieved by using the Triclops stereo vision camera

[Murray98]. Figure 20 illustrates a Triclops stereo head. The Triclops stereo vision mod­

ule was developed at the U B C Laboratory for Computational Intelligence (LCI) and is

being marketed by Point Grey Research, Inc (www.ptgrey.com). The stereo vision module

has 3 identical wide angle (90 degrees field of view) cameras. The system is calibrated

using Tsai's approach [Tsai87]. Correction for lens distortion, as well as misalignment of

the cameras, is performed in software to yield three corrected images. These corrected

images conform to a pinhole camera model with square pixels. The camera coordinate

frames are co-planar and aligned so that the epipolar lines of the camera pairs lie along the

rows and columns of the images.

Figure 20: The triclops stereo head

To easily debug the system and monitor the progress during the experiment, we

implement most of the control system on our host machine Sol. The host Sol is a also Pen­

t i u m ™ P C with Linux operating system installed.

5.1.2 Software Environment

The prototype of the robot control system on Eric is not implemented from

scratch, but based on existing software modules developed by Don Murray, L C I . This sec­

tion gives a brief introduction for the previous software architecture and its important

modules.

5.1.2.1 Software Architecture

47

http://www.ptgrey.com

Figure 21 presents the software architecture. The dashed line in the figure repre­

sents the physical separation between the robot and the host. Communication between

these two parts is implemented by sockets.

The software implemented on the robot is in charge of sensing and control. The

RadialServer continuously grabs images from the triclops camera, generates radial maps

and stores the radial maps into shared memory. The RobotServer, on the one hand,

receives commands from the host and sends them to the robot motor, and on the other

hand, collects information about the robot such as radial maps and sends it to the host. The

software implemented on the host does data integration, reasoning, and interacts with a

human operator. As the figure indicates, all the modules on the host exchange their knowl­

edge through the shared memory.

RobotServerj

I
Shared Memory

I
RadialServer

Robot I Host
i

Figure 21: Previous Software Architecture

5.1.2.2 Important Modules

1. Mapper

The Mapper integrates radial maps over time into a 2-D map represented by an

48

occupancy grid. The value of each grid is related to the probability that this space is occu­

pied by any part of an obstacle. The Mapper initializes the map to contain only values at

50% probability, indicating that the entire space is unknown. As new radial maps arrive,

the Mapper updates the occupancy grid so that each cell contains an updated probability

that the cell is occupied by an object. Every point between the current position of the robot

and the nearest obstacle in a given direction is marked clear. Cells beyond the object

detected are unaffected.

2. Path Planner

The Path Planner produces paths for the robot to follow. These paths are used to

move the robot from one position to another. The inputs for the Path Planner are a map

of the environment produced by the Mapper, a goal position, and an initial position. The

output for the Path Planner is a sequence of significant waypoints along the path. The

path is generated by a simple wavefront expansion algorithm. This algorithm is briefly

described in [Murray98].

3. Explorer

The grid locations are classified into three basic types: blocked, clear and

unknown. The goal of Explorer is to reduce all unknown regions until all reachable areas

are either clear or blocked. This was implemented by re-using our path planning algo­

rithm. The robot will be guided to the nearest accessible unknown region. With periodic

reevaluation and re-planning, the robot will explore from unknown region to unknown

region until no more unknown regions are reachable.

5.2 Implementation

5.2.1 Software Architecture

With the robot control system, the software architecture is described in Figure 22.

Instead of having a RadialServer, a new module called ImageServer is implemented.

49

The ImageServer grabs images from camera and generates radial maps. Both the images

and radial maps are stored in the shared memory. In addition, a control system based on

the ERA idea and a user interface are added on the host side. The internal structure of con­

trol system has been described in Section 3.4.3. The control system and user interface are

implemented in Java. The Sensor, Effector, Monitor, Exception Manager, Scheduler

and Executor are all implemented as threads. The virtual robot is actually an interface

between the shared memory and the control system.

i

Robot i Host ^ ^

Figure 22: Software Architecture with Control System

5.2.2 Event and Event Handler in Java

It is not complicated to implement events and event handlers in Java. Figure 23

describes the relationship between an event and its event handler.

50

public interface ObjectLostListener extends EventListener{
public void handleObjectLost(ObjecfLostExceptionEvent e);

Monitor
I

Vector objectLostListeners;

Obj ectLostExceptionEvent

Figure 23: Event and Event Handler

Vector objectLostListeners is a list of registered exception event listeners on the

Monitor side. The Exception Manager is one of the listeners for ObjectLostException-

Event. It has a method called handleObjectLost which will be triggered when ObjectLos-

tExceptionEvent arrives. The Monitor and the Exception Manager Modules are

described in Section 4.5.

5.3 Experiment

5.3.1 Using Radial Map

In the experiment, our mobile robot Eric tracks a person in a real environment. To

track a person, the fundamental method is to transfer images, grabbed from the camera,

from the mobile robot itself to the host Sol where the control system is currently located.

Then image understanding is performed for the consecutive images to locate the person in

each image. The difficulties for this method are obvious. Each of the images has 120X160

pixels. It takes a significant portion of time for the control system to actually process these

images. One way to reduce this large amount of data is to use ROI (Region of Interest) in

which only a relative small portion of the data will be transferred and processed. But still a

significant amount of data has to be transferred. The timely response requirement of the

51

system is affected.

To reduce the amount of data that has to be processed during the tracking and to

meet the real-time requirement, we use the radial maps instead of real images to conduct

the tracking experiment. The person being tracked is depicted as (Disparity, Column) in a

radial map. The Disparity illustrates how far the person is from the robot. The Column

indicates the vertical position of the person in the robot's view point. From these two val­

ues, the person's position in the robot's coordinates can be calculated. Thus, during the

next time step, searching is performed around the this position to locate the person. Figure

24 shows an example of a radial map. The person in the radial map is described as (13,

80).

Figure 24: A Radial Map: Disparity vs. Column

5.3.2 Description of Tracking

The goal of our experimental task is to track a person in a real-world. This tracking

task thus can be divided into two steps since the mobile robot has to find the target person

first and then begin to track the person. Therefore, two major subtasks are searching for

52

the target person and moving toward the target person. To keep the target person in the

middle of the robot's viewpoint, there are two other subtasks, namely, tracking by turning

left and tracking by turning right.

At the beginning of the tracking task, the searching for the target person subtask is

scheduled to execute by the Scheduler module. During the execution of this subtask, real

images are grabbed and sent over to the robot host at fixed time interval while the mobile

robot is spinning around and trying to locate the person in its viewpoint. To simplify the

person recognition processing, the target person holds a concentric circle sign as its identi­

fication. Figure 25 shows the concentric circle. Simple image understanding is performed

to detect the circle instead of the person himself. Once the person is located in the mobile

robot's viewpoint, the searching for the target person subtask finishes and the second sub-

task moving toward the target person will be executed. At the same time, the position of

the target person in the radial map is recorded as (disparity, column).

Figure 25: The Concentric Circle Sign

During the execution of the moving toward the target person subtask, only radial

maps are used to locate the person in the robot's viewpoint. The robot moves toward the

target person while keeping him in the center of its viewpoint. In this process, various

exceptions could occur. For example, the exceptions indicate that the robot is running out

of power, or sonar is blocked, or most importantly, the target person is moving out of the

robot's viewpoint. When these exceptions are generated by the Monitor module, they are

sent to the Exception Manager module. The Exception Manager generates new sub-

tasks based on the current robot's subtask and the incoming exceptions. These new sub-

53

tasks might change the current goal.

Either the tracking by turning left subtask or the tracking by turning right subtask

is executed to keep the target person in the middle of the robot's viewpoint. Each of them

begins executing when the target is in the robot's viewpoint but not in the middle of it. It

will finish executing when the target moves into the middle of the robot's viewpoint.

5.3.3 Events

5.3.3.1 Action Events

An action event is fired by the Executor and handled by the Effector. Its informa­

tion is one of the atomic actions such as moving forward and backward which is to be car­

ried out on the physical mobile robot.

For the searching for the target person subtask of our tracking experiment, there

are two action events. One of them lets the robot spin around once it is received and car­

ried out by the Effector. The other one sends a command and asks the robot to grab the

real images from the camera.

For the moving toward the target person subtask of our tracking experiment, the

action event carries the command to tell the robot to move forward.

For the tracking by turning left subtask, the action event carries the command of

turning left. For the tracking by turning right subtask, the action event carries the com­

mand of turning right.

5.3.3.2 Subtask Events

The subtask events are fired by the Planner and handled by the Scheduler when a

new plan is generated. A subtask event is also fired from the Scheduler to the Exception

Manager when one subtask begins execution. Each subtask event includes the informa-

54

tion about the current executing subtask of the robot. The Exception Manager uses this

piece of information to decide which kinds of exception it is expecting.

: Since there are searching for the target person, moving toward the target person,

tracking by turning left and tracking by turning right subtasks to complete the tracking

task, in total four subtask events are needed. Each one of them corresponds to a subtask.

5.3.3.3 Data Events

The world representation of the mobile robot is wrapped in this kind of event. The

data in data events could be the sonar readings, the power reading, the robot position, the

radial maps, or the images. Mainly it would be fired by the Sensor and handled by the

Monitor.

For the searching for the target person subtask, there are two kinds of data events.

Each of them carries a real image grabbed from the camera or the power reading.

For the moving toward the target person subtask, there are three kinds of data

events. Each of them carries a radial map, the power reading or the sonar readings.

For the tracking by turning left and tracking by turning right subtasks, there are

two kinds of data events. They are for the radial maps and power reading respectively.

5.3.3.4 Exception Events

Exceptions are generated when the Monitor module detects any failure. Each

exception is also an event in our ERA. It is fired by the Monitor and handled by the

Exception Manager. After receiving an exception, the Exception Manager will generate

new subtasks according to the current subtask and the exception.

For all of the subtasks, one failure which could happen is that the voltage is dan­

gerously low. After the Monitor reads the power reading and detects the failure, a Power-

55

LowException is fired and leads the robot to a final stop.

For the moving toward the target person subtask, other exceptions that could be

fired by the Monitor are the TargetLostException, the TargetNotlnMiddleException, and

the SonarBlockException. The TargetLostException and the SonarBlockException will

lead the mobile robot to search for the target person again. To recover from the Target­

NotlnMiddleException, the mobile robot will execute either the tracking by turning left

subtask or the tracking by turning right subtask depends on the tendency of the target per­

son's moving.

For the tracking by turning left and tracking by turning right subtasks, another

exception is the TargetLostException. This also leads the robot to search for the target per­

son again.

5.3.4. State Transition

While the robot is executing a subtask, it is in a state observed by us. This robot

state has two aspects. One is the robot's current pursuing goal, the other is its current

action. Whenever it changes its current executing subtask, the robot has a state transition.

Two of the above four events could finally result in such a state transition. They are the

subtask events and the exception events. Since an action event results in the change of the

robot's action only, it is not considered as one of the causes of the state transition. When

new subtasks are executed, they always result in a robot's state transition. The exception

events do not cause state transition directly, but they do let the control system generate

new subtasks to recover from failure. These new subtasks will finally be executed. Thus,

the robot will have a state transition. Figure 26 describes the state transition of the tracking

task.

The person tracking experiment successfully demonstrates the feasibility of the

Event-based Robot Control Architecture.

56

5.4 Summary

This chapter gave an implementation of our prototype for an Exception-based

Robot Control Architecture. The control system is built on top of the previous system

developed by Don Murray. A RWI mobile robot Eric is used to conduct a person tracking

experiment. The exceptions that might happen during tracking are described as well.

57

Chapter Six

Conclusion and Future Work

In this chapter, the system presented will be evaluated with comparison to the

specifications outlined in Section 3.1. These comparisons will show that the current proto­

type implementation meet those system specifications. More work, however, could be

done to improve the performance.

6.1 Specification Evaluation

This section evaluates the current E R A implementation against each of the specifi­

cations outlined in Section 3.1.

6.1.1 Robustness and Error Recovery

Our prototype implementation of the Event-based Robot Control Architecture

demonstrates that minor changes in the environment will not cause fatal errors for the

mobile robot. Neither will the robot end up wandering aimlessly while encountering

changes.

Once an error is detected, efforts are made to recover from it instead of just giving

up the current task. This error recovery is accomplished by using the exception mecha­

nism. The system will generate a new set of subtasks to achieve the current goal based on

this exception information. The tracking experiment fully demonstrates that our control

system meets this specification.

6.1.2 Deliberative and Reactive

Neither a purely deliberative nor a purely reactive control system fits the current

requirement for a mobile robot. The Event-based Robot Control System combines both

59

deliberative and reactive characteristics into one system. The deliberative aspect of the

system carries out the plans toward the goal. Meanwhile, the reactive aspect of the system

adapts the mobile robot to the continuously changing environment. As the tracking exper­

iment shows, the mobile robot reacts to the real-world very well while keeping the delib­

erative goal.

6.1.3 Timely Response

In order to meet this specification, some of the time-consuming processing has

been addressed earlier in this thesis. To reduce the time which the low bandwidth data

waiting for its turn to transmit through radio-modem, high-bandwidth data is cut into

pieces to be transmitted. To reduce both the transmission time and computation time,

images are retrieved based on ROI (Region of Interest).

In addition to ensure timely response for subtasks that handle urgent situations,

high priority is assigned to those subtasks that have to be executed first.

The prototype implementation of the Event-based Robot Control Architecture

shows that these methods do have positive effect on the timely response issue. On the

other hand, more improvement could result in abetter response especially if the system

has hard real-time deadlines.

6.1.4 Coordination Among Competing Activities

At the same time, there might have several subtasks waiting to be executed. Con­

flicts among these subtasks are resolved by assigning a priority to each of the subtask. The

high priority ones will be executed first. Subtasks with the same priority are executed

according to the first come first serve principle. The implementation indicates that this pri­

ority-based scheduling meets our specification and works well in our experiment domain.

6.1.5 Extensibility

By using event-driven communication between different modules, we are hoping

60

to extend the system without much difficulty later on. To extend the system to a larger

scale, all that must be done is to add more events in one module and corresponding event

handlers in other modules.

There is also a limitation in terms of extensibility in the Event-based Robot Con­

trol Architecture. It results from the nature of the exceptions. Every replanning process for

recovery from a failure is based on both the failure and the current executing subtask. And

every replanning leads the system to execute a new subtask. Thus, the relationship

between subtasks is a network structure. To extend the system, the relationships between

subtasks must be carefully considered.

6.2 Future Work

This section enumerates several improvements that could be made to the current

architecture.

6.2.1 Real Time Control

Moving our mobile robot to a new environment with strict hard deadlines would

require more consideration on real-time controlling. One possible solution to extend our

system into a real-time control system is to have a real time scheduling algorithm. This

could be done by improving the module Scheduler. Each of the subtasks which have hard

deadlines requirement should have a deadline attached to it in addition to its priority.

Thus, the subtasks will be executed according to not only its priority but also its deadline.

The scheduler should be able to deal with the situation when some subtasks fail to be exe­

cuted before its hard deadline. At least, it should be capable of halting the whole system

and waiting for the command from human operator.

6.2.2 Coordination Among Multiple Subtasks

Our current Event-based Robot Control Architecture coordinates multiple subtasks

based on their priorities. Let us consider the case where the robot is asked to go to two

61

places. The implemented ERA will schedule the two subtasks by their priorities. The one

with higher priority will be scheduled first. If they have the same priority, the one that

arrives earlier is executed first. Ideally we would like the system to evaluate the cost to go

to these two places and to execute these two subtasks that could minimize the cost.

Another example in terms of coordination is as follows, the Scheduler receives

"go to Office A" from the Planner and, at the same time, gets a subtask from the Excep­

tion Manager telling it to go back to the starting point to recharge the battery. Since the

latter one has higher priority, the system will give up executing the former subtask and

guide the robot to go back to its base. Improvement could be done to evaluate the voltage

value first, decide whether the robot can go to Office A and go back to the base before the

battery becomes dangerously low. If it can, the system should guide the robot to Office A

first and then the starting point. It will only give up when the evaluation becomes false.

6.2.3 Using RAP in ERA

We gave a brief introduction in Section 2.3.2 about the RAP (Reactive Action

Package) by R. James Firby. The execution of RAP queue is organized in a hierarchical

style. When a primitive command is scheduled and sent to the RAP interpreter, it will be

passed onto hardware through the hardware interface.

The world model in RAP is actually the world representation in ERA. The hard­

ware interface to the robot becomes the virtual robot in ERA. The RAP execution queue

could replace the priority queues of the Scheduler module in ERA. Subtasks in ERA are

replaced by RAP. While each RAP is executing, exceptions in ERA could be used to

detect failures and new RAPs will be generated and added to the RAP execution queue.

6.3 Summary

Each of the specification in Section 3.1 is evaluated first in this chapter. Section 6.2

provides the possible future work that could be done to the current Event-based Robot

Control System. Issues discussed are real-time control, coordination among multiple sub-

62

tasks, and using RAP in our ERA.

Bibliography

[BD89] M. Boddy and T. Dean, Solving Time-dependent Planning Problems, Proc. Int.

Joint Conf. Artif. Intell, 1989, pp 979-984.

[Blaasvaer94] Hans Blaasvaer, Paolo Pirjanian and Henrik I. Christensen, AMOR: An

Autonomous Mobile Robot Navigation System, IEEE, Int. Conference on Systems, Man,

and Cybernetics, 1994, Vol. 3, pp 2266-2271.

[Brooks86] Brooks, R. A., A Robust Layered Control System for A Mobile Robot, IEEE

Journal of Robotics and Automation, Vol. 2, No. 1, 1986, pp 14-23.

[Burgard98] W. Burgard, A.B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun, The Interactive Museum Tour-Guide Robot, AAAI-98, pp 11-

18, 1998.

[Crowley85] James L. Crowley, Navigation for An Intelligent Mobile Robot, IEEE Jour­

nal of Robotics and Automation, RA-1, 1985, pp 31-41.

[CY90] James J. Clark and Alan L. Yuille, Data Fusion for Sensory Information Process­

ing Systems, Kluwer Academic Publishers, 1990.

[Durfee90] Edmund H. Durfee, A Cooperative Approach to Planning for Real-Time Con­

trol, Proceedings of the DARPA Workshop on Innovative Approaches to Planning, Sched­

uling, and Control, pp 277-283, Morgan-Kaufmann Publishers, 1990.

[Elfes89] A.Elfes, Using Occupancy Grids for Mobile Robot Perception and Navigation,

Computer, 22(6): 46-57, 1989.

[Firby87] J. Firby, An Investigation into Reactive Planning in Complex Domains, Pro-

64

ceedings of the National Conference on Artificial Intelligence (AAAI), 1987.

[Gat92] Erann Gat, Integrating Planning and Reacting in A Heterogeneous Asynchronous

Architecture for Controlling Real-World Mobile Robots, AAAI 1992: 809-815, 1992.

[Horvitz87] E. J. Horvitz, Reasoning About Beliefs and Actions Under Computational

Resource Constraints, Proc. Workshop Uncertainty in AI, 1987.

[Laffey88] T. J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao and J. Y. Read, Real-time

Knowledge-based Systems, AI Mag., Vol. 9, no. 1, pp 27-45, 1988.

[ME85] H.Moravec and A. Elfes, High-resolution Maps from Wide-angle Sonar, Proceed­

ing of IEEE International Conference on Robotics and Automation, St. Louis, Missouri,

pp 116-121, 1985.

[Moravec83] Hans P. Moravec, The Stanford Cart and The CMU Rover, Proceedings of

the IEEE, 71, pp 872-884, 1983.

[Murray97] Don Murray and Cullen Jennings, Stereo Vision Based Mapping and Naviga­

tion for Mobile robots, ICRA'97, Albuquerque NM, 1997.

[Murray98] Don Murray and Jim Little, Using Real-time Stereo Vision for Mobile Robot

Navigation, Workshop on Perception for Mobile Agents, CVPR'98, Santa Barbara, CA,

1998.

[Musliner93] D. J. Musliner, CIRCA: The Cooperative Intelligent Real-Time Control

Architecture Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1993.

[Nilsson84] Nils J. Nilsson, Shakey The Robot, SRI AI Center Technical Note 323, April

1984.

[Rosenblatt97] Rosenblatt, J., DAMN: A Distributed Architecture for Mobile Navigation,

65

Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, no. 2/3, pp 339-

360, April-September, 1997.

[Shafer86] Shafer, S.A., Stentz, A., and Thorpe, C.E., An Architecture for Sensor Fusion

in A Mobile Robot, CRA86(2002-2011). BifRef 8600 And: CMU-RI-TR-86-9, April

1986.

[Simmons90] Simmons, R., An Architecture for Coordinating Planning, Sensing, and

Action, Procs. DARPAWorkshop on Innovative Approaches to Planning, Scheduling and

Control, 292-297, 1990.

[Simmons97] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O'Sullivan, A Lay­

ered Architecture for Office Delivery Robots, First International Conference on Autono­

mous Agents, Marina del Rey, CA, February 1997.

[Thorpe88] Charles Thorpe, Martial H. Hebert, Takeo Kanade, and Steven A. Shafer,

Vision and Navigation for the Carnegie-Mellon Navlab, IEEE transaction on Pattern Anal­

ysis and Machine Intelligence, Vol. 10, No 3, Mayl988.

[Tsai87] R. Y. Tsai, A Versatile Camera Calibration Technique for High-accuracy 3d

Machine Vision Metrology Using Off-the-shelf TV cameras and Lenses, IEEE Journal of

Robotics and Automation, 3:323-344, 1987.

[Tsotsos98] John K. Tsotsos, Attention within A Distributed Action Vision Framework,

Second International Workshop on Cooperative Distributed Vision, pp 57-81, 1998.

[Tucakov97] Vladimir Tucakov, Michael Sahota, Don Murray, Alan Mackworth, Jim Lit­

tle, Steward Kingdom, Cullen Jennings, and Rod Barman, Spinoza: A Stereoscopic Visu­

ally Guided Mobile Robot, Hawaii International Conference on System Sciences, 1997.

[Williams98] Nicola Muscettola, P.Pandurang Nayak, Barney Pell, and Brian C. Williams,

66

Remote Agent: To Boldly Go Where No AI System Has Gone Before, Artificial Intelli­

gence, 103: 5-47, 1998.

[ZM98] Y. Zhang and A. Mackworth, A Constraint-based Controller for Soccer-playing

Robots, IROS'98 (Intelligent Robot Systems) Conference Proceedings, IEEE, Victoria,

B.C., Canada, Oct 13-17, pp 1290 - 12951998.

67

Appendix A: A Few Issues For Programming the Robot

a. Off-board vs. On-board

It is always desirable to have all the system on-board, in another word, all the

code located on the mobile robot itself. But in reality, having the whole system on-board

causes difficulties in debugging the system. Therefore, during our implementation, most

of the control system is off-board and located on the host. Although this separation helps

with the debugging, it needs more consideration on the communication through radio-

modem. Transferring large image data between the host and the robot via radio-modem

will lead to a delay for the process of image understanding. To speed up the system, we

could always develop and debug our system on the remote host, and migrate the system

to the robot later on. It doesn't matter whether the current system is in Java or not,

because the robot itself is also a Pentium machine running LINUX. However, the current

program module robotServer on the robot must encounter some changes to communicate

directly with the control system instead of via radio-modem through sockets.

b. Remote Invocation

The current Java robot APIs do not support remote invocation. This could be

done by using Java RMI. Since the Java robot APIs are implemented by calling JNI

(Java Native Interface) to access the shared memory which is implemented in C++,

remote invocation might cause a security problem. My suggestion to this problem is to

investigate the SecurityManager class in Java.

c. Temporal Facilities

Temporal facilities are useful while developing a system with hard real-time

requirements. The current system has the temporal facilities. They are implemented as

the timestamps for each commands and each piece of information received by the host.

They are located in the shared memory.

68

d. Exception Class

The Exception Class in the current implementation inherits from EventObject

class. Different exceptions simply inherit again from Exception Class. Each exception

hot only has a name to indicate the type of the exception but also carries the information

which describes the failures. This information can be simply implemented as variables in

the Exception Class.

e. Efficiency

One problem in building this Java control system on top of C++ code is its

efficiency. In order to get information such as image data from shared memory to the

Java program, it is inevitable to have memory copies. In terms of efficiency, it might be

better to develop the whole system in C++.

f. Java Robot API

Different systems can be built upon the following basic Java Robot APIs. They

are interfaces to the shared memory developed in C++.

69

A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index

Class robot Jmage.ImageMemory
j a v a . l a n g . O b j e c t

+ r o b o t . image . ImageMemory

public class ImageMemory
extends Object
The methods in ImageMemory class are interfaces to the shared memory which stores the
image information. Through this class, images can be requested and retrieved from these
methods.

• disp
The disparity image.
. leftRaw
The left raw image.
. left Rect
The right rectified image.
• rightRaw
The right raw image.
• rightRect
The right rectified image.
• topRaw
The top raw image.
• topRect
The top rectified image.

»ImageMemoryO
Attach to the image shared memory created already in other program modules.
»ImageMemory(boolean)
Create the image shared memory or attached to the image shared memory that has already
created by other program module.

To

Method /*fde\
» destroyO
Destroy the image shared memory.
» detachQ
Detach from the image shared memory.
» getlmage(int)
Return one of the image.
• getUpdate()
Update the shared memory pointer.
» requestlmages(int, int)
Request specific image.
» requestlmages(int, int, int, int, int, int)
Request specific image based on Region of Interest.
» requestReady()
Return whether the image requested is available to be retrieved or not.
• setBaseline(floaf)
Set baseline.
• setComplete(boolean)
When the requested image arrives, set complete flag in the shared memory.
» setFocalLength(float)
Set focallength.
• setResolution(int, int)
Set resolution.
• updatelmage(int)
Copy the specific image data from the shared memory to the corresponding variable.
• updatelmageNCols(int)
Copy the number of columns of the specific image from the shared memory to the
corresponding variable.
• updatelmageNRows(int)
Copy the number of rows of the specific image from the shared memory to the
corresponding variable.
» updatelmageStartCol(int)
Copy the starting column of the specific image from the shared memory to the corresponding
variable in case of retrieving ROI only.
»updatelmageStartRow(int)
Copy the starting row of the specific image from the shared memory to the corresponding
variable in case of retrieving ROI only.

• disp

p u b l i c I m a g e l n f o d i s p

1\

The disparity image.

• rightRect

p u b l i c I m a g e l n f o r i g h t R e c t

The right rectified image.

• leftRect

p u b l i c I m a g e l n f o l e f t R e c t

The left rectified image.

• topRect

p u b l i c I m a g e l n f o t o p R e c t

The top rectified image.

• rightRaw

p u b l i c I m a g e l n f o r i g h t R a w

The right raw image.

• left Raw

p u b l i c I m a g e l n f o l e f t R a w

The left raw image.

• topRaw

p u b l i c I m a g e l n f o topRaw

The top raw image.

SI ImageMemory

p u b l i c ImageMemory() throws M e m N o t A t t a c h a b l e E x c e p t i o n

Attach to the image shared memory that has already created by another program module.
Throws: MemNotAttachableException
if the shared memory can not be attached.

• ImageMemory

public ImageMemory(boolean create) throws MemNotAttachableException
Create the image shared memory or attach to the image shared memory that has already created by
another program module.
Parameters:
create - a boolean indicates whether to create or to attach to the shared memory. If it is true, create
the shared memory.
Throws: MemNotAttachableException
if the shared memory can not be attached.

Methods
• destroy

p u b l i c b o o l e a n d e s t r o y () throws CanNotDestroyMemException

Destroy the image shared memory.
Throws: CanNotDestroyMemException
if the image shared memory can not be destroyed.

• requestlmages

p u b l i c s y n c h r o n i z e d b o o l e a n r e q u e s t l m a g e s (i n t r o b o t ,
i n t images)

Request specific images.
Parameters:
robot - which robot's image is going to request,
images - which image is being requested.
Returns:
true if the request is sent to the image shared memory successfully,
false if the request can not be sent to the image shared memory.

• requestlmages

p u b l i c s y n c h r o n i z e d b o o l e a n r e q u e s t l m a g e s (i n t r o b o t ,
i n t images,
i n t r ,
i n t c,
i n t rows,
i n t c o l s)

Request specific images based on ROI (Region of Interest).
Parameters:
robot - which robot's image is going to request,
images - which image is being request,
r - start row of the requested image
c - start column of the requested image
rows - number of rows of the requested image
cols - number of columns of the requested image

13

Returns:
true if the request is sent to the image shared memory successfully,
false if the request can not be sent to the image shared memory.

• setComplete

p u b l i c s y n c h r o n i z e d b o o l e a n s e t C o m p l e t e (b o o l e a n c omplete)

When the requested image arrives, set complete flag to true in the shared memory to indicate that
the image is ready to be retrieved. After the image request is sent, the complete flag is set to false.
Parameters:
complete - whether the requested image is available or not.
Returns:
true if the flag is set successfullly.
false if the flag can not be set.

• updatelmageStartRow

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a t e l m a g e S t a r t R o w (i n t image)

Copy the starting row of the specific image from the shared memory to the corresponding variable
in case of retrieving ROI only.
Parameters:
image - the image type
Returns:
true if update is done.
false if update can not be done.

9 updatelmageStartCol

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a t e l m a g e S t a r t C o l (i n t image) ;

Copy the starting column of the specific image from the shared memory to the corresponding
variable in case of retrieving ROI only.
Parameters:
image - the image type
Returns:
true if update is done.
false if update can not be done.

• updatelmageNRows

p u b l i c s y n c h r o n i z e d b o o l e a n u p d a telmageNRows(int image)

Copy the number of rows of the specific image from the shared memory to the corresponding
variable in case of retrieving ROI only.
Paramters:
image - image type.
Returns:

1 4

true if update is done.
false if update can not be done.

9 updatelmageNCols

p u b l i c synchronized boolean updatelmageNCols(int image)

Copy the number of columns of the specific image from the shared memory to the corresponding
variable in case of retrieving ROI only.
Parameters:
image - image type
Returns:
true if update is done.
false if update can not be done.

• updatelmage

p u b l i c synchronized boolean updatelmage(int image)

Copy the specific image data from the shared memory to the corresponding variable.
Parameters:
image - image type
Returns:
true if update is done.
false if update can not be done.

• requestReady

p u b l i c synchronized boolean requestReady()

When the requested image is completely transfered from the robotServer to the host side, a
complete flag in the shared memory is set to true. This method returns the complete flag to
indicate whether the image is avaible or not.
Returns:
true if the specific image is available,
false if the specific image is not avaible.

® getUpdate

p u b l i c synchronized boolean getUpdate()

Update the shared memory pointer
Returns:
true if the update is done.
false if the update can not be done.

• setResolution

p u b l i c synchronized boolean s e t R e s o l u t i o n (i n t nrows,
i n t ncols)

IS

Set resolution
Parameters:
nrows - rows of the image
ncols - columns of the image
Returns:
true if resolution is set in the shared memory successfully,
false if resolution can not be set.

• setBaseline

p u b l i c synchronized boolean s e t B a s e l i n e (f l o a t b)

Set baseline
Parameters:
b - baseline
Returns:
true if baseline is set in the shared memory successfully,
false if baseline can not be set.

® setFocalLength

p u b l i c synchronized boolean setFocalLength(float f)

Set focallength
Parameters:
f - focallength
Returns:
true if focallength is set in the shared memory successfully
false if focallength can not be set.

• getlmage

p u b l i c Imagelnfo getlmage(int imgType) throws NoSuchlmageException

return one of the image variable of this class.
Parameters:
imgType - image type
Throws: NoSuchlmageException
if there is no such a image, or in another word, the image type is not valid.
Returns:
the specified image

• detach

p u b l i c boolean detach() throws MemNotDetachableException

Detach the image shared memory.
Throws: MemNotDetachableException
if the image shared memory can not be detached.

it

Returns:
true if detach is done successfully,
false if detach can not be done.

A l l Packages Class Hierarchy This Package Previous Next Index

11

A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index

Class robot.info.InfoMemory
J a v a . l a n g . O b j e c t

+ r o b o t . i n f o . I n f o M e m o r y

public class InfoMemory
extends Object
The methods in this class are interfaces to the shared memory that stores the robot
information such as robot position, power information and radial map.

, InfoMemory(boolean, ImageMemory)
Create the robot info shared memory or attach to the shared memory that has already been
created by other program modules.
»InfoMemory(ImageMemory)
Attach to the robot info shared memory that has already been created by other program
modules.

. getNotifyFlag(int)
Get sonar information .
»getPlan(int)
Get path plan information.
• getRadiallnfo(int)
return radial map.
• getRobotPosition(int)
Get robot position.
• getVoItage(int)
Get robot's voltage information.
• setBackward(int)
Set command backward.
» setForward(int)
Set command forward.
» setGoaI(int, int, int)

IB

Set robot's goal position.
• setGoal(int, RobotPosition)
Set robot's goal position.
. setHalt(int)
Set command halt.
• setLeft(int)
Set command turn left.
» setMode(int, int)
Set robot's mode.
• setNotifyFlag(int, long)
Set robot's notifyFlag.
• setPlan(int, PathPlan)
Set path plan.
• setRight(int)
Set command turn right.
• setTurn360(int)
Set command turn 360.
» updateRadial(int)
Update radial map.

S> InfoMemory

p u b l i c InfoMemory(ImageMemory imageMem) throws M e m N o t A t t a c h a b l e E x c e p t i o n 1

Attach to the robot info shared memory that has already been created by another program module.
Paramters:
imageMem - image shared memory
Throws: MemNotAttachableException
if the shared memory can not be attached.

fi InfoMemory

p u b l i c I n f o M e m o r y (b o o l e a n c r e a t e ,
ImageMemory imageMem) throws M e m N o t A t t a c h a b l e E x c e p t i o n

Create the robot info shared memory or attach to the shared memory that has already been created
by another program module.
Parameters:
create - A boolean indicates whether to create or to attach to the shared memory. If it is ture, robot
info shared memory will be created.
imageMem - image shared memory
Throws: MemNotAttachableException
if the shared memory can not be attached.

• getVoltage

p u b l i c s y n c h r o n i z e d i n t g e t V o l t a g e (i n t r o b o t)

Get robot power information.
Parameters:
robot - which robot's power information is requested, eric or jose?
Returns:

the power of the specific robot.

SI getRobotPosition
p u b l i c s y n c h r o n i z e d R o b o t P o s i t i o n g e t R o b o t P o s i t i o n (i n t r o b o t) throws GetRobotP<

Get robot's current position (X, Y, H).
Parameters:
robot - which robot's position is requested, eric or jose?
Throws: GetRobotPositionException
if getRobotPosition cannot be finished successfully by calling Java native method.
Returns:
the robot's current position.

• updateRadial

p u b l i c s y n c h r o n i z e d R a d i a l l n f o u p d a t e R a d i a l (i n t r o b o t) throws' G e t R a d i a l l n f o E x c f

Copy the robot's radial map from the shared memory to the object of this class.
Parameters:
robot - which robot's radial map is requested, eric or jose?
Throws: GetRadiallnfoException
if getRadiallnfo cannot be finished successfully by calling java native method.
Returns:
the robot's radial map.

• getPlan

p u b l i c s y n c h r o n i z e d P a t h P l a n g e t P l a n (i n t r o b o t) throws G e t P a t h E x c e p t i o n

Get robot's path plan. This path plan is generated by another program module planner.
Parameters:
robot - which robot's path plan is requested, eric or jose?
Throws: GetPathException
if getPath cannot be finished succesfully by calling java native method.
Returns:
the robot's current path plan.

• setPlan

p u b l i c s y n c h r o n i z e d b o o l e a n s e t P l a n (i n t r o b o t ,

50

P a t h P l a n p l a n)

Set robot's path plan.
Parameters:
robot - which robot's path plan is going to be set, eric or jose?
plan - the path plan that is going to be set for the robot.
Returns:
true if plan is set successfully to the shared memory,
false if plan cannot be set to the shared memory.

• setTurn360

p u b l i c s y n c h r o n i z e d b o o l e a n s e t T u r n 3 6 0 (i n t r o b o t)

Set command turn 360 to the shared memory. After this command is read by proxy module, it will
be sent over to the physical robot. The robot will turn until it finishes 360 degrees.
Parameters:
robot - the robot which wiil turn 360.
Returns:
true if command is set successfully to the shared memory
false if command cannot be set to the shared memory.

• setHalt

p u b l i c s y n c h r o n i z e d b o o l e a n s e t H a l t (i n t r o b o t)

Set command halt to the shared memory. After this command is read by proxy module, it will be
sent over to the physical robot. The robot will stop its current movement.
Paramters:
robot - the robot which will halt.
Returns:
true if command is set successfully to the shared memory,
false if command cannot be set to the shared memory.

• setForward

p u b l i c s y n c h r o n i z e d b o o l e a n s e t F o r w a r d (i n t r o b o t)

Set command forward to the shared memory. After this command is read by proxy module, it will
be sent over to the physical robot. The robot will move forward.
Parameters:
robot - the robot which will move forward.
Returns:
true if command is set successfully to the shared memory,
false if command cannot be set to the shared memory.

if setBackward

p u b l i c s y n c h r o n i z e d b o o l e a n s e t B a c k w a r d (i n t r o b o t)

Set command backward to the shared memory. After this command is read by proxy module, it
will be sent over to the physical robot. The robot will move backward.
Parameters:
robot - the robot which will move backward.
Returns:
true if command is set successfully to the shared memory,
false if command cannot be set to the shared memory.

setLeft

p u b l i c s y n c h r o n i z e d b o o l e a n s e t L e f t (i n t r o b o t)

Set command turn left to the shared memory. After this command is read by proxy module, it will
be sent over to the physical robot. The robot will turn left.
Paramters:
robot - the robot which will turn left.
Returns:
true if command is set successfully to the shared memory,
false if command cannot be set to the shared memory.

dsetRight

p u b l i c s y n c h r o n i z e d b o o l e a n s e t R i g h t f i n t r o b o t)

Set command turn left to the shared memory. After this command is read by proxy modules, it will
be sent over to the physical robot. The robot will turn right.
Parameters:
robot - the robot which will turn right.
Returns:
true if command is set successfully to the shared memory,
false if command cannot be set to the shared memory.

® setMode

p u b l i c s y n c h r o n i z e d b o o l e a n s e t M o d e (i n t r o b o t ,
i n t mode) throws NoSuchRobotModeException

Set mode to the shared memory. Current modes are manual, explore, directed.
Parameters:
robot - indicates which robot's mode is going to change.
mode - which mode is going to be sent over to the robot. One of the above current modes.
Throws: NoSuchRobotModeException
if it is not a valid mode.
Returns:
true if the mode is set successfully to the shared memory,
false if the mode cannot be set to the shared memory.

A setGoal

%2

p u b l i c s y n c h r o n i z e d b o o l e a n s e t G o a l (i n t r o b o t ,
R o b o t P o s i t i o n g o a l)

Set robot's goal position to the shared memory. This is only effective while the robot is in directed
mode.
Parameters:
robot - indicates which robot's goal position is going to be set.
goal - the goal position in (X, Y, H).
Returns:
true if the goal position is set successfully to the shared memory,
false if the goal position cannot be set to the shared memory.

• setGoal

p u b l i c s y n c h r o n i z e d b o o l e a n s e t G o a l (i n t r o b o t ,
i n t x,
i n t y)

Set robot's goal position to the shared memory. This is only effective while the robot is in directed
mode.
Parameters:
robot - indicates which robot's goal position is going to be set.
x - the X of the goal position (X, Y, H).
y - the Y of the goal position (X, Y, H).
Returns:
true if the goal position is set successfully to the shared memory,
false if the goal position cannot be set to the shared memory.

• setNotifyFlag

p u b l i c s y n c h r o n i z e d b o o l e a n s e t N o t i f y F l a g (i n t r o b o t ,
l o n g f l a g)

Set Notifyflag in the shared memory.
Parameters:
robot - indicates which robot's notifyflag is going to be set.
flag - the notify flag.
Returns:
true if the flag is set successfully to the shared memory,
false if the flag cannot be set to the shared memory.

• getNotifyFlag

p u b l i c s y n c h r o n i z e d i n t g e t N o t i f y F l a g (i n t r o b o t)

Get Notifyflag from the shared memory. This is used to get the sonar information.
Parameters:
robot - indicates which robot's notifyflag is going to get.
Returns:
the notifyflag.

S3

• getRadiallnfo

p u b l i c R a d i a l l n f o g e t R a d i a l l n f o (i n t r o b o t)

Return the robot's radial map.
Paramters:
robot - indicates which robot's radial map is being asked for.
Returns:
the specific robot's radial map.

A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index

0-4

A l l Packages C l a s s H i e r a r c h y T h i s Package P r e v i o u s Next Index

Class robot.map.MapMemory
j a v a . l a n g . O b j e c t

I
+ robot.map.MapMemory

public class MapMemory
extends Object
The methods in this class are interfaces to the shared memory that stores the maps such as
plan map, zoom map, obstacle map and distance map.

»MapMemory()
Attach to the robot map shared memory.

• getDistMapO
Return distance map.
» getEricZoomMapO
Return eric zoom map.
»getJoseZoomMapO
Return jose zoom map.
»getObstMap()
Return obstacle map.
• getPlanMap()
Return plan map.
• mapCentre(int)
Get the center coordinates of the map.
• mapToWorld(int, int, int)
Transform the map coordinates (row, column) to world coordinates (X, Y):
• recentre(int, int, int)
Recenter the map.
• recentre(int, int, Maplnfo)
Recenter the map.
» updateDistMap(int, int, int, int)

35

Copy the distance map from the shared memory to the object of this class.
• updateEricZoomMapO
Copy the eric zoom map from the shared memory to the object of this class,
a updateJoseZoomMapQ
Copy the jose zoom map from the shared memory to the object of this class.
• updateObstMap(int, int, int, int)
Copy the obstacle map from the shared memory to the object of this class.
• updatePlanMap(int, int, int, int)
Copy the plan map from the shared memory to the object of this class.
• worldToMap(int, int, int)

Transform the world coordinates (X, Y) to the map coordinates (row, column),

ft MapMemory

p u b l i c MapMemory() throws M e m N o t A t t a c h a b l e E x c e p t i o n
Attach to the robot map shared memory.
Throws: MemNotAttachableException
if the shared memory cannot be attached.

AddMads
ft updateJoseZoomMap

p u b l i c b o o l e a n updateJoseZoomMap() throws G e t M a p E r r o r E x c e p t i o n

Copy the jose zoom map from the shared memory to the object of this class.
Throws: GetMapErrorException
if map cannot be get by calling java native method.
Returns:
true if map is successfully updated
false if map cannot be udpated.

ft updateEricZoomMap

p u b l i c b o o l e a n updateEricZoomMap() throws G e t M a p E r r o r E x c e p t i o n

Copy the eric zoom map from the shared memory to the object of this class.
Throws: GetMapErrorException
if map cannot be get by calling java native method.
Returns:
true if map is successfully updated,
false if map cannot be updated.

St

• updatePlanMap

p u b l i c b o o l e a n u p d a t e P l a n M a p (i n t r ,
i n t c,
i n t g e t r ,
i n t g e t c) throws G e t M a p E r r o r E x c e p t i o n

Copy the plan map from the shared memory to the object of this class.
Parameters:
r - row of the center of the map
c - column of the center of the map
getr - the number of rows to be updated
getc - the number of columns to be updated
Throws: GetMapErrorException
if map cannot be get by calling java native method
Returns:
true if map is successfully updated,
false if map cannot be updated.

• updateObstM ap

p u b l i c b o o l e a n u p d a t e O b s t M a p (i n t r ,
i n t c,
i n t g e t r ,
i n t g e t c) throws G e t M a p E r r o r E x c e p t i o n

Copy the obstacle map from the shared memory to the object of this class.
Parameters:
r - row of the center of the map
c - column of the center of the map
getr - the number of rows to be updated
getc - the number of columns to be updated.
Throws: GetMapErrorException
if map cannot be get by calling java native method
Returns:
true if map is successfully updated,
false if map cannot be udpated.

9 updateDistMap

p u b l i c b o o l e a n u p d a t e D i s t M a p (i n t r ,
i n t c,
i n t g e t r ,
i n t g e t c) throws G e t M a p E r r o r E x c e p t i o n

Copy the distance map from the shared memory to the object of this class.
Parameters:
r - row of the center of the map
c - column of the center of the map
getr - the number of rows to be updated
getc - the number of columns to be updated

81

Throws: GetMapErrorException
if map cannot be get by calling java native method
Returns:
true if map is successfully updated,
false if map cannot be updated.

® getJoseZoomMap

p u b l i c M a p l n f o getJoseZoomMap() throws NoMapException

Return the jose zoom map.
Throws: NoMapException
if no jose zoom map is available.
Returns:

the jose zoom map.

• getEricZoomMap
p u b l i c M a p l n f o getEricZoomMap() throws NoMapException

Return the eric zoom map.
Throws: NoMapException
if no eric zoom map is available.
Returns:

the eric zoom map.

9 getPlanMap
p u b l i c M a p l n f o g e t P l a n M a p () throws NoMapException

Return the plan map.
Throws: NoMapException
if no plan map is available.
Returns:
the plan map.

fl> getObstMap

p u b l i c M a p l n f o getObstMap() throws NoMapException

Return the obstacle map.
Throws: NoMapException
if no obstacle map is available.
Returns:
the obstacle map.

fl getDistMap

p u b l i c M a p l n f o g e t D i s t M a p () throws NoMapException

Return the distance map.
Throws: NoMapException
if no distance map is available.
Returns:
the distance map.

® worldToMap

p u b l i c MapPoint w o r l d T o M a p (i n t mapType,
i n t x,
i n t y)

Change a position from world coordinates (X, Y) to map coordinates (rows, column).
Parameters:
mapType - map type
x - X in world coordinates (X, Y).
y - Y in world coordinates (X, Y).
Returns:
the map coordinates (row, column) of (X, Y).

SI mapToWorld

p u b l i c W o r l d P o i n t m a p T o W o r l d (i n t mapType,
i n t row,
i n t c o l)

Change a position from map coordinates (row, column) to world coordinates (X, Y).
Parameters:
mapType - map type
row - row in map coordinates (row, column),
col - column in map coordinates (row, column).
Returns:
the world coordinates (X, Y) of (row, column).

• mapCentre

p u b l i c W o r l d P o i n t m a p C e n t r e (i n t mapType)

Get the map center in world coordinates of a specific map.
Parameters:
mapType - map type
Returns:
the world coordinates of the center of the map.

• recentre

p u b l i c v o i d r e c e n t r e (i n t mapType,
i n t x,
i n t y)

R e c e n t e r t h e s p e c i f i c map t o (X, Y) .

Parameters:
mapType - map type
x - X coordinate of new center (X, Y)
y - Y coordinate of new center (X, Y)

fl> recentre

p u b l i c void r e c e n t r e (i n t x,
in t y,
Maplnfo plan)

Recenter the plan map to (X, Y).
Parameters:
x - X coordinate of new center (X, Y)
y - Y coordinate of new center (X, Y)
plan - plan map

A l l Packages Class Hierarchy This Package Previous Next Index

<|0

