
Multi-Image Matching 
using Invariant Features 

by 

Matthew Alun Brown 

B.A. , Cambridge University, 2000 
M.Eng., Cambridge University, 2000 

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T OF 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF 

Doctor of Philosophy 

in 

T H E F A C U L T Y OF G R A D U A T E STUDIES 

(Computer Science) 

The University of British Columbia 

July 26, 2005 

© Matthew Alun Brown 2005 



Abstract 

This thesis concerns the problems of automatic image stitching and 3D modelling from 
multiple views. These are basic problems of computer vision, with applications in 
robotics, architecture, industrial inspection, surveillance, computer graphics and film. 
Recent work has brought increasing automation to these tasks, but despite a large 
amount of progress, state-of-the-art algorithms still require some form of user input or 
assumptions about the image sequence. For example, the best image stitchers currently 
require an ordered set of input images, or user input to identify the matching images, 
before automatic registration can proceed. In this work we show how such tasks can 
be performed automatically and without any user input at all. 

We formulate the multi-image matching problem as one of finding all matching 
images, subject to the constraint that they are consistent views from a perspective 
camera. We use invariant features as a mechanism for finding correspondences, and 
indexing techniques to efficiently find matches between multiple views. We then find 
all sets of geometrically consistent feature matches, using a probabilistic model for 
verification. This allows us to identify each object or scene in the dataset using only 
the structure already present in the data. The major contributions of this thesis are 
the development of a system that can automatically recognise and stitch 2D panoramas 
in unordered image datasets, and a new class of invariant features for this purpose. 
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Chapter 1 

Introduction 

1.1 Motivation 

The ability to deduce information about the world from multiple views is a fundamental 
capability of both human and machine vision systems. Such systems typically employ 
sensors (eyes or cameras) that lose information in the projection from 3D to 2D, and 
rely on a processing unit (the brain or computer) that combines information from 
multiple views to create the impression of a visual world. 

A n example of this in humans is foveal vision [Ray98]. Most of us are not imme
diately aware that the high-resolution portion of the retina (the fovea) has an angular 
range of only about 2 degrees - approximately the size of a thumb held at arms length. 
Yet, we perceive a much larger field of view of up to 135 x 200 degrees. This is enabled 
by rapid eye movements called saccades, during which the eyes move with angular ve
locities up to 500 degrees per second. In between the saccades are fixations, where we 
focus our foveal vision on a point. Though a typical task such as reading would involve 
fixations of 200-300 ms between saccades of 30 ms or so, the brain is able to assimilate 
all this information and create the illusion of a single, immersive, high-resolution scene. 
Another basic capability of human vision is the ability to perceive depth. Since the 
eyes are separated in space, each receives a slightly different image, and the difference 
in position (disparity) of corresponding points in these images can be used to judge 
depth 1. 

Both of these processes have been mimicked in machine vision systems where they 
are known as panoramic [Mil75, BK01] and stereo [MP79, SS02] vision. The basic ideas 
can also be extended to multiple views and were first implemented in computers by the 
photogrammetry community for the purposes of aerial cartography [Bro58, Sla80]. A 
distinction is made between problems where the imagery is essentially 2-dimensional, 
and may be combined into a larger composite image (a process known as image align-

1 This was first recognised by Euclid in 280 A . D . 
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Figure 1.1: The multi-image matching framework. The objective is to operate on an 
unordered database of images, and find all the matching images. Subsets of matching 
images can be combined into 3D models or panoramic views as appropriate. 

ment or stitching [Sze04]), and cases when the imagery is truly 3-dimensional. The 

latter case is distinguished by the fact that the images exhibit parallax (depth depen

dent motion), which can be used to deduce the camera motion and structure of the 

scene (known as structure and motion estimation [HZ04]). 

Both problems also have many compelling applications. Image stitching can be 

used to create beautiful panoramic mosaics, which are often viewed interactively for 

applications such as virtual tourism, or to provide backdrops in films and video games. 

Camera tracking and 3D structure estimation are used extensively in the visual effects 

industry, for video shot stabilisation, and for modelling and visualisation in areas as 

diverse as archaeological digs and crime scenes. 

Computer vision has brought increasing automation to such problems, with several 
commercial offerings [Che95, R E A , 2D3] in addition to an extensive research literature 
[Sze04, HZ04, BTZ96, PolOO] devoted to automatic image stitching and 3D modelling 
from multiple views. Despite much recent progress, state-the-art systems for image 
registration [REA] and camera tracking [2D3] still require assumptions about the image 
sequence or user input to define matching images. The main theme of thesis is that such 
models can be discovered automatically in a database of images using the structure of 
the data only. No prior information is required about the camera parameters or image 
sequence other than mild assumptions about the nature of projection. 
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1.2 Approach 

A basic task in vision is the correspondence problem. This is the task of finding points 
in different images that are corresponding in the sense that they are projections of 
the same point in the world. While humans perform this activity without conscious 
thought, it has proven to be a difficult problem in computer vision. Several approaches 
to image correspondence have been proposed. Some are iterative, for example tracking 
of object contours [BI98], and some are non-iterative, such as indexing using invariants 
[MZ92]. Another distinction is between techniques that are direct [IA99] (using all im
age information) and feature-based [TZ99] (using a sparse representation of the image). 
In this work we adopt a non-iterative, feature based approach to image matching. 

It is well known that the first stages in the visual cortex involve the detection of low-
level features such as edges [HW62]. However, more recently Tanaka [Tan97] and others 
have shown that certain cells in the inferotemporal cortex respond only to more complex 
(and irreducible) features. Feature detection in computer vision has followed a parallel 
path, with early work in edge [Can86] and corner [Har92] detection being augmented 
with more complex and distinctive image features [Low99, MCUP02, Lin98, KZB04]. 
Our choice of image features follows this trend, and will be discussed in more detail in 
chapter 2. 

Our approach to image matching also differs from more traditional methods in that 

we see matching as an operation on multiple images and not just an image pair. The 

problem can be stated as follows: 

Given an unordered set of images 
and a geometric matching constraint, 
find all subsets of matching images 

We will mainly be interested in the cases of a) stationary but rotating cameras, and b) 
and moving cameras viewing rigid scenes, for which it is possible to a) stitch panoramas 
and b) generate 3D models (see figure 1.1). There are several advantages of multi-image 
matching over the traditional pairwise approach: 

Complexity. By representing a collection of images as a database of features, we can 
pose the image matching problem as an all nearest neighbours problem [GMOO], 
which can be solved in 0(nlogn) time (cf. 0(n2) for naive pairwise matching). 
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Geometry. Multi-view constraints are stronger than pairwise constraints. This allows 

for more accurate solution of the image geometry, and more incorrect matches to 

be rejected. 

Probability. Using a large database of images provides a background distribution 
of incorrect feature matches, which can be used to help verify correct matches. 
Furthermore, any feature matching errors that do occur are distributed across all 
of the images, and not just the pair being matched. 

Another key advantage is the ability to automatically recognise consistent objects or 
scenes in an image database. 

A n algorithmic overview of our approach is shown in algorithm 1. We begin by 
extracting invariant features from all of the input images (step I). The features we 
have used are Scale Invariant Feature Transform (SIFT) features [Low99] and Multi-
Scale Oriented Patches (MOPS) (chapter 2). The goal of this stage is to generate a 
set of descriptors for locations in each image that are (as far as possible) invariant 
to the imaging process. Each feature is then matched to the features from all other 
images using an efficient indexing technique. We have used k-d trees [BL97] and 
wavelet indexing (section 2.8) for this purpose. Step III consists of outlier rejection by 
robust estimation of multi-view geometric constraints. For this we have used pairwise 
constraints based on the panoramic and epipolar geometry [HZ04]. Finally we use 
bundle adjustment to compute optimal estimates of the camera parameters and reject 
further outliers [TMHF99]. 

1.3 Contributions 

The main contribution of this thesis is the development and evaluation of a system 
capable of recognising and stitching 2D panoramas without any user input. We also 
develop a new class of invariant features (MOPS) designed specially for this purpose. 
Finally, we show how the multi-image matching framework can be applied to 3D object 
recognition and reconstruction. 

Automatic Panoramic Image Stitching 

We develop a novel, fully automated 2D panorama stitcher. This has the following 

advantages over previous image stitching approaches 
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(b) Output panoramas 

Figure 1.2: Panorama recognition: (a) an image set containing multiple panoramas and 
distractor images is input, and (b) panoramic sequences are recognised and rendered 
as output. 
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Algorithm: Multi-Image Matching using Invariant Features 
Input: n unordered images 

I. Extract invariant features from all n images 

II. Find k nearest-neighbours for each feature using an efficient indexing scheme 

III. For each image: 
(i) Select m candidate matching images 

(ii) Find geometrically consistent feature matches by robustly estimating the 
pairwise image geometry 

(iii) Verify image matches using a probabilistic model 

IV. Find connected components of image matches 

V . For each connected component: 
(i) Perform bundle adjustment to estimate the global geometry and reject 

further outliers. 

(ii) Compute 3D models/render panoramas as appropriate 

Output: Matched images and 3D model(s)/panorama(s) 

Algorithm 1: Multi-image matching 
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(c) Panorama rendered with multi-band blending 

Figure 1.3: Fully automatic 2D image stitching. A l l 57 images are registered automat
ically without any user input, and stitched into a seamless panoramic image. 
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• Robustness to image zoom, rotation and exposure change, due to the use of 

invariant features. 

• O(nlogn) running time, due to tree based matching (cf. 0(n2) for naive pairwise 
matching). 

• Automatic detection of matching images, using a probabilistic model for image 
match verification. This also allows us to recognise panoramas [BL03] (figure 1.2) 
in unordered datasets. 

• High quality rendering, even in the presence of misregistration, motion and ex
posure differences, due to gain compensation and multi-band blending (figure 
1.3). 

• Automatic panorama straightening, using a heuristic based on the way users 
typically shoot panoramic images. 

Evaluation of Image Stitching Algorithms 

We introduce a framework for evaluation of multi-image registration techniques. This 
uses a novel error function based on the projection errors of a test alignment compared 
to ground truth. 

Multi-Scale Oriented Patches (MOPS) 

• We show that a direct patch based sampling of an oriented image patch can serve 
as a useful invariant feature descriptor. 

• We propose an novel adaptive non-maximal suppression algorithm that distributes 

features more evenly over the image than previous approaches. 

• We show that data driven classifiers that make use of known incorrect matches 
can provide superior performance to the basic Gaussian noise model. 

• We show that indexing based on Haar wavelet coefficients speeds up the search 
for matching features, and is superior to indexing on other dimensions of the 
feature descriptor. 
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3D Object Recognition and Reconstruction 

We show how the previous techniques can be extended to the case of a moving camera 
and enable recognition and reconstruction of 3D objects from unordered datasets. We 
present a graphical model formulation for the reconstruction problem, and implement 
an efficient solution using sparse bundle adjustment. 

1.4 Outline of Thesis 

The remainder of the thesis is organised as follows. Chapter 2 reviews the literature 
on invariant features and introduces Multi-Scale Oriented Patches (MOPS) - a new 
class of invariant feature that use a direct patch based sampling of the local image 
region. We perform a detailed analysis of the properties of these image features and 
include comparisons to the current state-of-the-art in feature matching. In chapter 3 we 
describe the design of an automatic panoramic image stitcher, capable of recognising 
and stitching panoramas from unordered datasets. We develop methods for evaluation 
and tuning the parameters of our automatic panorama stitcher in chapter 4. Chapter 
5 extends the multi-view matching framework to the case of moving cameras and 3D 
model acquisition. In chapter 6 we present conclusions and ideas for future work. 



Chapter 2 

Multi-Scale Oriented Patches 

10 

2.1 Introduction 
A quantity is invariant under a group of transformations if it is conserved (unchanged) 
by any transformation in that group. In the context of computer vision, the transfor
mations of interest are those induced by the perspective projection of the world onto 
the image plane (see appendix A) . Invariance provides a mechanism for finding cor
respondences between images for which the transformation parameters are unknown 
[MZ92, RZFM92]. 

A n alternative approach to correspondence is to start with some initial guess of 
the transformation parameters and iteratively refine this whilst minimising an error 
function based on the quality of registration. Such error functions typically use all of 
the image data, for example, the sum squared error of overlapping pixels, and these are 
called direct methods [Ana89, LK81]. In contrast, feature-based methods attempt to 
extract salient features such as edges and corners, and then to use a small amount of 
local information, for example, correlation of a small image patch, to establish matches 
[Har92, ST94]. 

Invariant features can be seen as a hybrid of earlier matching methods. As with 
traditional image features, they use a distributed representation which makes matching 
methods robust (in that failed feature matches do not adversely affect the solution). In 
common with direct methods, each feature descriptor typically uses a large amount of 
local image data, making the features more distinctive than traditional image features 
such as edges and corners. Finally, the use of invariants makes it possible to find 
matches over a wide range of image transformations using indexing instead of iterative 
search. 

The first work in the area was by Schmid and Mohr [SM97] who used a jet of 
Gaussian derivatives to form a rotationally invariant descriptor around a Harris corner. 
Lowe extended this approach to incorporate scale invariance [Low99, Low04]. Other 
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researchers have developed features that are invariant under affine transformations 
[BauOO, TGOO, BL02]. Interest point detectors vary from standard feature detectors 
such as Harris corners or D O G maxima to more elaborate methods such as maximally 
stable regions [MCUP02] and stable local phase structures [CJ03]. 

Generally, interest point extraction and descriptor matching are considered as two 
basic steps, and there has been some progress in evaluating the various techniques with 
respect to interest point repeatability [SMB98] and descriptor performance [MS03]. 
Other researchers have suggested that interest points should be located such that the 
solutions for matching position [ST94], orientation and scale [Tri04] are stable. There 
have been several compelling applications of invariant feature based matching in the 
context of object recognition [Low99], structure from motion [SZ02], panoramic imaging 
[BL03] and searching for objects in videos [SZ03]. 

In this chapter, we describe the implementation of a patch-based invariant feature 
called Multi-Scale Oriented Patches (MOPS). MOPS have been designed with the task 
of panoramic image stitching in mind. They have a number of advantages over previous 
approaches in that regard. First, we use a novel adaptive non-maximal suppression 
algorithm that better distributes features across the image than previous techniques 
(section 2.3.1). This facilitates improved matching for panoramic sequences with low 
overlap. Second, we develop a feature space outlier rejection strategy that uses all 
of the images in an n-image matching problem to give a background distribution for 
incorrect matches (section 2.7). Finally, we develop an indexing scheme based on 
low-frequency Haar wavelet coefficients that greatly speeds up the search for feature 
correspondences with minimal impact on matching performance (section 2.8). We close 
the chapter with a discussion of our results and ideas for future work in this area. 

2.2 Multi-Scale Oriented Patches 

In general the transformation between corresponding regions in a pair of images is a 
complex function of the geometric and photometric properties of the scene and the 
cameras. For the purposes of this work we reduce this to a simple 6 parameter model 

and 

/'(x') = a/(x) + /? + n(x) (2.1) 
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Figure 2.1: Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels. The 
boxes show the feature orientation and the region from which the descriptor vector is 
sampled. 
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x' = Ax +1 (2.2) 

A = 
cos 9 sin 9 

(2.3) s — sin 9 cos 9 

where /(x) and Z'(x') are the corresponding image patches. There are four geometric 
parameters ti,t2,9,s (position, orientation and scale) and two photometric parameters 
are a,/3 (gain and bias). The error n(x) represents imaging noise and modelling error. 
Features are located at points where this transformation is well defined i.e. the autocor
relation of I(x) is peaked [ST94]. To compare features, one could in principle compute 
the maximum likelihood estimates for the transformation parameters between a pair 
of image locations. Assuming Gaussian noise, this can be done iteratively by solving 
a non-linear least squares problem [BM04]. However, this would require an iterative 
registration step to match any pair of features. Instead, we establish a canonical frame 
(see appendix A.4) for each feature, and sample invariant descriptor vectors relative to 
that frame. This allows us to efficiently compute an approximation to the minimum 
matching error n(x) between any pair of features using indexing techniques (see section 
2.7.1). We then use the statistics of the matching error n(x) to verify whether a match 
is correct or incorrect. 

The interest points we use are multi-scale Harris [Har92] corners. For efficiency, we 
work with greyscale images I(x,y). For each input image I(x,y), we form an image 
pyramid with the lowest level Po(x, y) = I(x, y) and higher levels related by smoothing 
and subsampling operations 

2.3 Interest Points 

Pi{x,y)*g*P(x,y) 

P[(sx, sy) 

(2.4) 

(2.5) 

/ denotes the pyramid level, and ga(x,y) denotes a Gaussian kernel of standard devi
ation a. We use a subsampling rate r = 2 and pyramid smoothing ap = 1.0. Interest 
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points are extracted from each level of the pyramid. Other authors use sub-octave 
pyramids, for example Lowe [Low04j. This gives improved matching for images at dif
ferent scales. Since we are mostly concerned with matching images that have the same 
scale, this is left for future work. 

The Harris matrix at level I and position (x, y) is the smoothed outer product of 
the gradients 

Hl(x,y) = VadPl(x,y)V(TdPl(x,y)T *9l7i(x,y) (2.6) 

Vo- represents the spatial derivative at scale o i.e. 

V0f{x,y)±Vf(x,y)*gir{x,y) (2.7) 

We set the integration scale a"; = 1.5 and the derivative scale <Jd = 1.0 and use the 
corner detection function 

_ det Hi(x,y) _ A X A 2 jHM{x,y) -—— — — -——— (2.8) 
t rH/ (x ,y ) Ai + A 2 

which is the harmonic mean of the eigenvalues (Ai, A 2) of H. Interest points are located 
where the corner strength / # M ( £ , y) is a local maximum of a 3 x 3 neighbourhood, and 
above a threshold t — 10.0. 

The reason for this choice of interest point detection function can be understood 
in terms of the relationship between H and the local autocorrelation function. For an 
image i(x), the first order Taylor expansion gives an expression for the local autocor
relation 

e(x) = |/(x) - I 0 | 2 » x T f ^ T x = x THx (2.9) 

ax ax 
Interest points are located at peaks in the autocorrelation function. This means that 
e(u) is large for all unit vectors u, which is equivalent to requiring that both eigenvalues 
of H are large1. Figure 2.2 compares isocontours of our interest point detection function 
(Harmonic mean) with the common Harris [Har92] and Shi-Tomasi [ST94] detectors. 
Note that all the detectors require both eigenvalues to be large. Harmonic mean and 
Shi-Tomasi detectors have the slight advantage that they are parameter free, whereas 

^ o t e that in practice H is integrated over a range as in equation 2.6 (otherwise it would be rank 
1). 
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Figure 2.2: Isocontours of popular interest point detection functions. Each detector 
looks for points where the eigenvalues Ai , A 2 of H = JN V J V / T < i x are both large. 

the Harris detector has a single parameter to be tuned. 

Harris f„ = A : A 2 - 0.04(Ai + A 2 ) 2 - det H - 0.04(tr H) 2 

Harmonic mean fHM = £fe = ^ 

Shi-Tomasi fsr = min(Ai,A 2 ) 

Preliminary experiments suggest each of these detectors give roughly the same perfor

mance, although one could compute repeatability statistics to confirm this (see section 

2.3.3). 

2.3.1 Adaptive Non-Maximal Suppression 

Since the computational cost of matching is superlinear in the number of interest points, 
it is desirable to restrict the maximum number of interest points that are extracted from 
each image. At the same time it is important that the interest points that are generated 
are well spatially distributed over the image, since the area of overlap between a pair of 
images may be small. To satisfy these requirements, we use an adaptive non-maximal 
suppression (ANMS) strategy to select a fixed number of interest points from each 
image. 
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Interest points are suppressed based on the corner strength JHM and only those that 
are a maximum in a neighbourhood of radius r pixels are retained. Conceptually, we 
initialise the suppression radius r = 0 and then increase it, removing interest points by 
non-maximal suppression, until the desired number of interest points is obtained. 
In practice, we can perform this operation without search as the set of interest points 
which are generated in this way form an ordered list. 

The first entry in the list is the global maximum, which is not suppressed at any 
radius (however large). As the suppression radius decreases from infinity, interest 
points are added to the list. However, once an interest point appears, it will always 
remain in the list. This is true because if an interest point is a maximum in radius r 
then it is also a maximum in radius r' < r. In practice we robustify the non-maximal 
suppression by requiring that a neighbour has a sufficiently larger strength. Thus the 
minimum suppression radius rt is given by 

7-j = min |xi - X j | , s.t. /(x^) < c/(xj), x̂ - el (2.10) 
j 

where Xj is a 2D interest point image location, and J is the set of all interest point loca
tions. We use a value c = 0.9, which ensures that a neighbour must have significantly 
higher strength for suppression to take place. We select the nip = 500 interest points 
with the largest values of rj. Experiments on a large database of panoramic images 
suggest that distributing interest points spatially in this way, as opposed to selecting 
based on max corner strength, results in fewer dropped image matches (we found im
proved matching on 5 sequences from our 200 sequence dataset). Another interesting 
experiment would be to test if A N M S also improves registration accuracy for a fixed 
number of features. This test could be performed using the apparatus developed in 
chapter 4. 

2.3.2 Sub-Pixel Accuracy 

Interest points are located to sub-pixel accuracy by fitting a 2D quadratic to the corner 
strength function in a local 3 x 3 neighbourhood (at the detection scale) and finding 
its maximum. 



Chapter 2. Multi-Scale Oriented Patches 17 

(a) Strongest 250 (b) Strongest 500 

(c) A N M S 250, r = 24 (d) A N M S 500, r = 16 

Figure 2.3: Adaptive non-maximal suppression (ANMS). The two upper images show 
interest points with the highest corner strength, while the lower two images show 
interest points selected with adaptive non-maximal suppression (along with the cor
responding suppression radius r). Note how the latter features have a much more 
uniform spatial distribution across the image. 
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Figure 2.4: For subpixel accuracy, derivatives are computed from pixel difference in a 
3 x 3 neighbourhood according to the equation 2.17. 

where x denotes position (x,y), and / (x) = / H M ( X ) is the corner strength measure. 
Derivatives are computed from the 3 x 3 neighbourhood using pixel differences i.e. 

dj_ 
dx 
d± 
dy 

a 2 / 
dx2 

&l 
dy2 

d2f 
dxdy 

See figure 2.4. The subpixel location is given by 

d2f~ldf 
x m = x 0 - ^ - j ( 2 - 1 7 ) ax 2 ax 

= (/i,o -/-i,o)/2 (2-12) 

= (/o,i — /o,-i)/2 (2.13) 

= /i,o — 2/o,o + /-i ,o (2.14) 

= /o,i — 2/0,0 + /o , - i (2-15) 

= ( /_i ,_i - - / l , _ l - / l , l ) /4 (2-16) 

2.3.3 Repeatability 

The fraction of interest points whose transformed position is correct2 up to some toler
ance epsilon is known as repeatability [SMB98]. We use a slightly different definition 

2Here we assume that images are related by a homography (see appendix A.2.1). Hence interest 
point detections in a pair of images are 'correct' if they are consistent with the homography between 
that pair of images. Later chapters wil l discuss alternate motion models between images. 
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Figure 2.5: Repeatability of interest points with and without sub-pixel correction. 
These results were computed from the Matier dataset. 

of repeatability to that defined in [SMB98] (which is not symmetric) as follows. Let IM 
denote the set of all points belonging to image M, and TM denote the set of interest 
points in image M. The set of points from image M that project to image N is given 
by VMN 

VMN = {xi : HjvMXi e IN} (2.18) 

where UNM is the homography between images M and TV. The set of points from 
image M that are repeated in image N (within tolerance e) is given by TZMN(^) 

"^MAr(e) = {xi : 3j : |x* - H M A r x . , | < e, x 4 e 1M, x.jelN} (2-19) 

The repeatability is the number of interest points that are repeated as a fraction of 
the total number of interest points that could be repeated. It is useful to adopt a 
symmetrical definition 

r(e) = mm — 1 — i (2.20) 
\\rMN\ \rNM\J 

The repeatability of our interest points with and without sub pixel localisation is 
shown in figure 2.5. Note that sub-pixel localisation gives approximately 5% improve
ment in repeatability. 

file:///rNM/J
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2.4 Orientation 

Each interest point has an orientation 9, where the orientation vector [cos 6, sin 6] = 
u/|u| comes from the smoothed local gradient 

ul(x,y) = VaoPl(x,y) (2.21) 

Note that the image gradient is covariant under similarity transforms, and hence can 
be used to compute a canonical frame (see appendix A.4). The integration scale for 
orientation is a0 = 4.5. A large derivative scale is desirable so that the vector field 
ui(x,y) varies smoothly across the image, making orientation estimation robust to 
errors in interest point location. The orientation estimate is poorly conditioned if the 
first derivative is close to zero, in which case it may be favourable to look at higher 
order derivatives [SF95]. This is left for future work. 

2.5 Analysis of Interest Point Extraction 

Figure 2.6 compares the errors introduced in four stages of feature extraction: posi
tion, scale and orientation measurement, and descriptor matching3. These experiments 
were conducted using the Matier dataset (see appendix B). Features were extracted 
and matched between all 7 images, and the top 2 image matches for each image were 
selected. The maximum number of matches per feature was 5. For each of these (14) 
image matches, the number of features in the area of overlap was found, and the num
ber of features with consistent position, scale and orientation measurements computed. 
Consistent position means that the interest point was detected within e pixels of the 
projected position using the homographies computed from bundle adjustment. Con
sistent scale means that the interest point was detected at the same scale in the two 
images. Consistent orientation means that the transformed orientations differ by less 
than 3 standard deviations (= 3 x 18.5 degrees). To an accuracy of 3 pixels, 72% 
of interest points are repeated (have correct position), 66% have the correct position 
and scale, 64% also have correct orientation, and in total 59% of interest points are 
correctly matched (meaning they are one of the top 5 matches in terms of Euclidean 
distance in feature space). That is, given that an interest point overlaps another image, 

3 Note that the extraction and matching of descriptor vectors is discussed in sections 2.6 and 2.7. 
The results are included here for completeness. 
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Figure 2.6: Repeatability vs accuracy for Multi-Scale Oriented Patches. To an accuracy 
of 3 pixels, 72% of interest points in the overlap region have consistent position, 66% 
have correct position and scale, 64% also have correct orientation, and in total 59% of 
interest points in the overlap region are correctly matched. 

the probability that it will be correctly matched is 59%. 
Whilst figure 2.6 shows combined results for all levels, figure 2.7 shows separate 

results for interest points extracted at each level of the pyramid. A l l measurements are 
relative to the base image. Note that contrary to the popular perception that Harris 
corners are sub-pixel accurate, the majority of interest points have location errors in 
the 0-3 pixel range, even at the finest scale of detection. Also note that interest points 
at higher levels of the pyramid are less accurately localised relative to the base image 
than those at a lower level, due to the larger sample spacing. Although less useful for 
accurate localisation, these higher level features are still useful in verifying an image 
match or a coarse R A N S A C hypothesis. Also, the orientation estimate improves as the 
level increases. As expected, features at levels 4 and 5 generally have poor accuracy, 
and their distributions show many features have accuracy worse than 3 pixels. However, 
it is slightly counter intuitive that features at levels 2 and 3 tend to have accuracies of 
3 pixels or better. 

Figure 2.8 show the same results as computed for the Van Gogh sequence. This is 
a pure rotation sequence, with no projective distortion. As compared to the Matier 
sequence, which does have perspective distortion, matching is improved. Note in par
ticular that the orientation repeatability curves and the matched curves are very close, 
indicating that if feature orientation is correctly estimated, then it is very likely that 
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the feature will also be correctly matched. This is not the case for the Matier dataset 
due to perspective distortion. 

2.6 Feature Descriptor 

Once we have determined where to place our interest points, we need to extract a de
scription of the local image structure that will support reliable and efficient matching 
of features across images. A wide range of such local feature vectors have been devel
oped, including local intensity patches [For86, Har92], Gaussian derivatives [SM97], 
scale invariant feature transforms [Low04], and affine-invariant descriptors [BauOO, 
TGOO, BL02]. In their comparative survey, Mikolajczyk and Schmid [MS03] evalu
ated a variety of these descriptors and found that SIFT features generally perform the 
best. Local patches oriented to the dominant local orientation were also evaluated, but 
found not to perform as well. In this section, we show how such patches can be made 
less sensitive to the exact feature location by sampling the pixels at a lower frequency 
than the one at which the interest points are located. 

Given an interest point (x, y, I, 9), the descriptor is formed by sampling from a patch 
centred at (x,y) and oriented at angle 9 from pyramid level /. We sample an 8 x 8 
patch of pixels around the sub-pixel location of the interest point, using a spacing of 
s — 5 pixels between samples (figure 2.9). Figure 2.10 shows how varying the sample 
spacing s affects the reliability of feature matching. We have found that performance 
increases up to a value s = 5, with negligible gains thereafter. 

To avoid aliasing, the sampling is performed at a higher pyramid level, such that 
the sampling rate is approximately once per pixel (the Nyquist frequency). This means 
sampling the descriptor from a level ls levels above the detection scale, where 

The descriptor vector is sampled using bilinear interpolation. In practice, s — 5 so the 
descriptor vectors are sampled at ls — 2 levels above the detection scale. 

Suppose the interest point was detected at level /. This suggests sampling the 
descriptor from Pi+i3(x,y) = Pi+2{x,y)- However, we have found better results by 
instead sampling the descriptor from P{+1(x, y), where P(+1(x, y) = Pi+i(x, y)*gap(x, y), 
i.e. blurring but not downsampling. Further (smaller) gains are made by sampling from 

(2.22) 
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tures extracted, 6610 correct 
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(b) Level 1. 4997 features ex
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(c) Level 2. 1044 features ex
tracted, 860 correct matches 

(d) Level 3. 372 features ex
tracted, 295 correct matches 

— posrtkon 
position, orientation 
matched • 

(e) Level 4. 180 features ex
tracted, 120 correct matches 

(f) Level 5. 56 features ex
tracted, 17 correct matches 

Figure 2.7: Repeatability of interest points, orientation and matching for Multi-Scale 
Oriented Patches at 5 pyramid levels (Matier dataset). The top left figure is a combined 
result for all levels. A l l measurements are relative to the base image in the pyramid. 
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(a) A l l levels. 6557 fea- (b) Level 1. 4925 features ex-
tures extracted, 9880 correct tracted, 7559 correct matches 
matches 

(c) Level 2. 1041 features ex
tracted, 1512 correct matches 

(d) Level 3. 392 features ex
tracted, 542 correct matches 
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(e) Level 4. 158 features ex
tracted, 212 correct matches 

(f) Level 5. 41 features ex
tracted, 55 correct matches 

Figure 2.8: Repeatability of interest points, orientation and matching for Multi-Scale 
Oriented Patches at 5 pyramid levels (Van Gogh dataset). This dataset consists of 
pure rotations with no perspective distortion. The top left figure is a combined result 
for all levels. A l l measurements are relative to the base image in the pyramid. 
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Figure 2.9: Descriptors are formed using an 8 x 8 sampling of bias/gain normalised 
intensity values, with a sample spacing of 5 pixels relative to the detection scale. This 
low frequency sampling gives the features some robustness to interest point location 
error, and is achieved by sampling at a higher pyramid level than the detection scale. 

P('(x,y) = Pi(x,y) * #2x<TP(£,?/)• Whilst theoretically one can interpolate a function 

exactly given a sampling of that function at the Nyquist frequency, in practice it is 

better to maintain a denser sampling if using a bilinear resampling kernel. This is 

discussed in more detail with quantative results in section 2.9.2. 

2.6.1 Illumination Invariance 
In the previous sections we have described some of the geometrical transformations 

under which we wish our image features to achieve invariance. However, there is also 

a potentially complex transformation of the illumination between corresponding image 

regions, which depends upon the surface reflectance properties and lighting conditions. 

Digital cameras also perform several non-linear transformations on the image intensities 

such as white-balancing and gamma correction. In this work we use a simple affine 

model for illumination change 

I' = al + p (2.23) 

Whilst it would be desirable to define a more accurate model of illumination change 

and represent features using illumination invariants, this is left for future work. In 

practice, we normalise the descriptor vector so that the mean is 0 and the standard 

deviation is 1, i.e. 

di = (d'i - fi)/a (2.24) 
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Figure 2.10: Effect of changing the descriptor sample spacing on performance. These 
R O C curves show the results of thresholding feature matches based on normalised 
match distance as in section 2.7.1. Performance improves as the sample spacing in
creases (larger patches), but gains are minimal above a sample spacing of 5 pixels. 

where d[, ie{l..d2} are the elements of the descriptor vector, with p = ^J2i=i^i 

and cr = \JYli=i(°H ~ A*)2- This makes the features invariant to afFme changes in 

intensity (bias and gain). 

2.6.2 Haar Wavelet Transform 

Finally, we perform the Haar wavelet transform on the 8 x 8 descriptor patch di to 
form a 64 dimensional descriptor vector containing the wavelet coefficients q . Due to 
the orthogonality property of Haar wavelets, distances are preserved 

" <*?)2 = <*)2 (2-25) 
i i 

So nearest neighbours in a sum-squared difference sense are unchanged. 
Our motivation for using wavelet coefficients to parameterise descriptors was the 

intuition that some dimensions of the feature descriptor would be more noisy than 
others (in fact we show that this is true in section 2.7.2). We exploit this in an indexing 
strategy which uses the first 3 non-zero wavelet coefficients C i , c 2 , c 3 (see section 2.8). 
Note that the mean CQ is equal to 0. 
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(a) Feature locations 

(b) Feature descriptors 

Figure 2.11: Corresponding features in a pair of images. For each feature a character
istic scale and orientation is established and an 8 x 8 patch of pixels sampled for the 
feature descriptor. Since the reference frame and the image undergo the same trans
formation between the images, the descriptor vector is the same in both cases (up to 
noise and modelling error). 
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(a) 

(b) 

Figure 2.12: Examples of corresponding features from different images in the Matier 
dataset. For each image, MOPS are extracted and descriptor vectors are stored in 
an indexing structure. Feature descriptors are indexed and matched as described in 
section 2.7. 
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2.7 Feature Matching 

Given Multi-Scale Oriented Patches extracted from all n images, the goal of the match
ing stage is to find geometrically consistent feature matches between all images. This 
proceeds as follows. First, we find a set of candidate feature matches using an ap
proximate nearest neighbour algorithm (section 2.8). Then we refine matches using an 
outlier rejection procedure based on the noise statistics of correct/incorrect matches. 
Finally we use R A N S A C to apply geometric constraints and reject remaining outliers. 

2.7.1 Feature-Space Outlier Rejection 
Our basic noise model assumes that a patch in one image, when correctly oriented, 
located and scaled, corresponds to a patch in the other image modulo additive Gaussian 
noise: 

J'(x') = 

X — 

A = s 

a/(x) + (3 + n(x) 

A x +1 

cos 9 sin 9 
- sin 9 cos 9 

(2.26) 

(2.27) 

(2.28) 

n(x)~M(0,a2

n) (2.29) 

where J(x) and I ' ( x ) a r e ^ n e corresponding patches, and n(x) is independent Gaussian 
noise at each pixel. To compare two features, we estimate the geometrical parameters 
from the translation, rotation and scale of the canonical frames (figure A.3), and the 
photometric parameters using the approximations 

a = — (2.30) 
a 

0 = p'-ap (2.31) 

These expressions are obtained by taking the mean and variance of equation 2.26, and 
assuming that n is small. The parameters p, a, p', a' are the means and variances of 
patches 7(x) and / ' ( x ' ) respectively. We then compute the matching error (Euclidean 
distance) between the two patches e = ^ / ^ x n(x) 2 . 
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Unfortunately, we have found this model to be inadequate for classification, as the 

error distributions for correctly and incorrectly matching patches overlap significantly 

(see figure 2.14(a) ). Hence, it is not possible to set a global threshold on the matching 

error to distinguish between correct and incorrect matches. 

Note that the above results apply to errors in the image plane, after correcting for 

the brightness changes a, j3 between patches. We have also repeated this experiment 

using a Gaussian noise model in (bias-gain normalised) feature space 

n(x) = 
J i ( x i ) - m i i ~ 2 ( x 2 ) - m 2 (2.32) 

cti cr2 

and found similar results. 

This behaviour has also been observed by Lowe [Low04], who suggested thresh

olding instead on the ratio 6 i — a w / H e r e e\_NN denotes the error for the best 

match (first nearest neighbour) and e2-NN denotes the error for the second best match 

(second nearest neighbour). As in Lowe's work, we have also found that the distribu

tions of ei^NNI&2-NN for correct and incorrect matches are better separated than the 

distributions of e^^N alone (figure 2.14(b) ). 

The intuition for why this works is as follows. For a given feature, correct matches 

always have substantially lower error than incorrect matches. However, the overall 

scale of errors varies greatly, depending upon the appearance of that feature (location 

in feature space). See figures 2.19 and 2.20. For this reason it is better to use a 

discriminative classifier that compares correct and incorrect matches for a particular 

feature, than it is to use a uniform Gaussian noise model in feature space. 

Lowe's technique works by assuming that the 1-NN in some image is a potential 

correct match, whilst the 2-NN in the same image is an incorrect match. In fact, we 

have observed that the distance in feature space of the 2-NN and subsequent matches 

is almost constant4. We call this the outlier distance eoutuer, as it gives an estimate of 

the matching distance (error) for an incorrect match (figure 2.15). 

We have found that in the n image matching context we can improve outlier re

jection by using information from all of the images (rather than just the two being 

matched). Using the same argument as Lowe, the 2-NN from each image will almost 

certainly be an incorrect match. Hence we average the 2-NN distances from all n 
4 This is known as the shell property ([Bis95] exercise 1.4). The distances of a set of uniformly 

distributed points from a query point in high dimensions are almost equal. 
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images, to give an improved estimate for the outlier distance5. This separates the dis
tributions for correct and incorrect matches still further, resulting in improved outlier 
rejection (figure 2.14(d) ). 

Hence we accept a feature match with error e iff 

e < / x 
^outlier (2.33) 

Where the threshold / = 0.65. In the general case it is prudent to attempt to match 
a given feature to the features from all other images in the dataset, using the above 
criterion (this assumes that every pair of images may have a match). However, in 
many applications e.g. panoramic stitching (chapter 3) and 3D modelling (chapter 5) 
the number of images that view a ray or point in the world noverlap is small, and hence 
it is only necessary to find a small number of candidate matches for each feature. Let 
us assume that we know the maximum number of images that may overlap a given 
ray noveriap. In an ordered list of nearest-neighbour matches, we assume that the first 
^overlap — 1 elements are potential correct matches, and that the noveriap and subsequent 
elements are incorrect matches. Typically we use a value noveriap = 5. In addition to 
speeding up the search for nearest neighbour matches, finding k matches per feature in 
a collection of n images (where k « n) has the advantage that any incorrect feature 
matches that do occur are distributed over a large number of images, and thus less 
likely to cause an incorrect image match to be declared. 

In general the feature-space outlier rejection test is very powerful. For example, 
we can eliminate 80% of the false matches for a loss of less than 10% correct matches. 
This allows for a significant reduction in the number of R A N S A C iterations required 
in subsequent geometry estimation steps (see figure 2.13). These results are computed 
for Matier (7 images, 6649 features, 5970 correct matches), Van Gogh (7 images, 6557 
features, 9260 correct matches) and Abbey (20 images, 18567 features, 15558 correct 
matches). 

5 W e also tried using other statistics of the distribution of outliers e.g. max, min, median, but 
found that using the average gave the best results. Future work might try to model the whole outlier 
distribution for these tests. 
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(a) A l l 1313 feature matches 

(b) 839 outliers rejected using feature space outlier rejection 

(c) A further 96 matches rejected using geometrical constraints 

Figure 2.13: Outlier rejection using b) feature space outlier rejection c) geometric 
constraints. The raw matches are a). There were 1313 initial matches, of which 
839 were rejected without geometric constraints by thresholding based on the outlier 
distance, and a further 96 were rejected using geometric constraints. The input images 
are 385 x 512 and there were 378 matches in the final solution. 
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Figure 2.14: Distributions of matching error for correct and incorrect matches. Note 
that the distance of the closest match (the 1-NN) is a poor metric for distinguishing 
whether a match is correct or not (figure (a)), but the ratio of the closest to the second 
closest (1-NN/2-NN) is a good metric (figure (b)). We have found that using an average 
of 2-NN distances from multiple images (INN/(average 2-NN)) is an even better metric 
(figures (c)-(d)). These results were computed from 18567 features in 20 images of the 
Abbey dataset (see appendix B), and have been verified for several other datasets. 
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Figure 2.15: Thresholding based on outlier distance. This figure shows the best 10 
matches for a sample feature. The first is a correct match, and the rest are incor
rect matches. Thresholding based purely on matching error gives poor results, since 
matching errors vary greatly depending upon the position in feature space. However, 
thresholding at a fraction of the outlier distance gives better results. 

2.7.2 Spatial Variation of Errors 

In actual fact the errors between corresponding patches are not uniform across the patch 
as suggested in equation 2.29. We have also computed the error variance assuming a 
diagonal covariance model 

ii (x)~Jv*(0 ,E n ) (2.34) 

where 

— 

*?1 0 0 
0 0 

0 0 *33 
(2.35) 

If we assume that the error variance is constant across the patch ( £ „ = <r?I) we find 
that the standard deviation of intensity errors for correct matches is on = 0.0334 (for 
brightness values in the range 0 < / < 1). That is, the error for correct matches is 
around 3%. However, with the diagonal covariance model of equation 2.35 we find that 
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Figure 2.16: Spatial variation of errors across the patch (for correct feature matches). 
Lighter tones indicate larger values of variance. The variance of the errors at the edge 
of the patches are larger than those in the centre. This is consistent with making small 
errors in scale / orientation selection. 

the standard deviation of errors at the edge of the patch is approximately 2 times that 

in the centre. This is shown in figure 2.16. Note that this is consistent with small 

errors in scale / orientation estimation for each patch, as these would generate larger 

errors at the edge of the patch. Preliminary experiments have shown that weighting 
_ i 

the errors by their inverse standard deviation i.e. minimising | E n

 2 n ( x ) | 2 does not give 
much improvement over simply minimising |n(x)| 2 . These results were computed using 
7572 correctly matching features (RANSAC inliers with e = 10 pixels) from the Matier 
dataset. 

2.7.3 Position and Orientation Errors for Correct Matches 

Figure 2.17 shows the residual image position errors and errors in rotation estimates 
for correctly matching features. Note that the features from the (rotation only) Van 
Gogh dataset are more accurately located than those in the Matier dataset (see ap
pendix B). For the pure rotation dataset, features are typically accurate in the 0-2 
pixel range, whilst those from the Matier dataset are typically in the 0-4 pixel range. 
This discrepancy could be due to perspective distortion (which could adversely affect 
the feature location), and also unmodelled parameters such as radial distortion. A n 
interesting future experiment would be to correct for radial distortion to check if the 
accuracy of features is still poorer when perspective distortion is present. This could 
also be simulated synthetically as in chapter 4. Another interesting observation is that 
there are a significant number of features that match correctly when the rotation es
timate is 180° out. This suggests that some the of the features might be rotationally 
symmetric e.g. the 2 x 2 checkerboard pattern has the properties of ambiguous gradient 
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Figure 2.17: Distributions of image location error and feature orientation error for 
correctly matching features (RANSAC inliers). Note that features from the Van Gogh 
dataset are more accurately located. Also, there are a significant number of features 
that match correctly when the rotation estimate is 180° out. This could occur for rota-
tionally symmetric features where the gradient is ambiguous e.g. a 2 x 2 checkerboard 
pattern. 
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Figure 2.18: Distributions of matching error for correct and incorrect matches. The 
results were computed for the Matier (a, b, c) and Van Gogh (d, e, f) datasets. Again 
the distance of the closest match (the 1-NN) is a poor metric for distinguishing whether 
a match is correct or not (figures (a), (d)). The ratio of the closest to the second 
closest (1-NN/2-NN) is a better metric (figures (b), (e)), but using an average of 2-NN 
distances from multiple images (lNN/(average 2-NN)) is better still (figures (c), (f)). 

and rotational symmetry. To compute position and orientation errors, features were 

projected between images using the homographies obtained from bundle adjustment 

over all images. 

2.8 Feature Indexing 

At this stage we wish to find nearest neighbours for all features from all images. This 

is the well known all nearest neighbours problem 

Vj NN(j) = arg min | | X i - X j 11, i ^ j (2.36) 
i 

This is naively 0(n2) but several more efficient (approximate) solutions have been pro-
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Figure 2.19: Distances of correct and incorrect matches for high and low contrast fea
tures. We plot absolute and relative distances. Absolute distance is the Euclidean 
distance between brightness normalised patches. Relative distance is the distance rel
ative to the outlier distance (the outlier distance is take as the distance of the closest 
2-NN match from all other images). Note that for the high contrast features, the 
absolute distances are all much larger than for the low contrast features. 
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Figure 2.20: Distances of correct and incorrect matches for high and low contrast 
features. Absolute distances are larger for high contrast features than low contrast 
features. Hence, thresholding based on absolute match distances is a poor test, but 
thresholding on relative distances is better. 
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B 
Figure 2.21: Indexing is performed on the first 3 non-zero wavelet coefficients (the 
mean is 0). These represent the first derivatives in x and y and the second order cross 
derivative. 

posed [BL97, NN97, GM00, SVD03]. In this section, we describe a nearest-neighbour 
algorithm that exploits the properties of our descriptor vectors. In particular, it makes 
use of the stability of the low-frequency components of our descriptor vectors, by in
dexing on the first 3 non-zero wavelet coefficients. 

Features are indexed in a three-dimensional lookup table with dimensions corre
sponding to the first 3 non-zero wavelet coefficients Ci,C2,C3 (estimates of f j , f^, 
over the patch) (see figure 2.21). The lookup table has 6—10 bins per dimension, 
which cover ±nc = 3 standard deviations from the mean of that dimension. Note that 
the means are typically around zero except for the first derivative that is aligned with 
the feature orientation, which is significantly positive. 

The bins are overlapped so that data within half a bin width, i.e. = | , are 
guaranteed to be matched against the query. These are approximate nearest neighbours 
as it is possible (but unlikely) that the true nearest neighbour lies outside | in one of 
the 3 dimensions. The query is exhaustively matched to all features in the query bin, 
and k approximate nearest neighbours are selected. We then apply the outlier distance 
constraint as described in section 2.7.1 to verify correct matches and eliminate outliers. 
Indexing with b bins on 3 dimensions gives a speedup of 6 3 /2 3 (assuming features are 
evenly distributed in the histogram) at the expense of some potential for lost feature 
matches. 

Table 2.1 shows the percent recall for 3 indexing methods: 

Wavelet low freq Indexing uses the first 3 non-zero wavelet coefficients 

Pixel random Indexing uses 3 random grey values from the descriptor 

Wavelet random Indexing uses 3 random wavelet coefficients from the descriptor 

It is clear from the results that using the low frequency wavelet coefficients for 
indexing is most effective. Choosing 10 bins per dimension gives a speedup of 10 3 /2 3 = 
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125 compared to exhaustive nearest neighbour matching, with the loss of less than 
10% of the matches. Indexing using low frequency wavelet coefficients is 10-20% better 
than the other methods at this operating point. In later chapters (section 3.2) we also 
describe an alternative, k-d tree based nearest neighbour algorithm. 

Indexing Dataset Number of bins / dimension 
Method 1 5 10 15 

Wavelet low freq Matier 100 99.6 91.4 72.4 
Dash point 100 99.8 93.2 76.8 
Abbey 100 99.9 95.1 80.2 

Pixel random Matier 100 97.9 79.8 57.8 
Dash point 100 96.4 74.0 52.9 
Abbey 100 96.7 77.8 56.3 

Wavelet random Matier 100 84.4 49.2 28.1 
Dash point 100 81.5 42.8 25.6 
Abbey 100 83.0 45.4 24.6 

Table 2.1: Indexing on wavelet coefficients vs pixel values - percent recall in database 
matching. Using 10 bins per dimension, indexing on the 3 non-zero low frequency Haar 
wavelet coefficients (x and y derivative and the cross derivative) gives about 10% better 
recall than indexing on random dimensions (pixels) of the descriptor. 

2.9 Analysis of Descriptor Sampling 

In this section we describe experiments to test the properties of our patch based de
scriptors. Firstly, we attempt an iterative refinement strategy for patches using a a 
direct method for registration (section 2.9.1). Next we discuss the effects of different 
image sampling procedures (section 2.9.2). Finally, we compare our descriptors with 
the commonly used SIFT descriptors (section 2.9.3). 

2.9.1 Patch Refinement 

In [MS03], Mikolajczyk and Schmid note that "It would be interesting to include cor
relation with patch alignment which corrects for these errors and to measure the gain 
obtained by such an alignment." Since sensitivity to localization errors has been touted 
as one of the weaknesses of pixel-based descriptors, we decided to implement this sug
gestion to see how much it would help. Rather than computing sum-squared error on 
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Figure 2.22: R O C curves for patch refinement with different alignment models (Matier 
dataset). Each additional free parameter degrades the matching performance. 

pixel patches (or wavelet coefficients) directly, we included a stage of Lucas-Kanade 
[LK81, BM04] refinement to bring the patches more closely into spatial alignment be
fore computing the pairwise descriptor distance. Since this has elements in common 
with the use of tangent distances [SLDV96] we expected that there might be an im
provement in the separation of good and bad matches. Instead we found the opposite 
to be true. 

We used four motion models (direct, translation, similarity and affine) with 0, 2, 
4 and 6 parameters respectively. The results are shown in figure 2.22. Note that 
matching performance is degraded for each new parameter that is added to the model. 
Since correct matches are already fairly well aligned, but bad matches typically have 
large errors, refinement tends to overfit the incorrect matches, whilst making only 
small improvements to the correct matches. This means that Lucas-Kanade refinement 
actually makes it more difficult to distinguish between correct and incorrect matches 
than before. 

This is a somewhat unexpected result. Future work would incorporate priors on 
the transformation parameters to prevent overfitting of the incorrect matches. 

2.9.2 Image Downsampling and Bilinear Interpolation 

A typical approach to image sampling is to downsample the original signal to the 
sampling frequency before interpolation, so that the image is sampled at the Nyquist 
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Relative 
Sampling Level 

Extra 
Smoothing 

Number of feature matches Relative 
Sampling Level 

Extra 
Smoothing Matier Dash Point Abbey 

0 0 2620 2323 7467 
-1 a 3017 2988 9078 
-2 2a 3139 3058 9268 

Table 2.2: Effect of pyramid downsampling on feature matching. We found better 
results by sampling the feature descriptor at a smoothed version of a finer pyramid 
level, when using bilinear resampling. 

frequency (once per pixel). In theory this results in a correct sampling of the (ban-
dlimited) original signal, assuming the correct decimation/interpolation kernel is used 
(a sine function). However, in practice bilinear interpolation is often used for speed. In 
this case, I have found that better results are obtained by maintaining a denser signal 
sampling during interpolation than the usual 1 pixel/sample. 

Table 2.2 compares feature matching performance when bilinear resampling is per
formed at successively finer pyramid levels corresponding to 1, 2 and 4 pixels of the 
original signal per sample. 'Relative level' means the level relative to the Nyquist 
sampling level, where one would sample exactly once per pixel in the pyramid. 'Ex
tra smoothing' is the standard deviation of the extra Gaussian smoothing applied (to 
prevent aliasing) i.e. instead of sampling at some level I, we sample at level I — 1, but 
introduce extra smoothing with a Gaussian kernel standard deviation a. In each case, 
exactly the same interest points were extracted, so the total number of feature matches 
that result is a good indication of how well the descriptors are working. 

The results show that better results are obtained (about 15%-20% more matches) 
by performing bilinear resampling at the next finer pyramid level (where the signal 
sampling is approximately twice the sampling frequency). Smaller gains are obtained 
by moving to the next finer pyramid level again. These gains must be balanced against 
the cost of the extra convolution operations required in Gaussian smoothing. 

2.9.3 Comparison to SIFT features 

To compare Multi-Scale Oriented Patches (MOPS) and SIFT features, I used 3 datasets 
of panoramic images. For each method, I extracted, approximately the same number 
of interest points from each image, and then exhaustively matched them to find k = 4 
exact nearest neighbour matches for each feature. I then used identical R A N S A C 
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Dataset MOPS SIFT 
Matier ^interest points 

^matches 
#matches/interest point 

3610 
3776 
1.05 

3678 
4344 
1.18 

Dash point ^interest points 
#matches 
^matches/interest point 

32689 
11750 
0.36 

32517 
22928 
0.71 

Abbey ^interest points 
#matches 
#matches/interest point 

15494 
18659 
1.20 

15710 
21718 
1.38 

Table 2.3: Comparison of Multi-Scale Oriented Patches and SIFT feature matching. 
Note that SIFT features have a larger number of matches per interest point for each 
of the 3 datasets. 

algorithms to find the number of correct feature matches. In each case I have tabulated 
the number of correct matches per feature. The results are given in table 2.3. Note that 
both methods could potentially find more matches by using more scales / adjusting 
interest point strength thresholds etc. 

From the results of table 2.3 it seems that in terms of number of matches per 
interest point SIFT features outperform MOPS. Why is this? Lowe [Low04] reports 
higher repeatability for his difference of Gaussian (DOG) interest points (around 90% 
compared to 70% for our Harris corners), although this is highly dataset dependent. 
The rotation estimate used in SIFT features (maxima of a histogram of local gradients) 
is more robust since multiple orientations can be assigned if the histogram peaks are 
close. Lowe reports repeatability of around 80% for position (to an accuracy of 3 
pixels), orientation and scale compared to our value of 58%. Another issue is that 
SIFT features are found to be located very close to image edges, but since MOPS use 
relatively large image patches they are constrained to be at least 20 pixels from the 
image edge (this is the main reason SIFT performs much better on the Dash Point 
dataset). This is shown in figure 2.24. Finally, the SIFT descriptor is more robust to 
affine change and small shifts in interest point position than patch correlation, due to 
accumulating measurements in spatial histograms. 

Note however, that MOPS and SIFT features tend to concentrate on different areas 
in the images. In particular, the D O G detector used for SIFT makes it more likely 
to find 'blobs' - bright areas surrounded by dark pixels or vice versa, whereas the 
autocorrelation detector used for MOPS makes it more likely to find edge or corner 
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(a) SIFT feature matches (167) 

(b) M O P S feature matches (238) 

Figure 2.23: Comparison of SIFT features and M O P S features. Note that more 
MOPS features are found at edges/corners, whereas SIFT features concentrate on 
blobs. Though in this case there were more M O P S feature matches than SIFT feature 
matches, in general SIFT features gave better overall performance on our test datasets 
(see table 2.3). 

like features. This suggests that a combination of the two feature types might be 

effective. Also, it is important to note that MOPS features matches are by design well 

spatially distributed in the image. Sometimes SIFT feature matches are very close 

together. Are feature matches equally useful if they are very close together? We think 

not. It seems that some other criterion, such as registration accuracy, would be a 

better criterion for evaluating features, than simply counting the number of matches 

per feature (see chapter 4). Another approach would be to compare the number of 

matched/dropped images in a panorama dataset. 
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(a) SIFT feature matches (421) 

(b) M O P S feature matches (372) 

Figure 2.24: Comparison of SIFT features and M O P S features. For the Dash Point 
dataset, the SIFT feature detector performed better in terms of number of matches. 
However, note that the M O P S feature matches are better spatially distributed e.g. 
there are many more matches in the sea/sand. Also note that the SIFT features are 
located right up to the edge of the image, but due to the large patches used in MOPS, 
the features are constrained to be at least 20 pixels away from an image edge. 
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(a) Abbey. Though several feature matches have been found between 
the two images, the stained glass windows are in fact different. Though 
generalisation capability is desirable in many object recognition applica
tions, in image stitching we are generally only interested in matching to 
the same object or scene. 

(b) Office. Though the windows look strikingly similar, the presence of 
the tree in the first image gives away the fact that they are in fact different. 
In this case it would be a difficult to distinguish whether motion of the 
tree or the observer caused the error. 

Figure 2.25: Matching mistakes are are often caused by repeating structures or similar 
looking objects that appear in multiple views. Often, the set of feature matches may 
appear consistent, but the images will differ substantially in other areas (a). This 
suggests the need for robust image matching metrics based on all the image data, and 
not just feature positions. In some cases however, it will still be difficult to tell if the 
source of error is object motion, or if the images are really different (b). 
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2.10 Summary 
We have presented a new type of invariant feature, which we call Multi-Scale Oriented 
Patches (MOPS). These features utilise a novel adaptive non-maximal suppression 
algorithm for interest point location, and a simple sampling of the (oriented) local 
image intensity for the feature descriptor. We have also introduced two innovations in 
multi-image matching. First, we have demonstrated an improved test for verification 
of pairwise image matches that uses matching results from all n images. Second, we 
have shown that an indexing scheme based on low frequency wavelet coefficients yields 
a fast approximate nearest neighbour algorithm that is superior to indexing using the 
raw data values. 

Future Work 

We conclude by noting some possible areas for future development of MOPS. We discuss 
more general possibilities for invariant features in the final conclusions (chapter 6). 

Orientation Estimation Orientation estimation is currently problematic if the gra
dient is not well defined (i.e. small) or varies rapidly around the interest point 
(i.e. small changes in interest point location lead to large changes in the orien
tation). Alternative methods could include: using the largest eigenvector of H 
(although this also has a degeneracy for rotational symmetry), steerable filters, 
or peaks in a histogram of local orientations. The latter option is attractive as it 
can be made robust by considering multiple peaks in the histogram in ambiguous 
cases. 

Colour We could use R G B features instead of greyscale, or just add a few dimensions 
of colour information (e.g. the average [R, G, B]/(R + G + B) for the patch) to 
the descriptors with an appropriate weighting. 

Interest Operators In addition to using autocorrelation maxima, we could form fea
tures using other interest operators e.g. difference of Gaussian maxima, water
shed regions or edge based features. 

Multi-scale/3D Matching In order to better cope with multi-scale matching we 
could use a true scale-space interest operator. For example, we could use an 
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image pyramid with a finer scale sampling, and interpolate interest points to sub-

scale accuracy. To cope better with 3D matching problems we should introduce 

more robustness to affine change and relative shifting of edge positions. 

Learning Feature Matching The multi-image matching systems that are described 
in subsequent chapters make it easy to generate large datasets of known correct 
and incorrect matches. This could be used to learn data driven classifiers to 
distinguish between correct and incorrect matches. 
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Chapter 3 

Automatic Panoramic Image 
Stitching 

3.1 Introduction 

This chapter extends the ideas of invariant feature matching developed in the previous 
chapter to the problem of panoramic image stitching. Automatic panoramic image 
stitching has an extensive research literature [Sze04] and several commercial applica
tions [Che95, R E A , MSF]. The basic geometry of the problem is well understood, and 
consists of estimating a 3 x3 camera matrix or homography for each image [HZ04, SS97]. 
This estimation process needs an initialisation, which is typically provided by user in
put to approximately align the images, or a fixed image ordering. For example, the 
PhotoStitch software bundled with Canon digital cameras requires a horizontal or ver
tical sweep, or a square matrix of images. The R E A L V I Z Stitcher [REA] has a user 
interface to roughly position the images with a mouse, before automatic registration 
proceeds. Our work is novel in that we require no such initialisation to be provided. 

In the research literature methods for automatic image alignment and stitching 
fall broadly into two categories - direct [SK95, IA99, SK99, SS00] and feature based 
[ZFD97, CZ98, MJ02]. Direct methods have the advantage that they use all of the 
available image data and hence can provide very accurate registration, but they require 
a close initialisation. Feature based registration does not require initialisation, but 
traditional feature matching methods (e.g. correlation of image patches around Harris 
corners [Har92, ST94]) have lacked the invariance properties needed to enable reliable 
matching of arbitrary panoramic image sequences. 

In this chapter we describe an invariant feature based approach to fully automatic 
panoramic image stitching. This has several advantages over previous approaches. 
Firstly, our use of invariant features enables reliable matching of panoramic image se
quences despite rotation, zoom and illumination change in the input images. Secondly, 
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by viewing image stitching as a multi-image matching problem, we can automatically 
discover the matching relationships between the images, and even recognise panora
mas in unordered datasets. Thirdly, we generate high-quality results using automatic 
straightening, gain compensation, and multi-band blending to render seamless output 
panoramas. The results shown in this chapter are from a system implemented us
ing SIFT features [Low99]. We have also implemented a similar system using MOPS 
(chapter 2). 

The remainder of this chapter is structured as follows. Section 3.2 develops the 
geometry of the problem and motivates our choice of invariant features. Section 3.3 
describes our image matching methodology (RANSAC) and a probabilistic model for 
image match verification. In section 3.4 we describe our image alignment algorithm 
(bundle adjustment) which jointly optimises the parameters of each camera. Sections 
3.5 - 3.7 describe the rendering pipeline including automatic straightening, gain com
pensation and multi-band blending. In section 3.9 we present conclusions and ideas for 
future work. 

3.2 Feature Matching 

The first step in the panoramic recognition algorithm is to extract and match SIFT 
features between all of the images. SIFT features are located at scale-space max
ima/minima of a difference of Gaussian function. At each feature location, a charac
teristic scale and orientation is established. This gives a similarity-invariant frame in 
which to make measurements. Although simply sampling intensity values in this frame 
would be similarity invariant, the invariant descriptor is actually computed by accumu
lating local gradients in orientation histograms. This allows edges to shift slightly with
out altering the descriptor vector, giving some robustness to affine change. This spatial 
accumulation is also important for shift invariance, since the interest point locations 
are typically accurate in the 0-3 pixel range (see figure 2.17 and also [BSW05, SZ03]). 
Illumination invariance is achieved by using gradients (which eliminates bias) and nor
malising the descriptor vector (which eliminates gain). 

Assuming that the camera rotates about its optical centre, the group of transfor
mations the images may undergo is a special group of homographies. We parameterise 
each camera by a rotation vector 9 = [6\, 82,03] and focal length / . This gives pairwise 
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homographies iij = H ^ u , where 

Hjj — K j R j R j K j 1 (3-1) 

and i i i , iij are the homogeneous image positions (iij = S;[iij,l], where Uj is the 2-
dimensional image position). The 4 parameter camera model is defined by 

'fi o 0' 
0 fi 0 
0 0 1 

(3.2) 

and (using the exponential representation for rotations) 

Ft = e [Oil 
0 — 0i3 9i2 

. Pi]x = # i3 0 -0̂ 1 (3.3) 

— &i2 Gil 0 

Ideally one would use image features that are invariant under this group of transfor
mations. However, for small changes in image position 

du.j 
u ? = u A L L , (3.4) 

or equivalently iij = A y t i j , where 

an a>\2 

0 0 

«i3 
fl23 
1 

(3-5) 

is an affine transformation obtained by linearising the homography about u i 0 . This 
implies that each small image patch undergoes an affine transformation, and justifies 
the use of SIFT features which are partially invariant under affine change. 

Once features have been extracted from all n images (linear time), they must be 
matched. Since multiple images may overlap a single ray, each feature is matched to 
its k nearest neighbours (we use k = 4). This can be done in 0(n log n) time by using 
a k-d tree to find approximate nearest neighbours [BL97]. A k-d tree is an axis aligned 
binary space partition, which recursively partitions the feature space at the mean in 
the dimension with highest variance. The k-d tree is ultimately (for large n) more 
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efficient than the indexing scheme described in section 2.8 as each feature lookup is 
O(logn) (and not 0(n)). 

3.3 Image Matching 

At this stage the objective is to find all matching (i.e. overlapping) images. Connected 
sets of image matches will later become panoramas. Since each image could potentially 
match every other one, this problem appears at first to be quadratic in the number 
of images. However, it is only necessary to match each image to a small number of 
neighbouring images in order to get a good solution for the image geometry. 

From the feature matching step, we have identified images that have a large number 
of matches between them. We consider a constant number m images, that have the 
greatest number of feature matches to the current image, as potential image matches 
(we use m = 6). First, we use R A N S A C to select a set of inliers that are compatible 
with a homography between the images. Next we apply a probabilistic model to verify 
the match. 

3.3.1 Robust Homography Estimation using RANSAC 

R A N S A C (random sample consensus) [FB81] is a robust estimation procedure that uses 
a minimal set of randomly sampled correspondences to estimate image transformation 
parameters, and finds a solution that has the best consensus with the data. In the 
case of panoramas we select sets of r = 4 feature correspondences and compute the 
homography H between them using the direct linear transformation (DLT) method 
[HZ04]. We repeat this with n = 500 trials and select the solution that has the 
maximum number of inliers (whose projections are consistent with H within a tolerance 
e pixels). Given the probability that a feature match is correct between a pair of 
matching images (the inlier probability) is Pi, the probability of finding the correct 
transformation after n trials is 

p (H is correct) = 1 - (1 - (pi)r)n (3.6) 

After a large number of trials the probability of finding the correct homography is very 
high. For example, for an inlier probability pi = 0.5, the probability that the correct 
homography is not found after 500 trials is approximately 1 x 10~ 1 4. 
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R A N S A C is essentially a sampling approach to estimating H . If instead of max
imising the number of inliers one maximises the sum of the log likelihoods, the result is 
maximum likelihood estimation (MLE). Furthermore, if priors on the transformation 
parameters are available, one can compute a maximum a posteriori estimate (MAP) . 
These algorithms are known as M L E S A C and M A P S A C respectively [Tor02]. 

3.3.2 Probabilistic Model for Image Match Verification 

For each pair of potentially matching images we have a set of feature matches that 
are geometrically consistent (RANSAC inliers) and a set of features that are inside the 
area of overlap but not consistent (RANSAC outliers). The idea of our verification 
model is to compare the probabilities that this set of inliers/outliers was generated by 
a correct image match or by a false image match. 

For a given image we denote the total number of features in the area of overlap rif 
and the number of inliers n*.. The event that this image matches correctly/incorrectly 
is represented by the binary variable m e {0,1}. The event that the ith feature match 

e{0,1} is an inlier/outlier is assumed to be independent Bernoulli, so that the total 
number of inliers is Binomial 

p(/( 1 :"/)|m = l ) = B(ni;nf,Pl) (3.7) 

p ( / ( 1 - / ) | m = 0) = B(ni;nf,p0) (3.8) 

where Pi is the probability a feature is an inlier given a correct image match, and p0 is 

the probability a feature is an inlier given a false image match. The number of inliers 

rii — Y^lL\ a n d B(.) is the Binomial distribution 

B(x-n,p) = • ..px(l-p)n-x (3.9) 
x\(n — x)\ 

We choose values p\ = 0.6 and po = 0.1. We can now evaluate the posterior probability 
that an image match is correct using Bayes' Rule 
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1 
~ 1 p(/( l ! W/V=0)p(m=0) 

p(/ ( 1 : n/ ) |m=l)p(m=l) 

We accept an image match if p(m = l | / ( 1 : n / ) ) > pmin 

B{rii\rif,pi)p(m = 1) ac^Pt 1 
B(rii\nf,p0)p(m = 0) refect - 1 1 

Pmin 
choosing values p(m = 1) = 1 0 - 6 and pmin = 0.999 gives the condition 

(3.10) 

(3.11) 

(3.12) 

ni>a + pnf (3.13) 

for a correct image match, where a = 8.0 and (3 = 0.3. Though in practice we have 
chosen values for p0, pi, p(m = 0), p(m = 1) and pmin-, they could in principle be 
learnt from the data. For example, pi could be estimated by computing the fraction 
of matches consistent with correct homographies over a large dataset. 

Once pairwise matches have been established between images, we can find panoramic 
sequences as connected sets of matching images. This allows us to recognise multiple 
panoramas in a set of images, and reject noise images which match to no other images 
(see figure (3.2)). 

3.4 Bundle Adjustment 

Given a set of geometrically consistent matches between the images, we use bundle 
adjustment [TMHF99] to solve for all of the camera parameters jointly. This is an es
sential step as concatenation of pairwise homographies would cause accumulated errors 
and disregard multiple constraints between images e.g. that the ends of a panorama 
should join up. Images are added to the bundle adjuster one by one, with the best 
matching image (maximum number of matches) being added at each step. The new 
image is initialised with the same rotation and focal length as the image to which it 
best matches. Then the parameters are updated using Levenberg-Marquardt. 

The objective function we use is a robustified sum squared projection error. That 
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(c) S IFT matches 1 . (d) SIFT matches 2 

(e) Images aligned according to a homography 

Figure 3.1: SIFT features are extracted from all of the images. After matching all of the 
features using a k-d tree, the m images with the greatest number of feature matches 
to a given image are checked for an image match. First R A N S A C is performed to 
compute the homography, then a probabilistic model is invoked to verify the image 
match based on the number of inliers. In this example the input images are 517 x 374 
pixels and there are 247 correct feature matches. 
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(a) A l l feature matches 

(b) Geometrically consistent feature matches 

(c) Output panoramas 

Figure 3.2: Recognising panoramas. Given a noisy set of feature matches (a), we use 
R A N S A C and a probabilistic verification procedure to find consistent image matches 
(b). Connected components of image matches are stitched into panoramas (c). 
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is, each feature is projected into all the images in which it matches, and the sum of 
squared image distances is minimised with respect to the camera parameters1. Given 
a correspondence uf <-> (u | denotes the position of the kth feature in image z), the 
residual is 

4 = u ? - p * (3.14) 

where p£- is the projection from image j to image i of the point corresponding to 

p£ = K i R i R j K j 1 * ; (3.15) 

The error function is the sum over all images of the robustified residual errors 

e = E E E ' / t f i ) (3-1 6) 
t=l jeJ(i) keF(i,j) 

where n is the number of images, is the set of images matching to image i , ̂ {i, j) 
is the set of feature matches between images i and j. We use a Huber robust error 
function 

{ Ixl 2 , if Ixl < cr 

1 1 1 1 (3.17) 
2cr|x| — cr , if |x| > cr 

This error function combines the fast convergence properties of an L2 norm optimisation 
scheme for inliers (distance less than a), with the robustness of an L\ norm scheme 
for outliers (distance greater than cr). We use an outlier distance a = oo during 
initialisation and a — 2 pixels for the final solution. 

This is a non-linear least squares problem which we solve using the Levenberg-
Marquardt algorithm. Each iteration step is of the form 

0 = ( J T J + A C ; 1 ) - 1 J T r (3.18) 

where 0 are all the parameters, r the residuals and J = dr/d®. We encode our prior 
1 Note that it would also be possible (and in fact statistically optimal) to represent the unknown 

ray directions X explicitly, and to estimate them jointly with the camera parameters. This would not 
increase the complexity of the algorithm if a sparse bundle adjustment method was used (as in section 
5.4.1). This is left for future work. 
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belief about the parameter changes in the (diagonal) covariance matrix Cp 

Cp — 

n 
0 
0 
0 
0 

0 0 
a2

e 0 
0 a2 

0 0 a} 
0 0 0 

0 
0 
0 

0 
0 
0 
0 

(3.19) 

This is set such that the standard deviation of angles is ag = 7r/16 and focal lengths 
af — f/10 (where / is the mean of the focal lengths estimated so far). This helps 
in choosing suitable step sizes, and hence speeding up convergence. For example, if 
a spherical covariance matrix were used, a change of 1 radian in rotation would be 
equally penalised as a change of 1 pixel in focal length. Finally, the A parameter is 
varied at each iteration to ensure that the objective function of equation 3.16 does in 
fact decrease. 

The derivatives are computed analytically via the chain rule, for example 

(3.20) 

where 

d x/z y/z 

x y z 

1/z 0 -x/z2 

0 l/z -y/z2 
(3.21) 

and 

dRi 

<9Rj —i / 

9

 e f t e[0iU 
0 0 0 
0 0 - 1 
0 1 0 

(3.22) 

(3.23) 
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3.4.1 Fast Solution by Direct Computation of the Linear 
System 

Since the matrix J is sparse, forming J T J by explicitly multiplying J by its transpose is 
inefficient. In fact, this would be the most expensive step in bundle adjustment, costing 
0(MN2) for a n M x J V matrix J. The sparseness arises because each image typically 
only matches to a small subset of the other images. This means that in practice each 
element of J T J can be computed in much fewer than M multiplications 

i.e. the inverse covariance between cameras i and j depends only on the residuals of 
feature matches between i and j. 

Similarly, J T r need not be computed explicitly, but can be computed via 

In both cases each summation would require M multiplications if each feature matched 
to every single image, but in practice the number of feature matches for a given image 
is much less than this. 

3.5 Automatic Panorama Straightening 

Image registration using the steps of sections 3.2 - 3.4 gives the relative rotations 
between the cameras, but there remains an unknown 3D rotation to a chosen world 
coordinate frame. If we simply assume that R = I for one of the images, we typically 
find a wavy effect in the output panorama. This is because the real camera was unlikely 
to be perfectly level and un-tilted. We can correct this wavy output and automatically 
straighten the panorama by making use of a heuristic about the way people typically 
shoot panoramic images. The idea is that it is rare for people to twist the camera 
relative to the horizon, so the camera X vectors typically lie in a plane. By finding 
the null vector of the covariance matrix of the camera X vectors, we can find the 

(3.24) 

(3.25) 
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(a) (b) (c) 

Figure 3.3: Finding the up-vector u. A good heuristic to align wavy panoramas is 
to note that people rarely twist the camera relative to the horizon. Hence despite tilt 
(b) and rotation (c), the camera X vectors typically lie in a plane. The up-vector u 
(opposite to the direction of gravity) is the vector normal to this plane. 

"up-vector" u (normal to the plane containing the camera centre and the horizon) 

^ X ; X [ u = 0 (3.26) 
i=i / 

Applying a global rotation such that up-vector u is vertical (in the rendering frame) 

effectively removes the wavy effect from output panoramas as shown in figure 3.4. 

3.6 Gain Compensation 

In previous sections, we described a method for computing the geometric parameters 
(orientation and focal length) of each camera. In this section, we show how to solve 
for a photometric parameter, namely the overall gain between images. This is set up 
in a similar manner, with an error function defined over all images. The error function 
is the sum of gain normalised intensity errors for all overlapping pixels 

n n 

e = 2 E E E {gikiyo) - QjlMi))2 (3-27) 

iii ~ HijUj 
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(a) Without automatic straightening 

(b) W i t h automatic straightening 

Figure 3.4: Automatic panorama straightening. Using the heuristic that users rarely 
twist the camera relative to the horizon allows us to straighten wavy panoramas by 
computing the up-vector (perpendicular to the plane containing the horizon and the 
camera centre). 

where gt, gj are the gains, and TZ(i,j) is the region of overlap between images i and j. 

In practice we approximate /(u.j) by the mean in each overlapping region lij 

Iii = E " ^ ( i J " ) / i ( U i ) (3.28) 

This simplifies the computation and gives some robustness to outliers, which might 

arise due to small misregistrations between the images. Also, since g = 0 is an optimal 

solution to the problem, we add a prior term to keep the gains close to unity. Hence 

the error function becomes 

1 n n 
e = o £ E NV ( W « - 9JIH)WN + (1 - ft)7"2) (3-29) 

i=\ j=i 

where iVy = \H(i,j)\ equals the number of pixels in image i that overlap in image 

j. The parameters and og are the standard deviations of the normalised intensity 

error and gain respectively. We choose values <tjv = 10.0, (7e{0..255|) and ug — 0.1. 

This is a quadratic objective function in the gain parameters g which can be solved in 

closed form by setting the derivative to 0 (see figure 3.5). 
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(a) Without gain compensation 

(b) Wi th gain compensation 

(c) W i t h gain compensation and multi-band blending 

Figure 3.5: Gain compensation. Note that large changes in brightness between the 
images are visible if gain compensation is not applied (a). After gain compensation, 
some image edges are still visible due to unmodelled effects such as vignetting (b). 
These can be effectively smoothed out using multi-band blending (c). 
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3.7 Multi-Band Blending 
Ideally each sample (pixel) along a ray would have the same intensity in every image 
that it intersects, but in reality this is not the case. Even after gain compensation some 
image edges are still visible due to a number of unmodelled effects, such as vignetting 
(intensity decreases towards the edge of the image), parallax effects due to unwanted 
motion of the optical centre, mis-registration errors due to mis-modelling of the camera, 
radial distortion and so on. Because of this a good blending strategy is important. 

From the previous steps we have n images P(x,y) (i e {l..n}) which, given the 
known registration, may be expressed in a common (spherical) coordinate system as 
P(6,<f>). In order to combine information from multiple images we assign a weight 
function to each image W(x,y) = w(x)w(y) where w(x) varies linearly from 1 at 
the centre of the image to 0 at the edge. The weight functions are also resampled in 
spherical coordinates Wl(9, (f>). A simple approach to blending is to perform a weighted 
sum of the image intensities along each ray using these weight functions 

rUnear(f) _ EIU ^ 4)^(6, </>) 

EIU^(M) ( 3- 3 0 ) 

where Ihnear (9, 4>) is a composite spherical image formed using linear blending. How
ever, this approach can cause blurring of high frequency detail if there are small registra
tion errors (see figure 3.9). To prevent this we use the multi-band blending algorithm 
of Burt and Adelson [BA83]. The idea behind multi-band blending is to blend low 
frequencies over a large spatial range, and high frequencies over a short range. 

We initialise blending weights for each image by finding the set of points for which 
image i is most responsible 

= ^ M - . * . - ^ . , , ) ( 3 3 i ) 

I 0 otherwise 

i.e. WmO I(0, (f>) is 1 for (9, (ft) values where image i has maximum weight, and 0 where 
some other image has a higher weight (see figure 3.6). These max-weight maps are 
successively blurred to form the blending weights for each band. 

A high pass version of the rendered image is formed 

£{9, <t>) = Ii(6, 4)-r(6t flight) (3.32) 
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where and ga{9,4>)1S
 a Gaussian of standard deviation <r, and Ia(6,<f>) represents spatial 

frequencies in the range of wavelengths A — 0 —> a. We blend this band between images 
using a blending weight formed by blurring the max-weight map for this image 

Ba{d,<t>) = Wi

rnax(6A)*9<r{0A) (3.33) 

where Bl

a(8,(j)) is the blend weight for the wavelength 0 —> a band. Subsequent fre
quency bands are blended by forming lower frequency bandpass images and further 
blurring the blend weights, i.e. for k > 1 

t i ) . = 4 , - 4 , * 0* (3-34) 

£ ( W = Bl*9a (3.35) 

For each band, overlapping images are linearly combined using the corresponding blend 

weights 

H° ^UBLMJ) ( 3 - 3 6 ) 

This causes high frequency bands (small ka) to be blended over short ranges whilst 

low frequency bands (large ka) are blended over larger ranges (see figure (3.7)). 

Note that we have chosen to render the panorama in spherical coordinates 9,<f>. In 

principle one could choose any 2-dimensional parameterisation of a surface around the 

viewpoint for rendering. One good choice would be to render to a triangulated sphere, 

constructing the blending weights in the image plane. This would have the advantage 

of uniform treatment of all images, and it would also allow easy resampling to other 

surfaces (in graphics hardware). 

A n assumption of our blending strategy is that the image whose centre is closest to 

a given pixel in the rendering has the 'best' information about that pixel, and therefore 

the highest blending weight. This might not always be the case, for example, if the 

image set contained defocussed or otherwise degraded images. In this scenario one 

might want to select blending weights based on some other criterion e.g., sharpness of 

the image. 
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( c) w ( e ^ ) (d) Wmax{6,4>) 

Figure 3.6: Images I(x,y) and weights W(x,y) are resampled in spherical coordinates 
1(9, (j)), W(9,<p) and max weight maps Wmax(9, (f>) are computed. In linear blending 
images are combined as linear sums using the weights W{9, <f>). In multi-band blending 
blurred versions of the max weight map are used to form separate blending functions 
for each frequency band. 
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(a) Band 1 (scale 0 to a) 

(b) Band 2 (scale a to 2a) 

(c) Band 3 (scale lower than 2a) 

Figure 3.7: Multi-band blending. Bandpass images Ik<j(9, 4>) for k = 1,2,3 are shown on 
the left, with the corresponding blending weights Bka(6, 4>) shown on the right. Initial 
blending weights are assigned to 1 where each image has maximum weight. To obtain 
each blending function, the weights are blurred at spatial frequency a and bandpass 
images of the same spatial frequency are formed. The bandpass images are blended 
together using weighted sums based on the blending weights (Note: the contrast has 
been enhanced and blending widths exaggerated for clarity in these figures). 
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(a) No blending (b) Multi-band blending 

Figure 3.8: Results for panorama rendering with and without multi-band blending. 
See figure 3.7 for the blending functions used for these images. In this case multi-band 
blending smooths out exposure differences and vignetting between the images. For an 
example of dealing with with misregistrations, see figure 3.9. 

(a) Linear blending (b) Multi-band blending 

Figure 3.9: Comparison of linear and multi-band blending. The image on the right 
was blended using multi-band blending using 5 bands and a = 5 pixels. The image on 
the left was linearly blended. In this case matches on the moving person have caused 
small misregistrations between the images, which cause blurring in the linearly blended 
result, but multi-band blended image is clear. 
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Algorithm: Panoramic Recognition 
Input: n unordered images 

I. Extract SIFT features from all n images 

II. Find k nearest-neighbours for each feature using a k-d tree 

III. For each image: 
(i) Select m candidate matching images that have the most feature matches 

to this image 

(ii) Find geometrically consistent feature matches using R A N S A C to solve for 
the homography between pairs of images 

(iii) Verify image matches using a probabilistic model 

IV. Find connected components of image matches 

V . For each connected component: 
(i) Perform bundle adjustment to solve for the rotation 81,82,03 and focal 

length / of all cameras 

(ii) Render panorama using multi-band blending 

Output: Panoramic image(s) 

3.8 Results 

Figure 3.10 shows typical operation of the panoramic recognition algorithm. A set of 
images containing 2 panoramas and 5 noise images was input. The algorithm detected 
2 connected components of image matches and 5 unmatched images, and output the 2 
blended panoramas. The complete algorithm ran in 83 seconds on a 2GHz P C , with 
input images 525 x 375 pixels (7" x 5" prints scanned at 75 dpi), and rendering the 
larger output panorama as a 300 x 3000 pixel image. The majority of computation 
time is spent in extracting the SIFT features from the images. 

Figure 3.11 shows a larger example where 80 images were used to create a 360° 
x 90° panorama. No user input is required: the object recognition system decides 
which images match, and the bundle adjustment algorithm optimises jointly for the 
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4 x 80 = 320 parameters of all the cameras. Finally, the multi-band blending scheme 
effectively hides the seams despite the illumination changes (camera flash2 and change 
in aperture/exposure). We have tested the system on many other image sets, for 
example full 360° x 180° panoramas, and sequences where different cameras are used 
in the same panorama. 

3.9 Summary 

This chapter has presented a novel system for fully automatic panorama stitching. 
Our use of invariant local features and a probabilistic model to verify image matches 
allows us recognise multiple panoramas in unordered image sets, and stitch them fully 
automatically without user input. The system is robust to camera zoom, orientation 
of the input images, and changes in illumination due to flash and exposure/aperture 
settings. A multi-band blending scheme ensures smooth transitions between images 
despite illumination differences, whilst preserving high frequency details. 

Future Work 

Possible areas for future work include compensation for motion in the camera and 

scene, and more advanced modelling of the geometric and photometric properties of 

the camera: 

Camera Motion Panoramas often suffer from parallax errors due to small motions of 
the optical centre. These could be removed by solving for camera translations and 
depths in the scene, before re-rendering from a central point. A good representa
tion to use might plane at infinity plus parallax [RC02] (appendix A.6). Whilst 
gross camera motions cause parallax artifacts, small motions during shooting 
result in motion blur. Motion blurred images could be deblurred using nearby 
in-focus images as in [BBZ96]. Similar techniques can also be used to generate 
super-resolution images [CZ98]. 

Scene Motion Though our multi-band blending strategy works well in many cases, 
large motions of objects in the scene cause visible artifacts when blending between 

2 Note that in this case the camera flash caused significant illumination changes between images 
of the grass in the lower part of the panorama. In some of the grass images the flash fired whilst in 
others it did not. 
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multiple images. Another approach would be to automatically find optimal seam 
lines based on regions of difference between the images [Dav98, UES01, ADA+04]. 

Advanced Camera Modelling A n important characteristic of most cameras that is 
not modelled by the projective camera model (which preserves straight lines) is 
radial distortion [Bro71]. This can be accurately modelled by low order poly
nomials, the parameters of which could be included in the bundle adjustment 
framework. The ideal image stitcher would also support multiple motion mod
els, for example, rotation about a point (e.g. panoramas), viewing a plane (e.g. 
whiteboards) and Euclidean transforms (e.g. aligning scanned images). One 
could also render to multiple surface types e.g. spherical, cylindrical, planar. 
Further geometric corrections could also be applied using local warping as in 
[SSOO]. 

Photometric Modelling In principle it should also be possible to estimate many 
of the photometric parameters of the camera. Vignetting (decrease in intensity 
towards image edges) is a common source of artifacts, particularly in uniform 
colour regions such as sky [LS05]. One could also acquire high-dynamic range 
[DM97, SHS + ] information from the overlapping image regions, and render tone 
mapped or synthetic exposure images. 

We have developed a C++ implementation of the algorithm described in this chap
ter, called AutoStitch. A demo of this program can be downloaded from the website 
at http://www.autostitch.net. 

http://www.autostitch.net
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(a) Input images 

(b) Output panorama 1 

(c) Output panorama 2 

Figure 3.10: Typical operation of the panoramic recognition algorithm: an image set 
containing multiple panoramas and noise images is input, and panoramic sequences 
are recognised and rendered as output. The algorithm is insensitive to the ordering, 
scale and orientation of the images. It is also insensitive to noise images which are not 
part of a panorama. 
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(a) 40 of 80 images registered 

(b) A l l 80 images registered 

(c) Rendered with multi-band blending 

Figure 3.11: Green College. This sequence was shot using the camera's automatic 
mode, which allowed the aperture and exposure time to vary, and the flash to fire on 
some images. Despite these changes in illumination, the SIFT features match robustly 
and the multi-band blending strategy yields a seamless panorama. These 360° x 90° 
images have been rendered in spherical coordinates (8,<f>). The sequence consisted of 
80 images all of which were matched fully automatically with no user input, and a 
4 x 80 = 320 parameter optimisation problem was solved for the final registration. 
With 400 x 300 pixel input images and a 500 x 2000 pixel output panorama, the whole 
process ran in 197 seconds on a 2GHz PC. 
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Evaluation of Image Stitching 
Algorithms 

4.1 Introduction 

In the previous chapters we developed apparatus for fully automatic multi-image reg
istration. This chapter develops a framework for evaluation and performance tuning 
of such multi-image matching methods. Algorithms for stitching multiple images into 
seamless photomosaics have been used in satellite photography and digital mapping 
for decades [Mil75]. Early approaches involved much user input and specialised hard
ware [Sla80, Mee90]. Computer vision techniques have brought increasing automation 
to the problem, from automatic pairwise alignment [BAHH92, IA99] to bundle ad
justment [SK99, SSOO], and culminating in systems that recognise matches and stitch 
images with no user input whatsoever [BL03, BSW05]. As more approaches are pro
posed [ZFD97, CZ98, SK99, SSOO, BL03] it becomes increasingly important to form 
comparisons and elicit best practices. 

There has been excellent comparison work in the related areas of stereo [SS02] and 
feature matching [MS03]. However, knowing the performance of individual feature 
matching techniques is not sufficient to predict overall stitching performance, which 
involves global decisions as to which image pairs truly match and global optimization 
for registration. Relying on visual inspection of stitching results to assess algorithm 
performance is tedious and becomes unworkable for large test sets. Instead we develop 
a database of image sequences for which the ground truth registration is known, and 
a metric for quantative evaluation of stitching results. This allows us to form compar
isons between different image stitching methods, and to tune the parameters of these 
increasingly complex algorithms on real world data. 
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4.1.1 Image Stitching Algorithms 
In this chapter we focus on multi-image matching problems in which there is a one-to-

one correspondence between the images. In particular we are interested in problems 

where images are related by a linear transformation in 2D projective space, so that 

each camera can be characterised by a 3 x 3 projection matrix P. This generalises 

most image stitching problems, for example panoramas (rotating camera), whiteboards 

(moving camera, planar scene) and flatbed scanning. It does not include cases where 

the camera is free to move in 3-dimensions (and the scene is non-planar), or cases 

where the objects in the scene are in motion. 

4.2 Evaluation of Image Stitching Algorithms 

For the purposes of this chapter, we concentrate on datasets with only a single image 

sequence to be stitched, although outlier images which are not part of the sequence 

may be present. Given a set of gold standard projection matrices 

P* = {P?,P*,...P;} (4.i) 

and a test set of image stitching parameters 

P = {P 1 ,P 2 , . . .P N } (4.2) 

we wish to write an evaluation function 

e = e(P*,P) (4.3) 

to evaluate the test set against the gold standard. 

Since we are only interested in the point mapping between images 

Py = P i P j 1 (4.4) 

the P matrices may be post-multiplied by an arbitrary (invertible) 3 x 3 matrix, and 

still yield the same stitching results. One could attempt to recover this matrix and 

compute distances in the space of projection matrices. However, we have found that 

different sets of camera parameters can often give quite similar stitching results (see 
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Figure 4.1: Evaluation function for multi-image matching. Uniformly distributed 
points VL-® are projected from image i to each matching image j. The residual r-^ 
between the projections of the point under the gold standard and test homographies 
is computed (a). The error function is the root mean square of all such residuals. 
Random points are generated for all images i, and residuals are summed for all images 
that overlap image i (b). 

figures 4.3 and 4.4). Also, for stitching problems, we are generally most concerned with 
errors in the image plane, since these lead to visible artifacts in the stitching results. 
Hence, we propose an evaluation function based on the sum squared projection error 
of random image points, relative to the gold standard 

i=l j=l fc=l 

(k) 

where the residual r)- is the difference between the projections of the A;th random 
point from image % to image j under the gold standard and test homographies 

(fc) 
r,-,- (fc) * 

= U,- — UL J 3 
~{k) 

UJ 

= P * - U W 

( f c ) (4.6) 

(4.7) 

(4.8) 

u-fc) is a random point uniformly distributed in image i, and P*̂  and Py are the gold 

standard and test homographies from image i to image j. See figure 4.1. The third 
(fc) 

summation in equation 4.5 is over all randomly generated points u- that success-
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fully project inside image j under either the gold standard or test homographies i.e. 

u[k^eO(i,j) iff u ^ e l ( j ) or u*^ eX(j) where X(j) denotes the set of points in image 

3-
In practice we divide by the number of residuals and take the square root to give 

the RMS projection error over all images 

( \ 0.5 

* ( P ' * m ) ] (4.9) 

We generate a fixed number of random samples N = 100 in each image. 

4.2.1 Dealing with Failed Matches 
Suppose that the image dataset contains some outlier images which do not belong to 
the panorama. In this case it will be possible for an image stitcher to generate false 
positives (images that are incorrectly matched, and do not match in the gold standard) 
and false negatives (images that fail to match, and are matched in the gold standard). 
We would also like to label gross registration errors as failed matches. 

In order to differentiate minor registration errors from failed matches we compute 
the summation of equation 4.5 only over image pairs whose RMS errors are less than 
a threshold 

i r ( f c ) i 2 
^fc=l,uf )60(i,j) l 1^ 

^rN i 
2~>k=l,u\k)eO(i,j) 

CRMS — v^AT -, ^ 'max l ^ - i u J 

Furthermore, we label an image i as a failed match if it is (a) a false positive, (b) a 
false negative, or (c) belongs to a pair whose RMS error is above the threshold r m a x . 
Hence, the overall evaluation of an image stitching result should be based on the RMS 
projection error of all correctly matching images eRMs (pixels), and the number of 
images which fail to match np- Note that we count the number of images that fail 
to match correctly, instead of counting the number of failed pairwise matches, so the 
number of failed matches 0 < nF < n (where n is the number of images in the dataset). 
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(a) Initial panorama 

(b) Resampled camera views 

Figure 4.2: Generating synthetic ground truth. To generate synthetic ground truth 
data we first use our existing stitchers to generate a panorama (a). Next, we resample 
virtual camera views from this panorama, for which the camera matrices are known 
exactly (b). 

(a) Without 360° wrap-around 

mm • — W i—j Bffi ^ " T r n n — l i J T J 

(b) Wi th 360° wrap-around 

Figure 4.3: Panorama stitching with and without 360° wrap-around. In both cases an 
optimal algorithm (bundle adjustment) has been used to solve for the camera parame
ters. However, in (a) matching between the ends of the panorama has been suppressed, 
whereas in (b) matching between the ends is allowed. Note that although the stitching 
is accurate (RMS pixel errors are small) in both cases, the focal length estimate in (a) 
is out by almost 20% (520 pixels in (a) compared to 630 pixels in (b)). These results 
demonstrate that it is difficult to solve for focal length (even using an optimal bundle 
adjustment algorithm) unless 360 wrap-around is achieved (Cedar Court sequence, real 
image dataset). 
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Figure 4.4: Solution of focal length for panoramas of 360°, 315° and 180°. These 
results were computed for the synthetic database. Note that even though the RMS 
pixel errors are approximately the same in each case (figure (b)), the focal length is 
commonly off by up to 5% (even with synthetic data and an optimal algorithm for 
the solution) when the panorama is less than 360°. These results indicate that 360° 
wrap-around is essential for accurate solution of focal length. It also justifies our use 
of projection error and not distance in parameter space for our evaluation function. 
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4.3 Creating Gold Standard Stitching Results 

We have used two methods for generating gold standard stitching results, using both 
synthetic and real world data. 

Synthetic Virtual camera views are generated from previously stitched panoramas. 
The camera matrices are known exactly. 

Real World Real camera views are registered using a state of the art algorithm (dif
ferent from those being tested) and manual intervention as necessary. 

See appendix B for examples from these datasets. Note that only the first case 
gives actual "ground truth" camera matrices. The second approach is limited by the 
current best algorithms and human error, and is best described as "gold standard". 

To create our synthetic data, we first use an image stitching algorithm to generate 
large panoramas. We then resample these panoramas to form virtual camera views. 
The statistics of the resulting images will differ slightly from natural images due to 
errors in the stitching process, but the camera matrices will be exact. 

To create our real world dataset, we have used a direct (intensity-based) algorithm 
similar to [SS97]. Manual intervention was used for challenging situations such as low 
overlap or low texture areas, and to correct any visually unsatisfactory results. While 
the resulting camera matrices may be subject to small errors, real world images are 
used as inputs, which makes the results more representative of expected performance. 

4.4 Experimental Setup 

In this section, we describe the experimental methodology used to compare the per
formance of two automatic stitching algorithms, as well as showing how the same 
apparatus is used to tune algorithm parameters. 

4.4.1 Comparison of Automatic Stitching Algorithms 

We use the error metrics defined in section 4.2 to perform a comparison between two 

well known automatic image stitchers: AutoStitch 1, based on SIFT features [BL03] 
1 http: / /www. autostitch.net 

http://www
http://autostitch.net
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from U B C , and MSRStitch, based on MOPS [BSW05] from Microsoft Research. We 
compare performance on synthetic and real datasets. The synthetic database consists 
of 10 sequences, each containing 16 images of 600 x 800 pixels, with 50% overlap 
between the images. The real database consists of 40 sequences of intentionally difficult 
stitching problems. These contain significant amounts of radial distortion, featureless 
regions (e.g. sky), motion (e.g. water) and parallax errors. We have created gold 
standard stitching data for 8 of these sequences using VideoMosaic [SS97]. We also use 
synthetically generated sequences to characterise performance with variable overlap 
and scale. 

4.4.2 Parameter Tuning for Automatic Stitchers 

Our evaluation function can be used to tune the parameters of automatic image stitch
ing algorithms. For example, AutoStitch uses a Huber robust error function in the 
bundle adjustment stage. This function takes a parameter cr which corresponds to the 
distance (in pixels) of outliers to be suppressed. By plotting the RMS projection error 
efiMS against <r, we can find an optimal value of cr. We perform similar experiments for 
the a parameter in AutoStitch (which controls the probability of declaring a valid im
age match given a set of feature matches) and also for the number of features extracted 
from each image. 

4.5 Results 

Figure 4.4 shows R M S errors in focal length, and RMS pixel errors for the synthetic 
dataset. We found (as in [KW99]) that when the panoramas wrap around 360°, the 
solution for focal length is very good (average RMS error in focal length = 0.029%). 
However, if the panorama is less than 360°, the focal length estimates are often up to 
5% off (figure 4.4(a) ), yet the RMS pixel errors are unchanged (figure 4.4(b) ). 

Figure 4.7 shows results for testing AutoStitch and MSRStitch on the synthetic 
database. Both stitchers perform very well, with RMS projection errors typically 
around 0.1 pixel. MSRStitch has a larger RMS error for sequence #5. This was 
caused by the stitcher failing to notice a match between a pair of images of fairly 
featureless snow (see figure 4.5). In these examples we used an outlier threshold of 

Tmax = 2 pixels. 
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L^- i^ . . .^ 

Figure 4.5: Elfin sequence from the synthetic dataset. MSRStitch failed to match the 
rightmost pair of images, in which the area of overlap is mainly featureless snow. 

Figure 4.6: Comparison of AutoStitch and MSRStitch for the Alaska sequence from 
the real dataset. MSRStitch finds 6 matching images, and AutoStitch only 3. However, 
MSRStitch has actually stitched some images out of order, and has larger registration 
errors. The ground truth was stitched manually. 
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Figure 4.8 shows results for the (harder) real database. In this case we have set the 
outlier threshold r m a x to 50 pixels as there is significant radial distortion in many of 
these images. The radial distortion is the main cause of the relatively high RMS errors 
in figure 4.8(a) . For the more difficult sequences there are also many match failures 
due to dropped or misregistered images, see figure 4.6 for an example. 

We also tested AutoStitch and MSRStitch with variable image overlap and scale 
(figure 4.9). For the image overlap test we used images from the Green dataset (figure 
4.2). The image size (600 x 800) and focal length were kept constant whilst the number 
of equally spaced images was varied to generate a range of overlap from 10% to 90%. 
The performance of MSRStitch dropped off for low image overlap (< 20%). This is 
probably due to the larger footprint of MOPS relative to the detection scale when 
compared to SIFT, which means that fewer features can be extracted towards image 
edges. 

For the variable image scale test, we again used the Green dataset, but with images 
at scales from 10% to 100%. The RMS error is shown relative to the full size images. 
AutoStitch gave superior performance for the smaller image scales. This may again be 
due to the larger footprint of MOPS compared to SIFT at a given detection scale. 

Figures 4.10 and 4.11 show stitching performance for AutoStitch whilst the param
eters a, a and the number of features per image were varied. The parameter a is the 
minimum number of matches for a correct image match to be declared in the proba
bilistic matching model of equation 3.13. The parameter a is the outlier distance in 
the Huber robust error function 3.17. The plot for Huber a in figure 4.10(b) shows a 
clear minimum at 0.25 pixels which represents to the optimal setting for this parameter 
on this dataset. It would be instructive to repeat this experiment on other datasets 
e.g. real images with moving objects, where the optimal setting would likely be higher. 
The plot for a in figure 4.10(a) shows a wide basin (20 < a < 120) in which the 
optimal solution is achieved. Note that as a is increased, the RMS error increases as 
the quality of image registration falls, until finally some images fail to match. Once 
images fail to match, the RMS error often dips down again, as those remaining images 
can be registered adequately. Finally, figure 4.11 shows how stitching performance 
varies with the number of features extracted from each image. With small numbers 
of features (< 200) failed matches and misregistrations are common. This improves 
as the number of features increases, with negligible gains after about 400 features per 
image. 
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Figure 4.7: Comparison of AutoStitch and MSRStitch using the synthetic image 
dataset. This dataset contains 10 synthetic image sequences. Note that both stitchers 
give very accurate solutions (0.1 pixel error) compared to the ground truth. MSRStitch 
has a glitch in sequence 5 (figure 4.5) which contains a pair of images of snow with few 
features. 

3 4 5 
sequence number 

3 4 5 
sequence number 

(a) (b) 

Figure 4.8: Comparison of AutoStitch and MSRStitch using the real image dataset. 
This dataset contains 8 real image sequences. This dataset contains difficult sequences 
with radial distortion, featureless regions, motion and parallax. The radial distortion 
is the main cause of RMS errors around 10 pixels shown in (a). 
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Figure 4.9: Comparison of AutoStitch and MSRStitch for panoramas with variable 
image overlap and scale. The first dataset (a) contains sequences with overlap from 
10% to 90%. The second dataset (b) contains sequences with images with scale from 
30% to 100%. Note that the performance of MSRStitch drops off at low image scales 
and small overlaps. This may be due to the larger footprint of MOPS compared to 
SIFT at a given detection scale, meaning that fewer features can be extracted towards 
image edges. 

0.155r 

alpha huber sigma 

(a) (b) 

Figure 4.10: Tuning of a and a parameters. The results in (a) were generated by 
stitching a dataset of 16 synthetic images whilst varying a in increments of 10 from 0 
to 200. The results are compared to ground truth. Here, values of alpha in the range 
20-120 give the best stitching results. The results in (b) show similar results for tuning 
the a parameter in the Huber robust error function. It can be seen that the optimal 
value of Huber a is 0.25 pixels in this case. 
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Figure 4.11: Effect of number of features extracted per image on RMS error, and 
number of failed matches. These results were computed using the Elfin (figure 4.5) 
dataset. Note that if the number of features extracted per image is small (< 200), 
then the number of failed matches is high. The RMS errors can still be low if the few 
images that remain are registered well. As more features are added, the RMS errors 
can actually increase as new images are matched but are poorly registered. In this case 
all images are correctly matched using 200 features per image but gains are minimal 
after more than about 400 features per image are used. 

4.6 Summary 

We have proposed a framework for evaluation of image stitching algorithms and used 
it to compare two automatic image stitchers, AutoStitch and MSRStitch. Both al
gorithms performed very well on the synthetic ground truth data, with registration 
errors typically around 0.1 pixels. Generally, AutoStitch performed better on the real 
dataset, but both algorithms showed room for improvement, with radial distortion a 
major cause of large RMS projection errors. 

Future Work 

Advanced Camera/Scene Models In this work we sampled virtual camera views 
from panoramas using a simple 4 parameter camera model. A n interesting direc
tion for future work would be to generate high quality computer graphic render
ings of virtual scenes with a large number of camera and scene parameters e.g. 
motion of the camera (parallax), radial distortion, illumination changes etc. One 
would then attempt to solve for all of these parameters and evaluate the results 
using the image based error function of equation 4.5. 
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Feature Based vs Direct Methods The relative merits of direct and feature based 
methods have been the subject of much discussion in the computer vision com
munity [TZ99, IA99]. A n interesting area for future work would be to compare 
these two methods based on their registration accuracy, using the evaluation 
framework presented here. 
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Chapter 5 

3D Object Recognition and 
Reconstruction 

5.1 Introduction 

Object recognition and structure and motion recovery are two long standing problems 
in computer vision. The structure and motion (SAM) problem1 has reached a degree 
of maturity, with several commercial offerings [2D3, REA] , in addition to an exten
sive research literature [SK93, BTZ96, PolOO, HZ04]. Object recognition is also well 
studied but remains an extremely active research area, with recent advances in image 
features and probabilistic modelling inspiring previously unexplored areas such as ob
ject class recognition [FPZ03]. Invariant local features have emerged as an invaluable 
tool in tackling the ubiquitous image correspondence problem. By using descriptors 
that are invariant not just to translation, but also to rotation [SM97], scale [Low99] 
and affine warping [BauOO, MS02, MCUP02], invariant features provide much more 
robust matching than previous correlation based methods. 

Until recently, the majority of object recognition algorithms have depended upon 
some form of training phase [Low99, VJ01]. However, algorithms have been developed 
recently that operate in an unsupervised manner on an image dataset [BL03, SZ02, 
RLSP03]. In this chapter we develop such an algorithm. We operate in an unsupervised 
setting on an unordered image dataset, and pose the object recognition problem as one 
of finding matches that are consistent views of some 3D scene. Our algorithm recognises 
objects in the sense that it finds all images that view a given object or scene. However, 
it makes no attempt to attach a label to the object [DBdFF02] or generalise object 
classes [FPZ03]. 

The remainder of this chapter is structured as follows. In section 5.2 we describe our 
1 A l s o known as structure from motion (SFM). We prefer to use the term structure and motion 

(SAM) , to emphasise the fact that the estimation of 3D structure and camera motion parameters are 
fundamentally linked. 
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invariant feature extraction and matching scheme. Section 5.3 describes the geometric 
constraints used to find correct image matches. Section 5.4 describes the sparse bundle 
adjustment algorithm used to solve jointly for the cameras and structure. Section 5.5 
demonstrates results of object recognition and reconstruction on a test dataset, and 
section 5.6 presents conclusions and ideas for future work. 

5.2 Feature Matching 
We extract and match SIFT features from all images in exactly the same way as for 
automatic panorama stitching (described in section 3.2), using a k-d tree to find nearest 
neighbour matches. We then apply a feature space outlier rejection test as described 
in section 2.7.1. 

5.3 Image Matching 
During this stage, the objective is to find all matching images, that is, those that view 
a common subset of 3D points. Connected sets of image matches will later become 
3D models. From the feature matching step, we have identified images with a large 
number of matches between them. As in section 3.3, we consider a constant number 
m images as potential image matches (we use m = 6). 

We parameterise each camera using 7 parameters. These are a rotation vector 
Oi = [On, &i2,0i3], translation t* = [tn, ti2, ti3] and focal length fi (see section 3.2). Each 
pairwise image match adds four constraints on the camera parameters whilst adding 
three unknown structure parameters X = [Xi,X2, X3] 

— K j X c i (5.1) 

= KjXcj (5.2) 

' R i X + tj (5.3) 

= R j X + tj (5.4) 

where ii j , u,- are the homogeneous image positions in camera i and j respectively. 
The single remaining constraint (4 equations minus 3 unknowns = 1 constraint) 

expresses the fact that the two camera rays p>j, pj and the translation vector between 
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(c) SIFT features 1 (d) SIFT features 2 

(e) Epipolar geom 1 (f) Epipolar geom 2 

(g) R A N S A C inliers (h) R A N S A C inliers 
1 2 

Figure 5.1: Finding sets of consistent matches using SIFT and R A N S A C . SIFT fea
tures are extracted from all input images, and each feature is matched to k = 4 nearest 
neighbours. Outliers are first rejected by thresholding against the distance of an in
correct match (section (2.7.1)), before R A N S A C is used to find a final set of inliers 
that are consistent with the fundamental matrix. For this pair of 1024 x 768 input 
images, there were 365 SIFT features in image 1 and 379 in image 2. Of the initial 
feature matches, 133 matches remained after feature space outlier rejection, and there 
were 103 matches in the final solution after using R A N S A C . 
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camera centres ty are coplanar, and hence their scalar triple product is equal to zero 

P?[ttf ]xPi = 0 (5.5) 

Writing p>j,Pj and in terms of camera parameters 

Pi = R f K r 1 * , (5.6) 

PJ = R j K ^ u j (5.7) 

tij = R,Jtj — R f tj (5-8) 

and substituting in equation 5.5 gives 

u f Fj.-Uj = 0 (5.9) 

where 

Fij = K - r R j [Rjt,- - R f tj] x R J K J 1 (5.10) 

This is the well known epipolar constraint. Image matching entails robust estimation 
of the fundamental matrix [TM97]. Since equation 5.9 is non-linear in the camera 
parameters, it is commonplace to relax the non-linear constraints and estimate a general 
3 x 3 matrix F j j . This enables a closed form solution via SVD [HZ04]. 

We use R A N S A C to robustly estimate F and hence find a set of inliers that have 
consistent epipolar geometry. A n image match is declared if the number of R A N S A C 
inliers niniiers > nmatch, where the minimum number of matches nmatch is a constant 
(typically around 20). 3D objects/scenes are identified as connected components of 
image matches. This simple approach typically requires hand tuning of the threshold 
nmatch- A n improved verification procedure might extend the probabilistic model of 
section 3.3.2 to include parallax. This is left for future work. 

5.4 Bundle Adjustment 

Given a set of geometrically consistent matches, we use bundle adjustment to solve 
for the camera and structure parameters jointly. In contrast to other approaches 



Chapter 5. 3D Object Recognition and Reconstruction 92 

[HZ04, PolOO] that begin with a projective reconstruction and later refine to a metric 
reconstruction, we solve directly for the metric structure and camera parameters. The 
cameras are added one by one, starting with the best matching pair. We have found 
that initialising each new camera with the rotation, translation and focal length of 
the best matching image works well, even if the images have different rotation and 
scale (see example in figure 5.4). In practice we peturb the camera positions slightly 
by adding Gaussian noise (of standard deviation unity) to the translation vector of 
each new camera that is added. To cope with Necker reversal, we first run bundle 
adjustment on the initial image pair, noting the final value of the error function (sec
tion 5.4.1). We then swap the camera positions, and flip the 3D point depths, before 
repeating bundle adjustment (as in [SK93]). This normally converges to a different 
local minimum. We retain the solution that minimises the error function. 

5.4.1 Sparse Bundle Adjustment 

Each connected component of feature matches defines a 3D point X j , and our error 
function is the sum squared error between the projected 3D point and the measured 
feature position 

iel jeX(i) 

where J is the set of all images, X(i) is the set of 3D points projecting to image i, and 
Tij is the residual error in image % for 3D point j. The residual r^ is the difference 
between the measured feature position and projected 3D point 

Yij = my - utj (5.12) 

where m,j is the measured feature position, and is the projection of point X j in 

image i 

utj = K i ( R i X J - + t i ) (5.13) 

We use a Huber robust error function as in equation 3.17. The outlier distance o is 
set at 3 standard deviations of the current (un-normalised) residual error. We use the 
Levenberg-Marquardt algorithm to solve this non-linear least squares problem. Each 
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iteration step is of the form 

$ = (J TJ + AC- 1 ) - 1 J T r (5.14) 

where <I> = [0,X] is the vector of camera (0) and structure (X) parameters, r is the 
vector of residuals and J = dr/d$>. The Jacobean J is an M x N matrix, where M 
is the number of measurements (twice the number of features), and N — UQ + nx is 
the number of camera (n&) and structure (nx) parameters (7 for each camera plus 
3 for each 3D point). The prior covariance matrix Cp is set such that the standard 
deviation of angles is <JQ = n/16, translations at — 0.01, focal lengths Oj = / /100 and 
3D points ax = 0.1. Note that new cameras are initialsed with the same translation, 
rotation and focal length as the best matching camera (largest number of matches), 
but Gaussian noise of standard deviation 1 is added to the new camera to prevent the 
camera centres being coincident. Although one could in principle solve equation 5.14 
directly (by solving an N x N linear system), to do so would ignore the sparse structure 
of the problem, and be very inefficient. 

Firstly, the matrix J is mostly zeros (since the derivatives of residuals for image 
i are zero except with respect to the parameters of image i), so the elements of J T J 
should be computed directly, instead of computing J first. Examining the structure of 
J r J 

J r J = 

dr T dr 
d® d@ 

dr Tdr 
a© ax ^©x 

dr Tdr 
I ax a© 

dr T dr 
ax ax - Cx 1 

(5.15) 

where the camera parameter inverse covariance matrix 

j a©i a©i 
0 

0 
E 

0 
dr2j Tdr2j 

j a©2 a©2 

0 E 

o 

0 
dr3j Tdr3j 

j d&3 a©3 

(5.16) 

is block diagonal, consisting of 7 x 7 blocks, and the structure parameter inverse co-
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variance matrix 

E drn

 Tdrn 
i 9X! axi 

0 
0 

9ri2

 Tdri2 

i 9X2 3X2 

0 

0 

0 
(5.17) 

is also block diagonal, consisting of 3 x 3 blocks. The camera/structure cross covariance 
is a full matrix 

but consists of a single multiplication for each element (the covariance between image 
i and point j depends only on the residual of point j in image i). Computing J T J by 
explicit multiplication of J would take 0(MN2) operations. However, J T J can in fact 
be computed in 0(nQnx) operations (the cost of computing C@x). 

Secondly, the matrix inversion involving J r J need not be computed explicitly 
(0(N3)) due to the sparse structure of J T J . This sparseness reflects the loose cou
pling inbetween cameras, and inbetween 3D points, in the error function of equation 
5.11. The cameras are independent given the 3D structure parameters, and the 3D 
points are independent given the cameras. Equation 5.14 may be rewritten 

C 1 - 1 

HX — (5.18) 

A B 0 
B T C X 

e© (5.19) 

where 
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A 

C 

B 

e© 

ex 

C q 1 + a 2 C P 0

1 

C x 1 + c r 2 C P X

1 

and 

'ex 
drT 

dx1 

Cp©1 0 
0 C P X 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

Multiplying both sides of equation 5.19 by 

A - B C ^ B 7 0 
B T C 

gives 

0 
X 

(5.26) 

I - B C " 1 

0 I 
j 

| e e - B C ^ e x l 

ex 
which eliminates X from the solution for 0. This is known as a reduced camera 
subsystem [TMHF99]. 

Note that again none of the matrix products need be computed directly. For ex
ample each element of e© = [e© 1 ; e© 2 , . . . ] is computed as 

E drik

T 

50" Y i k (5.27) 

which involves only one term for each residual in image i. Similarly, each element of 

ex = [e X i , eX2» • • •] is given by 

e X i = Yl 
drki

T 

dXi 
(5.28) 

and the right-hand side elimination product B C x ex 

( B C 1 ex) i = y^BjfcCfcfcexfc 
k 

(5.29) 
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where 

C = 

B n B 1 2 B 1 3 

B 2 1 B 2 2 B 2 3 

B31 B32 B33 

C n 0 0 
0 C 2 2 0 
0 0 C33 

(5.30) 

(5.31) 

Where each element B ^ = | ^ 1̂  is a 7 x 3 matrix (number of parameters per camera 
x number of parameters per 3D point). 

This gives an no x UQ linear system to solve for the camera parameters 0. The 
resulting value of 0 can be substituted into the linear system for X , which reduces 
to independent 3 x 3 linear systems for each 3D point. The most expensive stage in 
this process is (potentially) in computation of the left-hand side elimination product 
B C _ 1 B r . The ijth element is given by 

( B C 1 B T ) j j = ^ BjfeCfc/tBfcj (5.32) 
k 

where B y = -g^- is a 7 x 3 matrix (number of parameters per camera x number of 

parameters per 3D point) and Ckk = Yli f x ^ f x t i s a 3 x 3 matrix. This summation 
may involve in the worst case M terms (if every 3D point is imaged in every camera). 
Hence the worst case complexity of sparse bundle adjustment is 0(Mn%). Note that 
this is still much cheaper than it would be were C not block diagonal. If C were a 
general nx x nx matrix the cost of this elimination step would be 0(nx). However, the 
cost of bundle adjustment is usually much less than 0 ( A f n | ) . This is because the terms 
B y are zero unless point j is viewed in camera i. This means that each summation 
above involves only a constant number of 3D points for each camera. In this case, the 
complexity of sparse bundle adjustment is 0(mn@), where m is the number of residuals 
in each image. The best case complexity (given small m) is 0(n@), which is the cost 
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Figure 5.2: A simple bundle adjustment problem and the corresponding probabilistic 
graphical model. The unknown quantities to be inferred are the camera parameters 
Qj and the 3D points X j . The measured quantities are the projected feature positions 

of solving the linear system for the camera parameters. 
Hence the total computational cost for one step of sparse bundle adjustment is now 

0 ( m n | ) , reduced from 0(MN2) for naive solution of the normal equations of equation 
5.14. Note that UQ <^ N since the number of camera parameters UQ is very much less 
than the number of structure parameters % (N = HQ + % ) . This is a very significant 
reduction in practice. For example, with 10 cameras (UQ = 70), and 1000 3D points 
{nx = 3000), sparse bundle adjustment would be about (N/ne)2 = (3070/70)2 « 2000 
times faster than naive bundle adjustment. Furthermore, if a constant number of 3D 
points are imaged by each camera, the cost would be further reduced. 

5.4.2 Graphical Model Interpretation 

The bundle adjustment process (joint estimation of camera and structure parameters 
from noisy image based measurements) can be described conveniently using a proba
bilistic graphical model (see figure 5.2). Each 3D point X j gives rise to a measurement 
rrijj in each camera j (with parameters 0 j ) that it is imaged. The joint probability 
of the measurements, cameras and structure (assuming uniform priors on 0 j , X j ) is 
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given by 

p (m,X , 0 ) = HI] piniijlQuXj) (5.33) 
ia jeX(i) 

If the measurement density is assumed to be Gaussian then 

p{mij\®i, Xj) = N(mij - uy; 0, a2I) (5.34) 

where an is the standard deviation of measurement noise in the image plane and uy is 
the projection of 3D point Xj to image i 

u y = Ki(RiXj - U) (5.35) 

Taking the negative logarithm of equation 5.33 gives 

- l o g p ( m | 0 , X ) ex J2 - l o g W ( m y -Uy ;0 ) ( r 2 I ) (5.36) 
ieZ jeX{i) 

x £ £ l m u - u u l V ^ n (5-37) 

The maximum likelihood solution is 

0 , X = argmine(0 ,X) = ^ ^ Im^ - m / / ^ (5.38) 

Hence, the optimal solution for camera and structure parameters (under the assumption 
of Gaussian noise) is obtained by solving a non-linear least squares problem (equation 
5.38). In practice robustness is achieved by using Gaussian priors on the parameters 0, 
X and a robust Huber kernel is used instead of a Gaussian kernel in the measurement 
density of equation 5.34. 

5.4.3 Sparsity in the Graphical Model 

Sparsity manifests itself in two ways in bundle adjustment problems. These can be 
seen clearly from the graphical model structure of the problem (figure 5.3). Firstly, the 
structure of the observation process implies fundamental independence relationships 
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between cameras and 3D points. More precisely, the camera parameters are inde
pendent given the 3D points, and the 3D points are independent given the cameras. 
Secondly, many bundle adjustment problems are sparse in the sense that the unknown 
camera and structure parameters are loosely coupled. This leads to a reduction in the 
complexity of sparse bundle adjustment algorithms. 

The first level of sparseness arises because camera parameters are only coupled 
by the 3D points that they observe, and vice versa. A pair of cameras 0 ; , ®j are 
dependent if they view a common 3D point X&, or if there is sequence of cameras 
(viewing common 3D points), that connects them. For example in figure 5.3(a) , 
cameras O i and 02 are coupled because they share a common 3D point. However, 
cameras 0 i and © 3 are also coupled because camera 0 2 shares common 3D points 
with both. In other words, there is a path for a 'Bayes Ball ' [Sha98] between 0 X and 
0 3 , so they are not independent. The cameras can be made to be independent if all 
of the structure parameters X are known (observed). Likewise, the 3D points can be 
made to be independent if all the camera parameters 0 are known. This is the basis 
for the sparse bundle adjustment algorithm of section 5.4.1. 

The second level of sparseness arises in certain kinds of bundle adjustment prob
lems. Consider a sequence consisting of a few images of an object taken from similar 
viewpoints. In this case (almost) all of the 3D points will be visible in each of the 
cameras, and the graph has a fully connected structure (figure 5.3(b) ). This might 
occur in a short turntable sequence with a small range of viewpoints. Conversely, if 
the sequence consists of widely separated views which share few common points, the 
graph has a sparse structure (figure 5.3(a) ). The first case leads to the worst case 
complexity of sparse bundle adjustment of 0(Mn@) (where M is the number of mea
surements and rtQ is the number of camera parameters). The second case leads to the 
best case complexity of sparse bundle adjustment 0(n@). 

Note that in the sparsely connected case (figure 5.3) more general sparse matrix 
techniques [GL81] may be used in addition to the reduced camera/structure systems 
described in section 5.4.1. 

5.5 Results 

Figure 5.4 shows typical operation of the object recognition algorithm. A set of images 
containing 2 objects and 6 distractor images was input. The algorithm detected 2 
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Figure 5.3: Graphical models for (a) sparsely and (b) fully connected bundle adjust
ment problems. Note that in both cases the value of each unknown parameters X j , 
®j is dependent on every other unknown parameter. However, if all the camera pa
rameters 0 i are known (observed), the 3D structure parameters X j are independent, 
and vice versa. This is the basis for the sparse bundle adjustment method described 
in section 5.4.1. The best case complexity of this algorithm is 0(n@) i.e. cubic in 
the number of camera parameters (in the sparsely connected case (a)), and the worst 
case complexity is 0(Mn@) (in the fully connected case (b)). The number of camera 
parameters is UQ and the number of measurements is \M. 
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(a) Input images 

(b) Output 3D model 1 - Tiger 

(c) Output 3D model 2 - Rose Garden 

Figure 5.4: Fully automatic object recognition and 3D reconstruction. Note that 
despite the incorrect ordering, rotation and scale changes, and distractor images in 
the input, the system is able to successfully recognise the two consistent objects and 
perform 3D reconstruction. The Tiger sequence consisted of 13 images and yielded 
a 3D model with 675 points. The Rose Garden sequence consisted of 11 images and 
the 3D model contained 1351 points. The whole process of feature matching, image 
matching and bundle adjustment took a total of 556 seconds, of which 230 seconds were 
spent during bundle adjustment. The tests were run using a M A T L A B implementation 
on a 2.8GHz Pentium processor. 
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(b) Output 3D model 

Figure 5.5: Fully automatic structure and motion (SAM) estimation for a 3 x 3 array 
of cameras. Note that the relative camera positions have been recovered correctly. In 
this example the input images were 800 x 600, and a 3D model of 1684 points was 
computed. The total computation time for feature extraction and matching, image 
matching and bundle adjustment was 293 seconds. 
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Algorithm: 3D Object Recognition/Reconstruction 

Input: n unordered images 

I. Extract SIFT features from all n images 

II. Find k nearest-neighbours for each feature using a k-d tree 

III. For each image: 
(i) Select m candidate matching images (with the maximum number of feature 

matches to this image) 
(ii) Find geometrically consistent feature matches using R A N S A C to solve for 

the fundamental matrix between pairs of images 

(hi) (Future work) Verify image matches using a probabilistic model 

IV. Find connected components of image matches 

V . For each connected component: 
(i) Perform sparse bundle adjustment to solve for the rotation 9\, 92, 83, trans

lation ti,t2, t3 and focal length / of all cameras, and pointwise 3D geometry 

(ii) (Future Work) Compute dense depth estimates, triangulate, texture map 
etc. 

Output: 3D model(s) 

connected components of image matches and 6 unmatched images, and output the 2 
reconstructed 3D models. The complete algorithm ran in 556 seconds on a 2.8GHz 
PC. About half of the computation time was spent in bundle adjustment. Another 
example of fully automatic structure and motion estimation is given in figure 5.5. 

5.6 Summary 

We have presented a fully automatic 3D object recognition and reconstruction sys
tem. Our system starts by extracting SIFT features from a collection of images, and 
recognises 3D objects/scenes as geometrically consistent sets of feature matches. We 
perform bundle adjustment for metric structure directly, without the initial projective 
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reconstruction common to other approaches. We have found that initialising each new 
camera with the same parameters as the best matching camera gives no problems with 
convergence. 

Future Work 

We close the chapter by noting some possible areas for future work development of the 
rigid object recognition/reconstruction system. We leave discussion of more general 
image matching and object class recognition for the final conclusions (chapter 6). 

Probabilistic Model for Image Match Verification A n important part of the ob
ject recognition system is the ability to identify whether a given set of feature 
matches represents a correct or incorrect image match. Currently this has been 
implemented using the feature space test of 2.7.1 and simply thresholding on the 
number of inliers to the fundamental matrix F between each image pair. A n im
portant area for future work would be to develop are more principled model for 
verifying correct image matches. One possibility would be to extend the model 
of 3.3.2 to include parallax. 

Multi-View Tensors In this work we have used pairwise geometric constraints to re
ject outliers. These constraints are fairly weak because corresponding points may 
lie anywhere along an epipolar line. This gives the potential for introducing out
liers with unrealistic (e.g. negative) depths. Such outliers could be identified by 
using 3 view matching constraints. For example, one could robustly estimate the 
trifocal tensor [Har96] using R A N S A C , and reject matches which are inconsistent 
between the 3 views. 

Multiple Rigid Motions A straightforward extension of the ideas presented in this 
chapter would be to associate more than one set of camera parameters with each 
image to enable multiple independently moving rigid objects to be discovered 
in the images. This would require a model selection/cross validation stage to 
determine how many objects are present in each image. 

Photorealistic 3D Modelling The algorithm presented in this chapter gives a method 
for automatic camera calibration from unordered image datasets. Given cali
brated cameras, various methods could be applied to generate photorealistic 3D 
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models. A traditional approach would be to perform dense stereo and extract a 
triangle mesh [CSG03]. Another method would be to represent the scene as a 
voxel grid which is coloured using an algorithm such as [SD99]. These represen
tations have depth ambiguities for areas which are viewed in only one camera, 
or areas that have constant intensity [BSK01]. One way to deal with such ambi
guities is to adopt an image based rendering approach, using priors based on the 
image statistics [FWZ03]. 
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This thesis has presented a practical approach to multi-image matching for the auto
matic discovery and reconstruction of image panoramas and 3D models from image 
datasets. We have proposed an invariant feature based approach, using geometric con
straints to find structure in an unordered dataset. There are several advantages to 
such an approach. Firstly, by organising the feature database as a tree structure one 
can reduce the complexity of matching n images from 0{n2) for naive pairwise match
ing to 0(n log n). Secondly, the geometric constraints for multiple views are stronger 
than their pairwise counterparts, which allows more incorrect matches to be rejected. 
Finally, we can exploit the probabilistic nature of an n image matching problem by 
using known incorrect matches in data driven classifiers. 

The major contribution of this work has been the development of a novel image 
stitching algorithm, that can automatically recognise and stitch high quality image 
panoramas from unsorted image datasets. We have also described a new type of in
variant feature - Multi-Scale Oriented Patches (MOPS) that are especially suited for 
this purpose. We have developed a framework for evaluation of multi-image matching 
methods and used it to test the performance and tune the parameters of our image 
stitching algorithms. Finally, we have also shown how our framework can also be 
applied to the problem of structure and motion recovery in unordered datasets. 

Future Directions 

We conclude by identifying some avenues for future exploration: 

Partially Invariant Features The results of section 2.9.1 demonstrate the pitfalls 
of adding too much invariance to feature descriptors. One major improvement 
to feature matching methods would be to use feature descriptors that are par
tially invariant under some transformations. For many parameters such as affine 
stretch, full invariance is not really desirable, and we would rather specify a prior 
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probability distribution on those parameters. For example, very large or small 
stretch factors would be very unlikely, and difficult to match due to sampling 
issues. Whilst it would be straightforward to add priors to the Lucas-Kanade re
finement framework, performing indexing with partial invariance would be more 
of a challenge. 

Computational Photography In chapters 3 and 5 we discussed automatic image 
stitching and.3D modelling from multiple views. These problems can be thought 
of within the general framework of computational photography, where one at
tempts to augment the capabilities of a digital imaging device using computa
tional processing. In the context of stitching and 3D modelling the most obvious 
application is novel view synthesis - generating virtual camera views with arbi
trary positions/orientations from a collection of images. However, one could also 
generate novel views which have virtual exposures [DM97] or digital refocussing 
[Ng05]. In the future, there may be no such thing as a 'bad' photograph, because 
the shooting conditions will be completely reconfigurable after the event has been 
recorded. A n even bigger challenge is to capture and resynthesise dynamic scenes 
[AZP+05]. 

Non-Rigid Object Recognition In chapter 5 we describe a system for recognising 
rigid objects in an unordered dataset. A straightforward extension of this work 
would be to relax the global geometric constraints and instead search for sets of 
feature matches that are consistent with local geometric constraints. This would 
enable multi-image matching of non-rigid objects or scenes. 

Object Class Recognition Recent results in neuroscience [IUMH00] and machine 
learning [FPZ03] have shown that both humans and machines can detect classes 
of objects. Progress in this area will require flexible models for correspondence 
with similarity metrics linked to human perception. 

Image Searching and Sorting With the explosion of digital photography, our abil
ity to understand images has not kept pace with our ability to generate them. In 
the future, algorithms for searching and sorting in image databases will become 
as fundamental as those for searching for text on the World-Wide Web. Such al
gorithms could borrow from the ideas of Brin and Page[PBMW98], using feature 
matches as the visual analogue of text hyperlinks on the web. 
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A . l Camera Models 
A camera induces a mapping between the 3-dimensional world and the 2-dimensional 
image. In order to form invariants that describe the images of points in the world, we 
must understand this mapping. In the next sections we describe pinhole, orthographic, 
projective and affine camera models, and characterise their properties when viewing a 
plane. For a more detailed presentation of these results, see [HZ04]. 

A. 1.1 Pinhole Camera 

In its simplest form, a camera is a device which interprets 3-dimensional points in the 
world (R 3) as points of a 2-dimensional projective space (P 2). 

x = X c (A. l) 

where X c = [X,Y,Z] is the position in camera coordinates, and x = s[x,y, 1] is the 
homogeneous image position. Hence, the actual image coordinates x = [x, y] are given 

by 

X 'x/z 
y. Y/Z 

(A.2) 

See figure A . l . This is the basic pinhole camera model. Assuming a rigid body trans
formation X c = R X +1 between world coordinates X and camera coordinates X c , and 
a linear transformation in the image plane u = K x , we have 
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Figure A . l : The pinhole camera interprets points in R 3 as points of P 2 . Points X c that 
lie on a line through the optical centre are equivalent in P 2 as they map to the same 
point x on the plane Z — 1. 

u = K ( R X +1) 

Ui fl 0 Wl 0 ru ri2 ri3 ti 
s u2 = 0 h ^ 2 0 

r22 r23 t2 

_1_ 0 0 1 _ J31 r32 r33 *3. 

x2 

x3 

1 

(A.3) 

(A.4) 

where R , t are the rotation and translation of the camera (extrinsic parameters) and 
K is the calibration matrix (intrinsic parameters). The actual image position is u = 
[1*1,112] and the world position is X = [Xi,X2,X3]. Here, we parameterise K by focal 
lengths fi, f2, and the position of the principal point u l o , u2o- Parameterisation of R 
is discussed in appendix A.7. 

A. 1.2 Projective Camera 

Sometimes it is convenient to use a linear model for the mapping between homogeneous 
world and image coordinates. This can be accomplished by relaxing the non-linear 
constraints in equation A.3 (e.g. that R T R = I) 
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Figure A.2: The orthographic camera projects points X c parallel to the Z axis (with 
scaling in the image plane based on the average depth). Points X c that lie on a line 
perpendicular to the plane Z = 1 project to the same point x. 

u = P X 

Pu Pl2 Pl3 PlA 

s = P21 P22 P23 P2A 

_1_ _P31 P32 P33 £>34 

X2 

1 

(A.5) 

(A.6) 

where P is an arbitrary 3 x 4 matrix. This is known as a projective camera. This 
enables closed form linear solutions for the camera parameters given image and 3D 
correspondences [HZ04]. Projective cameras have the property that straight lines in 
the world map to straight lines in the image. This is also known as rectilinear projection 
in photography. 

A. 1.3 Orthographic Camera 
A simplified camera model assumes that the camera depth Z = Zo + AZ and the depth 
variation AZ is small. Hence 

X 'X/Zo 
y. Y/Z0_ 

(A.7) 

This is the basic orthographic camera model (figure A.2). In this model world points 
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axe projected perpendicular to the image plane, and then scaled based on their average 
depth. 

A. 1.4 Affine Camera 

Substituting for the rigid body and linear transforms, and linearising the result gives 

u = P a X 

Mi P l l Pl2 Pl3 Pu 

s = P21 P22 P23 P24, 

1 0 0 0 1 
X3 

1 

(A.8) 

(A.9) 

which gives a linear relationship between the ordinary (non-homogeneous) world and 
image coordinates. This is known as an affine camera. 

A.2 Viewing a Plane 

Given the above camera models, we now wish to characterise the geometric invariants of 
the imaging process. Unfortunately, the geometric relationships between corresponding 
image regions is complex, depending on the unknown 3D structure. One way to proceed 
is to linearise this structure, which is equivalent to viewing a planar region. In this 
section we describe the mappings between images of planes given the camera models 
developed above. 

A. 2.1 Homography 
Consider viewing a plane with a projective camera. Without loss of generality, assume 
that this is the plane X3 = 0. Then 

Ui 

s = 
_1_ 

Pll P12 Pu 

P21 P22 P21 x2 

_ 1 _ 

(A.10) 
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or 

u = HX„ 

If two cameras view the same plane 

(A.ll) 

Ui = H j X p 

u 2 = H 2 X P 

(A.12) 

(A.13) 

so 

Ui = H i 2 U 2 

where H12 = H i H 2

 1. Writing this in terms of image coordinates 

hi2 hi3 U21 

U12 = h2i h-22 h23 U22 

1 _ h i h32 h 3 3 
1 

(A.14) 

(A.15) 

So views of a plane with projective cameras are related by a matrix multiplication in 
homogeneous coordinates, known as a homography. Since the homography has the 
property that straight lines map to straight lines, it is also known as a collineation 
[Fau93]. A homography has 8 degrees of freedom corresponding to translation (2), 
rotation, scale, shear (2), and perspective (2) (characterised by the horizon line). 

A.2.2 Affine Transformation 

Similarly, when viewing the plane X3 = 0 with an affine camera 

P l l Pl2 Pl4 
= P21 P22 P24 x2 

(A.16) 
1 0 0 1 1 
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So views are related by 

i i i = A i 2 u 2 

where A i 2 = A i A ^ 1 . Writing in terms of image coordinates 

(A.17) 

a n a-12 «13 U2l 

s U12 = 0-22 U22 

1 0 0 1 1 

(A. 18) 

Hence views of a plane with affine cameras are related by a linear transformation in 
(non-homogeneous) image coordinates, called a 2D affine transformation. A n affine 
transformation differs from a homography by the fact that parallel lines are preserved. 
This is easily seen from the fact that points at infinity u = (ui,tt 2,0) (where parallel 
lines intersect) remain at infinity under an affinity, but not a homography. A n affine 
transform has 6 degrees of freedom corresponding to translation (2), rotation, scale 
and shear (2). 

A.2.3 Similarity Transformation 

A further simplification can be made if there is no rotation in depth of the plane relative 

to the cameras 

Uu acosi9 —asini9 t\ U2l 

s Ul2 = asim9 a cos 0 t 2 U22 

1 0 0 1 1 

(A.19) 

This is known as a similarity transform. The similarity transform has four degrees of 
freedom corresponding to translation (2), rotation and scale. 

A.3 Hierarchy of 2D Transformations 

The formulas for homographies, affinities and similarities derived above no longer de
pend on the 3D geometry, so planar regions differ only by a planar projective trans
formation. Some examples of these invariants under these transformations are given 
below 
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Group 

Projective 

Affine 

Similarity 

Euclidean 

Example 

- a 

Projection matrix 

Pu Pl2 PU 
P21 P22 P24 
J>31 P32 P34 

P i i Pl2 Pl4 
P21 P22 P24 
_ 0 0 1 

a cos 9 —asm9 
asm. 9 a cos 9 

0 0 

cos# — sin# 
sin# cos# 

0 0 

Invariants 

cross ratio, 
intersection 

+ parallel lines, 

ratio of areas 

+ ratio of lengths, 
angles 

+ length, 

area 

One approach to matching and object recognition is to characterise objects by 
geometric invariants. For example, one might compute the cross ratios of colinear 
points and use this for indexing. One can also compute invariants from the local 
brightness structure. For example, the integral of intensity around a circle would be 
invariant under rotations about that point. 

A.4 Canonical Frames 

A desirable characteristic for the set of invariants chosen is that they should be complete 
and independent [FS03]. In other words, one should be able to exactly reproduce 
the region of interest given the invariant descriptor and the unknown transformation 
parameters (completeness). Also, the number of elements of the descriptor vector 
should be no greater than necessary to reproduce the original data (independence). 
One way to do this is to warp corresponding image regions to a canonical frame (figure 
A.3). Consider a reference frame with coordinates uref defined by a homography H r e / 

Uref = HrefU (A. 20) 

Suppose that the coordinates u undergo a planar projective transformation u' = Hu. 
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H 

c a n o n i c a l 

Figure A.3: A canonical reference frame transforms according to the same homography 
as the images i.e. u' — Hu =>• ^-'ref = H r e / H - 1 

If the new reference frame H'ref also transforms according to H 

H'ref = H ^ H " 1 (A.21) 

then 

u r e / = H r e / u = H'refu' (A.22) 

Then the corresponding feature points u, u' map to the same reference point u r e/. The 
reference frame defined by H r e / is called a canonical frame. Note that though corre
sponding feature points are covariant (transform under H ) , the reference homography 
is contravariant (transforms under H _ 1 ) . 

A.5 Multi-View Constraints 

In the next sections we describe the pairwise constraints that apply to panoramic image 
geometry and epipolar geometry. Information about 3 and 4 view constraints can be 
found in [HZ04]. 
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Figure A.4: Panoramic Geometry. For a camera that rotates about it's optical centre, 
there is a one-to-one mapping between the points in the two images. 

A.5.1 Panoramic Geometry 

For images related by a rotation about the camera centre there is a one-to-one mapping 
between corresponding points. Consider two cameras centred at 0 viewing the point 
X 

Hence 

Substituting u = K x gives 

where 

x i = [ R i | 0 ] X = R i X (A.23) 

x 2 = [ R 2 | 0 ] X = R 2 X (A.24) 

x i = R i R ^ x s (A.25) 

ux = H 1 2 u 2 (A.26) 

H 1 2 = K I R J R ^ K J 1 (A.27) 

is a special homography known as the homography of the plane at infinity. In the gen

eral case when the camera centres are distinct, the homography of the plane at infinity 
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Figure A.5: The epipolar constraint expresses the fact that the two camera centres 
and the 3D point lie in the same plane (the epipolar plane). Hence the scalar triple 
product pf( t x p 2 ) is equal to zero. 

describes the motion between points that are (infinitely) far from both camera centres 
(see appendix A.6). If the camera centres are coincident, this homography describes 
the motion of all points. The elements of H are typically linearised to facilitate linear 
solution by SVD. 

A.5.2 Epipolar geometry 

In the general case of moving cameras a point viewed in one image defines a line in the 
second, corresponding to a continuous range of possible depths for that point. Hence 
there is a point to line mapping between images. Consider a point X viewed in a pair 
of images 

i i = X C 1 X = R ! X C l + t i (A.28) 

x 2 = X C 2 X = R 2 X C 2 + t 2 (A.29) 

The homogeneous coordinates x are related to the normalised ray directions x via the 
unknown depths s 
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X i = Si 

x 2 = s2 

x l 
1 

l X 2 | 

1 

= SlXi 

S2X2 

For consistency of the 3D point position between the cameras 

R<iXC l + t i = R 2 X C 2 + 1 2 

Substituting for the observed ray directions 

R i S1X1 + t i = s 2 R 2 x 2 + 1 2 

this is of the form 

S1P1 + S2P2 = t 

where p i , P 2 and t are 3-vectors as follows 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

P i = R i X ! (A.35) 

p 2 = R 2 x 2 (A.36) 

t = t 2 - t i (A.37) 

Equation A.34 gives 3 (scalar) equations in 2 unknowns. Eliminating the unknown 

depths s i , s 2 gives 

p f (t x p 2 ) = 0 (A.38) 

This expresses the fact that p i , p 2 and t all lie in the same plane, and hence their 
scalar triple product is equal to zero. Writing this out in terms of the camera extrinsic 
parameters 

x f R f [ t 2 - t i ] x R 2 X 2 - 0 (A.39) 
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or x ^ E x 2 = 0 where 

E = R n t 2 - t i ] x R 2 (A.40) 

is a 3 x 3 matrix known as the essential matrix. Substituting u = K x gives 

u f K ^ R H t a - t 1 ] x R 2 K 2 T 1 u 2 = 0 (A.41) 

or u f F u 2 = 0 where 

F = K r 1 R n t 2 - t 1 ] x R 2 K j 1 (A.42) 

is known as the fundamental matrix. Again, the fundamental matrix is often linearised 

to facilitate linear solution via SVD. 

A.6 Plane (at Infinity) Plus Parallax 

A l l image motion can be decomposed as a homography of the plane at infinity (rotation 

between the cameras) and depth dependent motion towards the epipole (parallax). 

Adopting similar camera models as used previously 

i i i = s i u i = K i X C l (A.43) 

u 2 = s 2 u 2 = K 2 X C 2 (A.44) 

where 

X = R i X C l + t i = R 2 X C 2 + t 2 (A.45) 

Assuming that K is upper triangular and scaled such that £33 = 1, s = Zc, the unknown 

point depth. Substituting for u 

R i K x ^ i i i i + t i = R 2 K 2

1 s 2 u 2 + t 2 (A.46) 
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Hence 

- u 2 = K 2 R 2

r R i K ] " 1 u i + - K a R i X t i - t 2 ) (A.47) 
Si Si 

For points far from both cameras, Si and s 2 are both large, and the image positions 
are related by a homography 

u 2 = Hoofix (A.48) 

where 

Hoo = K 2 R f R i K f 1 (A.49) 

is known as the homography of the plane at infinity. As the depth of the point decreases, 
it moves in a line towards e = K 2 R 2

n ( t i — t 2 ) , which is the projection of the centre 
of camera 1 in camera 2, otherwise known as the epipole. Hence the motion of points 
may be written 

u 2 = HooUx + Ae (A.50) 

i.e. points transform under the homography of the plane at infinity (rotation between 
the cameras), plus depth dependent motion towards the epipole. Note that a similar 
result can be shown for an arbitrary plane H . This is known as plane plus parallax 
representation [Saw94]. 

A.7 Axis-Angle Rotations 

The axis-angle representation provides a representation for rotations that is a) mini
mal b) easily differentiable. The first point is important because some other rotation 
representations e.g. a 3 x 3 rotation matrix, can become non-Euclidean due to round 
off errors after manipulation. 

Consider a rotation of the vector x by an angle 9 about axis u, resulting in the 
vector x'. We begin with the identity 

x = u u T x — u x (u x x) (A.51) 
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Figure A.6: The motion of point X between cameras can be expressed as a homography 
plus motion towards the epipole. If the point is far from the cameras, it's position is 
given by the homography of the plane at infinity. As the depth of the point Zc decreases, 
it moves along a line in the image towards the epipole e. 

See figure A.7(a) . Note that the vectors 

u 
u x x (A.52) 

u x (uxx ) 

are orthogonal and —ux (uxx) is the component of x in the plane perpendicular to u. 
Under a rotation about an angle 6 about u, the component u u r x is unchanged, but 
the component —ux (uxx ) becomes 

—ux (uxx ) cos# + (uxx) sin# (A.53) 

Figure A.7(b) . Therefore the rotation of x by angle 6 about axis u is given by 

x' = uu T x - u x (u x x) cos 9 + (u x x) sin 8 (A.54) 

Equivalently 

x' = Rx (A.55) 
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-ux (uxx) 

• u x ( u x x ) 

(a) 

—ux (uxx) 

(b) 

Figure A.7: Axis-angle rotations. The vector x is expressed as components parallel to 
u and in the plane perpendicular to u (a). Only the component perpendicular to u is 
affected by rotation about u (b). 

where 

R = uu T + [u]x sin(9 + (I - uuT)cos# 

and [u]x is the cross product matrix defined by 

u v = 

0 - 0 3 

03 0 

— 02 01 

02 

-0i 

0 

(A.56) 

(A.57) 

Rodriguez Equation 

It can be shown (by polynomial expansion of e®*) that 

e[0]x = e f + g i n + (j _ 0 £ T ) c o s |0| (A.58) 

Hence 

R = e^* (A.59) 
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represents a rotation by an angle \9\ around the axis 9, where 9 = 9/\9\. 

Inverting Rodriguez Equation 

Consider the trace of R 

tr(R) = 3 - 201 + §2

2 + §j)(l - cos \9\) (A.60) 

also 

R 3 2 — R23 

V = R l 3 — R-31 = 62 

.R2I — R l 2 e3 

and therefore 

|0| = cos 

9 = v/|v 

! tr(R) - 1 
(A.62) 

(A.63) 
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(a) Elfin 

(b) Green 
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(c) L C I 

Figure B . l : Example panorama sequences from the synthetic dataset. Each camera 
view is synthetically sampled from a previously stitched panorama. Synthetic sampling 
allows us to generate arbitrary image sequences whose camera matrices are known 
exactly. 
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(a) Alaska 

(b) Room 

WW 
— - J P T 

i t ^ j | IpLll; Ijfej 
(c) Cedar 

Figure B.2: Example panorama sequences from the real dataset. The ground truth 
registrations shown here have been generated by manual stitching. Our complete test 
dataset consists of over 200 real image sequences containing ID (single row) and 2D 
(multi row) panoramas. 



Figure B.4: Matier dataset. 
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Figure B.6: Dash point dataset. 
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1 

H • 4 H , 1 

i a 

Figure B.7: Times Square. This difficult stitching problem contains many moving 
objects and large changes in brightness between the images. Future automatic image 
stitchers could detect the moving objects, and compute high dynamic range radiance 
maps of the scene. This would enable the user to 're-photograph' the scene with 
different exposure settings and moving objects selected. 


