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Abstract 

Wireless networks are growing rapidly in recent years and research in wireless 

technology is gaining increasing attention, especially in the area of security. Our thesis 

addresses an interesting security problem in wireless ad-hoc network: the P2P dynamic 

secure group key establishment. To secure group communication in an ad-hoc network, a 

group key shared by all group members is required. This group key should be updated 

when there are membership changes in the group, e.g. when a new member joins or a 

current member leaves. In this thesis, we propose a novel efficient P2P hierarchical group 

key management protocol for ad-hoc networks. We introduce a two-level hierarchical 

structure and a new scheme of group key update. The idea is to divide the group into 

subgroups; each maintains its subgroup key and links with other subgroups in a ring 

structure. A salient feature of our scheme is that group key gets updated and managed in 

a P2P manner. By introducing subgroups, public encryptions, and unicasts in key updates, 

will be limited in one subgroup and computation load is distributed to many hosts. Both 

theoretical analysis and experiment results show that our protocol performs well for the 

key establishment problem in ad-hoc network in terms of both computing cost and 

bandwidth overhead. 
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Chapter 1 

Introduction 

1.1 Motivation 

Wireless networks are growing rapidly in recent years. Wireless technology is 

gaining more and more attention from both academia and industry. Most wireless 

networks used today, e.g. the cell phone networks and the 802.11 Wireless LAN, are 

based on the wireless network model with pre-existing wired network infrastructures. 

Packets from source wireless hosts are received by nearby base stations, then injected 

into the underlying network infrastructure and then finally transferred to destination hosts, 

as shown in Figure 1.1. [13] 
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Firewall 

Figure 1.1 802.11 Wireless L A N 

Another wireless network model, which is actively researched, is the ad-hoc 

network. This network is formed by only mobile hosts and requires no pre-existing 

network infrastructure. Hosts with wireless capability form an ad-hoc network instantly 

and packets can be delivered to any host in the network. Since there is no base station and 

no underlying network infrastructure in ad-hoc networks, some mobile hosts work as 

routers to relay packets from source to destination, as shown in Figure 1.2. It's very easy 

and economic to form an ad-hoc network in real time. Ad-hoc network is ideal in 

situations like battlefield or rescuer area where fixed network infrastructure is very hard 

to deploy. 

Figure 1.2 Ad-hoc networks. In ad-hoc network, intermediate nodes relay packets from 
source to destination 
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Group-oriented network applications can be easily conducted in this new network 

environment. For example, in a conference room, users can form an ad-hoc network 

instantly with their wireless devices, e.g. notebook computers, PDAs, or even cell phones, 

without requiring any pre-installed cables or base stations. They can use this fast setup 

ad-hoc network for conducting a videoconference, sharing files or even playing 

interactive games. 

Before the ad-hoc network concept can be widely accepted, several issues need 

to be resolved. For example, security is a major challenge. To secure group 

communication over an ad-hoc network, a group key (Kgroup) shared by all members of 

the group is needed. Packets will be encrypted with a group key Kgroup by the sender and 

decrypted with the same Kgwup by receivers. The group key Kgroup should always be kept 

confidential and should be updated timely whenever there are membership changes in the 

group. For example, if a new host joins the group, we should update the Kgroup so all past 

communication encrypted with the old Kgroup is kept secret to the new member. If a 

member node leaves, Kgroup should also be updated to keep future communications secret 

to the leaving node. 

Many group key establishment protocols, e.g. [1], [2], [3], [4], [5], [6] and [17] 

have been proposed. Protocols in [1], [2], [3] and [17] are designed for group key 

establishment problem in general, and protocols in [4], [5] and [6] are proposed for group 

key establishment problem in ad-hoc networks. Unfortunately, none of these protocols 

are adaptive to the key establishment problem in ad-hoc networks. Key management 

protocols proposed in [1], [2], [3] and [17] depends on a reliable central key server or key 

management nodes, where as key agreement protocols in [4], [5] and [6] require 
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exponentiation computation. Besides, they are not communication efficient. A common 

problem of these protocols is that by design, they did not take into account the unique 

features of a wireless ad-hoc network. For example, we know that wireless devices, e.g. 

PDAs, cell phones and notebooks, are usually lightweight, powered by batteries and do 

not have strong computing ability. So by design, computational load should be distributed 

among multiple hosts. Heavy computation work on a single host should be avoided. 

Secondly, radio signal used in wireless communication propagates in every direction in 

the air. So in wireless network, a local broadcast to all neighbors within the radio range 

uses no significant more time and resource than a unicast. A well-designed group key 

establishment protocol should take these features into consideration and try its best to be 

adaptive to the ad-hoc network environment. 

1.2 Overview of P2P-HGKM Protocol 

The goal of our work is to propose a communication and computation efficient 

group key establishment protocol in ad-hoc network. The idea is to divide the multicast 

group into several subgroups, let each subgroup have its subgroup key shared by all 

members of the subgroup. Each subgroup has two leader nodes, and each leader is a joint 

leader of two subgroups. For example, in Figure 1.3, all member nodes are divided into 

three subgroups - 5/, S2 and S3, and M,9 is the joint leader of S] and S3. We can assume 

that all subgroups are linked in a ring structure, as shown in Figure 1.4. 
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Figure 1.4 Subgroups link in a ring structure 

Without the concept of subgroup, an update Kgroup would have to be encrypted 

and unicast to each individual host. This is neither computational nor communication 
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efficient. By introducing subgroups and subgroup keys, updated Kgroup can be encrypted 

with subgroup keys and multicast to the corresponding subgroups. For example, in Figure 

1.5, KgwUp is updated by Mjg, encrypted with subgroup key (Kj) of subgroup Sj and 

multicast (Kgroup)Ki to 5/. When M8 - the other leader node of Si, receives this message, 

M8 decrypts (Kgroup)K, and gets Kgroup. Since M8 is also the leader of S2, M8 will then 

encrypt Kgroup with K2 and multicast (Kgroup)K2 to S2. In this way, Kgroup can be propagated 

along the subgroup ring and finally received by all members, as shown in Figure 1.5. 

Figure 1.5 Kgroup propagates along the subgroup ring 

1.3 Thesis Contribution 

• We propose a new efficient method for solving the group key 

management problem in ad-hoc network. Our protocol provides efficient 

and reliable key management service and is well adaptive to the mobile 

environment of ad-hoc network. 
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• We introduce the idea of subgroup and subgroup key, and we uniquely 

link all subgroups into a ring structure. Our design eliminates the central 

key server. Instead all hosts work in a peer-to-peer fashion. We use P2P-

HGKM as the name of our protocol. It stands for P2P Hierarchical Group 

Key Management Protocol. 

• We design and implement P2P-HGKM protocol using Java and conduct 

extensive experiments and theoretical analysis to evaluate the 

performance of our protocol. 

1.4 Synopsis 

The rest of the thesis is organized as follows. Chapter 2 introduces some 

background knowledge, including multicast routing algorithms in ad-hoc network, the 

public key and symmetric key encryption system, and some related group key 

establishment protocols. Chapter 3 discusses the design and implementation details of the 

protocol. In Chapter 4, we evaluate the performance of the protocol and compare P2P-

HGKM with several existing key establishment protocols. Finally in Chapter 5 we 

present concluding remarks and offer suggestions for possible future work. 
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Chapter 2 

Background and Related Work 

2.1 Multicast Routing in Ad-Hoc Network 

The routing problem in ad-hoc network has been an active topic for many years. 

Some unicast routing algorithms, e.g. [7], and multicast routing algorithms, e.g. [8] [9] 

and [10], have been proposed earlier. Cordeiro et.al. summarized current multicast 

protocols for ad-hoc networks in [11]. Our key management protocol uses multicast to 

send protocol messages. Hence an efficient multicast routing algorithm is the basis of our 

protocol. We used the On-Demand Multicast Routing Protocol proposed in [10] due to its 

simplicity, efficiency and its support for both multicast and unicast. 

ODMRP (On-Demand Multicast Routing Protocol) is a mesh-based protocol that 

uses a forwarding group concept (only a subset of nodes forward the multicast packets 

instead of using system wide broadcast). The multicast routes are established on demand 
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- when a group member has packets to send but there does not exist a route to the 

multicast group, the requesting node first broadcasts a Join-Query packet to the entire 

network, as shown in Figure 2.1. When an intermediate node receives this Join-Query 

packet, it stores the upstream node ID into its routing table. It also stores the source ID 

and the sequence number in its message cache to detect any potential duplicate. If the 

Join-Query message already exists, it is discarded; otherwise, the Join Query message is 

rebroadcast to neighboring nodes. 

Figure 2.1 ODMRP. Source node broadcasts Join-Query and waits Join-Reply from 
receivers 

Besides re-broadcasting the Join-Query packet when a multicast group member 

receives a Join-Query packet, they also broadcast a Join-Reply packet containing the 

upstream ID to its neighbors. When a neighbor node receives this Join-Reply packet, it 

checks if the upstream ID in Join-Reply packet matches its own node ID. If it does, the 

node realizes that it is on the path to the source and thus it belongs to the forwarding 

group (FG). The node sets its forwarding group flag (FG_FLAG) and then creates and 

5*Join Query 
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broadcasts its own Join-Reply packet. So in this way, forwarding group members 

propagate the Join-Reply until it reaches the source node via the selected (shortest) path. 

After establishing the forwarding group (FG), members of the multicast group 

can multicast packets to the whole group via FG, and only nodes in the FG will 

rebroadcast data packets received. As long as the source node has data to send, it will 

periodically send Join-Query packets to refresh the forwarding group and the routes. 

As we will see in Chapter 3, most key management messages exchanged in our 

protocol are multicast messages, so we use ODMRP as the supporting multicast routing 

protocol for our system. Another reason for choosing ODMRP is because ODMRP 

supports unicast [12]. Hence we don't need to include another unicast routing protocol in 

our system, which greatly simplifies our design. 

We also combine ODMRP with our protocol by using some key management 

messages in our protocol for routing discovery. This further reduces the number of 

messages required in key update. 

2.2 Public Key and Symmetric Key Encryption 

Modern cryptography systems include symmetric key algorithms and public key 

algorithms. In symmetric key algorithm, the same key is used for encryption and 

decryption. Many symmetric key algorithms have been developed and widely used, e.g. 

DES, Triple DES and AES. We summarize these algorithms in Table 2.1. 
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Key Length(bits) Plaintext (bits) Cipher Text (bits) Strong for use? 

DES 56 63 64 No longer 

3DES 112 (2x 56) 64 64 Yes 

AES 128 128 128 Yes AES 

128 256 128 Yes 

Table 2.1 DES, 3DES and AES 

Symmetric Key encryption algorithms, e.g. AES and 3DES, are widely used in 

massive data encryption because of their efficiency - they are much faster than most 

public key algorithms. Symmetric key algorithms require all parties to possess the secret 

key before communication. Thus we need a way to secretly distribute the key. This has 

always been a weak link. In 1976, two researchers at Stanford University, Diffie and 

Hellman, proposed a radically new kind of cryptosystem - the public key cryptosystem, 

to solve this problem [14]. In public key cryptosystem, a pair of keys - a public key and a 

private key is presented. The public key is openly known to all communication parties, 

while the private key is always kept confidential by the key owner. Deducing the private 

key from the public key should be exceedingly difficult. Figure 2.3 depicts how public 

key encryption works. If A wants to securely send a plain text P to B, A first acquires B's 

public key Eb from B or from a trusted third party. Then A will encrypt P with Eb and 

send (P)Eb to B. By receiving the encrypted message, B decrypts (P)Eb with its private 

key Db, and extracts the correct content of the message P - ((P) Eb) Db. 

(P)£„ 
P - Plain Text 

( ( P ) E b ) D b = P £ 6 -Publ ic Key of B 
* D B - Private Key of B 

Figure 2.2 Public key encryptions 
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One of the widely used public cryptosystem is the RSA system, developed by 

Rivest, Shamir and Adleman in 1978 [15]. The RSA algorithm is based on the difficulty 

of factoring large numbers. The public and private key is at least 1024 bits in the RSA 

system for good security. Each block of plaintext for encryption and decryption is also 

1024 bits long, versus 64 bits cipher in DES and 128-bits cipher in AES. Despite its 

strong security, there is a drawback of RSA system. The RSA algorithm takes more time 

for encryption and decryption than symmetric key algorithms. So in practice, RSA 

system is usually used for key distribution, instead of massive data encryption. 

Both symmetric key and public key encryption is used in our key management 

protocol. In our design, members of the multicast group G have group key - Kgwup. Kgroup 

is a symmetric key (128 bits AES key) and is for data encryption. Each member node 

also has the subgroup key(s) of the subgroup(s) they are in. For example, if Mj is the joint 

leader of both Si and S2, then Mi will have subgroup key Ki and K2. Subgroup key is also 

a 128 bit symmetric key, which is used to encrypt the updated key Kgroup. A subgroup key 

is shared by all members of the subgroup. As a result when there is a membership change 

in Si, Kt is also updated. 

Each node in our system (both group members and non-group members) also has 

a pair of public key (1024 bits RSA key): for node Mh £, is its public and Dt is its private 

key. Public key encryption is used to encrypt updated Kgwup or subgroup keys when there 

is no valid subgroup/group key to use. For example, when a node joins the multicast 

group, this new member does not have any subgroup key or group key, thus we use its 

public key for encryption. The key update at Leave Event also uses public encryption. 

We will describe this in detail in Chapter 3. 
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2.3 Group Key Establishment Protocols 

In general, key establishment protocols can be classified into two categories: key 

management (key distribution) and key agreement. In key management protocols, group 

key is usually created and updated by a central key server, and then securely distributed 

to all members. In key agreement protocols, each node contributes a fraction of the group 

key and the creation and update of group key is the joint work of all members. 

2.3.1 Key Agreement Protocols 

In Key agreement protocols, [2], [16] and [17], each member contributes a 

fraction of the group key and the group key is constructed by the joint work of all 

members. Al l key agreement protocols are extensions of Diffie-Hellman key exchange 

[14]. Hence we will first discuss Diffie-Hellman key exchange. Then we will briefly 

discuss GDH 2.0(Group Diffie-Hellman) [2] as an example of key agreement protocol. 

Diffie-Hellman key exchange was first proposed in 1976 by Diffie and Hellman 

to solve the problem of establishing a shared secret key via an insecure channel. The key 

exchange protocol works like this: 

A picks x B picks y 

B computes 
(g* mod n)" mod 
n = gx» mod n 

n = g** mod n 

Figure 2.3 Diffie-Hellman key exchange 

n, g, g* mod n 

g* mod n 

A computes 
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If node A and B want to establish a shared key via an un-secure channel, they 

first agree on two large numbers, n and g where n is a prime and (n-l)/2 is also a prime, n 

and g can be public. Then A picks a large number x and keeps it secret, and B also picks a 

secret number y. 

A computes (gxmod n) and sends this to B. Similarly, B sends (g'mod n) to A. By 

receiving (gxmod n) from B, A computes ((gymod nf mod n). Similarly, B computes 

((gxmod nf mod n) where (gxmod n) is from A. After the key exchange, both A and B 

have (g^mod n) and this is the established shared key. (((g'mod nfmod n) = ((gxmod nf 

mod n) = (g^mod n) ). 

The security of Diffie-Hellman key exchange lays in the fact that, deducing x 

from (gxmod n) is hard. So even if an eavesdropper has (gxmod n) and (gymod n) and g 

and n, he still cannot deduce either x or y, and thus cannot compute the shared key 

(g^mod n). Despite its elegance, Diffie-Hellman key exchange is vulnerable to man-in-

the-middle attack. 

Michael Steiner, Gene Tsudik and Michael Waidner extended DH key exchange 

to N-Party key agreement - GDH 2.0 in [2]. Figure 2.4 is the GDH 2.0 algorithm and 

Figure 2.5 depicts how GDH 2.0 works in a group with 4 members. 
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Group Diffie-Hellman Algorithm (GDH 2.0) 

Roundi(l <i< n-l) 

1. Member M, selects a random integer r, eZ*9 

2. M, sends Mi+1: o^(Ffk=1 rk)axid of((Ftk=1 rk)/rj), V 1 <j < n 

Round n: 

1. Member M„ selects a random r„ e Z*q 

2. M„ sends each M, a number y, = o^((LTj=i rj)/ri). 

3. Each member Mi then computes the final key as 

5n = y , A r i = o^(ITj^rj). 

Figure 2.4 GDH 2.0 algorithm 

Figure 2.5 GDH 2.0 works in a group with 4 members. 

Message (n-l) unicast + 1 multicast 

Round n 

Exponentiation (i+1) for M{ (i < n) 

n for M„ 

Total number of exp. = 0(n2) 

Table 2.2 Communication and computation cost of GDH 2.0 
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GDH.2 performs well in wired network. But applying GDH.2 directly to the 

group key establishment problem in ad-hoc network may not yield the same result. 

Group key in key agreement protocols is a combination of contributions from all 

member nodes. For this reason, each membership change will lead to a change of the 

group key and will cause all members to conduct exponentiation computations. Generally, 

key agreement protocols are not scalable in large networks because 

• The cost for updating Kgroup at Join Event is same as Leave Event for key 

agreement protocols. But we know the key update at Join Event could be 

complete with much less cost if we use the existing group key (Kgroup_0id) to 

encrypt the updated Kgroup. 

• As shown in Figure 2.5, the last node in GDH 2.0 needs to do (AM) exponential 

computations, while the first node only needs two exponential computations. The 

unbalanced work load will make the last node a bottleneck of the key agreement 

protocol and a vulnerable node of the system. 

2.3.2 Tree-Based Key Management Protocols 

In key management protocols, a central key management server is usually present 

in the system, and group key are initialized, updated and distributed by the key 

management server. Wong et.al. proposed a Tree-Based key management protocol in [1]. 

We will briefly introduce Wong's protocol as an example of key management protocol 

here. 
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Assuming a multicast group has n members, Mj through M„, and there is a central 

key server in the system that manages membership and keys. The central key server 

stores a key tree, as shown in Figure 2.6. Each node also stores all the keys from the leaf 

up to the root in the key tree. For example, in Figure 2.6. M 9 stores k9, kc and kwol. 

Figure 2.6 Tree-Based key management protocol 

When a new node joins the group, the key server adds this new member as a leaf 

node in the key tree, updates all the keys from the new node up to the K r o o t in the key tree 

and securely distributes them. For example, in Figure 2.6, if M 9 is the new member, then 

K c and K r 0 0 l in the key tree should be updated. Updated K c will be encrypted with Kc_oid 

and multicast to M 7 and M 8 ( ( K C ) K C M ^ > { M 7 , M g } ) . Updated K r o o t will be encrypted with 

Kroot_oid and multicast to the whole group { { K r o o t ) K r o o t oW=>G). Updated K r o o t and Xcwill be 

grouped together, encrypted with k9 and unicast to M 9 ( ( K r o o „ K C ) K 9 —> M 9 ) . 

Key update at node leaving is more complicated. Al l the keys possessed by the 

leaving node should be updated in order to secure future communication. For example, in 

Figure 2.6, if M 9 is the leaving node, then K c and K r o o t should be updated because they 
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are held by M9. KA and KB are not affected by the leaving node and can be used to encrypt 

the updated key(s). Updated Kroot is encrypted with KA for Mh M2, M3 ((Kroot)KA => {Mi, 

M2M3}), and encrypted with KB for M4M5M6 ((Krool)KB =>{M4, M5, M6}).Updated Kroot 

and Kc are grouped together, encrypted with k7 for M7i and encrypted k8 with for M8. 

{(Kroot, KC)K7 - M7 ; (Krool, KC)K8 -> M8) 

Join Leave 

Communication 
Cost 

h multicast + 1 unicast (h-1) x (d-1) multicast 

Computation 
Cost 

Request node: (h-l) symm deer 
Non-Req node: nxdl(d-Y) symm deer 

Key server: 2x(/z-l) symm encr 

Request node: 0 
Non-Req node: nxd/(d-l) symm deer 

Key server: dx(h-l) symm encr 

* h - height of key tree; d - degree of key tree 
symm deer - symmetric decryption symm encr - symmetric encryption 

Table 2.3 Communication/Computation cost of Tree-Based key management 

The tree-based key management works efficiently in wired networks with a well-

selected parameter d. But the protocol may not work well in general ad-hoc networks 

because the protocol requires a powerful and reliable key server. This requirement is very 

hard to satisfy in an ad-hoc network. Wireless hosts in ad-hoc networks are mobile and 

connections are not reliable. Also, as mentioned before, they are usually lightweight 

devices like PDAs and cannot be a key server for the whole system. Heavy computation 

load may totally weight down this wireless device and fail the whole key management 

protocols. 
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2.4 Related Work 

Protocols in [4], [5] and [6] are proposed for the key establishment problem in 

ad-hoc network and they are all key agreement protocols. Here we briefly discuss the 

AT-GDH protocol in [5]. 

The "Efficient Key Agreement for Ad-hoc Networks" (AT-GDH) proposed by 

Maarit in [5] is an extension of GDH 2.0 in ad-hoc network. The protocol has two steps. 

At the first step, a spanning tree is constructed, each member contributes a fraction to the 

group key and the contributions are gathered from leaf nodes up to the root, as shown in 

Figure 2.7. At the second step, the root node combines these key fractions and sends back 

the results to all nodes in the spanning tree. 

b) Step Lb 
Figure 2.7 Step 1 of AT-GDH algorithm. At step 1, contributions gather at the root node. 

19 



b) Step 2.b 
Figure 2.8 Step 2 of AT-GDH algorithm. At step 2, root sends back the combination of 

contributions to all nodes. 

GDH 2.0 • -. : AT-GDH 

Communication 
Cost 

JV-1 Unicast + 
1 Multicast 

2x N Unicast Communication 
Cost 

N Round . 2k x (logkN) Round 

Computation Cost 0(N2) Exponentiation. 0(NlogkN) Exponentiation 

Table 2.4 Communication/Computation cost of GDH 2.0 and AT-GDH 

Unicast in AT-GDH can be parallel and exponentiation computation is 

distributed with the introduction of tree structure. From Table 2.4 we can see that AT-

GDH requires fewer rounds of message exchanges and less exponential computations 

than GDH 2.0. Despite this improvement in performance, AT-GDH still suffers from the 

following problems: 

• The cost of key update at Join Event is the same as Leave Event. 
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Root node in the tree structure does heavy computation work and failure of the 

root node will collapse the key agreement services. The root node becomes a 

single failure node in the system. 

The number of unicast and exponentiation computation is still at the order of 0(N) 

and 0(NlogkN). 
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Chapter 3 

Design and Implementation 

3.1 Overview of the P2P-HGKM System 

Our system is composed of many wireless hosts that form an ad-hoc network 

instantly, as discussed in Chapter 1. Some (or all) of these hosts are members of a 

multicast group G and they shares a group key (Kgroup) for secure group communication. 

To update Kgroup at Join Event, we can use the Kgroup before update to encrypt the 

updated Kgroup, and multicast (Kgroup)KgroupMto all group membeTs((Kgroup)Kgroupold => G). 

Updating Kgroup at leave event is more complicated and is the key question in key 

establishment problem. Because the leaving node also holds the old group key (Kgroupoid), 

so we cannot encrypt Kgroup with Kgroupoid or any key known to the leaving node, as we 

did at the key update of Join Event. A generic way to update Kgroup is to encrypt the 
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updated Kgmup with the public key (£,) of each member (A/,) and unicast encrypted 

(Kgroup)Ei to Mi. The generic algorithm requires (AM) public key encryptions and (AM) 

unicasts and this is very inefficient. 

So we introduce redundant keys and more complex structure in order to reduce 

the communication and computation cost for updating Kgroup at Leave Event. Our idea is 

to divide G into several subgroups based on geographic location, and let each subgroup 

have its subgroup key. Nodes in the same subgroup are close to each other and each 

subgroup has roughly the same number of nodes (M), as shown in Figure 3.1 (We assume 

all the nodes are evenly distributed in the system). We will discuss how we divide group 

G into subgroups in more details in Chapter 3.2.2. 

Figure 3.1 Multicast group G is divided into subgroups. 
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Each subgroup has two leader nodes, which are the key management nodes and 

membership management nodes of the subgroup. Each leader node is also a joint leader 

of another subgroup, e.g. in Figure 3.1. Mg is the joint leader of Si and 52. All the 

subgroups are linked by joint leader nodes into a ring structure, as shown in Figure 3.2 

Figure 3.2 Subgroups are linked by joint leaders into a ring structure 

We chose the two-level ring structure because the ring structure is simple and 

easy to manage. And with the ring structure, updated key can be propagated 

simultaneously in two directions along the ring, as shown in Figure 3.3. 

By introducing subgroup and subgroup key, public encryption and unicasts at 

Leave Event are limited within one subgroup. For example, in Figure 3.3, if Af? is the 

leaving node, then both Kgroup and Ki should be updated. In our protocol, the subgroup 

leader with a smaller ID is responsible for the key update in this case (see more detailed 

discussion in Chapter 3.4.1). Here in our example, Ms is this leader node with a smaller 

ID (Mg's ID < M;9's ID), so Ms will be responsible for updating Kgroup and K;. Ms first 
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updates Kh encrypts Ki with Ei and E19 (the public key of M ; and M19) and unicasts 

(K])Ei and (K/)EI9 to Mi and M ; 9 individually. 

After updating Ki, Ms updates Kgroup, encrypts Kgroup with K2 and and 

propagates encrypted Kgroup along the subgroup ring, as shown in Figure 3.3. When M]7 -

the other leader node of 52, receives this message, M ; 7 decrypts (Kgwup)K.2 and gets Kgroup. 

Since M]7 is also a leader of S3, M17 will then encrypt Kgroup with /if} and multicast 

(Kgr0up)K3 to 5^. In this way, Kgroup can be securely propagated along the subgroup ring 

and finally received by all members. 

Figure 3.3. Key update at Leave Event 

We implement our P2P-HGKM protocol and the supporting ODMRP protocol in 

Java. As shown in Figure 3.4, ODMRP provides multicast and unicast routing for both 

group oriented applications and our P2P-HGKM protocol. P2P-HGKM provides reliable 

and efficient group key management service to applications. Below ODMRP is the MAC 

layer of ad-hoc networks. 
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Routing Laye 

Figure 3.4 Software layer 

We know each wireless host has a unique identifier to identify itself from other 

hosts, such as the MAC address of network device. We can use this unique identifier as 

the ID in our system. In the following discussion, we still use 1 to 22 to number nodes in 

our system instead of actual MAC address for the reason of simplicity. 

In the remaining sections, we will discuss the specification of our P2P-HGKM 

protocol, including the start-up phase, key update at Join Event and key update and Leave 

Event. 

3.2 Initialization of P2P-HGKM System 

At start-up, the P2P-HGKM system does not have a group key nor any subgroups. 

So the first thing the system needs to do is divide the group into subgroups, initialize the 
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group key and subgroup keys, then distribute these keys securely to all members. This 

phase has five steps: 

1) Ms, the member node with the largest ID, is picked as the start node by running the 

bully election algorithm among all member nodes [18]. 

Ms multicasts a BUILD_SUBGROUP_REQUEST. 

Ms => G: BUILD_SUBGROUP_REQUEST. 

2) Each member node Mj, receives the BlJILD_SUBGROUP_REQUEST, and sends 

back a reply REPLY_BUILD_SUBGROUP together with its public key (£,) to M,. 

V Mj, Mj € G, i jtj, Mj->MS: <REPLY_BUILD_SUBGROUP, Ej > 

3) Ms divides all member nodes into subgroups based on REPLY_BUILD_SUBGROUP 

messages received. Then Ms multicasts the node-list of each subgroup to the group. 

Mi => G: <SC>, for all valid c. 

4) By receiving the SUBGROUPJNFO messages from STEP 3, each member node 

stores the subgroup structures if it's in that subgroup. Then subgroup leaders are selected 

and they will initialize the subgroup keys and securely unicast the subgroup key to 

member of the subgroup. 

5) The start node - Ms, initializes the group key (Kgroup), encrypts Kgroup and propagates 

Kgroup along the subgroup ring to all group members, as shown in Figure 3.3. 
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Details of each step are presented in the following sub sections. 

3.2.1 Multicast the BUILD_REQUEST and Reply (Step 1 

and 2) 

Figure 3.5 Broadcast the BUILD_SUBGROUP_REQUEST 

1) 3Ms, Ms e G. M„ is selected as the start node. 

M„ the member node with the largest ID, is picked as the start node by running the bully 

election algorithm among all member nodes [18]. Ms will be responsible for multicasting 

BUILD_SUBGROUP_REQUEST (step 1), dividing multicast group G into subgroups 

(step 3), and initializing the group key (in step 5). 
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2) Ms G: BUILD_SUBGROUP_REQUEST 

Ms broadcasts BUILD_SUBGROUP_REQUEST. (Only messages along path 19->13-

>16->9->20->21 is shown in Figure 3.5 to make the figure more readable.). The request 

message is also used as the ODMRP multicast route discovering message to further 

reduce the traffic. 

3) \fMj,Mje G, s Mj->MS: {REPLY_BUILD_SUBGROUP, Es) 

As discussed in Chapter 2.1, by receiving the REQUEST message, each node will keep 

forwarding it to its neighbors. Each node also saves messages in a cache memory so that 

duplicate message will be discarded. Members of the multicast group (M7e G) will send 

back a REPLY_BUILD_SUBGROUP message, together with its public key (£,) to Ms. 

(as shown in Figure 3.5, M9 replies to M19) 

The REPLY_BUILD_SUBGROUP message goes backwards to the start node, similar to 

the way JOIN-REPLY message in ODMRP propagates. The REPLY message also brings 

back member nodes' IDs along the return path (in our example, the return path from M9 

to M19 is <M9, M16>). So REPLY message from M9 has two fields: public key of M9 -E9, 

and list of member nodes in the return path - <M9, M16>. We will see how Ms uses the 

information in REPLY messages to divide G into subgroups in 3.2.2. 
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3.2.2 Dividing Group into Subgroups (Step 3) 

Leader Node 

(1)-(10): Order of pre-
order traversal 

S , : . < M „ , Mv M3, Mj>, Leader Node: M ( s . M 8 

S,: <M 8, M,e, Mf. Leader Node : M^M^ 

S3: <MiT,.Mu. M10, MI2. M,s>, Leader Node -M17. M19 

Figure 3.6 Build subgroups 

With the REPLY messages in Step 1, Ms can divide G into subgroups. First, Ms 

inserts all member nodes in a tree structure rooted at Ms based on the return path in all 

REPLY messages. As shown in Figure 3.6, Mi9 is the root of the tree. Since the REPLY 

from M9 includes <M9, M16>, which means M9 comes after Mt6 in the return path, we will 

insert M9 as the child node of M!6, and M16 as child node of M!9 into the tree structure. 

Next, we will walk through the tree structure and divide all nodes into subgroups. 

We pre-define an average size of subgroup (M) based on the total number of members 

estimated in G. The value of M will affect the performance of the protocol. A large 

subgroup means more public key encryption and more unicast during key update, while a 

small subgroup means a high possibility of subgroup leader being the leaving node. We 

will have discussion further about this in Chapter 4. 
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The traversal of the tree is in pre order, taking every M node as a subgroup. The 

last node in each subgroup becomes the 2 n d leader as well as the 1st leader for the next 

subgroup (e.g. M8 is the 2 n d leader of Si and the 1st leader of S2). Also, the 1st of the first 

subgroup automatically becomes the 2 n d leader of the last subgroup (e.g. M19 is the 2 n d 

leader of S3). For example, in Figure 3.5, with M = 4, all nodes are divided into 3 

subgroups: 

Subgroup 1: < M]9, Mi, M3, M8>. M / 9 , and M8 are subgroup leaders. 

Subgroup 2: < Mg, Mn, M9, M]7>. M8, and M / 7 are subgroup leaders. 

Subgroup 3: < M]7, M!4, Mw, M]2, MI9>. M]7, and M]9 are subgroup leaders. 

As mentioned before, all subgroups form a ring structure with subgroup leaders 

as the joint nodes, as shown in Figure 3.2. 
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3.2.3 Initialize and Distribute the Subgroup Key (Step 4) 

1) Ms=> G: {<SC>} for all subgroups. 

After dividing G into subgroups, Ms multicasts how it made the division (the member list 

of each subgroup) to G. For example, in Figure 3.6, <5/> = <MI9, M3, M8> 

2) VMjE G, if Mj& Sc, Mj stores <5C>. 

By receiving the message from 1), M, stores the subgroup information <SC>, if M,€ Sc. 

3) Mi => Sc- {(KC)EP}, for V Mp € Sc, pA 

If Mi is the 1s t leader node of Sc, Mi will initialize Kc, encrypt Kc with the public key of 

subgroup members, combine all the encrypted Kc in one message and multicast it to Sc 

(Here we combine all encrypted keys into one message and use one multicast instead of 

multiple unicasts to save time and communication cost). 

4) Mp £ Sc, p*j, (((Kc)Ep)Dp) = Kc 

If Mp is a member of Sc, Mp decrypts (KC)EP with Dp and get Kc. 
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Figure 3.7 Initialize and distribute subgroup and group key 

For example, in Figure 3.7, M!9 initializes K} for Si, encrypts Ki with the public 

key of Mi, M2 and M8 and multicasts <(Ki)Eh (K,)E3, (Ki)E8> to St. When Mj receives 

this message, Mj decrypt (Ki)Ej with D/ and get the subgroup key K] = ((Ki)Ei) Dj. 

3.2.4 Initialize and Distribute the Group Key (Step 5) 

The last step of start-up phase is to initialize the group key (Kgmup) and distribute 

encrypted Kgroup along the subgroup ring. 

1) Ms initializes K. group 
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2) S h M s £ Si. M s S i : ( K g r o u p ) K i 

M s encrypts K g r o u p with 5, 's subgroup, key and multicast to 5,. 

3) When a leader node Mj (M,-e Si) receives ( K g r o u p ) K i , it decrypts ( K g r o u p ) K i with K t and 

gets K g r o u p , where K g r o u p = ((KgroUp)Ki)Ki. (This applies to all subgroup leaders.) 

4) Because Mj is the joint leader of another subgroup, 3St, MjG S^ and M y e 5„ M;=> 5*: 

(Kgroup)Kk 

Joint leader works as a bridge of two subgroups and propagates K g r o u p along the subgroup 

ring structure to the whole group G, as shown in Figure3.8. 

Figure 3.8 Distribute K g r o u p along the subgroup ring 
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Num of Unicast N 

Size of Unicast Msg Nx(l + [E] + Nx[ID]) 

Num of Multicast 3xT + 1 

Size of Multicast Msg 1 + T x ([K] + Mx[K] + 1 + Mx[E] + Mx[ID]) 

Round 7+4 

[E] - key length of public key, [£] = 1024 Bits = 128 Bytes 
[K] - key length of symmetric key (Ksubgroup and Kgroup), [K] = 128 Bits = 16 Bytes 
[ID] - length of MAC address, [ID] = 12 Bytes 
T is the total number of subgroups, T~\ N/M ] 

Table 3.1 Communication cost of start-up 

Public Encryption Symmetric Encryption Symmetric Decryption 

(M-l) x T T N 

Table 3.2 Computation cost of start-up 

n -

(* In our system, public key encryptions and public key decryptions always come in pairs. 

This means the number of public key encryptions is always equal to the number of public 

key decryptions in our system. So here, and in the rest of the thesis, we will not analysis 

the cost of public decryption.) 

The construction of subgroups requires a lot of communication/computation 

resources, as shown in Table 3.1 and 3.2. Fortunately, we only need to construct and 

initialize subgroups at the start-up of the system. We dynamically balance the size of 

subgroups (e.g. in Chapter 3.4.2) and rarely do re-initialization. 
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3.3 Key update at Join Event 

There are 11 steps of the key update process at Join Event: 

\)Mr^>G: {JOIN_REQUEST} 

Requesting member - Mr multicasts a JOIN_REQUEST message to G. 

2) For VMj eFG & Mj gG: Mj forwards the JOINJREQUEST 

(FG is the forwarding group for multicast routing. G is the multicast group. See 

Appendix for definition.) 

For VMj eG, MJ is subgroup leader : Mj—> M,: {JOIN_REPLY}, Mj does not forward 

JOIN_REQUEST 

By receiving the JOIN_REQUEST, members of FG will forward JOIN_REQUEST to 

neighbours. Subgroup leaders will reply JOESLREPLY message to the requesting node, 

but they do not forward JOIN_REQUEST. 

3) Mr-Mt: {JOIN_CONFrRM, Er) 

Assuming the first JOIN_REPLY is fromM,(M, is a subgroup leader), then Mr unicasts a 

JOIN_CONFIRM to Mti together with M r 's public key Er 

4) After M, receives the JOIN_COMFIRM, M, add Mr into subgroup Sc (Assume M, € Sc) 

5) M, updates Kc and Kgroup. 
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6) M t = > S c : { { K c ) K c _ o l d , < M r , E r >} 

M, encrypts updated K c with K C _ M , combines ( K c ) K c o i d with < M r E r > in one message, 

and multicasts it to S c . 

7) M j € S c , by receiving { ( K c ) K c o i d , <M, £,>}, adds < M r , E r > to 5C and updates K c by 

decrypting ( K c ) K c o l d with the K c _ o l d . 

8) M t - > M r : { ( K c ) E r , ( K g r o u p ) K c , < S C > } 

M , encrypts K c with E r and K g r o u p with K c . M , then combines ( K c ) E r , ( K g r o u p ) K c , and < 5C> 

in one message and unicasts it to Mr. 

9) M r , receives { ( K c ) E r , ( K g r o u p ) E r , < S C > } , then stores < S C > and decrypts < ( K c ) E r , 

( K g r o u p ) K c > to get K c and K g r o u p . 

10) Af, => G : ( K g r o u p ) K g r o u p o i d 

M , encrypts K g r o u p with K g r o u p _ 0 i d and multicasts this to the whole group. 

11) Mks G , k*r, by receiving ( K g r o u p ) K g r o u p o i d , updates K g r o u p by decrypting 

(Kgroup)Kgroup_old with K g r o u p _ 0 i d . 
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© 

Figure 3.9 K e y update at Join Event 

Event Public Encryption Symmetric Encryption Symmetric Decryption 

Join 1 
3 

M +N + 1 

Table 3.3 Computation cost at Join Event 

N u m of Unicast 2 

Size of Unicast M s g [E] + 2x[K]+Mx([E] + [ID]) 

N u m of Multicast 2 

Size of Multicast M s g 2x[K] + [E] + HD] 

Round 4 

Table 3.4 Communication cost at Join Event 
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3.4 Key Update at Leave Event 

There are two types of Leave Event - the leaving node is a non-leader node, or 

the leaving node is a leader node. For non-leader node Leave Event, the group key and 

subgroup key are updated and distributed by one of the subgroup leaders. For leader node 

leave, a new leader will be selected to replace the leaving leader, or if both subgroups are 

too small, they merge into a new subgroup. 

3.4.1 Non-Leader Node Leave 

Assume: 

1) Mi is the leaving node, and M t € Sc 

2) M a and M b are leaders of Sc, and a < b 

The key update at non-leader node leave event has 5 steps: 

\ ) M i - > M a . {LEAVE_REQUEST} 

Mi unicasts a LEAVE_REQUEST to the subgroup leader of Sc with a smaller ID (here it 

is M a ) , then Mi leaves the group. 

2) M a removes Mt from Sc. 

3) VMj e Sc, Mj * M a , M a encrypts K c with Ej, ( K c ) E j 

Ma^Sc: { { ( K c ) E j } , M i ) for VMjSSc,j^a 
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Ma updates Kc. For each member A/,- in Sc, Ma encrypts Kc with the public key £}, 

combines all the encrypted Kc together with M/s ID into one message {{Kc)Ej, Mi}, and 

multicasts to Sc. 

4) By receiving {{(Kc)Ej), Mi}, Mj(Mj s Sc,j*a) decrypts (Kc)Ej with D ; and get updated 

Kc = ((Kc)Ej)Dj. 

Mj also removes Af ; from its subgroup member list. 

5) Ma updates Kgroup and multicasts Kgroup along the subgroup ring structure; this is same 

as the KsroUn distribution we discussed in 3.3.2. 

Figure 3.10 Non-leader node leave 
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Event Public Encryption Symmetric Encryption Symmetric Decryption 

Non-Leader Leave M T N 

Table 3.5 Computation cost at Leave Event (non-leader node) 

Num of Unicast 1 

Size of Unicast Msg [ID] 

Num of Multicast T+ 1 

Size of Multicast Msg Tx[K] + Mx[ID] + Mx[K] 

Round T+2 

Table 3.6 Communication cost at Leave Event (non-leader Node) 

3.4.2 Leader Node Leave - Merge 

When the leaving node is a subgroup leader, we will either select a node as the 

new leader, or we will merge the two subgroups into a new subgroup if both subgroups 

have too few members. 

Assume the leaving subgroup leader is Mi, and we know Mx is the joint node of 

two subgroups - 3Sa and 3Sb, Mi € Sa and Mi € Sb, and a < b. 

If [Sa] <ax SUBGROUP_SIZE and [Sb] < 1/3 x SUBGROUP_SIZE, or [Sa] = 2 

or [Sb] = 2, (0< a < 1, a can be configurable. In our implementation, a = 1/3). We merge 

Sa and Sb to a new subgroup - Sa. Otherwise, we select a new joint leader (see the 

discussion in 3.4.3). 

The subgroup merging and key update has 4 steps: 

41 



1) Mi => Sa, Sb: {LEADERLEAVE, <a, [Sa]>, <b, [Sb]>} 

The leaving node Mt multicast a LEADER_LEAVE request to both Sa and Sb with ID and 

size of both subgroups. 

2) Mjjri, if Mj € Sa, Mj, remove Mt from member list of Sa. 

if Mj e Sb, Mj, remove Mi from member list of Sb. 

By receiving the Leader_Leave request, members of Sa and Sb remove Mi from their 

subgroup node list. 

3) 3MP, Mp € Sa, Mp is the leader of Sa and Mp *Mt. 

3Mq, Ma s Sb, Mq is the leader of Sb and Mq #M ;. 

Mp=>Sb: {<Sa>,p,a} 

Ma^>Sa: {<Sb>,q,b} 

Since each subgroup has two subgroup leaders, we can find the remaining leader, Mp (Mp 

*Mj) for subgroup Sa, and Ma for Sb. Mp multicasts <5fl>, ID of Mp and subgroup ID of Sa 

to subgroup Sb. When members of Sb receives this message, they add the member list of 

Sa to their subgroup, replaces Mt with Mp as the new leader and sets a as the new ID a for 

the subgroup. 

Ma also sends {<Sb>, q, b} to Sa. When members of Sa receive {<Sb>, q, b), they set Ma 

as the new leader, and adds <Sb> to their member list. 
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After this message exchange, all members from former Sa and Sb have {<Sa> U <Sp>} as 

their member list, and have <MP, Mq> as the pair of subgroup leaders and the same 

subgroup ID - a. So they are merged to a new subgroup - Sa. 

4) The leader node with smaller ID updates Ka and Kgroup. 

If Mp and Mq is the leader nodes of Sa and p < q, then Mp updates Ka and Kgroup and 

securely distributes <Ka, Kgroup>. This step is same as step 3, 4 and 5 in Non-Leader node 

leave 3.4.1. 
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Leaving Node 

(1) M , ^ > S , . S 2 . LEAVE_REQUEST 

(2) M9*>S3:{<S?,M„SJ 

Figure 3.11 Leader node leave and subgroup merge 

Event Public Encryption Symmetric Encryption Symmetric Decryption 

Non-Leader 
Leave 

M T N 

Table 3.7 Computation cost at Leave Event (merge) 
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Num of Unicast 0 

Size of Unicast Msg 0 

Num of Multicast T+4 

Size of Multicast Msg [ID] + IxaxM x([E]+[ID]) + 2xax Mx[K]+ Tx[K] 

Round T+3 

Table 3.8 Communication cost at Leave Event (merge) 

3.4.3 Leader Node Leave - Select a new subgroup leader 

If the leaving node is a leader and the two subgroups do not satisfy the merging 

condition as discussed in 3.4.2, we select a new leader from the subgroup with more 

members. This node will be the new joint leader of both subgroups and will update the 

subgroup and group keys. There are 10 steps to select a new leader and update keys: 

1) 2) is same as Step 1) and 2) in 3.4.2. 

3) Assume [Sa] > [Sb], then the new leader will be selected from Sa (if [Sb] > [Sa], then the 

new leader will be selected from Sb) 

In step 1, the leaving node will send a leaving request together with the ID and size of 

both subgroups Sa and Sb. Assume Mp is the leader of Sa and Ma is the leader of Sb. By 

receiving the leave request from step 1, if [Sa] > [Sb], then Mp will select the new leader, 

otherwise, if [Sa] < [Sb], then Ma will select the new leader. 

BMh, Mh e Sa, Mh*Mi and Mh *MP (Here we assume Mp is the leader of Sa and Mq is the 

leader of Sb), Mp randomly picks a node Mh from Sa as the new leader. 
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4) Mp => Sa, Sb : <h, Eh, a> 

Mp multicast to Sa and Sb the selected new leader Mh and its public key Eh-

5) VMj e Sa, by receiving the message from Step 4, Mj set Mh as the new leader. 

6) VMj e Sb, by receiving the message from Step 4,Mj adds < Mh, Eh> to Sb's subgroup 

member list and sets Mh as the new leader. 

7) Mq -> Mh: < Sb> {Mq <= Sb and Mq is leader node.) 

Mq - the leader node of Sb unicasts <Sb> to Mh,. 

8) By receiving messages from step 7, Mh creates and adds <Sb> as Sb's member list. 

9) Mh updates Ka and multicasts it to Sa. This step is the same as step 3 and 4 in Non-

Leader Node Leave. (3.4.1) 

10) Mh updates Kb and multicasts it to subgroup Sb. This step is the same as steps 3 and 4 

in Non-Leader Node Leave. (3.4.1) 

11) Mh updates Kgroup and multicasts encrypted Kgroup to G along the subgroup ring. This 

step is the same as step 5 in Non-Leader Node Leave (3.4.1). 
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I (1) «, 9=>S rS 2: {Mfp Eip 1} (Step 4) 

| (2)M,=>MM:{<Sj>><Stop7) 

! <3) M,">S,: {(Kg) £J (Step 9) 

j <4)A^9=>S3:((>g£)(Step10) 

Figure 3.12 Leaver node leave and a new leader is selected 

Event Public Encryption Symmetric Encryption Symmetric Decryption 

Leader Leave 
(Replicate) 

2xM T N 

Table 3.9 Computation cost at Leave Event (replicate a new leader) 
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Num of Unicast 1 

Size of Unicast Msg Mx([E] + [ID]) 

Num of Multicast T+4 

Size of Multicast Msg 2x[ID] + [E] + 2x Mx[K]+ Tx[K] 

Round T+4 

Table 3.10 Communication cost at Leave Event (replicate a new leader) 
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Chapter 4 

P2P-HGKM Performance and 

Evaluation 

In this chapter, we compare the performance of P2P-HGKM with some existing 

key establishment protocols, including GDH 2.0, AT-GDH and Tree-Based key 

management protocol. Theoretical analysis shows that our P2P-HGKM outperforms 

GDH 2.0 and AT-GDH in computation and communication cost. Performance of P2P-

HGKM is also close to optimum key management protocols like Tree-Based key 

management protocol, and our P2P-HGKM shows more advantage in ad-hoc networks. 

We also study the relationship between the two parameters (Af and N) and the 

computation/communication cost. We did extensive experiments and the results justify 

our prediction. 
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4.1 P2P-HGKM Security Analysis 

Our P2P-HGKM protocol is secure at passive attack such as eavesdropping. This 

is because the algorithms (AES and RSA) and the key length (128 bits symmetric key 

and 1024 bits public key) we choose are considerably strong encryption algorithms. As 

far as the secret keys (the symmetric key for AES and the private key for RSA) are kept 

confidential, it's very hard for eavesdroppers to deduce any key from the encrypted 

packets. 

Active attack (falsification of data) from non-member nodes can affect the 

performance of P2P-HGKM, but cannot break the security of our protocol (At this step, 

we assume the active attacks are from non-member nodes, and all member nodes can be 

trusted. We will discuss the case of malicious members nodes right after this). As shown 

in Figure 1.2, intermediate nodes are required to relay packets from source to destination 

in ad-hoc networks. If an intermediate node is malicious, it can modify the packets before 

it rebroadcast. The solution to man-in-the-middle attack is to have all messages signed by 

source nodes. In our protocol, Join and Leave Request message (see Chapter 3.3 and 3.4) 

are sent and signed by the requesters. All other messages are sent and signed by subgroup 

leaders. In our system, if all member nodes maintain a list of valid subgroup leaders, then 

any falsified message from non-member nodes or the leaving node (at Leave Event) will 

be detected and reported. 

Attack from member nodes is very hard to detect and prevent. If the system 

detects some member node becomes malicious, it can immediately expel the malicious 

member from the group and update all the keys hold by the leaving node. 
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4.2 P2P-HGKM Experiment Overview 

We have designed and constructed the P2P-HGKM protocol as well as the test 

bed for experiment using Java. ODMRP is also implemented as the supporting routing 

protocol. 

At startup of the system, 50 nodes are created and are assumed to be randomly 

scattered in a 1000m x 1000m area. Radio range of wireless signal is 250 m. Then we 

randomly select N (N < 50) nodes as the group members of (G). A start node - Ms is 

elected by running bully algorithm among all member nodes. This Ms is responsible for 

building up the subgroup structure and distributing group and subgroup keys, as 

discussed in Chapter 3.2. In the following discussion, we use q to represent the 

percentage of Leave Events out of all membership change events. For example, in our 

simulation, every test run has a total of 20 membership change events - 10 Join Events 

and 10 Leave Events, so the percentage of Leave Event q = 0.5. 

There are two parameters - M and N that can affect the computation and 

communication cost of our protocol. We desire to study the link between these 

parameters and the protocol performance. We do theoretical analysis and extensive 

experiments to prove our predictions (see section in 4.3.2 and 4.4.2). M is the average 

size of subgroup. In our experiments, we increase M from 6 to 16 at the step of 2 to see 

how M affects the performance. We record the number of public encryption/decryption 

and symmetric encryption/decryption as the computation cost. We also record the number 

and message size of unicast/multicast as the communication cost of key update. We 
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repeat each case 50 times and use the average of the results to plot graphs (see 4.3 and 4.4 

for the graphs.) 

N is the number of group member. We assume G is always divided into roughly 

N1/2 subgroups and each subgroup has roughly Nm members. In our experiments, N 

increases from 16 to 40 by 4 at each step. Again, we record the computation and 

communications cost, repeat and plot graphs using the average of the results. 

4.3 Computational Cost 

An approximate measure of the computation costs is the number of key 

encryptions and decryptions required by a join/leave request. We summarize the 

computation cost from Chapter 3 and tabulate it in Table 4.1. 

Public Key 
Encryption 

Symmetric Key 
Encryption 

Symmetric Key 
Decryption 

Join 1 3 M+N+l 

Non-Leader Leave M T N 

Leader Leave (Merge) M T N 

Leader Leave (Replicate) 2xM T N 

Table 4.1 A summary of computation cost 

4.3.1 Comparing with other protocols 
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P2P-HGKM GDH 2.0 AT-GDH Tree-Based 

Join 
1 public enc + 
1 public dec + 
3 symm enc + 

M +N+1 symm dec 

0(N2) exp. 0(NlogkN) 
exp. 

2 x (n-l) symm enc 
(h-l)+ Nxd/(d-l) symm dec Join 

Overall: 

0{N) symmetric 
decryption 

OCA'2) exp. 0(NlogkN) 
exp. 

O(A0 symmetric decryption 

Leave 
M public enc + 
M public dec + 

r NIM1 symm enc + 
N symm dec 

0(N2) exp. 0(NlogkN) 
exp. (d-l) x h symm enc + 

Nxdl (d-1) symm dec 
Leave 

Overall: 

0(N) symmetric 
decryption + 0(M) 
public encryption 0(N2) exp. 0(NlogkN) 

exp. 
0(d x h) symmetric 

encryption 
0(N) symmetric decryption 

enc - encryption ; dec - decryption ; exp - exponentiation 
h - height of the tree in Tree-Based protocol 
d - degree of the tree in Tree-Based protocol 
Table 4.2 Computation cost comparison. Comparing computation cost with other key 

establishment protocols 

We summarize the computation cost of P2P-HGKM, GDH 2.0, AT-GDH and the 

Tree-Based key management protocol in Table 4.2. From Table 4.2 we can see Diffie-

Hellman key agreement protocols, e.g. GDH2.0 or AT-GDH, requires 0(NxlogkN) or 

0(N2) exponential computation at each Join or Leave request. Our P2P-HGKM protocol 

outperforms GDH 2.0 and At-GDH with only 2 public encryption/decryption and O(A0 
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symmetric decryptions at Join Event; and 0{M) public encryption/decryption and O(A0 

symmetric decryptions at Leave Event. This is because our protocol limits public key 

encryption/decryption within one subgroup. 

Key management protocols, e.g. Tree-Based Key management protocol, have a 

better computation cost performance than our P2P-HGKM protocol, as shown in Table 

4.2. This is because Tree-Based protocol assumes that a reliable central key server is 

presented in the system. Our subgroup ring structure is not the optimal structure, but its 

performance is close to Tree-Based key management protocol. More importantly, our 

P2P-HGKM protocol works in a P2P fashion, thus avoiding the role of a single key 

server in our system. So our protocol is more applicable and reliable for ad-hoc networks 

than Tree-Based key management protocol. 

4.3.2 Performance 

Among all Leave Events, non-leader node leaving happens at the possibility of 

(M-l) / M and leader node leaving happens as the possibility of 1/ M. In 3.4.2, we merge 

two small subgroups into one subgroup to balance subgroups and improve overall 

performance. The merging only happens when the leaving node is a leader node and both 

subgroups have too few members. This is a rare case from the experience of experiments, 

especially when Join Event happens as often as Leave Event. Also, the computation and 

communication cost at the case of "Subgroup Merge" is very close to the case of "Select 

a New Leader". So, for simplicity, we combine the case of "Subgroup Merge" with the 

case of "Select a New Leader" when we count the computation and communication cost. 
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In this section and in 4.3.2, we will first predict how M and N can affect the 

performance of P2P-HGKM. Then we use experiment data to plot graphs and testify our 

prediction. 

1) Number of Public Encryption: 

1 X (l-q) + M X ((M-l)/M) X q + 2 X M X (1/M) X q 

1 +qxM 

\+qxNlr-

Number of Public Encryption 

M t T qxM 

N T TqxNia 

Q I I L 1 ! I 

6 8 10 12 14 16 
Members per Subgroup (if) 

a)M 
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16 20 24 28 32 36 40 
Members of Group (A1) 

b)N 

Figure 4.1 Experiment result: public key encryption/decryption 

2) Number of Symmetric Encryption: 

2x(l-q) + (N/M)xq 

3 X (l-q) + (NX q) / M 

3x(l-q) + q xNm 

Number of Symmetric Encryption 

M T I (Nxq)/M 

Nt Tq X Nm 

5 6 
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Figure 4.2 experiment result: symmetric key encryption 

3) Number of Symmetric Decryption: 
(M + N)x(l-q) + Nxq 
N+(l-q)+ (l-q)xM 
(\-q) + N+(\-q)xNm 
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Number of Symmetric Decryption 

M T t (\-q)xM 

Nt T N +(!-<?) xNm 
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I 
| S60 I 1 1 
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6 8 10 12 14 16 
Nerabers per Subgroup (M) 

b)N 
Figure 4.3 Experiment result: symmetric key decryption 
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4.4 Communication Cost 

Approximate measure of communication cost in our key managements includes: 

the number of unicast, the number of multicast, and total number of rounds required for a 

Join or Leave request. We summary and tabulate the result from Chapter 3 in Table 4.3. 

Join Non-Leader 
Leave 

Leader Node Leave 
(Merge) 

Leader Node 
Leave (Replicate) 

Num of 
Unicast 

2 / 0 1 

Size of 
Unicast 

Msg 

[E] + 2x[K] + 
Mx([E] + 

UD]) 

[ID] 0 Mx([E] + [ID]) 

Num of 
Multicast 

2 T + 1 T+4 T+4 

Size of 
Multicast 

Msg 

2x[K] + [E] + 
[ID] 

Tx[K] + 
Mx[ID] + 

Mx[K] 

[ID] + 2xaxM 
x([E]+[ID]) + 2xax 

Mx[K]+ Tx[K] 

2x[ID] + [E] + 2x 
Mx[K]+ Tx[K] 

Round 4 T+2 T+3 T + 4 

Table 4.3 Summary of communication cost 

4.4.1 Comparing with other protocols 
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P2P-HGKM GDH 2.0 AT-GDH Tree-Based 

Join 
2 Unicast 

2 Multicast 
(JV-1) Unicast + 

1 Multicast 
2x N Unicast h multicast + 

1 unicast Join 

4 Round N Round 2k x (logkN) Round h Round 

Leave 
2 Unicast 

4+ T Multicast 
(N-l) Unicast 
1 Multicast 

2N Unicast O I ) x O I ) 
multicast Leave 

4 + T Round N Round 2kx(logkN) Round h Round 

Table 4.4 Communication cost comparison Comparing communication cost with other 
key establishment protocols 

As we can see from Table 4.4, our P2P-HGKM protocol outperforms GDH 2.0 

and AT-GDH in the number of round and the number of messages. P2P-HGKM is not as 

good as Tree-Based key management protocol, but the performance is close and P2P-

HGKM is more applicable and reliable in ad-hoc networks, as discussed before. 

4.4.2 Performance 

Like in 4.2.2, we will study the effect of parameter Af, q and N on 

communication cost. ' -' 

1) Number of Unicast: 
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2x(l-q) + qX(M-\)IM + (UM) xq 

2-q 

Number of Unicast 

M T Unchanged <-> 

N T Unchanged <-> 

f 

6 8 10 12 H 16 
Members per Subgroup (tf) 

a) Af 

35 

30 

20 

15 

to 
16 20 24 28 32 36 40 

Members of Group (A) 

b)W 

Figure 4.4 Experiment result: number of unicast 
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2) Size of Unicast 

([E]+2[K]+Mx[E]+Mx[ID])x(\-q) + ((M-1)/M)x([ID]) Xq+ Mx([E]+[lD])x(\IM) X 

([E]+2[K]x(l-q) + 2x[ID]xq) + ([E]+[lD])x(\-q)xM- [ID]xq IM 

([E]+2[K]x(\-q) + 2x[ID]xq) + ([E]+[ID])x(l-q)xN1/2 - [ID]xq IN' jl/2 

Message Size of Multicast 

M t T([E]+[ID])x(l-q)xM-[ID]xq/M 

N T t ([E]+[ID])x(\-q)xNm - [ID]xq 1 Nm 

30000 n i MIM ..in 

25000 

S 20000 
in 

« 15000 

3 10000 f 
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0 
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1G 
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Figure 4.5 Experiment result: message size of unicast 

3) Number of Multicast 

2x(l-<?)+ (N/M)x((M-l)/M)xq + (4+N/M)x(l/M)xq 

(2-q) + qX(N+3)/M 

(2-q) + qX(Nm + ?>INm) 

Number of Multicast 

M T iqX{N+3)IM 

N T T qx{ Nm + 3I Nm) when N>3 

63 



3 8 10 12 14 16 
Members per Subgroup (Jf) 

120 MM- jmmmmmm 

100 — — 1 — 

| 8 0 . ^Jl_ 
<- 6 0 -

I 
s . 1 0 J 

X 

16 20 24 28 32 36 
Member* of Group (AT) 

b)N 

Figure 4.6 Experiment result: number of multicast 

4) Size of Multicast: 

(2[K]+[E]+[ID])x(l-q) + (N/M x[K]+ Mx[ID] + Mx[K])x((M -1)/ M)xq + (2x[ID)+ [E] 

+ 2xMx[K] + N/M x [K]) x (1/M) x q 

= (2-q)x[K]+[E]x(l-q)+[ID]x(l-2xq) + ([ID]+[K])XqxM + qx(Nx[K]+2x[ID]+[E])/M 
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(2-q)x[K]+[E]x(l-q)+[ID]x(l-2xq) + ([lD}+[K])xqxN1" + qx(2x[ID]+[E]) IN' 

Message Size of Multicast 

M T f ([ID]+[K])xqxM + qx(Nx[K]+2x[ID]+[E])/M 
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Figure 4.7 Experiment result: message size of multicast 
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5) Round: 

4x(l-q) + (N/M + 2)x((M-\)IM)Xq + (N/M+4)x(l/M)Xq 

(4 - 2xq) + qX(N+2) IM 

(4 - 2xq) + qx(Nm + 2 / Nm) 

Round 

M f iqX(N+2)IM 

Nt tqx{ Nm + 2I Nm) when N > 2 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

To support dynamic secure group communication in ad-hoc networks, a group 

key KgroUp shared by all members of the group needs to be constantly updated whenever 

there is a membership change of the group, e.g. when a current member leaves or a new 

member joins the group. Many group key establishment protocols have been proposed 

and a few were proposed for ad-hoc networks, but they all have major shortcomings 

when applied to ad-hoc network environments. Wireless hosts in ad-hoc networks are 

mobile, and are usually lightweight, battery-powered devices. And using multicast in 

wireless network has advantage over multiple unicast - it takes less time and less resource. 

In this thesis, we proposed an efficient P2P hierarchical group key management 

protocol for ad-hoc networks. We introduced the concept of subgroups, each maintaining 
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its subgroup key and links with other subgroups in a simple ring structure. By dividing 

group G into subgroups, we limit unicast and public key encryption within one subgroup, 

thus greatly reducing the cost of group key update at node Leave Events. The 

distinguishing feature of our scheme lies in the fact that our scheme works in P2P, rather 

than a single key server. 

We implement our protocol and do extensive theoretical analysis and 

experiments. Both theoretical analysis and experiment show that our protocol provides 

efficient and reliable group key management services, and outperforms many existing 

group key establishment protocol in ad-hoc network. 

5.2 Future Work 

As discussed in Chapter 3, subgroups are linked in a ring structure, and every 

joint leader connects two subgroups. Using a more complex structure of subgroups could 

be a viable future work. As shown in Figure 5.1, all the subgroups can be linked in a 

more complex structure, e.g. a cubic, and a subgroup leader can be a joint node of more 

than two subgroups. Updated Kgroup can be sent in more direction at the same time. Such 

complex structure would offer advantages in efficiency and scalability, but of course, 

managing such structures would be more complex. 
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o Leader Node of 3 
Subgroups 

S 3 

Figure 5.1 Complex structure of subgroups 

Our protocol can merge two subgroups into a new subgroup when there are too 

few nodes in both subgroups, as discussed in 3.4.2. This is a way to dynamically balance 

subgroups without re-initialization. We know a balanced subgroup ring has a better 

performance at group key updates than an unbalanced subgroup ring. As future work, we 

could develop a way to automatically find those "fat" subgroups (subgroups with too 

many members) and split them into smaller subgroups. 

Our protocol handles key update at single node join or leave. It can be easily 

extended to multiple nodes cases by running the protocol multiple times. A more 

complex but efficient scheme for group key update at simultaneous multiple-node 

join/leave events can be explored in future research. 
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Appendix 

Notations used in P2P-HGKM protocol: 

Kgroup '• the group key shared by all members of the multicast group 

K g r o u p _ o i d • the group key before updating 

Ki: the subgroup key for subgroup i, shared by all members of the subgroup 

Koid : the subgroup key of 5, before updating 

Mi: node with ID i 

Et: public key of node i (Mi) 

Dt: provate key of node i (Ml) 

Si: Subgroup S,, i is ID of the subgroup. 

<5,> : node list of subgroup 5, 

Mi—>Mjr :{Rekey Msg} : M, unicast {Rekey Msg} to M, 

Mi => Sc:{Rekey Msg} : M, multicast {Rekey Msg} to subgroup S c 

M i = > G : {Rekey Msg} : M, multicast {Rekey Msg} to multicast group G 
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FG : Forwarding Group, only members of the forwarding group will forward multicast 

packages. 

N: The total number of node in the multicast group G 

M : The average number of node in each subgroup 

T: T is the total number of subgroups, T ~ [ NIM1 
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