
Light-Driven Global Illumination with a Wavelet 
Representation of Light Transport 

by 

Robert R. Lewis 

B. S. Physics, Haxvey Mudd College, 1974 

M. A. Astronomy, University of California at Berkeley, 1979 

M. S. Computer Science and Engineering, Oregon Graduate Institute, 1989 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

Doc to r of Ph i losophy 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Computer Science) 
we accept this thesis as conforming 

to the required standard 

The University of British Columbia 
February 1998 

© Robert R. Lewis, 1998 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department 

The University of British Columbia 
Vancouver, Canada 

Date 6, 

DE-6 (2/88) 



Abstract 

This thesis considers the problem of global illumination: the modelling of light as 

it travels through a scene interacting with the objects contained within the scene. 

Starting with a description of the problem and a discussion of previous work, we 

explore a new approach called light-driven global illumination that offers several 

advantages over its predecessors: a lower asymptotic complexity, a wider range 

of representable surface interaction phenomena, and an absence of the need for 

"meshing" - object surface subdivision needed primarily to represent shadows. 

Light-driven global illumination is intermediate between local and global 

illumination. Representing light with wavelet basis functions, we are able to treat 

both the interaction between two surfaces and the interaction of a surface with a 

radiation field in a source-to-destination model that applies to whole surfaces, not 

just small elements. 

We have found this "wavelet radiative transfer" to be a valid way to generate 

and store complex global light field data as four-dimensional textures for incorpora­

tion in local illumination solutions. Wavelets can considerably reduce the otherwise 

substantial storage and reconstruction problems associated with doing this. We 

include several examples of this. 

We also discuss plausible illumination models, which are required to make 

ii 



light-driven global illumination work theoretically. Like wavelet radiative transfer, 

these models have application in other areas of rendering besides global illumination. 

Finally, we develop the theory behind light-driven global illumination and 

apply it successfully to some simple examples. While we find the algorithm to be 

quite slow compared to other well-known rendering algorithms, we analyze what is 

needed to make it competitive. 

In conclusion, we find that representing light with wavelets has a set of 

advantages that are independent of the comparative inefficiency of the light-driven 

algorithm. . . 

111 



Contents 

Abstract ii 

Contents iv 

List of Tables xi 

List of Figures xii 

Acknowledgements xvi 

Dedication xvii 

1 Introduction 1 

1.1 Conventions . . . . . 2 

2 Illumination 7 

.2.1 What is Illumination? 7 

2.2 Relation to Computer Graphics 7 

2.3 Local and Global Illumination 8 

2.4 Radiative Transport Theory 10 

2.4.1 Radiance and the Transport Operator T 10 

iv 



2.4.2 The Blocking Operator B • 12 

2.4.3 Reflection, Transmission, and the Surface Interaction Opera­

tor S 13 

2.5 Renderers 16 

2.5.1 Luminaire Models 17 

2.5.1.1 Point Luminaire 17 

2.5.1.2 Directional Luminaire 18 

2.5.1.3 Other Luminaires . 18 

2.5.1.4 What Constitutes a Luminaire? . . 19 

2.5.2 Propagation Models : : 19 

2.5.3 Object Models 21 

2.5.3.1 Polygons 21 

2.5.3.2 Parametric Surfaces 21 

2.5.3.3 Implicit Surfaces 22 

2.5.3.4 Constructive Solid Geometry 23 

2.5.4 Illumination Models 23 

2.5.4.1 Phong Illumination Models 23 

2.5.4.2 Torrance-Sparrow Illumination Models 27 

2.5.4.3 Neumann-Neumann Illumination Models 28 

2.5.4.4 Minnaert Illumination Models 31 

2.5.5 Surface Models . . 32 

2.5.6 Shading Models . 33 

2.5.7; Rendering Techniques 34 

2.5.7.1 The Rendering Equation 34 

2.5.7.2 Depth-Buffering 36 

v 



2.5.7.3 Raytracing 36 

2.5.7.4 Radiosity : 37 

2.5.7.5 Photon. Maps 39 

2.5.7.6 Comparison and Summary 39 

3 The Lucifer Algorithm 41 

3.1 Isolation 41 

3.2 Power Computation for Isolated Volumes 42 

3.3 Solution Order and Convergence 43 

3.4 Spatial Partitioning 44 

3.5 The Lucifer Algorithm 44 

3.6 Complexity 47 

3.7 Light Through a Window 51 

3.8 Radiance Representation 54 

3.8.1 Box Discretization . 54 

3.8.2 Wavelets 55 

4 Making Illumination Models More Physically Plausible 58 

4.1 Energy Conservation 59 

4.1.1 Making Phong Illumination Models Conserve Energy 62 

4.1.2 Do Torrance-Sparrow Illumination Models Conserve Energy? 64 

4.1.3 Making Neumann-Neumann and Minnaert 

Illumination Models Conserve Energy 67 

4.2 Making Illumination Models Reciprocal 67 

4.2.1 Are Phong Illumination Models Reciprocal? 67 

4.2.2 Are Torrance-Sparrow Illumination Models Reciprocal? . . . 68 

vi 



4.2.3 Are Separable Illumination Models Reciprocal? 68 

4.3 An Energy-Conserving, Reciprocal Illumination Model 69 

4.4 Summary of Plausibility Results . . 71 

5 Wavelet Radiative Transport and Surface Interaction 73 

5.1 Radiance in Nusselt Coordinates 74 

5.2 Radiance Representation : 76 

5.3 Multidimensional Wavelets 76 

5.4 Irradiance . 79 

5.5 Power Flux : • • 79 

5.6 Transport 80 

5.7 Surface Interaction •'. 81 

6 Wavelet Radiative Transfer Implementation and Practicum 85 

6.1 Naming Conventions 86 

6.2 Indexing Wavelets . 87 

6.3 The Waveletlndex Class 88 

6.4 Storing Wavelet Coefficients 89 

6.4.1 Flashing Coefficients 89 

6.4.2 Multichannel Grouping 89 

6.4.3 Hashing Nodes Instead of Coefficients . 90 

6.5 The WaveletCoefficientTree Class 91 

6.6 Representing Transport Geometry 92 

6.6.1 Rectilinear 93 

6.6.2 Perspective •". 94 

6.6.3 Bilinear 94 

vii 



6.7 The TransportGeometry Class . 96 

6.8 Choice of Wavelet 96 

6.9 Problems with Transport Coefficient Computation 97 

6.9.1 Some Source Points Do Not Project Into Destination Space . 97 

6.9.2 The Projected Hypercube Has Curved Sides 98 

6.10 Integration Techniques 98 

6.10.1 Reducing the Dimensionality 99 

6.10.2 Numerical Quadrature 100 

6.10.3 Comparison 101 

6.11 Functional Decomposition of WRT . . . . 104 

6.11:1 tg.oracleQ . . • 104 

6.11.2 tcJntegrateQ .' . 105 

6.11.3 wn_pull() and wnjpushQ . . 105 

6.11.4 tcevalQ 106 

6.11.5 tc-propagate() 106 

6.11.6 wet-transport() .' 107 

6.12 Example of Transport 108 

6.13 Example of Radiance Compression 110 

Lucifer Implementation and Practicum 114 

7.1 The Cell Class 114 

7.2 Bidirectional Reflectance and Transmittance Distribution Functions 116 

7.3 Implementation Choices 116 

7.3.1 Integration Scheme 117 

7.3.2 Storing Transport Coefficients 117 

7.3.3 Luminaire Model '. 118 

viii 



7.3.4 Object Model 119 

7.3.5 Illumination Model 119 

7.3.6 Shading Model 119 

7.3.7 Surface Model . '. . 1 2 0 

7.4 Surface Interaction with Haar Wavelets • • • 120 

7.5 Functional Decomposition of Lucifer 122 

7.5.1 wct-transportConfined() 122 

7.5.2 wct_transportRestricted() 123 

7.5.3 wLblocking() 123 

7.5.4 cLcfcTransblockQ 124 

7.5.5 wctJransportWallToObjQ . 126 

7.5.6 wct-addInteraction() . . . . . . 126 

7.5.7 wctJransportObjToWall() - 127 

7.5.8 cLtransport() 128 

7.5.9 cLtransblockQ 128 

7.5.10 cLbalanceQ 129 

7.6 Results . .' 129 

7.7 Analysis . .- . 134 

8 Conclusions and Future Work 137 

8.1 Fitting Plausible Shaders to Physical Data 139 

8.2 Fitting Plausible Shaders to Physical Data 139 

8.3 Curved Surfaces . 139 

8.4 Importance 139 

8.5 Unifying Illumination Modelling and Surface Modelling 140 

ix 



Appendix A One-Dimensional Wavelet Properties 141 

A . l Scaling Functions and Wavelets 141 

A.2 Multiresolution Refinement Equations 143 

A.3 Orthogonal Wavelets 144 

A.4 Biorthogonal Wavelets • . . 144 

A.5 Wavelet Projections and Approximation 145 

A.6 The Fast Wavelet Transform 145 

A;7 Wavelet Compression . . 146 

Appendix B Pseudocode for Haar Surface Interaction 148 

Bibliography 155 

Index 163 

x 



List of Tables 

1.1 Table of Commonly-Used Symbols. 3 

1.2 Light Measurement Terminology 6 

2.1 Effects Available with Established Rendering Techniques 40 

4.1 Summary of Plausibility Results 70 

6.1 Major WRT Classes and Their Abbreviations 86 

6.2 Number of Bits Required to Store a Nonstandard Multiresolution 

Index as a Function of the Maximum Resolution Level . . . . . . . . . 87 

• 7.1 Lucifer Test Cases 131 

xi 



List of Figures 

2.1 A Typ ica l G loba l I l luminat ion Prob lem 9 

2.2 Surface Geometry for Reflection and Transmission 14 

2.3 I l luminat ion M o d e l Test Conf igurat ion 25 

2.4 Sphere Shaded wi th a Phong I l luminat ion M o d e l 26 

2.5 Sphere Shaded wi th Neumann-Neumann and Minnaer t I l luminat ion 

Models 30 

2.6 Compar ison of a Square Shaded wi th a Neumann-Neumann I l lumi­

nation M o d e l and wi th a Phong Shader Us ing B l inn 's Ff 30 

3.1 A n App l ica t ion of Isolation 42 

3.2 Octree Cel l Nomenclature . 45 

3.3 The Lucifer A lgor i thm 46 

3.4 " B a l l s " M o d e l 51 

3.5 A r ray of F i xed Direct ion V iews 52 

3.6 A r ray of F i xed Posi t ion Views 53 

3.7 Box Discret izat ion Examp le 55 

3.8 Or ig ina l Image and Its Reconstruct ion from 4-Dirnensional Wavelet 

Coefficients 56 

xii 



4.1 Specular Integrals HS(S) for Phong 's F f and B l inn 's F? 61 

4.2 Sphere Shaded wi th an Energy-Conserv ing Phong I l luminat ion M o d e l 61 ; 

4.3 Direct ional-Hemispher ical Reflectances (Phong, B l i nn , Torrance-Sparrow) 65 

4.4 Direct ional-Hemispher ical Reflectances (Neumann-Neumann, Minnaer t ) 66 

4.5 Direct ional-Hemispher ical Reflectance (Reciprocal Phong) 70 

4.6 Sphere Shaded wi th a Reciprocal Phong I l luminat ion M o d e l 71 • 

5.1 Nusselt Coordinates . 74 

6.1 The Waveletlndex t y p e d e f 88 

6.2 The WaveletCoefficientTree t y p e d e f 91 

6.3 Coord inate Systems 92 

6.4 The TransportGeometry t y p e d e f 95 

6.5 Relat ive Eucl idean Distance vs. T ime for Different Integration Tech­

niques and Numbers of Samples 101 

6.6 Relat ive M a x i m u m Depar ture vs. T ime for Different Integration 

Techniques and Numbers of Samples 102 

6.7 Simplif ied Funct ional Decomposi t ion for Wavelet Radia t ive Transfer 104 

6.8 tcjpropagate() Pseudocode 106 

6.9 wet-transport() Pseudocode 108 

6.10 Geometry Used for Examp le of Transport 109 

6.11 A Stained Glass W i n d o w 110 

6.12 Four-Dimensional Resul ts of Wavelet Radiat ive Transport I l l 

6.13 Detai led V iew of the Br ightest Par t of F igure 6.12 112 

6.14 Examp le of Wavelet Transpor t 112 

6.15 Effect of Compressing the Wavelet Radiance Dis t r ibu t ion 113 

xi i i 



7.1 The Ce/Z typedef 115 

7.2 Simplified Functional Decomposition for Lucifer 122 

7.3 Unblocked, Partially Blocked, and Completely Blocked Propagation 123 

7.4 cLcfcTransblock() Pseudocode 125 

7.5 wctJransportWallToObj() Pseudocode 126 

7.6 wctJransportObjToWall() Pseudocode . . . 127 

7.7 cLtransport() Pseudocode 127 

7.8 cLtransblock() Pseudocode 128 

7.9 cLbalance() Pseudocode 129 

7.10 Configuration for Lucifer Example 130 

7.11 Lucifer Sequence 132 

7.12 Lucifer Example 133 

7.13 Lucifer C P U Time vs. Z^'x • • 134 

7.14 Lucifer Peak Memory Usage vs. Z""x 135 

A . l Haar Wavelet and Smoothing Functions 142 

A.2 Daubechies-4 Wavelet and Smoothing Functions 143 

A.3 Linear Spline Wavelet and Smoothing Functions 143 

A. 4 The Fast Wavelet Transform 146 

B. l Pseudocode for Surface Interaction I: top level 149 

B.2 Pseudocode for Surface Interaction II: Delta_ks 149 

B;3 Pseudocode for Surface Interaction III: DeltaJs 150 

B.4 Pseudocode for Surface Interaction IV: Delta_kr 151 

B.5 Pseudocode for Surface Interaction V: DeltaJr 152 

B.6 Pseudocode for Surface Interaction VI: Delta_x 153 

xiv 



B.7 Pseudocode for Surface Interaction V I I : De l ta .y 154 

xv 



Acknowledgements 

The author is grateful to John Buchanan, Pat Hanrahan, Paul Lalonde, Pierre 

Poulin, Leena-Maija Reissell, and, of course, his supervisor, Alain Fournier, for 

encouragment and numerous discussions on this thesis and related subjects. 

ROBERT R. LEWIS 

The University of British Columbia 

February 1998 

xvi 



For V i c to r i a , 

the patience, the long hours, and, of course, the love. 

A n d for A l a i n , 

EDGAR BERGEN: Mor t imer , I can' t understand 

how one person can possibly be so stupid! 

MORTIMER SNERD: Wel l , yuh see M r . Bergen, 

I got this fella helpin ' me... 

xv i i 



Chapter 1 

Introduction 

Realistic images are images which are indistinguishable from images captured from 

the physical world. The creation of such images is a fundamental goal in computer 

graphics. Research in the modelling of shape, of properties of surfaces, and of the 

interaction of light with matter is directed towards this goal, as evidenced in major 

texts on the subject such as Glassner [24], Foley, et al. [18], and Watt [80]. 

For the past decade, some of the most realistic images in computer graphics 

have been produced by global illumination techniques. These techniques are limited, 

however, in the range of lighting and surface characteristics that they can represent. 

This thesis presents a new technique in realistic image synthesis called "light-

driven global illumination" that allows a much wider range of characteristics to be 

modelled. After this introduction, we will examine the basics of local and global 

illumination in Chapter 2. Chapter 3 will present the new global illumination al­

gorithm itself. Chapter 4 will present an analysis of the "plausibility" of current 

illumination models. (As we will see, energy-conserving illumination models, which 

are a subset of physically plausible illumination models, are a theoretical prereq-

1 



uisite for our technique.) Chapter 5 explains the approach we use to perform the 

local solutions required by the global solution, a formulation of radiative transfer 

and surface interaction that is based on wavelet techniques. Chapters 6 and 7 de­

scribes implementations of ideas from the preceding chapters. Chapter 8 describes 

our conclusions. 

1.1 Conventions 

Table 1.1 lists symbols that will be commonly used throughout this thesis. Equations 

taken from other sources will be modified to use these symbols. 

2 



Table 1.1: Table of Commonly-Used Symbols. The "*" is a 

wildcard matching character. 

symbol definition 

angle between N and H 

B blocked radiative transport operator 

scaling constants for various illumination models 

specular "half-angle" 

dA element of surface area 

du>i sin 9id8id<f>i, an element of incident solid angle 

dur sin 9rddrd(f>r, an element of reflected solid angle 

£>* facet slope distribution functions 

E irradiance 

EN normal irradiance 

F Fresnel factor 

fr bidirectional reflectance distribution function (BRDF) 

P* 
x s specular shading functions 

<t>i incident azimuthal angle 

4>r reflected azimuthal angle 

®L angle between incident and viewing directions 

G global illumination operator 

G geometrical attenuation factor 

H bisector of source and viewing directions 

1 identity operator 

continued on next page 

3 



Table 1.1: Table of Commonly-Used Symbols. The "*" is a 

wildcard matching character. 

continued from previous page 

symbol definition 

ambient reflectance coefficient 

kd diffuse reflectance coefficient 

ks specular reflectance coefficient 

h* directional-hemispherical reflectances 

ka fraction of total energy reflected specularly 

La 
ambient radiance 

Lt incident radiance 

Lr reflected radiance 

Lt 
transmitted radiance 

M exitance 

m RMS slope of the surface 

N the surface normal 

< specular exponents 

the hemisphere surrounding N 

the hemisphere surrounding —N 

reflected incident direction 

S surface interaction operator 

s incident direction 

T radiative transport operator 

continued on next page 

4 



Table 1.1: Table of Commonly-Used Symbols. The "*" is a 

wildcard matching character. 

continued from previous page 

symbol definition 

Oi incident polar angle 

Or reflected polar angle 

transmitted polar angle 

V direction of viewer 

5 



Physics Radiometry Radiometric Units (SI) 

flux 
angular flux density 
incident flux density 
emergent flux density 

radiant energy 
radiant power 
radiance 
irradiance 
radiosity (or exitance) 
radiant intensity 

joules [ J = kgm2s~2 ] 
watts [ W = Js'1 ] 
[ Wm^sr'1 ] 
[ Wm~2 ] 
[ Wm'2 ] 
[ Wsr~2 ] 

Table 1.2: Light Measurement Terminology 

We have attempted to be compatible with the ANSI/IES standard [36] wher­

ever possible. Table 1.2, taken from Cohen and Wallace [14] with minor alterations, 

lists the equivalent terminology in the physics and radiometry (the science of the 

physical measurement of electromagnetic energy) communities of the quantities we 

will be discussing. 

We will not be considering photometry (the psychophysical measurement of 

the visual sensation produced by the electromagnetic spectrum), as determining 

what viewers actually see when looking at a scene. This may be treated as an or­

thogonal postprocessing step after an accurate computation of the light that reaches 

them. The latter is our goal. 

6 



Chapter 2 

Illumination 

This chapter will describe the theory of illumination that underlies rendering and 

then goes on to an overview of previous work in global illumination in computer 

graphics. 

2.1 What is Illumination? 

The study of illumination is the study of light and how it interacts with matter to 

produce visible scenes. Its principles are derived from those of physics. As we will 

see in subsequent chapters, the equations describing illumination are relatively easy 

to write down, but hard to solve in non-trivial cases. 

2.2 Relation to Computer Graphics 

Computer graphics is the use of computers to produce images. Frequently, it is 

desirable that those images look realistic. "Realistic" in our context means that 

viewers get the impression that what they are seeing when they look at a computer-

7 



generated (i.e., rendered) art i fact (photograph, video screen, etc.) is an image of a 

scene that exists in the physical world outside the computer. 

It does not mean that they receive the same st imulus that they would in 

a physical sett ing. Af ter a l l , it is usually quite obvious when one is looking at a 

photograph or a video image. W h a t we want is for the art i fact to be indist inguishable 

f rom a photograph or video image of a scene in the physical wor ld: to be realistic. 

It is therefore product ive to study i l luminat ion for this purpose. 

2.3 Local and Global Illumination 

There are two broad categories of problems that arise when at tempt ing to solve for 

i l luminat ion: local and global . 

Loca l i l luminat ion problems are confined to smal l (often infinitesimal) areas 

or volumes. They usually involve a single light source (which we wi l l refer to as a 

luminaire), a surface or volume element, and a viewing direct ion. The basic question 

of local i l luminat ion is: How does the element interact wi th the incident light to 

produce the light leaving the element in the viewing direction? 

G loba l i l luminat ion describes how light is distr ibuted in a scene: a collection 

of objects, including luminaires, immersed in a given medium. F igure 2.1 shows 

a typical global i l luminat ion problem. G loba l i l luminat ion solutions must consider 

mult iple reflections. Par t of that solution may invoke local i l luminat ion solutions. 

Fournier [22] describes their interrelation further. 

The goal of a global i l luminat ion scheme may vary wi th the needs of the user. 

In order of increasing scope, global i l luminat ion problems may require solution at... 

• a small set of points. For example, the user may only need to know if there 

8 



directional light source 

Figure 2.1: A Typical Global Illumination Problem 

is sufficient light for people seated in a library to read by. (These sorts of 

problems are more often found in illumination engineering than in computer 

graphics.) 

all visible surfaces. Given a scene with non-participating media and a viewer 

at a fixed location, compute the illumination of every surface that the viewer 

sees. (This is the "viewer dependent" problem shown in Figure 2.1.) 

all surfaces. Like the previous class, but producing a solution that represents 

the illumination on every surface, which, for example, allows the user to do 

a "walkthrough" as a postprocessing step. (This is the "viewer independent" 

problem.) 

all points. In the presence of participating media, it is in general necessary 

to compute illumination not just at surfaces, but throughout the volume of a 

scene. 

9 



2.4 Radiative Transport Theory 

This section will present the physical basis underlying global illumination as mod­

elled by computer graphics. It will start with a discussion of radiance and how it 

relates to other physical quantities, 

2.4.1 Radiance and the Transport Operator T 

Let us first discuss some of the basics of how light is represented. The fundamental 

quantity is radiance, which is defined in the ANSI/IES standard [36] to be the 

amount of power passing in a given direction though a given surface per unit area 

(perpendicular to the direction of travel) per unit solid angle. Radiance at a point 

P in a direction S is usually represented by a function L(P, S). 

We note, as the standard does, a distinction between "radiance" and "spec­

tral radiance". Spectral radiance adds additional units of inverse wavelength to 

radiance to allow for a distribution of radiance over wavelength. 

This thesis (like most of the rendering literature) takes radiance to be mo­

nochromatic and assumes one can construct a polychromatic image by combining 

"channels" of independently computed monochromatic images. We assume further 

that these channels are "independent": that they do not interact with each other, 

as would be the case in the presence of phenomena like fluorescence. Also like most 

of the literature, we ignore polarization and assume time invariance. 

One very useful property of radiance, or "scene radiance" as it is called, is its 

proportionality to "image irradiance", the quantity detected by a camera viewing a 

scene. This relationship is derived in Chapter 10 of Horn [34]. 

Radiance's most useful property for rendering, however, is its invariance: 

In a non-participating medium and in the absence of diffraction phenomena (both 

10 



of which we assume here), the radiance given off at a point P 0 on a surface in a 

direction S is constant until reaching another surface1. 

We can express this as the action of a radiative2 transport operator T acting 

on a source radiance Ls to produce a destination radiance L&: 

^(P,S) = T £ S = L S (P 0 (P,S) ,S) (2.1) 

Since we also assume that the radiation travels in a straight line3, 

P = P 0 + St (2.2) 

for some scalar t > 0. This principle underlies raytracing. 

Technically, we should allow for the light travel time from source to des­

tination, but our assumption of time invariance makes this unnecessary. We can 

therefore treat light travel as instantaneous. 

It is evident from Equation (2.1) that for any scaling factor a and radiance 

distribution L, 

TaL = oTL. (2.3) 

T is also linear in the following sense: given two sources A and B with radiances 

LSA and LSB and LDA = TLSA and Lds = TLSB, then the resulting radiance Ld is 

Ld(P, S) = T {LsA + LsB) = TLsA + TLsB = LdA + LdB (2.4) 

if, from the point of view of P, neither A nor B obstructs the other. 

'This is derived, for instance, in Siegel and Howell [68]. 
2For brevity, we may drop the "radiative" throughout this thesis, since we are only concerned 

with radiative transport, as opposed to conductive, convective, or any other form of energy trans­
port. 

3 Note that we are not ruling out refraction, which takes place at a surface, not during propaga­
tion. 

11 



Let us review the assumptions we have made about radiance and T . These 

are all based on the way light behaves under what we consider "ord inary" rendering 

circumstances: 

• straight- l ine (ray) propagation 

• l inearity (in the absence of blocking) 

• instantaneous transport 

• energy conservation 

• steady-state power transfer 

• non-interact ing monochromat ic channels 

• absence of diffraction phenomena 

• absence of polar izat ion phenomena 

It is impor tant to note that while all of these assumptions are compat i ­

ble wi th classical electromagnetic theory (under certain circumstances), it is these 

empir ical ly-based assumptions that drive our discussion, not the theory itself. Other 

areas of investigation which make similar assumptions (e.g., neutron transport) may 

find this work appl icable. 

2.4.2 The Blocking Operator B 

We noted in Section 2.4.1 the compl icat ions that can arise in the presence of more 

than one destinat ion object. We can account for them by the incorporat ion of a 

blocking operator B defined for an obstruct ing object O: 

L 6 (P ,S) = B I , = 6(P ,S)I , (P > S) (2.5) 

12 



where 6(P, S) is a geometric funct ion which is 0 if a ray star t ing on the source object 

at point P in direct ion S intersects O and 1 otherwise. 

If we then have a source object S and a destination object D, and if O does 

not lie "beh ind" D, we can express the result ing radiance Lj, as 

Ld = TBLS. (2.6) 

2.4.3 Reflection, Transmission, and the Surface Interaction Oper­

ator s 

In this section, we wi l l review the formulat ion of the fundamental equation describing 

physically-based i l luminat ion model l ing, presented below as Equat ion (2.11). Our 

presentation follows those given in Cook and Torrance [15], Foley, et a l . [18], and 

Cohen and Wal lace [14]. 

F igure 2.2 shows the (usual) geometry for two cases of local i l luminat ion. In 

both of them, an inf ini tesimal element of surface area dA is being i l luminated by 

an incident radiance L{ coming from an inf initesimal solid angle du{ surrounding 

direction S . (A l l vectors presented here are are of unit magnitude.) A n observer (or 

measuring device) is located in direct ion V . N is the surface normal at dA. 

On the left, the observer is above the "hor izon" of dA in the hemisphere 

the hemisphere surrounding N . In this case, the observer receives radiat ion 

reflected from dA. O n the right, the observer is below the horizon in the hemisphere 

surrounding — N . In this case, the observer receives radiat ion t ransmit ted by 

dA. 

A s treatment of these two cases is very simi lar, let us consider the reflection 

case first. We assume all reflected radiat ion passes unobstructed into 

We use N as the z-axis of a polar coordinate system so that we can specify 

13 



Figure 2.2: Surface Geometry for Reflection and Transmission 

S by the usual incident polar and azimuthal angles 0,- and <fo and V by the usual 

reflected polar and azimuthal angles 0r and (j>r

4. 

To consider an illumination model from the standpoint of power balance, we 

start from the equation of power balance given in Siegel and Howell [68]: 

dE = Li ( N • S) dui (2.7) 

where dE is the irradiance resulting from the illumination of the patch in direction 

S subtending the solid angle du{. Using the definition of / r , the bidirectional re­

flectance distribution function (hereafter, BRDF) , this irradiance gives rise to dLr, 

the resulting radiance of the patch: 

dLr = fr(S,V)dE (2.8) 
4 For the time being, we wil l assume 4>, and <j>r are measured from some locally-defined frame of 

reference. 

14 



In general, fr is a function of the incident direction (#,-, and the reflected direction 

(9r, 4>r)5- For the sake of brevity, we will write it as / r (S , V ) . 

As we have assumed an opaque, nonemissive surface, the only contributions 

to Lr can come from 0 N . Therefore, we can integrate du>i over fiN to get 

Lr = [ fr(S,V)Li(N-S)dut (2.9) 
N 

We allow for transmission, as shown on the right of Figure 2.2, by considering 

that radiation can come from anywhere and can go in any direction. This means 

that we need to generalize the limits of our directional integration to refer not to 

fi+ and Q^, but to Jl^, the hemisphere (either fi+ or that contains V and fiN, 

the hemisphere opposite 0£J. We also need to allow for a transmitted component of 

radiance using the B T D F ft. Equation (2.9) then becomes 

U= I ft(S,V)Li | N - S | dui (2.10) 

In general, then, the total radiance for a non-emissive surface is L = Lr + Lt. 

If the surface is emissive, we can add an additional surface emissivity term Le when 

the observer is in fiN

6. To summarize, then, the total radiance given off by dA is 

L r ( V ) = Le(V)+ [ / r ( S + , V ) I 8 - ( S + ) | N - S + | dut 

+ / / t ( S - , V ) L t ( S - ) | N - S " | dui (2.11) 

where Lr is the total radiance given off of a surface with normal N , Le is the surface 

emissivity, L\ is the incident radiance, is the reflection hemisphere (contains 

5 fr may also vary over the surface, but that variation is usually treated as part of texturing 
rather than illumination modelling, so we will ignore it here. As mentioned above, we are also 
ignoring its possible dependence on wavelength. 

6 0 ^ is somewhat trickier, since if the surface is emissive, then the interior of the object is also 
likely to be emissive, which would imply a volume emissivity rather than a surface emissivity. As 
we are ignoring participating media in this section, we will therefore restrict ourselves to surface 
emissivity only. 

15 



N , the "v iewing" direct ion V , and the "posit ive source" direction S + ) , fi^ is the 

transmission hemisphere (opposite Q^, containing the "negative source" direct ion 

S - ) , fr is the B R D F , ft is the bidirect ional t ransmit tance distr ibut ion funct ion 

( B T D F ) , dui is sin QidQidcpi, 0{ is the incident polar angle, and <fo is the incident 

az imuthal angle. 

A local i l luminat ion solution is entirely characterized by its B R D F and B T D F 

functions. Note that we ignore the spatial variat ion of the radiances and dist r ibut ion 

functions, since it symbol ical ly factors out of Equat ion (2.11), 

We represent combined reflection and transmission surface interaction by the 

integral operator <S: 

Lr = Le + SLi (2.12) 

2.5 Renderers 

In computer graphics, a realistic rendering package (which we wil l refer to hereafter 

as a Tenderer) is a (predominantly) software system used to create realistic images. 

It usually does this by performing a simplif ied solut ion of the equations describing 

light and matter interact ion. 

It is useful to consider a rendering package as being composed of seven parts: 

• a luminaire model: how light sources are represented 

• a propagation model: how light travels f rom source to surface, surface to sur­

face, and surface to viewer 

• an object model: how objects in the scene are represented 

• an illumination model: how light interacts wi th the surface of an object 

16 



• a surface model: how small-scale surface structure is represented 

• a shading model: how light passing to the viewer is converted into an image 

• a rendering technique: how all the models that constitute the package interact 

to produce an image 

All of these are necessary for a rendering package, although in some cases they can 

be trivial. 

In the remainder of this section, we will discuss each of these parts and how 

they relate to each other. 

2.5.1 Luminaire Models 

Models of luminaires, or light sources, can range from the simple to the sophisticated. 

In this section, we will cover several popular ones. The most important attribute of 

a luminaire model is its dimensionality: 0 (a point luminaire), 1 (a linear luminaire), 

or 2 (an area luminaire). 

2.5.1.1 Point Luminaire 

A point luminaire assumes that a finite amount of light is coming from a single point. 

If we take $ as the amount of emissive power being given off by the luminaire, the 

radiance of a point luminaire is: 

^ = i ^ ( S - S') (2-13) 

where r is the distance from the luminaire to the illuminated point and S' is the 

direction from the illuminated point to the luminaire. The Dirac delta function S(x) 

is defined by 

/

oo 

f{x)8(x)dx = f{0) (2.14) 
-oo 

17 



for any function f(x). 

2.5.1.2 Directional Luminaire 

A directional luminaire is effectively a point luminaire at infinity: every point on the 

illuminated surface receives light from the same direction. Unlike a point luminaire, 

however, a directional luminaire is not characterized by its power (which is infinite) 

and a position, but by its normal irradiance EN, the amount of power per unit area 

transferred to a surface with normal incidence7, and a fixed direction S'. We can 

express the radiance of a directional luminaire as 

LE = ENS{S - S'). (2.15) 

2.5.1.3 Other Luminaires 

Directional and point luminaires were the only ones available in early Tenderers (with 

the exception of diffuse area luminaires used in radiosity). Verbeck and Greenberg, 

for example, describe in [77] how to construct approximation of linear and area light 

sources from point light sources. They also describe how to model the effects of flaps 

and focussing. 

In 1990, Poulin and Amanatides [59] were able to model linear luminaires 

directly. The next year, Tanaka and Takahashi [74] did the same thing for area 

luminaires. Both of these groups worked with sources that were isotropic in the 

sense that the emitted radiance was constant with respect to direction for each 

differential line or area element. 

In 1992, Ashdown [2] drew on work from the illumination engineering com­

munity to incorporate measurements of real, non-isotropic luminaires using "near-

7EN is the value of irradiance E when the light is coming from the normal direction N. 

18 



field photometry". More recently, Lalonde and Fournier [41] was able to efficiently 

represent an area luminaire using wavelets. 

2.5.1.4 What Constitutes a Luminaire? 

The distinction between a luminaire and any other object is somewhat artificial. 

Light interacting with a surface produces reflected and transmitted radiance distri­

butions which, as far as a T e n d e r e r is concerned, should be indistinguishable from 

emitted distributions. The technique we will present in this thesis will make no 

(essential) distinctions between emitted, reflected, and transmitted radiance distri­

butions. 

2.5.2 Propagation Models 

Light travels from surface to surface through a medium. The easiest medium to 

represent is a non-participating medium - a medium that does not in any way 

impede radiation travelling through it. A vacuum is one such medium. 

The propagation model in such a medium is the one we used to describe the 

invariance of radiance under the T operator in Equation (2.1): the radiance remains 

constant along a ray from source to destination. 

In the presence of a participating medium, propagation becomes more diffi­

cult to represent. There are three phenomena which must be taken into account: 

emission, absorption, and scattering. 

We have already mentioned emission from surfaces, but it can also happen 

from an incandescent gas such as a fire, a gaseous nebula, or the Sun. When the 

model of emission cannot be confined to a two-dimensional manifold, it must be 

treated as part of propagation. 

19 



Absorption removes energy from the beam entirely, converting it to a non-

visible form of energy such as heat. Smoke, for instance, can make a very absorptive 

medium. 

Scattering does not eliminate energy from the beam, but redirects it. It may 

remove energy along the line-of-sight from source to destination (outscattering), but 

it may also scatter energy into the line-of-sight from other sources (inscattering). So, 

for instance, a street light in fog, a typical scattering medium, appears surrounded 

by a halo of light that was redirected towards the viewer by the medium. 

Allowing for participating media turns Equation (2.1) into an integro-differential 

equation. Taking Glassner's [24] formulation of it and substituting our own notation, 

we get: 

where j is the volume emissivity, 0 is the directional sphere, K is the volume outscat­

tering or inscattering probability function, cja is absorption function. 

Equation (2.16) is easy to interpret. The left hand side is the spatial variation 

of radiance in direction S . On the right hand side, the first term is the volume 

emissivity adding power (radiance per unit length, actually) to the beam. The 

. second is the amount of power scattered into the beam. The third is the sum of the 

power scattered out of the beam and the amount of power absorbed by the medium. 

A considerable amount of work has been done in the fields of physics (e.g. 

Chandrasekhar [10]), astronomy (e.g. Mihalas [51]), oceanography (e.g. Mobley 

[53]), and elsewhere to understand participating media. Little, however, has been 

S - V L ( P , S ) = i ( P , S ) 

(2.16) 

20 



done in computer graphics. See Rushmeier [63] for an overview of these. • 

2.5.3 Object Models 

The construction of object models is what is normally referred to as "modelling" 

in computer graphics parlance. The principle role of object models is to define 

surfaces: places where radiance distributions change dramatically over an interval 

of path length so small that it may be considered infinitesimal. The surface of a 

properly-defined object subdivides space into an "inside" and an "outside". 

2.5.3.1 Polygons 

Polygons, especially triangles, are by far the most common object modelling con­

struct. Each /V-sided polygon is specified by a list of ./V vertices. Three-dimensional 

objects may be modeled with polyhedra, i.e., sets of polygons. Each polygon repre­

sents a "facet" of the object. By convention, the vertex list is specified in counter­

clockwise order when the facet is viewed from "above". 

Special care must be taken to ensure that the object that results from the 

union of all the facets has a consistent inside and an outside, Otherwise, most 

Tenderers produce a confusing result. 

2.5.3.2 Parametric Surfaces 

Parametric surfaces are made up of "patches": sets of points {P} defined by an 

equation of the form 

P = P ( « , u ) (2.17) 

where 0 < u < 1 and 0 < v < 1. 

21 



Al though there have been at tempts made to render patches directly, such as 

Shantz and Lien [67] and Lane et a l . [43], it typical ly proves efficient to convert 

each patch to a set of polygons. 

One of the most widely-used algori thms for this is due to Lane et a l . [43]. 

G iven a patch, the algor i thm tests it for planari ty wi th in a specified tolerance. If 

it is wi th in the tolerance, the patch is replaced by a corresponding polygon. If 

the tolerance is exceeded, the patch is subdivided using well-known subdivision 

procedures and the algor i thm is recursively appl ied. 

2.5.3.3 Implicit Surfaces 

A n impl ic i t surface is made up of the set of al l points {P} which satisfy 

/ ( P ) = 0 (2.18) 

for a funct ion / . L ike parametr ic surfaces, impl ic i t surfaces are generally converted 

to polygons for the purposes of rendering. One of the most widely-used approaches 

is the "marching cubes" a lgor i thm, developed independently by W y v i l l , et a l . in 

1986 [86] and by Lorensen and Cl ine in 1987 [48]. Th is a lgor i thm voxellizes object 

space and then uses the value of / at each of the eight vertices of each voxel to 

generate polygons that span the voxel. 

One of the shortcomings of marching cubes and simi lar algori thms is a sensi­

t iv i ty to sampl ing problems: Structures wi th spat ial frequencies above the Nyquis t 

l imi t may not be polygonal ized correctly. In part icular, there is no guarantee of pre­

serving the topology of the polygonalized object. Recent work, however, by Stander 

and Har t [73] shows promise of al leviat ing this problem. 

22 



2.5.3.4 Constructive Solid Geometry 

A notable extension of impl ic i t surfaces is "construct ive solid geometry" or C S G . 

It extends the definit ion given in Equat ion (2.18) to use / to classify any point in 

Eucl idean 3-space as being inside (/.< 0), on ( / = 0) or outside ( / > 0) an object. 

It is thereby possible to define composite objects in terms of set operations act ing 

on such pr imit ives. A comprehensive treatment of C S G is the book by M a n t y l a [49]. 

C S G represents a convenient way to model objects in some but not all ap­

pl ication domains. In addi t ion, C S G objects are easily rendered wi th a raytracer 

(discussed in Section 2.5.7.3). Faster rendering can be achieved either by apply ing 

the marching cubes algor i thm to polygonalize C S G objects or by performing C S G on 

polygonalized pr imit ive objects, but just as wi th impl ic i t surfaces, sampl ing prob­

lems can occur. 

2.5.4 Illumination Models 

We wil l review several i l luminat ion models in use in computer graphics. Space does 

not permit us to consider some of the more elaborate ones (such as He, et a l . [33] 

or Oren and Nayar [57]), but as these are not yet in wide use, perhaps the reader 

wi l l forgive the omission. 

Our discussion wi l l center on reflection models, as most Tenderers in computer 

graphics pay l i t t le attent ion to transmission. 

2.5.4.1 Phong Illumination Models 

Phong i l luminat ion models are generally of the form (see, for example, Foley, et a l . 

[18], equation [16.15]) 

Lr = kaLa + [kd{N-S) + ksFs{S,V))EN (2.19) 

23 



where ka is the "ambient" reflection coefficient, La is an ambient radiance uniformly 

distr ibuted over ^l^8, kd is the diffuse reflection coefficient, ks is the specular re­

flection coefficient, and EN is the normal irradiance parameter iz ing a direct ional 

luminaire. 

There are two popular choices for Fs. The original one given in Phong [58] 

corresponds to 
( ( R ; • V ) " ^ if (R j • V ) > 0 

F f ( S , V ) = < (2.20) 
0 otherwise 

where R ; = 2 N ( N • S) — S is the "ref lected" source direction and is the Phong 

specular reflection exponent. 

The other popular choice for Fs comes from B l inn [6]: 

F f ( S , V ) = ( N • H ) n ? (2.21) 

where H = (S + V ) / |S + V | is the unit vector halfway between S and V and nf is 

the B l inn specular reflection exponent. 

Since we are not considering emissivi ty or transmission in this section, let us 

see how these i l luminat ion models correspond to Equat ion (2.9). 

Let the patch be i l luminated by the combinat ion of a direct ional source of 

normal irradiance EN in direction S (i.e., Q{ = 6s, 4>i = ^ s ) on £2^ and a radiance 

La constant over Us ing Equat ion (2.15), we can model the result ing incident 

radiance as 

Li = La + EN6(cos6i - cos 0 S ) 6(<t>i - <h). (2.22) 

If we substi tute this into Equat ion (2.9), we get 

Lr = La f / r ( S , V ) ( N - S ) d w t - + £ ? J V / r ( S I V ) ( N - S ) (2.23) 
Jilt 

For the sake of simplicity, we have assumed that dA has an unobstructed view of 

24 



directional light source 

V 
Figure 2.3: Illumination Model Test Configuration 

Our goal is to make Equations (2.19) and (2.23) equivalent for all possible 

La and Ejy. This means that the non-ambient terms of both equations must be 

equal, so 

This will allow us to convert a Phong illumination model into its correspond­

ing B R D F . 

For the purposes of comparison of the various models, let us adopt the (com­

mon) test configuration whose geometry is shown in Figure 2.3. A single directional 

luminaire shines at a sphere. Viewed from the center of the sphere, the luminaire is 

located at angle $L from the viewing direction. 

Figure 2.4 shows a series of images generated with the test configuration 

with a Phong illumination model using Ff. In this series, ks varies between 0 and 

1 and kd is taken to be 1 — ks. The angular distribution of the specular peak is 

25 



0.00 

0.25 

0.50 

0.75 

1.00 

10° 

45° 90° 13 

20" 

5° 45° 90° 135° 

30° 

45° 90° 135 

40° 50° 

°l 45° 90° 135° 45° 91 

§ IQji • • ) • 
i 

« ill O i l a 
CI 
C l l C t i 

( [ K [ 
.... 

CCIC.CM 
Figure 2.4: Sphere shaded with a Phong illumination model, using Blinn's , for an 
assortment of incident angles with respect to the viewer ($/,), specular coefficients 
(ks), and specular distribution half-angles (3). 

qualitatively characterized9 by the specular half-angle f3, defined by 

Ff = \ = cos"? /3 

Hence, for a given 3, 

In 2 

(2.25) 

(2.26) 
s In cos 3 

The ambient terms of Equations (2.19) and (2.23) must also be equal 1 0 . If 

we equate these and notice that for 7 / -1 

2TT 

J, Oft 
(N • V ) 7 dur 

7 + 1 
(2.27) 

9 Only in the case of Phong illumination modelling with Ff does 0 have a direct and obvious 
geometrical interpretation, but, as we will see (and Blinn [6] points out), it is qualitatively useful 
in other cases. 

1 0 We can look at this as a consistency constraint: The same B R D F we use to shade a directional 
luminaire must also shade an ambient light source. 

26 



we get 

ka = kdir + ks[ FS{S,V)dui (2.28) 

So consistency demands that we have only two degrees of freedom in selecting 

ka, kd, and ks. In what follows, we wi l l take ka to be dependent upon kd and ks. 

2 .5 .4 .2 T o r r a n c e - S p a r r o w I l l u m i n a t i o n M o d e l s 

The other major class of i l luminat ion models was first proposed in Torrance and 

Sparrow [75] and applied to computer-generated imagery in B l inn [6]. We shal l , 

however, follow the development given in Cook [15]. 

Torrance-Sparrow i l luminat ion models can be formulated direct ly in terms 

of their B R D F : 

WG D 
^ S - V > = , ( N . S ) ( N . V ) ( 2 ' 2 9 ) 

where F is the Fresnel coefficient, G is the geometrical at tenuat ion factor, and D is 

the facet slope distr ibut ion funct ion. 

The Fresnel coefficient for unpolarized light and zero ext inct ion ([15] ignores 

extinct ion) is 

(9-c)2 \ (c (g + c) - 1) 21 
F = '— 1 + , ) ' r ^7 (2.30) 

1 + (c(g + c ) - l ) 2 

(c (g-c) + 1)' 2 ( 5 + c ) 2 

where c = ( V • H ) , g2 = n2 + c 2 — 1, and n is the index of refract ion. 

The geometrical at tenuat ion factor is 

G — min <f 1 2 ( N ' H ) ( N ' V ) 2 ( N • H ) ( N • S) \ 
G ~ M I N I 1 ' (v^i) ' ( V T H ) J ( 2 ' 3 1 ) 

There are several choices for the facet slope dist r ibut ion funct ion. B l i nn [6] 

suggests three of them. The first corresponds to a Phong i l luminat ion model: 

D i = bi cos C l a (2.32) 

27 



where c o s a = ( N • H ) . The second is the Gauss ian one original ly used in Torrance 

and Sparrow [75]: 

D2 = 6 2 e - ( C 2 ° » 2 (2.33) 

The th i rd is f rom [76]: 

D3 (2.34) 
cos 2 a(c§ — 1) + 1 

In al l of these, the 6's are arbi t rary constants analogous to the fc's in Phong i l lumi­

nat ion models. The c's (empirically) determine the width of the specular lobe. A s 

B l inn [6] observes, if we define 3 to be the value of a at which a d ist r ibut ion drops 

to half its peak value, we have 

In 2 
ci = 

C2 = 

In cos 3 

cos 2 3 — 1 
c 3 = 

C O S " 3-y/2 

Cook [15] considers an addi t ional possibi l i ty or iginat ing wi th Beckmann and 

Spizzichino [4], which we wi l l include here as 

1 _ | l - c o s 2 a \ 

DA = 5 -r-e W " " ' W (2.35) 
4mz cos 4 a 

where m is the R M S slope of the surface. Unl ike D\ - D3, there is no arbi t rary b 

constant for this d is t r ibut ion. The relat ionship of m to the corresponding value of 

3 is 

m = (2.36) 
V l n 2 - 4 1 n cos3 v ' 

2 .5 .4 .3 N e u m a n n - N e u m a n n I l l u m i n a t i o n M o d e l s 

In [55], Neumann and Neumann discuss "separable" i l luminat ion models (i.e., those 

whose B R D F is of the form a(S) r ( V ) for some functions a and r) and how their use 

28 



can speed up radiosity computat ion in non-diffuse environments. A s an example, 

they describe a "lacquer model " of a purely diffuse mater ial covered by a semi-

transparent " lacquer" that absorbs but does not scatter l ight that passes through 

it. The result ing B R D F they derive is 

/ r ( S , V ) = oexp{- 5(^ + p ?i v y)} (2.37) 

where c and s are constants that characterize the model. We can make this 

comparable wi th Equat ions (2.24) and (2.29) by defining 6/v as the value of fr at 

S = V = N . The equation then becomes 

/ , ( S , V ) = * W H [ p { - . ( i j i l 1 . + _ l _ _ 2 ) } (2.38) 

A s we did before, we can relate s to a more geometrical ly meaningful quant i ty 

3 that qual i tat ively measures the width of the specular peak. Keep the i l luminat ion 

normal (S = N ) and increase the angle between V and N unti l fr drops to half of 

its max imum (i.e. V = N ) value. We define the result ing angle to be 3. We can 

relate s to 3: 

s = - - ^ - n (2.39) 
1 + cos 3 K ' 

Figure 2.5 shows what Neumann-Neumann i l luminat ion models (and the 

subsequently-discussed Minnaer t i l luminat ion models) look like when applied to 

a sphere. Incident light for each i l luminat ion model is scaled to produce a peak 

unsaturated radiance at normal incidence (<£/, = 0) and then held constant as 

and 3 are varied. 

Note that as increases, the image radiance decreases, unlike Phong i l lu­

minat ion models. A l so notice that the l imb of the sphere ( ( N • V ) = 0) is always 

dark. 

29 



p 10° 20° 30° 40° 
illumination * 

model l 
illumination * 

model l 0 ° 30 ° 60 ° 0 ° 30 ° 60 ° 0" 30 ° 60 ° 0 ° 30 ° 60 ° 

50° 

Neumann-
Neumann 

Minnaert 

©•IODIODIODDOC 
© • I O D I O D & O D D O C 

Figure 2.5: Sphere shaded with Neumann-Neumann and Minnaert illumination 
models for an assortment of incident angles with respect to the viewer (4>L) and 
specular distribution half-angles (3). 

illumination ^ 
model L 

Phong/Blinn 

10" 20' 30" 

20° 

10° 20" 30 

I II ir 1 

m n 
Figure 2.6: Comparison of a Square Shaded with a Neumann-Neumann Illumination 
Model and with a Phong Shader Using Blinn's . 

Neumann-Neumann illumination models exhibit peculiar behaviour when be­

ing applied to a specular surface. As Figure 2.5 shows, they do produce an acceptable 

specular peak. Nevertheless, for a given incident angle the resulting radiance always 

peaks when the viewer is looking in the normal direction. For a highly specular 

surface, we should expect the radiance to peak somewhat closer to the reflected 

direction. Instead, the peak occurs where the exponent of Equation (2.38) is mini­

mized, which may not be the same direction. 

Figure 2.6 illustrates this, comparing a Neumann-Neumann model with a 

specular Phong model using Blinn's F s

s . To make sure the incident angle is constant, 

30 



we have replaced the sphere used in the test configuration of Figure 2.3 with a square 

whose normal is pointing at the observer. As the figure shows, increasing causes 

the highlight to move to the right for the Phong model, as we would expect of a 

specular surface, but not for the Neumann-Neumann one. 

This is not to say that Neumann-Neumann models do not apply to real-world 

phenomena, only that if they do, those phenomena do not resemble specularity. 

2.5.4.4 Minnaert Illumination Models \ 

In [52], Minnaert describes an illumination model derived from observations of the 

Moon. His original model is 

Lr = bM(N-S)k(N -Vf-1^ (2.40) 

for some constants 6^ and k. This corresponds to the B R D F 

/ r (S , V ) = 6 M ( ( N • S) (N • V ) ) * - 1 (2.41) 

We can relate k to an angle 8 defined as in the previous section: 

k = 1 - (2.42) 
In cos p-

Figure 2.5 contrasts Minnaert illumination models with Neumann-Neumann 

illumination models. It is difficult to tell them apart. Their numerical values in 

these images differ by no more than 2%. (As a computational aside, since Minnaert 

illumination models are also separable, this suggests that a Minnaert illumination 

model should be able to take the place of a Neumann-Neumann illumination model 

with fewer arithmetic operations in most cases, especially if k is an integer.) 

Minnaert illumination models exhibit the same peculiar behaviour as Neumann-

Neumann illumination models when applied to a specular surface: for a fixed in-

31 



cident angle, the resulting radiance peaks when the viewer looks in the normal 

direction. 

2.5.5 Surface Mode l s 

The standard presentation of B R D F given in Section 2.4.3 leaves out an important 

fact: both of them may vary spatially, hence we should allow for 1 1 : 

We could deal with this somewhat by replacing the object being rendered 

with a collection of smaller objects with spatially-invariant surface properties, but 

this would cause the number of objects to increase considerably. Having to do this 

for a mottled surface such as a brick or an orange peel would inflate the number of 

objects to be rendered considerably and undesirably. 

One way conventional Tenderers deal with spatial variation of the B R D F is 

by texture mapping, factoring it into spatial and directional components: 

where the function t represents the surface texture: the spatial variation of reflective 

properties on a scale smaller than that of the object. u(P) and v(P) map spatial 

coordinates to texture coordinates. It is convenient to think of this as "wrapping" 

the surface with paper printed with a pattern that represents the texture. While 

this is a considerable reduction in flexibility from Equation 2.43, it is often adequate 

in practice. 

"Even this is an oversimplification, as it assumes that light encountering the surface at point 
P is reflected from the surface at the same point. A more thorough treatment takes into account 
subsurface scattering and is treated by Hanrahan and Krueger [31] and Lalonde [41]. 

/ r ->/ r (P,S,V). (2.43) 

fr^t(u(F),v(P))fr(S,V) (2.44) 

32 



Another way Tenderers represent spatial BRDF as well as geometric variation 

is by allowing the surface normal used to compute fr to vary with texture coordi­

nates -u(P) and u(P)..This was first devised by Blinn [7] and is referred to as bump 

mapping. As the name suggests, bump mapping is particularly effective at repre­

senting surfaces whose reflective properties are the result of geometric variations 

such as roughness or machining as opposed to variations in material composition. 

Work continues in this vein. Poulin and Fournier [60] extend BRDF mod­

elling to include anisotropic reflection phenomena, and Fournier [21] describes how 

to model a given BRDF with a "normal distribution function". 

2.5.6 Shading Models 

There is a tendency to use the term "shading model" synonymously with "illumi­

nation model", but as Foley et al. [18] point out, a shading model may or may not 

make use of an illumination model. An illumination model is a description of what is 

actually happening in modelling or "world space". A shading model is a description 

of what is to be shown in viewing or "screen space". A shading model is what actu­

ally generates pixels. It is possible for a shading model to use an illumination model 

to generate a pixel, but it could also use a screen-oriented interpolation scheme to 

do so. 

For instance, the Goraud shading model typically uses an illumination model 

to compute radiances at polygonal vertices, but then interpolates these in screen 

space during scan conversion. On the other hand, the Phong shading model (not 

to be confused with the Phong illumination model) computes normals at vertices, 

interpolates the normals in screen space during scan conversion, and (typically) 

applies an illumination model at each pixel. 

33 



An essential part of a shading model is the number of samples of an illumi­

nation model required per pixel. If this number is greater than one, as in the case 

of jittered or distribution raytracing, the samples must be filtered. If this number 

is less than one, the samples must be interpolated. 

The use of a shading model is indicative of a perceived difference between 

what is necessary to model physically what is going on in the scene and what is nec­

essary to generate an acceptable image. We will return to this idea in our discussion 

of radiosity in Section 2.5.7.4. 

2.5.7 Rendering Techniques 

The most distinctive part of a Tenderer is the rendering technique it uses. In this 

section, we will examine the predominant rendering techniques, ray tracing and 

radiosity, along with a new and promising one, photon maps. 

2.5.7.1 The Rendering Equation 

In his landmark work [38], Kajiya showed the unity of rendering techniques by 

connecting them to his form 1 2 of Equation (2.11). We can do much the same thing 

in the current context by noting that in Equation (2.12), in a state of thermodynamic 

equilibrium, Li should be equal to TBLr. In other words, if we want a truly global 

solution, there should only be a single radiance distribution L which should satisfy 

L = Le + STBL (2.45) 

which we rewrite as 

L = QLe (2.46) 

1 2 Like several other authors, Kajiya formulated Equation (2.11) in terms of "point-to-point" 
transfers, while we have chosen a "direction-to-pbint-to-direction" approach. The two are entirely 
equivalent. 

34 



where we have defined the global illumination operator Q to be 

G = ( I - STB) - l (2.47) 

where 1 is the identity operator. We can expand G as Kajiya does: 

G = 1 + STB+(STB)2 + •••. (2.48) 

He then points out an interesting physical interpretation of this series. The 

first term represents light that is being given off by the surface on which we are 

computing L itself, the second term represents light from sources that directly illu­

minate the surface (a single "bounce" or surface interaction), and so on, so that the 

nth term represents light after n — 1 "bounces". He also relates convergence of the 

series to energy conservation13. 

As Kajiya points out, rendering techniques approximate G in different ways. 

They also simplify the integral in Equation (2.11) (i.e., in S) differently. We will 

discuss these distinctions in the following sections. Over time, these techniques have 

undergone hybridization 1 4 in order to improve their efficiency or functionality as they 

get incorporated into real Tenderers, but as we are more interested in their theoretical 

distinctions here, we will deal with each rendering technique in its "classical" form. 

Due to space constraints, we will confine our discussion to currently-popular 

rendering techniques, omitting such work as that of Moravec [54], Weiler-Atherton 

[81], Warnock [79], and Roberts [62], which are now mainly of historical interest. 

1 3 Mathematically, this is equivalent to requiring that the spectral radius of the operator STB be 
less than unity. 

1 4 Tha t ' s the nice name for it. 

35 



2.5.7.2 Depth-Buffering 

By far the simplest rendering technique is depth buffering, also known as "z-buffering" 

First developed by Catmull [9] in 1974, the algorithm requires a buffer that contains 

a scalar value for each pixel. This value is the "depth" - the distance from the 

viewpoint to the nearest object that the pixel represents. Initially, all values in the 

depth buffer are (conceptually) infinite. 

While primitives are being scan converted, the algorithm computes some 

measure of the distance from the object to the view plane for each pixel. In the case 

of opaque objects, this distance is compared with the depth buffer value. If (and 

only if) the new distance is smaller than the previous distance, the colour buffer is 

set .to the appropriate value for the new primitive and the new distance is stored in 

the depth buffer. 

With some limitations, non-refractive transparency is possible with a depth 

buffer. Williams [84] presents a way to use depth buffers to generate (hard) shadows. 

Since it places no constraints on the method used to compute the values that go into 

the colour buffer, depth buffering is compatible with all local illumination models. 

Depth buffering can be implemented in hardware or software. The OpenGL 

graphics library ([40] and [8]) includes built-in support for depth-buffered rendering. 

Hardware depth buffering provides very fast rendering. OpenGL makes use of it if 

it is present and simulates it in software if it is not. 

2.5.7.3 Ray tracing 

Classical ray tracing simplifies Equation (2.11) by setting fr and ft to be Dirac 5-

functions (which we will describe below). This permits (mirror-like) reflection and 

refraction. The second way is by setting L{ to include a ^-function, which, as we will 

36 



see in Sections 2.5.1.1 and 2.5.1.2, permits point and directional luminaires. These 

are mutually exclusive since we cannot allow both the incident radiance and the 

B R D F or B T D F to be ^-functions. 

Since each surface interaction involves samples of the B R D F and/or B T D F 

and possibly casting additional reflection/refraction rays, ray tracing is compatible 

with all illumination models. 

2.5.7.4 Radiosity 

Although radiosity methods had been present in the mechanical engineering commu­

nity for some time, they were first introduced to the computer graphics community 

by Goral, et al. [25] in 1984. In its classic form radiosity takes L to be isotropic 

and constant over a patch and therefore equal to ^ , where B is the radiosity of the 

patch. As derived in, for example, Cohen and Wallace [14], this leads to the classic 

radiosity equation: 

(I - pF) B = E (2.49) 

where, given N patches, pF is an N X N matrix whose elements are pjFj,-, p; is the 

(isotropic) reflectivity of patch i, Fji is the purely geometric form factor: the amount 

of energy leaving patch j that arrives at patch i, B is an A^-element column vector 

of radiosities, and E is an A^-element column vector of patch emissive exitances. 

Several conventional numerical linear algebra schemes have been applied to solve 

Equation (2.49), including Gauss-Seidel [25], Southwell (also known as "progressive 

refinement") [26], and multigrid [46]. 

Classical radiosity is compatible only with diffuse illumination models, but 

more recent research has extended this to glossy reflection. Immel et al. [35] devel­

oped a "global cube" algorithm that collected radiances instead of radiosity. This 

37 

i 



approach produced realistic images, but was costly in both time and memory, es­

pecially for highly specular surfaces. Rushmeier and Torrance [64] developed the 

notion of "extended form factors" to deal with specular (including mirror) surfaces. 

Sillion et al. [69] deal with glossy reflection by representing both B R D F s and radi­

ances with spherical harmonics. 

Even more recently, Fournier [19] has shown how to incorporate non-diffuse 

phenomena by the use of separable B R D F s . 

An important consideration in viewing the results of radiosity and other 

global illumination computations is the role of what Christensen, et al. [11] (citing 

Reichert [61]) refer to as the "final gather" step. 

It takes place after Equation 2.49 or its equivalent has computed radiance 

distributions (or their equivalent) on all visible surfaces and amounts to a reevalu-

ation of Equation 2.11 at the point in the scene intersected by a ray through the 

middle of each pixel. As Christensen, et al. [11] put it, 

Formally, this final gather corresponds to changing to a piecewise-constant 

basis, where the support of each basis function is the projection of a pixel 

onto a surface in the scene. This basis is tailored to be visually pleasing. 

The final gather smoothes the discontinuities in the wavelet representa­

tion and makes highlights, textures, and shadows crisper. 

A final gather is effectively a local illumination calculation performed at the end of 

a global computation. It is an implicit acknowledgement of the fact that the criteria 

for physically-correct global illumination and a "visually pleasing" image are not 

identical. 

38 



2.5.7.5 Photon M a p s 

One of the most promising of recent rendering techniques are photon maps, devel­

oped by. Jensen [37]. A photon map is a four-dimensional distribution of incident 

photons collected on a surface. 

The first step of photon map global illumination is the generation of two 

photon maps built up by casting photons from all luminaires. The first photon 

map is a high-resolution caustics photon map made up of photons cast only in the 

direction of specular objects. The second photon map is made up of photons cast 

towards all objects. 

The second step is the rendering step. In it, the photon maps of incident 

photons are combined with arbitrary B R D F s to produce reflected radiances made 

up of four terms: direct illumination, specular reflection, caustics, and soft indirect 

illumination. Each term is computed with appropriate photon maps and B R D F 

specular and/or diffuse components. As Jensen puts it: 

The photon map is used to generate optimized sampling directions, to 

reduce the number of shadow rays, to render caustics, and to limit the 

number of reflections traced as the scene is rendered with distribution 

ray tracing. 

Lucifer, the algorithm we will present in Chapter 3, is coeval with photon 

maps. We will see that the two have much in common. 

2.5.7.6 Comparison and Summary 

This section will conclude with an analysis of the strengths and weaknesses of each 

of these models. 

39 



Chronological Order of Development —> 
Depth Ray Photon 

Effect Buffer Tracing Radiosity Maps 
diffuse surfaces yes yes yes yes 
specular highlights yes yes no yes 
transparency yes yes no yes 
mirror reflection no yes no yes 
refraction no yes no yes 
sharp shadows yes yes no yes 
soft shadows no no yes yes 
diffuse lighting yes no yes yes 
colour bleeding no no yes yes 
caustics no no no yes 

Table 2.1: Effects Available with Established Rendering Techniques 

Table 2.1 lists a number of illumination effects and whether or not the vari­

ous established rendering techniques are capable of them. One word of caution: If 

we evaluate this table for specific Tenderers, it becomes clear that it is an oversim­

plification. Some Tenderers which refer to themselves as raytracers, for instance, are 

capable of soft shadows. This is because those Tenderers have incorporated radiosity 

or other methods in hybrid form and are not "pure" raytracers in that sense. For 

this reason, Table 2.1 should not be taken to refer to specific Tenderers, only to 

rendering techniques. 

Indeed, ray tracing and radiosity techniques can be enhanced (often by Monte 

Carlo methods) to produce a wider range of effects than Table 2.1 indicates. As in 

many other areas in which they are applied, however, Monte Carlo techniques exhibit 

slow convergence. 

To be able to produce these and other effects, we will elaborate on a global 

illumination technique that allows a wider range of local illumination models. 

40 



Chapter 3 

The Lucifer Algorithm 

The algorithm we present here, which we refer to as the Lucifer1 algorithm, is 

a sequential computational analogue of how energy distributes itself in a scene. It 

combines the physical concepts of isolation and energy conservation with a refineable 

spatial partitioning scheme. This work is a outgrowth of work done by Fournier, 

Fiume, Ouellette, and Chee [20] (hereafter referred to by its project name "FIAT"). 

3.1 Isolation 

For possibly complex scenes, we can take a divide-and-conquer approach based on 

the principle of isolation, illustrated in Figure 3.1 (right). 

Isolation is a conceptual tool: we place any part of our scene (including the 

viewer) within a volume V. Suppose then that somehow we can determine the 

distribution of radiance on the surface dV of V . Isolation says that for the purposes 

of solving for global illumination anywhere outside V, we can effectively replace the 

'From the Latin for "light bearer". 

41 



directional Unlit source 

o 

Figure 3.1: An Application of Isolation 

contents of V with dV's radiance distribution. 

Isolation gives us a way to deal with complex scenes. If we cannot deal with 

the whole scene, break it into volumes we can deal with as local illumination prob­

lems and transfer radiance distributions along the boundaries between the volumes. 

3.2 Power Computation for Isolated Volumes 

For any volume V,-, physics demands energy conservation. In the steady state, this 

is equivalent to power conservation: 

+ $ e m , t = *o»M + *»b,, i (3.1) 

where 

$ , n , = / I L i n \N-S\dudA (3.2) 

is the flux entering V,-, 

$ o « t , , - = / / ^ c u t | N • S| dudA (3.3) 

• 12 

file:///N-S/dudA


is the flux leaving V j , 

* . m , , - = / / jdudVi-r [ [ Le \N-S\dudA (3.4) 

is the flux generated within V ; , 

f i N and fi^, at any point on dV are the unit hemispheres entirely outside 

and entirely inside V , respectively, L i n is the radiance coming into V ; from fiN, 

LoM is the radiance passing out of V j from Q^, Q is the unit directional sphere, 

j is the volume emissivity within V , Le is the surface emissivity on all emissive 

surfaces 5 e m ( V t ) within V , and <J>ab3,i is the amount of radiant power absorbed and 

not converted into radiant energy again (at least in Vj ) . 

3.3 Solution Order and Convergence 

As with raytracing and radiosity, we are constructing a sequential analogue of what 

nature does in parallel. We need a sequential ordering. A reasonable way to proceed 

is to maintain the volumes in a queue sorted in order of decreasing undistributed 

power $ i n j + #em)t- and to always concentrate our efforts on the volume V j at the 

front of the queue. Once the undistributed power in this volume is distributed, 

the volume moves to the end of the queue. Note that, from Equations (3.3) and 

(3.4), undistributed power is computed from radiances, emissivities, and geometrical 

information about V j . 

If, during the distribution process, we ensure that no more energy leaves V j 

than was either incident upon or emitted within it, we can guarantee that the total 

undistributed power in the scene (i.e., in the queue) is monotonically non-increasing, 

since all the power distributed by V j that does not get absorbed becomes incident 

on another volume or leaves the scene entirely, possibly reaching the observer. 

43 

file:///N-S/dudA


One way to ensure that no excess energy is created is to require an energy-

conserving local illumination model. We will present some necessary constraints 

for such a model in Section 4, where we will consider several illumination models 

commonly in use in computer graphics from the aspects of both energy conservation 

and Helmholtz reciprocity2. 

3.4 Spatial Partitioning 

We require a tessellation of the scene that can be easily refined as needed as the 

solution progresses. Several data structures permit this, but the simplest one for 

our purposes is the octree. 

As shown in Figure 3.2, we take octrees to be composed of cubic cells. The 

root cell contains the entire scene. Each cell is either a parent cell or a leaf cell. 

A parent cell has eight child cells. A leaf cell has no child cells. Only leaf cells 

are "volumes" in the sense of our previous discussion. Non-leaf cells are purely 

structural. Each cell except the root cell has seven sibling cells. 

We also choose a minimum size for an octree cell. Cells that we cannot deal 

with that are this size will be solved trivially, but still conserving energy. 

3.5 The Lucifer Algorithm 

Figure 3.3 shows our rendering algorithm pseudocode. We start off with a scene 

s with a single cubic cell, rootCell(s). We then create a priority queue q with, 

initially, a single element, rootCell(s). q is always maintained in decreasing order of 

undistributed power. 

2Note that Lucifer as presented here does not require reciprocity. 

44 



parent 

cell 

Figure 3.2: Octree Cell Nomenclature 

If q is empty or sumUndistPower(q), the sum of the undistributed powers of 

all cells in the queue, is lower than some prespecified powerTolerance, we consider 

the scene rendered. 

Otherwise, we remove the cell with the largest amount of undistributed 

power, c, from the front of q. All further computation in the main loop is con­

cerned only with c. This is why we refer to our algorithm as "light-driven": it is 

always concerned with the cell with the largest undistributed power. 

We test c against the first of these cases that it matches: 

• If it is empty, we call propagatef) to transfer the radiance coming into c to its 

neighbors. 

• If it is a cell that we know how to pass power through, we call balance() 

45 



render(scene s) 

{ 
queue q; 
cell c; 

q = createPriorityQueue(rootCell(s)); 
while (sumUndistPower(q) > powerTolerance) { 

c = dequeue(q); 
if (isEmptyCell(c)) 

propagate(c); 
else if (canDealWith(c)) 

balance(c); 
else if (size(c) > minimumSize) 

subdivide(c, q)\ 
else 

trivialize(c); 

} 
} 

Figure 3.3: The Lucifer Algorithm 

to perform the redistribution of the reflected and refracted radiance to c's 

neighbors. 

• If it is above a specified minimum size, we call subdivide() to split c into eight 

child cells and add these back to q in order. 

If it meets none of these criteria, we call trivialize() to perform an ad hoc solu­

tion that may be some combination of the first two cases, but which in any case 

guarantees that power balance is preserved. 

propagate() is conceptually straightforward. It makes use of the invariance 

of radiance in the direction of propagation. Radiance at a given point in a given 

direction on an incoming cell wall defines a ray which may intersect an outgoing 

cell wall at a new point and direction. (The direction is, of course, the same, but 

may be expressed in a different coordinate frame.) We may alternatively project 

backwards from the outgoing cell wall to the incoming one. 

4 6 



balance() is somewhat more complicated. The ambiguity of the phrase "know 

how to pass power through" at this level of description is intentional. Our current 

interpretation of it is that the cell contains at most a single convex object. This 

allows us to decompose the procedure into four subtasks: 

1. Transport radiance from the incoming walls to the object (or that part of the 

object which lies within the cell). 

2. Interact the incoming radiance with the object's B R D F (and B T D F ) to pro­

duce a reflected radiance being given off by the object. 

3. Transport reflected and emitted radiance from the surface of the object to the 

outgoing walls. 

4. Transport the unobstructed part of the incoming radiance to the outgoing 

walls. 

Subtasks 1 and 3 are variations on propagatef), allowing transport to and 

from surfaces as well as cell walls. Subtask 2 requires surface interaction, as dictated 

by Equation (2.11). Subtask 4 is another variation on propagate(), including a 

geometric blocking function that inhibits propagation if the ray intersects the object 

within the cell. We call this variation transblockf). 

3.6 Complexity 

Let us compare the complexity of Lucifer and two rendering techniques that can 

produce comparable effects: raytracing and radiosity. Our measure of complexity is 

the mean time required per displayed pixel. We assume the scene has Nob-t objects, 

of which i V l u m are (initially) luminaires. 

47 



In classical raytracing, computing the intersection point of a ray and an 

object in the scene requires 0(Noh)) time per ray 3 

If, to reduce aliasing effects, we oversample by a factor of iV r a y rays per pixel, 

computing the primary (starting at the observer) intersections is 0(NI!LyNobi). To 

determine shadows, we must cast N[um shadow rays to light sources. As Whitted 

[83] first showed, we can treat reflective, refractive, and transmissive phenomena by 

constructing a tree at each intersection whose links correspond to reflected, refracted, 

and transmitted rays and whose nodes represent ray intersections with the scene. If 

we let D be the mean number of nodes in this tree (minimum of one), then noting 

that each ray, shadow or reflected/refracted, costs A o b j , the efficiency of classical 

raytracing is 0(NI!LyNobi(D + A r

l u m ) ) . As summarized by Arvo and Kirk in [1], many 

techniques have been devised to improve on this. With suitable restrictions on 

such Tenderer components as illumination model, luminaire model, and the spatial 

distribution of objects, considerable speedups are possible. Fujimoto et al. [23] cite 

rendering times that are practically independent of the number of objects in the 

scene (i.e.,'0(Ar

ra.yZ))) but this is quite optimistic. 

In classical radiosity, the computation of form factors is 0(N2

bi) and while 

the inversion of the transfer matrix is in principle as high as 0(N0

3

bl), it easily can 

be made 0(N2

bi) by iterative and other means. Considerable speedups of radiosity 

are possible with hierarchical radiosity, as presented by Hanrahan et al. in [32]. 

Smits et al. in [71] extended this work by introducing clustering. As reported there, 

hierarchical radiosity has a complexity of 0(N2

uif + Np::,tl,h), where Nsuit is the number 

of initial surfaces (proportional to Nobi) and NpiLich is the final number of patches 

(which is at least a linear function of Nsur{). Clustered radiosity, on the other hand, 

3This is assuming a limiting depth - see Fiume [17] for additional details. 

48 



has a complexity of 0(NSUIf log N3Ulf + iVpatch). The linear or superlinear dependence 

of ^ p a t c h ° n -^surf .has given rise to a considerable amount of interest in optimal 

meshing schemes. Obviously, a clever adversary can defeat these speed-up schemes, 

but in practice the expected values apply. 

In Lucifer, interactions are never between objects, but between a cell's walls 

and either the walls of neighboring cells or the object contained within the cell. 

Even though a particular cell may need to be balanced more than once, the number 

of times that needs to happen is dependent on the scene geometry, not on 7V c e l l. 

If the proportion / b a c k of power $ that comes back to the cell is fixed, then in 

order for the power to drop by a fractional tolerance ep w r, the cell must be balanced 

7V b a l times, where 

f&?* = ^*- (3-5) 

Taking the log of both sides, we find that ATbal is proportional to the log of ep w r. 

Hence, as may be inferred from Figure 3.3 the asymptotic efficiency of Lucifer 

is 0(T c e l l7V c e l l) where T c e l l is the cost of operation within a cell (a function of the 

maximum resolution used to express the radiance). Since our spatial partitioning 

scheme guarantees the number of objects, Nceli is 0(iVobj), Lucifer is intrinsically 

0(Nobi) - asymptotically more efficient than other global illumination schemes. 

It is important to note that in these techniques visibility is an important 

part (often the most important part) of the cost, and what makes it superlinear. 

Lucifer in a real sense "clusters" visibility, since it is carried along with the radiance 

representation from cell to cell. As an example, consider a light source blocked by 

a large object. 

Before it reaches the blocker, the light flux is represented normally, and small 

shadows will be carried along as well. After it reaches the blocker, a large portion 

49 



of the light flux will be zero, the small shadows included in it will be absorbed. Any 

scheme capable of compressing the light flux data will take advantage of this, and 

objects and cells in the shadow will not even interact with the resulting light front. 

To illustrate the trade-off consider the following scene. We have 7Vobj ~ 107 

objects4. 

Any approach that has to consider pairs (either for explicit light transfer or 

for visibility) will have to deal with an order of 10 1 4 such interactions. 

To represent light fluxes at an acceptable level of detail, assume that the 

space is 10m by 10m by 3m, and we want about 1 cm accuracy. If we impose a 

maximum cell size of l m 3 , that means we have have 300 cells to balance. 

For each cell wall, we then require a positional resolution of 100 by 100 

elements. If we assume the same resolution for direction (l/100th of a radian is 

approximately 0.57°) , we need to represent 108 elements on each wall. 

If we can use wavelet compression by 1000:1 (and we will see in Section 6.13 

that this is not unreasonable), radiances on the walls can be represented with 105 

coefficients. Even assuming that at each step of the propagation we deal with 0(N2) 

interactions between elements (wall-to-object, wall-to-wall, and object-to-wall), that 

means ~ 10 1 0 such interactions. Multiplying by the number of cells, we get ~ 3x 10 1 2 

interactions, which is a small fraction of the pairwise number, and this is not taking 

into account the speedups possible due to the hierarchical nature of the wavelet 

representation: If two coefficients do not interact, neither do any of their children. 

The actual number of such computations is a function of how many times and 

at what level of detail we have to do this, but even at this level we have some hope of 

winning. An important point here is that the Lucifer numbers do not significantly 

4 We should note here that in the Lucifer context, the definition of the term "object" might be 
more powerful than in some other contexts. 

50 



Figure 3.4: "Balls" Model 

increase as a function of the number of primitives in the scene. 

3.7 Light Through a Window 

Let us consider an example of what radiance L on a cell wall looks like. L is a 

function of four variables (2 positional, 2 directional). 

Figure 3.4 shows an instance of the "balls" model from Haines's Standard 

Procedural Database of test models for raytracers (described in [29]) rendered by a 

typical raytracing T e n d e r e r . We have adapted this Tenderer to perform 4-dimensional 

ray tracing after a "light through a window" model. In this, we imagine light from 

a scene going through a unit square window. We further imagine sampling the 

radiance over the incoming hemisphere of directions on a uniformly spaced grid of 

positions. (In Lucifer, the "window" corresponds to a cell wall, but we'll discuss the 

51 



1.0 — 

Figure 3.5: Array of Fixed Direction Views 

more general case here.) 

Before proceeding further, let us transform our definition of direction from a 

(6, (f>) parameterization to (fix,fj,y), where 

\ix = sin 9 cos (f> ny = sin 9 sin cf> (3-6) 

This avoids discrepancies close to 9 = 0 and makes for a more uniform grid in 

Cartesian 3-space. \j?x + fi2 = 1 defines the unit directional circle (hereafter, UDC) . 

All real directions must lie within this circle. 

The modified Tenderer permits us to create an array of images, each image 

corresponding to a single direction (Figure 3.5) or a single position on the window 

52 



0.75 — 

0.5 

0.25 — 

•••$9 
X 0.0 0.25 0.5 0.75 1.0 

Figure 3.6: Array of Fixed Position Views 

(Figure 3.6). In the former case, the individual images are parallel projections and in 

the latter case they are "fisheye" views. Note that, as in a perspective view, except 

in the special case of an orthographic (parallel) projection, a parallel projection of 

a sphere is not round. 

From these examples, we can see that a 4-dimensional representation of ra­

diance exhibits the same combination of discontinuities and relatively smooth areas 

we find in 2-dimensional images. 

r>3 



3.8 Radiance Representation 

Radiance on a cell wall is a potentially discontinuous, generally non-analytic function 

of four variables (2 positional, 2 directional). We can represent radiance L at a point 

P on a cell wall or a surface and in a direction (JJLx, /j,y) with a finite element expansion 

with Nj degrees of freedom: 

Even though the basis functions B{ may take on values for fj,x + /J,2 > 1, we can 

disregard their behaviour there, since we never evaluate them in that region. 

Choices for B{ include: box discretization, Fourier, discrete cosine, orthog­

onal polynomials, "light fields" (as described by Levoy and Hanrahan in [44]) and 

wavelets. 

3.8.1 B o x Discre t iza t ion 

For box discretization, as done by FIAT, the P>i are constant within a quantized 

direction for each quantized position. 

Figure 3.7 shows the result of Lucifer using a box discretization on a simple 

model consisting of three squares forming a corner of a (root) cell with two spheres 

suspended within the cell. The square on the upper right is a diffuse white emitter 

and the other two squares are diffuse red (bottom) and gray (upper left) reflectors. 

One sphere is a mirror and the other is a diffuse green reflector. This image illustrates 

some of the effects possible with Lucifer - diffuse surfaces, colour bleeding, soft 

shadows, and mirror reflection - all produced with the same rendering technique. 

There are various ways to perform propagation and object interaction of 

the discretized radiances. FIAT describes one possible way, equivalent to the one 

(3.7) 

54 

j 



Figure 3.7: Box Discretization Example 

we used for Figure 3.7. They have a common shortcoming, however: by quantizing 

angles and positions, box discretization causes various rendering artifacts. These can 

be reduced by increasing the number of quantized positions or directions, but this 

causes memory requirements to increase dramatically, even with dynamic allocation 

of memory. 

In practice, the CPU time and memory required for box discretization is 

limiting. Figure 3.7, for example, required about 9.3MB of memory and 3.2 CPU-

hours on an SGI Indigo 2 workstation. 

3.8.2 Wavelets 

Wavelets are a promising alternative to other basis functions. They were successfully 

applied to radiosity solutions by Gortler, et al. [28] and Schroder, et al. [65]. 

Schroder and Hanrahan [66] and Christensen, et al. [12] extended this work from 

55 



Figure 3.8: Original Image (left) and Its Reconstruction from 4-Dimensional Wavelet 
Coefficients (right) 

radiosity to the representation of radiance itself. In this section, we will consider 

the general applicability of such a wavelet representation of radiance to Lucifer. 

Appendix A describes some of the properties of one-dimensional wavelets. 

There are two properties of particular interest for radiance representation. First is 

their ability to approximate L2 functions, even those with discontinuities, with a 

relatively sparse set of coefficients. 

As an example of this, we apply wavelet compression to the 4-dimensional 

data shown in Figure 3.5. On the left of Figure 3.8 is a magnified view of one image 

from Figure 3.5 in a particular direction, on the right is a view in the same direction 

that was reconstructed from a 4-dimensional wavelet transform of the original data 

compressed by 96% - only the top 4% (in magnitude) of the original coefficients were 

retained. It is important to note that this compression was in all four dimensions 

56 



of the data prior to reconstruction. 

There is an infinite number of base scaling functions <j>(x) and therefore an 

infinite number of possible wavelets. For the example above, we used the L = 2 

"Coiflet" wavelet described in [16], for these, but other wavelets gave qualitatively 

similar results. Part of our work will be to find which wavelet basis works best for 

radiance representation. Most importantly, we need to evaluate the tradeoff between 

improving approximation by increasing Nv, the number of vanishing moments, and 

minimizing operation count by reducing Wh, the size ("support") of {hm}, the set 

of wavelet coefficients. 

Other considerations in selecting a wavelet include: 

• Is <j>(x) symmetric about some value of x? 

• Does 4>(x) need to have an analytical form? (This leads to biorthogonal 

wavelets.) 

• Does refinement of the wavelet interpolate the coarser values? 

• What is the tradeoff between reducing Wh and representing discontinuities 

compactly? 

The second property of wavelets relevant to Lucifer is their dyadic nature, 

which corresponds well with our octree spatial subdivision scheme. Splitting a cell 

whose walls represent radiance with with wavelets amounts to a partitioning of the 

wavelet coefficients. 

We will consider these issues further in Chapter 5. 

57 



Chapter 4 

Making Illumination Models 

More Physically Plausible 

In our presentation of the Lucifer algorithm in Chapter 3, particularly in Section 3.3, 

we described the need for illumination models that conserved energy. We will de­

scribe such models in this chapter. This work has been published separately in 

reference [45] and (more accessibly) in reference [47]. 

Illumination modelling computation is an essential part of any rendering al­

gorithm. Getting an exact physical model of the interaction of light with a surface 

is, for most surfaces occurring in the real world, a very difficult problem. Conse­

quently, much effort has been expended on finding approximations that are both 

good-looking and quickly computed. An extensive, if somewhat dated, summary of 

these illumination models is in Hall [30]. 

Looking good and being quickly computable are sufficient criteria for most 

raytracing Tenderers (see Section 2.5.7.3). If one of these illumination models is used 

in a radiosity computation, however, it is necessary to additionally ensure that, since 

58 



radiosity is based on principles of energy conservation (see Kajiya [38], for example), 

the illumination model itself conserves energy. The global illumination model we 

present in Chapter 3 also requires energy conservation. 

Another recent technique described in Larson (ne' Ward) [78] constructs 

functions to fit actual BRDFs. Such fits are likely to be more successful if the func­

tions themselves are, like the data they fit (as demonstrated empirically in Clarke 

and Perry [13]), consistent with physics (at least within experimental uncertainty). 

So a need has arisen for illumination models that are not only good-looking 

and easy to compute, but are also "physically plausible". 1 

In this chapter we will look at the correspondence between the fundamental 

reflectance equation (2.9) and traditional illumination models. Then we will look at 

ways to modify those models to make them more physically plausible. 

4.1 Energy Conservation 

The first physical constraint we will examine with respect to illumination models 

is that of energy conservation. Physically plausible illumination models must obey 

energy conservation. In a steady-state scene, the input power and the rest of the 

scene configuration (objects and their positions, surface properties, etc.) are taken 

not to vary with time. In such a situation, energy conservation is synonymous with 

power conservation. The total amount of power reflected, i.e., M dA, where M is 

the exitance, must be less than or equal to the total power incident Ed A, where E 

'We use the term plausible here in contrast to that of feasible in Neumann and Neumann [55]. 
A "feasible" illumination model is one that we can imagine constructing physically. This is not 
always possible. The weaker definition of a "plausible" illumination model is one whose existence 
does not violate physics. 

59 



is the irradiance. This must hold for all areas dA in our scene, hence 

M < E (4.1) 

From Siegel and Howell [68], we have an equation similar to Equation (2.7) 

describing the exitance dM due to a reflected radiance Lr radiated into an infinites­

imal solid angle dur around a direction V , so that 

dM = (N • V ) Lr dujr (4.2) 

We substitute Equation (2.9) into this and integrate over Q N to get 

M = / \ / , / r ( S 1 V ) L i ( N . S ) ( N - V ) d w 1 - d w r (4.3) 

We can also integrate Equation (2.7) to get 

E= f Li (N • S) dui (4.4) 

So, if we make the trivial assumption that E > 0, we divide both sides of 

Equation (4.1) by E to get 

/«+ /n+ ^(S, V ) L{ (N • S) (N • V ) ^ <Ly 

/ n + L , - ( N • S) dwi - 1 ( 4 - 5 ) 

Energy conservation does not depend upon the particular Li distribution. 

Given any Li, Equation (4.5) must hold, so, as we did with the Phong illumination 

models in Section 2.5.4.1, let us use a directional light source of the form 

Li = EN 5(cos0i - cosdt) <5((/>,• - <&) (4.6) 

to represent a directional source of normal irradiance EN in a direction S. Accord­

ing to the ANSI/IES standard [36], M/E in this case becomes the "directional-

hemispherical reflectance", which we will refer to as kp

2. Integrating the ^-functions 

2 In Neumann and Neumann [55] , this is referred to as "albedo", but that usage is imprecise as 
the definition of that term does not require a unidirectional source. In addition, "albedo" is not 
defined in the standard. 

60 



Figure 4.1: Specular Integrals HS(S) for Phong's F f (left) and Blinn's F? (right) 

p 10° 

45" 90" 135" 

20l 

45" 90° 135° 

30l 

45° 90" 135° 

40' 

45" 9<>" 135° 

50l 

45° 91 

0.00 • 
! 

| n ) • ) m j I § 1 
0.25 E 1 D • : f 

0.50 • c 1 I 
• 

| • 
0.75 

t j f c 1 E 3 D NO j • 
1.00 D o c 1 • E > 1 

Figure 4.2: Sphere shaded with an energy-conserving Phong illumination model, 
using Blinn's F S

B , for an assortment of incident angles with respect to the viewer 
( $ L ) I specular fractions (ka), and specular distribution half-angles (/3). 

and cancelling out common factors, we get 

kp = I / r ( S , V ) ( N - V ) f l ! u ; r < 1 (4.7) 

61 



4.1.1 Making Phong Illumination Models Conserve Energy 

Let us apply these results to a Phong illumination model to see what constraint(s) 

energy conservation leads to. Recalling Equation (2.27), Equation (4.3) becomes 

M = EN[kdn(N-S) + ksHs{S)} (4.8) 

where we have defined 

HS(S)= f F 8 ( S , V ) ( N - V ) d u v (4.9) 
Jot, 

Figure 4.1.shows Hs evaluated numerically usi-rig both Equations (2.20) and (2.21) 

for a variety of specular exponents. Note that Hs is a function of the incident 

direction and specular exponent only and that it can be thought of as an integral 

operator acting on a given Fs. 

As we might expect, Equation (4.4) becomes 

E = EN(N-S) (4.10) 

so that 

k p = kdn + k s ^ t (4.11) 

To guarantee energy conservation regardless of reflection geometry, it is nec­

essary to guarantee that kp < 1 for all incident directions. But there is a problem 

here. Given the F s 's in Equations (2.20) and (2.21) and regardless of S, it is always 

the case that Fs > 0 and, furthermore, there is always some non-vanishing region of 

£2+ over which Fs > 0. That means that Hs is always > 0, as Figure 4.1 illustrates. 

So that if ks > 0, it is always possible to choose close enough to 90° that kp 

will be greater than one. We therefore conclude that the specular terms of Phong 

illumination models do not conserve energy at sufficiently large incident angles. 

62 



After Neumann and Neumann [55], let us consider a different formulation 

of an illumination model. Start from Equation (2.19), but suppose that, instead of 

being constant, we allowed ks to vary with S in such a way that energy conservation 

was maintained. (As Equation (4.11) shows, we are not getting any trouble from 

the diffuse term, so we will leave it alone.) 

Let ka be the fraction of exitance that is reflected specularly: 

_ Jn+ dMspec 

K = M 
1 + 

^TT(N-S) 
ksHJS) 

We can solve Equations (4.11) and (4.12) for kd and ks to get 

(4.12) 

kd = K kp (1 - ka (4.13) 

kp K (N • S) 
HS(S) 

so we can rewrite the B R D F for the new illumination model as 

/ R(S,V) = * P 

l - k c kaFs{S,V) 
(4.14) 

HS(S) 

We can also construct the analogue of Equation (2.19) to express this result 

in terms of radiance: 

Lr = kaLa + kp (N • S) 
i - K kaFs(s,v) 

7T HS(S) 
Ed 

where 

h — h 1 +*-(4 ( N-s»^r , f c'-1) 

(4.15) 

(4.16) 

corresponds to Equation (2.28). 

Figure 4.2 shows what such an illumination model looks like when applied 

to a sphere with a single directional light source and no ambient radiance. For this 

63 



figure, we have used Blinn's F°. We have also taken kp = 1, since any other value 

would just be a uniform reduction by a constant factor in image radiance. Notice 

that, unlike Figures 2.4 and 2.5, the highly specular parts of the printed images are 

necessarily clamped in order to show the diffuse parts. 

4.1.2 Do Torrance-Sparrow Illumination Models Conserve Energy? 

Figure 4.3 shows some numerical integrations of Equation (4.7), contrasting Phong 

illumination models with Torrance-Sparrow illumination models. All Torrance-

Sparrow illumination models were computed with a Fresnel factor F = 1 (i. e. 

a large index of refraction) to show the worst case. 

One way to produce an energy-conserving Torrance-Sparrow illumination 

model suggests itself: simply choose any value of bj such that 

'kT]' 
[ b3 \ max 

(4.17) 

is the maximum value as shown in Figure 4.3. (The Beckmann-
max 

Spizzichino distribution is not a problem as long as its integral is always less than 

unity, and it has no 6-coefficient to adjust anyway.) 

Nevertheless, doing this would probably be a mistake. To see why, look 

at the plot for kTl/b\, the Torrance-Sparrow illumination model with the Phong 

microfacet distribution. Notice that it does not diverge as Oi 90°, even though 

k^/ks, the corresponding Phong illumination model with a Phong specular term, 

does diverge. The same is true for kj2/b2 compared to kB/ks. 

Why should this be? The answer lies in the geometrical attenuation factor 

G. As Oi —> 90°, G is guaranteed to be less than or equal to unity and, if ( V - H ) > 0 

(i.e., V and S are not antiparallel), it will vanish in the limit. 

64 

where 



0 1 ' ' 1 0 1 ' • 1 
0 30 60 90 0 30 60 90 

Figure 4.3: Directional-hemispherical reflectances as functions of incident angle for 
a Phong illumination model (kp), a Blinn illumination model (kf), and Torrance-
Sparrow illumination models with Phong (kj1), original Torrance-Sparrow (kj2), 
Trowbridge (kj3), and Beckmann-Spizzichino (kj4), microfacet distributions. 

65 



Figure 4.4: Directional-hemispherical reflectances as functions of incident angle for 
a Neumann-Neumann illumination model (k^) and a Minnaert illumination model 

But what does this really mean? If we go back to the derivation of the geo­

metrical attenuation factor in Torrance and Sparrow [75], we see that G is designed 

to compensate for the blocking of light that falls on a facet and the masking of light 

that the facet reflects. The blocking and masking agents are themselves other facets. 

This leads to a critical question for Torrance-Sparrow illumination models 

and energy conservation: What happens to the light that gets blocked or masked? 

The illumination model does not treat secondary reflection. Instead, it acts as 

though the blocked or masked light were completely absorbed by the surface. This 

is unlikely. 

For this reason, while it may be reasonable to consider the use of Torrance-

Sparrow illumination models as ad hoc basis functions to fit empirical data, as 

was done in Larson [78], we should do so realizing that it is not really "fair" to 

use Torrance-Sparrow illumination models in an energy-conserving context. Basis 

functions that properly account for blocked and masked light are needed, but we 

will not attempt to derive them here. 

66 



4.1.3 Making Neumann-Neumann and Minnaert 

Illumination Models Conserve Energy 

Figure 4.4 shows some numerical integrations of Equation (4.7) for Neumann-Neumann 

and Minnaert illumination models. Contrast these with those of Figure 4.3. 

Like the Torrance-Sparrow illumination models, kp is bounded in both cases, 

so we can put a limit on bpj or &jvf to assure energy conservation. 

In the case of a Minnaert illumination model, we can go a bit further and 

note that kp can be determined analytically (using Equation (2.27), as was done in 

Woodham and Lee [85]). The resulting B R D F can be formulated directly in terms 

of A;,,: 

/ r (S , V ) = fcpi*±i) ((N • S) (N • V ) ) ^ 1 (4.18) 
Z7T 

where, as always, any value of kp between 0 and 1 will guarantee energy conservation. 

4.2 Making Illumination Models Reciprocal 

The second physical constraint we will examine with respect to illumination models 

is that of Helmholtz reciprocity. A physically plausible illumination model ought to 

obey Helmholtz reciprocity (see Siegel and Howell [68]). In terms of the B R D F , this 

means that 

/ r ( S , V ) = / r ( V , S ) (4.19) 

for all V and S in £2+. 

4.2.1 Are Phong Illumination Models Reciprocal? 

Using the B R D F of a Phong illumination model given in Equation (2.20), and 

expressing FS in the functional form F S ( S , V ) , we see that such an illumination 

67 



model will be reciprocal if 

F S(S,V) F S(V,S) 
(4.20) 

(N-V) (N-S) 

Substitution of both from Equation (2.20) and F S

B from Equation (2.21) 

reveals that neither of these illumination models is reciprocal3. 

Is our energy-conserving modified Phong illumination model reciprocal? Ap­

plying Equation (4.19) to Equation (4.14), we are asking if 

F S(S,V) F,(V,S) 
H,(S) . H.(V) { • 1 

Again, the answer is no for both F s 's . 

4.2.2 Are Torrance-Sparrow Illumination Models Reciprocal? 

By inspection, it is easy to see that the Torrance-Sparrow illumination models are 

all reciprocal. This should come as no surprise, as the assumption of reciprocity was 

part of their derivation in [75]. Unfortunately, the arguments made above about 

their energy conservation still limits their plausibility. 

4.2.3 Are Separable Illumination Models Reciprocal? 

It is also easy to see by inspection that both Neumann-Neumann and Minnaert 

illumination models are reciprocal. Again, this is because reciprocity was part of 

their derivation. 

As with Torrance-Sparrow illumination models, separable illumination mod­

els could be used as ad hoc basis functions. Care needs to be taken, though, to retain 

reciprocity. Given two separable BRDFs / ri(S, V) = ai(S)ri(V) and / r2(S, V) = 

«2(S)r 2(V), a simple linear combination of the form / r(S,V) = ci/ r i(S,V) + 

C2/r2(S, V) for some constants c\ and C2 is not, in general, reciprocal. 

'Even though F? (S, V) = Ff (V,S). and Ff(S, V) = Ff(V,S). 

68 



We can, however, generalize the work of Westin, et al. [82] and note that if 

we can express the B R D F in a separable matrix product form 

/ r ( S , V ) = [ Q ( S ) ] T M Q ( V ) (4.22) 

where Q(x) is some (possibly non-linear) vector function of x and M is a constant 

matrix, then this B R D F is reciprocal for any symmetric M . This is how we could 

combine multiple Neumann-Neumann, Minnaert, or other similar basis functions: 

set them to be the elements of Q and find a symmetric M to fit our data, as Westin, 

et al. did for spherical harmonics. 

4.3 An Energy-Conserving, Reciprocal Illumination Model 

Objections can be raised to all of the illumination models we are presented so far, 

either on the grounds of implausibility (Phong) or of behaviour that, while plausible, 

is unlikely to fit a real B R D F (Torrance-Sparrow, Neumann-Neumann, Minnaert). 

Consider instead a Phong illumination model formulated like Equation (2.24), 

but using Blinn's and omitting the ( N • S) in the denominator of the specular 

term, we find 

fr(S,V) = kd + ksF?(S,V) (4.23) 

Obviously, since Ff is reciprocal, this B R D F is reciprocal. (We could also have 

done this with Fp, since it is also reciprocal.) 

Figure 4.5 shows the resulting kp. It is bounded, so we can always conserve 

energy by limiting ks and kd. (Unfortunately, we cannot formulate the illumination . 

model in terms of kp and k„ as we did above, since doing this makes the illumination 

model non-reciprocal.) 

69 



beta = 10 deg 

0 30 60 90 

Figure 4.5: Directional-hemispherical reflectance as a function of incident angle for 
a reciprocal Phong illumination model, using Blinn's (k^) 

Plausibility 
Conserves Other 

Illumination Model Energy? Reciprocal? Objections 
' Phong no no 
Energy-Conserving Phong yes no 
Torrance-Sparrow yes yes no secondary reflection 
Neumann-Neumann yes yes non-specular behaviour 
Minnaert yes yes non-specular behaviour 
Reciprocal Phong-Blinn yes yes 

Table 4.1: Summary of Plausibility Results 

Figure 4.6 shows some images produced with a reciprocal Phong illumination 

model. As in Figure 2.4, ks varies between 0 and 1 and kd is taken to be 1 — ks. 

While resembling Figure 2.4, the images for large are dimmer, as we might 

expect from the absence of the (N • S) in the specular denominator. Nevertheless, 

they are not as diminished as those of the separable illumination models in Figure 2.5 

(which does not even bother showing > 60°) . 

70 



p 

0.00 

0.25 

10" 

45" 90" 135' 

20° 

45" 9(1" 135' 

30° 

45" 90° 135° 
40" 

45° 90° 135" 

50" 

45" 91 

0.50 

0.75 

1.00 

II 
11 ( ; ! 

( 

I t 

l 

I 

! 

IO 
B H , J l 

II 1 % c i 
• 

I'll 

1 * 
up 1 w i 

i 
n 1 

Figure 4.6: Sphere shaded with a reciprocal Phong illumination model for an assort­
ment of incident angles with respect to the viewer specular coefficients (ks), 
and specular distribution half-angles (3) 

4.4 Summary of Plausibility Results 

We have examined a number of illumination models commonly used in graphics, 

looking at their plausibility in terms of energy conservation and reciprocity. Our 

results are summarized in Table 4.1. 

As originally defined, Phong illumination models fail on both counts. It is 

possible to modify a Phong illumination model to conserve energy and even, as 

shown in Equation (4.14), have an energy-based parameterization, but this rules 

out satisfying reciprocity. 

Torrance-Sparrow illumination models are reciprocal and appear to conserve 

energy, but their underlying derivation fails to account for blocked and masked 

71 



energy. They may still be useful, however, as ad hoc basis functions. 

Neumann-Neumann and Minnaert illumination models are similar. Both are 

plausible: they conserve energy and are reciprocal. Minnaert illumination models 

have been used successfully to fit radiometric data. While it would be worth trying 

one of them as a basis, we expect that they will prove less useful with highly specular 

surfaces because both illumination models peak undesirably in the normal direction. 

A differently-modified Phong illumination model given in Equation (4.23) is 

reciprocal and can be constrained to conserve energy. 

72 



Chapter 5 

Wavelet Radiative Transport 

and Surface Interaction 

In Section 3.8.2, we discussed how wavelets show promise for the compact repre­

sentation of radiance needed by Lucifer. In this chapter, we will see that apart 

from compression, representing radiance in terms of a wavelet basis with direction 

expressed in "Nusselt coordinates" makes several calculations of relevance to illu­

mination computation easier. 

In particular, we will show how to construct discrete representations of the 

radiative transport operator T (defined in Section 2.4.1) and the surface interac­

tion operator S (defined in Section 2.4.3) in terms of inner products of smoothing 

functions. The blocked propagation operator B (defined in Section 2.4.2) can be 

constructed from the realization of T and will be presented in Chapter 7. Notice 

that these all act directly on wavelet coefficients themselves and do not require a 

full inverse wavelet transform. 

73 



0.5 K . U D C 

Figure 5.1: Nusselt Coordinates 

5.1 Radiance in Nusselt Coordinates 

As we discussed in Section 2.4.1, radiance at a point P in a direction S is usually 

represented by a function L(P,S). If we confine our discussion to surfaces, we can 

assume a planar (possibly local) parameterization for P of (u, v). S is then typically 

represented in polar and azimuthal coordinates (9, 4>) according to the local frame 

of reference. 

Consider the x, y, and z direction cosines corresponding to a direction (9, cj>): 

[ix = sin 9 cos (f> Hy = sin 9 sin 4> fMz = cos 9 (5-1) 

We take (^x,ny) to be an alternative parameterization of direction. 

It is convenient in what follows for all variables to vary between the extrema 

of 0 and 1, so let us make a change of the directional variables from (/j,x, ny), which 

we used in Section 3.7 to define the U D C , to (K, A): 

K = M , ± 1 A = ^ + l ( 5 2 ) 

Figure 5.1 shows the relation between (9,cf>) and (K, A) graphically. It also shows 

74 



the U D C . 

To convert integration over (8, <fi) to integration over (K, A), the determinant 

of the Jacobian is: 

so, assuming L{ is zero for directions outside the directional limiting circle, Equa­

tion (2.11) becomes 

ft f i 

That the integral no longer contains trigonometric functions should come as 

no surprise. We have simply used a differential form of the "Nusselt analog" ([56], 

but see Cohen and Wallace [14] for a description in English): the amount of power 

per unit area transferred from a differential solid angle du{ is proportional to dn{d\i, 

the area of the surface that the projection of dcoi on a unit sphere subtends. For 

this reason, we refer to n and A as "Nusselt coordinates". 

We also note that, since pix + fj,2

1+fi2. = l and since each vector is defined 

only over a hemisphere, not the whole directional sphere, we can express S+, S~, 

and V all unambiguously in terms of their respective incident and reflected K'S and 

A's. Simply put, it is always clear which sign to attach to the square root. 

Other ways to parameterize the directional component of a radiance distri­

bution are possible. Light fields (as in Levoy and Hanrahan [44]) and lumigraphs 

(as in Gortler, et al. [27]), are very promising approaches for display purposes. 

Christensen, et al. [12] use a combination of a gnomonic projection and "stretch" 

to map directions to the unit square. None of these approaches, however, leads to 

the simplification of surface interaction that Equation (5.4) demonstrates. 

0 ( K , A ) cos 8 sin 8 
4 

(5.3) 

L = Le + 4 

75 



5.2 Radiance Representation 

What are the characteristics of a four-dimensional radiance distribution L(x, y, K, A)? 

The easiest way to visualize this is as "light through a window" where an observer 

at position (x, y) on a window casts a ray in direction (K, A). For a fixed direction, 

the resulting two-dimensional projection is a parallel projection1, as shown in the 

individual cells of Figure 3.5. For a fixed position, the distribution in (K, A) would 

be a "fisheye" view, as shown in the individual cells of Figure 3.6. 

In both cases, the result is an image, so we can deal with those radiance 

distributions as we deal with images. 

Radiance at a point on a surface is a potentially discontinuous, generally 

non-analytic function. We can approximate it with a finite element expansion with 

Nf degrees of freedom: 

Nf 

L(x,y,K,\) = ^2bjBj(x,y,K,\) (5.5) 

i=i 

Choices for the basis functions Bi include box discretization (a la FIAT), Fourier, 

discrete cosine, spherical harmonics, orthogonal polynomials, and wavelets. We are 

particularly interested in wavelets because, unlike the other bases listed, their basis 

functions are of limited support and they can represent discontinuities compactly. 

They are also capable of considerable compression. 

5.3 Multidimensional Wavelets 

Appendix A summarizes the properties of one-dimensional wavelets. In this section, 

we will describe multidimensional wavelets with the intention of applying them to 

radiative transport and surface interaction. 

'The special case (K, A) = ( i , | ) is an orthographic projection. 

76 



For D-dimensional coordinates 

q = (gi, ? 2 , . - • • , ? £ ) ) , (5.6) 

we can define a set of multidimensional wavelet basis functions indexed by a standard 

multiresolution index 

j = {y\l\,m\,V2,m?2,... ,VD,m>D) (5.7) 

where i>3, which we call the "basis selector", determines the combination of one 

dimensional smoothing and wavelet functions: 

£ j ( q ) 

(?l)<^mj(</2) 

^ ^ • ( 9 1 ) ^ ^ ( 9 2 ) 

• •<t>tj ML {.QD) i>j = 0 
D D 

• •<f>ij mi (QD) V>',= 1 
D D 

<t>i[m[ ( ? i ) ^ i m i (92) • • . ^ m , D (go) (5.8) 

1 

We refer to the special case of v3 — 0 as the "pure smoothing" component, as the 

corresponding basis function is made up of only smoothing functions. 

We can apply Equation (A.10) multi-dimensionally. If we have j as in Equa­

tion (5.7) and define k as 

then 
D 

d=l d-d "*d"-d 

(5.9) 

(5.10) 

(Note the use of the subscripted inner product described in Section A.3.) JS; is iden­

tical to 5j as defined in Equation (5.8), but with the primal wavelets and smoothing 

functions replaced by their duals. 

77 



This is the "standard" multidimensional Cartesian product basis. It is also 

possible to constrain l\ = V2 = ... = lJ

D = P, resulting in the so-called "nonstandard" 

basis. In general multidimensional (especially image-oriented) applications, as cited 

in Daubechies [16] and in Schroder et al. [65], the nonstandard bases are preferred 

because of their "square" support. 

In this paper, we are considering 4-dimensional, nonstandard basis functions, 

so let us enumerate the coordinates with the 4-vector 

q = (U,V,K,\) 

and the basis functions with a nonstandard multiresolution index 

(5.11) 

j = (i/,l,mu,mv,mK,mx) (5.12) 

Using Equations (A.l), (A.3), (A.5), (A.6) and (5.8), all the basis functions 

at level I of the pyramid can be written in terms of the v = 0 basis functions at level 

E m hm'uhmivhmiKhm^£0(/+1)(2m+m/)(q) v = 0 

l^m' arn!uhm:vhmlKhm^B0^+1^2m+m'){'i) V=\ 

Jim'9m'uSm'vSm'liSm'xBo(l+l)(2m+m'){ci) V = 15 

where m' = (m'u, m'v) m'K, m\). 

So for any function / , 

(/ | Buim)q = Y^,Wvm> | S 0 (f + l)(2m+m')) 

where Wvm> is (4 times) a product of smoothing and wavelet coefficients. 

78 

(5.13) 

(5.14) 



5.4 Irradiance 

Irradiance is computed as 

E(x,y)= [ Li(x,y,e,<P) | N • S | du{. (5.15) 

Again making use of Equation (5.3), we have 

E(x,y) = 4f f Li(x,y,K,X)dKidXi. (5.16) 
Jo Jo 

The limits of the both integrations are 0 and 1, but if Li is zero outside the U D C 

(see Figure 5.1), we can safely extend the integration limits to — oo and +oo. 

This allows us to say that if 

Li(x,y,K,X) = Y,bjBi(x,y,K, A ) (5-17) 
j 

then 

E{x,y) = 4YJb-i{B-i\l)KX (5.18) 
j 

is the wavelet representation of the irradiance. 

The inner products on the right hand side are usually easy to compute in tab­

ular form, if not analytically, making particular use of Equation (A.4) to eliminate 

many coefficients. 

5.5 Power Flux 

The power flux passing through an area A is defined as 

$= / / Li(x,y,6,<f>) | N • S | duidA = f E{x,y)dA (5.19) 
JA 7n£ JA 

If we have a spatial parameterization (u,v) <-> (x,y) that maps the unit 

square to A and back, then we have 

r)ix iA 
dudv. (5.20) *=. /' C E(x(u,v)Mu,v)) 

Jo Jo o{u,v) 

79 



If, as above, we take E(x,y) = 0 for (x,y) outside of A and if we extend Equa­

tion (5.17) to include this parameterization: 

Li(x,y,K,X) = ^2biBi(u(x,y),v(x,y),K,X), (5.21) 
j 

then we can incorporate Equation (5.18) to get the wavelet representation of flux: 

* = 4 £ * i ( S j | • (5-22) 

5.6 Transport 

We represent radiance as 

where 

J , (q) = J > k £ k ( q ) (5.23) 
k 

bk = (L\ B k ) q (5.24) 

and k is defined as in Equation (5.9). 

Radiance travels from a source point q s to a destination point q ^ . If we have 

a mapping of q s —> q ^ , we can compute 

Ld(qd) = J24Bk(qd) (5.25) 
k 

where 

bi = (Ls(qs(.))\Bk 

= z2bIT^ (5-26) 
j 

j is defined as in Equation (5.7), and we define geometry-dependent "transport 

coefficients" 

T j k = ( f i j (g s ( - ) ) |B k ) , (5.27) 

80 



Using the multidimensional refinement shown in Equation (5 .13), given T(Q/ .M.) 

on level lj, we can compute all coefficients on the coarser level above it in the pyra­

mid: 

m' 

and given Tj(oj f cmfc) on level 4, we can compute 

T jK(/ f c - i )m f c ) = zZW^m"Ti{0ik(2mk+m")) 

(5.28) 

(5.29) 

where m ? = (m3

u, mJ

v, mj,, m3

x) and m/, = (m^, mjj, m^). This means that we can 

compute all transport coefficients strictly in terms of pure smoothing components: 

(5.30) 

5.7 Surface Interaction 

Using Equation (5.8), let us define a mixed primal-dual, four-dimensional, nonstan­

dard wavelet basis: 

( 
fern' (Ks)<t>Vm> (K)4>ljmi (Kr)<f>lJmJ (K) "J = o 

A K \ 

^ > m ^ ( « » ) ^ > m i ( A » ) ^ / i m > («r)0,>m> (Ar) V = 1 

^ > m j > » ) V W . (A s )^- , (/t r)^m J"(A r) ^ = 2 ' (5.31) F J ( K S , A S , K R , A R ) — < 

where 

^Umu{Ka)lPlJmi {K)^l3m3 («r )^/> m i (Ar) ^ = 15 
A K A 

j = (^,^,ra J

K ,ro\ ,r<,m^) (5.32) 

So Fj (K S , A S , « R , A R ) is Bj (KS, A S , K R , A R ) with dual scaling functions and wavelets 

substituted for the primal scaling functions and wavelets in the incident directional 

components only. 

81 . 



If we then represent the B R D F in Nusselt coordinates with this basis: 

fr ( K S , A S , Kr, A R ) = ^2 / J F j A S , Kr, A R ) (5.33) 
j 

and 

Li(x,y,Ks,Xs) - Y^bkBk(x,y,ns,\s) (5.34) 
k 

where 

k= (vk,lk,mk

u,mk,mk,mk

x) (5.35) 

then, applying Equation (5.4) and again requiring either fr or L ; (or both) to 

vanish outside the U D C (thus allowing us to extend our integration to (—00..00)), 

the reflected radiance is 

Lr = 4 f1 fr(S+,V)Li(S+)dKsd\a 

JO JO 

= 4 E - E J i 6 k < i ? j i B k > K . , A . ( 5 - 3 6 ) 
j k 

We seek a wavelet representation of the post-interaction radiance: 

Lr - ^2br
nBn(x,y,Kr, Xr) (5.37) 

n 

Again using the basis representation of the reflected radiance as in Equations 5.23 

and 5.24, it follows that 

br
n = (Lr I Bn) (5.38) 

So, substituting Equation 5.36, we find 

• bn = *z2EfIb*{(F>\B*)Ks,X3\Bn) : (5.39) 
J k 

Let us now simplify notation. We can rewrite Fj and Bk compactly by 

defining a function Cfm(x) that takes on the value of the smoothing function or the 

82 



(5.40) 

wavelet depending on a single binary value 8: 

<t>im{x) 8 = 0 

lplm{x) 8 = 1 

and similarly for a f with <f> and tp in place of <j> and V> respectively. 

We also take indexable (from 0 to 3) representations of the arguments to Fj 

and 5k, respectively 

p = (KS, X S , K R , Ar) (5.41) 

and 

q = ( U , V , K S , \ S ) . (5.42) 

If we now adopt the notation where refers to the ctth bit of the binary 

form of i (i.e. i2~a mod 2), we can express the innermost inner product of Equa­

tion 5.39 as 

1 . j .k 3 1 =il il n (**) n <i C?KS d\s 

(5.43) 

and removing factors that do not depend on the variables of integration from the 

integral, we have 

f <°> I f <2> c"0> I f ( 3 ) 

.Sim' 1 Vm* 
As 

^ ( ^ ^ ( ^ e ^ K ) ^ ^ ^ ) 

If we now define a multiresolution delta tensor 

(5.44) 

A C T — C (") I t (T> 

we can rewrite Equation 5.44 as 

(5.45) 

(5.46) 

83 



and we can continue to apply the A symbol to simplify the whole nested inner 

product in Equation 5.39 

(<*S I * k > » . , A , I B*)XtVtKriXr = A g A ] 3 A™ A i i A g A g . (5.47) 

The As are very much dependent upon our choice of wavelet, so we will defer 

discussing their computation to Chapter 7. 

We can do the same thing with a B T D F and so represent general surface 

interactions: reflection, refraction, and transmission. 

84 



Chapter 6 

Wavelet Radiative Transfer 

Implementation and Pract icum 

In this chapter, we discuss the implementation of the W R T algorithm (hereafter, 

"WRT'), along with a practicum ("a course of study ... that involves the super­

vised practical application ... of previously studied theory"). We apply some of 

the concepts of Chapter 5 to a classic illumination problem: the transport of radi­

ation between two arbitrarily-oriented polygons. Before that, however, we describe 

naming conventions, design decisions, and classes that apply to both WRT and the 

Lucifer implementation we discuss in Chapter 7. 

These implementations take up approximately 30,000 lines of C code. We 

therefore emphasize that the classes and pseudocode we present here are in most 

cases simplified for clarity. 

85 



Class Prefix Meaning 
Polygon pgn a 2D polygon with an arbitrary number of edges 
Transform tf a conventional 4 x 4 afhne 3D transform 
Transform2d tf2d a conventional 3 x 3 afnne 2D transform 
TransportGeometry tg geometry for W R T 
WaveletCoefRcientTree wet a W C T (sparse tree of wavelet coefficients) 
Waveletlndex wi indexes a wavelet coefficient 
WaveletNode wn a single node of a W C T 

(16 f l o a t values per channel) 

Table 6.1: Major WRT Classes and Their Abbreviations. 

6.1 Naming Conventions 

Throughout WRT and Lucifer implementations, we have followed certain program­

ming conventions that we feel have improved reliability and flexibility and allowed 

many of the benefits of object-oriented programming while developing in a highly 

portable environment1. We describe those conventions here to enhance the read­

ability of what follows. 

The most visible conventions are those we use to name objects (i.e., C data 

structures) and their associated methods. They are an adapted form of what are 

known as "Hungarian" conventions2, partly in deference to the nationality of their 

chief developer, Charles Simonyi [70]. 

As implemented here, all classes have C t ypede f s associated with them. 

Their names are mixed case. For example, three dimensional vectors have a t y p e d e f 

"Vector". Each class also has a lower-case prefix. Every instance of that class (i.e., 

object) has a name that begins with that abbreviation. The rest of the object 

name describes the particular object in mixed case. An example of the "Vector" 

'indeed, the code moves between IBM A1X, SGI IRIX, and Intel (RedHat) Linux with fewer 
than 50 system-dependent lines of code, mostly due to differing system header files. 

2 See McConnell [50] for an additional discussion of Hungarian naming, particularly as practiced 
at Microsoft. 

86 



^max ' 1 2 3 4 5 6 7 8 

Number of Bits 9 1 4 1 8 2 3 2 7 3 1 3 5 4 0 

^raax 9 1 0 11 1 2 1 3 , 1 4 1 5 16 

Number of Bits 4 4 4 8 5 2 5 6 6 0 6 4 6 8 7 3 

Table 6 . 2 : Number of Bits Required to Store a Nonstandard Multiresolution Index 
as a Function of the Maximum Resolution Level 

class might be "vNormal". The prefix, followed by a also prefaces the names 

of ("member") functions that take a data structure (or a pointer to such a data 

structure) as a first parameter. This allows us to represent the object-oriented 

concept of a "method" in C. For instance, we have a function vjmagQ that returns 

the magnitude of its first (and only) argument, a Vector. Table 6 . 1 lists the major 

classes of WRT (and Lucifer) with their prefixes. 

6.2 Indexing Wavelets 

Wavelet indices contain the six integer values referred to in Section 5 . 1 : 

• the basis selector v £ { 0 . . . 1 5 } , as used in Equation ( 5 . 8 ) , 

• the level / £ { 0 . . ./max}, where / m a x is the maximum depth of resolution, and 

• a vector of four offset values m with each component ra; € jo .. .I1 — 1 j (for 

Haar). 

Theoretically, the total number of bits required to represent a wavelet index 

is 4 + [log 2(/m a x + 1 ) ] + 4 / m a x . Table 6 . 2 shows this quantity for several possible 

values of / m a x . If we represented the coefficients as single channel 32-bit floating 

8 7 



typedef struct { 
short int nu\ 
short int /; 
short int m[4]; 

} Waveletlndex; 

Figure 6.1: The Waveletlndex typedef 

point values, then for any value of lm3uX > 6 we would use more storage for indices 

than for coefficients. 

For speed of access, it is advantageous to use data that is at least 8-bit 

byte-aligned. 

6.3 The Waveletlndex Class 

Figure 6.1 shows the wavelet index typedef we have adopted for our implementation. 

The names and sequence of the components are consistent with Equation 5.12. 

For the time being, we have implemented all of these fields as short (16 bit) 

unsigned integers. This allows us to go as far as level wi.l = 16 without overflowing 

the offsets. Experience suggests that the maximum level we will use will be much less 

than 16. We could achieve a minor reduction in memory usage by using unsigned 

char variables for wi.nu3. 

The implemented structure requires 96 bits, which is 19 bits (31 %) larger 

than the theoretical minimum given in Table 6.2, but as we shall see in the next 

section, it is possible to group coefficients in such a way that the overhead of having 

to store their indices is minimal. 
3but not wi.l, since it needs to represent levels from 0 to the maximum level inclusively. 

88 



6.4 Storing Wavelet Coefficients 

Because wavelet coefficients are hierarchical in nature, we refer to the data structures 

we devise here to store them as "wavelet coefficient trees" (hereafter, "WCT"s). 

Representing a W C T with a maximum level of resolution / m a x requires I 6 ' m a x + 1 

possible wavelet coefficients per channel. Clearly, compression is called for. In Sec­

tion A.7, we describe how wavelet properties provide an L 2-optimal compression 

strategy - thresholding low-magnitude coefficients. In this case, the data was single-

channel and single dimensional (i.e., each wavelet coefficient's support was unique), 

but the results are independent of the wavelet dimensionality. 

We not only want to guarantee a good approximation of the data with the 

compressed coefficients, but also efficient use of storage and fast reconstruction. We 

will give an example of wavelet compression in Section 6.13. 

6.4.1 Hashing Coefficients 

Given a sparse set of wavelet radiance coefficients {&k}> we need to store them in 

a way that facilitates the mapping of the wavelet index k —r bk needed to perform 

the transport operation Equation (5.26). The obvious way to do this is with a hash 

table. Not knowing the set of destination indices {k} in advance prohibits perfect 

hashing, so it is necessary that the hashing scheme allows for collisions and that the 

hash table entries contain k as well as 6k values. 

6.4.2 Multichannel Grouping 

As we mentioned in Section 2.4.1, we have been treating data monochromatically 

throughout this thesis. In practical applications, however, we must evaluate Equa­

tion (5.26) for all three (or however many) channels. Having assumed a non-

89 



participating medium, the transport coefficients Tjk are achromatic. Evaluation 

of Equation (5.26) simply means multiplying each element of a (now) 3-vector b- by 

the same value of Tjk and accumulating the result in another 3-vector b^. 

In the absence of the need for compression, it would be convenient to group 

all channels of 6| into a single group, rather than create a separate representation 

for each channel. In the presence of compression, however, each channel has its 

own threshold. If one component is above its threshold but the other two are below 

theirs, saving the latter is a waste of storage. This would be mitigated, however, if 

there were a high degree of correlation between the magnitudes of the coefficients. 

Certainly, a wavelet representation of white light given off by a luminaire displays 

a high degree of correlation. When this light is reflected off a surface of varying 

spectral reflectivity, however, that correlation will be diminished. By how much 

depends on the nature of the surface. 

We have two choices here: to group or not to group multichannel data. 

For the time being, we have chosen the former - believing that there is sufficient 

correlation and advantage in retrieval speed in most situations to justify grouping. 

This definitely requires further study. 

6.4.3 Hashing Nodes Instead of Coefficients 

In one dimension, a node in the wavelet pyramid contains a single wavelet coefficient. 

In four dimensions, such a node has one pure wavelet (y = 15) coefficient and 

fourteen mixed wavelet/smoothing [y G {1...14}) coefficients. (Recall that the 

pure smoothing (y = 0) coefficient may be reconstructed from the node's ancestors, 

if any, and only needs to be kept at the root node.) All coefficients at a given node 

correspond to basis functions with the same (Haar) or similar (other bases) support. 

90 



typedef struct { 
int iWnOfHash[int mxnIWnOfHash]; 
struct WaveletNode { 

Waveletlndex wi\ 
unsigned short mskChild; 
unsigned short mskNu; 
int iWclFirst; 

} wnBase[int nWn]; 
struct WaveletCoefficientList { 

float 6 [3]; 
int iWclNext; 

} wclBase [int nWc/]; 
double umrad; 

} WaveletCoefficientTree; 

Figure 6.2: The WaveletCoefficientTree typedef 

We might therefore expect to find a higher degree of correlation in magnitude 

between coefficients that belong to the same node and coefficients that do not. This 

suggests that we can reduce the index storage overhead by hashing entire nodes 

rather than individual coefficients. 

6.5 The WaveletCoefficientTree Class 

Figure 6.2 shows the fundamental structure we use to represent wavelet coefficients: 

WaveletCoefficientTree. Note that the code in the figure is not legal C code: we have 

combined several subsidiary classes and moved some component definitions around 

to indicate dynamically-sized structures in an obvious (we hope) way. 

Given a WaveletCoefficientTree wet, wet.iWnOfHashf] is the hash table itself. 

It is indexed by the hash of a (pure smoothing) wavelet index. Its entries are indices 

into wct.wnBase[], the array of wavelet nodes. Note that the use of integer indices 

rather than pointers allows the dynamic resizing of wct.wnBase[]. 

Each node contains the corresponding wavelet index. This is not only use-

91 



source 

y, 

parametric object 

destination 

object 

world 

0 H, / 

parametric 

Id 

Figure 6.3: Coordinate Systems. The gray quadrilaterals represent the support of 
source and destination bases. 

ful for hash collision detection, but by indexing wct.wnBase[], we can traverse all 

nonzero entries in wet directly, wet. wnBase[i].mskChild is a 16-bit mask indicating 

which of node t's 16 children are also present in wet. wct.wnBase[i].mskNu is a 

16-bit mask indicating which basis selectors are present in wet for node i. 

wct.wnBasefij.iWclFirst is the index of the first element of a list of wavelet 

coefficients in wct.wnBase[i].wclBase[]. The elements are ordered in increasing 

basis selector value, which is derived from wct.wnBase[i].mskNu. Each element 

wct.wnBase[i].wclBase[j] contains the index wct.wnBase[i].wclBase[j].iWclNext of 

the next-higher set of multichannel coefficients belonging to node i. (The last ele­

ment in the list has this index set to -1.) 

6.6 Representing Transport Geometry 

To establish the q s f-> mapping we need in order to transport radiance from 

source to destination, we must deal with several coordinate systems, as shown in 

Figure 6.3: source parametric, source object, world, destination object, and desti­

nation parametric. Obviously, source object to destination object is best done with 

92 



a conventional affine transform (with projection), but there are several choices pos­

sible for the parametric object mappings: rectilinear, perspective, and bilinear. 

All of these are local to the sending or receiving surface. 

6.6.1 Rectilinear 

This is the simplest possible mapping: 

x W 0 u 
(6.1) 

y 0 H v 
W and H are the dimensions of a bounding rectangle. If the object is a 

rectangle, an obvious strategy is to choose coordinates in which W is its width and 

H is its height. This will ensure that the (inverse) transformed object completely 

fills the unit square. Otherwise, or in the more general case of an arbitrarily-sided 

polygon, when computing Tjk we must clip the (square) support of Bj (source) or 

i?k (destination) against the polygon when integrating. 

A major advantage of the rectilinear mapping is the ease of computation of 

the Jacobian determinant: 

which makes the power flux computation shown in Equation (5.22) very easy: 

d{x,y) 
d(u,v) = WE 

(6.3) 
j 

especially in the case of Haar wavelets: 

$ = AWHbQ. (6.4) 

93 



6.6.2 Perspective 

This mapping allows us to represent the more general quadrilaterals without the 

need to clip: 

xw A n A12 A13 u 

yw = A 2 i A 2 2 A 2 3 V 

w A 3 2 
1 1 

where the Ajj's are easily-determined functions of the quadrilateral vertices. 

A straight line in perspective parametric coordinates au + bv + c = 0 trans­

forms to a straight line a'x + b'y + c' in object coordinates. This means that a 

quadrilateral in object coordinates will map to a quadrilateral in parametric coor­

dinates and vice versa. This has favourable implications for transport coefficient 

computation that we will discuss below. 

One drawback of a perspective mapping is that if the quadrilateral ap­

proaches degeneracy (a triangle, for instance), the appearance of a uniform grid 

in parametric space becomes increasingly nonuniform. 

The power flux computation • of Equation (5.22) is not as easy as in the 

rectilinear case, but may still be analytically done for basis functions Bj with closed-

form representations, such as splines. 

6.6.3 Bilinear 

As with 2-D perspective, this mapping also allows us to represent quadrilaterals 

without clipping. If the quadrilateral is defined by four points {po, p i , P 2 , P 3 } (in 

C C W order), the customary bilinear mapping applies: 

X 
1 V 

Po Pl 1 - U 
(6.6) 

y P3 P2 u 

94 



t y p e d e f s t r u c t { 

Transform tfSobjWld; 
Transform tfDobjWld; 
Transform tfSobjDobj; 
Transform tfR; 
Polygon *pgnSobj; 
Transformed tf2dSparToSobj\ 
Transformed tf2dSobjToSpar; 
Polygon *pgnDobj;. 
Transformed tf2dDparToDobj; 
Transformed tfedDobjToDpar; 

} TransportGeometry; 

Figure 6.4: The TransportGeometry typedef 

Unlike the perspective case, we can treat triangles as degenerate quadrilaterals, al­

beit with some irregular object space meshing. However, this mapping is not without 

its own drawbacks. While the parametric-to-object mapping is straightforward, the 

inverse object-to-parametric mapping is, in fact, double valued: a given (x,y) usu­

ally has two solutions (u\v), one of them inside the unit rectangle, one outside. In 

order to distinguish the two cases, we must clip in object space before inversion. 

A more serious drawback is that straight lines are not, in general, preserved. 

The inverse projection of a straight line ax + by + c = 0 into parametric space' 

is, in general, a hyperbola. This also has implications for transport coefficient 

computation: it complicates determination of the limits of integration. 

Again, while the still more complicated Jacobian of this transform makes the 

power flux computation of Equation (5.22) more difficult, it may still be done for 

choices of JBJ with closed-form representations, such as splines. 

95 



6.7 The Transport Geometry Class 

The TransportGeometry t y p e d e f shown in Figure 6.4 contains all geometric informa­

tion necessary to compute wavelet radiative transfer between source and destination 

polygonal objects. Given a TransportGeometry object tg, tg.tfSobjWld is the affine 

3D transform from source object to world positional coordinates, tg.tfWldDobj is the 

affine 3D transform from world to destination object positional coordinates, tg.tfR is 

the orthogonal 3D rotational transform from source to destination directional coor­

dinates, tg.pgnSobj and tg.pgnDobja.ve the source and destination polygons (in object 

coordinates), tg.tf2dSparToSobj is the affine 2D transform from source parametric 

to source object coordinates, and tg.tf2dDobjToDpar is the affine 2D transform from 

source parametric to source object coordinates. The implemented TransportGe­

ometry class contains inverses of most of these transforms as well, since some of 

the integration schemes we use actually project destination points back into source 

space. 

6.8 Choice of Wavelet 

Except where noted, our discussions in Appendix A and Chapter 5 did not depend 

on any particular choice of wavelet. For implementation purposes, we have to choose 

one. There are several good reasons for choosing Haar wavelets. 

As we mentioned in Section A.6, the fast wavelet transform can be performed 

in O(N) time, but if we allow for a varying dimensionality D and wavelet basis, it 

is easy to see from Equation (5.13) that the complexity is actually 0(W^N) where 

Wh is the (varying) maximum width of the {hj} and {hj} (and, consequently, {gj} 

and {gj}) coefficient sets. 

96 

http://tg.pgnDobja.ve


For this reason, as the dimensionality increases, the rapidly-increasing opera­

tion count makes narrower filters more and more desirable, even though wider filters 

generally have better approximation properties. Since Haar is the narrowest possi­

ble wavelet filter (Wh — 2), it seems a wise strategy to make any multidimensional 

efforts first with Haar and move to wider bases later if Haar proves unsatisfactory. 

An additional advantage of Haar wavelets over the others is the simplifica­

tion of the calculation of the transport coefficients, irradiance and power flux. As 

Equations (5.28) and (5.29) have shown, these coefficients can be computed entirely 

in terms of pure smoothing calculations. A four-dimensional Haar pure smoothing 

basis is a function that is constant (= 4') within a hypercube and zero outside of it. 

The resulting transport coefficients are volume integrals of the overlap between such 

a hypercube in destination parametric space and the object which is a projection of 

a hypercube in source parametric space into the destination space4. 

6.9 Problems with Transport Coefficient Computation 

As the preceding subsection suggests, using Haar wavelets turns transport coefficient 

computation into volume integral evaluation. There are two practical problems that 

complicate the computation of that volume. 

6.9.1 Some Source Points Do Not Project Into Destination Space 

The source hypercube defines a range of positional and directional coordinates q 5 . 

Not all of these coordinates may map to points in the destination plane, much less 

the destination quadrilateral. This complicates any attempt at direct evaluation of 

4 This may not be such a great simplification. After all, any arbitrarily complex 3-dimensional 
integral may be trivially turned into a 4-dimensional volume integral! 

97 



the transport integrals. 

6.9.2 The Projected Hypercube Has Curved Sides 

Even if all points in the source hypercube map to the destination plane, the nature of 

the resulting volume, is not trivial. Needless to say, the projection of a source para­

metric hypercube into destination parametric space is not a hypercube. If, however, 

we could choose coordinate systems such that the source hypercube mapped to a 

polytope in destination space, we could take advantage of computational geometric 

techniques to first clip it against the destination hypercube and then compute the 

volume of the resulting polytope. Unfortunately, this is not possible because the 

source hypercube does not project to a polytope. 

Consider the coordinate systems described in Section 6.6. Even if we choose 

rectilinear parametric object mappings, the source object to destination object 

transform involves a projection. Hence, at best, the qs —> qd mapping has a nonlinear 

dependence on the directional components. 

As a result, the projection of the source hypercube into destination para­

metric space has curved sides. Furthermore, the curvature is such that we cannot 

guarantee that the convex hull of the polytope formed by projecting the 16 corners 

of the source hypercube into destination space contains the hypervolume5. 

6.10 Integration Techniques 

For these reasons, we must resort to multidimensional numerical integration schemes. 

Before considering candidate techniques, we first make an observation about the di-
5 We have not fully pursued the possibility of an approximation of the projected hypercube by 

its convex hull here. 

98 



mensionality required for numerical integration. 

6.10.1 Reducing the Dimensionality 

As Equation (5.27) indicates, the computation of transport coefficients is intrinsi­

cally four-dimensional: two directional integrals and two positional integrals. If we 

take the two outermost integrals over direction and restrict our discussion, to pure 

Haar smoothing components (VJ = Vk — 0, as Equation (5.30) permits), it is then 

evident that 

T j k = 4';+'* JJs Gj(Kd, Xd) Ajk{nd, Xd) dnd dXd (6.7) 

5k is the (square) directional support of Bk. Gj(nd, Xd) is a geometric function which 

is equal to one if a ray from the destination plane projected backwards along the 

( « d i Xd) direction reaches the source plane and falls within the directional support 

of B-}. Otherwise, it is zero. Ajk(nd, Xd) is the area of the intersection of the spatial 

support of Bk in destination parametric space with the projection (in the Kd, Xd 

direction) to destination parametric space of the spatial support of Bj. 

We are now in a position to evaluate the coordinate mappings given in Sec­

tion 6.6 to see which of them makes Ajk(nd, Xd) easy to compute. All the mappings 

transform lines of constant u or v to lines in object space, so any of them would 

work for the source parametric to source object mapping. Only rectilinear and per­

spective mappings, however, transform arbitrary lines in object space to lines in 

parametric space. If we choose either of them for our destination object to desti­

nation parametric mappings, computation ot A-ik(Kd,Xd) amounts to clipping the 

projected quadrilateral to the spatial support of Bk using a conventional polygon 

clipping algorithm and computing the resulting area. This allows us to reduce the 

dimensionality that we need to integrate numerically from four to two. 

99 



6.10.2 Numerical Quadrature 

Regardless of the number of dimensions, numerical integration techniques are all 

based on some form of quadrature: 

„ N3amp 

/ / ( x ) d x « J2 ™>/(x') (6-8) 
j=l 

where Ns^mp is the number of samples. Techniques differ principally in their choices 

of weights Wi and sample points x;. Zwillinger [87] provides an extensive survey of 

these. The ones we have chosen to evaluate are: 

• trapezoidal: a regular grid approximating / linearly in each dimension 

• Romberg: a multilevel (Richardson) extrapolation (in terms of the grid spac­

ing) of trapezoidal results 

• Monte Carlo: x;'s chosen from a (possibly stratified) pseudo-random sequence6 

• • Halton: similar to Monte Carlo, but using quasi-random numbers generated 

according to number theoretical considerations 

• Hammersley: an alternative quasi-random method 

While pseudo-random and quasi-random techniques are generally preferred 

for multidimensional quadrature, we include trapezoidal and Romberg techniques to 

explore the two-dimensional case, where Monte Carlo has error of order 0(N~JJ2)7 

and the trapezoidal rule has error of order 0 ( iV~ 3 / 2 ) . We must be careful to use 

these error estimates cautiously, however, since our integrand, G(nd, A<f) Ajk («;<*, ^d) 

contains discontinuities that error analyses do not account for. 

6Glassner [24] is a good overview of pseudo- and quasi-random integration methods in image 
synthesis. 

7This is true regardless of the dimensionality of the problem and is one of the appeals of Monte 
Carlo integration. 

100 



o 
c 

c 

3 

w 
> 

04 

0.1 

0.01 
10 

2D Monte Carlo, Unstratified 
..., Stratified 2x2 
..., Stratified 4x4 
... , Stratified 8x8 

4D Monte Carlo, Unstratified 
..., Stratified 2x2x2x2 
..., Stratified 4x4x4x4 
Quasirandom, Halton 

Hammersley 
Romberg, Linear 

... , Quadratic 
... , Cubic 

2D Trapezoidal 
4D Trapezoidal 

o 

--X--
•-X--

100 1000 
Time (sec.) 

Figure 6.5: Relative Euclidean Distance vs. Time for Different Integration Tech­
niques and Numbers of Samples 

6.10.3 Compar i son 

To evaluate the accuracies of the various methods, we have applied them to a test 

problem: computing the set of all Tjk for a given j and geometry. To analyze the 

results we can treat this set as a vector in a A'-dimensional space, where K = 

15'max+i a n c j i s maximum level we have coefficients for. (I.e., we have K 

values of k.) 

To compare results against a reference, we create a reference vector T-^ using 

an extremely long (25 CPU-minutes) integration time and then adopt two metrics. 

The first, which we call the relative Euclidean distance (hereafter, RED) is the 

101 



3 

a, 
Q 

S 
>< 

as 

0.1 

0.01 

2D Monte Carlo, Unstratified -e-
. . . , Stratified 2x2 --©--
. . . , Stratified 4x4 
... , Stratified 8x8 o 

4D Monte Carlo, Unstratified 
... , Stratified 2x2x2x2 
... , Stratified 4x4x4x4 -•+-• 
Quasirandom, Halton -B-

Hammersley -a-
Romberg, Linear - * -

. . . , Quadratic 
. . . , Cubic -x-

2D Trapezoidal 
4D Trapezoidal - * -

10 100 1000 
Time (sec.) 

Figure 6.6: Relative Maximum Departure vs. Time for Different Integration Tech­
niques and Numbers of Samples 

Euclidean distance (L2 norm) of Tjk from T£! divided by the magnitude of T£u. 

Ek fe) 

Figure 6.5 shows how the R E D varies with integration time8 and i V 3 a m p for the 

various techniques. Note that we allow the degree of extrapolation for Romberg 

integration to vary from linear to quadratic to cubic. The times shown are for an 

IBM Model RS/6000 POWERserver 560 workstation. 

Rather than NSS,MP, time is the appropriate abscissa here. Since the time required to evaluate 
the integrand varies with dimensionality, fewer samples do not necessarily imply faster computation. 

102 



The second metric, which we call relative maximum departure (hereafter, 

RMD) , is more conservative. It is the maximum absolute difference between Tjk 

and (LK, norm) divided by the maximum absolute value of T-£: 

maxk Tjk - Tg 

maxk 
(6.10) 

Figure 6.6 shows how the R M D varies for the same parameters as Figure 6.5. 

From these plots, we can draw several conclusions: 

• The two figures are qualitatively similar: a method that does well by one 

metric generally does well by the other. This gives us some confidence that 

these metrics are valid. 

• Stratification improves Monte Carlo results. (This comes as no surprise.) 

• The time required for Monte Carlo methods being linear in . /V 3 a m p , they all 

approximate the expected 0(N~^p
2) behaviour. 

• For a given integration time, the 4D trapezoidal method does generally worse 

than the other methods. 

• Increasing the degree of extrapolation for Romberg (2D) integration generally 

makes matters worse. This is presumably a result of the discontinuities in the 

integrand we discussed above. 

• Quasi-random methods give similar and comparatively good results. This 

reinforces the findings of Keller [39]. 

The most surprising observation, however, is how well the straightforward 2D trape­

zoidal rule does. For the R E D metric, it is comparable with the best of the other 

103 



wct_transport() 

tg_oracle() 

tc _propagate() 

o \ 
tc_eval() 

tc_lntegrate() 

Figure 6.7: Simplified Functional Decomposition for Wavelet Radiative Transfer 

methods, quasi-random, and for the R M D metric it does noticeably better for short 

integration times. 

6.11 Functional Decomposition of WRT 

Figure 6.7 shows a simplified functional decomposition for WRT. In this section, 

we will discuss each block individually and describe how it implements the ideas 

presented in Chapter 5. We will proceed in a bottom-up sequence. 

6.11.1 tg-oracle () 

This function is a geometric query function. Given a TransportGeometry and source 

and destination Waveletlndices, it performs several fast query functions. 

• If either source or destination wavelet directional supports lie entirely outside 

the U D C , they cannot interact. 

Projecting the 16 vertices of the destination support hypercube project onto 

104 



the plane that contains the source, the vertices can be classified by the "fast 

reject" part of a four-dimensional version of the Cohen-Sutherland line clipping 

algorithm (see Foley, et al. [18], for example). 

• If all 16 destination vertices map into points contained within the source sup­

port, we assume that the entirely of the destination support does, so an exact 

computation of the inner product (which is then proportional to the volume 

of the destination support hypercube) is possible. 

The latter two items require an assumption that the projected destination 

support vertices define a convex hull for the entire projected support. As we noted 

in Section 6.9.2, this is not in general the case. Nevertheless, by disabling this 

oracle and comparing results, we have found empirically that it is a reasonable 

approximation, at least for oracular purposes. 

6.11.2 tc-integrate () 

This function is responsible for performing the actual integration. It is capable of 

using any of the schemes described in Section 6.10. 

6.11.3 wri-.pull() and wn-push() 

These functions act on individual nodes of a W C T to perform, respectively, a single-

level, four-dimensional (i.e. 16 value), Haar analysis (i.e., forward transform or 

"pull"9) or synthesis (i.e., inverse transform or "push"). 

9 T h e useful "pull" and "push" terminology is from Hanrahan, et al. [32]. 

105 



tcjpropagate(WaveletIndex wiS, double bS[], Waveletlndex wiD, 
TransportGeometry tgSD, WaveletCoefficientTree wctD) 

if wiD.I == maximum wavelet level + 1 
return tc-eval(wiS, wiD, tgSD) 

else if tg_oracle(wiS, wiD, tgSD) gives exact result 
return it 

else 
for each child wiDChild of wiD 

tc[wiDChild] = tc-propagate(wiS, bS, wiDChild, tgSD, wctD) 
for each channel chan 

for each child wiDChild of wiD 
wn[chan][wiDChild] = bS[chan] * tc[wiDChild] 

wn-pull(wn) 
if wiD.I is not the top destination level 

wn[chan][wiD.nu = 0] = 0 
wctD[wiD] = wn 

Figure 6.8: tc-propagate() Pseudocode 

6.11.4 tc-eval() 

Given source and destination wavelet indices, this function computes a single trans­

port coefficient. It will call itself recursively if either source or destination basis 

selectors are nonzero, although as it is currently used in WRT, tcevalQ is only 

called to evaluate pure smoothing coefficients10. At the user's request, it will call 

tg.oracle() to attempt to find an alternative to numerical quadrature. Otherwise, it 

will call tgJntegrateQ to perform that quadrature. 

6.11.5 tc-propagate() 

This function propagates a single source wavelet coefficient to a destination wavelet 

coefficient tree wctD. Figure 6.8 shows its pseudocode. Like tc-eval(), it will work 

with a nonzero source basis selector, but in the context of WRT is only called upon 

with pure source smoothing coefficients. It is important to note that wctD will 

l c T h e ability to work with non-zero basis selectors is used in self-test mode. 

106 



contain no pure smoothing coefficients except at a specified top level. The source 

pure smoothing coefficients corresponding to wiS are passed to the function as b0[]. 

There are three alternatives: 

• If the destination wavelet is one more than the maximum wavelet level, it 

returns the smoothing coefficient it gets from tceval(). 

• If tg_oracle() gives an exact result (often zero), it returns that result. Note 

that wctD does not need to be updated in this case, since the exact result is 

either zero or a pure smoothing result below the top level, neither of which 

requires storage. 

• Otherwise (and most importantly) the function applies itself recursively to 

the 16 child indices of wiD, collecting the 16 returned smoothing coefficients. 

For each channel, it then multiplies each coefficient by the source coefficient 

for that channel, and uses wn-pull() to apply a "pull" to convert the result 

to wavelet coefficients. If wiD.l is not the top destination level, the pure 

smoothing coefficient is redundant and is set to zero. The result is then ready 

to be stored in wctD. . 

6.11.6 wct_transport() 

Figure 6.9 shows the pseudocode for this function, which transports an entire source 

wavelet coefficient tree wctS to a destination wavelet coefficient tree wctD.-

The function first uses tg.oracle() to reject impossible interactions. If there is 

a node wn, indexed by wiS in wctS, it will call itself recursively to descend the tree. 

First, though, to the pure smoothing coefficients of wn, it adds bSOfJ (which is zero 

when this function is initially called before recursion). It then invokes wn.pushf) to 

107 



wct-transport(WaveletIndex wiS, double bS0[], WaveletCoefficientTree wctS, 
TransportGeometry tgSD, Waveletlndex wiDTop, 
WaveletCoefficientTree wctD): 

if tg-oracle(wiS, tgSD, wiDTop) says, an interaction is not possible 
return 

wn — wctS[wiS] 
if wn exists, 

for each channel chan, 
wn[chan][0] = w«[c/jan][0] + bS0[chan] 
wn-push(wn) 

for each child wiSChild of wiS 
wct-transport(wiSChild, wn[*\[wiS Child], wctS, tgSD, wiDTop, wctD) 

else 
tc-propagate(wiS, bSO, wiDTop, tgSD, wctD) 

Figure 6.9: wet-transport() Pseudocode 

convert the wavelet coefficients to finer pure smoothing coefficients at the level of 

the children of wiS. wet-transport () then applies itself recursively to each of these 

children, passing the elements of wn as new values of bS0[]. 

If wn does not exist in wctS, there are no nodes in wctS at or below wiS, 

so the only thing that needs to be propagated is the pure smoothing value bS0[]. 

wet-transport() calls tc-propagate() to do this. The change of prefix is an indication 

that below this call level, we are no longer concerned with a source W C T , but with 

individual pure smoothing (multichannel) coefficient vectors. 

6.12 Example of Transport 

For a test configuration, we imagine light shining through the square stained glass 

window shown in Figure 6.11. 

As illustrated in Figure 6.10, the incident light shines down with a distribu­

tion peaking at an angle of 45° from the horizontal, diffused by the glass according 

to a distribution proportional to the 4th power of the cosine of the angle between 

108 



Side View Camera View 

floor 

Figure 6.10: Geometry Used for Example of Transport 

the propagation direction and the peak direction. The light is transported to the 

floor and is collected there. 

Figure 6.12 shows the complete, inversely-transformed 4 D results. Each of 

the small images represents the spatial variation of radiance in the fixed direction 

given by the image's position in the matrix. 

Figure 6.13 is a detailed view of the brightest part of Figure 6.12. This com­

putation of 3 2 x 3 2 x 3 2 x 3 2 coefficients (in red, green, and blue channels) compressed 

by 95% required 12.4 hours of C P U time on an I B M R S / 6 0 0 0 POWERserver 560 

workstation. 

Needless to say, this is impractical for a single frame, but the result is 

reusable. 

Figure 6.14 shows several frames generated with an otherwise conventional 

raytracer modified to treat a wavelet radiance distribution as a "4 -D texture". Each 

frame is generated from a different camera position. Given the diffuse nature of 

109 



Figure 6.11: A Stained Glass Window. This is the spatial component of radiance 
for the test configuration. 

the problem, the resulting images look adequate and contain none of the "noise" 

common to the usual Monte Carlo approach to this sort of problem. 

6.13 Example of Radiance Compression 

We can use the test scene to illustrate the effects of compression discussed in Sec­

tion 6.4. Figure 6.15 shows the effect of compressing nodes of the wavelet represen­

tation of the radiance by differing ratios prior to transport in the above example. It 

is evident that considerable compression is possible. Although beyond the scope of 

this thesis, more sophisticated reconstruction techniques could be applied to remove 

the artifacts visible for high compression. 

110 



Figure 6.12: Four-Dimensional Results of Wavelet Radiative Transport 

111 



Figure 6.13: Detailed View of the Brightest Part of Figure 6.12 

Figure 6.14: Example of Wavelet Transport. The resulting wavelet representation 
of radiance shown in Figure 6.12 can be sampled from different directions. 

112 



Figure 6.15: Effect of Compressing the Wavelet Radiance Distribution by (left-to-
right and top-to-bottom) 2:1, 20:1, 200:1, 1000:1, 2000:1, and 10000:1 

113 



C h a p t e r 7 

Lucifer Implementation and 

Practicum 

This chapter describes the implementation of the Lucifer algorithm, which we de­

scribed in Chapter 3. This brings together all previous threads of discussion. It uses 

both the theory of W R T described in Chapter 5 and its implementation, described 

in Chapter 6. In addition, as we discussed in Chapter 3, in order for Lucifer to con­

verge (theoretically), it is necessary to make use of the energy-conserving shaders 

described in Chapter 4. 

As mentioned in Chapter 6, Lucifer makes use of all the classes that W R T 

uses. In this section, we will describe those classes that are unique to Lucifer. 

We will then describe the implementation choices we've made, cover a functional 

decomposition of it, and conclude with an example. 

7.1 The Cell Class 

Figure 7.1 shows the typedef we use to represent cells. 

114 



typedef struct -Cell { 
BoundingBox bx; 
struct -Cell *parent; 
int Ivl; 
int priority; 
WaveletCoefficientTree *wc£[6]; 
600/ isLeaf; 
union { 

struct { 
int nObj; 
Object **obj\ 
bool isEmShot; 

} leaf; 
struct { 

struct -Cell *child[8\; 
} nonleaf; 

} ujis; 
} Cell; 

Figure 7.1: The Cell t y p e d e f 

If cl is an instance of Cell, cl.bx is its bounding box, cl.parent is its parent cell 

(or N U L L if it is the root cell), cl.lvlis the cell level (0 for the root cell), cl.priority 

is the cell's priority used for the priority queue described in Section 3.5, cl.wctf] is 

an array of six W C T s , one for each wall of the cell, cl.isLeafls T R U E if the cell is 

a leaf cell and F A L S E if it is not. 

If cl is a leaf cell, cl.uJs.leaf.nObj is the number of objects it contains and 

cl.uAs.leaf.obj is an array of (pointers to) those objects. A flag cl.U-is.leaf.isEmShot 

is set depending on whether or not emissive objects within the leaf cell have had 

their emissivities transferred to the cell walls (i.e. "shot"). Notice that this flag is 

associated with an cell rather than an object. This allows emissive objects to span 

cells. As we shall see below, it is the responsibility of wct-transport() to assure that 

only that part of an object's emissivity contained within the cell being balanced gets 

transferred to the walls. 

115 



If cl is not a leaf cell, cl.uJs.nonleaf.child is an array of (pointers to) its 

children. 

7.2 Bidirectional Reflectance and Transmittance Distri­

bution Functions 

Like a W C T , the wavelet representation of a B R D F or B T D F is a nonstandard 

multiresolution 4-tensor. After the work of Lalonde and Fournier [42], we can use 

the same object as described in Section 6.4 with a slight reinterpretation of the 

meaning of the components of the wavelet indices (see Section 6.2). 

To represent a. B R D F or B T D F , we take the first two dimensions of the 

wavelet index (i.e., the ones referred to as wi.m[0] and wi.mflj) to refer to the 

incident directional components of the distribution and the last two dimensions 

(wi.m[2] and wi.m[3]) to refer to the reflected or transmitted directional components. 

As some time in the future, we may wish to allow for positional variation of 

BRDFs and B T D F s by using a multiresolution 6-tensor that adds the two additional 

surface positional components. It is even possible to allow for such phenomena as 

subsurface scattering (cf. Hanrahan and Krueger [31]) by using (in its most general 

form) a multiresolution 8-tensor. 

7.3 Implementation Choices 

For reasons given in Section 6.8, we have chosen to use Haar wavelets both for WRT 

and for Lucifer. In this section, we will discuss the other choices we've made for 

the Lucifer Tenderer in the context of Section 2.5. 

116 



7.3.1 Integration Scheme 

Considering the results for WRT found in Section 6.10, it is tempting to favour use 

of the 2D trapezoidal method in transport coefficient computation. 

However, doing so for Lucifer revealed a lack of robustness. Accuracy dropped 

considerably when the geometry departed from the simple parallel unit square ge­

ometry used for the above results. Monte Carlo and quasirandom methods did not 

exhibit this problem. 

For this reason, we chose a quasirandom integration method in Lucifer. It 

remains to be seen, however, if other methods are possible which might be more 

suitable for an integrand with such discontinuities as we have. 

7.3.2 Storing Transport Coefficients 

Chapter 6, which considered radiative transport between two polygons, did not 

require the storage of transport coefficients. In other situations, however, storing 

them may be desirable. In this section we will outline the considerations to be made 

in deciding whether or not they should be stored, and if so, how? 

Like form factors in radiosity, the transport coefficients are dependent only 

upon geometry. If the same geometry occurs in several different instances, precom-

puting the transport coefficients means they only have to be computed once. 

Counterbalancing the argument for storing coefficients is the observation 

that, assuming wavelet compressibility, b? is sparse. This means that only those 

elements of Tjk for which we have nonzero 6| values need to be computed. 

If we decide to store transport coefficients, we face another problem: Tjk is 

large. If / m a x is the maximum level of resolution on the source surface, there are 

16 ' m a x + 1 possible values of j (for Haar). Assuming the same resolution is required 

117 



for the destination surface, Tjk would require 256 m a x + 1 elements. If represented as 

a conventional array, / m a x = 3 would exhaust a 32-bit address space! 

Fortunately, Tjk is also sparse in this sense: for a given j , the number of 

destination basis functions Bk that it affects is much smaller than the number of 

possible values of k. If we do decide to put T j k in a lookup table, that table will 

have to be sparse, in which case the nodal compression strategies we discussed in 

Section 6.4.3 would also apply to stored transport coefficients. 

7.3.3 Luminaire Model 

The most natural luminaires to implement in Lucifer are area light sources, the 

reason being that since we are collecting, interacting, and re-radiating W C T s on 

surfaces, it is simple to add an emissive W C T prior to re-radiation. Because they 

are represented by W C T s , these area light sources are much more flexible than the 

usual area light sources. In fact, they are equivalent in functionality to Levoy and 

Hanrahan's [44] "light fields": Any light distribution within the limit of resolution 

can be represented. This is truly "light though a window". 

It would not be difficult to add point and directional light sources to Lucifer. 

A point light source would be treated like an object. When a cell contained a single 

point light source, its light could be discretized and wavelet compressed on the cell 

walls. Thereafter, it would be indistinguishable from any other light source. Linear 

luminaires could be treated similarly, with segmentation done when they spanned 

multiple cells, as could directional luminaires coming from within the root cell (as 

from a collimated source). 

Directional light sources coming from infinity (approximating sunlight, for 

instance) could be treated as light incident on the root cell, with the light discretized 

118 



and wavelet compressed on the root cell's walls. The fact that a directional light 

source is of uniform radiance in a single direction would lead to a very compact 

representation. • 

7.3.4 Object Model 

Our initial object models in Lucifer are polygonal. Other parametric forms are 

possible, but the difficulty of transport coefficient computation (see Equation 5.27) 

dictates that the geometry for this initial effort be as simple as possible. 

7.3.5 Illumination Model 

Lucifer's illumination model is very flexible: any B R D F or B T D F that can be 

represented as in Equation 5.33. The easy way to do this is to sample any B R D F or 

B T D F in four-dimensional Nusselt coordinates at any desired resolution, perform 

a (four-dimensional) Haar transform on the samples, and (for efficiency) threshold 

the result before storing. This only has to be done once for each distinct material 

and may be done prior to rendering. 

7.3.6 Shading Model 

It is possible to create an image from Lucifer using W R T directly. We can collect 

light on a surface W C T placed anywhere in the scene. This would have the advantage 

of being usable as a light field for additional rendering. The drawback, of course, 

is that it would not be a very good looking image, primarily because it would not 

be practical to render such an image at a high enough resolution to be "visually 

pleasing". Just as we noted in Section 2.5.7.4, the criteria for an acceptable image 

differ from those for physically-correct global illumination. 

119 



For this reason, as part of our "final gather" (see Section 2.5.7.4) we will 

make use of FIATs "light update buffer" . This is a conventional ray traced image 

buffer whose pixel values are determined by casting primary rays onto the emissive 

input and iucffer-generated W C T s attached to objects in the scene. Whenever a 

cell is updated, all pixels whose primary rays intersect objects within that cell have 

their radiances incremented. 

7.3.7 Surface Model 

In this implementation of Lucifer, we assume that reflective properties of objects do 

not vary with position: i.e., that texturing is constant. This means that our BRDFs 

and B T D F s are functions only of incident and reflected or transmitted directions. 

At some point in the future, it would be a natural extension to allow two additional 

positional degrees of freedom, but our need to reduce storage requirements demands 

that we defer a full treatment of texturing. 

7.4 Surface Interaction with Haar Wavelets 

In Section 6.8, we described the benefits of Haar wavelets for WRT. In this sec­

tion, we will demonstrate an additional benefit that pertains to Lucifer: the fast 

computation of surface interaction. 

Recall from Equation 5.47 that we can compute surface interaction directly 

from wavelet representations of the incident radiance and the B R D F or B T D F if we 

can compute the multiresolution delta tensors AJ^". For most wavelets, these tensors 

need to be computed numerically, since they rely upon such things as the inner 

product of a smoothing function and its dual of differing level. As we will shortly see, 

orthogonality helps somewhat, but not completely because of the multidimensional 

120 



nature of the inner products. 

tensors for Haar wavelets, on the other hand, do have a closed form 

representation: 

A t T T 

2 - W = 0 i (mi+m")(Qm^) 

(Qmi)(m*+m") 

2^m"=0 > i + m " ) ( g m * ) 

= 3.-1 u(mJ

a+m")(Qm*) 

0 

0 

^ m » = 0 ^(Qmi)(m*+"i") 

7 fr 
(a) <r 

7 fr 

7 fr 
(<?) ( T 

7 fr I// ,1 / / 
(<r) ( T 

00 A P > / f c 

00 A V < lk 

01 A P > / f c 

01 A V < lk 

10 A V > lk 

10 A V < lk 

11 

(7.1) 

where Q = 2y~l I. Of the seven cases here, the fourth, fifth, and seventh would be 

true for any wavelet, not just Haar. 

Equations 5.47 and 7.1 tell us how to evaluate the inner products for a given 

j , k, and n, but that is not what is required algorithmically. We start with sparse 

sets of coefficients |/|} and {bk} and want to generate a new set {bn}. We need to 

organize our implementation of Equation 5.47 in particular so that it performs the 

mapping (j, k) —>• {n, bn} using 7.1 to eliminate as much as possible the generation of 

n values which do not contribute. The pseudocode for this is lengthy and therefore 

included as Appendix B. 

Future work should consider the application of these techniques to the general 

problem of multidimensional inner products: 

/(x)y) = (j(x,-)|%1-))1 (7.2) 

121 



cljransportO 

wct_tmnsport() 

Figure 7.2: Simplified Functional Decomposition for Lucifer 

Convolution is a special case of this, although we expect it to be more useful in 

other cases such as spatially-variant filtering. 

7.5 Functional Decomposition of Lucifer 

Figure 7.2 shows a simplified functional decomposition for Lucifer.. In this section, 

we will describe these building blocks individually. As in Section 6.11, we proceed 

in a bottom-up order. 

7.5.1 wct-transportConfined() 

This is the same as wct.transport(), with one enhancement: the ability for the user 

to confine all transport computations to the bounding box of a given cell. This 

allows Lucifer to deal with objects that span cell boundaries, the need for which 

was described in Section 7.1. 

122 



Figure 7.3: Unblocked, Partially Blocked, and Completely Blocked Propagation. 
The source wavelet support is red, the destination wavelet support is green, and the 
blocking rectangle is blue. 

7.5.2 wct_transportRestricted() 

This is another modification of wctJransport() which allows the caller to restrict 

both source and destination W C T s to subtrees of specified wavelet indices. Since it 

is always used for wall-to-wall transport, the confinement to a cell's bounding box 

is implicit. 

7.5.3 wi-blocking() 

This function determines the degree to which an object is capable of blocking the 

transfer of radiance from the support of one Haar wavelet coefficient (and its chil­

dren) to another (and its children). Figure 7.3 illustrates how blocking is determined. 

Given a source coefficient (on the vertical wall), and a destination coefficient (on the 

horizontal wall), the function constructs the "blocking hull": the polyhedron which 

is the convex hull bounded by their (square) spatial supports, which we may refer 

to as the "end caps". 

Once the hull is constructed, wi-blocking() determines the nature of the in-

123 



tersection of the hull and the object. If the object lies entirely outside the blocking 

hull, every point in the source coefficient support can "see" every point in the des­

tination support, so the function returns NONE. If the object "slices" the blocking 

hull into two regions, each of which wholly contains a single end cap, no point in 

the source support can "see" a point in the destination support, so wLblocking() 

returns FULL. Otherwise, at least one source point can see at least one destination 

point, so blocking Type () returns PARTIAL. 

This query does not take into account the directional components of the 

supports: that is left for the actual transport computation done by wctJ,ransport() 

and its variants. 

7.5.4 cLcfcTransblock() 

Given source and destination cell walls, this function, the pseudocode for which is in 

Figure 7.5, is responsible for transporting that part of the source wall's W C T that 

is not obstructed by the objects contained within the cell to the destination wall. 

For each object in the cell, it calls wLblocking(). If any single object totally 

blocks transport, no transport takes place, so it returns. If no object blocks transport 

at all, it calls wct-transportRestricted() to perform the actual transport and returns. 

Otherwise, there is partial blocking, so cLcfcTransblockf) acts recursively. 

If either the source or destination wavelet indices are above the maximum wavelet 

level, it refines the coarser of them and invokes itself on the children. If the source 

index is the coarser one, it also needs to push the source W C T before recurring. 

If the source and destination wavelet coefficients are at the maximum wavelet 

level, it assumes total blocking and does nothing. This rationale deserves justifica­

tion. If there is a single object inside the cell, the choice is arbitrary as we are at the 

124 



cLcfcTransblock(Cell cl, WaveletCoeffcientTree wctSWall, 
TransportGeometry tgSD, WaveletCoefficientTree wctDWall, 
Waveletlndex wiS, Waveletlndex wiD): 

blocking = NONE 
f o r each object obj in cl, 

s w i t c h (wi-blocking(wiS, obj, wiD)) 

case NONE 

case PARTIAL 10 
i f blocking = NONE 

blocking = PARTIAL 

case TOTAL 

r e t u r n / / no transport 

s w i t c h (blocking) 

case NONE 
wctJransportRestricted(wiS, wctSWall, tgSD, wiD, wctDWall, cl—>bx) 20 

case PARTIAL 
i f wiS.l and wiD.I are the maximum wavelet level 

j j assume total blocking 
e l s e i f wiS.I < wiD.I 

wn = wctS[wiS] 
delete 'wctS[wiS] 
wn-push(wn) 
f o r each child wiSChild of wiS, 

wctS[wiSChild][wiSChild.nu = 0] = wn[wiSChild] 30 
cLcfcTransblock(cl, wctSWall, tgSD, wctDWall, wiSChild, wiD) 

e l s e 
f o r each child wiDChild of wiD, 

cLcfcTransblock(cl, wctSWall, tgSD, wctDWall, wiS, wiDChild) 

Figure 7.4: cLcfcTransblock() Pseudocode 

maximum resolution and expect sampling effects to show up at this level in any case. 

If there is more than one object in the cell, that means that the cell itself is also at 

maximum resolution. The most likely circumstance in this case is that the objects 

are joined as, for example, polyhedral facets. In this case, allowing transport to 

take place would permit "holes" in the polyhedron, which would be an undesirable 

125 



wct_transportWallToObj(WaveletCoefficientTable wctSWall, Cell cl) 
for each object obj contained within cl, 

if obj has a BRDF or BTDF on its upper side, 
wct-transportConfined(cl.wiTop, wctSWall, tgSD, obj.wiTop, 

obj.wctlncomingAbove, cl.bx) 
if obj has a BRDF or BTDF on its lower side, 

wctJransportConfined(cl.wiTop, wctSWall, tgSD, obj.wiTop, 
obj.w'ctlncomineBelow, cl.bx) 

Figure 7.5: wctJransportWallToObj() Pseudocode 

artifact. We therefore assume total blocking in this case. 

7.5.5 wctAransportWallToObj() 

Given a cell wall, this function, the pseudocode for which is in Figure 7.5, calls 

wct-transportConfined() for each object contained within the cell, restricting trans­

port to the bounding box of the cell in case an object extends outside the cell. Since 

Lucifer allows objects to have distinct B R D F s and B T D F s on both sides of their 

surfaces, we need to collect incoming radiance on both sides as well. 

Notice that this function does not allow for blocking of one object by another. 

Inter-object blocking is addressed in Lucifer by choosing a maximum cell division 

level such that the maximum number of objects in a cell is approximately one. 

7.5.6 wct_addInteraction() 

This is an implementation of Haar wavelet surface interaction as discussed in Sec­

tion 7.4. Pseudocode for this is in Appendix B . 

126 



wct-transportObjToWall(Cell cl, TransportGeometry tgSD, 
WaveletCoefficientTree wctDWall): 

for each object obj contained within cl, 
wct_transportConfined(obj.wiTop, obj.wctOutgoingAbove, tgSD, cl.wiTop, 

wctDWall, cl.bx) 
wct-transportConfined(obj.wiTop, obj.wctOutgoingBelow, tgSD, cl.wiTop, 

wctDWall, cl.bx) 

Figure 7.6: wctAransportObjToWall() Pseudocode 

cl-transport(Cell cl): 
for each channel chan, 

bS0[chan] = 0 
wiRoot = { 0, 0, 0, 0, "0, 0 } 
for each incoming wall wS of cl, 

for each outgoing wall wD of cl, 
tgSD — tg-init(cl, wS, wD) 
wctJransport(wiRoot, bSO, cl.wetWall[wS], tgSD, wiRoot, 

cl.wctWall[wD]) 

Figure 7.7: cLtransportf) Pseudocode 

7.5.7 wct_transportObjToWall() 

As with wctJransportWallToObjf) (see Section 7.5.5), this function, whose pseu­

docode is shown in Figure 7.6, calls wctJransportConfined() for each object con­

tained within the cell, restricting transport to the bounding box of the cell in case 

an object extends outside the cell. In the case of radiance that has been collected 

on the object surfaces by wct-transportWallToObj(), this restriction is redundant, 

but it is necessary in the case of emissive objects, whose emissive-WCTs may extend 

outside the cell walls. 

Also like wctJransportWallToObj(), this function allows from transport from 

both surfaces of the object. 

127 



cLtransblock(Cell cl): 
for each incoming wall wS, 

for each outgoing wall wD != wS, 
tg = tg_init(cl, wS, wD) 
cLcfcTransblock(cl, cl.wetWall[wS], tgSD, cl.wctWall[wD], 

wiRoot, wiRoot) 
for each incoming wall wS, 

wct-transportWallToObj(cl.wctWall[wS], cl) 
for each object obj in cl, 

obj.wctOutgoingAbove = wctJnteract(obj.wctIncidAbove, obj.above.BRDF) 
+ wctJ,nteract(obj.wctIncidBelow, obj.below.BTDF) 

bbj.wctOutgoingBelow = wctJnteract(obj.wctIncidAbove, obj.above.BTDF) 
+ wctJnteract(obj.wctIncidBelow, obj.below.BRDF) 

for each outgoing wall wD, 
wctJransportObjToWall(cl, cl.wetWall[wD]) 

Figure 7.8: cLtransblock() Pseudocode 

7.5.8 cLtransport() 

Figure 7.7 shows the pseudocode for this function. It is quite straightforward: for 

every distinct pair of source and destination walls, invoke wet^transport(). Note 

that since the source and destination W C T s are by definition contained within c/, 

it is not necessary to check for confinement, so wctJransport() can be used directly 

instead of wct.transportConfined(). 

7.5.9 cLtransblock() 

Wavelets provide us with the ability to selectively refine a light representation so 

that we can realize the transblock() function described in Chapter 3. Figure 7.8 is 

the pseudocode for cLtransblock(). 

One of two things happens to light that enters a cell containing an object: 

either it passes through the cell unimpeded from incoming cell wall to outgoing cell 

wall or it impinges on the surface of an object and is (possibly) re-radiated to an 

128 



cLbalance(Cell cl): 
if cl contains no objects, 

cl-transport (cl) 
else 

cLtransblock(cl) 

Figure 7.9: cLbalance() Pseudocode 

outgoing cell wall. 

To deal with the first case, this function calls cLcfcTransblock() for each 

distinct pair of cell walls. 

To deal with the second case, it first uses wct_transportWallToObj() to trans­

fer the radiance of all walls to all objects in the cell. Then it invokes wctJnteract() 

to compute the outgoing object surface W C T s , allowing for two-sided objects if 

specified. Finally, it uses wctJransport0.bjToWall() to transfer the object surface 

W C T s to the outgoing walls. 

7.5.10 cLbalance() 

Figure 7.9 shows the pseudocode for this function, which is quite simple: To balance 

a cell, call cLtransportQ if the cell is empty and cLtransblockf) if it is not. 

7.6 Results 

To demonstrate Lucifer, we will use a simple example: a source emissive square 

illuminating a destination triangle with an optional blocking triangle between them, 

as shown in Figure 7.10. Directionally, the emissivity of the square is a cosine 

lobe similar to 6.12, but positionally, it is uniform over the square, giving the light 

distribution the character of a spotlight. 

129 



front view side view 

Figure 7.10: Configuration for Lucifer Example 

Several discretionary variables determine how long Lucifer takes to run, how 

much memory it requires, and the visual quality of its output. They are: 

• /"" x, the maximum subdivision level of the cell walls. 

• whether or not the blocker is in place. This allows us to test the efficiency of 

our blocking algorithm. 

• ^mlx' the maximum subdivision level of light source and surface BRDFs. We 

could, in principle, select a different / m a x for each surface and light source, but 

we will set them all to the same value in this example to keep the number 

of test cases manageable. In general, it makes sense to restrict / 3 u r f < / c e " . 
o o ' max — max 

Otherwise, the higher resolution is lost during transfer. 

• whether or not the oracle is used at the lowest level as an alternative to 

numerical quadrature (as described in Section 6.11.4). 

We have constructed several tests cases that vary these parameters, as shown 

130 



Uses Low-Level 
Case Blocker? /surf 

max Oracle? 
1 yes 2 no 
2 yes 3 no 
3 yes 3 yes 
4 yes 4 no 
5 no 2 no 
6 no 3 yes 
7 no 3 no 

Table 7.1: Lucifer Test Cases 

in Table 7.1. As it is likely to have the greatest influence on the results, we will take 

Z""x as the principal independent variable for each test case. We run each case until 

the unbalanced energy remaining in the scene is approximately 2% of the original 

luminaire energy. 

Integration in each case was done using the Halton quasirandom integration 

method (see Section 6.10.2) with 16 samples. We used a four-dimensional scheme 

instead of the two-dimensional approach discussed in Section 6.10.1. Since the 

need to be able to restrict transport as required by wctJ,ransportConfined() requires 

additional clipping to guarantee that the destination or projected source support 

rectangles lie within the cell, this increased the cost of the two-dimensional approach. 

In four dimensions, confining the integration requires a simple bounding box test of 

each point. As we will discuss below, however, the choices for integration scheme 

turn out not to be critical performance factors. 

Lucifer allows the user to save as a sequence of frames the intermediate 

contents of the light update buffer while the algorithm runs. Figure 7.11 shows 

these for Case 4 (Z""x = 1™*X = 4, blocker in place, no low-level oracle). In this 

figure, we have omitted frames that show no visible change, such as cell splits or 

transport through empty cells. 

131 



132 



Figure 7.12: Lucifer Example 

Figure 7.12 is an enlarged view of the final frame: the end result of Lucifer. 

There are obvious visual artifacts, but these are comparable to those produced by 

radiosity and other global illumination schemes in the absence of final gather (cf. 

Figure 4, Color Plate 7(d) in Christensen, et al. [11]). 

Figures 7.13 and 7.14 show the timing and peak memory usage for all test 

cases examined. These were collected on a Micron Paradigm XLI workstation with 

a 200MHz Intel Pentium Pro C P U and 256MB of memory. Each plot shows a 

comparison line which is proportional to 16'™"x, which would be the space complexity 

in the absence of wavelet compression. 

133 



100000 1 i 1 'day: 

1 hour' 

Case 1 -e— 
2 + 
3 • 
4 x 
5 
6 * 
7 o 

comparison 

2 3 
Maximum Cell Subdivision Level 

4 

Figure 7.13: Lucifer C P U Time vs. Z""x. (see Table 7.1 for test case configurations) 

7.7 Analysis 

In order to explain the excessive resource requirements of Lucifer, we instrumented 

the program and made several profiling runs with various sets of parameters. We 

made two important discoveries. 

First of all, Lucifer spends a considerable amount of time using the oracle, 

even when the low-level oracle is turned off. As / c e " and ls"!l increase, the mean 
ITiaX III tlx ' 

depth of a source coefficient increases, and since the oracle must be consulted on 

each level, the amount of oracular work required per source coefficient goes up. 

Within the oracle, most of the time is spent projecting points from one surface to 

134 



100 

x 

+ i — 

Case 1 -e— 
2 + 
3 • 
4 x 
5 -
6 x 
7 © 

comparison 

2 3 4 
Maximum Cell Subdivision Level 

Figure 7.14: Lucifer Peak Memory Usage vs. Z""x. (see Table 7.1 for test case 
configurations) 

the other. Recall that each invocation of the oracle requires the projection of 16 

points (the corners of the destination support hypercube). 

After we made this observation, we tried to minimize the number of pro­

jections required by caching destination-to-source projections1. Unfortunately, the 

destination coefficient space prior to compression is not sparse, and the cache, even 

for Z^e"x = 4 used an exorbitant amount of memory. 

The second discovery we made is that when dealing with the largest cell, 

fewer than 2% of the integrations produced a non-zero result. Recall that in order 

'Recall that integration is being done in destination space, so most projections start from there. 

135 



for an integration to be made (always at the finest pure smoothing level, /^e"x + 1 

or 1™TJX + 1, depending on the destination), the oracle on all coarser levels must 

indicate that the two coefficients can interact. This low level of accuracy could in 

part be due to the choice of integration scheme, but since we have observed the 

same phenomenon with several such schemes (particularly varying the number of 

samples) it is much more likely due to the nature of our oracle. Attempts to devise 

a more accurate one have so far been unrewarding. 

As to Lucifer's space requirements, as we noted above, the advantage of 

wavelet compression is only available after we have collected destination smoothing 

coefficients. We cannot compress a W C T while it is being accumulated. 

There is another aspect in which compression doesn't help. Consider a 

wavelet source node, which can contain up to 16 wavelet coefficients (perhaps includ­

ing a pure smoothing component from the node's parent). Recall from Section 6.11.6 

that to transport the contents of the node, wct-transport() pushes the node contents 

and then invokes tc.propagate() on the resulting pure smoothing coefficients. As 

long as the node contains one non-pure smoothing coefficient, the amount of time 

required to transport the contents of the node is the same. While it reduces space re­

quirements, compression only helps time requirements when it removes entire nodes, 

not individual coefficients. 

136 



C h a p t e r 8 

Conclusions and Future Work 

While we have shown light-driven global illumination with wavelets to work in prin­

ciple, extrapolating the Lucifer performance results in Section 7.6 to what would be 

considered a typical rendered scene (Nobi ~ 1000 and /^"x > 6) makes it clear that 

the current implementation still has a long way to go to compete with other ren­

dering techniques such as photon maps in time efficiency, space efficiency, or visual 

quality (although the last might not be so bad with an appropriate final gather such 

as Lalonde and Fournier [42]). 

Nevertheless, in implementing Lucifer we have learned much about the wavelet 

representation of radiance and have made several discoveries along the way that are 

worthy of note: 

• We have examined the physical plausibility of several illumination models and 

suggested some useful new ones. 

• We have shown how a wavelet representation of radiance in Nusselt coordinates 

leads to the simplified computation of radiative transport and other physical 

quantities. 

137 



• We have presented a scheme for computing transport coefficients that uses a 

combined geometric and numerical algorithm. 

• We have investigated compression strategies for radiance and transport coef­

ficients. 

• We have developed a way to compute surface interaction that acts directly on 

the wavelet-transformed coefficients of an incident radiance and a B R D F or 

B T D F . The algorithm used for this shows promise of having applicability in 

more general numerical inner product computations. 

• We have shown that the representation of radiance on a wall leads directly to 

an efficient representation of light fields. 

We have spent a considerable amount of time trying to improve the speed of 

Lucifer. While we have gotten speedups of better than an order of magnitude (not 

including faster hardware) as a result, there is clearly still much room for improve­

ment. Even using the oracle, the program spends far too much time generating null 

smoothing coefficients and (partly as a result of the oracle itself) makes too many 

source-to-destination (or vice-versa) projections per coefficient. 

To make Lucifer viable, we believe the most promising direction for further 

study would be to move from a numerical/geometrical integration scheme to one 

that was entirely geometrical. The goal of this work would be to find an algorithm 

to determine the four-dimensional volume of the intersection of the projection of 

a source hypercube into destination space with a destination hypercube. Such an 

algorithm would speed up Lucifer dramatically. 

The "spin-off" work mentioned above done that resulted from Lucifer explo­

ration has its own set of future directions. 

138 



8.1 Fitting Plausible Shaders to Physical Data 

Now that we are able to classify shaders as to their plausibility, there is a need to 

fit them to some real reflectance data as Larson [78] did with his own illumination 

model. 

8.2 Fitting Plausible Shaders to Physical Data 

Since Lucifer deals with four-dimensional radiance representations of light intrinsi­

cally, it should be possible to incorporate Levoy and Hanrahan [44] light fields or 

Gortler, et al. [27] lumigraphs directly into it, both as inputs and outputs., 

8.3 Curved Surfaces 

In this thesis, for reasons of simplicity we have considered only planar surfaces. With 

appropriate extensions of the parametric-to-object mappings, resulting complication 

of the transport computations1, and some way to treat self-shadowing, it should 

be possible to use W R T to transport light from one curved parametric surface to 

another. 

8.4 Importance 

In much the same way that importance can be incorporated into other global illu­

minations schemes (cf. Smits, et al. [72] and Aupperle and Hanrahan [3], it would 

fit well into the Lucifer approach. We would take the observer to be an emissive 

'To do this, we would probably have to give up on geometric integration schemes and fall back 
on entirely numerical ones. 

139 



source of importance (probably a point source confined to the viewing frustrum) and 

propagate it through cells separately from, but in the same manner as, radiance. 

We would modify the algorithm of Chapter 3 so that the selection of cell to 

be balanced would take into account not just the cells' undistributed power, but 

also their (integrated) importances. 

8.5 Unifying Illumination Modelling and Surface Mod­

elling 

The parameterization of BRDFs and B T D F s we have used here was four-dimensional. 

It is possible to incorporate the spatial variation of reflectance properties (i.e., tex­

turing) by adding two additional dimensions to these distribution functions. This 

would represent the unification of illumination and surface modelling. 

Adding two more positional dimensions to represent an incident-point-to-

emergent-point offset could incorporate subsurface scattering. Extending our fast 

inner product algorithm to work in this case would be trivial. 

We could even use Lucifer itself to generate such positional BRDFs and 

B T D F s on detailed microstructural models for later incorporation in larger-scale 

image synthesis. 

140 



A p p e n d i x A 

One-Dimensional Wavelet 

Properties 

In this appendix, we will review some of the properties of wavelets that make them 

particularly suitable for the representation of radiance. The standard reference on 

wavelets is Daubechies [16], from which much of this appendix is derived. We will 

confine ourselves here to one-dimensional wavelets. Section 5.3 will extend these 

properties to multiple dimensions. 

A . l Scaling Functions and Wavelets 

Wavelets are built from scaling functions, which we define by enumerated dilations 

and translations of a base scaling function <f>(x) of the form: 

<l>im(x) = 2ll24>(2lx-m) ( A . l ) 

141 



Figure A . l : Haar Wavelet and Smoothing Functions. Haar wavelets are the simplest 
possible wavelet and are the most commonly used wavelets in graphics. They have 
only one vanishing moment. 

each level / corresponds to a function space Vj, which is part of a nested sequence 

of subspaces . . . C V _ i C V 0 C Vi C V 2 . . - 1 . 

Scaling functions have the property that 

/

+ o o 

(f)(x)dx / 0 (A.2) 

- o o 

We define a wavelet function space W\ as composed of those functions that need to 

be added to a given space Vj to span the next finer space Vj+i: V/ + i = V/ © W\. The 

basis functions for W\ are then dilations and translations of a mother wavelet ip(x): 

iblm{x) = 2l/2ip{2lx - m) (A.3) 

Wavelets have the property 

/

+ o o 

ip(x)dx = 0 (A.4) 
- o o 

Figures A.1-A.3 show some commonly-used wavelets and their corresponding 

smoothing functions. 

'This notation is a departure from that of Daubechies [16] that is more suitable for discrete 
data: an increasing subscript of V corresponds to an increasing number of samples. 

142 



Figure A.2: Daubechies-4 Wavelet and Smoothing Functions. Daubechies wavelets 
were the first compact orthogonal wavelets discovered. This particular wavelet has 
two vanishing moments. 

Figure A.3: Linear Spline Wavelet And Smoothing Functions. These wavelets 
are biorthogonal and have two vanishing moments. Unfortunately, while the dual 
wavelets and smoothing functions have a simple closed form, this is not true for the 
primals. 

A.2 Multiresolution Refinement Equations 

Since 4>(x) £ Vb and V 0 C V I , we can write <f>(x) as a linear combination of the basis 

functions 4>(2x — j) for V i : . 

<f>{x) = y/2y£hj<l>{2x-j) (A.5) 

This also holds for tp: 

rf;(x) = V2^2gj<t>(2x-j) (A.6) 

These are the dilation or refinement equations. Wavelet bases differ princi-

143 



pally in their choices of {hj} (which determines {gj}). 

Using the enumerated bases: 

j 

(A.T) 
j 

A.3 Orthogonal Wavelets 

We define the inner product of two functions / and g with respect to a x: 

f + OO 

(f\9)X= • f(x)g{x)dx (A.8) 
J — o o 

(Using x as a subscript is non-traditional, but will become useful when we consider 

multidimensional wavelets.) 

Some wavelets are orthogonal: 

But these have undesirable features: except for Haar, they are not symmetric 

and they do not include useful functions like splines. 

A.4 Biorthogonal Wavelets 

We can construct biorthogonal bases by using four functions instead of two: wavelets 

(pim and 4>im and smoothing functions ipim and ipim. These are defined defined, 

respectively, by four sets of coefficients: {hj}, {hj}, {gj}, and {gj}. {hj} determines 

{gj} and {hj} determines {gj}. If done consistently, the primal and dual components 

are entirely interchangeable. 

(A.9) 

144 



For these, 

i>lm | i>l'm') = Sll'Smmi (A.10) 

In the rest of this section, we'll assume the more general biorthogonality, since 

we can always treat orthogonal wavelets as a special case of biorthogonal wavelets. 

A.5 Wavelet Projections and Approximation 

Let us discuss the ability of a wavelet representation to approximate an arbitrary 

function / . Let Vif be the projection of a function / £ L? into the subspace Vj: 

Vif(x)=^2(f\4>im)x<f>im(x) ( A . l l ) 
m 

It can be shown 

II / - Vif \\2 < C2- , J V» || / W | | 2 (A.12) 
' y n 

where Nv is the number of vanishing moments of the wavelets, i. e. for 

n = 0,...,Nv-l 

J xn^(x)dx = (xn | ^oo)^ = 0 - (A.13) 

What Equation (A.12) means is that we can always decrease the I? error of 

a wavelet approximation by increasing the number of levels / or by choosing wavelets 

with a higher number of vanishing moments. 

A.6 The Fast Wavelet Transform 

The fast wavelet transform, first developed by Beylkin, et al. [5], starts with a 

set of data s / m , m = 0 . . .Af — 1, where N = 2l. We treat these as coefficients of 

4>im and can compute a wavelet transform in O(N) operations. Figure A.4 shows 

145 



Figure A.4: The Fast Wavelet Transform 

this schematically: starting on the right, each step operates on half the data of the 

previous step and there are / steps. This is another advantage of wavelet methods 

over Fourier techniques, which typically require 0(N log N) operations. 

The transform leaves us with 2l - 1 wavelet coefficients (dark gray in Fig­

ure A.4) and 1 smoothing coefficient (light gray). The hierarchical arrangement of 

these coefficients is sometimes referred to as the "wavelet pyramid". 

A.7 Wavelet Compression 

Even with the wavelet pyramid, we are still dealing with N coefficients. We have 

not saved any storage (yet). 

It can be shown that if / is of the form 

(A.14) 
l,m 

146 



and we approximate it by 

F(x) = Z~2 wlm^lm{x) (A.15) 

where the W. is a subset of the set of coefficients {wim}, that 

l l / - ^ l l 2 = E K » i 2 ( A- 1 6) 

This gives us a convenient error metric. It also tells us that the optimal compres­

sion scheme discards the coefficients with smaller magnitudes first - a thresholding 

process. 

147 



A p p e n d i x B 

Pseudocode for Haar Surface 

Interaction 

Figures B.1-B.7 show the pseudocode for surface interaction with Haar wavelets. 

This implements Equations 5.47 and 7.1 with several optimizations, particularly 

"short circuiting": if one of the factors in Equation 5.47 is zero, the remaining 

factors are not computed. 

148 



# computing bR[N] = sum(J,K) f[J] bS[K] < < F[J] | B[K] > \ B[N] > 

# This attempt takes advantage of the sparsity of both /[] and bS[]. 

compute-bR: 
for all N 

bR[N] = 0 
for all J such that f[J] != 0 

for all K such that bS[K] != 0 
Delta-ks(f[J] * bS[K], J, K) 

Figure B . l : Pseudocode for Surface Interaction I: top level 

DeltaJks(s, J, K): 
if J.m/<0> == 0 LL K.nu<2> == 0 

if K.l > J.l 
Q = 2'{K.l - J.l) 
if Q * J.m[Q] <= K.m[2] < Q * [J.m[0] + 1) 

DeltaJs(s / sqrt(Q), J, K) 
else 

Q = 2'(J.l - K.l) 
if Q * K.m[2] <= J.m[0] < Q * (K.m[2] + 1) 

DeltaJs(s / sqrt(Q), J, K) 
else if J.nu<0> =- 0 K.nu<2> == 1 

if J.l > K.l 
Q = 2'(J.l - K.l) 
Qh = Q I 2 
if 0 <= J.m[0] - Q * K.m[2] < Qh 

DeltaJs(s / sqrt(Q), J, K) 
else if Qh <= J.m[0] - Q * K.m[2] < Q 

DeltaJs(-s / sqrt(Q), J, K) 
else if J.nu<0> == 1 LL K.nu<2> =- 0 

if J.l < K.l 

Q = 2-(K.l - J.l) 
Qh = Q I 2 
if 0 <= K.m[0] - Q * J.m[2] < Qh 

DeltaJs(s / sqrt(Q), J, K) 
else if Qh <= K.m[Q] - Q * J.m[2] < Q 

DeltaJs(-s / sqrt(Q), J, K) 
else if J.l == K.l LL K.m[2] == J.m[0] 

DeltaJs(s, J, K) 

Figure B.2: Pseudocode for Surface Interaction II: DeltaJts 

149 



DeltaJs(s, J, K): 
if J.nu<\> - - 0 LL K.nu<3> == 0 

if K.l > J.l 
Q = 2'(K.l - J.l) 
if 0 <= K.m[3] - Q * J.m[l] < Q 

DeltaJir(s / sqrt(Q), J, K) 
else 

Q = 2-(J.l - K.l) 
if 0 <= J.m[l] - Q * K.m[3] < Q 

DeltaJkr(s / sqrt(Q), J, K) 
else if J.n«<l> == 0 LL K.nu<3> ==1 

if J.l > K.l 
Q = 2'(J.l - K.l) 
Qh = Q I 2 
if 0 <= J.m[l] - Q * K.m[3] < Qh 

DeltaJcr(s / sqrt(Q), J, K) 
else if Qh <= J.m[l] - Q * K.m[3] < Q 

DeltaJcr(-s / sqrt(Q), J, K) 
else if J.n«<l> == 1 LL K.nu<3> == 0 

if J.l < K.l 
Q = 2"(K.l - J.l) 
Qh = Q I 2 
if 0 <= J.m[l] - Q * K.m[3] < Qh 

DeltaJcr(s j sqrt(Q), J, A) 
else if Qh <= J.m[l] - Q * K.m[3] < Q 

DeltaJcr(-s / sqrt(Q), J, A') 
else if K.l == J.l LL K.m[3] == J.m[l] 

DeltaJcr(s, J, K) 

Figure B.3: Pseudocode for Surface Interaction III: DeltaJs 

150 



Delta Jzr(s, J, K): 
for N.nu = 0 to 15 

if J.nu<2> == 0 LL N.nu<2> == 0 
INmax = ( N.nu == 0 ? 0 : maximum possible level ) 
for N.l = 0 to INmax 

if TV./ > J . / 
Q = 2-(7VJ - J./) 
for delM = 0 to Q - 1 

N.m[2] = Q * J.m[2] + delM 
DeltaJr(s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 

else 
Q = 2'(J.l - N.l) 
N.m[2] = floor(J.m[2] / Q) 
DeltaJr(s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 

else if J.nu<2> == 0 LL N.nu<2> == 1 
INmax = ( N.nu == 0 ? 0 : J.l - 1 ) 
for N.l = 0 to INmax 

Q = 2-(J./ - AT./) 
Qh = Q / 2 
N.m[2] = floor(J.m[2] / Q) 
if 0 <= J.m[2] - Q * N.m[2] < Qh 

DeltaJr(s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 
else 

DeltaJr(-s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 
else if J.nu<2> == 1 LL N.nu<2> == 0 

INmax = ( N.nu == 0 ? 0 : maximum possible level ) 
for N.l = J.l + 1 to INmax 

Q = 2'(J.l - N.l) 
Qh = Q I 2 
for delM = 0 to Qh - 1 

TV.m[2] = Q * J.m[2] + delM 
DeltaJr(s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 

for delM = Qh to Q - 1 
yV.m[2] = g * J.m[2] + de/M 
DeltaJr(-s / sqrt(Q), J, K, N.nu, N.l, N.m[2]) 

else if N.nu != 0 11 J.l == 0 
N.l = J.l 
TV. ra [2] = J.m[2] 

DeltaJr(s, J, K, N.nu, N.l, N.m[2\) 

Figure B.4: Pseudocode for Surface Interaction IV: Delta_kr 

151 



DeltaJr(s, J, K, N.nu, N.l, N.m[2]): 
if J.nu<3> == 0 && N.nu<3> == 0 

if N.l > J.l 
Q = 2'(N.l - J.l) 
for delM = 0 to Q - 1 

N.m[3] = Q * J.m[3] + delM 
DeltaJX(S / sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 

else 
Q = 2~(J.l - N.l) 
N.m[3] = floor(J.m[3] / Q) 
Delta_x(s J sqrt(Q), J, K, N.nu, N.l, Nm[2], N.m[3]) 

else if J.nu<3> == 0 && N.nu<3> == 1 
if J.l > N.l 

Q = 2'(J.l - N.l) 
Qh = Q I 2 
N.m[3] = floor(J.m[3] / Q) 
if 0 <= J.m[3] - Q * N.m[3] < Qh 

Delta-x(s / sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 
else 

Delta_x(-s / sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 
else if J . n « < 3 > == 1 A^.nw<3> == 0 

if J.l < N.l 
Q = 2~(N.l - J.l) 
Qh = Q I 2 
for delM = 0 to Qh - 1 

N.m[3] = Q * J.m[3] + delM 
Delta-x(s / sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 

for delM = Qh to Q - 1 
N.m[3] = Q * J.m[3] + delM 
DeltaJC(-S j sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 

else if N.l - - J.l 
N.m[3] = J.m[3] 
Delta_x(s, J, K, N.nu, N.l, N.m[2], N.m[3]) 

Figure B.5: Pseudocode for Surface Interaction V: DeltaJr 

152 



Delta.x(s, J, K, N.nu, N.l, N.m[7}): 
if K.nu<0> == 0 LL N.nu<0> == 0 

if N.l > K.l 
Q = 2~(N.l - K.l) 
for delM = 0 to Q - 1 

Nm[0] = Q * K.m[0] + delM 
Delta..y(s / sqrt(Q), J, K, N.nu, N.l, N.m[Q], N.m[2], N.m[3]) 

else 
Q = 2~(K.l - N.l) 
N.m[0] = floor(K.m[0] / Q) 10 
Delta.y(s j sqrt(Q), J, K, N.nu, N.l, N.m[Q], N.m[2], N.m[3]) 

else if K.nu<0> == 0 LL N.nu<0> == 1 
if K.l > N.l 

Q = 2~(K.l - N.l) 
Qh = Q I 2 
N.m[0] = floor(K.m[tr] / Q) 
if 0 <= K.m[Q] - Q * N.m[0] <. Qh 

Deltajy(s / sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3\) 
else 

Delta-y(-s / sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 20 
else if K.nu<0> == 1 LL N.nu<0> == 0 

if K.l < N.l 
Q = 2~(N.l - K.l) 
Qh = Q j 2 
for delM = 0 to Qh - 1 

N.m[0] = Q * K.m[0] + delM 
Delta^y(s / sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 

for delM = Qh to Q - 1 
N.m[0] = Q * K.m[0] + delM 
Delta^y(s / sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 30 

else if K.l == N.l 
N.m[Q] = K.m[0] 
Delta.y(s, J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 

Figure B.6: Pseudocode for Surface Interaction VI: Delta_x 

153 



Delta.y(s, J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]): 
i f K.nu<\> == 0 LL N.nu<\> 0 

i f N.l > K.l 
Q = 2~(N.l - K.l) 
for delM = 0 to Q - 1 

N.m[l] = Q * K.m[l] + delM 
bR[N] = bR[N] + s / sqrt(Q) 

else 
Q = 2-(K.l - N.l) 
N.m[l] = floor(K.m[l] / Q) • 10 
bR[N] = bR[N] + s / sqrt(Q) 

else i f 7\.nw<l> == 0 LL N.nu<l> == 1 
i f K.l > N.l 

Q = 2~(K.l - N.l) 
Qh = Q I 2 
N.m[l] = floor(K.m[l] / Q) 
i f .0 <= K.m[l] - Q * N.m[l] < Qh 

bR[N] = bR[N] + s j sqrt(Q) 
else 

bR[N] = bR[N] - s I sqrt(Q) 20 
else i f K.nu<l> == 1 LL N.nu<l> == 0 

i f K.l < N.l 
Q = 2~(Nl - K.l) 
Qh - Q I 2 
for delM = 0 to Qh - 1 

N.m[l] = Q * K.m[l] + delM 
bR[N] = bR[N] + s / sqrt(Q) 

for delM = Qh to Q - 1 
N.m[l] = Q * K.m[l] + delM 
bR[N] = bR[N] - s / sqrt(Q) 30 

else i f K.l == N.l 
N.m[l] = K.m[l] 
bR[N] = bR[N] + s 

Figure B.7: Pseudocode for Surface Interaction V I I : Delta_y 

154 



Bibliography 

[1] James Arvo and David Kirk. A survey of ray tracing acceleration techniques. 
In Andrew S. Glassner, editor, An Introduction to Ray Tracing, pages 201-262. 
Academic Press, 1989. 

[2] Ian Ashdown. Near-field photometry: The helios approach. In Graphics Inter­
face '92 Workshop on Local Illumination, pages 1-14, May 1992. 

[3] Larry Aupperle and Pat Hanrahan. Importance and discrete three point trans­
port. In Michael F . Cohen, Claude Puech, and Francois Sillion, editors, Fourth 
Eurographics Workshop on Rendering, pages 85-94. Eurographics, June 1993. 
held in Paris, France, 14-16 June 1993. 

[4] P. Beckmann and A. Spizzichino. The scattering of electromagnetic waves from 
rough surf aces. Artech House Inc, 1987. 

[5] G . Beylkin, Ronald R. Coifman, and V . Rokhlin. Fast wavelet transforms and 
numerical algorithms i. Communications on Pure and Applied Mathematics, 
44:141-183,1991. 

[6] James F . Blinn. Models of light reflection for computer synthesized pictures. 

In James George, editor, Computer Graphics (SIGGRAPH '77 Proceedings), 

volume 11, pages 192-198, San Jose, California, July 1977. 

[7] James F . Blinn. Simulation of wrinkled surfaces. In Computer Graphics (SIG­
GRAPH '78 Proceedings), volume 12, pages 286-292, August 1978. 

[8] OpenGL Architecture Review Board, Mason Woo, Jackie Neider, and Tom 
Davis. OpenGL Programming Guide. Addison Wesley Developers Press, 1997. 

[9] Edwin E . Catmull. A Subdivision Algorithm for Computer Display of Curved 
Surfaces. PhD thesis, Dept. of CS, U. of Utah, December 1974. 

[10] S. Chandrasekar. Radiative Transfer. Oxford Univ. Press, 1950. 

155 



[11] Per H. Christensen, Eric J . Stollnitz, David H. Salesin, and Tony D. DeRose. 
Wavelet radiance. In Fifth Eurographics Workshop on Rendering, pages 287-
302, Darmstadt, Germany, June 1994. 

[12] Per Henrik Christensen, Eric J . Stollnitz, David H. Salesin, and Tony D. 
DeRose. Global illumination of glossy environments using wavelets and im­
portance. ACM Transactions on Graphics, 15(1):37-71, January 1996. 

[13] F . J . J . Clarke and D. J . Parry. Helmholtz reciprocity: its validity and appli­

cation to reflectometry. Lighting Research & Technology, 17(1):1—11, 1985. 

[14] Michael F . Cohen and John R. Wallace. Radiosity and Realistic Image Synthe­
sis. Academic Press Professional, San Diego, C A , 1993. 

[15] R. L. Cook and K. E . Torrance. A reflectance model for computer graphics. 
ACM Transactions on Graphics, l(l):7-24, January 1982. 

[16] Ingrid Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Re­
gional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 
1992. 

[17] Eugene L. Fiume. The Mathematical Structure of Raster Graphics. Academic 
Press, April 1989. 

[18] James D. Foley, Andries van Dam, Steven K. Feiner, and John F . Hughes. 
Computer Graphics, Principles and Practice, Second Edition. Addison-Wesley, 
Reading, Massachusetts, 1990. Overview of research to date. 

[19] A . Fournier. Separating reflection functions for linear radiosity. In Eurographics 
Rendering Workshop 1995. Eurographics, June 1995. 

[20] A . Fournier, E . Fiume, M . Ouellette, and C . K. Chee. FIAT L U X : Light driven 

global illumination. Technical Memo DGP89-1, Dynamic Graphics Project, 

Department of Computer Science, University of Toronto, 1989. 

[21] Alain Fournier. Normal distribution functions and multiple surfaces. In Graph­

ics Interface '92 Workshop on Local Illumination, pages 45-52, May 1992. 

[22] Alain Fournier. From local to global illumination and back. In P. M . Hanrahan 

and W . Purgathofer, editors, Rendering Techniques '95 (Proceedings of the 

Sixth Eurographics Workshop on Rendering), pages 127-136, Dublin, Ireland, 

June 1995. Springer-Verlag. 

156 



[23] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. Arts: Accelerated ray­
tracing system. IEEE Computer Graphics and Applications, pages 16-26, April 
1986. 

[24] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, 

1995. 

[25] Cindy M . Goral, Kenneth E . Torrance, Donald P. Greenberg, and Bennett Bat-
taile. Modelling the interaction of light between diffuse surfaces. In Computer 
Graphics (SIGGRAPH '84 Proceedings), volume 18, pages 212-22, July 1984. 

[26] Steven J . Gortler, Michael F . Cohen, and Phillip Slusallek. Radiosity and 
relaxation methods: Progressive refinement is Southwell relaxation. Technical 
Report CS-TR-408-93, Department of Computer Science, Princeton University, 
February 1993. to appear in I E E E Computer Graphics & Applications. 

[27] Steven J . Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F . Cohen. 
The lumigraph. In Holly Rushmeier, editor, Proceedings of SIGGRAPH '96 
(New Orleans, LA, August 4-9, 1996), Computer Graphics Proceedings, Annual 
Conference Series, pages 43-54. A C M S I G G R A P H , A C M Press, August 1996. 

[28] Steven J . Gortler, Peter Schroder, Michael F . Cohen, and Pat Hanrahan. 
Wavelet radiosity. In Computer Graphics Proceedings, Annual Conference Se­
ries, 1993, pages 221-230, 1993. 

[29] Eric A . Haines. A proposal for standard graphics environments. IEEE Com­

puter Graphics and Applications, 7(11):3-5, November 1987. 

[30] Roy Hall. Illumination and Color in Computer Generated Imagery. Springer-
Verlag, New York, 1989. 

[31] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due to 
subsurface scattering. In James T. Kajiya, editor, Computer Graphics (SIG­
GRAPH '93 Proceedings), volume 27, pages 165-174, August 1993. 

[32] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical ra­
diosity algorithm. In Thomas W . Sederberg, editor, Computer Graphics (SIG-. 
GRAPH '91 Proceedings), volume 25, pages 197-206, July 1991. 

[33] Xiao D. He, Kenneth E . Torrance, Francois X. Sillion, and Donald P. Greenberg. 
A comprehensive physical model for light reflection. In Thomas W. Sederberg, 
editor, Computer Graphics (SIGGRAPH '91 Proceedings), volume 25, pages 
175-186, July 1991. 

157 



[34] Berthold Klaus Paul Horn. Robot Vision. McGraw-Hill, 1986. 

[35] David S. Immel, Michael F . Cohen, and Donald P. Greenberg. A radiosity 
method for non-diffuse environments. In David C. Evans and Russell J . Athay, 
editors, Computer Graphics (SIGGRAPH '86 Proceedings), volume 20, pages 
133-142, August 1986. 

[36] American National Standards Institute. ANSI standard nomenclature and def­
initions for illuminating engineering,. ANSI/IES RP-16-1986, Illuminating En­
gineering Society, 345 East 47th Street, New York, N Y 10017, June 1986. 

[37] Henrik Wann Jensen. Global illumination using photon maps. In Seventh 
Eurographics Workshop on Rendering, pages 22-30, Porto, Portugal, June 1996. 

[38] James T . Kajiya. The rendering equation. In David C . Evans and Russell J . 
Athay, editors, Computer Graphics (SIGGRAPH '86 Proceedings), volume 20, 
pages 143-150, August 1986. 

[39] Alexander Keller. Quasi-monte carlo radiosity. In Seventh Eurographics Work­
shop on Rendering, Porto, Portugal, June 1996. 

[40] Renate Kempf and Chris Frazier, editors. OpenGL Reference Manual. Addison 
Wesley Developers Press, 1997. 

[41] Paul Lalonde and Alain Fournier. Filtered local shading in the wavelet domain. 
In J . Dorsey and Ph. Slusallek, editors, Rendering Techniques '97 (Proceedings 
of the 8th Eurographics Workshop on Rendering), pages 163-174. Springer-
Verlag, June 1997. 

[42] Paul Lalonde and Alain Fournier. A wavelet representation of reflectance func­
tions. IEEE Transactions on Visualization and Computer Graphics, 3(4):329-
336, October-December 1997. 

[43] J . Lane, L. Carpenter, T . Whitted, and J . Blinn. Scan line methods for display­

ing parametrically defined surfaces. Communications of the ACM, 23(l):23-34, 

1980. 

[44] Marc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, 
editor, Proceedings of SIGGRAPH '96 (New Orleans, LA, August 4-9, 1996), 
Computer Graphics Proceedings, Annual Conference Series, pages 31-42. A C M 
S I G G R A P H , A C M Press, August 1996. 

158 



[45] Robert Lewis. Making shaders more physically plausible. In Michael F . Cohen, 

Claude Puech, and Francois Sillion, editors, Fourth Eurographics Workshop on 

Rendering, pages 47-62. Eurographics, June 1993. held in Paris, France, 14-16 

June 1993. 

[46] Robert R. Lewis. Solving the classic radiosity equation using multigrid tech­
niques. In Proceedings of the 1992 Western Computer Graphics Symposium, 
pages 157-164, Banff, Alberta, Canada, April 1992. 

[47] Robert R. Lewis. Making shaders more physically plausible. Computer Graphics 

Forum, 13(2):109 - 120, June 1994. 

[48] William E . Lorensen and Harvey E . Cline. Marching cubes: A high resolution 
3D surface construction algorithm. In Maureen C . Stone, editor, Computer 
Graphics (SIGGRAPH '87 Proceedings), volume 21, pages 163-169, July 1987. 

[49] Martti J . Mantyla. Introduction to Solid Modeling. Computer Science Press, 
Rockville, M D , December 1986. 

[50] Steve McConnell. Code Complete. Microsoft Press, 1993. 

[51] Dimitri Mihalas. Stellar Atmospheres. W. H . Freeman, San Francisco, 1978. 

[52] M . Minnaert. The reciprocity principle in lunar photometry. Astrophysical 

Journal, 93:403-410, May 1941. 

[53] Curtis D. Mobley. Light in Water: Radiative Transfer in Natural Waters. 

Academic Press, San Diego, 1994. 

[54] Hans Moravec. 3D graphics and the wave theory. In Computer Graphics (SIG­

GRAPH '81 Proceedings), volume 15, pages 289-96, August 1981. 

[55] L . Neumann and A. Neumann. Photosimulation: Interreflection with arbitrary 

reflectance models and illuminations. Computer Graphics Forum, 8(l):21-34, 

March 1989. 

[56] W. Nusselt. Graphische Bestimmung des Winkelverhaltnisses bei der Warme-

Strahlung. Zeitschrift des Vereines Deutscher Ingenieure, 72(20):673, 1928. 

[57] Michael Oren and Shree K. Nayar. Generalization of Lambert's reflectance 

model. In Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando, 

Florida, July 24~29, 1994), Computer Graphics Proceedings, Annual Confer­

ence Series, pages 239-246. A C M S I G G R A P H , A C M Press, July 1994. ISBN 

0-89791-667-0. 

159 



[58] Bui-T. Phong. Illumination for computer generated pictures. Communications 

of the ACM, 18(6):311-317, June 1975. 

[59] Pierre Poulin and John Amanatides. Shading and shadowing with linear light 
sources. In C. E . Vandoni and D. A. Duce, editors, Eurographics '90, pages 
377-386. North-Holland, September 1990. 

[60] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. In Forest 
Baskett, editor, Computer Graphics (SIGGRAPH '90 Proceedings), volume 24, 
pages 273-282, August 1990. 

[61] Mark C. Reichert. A two-pass radiosity method driven by lights and viewer 
position. Master's thesis, Program of Computer Graphics, Cornell University, 
January 1992. 

[62] Lawrence G . Roberts. Machine perception of three-dimensional solids. T R 315, 
Lincoln Lab, MIT, Lexington, M A , May 1963. 

[63] Holly Rushmeier. Rendering participating media: Problems and solutions from 
application areas. In Fifth Eurographics Workshop on Rendering, pages 35-56, 
Darmstadt, Germany, June 1994. 

[64] Holly E . Rushmeier and Kenneth E . Torrance. Extending the radiosity method 
to include specularly reflecting and translucent materials. ACM Transactions 
on Graphics, 9(l):l-27, January 1990. 

[65] Peter Schroeder, Steven Gortler, Michael Cohen, and Pat Hanrahan. Wavelet 
projections for radiosity. In Michael F . Cohen, Claude Puech, and Francois 
Sillion, editors, Fourth Eurographics Workshop on Rendering, pages 105-114. 
Eurographics, June 1993. held in Paris, France, 14-16 June 1993. 

[66] Peter Schroeder and Pat Hanrahan. Wavelet methods for radiance computa­
tions. In Fifth Eurographics Workshop on Rendering, pages 303-311, Darm­
stadt, Germany, June 1994. 

[67] Michael Shantz and Sheue-Ling Lien. Shading bicubic patches. In Maureen C. 
Stone, editor, Computer Graphics (SIGGRAPH '87 Proceedings), volume 21, 
pages 189-196, July 1987. 

[68] Robert Siegel and John R. Howell. Thermal Radiation Heat Transfer. Hemi­
sphere Publishing Corp., Washington, D C , 1981. 

160 



[69] Francois X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P. Green­

berg. A global illumination solution for general reflectance distributions. In 

Thomas W. Sederberg, editor, Computer Graphics (SIGGRAPH '91 Proceed­

ings), volume 25, pages 187-196, July 1991. 

[70] Charles Simonyi. MetaTprogramming: A software production method. Techni­
cal Report CSL-76-7, Xerox Palo Alto Research Center, 1976. 

[71] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for 
radiosity in complex environments. In Andrew Glassner, editor, Proceedings 

of SIGGRAPH '94 (Orlando, Florida, July 24~29, 1994), Computer Graph­
ics Proceedings, Annual Conference Series, pages 435-442. A C M S I G G R A P H , 
A C M Press, July 1994. ISBN 0-89791-667-0. 

[72] Brian E . Smits, James R. Arvo, and David H. Salesin. An importance-driven 
radiosity algorithm. In Edwin E . Catmull, editor, Computer Graphics (SIG­

GRAPH '92 Proceedings), volume 26, pages 273-282, July 1992. 

[73] Barton T . Stander and John C . Hard. Guaranteeing the topology of an implicit 
surface polygonalization for interactive modeling. In SIGGRAPH '97 Confer­

ence Proceedings, pages 279-286, Los Angeles, California, August 3-8 1997. 

[74] Toshimitsu Tanaka and Tokiichiro Takahashi. Shading with area light sources. 

Eurographics '91, pages 235-46, 535-7, September 1991. 

[75] K. E . Torrance and E . M . Sparrow. Theory for off-specular reflection from 

roughened surfaces. Journal of Optical Society of America, 57(9), 1967. 

[76] T . S. Trowbridge and K. P. Reitz. Average irregularity representation of a 

roughened surfaces for ray reflection. Journal of Optical Society of America, 

65(3), 1967. 

[77] C. P. Verbeck and D. P. Greenberg. A comprehensive light source description 

for computer graphics. IEEE Computer Graphics and Applications, 4(7):66-75, 

July 1984. 

[78] Gregory J . Ward. Measuring and modeling anisotropic reflection. In Edwin E . 

Catmull, editor, Computer Graphics (SIGGRAPH '92 Proceedings), volume 26, 

pages 265-272, July 1992. 

[79] J . Warnock. A hidden-surface algorithm for computer generated half-tone pic­

tures. Technical Report T R 4-15, NTIS AD-733 671, University of Utah, Com­

puter Science Department, 1969. 

161 



[80] Alan Watt. Fundamentals of Three-Dimensional Computer Graphics. Addison-
. Wesley, Wokingham, England, 1989. 

[81] K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting. 
Computer Graphics (SIGGRAPH '77 Proceedings), l l (2 ) :214-222, July 1977. 

[82] Stephen H. Westin, James R. Arvo, and Kenneth E. Torrance. Predicting re­
flectance functions from complex surfaces. In Edwin E. Catmull, editor, Com­
puter Graphics (SIGGRAPH '92 Proceedings), volume 26, pages 255-264, July 
1992. 

[83] Turner Whitted. An improved illumination model for shaded display. Commu­
nications of the ACM, 23(6):343-349, June 1980. 

[84] Lance Williams. Casting curved shadows on curved surfaces. In Computer 
Graphics (SIGGRAPH '78 Proceedings), volume 12, pages 270-274, August 
1978. 

[85] R. J. Woodham and T. K. Lee. Photometric method for radiometric correction 
of multispectral scanner data. Canadian Journal of Remote Sensing, 11(2): 132-
161, December 1985. 

[86] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Data structure for soft 
objects. The Visual Computer, 2(4):227-234, 1986. 

[87] Daniel Zwillinger. Handbook of Integration. Jones and Bartlett Publishers, Inc., 
Boston, MA, 1992. 

162 



Index 

ANSI/IES, 6, 10, 60 

bidirectional reflectance distribution func­

tion (BRDF), 5, 14, 16, 25-

28, 31-33, 37-39, 47, 59, 63, 

67-69, 82, 116, 119, 120, 126, 

137 

bidirectional transmittance distribution 

function (BTDF) , 5, 15, 16, 

37, 47, 84, 116, 119, 120, 126, 

137 

B R D F , see bidirectional reflectance dis­

tribution function 

B T D F , see bidirectional transmittance 

distribution function 

FIAT, 41, 54, 55, 76, 120 

final gather, 38, 120. 

illumination 

global, 1, 8, 35, 38-41 

local, 8, 13, 16, 36, 38, 40, 44 

model, 17, 23-33, 36, 37, 40 

illumination model, 14, 44, 48, 58-72, 

119 

index 

multiresolution, 77, 78 

wavelet, see wavelet indices 

Lucifer (algorithm), 39, 41-57 

Lucifer (implementation), 85-87,114-

136 

Nusselt coordinates, 74-75, 82, 119, 

137 • 

shading model, 17, 33-34, 119-120 

subsurface scattering, 32, 116 

surface 

interaction, 5, 16, 35, 37, 47, 58, 

75, 76, 81-84, 120-122, 126, 

137, 148 

model, 17, 32-33, 120 

U D C , see unit directional circle 

163 



unit directional circle, 52, 74, 79, 82, 

104 

wavelet 

basis, 54 

coefficient trees (WCTs), 89-92, 

115, 118, 119, 123, 124, 127-

129 

compression, 50, 117, 118 

indices, 86-89, 91, 116, 123, 124 

luminaires, 19 

radiance, 55-57 

radiative transport (WRT), 73-86 

radiosity, 38 

refinement, 128 

wavelets 

Haar, 116, 120-123, 126, 148 

one-dimensional, 141-147 

W C T , see wavelet coefficient trees 

W R T (algorithm), see wavelet radia­

tive transport 

WRT (implementation), 85-110, 116, 

117, 120 

164 


