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Abstract

This thesis considers the problem of making predictions about new experiences based

upon past experiences. The problem is of interest to artificial intelligence because

past experiences are a kind of domain knowledge that is readily available to com

putational agents, and are at least one form of knowledge that humans use to make

predictions.

Instead of considering the problem in terms of first inducing a domain model

from a set of past experiences, and then using some form of deduction to make

predictions, this thesis develops a new technique called the reference class approach

(RCA) that directly infers estimates of conditional probabilities from a knowledge

base of past experiences. The resulting estimates can be readily used in a number

of contexts such as non-monotonic reasoning, the characterisation of probability

distribution functions, prediction and classification.

Given a knowledge base (KB) of descriptions of past experiences, a description of

a new experience, and a proposition representing a query about the new experience,

the RCA estimates the conditional probability of the proposition being true of the

new experience. The RCA starts by identifying a subset of the KB called the

reference class that contains all those past experiences in the KB whose descriptions

cover everything that is known about the new experience in addition to providing a
truth value for the proposition.

If there are no directly applicable past experiences, i.e., the reference class is
empty, then the description of the new experience is modified until a non-empty ref

erence class can be found. This thesis investigates two new approaches to modifying
the description, namely syntactic generalisation and chaining. Previous research has
proposed that logical implication can be used to semantically generalise an empty



reference class to any non-empty reference class. This thesis shows that semantic

generalisation does not work in the context of making predictions from a KB of past

experiences. This thesis argues that we should syntactically generalise the descrip

tion of the new experience. Chaining is a novel extension of syntactic generalisation

that allows us to systematically increase what we know about a new experience by

elaborating its description while generalising. Once a non-empty reference class has

been identified the RCA estimates the conditional probability of the proposition

being true by measuring the frequency with which the proposition is true in the

reference class.

The RCA is an inductive technique in that it estimates probabilities directly

from past experiences. One useful test of an inductive technique is to test whether

or not it can be used to make accurate predictions from past experiences. This thesis

argues that in order to implement the RCA we need a notion of irrelevance to pick

the most appropriate generalised or chained reference class. This thesis shows that

even with very simple notions of irrelevance, the RCA’s estimates can be used to

make predictions whose accuracy compares favourably with state of the art machine

learning techniques on standard test data from the machine learning community.

H
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Chapter 1

Introduction

1.1 Predicting the future from experience

This thesis considers the problem of making predictions about new experiences in
the context of the following methodological assumption:

Assumption 1 The only domain knowledge is a set of past experiences such that

each past experience is described by a single ground sentence called a case.

The thesis starts by describing the reference class approach (RCA) to estimating
conditional probabilities from past experiences. Instead of considering the problem
in terms of first inducing a domain model from the set of past experiences, and then

using some form of deduction to make predictions, the RCA directly infers estimates

of conditional probabilities from a knowledge base of past experiences. The resulting
estimates are a form of domain knowledge that can be readily used in a number of
contexts such as non-monotonic reasoning (e.g., [Bac9O]; [Goo9l]), prediction and

classification (e.g., [Fis87]; [0S88j). The thesis concludes by demonstrating that
a computational implementation called FRED1 can use the RCA’s estimates to
make accurate predictions about a variety of domains considered bench marks in
the machine learning, statistical and pattern matching literatures.

1.2 An overview of the issues

The RCA takes as input: 1. A new experience, such that the well formed sentence
(wfs) 3 describes what is known to be true of the new experience, and the wfs c

1 For Fred’s relational experiential database.

1



Chapter 1. Introduction 2

describes what may or may not be true of the new experience, and 2. A set of cases

called an episodic knowledge base (EKB) such that each case describes a single past

experience. The RCA outputs an estimate of

the conditional probability, Prob(a3), that a is true of a new experience

given that all we know about the new experience is that 3 is true.

Given the formulae a and 3, the RCA estimates Prob(a,i3) by incorporating 3

into a suitable reference class. The intension of the reference class is a pair (a, /3)

that specifies the extension of the reference class, i.e, the set of all past experiences

in the EKB that are relevant with respect to estimating Prob(a/3). If the extension

is empty, then the RCA identifies an alternative reference class, with a non-empty

extension. If the extension of the reference class is not empty, then the estimate

is obtained by measuring the frequency with which a is known to be true in the

reference class extension.

Viewing the induction problem addressed in this thesis as a problem of finding a

suitable reference class raises several issues. For example, it may be possible to in

corporate /3 into many reference classes from which different estimates of Prob(a/3)

can be obtained. In the context of estimating conditional probabilities this ambigu

ity has been referred to as the reference class problem (e.g., [Rei49] [Jr.83] [Lev8O]
[Po183] [Po184] [Bac9O] [Goo9lj). The RCA approach addresses the ambiguity by

specifying the intension of a single reference class that is appropriate for making the
desired prediction.

If a reference class with an empty extension is specified, then the RCA uses
syntactic generalisation, and its novel extension chaining, to generate sets of possible

alternatives. Syntactic generalisation generalises the reference class by generalising

properties of the new experience that are known to be true, but which can be
assumed irrelevant with respect to estimating Prob(aI/3). For example,
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Example 1 Syntactic generalisation might generalise ‘x is rich and a lawyer’ to ‘x

is rich’ by assuming that ‘x is a lawyer’ is irrelevant and dropping the conjunct.

However, syntactic generalisation can not generalise ‘x is rich and a lawyer’ by

disjoining additional properties such as ‘x is an elephant’ to get “x is rich and a

lawyer’ or ‘x is an elephant”.

Chaining allows the RCA to assume that knowledge in addition to that specified by

is relevant. Although the addition of knowledge constrains the reference class even

further, it has the desirable effect of increasing the number of possible generalisation.

For example, if we know that ‘x is a bird’, and assume that ‘x also has feathers’, then

we can generalise what we know about ‘x’ by generalising feathers or by generalising

bird. Intuitively, the more ways in which the RCA can generalise the more likely it

is to find a reasonable alternative to an empty reference class.

The cardinality of the sets of possible generalisations and ‘chainings’ of an empty

extension may be very large. To apply the RCA to real world problems, this thesis

considers the use of inductive biases that estimate irrelevance in order to identify a

single most appropriate generalisation or chaining of an empty reference class. As

discussed later in this chapter, this thesis assumes that probabilistic independence

(e.g., [Pea88]) is an appropriate estimate of irrelevance.

The remainder of this section considers how the RCA addresses:

The relevant reference class problem: How do we specify the intension of a

reference class of epistemologically relevant past experiences?

The adequate reference class problem: How do we determine whether or not

the reference class extension is adequate with respect to estimating a condi
tional probability?

The inadequate reference class problem: How do we make estimates when the

reference class extension is inadequate?
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1.2.1 Relevant reference classes

Estimates of Prob(c/3) can be interpreted as reflecting the propensity of a to be

true in a domain whenever 3 is true (e.g., [Bar82]). According to the frequency

interpretation of probability theory such estimates can be obtained directly from a

reference class of a random sample of past experiences (e.g., [Rei49] [Jr.83] [Bac9O]

[Goo9l]) by measuring the frequency with which a is true whenever 3 is true.

The frequency interpretation is only appropriate with respect to obtaining an

estimate of Prob(aLi3) if two conditions are satisfied:

Condition 1: Given a set of past experiences, we must always know the truth value

of a whenever we know that 3 is true, and

Condition 2: The past experiences that can be described by /3 must be a random

sample of all the domain states that can be described by /3.

I argue that we can not assume that either Condition 1 or 2 will be satisfied in the

context of Assumption 1.

This section starts by revising the frequency interpretation of probability the

ory so that it is appropriate with respect to estimating conditional probabilities

when Condition 1 fails. The section concludes by arguing that the revision is also

appropriate if Condition 2 fails.

A revised frequency interpretation

The frequency interpretation of probability theory defines a conditional probability

Prob(a/3) as follows:

Definition 1 (frequency interpretation [Bar82]) The frequency interpretation

of a conditional probability Prob(al/3) is

T
lim —a-— = urn cA/3

= Prob(a/3)
n—oo n—oo TA

n
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where n is the total number of randomly sampled cases available, and TL is the

number of cases for which is true.

Estimates of Prob(a/3) are obtained by calculating TA/T. Intuitively, the esti

mate is obtained using a reference class whose intension is and whose extension is

the set of all past experiences for which i3 is true.

Consider a situation in which we wish to estimate Prob(ci/9) but Condition 1

fails.

Example 2 Suppose we wish to estimate the conditional probability that some one

is called Fred if they are tall, i.e., we wish to estimate Prob(Fredtall). Suppose our

past experiences consist of three observations of tall men called Fred, five observa

tions of tall men who are not called Fred, and 100 observations of tall men whose

names we do not know.

In the previous example, the frequency interpretation does not provide us with a

single number that estimates Prob(FredlTall). All the frequency interpretation can

tell us is that the estimate falls somewhere in the interval between and . The

reason the estimate is so imprecise is that the frequency interpretation includes past

experiences in its estimate that are irrelevant, i.e., all those past experiences with

tall men whose names are not known.

Chapter 3 of this thesis considers several revisions of the frequency interpretation

that are appropriate when Condition 1 fails. Chapter 3 concludes that the most

appropriate revision is

Definition 2 (revised frequency interpretation) The frequency interpretation

of a conditional probability Prob(cx/3) is

lim = lim = Prob(c13)
+ ‘ KcrA/3 + K_A

such that K is the number of past experiences in the KB that can be described by

7.
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Estimates of Prob(a/3) are obtained by calculating the frequency with which a A /3
is known to be true in a reference class in which either a A /3 or —la A /3 is known to

be true. Intuitively, the estimate is obtained using a reference class whose intension

is the pair (a, /3) and whose extension is the set of all past experiences for which a

is known be true or known to be false, and /3 is known to be true.

The revised frequency interpretation of probability theory is appropriate when

Condition 1 fails simply because the frequencies used to estimate conditional prob

abilities are calculated with respect to what we know, not with respect to what is

true. For example,

Example 3 Consider the problem of estimating Prob(FredTall) in the previous

example. According to the revised interpretation ‘FredATa1l = 3, and K,FredATau =

5, so the estimate is , i.e., the proportion of tall men whose names are knowil to

be Fred among all tall men whose names are known.

From the perspective of this thesis an agent is unlikely to interact randomly

with its domain. As a consequence Condition 2 is unlikely to hold. For example, if

an agent collects experiences as it interacts with its domain, then the experiences

will reflect the non randomness of the agent’s interactions. Accordingly, the agent’s

experiences will reflect the agent’s propensity to observe certain domain properties.

I now argue that if Condition 2 fails, but the following assumption is justified

Assumption 2 The propensity that a can be used to describe a new experience

whenever /3 is known to be true of the new experience, is the same for a new expe

rience as it is among all the past experiences in the reference class extension.

then the revised frequency interpretation is still appropriate. In the remainder of

this section I argue that Assumption 2 is a reasonable assumption.

Consider the following situation in which Condition 2 does not hold:

Example 4 Suppose an autonomous agent, fresh from the factory, is switched on

and left, immobile, in the middle of the corridor of the U.B.C. computer science
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department. The agent sees only two individuals, ‘David’ and ‘Alan’. The agent

observes ‘Alan’ two hundred times, and on each occasion observes that ‘Alan’ wears

glasses. The agent observes ‘David’ twenty times, and on each occasion observes

that ‘David’ does not wear glasses.

In the situation in the previous example, the agent’s past experiences reflect the

agent’s propensity to observe ‘David’ and ‘Alan’. Clearly the sample is not ran

dom. Instead, it is biased by the manner in which the agent experiences the world.

Based on its past experience the agent should estimate that the probability that the

next person it sees wears glasses is high. The agent’s prediction is based upon the
fact that, according to Assumption 2, it is ten times more likely to see Alan than

David. However, because the agent’s past experiences do not necessarily reflect the

propensity of individuals in the domain to be old, the estimate will be unreasonable

if Assumption 2 no longer holds, i.e., the estimate will be unreasonable if ‘Alan’ goes

on leave.

Calculating frequencies

In order to estimate Prob(crf3), we need to be able to to measure an agent’s propen

sity to observe specific domain properties. This requirement has an impact on the
way in which past experiences are described ill the EKB. Consider again the last
example in the previous section. In order for the agent to calculate the frequency
with which it observes individuals wearing glasses, the agent must be able to count

different observations of the same individual separately. That is, it must be able
to count that there have been two hundred occurrences of ‘Alan’, and twenty oc
currences of ‘David’, in order to determine that it is ten times more likely that the
next person it will see will be ‘Alan’ rather than ‘David’. If the agent had simply

represented all of its past experiences by the facts “There is an individual called
Alan who wears glasses”, and “There is an individual called David who does not
wear glasses”, then the agent would not be able to make this calculation. This issue
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is addressed in detail in Chapter 3.

1.2.2 Adequate reference classes

The previous section discussed the problem of specifying the reference class of cases

in the EKB that an agent should use to estimate a conditional probability. This

section discusses the problem of determining whether or not the reference class

extension of available cases is adequate with respect to estimating the conditional

probability.

Typically, the adequacy of a reference class is judged in terms of its statistical

adequacy (e.g., Kyburg [Jr.88a1; [Jr.88bj). Intuitively, a reference class is statisti

cally adequate if its extension contains sufficient items to make reliable estimates,

i.e., estimates that are reasonable and not subject to change. While the mechan

ics of judging the statistical adequacy of a reference class are well understood, the

problem of selecting an adequate, but epistemologically relevant reference class of

cases remains problematic, and with the exception of Kyburg’s work, largely ignored

in the artificial intelligence literature. The reason the issue is problematic is that

statistical adequacy and epistemological relevance are often incompatible. For ex

ample, the cardinality of a set of cases that is judged epistemologically relevant with
respect to obtaining an estimate may be too small to statistically guarantee a reli
able prediction. One way of side stepping the issue is to adopt the hypothesis that

if epistemologically relevant statistics are available, then they should be assumed to
be statistically adequate (e.g., [Bac9O]; [Goo9l]).

Although statistical adequacy is an important measure of adequacy, a more nat
ural measure in the context of this thesis is whether or not the reference class can be
used to obtain estimates that result in reasonable predictions about a domain, i.e.,
predictions that are correct. In this thesis, I argue that a reference class is adequate
if it yields estimates of conditional probabilities that result in correctly predicting
that c is true if is known to be true. This thesis assumes that
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Assumption 3 Any non-empty reference class extension is adequate, and any empty

reference class extension is inadequate, with respect to estimating Prob(a/3).

This thesis justifies Assumption 3 in terms of:

1. Psychological evidence presented in the Chapter 2 that humans can use small

reference classes to make reasonable predictions,

2. Experimental results presented in Chapter 5 demonstrating that adopting As

sumption 3 allows us to make reasonable predictions about a variety of do

mains.

1.2.3 Inadequate reference classes

In the context of the revised frequency interpretation of probability theory and

Assumption 3, an empty reference class is obviously inadequate with respect to

estimating a conditional probability Prob(o/3) because

1cA

KAp -- KA

is undefined as KA4 + K—Ap = 0.

If the reference class for estimating Prob(aI/3) is inadequate, then the RCA must

identify an adequate alternative. Unfortunately, the number of possible alternatives

may be large. In order to reduce the number of alternatives that need to be consid

ered, and to avoid considering unreasonable alternatives, this thesis assumes that

Assumption 4 A reasonable estimate of Prob(a/3) 2 can be obtained by general

ising any properties of the new experience that are epistemologically irrelevant with

respect to estimating the probability of a. Moreover, probabilistic independence is
a reasonable measure of epistemological relevance and can be estimated by applying

statistics to the available past experiences.

2The reasonableness of an estimate depends upon the context in which it is used. For example,
a reasonable estimate might be an estimate that can be used to make reasonable predictions.
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This thesis demonstrates that if Assumption 4 holds, then the RCA can identify

reasonable alternatives to an inadequate reference class by generalising over anything

that is known about a new experience that is irrelevant with respect to estimating

Prob(L3). Chapter 5 demonstrates that estimates obtained in this manner can be

used to make reasonable predictions about a variety of domains. The remainder of

this section considers a particular form of generalisation called syntactic generalisa

tion and its novel extension chaining.

Syntactic generalisation

Intuitively, a reference class is a generalisation of another reference class if the former

extension is a superset of the latter extension (e.g., [Rei49J), or if the former intension

is logically implied by the latter intension (e.g., [Bac9O]; [Goo9l]) . The problem

with this intuitive notion of generalisation is that there may be a large number of

generalisations of an inadequate reference class from which inconsistent estimates of

the desired conditional probability can be obtained. For example,

Example 5 Suppose the reference class extension of the probability ‘What is the

probability of a lawyer named Fred being rich?’ is empty. We might generalise the

reference class to include the financial status of dead republicans and dwarf elephants

because, the fact that Fred is a lawyer implies that Fred is either a ‘lawyer’, ‘a dead
republican’, or ‘a dwarf elephant’. However, it is unlikely that the probability of

rich dead republicans or rich dwarf elephants bears any relevance to estimating the

probability that Fred the lawyer is rich.

The problem occurs because notions of generalisation based upon set inclusion

and logical implication are under-constrained. That is, any non empty reference class

contains the empty reference class and must therefore be considered as a possible

I refer to this sort of generalisation as being ‘semantic’ because it can be defined purely in
terms of subset containment and logical implication and not in terms of the syntax of the wfss c
and 3 in Prob(aLG).
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alternative. In Chapter 4 I argue that we should constrain generalisation by only

generalising what we know. I call this constrained form of generalisation syntactic

generalisation because it depends upon the syntax of the wfss 3 used to describe a
new experience.

Example 6 The reference class in the previous example can be generalised by con
sidering all lawyers, regardless of their names, or by considering all Freds regardless
of their profession. It can not be generalised by disjoining additional domain prop

erties to ‘is a lawyer named Fred’.

However, even if we only generalise what we know, we might still obtain different

estimates of Prob(o.I/3) depending on how much of what we know is generalised. Fol
lowing Reichenbach [Rei49] and Bacchus [Bac9O], I argue that we should generalise
as little of what we know as possible. I call an adequate alternative obtained by
generalising as little as possible a most specific syntactic generalisation. Intuitively,

the less we generalise to find an alternative, the more likely the alternative is to lead
to a reasonable prediction [Bac9O].

Chapter 4 demonstrates that there may be several most specific syntactic gen
eralisations of an empty reference class, each resulting in a different estimate of the
desired probability. In Chapter 4 I argue that inductive biases (e.g., [Lai88]; [Des92j;
[Sch9l]) should be used to identify a set of most reasonable most specific general
isation of an empty reference class. In Chapter 4, inductive biases make use of a
notion of probabilistic independence (e.g., [Pea88]) to make assumptions about the
relative relevance of different syntactic generalisations. The inductive biases can be
used to select a single most relevant syntactic generalisation of an empty reference
class.
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Chaining reference classes

The number of different ways in which we can generalise what we know is limited

by how much we know to start with. That is, the number of alternatives to an

inadequate reference class that can be obtained by syntactic generalisation is a

function of how much is known about the new experience of interest. Intuitively,

given an inadequate reference class, the more we know the greater the number of

possible alternatives, and the higher the likelihood of finding an alternative from

which a reasonable estimate can be obtained.

The difficulty with finding a relevant alternative to a reference class by gener

alising what we know is that we might not know very much. As a result, we may

be unable to find a reasonable syntactic generalisation of an inadequate reference

class. Chapter 4 describes an extension of syntactic generalisation called chaining

that allows the consideration of knowledge in addition to what is known about the

situation of interest. For example,

Example 7 Suppose we wish to estimate the ‘probability that an emu has feath

ers’. If the reference class is empty and we generalise on what we know we might
approximate the desired probability using an estimate of ‘the probability of anything
having feathers’. However, if we know that emus are also birds, then we can take
this information into account and estimate the ‘probability that an emu has feath

ers’ by the ‘probability that an emu bird has feathers. If we now generalise on what
we know we can approximate the probability using an estimate of ‘the probability
that a bird has feathers’ which seems more likely to satisfy Assumption 4.

1.3 Relationship to existing work

The problem of making predictions from past experiences is a subject of research in
a number of different AT paradigms. For example, the inductive problem of making
predictions about a domain state from a set of cases is one of the primary paradigms
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of research in machine learning, statistics, case based reasoning, and neural nets.

The deductive problem of making predictions about a domain state from a logical

representation of experiential knowledge is one of the primary paradigms of research

in non-monotonic reasoning.

As we shall see in the next chapter the the RCA extends techniques used by
inductive and deductive approaches to making predictions from past experiences.

The RCA is most closely related to non-parametric statistical techniques such as

kernel estimation and k-nearest neighbours (e.g., [Eub88]; [Han82]; [Han8l]), in

stance based machine learning (e.g., [AKA91]; [Sa190]; {Sa191]; [CS93]), memory

based reasoning (e.g., [Dav9O]; [SW86]), and case based reasoning (e.g., [SN91];

[Agh9O]; [Kot89]) that use local averaging techniques to predict a when 3 is all that

is known to be true about a new experience.

In contrast to Assumption 4, many existing local averaging techniques (e.g.,

[AKA91]; [Sal9Oj; [Sa191]; [CS93]; [Dav9O]; [SW86]; [SN91]; [Agh9OJ; [Kot89];

[Eub88]; [Han82]; [Han8l]) implicitly assume that a strong correlation exists between

experiences whose known properties are similar [Eub88]. That is, if a property a is
true whenever is known to be true, then a will be known when wfss similar to 3
are known to be true. The specification of an appropriate similarity metric has been

shown critical with respect to obtaining reasonable estimates of Prob(a,@) (e.g.,
[Han8l], [Han82], [Eub88]). Unfortunately, the specification is often problematic,
particularly when experiences are described in terms of categorical features, i.e.,
features with a finite number of unordered values [Han8l] [Han82j [Eub88] [CS93].

This thesis demonstrates that by making Assumption 4, the RCA can obtain
estimates that can be used to make predictions that are as reasonable as, or bet
ter than, many existing techniques that use similarity to obtain an estimate of
Prob(a18). In Chapter 5 the computational implementation FRED uses estimates
obtained by the RCA to make predictions about a variety of domains. In general,
Chapter 5 demonstrates that the RCA’s estimates allow FRED to make predictions
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that are as reasonable as other inductive techniques.

1.4 Discussion and Contributions

The RCA described in this thesis is a novel framework for addressing the refer

ence class problem in the context of making predictions about a domain from past

experiences. This thesis makes the following contributions:

1. It provides a solution to the reference class problem in the context of Assump

tion 1, i.e., when the only domain knowledge is a set of past experiences.

2. It describes a new type of generalisation and its novel extension called chaining

for identifying an adequate reference class.

3. It demonstrates that Assumption 4 is a reasonable assumption in the context

of estimating probabilities directly from past experiences.

4. It demonstrates that probabilistic knowledge obtained by the RCA can be

readily obtained from an EKB of cases and used to make reasonable predic

tions.

Although the reference class problem has been addressed in the context of non
monotonic reasoning, this thesis shows that existing solutions fail to work when past

experiences are the only source of domain knowledge. While the machine learning

community has addressed the problem of making predictions from experiences it

has not explicitly addressed the problem of identifying the reference class of past
experiences relevant to making a particular prediction in the context of Assumption
4.

1.4.1 Outline of the thesis document

An outline of the chapters in the thesis follows:
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1. Chapter 2 reviews the psychological, deductive, and inductive literature rele

vant to the RCA.

2. Chapter 3 describes a propositional language appropriate for describing expe

riences. Using the language, the revised interpretation of conditional proba

bilities is described in detail.

3. Chapter 4 describes the use of inductive bias as a technique for identifying an

alternative to an inadequate reference class.

4. Chapter 5 describes three experiments that demonstrate that the RCA’s esti

mates can be used to make reasonable predictions.

5. Chapter 6 discusses the strengths and weaknesses of the RCA in the context

of Assumptions 1 through 4, and discusses implications for future work.



Chapter 2

Review

2.1 Introduction

This review considers existing techniques in the psychological, AT, and statistical

literatures that address the problem of making predictions from past experiences.

From the numerous research papers in the area I have selected a sample in order

to highlight the issues of identifying a relevant, adequate reference class of past

experiences. The intention of this chapter is to motivate techniques for addressing

the issues in the context of the RCA, not to document or classify the extensive

research in this area.

Figure 2.1 provides an overview of the techniques discussed in this Chapter.

The Figure distinguishes between two general approaches to the problem of making

predictions from past experiences:

1. Deductive Techniques, i.e.,

• Default interpretations of direct inference (e.g., [Rei49]; [Bac9O];

[Goo9lJ; [Jr.83]; [Po184]; [Lev8O]; [Po183]).

2. Inductive techniques, i.e.,

• Classification algorithms (e.g., [AKA91]; [GLF89]; [Fis87]; [Leb86];

[Qui86]; [FS84]; [Mic8O]),

• Case based reasoning algorithms (e.g., [SN91]; [S1a91]; [Agh9O]; [SA77]).

As seen in Figure 2.1 the deductive techniques deduce predictions from some inter

mediate representation of past experiences. In contrast, the inductive techniques are

16
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Figure 2.1: Existing deductive and inductive approaches to the problem of deriving
predictions from past experiences.
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concerned with the problem of either: 1. First using induction to derive the inter

mediate representation, and then using some form of deduction to make predictions,

or 2. Making predictions directly from past experiences. This review argues that

deductive techniques for deducing predictions can be be extended to the problem

of making predictions directly from past experiences, thus drawing a useful connec

tion between inductive and deductive techniques. The review concludes by drawing

support for some of the assumptions made in Chapter 1 from the psychological liter

ature on episodic models of human memory (e.g., [FT78]; [Tu172]; [Tu176j; [Tu183];

[Tu183]; [Tu185]; [TT73]).

2.2 Non-monotonic reasoning and direct inference

Non-monotonic reasoning is a deductive technique for making useful predictions from

sparse domain descriptions. For example, the Yale shooting problem, the Nixon

diamond problem and other canonical default reasoning problems all involve the use

of small numbers of axioms to describe a domain. In contrast, direct inference is a

local averaging paradigm that allows us to estimate conditional probabilities from

statistical knowledge, knowledge of the form “The frequency with which is true

when 3 is true is x”.

This section examines recent attempts to integrate direct inference (e.g., [Bac9O];

Goo9l]) with a consistency based form of non-monotonic reasoning (e.g., {Rei8O])
in which predictions are made if they are not contradicted by what is already known

or assumed be known. In this context, the remainder of this section discusses the

problem of identifying relevant, adequate, reference classes. The section concludes

by arguing that techniques appropriate to the solution of the problem in the context
of non-monotonic reasoning can be extended to address the same problem in the
context of Assumption 1.
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2.2.1 Default theories

Consistency based forms of non-monotonic reasoning assume the existence of a do

main model called a default theory. A default theory contains no explicit knowledge

about past experiences. Nor does it say how the knowledge in a default theory theory

is derived from a set of past experiences. Instead, a default theory contains a series

of statements that provide a static description of what the domain will be like in

the future. This section describes a default theory containing statistical assertions.

Informally, the default theory considered in this section is a pair (D, W), where

W is a set of closed well formed formulae (wffs) in a first order logic and D is a set

of default assertions . In this section the set D is assumed to consist of statistical

assertions written in Bacchus’ logic LP [Bac9O] as

[()

such that is the set of vectors of domain objects that satisfy a() given that they

satisfy ,8(X). Each statistical assertion denotes the frequency with which a proposi

tion a is true given that a proposition 3 is true. Thus, the statistical assertions can

be interpreted, using the frequency interpretation of probability theory, as estimates

of conditional probabilities. However, in general the statistical assertions are taken

by [Bac9O] to be “general scientific knowledge relating properties” as suggested by

[Jr.88a].

2.2.2 Making a prediction

The maximally consistent sets that can follow from a default theory (D, W) are

called extensions. Intuitively, the extensions of (D, W) can be thought of as filling

in the gaps of what we do not know. For example, applying direct inference, we

1The reader interested in more detail is strongly advised to read Bacchus [Bac9O] and Reiter
[Rei8O].
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might estimate that Prob(aLB) = p if the statistical assertion

= p

is true in at least one of (D, W)’s extensions. The remainder of this section discusses

two potential problems with estimating Prob(o.i!3) in this manner:

1. The relevant reference class problem: (D, W) may have several extensions,

allowing the derivation of conflicting estimates.

2. The inadequate reference class problem: (D, W) may not contain the statis

tical assertions necessary for estimating every possible conditional probability

Prob(o/3).

The remainder of this section discusses existing techniques that address these two

problems.

A relevant adequate reference class

In the direct inference paradigm the relevant reference class problem is a problem of

choosing an adequate relevant reference class for estimating a conditional probability

[Jr.83]. For example,

If we are asked to find the probability holding for an individual future

event, we must first incorporate the case in a suitable reference class. An
individual thing or event may be incorporated in many reference classes

from which different probabilities will result. This ambiguity has been

called the problem of the reference class [Rei49, pg. 375].

Although a number of existing techniques have addressed the problem of choosing a

most appropriate reference class (e.g., [Jr.74] [Lev8O] [Jr.83] [Po183] [Po184j [Bac9O]
[Goo9l]), this section only considers those techniques that address the problem in the
context of direct inference and consistency based forms of non-monotonic reasoning.
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When estimating the probability that a property is true of an individual from

a default theory (D, W), a reasoner might start with the assumption that all the

wffs W, and all the statistical knowledge D, is relevant. The difficulty with this

assumption is that D may contain a large amount of statistical information that

is not applicable to the situation of interest. For example, if we are interested

in estimating the probability of leopards having spots we do not want to have to

consider irrelevant statistical knowledge about the frequency of spotty children in

our neighbourhood.

Given a situation of interest, Reichenbach [Rei49, pg. 2031 suggests that the

smallest reference class of related statistical assertions is the most appropriate. How

ever, Reichenbach defines the smallest reference class to be the one whose members

are ‘included’ in all other related, adequate reference classes. Unfortunately, defin

ing set inclusion over empty sets is problematic [Jr.88a]. Bacchus’ 34th lemma

[Bac9O] offers an alternative to set inclusioll that allows the reasoner to condition

upon the entire set of statistical knowledge to obtain the statistical knowledge that

is “related” to the current situation of interest. For example,

Definition 3 (Bacchus’ [Bac9O] direct inference principle) If B(a) is true,

and [F(x) B(x)] = p and that is all we know about a, then the probability associated

with F(a) is p. If we also know C(a) and that [F(x) C(x)] = q, and V(x) B(x)

—*C(x), then the probability of F(a) is to be p rather than q as [F(x) B(x)] is
more specific than [F(x)

Bacchus’ interpretation of direct inference assumes that the properties of objects

are determined by the properties of similar objects. Bacchus’ interpretation of direct

inference is non-monotonic and the notion of a relevant adequate reference class is

determined solely by what statistics are not known. For example,



Chapter 2. Review 22

Sanctioning the use of a wider reference class over a narrower one when

there are no adequate statistics available for the narrower class is equiva

lent to non-monotonically assuming that the statistics over the narrower

class do not differ from the statistics over the wider class. [Bac9O, pg.

143]

Bacchus’ direct inference principle defines the smallest adequate reference class ap

propriate to making predictions about an object. That is, if we wish to make

predictions about large red birds and we only have statistics about red birds and

birds, then we should use the statistics about red birds because they are more spe

cific. Intuitively, the smallest or most specific reference class is preferred because

considering a larger one “throws out information” [Rei49] [Bac9O].

Bacchus’ direct inference principle can be used to choose amongst statistical

assertions to find a most reasonable alternative to an inadequate reference class.

Indeed, the principle mirrors the use of specificity to impose preference orderings on

conflicting defaults in default logics (e.g., [Eth87]; [AM91]; {Bou92]; [Poo9l]). For

example,

Example 8 Suppose we wish to estimate

Prob(Studies AIFred A Graduate A Large)

and the default theory only contains the statistical assertions

[Studies AI(X)Graduate(X) A Procrastinates(X)]x

and

[Studies AI(X)lGraduate(X)]x

According to Bacchus’ direct inference principle the statistical assertion

[Studies AI(X) Graduate(X) A Procrastiriates(X)]x
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is epistemologically relevant to making predictions about Fred, but the statistical

assertion

[Studies AI(X)Graduate(X)]x

is not as Graduate(X) A Procrastinates(X) —* Graduate(X).

An importance difference between Bacchus’ principle and default logic specificity

orderings is that the preference orderings over statistical assertions are an automatic

consequence of the semantics of LP [Bac9O], but are not possible propositionally in

a default logic [Poo9lj.

It is natural to consider extending Bacchus’ direct inference principle to deal with

the problem of choosing among alternatives to an inadequate reference class in the

context of Assumption 1. For example, we might choose the adequate alternative

whose intension is logically implied by the intensions of all other adequate alterna

tives. Unfortunately, as discussed in Chapter 1, and as demonstrated in Chapter 4,

using logical implication to impose a preference ordering over alternative reference

classes of past experiences has undesirable consequences. In the next section I con

sider an extension of Bacchus’ work that is more appropriate in the context of this

thesis.

Assumptions of irrelevance

One property of Bacchus’ direct inference principle is that the most specific reference

class may not have any statistics. For example,

Example 9 Suppose we wish to estimate Prob(fliesbird) and (D, W) has a single

extension containing

[flies large A bird] = p

Using Bacchus’ direct inference principle we can not estimate that Prob(fliesbird)

equals p because the statistical assertion in the default extension is too specific to

apply.
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The problem of having statistics that are too specific does not occur in the

context of the RCA. That is, if we have statistics about large birds and small birds,

then we must have statistics about birds because large birds are birds. However,

the problem of having too specific statistics is of interest because it is the reciprocal

of the problem of having too general statistics in the RCA. That is, if we have

statistics about birds, then we may not have statistics about small or large birds.

The problem of too general statistics occurs when we have partial knowledge about

a new experience, i.e., we can know that x is a bird without knowing its size. I

now demonstrate that a straightforward extension of Bacchus’ solution to the too

specific statistics problem is applicable to the too general statistics problem.

I start by considering Bacchus’ solution to the too specific statistics problem.

Bacchus’ solution to the too specific statistics problem follows Kyburg’s [Jr.691 so

lution and argues that in addition to a default theory (D, W)

We need knowledge of relevant measure statements; we may ignore spe

cial characteristics of the object or event under consideration which are

not known to be related to the property in question [Jr.69, pg. 185].

Bacchus includes knowledge of relevant measure statements by adding non-monotonic

expectation independence assumptions to (D, W). These assumptions mirror simi
lar assumptions found in conditional logics (e.g., [Bou9l]), and default logics (e.g.,

[Del88]; [Sub9O]).

Definition 4 (Bacchus’ [Bac9O] Expectation Indep. Assmp.) The assertion

E([Q(V)F(V) A R(V)]v) = E([Q(V)P(V)]v)

is interpreted as ‘knowing R(V) is irrelevant to predicting Q(V) when P(V) is all
that is known’.

Expectation independence assumptions logically minimise the default theory (D, W)
by removing all facts and distinctions that are logically irrelevant with respect to
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making a particular prediction. Intuitively, the assumptions allow us to specialise

from an inadequate to an adequate reference class. For example,

Example 10 Suppose we wish to predict the probability of Fred flying given that all

we know is bird(Fred). Suppose the default theory has a single extension containing

the statistical assertion

[flies(x)Ibird(x) A yellow(x)] = p

If the expectation independence assumption

E([flies(x) bird(x) A yellow(x)]) = E({flies(x) bird(x)])

is true, then we can estimate that Prob(flies(Fred)bird(Fred)) is p.

Because expectation independence assumptions are non-monotonic they introduce

the possibility of deriving conflicting estimates of conditional probabilities. Bacchus

addresses this problem by imposing a partial ordering on (D, W)’s extensions that

captures the direct inference principle’s preference for inheriting statistical informa

tion from the most specific reference classes.

Bacchus’ expectation independence assumptions only allow us to specialise an in

adequate reference class. They do not allow us to generalise an inadequate reference
class which is the situation of interest in this thesis. For example,

Example 11 Suppose the default theory (D, W) contains the assertion

bird(Tweety) A yellow(Tweety) A [fly(x)bird(x)] = .75

and the expectation independence assumption

E([fly(x)jbird(x) A yellow(x)]) = E([fly(x)Jbird(x)j)

is true. With respect to the statistical assertion and the independence assumption,
there is no viable theory in LP that allows us to estimate the probability of Tweety
flying.
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If we accept Bacchus’ argument that we can specialise to an adequate reference

class by ignoring irrelevant properties, then we should be able to argue that we can

generalise to an adequate reference class in exactly the same way. Indeed, Goodwin

[Goo9lj provides an extension of Bacchus’ logic LP that allows us to generalise by

excluding irrelevant properties. Informally, Goodwin interprets the assertion

E([Q(V)P(V) A R(V)]v) = E([Q(V)P(V)]v)

as both ‘knowing R(V) is irrelevant to predicting Q(V) when P(V) is all that is

known’, and as ‘knowing R(V) is irrelevant to predicting Q(V) when F(V) A R(V)

is all that is known’. Thus, in the context of the previous example we can estimate

that the probability of Tweety flying is 0.75 because knowing that Tweety is yellow

is irrelevant with respect to estimating the probability of Tweety flying.

2.2.3 Discussion

The deductive techniques reviewed in this section make various epistemological as

sumptions about the knowledge in a default theory in order to estimate conditional

probabilities when the domain knowledge contained in the default theory is incom

plete. The expectation independence assumptions discussed in this section are an

attractive partial solution to the problem of estimating probabilities from past ex

periences. Goodwin’s [Goo9lj extension of Bacchus’ [Bac9O] non-monotonic expec

tation independence assumptions closely mirror Assumption 4 in that by assuming

that something is irrelevant with respect to obtaining a particular estimate we can

generalise the reference class.

In principle at least, the estimates of conditional probabilities obtained from a
default theory by direct inference can be obtained directly from a reference class
of past experiences. Unfortunately, the techniques reviewed in this section are not

appropriate in the context of Assumptions 1 through 4 because:

1. The techniques assume the existence of a default theory and fail to address
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the issue of obtaining the theory from a set of past experiences.

2. The expectation independence assumptions force the designer of the default

theory to anticipate its every use in advance.

In order to address the first problem we would have to consider the problem of deriv

ing a default theory from past experiences. This may or may not be an appropriate

solution. However, even if were to derive a default theory from past experiences we

would still be left with the second problem. In order to ensure that any estimate

can be derived from a default theory (D, W), the designer of (D, W) would have to

anticipate its every use. That is, the designer would have to know, in advance, which

expectation independence assumptions were necessary. Unfortunately, there is no

capacity within the techniques discussed in this section to automatically generate

the assumptions as required.

In general, the techniques reviewed in this section rely too heavily on the intuition

of the designer of the default theory and not enough on past experiences to address

the issues discussed in Chapter 1. To address the problem in this thesis, the designer

would have to be omniscient in order to cover every eventuality. This raises various

epistemological concerns such as where the knowledge underlying the expectation

independence assumptions comes from and how the techniques can obtain estimates

about situations that have not been ‘anticipated’.

2.3 Inductive classification algorithms

Inductive classification algorithms are the dominant paradigm in the artificial in

telligence literature for making predictions about the properties of an object from

a set of cases (e.g., machine learning [Qui87bj, [Qui87a], [BFOS84], [CMM83j [BP89],

[CN881, [GS88]; statistics [AKA91], [Das9l], [Aha89] [HV74j); connectionism [MR81],

[RJ86], [RHW86J, [PG9O], [RR89], {Koh9O]). Classification algorithms take as in
put a set of cases and a set of hypotheses. Often, a case is a feature vector, i.e.,
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(fi,... , f), such that each feature is a function mapping a single object to a single

value. The values can be continuous or discrete. The set of all possible hypotheses,

H, is a space of n-ary functions defined over the n features used to describe the ob

jects in the cases. Intuitively, the n-ary functions in a hypothesis space H represents

the set of all possible reference class intensions that can be considered in order to

make a prediction.

The n features define an n-dimension feature space and each case a point in the

space. If the classes are pre-specified by including class information with each case,

then the algorithm is said to be supervised, otherwise the algorithm is un-supervised.

If the classification algorithm is able to update the hypothesis each time a new case

is presented without re-processing the entire set of cases received as input, then the

algorithm is said to be incremental [GLF89j. The set of hypotheses form a space of

n-ary functions defined over the n input features.

Classification algorithms select and output a single hypothesis h H that is

consistent with all the cases provided as input (e.g., [CMM83] [BP89]). The selected

hypothesis serves as a: 1. Finite representation of the cases provided as input, and

2. Domain representation consisting of a finite set of adequate reference classes that

have been selected on the basis of the cases used as input. The selected hypothesis

divides the input cases into a set of classes. If the n features used to describe the

domain object are thought of as the n dimensions of a feature space, then each class

represents a different sub-region of the feature space. The shape and size of the

regions is a function of the particular classification algorithm used and the agent’s

past experiences. For example, classes in EACH [Sa190] are represented as hyper

rectangular regions while decision tree classes [Qui83j are represented as hyper-cubic

regions [FSK+931 in a feature space.

Given a new experience, classification algorithms use the selected hypothesis to

perform one of two tasks: A classification task, or a prediction task. Classification

tasks are usually statements of the form “Based upon its description, is object x
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a member of class y?”, e.g., “Is the winged, feathered, egg-laying object a member

of the class of birds?” Prediction tasks are usually statements of the form “Is v a

value of the feature f of the object x?”. Prediction tasks are typically re-cast as

classification tasks. For example, the prediction task ‘Does the feathered, winged

object fly?” can be treated as the classification task “Is the feathered, winged object

a member of a class for which flying is true?”

2.3.1 The hypothesis space

Unlike the models of default reasoning discussed previously, a central motivation of

classification algorithms is to obtain a representation of a set of cases that serves as

a domain model. The particular representation chosen depends upon a number of

factors. One of the most important is the set of hypotheses considered as possibili

ties by the classification algorithm. From the numerous research papers describing

classification algorithms, I have selected a sample in order to highlight the tech

niques and problems associated with the inductive classification approach to the

problem considered in this thesis. Once again, my intention is to provide a point of

comparison with the RCA, not to document or classify the research in this area.

The selected classification algorithms differ considerably in the complexity of

the hypotheses that are considered. Decision tree algorithms create decision trees.

Concept learning algorithms create decision rules for classes. Nearest neighbours

and kernel estimation algorithms, in the simplest instance, create a domain model

consisting of a set of cases that are divided into subclasses in response to a particular

classification or prediction task (e.g., [Han8l]; [Han82]). Connectionist algorithms

differ somewhat from other machine learning and statistical techniques in that they

start with a network with a particular topology and change the weights on the

connections.
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Concept learning algorithms

The majority of machine learning research has focussed on the broad area of algo

rithms that learn concepts by clustering cases [Sa190] [GLF89]. The concept learning

algorithms divide cases into clusters based upon the specified object properties. The

general goal is to identify a set of concepts such that the specifications of the objects

in the concepts will have a much greater intra-concept similarity than inter-concept

similarity. A prediction is made about an object’s properties by classifying the

object into one of the existing concepts on the basis of its specification.

The decision tree algorithms (e.g., 1D3 [Qui83]; C4.5 [Qui87b], [Qui87aj;

CART [BFOS84]) are supervised, non-incremental, clustering algorithms that split

a set of cases into subsets or classes according to a sequence of tests conducted on

the values of their individual features. The algorithms are divisive [Sa190] in that

they start by treating the entire data set as one big cluster that is gradually split

into many small clusters each representing a single concept.

To choose a test, decision tree algorithms examine the information theoretic gain

of the potential splits using functions such as entropy (e.g. C4.5) or the gini-function

(e.g. CART). In the simplest case the test is based upon a single feature value. For

example, a test might divide a set of cases into those describing objects with the

colour red and those describing objects with some colour other than red. Generally,
the root of the tree consists of the test with greatest information theoretic gain.
Each leaf represents a single concept. The tests divide the feature space into hyper
cubic regions [FSK93] such that objects with geometrically close descriptions are

allocated to the same concepts. A new case is classified into one of the leaves of the
decision tree by performing the tests on its feature values as specified by the nodes
of the decision tree. The properties of the object described by the case are assumed

to be the same as those associated with the concept denoted by the leaf.

The induction rule algorithms (e.g., EBG [MD85]; CN2 [CN88]; ITRULE
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[GS88]) are supervised, non-incremental, clustering algorithms that tackle the prob

lem of learning concept definitions. Instead of a decision tree they produce a set of

conditional decision rules for class membership in a set of pre-specified concepts.2

For example, for each concept they start with a universal rule such as “If any condi

tion, then object x is in current class”. The conditions on the left hand side of the

rule are generalised so that all instances of the class satisfy the membership require

ments, and specialised so that all non instances of the class are excluded. While the

rules are often expressed in a logic such as Prolog, they are often expressed in other

forms such as schemata (e.g., EBG [MD85]). A new case is classified into the class

whose decision rule it satisfies. As with decision trees each case is assumed to only

satisfy the membership requirements of one concept.

The conceptual clustering algorithms (e.g., CLASSIT[GLF89]; COBWEB

[Fis87]; UNIMEN [Leb86]; EPAM [FS84]; [Mic8Oj) are un-supervised, incremental,

clustering algorithms that produce a classification scheme over a set of cases. Unlike

the induction rule algorithms, the concepts are placed in a concept hierarchy that

organises concepts in terms of their generality.

Due to their hierarchical nature, the conceptual clustering algorithms are very

similar to decision tree algorithms. The main difference is that the tests performed to
determine concept membership are more complicated as they often take into account

contextual information about the properties of an object [GLF89J. Furthermore,

each concept is associated with a number of necessary and probabilistic properties

(e.g., COBWEB [Fis87J). For example, if an object is classified into the concept

bird, then it may be possible to predict flies with a certain probability, feathers with
another probability and so on.

2Decision trees can be shown to be equivalent to ordered lists of rules [FPSM92]
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Pattern matching algorithms

Pattern matching algorithms are un-supervised algorithms that represent a domain

by the set of cases provided as input. Unlike the clustering algorithms discussed

in the previous section, no attempt is made to represent the cases more parsimo

niously as a set of concepts. Each of the cases represents a point in a feature space.

A prediction is made about an object described by a new case by selecting the

nearest neighbours to that case in the feature space. Although some have argued

(e.g. [Des92]) that pattern matching algorithms are inappropriate and unlikely to

be useful, applications of various pattern matching algorithms have demonstrated

otherwise (e.g., [FSK93j; [Tur92j).

The k nearest neighbour algorithms (e.g. k-nearest neighbours [Das9l]; IBL

[Aha89]) choose the k-nearest neighbours (k-NN) to a new case using a similarity

metric, usually based upon some notion of ‘distance’ in the feature space. Different

k-NN algorithms differ on the similarity metric chosen to find the nearest neighbours.

k-NN algorithms are particularly useful when applied to features with continuous

numeric values [FPSM92]. A simple measure of similarity that is often used when

features have discrete values is the inverse of the Hamming distance d between two

cases

Definition 5 The Hamming distance between two cases I and 12 represented by

the feature vectors (fi, . . . , f.-, ) and (fi, . . ., f7 ) respectively, is:

d(11,12) —

Techniques exist for applying k-NN to features with discrete values are discussed

in detail in [Cre92], [Han8lj and [Han821. These authors argue that traditional
techniques such as Hamming distance are not always appropriate. I return to this

issue later in this section.
3Strictly speaking, the Hamming distance function requires the feature values to be integers or

reals. Symbolic feature values must be normalised first.
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The similarity metric divides the feature space into sub-regions in a manner

analogous to the concepts defined by concept clustering algorithms. The difference

is that the space is re-divided each time in response to the syntax of the case used to

describe the new experience. Thus, the set of possible divisions of the feature space

is not constrained to an a-priori defined set. Generally, an object x is classified into

a class C by voting, i.e., If there are more instances of class C among the k nearest

neighbours than any other class, then x is also classified as an instance of C [Das9l].

The frequency of C among k can be used as an estimate of the conditional probability

of C (e.g., [Han8lJ; [But93]). The parameter “learned” by the algorithms is k. k is

learned by applying the k-NN algorithm to the same data set using different values

of k [FSK93j. The value k that results in the highest predictive accuracy is chosen

to classify all new cases.

The clustering algorithms (e.g., EACH [Sa1901; IBL2 [AKA91]) are extensions

of k-NN algorithms that use clustering techniques similar to those used by concept

learning algorithms to cluster individual cases into larger units. The primary differ

ence is that clustering is agglomerative rather than divisive. The algorithms assume

that to start with each case is a single cluster. Larger clusters are formed by com

bining smaller clusters together. For example, IBL2 and [Bra87] use an instance

averaging technique based upon median cluster analysis to replace any two cases by

the average of their feature values. The technique assumes that all feature values

are numeric. The k-NN algorithm is then applied to make a prediction. EACH com

bines cases into hyper-rectangular shaped regions in feature space called exemplars

whose necessary features are shared by every case in that region. A new case is clas

sified into the single most similar exemplar and is assumed to share the necessary

properties of that exemplar.

The clustering instance based algorithms are similar in many respects to the

concept learning algorithms discussed in the previous section. They are motivated

by two concerns: 1. Finding a more parsimonious representation of the domain than
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a set of cases, and 2. Improving predictive accuracy. The latter concern is moti

vated by the observation that clustering cases sometimes decreases the influence of

inconsistent cases (cases that describe identical experiences differently) on predictive

accuracy. By averaging the feature values (e.g., IBL2), or identifying the necessary

feature values (e.g., EACH) of a set of cases the inconsistencies are factored out. It

is interesting to note that a similar effect is often obtained by increasing the size of

k in k-NN algorithms [Han8l].

Connectionist algorithms

Connectionist algorithms (e.g. back-propagation networks [RHW86]; radial-bias

function networks [PG9O] [RR89]; Kohonen networks [Koh9O]) are supervised algo

rithms that learn a function mapping an input space (the object features) to an

output space (the desired predictions). The function consists of a network of a fixed

topology such that the arcs are weighted and the nodes are divided into three sets:

1. A set of input nodes each representing a single feature value and a set of nodes

are designated output nodes, 2. A set of output nodes each representing a single

class, and 3. A set of hidden nodes. Given a case, a connectionist algorithm turns

“on” the input nodes corresponding to features of the object and turns “off” all the

other input nodes. The object is classified by observing which output node turns on

as a result of turning on the input nodes.

Connectionist algorithms can be distinguished on the basis of the topology of

the network and the method by which the weights on the arcs are updated. Back
propagation repeatedly adjusts the weights of the connections in a neural network

to minimise a measure of the squared differences between the actual output and the

desired output of the algorithm. Internal “hidden nodes” that are not part of the

input or output are used to represent important features of the domain by capturing

regularities in the data. Radial bias functions differ from back propagation by the

function that maps the nodes of the input to the nodes of the output, Kohonen
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networks learn a feature map between an input space and an output space.

2.3.2 An adequate relevant reference class

The predictive accuracy of any classification algorithm is dependent upon the ability

of that algorithm to identify the intensions of a finite set of adequate reference

classes that capture the domain knowledge that is epistemologically relevant to

making the set of desired predictions. As seen in the previous section, different

classification algorithms consider different sets of hypotheses and as a result are

‘biased’ to capturing different kinds of domain knowledge. The existence of biases

is substantiated by comparative studies of classification algorithms (e.g., [FSK93]

[FMM89] [RHW86] {Qui86]) indicating that there is no such thing as a universally

appropriate classification algorithm.

One interesting conclusion of the comparative studies is that the best classifi

cation algorithm is not always the most sophisticated. For example, comparatively

simple k-NN algorithms often outperform complex machine learning techniques (e.g.,
[FSK+93]). Unfortunately, the conclusions of the comparative studies are often con

tradictory.

I now discuss two general techniques used by classification algorithms to simplify

the problem of finding a set of relevant reference classes by: 1. Imposing constraints

on the form of the cases used as input, 2. Biasing the process of selecting a hypothesis

using domain specific heuristics. I briefly consider the two techniques and discuss
their effect on the ability of the classification algorithms to find an epistemologically
relevant domain model.
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Constraining the input

All the classification algorithms considered in this section are concerned with the

problem of selecting a single hypothesis that is consistent with a set of cases

The problem of selecting a single hypothesis from a large set of possibilities is often

simplified by imposing constraints upon the form of the cases accepted as input.

Doing so reduces the size of the hypothesis space and simplifies the problem of

selecting a single hypothesis just as Assumption 4, Chapter 1, allows the RCA to

reduce the number of alternative reference classes that it considers. For example,

the cases are often assumed to be noise free:

1. Complete, or transformable into a complete form, (e.g., [AKA91j [Qui83]

[Qui89] [Tur92j [Des92] [SMT91j),

2. Consistent, (e.g., [Qui83] [AKA91] [CMM83] [BP89]), that is, identical expe

riences are described by identical cases, and/or

3. Supervised, (e.g., [AKA91] [Qui83] [Tur92] [Des92j [Sal9O]), that is, each case

is either specified as an example or counter example of a particular class.

The constraints are imposed upon the cases to simplify the problem of selecting a
single hypothesis by reducing the size of the hypothesis space considered by the clas
sification algorithm. For example, supervised cases tell the classification algorithm

which predictions it will be asked to make. This constraint significantly reduces
the set of possible classes that have to be considered. Further constraints can also

be applied to the number of features used to describe each case and the number
of concepts to be learned. For example, attempts to learn category rules are often
restricted to severely constrained inputs in which the number of classes are small,
i.e. only one or two (e.g. [Win75]).

4There are of course exceptions. For example, the variant space method {Va184] may consider
a set of consistent hypotheses. A consequence of this approach is the familiar multiple extension
problem in which the different predictions made from using the various consistent hypotheses must
be combined.
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The difficulty with reducing the size of the search space is that only simple hy

potheses are considered. While existing concept learning algorithms are readily able

to learn conjunctive category rules, learning more complex disjunctive category rules

has proven difficult. Kearns’ [Kea89] and Valiant’s [Va184] analyses of the complexity

of PAC (probably approximately correct) learning algorithms has shown that PAC

learning certain classes of disjunctive concepts is NP-hard or that a prohibitively

large number of cases is required for learning to take place.

Being able to consider more complicated hypotheses is important. Bundy, Silver

and Plummer [B5P85] showed that certain sequences of cases cause inconsistencies

to emerge and result in the failure of concept learning algorithms. This problem

is called the disjunctive concept problem as such sequences of cases may indicate

the existence of a disjunctive concept [Tho87]. Pattern matching algorithms handle

the disjunctive concept problem very easily: A disjunctive concept is defined by the

cases in its extension.

A consequence of imposing constraints on the cases that are acceptable as input

is that the resulting classification algorithms can only be applied in certain circum

stances. For example, Schaffer [Sch9l] and Feng et. al. [FSK93] observe that if the

cases available are sparse, the classification algorithms may be unable to find any

meaningful regularities in the cases and thus be unable to find a predictive domain

model. Pattern matching algorithms provide a solution to this problem in that they

do not have to “learn” a domain representation but represent the domain by the

cases themselves.

Inductive biases

Even if the hypothesis space is small there may be several hypotheses consistent

with a particular set of cases. This problem is an interesting variant on the refer

ence class problem. That is, there may be several hypothesis from which different

predictions can be made. Most classification algorithms use inductive bias [Lai88]
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to search a hypothesis space for a best hypotheses. The term ‘inductive bias’ is used

to describe the way in which hypothesis are selected for evaluation as possible rep

resentations of a set of cases [Lai88]. For example, Mitchell [Mit8O] suggests biasing

the process of hypothesis selection in favour of certain rules over others. Schaffer

[Sch9lJ discusses the role of bias in decision tree pruning. Utgoff [Utg84] studies the

problem of adapting the class of admissible hypothesis to the performance of the

learning algorithm. Fisher [Fis871 discusses the problem of defining a metric of clus

ter goodness for identifying the best clustering of a set of cases. DesJardins [Des92]

and Turney [Tur92] study the problem of using background domain knowledge in

addition to the cases in order to choose the best hypothesis.

At first glance, pattern matching algorithms appear to avoid the problem of

choosing a single hypothesis. After all, a KB consisting of the set of all cases provided

as input is trivially consistent with the cases. However, pattern matching algorithms

still partition the cases into classes using similarity metrics and the similarity metrics

represent a form of inductive bias.

There is nothing inherently good or bad about any particular inductive bias.
The value of each technique is conditional upon the domain in which it is employed
[Sch9l]:

Suppose we are given a series of unfair coins and asked to guess, on the

basis of experiments, whether each favours heads or tails. A basic strat
egy is to flip each coin a set number of times and then guess whichever

face has appeared most often. Consider two variations of this strategy.
The first calls for a guess of heads if heads is flipped in at least a third of
the trial flips. This is clearly an example of bias and, as such, it has inde
terminate effect on the performance of the strategy. Whether the bias is

good or bad depends upon the problem distribution. The second strat
egy simply doubles the original number of trial flips. By contrast, this
variation is a statistical improvement to the basic strategy. Regardless
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of the mix of coins, it must increase expected performance [Sch9l].

The difficulty is that it may be difficult to identify situations to which a particular

algorithm is suited if the inductive bias is not obvious. For example, it is very

difficult to examine the weights in a neural net to determine whether or not it will

perform well or poorly on a particular data set.

Another problem with selecting an appropriate inductive bias is that the bias

may change over time or indeed change depending on the prediction being made.

For example, supervised algorithms adopt a bias that is particularly suitable to

making predictions about a pre-identified set of object properties. If the set of

desired predictions changes, then the algorithms must be re-applied to a new set of

cases. The ability to shift bias is one of the strengths of incremental algorithms like

the conceptual clustering techniques (e.g., COBWEB [Fis87]) and pattern matching

algorithms (e.g., k-nearest neighbours [Das9l]). However, it is interesting to note

that most existing incremental techniques require the original set of cases in order

to shift bias [Des92]. Even though some incremental techniques profess to learn a

more parsimonious representation of a domain than a set of cases, they must retain

the individual cases in order to shift bias.

2.3.3 Discussion

The RCA is an inductive technique by virtue of the fact that it is concerned with

the problem of making predictions directly from past experiences. The RCA is

particularly similar to un-supervised, incremental, inductive techniques such as pat

tern matching algorithms whose only representation of the domain is a set of cases

such that each case describes a single past experience. This section discusses the
relationship between the RCA and pattern matching algorithms in more detail.

The RCA and pattern matching algorithms such as k-NN are instances of non

parametric statistical smoothing techniques. Informally, smoothing techniques es
timate conditional probabilities from inadequate reference classes by smoothing to,
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or interpolating from, adequate reference classes that are similar. The difference be

tween the RCA and existing smoothing techniques lies in the nature of the smooth

ing. For example, k-NN algorithms smooth by interpolating from k most similar

cases such that each case describes a single past experience. In contrast the RCA

smoothes by generalising the syntax of a new case until an adequate reference class

is obtained. In the context of the RCA, smoothing can be understood in terms of

preference orderings that choose among ‘possible smoothes’, and expectation inde

pendence assumptions that determine what kind of smoothing is allowed.

Of particular interest to machine learning and statistics is the RCA’s applicabil

ity in situations in which categorical variables, i.e., variables with a finite number of

unordered values, need to be smoothed. Existing smoothing techniques have proven

inappropriate in this context (e.g., [Han82]; [Han8l]; [Eub88]). Some of the difficul

ties may be a consequence of using distance metrics to measure similarity when no
concept of distance exists between the values of categorical variables (they are, after

all, unordered). For example, techniques that translate categorical variables into a
series of binary valued variables over which Hamming distance can be calculated are

inappropriate as discussed by Eubank [Eub88]. In contrast, the RCA uses concepts

that are ideally suited to smoothing categorical variables. For example, syntactic

generalisation and chaining are both extensions of non-monotonic techniques that

have been specifically designed to reason about categorical variables.

An obvious test of the RCA, as with all inductive strategies, is its performance
on real data.

all [inductive] algorithms must be subject to empirical verification.

In particular, an [inductive] algorithm should be compared to other [in

ductive] algorithms by testing it on the same data set [Sa190]

Chapter 5 compares the performance of a particular implementation called FRED,
that uses the RCA’s estimates of conditional probabilities to make predictions, with
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the performance of a variety of existing inductive algorithms including implementa

tions of k-NN, The results empirically verify the RCA in that they show that the

RCA’s estimates can be used to make reasonable predictions.

2,4 Case based reasoning algorithms

Case based reasoning algorithms (CBR) address the problem of retrieving solutions

to past problems from an EKB in order to solve new problems. CBR start with

an EKB of cases, each describing a problem and a solution to that problem. Given

a case that describes a new problem with no solution, CBR select a single case in

the EKB whose solution is applicable to the new problem. The retrieved solution

is then modified, if required, and applied to the new problem. CBR share obvious

similarities with pattern matching algorithms such as EACH that make a prediction

by retrieving a single exemplar. It comes as no surprise that many of the issues

surrounding the problem of choosing a most appropriate case reflect those found in

pattern matching algorithms.

2.4.1 The KB design

The semantics of the cases considered by CBR are considerably more complicated

than those considered by inductive classification algorithms. Generally, there are

three major parts to each case in the EKB.

Definition 6 (Kolodner [Kol9l, pg. 60]) A case consists of:

1. The problem/situation description, the state of the world at the time the case

was happening and .... what problem needed solving at that time.

2. The solution, the stated or derived solution to the problem specified in the

problem description. Some case-based reasoners also store traces of how the
problem was solved.
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3. The outcome, the resulting state of the world when the solution was carried

out.

Not only do the cases used by CBR have more ‘parts’ than those used by classifica

tion algorithms , hilt the parts themselves often have a complicated structure. For

example, in CASEY [Kot89], the first part of each case consists of a n-ary vector

describing a patient with heart failure. The second part consists of a causal network

modelling the underlying cause of the heart failure. In [SN91] the first part of each
case consists of an influence graph that models the behaviours of a set of components

for designing a particular fluid flow model. The second part of each case consists of

the model itself.

2.4.2 Identifying the relevant knowledge

CBR take as input a new case consisting of a description of a particular prob
lem/situation. CBR assume that a solution to the problem can be retrieved by:

1. Integrating the new case into the EKB, and retrieving all cases with similar

state descriptions.

2. Evaluating the relevance of the retrieved cases to solving the problem described

in the new case.

3. Transferring the solution of the best matched case to the new situation, ad
justing it according to differences between the two cases [Kot89j [SN91].

For example, CASEY takes as input a description of a new patient with heart failure
and returns the most appropriate causal network for modelling the cause of the heart
failure. CHEF [Ham84] [Ham86] [Ham89j takes as input a description of a dinner
menu and returns a plan of how to prepare the menu. Sycara and Navinchandra’s

5The cases used by classification algorithms are only domain state descriptions.
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[SN91] system takes as input a description of a fluid dynamic system in the form of

an influence diagram and returns the most appropriate design for the system.

Given a new case consisting of a problem description, and no solution, CBR

assume that the best solution to the problem is found by finding a single most

appropriate case in an EKB, and returning its associated solution. CBR assume

that solutions to a particular problem entail similar solutions for slight variations of

the problem.

Making similarity judgements

In CBR similarity judgements can be as simple as measuring the similarity of vec

tors as in CASEY [Kot89] and pattern matching algorithms, or as complicated as

matching influence graphs as in [5N91]. The similarity metric must be sensitive to

small, yet crucial differences, in the description of problem states. For example,

in CASEY very small differences between the description of the problem state of

a new case and the retrieved case can dichotomise the causal explanations of the

retrieved case and the new case to the point of incompatibility [Agh9O]. Unfortu

nately, Aghassi [Agh9O] reports that when CBR are applied to the domain of heart

disease considered in CASEY truly similar cases are rare even in a large EKB (less

than 7 per-cent of the new cases are similar to cases in the EKB). Aghassi’s [Agh9O]

findings suggest that a large EKB may be required before the similarity metrics used

by CBR will work.

If similar domain states recur in the domain, then CBR assume that as the num

ber of cases increase the best matched case should approximate the new case more

and more closely and the retrieved solution should be more and more appropriate.

For example, Goodman[Goo86] reports a positive correlation between the accuracy

of his system’s solutions with the number of cases in the EKB. However, Aghassi

[Agh9O] reports that CASEY’s performance is negatively correlated with the num

ber of cases in the EKB. These incompatible results suggest that the problem of
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making similarity judgements in the context of CBR is not well understood.

Indexing cases

The choice of appropriate case features on which to base the similarity metric is
crucial. If inappropriate features are chosen the right cases will not be retrieved at

the right times. The choice of so-called “indexing” features is perhaps the biggest

issue in CBR [Ko191j. The literature on CBR suggests that the indexes should be:

1. Predictive, e.g., similar indexes predict similar solutions,

2. Abstract enough to make a case useful in a variety of future situations, and

3. Concrete enough to be recognisable in future cases.

The indexes must allow similar cases representing similar problems with similar
solutions to be identified. Unfortunately, choosing the most appropriate indexes is

a non-trivial task and apparently domain dependent.

One popular indexing method is to organise the EKB into a generalisation hi
erarchy (see for example, [Ko188]; [Kot89j). However, in [Kol88] and [Kot89] the
number of generalisation nodes required overwhelms the actual number of cases in
the EKB as the size of the indexed EKB grows exponentially with the number of
cases [Agh9O]. Thus, even an 0(n) brute force search through a simple 0(n) list
of cases is better than organising the cases in the generalisation hierarchy. The
applicability of different indexing strategies is domain dependent. For example, a
generalisation hierarchy only works if there is sufficient regularity in the domain to
merit it. If the number of cases in the EKB is small or the domain complex, then
finding a satisfactory indexing strategy is difficult.

Imposing an indexing strategy upon the EKB also increases the computational
difficultly associated with integrating new cases into the EKB. For example, if the
EKB is maintained as an unordered list of cases, then new cases can be integrated
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in constant time. If the EKB is maintained as a generalisation hierarchy, then each

new case must be integrated into an exponential search space. As most CBR require

that each new case be integrated with the existing cases in the EKB there is a clear

tradeoff between the computational effort required to integrate a new case and the

computational effort required to retrieve a single solution. This tradeoff does not

appear to have been considered.

2.4.3 Discussion

CBR provide solutions to novel problems if the following assumptions are satisfied

[Agh9O}:

1. Similar cases recur,

2. Similar cases require similar solutions,

3. Similar solutions recur.

If similar cases do not recur then a search through the EKB for the relevant knowl

edge will fail. If similar cases do not require similar solutions then although the

case retrieved from the EKB may provide a plausible solution to the new problem

it may be more probable that there is a completely different solution. Finally, a

rarity of “similar solutions precludes the successful transfer [of a solution to a new

problem], almost entirely, given anything other than a large pooi of cases [in the

EKB]” [Agh9O].

Aghassi’s [Agh9O] analysis of CASEY indicates that if any one of the three as

sumptions is unjustified the performance of CBR will be unacceptable. In particu

lar, Aghassi concludes that “CBR [are] not a good idea if unforeseen circumstances

routinely occur.” Aghassi’s conclusion indicates that unless the assumptions are

justified, CBR. are not a good approach for providing solutions to novel problems.

Aghassi’s [Agh9O] analysis of CBR indicates that there would be certain difficul

ties with applying CBR to the problem of making predictions about the properties
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of objects from a set of cases. Particularly problematic is the observation that CBR

are only appropriate in the absence of unforeseen circumstances. This indicates that

if current CBR were applied to the problem of making predictions they would only

be good at making predictions about things that the inductive reasoner already

knows. However, given sparse data about a complex domain, the inductive reasoner

would be expected to be continually faced with unforeseen circumstances.

2.5 Episodic Memory

In Chapter 1 of this thesis:

Assumption 1: states that individual experiences are specified by cases in terms

of domain properties.

Assumption 2: states that reasonable predictions can be made by aggregating

over the members of a reference class extension.

Assumption 3: states that reasonable predictions can be made from small refer

ence classes.

This section examines empirical support for these three statements from the psy

chological literature on human episodic memory (memory of specific domain states).

First, some preliminary definitions are provided. Second, the effect of remember
ing the specific properties of experiences on the retrieval of knowledge from human
memory are studied. Third, evidence for the hypothesis that memory categories are

dynamic and formed in response to requests for specific knowledge is considered.

2.5.1 Preliminaries

Empirical experiments on human memory consist of a memory task, and a memory
test:
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Memory tasks consist of a domain object, usually a word, pair of words, or a list

of words, and a set of instructions. In a typical psychological experiment a

subject is given a set of instructions which are then followed by the presentation

of one or more objects. The subject is told to apply certain memory operations

specified in the instructions, such as reading the words, to the domain object.

What is stored in the subject’s memory as a result is a case referred to as an

episodic trace: a specification of the memory task and the object. The episodic

traces formed during a memory task are called task-episodes.

Memory tests consist of an object, commonly called the ‘cue’, a set of instructions,

and, depending on the nature of the task, a second object called the ‘target’.

The subject’s representation of the ‘cue’, instructions and ‘target’ form a test-

episode which is matched against task-episodes already stored in memory. The

effectiveness of the test-episode is measured by the amount of time that it takes

the subject to make the desired response and/or the accuracy of the response.

It may be assumed (e.g., [HBP89]) that each task and test episode is a function of:

1. the properties of the ‘cue’ and/or ‘target’, 2. the instructions, 3. the memory

processes, and 4. any other information present in the experimental setting. All

information outside of the properties of the actual ‘cue/target’ is said to describe

the ‘context’ of the episode.

Memory tests can be categorised on the basis of the type of instructions and the

type of ‘cue’ and ‘target’[HBP89]. For example,

1. Recognition: a subject recalls whether or not the cue word is remembered as

having occurred in a particular context.

2. Cued recall: a subject attempts to recall one member of a study pair of words

given the other member as a cue.
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3. Cued recall with a part-word cue: a subject attempts recall of a ‘target’ word

given a fragment of that target as a cue.

4. Free recall: a subject reports the first word that comes to mind as having

occurred in a particular context.

5. Classification: a subject classifies an episodic trace as belonging to a particular

category.

Recognition, cued recall, free recall, and classification are predictive tasks. Each

involves the presentation to a subject of a test-episode that specifies some properties

of the experimental experience. From this specification the subject is asked to

predict some other property. For example, a popular memory task is to ask a

subject to memorise a list of word pairs. In cued recall the subject is given one word

from each pair and is asked to predict the second.

2.5.2 Episodic Effects

It is well known that manipulations of the specific properties that can be used to

describe a test or task episode modify performance on memory tests [WB88j. In

particular, performance can be shown to depend on very specific properties asso

ciated with a very small number of task episodes. For example, Whittlesea and

Brooks [WB88] showed that the correct prediction of a ‘target’ in a cued recall

task is dependent upon the reinstatement of the experimental context as well as the

presentation of the ‘cue’. Performance disassociations due to the manipulation of

the specific properties of small numbers of test and task episodes are referred to as

episodic effects. This section reviews evidence suggesting that these effects are not

minor, transient perturbations but due to: 1. The encoding of the specific proper
ties of experiences [WB88], and 2. The use of these properties to retrieve reference
classes containing a very small number of cases.
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Experiments that study episodic effects manipulate properties of language units

that are not expected to be true of all or most elements of a class of language

units. For example, we might expect default knowledge such as ‘a short word’, or

consisting of three letters “d”, ‘o”, and “g” to be true of all language units used

to denote the concept ‘dog’ in English. We wouldn’t expect knowledge such as

‘bold type face’, or ‘written in red ink’ to be part of the general knowledge about a

language unit.

Schacter and Graf [S089] find that performance on memory tests such as cued

recall with a part word cue is facilitated for words that are studied and tested in the

same sensory modality as opposed to words that are studied and tested in different

sensory modalities. For example the word ‘generation’ might be presented visually

during a memory task. If the word fragment ‘gener’ is presented visually during a

memory test, the subject is more likely to correctly complete it as ‘generation’ than

if the word fragment was written. A similar effect is reported when study and test

episodes are presented in the same versus different symbolic fonts [WR87], and in the

same versus different languages [RB87]. Whittlesea and Brooks [WB88j find that

forcing subjects to encode only general properties during the memory task increases

performance across changes in the memory task. However they also find that such
general encodings result in less facilitation of performance on the memory task
than if specific properties are encoded. This result suggests that specific properties

specified in a memory test allow the retrieval of very specific experiences, i.e., a
single experience in the memory task.

The results of experiments on manipulating the specific properties of experiences
(e.g., [SG89], [WR87], [RB87I) suggest that: 1. The specific properties of experi
ences are described in memory as proposed by Tulving [FT78] [Tul72] [Tu176] [Tu183]

[Tu183] [Tul85] [TT73j, and 2. The reinstatement of these properties in a test-episode

results in a task-episode with the same matching specific properties being retrieved
{HBP89], i.e., they allow us to retrieve a single past experience. This result supports
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Assumption 1 in that the specific properties specified in a probability term can be

used to specify the intension of the reference class of that probability term. The

result also supports Assumption 3 by suggesting that given a task-episode human
subjects will make a prediction by retrieving a single test-episode with the same

specific properties. If subjects make predictions by ignoring or discounting specific

properties such as modality, then performance on the cued recall tests should not

depend upon modality.

While episodic effects are observed for words presented visually in the same

font versus different fonts [JH87], little effect is observed when words are typed
versus hand written [CM83], or when words are in upper versus lower case [SCS77I.
Variations in format also appear to depend on the memory test. Graf and Ryan

[GR9O] report that format makes less difference when we are retrieving information

about episodes than when we are accessing partially specified test-episodes. This
suggests that some properties remain distinctive in memory [WW75j. These findings
suggest that only some properties are used to describe episodes 6•

Transfer of appropriate processing (TAP) is a general proposal about the na
ture of human memory, that offers a general framework for theorising about specific
episodic effects [CR90]. TAP assumes that performance on a memory test is ex
pected to be facilitated to the extent that it specifies a test-episode that is similar to
a preceding task-episode. The ease of memory processes is determined by the degree
of overlap between the task and the test episodes [MBF77], i.e., the greater the num
ber of specific properties of a task episode also specified in a test episode the more
likely the subject is to retrieve the correct task episode. Tulving and others argue
that each observation of a domain state is described separately in memory. Models
in which descriptions of domain states are aggregated with existing memories are

6J the case of the RCA and the pattern matching algorithms all the cases are already described
in terms of a set of properties so this result is not directly relevant. However, the result does suggest
that care needs to be taken in defining the initial set of features that are used to describe domain
objects as in CBR. This thesis does not address this important issue.
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not able to separate domain states adequately, or to account for the prevalence of
episodic effects [McC65].

2.5.3 Categories

The classification of objects into categories provides a tremendous amount of infor
mation about that object. For example, classifying an object as a ‘bird’ permits
‘inferences’ about how it moves, how fast it will go Medin and Wattenmaker
[MW87] suggest that “It is natural to categorise. Both our language and our ex
perience lead us to treat non-identical stimuli in some way equivalent.” Medin and
Wattenmaker{MW87] further suggest that the categories that people normally cre
ate and use represent only a subset of the ways in which cases could be partitioned,
i.e., there are lots of possible but useless categories. In this section I argue that
certain categorical effects are consistent with aggregating over the members of a
reference class extension defined in response to a specific situation of interest.

Franks and Bransford [MBF77] have suggested that categories such as ‘bird’
are defined in terms of a prototype that specific members resemble to a greater or
lesser degree. Others have suggested that we classify on the basis of: 1. Family
resemblance [Ros78], 2. Exemplars [MS78}, 3. Ideals, or 4. Boundaries [AKA91].
Unfortunately, a consistent and comprehensive definition for categories has proven
elusive (see for example, Armstrong, Gleitman and Gleitman[AGG83]). No one, for
example, has found a rule for discriminating all games from all non-games, which
persuaded Wittgenstein [Wit8O] to advocate the use of fuzzy categories instead.

In fact, there has been increasing recognition that category representations are
suffused with detailed knowledge about specific domain states that facilitates inter
actions with a highly specific context. For example, Kahneman, Slovic and Tversky
[KST82] demonstrated that humans have considerable aptitude at “one shot learn
ing”, i.e., an ability to learn a concept from only one case or to remember exceptions
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to widely held generalisations. Such findings are in agreement with the TAP expla
nation for episodic effects discussed in the previous section. For example, when
additional information is supplied about an object in a category, the properties
associated with the category often change dramatically [HW9O].

One possible explanation of such effects is that people construct categories that
are relevant to making a particular prediction [Bar83] as in the RCA and the pattern
matching algorithms. For example, answering the query ‘If X is a purple bird, and
in particular, X is a type of bird called a penguin, then does X fly?’, might result
in the formation of a category whose extension consists of all descriptions of purple
birds that are penguins and from this category predicting flies.

Indeed, work by McCloskey and Glucksberg, [Be184a, Be184b, Be184c], and Barsa
lou [Bar87} suggests that categories are much less stable than previously believed.
For example, what is typical of a category varies widely as a function of its linguistic
context [RS83] [HW9O], i.e., tomato in the context ‘ ... fried green tomatoes
evokes very different ideas of what is typical about tomatoes than tomato in the
context ‘ ... tomato in the grocery store . . .‘. Similar effects are seen when using
context to disambiguate word senses (see Simpson[SK89J, Neill[Nei89], Simpson and
Kellas[SK89], and Gorfein and Bubka[GB89]). Objects can also be cross classified
into a large number of different categories. For example, a stump may be used as
a chair or as a jack to support a car. While a great deal of work has addressed the
ability to perform word sense disambiguation, little work has addressed the ability
to form goal related categories and to perform cross-classification.

Exemplar theory [MS78J does not require humans to learn categories at all.
Instead, every case gets stored in memory as in Tulving’s [Tu172] model of episodic
memory. However, it is improbable that a set of cases alone will be useful for
making predictions. For example, vivid reasoning (discussed in Section 2.2.2) can
only be used to make predictions from a set of cases about things that are already
known. We might expect that the knowledge contained in a set of cases will have
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to be generalised [Lai88] in order to be useful. The RCA suggests that the cases

are generalised by forming reference classes from which probabilities are estimated

in response to the specific properties of a domain state about which a prediction is

being made.

The findings of the apparent reliability of some predictions in classification may

not be due to a reliance on the general properties of categories but rather due to the

statistical stability granted by general access to large numbers of cases in a reference

class [WB88]. For example, implementations of the RCA can use the properties of a

set of objects to define the intension of a reference class. The cases in the extension

of the reference class can be aggregated to produce a conditional probability. The

predictions will be reliable if they are based upon a large reference class extension,

where the effects of noise will be minimised. If the reference class extension is small,

then the predictions will be unstable, that is, they will be strongly influenced by the

addition of new cases and noise.

2.6 Discussion

Knowledge representations such as default theories, classification hierarchies, taxo

nomic hierarchies, and decision trees are founded on the premise that the cases used

to describe past experiences should be parsimoniously organised on the basis of intu

itively or statistically apparent structure. However, Bayesian arguments show that
only external information about the likely mix of requests for estimates is relevant
to this determination [Sch9lj, and this information is usually not available a priori.

Furthermore, it is often unnecessary to impose a more parsimonious organisation on
a set of cases if the cases are already sparse. Organising the cases parsimoniously

results in already sparse domain knowledge being lost.

In the context of Assumption 1 there is no information about the likely mix of
estimates that the RCA will be asked to provide. As a consequence it is necessary
for the RCA to be able to respond to every eventuality as best as it can. I argue that
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by using syntactic generalisation and chaining to estimate probabilities directly, the
RCA has this ability. In this thesis I demonstrate that these two techniques can be
used to address the problem of making predictions directly from past experiences
without depending upon the expertise and intervention of a knowledge base designer.

The reasonableness of the RCA’s estimates are a function of the available past
experiences. In particular, the RCA’s will be reasonable only if Assumptions 3 and
4 hold. Assumption 3 states that any non-empty reference class is adequate with
respect to making reasonable predictions. However, the larger the reference class,
the more ‘stable’ the estimates and hence the less susceptible they will be to noise
[Jr.88a] [Jr.88bJ [Jr.88c] {Jr.88d] [Jr.91]. This thesis does not address the intriguing
problem of balancing statistical stability with reasonableness although the problem
can certainly be addressed within the RCA framework.

This thesis interprets Assumption 4 as stating that we should identify alterna
tives to an inadequate reference class by generalising irrelevant knowledge about a
new experience. Bacchus {Bac9O] assumes that the irrelevant knowledge has been
identified by some external agent. However, in the context of Assumption 1 we
must be able to identify the irrelevant knowledge using knowledge about the past
experiences described in the KB. Of course, some knowledge may be more relevant
than others with respect to a particular estimate. Thus, we we need to identify
metrics that measure the relevance of knowledge with respect to specific estimates.
In Chapter 5, I provide evidence suggesting that the reasonableness of the RCA’s
estimates is a function of these metrics as well as the past experiences that are
available.

Although this thesis does not attempt to identify the ‘best’ metrics for measur
ing relevance it does provide, as an example, a candidate that performs well in a
variety of domains. This thesis demonstrates that a simple implementation can use
the RCA’s estimates obtained using this metric to make more reasonable predic
tions than those obtained using k-NN and related techniques. This finding provides
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empirical support for the argument that Assumption 4 is a reasonable assumption.

In the following chapters I describe the RCA. The RCA provides a useful link

between deductive models and inductive techniques:

1. Considerations as to the appropriate application of statistical knowledge in the

RCA mirror considerations appropriate to the formalisation of non-monotonic

logics as suggested by Kyburg [Jr.88a].

2. Inductive techniques used by classification algorithms and statistics can be

used to manipulate cases in order to retrieve a most appropriate reference

class of cases for making a prediction.



Chapter 3

A language for describing experiences

3.1 Introduction

This chapter describes a language, L, that is sufficiently expressive for talking about,
and making predictions about, experiences. This chapter describes the properties
of L that are used in this thesis for describillg a KB of cases, and using the KB to
estimate conditional probabilities. L has the following properties:

1. Individual ground sentences called cases describe specific experiences. An
EKB contains a set of cases.

2. A distinguished set of ground terms called labels allow us to retrieve all cases
describing past experiences that can be described by a case describing a new
experience modulo the labels.

3. Probability terms, Prob(a/3)EKB, such that a and /3 are ground sentences and
EKB is an EKB, are interpreted as estimates of the conditional probability of
a given that /3 is all that is known to be true of a new experience with respect
to EKB.

3.1.1 Chapter outline

The chapter is structured as follows:

1. Section 3.2 provides an overview of the language L.

2. Section 3.3 provides a definition of an EKB in terms of sentences of the lan
guage L.

56
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3. Section 3.4 discusses two interpretations of probability terms in L.

4. Section 3.5 demonstrates, by means of example, that the choice of an inter

pretation of probability terms depends upon assumptions made about noise in

the EKB.

5. Section 3.6 describes the properties that are true of the interpretation of prob

ability terms used in Chapter 4 of this thesis.

3,2 An overview

This section discusses the: 1. Description of experiences using L, and 2. Prediction

of conditional probabilities from a set of past experiences described in an EKB.

The features described in this section are discussed in more detail in the remaining

sections of this chapter. Appendix A contains a description of the formal properties

of the language L.

3,2.1 Representing domain knowledge

In order to be useful, the language L must be expressive enough to describe experi
ences, but not so expressive that the retrieval of information about experiences from
an EKB is computationally intractable. The following sections briefly address each
of these issues.

Describing experiences

In this thesis an experience is described by a wfss in L. In L, experiences are
described by disjoining, conjoining, and negating ground occurrences of a 3-ary
relation R. A case is a well formed sentence (wfs) that specifies what is true of a
particular experience.
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Example 12 Let the feature ‘colour’ denote a variable with the possible values {
‘red’, ‘green’, ‘blue’, ‘yellow’, ... }. Suppose we wish to describe an experience in
which a domain object is observed to be red in colour. In the language L, the fact
that the object is red can be specified using the wfs

R(l, red, colour)

such that 1, is a label that denotes a particular observation of an object .

The relation R can describe objects that have more than one value for a feature.

Example 13 In the language L, the wfs

R(l, red, colour) A R(l, yellow, colour)

describes an experience in which an object ‘was observed to be red and yellow in
colour’.

The relation R can also be used to describe n-ary domain relations. For example,
consider a domain relation called a schedule that has a course number, a room
number, time and an instructor, i.e.,

schedule(course, room, instructor, time)

An experience involving a particular schedule with course number 210, room number
312, instructor D. Poole, and time 2 p.m., can be described as

R(l, 210, course) A R(l, 312, room)A
R(l, Poole, instructor) A R(l, 2pm, time)

such that l is a label denoting a particular observation of a ‘schedule’.
An EKB contains a set of cases. For example,

1Labels are discussed in more detail later in the section.
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Example 14 The cases

{ R(11,210,course) A R(li,312,room) A R(li,Poole,instructor),

R(12,400, course) A R(12,210, room) A R(l, Aha, instructor),

R(13, 100, course) A R(13, 109, room) A R(l, Turney, instructor) }

describe three separate experiences. If the three cases were conjoined, then the EKB
would contain a description of a single experience.

Retrieval from an EKB

First order logics such as LP [Bac9Oj contain features that are not needed to de

scribe experiences. For example, there is no obvious way that a universally quantified

variable can be observed in an experience. As a result universal quantification is
excluded from L. Existential quantification is also excluded because all existentially

quantified variables are effectively skolemized using labels. The exclusion of quan

tification from the language L means that the language is propositional and thus
decidable. As a consequence we can be assured that it will be possible to retrieve
all past experiences that can be described by a certain wfs modulo the labels.

However, even though L is propositional, the retrieval of cases from the EKB is
NP-hard. Retrieval from an EKB can be efficient (i.e., polynomial) if we are willing

to impose constraints on the syntax of the wffs that are used to describe the cases
in the EKB. For example, we might restrict the wffs to conjuncts of positive literals

as Levesque [Lev88] suggests in vivid reasoning. If we do, then an EKB effectively
becomes a relational data base and retrieval is linear in the size of the EKB and
sub-linear in the number of predicates used to describe the cases.
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3.2.2 Estimating probabilities from an EKB

Estimates of conditional probabilities are represented in the language L as proba

bility terms 2:

Prob(c/3)EKB

Probability terms are used to estimate conditional probabilities. A probability term

Prob(cI/3)EKB is interpreted as an estimate of the conditional probability of c when

3 is known to be true. The estimate is calculated by generalising over the labels in

the wfss c and /3.

Example 15 Suppose I have just observed a goat and a tiger and I want to estimate

the probability that the tiger eats the goat. The estimate might be represented by

the probability term

Prob(R(13,i, eats) R(13,tiger, species) A R(l, goat, species))EJ.:B

such that i denotes the particular observation of the tiger, and i the goat. The

probability term is interpreted by generalising over the labels l and 1, to retrieve

from the EKB all the descriptions of past experiences in which a tiger either eats or

does not eat a goat.

Example 16 Suppose I have just observed two ants of different species and I want

to estimate the probability of one ant eating the other. The estimate of the condi

tional probability could be represented by the probability term

Prob(R(13,i, eats) R(l, 1k, species) A R(l, i, species))E-B

such that the labels l and i denote the two ants and 1k and i their species. The

probability term is interpreted by generalising over the labels and retrieving from
the EKB all observations of domain states in which an ant of one species eats an
ant of another species.

21n the remainder of this thesis the subscript EKB in Prob(cxI/3)EKB indicates that we are
talking about an esimae of the conditional probability Prob(c3).
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{ R(lo, Craig, name) A R(10,T, glasses)
R(11,Craig, name) A R(11,T,glasses)
R(12,Craig,name) A R(12,T,glasses)
R(13,Craig, name) A R(13,T, glasses)
R(14,Craig, name) A R(14,T, glasses)
R(15,Alan, name) A —‘R(15,T, glasses)
R(16,Craig, name) A R(16, T, glasses)
R(17,Craig, name) A R(l7, T, glasses)
R(18,Craig, name) A R(18,T, glasses)
R(19,Craig, name) A R(19,T, glasses)
R(110,Alan, name) A R(110,T, glasses)
R(lii,Alan,name) A —iR(111,T,glasses)
R(l12,David, name) A —iR(112,T, glasses) }

Figure 3.2: A set of cases describing 10 observations of Craig wearing glasses, two
observations of Alan not wearing glasses, and one observation of David not wearing
glasses.

Labels

As discussed in Chapter 1, a probability term Prob(al/3)EKB can be interpreted

by calculating the relative frequency with which a A 3 is true with respect to some

reference class. If Assumption 2 holds, then this frequency estimates the conditional

probability of observing a given /9.

In order to obtain the number of observations of domain properties, each distinct

object in a case is denoted by an individual label - a distinct ground term - unique
to that object and that case. Although the same object may be observed many
different times, each observation of the object is denoted by a label unique to that
object and to the case in which the object is described. In particular, two labels ij
and i denote distinct occurrences of objects if i j. I now give an example showing
how labels allow us to estimate a particular probability.

Example 17 Suppose I have seen Craig ten times, and each time I’ve seen Craig
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he has been wearing glasses. Suppose further that the only other people I have seen

are David and Alan. I have seen David once, and he was not wearing glasses, and

I have seen Alan twice, and he was not wearing glasses on either occasion. I might

represent this knowledge using an EKB containing the set of cases in Figure 3.2.

I now wish to estimate ‘the probability that the next person I see will be wearing

glasses’. If I have only kept track of the number of different people that I have seen
wearing glasses, then I might estimate that the probability of the next person I see

wearing glasses is one third as only one third of the people I have seen have been

wearing glasses. A more accurate approximation of the probability would be as

it is very likely, based upon previous experience, that the next person I will see will
be Craig and every time I have seen Craig he was wearing glasses.

3.3 An EKB

Definition 7 An EKB is a conjunct of all the axioms of L, together with a finite

set of ground sentences written in L called cases. Each distinct label in a case is
unique to that particular case.

Examples in the remainder of this thesis only describe the cases in the EKB. The
examples assume that the axioms consist of those described in Appendix A unless
otherwise noted. For example,
Example 18

{R(l0,red, colour) A R(10, large, size),

R(11,Ph.D., has degree) V R(11,MSc., has degree),

R(l2, l3 colour) A —(l = red),

R(l4, 15, father),

‘(R(16,red, colour) A R(l6, large, size)),

R(l345,Fred, name) }
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might be the set of cases in a simple EKB.

Definition 8 EKB I— a if there exists a case c in EKB such that the wfs a is

implied by the conjunction of the axioms of the EKB and c.

Example 19 Given the EKB in example 18, EKB H R(16, red, colour) and EKB

V R(18, MSc., has degree).

If the cases in an EKB describe several experiences using the same syntax (mod

ulo the labels of course), then the EKB can be expressed more parsimoniously as

a set of pairs. This convention is sometimes adopted in this thesis to simplify the

presentation of examples.

Definition 9 labels(a) is the tuple (li,.. . , la), such that l ... 1,-, are the distinct

labels of a in order of first occurrence.

Example 20 labels(R(117,123, bigger) A R(117,red, colour)) is (1j7, 123).

Definition 10 a(X/Y), such that X is the n-ary tuple labels(a), and Y is the n

ary tuple (li, . . . , i), is the result of substituting each occurrence in a of 1, E X by

e Y

Definition 11 (n, yj) is defined as follows: Let {71,.. .
be a subset of the

cases in an EKB such that there is some m where X is the m-tuple labels(7). If
(V7,7) [yj =7(X/X)], then {y,... ,} can be expressed as (n, ‘yj)
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can be expressed as

(R(11,red, colour) A

(R(12,red, colour) A

(R(13,red, colour) A

(R(14,red, colour) A

(R(l5,red,colour) A

(R(l6,red, colour) A

(R(l7,red, colour) A
(R(l8,blue, colour) A
(R(l9,blue, colour) A

R(11, large, size)),
R(12, large, size)),
R(13, large, size)),

R(l4, large, size)),
R(l5, large, size)),
R(l6, large, size)),
R(l7, large, size)),

R(l8, large, size)),
R(l9, large, size)),

{ (8, R(l0,red, colour) A R(l0, large, size)),

{ (2, R(l8,blue, colour) A R(l8, large, size)) }

3.4 Interpreting probability terms

A probability term Prob(o,/3)gj: is interpreted with respect to the cases contained
in the EKB by:

1. Describing the intension of the reference class of the probability term,

2. Retrieving all the entries in the EKB that are elements of the reference class
extension,

3. Counting the number of elements in the reference class extension, and

4. Determining the proportion of elements in the reference class for which a is
true.

Example 21 The EKB

{(R(10,red, colour) A R(l0, large, size)),

}
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Interpreting a probability term requires us to retrieve observations of specific
properties from an EKB. I start by specifying intension of the reference class of a
probability term Prob(al/3)EKB in terms of the wfss c and B. I then show how a
single wfs c is mapped to its extension. I then define the extension of a reference
class in terms of its intension.

3.4.1 Defining the intension

The intension of a probability term Prob(c/3)EKB specifies the domain knowledge
that is relevant for predicting that o is true of a new experience given that all
we know about the new experience is that B is true. I argue that as a minimum
requirement the intension should take into account everything that we know.

Example 22 Suppose we wish to predict the propensity of a particular Ontario car
to rust. We should take into account that we are interested in making a prediction
about an Ontario car because the propensity of cars to rust may vary geographically.
For example, the probability of cars in Ontario rusting may be very different from
the probability of cars in California rusting.

An intuitive definition of the intension might specify that all past experiences
that can be described by (modulo the substitution of labels) are relevant with
respect to interpreting Prob(o/3)EKB. For example, the intension of the reference
class of Prob(a/3)EKB might be simply defined as B. In Chapter 1, I suggested that
B is an inappropriate intension because it does not take into account what we are
trying to predict. For example,

Example 23 Suppose we are interested in estimating the probability of a red bird
flying. It seems intuitive that our reference class should take into account the fact
that we are interested in a red bird, thus the inclusion of B in the reference class
intension. Equally intuitive, is the observation that our reference class should take
into account the fact that we are interested in red birds that fly or do not fly. For
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example, considering objects that are only known to be red birds does not tell us
anything about the propensity of red birds to fly.

I argue that it is necessary to take both a and 3 into account when defining the
intension of a reference class.

Definition 12 The pair (a, 3) is the intension of the probability term Prob(a
/3)EKB.

The next section discusses the problem of mapping from each wfs in the intension
(a, 3) of a probability term Prob(a/3)EKB to its extension.

3.4.2 Defining the extension

The extension of a single wfs y is obtained by generalising over all the labels in

.
The extension contains all the objects described in an EKB that have the same

properties as the objects generalised in ‘y. In this section a function h is defined that
specifies the extension of any wfs in L with respect to a particular EKB.

h is defined as follows:

Definition 13 Let 2 be the set of all possible EKBs. Let F be the set of all possible
ground sentences in L. Let R be the set of all possible tuples of labels in L. h is the
mapping h: l x F —* R such that h(EKB, a) is..

h(EKB,a) = {Y : EKB I- a(X/Y)}

Let labels(a) be an n-tuple. Informally, each tuple in h(EKB, a) denotes a
past experience, described in the EKB, that can be described by a (modulo the
substitution of labels). For example,

Example 24 Suppose, the EKB contains the set of cases,

{ R(l1,red, colour) A R(12,red, colour),
R(l3, red, colour) A R(14,red, colour) }
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h(EKB, R(1987,red,colour)) = {(l), (12), (13), (14), }
such that each tuple corresponds to a past experience in which an object was ob
served to be red.

The function h addresses the problem of retrieving observations of objects from

an EKB. If we wish to count cases that describe past experiences involving a specific

number of domain objects, then we might wish to consider expanding the definition

of h. For the sake of completeness, Appendix D provides the necessary expansions

of the definition. The reader should note that it may, or may not, make sense to take
the specific number of domain objects into account when interpreting a probability

term.

The extension of a probability term Prob(c/3)EKB whose intension only takes 3

into consideration is h(EKB, /3). In the next section I demonstrate that h(EKB, /3)
may be an inappropriate extension. In the remainder of this thesis I use an extension
that takes both and 3 into consideration.

Definition 14 The probability term Prob(cI/3)EKB with intension (cr, /3) has exten

sion

h(EKB,aA/3) U h(EKB,-’cA/3)

3.4.3 Interpreting probability terms to estimate Prob(cri3)

Once the reference class of a probability term Prob(c3)EKB has been defined we can
interpret the probability term. We start by counting the number of past experiences
contained in the reference class extension by determining its cardinality.

Definition 15 The cardinality oEKB of a wfs alpha with respect to a particular
]FJKB is h(EKB,c)j, the number of tuples in the extension h(EKB,ci) of c.

Example 25

I (R(1987,red, colour) A R(1987, large, size))IER-B
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is the number of past experiences described in the EKB involving objects known

to have the property ‘colour red and size large’.

Definition 16 The cardinality of the reference class extension

h(EKB, a A fi) U h(EKB, -la A 3)

of the probability term Prob(aI/3)EKB is

aA/3EKB + -‘aAI3IEKB

A probability term succeeds if its reference class extension has a cardinality

greater than zero.

Definition 17 If a reference class extension of a probability term is not empty, then
the probability term succeeds. Otherwise the probability term fails.

Definition 18 The interpretation of a probability term, Prob, is

(a A /3)EKB
Prob(a/3)EKB = (a A EKB + (a A HEKB

if it does not fail.

In the following section I demonstrate that the interpretation of a probability
term depends upon the definition of the reference class. I argue that the interpreta
tion presented in this thesis is a good one because it makes reasonable assumptions
about the cases in the EKB.

3.5 Choosing among different interpretations

In this section I demonstrate that the interpretation of a probability term depends
upon the definition of the reference class. I demonstrate, by means of example that
some interpretations are more appropriate than others. In particular, this section
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shows that choosing the most reasonable interpretation depends upon making rea

sonable assumptions about the cases in the EKB. As an illustrative example, this

section discusses the problem of choosing between two different interpretations when

the cases in the EKB are incomplete. I argue, that if the cases in the EKB are in

complete, then the interpretation of probability terms given in Section 3.4.3 is a

reasonable one.

3.5.1 Incomplete EKBs

I start by defining what I mean by an incomplete EKB.

Definition 19 An EKB is incomplete with respect to a term Prob(a/3)EKp if

/3IEKB> a A/3IEKB + -‘a A/3IEKB

Definition 20 The number of observations, N(a,j3), of domain properties described

in the EKB for which 3 is known to be true but for which the truth of a is unknown

is:

N(a,/3) = /3EKB — (a A /3EKB + Ha A /3EKB)

Proposition 1 If N(a,/3) 0, then the EKB is incomplete.

Definition 21 p is the proportion of the N(a, /3) past experiences in the extension

of a A /3, and 1
—
p is the proportion of N(a, /3) past experiences in the extension of

-‘a A /3.

3.5.2 Two different interpretations of Prob(a/3)EKB

I now define two different interpretations of a probability term Prob(a/3)EKB in
which the proportion p of N(a, /3) observations is unknown. Each interpretation

may result in a different estimate of the conditional probability Prob(aj3).
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Estimate I:

(a A /3)EKBProb (nh13)EKB =
P EKB

— (a A /3)EKB

— N(a,)+ a AEKB +

Estimate II:

(a A /3)EKBProb (aj/3)EKB =
(a A EKB + J(a A EKB

Estimate II is the estimate given in Section 3.4.3.

If the EKB is incomplete, then the estimates I and II may provide different

estimates of conditional probabilities. For example,

Example 26 Suppose we wish to interpret the probability term

Prob(R(l, T, flies)R(l, T, wings))EjçB

with respect to the EKB

{ R(11,T, flies) A R(11,T, wings),

‘R(12,T, flies) A R(12,T, wings),

R(13,T, flies) A R(13,T, wings),

R(14,T, yellow) A R(14, T, wings),

R(15,T,plane) A R(15,T,wings),

R(l6,T,plane) A R(16,T,green) }
The EKB is incomplete because N(flies, wings) = 2. The reference class extension,
h(EKB, R(l, T, wings)), of Interpretation I is

{(l), (12), (13), (14), (l5)}

and

Prob’(R(l, T, f lies)R(l, T, wings))EKB =
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The reference class extension of Interpretation II is {(l), (12), (l3)} and

Prob”(R(l, T, flies) R(l, T, wings))EKB =

In the remainder of this section I compare the two different interpretations with

the Ideal interpretation in which p is known.

Ideal estimate:

G (a A /3)EKB +pN(a,/3)
Prob (ai/3)EI-B =

P EKB

- (a A /EKB+pN(a,/3)

— N(a,/3)+ aA /3EKB + aA /3EKB

pN(a,,8)
Prob ia/3}EKB +

P EKB

I assume that ProbG is the most reasonable estimate of Prob(a,B) if the EKB is

incomplete because the probability p is known. I now show that estimates I and II

make different a-priori assumptions about the value of p. I argue that the reason

ableness of the estimates can be judged by comparing them to the Ideal estimate in

which p is known.

3.5.3 Assume p = 0: Estimate I

Estimates I and II make implicit assumptions about the value of p. In this section

I demonstrate that Estimate I assumes that p = 0. As a consequence Estimate I

counts all N(a, 3) past experiences as members of the extension of — A 3.

Example 27 Suppose we are trying to interpret the probability term

Prob(R(l, red, colour)R(l, large, size))

Now suppose the EKB contains the following case:

R(16, large, size) A (R(l6,red, colour) V R(l6,blue, colour))

Prob’ assumes R(16, large, size) A —R(l6,red, colour).
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The difference between Estimate I and Estimate II when p = 0 can be clarified

by comparing them to the Ideal interpretation. First, I examine the trivial situation

in which the cases in the EKB are not incomplete.

Proposition 2 If the cases are not incomplete, then N(cx, ) = 0 and

Prob’ = Prob11 ProbG

Proof: The equality follows from the definitions of Prob’, ProbG, and Prob”. D

In the absence of noise Estimates I and II are the same as the Ideal estimate of

Prob(aLB).

I now examine the more interesting situation in which the cases are incomplete,

i.e., N(a,3) >0.

Proposition 3 If N(a,8) > 0 then

Prob11 >= Prob’

Estimate Prob’1 always estimates a higher probability than Prob’.

Proof: The inequality follows from the definitions of Prob’, and Prob”. 0

Prob’ is a good or bad estimator of the conditional probability depending on
what the value of p is when N(a, i3) > 0 as demonstrated by the following proposi
tions. First, I show that when p = 0 Prob’ is the same as the Ideal interpretation.

Proposition 4 Let N(cr, 3) > 0 and assume p = 0.

1. Prob’(a/3)EKB = ProbG(cij/3)EKB

2. Prob”(aI/3)EKB > Prob°(aI/3)EKB
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Proof: Part 1 is proved as follows:

G ( A /3)EKB +pN(a,)
Prob (c/3)EKB =

P) EKB

- (c A /3)EKB+pN(a,3)

— N(a,)+IaAjEKB+HaAEKB
pN(c3)

= Prob (cr,/3)EKB+
,,

P EKB

If p = 0 then ProbG = Prob’. Part 2 follows from proposition 2. D

3.5.4 Assume p = Prob11: Estimate II

From proposition 3 we can argue that Prob’ is the most reasonable estimate of
Prob(a/9) when p = 0. I argue in this section that it is more reasonable to assume

p = Prob”(aI/3)EKB. I show that if p = Prob”(c13)EKB, then Prob” is a more
reasonable estimate than Prob’.

I argue that there is no information in an EKB that supports the assumption
that p = 0. However, there is information in the EKB that supports the assumption
that p = Prob11. For example,

Example 28 Consider the probability term

Prob(R(l, red, colour)R(l, large, size))Ejç

Suppose the cases in the EKB are incomplete with respect to the probability term
because they contain

R(l, large, size) A (R(l, red, colour) V R(L, blue, colour))

i is in the set N non-counted observations as its colour is not known to be red or
not red. As before, Prob1 treats l as an example of an observations of a large non
red object. Prob” says that maybe l is red, or maybe l is not red, so lets forget
about l. When we say p=O we say there is no way that I could be red which is not
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true because we already know that ij is red or blue. It is more reasonable to say

p = Prob11 and assume that the chance that 1 is red is the same as it is for those

observations of large objects where we know the colour is red or not red.

I now show that if p = Prob”(a/3)EKB, then Prob” is more reasonable than

Prob’.

Theorem 1 If p = Prob”(c/3)EKB and N(a,,3) > 0, then:

1. ProbG(c/3)EKB = Prob”(aI/3)EKB

2. ProbG(c1/3)ER.B > Prob’(c/3)EKB

Proof: The first part is proved as follows:

G -

(a A )IEKB+pN(a,/9)Prob (aI/3)EKB —

P) EKB

- (a A /EKB+pN(a,/)

— N(a,)+ jaA EKB + H AEKB

If p = Prob1, then

G — (a A HEKB + IAAPIN(a,)
Prob (a/3)EKB —

N(a,3)+ aA/9EKB + HaA/3IEKB
T) LIII i\= rrou ap)EKB

The second part follows from part 1 and proposition 2. D

3.5.5 Prob’ versus Prob”

The choice between Prob’ and Prob1Ias an estimator of the conditional probability
Prob(cx/3) is a choice between assuming that p = ProbH or p = 0. That is, if
N(a,/3) >0, then

1. If Prob”(aL8)EKB = ProbG(a/3)EKB, then p = Prob”(a/3)EKB.
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2. If Prob’(o/3)Ep-B = ProbG(c3)EKB, then p = 0.

The comparison of Prob1 and Prob11 to ProbG in this section supports the argument

that the choice of reference class depends upon making assumptions about the noise

in an EKB.

Any a-priori knowledge about the noise can be used to choose the most reasonable

estimate. For example, if the cases in the EKB are incomplete and p is known to

be 0, then Prob1 is the most reasonable estimate. If on the other hand p is known

to be 1, then the most reasonable estimate is

G Re A /3)EKB +pN(a,)
Prob (a/3)EKB =

P EKB

- ( A EKB+-( A +aA)

— I/3IEKB
-

______

— /3IEKB

= 1
— Prob’(-’a/3)EKB

It is interesting to note that from Proposition 3 and the following proposition,

Prob” is bounded by the Ideal estimate for p = 0 and p = 1.

Proposition 5 Let N(c3) > 0 and assume p = 1.

1. ProbG(c1/3)EKB > Prob”(c/3)EKB

. Prob”(c/3)EKB >

Proof: Part 1 is proved as follows:

G ( A /EKB + N(a,3)
Prob (o/3)EKB =

P EKB

> Prob”(o/3)EKB

Part 2 follows from proposition 2. D
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From the previous proposition we see that even though Frob1 and ProbH are
both under estimators compared to ProbG when p = 1, Prob” is a better estimate.
I argue that if we have no a-priori knowledge about p, as in the context of this
thesis, then assuming p = Prob is more reasonable that assuming that p = 0.
Thus, Prob” is the estimate adopted in the remainder of this thesis.

3.6 Some properties of Prob”(aj/3)EKB

In this section I briefly discuss some useful properties of the estimate Prob”. These
properties are used in Chapter 4 when finding alternatives to the reference class of a
failed probability term. In the following section I demonstrate that Prob” is not a
conditional probability in the strict sense of the word because it only satisfies three
of the four theorems of probability theory. However, I argue that its failure to satisfy
one of the theorems is an advantage rather than a disadvantage in the context of
Assumption 1,

The following theorems are true of the revised estimate of a probability term
adopted in the remainder of this thesis.

Theorem 2

Prob”(a7)EKB = Prob”(,1317)EKB if H a

Proof: The proof follows from the definition of L and Prob11. 0

Theorem 3

Prob”(T7)EKB = 1

Proof: From the definition of Prob” we get

ITA7I
=
jTA7 + TA7
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From the semantics of L, -‘Tj = 0 and

ITAProb (T7)EKB
ITA7 +

= 1

D

Theorem 4

Prob”(-17)EKB = 1 — Prob”(o-y)EKB

if Prob” doesn’t fail.

Proof From the definition of Prob” we get

Prob”(—’cy)EKB = 1
—
Prob”(cr-y)EKB

1 — aA7I
-.crAyI + kAYI — aA7I + H’cxA7

_________

— 1Ia’H + -cAy —

1 =1

C

The theorem

Prob(c V y) = Prob(c-y) V Prob(/37) if H -1(a A 9)

of probability theory is not a theorem of Prob” because it is possible to have a case

c in the EKB such that:

[cH

For example, we might observe an object to be red or blue but not know which.
However, all this means is that if we know crV/3, then we should use the reference class

of Prob”(cx V I3 Vf)ER-B rather than the combined reference class of Prob”(a7)EKB
and Prob”(/3-y)EB because the former may be larger and the larger the reference

dass the better the statistics.
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3.7 Discussion

This chapter presents a language L for describing experiences. Because quantifica
tion is not required to describe the experiences, L is propositional and thus decide-
able. As discussed in the introduction to this chapter, L can be restricted to allow
computationally efficient retrieval from an EKB (i.e., retrieval that is possible in
polynomial time). It is interesting to note that the restrictions required to make
retrieval from an EKB efficient are the same restrictions that are required to make
vivid reasoning [Lev88J efficient. This suggests, that considerations as to efficient
retrieval from an EKB mirror considerations as to efficient retrieval from a VKB or
a relational data base.

L is more expressive than the feature vectors often used to describe experiences
in the psychological (e.g., [Tu186j), machine learning (e.g., [Fis87] [AKA91J), and
pattern recognition (e.g., {Das9l]) literatures. For example, L can be used to specify
n-ary relations, disjuncts, conjuncts, and negations in a straight forward fashion.

This chapter presents a method for estimating conditional probabilities directly
from a set of cases without the addition of any other domain knowledge. The chap
ter also demonstrates that different interpretations of probability terms can lead to
different estimates. The chapter shows that the choice of a particular interpretation
depends upon the assumptions that are made about any noise in an EKB. In par
ticular, this chapter argues that Prob1’ is the most reasonable interpretation of a
probability term and thus the most reasonable estimate of Prob(o[i3) if the cases in
the EKB are incomplete.

The next chapter addresses the problem of interpreting probability terms that
fail.



Chapter 4

Generalisation and Chaining

4.1 Introduction

This chapter addresses the problem of deriving approximations to failed probabil
ity terms by syntactic generalisation and its novel extension chaining. Syntactic
generalisation and chaining derive approximations to a failed probability terms 1

by:

1. Identifying a set, 0, of intensions of adequate, yet epistemologically rele
vant, alternatives to the original reference class of a failed probability term
Prob”(a/3), by modifying the syntax of /3, and

2. Deriving an approximation of Prob”(cr/3) by choosing a single item from the
set

{Prob”(aj/3’)(a,/3’) e 0}

4.1.1 Chapter outline

Section 4.2 distinguishes between the syntactic and semantic generalisations of a
failed probability term. Both have the property that a reference class R’ with
intension (a, /3’) is an adequate generalisation of a reference class R with intension
(a,/3), if/3 —÷ /3’ and

h(EKB, a A /3’) U h(EKB, -la A /3’) 0
1This chapter is concerned only with estimates of conditional probabilities. Throughout this

chapter the EKB subscript used to denote an estimate of a probability as opposed to the actual
probability is dropped.

79
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Intuitively, if /3 —* /3’, then the domain knowledge specified by (cx, /3’) is more general

than the domain knowledge specified by (a/3). For example,

Example 29 Consider the probability term2.

Prob”(flies bird A red A dead)

Its reference class intension (flies, birdAredA dead) states that the relevant domain

knowledge consists of all observations of dead, red, birds that fly or do not fly, i.e.,

the extension is

h(EKB, flies A bird A red A dead) U h(EKB, —iflies A bird A red A dead)

If the probability term fails, then intension can be generalised to (flies, bird A dead)

because (bird A dead A red) —* (bird A red). The generalisation (flies, bird A dead)

states that the relevant domain knowledge consists of all observations of dead birds

that fly or do not fly, i.e., the extension is

h(EKB, flies A bird A dead) U h(EKB, -‘flies A bird A dead)

The domain knowledge specified by the generalisation is more general than the

domain knowledge specified by the original intension because all observations of

dead red birds are also observations of dead birds.

Both syntactic and semantic generalisation have the additional property that

they only consider the most-specific adequate generalisations of a failed probability

term. Informally, an adequate reference class R1 is a most specific adequate gener

alisation of R2 if there does not exist an adequate reference class R3 such that R2 is

a generalisation of R3 and R3 is a generalisation of R1. Intuitively, the most-specific

adequate generalisations are most likely to lead to reasonable approximations be

cause they take into account as much information as possible about the situation of

interest [Bac9O]. For example,

21n the remainder of this chapter I sometimes write flies instead of R(11, flies, moves) and so
oil.
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Example 30 Suppose we wish to estimate the probability that a red bird with large
wings flies. We might represent the probability as the probability term

Prob”(flieslbirdA wings A red)

If the probability term fails, Prob”(flieslbirdA red) is a better approximation than
Prob”(flies I bird) because its intension (flies, bird A red) takes into account more
information about the situation of interest, i.e., that we are interested in a red bird
rather than a bird of any colour.

In Section 4.3 I argue that not all most-specific adequate generalisations of a
failed probability term lead to reasonable approximations. For example,

Example 31 Suppose we wish to estimate the probability that a red bird with large
wings flies. Prob”(fliesjbird A large wings) and Prob”(flieslbird A red) are both
equally specific generalisations but the former is a more reasonable approximation
than the latter if knowing ‘large wings’ is more relevant to estimating the probability
of flying than knowing ‘red’.

I argue that semantic information obtained from an EKB should be used to select
a single, most reasonable most specific generalisation of a failed probability term.

In Section 4.4 I demonstrate, by means of example, that the less that is known
about the new experience, the less likely the most specific generalisation of a failed
probability term Prob”(a/3) is to be reasonable. Chaining is defined as a novel
extension of generalisation in which we extend what is known about the new ex
perience. For example, we might assume that if /3 is true, then ‘y is also true and
approximate Prob”(cjfl) by generalising Prob”(aj/9 A 7). Chaining is based upon
the assumption that the more that is known about the situation of interest the
more likely it is that a single relevant most specific generalisation will be found. For
example,
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Example 32 Suppose we wish to estimate the probability of aspirin being pre
scribed as a treatment given that a patient appears flushed, i.e.,

Prob”(aspirin flushed)

All that is known about the situation of interest is that the patient is flushed. We
might add to what is known about the situation of interest by assuming that flushed
patients are also fevered, to get

Prob”(aspirin flushed A fevered)

(I argue later that this is a reasonable thing to do if we know that Prob”(fevered
flushed) is very high or very low), which, using generalisation, can be approximated
by Prob”(aspirin fevered).

In this chapter chaining is presented as a straightforward extension of syntactic
generalisation that allows us to obtain more knowledge about a situation of interest
before generalising.

4.2 Identifying 0 by generalising

This section starts by defining semantic generalisation. The section demonstrates
by means of example that using semantic generalisation results in unreasonable
approximations. The section concludes by defining syntactic generalisation as a
constrained from of semantic generailsation that does not result in the consideration
of unreasonable alternatives to a failed probability term.

4.2.1 Semantic generalisation

The reference class of a failed probability term Frob”(a/3) has intension (ce, /3) and
extension h(EKB, a A /3) U h(EKB, — A /3). A natural way of generating adequate
alternatives to the reference class is to consider the set of all reference classes whose
extensions include the extension of the original reference class as a subset.
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As suggested by Reichenbach [Rei49], a natural generality ordering upon the set
of all reference classes whose extensions include

h(EKB, c A 9) U h(EKB, -xcv A j3)

is subset containment. For example,

Example 33 The sets of ‘dead birds’ and ‘birds’ are both generalisations of the set
of ‘dead red birds’ as

/ \ R(l,T,dead)AI R(l T dead)A Ih EKB, ‘, ‘ D h EKB, R(l,bird,species)AR(l,, bird, species) ) R(l, red, colour)

and
R(l, T, dead)A

h(EKB, R(l, bird, species)) h EKB, R(l, bird, speeies)A

R(l, red, colour)
however, the set of ‘dead birds’ is a more specific generalisation than ‘birds’ as

I R(l T dead)Ah EKB, ‘ ‘ I C h(EKB, R(l, bird, species))
R(l, bird, species) )

Defining semantic generalisation in terms of set inclusion is problematic when
we wish to generate the generalisations of a reference class with an empty extension,
the case of interest in this thesis. As pointed out by Kyburg [Jr.88a] and Bacchus
[Bac9O], any reference class with a non-empty extension is a superset of a reference
class with an empty extension. This means that an approximation to a failed prob
ability term could be based upon any adequate reference class whose intension can
be defined in the language L.

Example 34 Suppose the probability term

Prob”(flies red A bird)
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fails. Using subset containment we can approximate the probability term using
any probability term with an adequate reference class that can be described in the
language L. For example, if Frob”(flies truck) and Prob”(flies professor)
have adequate reference classes, then both be used to approximate the probability
of red birds flying.

Instead of ordering reference classes semantically by subset containment over
their extensions Bacchus {Bac9O] argues that we should order them semantically by
implication over their intensions (e.g., [Bac9Oj, [Lai88]).

Definition 22 The reference class of the probability term Prob”(o/3) is a semantic
generalisation of the reference class of Prob”(aJ/3’) if/3’ —* 3.

By considering a generalisation ordering over the intensions of reference classes we
avoid the difficulty of defining subset containment over empty reference classes.

Using logical implication, the set of all adequate semantic generalisations of a
reference class can be defined as follows

Definition 23 Let F be the set of all wfss in L. For any /3’ E F, the set
G(Prob”(a /3)) of intensions of all adequate semantic generalisations is

{(a, /3’) (/3 -÷ /3’) A ({h(EKB, a A /3’) U h(EKB, a A /3’)} ø)}

Some elements of the set G(Prob”(a/3)) when substituted for (a, /3) in a failed
probability term Prob”(a 13) are more likely to result in the derivation of reasonable
approximations than others. As discussed in Chapter 1, and in the introduction to
this Chapter, this thesis assumes that these elements are among the most-specific
generalisations.

The most-specific generalisations in the set G(Prob”(al/3)) can be identified by
adopting a non-monotonic specificity assumption such as those discussed in Chapter
2 (e.g., [Bac9OJ; [Eth87]; [Bou92J; [Poo9lj). A notion of specificity follows naturally
from using implication to obtain the generalisations of a reference class.
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{ (50, —iR(l, flies, moves) A R(l, large, size) A R(l, Scots, Race)),
(50, -‘R(l3,flies, moves) A R(l, Gaelic, lang.) A R(13,Scots, Race)),
(1000,R(lk,bird,species) A R(lk,flies,moves)),
(1, R(lh, bird, species) A —1R(lh, flies, moves)) }

Figure 4.3: An EKB containing observations of Scotsmen and birds.

Definition 24 The set S(Prob”(c/3)) of intensions of the most specific adequate
semantic generalisatiorts is:

[/3 ,‘ /3’l and [(,/3’) e G(Prob”(/3))]<(c,B)
andV((,7) e G(Prob”))[(/3 7) ( /3’)]

Unfortunately, there are two difficulties with defining the set 0 of all epistemo
logically relevant approximations to a failed probability term Prob”(cx/3) in terms
of S(Prob”(o/3)). First, the set S(Prob”(a!/3)) may be large. For example,

Example 35 According to our definition S(Prob”(cx/3)) contains any (cr, /3’) such
that /3 —* /3’. One way of generating a wfs /3’ is to simply disjoin a wfs to /3. If the
EKB is large, then a large number of these disjunctions may correspond to reference
class extensions that are not empty.

Second, the elements of S(Prob”(cxl/3)) may be inappropriate in the context of
approximating Prob”(a 3). For example,

Example 36 Suppose the EKB is defined as in Figure 4.3, i.e., it consists of 50
observations of large Scotsmen that do not fly, 50 observations of Gaelic speaking
Scotsmen who do not fly, 1000 birds that do fly, and 1 bird that does not. The
probability term

Prob”(flies)large A Scots A Gaelic)

fails as

I I flies A largeA I flies A largeA
hi EKB, I Uh EKB, I ‘

= 0
I. \\ scots A Gaelzc ) scots A Gaelic ) J
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As both large Scotsmen and Gaelic Scotsmen do not fly, it is reasonable to expect
that large Scotsmen speaking Gaelic do not fly as well. However, using semantic
generalisation, the set

S(Prob”(flie.slarge A Scots A Gaelic))

contains the intension

(flies, (Gaelic A Scots) V bird)

which allows us to use the probability term

Prob”(flies(birdV (Scots A Gaelic))

to derive the counter intuitive approximation that the probability of large, Gaelic
speaking Scotsmen flying is very high, i.e., the probability is

Example 37 The reference class of the probability term

Prob”(richQueens graduate A lawyer)

is generalisable by arbitrarily disjoining wfss to Queens A lawyer to include knowl
edge about the financial status of ‘dwarf elephants’, ‘dead socialists’, or ‘U.B.C.
graduates’. Considering knowledge about the financial status of ‘U.B.C. graduates’
when estimating the probability of ‘Queens graduates’ being ‘rich’ appears particu
larly suspect.

These two examples demonstrate that semantic generalisation, when defined by
either subset containment over extensions or logical implication over intensions, is
inappropriate when used to derive approximations of Prob”(c3).
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4.2,2 Syntactic generalisation

In the previous section the set S(Prob”(cI/3)) of most specific, adequate semantic
generalisations of the reference class of Prob”(oI/3) can be generated by applying
an operator to 3 that generates all those wfss logically implied by 3. As seen in the
previous section such an operator will generate inappropriate generalisations of the
reference class of a failed probability term. In this section an alternative, syntactic
operator, >—, is defined. Starting with a failed probability term, Prob”(a/3), gen
erates a subset, S(Prob”(aI/3)), of S(Prob”(cI/3)), that excludes, in particular,
any intensions obtained by disjoining arbitrary wfss to 3. Given a failed probabil
ity term Prob”(a/3), the set S(Prob”(cxl3)) contains reference class intensions
generated by ‘generalising’ the knowledge described by 3.

Ignoring domain knowledge

Semantic generalisation is problematic because it allows us to generalise by con
sidering knowledge that is not known to be true in the situation of interest. For
example, we can generalise the reference class of “red birds” to “red birds or dead
dogs” without knowing whether or not knowledge about “dead dogs” is appropriate
to the situation of interest.

Syntactic generalisation only generalises what is known about the situation of
interest, i.e., it only generalises knowledge described in /3. For example, if “red” and
“bird” are all that is known to be true, then the only generalisations allowed are
those that can be obtained by generalising “red” and “bird”. There are a number
of ways of generalising /3. For example,

Example 38 The wfs red might be generalised to similar colours to get “red or
orange or yellow”. In the context of making a prediction about a red object we
might consider all objects that are red, yellow or orange as opposed to just red. The
wfs New York might be generalised to “New York or Big Apple” as both names
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are often used to denote the same domain object.

The difficulty with generalising what is known about a new experience is that domain
knowledge not readily available in an EKB is often required. For example,

Example 39 Generalising the wfs red to ‘orange or red or yellow’ requires domain
knowledge that says that orange and yellow are similar to red in some way and that
this similarity is appropriate in the context of the particular situation of interest.
For example, generalising red to ‘orange or yellow’ may be inappropriate in the
context of making predictions about whether or not a ‘red sign’ is a “stop sign”.
Similarly, generalising New York to ‘New York or the Big Apple’ requires us to
know something about the semantic equivalence of names.

This requirement clearly violates Assumption 1 of this thesis that the only available
domain knowledge is that contained in an EKB.

I argue that a good way of generalising knowledge about a new experience is to
ignore it. In the context of generalisation, knowledge is ignored by not incorporating
it into the membership criteria of the generalised reference class. For example,

Example 40 Suppose we wish to obtain an approximation of the failed probability
term

Prob”(fliesred A bird)

All that is known about the situation of interest is that it concerns a red bird. By
ignoring what we know we can generalise. For example, by ignoring the fact that
the object of interest is red, red A bird can be generalised to bird. The probability
of flies can now be approximated by Prob”(fliesbird) The reference class can be
generalised even further by by ignoring the fact that the object of interest is a bird,
obtaining the approximation Prob”(fliesT)

Generalising by “ignoring”, is appropriate in the context of Assumption 1 of this
thesis because it does not require any domain knowledge other than that readily
found in the EKB.
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Defining

The operator is defined in terms of a minimal sub-ordering ç ç such that >- is
the reflexive, transitive closure (. In this case a necessary condition on is that if
(crj, a3) e , then h(EKB, cr) D h(EKB, cr,). In this section I describe how ç is
used to generate the intensions of reference class generalisations in increasing order
of generality.

In order to generalise the reference class of the probability term Prob”(cr/3) we
generate the set

{(a,’))(/3’,) E }
of intensions of the most-specific generalisations. It is important to ilote that the
set need not be the set of most-specific adequate generalisations. For example, every
element of {Prob”(aj,8’))(/3’,8) E may fail.

(3’, 3) € C, if 3’ is obtained by ignoring a property predicate in /9 denoting the
domain property, that is

Definition 25 (fl’, 3) is defined as follows:

(,-yA/9)and(/9,/9A-y) E

(aA/9’,aA/9)EC if (/3’,/3)EC
(ffAa,/9Aa)EC if (/3’,/3)EC
(aV/9’,aV/9) if (3’,/3)

(/3’ V a, /3 V a) E C if (i3’, /3) C
(T, /9) if (-/9’)[T —* /3’ and (/3’, /3) e C]

Note, that a domain property can only be generalised by ignoring a property pred
icate if that property predicate is conjoined to others. The only generalisation of a
domain property represented by a single property predicate is T.

The reflexive transitive closure , , can be specified succinctly in terms of the
program written in pseudo Prolog in Figure 4.4. Given a wfs /3, the first iteration



Chapter 4. Generalisation and Chaining 90

gen(o,-y)
gen((A),(A7))

gen(/3A’y)
gen((cA/3),a) *—

-igen(,13, 6)
gen((aA),/3)—

--‘gen(a, 6)
gen((V),(7V))

gen(o,7)
gen((aV/3),(aV7)) —

gen(13,7)

Figure 4.4: A program in pseudo Prolog that partially defines the operator ( for
generating the intensions of the most specific syntactic generalisations of a reference
class intension (ce, ,8).

of the program generates the set

{(cr,’) (‘,/3) E )

of intensions of the most specific generalisations of 3. The second iteration generates
the set of next most specific generalisations and so on. If the program can generate
no generalisations of a wfs , then the only generailsation is assumed to be T.

Definition 26 Let I’ be the set of all wfss in L. For any /3’ e F, the set G(Prob”(a
I /3)) of intensions of all adequate syntactic generalisations is

{(a, 3’) I [(/3’, 3) -j A ({h(EKB, a A j3’) U h(EKB, — A /3’)} # ø)}

The set S(Prob”(aLi3)) of intensions of the most specific, adequate syntactic
generalisations is defined as follows
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General _.

R(l, large, size) i, , CO R(l, lang, Gaelic)

I
R(l, la ge, size)A 4, R(l, T, Scots)A
R(l, T.,Sots) I R(l, lang, Gaelic)

Specific R(l,7arge, size’) A R(l, T, Scots)
AR(l, lang, Gaelic)

Figure 4.5: The wfss /9’ generated by applying to largeA ScotsA Gaelic.

Definition 27 The set S(Prob”(clI3)) of intensions of the most specific adequate
syntactic generalisations is:

I / [(a,/9’) E G(Frob”(aI/9)] and

1 V(a,7) é G(Prob”(a/9))[(/9 7) (7 /9’)]
Example 41 The wfss generated by applying >•- to (large A Scots A Gaelic) are
presented in Figure 4.5 organized in order of specificity. In the context of the
probability term

Prob”(flieslarge A Scots A Gaelic)

and the EKB in Figure 4.3, the circled wfss in Figure 4.5 correspond to the wfss /9’
in the intensions (flies. /3’) of the most specific adequate syntactic generalizations.
As the 3’ are ordered by logical implication, every node that is logically implied by
one of the circled nodes represents a less specific adequate generalization.

The most specific element in G(Prob”(c/3)) is /3, and the least specific element
is T. Given a failed probability term Prob”(o/3), the approximation obtained
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by substituting the least specific generalization, T, of 3 will succeed if the EKB

contains any observations of the property a or its negation -‘a. Thus, we can be

assured, that if the EKB contains any knowledge about a, an approximation of

Prob”(a8) can be obtained.

It is interesting to note that if 3 is a conjuct of property predicates such as

large A Scots A Gaelic, then the result of applying to 3 is a lattice with minimal

element T and maximal element as seen in Figure 4.5. The circled candidates in

Figure 4.5 correspond to the minimal candidates in deKleer’s model of fault diagnosis

[dW83].

4.3 Selecting a best aproximation from 0

The previous section demonstrated how semantic and syntactic generalization gen

erate a set of intensions 0 of most-specific adequate generalizations of the reference

class of a failed probability term Prob”(a/3). In this section I consider the problem

of approximating Prob”(a/3) from the set

{Prob”(a8’) (a,9’) E 9}

Considering the most-specific adequate generalizations 0 may lead to conflicting
approximations of a failed probability term. This occurs because 0 is generated

without taking into consideration information about the relevance of the individual

generalizations with respect to the prediction of interest . I argue that this infor

mation can be readily extracted from an EKB and should be used to choose a single

intension from 0.

3The problem exists independently of whether semantic or syntactic generalization is used to
generate E.



Chapter 4. Generalisation and Chaining 93

4.3.1 Conflicting approximations

If 0 contains the intensions of n adequate most specific generalizations, then in the

worst case it is possible to derive n conflicting approximations. For example,

Example 42 Suppose we wish to interpret the probability term

Prob”(R(l, flies, moves) R(ij, red, colour) A R(l, bird, species))

with respect to the EKB

{ (1, R(l, red, colour) A R(l, T, flies)),

(10, R(l, red, colour) A —R(l, T, flies)),

(10, R(lk, bird, species) A R(lk, T, flies)),

(1, R(l1,bird, species) A —iR(l, T, flies)) }
that is, an EKB containing 1 observation of a flying red object, 10 observations of

non-flying red objects, 10 observations of flying birds, and 1 observation of a non-
flying bird. The probability term fails as the EKB contains no observations of red
birds. As

C(R(l, red, colour) A R(l, bird, species)) = R(l, red, colour), R(l, bird, species)}

syntactic generalisation gives rise to two possible approximations of the failed prob
ability term, i.e.,

1. Frob”(R(l, flies, moves) jR(l, red, colour)) =

2. Prob”(R(l, flies, moves) R(l, bird, species)) =

The first approximation suggests that the probability of a red bird flying is very low

(0.09), while the second suggests that the probability of a red bird flying is very

high (0.91).

If we have n conflicting approximations we might consider one of six possibilities:
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1. Use a higher order probability to describe the n approximations [Jr.88d], or

2. Use the n approximations to place upper and lower bounds on the actual
probability (e.g., [Jr.88dJ, [Goo9l], [Bac9O]), or

3. Average over the set of n approximations, or

4. Require all n approximations to be the same before deriving a conclusion (e.g.,
skeptical non-monotonic reasoning), or

5. Arbitrarily choose one of the n approximations (e.g., credulous non-monotonic

reasoning), or

6. Use knowledge in the EKB to choose the most reasonable of the n approxima
tions.

I use the following example to argue that the first five possibilities are inappropriate
if everything that we know about the new experience is not equally relevant with
respect to estimating a particular probability.

Example 43 Consider the problem of approximating

Prob”(R(l, flies, moves) R(l, red, colour) A R(l, bird, species))

in the preceding example. Averaging over the two approximations obtained by
syntactic generalisation we obtain 0.5 as an approximation of the probability of
a red bird flying which is unsatisfactory in that it hides the divergent nature of
the underlying probabilities. Arbitrarily choosing a single approximation from the
candidates results in the wildly different approximations of or , depending on
which candidate is chosen. Requiring all the approximations to be the same leaves
us in the same situation as we were with the failed probability term in the first
place - ignorance. Finally, although bounding the approximation by the interval
[0.09, 0.90] has some semantic merit, it does not tell us much more about whether



Chapter 4. Generalisation and Chaining 95

or not red birds fly than the original probability term in which the probability was
bounded by [0, 1].

I use the following example to argue that the sixth possibility is appropriate:

Example 44 Consider again the problem of approximating

Prob”(R(l, flies, moves)R(l, red, colour) A R(l, bird, species))

Using information in the EKB we might decide that being a bird is much more
relevant to predicting flying than being red. Subsequently we might approximate
the failed probability term by

Frob”(R(l, flies, moves)R(l, bird, species))

obtaining a probability of

I now address the problem of choosing a single most relevant, most specific adequate
generalisation.

4.3.2 Choosing a single approximation

In this section I argue that the problem of choosing a single most relevant, most
specific adequate generalisation can be characterised as a problem of making the
most reasonable assumption about the probabilistic independence of the knowledge
that is generalised. I show that because probabilistic independence can not be
directly measured in the context of a failed probability term, it is necessary to obtain
an estimate of probabilistic independence using an appropriate inductive bias. The
adoption of a particular bias, and thus the choice of a particular generalisation, is
good only if the resulting probability term is an accurate approximation of the failed
one.

In this section I discuss how inductive biases are applied to the problem of
choosing a single most relevant, most specific generalisation. I do not argue for a
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particular inductive bias because I believe that the appropriateness of an inductive

bias will vary depending upon the situation in which it is applied.

Probabilistic Independence

Given a failed probability term Prob”(cr/3), I argue that the appropriateness of a

most-specific syntactic generalisation Prob”(cr/3’) is a function of whether or not /3
and /3’ are independent with respect to predicting a.

Definition 28 (Independence, Pearl [Pea88],) ‘y is independent of a given /3,
written I(a, /3, y), if

Prob(aj3 A ) = Prob(cx/3)

If I(a, /3,-’) is true, then the conditional probability Prob(a/3 A ) is the same
as the conditional probability Prob(a/3) and the generalisation Prob(a/3) is appro

priate.

Example 45 If we know a-priori is that R(l, red, colour) is independent of R(l,
flies, moves), then it is appropriate to generalise

Prob”(R(l, flies, moves) R(l, red, colour) A R(l, bird, species))

by ignoring R(l, red, colour) to approximate the failed probability term by

Prob”(R(l, flies, moves) R(l, bird, species))

The process of generating the set S(Prob”(aj/3)) of syntactic generalisations of
the reference class of Prob”(a/3) can be thought of as a process of making a se
ries of independence assumptions. Whether or not an element of S(Prob”(a/3))
will lead to a good approximation of Prob”(aj3) depends on how reasonable the
independence assumption was that was used to generate it. For example,
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Example 46 The probability term

Prob(R(l, flies, moves) (R(l, Scots, Race) A R(l, tongue, Gaelic))

is a reasonable approximation of

I R(l Scots Race) A R(l, tongue Gaelic)
Prob R(l,flzes,moves)I

AR(l, large, size)

only if it is reasonable to make the independence assumption

I . R(l,Scots,race)A
I R(l, flies, moves), R(l, large, size), R(l, Gaelic, lang.)

I argue that a failed probability term should be approximated by choosing a single

item from e obtained by making a most reasonable independence assumption.

Making reasonable independence assumptions

The problem with viewing syntactic generalisation as a process of making indepen

dence assumptions is that we do not have a-priori knowledge about independence

assumptions. Nor, given a failed probability term, can we use our knowledge in the

EKB to generate the assumptions. That is, if Prob”(/3) fails, there is no way of

determining from the cases in the EKB whether or not Prob”(a/3’) is a reason

able generalisation because we can not tell whether or not I(o, 13, 13’) is true. For

example,

Example 47 Consider the failed probability term

Prob”(R(l, flies, moves) R(l, red, colour) A R(l, bird, species))

As shown previously in Example 44, there are two possible approximations that can
be obtained from the two most-specific adequate syntactic generalisations. However

it is impossible to decide whether or not either of these have been obtained by
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ignoring an independent property because in order to see if either R(l, red, colour)

or R(l, bird, species) are independent (according to Definition 28) we have to be

able to calculate

Prob”(R(l, flies, moves) R(l, red, colour) A R(l, bird, species))

which fails.

I argue that we can use inductive biases to measure the reasonableness of making
independence assumptions of the form I(a, [3, -y). These biases can be used to iden
tify a single item in 0 that is the result of making the most reasonable independence
assumption. For example, an inductive bias might state that it is more reasonable
to assume

I(R(l, flies, moves), R(l, red, colour) A R(l, bird, species), R(l, red, colour))

than

I(R(l, flies, moves), R(l, red, colour) A R(l, bird, species), R(l, bird, species))

Although this thesis does not address the issue of finding the best inductive bias
for measuring the reasonableness of independence assumptions, I suggest that sta
tistical metrics that measure the associativity between two properties (e.g., [Edw76])
can be used to good effect. For example, given a feature f and a wfs a, the inde
pendence of the value of f with respect to predicting a might be measured by:

Context free dependence: (e.g., [Tur92j [MC9O]) ft has context free dependence
for predicting a where there is a value vj of fj such that

Frob”(aIR(l,vj,f)) Prob”(aT)

Context free correlation: f has context free relevance for predicting a when the
Pearson product moment correlation [Edw76] between the multi-valued feature

f and property a is not 0:

r(f) 0
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Context free clustering: A property 7 has context free relevance for predicting

a when the clustering metric (See Appendix C) between y and a is not equal

to 0.

In Chapter 5 I demonstrate that context free correlation and context free clustering

both be used to make reasonable predictions in a machine learning domain.

Appendix B and Appendix C describe two different metrics of associativity that

can be used to select a single most specific generalisation.

4.4 Extending syntactic generalisation

In the previous section syntactic generalisation is used to generate a single most

relevant, most-specific, yet adequate, syntactic generalisation of the reference class

of a failed probability term Prob”(a/3). The difficulty with constraining semantic

generalisation through the application of operators such as >- is that there may not

be much information about the situation of interest to generalise on. As a result, it

may not be possible to generate a reasonable approximation of a failed probability

term.

This section describes an extension of syntactic generalisation called chaining

that allows us to consider additional information about the situation of interest

during generalisation. The section starts by specifying chaining as a straightforward

extension of syntactic generalisation. The section concludes by showing in certain

circumstances that chaining a failed probability term Prob”(a/3) is equivalent to

generalising by disjoining a wfs to 3. In Chapter 5 chaining is demonstrated to have

practical applications when making predictions from incomplete EKBs.

4.4.1 Chaining

A failed probability term Prob”(a/3) is chained, as opposed to syntactically gen
eralised, in two steps. In step one additional knowledge about the domain state is
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conjoined to /3. In step two the resulting expression is syntactically generalised.

Definition 29 To chain Prob”(cv/3) on -y, Prob”(c/3) is rewritten as

Prob”(c/3) Prob”(c/3 A ) x Prob”(7j13)

+ Prob”(a/3 A ) x Prob”(7/3)

followed by the syntactic generalisation of Prob”(a/3 A ) and Prob”(a/3 A -y).

It is important to note that the re-expression of a failed probability term Prob”(c3)

in terms of 7 by chaining is not a theorem of Prob” ‘. However, it is a theorem of

probability theory. By defining chaining in this manner I explicitly assume that the

re-expression will be a theorem of the underlying population from which the past

experiences were obtained and will therefore be appropriate.

In the remainder of this section I consider a particular example of chaining in

which the probability terms Prob”(a7A 3) and Prob”(c-io A /3) are syntactically

generalised by ignoring /3. That is, applying to Prob”(c/3A7)and Prob”(a/3A
—17) yields the generalisations Prob”(7)and Prob”(c-i7). Prob”(al/3) can now

be approximated by:

Prob”(a/3) Prob”(c7) x Prob”(7/3)

+ Prob”(j7)x Prob”(7/3)

Generalisation by ignoring /3 makes intuitive sense in that if Prob”(cj/3) fails and

there are no relevant generalisations of /3, then /3 can be ignored. However, it is

important to note that, in general, the two probability terms Prob”(a/3 A ) and

Prob”(c/3 A —‘) in the expression

Prob”(a/3) Prob”(aI/3 A ) x Prob”(7/3)

41f it were then there would be no need to chain or generalise.
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{ (1, R(l, bird, species) A —iR(l, T, feathers))
(1000, R(l, bird, species) A R(13,T, feathers))
(500, R(lk, T, feathers) A R(lk, T, flies))
(50, R(11,T, feathers) A —iR(11,T, flies))
(10000, R(lm, flying fish, species) A —R(l1,T, flies)) }

Figure 4.6: An EKB of birds, flying fish and other flying feathered things.

+ Prob”(I/3 A ) x Prob”(76)

can be generalised by applying to 3 A and /3 A vy.

Example 48 The probability term Prob”(fliesbird) fails with respect to the EKB
in Figure 4.6. Syntactic generalisation approximates the desired probability by

II 500Prob (flzesT)
= 10550

allowing us to derive the counter-intuitive conclusion that the probability of birds
flying is low. By chaining the failed probability term can be re-expressed as:

Prob” (flies bird)

Prob”(fliesbird A feathers) x Prob”(feathersbird)

+ Prob”(fliesbird A -‘feathers) x Prob”(feathersbird)

As both Prob”(fliesbird A feathers) and Prob”(fliesbirdA -‘feathers) fail they
are generalised by making the independence assumption I(f lies, feathers, bird) to
give:

Prob”(fliesbird)

Prob11(flies feathers) x Prob11(feathers bird)
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+ Prob”(fliesl—ifeathers) x Prob”(—ifeathers bird)

and we can conclude that the probability of the bird flying is 0.91.

Choosing a ‘y to chain on

The set {71, 72,. . .} of wfs that can be conjoined with 3 to obtain an approximation

Prob”(cx/3) Prob”(a7) x Prob”(7/3)

+ Prob”(aI—17) x Prob”(—’7I/3)

of a failed probability term is the set F of all wfss in the language L. Thus, chaining
leads us to the consideration of large numbers of possibly irrelevant approximations,
just as semantic generalisation does.

If every member of the set {71, 72,.. . } satisfied the independence assumption
Prob”(aj3 A = Prob”(aj7)

then chaining by conjoining any member -y would result in the same approximation.
That is, if 3 were truly independent of a given every then any 7 could be used
to chain without worrying about the relevance of the approximation. Unfortunately,
as discussed earlier we can only estimate whether or not the elements of {71, 72,. . . }
satisfy the independence assumption and these estimates are subject to error.

I argue that by requiring each element, of {71,72,. . .} to satisfy certain con
straints, the possibility of errors in estimating independence can be reduced. I start
by arguing that in order for yj to be considered for chaining Prob”(7l/3) must
not fail. If Prob”(7/3) fails, then there is no way of determining whether or not

is probable in the situation of interest. I argue further that not only should
Prob”(7/3) not fail but that

(Prob”(7) 1) and (Prob”(7j) 1)
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That is, the closer Prob”(7/3) and Prob”(/37) are to 1 the more likely it is that

is applicable to the situation of interest.

Consider, the requirement that Prob”(73) be close to 1.

Example 49 Suppose the probability term Prob”(fliesbird) fails. If we consider

the reference class of all birds we might find that with respect to our EKB most of

them are known to also have feathers. That is,

Prob”(feathersbird) 1

Using this information, we might conclude that if we knew more about the bird of

interest in the failed probability term, then we would know that it has feathers. We
might add this information to what we know to obtain the approximations

Prob” (flies bird)

Prob”(flies feathers) x Prob”(feathers bird)

+ Prob”(fliesHfeathers) x Prob”(—ifeatherslbird)

Prob”(flies feathers) x Prob”(feathers bird)

Prob”(flieslfeathers)

Intuitively, the approximation says that if all birds have feathers, then the probabil

ity of feathered objects flying can be used to approximate the probability of birds
flying.

However, the requirement that Prob”(7j/3) be close to 1 is not enough. I argue
that we also need Prob”(/3Vy) to be close to 1. For example,

Example 50 Suppose the probability term Prob”(webbed feetduck) fails. If we
consider the reference class of all ducks we might find that with respect to our EKB

1. Prob”(birdjduck) 1 and Prob”(duckbird) 0.2

2. Prob”(quackduck) 1 and Prob”(duckquack) 1

3. Prob”(webbedfeetbird) 0.4 and Prob”(webbedfeetquack) 1
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Using this information we might obtain the approximations

Prob”(webbed feetdctck)

Prob”(webbed feet bird) x Prob”(birdduck)

+ ProbH (webbed feet —‘bird) x Prob”(—ibirdduck)

Prob”(webbedfeetbird) x Prob”(birddnck)

Prob”(webbedfeetbird) = 0.4

and

Prob”(webbed feetduck)

Frob”(webbed feetquack) x Prob”(quackduck)

+ Prob”(webbed feet—’quack) x Prob”(—iquackduck)

ProbH (webbed feetquack) x Prob”(quacklduck)

Prob”(webbedfeetqttack) 1

Intuitively, the first approximation is unreasonable because we are using the refer

ence class of birds to approximate the probability of ducks having webbed feet and

most birds are not ducks. The second approximation is more reasonable because

most birds that quack are ducks.

Chaining and semantic generalisation

If Prob”(’y,i3) 1, then the chaining in the previous examples is equivalent to the

semantic generalisation of Prob”(o/3) by disjoining the wfs with 9.

Theorem 5 Suppose the probability term Prob”(a/3) fails and that it is chained

by -y and generalised by ignoring 3, i.e.,

Prob”(c/3)
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Prob”(cvj7) x Prob”(/3)

+ Prob”(al7) x Prob”(-yB)

If Prob”(7/3) 1, then by Theorem , Chapter 3, the previotts expression can be

rewritten as

Prob”(a/3) Prob”(cx7)

The reference class of Prob”(aj7) is now the same reference class as the reference

class of the generalisation Prob”(a/3 V y) obtained by disjoining /3 with
.

Proof: As Prob”(a/3) fails,

h(EKB, a A 3) U h(EKB, -‘a A 3) = 0

It follows that

(h(EKB,aA/3) = 0) A (h(EKB,-’aA/3) = 0)

The reference class extension of the generalisation Prob”(a/3 V 7) obtained by

disjoining with /3 is

= h(EKB,aA(-yV/3))Uh(EKB,-’aA(7v13)

= h(EKB, (a A 7)) V (a A 3)) U h(EKB, (-‘a A 7) V (-‘a A i3))

= h(EKB, (a A 7)) U h(EKB, (a A 3))

U h(EKB, (-‘a A )) U h(EKB, (-‘a A i3))

= h(EKB, (a A 7))U 0 U h(EKB, (-‘a A 7))U 0
= h(EKB,(aA7))Uh(EKB,(-’aA7))

which is the reference class extension of Prob”(a7). 0

As chaining can be shown, in certain circumstances, to be equivalent to seman
tic generalisation by disjunction, I suggest that only considering the most specific
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adequate chainings may lead to reasonable approximations, i.e., those obtained by
disjoining the most specific ‘ri. In Chapter 5 I show that choosing the most specific
adequate chaining such that

Frob”(7/3) + Prob”(/3J7)
2

is closest to 1 results in reasonable predictions.

4.5 Discussion

The problem of estimating a conditional probability Prob(c3) is characterised in
this thesis as a problem of identifying an adequate reference class. The problem is
solved in three steps:

1. Specify an initial reference class.

2. Identify an appropriate alternative reference classes if the extension of the
initial one is empty.

3. Aggregate over the members of the reference class extension to calculate an
approximation of the desired probability.

Chapter 3 discusses steps 1 and 3. The current chapter discusses two techniques for
identifying alternatives to the reference class of a failed probability term: Generali
sation and Chaining.

In this chapter I argue that generalisation and chaining should be used to iden
tify a single most-relevant, most-specific adequate syntactic generalisation of the
reference class of a failed probability term. I argue that this generalisation is the
most likely to result in a good approximation of a failed probability term. I also
argue that generalisation must be constrained. In particular, I argue that semantic
generalisation will result in unintuitive approximations. By means of example, I
argue for a constrained syntactic form of generalisation that only generalises what
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is known about a situation of interest. I then show that in certain circumstances,

chaining should be used to relax this constraint.

In Chapter 5 I support the arguments made in this chapter with empirical evi

dence resulting from applying the syntactic generalisation and chaining techniques

to a prediction problem.



Chapter 5

Testing the RCA

In this chapter a computational implementation called FRED 1 uses the RCA’s
estimates of conditional probabilities to perform a predictive task. Given an EKB,
and a case a A /3, FRED calculates Pred(EKB, a A /3) such that

1 if Prob”(a/3) > Prob”(—icv/3)
P’red(EKB,a A /3) = 0 if Prob”(cI/3) <Prob”(-iajI3)

0.5 if Prob”(aj/3) = Prob”(-’a/3)

Intuitively, if Pred(EKB, a A /3) = 1, then FRED’s prediction is correct. If
Pred(EKB, a A /3) = 0, then FRED’s prediction is incorrect.

The predictive task is a useful way of validating the RCA. This thesis assumes
that if the RCA’s estimates of conditional probabilities allow FRED to make cor
rect predictions, then the techniques used by the RCA to obtain those estimates
are reasonable. The particular predictive task used in this chapter has the addi
tional advantage that the ability to make correct predictions is a common metric for
comparing inductive techniques with otherwise distinct theoretical foundations. In
this chapter, FRED is applied to the predictive task in three different experiments.
It is important to note that what is measured as success in the experiments is not
FRED’s ability to make a single correct prediction but rather FRED’s ability to
make correct predictions in the long run.

Experiment 1 tests the hypothesis that the reasonableness of the estimates ob
tained by the RCA using syntactic generalisation are a function of the metric used
to estimate the reasonableness of the independence assumptions. Experiment 1 tests
1For Fred’s Relational Experiential Database.

108
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the hypothesis by contrasting FRED’s performance using estimates obtained by two

different versions of syntactic generalisation with the performance of a k-nearest

neighbours algorithm. The versions of syntactic generalisation differ with respect to

the statistical metric of associativity that is used to estimate the reasonableness of

the independence assumptions made in order to syntactically generalise.

Experiment 1 has three main results. First, performance on the predictive task

is shown to be a function of the size of the EKB. Second, FRED’s performance

is shown to compare favourably with the performance of an implementation of k
nearest neighbours. Third, the reasonableness of the estimates obtained using syn
tactic generalization is shown to be a function of the metric of associativity used to

estimate the reasonableness of independence assumptions.

Experiment 2 tests the hypothesis that, using syntactic generalisation, the RCA

makes reasonable estimates of conditional probabilities. Using the version of syn

tactic generalization that resulted in the most accurate predictions in Experiment 1,
FRED is applied to the predictive task in seven different data sets. Experiment 2’s
results are consistent with Experiment l’s. In particular, FRED’s predictive perfor

mance is shown to compare favourably with a variety of other inductive techniques.

Experiment 3 tests the hypothesis that the RCA should chain rather than syn
tactically generalise given a case cv A /3 such that: 1. /3 specifies little about the
situation of interest, and 2. The EKB is incomplete with respect to estimating
Prob”(cv/3). Experiment 2 tests the hypothesis by contrasting the performance
of FRED using syntactic generalisation with FRED using chaining. Experiment 2
demonstrates that chaining is more appropriate than syntactic generalisation if the
only adequate syntactic generalisation of Prob”(cv/3) is Prob”(cvlT).

5.0.1 An overview

This section provides an overview of the data and algorithms used in experiments
1, 2 and 3. The section is structured as follows:
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1. The data sets used in Experiments 1, 2, and 3 are briefly described. A more

complete description is provided in Appendix E.

2. The versions of syntactic generalisation and chaining used by FRED, and a

k-nearest neighbours algorithm are described.

5,0.2 The data sets

In experiments 1, 2 and 3, FRED uses the RCA’s estimates of conditional proba

bilities to make predictions about seven different data bases: 1. The Soybean data

base, 2. The Fisher soybean data base, 3. The Breast cancer data base, 4. The

1984 congressional voting data base, 5. The modified 1984 congressional voting data

base, 6. The mushrooms data base, and 7. The LED 7 digit data base. All seven

data bases were obtained from the machine learning data base repository at the

University of California at Irvine and were not modified for use in this thesis.

Each case in the seven data sets describes a single domain object in terms of

a set of exclusive features. In six of the seven data sets the features have discrete

values, that is, a finit number of values. In the breast cancer data set, four of the
features have real or continuous values. In five of the seven data sets the values of
some of the features are unknown. In the terminology of this thesis, the five data

sets may be incomplete with respect to making some predictions. Each case in the
seven data sets is also categorized, apriori, into two or more classes. Finally, with
the exception of the LED data set, the amount of noise is unknown. In the LED
data set there is a 10 percent probability that the value of any of the seven binary
valued features has been reversed.

An overview of the properties of the seven data sets used in the experiments is
provided in Table 5.1. In the table, column 1 states the abbreviated name of the
data base, column 2 states the number of cases in the data base, column 3 states
the number of classes that the cases are divided into, column 4 states the number
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Data base Size Classes Features Real Discr. Missing
Values

Breast 286 2 9 4 5 Yes
Votes 435 2 17 0 17 Yes
Votesl 435 2 16 0 16 Yes
Mush 8124 2 22 0 22 Yes
Fisher 40 4 35 0 35 No
Soya 541 14 35 0 35 Yes
LED 3000 10 7 0 7 No

Table 5.1: An overview of the data sets used in experiments 1, 2 and 3.

of features used to describe each case, column 5 states the number of feaures that
have real or continuous values, column 6 states the number of attributes that have
discrete or nominal values, and column 7 states whether or not the data base is

potentially incomplete.

5.0.3 The implementation

This section briefly describes the version of k-nearest neighbours used in experiment

1, the versions of syntactic generalisation used by FRED in experiments 1, 2 and 3,
and the version of chaining used by FRED in experiment 3.

Syntactic generalisation

In Experiment 1 FRED uses two different versions of syntactic generalisation. The
versions differ with respect to whether a correlation or a clustering statistic is used
to estimate the reasonableness of the independence assumptions made when gen

eralising. A description of the correlation statistic is provided in Appendix B. A
description of the clustering statistic is provided in Appendix C. Experiments 2 and

3 use only the clustering version of syntactic generalisation.

To make a prediction FRED first attempts to use the RCA to to estimate
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Prob”(a ) without generalisation. Note that because

Frob”(a/3) = 1 — Prob”(—c/3)

is a theorem, FRED only has to interpret Prob”(a13) to perform the predictive
task. If the interpretation fails, then FRED generates the set S(Prob”(a/3)) of
intensions of the most specific adequate syntactic generalisations of Prob(a ,8).

Following Chapter 4, FRED generates S by making a series of independence
assumptions. Using a statistical metric of associativity, FRED assigns to each el
ement of S(Prob”(c/3)) an estimate of the reasonableness of that independence
assumption. The estimate is simply the sum of the correlations or clusterings be
tween a and each of the remaining ungeneralised features whose values are specified
in 3. FRED approximates Prob”(a3) by choosing the generalisation obtained by
making the most reasonable independence assumption. If there is more than one
most reasonable generalisation, then FRED averages over each of them.

Chaining

FRED implements chaining as an extension of syntactic generalisation with cluster
ing. Briefly, if Frob”(a L) fails, then Prob”(a l/) is chained on y to obtain

Prob”(a) Prob”(a) x Prob”(78) + Prob”(aj7)x Prob”(7)

such that Prob”(7/3) and Prob”(/37)both succeed and

Prob”(7/3) + Prob”(/37)
2

is closest to 1. If there are n equal possibilities F = ... 7m}, then FRED averages
the result of chaining over each of

e F(Vy e F)(Y)[y(X/Y) —÷ yj]}

i.e., FRED averages over the most specific j.
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k-nearest neighbours

The version of k-nearest neighbours used in Experiment 1 uses the Hamming dis
tance similarity metric described in Chapter 2 and a value of k equals 1. Informal
experimentation on my part showed the metric and the value of k to result in the
most reasonable predictions. A more complete description of k-nearest neighbours
techniques can be found in Hand [Han82] [Han8l], and Dasarathy [Das9lj.

5.1 Experiment 1

Experiment 1 considers the following situation:

Given a case a A , what is the propensity to correctly predict that a is
true given that is true?

Experiment 1 compares the performance of FRED on the Fisher and Soybean data
bases using the two versions of syntactic generalisation described previously with the
performance of the k-nearest neighbours implementation. I start by describing how
the EKB and a set of test cases are selected from the data base of interest. I then
describe a procedure for measuring the performance of each algorithm. I conclude
by describing the performance of FRED and k-nearest neighbours on the two data
sets.

5.1.1 The EKB and test cases

The EKB is obtained by randomly selecting N percent of the cases in each of the
classes described in the data sets. The remaining cases are assigned to the test set.
Each case in the test set can be expressed as a A /3 such that a specifies the value
of the class.
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5.1.2 The procedure

The k-nearest neighbours implementation, with k = 1, and FRED, using the

correlation and clustering versions of syntactic generalisation, compute:

(Pred(EKB, j,
n

using the n cases a A /3 in the test set thirty times for each of N equals 10, 20, 30,

40, 50, 60, 70, 80, and 90 per-cent. Intuitively, the computed value represents the

implementations propensity to make correct predictions.

The results

By averaging the results of the thirty runs for each value of N we can obtain a

stable estimate of predictive performance given N. The averaged estimates for

FRED, using the correlation and clustering versions of syntactic generalisation, and

for the k-nearest neighbours implementation, are plotted in Figures 5.7 and 5.8 as

a function of N. Estimates for the COBWEB algorithm reported in [FisS7] are
also included as a further, informal, point of comparison. Statistically significant

differences in the performance of the four algorithms are plotted as bold points. An
informal comparison of the results of Experiment 1 with several other techniques is
provided in the discussion of this chapter.

5.2 Experiment 2

Experiment 2 considers the same situation as experiment 1. Experiment 2 measures
the performance of the best version of syntactic generalisation identified in Experi
ment 1 on five additional data bases: The breast cancer data base, the mushrooms
data base, the LED data base, the votes data base and the modified votes data base.

With the exception of the breast cancer data base, the EKB and test cases are
obtained from each of the data bases using the procedure outlined in experiment 1.
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Percentage Data base Percentage
Error Data in EKB
27.4 Breast cancer N = 70
5.3 Votes N = 70
11.9 Votes (best attribute removed) N = 70
0.0 Mushrooms N < 2.5
0.0 Fisher soya bean N = 10
30.7 LED (10 percent noise) N < 10

Table 5.2: Percentage error using syntactic generalisation with clustering as a func
tion of N for the five data sets examined in experiment 2.

The breast data base was pre-compiled by dividing the values of each of the real

valued features into 5, equal lengthened, non-overlapping categories. No attempt

was made to optimise the categorisation of the real valued features.

Figures 5.9, 5.12, 5.13, 5.10 and 5.11 plot the average of the thirty runs for

each value of N as a function of the percentage error for each of the five data sets

considered in Experiment 2. A brief summary of the results for each of the five data

sets is presented in Table 5.2. An informal comparison of the results of Experiment

2 with other inductive techniques is provided in the discussion at the end of the

chapter.

5.3 Experiment 3

In Chapter 4, I hypothesised that chaining might be more appropriate than syn

tactic generalisation given a probability term Prob”(a/3) such that little is known

about the new experience. Experiment 2 tests that hypothesis by applying syntactic

generalisation and chaining in the following situation:

Given a case c A ,6 and an EKB, what is the propensity to correctly

predict Prob”(o/3) > Prob”(-ia/3) when the only adequate syntactic

generalisation of Prob”(cx 3) is Prob”(a T)?
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I start by modifying the Fisher data base to construct an EKB and a test set in

which the situation of interest can be examined. Using the EKB and the test set, I

demonstrate that in situations in which the only adequate syntactic generalisation

of a probability term Prob”(oj/3) is Prob”(aT), chaining is more appropriate than

syntactic generalisation.

5.3.1 The modified Fisher data base

In the Fisher data base each case /3 A S describes a soybean plant such that:

1. S specifies the values of 9 features that describe the stem of the diseased soya

bean plant, and

2. /3 specifies the values of the 27 remaining features.

S can be written as a conjunct of nine property predicates

iAs2As3As4As5As6As7As8As9

such that each property predicate s specifies the value of one of nine exclusive

stem features: lodging, stem cankers, canker lesions, fruiting bodies, external decay,

mycelium, discolouration, scierotia, and fruit pods. By randomly dividing the nine

stem features into three equal subsets, each case in the data base can be expressed

as /3 A 5’ A 52 A 53 such that

• 51 specifies the values of the three features in the first subset.

• 52 specifies the values of the three features in the second subset.

• 53 specifies the values of the three features in the third subset.

I now use the Fisher data base to construct an incomplete EKB and a set of test
cases such that for each case c A /3 in the test case:
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If Prob”(a/3)EKB fails, then the only possible adequate syntactic generalisa

tion is Frob”(cT).

As in Experiment 1, N percent of the Fisher data base is placed in the EKB and

the remainder in the test set. Every case in the EKB is replaced by three cases, each

specifying the values of three of the nine stem features, i.e., each case /3AS AS2AS3

is replaced by

(/3 A S’), (/3 AS2)(X/Y2), (/3 A53)(X/Y3)

such that Y is a tuple of labels unique to /3 A Si in the EKB2.

Each case in the EKB describes the stem of a diseased soybean plant in terms of

33 features. The only features common to all the cases in the EKB are those whose

values are specified by 3, e.g.,

Example 51 If a case in the EKB specifies the values of the features lodging, stem

cankers, and canker lesions, then it does not specify the values of fruiting bodies,

external decay, mycelium, discolouration, scierotia, or fruit pods.

The procedure

In this section I measure the propensity of syntactic generalisation and chaining to

correctly predict

Prob”(cv/3) > Prob”(—icx3)

such that c specifies the value of one of the nine stem features, and 3 specifies the
values of three of the eight remaining stem features.

Using Syntactic generalisation plus the clustering metric, and Chaining with syn
tactic generalisation plus the clustering metric, FRED computes

Pred(EKB,s,S A 3))))
nx3x6

2The substitution is necessary if the set of new cases is to satisfy the definition of an EKB.
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for all n cases 3 A S’ A 52 A 53 in the test set such that

(53 “ s) A ((5’ A 52 A S3)
,‘
si)

The procedure is repeated ten times for each of N equals 20, 40, and 80 per cent,

randomly selecting 51, S2 and S3 each time.

Example 52 Consider the test case 3 A 5’ A S2 A S3 such that

5’ is R(l, T, lodging) A R(l, absent, cankers) A R(l, tan, lesions),
82 is R(l, T, fruiting) A R(l, dry, decay) A R(l, T, mycelium), and

S is R(l, black, colour) A R(l, T, sclerotia) A R(l, diseased,pods).

From the feature values specified in S’, S2 and S3 we predict the values of the six

other features. For example, one of the 18 possible predictions is

( R(l, T, lodging) A R(l, absent, cankers)
Prob I R(l,present,sclerotza)

AR(l, tan, lesions) A 3

For each Prob”(sS A /3):

1. S3 A/3 only specifies the values of 3 out of a possible 36 features, i.e., it specifies

little of the situation of interest.

2. Prob”(sS3 A /3) and every syntactic generalization except for Prob”(sT)

fails because there are no cases in the EKB that specify the value of the

feature specified in s as well as the values of the features specified in S.

5.3.2 Results

The results of experiment 2 are plotted in Figure 5.14. As seen in the figure chaining

offers a significant improvement over syntactic generalization. Of particular interest

is the observation that as N increases the performance of syntactic generalization

decreases and the performance of chaining increases.
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5.4 Discussion

This chapter tests the hypothesis that the RCA described in Chapters 3 and 4 can

be used to make reasonable predictions. In this section I discuss the results of three

experiments that test that hypothesis. I conclude that:

1. The RCA can be used to make reasonable predictions.

2. The performance of syntactic generalization is a function of the measure of

associativity used to estimate independence when generalizing.

3. Chaining results in more reasonable predictions than syntactic generalization

in certain circumstances.

5.4.1 Experiment 1

Experiment 1 tests the hypothesis that the RCA can use syntactic generalization

to obtain reasonable estimates of conditional probabilities. The hypothesis is tested

by having FRED use the RCA’s estimates to make predictions about two data sets.
The propensity of FRED to make correct predictions using the RCA’s estimates is

compared with the propensity of an implementation of k-nearest neighours to make
correct predictions.

In Figure 5.7 the propensity of FRED and k-nearest neighbours to make incorrect
predictions about the Fisher data base declines as the percentage N of cases in the

EKB increases. Indeed, both techniques perform very well as N approaches 100
percent. The result is consistent with the general observation that the performance

of any reasonable algorithm approaches Bayes’ optimum for a set of data as N
increases (e.g. [FSK93]). This suggests that both techniques are reasonable with

respect to performing the prediction task. When N is low there are statistically
significant differences in the propensity of the four techniques to make incorrect
predictions. I now discuss these differences.
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The first noticeable difference is the difference between FRED’s performance

using the two different versions of syntactic generalization. As seen in Figure 5.7

syntactic generalization plus clustering performs significantly better than syntactic

generalization plus correlation. The difference between the two versions of syntactic

generalization demonstrates that not all estimates of relevance are equally good.

I suggest that the difference between the two versions of syntactic generalization

is a consequence of the fact that correlation measures the relationship between fea

tures while clustering measures how well knowing the value of one feature predicts

the value of another. The results plotted in Figure 5.7 for N equals 10, 20 and 30

suggest that the latter is more appropriate in the context of syntactic generalization

than the former.

The second noticable feature of Figure 5,7 is the difference between syntactic

generalization with clustering and k-nearest neighbours for N equals 10, 20 and

30. I hypothesize that the reason that the syntactic generalization algorithm with

clustering does so well is that in the Fisher data base not all features are equally rele

vant with respect to predicting diagnostic category. Indeed, as noted in Appendix E

knowing the values of very few features is sufficient for predicting the diagnostic

category. The clustering statistic is very good at identifying these features so that

the most relevant adequate syntactic generalization can be identified. In contrast,

k-nearest neighbours treats all the features as equally relevant. As a result k-nearest

neighbours would not be expected to be as good as syntactic generalization with

clustering in the Fisher data base.

The third noticeable difference is the relatively poor performance of the COB
WEB algorithm compared to k-nearest neighbours and syntactic generalization with
clustering. The difference is a result of the fact that COBWEB is an unsupervised
clustering algorithm whose primary function is to find good clusters. There is a
tendency in the machine learning literature to make conclusions about inductive
algorithms without considering their true nature. For example, even though the
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RCA’s estimates can be applied to the general problem of making predictions, it

might be more appropriate to only compare the RCA only with inductive algo

rithms that also estimate conditional probabilities and use these estimates to make

predictions.

With some exceptions, the results presented in Figure 5.8 replicate those in Fig

ure 5.7. As in Figure 5.7, Figure 5.8 shows that the propensity of k-nearest neighours

and FRED to make incorrect predictions decreases as N increases. However, unlike

Figure 5.7, none of the differences between FRED using the clustering version of

syntactic generalization and k-nearest neighbours are statistically significant.

The absence of a statistical difference between k-nearest neighbours and syntac

tic generalization is interesting when the results in Figure 5.7 are considered. One

possible explanation for the difference in results is that the similarity metric used

by k-nearest neighbours and the clustering and correlation statistics make different

assumptions about the independence of feature values. For example, both the clus

tering and correlation statistics assume that feature values are independent. That

is, the value of a feature f is independent of the value of another feature f3. The

k-nearest neighbours similarity metric used in this chapter does not assume that

feature values are independent. An informal analysis of the Fisher data base in

dicates that the feature values necessary for predicting the diagnostic category are

independent, while the values of the features in the Soybean data base tend to be

dependent. As both the clustering and correlatioll statistics assume indendence they

would be expected to only perform well when the assumption is justified. It might

be possible to improve the performance of syntactic generalization on the soybean
data base by using a statistical measures of association that does not assume that

feature values are independent.

Of further interest is the fact that the performance of syntactic generalization
with clustering is not significantly different from the performance of syntactic gen
eralization with correlation. This result suggests that the choice of a particular
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statistical measure of association may not be critical with respect to making rea

sonable predictions. I tested this hypothesis by using random selection to choose

the most reasonable, most specific generalization for N = 100. The propensity to

make incorrect predictions averaged over 400 trials was 15 per-cent, compared to

10 per-cent for clustering, and 14 per-cent for correlation and k-nearest neighbours.

The results of the informal study indicate that if the number of cases in the EKB

is large, any metric for selecting a most reasonable, most specific generalization is

effective.

5.4.2 Experiment 2

Experiment 2 has three main results. First, the experiment validates the hypoth

esis that the RCA’s estimates obtained by syntactic generalization are reasonable.

Second, the experiment demonstrates that FRED, using the clustering version of

syntactic generalization, can make predictions that are reasonable when compared

to existing techniques. Third, the experiment demonstrates that the RCA can ob

tain reasonable estimates in a variety of situations. For example, the results on

the LED data base demonstrate that the estimates are reasonable when the data is

noisy. The results on the breast cancer data base demonstrate that the estimates

are reasonable when real valued features are used to describe experiences.

Tables 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 provide an informal comparsion of FRED’s

performance with existing techniques. The survey of results for the data bases using

existing machine learning techniques is adapted from Holte [Hol93] and Clark and

Niblett [BN92]. As noted in Holte, the comparison is necessarily informal because

some of the results may have been obtained under slightly different experimental

conditions. When the experimental condition is the same as that found in this thesis

the results are presented in italics. All results obtained in this thesis are presented

in bold.
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Percentage Error Algorithm
19.0 JR [Ho193]
2.5 C (pruned) [Ho193]
1.3 1 nearest neighbours
0.0 COBWEB [Fis87]
0.0 Syntactic Generalization with correlation
0.0 Syntactic Generalization with clustering

Table 5.3: A survey of results for the “Fisher 1987 soya bean” data base.

Percentage Error Algorithm
35.0 Bayes [CN87] [CN88]
34.7 Nearest neighbour [WK9OJ
32.0 AQ15 [Sa191]
31.7 JR [Ho193j
28.2 Bayes [WK9O]
28.0 C (pruned,) [Ho1931
27.7 GINJ decision tree [BN92]
27.4 Syntactic Generalization with clustering
27 CN2 (unordered, laplace) {CB91]
26.7 1D3 (pruned) [Bun89]
23.9 Bayes [Bun89]
22.4 EACH with feature adjustment [Sa191]

Table 5.4: A survey of results for the breast cancer data base.

Percentage Error Algorithm
16.0 3-nearest neighbours [BMMZ92]
14.0 1-nearest neighbour [BMMZ92]
13.8 K-nearest neighbour [AK89J
11.8 Marsh [BN92]
8.1 NTgrowth [AK89]
8.0 AQ15 (TRUNC-SG) [BMMZ92]
6.4 CN2 (ordered, entropy) [CB91]
5.3 Syntactic Generalization with clustering
5.2 CN2 (unordered, laplace) [CB91]
q.8 JR [Hol93]

C4 (pruned) [Ho193]

Table 5.5: A survey of results for the votes data base.
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5.4.3 Experiment 3

In Chapter 4 I demonstrated by example that chaining is more appropriate than

syntactic generalization if little is known about the situation of interest. Experiment

2 tests the hypothesis that chaining is more appropriate than syntactic generalization

given:

1. A probability term Prob”(c/3) such that /3 tells us little about the situation

of interest, and

2. An incomplete EKB, i.e., one in which

(a,/9)(/3> aA/3 + A/3)

Experiment 2 tests the hypothesis by comparing the propensity of FRED using

chaining to make correct predictions with the propensity of FRED using syntactic

generalization plus clustering to make correct predictions.

In Figure 5.14 the differences between chaining and syntactic generalization plus

clustering are statistically significant for N equals 20, 40, and 80. These findings

support the hypothesis that chaining is more appropriate than syntactic generaliza

tion in the situation tested.

Of additional interest is the trend seen in Figure 5.8 for the performance of

syntactic generalization to decrease as N increases while the performance of chaining

continues to increase. I hypothesize that the reason that the performance of syntactic
generalization decreases is that predictions are made by generalizing over every case

in the EKB. Given a probability term Prob”(c/3), as N increases the cardinality
T of the reference class increases quickly relative to the cardinality c.



Chapter 6

Conclusions

6.1 Introduction

This thesis addresses the problem of designing computational agents that make pre

dictions about the properties of a well defined class of objects in the context of the

following methodological assumption:

Assumption 1 The only domain knowledge is a set of past experiences such that

each past experience is described by a single ground sentence called a case.

In particular, this thesis discusses the RCA to the following induction problem:

Given an EKB, predict whether or not a property c will be true of a

new experience, given that all we know about the new experience is that

i is true.

In Chapter 1 I argued that in order to solve the induction problem the RCA must

address three issues:

Relevant reference class problem: How do we identify the relevant cases in
the EKB for predicting given 3?

Adequate reference class problem: How do we predict o given 3 when there

are only a few relevant cases in the EKB?

Inadequate reference class problem: How do we predict c given ,6 when there
are no relevant cases in the EKB?

134
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The main contributions of this thesis are:

• A solution to the three problems in the context of Assumption 1.

• A description of a new form of generalisation called syntactic generalisation.

• A description of a novel extension of generalisation called chaining.

• A demonstration that syntactic generalisation and chaining in the context of

the RCA can be used to make reasonable predictions from a set of cases.

6.1.1 Chapter outline

The remainder of this chapter is structured as follows:

1. I summarise the results of the thesis in the context of the literature reviewed

in Chapter 2.

2. I discuss extensions to the RCA in the context of relaxing the explicit assump

tions made in Chapter 1.

6.2 Thesis Summary

In this section I briefly review the results of Chapters 3, 4 and 5 in the context of

the literature reviewed in Chapter 2.

6.2.1 Chapter 3: Describing experiences

Chapter 3 describes a language L for talking about experiences and making predic

tions from an EKB. In this section I discuss the: 1. Expressiveness of L, 2. Efficiency

of retrieving wfss of L from an EKB, and 3. The interpretation of probability terms
in L.
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Expressiveness

The language L shares functional similarities to vector languages often used by

classification algorithms and models of human episodic memory to describe past

experiences. For example, a feature vector can be represented using L as a conjunct

of property predicates such that each property predicate denotes the value of an

exclusive feature.

However, L is significantly more expressive than a vector language. That is, L

allows us to describe experiences and make predictions about situations that can not

be expressed using a vector language. For example, L allows us to describe arbitrary

n-ary relations. That is, it allows us to describe objects as having more than one

value for a feature, or objects that are related to other objects. L also allows us to

describe experiences using disjunction and negation in addition to conjunction. I

argue that L’s added expressiveness makes it a “natural” language for talking about

experiences.

Efficiency

As mentioned in Chapter 3, the retrieval of cases from an EKB is NP-complete. How
ever, the situations under which retrieval is efficient (i.e, computable by a polynomial

time algorithm) are well documented (e.g., Borgida and Etherington [BE891, Craw

ford and Kuipers [CK89], Davis [Dav9OJ, Etherington et. al. [EBBK89] [EKP9O],
Levesque [Lev89]). Of particular interest is the observation that we can expect

the retrieval of cases to be efficient under exactly the same conditions that vivid

reasoning [Lev88] is efficient.

If a probability term does not fail, then the RCA estimates probabilities by

‘looking up’ in an EKB the members of reference class extension. ‘Look up’ forms
the basis for efficient reasoning in several recent computational models (e.g., [Lev86]

[Lev89] [EBBK89] [Fri87] [Dav9O} [Dav87] [SW86]). For example, given a successful
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probability term Prob(c/3)EKB such that c denotes the value of a single exclusive

feature, and /3 and all the cases in the EKB are conjuncts of property predicates,

each denoting the value of a single exclusive feature, retrieval of the reference class

extension from an EKB is sub-linear in the size of the EKB and linear in the number

of property predicates, i.e., retrieval is similar to look-up from a relational data base

as in vivid reasoning [EBBK89].

If generalisation or chaining are necessary, then making a prediction is consid

erably less efficient than simple data base look-up. However, the fact that chaining

and generalisation are inefficient is not unreasonable. An inductive reasoner should

be expected to make quick, accurate predictions about what it knows and slower

predictions about what it doesn’t.

Estimating conditional probabilities

Chapter 3 discusses the problem of estimating a conditional probability such as

Frob(c/3). In agreement with the existing literature, the chapter shows how the

intension and extension of the reference class of cases can be specified in terms of

the wfss and /3. Chapter 3 shows how labels are used to retrieve the cases in the

reference class extension from an EKB.

Chapter 3 also demonstrates that the appropriateness of a particular interpre

tation of a probability term depends upon the ‘form’ of the cases contained in the

EKB. For example, as discussed in the introduction and various texts on empirical

probability theory (e.g., [SM82] [Bar82]), we can estimate a conditional probability
Prob(c/3) by

TaA/3
T

such that TA is the number of cases in which a A /3 is true. Implicit in this

interpretation is the assumption that if we have a case, then we know if a and 3 are

true or false.
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This assumption does not apply in the context of this thesis. There is no re

quirement that an agent collecting experiences has to describe each experience in

terms of the same set of properties. That is, the agent may not know whether or

not a and are true or false. In chapter 3 I argue that if the cases in the EKB

are incomplete, i.e., N(a, 9) 0, and nothing is known about the incomplete cases,

then the most reasonable estimate of Prob(aLB) is

Prob”(aj) = KA
‘oA + K-,crA/3

such that K = as defined in Chapter 3.

6.2.2 Chapter 4: Generalisation and chaining

Chapter 4 addresses the empty reference class problem. The Chapter demonstrates

by means of example, that semantic generalisation is inappropriate. The Chap

ter argues that using generalisation the most appropriate alternative to an empty

reference class is the most specific, most reasonable syntactic generalisation. The

Chapter demonstrates that if we do not know much about the situation of interest,

then we should chain as well as generalise.

Syntactic versus semantic generalisation

At first, the finding that semantic generalisation is inappropriate appears inconsis

tent with Bacchus’ [Bac90j and Goodwin’s [Goo9l] application of semantic gener

alisation to the apparently analogous task of discriminating among contradictory

theories in LP.

The reason that semantic generalisation works in the context of LP is that the

KB designer can carefully exclude erroneous independence assumptions. In contrast,

the independence assumptions used in this thesis must be automatically generated
without the benefit of a KB designer’s intuitions. However, if the KB designer
makes a mistake or can not anticipate all uses of the knowledge, then semantic
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generalisation leads to counter intuitive approximations in the context of LP just

as it does in this thesis. For example,

Example 53 Suppose LP is provided with the following statistical assumptions

Arctic(x) / Arctzc(x)
1. E flzes(x) Abird(x) = E flzes(x)

Abird(x)
Ablack(x)

I Arctic(x) A bird(x)
2. E I flzes(x) = E([flzes(x)Arctzc(x)j)

Ablack(x)

Arctic(x)
Arctic(x)

Ablack(x)
3. E flie.s(x) Abird(x) = E

Abird(x)
Ablack(x)

Vlawyer(x)

Suppose T3 is the LP theory resulting from making the third expectation indepen

dence assumption and using the statistical knowledge

[flies(x)(Arctic(x) A bird(x) A black(x)) V lawyer(x)] = .08

to approximate

[flies(x)Arctic(x) A bird(x) A black(x)]

T3 is preferred to the theories Ti and T2 that result from making the first two
expectation independence assumptions because the statistical knowledge

[flies(x)(Arctic(x) A bird(x) A black(x)) V lawyer(x)j = .08

is the most specific. Thus, using semantic generalisation we derive the counterintu
itive approximation that the frequency of black, arctic birds that fly is low because
the frequency of flying lawyers is low.
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Chaining

The set of all most specific alternatives to the reference class of a failed probability

term Prob”(aI/3) is S(Prob”(ci/3)). Chapter 4 argues that syntactic generalisation
should be used to select a subset of S, the subset obtained by ignoring what we

know. For example, the operator - can be used to identify a subset S(Prob”(a/3))
that excludes any generalisations obtained by disjoining arbitrary properties to /3.
Unfortunately, S (Prob” (c I 3)) may exclude an appropriate alternative if /3 specifies
little about the situation of interest.

Chapter 4 presents chaining as a novel means of making predictions in situations

where syntactic generalisation fails to identify an appropriate alternative to a failed

probability term. In particular, given a probability term Prob”(oi/3), chaining can

be used to extend the set S(Prob”(c/3)) by elaborating what we know about

the situation of interest. As discussed in Chapter 4, Chaining, in certain situa

tions, identifies a subset of those elements in S(Prob”(aI,13)) obtained by semantic

generalisation.

The difficulty with applying chaining lies in knowing what to chain on. Chapter
4 describes a particular heuristic for identifying the most relevant information to
chain on. The heuristic represents a form of inductive bias and like all inductive
biases it must be empirically tested. The results of Chapter 5 suggest that the

heuristic can be used to make reasonable predictions.

6.2.3 Chapter 5: Experimental results

Chapter 5 describes three experiments. The experiments demonstrate that:

1. Syntactic generalisation and chaining can be used in the context of the RCA
to make reasonable prediction.

2. The performance of syntactic generalisation depends upon the estimate of
independence used when choosing a most reasonable, most specific syntactic
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generalisation.

3. Chaining is more appropriate than syntactic generalisation when the only gen

eralisation of a failed probability term Prob”(aI/3), is Prob”(oIT).

The results in Chapter 5 are of general interest to both the non-monotonic reasoning

and the machine learning communities. This is a natural consequence of the obser

vation made in Chapter 2 that both communities are addressing different aspects of

the same problem.

The RCA and non-monotonic reasoning

The results described in Chapter 5 are of general interest to the non-monotonic

reasoning community because they provide empirical validation of some of the non

monotonic and direct inference techniques reviewed in Chapter 2. For example,

the results suggest that extra-logical preference assumptions (e.g., [Eth87], [AM91],

[Bou92J, [Poo9lj, [Jr.88aJ) and irrelevance assumptions (e.g., [Bou9l], [Pea88J, [Bac9O],

[Sub9Oj) are a good basis on which to build techniques for selecting reasonable al

ternative reference classes. Previously, advocates of preference and irrelevance as
sumptions have relied on arguments with little or no empirical support.

Existing instantiations of preference and irrelevance assumptions have been se

mantic. The results of Chapter 5 reinforce the argument in Chapter 4 that preference

and irrelevance assumptions need to be syntactically constrained.

The RCA and machine learning

The results in Chapter 5 are also of general interest to the machine learning commu

nity. The results suggest that techniques that have traditionally been considered the
domain of deductive reasoning are applicable to the inductive problems considered
the domain of machine learning.
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In agreement with the machine learning literature (e.g., [FSK931, the experi
mental results in Chapter 5 suggest that there is no such thing as a ‘best’ inductive

technique. In particular, the differences in performance between syntactic gener

alisation plus correlation and syntactic generalisation with clustering suggest that

the appropriateness of inductive biases depend upon the information in a particular

EKB.

The problem of selecting an appropriate inductive bias for estimating indepen

dence is not unlike the problem of “fine tuning” a machine learning algorithm.

However, I argue that there are two important differences:

1. The fine tuning in a machine learning algorithm is not always obvious. In

the context of the RCA, any fine tuning can be clearly identified with the

measure of association used to estimate the reasonableness of independence

assumptions.

2. Methods for fine tuning machine learning algorithms are often ad-hoc, fre

quently involving the programmer’s intuitions. In contrast the statistical lit

erature contains readily available and often well considered knowledge as the

appropriateness of a particular metric of associativity.

6.3 Implications and Future Work

There are numerous directions - from theoretical extensions to practical applications

of the RCA - to explore in the future. The RCA is a framework from which future

research is to be hung. In this section I address several possible extensions of the

RCA in terms of the four explicit assumptions stated in Chapter 1.

6.3.1 Assumption 1

Assumption 1 The only source of domain knowledge are past expe
riences such that each past experience is described by a single ground
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sentence called a case.

If we relax Assumption 1, then large amounts of additional domain knowledge can be

used to make predictions. For example, Appendix A demonstrates how knowledge

about exclusive features can be added to the EKB. This knowledge is used in Chapter

5 to extend the number of cases that can be considered part of a reference class

extension.

Recent research argues that the ability to incorporate domain knowledge in addi

tion to past experiences is particularly important in machine learning (e.g., [Des92];

[Mic93j; [SBN93]; [Paz93]). Given the non-monotonic reasoning heritage of the gen

eralisation techniques used by the RCA, it is easy to imagine how the consideration

of deductive domain knowledge might take place. For example, it is is easy to see

how statistical assertions such as those found in Bacchus’ [Bac9O] logic LP can be

incorporated. The domain knowledge encoded by the statistical assertion

[Fly(X)Bird(X)] — p

might be represented by adding the two tuples

( n, R(l, flies, moves) A R(l, bird, species) )
( m, —R(l, flies, moves) A R(l, bird, species) )

to an EKB of past experiences such that m = p. The actual values n and m

might indicate a degree of belief in the statistical assertion such that as n and m

increase so does our belief that the statistical knowledge is reliable (this is a simple

consequence of the concept of statistical adequacy discussed in Chapter 1).

In the remainder of this section I briefly discuss how some of this domain knowl

edge might be used by the RCA to extend generalisation and chaining.

Extending generalisation and chaining

In chapter 4, I argue that syntactic generalisation using >- is appropriate because

it does not violate Assumption 1. If we relax Assumption 1, then we can consider
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potentially more powerful alternatives to . For example, the wfs “red in colour”
might be generalised by replacing R(l, red, colour) with

R(l, red, colour) V R(l, orange, colour) V R(ij, yellow, colour)

if red, yellow and orange were judged to be ‘similar’ colours with respect to making
a particular prediction. Similarly, we might generalise the wfs “lives in Manhattan”
to “lives in Manhattan or the Big Apple” if we knew that ‘Manhattan’ and the ‘Big
Apple’ were the same place.

We might also extend syntactic generalisation by considering techniques that
generalise c as well as /3 in a failed probability term Prob”(c/3). For example,

Example 54 Suppose the probability term

Prob”(fliesdead A bird)

fails. In this thesis syntactic generalisation only considers generalisations of dead
and bird. Suppose we had the additional domain knowledge that dead things do
not move and flying is a form of moving. Using this knowledge we might generalise
flies to moves and consider whether or not dead birds move.

Chaining can be extended if we have access to universal facts of the form “all
birds have feathers” or “Manhattan is the same thing as the Big Apple”. Knowledge
of this sort can be used to decide what to chain on.

Example 55 Suppose the probability term

Prob”(muggedlives in Manhattan)

fails. If we know that

R(x, Manhattan, Lives) —* R(x, New York, Lives)

then we can chain on “Lives in New York” to get

Prob”(rnuggedlives in NewYork)
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6.3.2 Assumption 2

Assumption 2: The propensity that a can be used to describe a new

experience, whenever 3 is known to be true of the new experience, is the

same for a new experience as it is among all the past experiences in the

reference class extension.

If we relax Assumption 2 and include domain knowledge about the propensity of
observing a property a in a situation of interest, then we can use this knowledge to

improve the efficiency and performance of the RCA.

Improving efficiency

If we know in advance the propensity to observe certain properties, then this knowl

edge can be used to improve the efficiency of the RCA by structuring the EKB.

For example, if cases are simply appended the end of an EKB then algorithms for

looking-up cases will spend a significant amount of time linearly searching through

the EKB. If, on the other hand, cases are inserted intelligently so that cases that

are used frequently are easier to look up, then the look-up algorithms will be more
efficient. For example, we might store cases in a partial lattice ordered by logical
implication. This would allow a look-up algorithm to use indexing techniques to find
the relevant cases without having to recalculate measures of irrelevance for every
new experience.

If we know in advance what it is that are going to predict we can improve
the efficiency of the RCA by coalescing the cases in the EKB whose descriptions
are the same with respect to the prediction of interest. For example, in the soya
bean data set cases that are indistinguishable except for the value of the feature

‘Date of observation’, and we know that we will never want to predict the ‘Date of
observation’ then we might coalesce those cases because ‘Date of observation’ is not
predictive of any other feature value.
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However, there is a tradeoff between the time taken to structure an EKB and

the time taken to make a prediction. If our EKB must be restructured each time

we obtain a new experience, then the advantages of structuring the EKB may be

outweighed by the time required.

Improving predictive performance

A priori knowledge about the propensity to observe certain properties can also be

used by the RCA to choose a more reasonable generalisations. For example, if

we are provided with knowledge about independence, then this knowledge can be

directly applied instead of using inductive biases to estimate the reasonableness of

independence assumptions. We might also use knowledge about independence to

choose the most appropriate estimator of independence.

6.3.3 Assumption 3

Assumption 3 Any non-empty reference class extension is adequate,

and any empty reference class extension is inadequate, with respect to

estimating Prob(c3).

Assumption 3 contradicts the assumption of statistical adequacy adopted in exist

ing work that addresses the reference class problem (e.g., [Jr.88a}, [Bac9O], [Goo9l]).

However, the most important property of a computational model for making pre

dictions is its ability to make accurate predictions. I argue that the RCA’s adoption

of the criteria of psychological adequacy is supported by both the empirical results
of Chapter 5 and the observations in Chapter 2 that humans may also use small

reference classes.

An open problem is whether or not Assumption 3 will continue to applicable if
the EKB gets very large or if the cases are very noisy. Current research is currently

addressing this issue.
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6.3.4 Assumption 4

Assumption 4 A reasonable estimate of Prob(a,3) can be obtained

by generalising any properties of the new experience that are episte

mologically irrelevant with respect to estimating the probability of a.

Moreover, probabilistic independence is a reasonable measure of episte

mological relevance and can be estimated by applying statistics to the

available past experiences.

The reasonableness of Assumption 4 is supported by the examples in Chapter 4 as

well as the experimental results in Chapter 5. However, this thesis does not begin to

do justice to the problem of identifying a metric for determining which properties of a

new experience are epistemologically relevant with respect to estimating a particular

conditional probability.

The results of the three experiments in Chapter 5 were obtained using very simple

measures of irrelevance. What is intriguing about the results in Chapter 5 is that

the measures worked as well as they did. There is reason to believe that the results

can be improved upon by adopting more sophisticated measures of irrelevance. For

example, I observed in Chapter 5 that the measures of irrelevance used in this thesis

assume that there are no inter-correlations between the properties that are being

generalised with respect to the property being predicted. An important direction for

future research lies in the problem of identifying which inductive biases should be

used in conjunction with the RCA to measure the reasonableness of independence

assumptions.

6.4 Discussion

The strength of the RCA lies in its simplicity and in its:

1. Ability of the RCA to use syntactic generalisation and chaining to estimate

probabilities from readily available knowledge.
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2. Capability to make reasonable estimates of conditional probabilities.

Induction algorithms can be classified on the basis of how much information be

yond the cases is supplied as input [Win75]. The RCA as described in this thesis

is purely inductive. No domain knowledge other than cases is used to make predic

tions. Most classification algorithms fall somewhere between the extreme of pure

induction and learning by being told [Sa190] where the classification algorithm is

given a complete description of the target concepts. For example, the classification

algorithms EACH [Sa190] and IBL [AKA91] are provided cases augmented with in

formation about which classes the cases will be used to predict instances of. Other

algorithms, (e.g., [Des92] [DeJ81] [Mit83]) require considerable amounts of domain

specific knowledge in order to make predictions. As a result the algorithms are of

necessity domain dependent. Because the algorithms are domain dependent we can

not be sure that they solve the problem of making predictions from experiences in

general, or the problem of making predictions given a particular representation and

a particular domain.

The RCA is a domain independent approach for making predictions about do

mains. The RCA does not convert cases into another representational form. Like

pattern matching algorithms “it does not need a domain theory to explain which

conversions are legal, or even what the representations mean” [Sa190, page 14]. A

consequence of the RCA’s domain independence is that the syntactic generalisa
tion and chaining techniques that it uses are generally applicable to the problem of

making predictions from experiences.



Appendix A

The language L

This appendix describes the formal properties, syntactic and semantic, of L in more

detail. I start by describing the syntax of L. I then briefly describe the semantics

of L, concentrating on those aspects which are unique to the language.

Ad Language Syntax

In this section I define the syntax of a language for talking about experiences.

Alphabet { 0, s, 1, R, E, I, (, ), =, V, A, -‘, L, }.

Term ::= Number L-term,

Unary Function symbols ::= s 1.

Number ::= 0 s(Number).

Constant ::= C(Number)

L-term ::= l(Number)

P-term :: = Prob(Sentence Sentence)EKB such that a and /3 are sentences

ofL.

Predicate ::= Equality predicate Property predicate.

Equality Predicate ::= (Term = Term)

Exclusive Predicate ::= E(L — term).

149
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Property Predicate ::= R(L-term constant, L-term constant, L-term

constant,).

Sentence ::= Predicate I (Sentence V Sentence) (Sentence A Sentence)
—i (Sentence)

With the addition of the symbols { 0, 1, 2, ..., 9, ‘red’, ‘yellow’, ‘colour’, ‘large’,

‘size’,
... } to the alphabet of L I sometimes

1. Write lower case Greek letters such as ci and 3 to represent individual sen

tences.

2.

3. Use the usual definitional extensions such as ‘T’ for ‘—‘ I’.

4. Call the set of terms of the form s(Number) numbers and I will write 1 for s(0),
2 for s(s(0)), ... , where ‘s’ stands for the ‘successor’ function.

5. Call the set of L-terms of the form l(Number) labels and I will sometimes write

1Number for l(Number).

I include the usual axioms of first order predicate calculus including those for
quantification and equality ‘. In addition to the usual FOPL axioms I add the
following:

Distinct labels The following axioms say that the function 1 maps distinct num
bers to distinct values in the range of the functions. These axioms are as
follows:

Axiom 1.1 (Vx)(Vx)(—i(x = x) —* —‘(l(x) =

Axiom 1.2 (Vx)—i(s(x) = 0)

1See Johnstone [Joh87, pages 23-24] for a complete list of the FOPL axioms.
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Axiom 1.3 (Vx)(Vx)(—(x = x) —* = s(x)))

From axioms 1.2 and 1.3 any two distinct numbers can be shown to be indeed
distinct. With the addition of axioms 1.1 the individual labels can be proven to be
distinct.

Example 56 If I have the labels 1(34) 1(62), then 1(34) and 1(62) are distinct, as
34 62.

Exclusive labels are defined as follows:

Exclusive labels: If a label 1(i) is exclusive (written E(l(i))), then

Axiom 2.1

(Vx) (Vy) (Vy’) (Vz)

R(l(x), 1(y), 1(z)) A E(l(z)) A R(l(x), l(y’), 1(z)) —+ —‘(y = y’)

Axiom 2.1 allows useful theorems about the properties of exclusive labels to be
derived. For example, The counter positive of axiom 2.1,

(Vx) (Vy) (Vy’) (Vz)

(R(l(x), 1(y), 1(z)) A E(l(z)) A 9(y = y’))

-* -‘(R(l(x),l(y’),l(z))))

can be applied as follows:

Example 57 Let ‘colour’ be exclusive. Let

R(l(34), red, colour) V R(l(34), green, colour)

be a sentence in L. By axioms 2.1, 1.1, 1.2, 1.3 and the FOPL axioms for disjunction

(R(l(34), yellow, colour))

is also true, assuming that ‘red’, ‘green’ and ‘yellow’ correspond to distinct values
in the object language, say l(1O), 1(11), and 1(12).
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A.2 Language Semantics

This section explores the intended interpretation of formulae written in the language

L. Intuitively, the semantics provides a model for the formulae of L that specifies

all the ways that the world could be given the information contained in a particular

formula. I now define those aspects of the semantics of L of interest by defining an

interpretation structure M2.

A.2.1 An interpretation

Definition 30 An interpretation M with respect to a language L is:

M = (U,y,t9)

The components of M are:

1. U : The domain. There are two distinct types in the domain U:

• S = {s,s2,. . .}, A countable set of objects (e.g. David’s bicycle).

• N = {O, 1,2,. . .}, The set of natural numbers.

The domain is the union of these two types:

U=SuN

?. 9: A mapping defined on the variables of L such that if x is an individual

variable, then 9(x) is an individual in U.

3. cp: A mapping defined on the numbers, function symbols and predicate symbols

of L such that:

(a) Each individual number symbol in L is assigned a specific number in N.

(b) Each individual function symbol 1 is assigned a 1 to 1 function from N

toS.
2See Johnstone [Joh87] for a complete review of the semantics of FOPL.
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(c) The function symbol Prob is assigned a function from F x F x l to [0, 1],
such that F is the set of all wfss in L, and Q is the set of all possible

EKBs.

(d,) The 3-place predicate symbol R in L is assigned a relation in S3.

(e) The 1-place predicate symbol E in L is assigned a relation in S.

(f) The 2-place predicate symbol = in L is assigned a binary relation in U.

s, 1 and Prob are the oniy function symbols in the language. I interpret the

function s as follows:

s: N-+N

such that s(x) = x + 1. s is the simple successor function used in defining the

natural numbers. This is consistent with axioms 1.2 and 1.3.

The predicate symbols E, ‘=‘, and R are the only predicate symbols.

1. R is assigned a 3-ary relation in

SxSxS

2. The unary-predicate symbol ‘E’ is a unary relationship over the S. E(11) is

true in an interpretation il/I if and only if Vlk and i i, { (l,, l, li), (lk, ki l)
}R.

3. The binary predicate symbol ‘=‘ is a binary relationship over the domain U.
In particular 1(i) = 1(j) if i = j.

The axioms of L can be used to prove that 1 is a 1—1 mapping which is agreement

with the semantics of L. The axioms of L ensure that distinct numbers are indeed
distinct. In the semantics each distinct number indexes a distinct object, using the
function 1.
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A.2.2 A valuation for L

The standard FOPL truth valuation can now be defined over the formulae of a
language L using the interpretation M = (U, y, t9). M provides a truth value
for the atomic sentences of the language and the rest of the sentences are assigned
a truth value inductively. As the usual first order theory valuation of variables,
functions, relations and logical symbols holds for L I will not reiterate it here. The
interested reader is referred to Bell and Machover [BM77} for a detailed discussion
of the valuation of a FOPL language.
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Estimating independence by correlation

This appendix contains a detailed description of the correlation statistic. The statis

tic is used to order the most specific alternatives to the reference class of a failed

probability term by estimating the reasonableness of the independence assumption

I(a, 3, -y) made in Chapter 4 in order to syntactically generalise a reference class.

The appendix starts by describing how the correlation between pairs of features is

calculated. The correlation statistic is used to justify the independence assumptions

made when generalising a reference class. The appendix concludes with a a detailed

example showing how correlations are used to choose a particular generalisation

of a failed probability term Prob”(a/3) from the set of most specific alternatives

S(Prob”(a[L3)).

B.1 The correlation coefficient

Following Edwards[Edw76], the correlation coefficient r may be defined as the co

variance of two variables, divided by the product of the standard deviations, Sx and

Sy, of the variables 1

cixyr =
SxxSy

‘There are three important special cases of the correlation coefficient: 1. the phi coefficient, 2.
the point biserial coefficient, and 3. the rank order correlation coefficient. The formulae for each of
these special cases are given in Edwards [Edw76, sections 7.2-7.5] and are equivalent to the formulae
provided above. In the case in which both variables are dichotomous, the phi coefficient provides a
more efficient calculation of correlation. The point biserial coefficient is applied when one variable
is dichotomous and the other is continuous. Finally, the rank order correlation coefficient can be
used when both the X and Y variables consist of a set of ranks.
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1. R(l, black, colour)
2. R(l, pink, colour)
3. R(l, blue, colour)
4. R(l, green, colour)
5. R(l, yellow, colour)
6. R(l,red,colour)
7. R(l,white,colour)
8. R(l, orange, colour)

R(l,flies,moves) I—R(li,flies,moves)

Variable Inter-correlations
Colour — .07
Size .16 —.5
Moves .42 .01 .15

Species Colour Size

Table B.10: Inter-correlations of the features: Species, Colour, Size, and moves in
Figure B.1.

= (B.2)

2See An Introduction to Linear Regression and Correlation by A. Edwards for a detailed de
scription of the derivation. X and Y are the averages of the X and Y variables and n is the number
of instances.

4 2
8 0
100 1
3 0
0 0
6 0
50 0
2 0

Table B.9: Frequency counts calculated from Figure B.1 for the feature moves
and the feature colour with respect to the reference class of the probability term
Frob(R(l,flies,rnoves) I R(l, yellow, colour) A R(l, bird, species)).

From this equation we can derive the the following general equation for the correla
tion coefficient2:

-X)(Y - )/(n -1)
rxy = (B.1)

/(X_X)2 /Z(y_)2

V n—i V
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{ (4, R(l(1), black, colour) A R(l(1), flies, moves)
AR(l(1), bird, species) A R(l(1), large, size)),

(2, R(l(2), black, colour) A R(l(2), walks, moves)
AR(l(2), bird, speci es)R(l(2), small, size)),

(1, R(l(3),pink, colour) A R(l(3),bird,species)
AR(l(3), small, size)),

(8, R(l(4), pink, colour) A R(l(4), bird, species)
AR(l(4), flies, moves)),

(100, R(l(5), blue, colour) A R(l(5), bird, species)
AR(l(5), flies, moves)),

(1, R(l(6), blue, colour) A R(l(6), bird, species)
A — R(l(6), flies, moves))

(3, R(l(7), green, colour) A R(l(7), bird, species)
AR(l(7), flies, moves)),

(1, R(l(8), purple, colour) A R(l(8), bird, species)
AR(l(8), flies, moves)),

(6, R(l(9), red, colour) A R(l(9), bird, species)
AR(l(9), flies, moves)),

(50, R(l(10), white, colour) A R(l(10), bird, species)
AR(l(10), flies, moves)),

(2, R(l(11), orange, colour) A R(l(11), bird, species)
AR(l(11),flies,moves)) }

Figure B.15: An EKB containing cases that describe domain states in terms of
values of the features colour, moves, species and size.
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General

R(l, large, size) , ye ow, co our R(l, bird, species)

R(l, 1 ge, size)A R(l, yellow, colour)A
R(l, yel.L9’l colour) R(l, bird, species)

Specific R(l,7arge,size’) A R(l,yellow,colour)
AR(l, bird, species)

Figure B.16: The lattice of generalisations of the reference class of Prob”( R(l,
flies, moves) R(l, yellow, colour) A R(l, bird, species) A R(l, large, size))ER-B
obtained by syntactic gerieralisation.

B.2 An example

The lattice of generalizations of the failed probability term

( R(l, yellow, colour) A R(l, bird, species)Prob i R(l,flzes,moves)
AR(l, large, size)

EKB

generated by applying S(Prob(aI/3) is presented in Figure B.16; With respect to
the EKB in Figure B.15 there are three most-specific generalisations with adequate
statistics. The intentions of these candidates are circled in Figure B.16.

Using the correlations in Table B.1O we select the single adequate syntactic
generalisation

Prob”(R(l, flies, moves) R(l, bird, species) A R(l, large, size))

because it is obtained by ignoring the value of the least relevant feature colour.
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Estimating independence by clustering

This appendix describes the clustering statistic used in Experiments 1 and 2 in

Chapter 5. The clustering statistic provides an estimate of the reasonableness of

the independence assumption I(a, , 3) by measuring how well /3 predicts a. In

the context of Chapter 5 a and /3 are assumed to be single property predicates,

each specifying the value of a mutually exclusive feature. The clustering statistic

measures how predictive the values of the feature specified by 3 are of the values of

the feature specified by a. Intuitively, the higher this measure the less likely a is to

be independent of /3.

C.1 Optimal predictability

Suppose we wish to know how well the values of a feature Y called the source predict

the values of a feature called the target X with respect to an EKB. Suppose X can

have in different values x1,. . . , Xm in the EKB and suppose that Y can have n

different values Yi,. . . ,

I argue that the ability to predict the values of X from Y depend upon the

number in and n of values that X and Y have. I define the optimal error for
predicting X from Y as follows:

Definition 31 The optimal error for predicting the value of a feature X with in
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values from a feature Y with n values is:

0 if n>=m

if n=1

if (n>1)A(n<m)

Example 58 Suppose we wish to measure the predictability of the values of colour
from the values of size. In our EKB size can have 2 different values (small and large)
and colour can have 4 different values (red, green, yellow and blue). At the very
best, given a value for size we can only predict that the probability of colour having
a particular value is 0.5. If n >= m, then at best there can be at least one value of
Y for every value of X. If this were the case, then knowing the value of Y would
tell us the value of X. If n = 1, then at best knowing the value of Y allows us to
guess which value X has.

C.2 Actual predictability

I define the actual error associated with predicting the values of X from Y as follows:

Definition 32 let X have the possible values x1,. . . , Xm in the EKB and let Y have
the possible values yi,. . . y,. The actual error for predicting a value of X given a
value of Y is:

[Prob”(y3 x) x (LProb” (! x) — Prob”(y3 x)]
j1 x m

such that

Prob”(yx) =

C.3 Estimating independence

The estimate of independence between two features X and Y is a function of the
difference between the actual and the optimal. In Chapter 5 I use:

1 — optimal — actual)
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Expanding h

D.1 Expansion I

In this section I consider the problem of excluding tuples from h that represent

observations of domain states that describe fewer objects than the number of objects

of interest.

Suppose the EKB contains the case R(l(1), red, colour) and that we wish to

count the number of observations described in the EKB of two objects in the same

domain state that are both red, i.e., we wish to know the cardinality of

h(EKB, R(l, red, colour) A R(l, red, colour))

The set h(EKB, R(l, red, colour) A R(l, red, colour) contains the set of all 2-tuples

that can be substituted for l and l. Among these 2-tuples is the 2-tuple (li, l) which

is counter intuitive as the case R(li,red,colour) only describes an observation of a

single object that is red, not two.

The definition of h can be extended to avoid counting the tuple (li, l) by re

quiring that all labels in the tuples be distinct, i.e., by requiring that h(EKB, o) is

defined as

l : (Vl, lj)l lj and EKB H cx(l1/l, . . . ,lTh/lj}

D.2 Expansion II

In this section I consider the problem of excluding tuples from h that represent

observations of domain states that describe more objects than the number of objects
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of interest.

Suppose the EKB contains the case

R(Othello,11,parent) A R(Tulving, li,parent) A R(Dick,l1,parent)

describing a parent with three children, Tulving, Othello and Dick. Suppose we
wish to count the number of observations described in the EKB of a parent with
two children, i.e., we wish to know the cardinality of

h(EKB, R(l, lk,parent) A R(l, lk,parent))

Using the extended definition of h from the previous section, the set contains the
subset

{(Ot hello, l, Tulving), (Othello, l, Dick), (Tulving, l, Dick), }

which is counter intuitive because the case

R(Othello, li,parent) A R(Tulving,11,parent) A R(Dick, li,parent)

describes a parent that has three children and not two.

h can be extended to avoid counting the tuples

{(Ot hello, 11, Tulving) , (Othello, 11, Dick), (Tulving, ii, Dick), }

by redefining h as follows:

EKB H a(li/l,. . . , l/l) arid

1’ 1’
(if(a(li/l,.. . , l/l) H R(i, v, f)) and)

. , l/l) R(i, v’, f)) then
(EKB 71 R(i, v’, f)))
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D.3 Expansion III

In this section I consider the problem of excluding tuples from h that are syntactic

variants.

Suppose the EKB contains the case

R(11,red, colour) A R(12, large, size)

and that we wish to count the number of observations described in the EKB of

a large object and a red object occurring in the same domain state. Using the

extended definitions of h from the previous two sections, the set

h(EKB, R(l, red, colour) A R(l, large, size))

contains the subset

{(l, 12), (12, l)}

which is counter intuitive in that the case

R(11,red, colour) A R(12, large, size)

should only count as one observation of a red object and a large object in the same

domain state.

In this case we can avoid counting the same observation more than once by

considering the maximal sets of all subsets S of h(EKB, o) such that

(VX S)(,Y S) such that (X Y) and (l E X) and (l E Y)

By picking a single maximal set we exclude any tuples that are the result of counting

the same observation described in an EKB more than once.
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Machine Learning Data Sets

This appendix contains a brief description of the seven data sets used by Experiments
1, 2 and 3 in Chapter 5. A more complete description of these, and other machine
learning data sets, can be obtained from the Machine learning data base repository
at the University of California at Irvine.

Soybean The Soybean data base is divided into two parts: 1. The Soybean training
data base containing 250 cases, and 2. The Soybean testing data base containing
296 cases. In each data base the cases are divided into fourteen classes such
that each data base contains roughly the same number of cases in each class.
Each case describes an observation of a single diseased soybean plant in terms
of a set of 36 nominal valued exclusive features. Each case describes a single
diseased soybean plant in terms of 36 features: Diagnostic category, data
of observation, characteristics of the plant stand, local precipitation, local
temperature, presence of hail, crop history, crop damage, severity of damage,
seed treatment, per-cent germination, plant growth characteristics Each
feature is exclusive and the possible values of each feature are discrete.

Example 59 The case

R(l, low, precipitation) A R(l, normal , temperature) A
A R(l, rotten, roots) A R(l, charcoal — rot, disease)

describes a diseased soybean plant with charcoal rot disease that was exposed to
low precipitation, normal temperature
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Fisher soybean The Fisher data base is a subset of the Soybean data base that

contains only 47 contains divided into four diagnostic categories. Each case in

the Fisher data base describes a soybean plant with: Diaporthe stem canker,

Charcoal rot, Rhizoctonia rot, or Phytophtora rot. An informal analysis of the

data base demonstrates that the knowing values of some subset of the nine

features:

lodging, stem cankers, canker lesions, fruiting bodies, external decay,

mycelium, internal discolouration, sclerotia and fruit pods,

is sufficient for correctly predicting which of the four diagnostic categories the

plant belongs to.

Example 60 If we know that a soybean plant has stem cankers above the second

node, then the soybean plant has diaporthe stem canker, i.e.

Prob(R(l, T, Diaporthe) R(11,second, stem cankers)) = 1

Breast The “Breast” data base contains 286 cases describing two hundred instances

of women who have had breast cancer. The cases are divided into two classes:

85 instances of women who have had a re-occurrence of breast cancer and 201

instances of women who have not had a re-occurrence of breast cancer after an
operation. There are nine attributes describing the original cancer nodes with

multi-valued discrete and real values. The data set comes form the University

Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. The prediction
task is to predict whether or not a women will have a re-occurrence of breast
cancer given a description of the cancer.

Votes The “Votes” data base contains 435 examples of the key votes of 267
democrats and 168 republicans during the 1984 U.S. congress. The congress
men voted on such issues as immigration and education spending. The votes
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have been simplified to yea, nay or abstained. The prediction task is to predict

whether or not a voter is a democrat or a republican on the basis of his or her

voting history.

Modified Votes The “Votes one” data set is derived from the “Votes” data set by

deleting the most significant attribute physician fee freeze [BN92].

Mushrooms The “Mushrooms” data set consists of 8124 data. Each data records

whether mushrooms from the Agaricus and Lepiota families are poisonous or

edible. Each mushroom is described in terms of twenty two discrete attributes.

The prediction task is to predict whether or not a mushroom is edible or in

edible given values for each of the twenty two attributes.

LED The 7-digit “LED” data set is Breiman’s [BFOS84] manufactured test data on

the digit recognition problem. Each datum describes a single faulty LED dis

play representing a digit from 0 to 9 in terms of seven binary valued attributes.

The LED display is made faulty by adding 10 per-cent noise independently

to each element. The prediction task is predict the digit in the LED display

given values for each of the seven binary attributes. The prediction task has

a theoretical minimum error of 27.3 percent [BN92].
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