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Abstract 

This thesis examines the problem of computationally recovering or 

determining the slant of a surface from an image of that surface. 

Images are restricted to those of planar surfaces produced by 

orthographic projection. This thesis is concerned only with those cues 

obtainable from the image texture. These cues arise primarily due to 

the foreshortening property of orthographic projection. 

Texture measures have typically been partitioned into three 

classes: statistical approaches, micro-structural approaches, and macro-

structural approaches. In this thesis, measures from each of these 

classes are used to develop algorithms capable of detecting surface 

orientation. It is concluded that these three classes are not distinct 

and, indeed, are arti f i c i a l l y rendered by the prevailing definition of 

texture. A new definition involving nested structures is suggested. 
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1. INTRODUCTION 

"There is more to seeing a pikestaff than is commonly believed ..." 
(Boden, *77) 

This thesis is about deducing certain properties of a scene from an 

image of that scene. These properties are the orientations of the 

surfaces making up the scene and the deduction of these properties is 

made on the basis of knowledge about the texture present in the image. 

1.0 PHYSICAL ASSUMPTIONS 

In order to study how perceived texture can enable a re­

construction of the scene, the properties and the events to be analysed 

must be isolated. One way of accomplishing this isolation is to 

simplify the world. The following assumptions and restrictions, then, 

outline our simplification. They will be mentioned again in the thesis 

as they become appropriate. 

1) All surfaces are planar. 

2) All images are produced by an orthographic projection. 

3) The scenes contain only continuous surfaces. 

4) Some preprocessing of the image will always be assumed. The 
nature of this preprocessing will be mentioned when required. 

5) "Nearby" regions of the image that have "similar" textures are 
really the same region. The term, "similar", will be defined 
when i t is needed. The term, "nearby", is not defined nor is 
it used by us. This assumption is made largely to allow the 
following assumption. 

6) The images are segmentable into regions, each of which 
corresponds to a unique surface of the scene. In most cases, 
we will assume that this segmentation has taken place. 

7) Assumptions will be made throughout the thesis as to the nature 
of the actual texture. 

So assumptions 1) - 3) simplify the physical "reality", 4) - 6) 
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represent work already done which we assume and may call upon, and 7) is 

our major heuristic, for, without 7), any given image could have been 

produced from an infinite number of scenes. 

1.1 DEFINITIONS 

This thesis, then, confronts the task of recovering three-

dimensional scene information (namely, surface slant) using texture as a 

cue from a two-dimensional image produced by an orthographic projection 

of the scene. To proceed, the terms "texture" and "surface slant" 

require clarification. 

Texture 

Texture certainly deserves to be a nebulous concept (there is a pun 

in there somewhere) and no definition to date has made it very clear. 

Texture in an image normally consists of intensity variations in the 

image over space. These variations may be produced by two distinct 

means: 

1) Variations in albedo. 

2) Variations in the surface normal. 

This thesis assumes the former. This assumption is made as a further 

simplification of the world, for i t is now the case that perceived  

texture does not depend on the position of the scene's light source(s). 

The variations in albedo and the surface markings are referred to 
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as the actual or scene texture and the variations in the image's 

intensity as the apparent or image texture. This will be discussed 

further in Chapters 2 and 4. For now, i t is sufficient to think of 

texture as being a large number of similar (visible) patterns or 

elements, each of which is small relative to the textured surface, 

arranged over the surface according to some set of placement rules. 

Note that the apparent texture then depends on the scale of the 

image since different things will become the basic elements as the scale 

varies. For example, wheat fields viewed aerially from one kilometer 

have a definite apparent texture quite distinct from the same wheat 

fields viewed from six centimeters. Image resolution is often 

associated with scale, resolution decreasing with the image-to-scene 

ratio. Some Artificial Intelligence paradigms (Kelly, 1971) (Tanimoto 

and Pavlidis, 1975) vary resolution with the level of attention . Hence 

the apparent texture also depends on the level of attention. The 

determination of what constitutes the basic elements for any given 

textured image is quite difficult and we will largely assume that this 

has been done for us i f we need i t (assumption 4). It is felt that this 

determination problem is one created by an insufficient definition of 

texture. This opinion is discussed in Chapter 4.2. 

Surface Slant 

Fortunately, the definition of "surface slant" is somewhat more 

concrete. We will generally talk about the gradient vector (Huffman, 

1971) (Mackworth, 1973) of a surface or minor variations of i t . The 

gradient, (p,q), of a line in a scene is a vector "whose direction is in 
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the direction of the picture line and whose length is the tangent of the 

angle the scene line makes with the picture plane." (Mackworth, 1976). 

See Figure fl.1.1, from (Mackworth, 1976). We will say that the 

gradient of a surface is the gradient of the set of parallel lines 

having the steepest inclination to the picture plane. We will refer to 

the direction of this gradient vector as o and to the arctan of its  

length as 0 . The cartesian co-ordinates, (p,q), and these angles are 

related by the following equations: 

p = tanjzJ cosa 

q = tanjzJ sincr 

In most cases, we will find i t more convenient to determine a and 

than to compute the cartesian co-ordinates of the gradient directly as 

Kender (see Chapter 2.2) does. We will also call a the direction of  

slant and the amount of slant . 

1.2 MOTIVATION 

It is not within the scope of this thesis to give motivations for 

recovering 3-D scenes from 2-D images, so such motivations will be 

assumed. But why study texture and surface slant? We will use an 

application to illustrate our motives. 

The origami world is a model of the visual world where surfaces, 

which may stand alone, (Kanade, 1978) are the basic elements rather than 

polyhedra. That is, the origami world includes as a subset the solid-

objects studied by (Huffman, 1971), (Clowes, 1971), (Waltz, 1972) and 

(Mackworth, 1973) but allows other objects as well. The origami world is 



(a) A picture of an edge. 

.. > 
picture and gradient of a line 

Figure f1.1.1 
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defined on line-drawings and an object i s "understood" by assigning one 

of four l a b e l s , + (convex edge), - (concave edge) and, <-, and -> 

(occluding edge) to each l i n e i n the image of the object. 

Kanade's system yi e l d s the 3 (up to rotation) l a b e l l i n g s shown i n 

Figure f l . 2 . 1 for the l i n e drawing shown. We can think of a) as a cube­

l i k e configuration, b) as a concave corner and c) as a "roof" placed on 

a plane. 

Kanade uses edge p r o f i l e s to determine which l a b e l l i n g i s "correct" 

for a given image, but l e t us see how texture can help us here. Let us 

f i r s t note that the gradients of the surfaces for Figure f l . 2 . 1 a), b) 

and c) are related as shown i n Figure f l . 2 . 2 a), b) and c) respectively. 

Suppose that a l l the surfaces have been textured and on t h i s basis we 

have determined the gradient vector of each surface ( i t i s the purpose 

of t h i s thesis to demonstrate that t h i s can be done). Then our findings 

w i l l e a s i l y distinguish between Figures f l . 2 . 1 a) and c ) , for example. 

Note that we w i l l not be able to distinguish figures f l . 2 . 1 a) and b) on 

t h i s basis since texture cues w i l l only y i e l d the surface orientation to 

within Necker reversal, that i s , texture w i l l give us two gradients for 

any given surface, the " r e a l " gradient and i t s negative or r e f l e c t i o n 

about the o r i g i n . 

Note that textures are e a s i l y carried over into l i n e drawings 

whereas int e n s i t y p r o f i l e s are not. Hence, i t i s not necessary to 

return to the o r i g i n a l image, which may be a photograph for example, to 

determine surface slant from texture. This i s especially useful i f the 

photograph i s not of s u f f i c i e n t resolution to allow u t i l i z a t i o n of edge 

p r o f i l e s . 
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a) 
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q / \ 

gradients of Figure f1.2.1 

Figure fl.2.2 
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1.3 THESIS OUTLINE 

I t i s proposed, then, that texture i s a useful cue for the 

determination of surface slant from orthographic images. Three 

di f f e r e n t "kinds" of textures w i l l be examined and di f f e r e n t techniques 

w i l l be used to analyse them. Programs w i l l be implemented to determine 

surface slant for two of these texture classes. 

Let us now give a summary of the thesis by chapter. 

Chapter 1 Introduction 

This chapter opens by presenting the major assumptions made t h i s 

thesis. Section 1.1 discusses concepts c r u c i a l to t h i s work. Section 

1.2 discusses our motivation with an example of a possible application 

of t h i s work. Section 1.3 gives an outline of the thesis. 

Chapter 2 Related Work 

Section 2.1 presents h i s t o r i c a l attempts at defining texture. 

These are discussed here mainly as references to l a t e r discussions. 

Section 2.2 introduces the main texture measures used. We w i l l use a l l 

but the Fourier transform in our work. Section 2.3 presents 

applications of these measures that lend credence to assumption 6) by 

demonstrating texture discrimination. Also discussed i s previous work 

on surface slant detection and depth cues. 
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Chapter 3 The Solution 

Section 3.1 defines "orthographic projection" and proves an 

important theorem about the nature of texture under t h i s imaging 

process. Section 3.2 examines the use of s t a t i s t i c a l measures for 

determining surface orientation and proves a theorem indicating the 

l i m i t s of t h i s approach. Section 3.3 undertakes a structural analysis 

of the texture's "basic element" and presents an implemented algorithm 

for detecting surface slant. Section 3.4 makes use of the Hough 

transform to analyse the texture's macro-structure. Again, an 

implemented algorithm i s presented. 

Chapter 4 An Interpretation of the Results 

Section 4.1 summarizes the results of Chapter 3. Section 4.2 then 

examines a common myth about textures i n l i g h t of these results. 

Chapter 5 Conclusions 

This chapter gives a b r i e f summary of what has been accomplished. 

Several directions for further study are proposed. 

1.5 READING PATHS 

This thesis w i l l , naturally, be of d i f f e r e n t interest to d i f f e r e n t 

readers. So, l e t us sketch a few "paths" through the thesis. 
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D e f i n i t i o n of Texture 

I f the reader i s interested i n knowing only what we think texture 

i s , much of the work we have done may be glossed over. But read 

Sections 1.1 to get acquainted with texture. 

2.1 to get a h i s t o r i c a l perspective. 

3.1 to understand the imaging process. 

4 and the conclusions to 3.2, 3.3 and 3.4 to get our 

opinions on texture. 

5 the f i r s t part, to get our conclusions. 

S t a t i s t i c a l Approaches 

Read 1.1, 2.2, 3.2, 4.1, 4.2, 5. 

Micro-structural Approaches 

1.1, 2.3, 3.3, 4.1, 4.2, 5. 

Macro-structural Approaches 

1.1, 2.4, 3.4, 4.1, 4.2, 5. 

The reader interested i n working with texture i n any context i s 

advised to at least browse through the entire thesis. In t h i s 

endeavour, may I wish the reader f r u i t f u l studies. 
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2. RELATED RESEARCH 

2.1 THE DEFINITION OF TEXTURE 

Everyone i s fa m i l i a r with v i s u a l texture but no one seems to be 

able to define i t adequately. Texture i s d i f f e r e n t things to dif f e r e n t 

people. Certainly, texture depends on one's point of view, or l e v e l of 

attention, as was pointed out i n the previous chapter. I t appears 

reasonable, however, to define what one i s working with, and several 

stabs have been made at i t . 

The lack of successful d e f i n i t i o n s i s due largely to the practice 

of viewing textured surfaces with the picture plane p a r a l l e l to the 

surface and to the confusion caused by considering texture to be 

composed of micro-structures and macro-structures. This l a t t e r problem 

is discussed i n chapter 4. The former results i n a conceptual blurring 

of the d i s t i n c t i o n between scene and image. That i s , d e f i n i t i o n s have 

been proposed which describe the actual texture i n terms of the image 

(regions, gray-tones, arrays). Such d e f i n i t i o n s are acceptable only so 

long as fron t o - p a r a l l e l views are maintained. I f the surface slant i s 

non-zero, however, the question of texture i d e n t i t y and problems i n 

terminology quickly a r i s e . The image-based d e f i n i t i o n s would say that a 

non-tilted surface and a t i l t e d surface have di f f e r e n t textures. There 

i s no way, i n such a d e f i n i t i o n , of expressing the notion of the same 

actual or surface texture. Our own d e f i n i t i o n i s scene based, hence we 

would say that the slanted surface has the same actual texture as the 

unslanted surface. We would agree, of course, that a di f f e r e n t 

apparent texture i s present. I t should be realized that a l l of the 

following researchers have proposed image-based d e f i n i t i o n s . 
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In an excellent review of the role of texture i n object perception, 

Pickett defines v i s u a l textures to be "two-dimensional arrays of 

variations" (Pickett, 1970). A more e x p l i c i t d e f i n i t i o n , "texture i s 

composed of large numbers of si m i l a r 'basic elements' or 'pieces' each 

of which i s small r e l a t i v e to the size of the textured region", i s 

proposed i n (Rosenfeld, Lee, and Thomas, 1970). Haralick et a l fe e l that 

"texture i s concerned with the s p a t i a l ( s t a t i s t i c a l ) d i s t r i b u t i o n of 

gray tones" (Haralick, Shanmugan and Dinstein, 1973). 

Along these l i n e s , Zucker has proposed a general model for texture 

(Zucker, 1976). This model i s based on a Chomsky-style grammar. Zucker 

proposes an "alphabet" of micro-structures. These micro-structures are 

then arranged on a surface according to a set of placement rules 

(syntax). The result i s then distorted i n some way (transformational 

component) to y i e l d the f i n a l texture. I t should be noted that the 

placement rules are chosen to y i e l d periodic structures. 

I t i s often f e l t that a suitable description of a texture i s one 

which w i l l enable the re-generation of that texture. Rosenfeld and 

Lipkin have developed a system allowing texture synthesis (Rosenfeld and 

Lip k i n , 1970). The required texture description i s also in the form of 

(1) the nature of the micro-structures and (2) the appropriate placement 

rules. 
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2.2 APPROACHES TO TEXTURE MEASURES 

Gray-level S t a t i s t i c s 

Gray-level s t a t i s t i c s can be c l a s s i f i e d into 1 s t , 2n& or, i n 

general, i t h order s t a t i s t i c s . The order corresponds to the number of 

pix e l s or points considered i n i n t e r - r e l a t i o n . 

So, 1 s t order s t a t i s t i c s include gray-level average and variance 

(Hawkins, 1970) for example. Note that these values depend on the 

individual gray-level values only and not on their arrangement. Nothing 

can be deduced about micro-structure size or shape from 1 s t order 

s t a t i s t i c s . For example, figures f2.2.1 and f2.2.2 below y i e l d the same 

average and variance values. In fa c t , a l l f i r s t order s t a t i s t i c s are 

invariant under any p i x e l permutation. 

2 n d order s t a t i s t i c s characterize i n t e r - r e l a t i o n s of pairs of 

pixe l s or dots. These may be viewed as "dipole s t a t i s t i c s " or the 

pr o b a b i l i t i e s of "needles" of fixed length and orientation thrown on the 

image having given gray-level values at th e i r t i p s . I t has been 

conjectured by Julesz (Julesz, 1973) that 2 n d order s t a t i s t i c a l 

differences are necessary but not s u f f i c i e n t for human vi s u a l texture 

discrimination. That i s , a pair of textures may d i f f e r i n 2 n d order 

s t a t i s t i c s and yet not be discriminable by humans. However, Julesz 

himself has produced counter-examples to his o r i g i n a l conjecture; that 

i s , discriminable textures with i d e n t i c a l 2 n d order s t a t i s t i c s were 

exhibited ( C a e l l i and Julesz, 1977). Julesz modified his psychological 

model (and conjecture) by introducing pseudo-colinearity detectors that 
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Checkerboard 

Figure f2.2.2 



16 

come into play only when 2nc^ order s t a t i s t i c s are i d e n t i c a l . Schatz 

modified t h i s procedure by considering only those dipoles connecting 

endpoints of real or l o c a l " v i r t u a l " l i n e s (Schatz, 1978). An example of 

a l o c a l v i r t u a l l i n e i s the dotted l i n e i n figure f.2.2.3. Schatz's 

s t a t i s t i c s , do y i e l d i d e n t i c a l values for some pairs of textures where 

2n<3 order s t a t i s t i c s are d i f f e r e n t . These textures are not subject to 

human discrimination. Hence, Schatz feels that h is method comes 

closer to providing a s u f f i c i e n t condition for human texture 

discrimination. Schatz's method assumes that the image has been 

preprocessed to y i e l d " l i n e drawings" or "primal sketches" (Marr, 1976). 

Of course, Schatz assumes that the o r i g i n a l image i s so preprocessable. 

This i s not always the case, as with texture elements composed of curved 

l i n e s or dots only. In these cases, a l l l i n e s are v i r t u a l l i n e s . 

2n<3 order s t a t i s t i c s are computed by Haralick with the help of 

"gray-tone spatial-dependence" or co-occurrence matrices (Haralick, 

Shanmugan and Dinstein, 1973). Consider a d i g i t i z e d image and a 

displacement d' =(DX,DV) defined on i t . Then the co-occurrence matrix Pcj 

is defined such that 

Pcj(i,j) = pr o b a b i l i t y that a point with gray-level j occurs at a 
displacement o from a point with gray-level i 

Haralick defines 14 di f f e r e n t texture s t a t i s t i c s that may be computed 

from these matrices and suggests possible psycho-physical 

interpretations for some of them (e.g., "coarseness", "entropy"). Note 

that the displacements, cj, correspond to Julesz's dipoles. Note also 

that since i s fixed i n orientation, such matrices can be used to 

measure textural features i n a given d i r e c t i o n . This i s useful for our 

work i n detecting surface slant and also for detecting d i r e c t i o n a l i t y i n 

a texture. In f a c t , we w i l l examine "blind" application of t h i s 
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V i r t u a l l i n e 

figure f2.2.3 
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technique i n chapter 3.2. More to the point i s our use of dipoles i n 

chapter 3.2 (called "diagonals" in that chapter). Our detection of 

these dipoles, however, i s implemented by a structural analysis . This 

type of analysis i s developed next. 

Structural Analysis 

(Tomita et a l , 1973) have used structural analysis for region 

detection. The assumptions made here are that the image i s made up of 

c l e a r l y outlined atomic elements (such as c i r c l e s or squares) and that 

each region to be detected i s made up of a homogeneous set of these 

elements. A certain l e v e l of noise (input i s v i a a TV camera) i s also 

assumed and a set of i j t n order moments (see pgs. 78 to 79 for 

d e f i n i t i o n s ) , M j j , are chosen as shape descriptors, p a r t i a l l y for t h e i r 

resistance to such noise. This process, while used only for texture 

discrimination here, would be useful to our task as we could determine 

how the atomic elements have been deformed by the apparent surface 

slant. Nevertheless, we w i l l not use them in t h i s context, but for 

region detection only (see Chapter 3.3). 

Hawkins describes the use of l o c a l "matched f i l t e r s " for texture 

discrimination (Hawkins, 1970). This i s a structural approach i n the 

sense that structures or shapes (such as edges, l i n e s and wedges) are 

being searched f o r , but no attempt i s made to iso l a t e possible micro-

structures or to describe t h e i r shapes. As Hawkins points out, these 

measures are insensitive to too many image properties. In p a r t i c u l a r , 

they are insensitive to changes due to surface slant since no new edges 

result from t i l t i n g the surface. 

Schatz's work may also be construed as s t r u c t u r a l . He assumes that 
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a l l real l i n e s i n the image have already been found. As w e l l , v i r t u a l 

l i n e s are constructed between real l i n e terminators with a notion of 

" l o c a l " . However, Schatz only looks at the overall s t a t i s t i c s of these 

l i n e s rather than t h e i r s t r u c t u r al properties. 

Frequency Domain 

Consider a d i g i t a l image i n matrix form, g(x,y), where x and y are 

integers over the domain (0...k). The image's discrete Fourier 

transform i s given by 

k-1 k-1 
F(n,m) = (1/k 2) J 1 g ( x , y ) e - ( 2 P i ) i [ ( x n + y m ) A ] 

x=0 y=0 
The power spectrum of F i s given by P(n,m) = |F(n,m)|. The power 

spectrum i s invariant with respect to translation i n the s p a t i a l domain 

but not with respect to rotation. Hawkins points out that textures may 

d i f f e r only i n t h e i r phase relationships and yet appear very di f f e r e n t 

(Hawkins 1970), indicating a shortcoming of power spectra as texture 

descriptors. However, Bajcsy (Bajcsy, 1972,1973) uses the d i r e c t i o n a l 

s e n s i t i v i t y of power spectra to some advantage. The power spectrum i s 

transformed from cartesian coordinates to polar coordinates, P(r,#). 

Then for each d i r e c t i o n 0 and for each frequency r we have the one 

dimensional functions P 0(r) and Pr(jrf) respectively. She then defines 

k 
P(r) = 25Ptf(r) and 

jz>=0 

w/2 
Q(&) = ZPr(^) where w i s the window size 

r=l 

the basis for her texture descriptors i s then the pair <P(r),Q(0)>. 
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Bajcsy defines many descriptors from t h i s pair. For the i r d e f i n i t i o n 

and further d e t a i l s of the above see (Bajcsy, 1972,1973). 

Textural features derived from the Fourier domain have been found 

to give poorer results than s t a t i s t i c a l features i n some comparative 

studies (Dyer, Weszka and Rosenfeld, 1975a, 1975b, 1975c). I t has been 

suggested (Rosenfeld,1975) that t h i s may be due to "edge effects" of the 

discrete Fourier transform. Some work has been done using reflected 

patterns to minimize t h i s problem (Dyer and Rosenfeld, 1975). 

The Fourier-based approach may be useful for our work since 

d i r e c t i o n a l features show up strongly. However, structural information 

i s disguised by the transform, yet t h i s i s quite important information, 

as we have seen i n the previous chapter. 

The Fourier transform could be used in the macro-structural 

analysis presented i n Chapter 3.4. Nevertheless, we found the rho-theta 

Hough transform i n t u i t i v e l y more transparent for t h i s application. This 

transform i s developed h i s t o r i c a l l y i n the following section. 

Hough Transforms 

The problem of detecting surface slant from texture gradients i n 

the perspective projection case has been tackled by (Kender,1979). 

Consider the special case where the micro-structures (true shape) are 

" r e s t r i c t e d to be one-dimensional and l i n e - l i k e ; they are arranged i n a 

regular mesh-like fashion." Examples of such textures appear i n Figure 

f2.2.4 below. 

Kender enlisted help from the techniques of a related d i s c i p l i n e , 

that of l i n e detection i n images. To see how Kender uses t h i s technique 



21 



22 

to some advantage, i t may be useful to set the stage by quickly 

reviewing the technique's development. 

This procedure for detecting l i n e s i n an image was f i r s t proposed 

by (Hough,1962) and i s now commonly referred to as the use of Hough  

Transforms. B a s i c a l l y , i t involves transforming each point i n the 

pattern into a l i n e i n a parameter space, i n Hough's case, into slope-

intercept space. The f i r s t r e a l l y useful development occurred several 

years l a t e r (Duda and Hart,1972). Here, angle-radius (also referred to 

as theta-rho or rho-theta) space i s used. At t h i s stage, a closer look 

i s warranted. 

Duda and Hart decided to use normal parameterization. Referring to 

Figure f2.2.5 for the d e t a i l s of the parameters, we note that a straight 

l i n e can be expressed as 

xcos(0) + ysin(O) = rho (see the Appendix to 2.2 for derivation) 

After correlating t h e i r d i g i t i z e d image with a differencing 

operator (a way of detecting intensity changes), Duda and Hart then map 

each figure point (x^y^) to the sinusoidal curve i n (quantized) theta-

rho space: 

rho = XJCOS(0) + yjSin(G) 

each c e l l i n the space being augmented by 1 every time i t i s "written" 

into. 

Since c o l l i n e a r points i n the image map into l i n e s intersecting at 

a point corresponding to the l i n e they a l l l i e on, points of maximal 

accumulation (detected by histogramming) each correspond to a detected 

l i n e . Figure f2.2.6 below i s the theta-rho Hough transform of the " c i t y 

streets" of Figure f2.2.4. 



Rho-theta parameterization of a line 

Figure f2.2.5 
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Hough transform of "city streets" 

Figure f2.2.6 
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The next major step was made by (O'Gorman and Clowes,1973). 

Following a suggestion by A.K. Mackworth and J . Francis, they decided to 

make use of l o c a l evidence to determine uniquely the value of ©. In 

eff e c t , they considered each p i x e l i n the image to be an "edgel" (having 

d i r e c t i o n and position but no length). Let us see how t h i s i s 

accomplished. We can estimate the inte n s i t y gradient G=(DXXV,DYXV) at 

each point (x,y) by correlating the image with the mask 

-1/6 0 1 +1/6 

-1/6 0 1 +1/6 

-1/6 0 1 +1/6 

to obtain DX Y V and with the mask 

+1/6 +1/6 +1/6 

0 0 0 

-1/6 -1/6 -1/6 

to obtain DY X V. 

That i s , for every point (x,y): 

+1 +1 
DX X V = 1/6(T I(x+l,y+i) - 2 I(x-l,y+i) ) 

i=-l i = - l 

+1 +1 
DY x y = 1/6(2 I(x+i,y+l) - 2 I(x+i,y-l) 

i = - l i = - l 

where I(x,y) i s the value of the image's int e n s i t y array at point (x,y). 

Now we can approximate (tan(0) = DY Xy/DX x v) for each "edgel" since the 
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i n t e n s i t y gradient i s generally perpendicular to the picture edge. So 

for each "edgel" we can increment a unique histogram bucket indexed by 

rho and ©. 

Having developed the necessary to o l s , we are f i n a l l y ready to look 

at Render's work with texture. Kender used the observation that true 

p a r a l l e l l i n e s i n a perspective image converge to a vanishing point (or 

points) to note that such l i n e s would map into points i n the theta-rho 

parameter space l y i n g on the sine-curve corresponding to the vanishing 

point. Sinusoidal curves being rather d i f f i c u l t to detect, Kender 

proposed two modifications to the transform. The f i r s t i s to plot the 

theta-rho transform in polar coordinates. The c i t y streets example of 

Figure f2.2.4 i s plotted below i n t h i s space (Figure f2.2.7). Kender 

noted that p a r a l l e l l i n e s i n the image now map into points l y i n g on a 

straight l i n e going through the o r i g i n and converging l i n e s map into 

points on a c i r c l e through the o r i g i n . 

I t should be noted at t h i s stage that the distance between points 

corresponding to p a r a l l e l (in the image) l i n e s i s precisely the normal 

distance between these l i n e s i n the image. This feature w i l l be 

examined i n Section 3.4 of the next chapter. 

Kender also noted that i f we describe a point .in the parameter 

space i n terms of the rectangular co-ordinates T x and T v then i t i s not 

necessary to compute 6 e x p l i c i t l y . In f a c t , no trigonometry at a l l i s 

required. 

Consider an "edgel" defined by a position P=(x,y) and an "edge 

vector" E=(E X,E V). The edge vector i s a vector perpendicular to the 

l i n e segment that i t refers to. The value of the edge vector's length 
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T y A 

Polar plot of Hough transform of "city streets" 

Figure f2.2.7 
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i s l e f t open to interpretation i n Render's paper but may be most 

conveniently thought of as the "strength" of the l i n e . That i s , i f the 

image i s correlated with the masks of O'Gorman and Clowes, then the edge 

vector may be taken to be E = G = (DX X V,DY X V). The parametric form of 

t h i s edgel, T = (T X,T V), can then be computed to be: 

T = ((E»P)/|E|2)E 

That i s , T i s i n the d i r e c t i o n of E, perpendicular to the l i n e segment, 

and i s of length (E»P)/|E| which i s just the length of P projected onto 

the unit vector i n the di r e c t i o n of E and T, namely rho (see Figure 

f2.2.8). 

Render's second modification i s simply to map every point, (rho,©), 

to (K/rho,9) for some constant K. So, T i s s t i l l i n the di r e c t i o n of E, 

but i s now of length R/rho. That i s , 

T = (K/rho)(E/IEI) -

= (K/[(E-P)/|E|]) (E/IEI) 

= (K|E|E)/([(E-P)|E|] 

T = (R/(E«P))E 

Converging l i n e s now map into points l y i n g on a straight l i n e , 

p a r a l l e l l i n e s into points l y i n g on a straight l i n e through the o r i g i n . 



Derivation of T 

Figure f2.2.8 
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Render then proves the following theorem: 

"Suppose an image contains the perspective projection of a planar 
surface defined by two or more coplanar sets of p a r a l l e l l i n e 
segments. Let the o r i g i n of the transform space correspond to the 
coordinates of the focal point i n the image (that i s , where the 
camera i s "aimed"). Let R equal the focal distance. Then 
T = R E / (E-P) transforms edges so that the intersection of l i n e s 
of accumulation points i n the transform space i s at (p,q), the 
gradient vector of the surface." 

And so the surface's slant i s detected. Notice, however, that t h i s 

method f a i l s i f the projection i s orthographic or i f the vanishing 

points are very far away since the intersection point w i l l not be 

distinquishable from the o r i g i n . This method also r e l i e s on our 

distinguishing between p a r a l l e l l i n e s that converge due to perspective 

and non-parallel l i n e s . This, as was pointed out e a r l i e r , i s not always 

that easy to do. 

Nevertheless, Render has introduced modifications that make the 

Hough transform computationally more desirable. Chapter 3 w i l l discuss 

the uses of the Hough transform for orthographic projections. 
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2.3 APPLICATIONS 

Discrimination 

The most common application of texture i s the discrimination of 

homogeneous textured regions. This i s t y p i c a l l y concerned with planar 

surfaces viewed with the surface normal perpendicular to the picture 

plane. In t h i s case the image texture i s the same as the scene texture. 

As was mentioned before, t h i s i d e n t i t y i s the source of a great deal of 

confusion i n defining texture. These are generally "real-world" 

applications such as t e r r a i n c l a s s i f i c a t i o n from s a t e l l i t e images (Dyer, 

Weszka and Rosenfeld, 1975a,1975b) and micro-biological images (Hawkins, 

1970). 

An exception to the above i s the work of Tomita et a l 

(Tomita, Yachida and T s u j i , 1973) mentioned i n the preceding section 

under "Structural Analysis". The input picture here could be of a 

textured cube on a d i f f e r e n t l y textured table-top, for example. The 

image i s then segmented into regions on the basis of several textural 

features. An important aspect of t h i s work i s that segmentation occurs 

i n stages or le v e l s as determined by the "supervisor". For example, the 

cube image i s f i r s t segmented into the "cube" region and the "table-top" 

region on the basis of one feature. The cube region i s then further 

segmented into regions corresponding to the three v i s i b l e surfaces of 

the cube. Note that at the top l e v e l the cube i s seen as being one 

region. The scene texture i s indeed the same over the whole cube. The 

image texture, however, i s d i f f e r e n t for each region representing a face 

of the cube. I t i s a strength of t h i s program that i t detects these 
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l e v e l s . 

Immediate discrimination of more abstract (and perhaps a r t i f i c i a l ) 

textures has been studied by Julesz (Julesz et a l , 1973) (C a e l l i and 

Julesz, 1978) from a psychological point of view and by Schatz (Schatz, 

1978) from a computational point of view. Only absolute discrimination 

(are the two textures d i f f e r e n t or not?) i s considered by a l l of these 

researchers, although recently ( C a e l l i and Julesz ,1978) have mentioned 

"ease of discrimination". No interpretation (such as apparent texture 

from true texture) was placed on differences i n apparent texture. 

In the above cases, discrimination was performed by generating a 

histogram of the discriminating feature, setting thresholds from the 

histogram, and segregating textures as to how the feature applied over 

the texture related to the threshold. For example, a l l atomic regions 

with area greater than the threshold are grouped into one region (Tomita 

et a l , 1973). We w i l l demonstrate t h i s i n Chapter 3.3. 

Surface slant 

Gibson has studied the use of texture gradient (the change, due to 

perspective, i n some textural features such as coarseness) in human 

"space perception" (Gibson, 1950). Gibson has shown that, i n the case 

of perspective images, d i s c o n t i n u i t i e s i n texture gradient give r i s e to 

the perception of edges, such as caused by corners or di s c o n t i n u i t i e s i n 

the surface ("occluding edges"), and that the texture gradient could be 

used to determine the orientation or shape of a surface. 

Computationally, many problems a r i s e . Among them: i t i s d i f f i c u l t to 

establish i f the texture gradient over a region i n an image i s caused by 

perspective or the curve of the surface. Gibson also observed that the 
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monocular perception of depth depends on texture gradient to some 

degree. 

We have already mentioned the work by Render i n t h i s f i e l d , and we 

now note that, he also, exploits texture gradient i n perspective images 

by computing the vanishing point. This thesis does not exploit texture 

gradient, as w i l l be discussed l a t e r . 

Both of Gibson's and Render's theories do not determine surface 

slant i n orthographic images. I t i s the purpose of t h i s thesis to 

present a theory that succeeds i n t h i s respect. 

Depth cue 

Computations based on texture gradient have actually been used as a 

depth cue (Bajcsy and Lieberman, 1976) in perspective images. The 

assumption i s made that a l l surfaces are planar. "Real-world" scenes 

(such as a grassy f i e l d and an ocean view) were considered and images of 

these were used as input to the program. Features derived from the 

Fourier domain were used and r e l a t i v e distances were co r r e c t l y deduced. 

I t was conjectured i n t h i s work that absolute distances could be 

calculated i f the program contained a camera model with information such 

as the lens focal length. Some problems were encountered when the 

planar surface assumption was violated (the grassy f i e l d r o l l e d a b i t ) . 

This work, may have benefited i f discrimination of surface slant had 

been incorporated into the program. 
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2.4 SUMMARY 

Texture i s usually defined as many basic elements (micro-

structures) on a surface. Each micro-structure may or may not have a 

structure associated with i t . As w i l l be further explained i n Chapter 

3.1 and 3.3, texture w i l l be viewed as micro-structures placed on a 

surface according to a macro-structure (placement ru l e s ) . The word 

"texel" i s used to refer to a projected image of a micro-structure. The 

shortcomings of t h i s approach w i l l be discussed i n Chapter 4.4. 

Many texture measures have been developed and they f a l l into three 

broad classes: s t a t i s t i c a l , micro-structural and macro-structural. A l l 

three classes w i l l be used i n the next chapter, but, as we s h a l l see i n 

Chapter 3 and discuss i n Chapter 4, these class d i s t i n c t i o n s are 

somewhat ambiguous. 

I t w i l l be assumed that texture discrimination i s possible i n the 

remainder of t h i s d i s s e r t a t i o n . Furthermore, work concerned with 

determining surface slant from images of textured scenes has been 

re s t r i c t e d to perspective images. The rest of t h i s thesis w i l l extend 

t h i s work by examining texture i n orthographic projections. 
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3. APPROACHES TO COMPUTATIONAL DETERMINATION OF SURFACE SLANT FROM 

TEXTURE MEASURES 

3.1 INTRODUCTION 

I t i s demonstrated i n t h i s chapter that information about a 

surface's orientation can be extracted from the apparent, texture of the 

surface's orthographic image. This demonstration i s constructive i n 

that we w i l l a c tually specify algorithms to accomplish t h i s task (and i n 

some cases our computer w i l l accomplish i t ) . With t h i s end i n mind, l e t 

us now look at the orthographic picture taking process. 

Let us suppose that we have represented a given object i n terms of 

the Cartesian co-ordinates of a l l of the points on i t s surface. This 

object, and the space that i t i s i n w i l l be referred to as the scene. 

Now l e t us position a picture plane i n such a way that the x- and y-axes 

of the picture plane are p a r a l l e l to the X- and Y-axes of the scene's 

frame of reference and the picture plane o r i g i n l i e s on the Z-axis of 

the scene's reference frame. We w i l l say that a point, (x,y), on the 

picture plane i s an orthographic projection of a point (X,Y,Z), in the 

scene i f and only i f x = kX and y = kY for some constrant k. This 

process i s i l l u s t r a t e d for a l i n e i n figure f3.1.1. 

Suppose now that our scene consists of a planar surface with l i n e s 

and dots on i t . A surface i s considered to be " i n f i n i t e " in a l l 

directions (the extent of any l i n e s and dots on i t , however, i s f i n i t e ) . 

I t i s easy to see that the surface, unless i t i s p a r a l l e l with the 

picture plane, intersects the picture plane along a straight l i n e . 

Without loss of generality, we can think of t h i s intersection l i n e as 

being p a r a l l e l to the x-axis ( i f i t i s not, we need simply rotate the 



Orthographic projection of l i n e 

Figure f3.1.1 
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frame of reference about the z-axis u n t i l i t i s ) . We w i l l also assume 

for s i m p l i c i t y that the surface passes through the reference frame 

o r i g i n and that any l i n e on the surface also passes through the o r i g i n 

unless otherwise mentioned. These l a s t two assumptions are made simply 

to allow referring to absolute co-ordinates, (x,y), rather than being 

forced to use r e l a t i v e co-ordinates (delta x, delta y). 

We now want to talk about how the surface i s slanted with respect 

to the picture plane. To make t h i s task somewhat easier, we define the 

following terms. We define the amount of slant, tf, of a surface as the 

angle between the X-Y plane (or the picture plane) and the surface's 

gradient vector. I f the frame of reference i s rotated as we assume i t 

to be, then & i s the angle between the Y-axis and that l i n e on the 

surface which i s normal to the X-axis. For any l i n e (passing through 

the origin) we define 0 a (a for actual) to be the angle between the l i n e 

and the X-axis. We also define 0 to be the angle between the projected 

image of the l i n e and the x-axis. Note that 0 < 0 a i n general. These 

concepts are i l l u s t r a t e d i n figure f3.1.2. 

I t i s the goal of t h i s chapter to recover & from information 

obtained only from the image (and the assumptions we make about i t ) . In 

general, for a given image and a given surface, the surface w i l l not 

intersect the picture plane at a l i n e p a r a l l e l to the x-axis, contrary 

to our assumption. In f a c t , the intersection l i n e w i l l be at an angle 

c n (which may be 0) from the x-axis of the picture plane. Recall that a 

i s the di r e c t i o n of the surface's gradient vector, hence the notation a n 

to indicate that the intersection l i n e i s normal to the di r e c t i o n of the 

gradient. I t i s also our goal to recover c from the same information. 

For the purpose of i l l u s t r a t i o n , however, l e t us s t i c k to the a n = 0 



Surface slant notation 

Figure f3.1.2 
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assumption. 

The feature of t h i s projection that i s most useful to our work i s 

the effect of "foreshortening" of lengths. To see what t h i s means, l e t 

us prove the following theorem. 

Theorem 3.1.1 

Assume that a l l of the l i n e s on the surface are of length L and 
that these l i n e s take on a l l orientations (-ir/2 < ©a < ir/2). Let the 
surface be t i l t e d by an angle jzf. Let L 1 be the length of a projected 
image of a l i n e . Then a polar plot of L" versus © i s an e l l i p s e centred 
on the o r i g i n with a major axis a = L and a minor axis b = Lcos(jrf). 

Proof: 

Referring to Figure f3.1.3, i t i s noted that 

X = OA = Lcos©a 

x = O'A1 =L'cos© 

and that X = x since OA = O'A' so 

Lcos©a = L'cos© (1) 

I t i s also observed that 

Y = BP = CD = OE 
ODcos^ 
APcosjzf 
(OPsin©a)cos^ 
LsinOgCosjrf 

y A'P' 
L'sin© 

and Y y since Y = BP = A'P' = y so 
Lsin©acosjzS = L'sin© (2) 

Then, dividing (2) by (1) we get 

tan© = tan©acos^ (3) 

To see the e l l i p s e i n L 1, we now want to express L 1 as a function of a, 
b, and 6. Since a = L and b = Lcos^, we want to express L' as a 
function of L, cos^, and ©. Now 
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Figure for theorem f3.1.1 

Figure f3.1.3 
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L 2COS 2© a 

L « 2 =  

cos 20 by (1) 
L 2 

= (trigonometric equality) 
(l+tan 2 e a)cos 26 

L 2 

= b y ( 3 ) 

(l+tan 2 e)cos 2 e 
COS2Jf) 

L2cos2j?) 

cos 29cos 2jzi + s i n 2 0 

then multiplying by L 2 / L 2 we get 

(L 2) (L2cos2)zJ) 

L 2 s i n 2 6 + (L 2cos 2jzi) cos 2 e 

a 2 b 2 

a 2 s i n 2 9 + b 2cos 20 

which i s the equation of an e l l i p s e . 

Q.E.D. 

I t i s now f a i r l y easy to see that any given l i n e i n the scene w i l l 

be maximally foreshortened i n the d i r e c t i o n of the surface slant (the 

di r e c t i o n of the gradient vector) and not foreshortened at a l l i n a 

d i r e c t i o n normal to i t . Furthermore, theorem 3.1.1 allows us to 

calculate the amount of sl a n t , jrf, as: 

0 = cos-1(b/a) 

There i s , nevertheless, a defect i n the method of determining jrf 

from foreshortening. From the theorem just proven, l i n e s i n the scene 

are foreshortened by a factor cosjzJ in the d i r e c t i o n of the surface's 

gradient. But due to the invariance of the function, cos, over the sign 

of i t s argument, i t i s possible to determine only the absolute value of 
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f6 from the foreshortening. That i s , since cos^ = cos ( - t f ) , we cannot 

distinguish between the image of a scene and the image of i t s Necker 

reversal. 

With these observations i n hand, l e t us now look at texture. 

3.2 STATISTICAL APPROACHES 

Second order s t a t i s t i c s have been used by Julesz, Haralick, and 

Schatz (see Chapter 2 for d e t a i l s ) . These s t a t i s t i c s are examined i n 

the hope that they may be useful for the detection of surface slant and 

the results obtained are presented i n t h i s section. Input i s i n the 

form of a 64X64 matrix with two possible gray-levels, 0 (blank) and 1 (a 

mark). 2X2 co-occurrence matrices (see Section 2.2 for definitions) 

are calculated for displacement vectors 6 = (x,y) where 0 < x < 10, 

0 < y < 10. 

Regular dots 

Consider a surface textured with dots (with, t h e o r e t i c a l l y , no 

size) arranged on the vertices of an ( i n v i s i b l e ) square g r i d . The 

surface i s then t i l t e d back by = ir/4 about the horizontal axis of the 

g r i d (which i s also the picture plane horizontal). This rotated surface 

i s then 'imaged1. Analysis of the second order s t a t i s t i c s for t h i s 

image indicates that p J ( l , l ) w i l l have high values for d's i n the 

horizontal d i r e c t i o n having lengths equal to multiples of the interpoint 

distance. High values for P r i ( l , l ) w i l l also occur for d's i n the 

v e r t i c a l d i r e c t i o n and having lengths equal to cos(jrf) times the 

interpoint distance. For d's of other dir e c t i o n s , Po^(l,l) w i l l y i e l d 

high values for those lengths of d' that correspond to distances between 
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points having the same direction of cf between them (see Figure f3.2.1). 

The plot of Pcf(l,l) for cf = k(l,0) where k=l,2,3,... ,10 peaks at cfs 

corresponding to multiples of the interpoint distance. The plot of 

Pcf(l,l) for cf = k(0,l) where k is as above, while somewhat muddled, gave 

recognizable peaks at cos(fi) times the interpoint distance as was 

expected. Thus could be determined to be: 

length (cf) at 1 s t peak of Pc»(l,l) fi = k(l,0) 
= cos-1  

length(d) at 1 s t peak of PcJ(l,l) 6 = k(0,0) 

Note that i f this technique were to be used on an image of a 

surface with unkown slant, we would have to be sure to "pick" the cfs 

such that they f a l l on adjacent points, otherwise we could not determine 

the size of the squares of the grid. The problem would be alleviated i f 

the grid were "filled in", that is, if we had a grid of lines as well as 

vertices. In this case we could assume that a polar plot of length (cf) 

for smallest peaks would give a square and we could then f i t our data 

accordingly. 

Note that we are actually looking at a grid and that "connecting 

the dots" as in (Schatz,1977,1978) would not change our result. In 

fact, the dominant characteristic here seems to be the structure of the 

grid, rather than the statistics such a grid presents. 

Circles 

The surface here consists of rings arranged on the vertices of a 

square grid. The circles are small enough that no overlap occurs. 

Again, the surface is slanted by jz» = nr/4. My collegues (actually barely 

willing fellow graduate students) and I had no difficulty seeing the 

surface slant ourselves (human perception), however, an analysis of 2no" 
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Examples of deltas 

Figure f3.2.1 
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order s t a t i s t i c s for the resulting d i g i t i z e d image proved very messy. 

The s t a t i s t i c s of just a single c i r c l e are shown i n Figure f3.2.2 below. 

I f there were no other contributors to P ^ ( l , l ) when |ô |<d_iam c i r c l e and 

diam c i r c l e i s s u f f i c i e n t l y large for the plot of Pd'ci/l) to be 

recognizable, t h i s method would pick out the "diameter" of the c i r c l e i n 

any d i r e c t i o n . Since c i r c l e s are deformed into e l l i p s e s by the surface 

slant, we could measure the major(a) and minor(b) axis and set 

= cos-1(b/a). We could also say (correctly) that the surface i s 

t i l t e d about the major axis. Unfortunately, neither of our conditions 

are met, i n general. F i r s t o f f , since the minimum i n t e r c i r c l e distance 

i s less than diam c i r c l e for most textures (and i n p a r t i c u l a r for our 

test case) involving " c i r c l e s " (e.g. Corkboard, concrete walkways), 

these i n t e r c i r c l e pairs of points also contribute to P r i ( l , l ) in the 

region of interest (see Figure f3.2.3 below). D i g i t i z a t i o n attributes 

(the top, bottom, and sides of the c i r c l e s are flattened) also crept i n 

to deform our experimental plots (see Figure f3.2.4). The 

implementation v e r i f i e d t h i s analysis and c i r c l e diameters did not seem 

to be detectable without p r i o r knowledge of the arrangement. Again we 

find that structural properties dominate. This makes sense to some 

extent since our micro-structures (circles) are highly structured 

objects indeed. Perhaps not so obvious i s the effect of the 

arrangement, or macro-structure, on the second order s t a t i s t i c s . I t i s 

the macro-structure that i s muddying the plot of P6(1,1) by introducing 

the i n t e r c i r c l e distances into the i n t r a c i r c l e part of the p l o t . Yet i t 

was precisely the macro-structure of the regular dot texture that 

allowed us to say anything at a l l about the surface slant for that 

pattern (as dots do not have a useful micro-structure). In t h i s case at 

l e a s t , a s t r u c t u r a l analysis of some sort appears to be necessary. 
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Intercircle deltas 

Figure f3.2.3 
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Other Micro-structures 

C i r c l e s were chosen i n the previous example for t h e i r s i m p l i c i t y . 

They are r o t a t i o n a l l y invariant under Po^(l,l) and d i r e c t i o n a l 

measurements on them are e a s i l y described due to the simple polar 

equation of a c i r c l e (r = c ) . 

More complex regular shapes (e.g. squares) are not r o t a t i o n a l l y 

invariant under P r i ( l , l ) in that Figure f3.2.5a w i l l y i e l d a lower value 

(0) for P r i ( l , l ) where d' = (d,0) than Figure f3.2.5b. I t i s now the case 

that i n t e r - t e x e l distances depend not only the macro-structure of the 

texture but also on the rotation of the micro-structures (which, i t i s 

true, may be construed to be a part of the macro-structure) as shown i n 

Figure f3.2.6 below. 

I t i s clear that second order s t a t i s t i c s quickly become 

u n i n t e l l i g i b l e i n t h i s case. I n t u i t i v e l y , however, squares, c i r c l e s and 

other regular shapes are i d e a l l y suited for detection of surface slant 

as c i r c l e s are deformed into e l l i p s e s and squares into parallelograms i n 

a c l e a r l y specified way. 

Uniform Dots 

Consider, now, a surface textured with dots randomly distributed 

over the plane (e.g., a high-contrast stucco w a l l ) . Suppose that the 

surface i s again t i l t e d by an angle away from the picture plane i n 

a d i r e c t i o n a. One would expect the dots to be "compressed" in the 

image of t h i s surface, and t h i s i s indeed the case. But t h i s 

observation i s misleading. Suppose the d i g i t i z e d image, I, has a 

resolution of N*N and that the dots are now uniformly distributed i n the 
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discrete case. The average density (# dark pi x e l s / N*N) i s higher i n 

the image I than i n an image of the u n t i l t e d surface. But, can we use 

the knowledge of t h i s compression to detect the surface slant from I? 

Equivalently, i s there a d i r e c t i o n a l dependence detectable i n the 

s t a t i s t i c s of the projected image? Suprisingly, the answer i s "no". 

Theorem 3.2.1: In an orthographic image of a surface textured by dots 
positioned randomly and uniformly there i s no d i r e c t i o n a l dependence i n 
the co-occurence matrices. 

Proof: 

Consider a square section of the surface of dimensions a x a 

aligned with the scene axes X and Y. Suppose the prob a b i l i t y density 

function (p.d.f) of the dot d i s t r i b u t i o n on the surface i s 

f(x,y) = g(x)g(y) 

where g(s) = 1/a for 0 < s < a. 

In the image, the p.d.f of the dot d i s t r i b u t i o n w i l L be 

f'(x,y) = g(x)h(y) 

where g(x) i s as above and 

h(y) = 1/acos^ for 0 < y < acostf 

The p.d.f. F 1 can be regarded as a constant, uniform p.d.f. for 

independently sampled points over the rectangle i n the image of 

dimensions a x acos)Z$. I f f' (x,y) i s re-expressed i n polar co-ordinates 

r,6 then i t i s c l e a r l y a function of r alone. Hence there can be no 

di r e c t i o n a l dependence i n the co-occurence matrices. 

Q.E.D. 

As i t seems reasonable to assume that d i r e c t i o n a l i t y i s necessary 

for the detection of surface sl a n t , i t i s concluded that i t i s not 
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possible to determine the slant of t h i s surface from second order 

s t a t i s t i c s of the texture. I t should be pointed out, however, that the 

amount of s l a n t , 0 , can be determined from the image i f the parameters 

of the probabilty density function are known. 

The theorem indicates that a plot of P<$(1,1) would be f l a t for 

such an image. This has been experimentally v e r i f i e d using the 

implementation mentioned. 

Conclusions 

The results obtained from the implementation indicate that second 

order s t a t i s t i c s on structural (in the micro sense) textures quickly 

become muddled and u n i n t e l l i g i b l e . This i s not too suprising, as i t 

seems appropriate to use structural techniques on structural textures 

and s t a t i s t i c a l techniques on " s t a t i s t i c a l " textures. 

However, we have seen that for t r u l y random texture, second order 

s t a t i s t i c s do not help us at a l l ! Furthermore, second order s t a t i s t i c s 

seem to apply best to regular dots. But here, the dots are arranged in 

a pattern, or structure. Again, structural techniques are appropriate, 

t h i s time for analysis of the macro-structure of the texture. In t h i s 

case the micro-structures are simply dots and t h e i r analysis need not 

concern us here. 

The shortcomings of s t a t i s t i c a l analysis strongly suggest the use 

of s t r u c t u r a l analysis, and t h i s w i l l be examined i n the next two 

sections. 
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3.3 STRUCTURAL APPROACHES: THE MICRO-STRUCTURE 

Consider a surface textured by placing copies of a given micro-

structure over i t . We w i l l use the term micro-structure to refer to an 

abstract d e f i n i t i o n of shape and s i z e . These are the patterns out of 

which to construct a texture. We w i l l use the term texel to refer to a 

texture element i n the image. Thus, the image of a copy of a micro-

structure that has been placed on a surface i s a t e x e l . We w i l l assume 

that the micro-structure i s not altered i n any way (other than rotation 

and translation) and we w i l l not concern ourselves with the d e t a i l s of 

the macro-structure (the pattern i n which the micro-structures are 

placed). The purpose of t h i s section, then, i s to examine the problem 

of surface slant detection from texel analysis. 

Consider Figure f3.3.1 below. I n t u i t i v e l y we would say that the 

figure represents a cube (or corner), each surface of which has been 

textured with square micro-structures. Furthermore, we would p a r t i t i o n 

the image into regions corresponding to the three v i s i b l e surfaces of 

the cube. We would also say that the texels i n any given region are 

squashed i n the d i r e c t i o n of the surface's gradient vector. We make 

these observations even though we do not know, a p r i o r i , that the micro-

structure i s a square, neither do we know i t s s i z e , and we do so i n the 

presence of a f a i r amount of noise ( a l l the micro-structures would have 

mapped into parallelograms i n a noiseless image). 

Any shape-from-texture system should be just as v e r s a t i l e . The 

following algorithms attempt to embody some of the i n t u i t i v e notions 

mentioned above. I t should be mentioned, however, that they do not 

detect the shape of the true micro-structure. For example, for Figure 

f3.3.1, they do not recognize the texels as slanted squares. 
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The Single Surface 

Before we act u a l l y tackle an image l i k e Figure f3.3.1, l e t us f i r s t 

look at some simpler cases and work our way up. Consider the image of 

Figure f3.3.2. The scene represented here i s a single surface textured 

with randomly rotated straight l i n e segments of a given length. This 

surface has been rotated (slanted) by an angle about a l i n e at an 

angle c n from the X-axis. That i s , i t s gradient vector i s of length 

tan(jzS) and has d i r e c t i o n a. Before setting about analysing t h i s image, 

l e t us set down a few assumptions (in addition to our usual ones). 

These assumptions w i l l be retained for the duration of t h i s section 

(3.3). 

-there i s only one micro-structure used. 

-the surface i s textured by placing copies of the micro-structure 

rotated to make a l l orientations equally l i k e l y over i t . Note that 

no assumptions are made as to where these copies are placed. For 

example, the placement may be random or orderly. 

-the image (of the scene) i s pre-processable to y i e l d a l i s t of 

texels ( s u f f i c i e n t l y well represented, by a l i s t of vertex 

coordinates, for example). 

-the image has been so pre-processed. 

One Diagonal 

For each texel (l i n e segment, i n t h i s case) l e t us measure i t s 

(Euclidean) length, L, and i t s angle of orientation, 0, from the x-axis 

(-pi/2 < 0 < pi / 2 ) . Let us refer to t h i s set of (L,0) pairs as the L-0-

l i s t . Since each micro-structure copy i s randomly rotated before being 
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placed on the surface, we can now appeal to theorem 3.1.1 to see that 

the measured data w i l l l i e roughly on an e l l i p s e . The image, of course, 

i s not a perfect orthographic projection, but i t i s a good approximation 

to one within a noise factor (caused by d i g i t i z a t i o n ) . The data, 

therefore, a c t u a l l y represents a noisy e l l i p s e . A polar plot of t h i s 

data taken of Figure f3.3.2 i s shown i n Figure f3.3.3. Our task i s now 

reduced to finding the e l l i p s e factors a, b, and c n from the data, L-0-

l i s t . Since we have determined that those l i n e segments making an angle 

0 = a n with the x-axis are not foreshortened (theorem 3.1.1 again), we 

can reasonably estimate a n to be that 0 corresponding to the largest L 

in L - 0 - l i s t . This i s c l e a r l y a guess, the point may be very noisy and 

therefore i n error, but i t i s hoped that i t i s accurate enough (and i t 

does, a f t e r a l l , save us some work). A more noise resistant approach 

would be to treat a as a parameter i n the least-squares f i t t i n g process. 

We would, however, l i k e the function that we are trying to f i t the data 

to be l i n e a r with respect to i t s parameters (see the appendix to t h i s 

section). This i s not the case for the function that we have decided to 

use. To make o n a l i n e a r parameter then, i t w i l l be necessary to factor 

out a n and then find a s i m i l a r function which does depend l i n e a r l y on 

a l l three parameters, a, b, and a n . 

Let us now think of the data, L - 9 - l i s t , as a function of 6 (each 

pair i s a mapping of some 0 to some L). Now assume that the pr o b a b i l i t y 

density function of the v a r i a t i o n i n L i s a symmetric function about a 

mean of 0. We can now determine the factors a and b by f i t t i n g the data 

to an e l l i p s e with a least-squares approximation (Conte and de Boor, 

1965; pg. 241-246). The d e t a i l s may be found i n the appendix to t h i s 

section. We are now nearly done. Appealing yet again to theorem 3.1.1, 

we see that 
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= cos— L (minor-axis/major-axis) 

where minor-axis = MIN(a,b) and major-axis = MAX(a,b). 

Also, o n has already been determined. Thus the gradient vector (see 

Chapter 1) of the surface can be determined to be: 

p = -tan^ s i n a n p = +tanjrf s i n a n 

or 
q = +tanjtf cosa n q = -tanjzJ cosa n 

This algorithm would be of l i t t l e interest i f line-segments were the 

only micro-structures that we could handle. However, i f our micro-

structure had some consistently i d e n t i f i a b l e l i n e s , then we could work 

with these l i n e s only. That i s , i f l i n e s of some given length i n the 

micro-structure were marked i n a way (coloured, highlighted, 

topologically unigue, etc.) that allows determination of the 

corresponding length i n any given t e x e l , then we could treat t h i s l i n e 

as i f i t were a single line-segment micro-structure. One way of 

ensuring that we have an i d e n t i f i a b l e l i n e i s to require our micro-

structure to have a s u f f i c i e n t l y long diagonal ( s . l . d . ) . We s h a l l say 

that d i s a s u f f i c i e n t l y long diagonal (for the image i n question) i f 

for a l l other diagonals dj (we w i l l use the term diagonal to refer to 

both true diagonals and edges) in the micro-structure, 

length(d) = length(dj) 

or length (d) * cos(jzS) > length (dj) 

where i s the angle of t i l t (with respect to the picture plane) of the 

surface. The idea here i s to make sure that we have a diagonal that 

w i l l not be foreshortened "too much". That i s , we would l i k e i t s image 

to be i d e n t i f i a b l e by i t s length. Note that a s. l . d . i s either unique 

or, i f i t i s not, the same length as a l l other s.l.d.s. The 

i d e n t i f i a b i l i t y of a s u f f i c i e n t l y long diagonal depends on the angle of 
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t i l t , tf. Hence, a s.l. d . i s a weaker concept than a uniquely 

i d e n t i f i a b l e length ( u . i . l . ) since t h i s dependence i s not required. 

Indeed, other usable u . i . l . s such as topologically unique l i n e s do not 

suffer from t h i s r e s t r i c t i o n . Consider the class of micro-structures 

that have precisely one s u f f i c i e n t l y long diagonal. Examples of such 

micro-structures (for some images) appear i n Figure f3.3.4 below. Note 

that the micro-structures need not be convex, polygonal, closed, nor 

even contain any l i n e segments at a l l . To go any further, i t i s 

necessary to f i r s t prove the following theorem for texels containing one 

or more s u f f i c i e n t l y long diagonals. This theorem gives the reason that 

the diagonal i s detectable. 

Theorem 3.3.1: 
The longest diagonal of a texel corresponds to one of the 
s u f f i c i e n t l y long diagonals of the micro-structure. 

Proof: 

Without loss of generality, l e t the surface be t i l t e d about the X-

axis by an angle jzJ (Figure f3.1.1). Then any diagonal of length L and 

dir e c t i o n 6 i n the micro-structure w i l l be mapped into a diagonal of 

length 

L'2 = L 2sin 2ecos 2(z$ + L2cos2© 

= L 2(sin 20cos 2^ + cos 20) 

Thus L 1 i s longest when 0 = 0 or © = i r (L'= L) and i s shortest when 

0 = ir/2 or © = 3ir/2 (L 1 = Lcosjz)'). But since a s u f f i c e n t l y long diagonal 

i s such that LCOSJZJ" > for a l l other L-_, we see that L' at i t s shortest 

i s s t i l l longer than L-_* at i t s longest. The theorem follows 

immediately. 

So, for the pa r t i c u l a r case of precisely one s u f f i c i e n t l y long 

diagonal, we know that the longest diagonal of each texel i s the image 
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Examples of micro-structures with exactly one sufficiently long diagonal 

Figure f3.3.4 
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of the s u f f i c i e n t l y long diagonal of the micro-structure. This means 

that we can e f f e c t i v e l y ignore a l l of the points of any texel except 

those belonging to the longest diagonal, and i n doing so, ignore a l l of 

the diagonals of the micro-structure except the s u f f i c i e n t l y long one. 

Since the micro-structure i s randomly rotated before being placed on the 

surface, so i s the s u f f i c i e n t l y long diagonal. I f we then measure and 

record the length, L, and the d i r e c t i o n , 0, of each texel's longest 

diagonal, we w i l l have a l i s t , L - 0 - l i s t , s a t i s f y i n g a l l of the 

assumptions of theorem 3.1.1. We can then extract and a n from L-0-

l i s t i n exactly the way we did for the single line-segment case. 

To summarize b r i e f l y , an algorithm has been developed which 

extracts surface slant information from images of surfaces textured with 

1) "Dipoles" or micro-structures consisting of just a single l i n e -

segment 

2) "Thick dipoles" or micro-structures containing precisely one 

s u f f i c i e n t l y long diagonal. 

Furthermore, we note that 1) i s just a special case of 2). 

To allow treatment of a more natural class of micro-structures, we 

now relax our r e s t r i c t i o n on them to include micro-structures containing 

one or more s u f f i c i e n t l y long diagonal(s). 

One or More Diagonals 

Some examples of such micro-structures are shown i n Figure f3.3.5. 

The s i t u a t i o n i s now somewhat more d i f f i c u l t . The d i f f i c u l t y arises 

primarily because the longest diagonal of a texel may now be the image 

of any one of the s u f f i c i e n t l y long diagonals of the micro-structure. 
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This affects us i n the following way. 

Theorem 3.3.2: 
Let and 62 be two of the s u f f i c i e n t l y long diagonals of the 
micro-structure. Let the angle 1 between them (in the micro-
structure) be p. I f d i s the longest diagonal of a t e x e l , 
then the angle between d and the major axis of the e l l i p s e i s 
less than u/2. 

Proof: 
See Figure f3.3.6. Since dj and d2 are d i s t i n c t , p < it*. Without 

loss of generality, l e t the surface be t i l t e d about the x-axis. That 

i s , the major axis of the e l l i p s e i s the X-axis. Let the angle between 

61 and the X-axis be 0 a. Also without loss of generality, l e t 6 a be 

less than or equal to u/2 ( i f t h i s i s not true for d]_, i t w i l l be for 

62)- Then d must be the image of dj since the image of d j , d]/, w i l l be 

at least as long as the image of 62, $2'• L e t e2 ^ e t n e angle between 

d2 and the X-axis. Then 

Id-.' I = x 2 + y 2 

= L 2 c o s 2 0 a + L2sin2©acos2jr> 

|d 2 ' l = L 2cos 202 + L 2sin 292Cos 2j?) 

Hence ^ ' l 2 < Id]/I2 since ea < 62 

Note that |dj_'| = |d2'l only when © a = ©2 --n which case i t can be 

assumed that d i s the image of d^ without loss of generality. 

Referring back to equation (3) of Theorem 3.3.1, we know that 

tan© = tan©acos^ 

So tan© < tan(p/2)cosjz>" since © a < u/2 < ir/2 

tan© < tan (u/2) since 0 < jz5 < ir/2 

© < u/2 since 0 < ©, p/2 < ff/2 Q.E.D. 

and d2 are considered to be l i n e s rather than vectors. The "angle 
between them" i s considered to be the major angle of th e i r intersection 
(unless otherwise noted). 
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Figure for theorem f3.3.2 

Figure f3.3.6 
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This i s e a s i l y generalized to more than two diagonals. Note also that 

u/2 i s not the tightest bound, but i t i s our purpose merely to show that 

such a r e s t r i c t i o n e x i s t s . 

From theorems 3.3.1 and 3.1.1 we know that a l l of the data points 

i n L - 0 - l i s t s t i l l l i e on an e l l i p s e , but theorem 3.3.2 shows that not 

a l l of the e l l i p s e w i l l be f a i r l y represented. In f a c t , there may be no 

points at a l l at the minor axis of the e l l i p s e . 

Figure f3.3.7 shows an image of a surface textured with squares 

(which have two s u f f i c i e n t l y long diagonals). A polar plot of the L-0-

l i s t information for t h i s image i s shown i n Figure f3.3.8 i l l u s t r a t i n g 

the theorem. We w i l l , however, ignore t h i s gap i n our data and hope 

that enough data are available to accurately f i t an e l l i p s e to what we 

do have. I t should now be clear why we have decided to use a l e a s t -

squares, trigonometric approximation, which i s computationally a b i t 

expensive (especially when using LISP), rather than a computationally 

inexpensive smoothing of data by averaging, for example. The l e a s t -

squares method makes s t a t i s t i c a l assumptions only about the noise. A 

smoothing-by-averaging method, on the other hand, also assumes that the 

pr o b a b i l i t y of any given point on the e l l i p s e being represented i s equal 

to that of any other point. Theorem 3.3.2 shows us that t h i s i s not a 

wise assumption to make. I t should be noted that as the number of 

s u f f i c i e n t l y long diagonals of the micro-structure increases, the amount 

of e l l i p s e represented by the L - 0 - l i s t decreases. This leads to the 

paradoxical case of the micro-structure with i n f i n i t e l y many diagonals, 

a c i r c l e . For t h i s case, the algorithm f a l l s apart completely. The 

only point i n the L - 0 - l i s t for t h i s image i s the point at the end of the 
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major axis i n the range (-rf/2 to Tf/2) and yet we can e a s i l y determine 

the surface slant simply by f i t t i n g an e l l i p s e to any given texel (which 

w i l l be an e l l i p s e ) and analysing t h i s f i t i n the same way as we have 

been doing. The algorithm can be made to handle t h i s case simply by 

doing exactly that when the L - 0 - l i s t represents only one point on the 

e l l i p s e . Nevertheless, i t i s unpleasant to have to deal with a special 

case i n t h i s manner. 

Single surface results 

Pages 71-72 show two sample runs of the algorithm on some 

representative synthesized images. Given also are the actual values of 

and a n for comparison. 

More than One Surface 

In the beginning of t h i s section, i t was hinted that several 

surfaces (actually the image regions corresponding to these surfaces) 

could be segmented on the basis of t h e i r apparent texture. As was 

mentioned i n Chapter 1, such segmentation i s assumed. Nevertheless, to 

see i f i t i s possible, t h i s problem i s examined for t h i s texture class. 

Since the L - 0 - l i s t data of any given region corresponding to a surface 

l i e on an e l l i p s e unique to the surface, we may reasonably suggest that 

t h i s data may be used for the region detection task. Figure f3.3.9 

shows an image of a cube made up of surfaces l i k e Figure f3.3.2. A 

polar plot of the L - 0 - l i s t data for t h i s image i s shown i n Figure 

f3.3.10 which can be seen as three superimposed e l l i p s e s . For t h i s 

image, i t i s conceivable to detect the e l l i p s e s i n i t s L - 0 - l i s t . One 

way to detect these e l l i p s e s i s with a Hough transform (Hough,1962) that 
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maps e l l i p s e s into points i n some transform space. One need then simply 

look for accumulation points i n the transform space. However, two 

problems immediately become apparent. 

The f i r s t i s one of computational complexity. I f we assume that we 

have no information about the e l l i p s e s , except that they a l l have t h e i r 

origins at the co-ordinate o r i g i n , then the transform space must 

necessarily be three-dimensional (since there are three remaining 

parameters). 

The second problem i s much more f a t a l and persistent. I f the 

e l l i p s e were noiseless, t h i s Hough transform technique would work w e l l . 

As i t i s , we have found, experimentally, that the transform i s very 

sensitive to noise, and gives unexpected results. 

This second problem persists even i f we t r y to eliminate the f i r s t . 

We can do t h i s by noting that, since the same micro-structure i s used 

over the entire image, the length of the major axis w i l l be the same 

(and equal to the length of the micro-structure's s u f f i c i e n t l y long 

diagonal) for each e l l i p s e . We can estimate t h i s length to be the 

maximum L value found i n the L - 0 - l i s t . Hence, i f the e l l i p s e s are 

parameterized i n terms of the lengths of the major- and minor-axis and 

the rotation of the major-axis, o n, a two-dimensional transform space 

can now be used. Let us further assume that a has somehow been 

cor r e c t l y determined as w e l l . The transform space i s now one-

dimensional and, i f a l l were well i n the world, i t would now be a simple 

histogram problem. 

Nevertheless, i t i s easy to see why the second problem i s s t i l l 

present by looking at the following analysis. The transform w i l l 
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consist of evaluating the minor-axis length for each a n . Let us assume 

that we only have one e l l i p s e , then l e t us see i f we can detect i t . 

Consider those points near the ends of the major axis. Note that the 

lengths of a l l of these w i l l be less than the length of the major axis 

(as they should be) but due to the selection of the major axis length 

and the noise i n the points themselves, some lengths w i l l be much 

smaller. I t can be seen that, for these points, very small values of 

the minor-axis w i l l be obtained. Note that these are the correct values 

for these points; they do indeed l i e on very eccentric e l l i p s e s and not 

on the e l l i p s e we would l i k e to detect. Figure f3.3.11 i l l u s t r a t e s t h i s . 

We could t r y to correct t h i s problem by finding a better estimate for 

the major-axis length and by smoothing the data (we w i l l have to be 

careful that the smoothing algorithm does not t r y to smooth the e l l i p s e 

into a c i r c l e as averaging smoothers w i l l ) . We did not have much 

success with any of these solutions, however, so we decided that another 

approach i s c l e a r l y i n order. 

"We a l l have our moments"anonymous 

Fortunately, texture discrimination i s an old problem and much work 

has already been done on i t (see Chapter 2). As was mentioned i n the 

l a s t chapter, however, most of the work has been concerned with 

distinguishing d i f f e r e n t textures on the same surface (such as wheat 

f i e l d s from grass f i e l d s i n an a e r i a l image). The task considered i n 

t h i s thesis i s better expressed as distinguishing d i f f e r e n t surfaces 

that have the same (actual) texture on them. 

Before proceeding, l e t us re-emphasize that, although we are using 

the term "surface", we are act u a l l y practicing region detection at t h i s 
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stage of the analysis. Since the surface i s part of the scene (and not 

part of the image) i t w i l l be maintained that a surface has not been 

detected u n t i l i t s three-dimensional attributes (such as surface slant) 

can be described. 

Several researchers (Tomita et a l , 1973) (Wang et a l , 1979) have 

found that the second order moments of i n e r t i a of the texels form a good 

feature space for surface detection of t h i s kind. We can see why t h i s 

should be so by considering the case where the micro-structures are a l l 

c i r c l e s . Then the texels w i l l a l l be e l l i p s e s whose major axis i s i n 

the d i r e c t i o n of the l i n e that the surface has been t i l t e d about and 

whose minor axis i s i n the d i r e c t i o n of the surface's gradient vector. 

In such a case, the minimum angular i n e r t i a of a l l the texels on a given 

region w i l l be that taken about the major axis. The domain of micro-

structures for t h i s section may be thought of as polygons approximating 

c i r c l e s . So, rather than getting unique points i n the moment space for 

each class of texels on a region, s l i g h t l y scattered clusters i n the 

space are obtained. I f a texel i s described as a l i s t of points 

( ( x l r Y l ) (X2'Y2) ••• ( xn*yn)) which are the co-ordinates of the 

vertices within the t e x e l , then the moments of these vertices are given 

by: 

n 
Ixx = d/n) 2 ( Y i - y m ) 2 

i = l 

n 
I w = (1/n) 2 (xi - x m ) 2 

i=l 

n 
Ixy = d/n) 2 (*i - % ) (yi - y m) 

i=l 

where (x m,y m) are the co-ordinates of the vertices' centre of mass. For 

a more general d e f i n i t i o n see (Wang et al,1979). In Chapter 2, in the 
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section on structural analysis, we referred to the i j t n order moments, 

M i j . These are given by 

n 
Mij = l / n l ( x k - x m ) i ( y k y m ) J 

k=l 

Thus Mu = I x y 
M02 = Jxx 
M20 = lyy 

So, assume that we these moments have been computed for every texel 

i n the image. The task now i s to pick out the regions i n the image 

corresponding to the surfaces. Rather than constructing one-dimensional 

histograms of each moment (Tomita et al,1973), or computing the 

ec c e n t r i c i t y and d i r e c t i o n of each texel (Wang et a l , 1979), l e t us 

simply view the set of computed moments as points i n the three-space, 

I x x X Iyy X I X y , and then look for clusters i n t h i s space. 

Note that, i n so doing, we are making a l l of the usual clustering 

assumptions. One of these i s that the feature space w i l l indeed produce 

clusters separated by some threshold. In t h i s case, the metric 

(distance function) i s simply Euclidean distance, and the two works 

previously referenced give us reason to believe that the feature space 

i s useful. We are also relying heavily on our previous assumptions and 

our notion of texture. For example, the scene could conceivably be 

composed of as many surfaces as texels with one texel to a surface. 

This case c l e a r l y contradicts the d e f i n i t i o n of texture outlined i n 

Chapters 1 and 2. And of course, the assumption i s s t i l l made that only 

one micro-structure i s used. Note that i f the scene consists of two 

d i s t i n c t (in space) but i d e n t i c a l l y slanted surfaces, the clustering 

algorithm w i l l only see one surface. To ensure that segmentation occurs 
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in a meaningful way, i t w i l l be necessary to go back to the image and 

v e r i f y that the detected clus t e r indeed defines a single region. I f 

not, further processing w i l l have to take place. The discussion of 

these problems i s not within the scope of t h i s paper and t h i s 

implementation does not tackle them. The problem does e x i s t , however, 

and any complete scene analysis system w i l l need to apply i t s e l f to i t . 

' Keeping i n mind that these assumptions have been made, i t i s now 

possible to set about implementing a cluster analysis algorithm. Any 

algorithm, such as one of those described i n (Duda and Hart, 1973) or 

(Tou and Gonzalesz, 1974), would do here, since we have found the 

clusters to be widely separated. In the implementation, a simple 

algorithm known as the maximin-distance algorithm (Tou and Gonzalesz, 

1974) i s used. This served well for purposes of demonstration. For a 

large scene analysis system, however, a more dependable graph-theoretic 

algorithm, such as one of those described i n (Zahn, 1971) i s 

recommended. 

Figure f3.3.12 shows a plot of Iyy versus I x v taken of Figure 

f3.3.1 showing the good separation obtained even for t h i s two-

dimensional case. An example of the algorithm at work i s shown i n 

Figure f3.3.13. 

Now that the image i s divided up into regions, i t i s necessary only 

to determine the slant of each surface. This can be done one surface at 

a time since the techniques for handling the single surface case have 

already been described. An example of the entire process at work i s 

shown on pages 86 to 89. 
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* (grad i) 
* 
* 
* 
* H— 

* T _ + ~ + ~ + _ 
* ++ _+ =- T- _ 
* + _ + + + ++ T ~ -+ -
* _=- TTT- +-+ _ _-_ _=+ T T +-= 
* +T T=_ T H—+ - T ++ 
* + - -_ —_T _-_ T+T -_- TT_ 
* TT + + _ ++ _ +=_ _T+_T T 
* T4- T++ T+ - H—+ ++ + +T++ T 
* -=_+-_TTT+ =+ ++ T + +_TT+= ++++ T+=-T 
* +-H-TT TT += ++ T T += T+ ++ + +T ++ 
* -TTTT ++ T TT =- +T ++ +TT — 
* T- _-_ ++ _~ T_+ ~ +T 4+ T | ++ -
* += +T- ++ T ++- +T4+ +T TT 
* -_- TT +T+ T+ 
* T+ +_T+T 
* T 
* This is the input image 
* 
> This is the input image ok? 
* T 
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* FREE SPACE EXPAND 
* 
* 
* 
* +- _ _ 
* T_+ + +_ 
* ++ _+ =- T- _ 
* + _ + + + + + T ~ -+ -
* _=- TTT- +-+ _ _-_ _=+ T T +-= 
* T=_ T H—+ - T 
* ~_ —_ T _~_ T + T 

* + + _ + = _ 
* +-+ ' 
* T T * 
* 
* 
* 
* 
* 
* 
* Detected surface 

> Detected surface ok? 
* T 
> This surface is tilted by an angle phi= ±0.767009 
> about a line an angle sigma_n = -3.964055E-3 from the X-axis 
> Therefore, its gradient vector is given by 
> p = 3.820867E-3 or p = -3.820867E-3 
> q = 0.963873 q = -0.963873 
> 
> 
> actual value of phi = ±fl/4 » ±0.785398 
> 
> actual value of sigma n = 0 
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> 
> 
> 
> 
> 
> 
> 

> +T 
> + -
> IT + + _ 
> T-t— T++ T+ -
> -=_+-_TTT+ =+ -_ ++ 
> +++TT TT += ++ 
> -TTTT 4+ T _ TT 
> T- _-_ ++ _ T_+ 
> += +T- ++ T 
> -_- TT 
> T+ ̂ _ 
> 
> Detected surface 
> 
> Detected surface ok? 
* T 
> This surface i s t i l t e d by an angle phi= ±1.021549 
> about a l i n e an angle thetaO = -0.94459 from the X-axis 
> Therefore, i t s gradient vector i s given by 
> p = -1.323798 or p = 1.323798 
> q = 0.95753 q = -0.95753 
> 
> actual value of phi = ±rf/3 » ±1.047197 
> 
> actual value of sigma_n = -tan - 1(SQRT(2)) * -0.955316 
> 



89 

> 
> 
> 
> 
> 
> 
> 

> ++ 
> TT_ 
> _ T + _ T T 

> ++ + +T++ T 
> + +_TT+= ++-H- T+=-T 
> T T += T+ ++ + +T ++ 
> _=- +T ++ +TT — 
> +T 4+ T | ++ -
> ++- +T++ +T TT 
> +T+ T+ 
> +_T+T 
> T 
> Detected surface 
> 
> Detected surface ok? 
* T 
> This surface is tilted by an angle phi= ±0.923183 
> about a line an angle sigma_n = 0.868427 from the X-axis 
> Therefore, its gradient vector is given by 
> p = 1.00908 or p = -1.00908 
> q = 0.854031 q = -0.854031 
> 
> actual value of phi = ±ir/3 » ±1.047197 
> actual value of sigma_n = tan-1(SQRT(2)) » 0.94459 
> 
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Details of the implementation 

The process of detecting surface slant from texture i s composed of 

three major steps i n t h i s program: load the image, segment the image 

into regions corresponding to surfaces, and f i n a l l y compute the slant 

information for each surface. The "load image" module i s responsible 

for the pre-processing of the input image. The entire process i s 

i l l u s t r a t e d i n Figure f3.3.14. The purpose of the supervisor i s two­

f o l d : i t must maintain the flow of control and i t must transform data 

structures to allow communication between modules. 

Flow of control i s simple. The image i s f i r s t loaded. This 

information i s then passed to the region detector. The supervisor then 

passes one region at a time to the gradient vector calculation routines. 

The real need for the supervisor i s ensuring that each module 

receives the necessary information. The data structures used are shown 

in Figure f3.3.15. From the flow of control diagram, we see that the 

maximin cluster algorithm, for example, requires a l i s t of moments as 

input data. Output would consist of a l i s t of c l u s t e r s , each cluster 

being a l i s t of moments. However, a l i s t of clustered moments i s of no 

help i n computing the gradient vectors since they are not used nor even 

needed for t h i s task. Therefore, the fourth element of the "moments" 

data structure i s a "texel" data structure. This element i s simply 

carried along (but otherwise ignored) by the maximin cluster algorithm. 

The supervisor then "extracts" the texels from each cluster to form a 

region. 
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I image I 

I texel texel . . . texel | 
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Conclusions 

We have seen that surface slant can be computed with a structural 

analysis of the texels i n an image of the surface. This i s found to be 

possible under the assumptions that the surfaces i n the scene are 

planar, that exactly one micro-structure i s used, that the micro-

structure i s randomly rotated before being placed on the surface, and 

that the (orthographic) image i s pre-processable to y i e l d a l i s t of 

texels. The t i t l e of the section i s "Structural Approaches", but 

perhaps the algorithm should be examined a l i t t l e more cl o s e l y to see 

just why i t should be considered s t r u c t u r a l . 

While i t would be incorrect to say that the technique i s 

s t a t i s t i c a l ( p r o b a b i l i t i e s or other s t a t i s t i c a l values are not 

calculated at any time), i t would be correct to point out that i t r e l i e s 

on statistical^assumptions. In p a r t i c u l a r , the findings of t h i s section 

agree with Schatz 1 (Schatz,1977) r e s t r i c t e d version of Julesz' 

(Julesz, 1973) hypothesis concerning texture discrimination. That 

i s , the data, L - 0 - l i s t , that i s used to calculate the surface's gradient 

vector corresponds to the second order s t a t i s t i c s used by Julesz and 

Schatz. We also r e s t r i c t e d ourselves to those points connected by edges 

or diagonals (lines and v i r t u a l l i n e s (Schatz,1977)). For d e t a i l s of 

the work by Julesz and by Schatz see Chapter 2. 

The difference between our approach and thei r approach i s our 

treatment of the L - 0 - l i s t data as a function, L = F(0). We are not 

interested i n how often a given point, (L,0), occurs, as s t a t i s t i c a l 

approaches are, rather we are interested i n the nature of the function, 

F. I t i s t h i s interest that makes our approach a structural one. 
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3.4 STRUCTURAL APPROACHES; THE MACRO-STRUCTURE 

In the l a s t section an algorithm was developed for detecting 

surface slant from an image which has been pre-processed to y i e l d a l i s t 

of texels, where each texel had a structure containing surface slant 

information. This pre-processing stage i s a v a l i d assumption for the 

textures examined i n the l a s t section, except, perhaps, for the 

unconnected micro-structures, but i t i s not possible for a l l images. 

For example, the square texels i n Figure f3.4.1 are not e a s i l y 

discernible ( i t would be necessary to compute intersections of l i n e s , 

e t c . ) , and the l i n e texels of figure f3.4.2 do not appear to be very 

useful. Indeed, the useful information i n both cases seems to l i e i n 

the macro-structure of the texture. In t h i s case, the texels can be 

viewed as being l i n e segments only. Many successful l i n e finding 

algorithms have been proposed ( S h i r a i , 1973) (Horn, 1971) (O'Gorman and 

Clowes, 1973) so the texel detection assumption now s i t s on a firmer 

foundation than i t did before. In the section, one technique, a 

modified Hough transform, for analyzing the macro-structure w i l l be 

examined. 

"G r i d - l i k e " Textures 

I t w i l l be assumed that the image i s of a single surface, relying 

on the texture discrimination work described i n Chapter 2 to do so. The 

micro-structures are r e s t r i c t e d to l i n e segments of a r b i t r a r y length. 

There may be several such micro-structures for any given image. These 

micro-structures are placed on the l i n e s of an i n v i s i b l e square g r i d of 

fixed s p a t i a l frequency. This frequency i s the same i n both directions 

of the g r i d . Both Figures f3.4.1 and f3.4.2 are examples of t h i s kind 



"complete" g r i d texture 

Figure f3.4.1 



"line-segments" grid texture 

Figure f3.4.2 



"boxes" grid texture 

Figure f3.4.3 
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of texture. Another example i s shown i n Figure f3.4.3. Note that t h i s 

c l a s s of textures i s very s i m i l a r to that of (Render, 1979) discussed i n 

Chapter 2.2. The texture examined i n t h i s t h e s i s i s d i f f e r e n t i n that a 

square g r i d and a f i x e d s p a t i a l frequency are reguired, which i s not the 

case f o r Render's textures. Render uses Hough transforms to e x p l o i t the 

phenomenon of converging p a r a l l e l l i n e s i n persepective images. Since 

t h i s t h e s i s i s r e s t r i c t e d to orthographic images t h i s feature cannot be 

r e l i e d on. Nevertheless, Hough transforms are so natural for t h i s 

domain of textures that other features can e a s i l y be exploited, as was 

hinted i n Chapter 2.2. 

The plan here i s to examine the image and determine the nature of 

the parallelogram texels as if they existed. That i s , the nature of the 

images of the square micro-structures of Figure f3.4.3. Of course, only 

an image of t h i s p a r t i c u l a r f i g u r e w i l l a c t u a l l y contain such texels; 

the proposed program w i l l be required to " h a l l u c i n a t e " texels f o r the 

other images considered. This w i l l be done by using information 

obtained from a rho-theta Hough transform of the image. Then, assuming 

that the micro-structure i s a square, the gradient of the surface can be 

determined by analysing the transformation from micro-structure to 

t e x e l . In preparation, the next few paragraphs w i l l develop the 

r e l a t i o n s necessary to do so. 

Note that the lengths of the sides of such texels are related i n 

some way to the normal distances between the l i n e segments. The d e t a i l s 

of t h i s r e l a t i o n are required because the normal distances mentioned are 

r e a d i l y measurable i n the Hough transform of the image. The lengths, 

|LjJ and 11-21, of the sides of a parallelogram are given by: 
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|L]J = Idjl/cosoi and 

|L 2 I = |d 2l/cosor 2 

where 

Id^l i s the normal distance between sides of length | L 2 | 

|d 2| i s the normal distance between sides of length IL Î 

01 i s the angle between L4 and the normal to L 2 ( i . e . between L4 

and dj) 

0 2 i s the angle between L 2 and the normal to ( i . e . between L 2 

and d 2) 

This i s demonstrated i n Figure f 3 . 4 . 4 . 

I t w i l l be seen that |dj| and i t s d i r e c t i o n , 0 j , can be computed 

from the Hough transform of the image. The goal i s to use these values 

to determine the shape of the texels and, from t h i s and the knowledge of 

the micro-structure shape, to determine the gradient of the surface. 

Lj_ i s normal to d 2 and L 2 i s normal to dj_. So, referring to Figure 

f 3 . 4 . 5 , the, directions of L i and L 2 , pi and p 2 respectively, are given 

by 

e2 + tf/2 i f e2 < 0 

F i = 
e2 - ir/2 i f e2 > 0 

and 

Q1 + ir/2 i f Bi < 0 

F2 = 

01 - ir/2 i f 0 i > 0 

where 0j i s the d i r e c t i o n of d j . I t w i l l be seen shortly that d} and 0j 

are e a s i l y obtained from the Hough transform. I t i s , therefore, simple 

to calculate the cartesian co-ordinates of an "idealized" t e x e l , one 



The relationship between and d^ 

Figure f 3 . 4 . 4 



101 

7" 
//•I a 

Illustration of u^and u 2 

Figure f 3 . 4 . 5 
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corner of which is at the origin, from the polar co-ordinates, (Li,pi) 

The columns of P are interpreted to be cartesian vectors representing 

the sides of the texel. So P will be viewed as the picture or image of 

the square micro-structure. Now, (Mackworth, 1974) has shown that, 

knowing the "true shape" of a "surface" (read "micro-structure"), one 

can deduce the gradient vector of the surface from its image (read 

"texel"). In this case the true shape is given by: 

and the apparent shape is given by P (S for square, P for picture). 

So the task of determining surface slant is accomplished by 

applying Mackworth"s algorithm to S and P. The details involved in 

extracting the measures mentioned will now be discussed. 

The application of theorem 3.4.1 is required to get the values of 

|L]_|, IL2I, pi, and p 2 since a texel may not exist. However, i t is 

s t i l l necessary to compute d^ and d 2, the normal-distance-between-

parallel-lines vectors. 

Note first that i t is a property of the orthographic imaging 

process that line segments map into line segments and parallel line 

segments map into parallel line segments. This assures that the domain 

of discourse is not vacuous. 

The intention is to extract di and d 2 from a rho-theta Hough 

transform (see Chapter 2 for details of the transform). So each line 

and (L 2,p 2). If p 2 < pi, we can represent the texel by the matrix 
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segment is first parameterized in terms of rho and 0. In our 

implementation this step must actually be carried out since the input is 

a l i s t of line-segments represented as a l i s t of end points (the data 

structures used are described later in this section). However, if the 

input image is in the form of an array of pixels, then i t is conceivable 

that the line detection stage, assumed in this thesis, will be performed 

with the aid of a rho-theta Hough transform. See Chapter 2 for details 

of using the Hough transform as a line finder. In this case i t would 

not be necessary to reconvert the data into the endpoint l i s t 

representation used in this thesis. Input may simply be the 

accumulation points in rho-theta space, as this is precisely the 

information we want. So, having done this, the broken lines vanish and 

only solid lines result in the parameterization For example, a polar-

plot of the parameterization of Figure f3.4.6 is shown in Figure f3.4.7. 

Notice that this transform is exactly that of the complete grid 

"underlying" Figure f3.4.6. Each set of parallel lines in the image 

contains identical, unique to the set, values of theta (0). It is now 

pointed out that the normal distance between lines is simply the 

difference, delta-rho, in the value, rho, between adjacent points in the 

transform. 

This task, then, is simple; group the parameterized points by 0 

and, for each group, measure delta-rho. Then d^ and 62 are set to the 

the two delta-rhos and 0j and © 2 are set to the corresponding 0s from 

the transform. The angles u^ and U 2 are then set to the complements of 

© 2 and ©^ respectively. Then 
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Figure f3.4.6 
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o i = Hi - e l 
and 

C 2 = H2 " e 2 

(see theorem 3.4.1 and Figures f3.4.4 and f3.4.5 again) 

F i n a l l y , L]_ = d]_ / cos c?i 

L 2 = d 2 / cos a2 

as dictated by theorem 3.4.1. The matrix P i s then constructed as 

described previously. Then using a specialized version of Mackworth's 

algorithm (see the appendix to t h i s section), the amount of s l a n t , jzJ, 

and the d i r e c t i o n of the gradient vector, a are calculated. 

Results 

This system has been implemented and tested on several images. We 

found the results to be somewhat more accurate than the results of the 

section on micro-structural analysis. In that section, the angles and 

an were obtained to within ±0.09 radians. The macro-structural analysis 

implementation obtained the angles tf and a to within ±0.01 radians. 

This difference i n accuracy may be attributed to the s t a t i s t i c a l nature 

of the algorithm of that section. No such s t a t i s t i c a l assumptions are 

made here (the assumption of "enough" texels i s not made nor are values 

such as crn guessed at.) Some sample runs are given on the following 

pages. 

The entire algorithm i s i l l u s t r a t e d i n figure f3.4.8. The 

supervisor serves the same purpose here as i n the l a s t section. For a 

noiseless image, the values of the 0s and delta-rhos for each group 

would be i d e n t i c a l . Due to noise, however, i t was found necessary to 
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calculate the value of theta for each group's centroicTand the average 

value of delta-rho. 

The data-structures used are illustrated in figure f3.4.9. Note 

that the "image" data structure is the same as in the last section, 

except that each texel contains only two points, the end-points of each 

line segment. Two sample runs are shown on pages 110-111. 
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Flow of Control for the Macro-structural Analysis Algorithm 

figure f3.4.8 
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Figure f3.4.9 



* (supervisor (clusters (parametrize (image> 
* THERE ARE 1 PLOTS IN THE FILE. 
* ENTER NUMBER OF PLOT TO BE DISPLAYED. * 1 * 
* VECR CONTAINS EIGENVECTORS 
* 0.710198 0.704001 
* -0.704002 0.710199 
* . 
* EVR CONTAINS EIGENVALUES 
* 4.417268 2.195629 
* 
* 

* 
> The actual value of phi = ±1.047196 * 
> The actual value of sigma = -0.785398 * 



* (supervisor (clusters (parametrize (image> 
* THERE ARE 1 PLOTS IN THE FILE. 
* ENTER NUMBER OF PLOT TO BE DISPLAYED. * 1 * 
* VECR CONTAINS EIGENVECTORS 
* 0.881348 -0.472472 
* 0.472467 0.881346 

* EVR CONTAINS EIGENVALUES 
* 17.906174 14.963252 
* 
* 

1 p P P 

1 p P P 

1 p P P 

1 p P P 

1 p P P 

1 p P P 

phi = ±0.581486 > 
* 
> sigma = 1.078706 

p L-l 

p P P 

p. P P 

p P P 

p P P 

p P P 

n P P 

* 
> The actual value of phi = ±0.523598 * 
> The actual value of sigma = 0.942477 * 
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4. AN INTERPRETATION OF THE RESULTS 

4.1 SUMMARY 

The previous chapter examined texture from three different points 

of view: 

- statistical analysis 

- micro-structural analysis 

- macro-structural analysis 

Section 3.1, the introduction to the chapter, defined "orthographic 

projection" and proved a theorem illustrating the foreshortening 

property of this projection. It was also noted that this property is 

not sufficient to distinguish between Necker reversals of a scene. 

Statistical approaches to detecting surface slant from texture 

measures were discussed in Section 3.2. These measures were in the form 

of 2x2 co-occurence matrices and were applied to images of regular dots 

and of circles. It was concluded that such a blind application of 

statistical techniques is not very useful to the problem of detecting 

surface slant, due to data from complex images that proved difficult to 

interpret. A theorem was then proved stating that there is no 

directionality in the co-occurence matrices computed for images of truly 

random textures. It was concluded from this theorem that co-occurrence 

matrices can not be used to determine surface slant from such images. 

Section 3.3 examined the analysis of the texels 1 structures. It 

was assumed that each texel contained a line (or virtual line) which is 

identifiable as the image of a given line (or virtual line) in the 

micro-structure. In the algorithm developed within this section, the 
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presence of a sufficiently long diagonal was required to assure an 

identifiable line in the texel. 

The use of the macro-structure of a texture was examined in Section 

3.4. Grid-like textures were assumed; they were analysed by determining 

the shape of the texels as _if they existed. This was accomplished by 

applying a Hough transformation to the image and retrieving the needed 

information from the resulting transformed image. Then, assuming the 

micro-structure to be a square, the gradient of the surface was computed 

with an algorithm due to Mackworth. 

4.2 FALLACIES, OR WHY 3.2, 3.3, AND 3.4 ALL START WITH 3 

At first glance, these 3 approaches are quite independent of one 

another. A closer look reveals marked similarities in the underlying 

assumptions. 

The Fallacy of the Statistical-Structural Dichotomy 

The texture of randomly, uniformly distributed dots considered in 

theorem 3.2.1 (the non-directionality of random textures) can be 

described as one having a micro-structure consisting of a dot of 

negligible size and a macro-structure defined as randomly distributed 

micro-structures on a surface. In light of Sections 3.3 and 3.4, 

neither of these structures is useful. Hence, i t is not surprising that 

statistical techniques f a i l on this image as well. Throughout Chapter 

3.2, the use of second order statistics was "blind", that is, they were 

applied over the whole image just to "see what could be seen". 
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Admittedly, not much is seen. But suppose that more judicious use is 

made of them, as i t is in (Schatz, 1978). Schatz (see Chapter 2 for 

details) considers only the second order statistics taken for end points 

of lines or "virtual" lines. This is, effectively, the same information 

that is calculated and used in Chapter 3.3. In fact, this thesis 

maintains that second order statistics are best thought of as dipole 

structures in the image. It is true that i t would be hard to extract 

just what is needed from Schatz1 data since the concept of "longest 

diagonal" will get buried in a l l the other length measurements and that 

Schatz is interested in the occurrence statistics, whereas our interest 

is in the length as a function of direction, but these are largely 

matters of proposed application. 

So Schatz' statistical work is, in some sense, micro-structural 

analysis since statistics are confined to pairs of points connected by 

structures (lines) and the micro-structural analysis (Chapter 3.3) is, 

in some sense, statistical since the L-0-list can be reegarded as 

statistical measures taken of the texels. 

The Fallacy of the Micro/Macro-Structure Dichotomy 

Similarily, the distinction between micro- and macro-structure 

becomes less well defined as i t is examined. There was l i t t l e effort 

involved in distinguishing micro- from macro-structure in Chapter 3.3. 

The texels were simply considered to be the "connected" line segments 

(although we did wave our hands and allow unconnected texels). The 

problem arises when the connections are not so convenient. Figure 

f4.2.1, for example, may be considered to be dots arranged in a complex 



Hierarchical texture I 

Figure f4.2.1 
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macro-structure. However, i t may be more profitable to consider i t as 

square texels, made up of dots, arranged in a simple macro-structure, 

namely a square. Note that the labelling of macro- and micro- structure 

depends on the scale of the image. For example, Figure f4.2.1 may just 

be a micro-structure of Figure f4.2.2. 

In fact, this thesis proposes that a macro-structure is best 

expressed as a micro-structure, and this is precisely what is done in 

Chapter 3.4 when the dimensions of a parallelogram texel are found, even 

though i t may not exist. 

This thesis also maintains that the labels "micro-structure" and 

"macro-structure" are misleading and may be forcing the acceptance of an 

unnatural view of texture. Certainly, a l l of the views discussed in 

Chapter 2.1 have fallen into this trap. Since there is no real 

distinction between micro- and macro- structure, i t is suggested that i t 

would be best to express a texture as nested structures, a l l of which 

are expressed as micro-structures. For example, Figure f4.2.2 should be 

described as "a (square of (squares of (squares of dots)))". It would 

then be possible for a program (or user) to decide on what level a 

"texel" should exist. 

Under this interpretation, then, a l l of the techniques of the last 

chapter are structural. They appear different at first because each 

constructed an art i f i c i a l boundary to the level of structural analysis 

i t would undertake. Now, the claim is not made that i t is impossible to 

do any sort of non-structural statistical analysis of texture, but i t is 

claimed that such an analysis has no place in the domains this thesis is 

restricted to. This appears to be due to the nature of the orthographic 

imaging process and is discussed in the next chapter. 
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5. CONCLUSION 

Texture has been shown to be a useful cue for the detection of 

surface slant in orthographic images. Texture is used by applying 

structural analysis techniques to i t , determining surface slant by 

relying on the "foreshortening" property of the orthographic imaging 

process (see theorem 3.1.1). In a l l cases this has been done without 

considering texture gradient at a l l . As mentioned in Chapter 2, a l l 

previous works described have used texture gradient since they assumed a 

perspective imaging process. 

Similarily, purely statistical techniques were found not to be 

useful in the domain of apparent textures under orthographic 

projection. Let us point out, however, that i f the statistics (notably 

first and second order statistics) changed in some determinable way with 

the distance of the textured object from the viewer, then surface slant 

could be determined by a purely statistical analysis. This _is the case 

for perspective images and Bajcsy uses the change in first-order 

statistics (texture gradient) in her work, as does Gibson (see Chapter 

2). This is not the case for orthographic projections since the 

location of the viewer is indeterminate on the Z-axis (see Chapter 3.1). 

We have put forth several opinions suggesting a "nested" structural 

description of texture. It was found that this notion clashes with 

previous definitions (see Chapter 2) which defined texture in terms of a 

micro-structure and a macro-structure. It was also found that the new 

definition makes difficulties such as texel determination vanish by 

making them non-problems. One reason for the lack of greater progress 

in texture and the lack of acceptance of texture by related concerns in 

scene analysis is the unavailability of such a definition. It is in the 
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spirit of providing a better basis for texture research, then, that we 

propose i t . 

5.1 DIRECTIONS FOR FURTHER RESEARCH 

Extensions 

Immediate extensions of this work would be to relax the various 

assumptions made throughout the paper. Such extensions might include: 

Incorporation of "Real-World" Textures 

This would basically take the form of introducing variation into the 

strictly structural textures mentioned. For example, random, many-sided 

polygons distributed uniformly over a surface could simulate cork-board 

or plastered-wall texture. Pebble walls and concrete walks are of the 

type of texture studied in Chapter 3.3 but with uneven "texels". 

However, many man-made surfaces, such as tiled floors, woven cloth, and 

windowed building walls, are textured in the way studied in Chapter 3.4 

with l i t t l e or no changes. These, too, should be studied more closely. 

Non-planar Surfaces 

This would probably present a very difficult problem for the class 

of texture examined in Chapter 3.3 since so l i t t l e information is 

available "locally" in the image. In Chapter 3.3, we computed the 

surface slant from texture measures made over the entire surface. We 

relied on many such measures to accurately f i t an ellipse to the data. 

Hence, the technique of that chapter would not be applicable to non-
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planar surfaces. As (Kender, 1979) also points out, such processing 

would be in the manner of (Woodham, 1977). 

However, non-planar surfaces should present l i t t l e difficulty i f 

the texture is "continuous", as the grid-like textures of Chapter 3.4 

are. This class of textures then, would be a logical starting point for 

such work. Such textures are often used in line drawings by artists and 

workers in computer graphics precisely because the surface gradient and 

curvature are so easily recovered. 

Perspective Projections 

This paper has dealt solely with orthographic projections and, while 

this is a good approximation to many "real" images that one may want to 

deal with, i t is not a valid assumption for a l l cases. In fact, a l l 

single-camera, fixed-viewpoint images are perspective images and we 

should be able to deal with these. It is not clear to us how the 

algorithms in this paper could be generalized but we do not doubt that 

they could be since the foreshortening aspect of orthographic 

projections is also a part of perspective projections. Generalization 

to perspective images is a promising extension, for, as Bajcsy and 

Kender have discovered, there is much more information present due to 

the fixed position of the viewer. 
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Formalize the D e f i n i t i o n 

Our d e f i n i t i o n of texture as "nested" structures i s very informal. 

We f e e l that t h i s d e f i n i t i o n i s important enough to require 

formalization. I t would then be necessary to explore the power and 

r e s t r i c t i o n s of the d e f i n i t i o n and to apply i t to such tasks as texture 

description and generation. 

Application to the Origami World 

The origami world was introduced to i l l u s t r a t e our motivations i n 

Chapter 1. However, the application of our work to t h i s domain i s not 

as straight forward as we may have led the reader to believe. The 

d i f f i c u l t y i s due mainly to the i n a b i l i t y of texture analysis to 

distinguish between Necker reversals. We are not saying that i t should, 

though. Nevertheless, t h i s does introduce some complications. Let us 

look again at our "cube" example. Figure f5.1.1 i l l u s t r a t e s the s i x 

gradient values that could be obtained from such a cube. But how are we 

to determine that the gradient configurations for the l a b e l l i n g of 

Figure f5.1.1 are given by Figure f5.1.2 a) and not by Figure f5.1.2 b)? 

The answer i s that we must look again at the l a b e l l i n g and see which of 

the possible gradient configurations are "consistent" (Mackworth, 1973). 

Note that none of the configurations may be consistent. In t h i s case, 

we have determined that the l a b e l l i n g i s not correct for the given 

image. 
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"cube" labelling and gradients 

Figure f5.1.1 
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Two "possible" gradient configurations of Figure f5.1.1 

Figure f5.1.2 
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5.2 SYNOPSIS 

Summing up, then, several algorithms operating on several classes 

of textures have been presented. It has been decided that these classes 

are not actually distinct, but that the distinction is forced by the 

currently held definition of texture. In light of these results, we 

have proposed a new definition of texture which avoids this class 

distinction. 

Several directions for further study, including an application to a 

problem which served as a motivation for this thesis, have been 

suggested. It is hoped that the reader will think seriously about at 

least one of these problems, for only by confronting such problems will 

(s)he gain a real feeling for the problems inherent in determining the 

nature of a scene from its image. 
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6. APPENDICES 

6.1 APPENDIX TO 2.2 

Derivation of the rho-theta Equation of a_ Line 

Referring to Figure f6.6.1, we note that a point X = (x,y) i s on 

the l i n e precisely when the vector, X-N i s perpendicular to the vector, 

N. That i s , when, 

(X-N)'N = 0 

X«N - N'N =0 

X-N = N«N 

X«N = |N|2 

X'N = rho 2 

(x,y)•(rho*cos©,rho*sin©) = rho 2 

x*rho*cos© + y*rho*sin© = rho 2 

xcos© + ysin© = rho 

Which i s therefore the rho-theta equation of the l i n e . 



Rho-theta equation of a line 

Figure f6.1.1 
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6.2 APPENDIX TO 3.3 

Least Squares Fit of Data to an Ellipse 

Theorem 3.1.1 gives us good reason to believe that our data, L-0-

l i s t , lies on ellipse with the equation: 

F(6;a,b) = r 2 

= (a2b2) / [a 2sin 2 (0-crn) + b 2cos 2 (0-cn) ] (1) 

where a n is the angle that the major axis of the ellipse makes with the 

line, 6=0. 

Our task here is to determine a and b. In order to do so, i t will 

be convenient to express F(0) in a form that depends linearly on its 

parameters. Thus, let us not use F(0) = r 2 , but rather F(0) = 1/r2. 

Then 

F(0;a,b) = 1/r2 = [sin 2(0-a n)] / b 2 + [cos2(0-on)] / a 2 

F(0;c 1,c 2) = ctfi(9) + c2)rf2(0) (2) 

where c^ = l/b2 c 2 = 1/a2 

^(0) = sin 2(0-a n) 

tf2(0) = cos2(0-an) 

So we will be content to determine c^ and c 2 and, from them, a and 

b. To get a least-squares approximation, we wish to minimize the sum of 

the squares of the errors. That is, we wish to minimize 
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n 
E(clfc2) = 2 [fi - F(e i;c 1,c 2)] 2 

i=l 

(Conte and de Boor,1965; pg.241-246) 

where = l / L ^ 2 

n = number of elements in L-d-list 

(Li,6i) is the i t n element of L-d-list 

It should be pointed out that we have made a major compromise by 

insisting on the linearly dependent form. Ideally, we would like to 

minimize 

n 
1 [Li - r ] 2 . 
1=1 

With F(0) = 1/r2 we are actually minimizing 

n 
2 [ l / L i 2 - 1/r 2] 2. 
1=1 

This "weights" the small values of Lj and r more than large values, 

hence the data will f i t the minor-axis part of the ellipse found by this 

method better than the rest of the ellipse. Nevertheless, we will 

continue using this method because of its ease of applicability. 

Since E( C},c 2) is continuously differentiable with respect to c^ 

and c 2, we can detect the minimum at the point where the 1 s t partial 

derivatives vanish. That is 
n 

dE(c 1,c 2)/dc i = T d[fi - F(6 ic 1,c 2)] 2/dc i 

i=l 
n 

= "2 2 [fi - F(e ic 1,c 2)] dF(6 i;c 1,c 2)/dcj (3) 
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Now 
dF(e i;c 1,c 2 ) / d C j = d[(cinJi(ei) + c 2 * * 2 ( e i ) ] / d C j 

= ^ j ( 6 i ) (4) 

So substituting (4) into (3) we get 

n 
-2 T [fi - F(e ic 1,c 2)](zJ i(e i) = 0 

i= l 

And substituting (2) into t h i s we get 

n n n 
c i l ^ j ( 6 i ) ^ i ( 6 i ) + c 2 2 r f j ( e i ) jtJ 2(9i) = I f i ^ j ( 6 i ) 

i=l i =l i=l 
Hence we have a system of two li n e a r equations (j=l,2) in two unknowns 

( c i , c 2 ) . This system i s then solved using Gaussian elimination (Conte 

and de Boor,1965;pg 110-127). 
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6.3 APPENDIX TO 3.4 

Orientation of a Surface from True Shape and Projected Shape 

This is taken nearly verbatim from (Mackworth, 1974). 

The orthographic imaging process may be given as a matrix 

transformation by: 

P= (tilt)(rotation)(scale)F 

where 

P is of dimensions 2*(n-l) and contains the co-ordinates of a l l n 
vertices except the pair at the origin. 

F is like P but contains the vertices of the true face. 

Ik 0̂  
(scale) = [ 

I 0 k 

cos(r) sin(r) 
(rotation) = 

-sin(r) cos(r) 
< \ 

fcos(o) -sin(a) \ fcos(fi) o\ / cos (a) sin (a) 
(tilt) = ; 

^sin(a) cos (a) J ^0 1̂  y-sin(a) cos (a) 

See Figure f6.3.1 (also from (Mackworth, 1974)). 

In our case, F represents a square and is given by: 

1 0 
F = [ | which is the identity matrix 

0 1 

So P = (tilt)(rotation)(scale). Now from P, we would like to obtain the 

direction and magnitude of the gradient vector, a and tan(0) 



"squashing" effect of the orthographic projection 

Figure f6.3.1 
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respectively. 

We first compute r as follows: 

(tilt)(rotation)(scale) = P 

(tilt)(scale)(rotation) =P 

(tilt)(scale) = P(rotation)- 1 

_ / j l l 312 

\ 321 322 

Since (tilt) and (scale) commute and are both symmetric then the 

right hand side must also be symmetric: 
1 hn n12\ /cos(r) -sin(r) 

^ h21 h22/ ysin(r) cos(r) 

That is, -pjjsinCr) + p 1 2cos(r) = p 2icos(r) + p 2 2sin(r) 

so tan(r) = (p 1 2 - P21) / (Pn + P22) 

Now, from J we compute the eigenvectors and the eigenvalues which must 

be 

Ei = (cos (a), sin (a)) and X i = kcos(jrf) 

E2 = (-sin (a), cos (a)) and X2 = k 

(see Figure f6.3.1 again) 

Hence tf = cos-1 ( V ] / . X 2 ) and a = (E]_ (1)/E2(2)) . 
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