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Abstract 

We propose bottom-up support for modeling crosscutting structure in U M L by 
adding a simple join point model to the meta-model. This supports buil t- in cross-
cutting modeling constructs such as class and sequence diagrams, collaborations, 
and state machines. It also facilitates adding new kinds of crosscutting modeling 
constructs such inter-type declarations and advice. 

A simple planner tool produces a uniform representation of the crosscut
ting structure, which can then be displayed or analyzed in a variety of ways. We 
demonstrate a couple of simple automated analysis tools which take advantage of 
the exposed crosscutting structure. We also discuss how support for advice could be 
added to the meta-model and planner, and the semantic differences between advice 
in U M L and Aspect J . 
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Chap te r 1 

Introduction 

The Unified Model ing Language ( U M L ) provides support for modeling a system 

from different perspectives [24]. Some of these perspectives have a hierarchical 

relationship to each other, such as package and class diagrams. Others have a 

crosscutting relationship [19, 23], whereby a given element may appear in both 

diagrams, wi th each diagram only partially specifying the element. For example, 

a sequence diagram can crosscut a class diagram, in that it may include calls to 

methods from multiple classes [14, 10]; collaboration diagrams can crosscut class and 

sequence diagrams [33]; statecharts can crosscut all the others. There have also been 

proposals to extend U M L wi th new crosscutting modeling constructs such as aspects, 

advice, inter-type declarations (ITDs) and role bindings [1, 16, 20, 26, 32, 35, 39]. 

Model ing in U M L has gotten a boost from the adoption by the O M G of 

standards for the specification of notation and semantics, and the development of 

open-source modeling frameworks such as E M F [29] and U M L 2 [30]. Such frame

works enable the creation of more task-specific, less bloated modeling tools than 

what is generally available commercially. Despite the growing popularity of U M L , 

it s t i l l has a number of strong drawbacks, in particular the misalignment between 

the feature-oriented requirements and object-oriented design and code, as discussed 

by Clarke et. al. in [5]. 
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Aspect-oriented programming (AOP) is an area that focused initially on sup

port for crosscutting in code. In code, crosscutting can cause a single concept to 

have to be implemented in multiple classes and multiple locations in code, because 

of the way the system has been modularized. AOP enables such concerns to be 

implemented in a modular rather than scattered and tangled fashion. With mod

eling, we take scattering to mean that the model-level implementation of a single 

concept is spread across multiple diagrams of the same kind (e.g. many methods in 

a class diagram). But because UML already provides crosscutting diagram kinds, 

crosscutting structure can already be modularized in UML (e.g. a sequence diagram 

and a class diagram can modularize concerns that crosscut each other). 

Our work was partially motivated by observing the difficulty of adding pat

tern composition support to existing UML tools. Prior work in AOP has shown 

that many patterns are easier to implement using Aspect J [9]. We show how we 

can achieve the same kind of benefits from aspect-orientation for patterns during 

modeling by introducing a join point model (JPM) to the UML meta-model. We 

also present a way in which we can support other forms of crosscutting structure in 

UML. So rather than using modeling to support AOP [15, 16], our focus is on using 

the central mechanism of AOP to support modeling. 

In this work we show that the modeling of crosscutting relationships within 

UML diagrams such as those mentioned above can be supported by using a join point 

model. We propose bottom-up support for crosscutting in UML, by adding a simple 

JPM to the UML meta-model. Our enhanced meta-model supports display and 

automated analysis of both pre-existing and new forms of crosscutting structure 

between elements in UML diagrams. We implement a simple tool (which we call 

the planner) which exposes the crosscutting structure in the model. Through a 

number of examples, we show how the JPM makes crosscutting structure explicit 

and simplifies implementation of analysis tools. 

In AOP, weaving is defined as the coordination of interactions between the 
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crosscutting concerns. In A O P languages like AspectJ , this involves ensuring that 

advice runs when it should and inserting inter-type declarations at their target 

locations. This is done in two phases, the planner followed by the munger — the 

planner identifies the actual join points at which the concerns crosscut, and the 

munger implements the interaction (e.g. by modifying execution, modifying code, 

or modifying the model). 

In this thesis, we present a planner tool that provides simple coordination 

of crosscutting structure in U M L models. B y providing a uniform representation 

of the interactions between crosscutting elements, our planner makes it easier to 

implement model analysis and display tools. The planner records its results by 

associating wi th each model element a set of all the other model elements with 

which it crosscuts. Once the pair-wise crosscutting structure is collected into these 

sets, it can be analyzed and presented in a variety of ways. 

In order to understand crosscutting relationships as they occur in modeling, 

and how they affect the design of the system as a whole, we need to be able to 

represent the relationships between diagrams in a more coherent way. U M L models 

— in particular large, industrial-sized U M L models — are often difficult to work 

with, at least in part due to the lack of information in one diagram on the behaviour 

or structure defined in another. What we would like to see are tools that help the 

modeler see the big picture, and the place of specific elements wi th in it. This work 

presents a framework and a planner tool that would simplify implementation of 

analysis tools that would help the modeler see the big picture. We also discuss two 

simple analysis tools that we have implemented. We do not propose a graphical no

tation for showing crosscutting relationships; the crosscutting relationships exposed 

by our planner can be displayed in any number of ways, and examining which is 

better is left to future work. 

The contributions of this work are to show that (i) the crosscutting structure 

of several traditional modeling relationships, as well as newer aspect-oriented mod-
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eling relationships, can be supported by a meta-model enhanced with a simple JPM, 

(ii) traversing the model to collect the crosscutting structure (planning) is straight

forward, and (iii) the combination of (i) and (ii) makes it easy for modeling tool 

implementers to create tools that access, analyze and display crosscutting relation

ships of interest. We also present (iv) a planner tool which exposes the crosscutting 

structure in the model for use by the tools mentioned in (iii). 

The rest of this document is structured as follows. Chapter 2 goes into 

detail about the related work, setting up the context for our work. Chapter 3 

provides a background on AOP and explains the major concepts that will be used 

in this thesis. Chapter 4 introduces a couple of examples, used in the subsequent 

chapters. Chapter 5 describes the additions we made to the meta-model, as well as 

the reasons behind these choices. Chapter 6 talks about the implementation of our 

planner tool. Chapter 7 uses the examples introduced in Chapter 4 to show how our 

planner would help answer some questions we thought would be pertinent to model 

analysis. Chapter 8 concludes the discussion with a summary and some suggestions 

for future work. 
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Chap te r 2 

Related Work 

There are two streams of research related specifically to our work. The first looks 

at explicitly adding aspects or A O P concepts to U M L , either by using the extension 

mechanisms provided in U M L , or by changing the U M L meta-model directly. The 

second looks at improving the design process by allowing the modeler to decompose 

the design into independent components, and then providing means to compose the 

different components or diagrams, which helps alleviate problems associated with 

some forms of crosscutting. 

2 . 1 Adding Support for AOP to UML 

2.1.1 S t a n d a r d E x t e n s i o n M e c h a n i s m s 

The following proposals use the standard extension mechanisms provided by U M L 

to support aspects or aspect-oriented extensions. 

Stein et al. [35] introduce the concept of weaving to the extended meta-

model of U M L through the use of stereotypes. The work deals wi th both structural 

crosscutting in the form of introductions, and behavioural crosscutting in the form 

of advice. The behavioural crosscutting case is closest to our work, so we wi l l focus 

on it in our discussion. The base (crosscut) and advice (crosscutting) behaviours, 

5 



specified by sequence diagrams, can be merged to display the final expected behav

ior. This involves split t ing apart the base sequences at the join points, and later 

composing the sequence wi th the crosscutting behaviour included at each of the 

join points affected. The set of calls in a sequence may need to be totally ordered 

for weaving to guarantee preservation of behaviour, which is computationally ex

pensive. The authors use stereotypes to imitate the advice and pointcut constructs 

of Aspect J , and explicit weaving instructions to specify composition of behaviours, 

thus forcing the modeler to think at a lower level of abstraction. 

Pawlak presents a U M L notation for designing aspect-oriented applications 

[26]. In this work, he introduces three new concepts to U M L : groups, pointcut 

relations, and aspect-classes. Groups are used to specify base objects in an aspect-

oriented context. Pointcut relations define crosscuts within the program, l inking 

aspect-methods to points in the base class. Aspect-classes implement extensions of 

the base program semantics at points denoted by pointcut relations, and contain 

both regular and aspect-methods. Stereotypes are used to support the use of all of 

these new modeling elements. 

Ho and Jezequel present a toolkit for building application-specific weavers 

for generating detailed design models from high-level aspect-oriented U M L models 

[12]. These weavers are implemented as model transformations — each weaving step 

is a transformation applied to a U M L model. Transformations are specified by the 

designer by explicitly composing a set of operators available from the toolkit. The 

authors use buil t- in extension mechanisms in U M L , namely stereotypes, tag values, 

and design pattern occurrences, to add non-functional information or crosscutting 

behavior to base model elements. This information is then read by the appropriate 

weaver, and applied during the relevant weaving step. 

Jezequel and Plouzeau discuss how features of a U M L model can be orga

nized around the notions of quality of service contracts and aspects [15]. Contracts 

are modeled in U M L using a small set of stereotypes, and specify non-functional 

6 



properties. Aspects are represented using parameterized collaborations and trans

formation rules, and specify how contracts can be implemented. Unlike the above 

work, the authors here take the approach that in order for aspects to be reusable, the 

join points have to be specified separately. Now there are three entities: the target 

model, aspect, and join point definition. O C L is used to specify the transformations 

that take place during weaving. 

Suzuki and Yamamoto add new elements for the aspect and woven class us

ing stereotypes, and reuse an existing element for the aspect-class relationship [38]. 

A n aspect is shown as a class wi th an "aspect" stereotype, and may contain op

erations wi th the stereotype "weave", which can represent either introductions or 

advice. They use the realization relationship to represent the aspect-class depen

dency. Classes wi th aspects woven into them are shown using the "woven class" 

stereotype. The main contribution of this work, however, is the development of the 

U X F / a , an extension to the U X F ( U M L eXchange Format), an X M L - b a s e d language 

for describing U M L models. W i t h U X F / a a modeler can add aspect information to 

models, and the authors have developed translators that allow U M L aspect models 

to be shown in popular C A S E tools such as Rational Rose and MagicDraw. 

2.1.2 M e t a - M o d e l Changes 

The work discussed in this section uses extensions to the U M L meta-model to sup

port aspects or aspect-oriented extensions. 

Kande argues that aspects need to be first-class elements in U M L [16]. His 

work is important to us because it shows that others have considered, and suc

cessfully argued for, the approach of introducing weaving or crosscutting as a basic 

concept in U M L , instead of using extension mechanisms. He claims that the com

position of a standard U M L model with an aspect model does not do a good job of 

modularizing the separate concerns — the elements in the design model are coupled 

more than they would be in the code. In addition, the composed model does not 
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communicate the abili ty to plug and un-plug aspects from the core functionality. He 

shows that the main reason for this is that since U M L doesn't include the concept 

of weaving, the concerns that are well-separated in the A O program end up being 

scattered throughout the design model. Thus, a new model element which encap

sulates the specification of the aspect as well as models the interaction between all 

crosscutting objects may be needed. 

Ci t ing the restrictions that arise when using stereotypes and profiles to ex

tend U M L , Lions proposes introducing A O P into U M L at the meta-model level [22]. 

His argument is that given a meta-model, it is relatively easy to provide tool support 

for models created based on the meta-model. Since in our work we are modifying the 

meta-model for U M L by introducing support for crosscutting, it is helpful to know 

that the question of tool support has been considered by others. We believe that the 

ability to provide modeling tool support for a modified meta-model, coupled wi th 

our meta-model's uniform support for various kinds of crosscutting, supports our 

view that extending the U M L meta-model to include A O concepts should be done 

from the bottom-up. 

Chavez and Lucena also address the issue of extending the U M L meta-model 

to cope wi th aspect-oriented modeling ( A O M ) [4]. The meta-model is modified 

in order to make explicit in U M L diagrams what the authors consider to be the 

main notions in A O P : component (base element), aspect (crosscutting element), join 

point, crosscutting, and weaving. This proposal has similarities to the composition 

patterns approach, described in the following section (Section 2.2). 

Han et. al. also argue that a formal meta-model w i l l simplify tool support, 

and so propose a meta-model for Aspect J [8]. Their main argument against heavy

weight extensions to the U M L meta-model is that they are complex and costly to 

implement, especially when in this case the authors are interested in building an 

AspectJ-specific tool, and not a general C A S E tool. They start by creating a sim

plified meta-model for the static structure of Java using the meta-object facility 
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(MOF), then extend it to include the AOP concepts specific to Aspect J. All the 

major elements of AspectJ are added as either subclasses of, or associations be

tween, the Java meta-model classes. The authors claim that interoperability with 

other MOF-based tools for Java and AspectJ is guaranteed, however that would 

require that everyone adopt the same meta-model for Java and AspectJ. 

2.2 Composing Diagrams 

This section deals with works which provide some ability to compose diagrams or 

models which were specified separately, and are possibly incomplete. 

Straw et. al. look into composing primary and aspect class diagrams [37]. 

In their mechanism, conflicts and undesirable emergent properties can be identified 

either during composition, or during analysis of the composed model. Composition 

directives can be used to resolve conflicts during composition. However, composi

tion directives require developers to already be aware of the potential conflicts in 

the model, both within the base and aspect models, which would reduce the ability 

to develop these models independently. Instead, we believe that a system should 

help modelers discover this information through simple analysis of crosscutting re

lationships in the existing model(s). 

Clarke and Walker propose the use of composition patterns to specify cross-

cutting concerns [6]. Composition patterns are based on a combination of UML 

templates and the merge integration from subject-oriented design [5]. A composi

tion pattern describes the design of a crosscutting requirement independently from 

any design it may crosscut, and so may be reused wherever it is applicable. By 

using the parameters in UML templates, which also provide a mechanism for bind

ing the parameters to model elements, they can specify composition of crosscutting 

behaviour with base designs in a reusable way. This approach requires explicit iden

tification of aspects and binding specifications, and can produce composed diagrams, 

which show the result of bindings applied to the base design. The main focus of this 
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approach is on composition during the design phase, in order to validate the design 

of a composition pattern. However, the authors note that its also possible to main

tain the separation through the code phase, using an appropriate implementation 

model. In particular, the authors consider mappings from composition patterns to 

Aspect J programming constructs. 

Ossher and Tarr present Hyper J [25], a tool which supports multi-dimensional 

separation of concerns [40]. The main idea behind this approach is that a program 

can be decomposed in any number of ways. A hyperspace represents the concern 

space, in the form of a matrix where each axis represents a dimension of concerns, 

and each point a concern in that dimension. Each partial decomposition, relating 

to a particular concern, is known as a hyperslice, and hyperslices can be composed 

into hypermodules using composition rules to take care of any conflicts that may 

arise. HyperJ is a tool which allows the developer to use these concepts in Java 

by allowing "identification, encapsulation and integration of multiple dimensions of 

concerns". They suggest that their approach could be used at any stage of the soft

ware development life cycle, but do not describe an implementation of the approach 

for modeling. 

In their H y p e r / U M L approach, Phil ippow et. al. create a nice continuation 

to the previous work, by extending the Hyperspace approach to U M L , and use it 

for the development of product lines [27]. Variabil i ty common to product lines is 

implemented using feature driven decomposition (and composition) according to 

concerns, which correspond to features. They argue that this may allow a higher 

degree of automation during development. In addition to U M L , models and relations 

are partly defined by the O C L . Components are modeled using H y p e r / U M L and 

are implemented in H y p e r / J . 

In [7], Georg et. al. develop a two-level structure of composition constraints 

to deal wi th conflicts that may occur during composition of aspect and primary 

models. A n aspect model consists of U M L template diagrams which describe the 
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pattern. Each template element specifies properties that w i l l be incorporated into 

the selected points in the primary model. Composition strategies and composition 

directives correspond to the two levels of constraints. Composit ion strategies use 

high-level heuristics to determine how aspects should be composed wi th the primary 

model, while composition directives deal wi th specific conflicts that arise in the 

context of particular aspect and primary models. 

Ka t a r a proposes building a refinement hierarchy for a class or sequence dia

gram [17]. Each concern is viewed as a collection of superposition steps that define 

it. The authors use the term aspect to refer to these concerns. A l l additional func

tionality crosscuts the starting model, so each is an aspect, even though it is part of 

the core functionality of the final model. It is possible to merge sequence diagrams 

to see the composed behaviour of a number of sequences. 

Prehofer's work [28] addresses the merging of state chart diagrams in much 

the same way as we treat sequence diagrams. He aims to show that statechart mod

eling can be extended to modular composition of features, as well. The behaviour 

of features is specified individually with incomplete diagrams, which are then com

posed in a way similar to many of the other approaches described in this section. 

Hierarchical statechart diagrams (composite states) and parallel composition using 

concurrent states are used extensively to remove conflicts during composition. 

Stein and Hanenberg demonstrate how U M L can be extended to show aspect-

oriented crosscutting. They use U M L collaborations and interactions to specify the 

details of structural and behavioural crosscutting, respectively, in a given decom

position [35]. U M L collaborations are seen as inherently crosscutting elements, 

since they are only guaranteed to describe the roles that model elements perform 

in certain situations. Interactions are used because the link used to communicate 

a message can be seen as the point where crosscutting behaviour can be added. 

Weaving instructions specify the model elements being crosscut. For structural 

crosscutting, they define base classes that wi l l be crosscut; for behavioural cross-
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cutting, the instructions specify the links in the base collaboration. Their weaving 

mechanism for U M L generates standard U M L models from aspect-oriented models. 

The mechanism's adherence to AspectJ semantics allows for a smoother transition 

from modeling to development. 

In another work, the same authors address the question of the design of 

crosscutting features in U M L , and whether U M L has sufficient abstractions for this 

[36]. The authors focus on graphical representations of the details of crosscutting 

features, instead of trying to find the best matching representation for crosscutting 

features on some meta-level. The crosscut and crosscutting elements, the composi

t ion strategy, and the join points can all be specified independently. The modeler 

is required to explicit ly state al l the crosscutting relationships and join points while 

designing the system. 
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Chap te r 3 

Aspect-Oriented Programming 

Aspect-oriented programming ( A O P ) emerged from the observation that programs 

often contain concerns which are difficult to fit into any particular modularization. 

Because of the way modules encapsulate behaviour and structure, there often are 

concerns that don't belong to a single module, but instead are implemented in 

multiple locations in different modules. This is similar to modeling, where each 

diagram can be thought of as a particular module, and the design of a single concept 

is spread across many modules (diagrams). 

A O P focuses on providing support for modular implementation of cross-

cutting concerns. In ordinary object-oriented ( 0 0 ) or procedural programs such 

crosscutting concerns lead to scattering and tangling in the code. Scattering occurs 

when the implementation of a single concept is scattered across multiple locations 

in the code, while tangling implies that the implementations of multiple concerns 

are interwoven wi thin a single class. A O P enables modular implementations of such 

concerns. AspectJ [18] is one popular implementation of A O P . 

A O P addresses modularization issues by introducing new elements and con

structs to the programming language. The main concepts introduced by AspectJ-like 

languages are advice, aspects, join point model, and inter-type declarations (ITDs). 

Inter-type declarations (ITDs) allow for defining fields or operations of a 
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class, from outside the class. ITDs are placed in an aspect, but define fields or 

methods of a target class. For example, if method Foo.bar() is defined using an I T D 

in an aspect, then the method bar() belongs to class Foo, and calls to barQ can be 

made on objects of type Foo. 

Pointcuts are expressions which can pick out points in the execution of a 

program. Pointcuts are frequently specified using type patterns, which match a 

particular subset of points in the program's execution. Advice is a mechanism that 

allows a programmer to modify the behaviour of existing base code, by specifying 

the code to be executed instead of or in addition to the existing code. Advice can 

therefore be before, after, or around. Finally, aspects encapsulate advice and ITDs, 

as well as pointcuts. The pointcut specifies the point(s) where the advice is applied, 

or the ITDs are introduced. These points are called join points, and are identified 

wi th in the ontology of a join point model ( J P M ) . 

J P M s are the central mechanism that supports crosscutting in A O P [23]. 

A J P M can be described in terms of three characteristics: the nature of the join 

points, a means of identifying the join points, and a means of affecting semantics at 

join points. In AspectJ , dynamic join points are points in the program's execution, 

they're identified by pointcuts, and the means of semantic effect is for advice to run 

before, after, or around the join point. In Spr ingAOP [34], the dynamic join points 

are method invocations, the means of identification are pointcuts, similar to those in 

AspectJ , and the means of semantic effect is for advice to run before, after, around 

the join point, or in case the method throws an exception. Since pointcuts in Spring 

are simple Java classes, it is possible to declare custom pointcuts simply by writ ing 

a new class. In AspectJ the static join points are fields, methods and the parents of 

a type. W i t h AspectJ , you can add fields, methods, or interfaces to classes, while 

Spring only allows introduction of interfaces to objects. 

A O P implementations such as AspectJ rely on a weaving process to coordi

nate the execution of advice with join points. In current AspectJ implementations, 
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advice weaving happens at compile or load time, and is broken down into two stages: 

planning, and code munging. Dur ing the planning stage, join point shadows [11] 

wi th in the code are analyzed to check whether they match the pointcuts associated 

wi th advice. The matching shadows are annotated wi th each advice that could 

apply at that point. Dur ing the munging stage calls to advice methods are added 

at the matched shadows. Runtime residual tests can also be added to guard the 

execution if the advice w i l l match only under certain conditions, which won't be 

known unti l runtime. 
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Chap te r 4 

Introducing Examples 

In this chapter, we introduce the example models we used to test our planner. These 

wi l l be used in Chapter 5 and Chapter 6 to explain some of the more complicated 

points of the meta-model and planner, respectively, and also in Chapter 7 to evaluate 

our framework's ability to simplify the implementation of analysis tools. We wi l l 

attempt to point out some interesting characteristics of each of the designs, which 

we wi l l focus on during our analysis. 

4.1 Graphical Shapes Editor Example 

The model we use is an adaptation of the original graphical shapes example used in 

the seminal A O P papers [18, 19, 23]. Two model fragments are shown in Figures 4.1 

and 4.2. B o t h contain a class diagram and sequence diagram(s). The top fragment 

models the main functionality of the Display for Shapes, which include Points and 

Lines. The bottom fragment models the Subject-Observer design pattern. The 

bindings of the elements in the top fragment to the elements of the design pattern 

are included in the upper class diagram. Note that this is not standard U M L format 

for representing collaborations, and we're just using this shorthand representation 

to simplify the figure, and show the dependencies in a more compact way. 

This example is interesting mainly because of the application of a pattern to 
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i Dependency 1: 
i Client; Shape 
j Supplier; Subject 

j Dependency 2: 
, Client; Shape.moveBy(int, int) 
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setX(int) 
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I Dependency 1: 
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I 
1 Dependency 2: 
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. Dependency 1: 
, Client: Line 
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I Dependency 2: 
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1 Supplier: Subject.changed 
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moveBypnt, in^ j m o v e B y ( i n t , int) 

moveBy(int, int) 

I Point I 
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£setX(int) 

£setY(int) 

Figure 4.1: Class and sequence diagrams for the Graphical Shapes Editor example. 
I :Sub|ect I hObserverl 

Subject * Observer 

addObserve r(Observe r) 
re moveO bserve r(Ob server) 
updateObserversO 
changeO 

updateQ 

changeQ updateQ 

Figure 4.2: Class and sequence diagrams for the Subject-Observer design pattern. 
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the base design. This w i l l allow us to use the sequence diagram composition tool 

(Section 7.2) to analyze the behaviour of the final system, which reveals interesting 

information about the behaviour of the composed system. This is also a classic A O P 

example, and wi l l be familiar to many of the interested readers when we discuss the 

possible applications of our J P M and planner to aspect-oriented modeling in Section 

7.3. 

4.2 RSA Phone Model Example 

The second model is more of a real-world example. It is part of a model that we 

obtained from the Rat ional Software Architect (RSA) group at IBM-Ot tawa , and 

is one the examples used during their own user testing of R S A product. R S A is an 

Eclipse-based design and development tool which uses model-driven development 

with U M L to create applications. As such, this is the best example we have of real-

world tasks required of users, as compared to the other designs we've used. We used 

the class diagram and sequence diagrams provided to us as they were. The state 

machine diagram was slightly too complicated for our purposes, so we created two 

simple state machines based on the information found in the sequence diagrams. 

This example models a simple phone system, where both the Network and the 

physical components of the Phone (namely Keypad and Display) are represented. 

A number of different sequence and state machine diagrams specify the behaviour 

of the system. These diagrams are shown in Figures 4.3 — 4.7. 

In this document, we include only two of the three sequence diagrams we 

used in testing. We do this in order to save space, and also because the interaction 

sequence for the omitted sequence diagram is just a more detailed version of the first 

sequence diagram. The first sequence diagram (Figure 4.3) specifies the interactions 

that take place when a user places a call. The second sequence diagram, one that 

we have omitted from this document, goes into slightly more detail of the same in

teraction, including operations like validation. The final sequence diagram (Figures 

18 



cm' 
n> 
£± 
CO 
co 
CD 
C 
CD 

o 
CD 

Crq 

O 

CD 

o 
5' 

o 

CD 

CO 

o 

CD 

X 
3 

so «use case realization)* Place a call - Alternative Flow 2 : 

jFclsieTiUer^j^ • .{^phone cSsrjay5:Phonedisplay^= pssphonespeaker5:Phone speakers 

•::':':;:lv;V;';:. l:d«INumber 

phones Phone ~ WrelessNetwbrtlWrelefl 

11: irt.j:rxi:; number).; ; >.;:';;i:::!.!;.;::;:;: 

1.2: dfeplayNumbert number):: 

1.3: beepx 

1.4.1 ^putPhaneNumber ( phoneNumber) j 

1.4.2: pfocessNumber ( phoneNumber) { 

f; : ; : : ; « r e t u r n » : : : ' ' } \ 
-115: prctcessNumber (ptoneNumber) 

vi.6: sendCafllnfoGd, phooel^mber) 

•• 1.7::validatePhoneNurriber( id, phoheNunter''' 

". ^ettxrT»:^;-;:1.;j:':;'-:w ;:::-!;:;.;!::•',•; 
•::l-.8: vafcdabPhoneNLmber( id;phoneMurnper.) •: 

1.9: sendEcraMessage 

::'l;10:.pushEnd 1.10.1: displayMessage;. 

: . 1.10.2: inputEndCal; 



( Waiting 1 

Call In Progress 

PlacingCall 

Initiating 
sendCalllnfo 

Validating 

[else] Processing 

'alidatePhoneNumber 

if [validated] 

Network State Machine (NetworkSM) 
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Figure 4.4: State machine diagrams for the Network and Phone classes in the R S A 
example. S M stands for State Machine. 
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: pushSend.; 

:lnputbigit( number;)-:; 

:.:;displayisiurnb9r( number ) . 

beep;:. 

• |^ inputPhonGNumberf phoneisfcjmber)' 

displayMessage , 

i.ihitiateCallC.id/; ̂ ^eNumber;;). 

© 
VpushEhd' [ 
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••• entiCall(id) 
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,;V[1 

storeCallInfo(PhoneNumber( Length)' 

Figure 4.5: Sequence diagram for the two-user call in the R S A example. The dia
gram is split between this figure and Figure 4.6, wi th the common link being the 
WirelessNetwork lifeline. The circled numbers "1" and "2" represent the places 
where the two diagram fragments link together. The messages following "1" in 
Figure 4.6 (starting at Phone.checkForldle) are inserted after the "1" (Wireless
Network.initiateCall) in the current figure. Same for the circled "2": messages 
starting at PhoneDisplay.displayCalllnfo in Figure 4.6 are inserted after Wireless
Network.endCall in the current figure. 
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Figure 4.6: Sequence diagram for the two-user call in the R S A example. The dia
gram is split between this figure and Figure 4.5, wi th the common link being the 
WirelessNetwork lifeline. The circled numbers "1" and "2" represent the places 
where the two diagram fragments link together. The messages following "1" in this 
figure are inserted after the "1" (WirelessNetwork.initiateCall) in Figure 4.5. Same 
for the circled "2": messages starting at PhoneDisplay.displayCalllnfo in the current 
figure are inserted after WirelessNetwork.endCall in Figure 4.5. 
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Figure 4.7: Class diagram for the R S A model example. 
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4.5 and 4.6), shows the specification of the behaviour of both the users involved in a 

phone call. The sequence is split between the two diagrams, wi th the common link 

being the WirelessNetwork lifeline. 

The model also contains state machine diagrams for the Phone and PhoneDis-

play (Figure 4.4), detailing the states objects of these classes may enter during their 

use, as well as a class diagram for the system (Figure 4.7). 

This model was originally used to test out the recommendation tool for state 

machine diagrams (discussed in Section 7.1), where, given sequence diagrams and 

a (possibly incomplete) state machine, the tool recommends which transitions are 

possible out of each state, based on the messages that can be sent according to the 

sequence diagram. Since there are a number of reasonably involved sequence dia

grams, this example wi l l also be useful for testing the sequence diagram composition 

tool we describe in Section 7.1. 
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Chap te r 5 

Meta-Model Description 

We have developed a simple realization of our meta-model on top of the U M L 2 

modeling framework [30], which is an implementation of the U M L 2.0 meta-model 

for the Eclipse platform. It is based on the Eclipse Modeling Framework ( E M F ) [29]. 

Our ini t ia l implementation actually used E M F , and the meta-model it provides, as a 

basis for our tool, and we briefly discuss the differences between the two frameworks 

and the reasons for the switch at the start of the following chapter. 

We would like to draw the reader's attention to the distinction between 

U M L 2 and U M L 2.0. The two terms are very similar, but mean different things. 

U M L 2.0 refers to version 2.0 of the U M L language specification, maintained by the 

O M G . U M L 2 refers to an EMF-based implementation of the U M L 2.0 meta-model 

for the Eclipse platform. So, U M L 2.0 is a specification while U M L 2 is a complete 

implementation of this specification. 

Our implementation has three main components. Firs t , we take a subset of 

the meta-model of the U M L modeling language, which includes core elements of 

class diagrams, sequence diagrams (represented by Interactions), and state machine 

diagrams. In addition, the class diagrams are extended wi th a mechanism for inter-

type declarations. Second, this subset of the U M L meta-model is extended with 

a J P M . Finally, we present a planner which coordinates crosscutting structure in 
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models based on this meta-model. The extensions to the meta-model provide the 

foundation for the planner to record its results. In this chapter, we discuss the first 

two components. The next chapter deals specifically wi th the planner implementa

tion. 

5.1 UML Meta-Model 

A model in our system is formed from any number of class diagrams, sequence 

diagrams, and state machine diagrams. A l l of the diagrams are consistent wi th 

the U M L 2.0 meta-model, since we use the U M L 2 framework to create our models. 

Figures 5.1 — 5.4 show the subset of the U M L meta-model wi th which we are 

working, wi th the J P M additions highlighted in red and circled. A l l of these figures 

are taken from the U M L superstructure document, available from the O M G website 

[24]. 

The diagrams in U M L 2 are currently represented in a simple tree format 

instead of a standard U M L graphical notation, since in fact U M L 2 is a framework 

that is intended for use as a basis for modeling tool implementation, and not for 

the creation of models. However, since ours is a proof-of-concept tool, we do not 

concern ourselves wi th a proper visual display at the moment. A s far as we are 

aware, there are also no mature projects that would enable us to create a graphical 

editor/display for an arbitrary meta-model. The G E F project [31] under Eclipse 

presents one possibility, but it is sti l l in the early stages of development. 

5.1.1 Class Diagrams 

In class diagrams we support class and interface elements, which can also have 

properties (fields) and operations. We support generalization relationships, but 

at the moment we don't support relationships such as dependency, aggregation, 

realization, etc. We allow operations and properties to be inter-type declarations 

(ITDs) in that they can be located in one class, but actually define a member 
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of another class [2, 3], similar in function to ITDs in A O P . This is accomplished 

through the introduction of a "targetClass" (see Figure 5.1) field to the meta-model 

elements representing properties and operations. If the "targetClass" field is empty, 

the element is assumed to be a regular property/operation, and semantically belong 

to the class in which it is defined. So, unlike AspectJ , there is no special I T D 

element, but rather each attribute or operation can be either a regular element or 

an I T D , depending on the value of the "targetClass" field. 

Collaborations describe the application of a design pattern to a base model, 

by declaring the binding between classes or between methods. Each class that per

forms a role in a pattern declares its own CollaborationOccurrence, which contains 

a number of Dependency elements. Each Dependency element specifies the binding 

of either a class or an operation to one of the suppliers of roles (class or operation) 

in the collaboration. Collaborations also model crosscutting structure, and can be 

crosscutting in two ways. First , they may refer to elements in two different class 

diagrams. Second, they may mention elements in different classes of a class diagram. 

Figure 5.5 shows the Shapes class diagram from Figures 4.1 and 4.2 as it 

appears in U M L 2 . We include this figure in order to show the reader the kind of 

interface available for creating models wi th U M L 2 . 

Initially (in the E M F implementation that wi l l be discussed at the start of 

the following chapter), we used special role binding elements, which were a new 

construct we added to the E M F implementation of the partial U M L meta-model to 

represent the collaboration relationships. Role bindings declared the binding of a 

class to a role or of an operation to a role-operation, wi th roles modeled as ordinary 

classes and operations in a separate class diagram. However, wi th the introduction 

of collaborations in U M L 2 , this construct became redundant. 
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5.1.2 Sequence Diagrams 

A sequence diagram is represented by an Interaction in U M L 2 , where each inter

action consists of Lifelines and Messages, as well as EventOccurrence and Execu-

tionOccurrence elements which are used to determine the ordering of messages in 

the sequence. 

Each ExecutionOccurrence specifies the lifelines that are covered by the ex

ecution, as well as the events associated with the sending and receiving of messages 

at the start and end of the execution. Each Lifeline also keeps track of all the Ex -

ecutionOccurrences which cover it, and so all the messages that can be sent to and 

by the object that this lifeline represents. 

Sequence diagrams crosscut class diagrams in that a sequence diagram refers 

to operations in multiple classes in the corresponding class diagram. 

Figure 5.6 shows the Line.moveBy sequence diagram from Figure 4.1 as it 

appears in U M L 2 . 

5.1.3 State Machine Diagrams 

A state machine is represented by a StateMachine element in U M L 2 , which is ca

pable of representing orthogonal regions, as well as composite states inside a given 

state machine. A state machine can be specified by a series of States and Transi

tions between them, where each transition may be triggered automatically or by a 

CallTrigger. 

State machines model class states and transitions, which crosscut the class 

and sequence diagrams since they refer to operations/messages on multiple classes/lifelines 

in the corresponding diagrams. 

Figure 5.7 shows what the state machine for the Phone class in Figure 4.7 

looks like in U M L 2 . We use this figure to show the presence of the "crosscuttingJoin-

point" field on the CallTrigger element. 
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5.2 The Join Point Model (JPM) 

J P M s are the central mechanism that supports crosscutting in aspect-oriented pro

gramming [23]. A J P M can be described in terms of three characteristics: the nature 

of the join points, the means of identifying the join points, and the means of seman

tic effect at join points. Figures 5.1 — 5.4 circle in red the changes we have made to 

the U M L meta-model in order to support our join-point model, and a more detailed 

discussion of each element in the ontology follows. 

5.2.1 Join Points 

The join points of our J P M are the selected model elements in the various U M L 

diagrams. Every join point is a model element, but only the elements we mention 

below are join points. 

Each join point also maintains a field, named "crosscuttingJoinpoints", which 

maintains the crosscut-by set — the list of all the other join points which crosscut 

this one. 

From class diagrams the join points are Class and Operation elements. From 

sequence diagrams the join points are Messages and Lifelines. From state machines, 

the join points are States and CaHTriggers. Because al l of our join points are model 

elements, we w i l l often refer to a join point as a model element in the following 

discussion. 

5.2.2 Means of Identifying Join Points 

Our proposal includes several means of identifying join points. A l l model elements 

can be identified either directly by name, or by a compound signature. 

The name-based identification is straightforward — elements are matched on 

their name and also on the name of any of the roles that they perform, as specified 

through collaborations. For example, an operation has a basic name, which is the 

name of the operation model element. It also has a signature, which is a combination 
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of the target class of the operation, and the name of the operation. So, using the 

Shapes Edi tor example, for the setX method in the Point class, its name would be 

"setX", and its signature would be "Point.setX". 

The "targetClass" field is used to determine the class that appears in the 

signature of an operation. Due to the presence of ITDs , the class containing the 

operation declaration may be different from the class on which the operation is 

actually implemented. These compound signatures, which can be used to label 

each of the model elements, are used to match other elements which crosscut it. 

Equivalent signatures for two different model elements signify that they refer to the 

same underlying concept, and thus crosscut each other. The matching of signatures 

is further complicated by the presence of collaborations, and is discussed in detail 

in Section 6.4.1. 

5.2.3 Semantic Effect at J o i n Points 

Our system preserves the original declaration semantics of each model element. 

Since we are adding a J P M to the existing U M L meta-model, where crosscutting is 

already present (although implicit) , our J P M does not define any new semantic effect 

— it simply accounts for the existing semantic effect wi th in the new framework. 

Each element records al l the other model elements which crosscut it. A s mentioned 

before, this corresponds to the planning stage of an A O P weaver — the information 

is recorded without any explicit modifications made to the model. Performing the 

actual weaving would necessitate dealing wi th the question of how the crosscutting 

relationships wi l l be displayed, which is beyond the scope of this work. For research 

that deals more explicitly wi th the issue of weaving, see [6, 7, 12]. 

Because our mechanism simply extends the existing meta-model and its se

mantics, it should be possible to incorporate this proposal into other meta-models, 

but we have not attempted this yet. This would allow for the automated analysis of 

crosscutting in models based on any meta-model (e.g. language/area specific model-
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Table 5.1: Crosscutting relationships that are recorded by the planner between 
elements in various U M L diagrams. 

Class Diagram Sequence Diagram State Machine Diagram 

Class Op Lifeline Message State CallTrigger 
C D Class X X 

Op X X 
SD Lifeline X 

Message X X 
S M State X 

CallTrigger X 

ing languages), as long as the appropriate elements in the meta-model were labeled 

as join points, and semantics established as to which elements could crosscut which 

other elements. 

5.3 Meta-Model Enhanced With the JPM 

Now that we have discussed both the U M L meta-model we wi l l use, and the J P M we 

have designed, we can describe in more detail the crosscutting relationships between 

model elements that we consider. We wi l l look at each kind of diagram in turn, and 

for each element in the diagram that is a join point look at the other elements that 

can be in its crosscut-by set. This discussion is also summarized in Table 5.1. 

The main rule we used for establishing the crosscutting relationships to in

clude in the crosscut-by set is as follows: we make the relationship explicit, by 

adding the appropriate elements to each other's crosscut-by set, if it's not already 

explicit in the model, and moreover, only if it is a direct relationship. We provide 

examples of this rule throughout the discussion of each of the diagrams below. 

The reason behind this rule is to make sure that the crosscut-by sets do not 

grow too large. If al l the transitive relationships are added to these sets, they wi l l 

have to somehow be filtered when being displayed, as the amount of information 

presented directly would be too much for the modeler to take in . The main intent 
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of the crosscut-by sets was to make the direct crosscutting relationships explicit, 

while the transitive relationships can be established when needed by following the 

appropriate crosscut-by sets, instead of doing a global search. 

5.3.1 Class Diagrams 

W i t h i n class diagrams, Operations and Classes are join points. 

Operations crosscut Messages in sequence diagrams, and CallTriggers in state 

machines. These relationships are fairly intuitive — Messages refer to a call to a 

specific Operation, and CallTriggers are also associated wi th a single Operation. One 

might say that Transitions and States, both in state machine diagrams, can also be 

crosscut by operations and messages. However, we return to our rule in this case: 

since triggers are already crosscut by operations, and triggers cause a transition, this 

is no longer a direct relationship. Operations that transitively crosscut a transition 

can be established by looking at the trigger for the transition, and so don't need to 

be made explicit in the crosscut-by set. Similar reasoning applies to States, as well. 

Classes crosscut Lifelines and CallTriggers. Lifelines in sequence diagrams 

represent objects of the class' type during a particular interaction sequence, and so 

belong in this list. Classes crosscut triggers because the execution of an operation 

on this class can cause the trigger to fire. Transitions and states can also be said 

to crosscut the class, but again, this relationship can be established transitively 

through the trigger. 

Similarly, one might consider whether Operations and Properties should be in 

a Class' crosscut-by set, because of possible ITDs. We argue that this relationship is 

already made explicit through Collaborations and Dependencies, and so falls outside 

the rule established above. 

5.3.2 Sequence Diagrams 

W i t h i n sequence diagrams, Lifelines and Messages are join points. 
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Lifelines are crosscut by CallTriggers and Classes. We've already discussed 

the Lifeline-Class crosscutting relationship. Lifelines and CallTriggers crosscut each 

other because an event is triggered by a message being sent to the object represented 

by the lifeline. 

Messages can be crosscut by other Messages, as well as Operations and Trig

gers. Message-Operation crosscutting was already discussed. Messages crosscut 

other Messages if their compound signatures (discussed in Section 5.2.2) match. 

This means that Messages crosscut each other either when multiple possible flows 

of execution are specified in different sequence diagrams, or there are interactions 

for the role-operations performed by this operation that need to be accounted for. 

Triggers crosscut Messages in the same basic way they do Operations. 

5.3.3 State Machine Diagrams 

W i t h i n state machines, States and CallTriggers are join points. 

In addition to al l the other crosscutting mentioned above, States can crosscut 

other States when the transitions into the states match each other. CallTriggers can 

crosscut other triggers, when the signatures match. This relationship is useful when 

establishing the crosscutting between transitions or states. 
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Chap te r 6 

Implementation 

In order to evaluate our proposal and the ease of exposing different kinds of cross-

cutting, we have implemented a simple planner tool. The implementation of the 

prototype evolved over the course of the project, in order to take advantage of the 

advances in modeling frameworks, as well as feedback from individuals familiar wi th 

the field. Our original implementation relied on the E M F framework, as discussed in 

Section 6.1. Following this, we introduce the current UML2-based implementation. 

6.1 EMF Framework 

The original prototype implementation of our planner tool was based on the Eclipse 

Modeling Framework ( E M F ) version 2.0.0 [29], which allowed us to create and dis

play class diagrams. Similar to U M L 2 , the drawback of E M F is that it is not 

designed as a language in which you can create models, but rather as a framework 

for building tools based on a structured meta-model. 

E M F provides a partial implementation of a U M L meta-model, stored in an 

ecore file. This is another tree-based structure that specifies al l elements in the 

meta-model, and their various properties and associations. Through extensions to 

the E M F implementation of the partial U M L meta-model, we added support for 

simple sequence diagrams, role bindings, inter-type declarations, and advice, as well 
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as support for the J P M . A more detailed description of the EMF-based J P M and 

planner can be found in [41]. 

6.2 UML2 Framework 

The current prototype implementation is based on the Eclipse U M L 2 framework, 

version 2.0.0 [30]. U M L 2 doesnt provide direct support for visually creating and 

editing U M L diagrams, its purpose being similar to that of E M F , but it supports 

all of the semantic elements that might be viewed in any U M L diagram. The meta-

model is once again stored in an ecore file, and represents al l the elements and 

relationships laid out in the O M G ' s U M L superstructure specification document 

[24]. 

W i t h U M L 2 , simple diagrams may be created, viewed and edited only in 

tree form, which makes understanding the relationships between diagram elements 

a lot more difficult. However, the models we use for testing are small enough that 

they are s t i l l manageable, even in the tree format. In addition to the model in 

tree format, we keep as a reference a separate model in standard (graphical) U M L 

notation, which represents the same design. In the graphical model, we can see the 

relationships between elements more clearly, while the tree format contains all the 

exposed crosscutting relationships. Then, once the planner populates the crosscut-

by sets for al l the elements in the UML2-based model, we can look at the graphical 

model to see whether the relationships shown by the planner exist, as well as check 

for any relationships the planner may have missed. 

U M L 2 is a great gain over E M F , where only class diagrams were supported 

easily, and the meta-model had to be extended in order to add support for other 

kinds of diagrams or role binding. W i t h U M L 2 , sequence diagrams are supported 

natively, and binding between model elements can be performed through the use 

of Collaborations. Already, this new implementation has enabled us to explore the 

crosscutting between two more kinds of diagrams (sequence and state machine), as 
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well as create a simple implementation of our planner. 

In our current UML2-based implementation (our second implementation), 

we decided to explore the crosscutting between different existing kinds of U M L di

agrams, instead of re-implementing support for advice. This was motivated by the 

desire to explore new kinds of crosscutting, as well as to differentiate our work from 

those that simply add aspect-specific support to U M L . In talking to members of the 

modeling community we often found an ini t ial misunderstanding of our approach, 

and so wanted to suggest a much wider applicability of our work than simply sup

porting aspects in U M L . 

6.3 Model Editor 

This section describes the process of the editor implementation. The editor we use 

to create models based on our modified meta-model is designed as an Eclipse plug-

in. We had to do surprisingly little work to obtain a simple editor that would fit 

our requirements, due to the editor generation facilities provided by U M L 2 . 

First of al l , we obtained the U M L 2 plug-in and installed it into our Eclipse 

development environment. We also checked out the code for the plug-in from the 

Eclipse C V S , and added it as a project to the environment. That way, we were able 

to launch a new workbench from within Eclipse, where any changes that we made 

to the code for the editor would be visible. A t the same time, since we had the 

plug-in installed in our environment, we could use its editing and generation tools 

when making changes to the meta-model. 

We thought reusing the existing U M L 2 editor implementation would be the 

most practical since the U M L 2 editor provided most of the functionality we desired 

(as described in Chapter 5), and since our changes to the meta-model were limited 

in scope, we believed that only small modifications to the editor would be necessary. 

The code for the plug-in came with a completely specified meta-model (in an 

ecore file), which we modified as described in Chapter 5. We then used the installed 
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plug-in's generation facilities to re-generate code for the editor tool from the new 

meta-model specification, which added the code for the entry and display of the 

additional model elements. The generation facilities are not complete, and required 

a couple of additional changes to the code in order to make the new fields show up 

properly in the editor. However, these were minimal, and we were already familiar 

wi th the process from our first (EMF-based) implementation. 

After this, launching the project as a separate workbench process in Eclipse 

allowed us to open an editor that recognized the modified model elements, as well 

as showed the fields for the crosscut-by sets. After this, we were able to create our 

test models using the editor, and after running the planner over each model were 

able to view the resulting crosscut-by sets. 

6.4 The Planner 

In this section, we describe the implementation of the planner tool. Its implemen

tation is separated into a series of phases, each corresponding to a particular kind 

of crosscutting. The body of the new planner consists of approximately 1,000 loc in 

6 main classes, as well as 4 additional uti l i ty classes. 

Dur ing each phase, the planner records the crosscutting join points in the 

crosscut-by set of the appropriate element. Before describing the phases in detail, 

we say a couple of things about finding matching elements in the presence of col

laborations and dependencies. 

To provide feedback about crosscutting structure, we took advantage of our 

additions to the meta-model. As mentioned before, in Section 5.2, we added a new 

field to al l join points, which keeps track of all the other join points which crosscut 

this element (the "crosscuttingJoinpoints" field). The planner adds references to 

the crosscutting elements to each element's crosscut-by set, and this list is then 

simply displayed by the U M L 2 - editor, along wi th all the other properties of the 

model element. 
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Currently the planner is not optimized for speed, so we require the user to 

explicitly trigger it when needed, rather than having it run automatically after every 

change to the model. If the planner were to run incrementally, we would have to 

take another approach. One possibility is to take note of the elements that have 

changed, and only consider those elements when updating the crosscut-by sets in 

the model. In addition, the appropriate planner passes would have to be repeated 

for the elements that were added, and elements that were deleted would have to be 

removed from the affected crosscut-by sets. This problem is similar to the problem 

of incremental weaving for AspectJ , and incremental model-checking [21], so we 

hope to be able to apply similar techniques to develop an incremental planner. 

6.4.1 M a t c h i n g 

Before describing the planner phases, it wi l l be useful to talk about how the planner 

identifies matching elements. Section 5.2 mentioned briefly the distinction between 

pure name-based matching and matching in the presence of collaborations, and we 

elaborate on it here. 

The simplest form of element matching is purely name-based. The signatures 

(discussed in Section 5.2.2) of the two elements are compared, and if they are equal 

the elements are said to match. 

The other kind of matching happens in the presence of Collaborations. W i t h 

collaborations, classes and operations can perform the roles specified in the collab

oration. In this case, two elements match if one performs the role of the other. 

Using the Shapes Edi tor example, any calls to Subject.change w i l l crosscut the op

eration Point.setX, since setX performs the role of change in the context of the 

Subject-Observer pattern. 

In the current implementation, we rely only on the name of the operation 

and type of the object when matching signatures. We do not take into account 

parameter lists or return types of operations. 
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6.4.2 Phases 

Our planner was designed to operate in phases, as we gradually expanded the project 

from looking at interactions between two kinds of diagrams to three. This also gives 

us the added benefit of being able to take out some of the phases if we are only 

interested in exploring a particular kind of crosscutting relationship. 

Currently, there are four phases in our planner: role binding (collaborations), 

ITDs , sequence diagrams, and state machine diagrams, run in that order. In ad

dition, there is a set-up phase that precedes al l of these, which simply prepares 

the models by clearing the crosscut-by sets of all model elements, so that the re

sults from previous runs of the planner don't overlap wi th the current results. This 

ordering of the phases also ensures that each new phase builds on the existing struc

ture, recording crosscutting not only between elements in the diagrams it adds, but 

also going back and recording crosscutting between elements of the new diagram 

and the existing ones. The results (the crosscut-by sets) are recorded by the plan

ner in the "crosscuttingJoinpoint" field of each model element that is a join point. 

Figure 6.1 shows a U M L class diagram of the main classes and operations in our 

implementation. 

Role Binding (Collaborations) 

The role binding phase looks at al l the CollaborationOccurrences in the model, and 

records the associations they specify in internal tables. Specifically, it looks at each 

of the Dependency elements in the CollaborationOccurrence, each of which specifies 

a binding between classes or operations. 

There are two tables: one for recording bindings for classes, and another for 

operations. B o t h of the tables are implemented as a Hashtable that maps a role 

element (class or operation, in the corresponding tables) to a list of model elements 

(classes or operations) which perform that role in some collaboration. These ta

bles are then referred to during the following phases, when the tool checks for a 
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RoleBindingPhase 
operationRoleBindings: Hashtable 
classRoleBindings: Hashtable 
process Role BndingsO 
processCollaborationOccurrenceO 
addOperationRolesO 
addClassRolesQ 

Planner 

runO 
prepareModelsO 
roleBindingCCingPhaseO 
itdCrosscuttingPhaseO 
sdCrosscuttingPhaseO 
smCrosscuttingPhaseO 

ITDPhase 
introducedOpsPerClass: Hashtable 
introducedPropsPerClass: Hashtable 

processlTDsQ 

SequenceDiagramsPhase 

process SequenceOiagramsO 
process SequenceDiagramO 

StatemachinesPhase 

processStatemachinesO 
process StatemachineO 
interSMCrosscuttingO 

Figure 6.1: Class diagram for the planner implementation, including the major 
classes and operations. Helper /ut i l i ty classes and operations are omitted for clarity. 
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match between two elements, to see whether an element performs some role in a 

collaboration. 

Inter-Type Declarations (ITDs) 

The I T D phase goes through the properties and operations in al l the classes in 

the model. It checks the "targetClass" field (described in Chapter 5) of each of 

these, and if that doesn't match the parent class of the element it records the I T D 

association in a table. There are two tables in this phase as well, one for recording 

the introduced operations, and another for introduced properties. B o t h of the tables 

are implemented as a Hashtable which maps a class to a list of introduced operations 

or properties. 

The tables from both I T D and role binding phases are used during matching 

to identify al l signatures that could refer to a given model element. 

Sequence Diagrams 

This next phase goes through the sequence diagrams, and records all the crosscut

ting that takes place between elements in different sequence diagrams, and between 

elements in sequence diagrams and class diagrams. 

First , the tool goes through all the Messages for each sequence diagram, 

and finds and records the matching Operations in class diagrams, and matching 

Messages in other sequence diagrams. Then it iterates through the Lifelines, and 

finds the matching Classes for the objects represented by the lifelines. 

State Machine Diagrams 

The final phase goes through the state machine diagrams, and records the crosscut

ting between elements in different state machines, and also between those in state 

machines and class and sequence diagrams. It is necessary to go back to look at 

the class and sequence diagrams at this stage because the information about state 
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machine elements would not have been available during the previous stages. 

For each state machine, the tool first iterates through the CallTriggers, and 

finds the matching Operations and Messages. Then it finds other matching Cal l -

Triggers by looking in al l the other state machine diagrams. For al l the CallTriggers 

in the state machines, the planner finds Classes and Lifelines that crosscut them 

(for a state which is entered after the trigger is set off, this set could be calculated 

as a combination of the sets of al l the triggers for its incoming transitions). Finally, 

this stage is completed by finding States in different state machine diagrams that 

crosscut each other. Two states crosscut each other if any of the incoming transi

tions for both states share any operations in their crosscut-by sets. In other words, 

this happens when two transitions happen on a call to the same operation, i.e. the 

transitions crosscut each other. 
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Chap te r 7 

Evaluation 

To validate our contributions, we use our JPM-enhanced meta-model and planner in 

the implementation of a couple of simple automated analysis tools. In this chapter, 

we discuss two such tools, providing examples of their use as well as a discussion of 

their implementation. We point out a couple of the more interesting crosscutting 

relationships that our tools uncovered in the examples. Final ly, we present a way to 

add support for advice to the J P M and planner, along wi th a discussion of the differ

ences of advice in our system and in standard A O P implementations like AspectJ . 

We have not implemented this addition due to time constraints, but a simple version 

of it was implemented for our original EMF-based meta-model and planner. This, 

coupled wi th the fact that there are no major conceptual differences between the 

EMF-based and UML2-based approaches, leads us to believe that implementation 

of such a tool for the current framework would be fairly straightforward. 

We argue that analysis or display tools using our framework w i l l be easier 

to implement, and wi l l be able to present the modeler wi th more information about 

the model than R S A [13] or E M F [29] provide. Once the crosscutting relationships 

are made explicit by the planner, there are any number of ways in which these can 

be displayed to the modeler. They can also be used as input to automated analysis 

tools that check for consistency or completeness of the model. 
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In terms of our contributions, we would like to explicitly outline how each of 

these was achieved, and what benefits were obtained from accomplishing each task. 

We highlight some of the benefits during the discussion of each of the problems, and 

summarize the main points at the end of this chapter. 

7.1 Recommending Transitions for State Machines 

When designing a system, it is often necessary to be able to say which diagrams 

can/need to be specified before others. Since multiple diagrams in U M L can be 

used to specify similar things — for example, behaviour for sequence and state 

machine diagrams — it is important to keep the behaviour specified by both kinds 

of these diagrams consistent throughout the model. The need for such an application 

was brought to our attention through talking to some of the people doing usability 

testing on R S A , whose customers had told them that it would be beneficial to see the 

transitions available out of a given state in a state machine, based on the interactions 

already specified in sequence diagrams. In general, we believe this k ind of analysis 

would be useful to those specifying the behaviour of a system, keeping efficiency and 

consistency of the model in mind. 

7.1.1 Solution 

This first analysis tool is used to help with the creation of state machines, provided 

all the sequence diagrams in the model have already been specified. For a selected 

state, we'd like the tool to be able to make suggestions for possible outgoing transi

tions based on the sequence diagrams already specified in the model. This feature 

was implemented as follows: for each State that we would like recommendations 

for, we looked at the CallTriggers for each of the transitions coming into the state. 

We then looked at the crosscut-by sets of each of the CallTriggers, and picked out 

only those join points that were typed as Messages in a sequence diagram. Then we 

looked at the parent Interaction for each of those messages, m, to see what other 
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messages could occur in sequence after m in each of those sequence diagrams. Those 

messages are the ones whose corresponding operations could trigger a transition out 

of the state. This simple tool can be written with approximately 40 loc, on top of 

the planner implementation discussed in Chapter 6. 

One interesting question is whether to use the message which immediately 

follows m, or to look a couple of messages down the interaction sequence. One idea 

we have is to look at the next message to the same object (lifeline) as m, instead of 

the next message in sequence. It would be necessary to talk to modelers directly, 

or run experiments on more sample models, to find out which approach would be 

more useful, before choosing the final implementation. For now, we chose to use the 

next message in sequence. 

A n extension of this approach would be to look at states in other state 

machines which crosscut this state, and recommend messages for the outgoing tran

sitions from those states, as well. We did not explore this approach because the 

problem as presented to us was how to provide help in creating state machine di

agrams when some sequence diagrams were available, without knowing anything 

about other state machine diagrams. 

A small problem arises when looking at the ini t ia l message in a sequence 

diagram. The recommendation tool is currently not complete in that it could never 

recommend the first message in any sequence diagram, since it is never preceded by 

other messages that would be picked out from the crosscut-by set of the CallTrigger. 

We have one suggestion for dealing wi th this, but it would not be as precise as the 

other recommendations made by the tool. The basic idea is to look at the signature 

of a message that is first in a sequence, and determine what class the corresponding 

operation belongs to. Then, to check whether the class crosscuts the state we're 

making recommendations for — if so, then we can add the message to the list of 

recommended messages. 
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f i l e : / C : /TeEtp/test -workspace/PointExample/src 
Working wi th model: RSAPhoneModel 

Working' wi th SM: PhcmeSM 

Outgoing suggest ions f o r s ta te T a l k i n g 
Current t r i g g e r i s i n i t i a t e C a l l 

Matching me33age P h o n e D i s p l a y . d i s p l a y C a l l e r l n f o 
Current t r i g g e r i s i n i t i a t e C a l l 

Matching message P h c n e D i s p i a y . d i s p l a y C a l i e r l n f o 
Current t r i g g e r xa answerCall 

Matching message PhoneKeypad.pu3hEnd 
Outgoing suggest ions for s tate EnteringFhoneNumber 

Current t r i g g e r i s inputPhoneNumber 
Matching message PhoneDisplay.displayMessage 
Matching message Phone.processNumber 
Matching message PhoneDisplay.displayMessage 

Working wi th SM: PhoneDi3playSM 

Outgoing suggest ions for s tate d i s p l a y i n g C a l l e r l n f o 
Current t r i g g e r i s d i s p l a y C a l l e r l n f o 

Matching message PhoneSpeaker.ring 

Done. 

Figure 7.1: Snippet of the output of the transition recommendation tool for state 
machines, as run on the R S A model example. 

7.1.2 Wha t We Found in Examples 

In this section, we show the results of running the tool on the R S A example model. 

Figure 7.1 shows part of the output of the tool. Only the signatures of recommended 

messages are shown, but the tool gets a reference to the message itself. This would 

be useful if the analysis tool were extended wi th a graphical interface, and then the 

tool would be able to show direct links to the recommended messages, or even create 

the recommended transitions automatically. 

For the state EnteringPhoneNumber, in the P h o n e S M (state machine), the 

sequence diagrams recommend that transitions out of the state could happen on calls 

to PhoneDisplay.display and Phone.processNumber. The second transition already 

appears in the PhoneSM, which is a good check to make sure that the sequence 

diagram and state machine are in agreement. If the state machine hadn't been 
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complete, we would know that at least one of the recommendations made by the 

tool was the one that was chosen by the designers. 

For the state Talking, also in the PhoneSM state machine diagram, PhoneDis-

play. display Caller Info can cause a transition out of the state, since the user may want 

to know who they're talking to. Also, PhoneKeypad.pushEnd can cause a transi

tion, which makes sense since a conversation needs to be ended after it 's started, 

and the caller can do this by pushing the "end call" button on their phone. 

7.1.3 Benefit 

The J P M and planner have simplified the implementation of this analysis tool by 

exposing the crosscutting relationships we are interested in, and collecting them in 

an easily-accessible list. 

We anticipate benefits from such an analysis tool itself, but those are outside 

the actual scope of this project. For example, the design of state machines wi l l be 

easier and less error-prone if there is already information available about transitions 

possible out of each state when they are being created. O n the basis of this, it wi l l 

also be easier to check for consistency between state and sequence diagrams. In fact, 

this analysis tool is already a step towards that - transitions based on information 

from sequence diagrams are recommended, but their use is not enforced. 

7.2 Composing Sequence Diagrams 

Another challenge when working wi th behaviour in design models comes from using 

design patterns. Ideally, the design pattern and its behaviour are specified separately 

from the base design, or even a design pattern model supplied by someone else 

is reused. The design pattern is "applied" to the base design through the use 

of collaborations, which mark operations in the base design as performing roles 

(of classes or operations) in the pattern model. The challenge comes when trying 

to understand the composed behaviour of the system. A number of papers have 
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addressed this issue already [17, 35], and we discuss here how our approach can also 

be used to deal wi th this situation. 

In a more general sense, there are other cases when you want to compose 

multiple sequence diagrams, and see the resulting behaviour. One such instance is 

when there are multiple possible flows of execution for the same operation, and you 

want to see al l the flows that the call to this operation can invoke. 

This k ind of analysis tool would be useful to anybody wanting to verify the 

behaviour of a system, and whether it behaves as expected in the presence of roles. 

In the case of collaborations, this would probably be the person adding the pattern 

implementation to the base design. Also, the second scenario might be interesting 

to anybody trying to find out, for example, how to implement a particular operation 

— they would need to see al l the possible executions in order to understand exactly 

what the operation is responsible for. 

7.2.1 Solution 

This second kind of analysis tool can help a modeler wi th overall understanding of 

the behaviour of a system, where different parts of the behaviour are specified in 

different sequence diagrams. We propose an analysis tool that wi l l compose two 

crosscutting sequence diagrams, and display the resulting sequence diagram. There 

are two major cases where we think this kind of analysis would be useful. 

The simplest case is when there are multiple sequence diagrams that share 

some calls, and we would like to see a composed sequence diagram. For example, in 

the Shapes Edi tor Example (Section 4.1), Figure 4.1 shows two sequence diagrams, 

both of which include a call to Point.moveBy. Wha t would the complete execution 

look like if Line.moveBy was called? Another variant of this case is where the 

sequence diagrams specify different alternative executions. In this case, it would 

st i l l be useful to see the composed diagram, where all possible flows of execution 

would be indicated. 
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The other case deals wi th behaviour in the presence of collaborations, where a 

role performed by a class or operation can introduce new behaviour. In particular, 

we are interested in operations that have their execution specified by a sequence 

diagram, and are also covered by a collaboration, wi th a separate sequence diagram 

specifying behaviour for the role-operation. In this case, it would be beneficial to see 

the composed sequence diagram which includes both of these behaviours, in order 

to detect any unexpected interactions that the collaboration may introduce. 

Sequence diagram composition for both of these approaches can be accom

plished by finding al l messages in the sequence diagram of interest that are crosscut 

by any message, m, in some other sequence diagram, and inserting the sequence 

of messages following m into the original sequence. For the first case, we are only 

interested in looking at crosscutting messages that have the same signature as the 

message of interest. For the second case, we are interested in looking at crosscutting 

messages wi th a different signature, which wi l l be the messages for the role-operation 

the corresponding operation may perform. Since roles are taken into account when 

creating the crosscut-by sets, role-messages wi l l be present in the crosscut-by set of 

the message of interest. This tool can be written wi th approximately 50 loc, on top 

of the planner implementation. 

7.2.2 W h a t W e F o u n d in Examples 

In this section, we show the results of running the analysis tool on the Graphical 

Editor Example model. We present two examples which correspond to the two cases 

we introduced in Section 7.2.1. 

Figure 7.2 shows output from running the tool on the first example, where 

we are interested in seeing the full execution flow of the Line.moveBy sequence, 

without looking at roles. 

Figure 7.3 shows output from running the second example, where we want 

to see how the Point .moveBy sequence is affected in the presence of the change role 
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Working with model: Subj-Obs-design-Model 
Line.moveBy : from Line.moveBySD 

Point.moveBy : from Line.moveSySD 
Point.setX : front Point.moveBySD 

Point.setY : from Point.moveBySD 
Point .moveBy : from Line . moveBySD 

Point.setX : from Point.moveBySD 
Point.setY : from Point.moveBySD 

Point.moveBy : from Line.moveBySD 

Done. 

Figure 7.2: Output of the sequence composition tool on the Line.moveBy sequence 
from Figure 4.1, wi th role bindings not included. 

Working with model: Subj-Obs-design-Model 
Point.moveBy : from Point .moveBySD 

Observer.update : from Subject.changeSD 
Point.setX : from Point.moveBySD 

Observer.update : from Subject.changeSD 
Point.3etY : from Point.moveBySD 

Observer.update : from Subject.changeSD 

Done. 

Figure 7.3: Output of the sequence composition tool on the Point .moveBy sequence 
from Figure 4.1, including role bindings. 

on the moveBy, setX, and setY operations of Point. 

In particular, we can see that multiple calls would happen to Display, up date 

if all of these operations perform the change role. This is obviously undesirable — 

in fact, we would like an update to happen only once for each sequence that involves 

one or more changes. In this case, the tool did a good job of pointing out a possible 

problem wi th the design, which can be fixed during implementation by using A O P 

techniques [18]. 

7.2.3 Benefit 

We believe this k ind of analysis should help verify composed system behaviour in 

the presence of design patterns or advice (discussed in Section 7.3). For example, 
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with respect to design patterns implemented as collaborations, this could be used to 

check whether the role behaviour applies in al l the places where you would expect 

it to apply, or whether some operations were missed when dependencies were being 

specified. 

Implementers could also use this approach to figure out exactly where the 

control flow could go from a given operation, and know exactly which functionality 

the operation is responsible for. This could also help them catch any discrepancies 

between design and specifications/headers for operations given to them. 

7.3 Advice 

This section looks at adding support for new crosscutting elements, both to the meta-

model and planner. We consider advice (from A O P ) as another k ind of modeling 

element, which can crosscut other (existing) model elements. In particular, advice 

can be crosscutting in that it may apply to multiple elements in different diagrams 

in the model. For an introduction to advice and other A O P concepts, please see 

Chapter 3. 

This discussion is more abstract than the previous two, since we have not 

actually implemented this problem in our UML2-based meta-model and planner. 

However, we did have support for this in the original EMF-based version, and were 

able to implement a couple of simple analysis tools on the basis of it [41]. 

In addition to describing how support for advice can be added to our meta-

model and planner, we consider how the advice elements we propose are different 

from the concept of advice in A O P languages such as AspectJ . In particular, we 

noticed that advice in AspectJ can only be applied to methods and calls, whereas 

wi th our meta-model and J P M advice can be applied to any element in the model 

that is identified as a join point within the J P M . Of course, this also involves coming 

up with a more general definition for what it means for an element to be advised. 

The first part of this discussion should be of particular interest to those inter-
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Display * 
» Shape 

refreshO moveByfint, int) 

1 
Point ,2 Line 

getxo 
getvo 
setX(int) 
setY(int) 
moveByflnt, int) 

getPIO 
getP20 
setP1 (Point) 
setP2(Point) 
moveBy(int, int) 

Advice 

after 
operation(Shape+.moveByO) I 
operation(Shape+.set*0): 

"should be change" 

Figure 7.4: Graphical Shapes Editor example class diagram, wi th an example of 
advice. 

ested in t rying out modeling of new paradigms, not just specifically A O P . Because if 

we can show that support for any kind of element can be added to the meta-model 

and the planner, people may be more wil l ing to try to import new paradigms from 

programming to modeling. The second part of this discussion w i l l be more appealing 

to those interested in exploring the nature of advice in aspect-oriented systems. 

7.3.1 Solution 

As mentioned before, three changes need to be made: to the meta-model, the J P M , 

and the planner. Firs t , we add the new advice [18] element to the meta-model, 

which makes it possible to advise other model elements. Advice in this context 

simply means that there is some sort of a note attached to the advised element, 

and it contains the body of the advice. A n example advice is shown on the right-

hand side in Figure 7.4. The syntax used in the figure serves only to illustrate the 

meaning, and is not a concrete proposal for advice syntax. 

Advice can be crosscutting in that it may apply to multiple elements in 

different diagrams in the model. Advice can be of three different kinds — before, 

after, and around. For example, the moveBy and setter methods of Point and 

Line can be advised wi th after-advice that makes calls to Display.update. A more 
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thorough discussion of this example can be found in [41]. • 

In addition to advice elements, we also need to add support for pointcut 

elements, which specify where the advice can apply. There are many different kinds 

of pointcuts already present in A O P systems, and some would have to be added 

in order to pick out each of the model elements identified as a join point. But 

for the purpose of this example, we are only interested in the operation pointcut 

(methods are called operations in U M L diagrams). The operation pointcut is pretty 

straightforward — it picks out operations which match the signature specified in the 

pointcut. We use AspectJ-like syntax in the pointcut expressions. The symbol "+" 

refers to subclasses, and "*" is used as a wildcard. So, for example, the first pointcut 

specifies al l moveBy operations in subclasses of Shape, while the second refers to 

all operations in subclasses of Shape whose name starts wi th "set". Pointcuts that 

can be used to include/exclude messages in certain cases (like enow) provide much 

more finer-grained control over where advice can apply than can be accomplished 

with collaborations. 

Second, we update the J P M — the definition of join points needs to be 

expanded to include the new elements, although the means of identifying join points 

and the semantic effect should remain the same. 

T h i r d , we need to modify the planner. This wi l l involve either adding a new 

phase, if we're dealing wi th a completely new kind of crosscutting, or modifying an 

existing phase, if we're adding an element in a diagram for which we already provide 

some support. In general, the addition of a new kind of crosscutting model element 

requires a new phase of processing if the element is not subsumed by any of the 

phases described in Chapter 6. In addition, the position of the new phase in the 

ordering has to be determined. None of the other existing phases should need to 

be modified to accommodate this change. In this case, we wi l l need to add a new 

phase to handle the processing of advice, since it's a completely different kind of 

crosscutting. 
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The presence of advice in our modeling language, in addition to collabora

tions and inter-type declarations (ITDs), leads to an interesting semantic question. 

We would like ITDs and advice to be able to depend on role bindings when appro

priate. Specifically, we would like an I T D onto a role element to have the same effect 

on classes performing the role as members defined directly in the role. Similarly, we 

would like pointcuts to be able to depend on collaborations and ITDs . 

This semantics is easy to achieve wi th a simple linear processing of model 

elements in which collaborations are handled before ITDs , which are handled before 

advice. This would mean that the advice phase would run after al l the existing 

phases. Bu t if we also wanted role bindings to be able to depend on ITDs , then 

we would have to adopt some sort of a fixed-point approach in our planner. So far, 

we have been unable to come up with a sufficiently compelling example that would 

require the more complex semantics. 

7.3.2 Benefit 

The addition of support for a new kind of crosscutting element to the meta-model 

and planner has a number of benefits. First , most directly, it w i l l benefit those trying 

to do aspect-oriented modeling in U M L . A O P is in increasing demand right now, 

and there is a need for support for the process throughout its lifecycle. There are a 

number of approaches, discussed in Chapter 2, that advocate either the support for 

A O elements in modeling, or support for A O development, from design through to 

implement ation. 

A second, more indirect benefit of making these changes is to show that 

support for any new kind of crosscutting element can be added to the meta-model, 

as well as the planner. Since the treatment of all the crosscutting elements is generic, 

we can see that the implementation of the planner doesn't rely on the kind of element 

being added, only on the crosscutting relationships it has wi th other model elements. 

This can be done for other diagrams in U M L , or domain-specific models for certain 
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applications. This also supports our decision to separate the planner into phases, 

as the addition of support for new crosscutting elements makes the least possible 

impact on existing phases. 

Because we layer a join point model, which is an aspect-oriented concept, on 

top of the U M L meta-model, instead of simply adding direct support for AspectJ 

elements to the meta-model, the advice described in Section 7.3.1 differs from the 

advice usually discussed in the context of AspectJ . In particular, in AspectJ advice 

applies to points in the execution of the program. W i t h modeling, we have much 

more freedom than that, and the semantics of the advice we introduce is different, in 

that advice can apply to any model element which can be identified in our system, 

i.e. any model element that is a join point. 

7.4 Discussion of Contributions 

In this section, we look at each of the contributions we claimed in Chapter 1, and 

justify them wi th respect to the examples we've discussed above. 

7.4.1 Show that a J P M - E n h a n c e d Meta -Mode l C a n Support Cross-

cutting Structure in a U M L M o d e l 

Our planner makes the existing crosscutting structure explicit in the model, relying 

on the additions we have made to the meta-model, as discussed in Chapter 5. In 

particular, we make use of the "crosscuttingJoinpoints" field of a Joinpoint to record 

the crosscut-by set for each element. 

Our framework also enables the addition of new kinds of crosscutting struc

ture (model elements) wi th less work than would be required wi th established mod

eling tools like R S A . Section 7.3 addresses this exact issue, where we discuss how 

support for advice and pointcuts can be added. We believe that we could add sup

port for these elements to our meta-model and planner wi th a couple of weeks worth 

of work, while there is s t i l l no support in R S A for advice, regardless of the increasing 
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interest in aspect-oriented implementation and design. 

From making the changes to the meta-model, as well as the implementation of 

the planner, we saw that crosscut-by sets are a good way of supporting and exposing 

crosscutting structure. The implementation was straightforward, as is access to the 

elements in the set after the planner has made its passes. A l l the different kinds of 

crosscutting elements are treated the same, which allows analysis tools to be more 

generic in their implementation. 

7.4.2 Traversing the M o d e l to Collect Crosscutting is Straightfor

ward 

Once the J P M was added to the meta-model, the planner tool implementation 

was fairly straightforward, as discussed in Chapter 6. The staged implementation 

allowed us to concern ourselves only with specific diagrams during each of the passes. 

A l l model elements of interest have signatures which can be compared in order to 

determine whether elements match or not, and we have devised matching rules that 

are applied in the case of roles from collaborations, which complicate the matching 

process. 

7.4.3 The Above Help Model ing Tools to Access, Analyze, and 

Display Crosscutting Relationships of Interest 

Sections 7.1 and 7.2 discussed simple automatic tools we have implemented that 

help wi th analysis of existing crosscutting structure. Section 7.3 dealt wi th the 

issue of adding support for new crosscutting elements, to the meta-model, J P M , 

and planner. 

There is less we can say about the display of crosscutting relationships, at 

least in terms of graphical display. This ended up not being the main focus of the 

project, so we did not explore the issues involved in creating a graphical display. 

Deciding how each kind of crosscutting relationship wi l l be represented graphically 
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is another big issue, and we thought it may be too general of a question to address 

in our work. 

7.4.4 P l a n n e r T o o l 

The planner we implemented as part of this thesis was a good proof-of-concept 

tool to show that using a J P M can help support modeling, wi th respect to imple

mentation of both a planner and analysis tools. Bo th versions of the planner were 

straightforward to implement, and allowed us to more thoroughly explore the J P M , 

in particular how it helps simplify the development of different automated analysis 

tools. 

7.5 Feedback and Future Work 

We have had a number of opportunities to present this work to other researchers 

and members of industry, and have had some useful feedback, as well as a number 

of ideas for the directions we could take the project. In particular, the problem 

discussed in Section 7.1, on the use of messages in sequence diagrams to recommend 

possible transitions in state machines, is a direct result of feedback from Susan 

Mclntyre , who quoted some of her customers as saying that when creating state 

machine diagrams, help from the tool would be desirable, especially if behaviour 

already specified in sequence diagrams could be used to help wi th this. 

After implementing the first stages of the planner for class and sequence 

diagrams, we were curious as to what other kinds of diagrams are considered the 

most interesting (and used most frequently) by modelers. State machine and col

laboration diagrams were among those recommended to us, in particular by Bran 

Selic, who has a long history wi th real-time modeling. Another question that was 

raised is whether there is a distinction between design-time crosscutting (what we 

are dealing wi th here) and run-time crosscutting (addressed by A O P approaches). 

Advice, discussed in Section 7.3 can be used as an example of this, since just where 
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advice can apply, and what it means, is different in AspectJ and our framework. 

Maged Elaasar, a P h D student also working at I B M , brought to our attention 

the idea that since our approach is so general, the J P M concept could also be applied 

to other meta-models, for example domain-specific languages or meta-models. A 

planner tool similar to ours could then be implemented for the new domain, wi th 

the same kinds of benefits. Finally, it was discussions wi th other researchers that 

convinced us to switch from E M F to U M L 2 as the basis for our implementation, in 

particular B r a n Selic and K e n Hussey, the main developer behind U M L 2 . 
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Chap te r 8 

Conclusion 

We propose bottom-up support for crosscutting structure in U M L by adding a simple 

J P M to the U M L meta-model. This modified meta-model simplifies implementation 

of tool support for exposing and analyzing crosscutting structure, as well as addition 

of new kinds of crosscutting structure. It also makes models of crosscutting structure 

more declarative. 

Using our meta-model, adding new I T D constructs was a fairly straightfor

ward exercise. A l l the existing U M L model elements, as well as the I T D constructs, 

were integrated smoothly into the J P M . The planner we implemented was able to ef

fectively expose the crosscutting between model elements in various diagrams. This 

makes us optimistic that we w i l l be able to support other kinds of crosscutting model 

structure, such as advice, for which the proposed steps were discussed in Chapter 7. 

Through design of the J P M , as well as the planner, we have also gained 

a better understanding of the crosscutting relationships that are possible between 

different model elements, which we summarised in a table in Chapter 5. 

In terms of implementation, we present a self-contained JPM-enhanced U M L 

meta-model, and an easily extensible planner tool. Bui ld ing on that foundation we 

present simple automated model analysis tools, which can provide further task-

specific helpful information to the modeler. These tools rely on the output from 
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the planner to perform their analysis. These tools would be most useful for analysis 

that relies on information from multiple models, or multiple diagrams within a single 

model. 

We propose an advice semantics in which any kind of join point can be 

advised, including not just method calls, but also transitions, classes, states, and 

others, as discussed in Section 7.3. We would like to see the existing J P M and 

planner expanded by adding support for other U M L diagrams, as well as providing 

support for the elements of existing diagrams that we excluded during our ini t ial 

implementation. 

We would also like to see the analysis tool suite extended wi th tools similar to 

the two we've already implemented. Following one of the suggestions we discussed 

in Section 7.5, it would also be interesting to apply the approach we presented to a 

different meta-model, by following the steps for designing a J P M and implementing 

a planner, which we described in this thesis. 

We believe that adding a J P M to a meta-model is promising both in terms 

of support for existing kinds of crosscutting, as well as addition of support for new 

kinds of crosscutting, like aspects and advice. Our proof-of-concept implementation 

demonstrates this. We have also presented ideas for future work, as well as possible 

automated tools that would take advantage of the crosscutting structure exposed 

by the planner. 
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