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Abstract 
We propose a fully distributed peer-to-peer (P2P) infrastructure supporting networked 

virtual environment (NVE) applications, such as massively multiplayer online games 

(MMOGs). While P2P computing is commonly recognized as a useful architecture for 

improving the scalability of MMOGs, it is still challenging to have a truly scalable 

system without compromising reliability, responsiveness, consistency, and low overhead. 

We propose a hybrid infrastructure - A Mobile Overlay Peer-to-Peer Architecture for 

Scalable Massively Multiplayer Online Games (MOPAR), to address this scalability 

issue of MMOGs. Our approach exploits the concept of interest management, taking 

advantage of both a structured overlay (i.e., distributed hash table (DHT)), and 

unstructured P2P architecture. Our infrastructure is not only more scalable and reliable 

than other approaches; it provides the benefits of high responsiveness, and low overhead. 

In this thesis, we present a novel hierarchical architecture and associated algorithms to 

alleviate the workload of each peer, save network bandwidth, and reduce overhead cost. 

We also present a novel zoning scheme that guarantees all players have a continuous 

view. We anticipate that our infrastructure will provide a generic, configurable, and 

efficient framework that can be used to facilitate user-designed P2P M M O G s or N V E 

applications. 
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Chapter 1 

Introduction 

Massively multiplayer online games (MMOGs) are games where typically 

thousands or even millions of players interact in real time in a shared game world. 

M M O G is considered to be an application of large-scale simulations or networked virtual 

environments (NVE), since they share many characteristics of these systems [27]. In an 

M M O G system, game players, through their game entities such as avatar, share a sense of 

virtual space, game states and a sense of time in a virtual reality. We have seen many of 

these kinds of large-scale N V E applications being developed and used in areas ranging 

from military training, to education [11], to entertainment [10]. 

A successful M M O G must meet the following basic requirements [25]: (1) 

scalability - the system must be scalable to a virtually unlimited number of players; (2) 

responsiveness - latency is always a concern in a real-time system, although different 

type of games may have different latency tolerances; (3) persistency - game states should 

persist between game sessions; (4) reliability - games should be fault tolerant in the event 

of a sudden network failure; and (5) consistency - game states shared among the players 

should be consistent to a certain extent to allow a meaningful interaction. 
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Generally speaking, among all these requirements for a successful M M O G , 

scalability is considered to be the most challenging issue, since the number of players can 

grow in an unlimited and unpredictable fashion. Improving scalability without 

compromising the other requirements is the design goal of a successful M M O G . 

1.1 Motivation 

The client-server model is the most widely used network architecture in 

commercial MMOGs. For example, one of the most famous massively multiplayer 

online games EverQuest [10] falls in this category. The client-server model simplifies 

resolution of issues such as data persistency, states synchronization or consistency, 

security, and account management. It is able to do so, because the server provides the 

central control for the whole system, and is responsible for computing and persisting 

game states, synchronizing game events, updating clients with current game states, and 

managing player accounts. Clients are only involved in the games through sending 

commands to the server and updating their cached states based on messages from the 

server. More specifically, when the server receives a command from a client, it will re

compute the global game states based on the command, and then update those clients that 

are affected by the new game states (i.e., the new states fall'within these players' area of 

interest (AOI)). 

However, the traditional client-server model suffers from scalability problems. As 

it is hard to predict the number of players when a new game service is introduced, it is 

difficult for a company to decide on the appropriate server investment. Overestimating 

the number of players could add unnecessary cost, while underestimating could lead to 

revenue loss. The servers can also become the bottleneck point when a large number of 

players are involved in the game concurrently. As a result, clients may notice poor 

responsiveness, which degrades the performance of the games, especially those games 

requiring frequent updating (5-10 times per second), such as fast-paced first-shooter 
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games. In addition, the servers can also become the single point of failure if a sudden 

network failure occurs at the server side, which can cause the whole game system to 

crash. To address these issues, especially the scalability issue, a variant of the traditional 

client-server model, the clustered-servers model, has been introduced. In the clustered-

servers model, such as Terazona [32], and Butterfly [6], multiple servers are connected to 

each other to serve the clients. These systems tend to be more scalable to the number of 

players, since servers can be added to the cluster to accommodate the potential growth of 

the game players. However, the downsides of this approach are that it increases system 

complexity, as well as introducing extra hardware and maintenance costs. Another major 

shortcoming of all client-server systems is that they can only support limited types of 

games, which greatly reduces their reusability. 

Recently, P2P has been investigated as a way of addressing the scalability issues of 

the client-server model, in light of its natural properties such as resources sharing and 

decentralized resource consumption. Many proposals [4][5][18][19][22][25][29][31] 

have advocated taking advantage of the benefits of P2P architecture. They are based on 

the idea that every node joining the system will bring more resources to the virtual 

environments, so that with more users the game has more resources. 

While P2P seems to address the scalability issues of MMOGs , it creates some 

issues that can be easily resolved in the client-server model. More specifically, in 

MMO G s , each player has limited virtual visibility, for instance, the area within 100 

meters of distance. Therefore, broadcasting relevant messages to all players in the virtual 

world is definitely not bandwidth efficient, and wastes the computing power of those 

nodes that receive irrelevant messages; each player is usually only interested in the 

activities happening within his or her area of interest. Interest management [20] is 

commonly used in the large-scale virtual environments. Network bandwidth 

consumption is thereby greatly reduced, and the workload of each player is also 

alleviated. In traditional systems, interest management is easily achieved through server-
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side filtering. Before P2P computing can be used to effectively solve the scalability 

issue, the issue of interest management must be addressed. Specifically, the problem is 

how a player must be able to dynamically build direct connections with players coming 

into his or her AOI without the intervention of the server. 

1.2 Thesis Contributions 

This thesis proposes a peer-to-peer (P2P) infrastructure that facilitates a scalable, 

responsive, and fault tolerant M M O G . It focuses on addressing the most challenging and 

common issue of M M O G s - scalability, through exploiting the concept of interest 

management. However, our framework is generic enough to be easily extended to meet 

more game-specific requirements, instead of putting them all in the core of the 

infrastructure. We hope that our approach can be used as a generic P2P games network 

foundation for the M M O G community, enabling numerous user-defined P2P MMOGs 

games to be built on top of it. 

Our thesis makes the following contributions1: 

• We propose a novel P2P interest-management scheme, which allows 

peers to detect neighbours coming into their area of interest. This 

generic P2P interest management scheme is not restricted to the 

M M O G . It can also be applied to other neighbour-discovery-related 

P2P applications. 

• We propose a novel location-aware hierarchical architecture providing 

the benefit of low overhead. Only close-by peers will be grouped, so 

that the structure is condensed and message exchanges are efficient. 

• We propose a hybrid infrastructure that takes advantage of the benefits 

of structured P2P architecture (distributed hash table (DHT)), including 

1 A paper based on the work of this thesis has been accepted for publication [1] 
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reliability, self-organizing ability, and proximity-awareness, and of the 

direct communication scheme of unstructured P2P architecture. 

Basically, DHT is used to build the hierarchical architecture, while 

message exchanging is based on the direct communication scheme. 

• We present a novel hexagonal zoning scheme, in which a game world is 

divided into hexagonal zones. Using our special design, players have a 

continuous viewing area, instead of discrete views as in other similar 

zoning schemes. 

• We design an intelligent coordinate (master) nodes searching algorithm, 

which significantly saves bandwidth consumption, and improves 

responsiveness by pruning many unnecessary DHT queries. 

• We design a framework that provides the essential functionalities and 

protocols for user-defined games to be deployed by integrating the game 

applications into our infrastructure. Game logic is separated from the 

underneath infrastructure, so that there are no limitations on any user-

defined games. 

• The infrastructure is configurable to the size of the area of interest, and 

the size of the map dimension. The infrastructure can be configured to 

fit the needs of various games. 

• We implement a prototype of the infrastructure to demonstrate its 

feasibility. 

• We implement a simple game application artd a visualization tool for 

graphically revealing the design of our architecture. 

• We evaluate the performance of the infrastructure by experimenting 

with the prototype. 
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1.3 Thesis Organization 

The thesis consists of seven chapters. In Chapter 2, we discuss background 

information and related work in P2P MMOGs. In Chapter 3, we present the high-level 

details of our hierarchical architecture design. In Chapter 4, we discuss the details of the 

algorithms we designed for dynamic interest management and the protocols developed 

for the communications between peers. In Chapter 5, we introduce the implementation 

details of the prototype, game simulation, and visualization. Chapter 6 presents the 

empirical analysis of the system's performance. In Chapter 7, we present the 

conclusions, and discuss potential directions for future research. 
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Chapter 2 

Background and Related Work 

This chapter introduces the background of P2P infrastructure and one of the most popular 

structured P2P overlays - Pastry - as well as some recently proposed P2P architectures 

for MMOGs. 

2.1 Peer-to-peer Infrastructure 

2.1.1 B a c k g r o u n d 

Peer-to-peer systems are distributed systems in which each node has equal status 

and control. One major characteristic of the P2P model that distinguishes it from the 

traditional client-server model is that every node in the system has dual roles. That is, a 

node acts as a server when it provides resources, and as a client when it consumes 

resources. The P2P model has become well-known for some of its famous file-sharing 

applications such as Napster [23], Gnutella [14], and FreeNet [12]. 

While the benefits of P2P computing are well realized in file-sharing applications, 

many attempts have been made to apply the technology to the applications other than file 
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sharing, for example, M M O G . P2P computing has many realized benefits, including cost 

sharing, scalability and reliability, resources aggregation, increased autonomy, 

anonymity, and ad-hoc connectivity. Among these benefits, two are very useful in 

solving some of the challenging issues in the traditional client-server based M M O G . The 

first is cost sharing. Instead of investing a large amount of money on a single server, the 

P2P approach helps to spread costs over all the peers. The other benefit of the P2P 

architecture is its scalability and reliability. Adding a new player will not use up 

centralized resources; instead, resources are increased with the addition of the new 

player. Moreover, because the workload is shifted from a centralized server and 

distributed onto peers, server problems such as bottleneck and the single point of failure 

can be eliminated. 

2.1.2 Distributed Hash Table and Pastry 

In recent years, the overlay based on the distributed hash table (DHT) has become 

popular in the domain of P2P applications. Many proposals fall into this category, such as 

C A N [26], Chord [16], Pastry [3], and Tapestry [7]. The DHT-based P2P overlay is also 

known as a structured P2P infrastructure, and as such is completely distributed, scalable, 

and self-organizing. 

Among all the variants of the DHT-based overlay, Pastry is the most widely used. 

Several applications have been built on top of Pastry, including a global, persistent 

storage utility called PAST [2], and a multicast infrastructure called SCRIBE [21]. 

Each node or application object in the Pastry overlay network is assigned a 128-bit 

node identifier by applying a random hashing algorithm (i.e., SHA-1) on the node's IP 

address, or the object's name to get the node_id or object key. The Pastry nodes are 

organized in a circular node_id space ranging from 0 to2 1 2 8 - 1 , where the node_id is 

used to identify the position of each node in the circular ring. A distributed hash table is 

maintained in each node as a routing table. A Pastry node also maintains a set of Pastry 
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nodes that are numerically closest to it, called a leaf set. An application object is then 

stored in a determined Pastry node, where the node' node_id is closest to the object key. 

The object now can be looked up by any nodes in the space, as long as the object key is 

given. Figure 2-1 gives a graphical explanation of how an object is looked up in a Pastry 

overlay network. We suppose that an object with the object key as "d46alc" is stored in 

the node "d467c4" (because the node_id and the object key are numerically closest), and 

that a lookup message containing the object key was sent out from the node "d5alfc". 

The lookup message is routed to the destination node through three intermediate hops. 

Every intermediate node looks into its routing table and then forwards the message to the 

node that has the longest prefix match with the lookup message. The message finally 

reaches the determined destination node "d467c4", because this node is numerically 

closest to the lookup message. The actual object stored by this key can then be retrieved 

by the requesting node. 

Figure 2-1 Looking up an object in Pastry overlay network 

Pastry guarantees that messages are forwarded to their destination within l og^ 

routing hops, due to the longest prefix matching, where N is the number of nodes, and b 

is a configuration parameter. Pastry also takes the locality into account, which meaning it 

selects the closest node with the minimum distance to forward the messages. The 
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distance is based on a scalar proximity metric like the number of IP routing hops. Pastry 

is also highly reliable, even in the event of concurrent node failure. A message is 

guaranteed to be delivered, unless / / 2 of the adjacent nodes on the ring fail 

simultaneously. "I" is the size of the leaf set. The possibility of this occurrence is very 

low, due to the diversity of nodes with adjacent node_ids. This diversity results from the 

random hash algorithm used. As the node_id is generated by hashing the IP address using 

a random hashing algorithm, there is no direct relationship between the closeness of the 

nodes in the network and the closeness of their node_ids. 

2.2 Related Work 

The concept of interest management assumes that players in the games have a 

limited visibility or area of interest (AOI). Therefore, changes to game states outside of a 

player's AOI can be considered as irrelevant information for the player. However, in the 

earlier P2P-based approaches to MMOG, interest management was not exploited to 

restrict unnecessary message flooding. For examples, in games such as MiMaze [8] and 

Age of Empires [24] broadcast messages to all players in the game world. These 

irrelevant messages not only consume extra bandwidth, they also waste computing cycles 

of those nodes receiving the irrelevant messages. Therefore, this type of approach is not 

truly scalable. To address this problem, later approaches, such as AMaze [9] and Mercury 

[4], try to restrict message flooding by sending messages to the interest group through 

multicasting. However, IP multicast requires a special network infrastructure, which is 

not widely available. 

In recent years, many proposals have addressed the scalability issue by constructing 

a local aware topology that allows players to send messages either directly or indirectly to 

those nodes within their area of interest. In general, these approaches can be categorized 

into two different types based on their P2P overlay architecture: a DHT-based approach, 

and an unstructured P2P approach. 
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2.2.1 DHT-Based Approach 

In the DHT-based approach, designs rely heavily on the structured P2P overlay, 

such as Knutson et al's P2P Support for Massively Multiplayer Games [5] and Limura et 

al's Zoned Federation of Games Servers [29]. These designs divide the game map into 

fixed regions. An authoritative server is dynamically assigned to each region responsible 

for coordinating the game states. Such approaches aim to emulate the cluster of servers 

by dynamically promoting peer nodes as coordinators. While Knutson et al propose to 

use Scribe, an application-level multicast built on top of Pastry, for the game state 

dissemination, Limura et al argue that Scribe incurs unnecessary network delay due to the 

possible number of hops. They propose a direct communication model, in which 

coordinators cache the game states and maintain direct connections with regional 

members. Coordinators can then be used for storing members' states and updating them 

through direct communication between them and regional members. In Limura et al's 

Zoned Federation of Games Servers, coordinators are selected through a registration 

process via the DHT. 

Direct connection 

Region 2 

Reg^n 1 ^ 

H MultlCdSt 

Figure 2-2 Map is partitioned into fixed regions 

The common problem with this kind of approach is that they introduce artificial 

boundaries into the game world. Each player is placed into an artificially partitioned 

region as depicted in Figure 2-2. Players in different regions cannot view each other, 

even though they are within each other's AOI in the virtual world. In addition, the lack 

of the clear specification for partitioning the game world leaves an uncertainty as to the 
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game applications, as different ways of partitioning may significantly affect the games 

performance. 

The significant shortcomings with the DHT-based approaches are that, the 

coordinators act as a server in each region, and there is no mechanism for players to build 

direct connections with other players within the same A O I . This can cause three 

problems: (1) game-state communications must be relayed through coordinators, so that 

extra network delays are introduced; (2) players may receive irrelevant information, since 

the regional server blindly sends updates to every player in the region; and (3) the 

regional servers can potentially be a bottleneck. For example, i f the players within the 

same region generate lots of activities in a simultaneously, the region servers can be 

easily overloaded. 

2.2.2 Unstructured P2P-Based Approach 

The second kind of approach to resolving the scalability issue is based on an 

unstructured P2P overlay, in which all nodes must maintain connections even though 

they are dispersed in the virtual world. In this type of scheme, the challenge is to 

guarantee both global connectivity (the topology must be ful ly connected) and local 

awareness (of the nodes within the AOI ) [18]. 

There are three major proposals in this category of approach. They are Kawahara 

et al 's Neighbour List Exchange scheme [29], Kel ler, et al 's Solipsis [18], and H u et al 's 

Voronoi scheme [25]. A common problem with these proposals is inefficient use of 

resources. In Kawahara et al 's approach, each player continuously exchanges a 

neighbour list with its nearest neighbours. The messages generated for neighbourhood 

maintenance grow at 0(n2), where n is the average number of neighbours of each player 

[13]. In Solipsis, each player acts as a "watchman" of the others. They watch every 

movement of their topology neighbours, and notify others when new topology neighbours 

are discovered for them. Note that the topology neighbours may not be close in the game 
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world (i.e., the topology neighbours can be far apart in the game world). In the Voronoi 

scheme, a Voronoi diagram is employed to regulate the network topology in order to 

maintain the globe connectivity. Every player needs to look ahead through their nearest 

topology neighbours in order to dynamically maintain topology integrity for every single 

movement. One of the major problems of the above proposals is that they tend to involve 

every node in the interest-management activity. This not only generates additional 

network communications, but also adds extra workload to each node. 

The most significant problem with these schemes is that none of them is truly 

successful in maintaining consistent topology, or in discovering neighbours. In the 

Neighbour List Exchange scheme, players exchange neighbour lists only with their 

nearest neighbours. As a result, a player or a group of players can be isolated if they are 

far away from other players in the game world. Solipsis cannot guarantee neighbour 

discovery either, since directly connected neighbours are not reliable in notifying 

incoming neighbours of all scenarios, as described in [25]. The Voronoi scheme can 

hardly maintain consistent topology, if two or more adjacent boundary neighbours leave 

the game at the same time. As depicted in Figure 2-3, the Voronoi topology can hardly 

be recovered, if the nodes around the round node leaving the game world simultaneously, 

since based on the Voronoi scheme, a node relies on the connected boundary nodes to 

dynamically maintain the Voronoi-like topology. 
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Figure 2-3 Fails to recover when adjacent nodes leave simultaneously 

2.2.3 Hexagonal Zoning 

The advantages of hexagons in dividing a game map have been recognized. 

Hexagons have uniform orientation and uniform adjacency. In addition, an AOI is usually 

defined by radius, and hexagonal zoning is more approximated to circles than is quadrant 

zoning. As depicted in Figure 2-4, a player moving from one cell to another joins and 

leaves the same number of cells. In Macedonia et al's proposal [22], a player's AOI 

consists of a radius of grid cells, where a player joins new cells at the leading edge and 

leaves old cells at the trailing edge as it moves forward. Each cell is mapped to a 

multicast group. 

Figure 2-4 Moving between cells joins and leaves the same number of cells 
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However, in traditional hexagonal zoning, the view of each player in the virtual 

world is discrete, and will not change until the player moves from one cell to another. 

Such discrete view seems unrealistic in MMOGs, especially for these applications in 

which the players' visibility tends to be fairly sensitive. Another problem is that the 

traditional hexagonal zoning relies on a special network support such as IP multicast to 

forward a message from one cell to the other. Unfortunately, this special IP multicast 

infrastructure is not widely available. Moreover, when a game player is moving from one 

cell to another, the node needs to join and leave a set of cells. This joining and leaving 

can be costly in terms of bandwidth efficiency and responsiveness. 
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Chapter 3 

System Architecture 

This chapter presents the high-level details of our M O P A R system. We describe how we 

divide the game map into hexagonal zones, and how DHT is used to build the 

hierarchical structure. We also discuss how to deal with the dynamics of MMOGs, and 

the fault tolerance of our infrastructure. 

3.1 Hexagonal Zoning 

Each node maintains two configurable data: the dimensions of the game world and the 

AOI radius. The AOI radius defines the visibility of a player. In order to simplify the 

scenario, we assume that each player has the same AOI radius. Based on these two 

configurable data, a game application is able to divide the game map into hexagonal cells, 

and determine which cell a player is currently located in based on the player's position (x, 

y coordinates). 
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3.1.1 AOI Radius and Hexagonal Cells 

Based on the mathematical structure of a hexagon [13] described in Figure 3-1, we 

define the variables of a hexagon and their mathematical relationships with the AOI 

radius in Table 3-1. 

Symbol Definition Mathematical relationship 
s Side length s = aoi radius 

h Height h = sin( 30°) * s 

r Distance r = cos( 30°) * s 

b Height of the surrounding rectangle b = s + 2 * h 

a Width of the surrounding rectangle a = 2 * r 

Table 3-1 Mathematical relationships between AOI radius and a hexagon 

a 

Figure 3-1 Mathematical structure of hexagons 

Based on the above definition of a hexagonal cell, we can see that the size of our 

hexagonal cell is determined by the AOI radius of the game players. Figure 3-2 gives a 

graphical view of the relationship between AOI and a hexagonal cell, in which the circle 

represents the AOI of a player. 
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Figure 3-2 Graphical relationship between AOI and hexagonal cell 

3.1.2 Mapping Positions to Hexagonal IDs 

Once the game world is divided into the hexagonal cells, the cell's coordinates of a 

player located in needs to be determined based on the player's position coordinates on the 

map. We assume that information about the hexagonal cells is stored in a two-

dimensional array (or cell coordinates), and we use the cell coordinates as the IDs of 

hexagonal cells. Basically, the problem now becomes how to map the position 

coordinates to the hexagonal cell IDs. [13] provides an algorithm for converting the 

pixels on the game map to the corresponding cell coordinates. We apply this algorithm to 

map a player's position in the game world to a hexagonal cell's coordinates (cell_id). As 

Figure 3-3 shows, the dot represents a player that is located in the cell with the cell_id [1, 

1]. 

Unlike other schemes such as Macedonia et al's proposal [22], each player in our 

scheme is guaranteed to have a continuous viewing area, instead of discrete. The reason 

for this will be discussed in the next section, since it is also related to the design of our 

hierarchical architecture. 
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Figure 3-3 Dividing the game map into hexagonal cells 

3.2 Hierarchical Structure Design 

3.2.1 Motivation 

A s discussed in the previous chapter, having each node involved in interest 

management is not efficient, and cannot guarantee topology consistency. W e observed 

that the source of the problems is in the nature of the topology model used - an 

unstructured flat model. For example, content searching in flat P2P model usually 

involves the message flooding. Some proposals [30] suggest that the hierarchical model 

can restrict message flooding effectively. Inspired by this idea, we want to design a 

hierarchical architecture that can be applied to interest management. The goal is that, in 

this hierarchical architecture, only the super nodes wi l l be responsible for interest 

management. The super nodes (termed master nodes in our scheme) act as a "watchman" 

for other nodes, and notify other nodes whenever there is a node entering their area of 

interest. B y doing this, we hope that neighbour discovery (interest management) can be 

achieved more efficiently and reliably. 
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We first need a reliable mechanism to facilitate building the hierarchical structure 

in a distributed manner. Inspired by the zone server selection method in Limura et al's 

proposal, we agree that D H T may be used for master node selection. 

However, having the hierarchical structure only is not enough for performing the 

tasks of interest management. We also need to solve the following two problems: (1) the 

master nodes as a "watchman" need to be able to look ahead to immediately detect any 

incoming nodes; (2) the infrastructure needs to guarantee global connectivity. In other 

words, there must not be any isolated nodes globally. As shown in Figure 3-4, all nodes 

are connected with some other nodes locally, but the group on the left is separated from 

the group on the right. This is a common problem in the unstructured flat model. The 

movement of nodes in one group towards the other group will not be detected. 

Isolated Groups 

Figure 3-4 Left groups are separated from the right groups 

Bearing these two problems in mind, we realize that, first, in order to make super 

nodes be the "watchman", the master nodes need to build connections with the master 

nodes in adjacent cells, if any exist (as shown in Figure 3-5). By doing this, a master 

node's covering area is enlarged to seven cells, which is large enough for covering the 

area of interest of a player at any particular position in the current cell. Second, if there 

are any isolated nodes or node, we need a mechanism to allow the nodes in one isolated 

group to connect to the nodes in another group when they are moving closer. 
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Fortunately, we find that the properties of the D H T , combined with our hexagonal zoning 

can solve these two problems nicely. 

Figure 3 - 5 Connection between master nodes 

3.2.2 Des ign Deta i l s 

We choose Pastry as the particular variant of D H T . As with other variants of D H T , 

Pastry is a self-organizing, reliable, and decentralized overlay that provides the 

functionality of a distributed hash table. However, we choose Pastry because of two 

properties specific to it that are extremely useful for our application. The first is its leaf 

set property. The nodes in the Pastry leaf set of a node are the numerically closest nodes 

to the current node and can be reached in one hop (directly). This property is very useful 

for state replication, and also for a newly joined node to be able to immediately locate 

and obtain the states belonging to it; we will elaborate in a later section. The second 

desirable property is proximity. When a node routes a message, it always selects the 

closest node in distance from the candidate nodes. This property of Pastry is very 

important in meeting the responsiveness requirement of M M O G s . 

Before we discuss the design details, we identify three types of nodes in our 

scheme: master nodes, slave nodes, and home nodes. The master nodes are the super 

nodes in the hierarchical topology, and the slave nodes are the nodes in the lower level. 
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The home nodes are the virtual nodes in the DHT space. Table 3-2 gives a description of 

the roles of each type of node. 

Type of node Description 
Home node A virtual node that acts as a home for a cell for master node registration or 

game states storage. A cell is mapped to a deterministic home node. 
Master node A node that acts as a coordinator of a cell. Each cell has at most one master 

node. Master nodes also have connection with the master nodes in 
neighbouring cells. 

Slave node Nodes other than the master node in a cell. 

Table 3-2 Roles of nodes in the hierarchical structure 

Home Node Initialization 

We first describe how we map a cell to its home node, which is used as the 

rendezvous point for master node registration and potential game states storage. Based 

on our hexagonal zoning design, every cell has a unique cell_id (cell coordinates). We 

then map the cell_id to the identifier in Pastry space (we call it hex_id) by applying the 

SHA-1 hashing algorithm on the cell_id. The hex_id can now be used to locate the home 

node of the cell. The node that is the home node for the cell must be numerically closest 

to the hex_id. The binding between cell and the home node is determined. That is, a cell 

has only one deterministic home node; however, a node may be the home nodes for 

multiple cells (as shown in Figure 3-6). 

Figure 3-6 Relationship between home nodes and cells 
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Note that home nodes are virtual nodes, and that they are not necessarily positioned 

in the same cell with master or slave nodes. Because of random mapping via SHA-1, it is 

unlikely that a master or a slave node of a cell is also the home mode for the cell. The 

home nodes are initiated on demand; they will be initiated only when there are master 

nodes in these cells. 

Master Node Registration 

We assume that there is a node entering an empty cell (the cell does not contain any 

players). This node will become the master node of the cell. The following procedures 

will be executed: 

1. A cell_id is calculated based on the position coordinates of the node on 

the map. For example, a node at position (30, 50) can be mapped to the 

cell_id (0, 0), i f the side length of the hexagon is equal to 60. 

2. Hashing the cell_id to the 128-bit hex_id by applying the SHAI-1 hash 

function. 

3. Sending a query message containing the hex_id to locate the home node. 

The message will reach the destination node, which is now identified as 

the home node of the cell (the node's ID is numerically closest to 

hex_id). The home node starts the service. 

4. The home node then notifies the requesting node that it is assigned as the 

master node for this cell. 

Nodes entering the cell after the master node will be notified by the home node to 

become the slave nodes. Unlike the home node, master and slave nodes are physically 

located in the cells that they belong to. Switching cells will cause the structure to be re

constructed. 

23 



Building Inter-master Connections 

As we discussed earlier, a master node needs to look ahead through connections 

with the masters in adjacent cells. This can also be achieved through searching the 

neighbouring master nodes. Whenever a master node starts the service, it will search the 

neighbouring masters in adjacent cells. The procedure is described as follows: 

1. Neighbouring celMds are identified based on the master node's own 

cell_id. As shown in Figure 3-3, the neighbouring celMds of the cell 

[1,1], are cells [1.0], [2,0], [2,1], [2,2], [1,2] and [0,1]. These cells are 

then mapped to corresponding hex_ids. 

2. Query messages are sent to each home node of these cells to retrieve the 

master node in these cells. 

3. Connections with neighbouring master nodes are built if these nodes 

exist. 

Global Connectivity Maintenance 

As we mentioned before, interest management requires global connectivity to 

guarantee topology consistency, which is very costly in the unstructured flat model. 

Fortunately, this is not an issue in our architecture. In our architecture, master nodes will 

never lose connections with each other, if they are close enough. For example, in Figure 

3-7, when node N moves from cell [3,1] into cell [2,1], it will attempt to build 

connections with all the neighbouring master nodes (as described in the previous section) 

including node M . Thus, global connectivity will never be broken. 
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Figure 3-7 Global connectivity guaranteed 

3.3 Handling the Dynamic Characteristics 

Unlike typical applications for DHTs such as file sharing, MMOGs are much more 

dynamic in terms of frequency of nodes joining and leaving the environment. When a 

node first joins the environment, it can become the home node for some cell or cells 

immediately. This situation can happen when the newly joined node is numerically 

closer to these cells than their original home nodes. In this case, the newly joined node 

will become the home node for these cells, and therefore the master node registration 

records on the original home nodes must be transferred to the newly joined node 

immediately, in order to maintain the integrity of the system. 

This home node transferring process could be very costly in some DHTs, as 

locating the original home nodes can be challenging in a distributed system. Fortunately, 

Pastry's leaf set property solves this issue efficiently. As mentioned before, in Pastry, 

every node maintains a set of nodes that are closest on the Pastry ring, and this set is 

named a leaf set. To describe the process more clearly, we use a concrete example. We 

assume that a node NO is joining the game, and that it is inserted into Pastry ring between 

nodes NI and N2, as shown in Figure 3-8. Before NO is inserted, cell Cl ' s home node is 

NI, because |N1-C1|<|N2-C1|. After NO is inserted, NO becomes the home node of CI, 
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as |N0-C1|<|N1-C1|. Therefore, C l ' s master node registration record will be transferred 

from N I to NO. C2 will not be affected, since it is even further away than N2. As we can 

see from Figure 3-8, the insertion of the NO will only affect NI and N2, and those cells 

with IDs between NI and N2. As NI and N2 are in the leaf set of NO, NO only needs one 

hop to reach them. Basically, whenever a node joins the game, it only needs to query the 

nodes on its right and left on the ring for transferring all qualified home nodes. 

Figure 3-8 Home node transfer process 

3.4 Direct Communication scheme 

While DHT has many advantages, such as being reliable, and self-organizing, it also has 

some shortcomings. For example, messages take multiple hops to reach the destination 

node. Therefore, limiting the use of DHT is one of our design goals, since 

responsiveness is one of the important requirements of MMOGs. Based on this design 

goal, we build a direct connection between master and slaves, so that communication 

between them is direct, instead of being relayed by intermediate nodes, as in other DHT-

based schemes such as Knutsson et al's proposal. Communications for interest 

management can be categorized into two types: inter-master communications and master-

slave communications. 

26 



3.4.1 Inter-master Communications 

Inter-master communications are the backbone communications for updating the 

current positions of the players among adjacent cells. Each master needs to collect 

position information from the neighbouring cells in order to cover the area across the 

boundary for its slave nodes. Messages exchanging position updates are sent 

periodically, and are also used as heartbeat messages for ensuring the health of the 

neighbouring masters. In Figure 3-9, the larger dots represent the master nodes, and the 

smaller dots represent the slave nodes. The lines connecting the master nodes represent 

inter-master communications. The circle represents the AOI of the node in the center of 

the circle. 

Figure 3-9 Direct inter-master and master-slave communications 

3.4.2 Master-slave Communications 

Master-slave communications are communications among masters and slaves in the 

same cells. Master-to-slave communications are for notifying the slaves of the new 

incoming neighbours; messages are sent only when there are new neighbours entering a 

slave node's AOI. Slave-to-master communications are for the slaves to update the 

masters of their current positions; updating messages are sent periodically. Slave-to-

master messages are also used as heartbeat messages for ensuring the health of the slaves. 
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In Figure 3-9, the lines connecting master and slave nodes represent communication 

between masters and slaves. 

3.5 Fault Tolerance 

A node may leave the game without warning for many reasons, for example, due to 

network failure. This ungracefully leaving node can be a master node, slave node, or a 

home node. When the failure node is a home node, the master registration for this cell 

can be lost. Fortunately, Pastry nodes replicate the objects on the k nearest nodes in the 

leaf set, where k is the number of replication. The replication factor k can be increased to 

cope with high-failure network; however, the invariant for the number of replicas should 

always be kept. Therefore, a home node is dead, the master node registration record will 

not be lost, and the node that is numerically closest to the dead Pastry node will be 

chosen as the new home node automatically and transparently. This replacement 

accomplished in the following manner. When a node receives a master registration 

request from a node in a particular cell, it always checks its storage first. If there is a 

master registration record found for this cell, it knows that the original home node for this 

cell is dead, and so it replaces that home node. 

The second case is when the failure node is a slave node. A slave node is supposed 

to periodically update the master node with its position. The updating message is also 

treated as a heartbeat message by the master node. Master nodes will detect the failure of 

a particular slave node from the absence of updating messages, and therefore, remove the 

slave node from the list. 

The third case is when the failure node is a master node. The master nodes send 

the messages to the slave nodes if there are new incoming neighbours detected. 

However, if the time lapse with no incoming neighbours for a particular slave node 

exceeds a certain threshold, for example, two seconds, the master node will send a 
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keepAlive message to the slave node. This keepAlive message intends to notify the slave 

node that the master is still healthy. If a slave node does not receive either the keepAlive 

message or the neighbour notification message after two seconds, the slave node assumes 

that the master node has died. If this happen, the slave node will send an electing 

message to the home node, and then the home node will first check the health of the 

master node to decide on whether the master node needs to be re-elected or not (the first 

requesting node will be elected as a master node). 
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Chapter 4 

Protocol and Algorithms 

This chapter describes how the system dynamically adjusts and maintains the hierarchical 

topology to adapt to the continuous movement of players in the game world. It also 

provides the system analysis and comparisons with other schemes. 

4.1 Procedures and Protocol 

In this section, we describe the three major procedures that must be used by the 

peer at the application level to behave as a M O P A R application, and maintain the 

topological consistency of the whole system. 

When a player's avatar moves around the map, its position will change 

continuously. Different positions of a player's avatar on the map will potentially affect 

the hierarchical topology in the infrastructure layer. For example, when a master node 

moves from one cell to the other, a new master node needs to be assigned to replace the 

leaving master node, if there are more nodes left in the cell. 
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We describe the joining, moving, and leaving procedures in the following. Table 

4-1 and Table 4-2 describe the variables and the basic functions used respectively for the 

pseudo codes that describe the algorithms. 

Variables Description 
celljd The ID of the hexagonal cell 
pos The node's x and y coordinates 
master The node handle of a master node 
slaves A list of slaves that a master node maintains 
neighbourMasters A list of neighbouring masters that a master node maintains 

Table 4-1 Variable descriptions 

Basic functions Description Return 
getCellld(pos) Get the cell_id based on the position of 

the node. 
cell_id 

isMasterQ If the node is a master node. true/false 

assignMaster(slaves) Assign a new master selected from the 
given slave list. 

none 

stopMaster() A master node stops its role. none 
stopSlaveQ A slave node stops its role. none 
startSlave(master) A slave node starts its role by registering 

to the master node of a cell. 
none 

getNeiMaster(celljd) Get the neighbour master node in the 
neighbouring cell with the given cell_id 

neighbour master 

searchNeighbourMasters(master, 
celljd) 

Search for the neighbouring masters of 
the cell with the given cell_id. "master" 
is the master node of the cell that the 
node is moving from. 

neighbourMasters 

startMaster(neighbourMasters) Start the master role with the given 
neighbouring masters 

none 

SwitchCell(celljd) Switch to the cell with the given cell_id none 

Table 4-2 Basic function descriptions 

4.1.1 Joining Procedure 

The joining procedure is executed whenever a node joins the game world, as 

follows: 
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1. The joining node will first be bootstrapped to be inserted into the Pastry 

overlay. The bootstrapping node's IP can be obtained from a lightweight 

server. 

2. The joining node sends a joining request to the home node of the cell it is 

currently located in. 

3. The joining node will either become the master node or the slave node, 

depending on the response from the home node. 

4.1.2 Moving Procedure 

Figure 4-1 describes the two scenarios involved in moving, and Figure 4-2 presents 

the pseudo code for the moving procedure. When a player moves within the same cell, 

the hierarchical topology will not affected, while when a node moves out of the current 

cell, the switching cell procedure needs to be executed. 

(a) moving within a cell (b) cell switching 

Figure 4-1 Moving scenarios 
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1: move(new _pos){ 

2: pos = new _pos; 

3: //get the new celljd based on the new_pos 

4: new_cell_id = getCellId(new _pos); 

5: if (celljd == new_cell_id){ 

6: lithe node is moving with the same cell 

7: } 

8: else{ 

9: lithe node is moving out of the current cell 

10: switchCell(cell_id); 

11: } 

12:} 

Figure 4-2 Pseudo code for moving procedure 

Cell Switching 

If a player moves out of the current cell, a cell switching procedure will be 

executed to maintain the integrity of the hierarchical topology. Figure 4-1(b) illustrates 

the cell switching, in which a node move from cell 0 to cell 6. The cell switching 

procedure can be considered to consist of two steps. The first step is leaving the current 

cell, and the second step is entering the next cell. 

There can be two scenarios in the first step. The first scenario is that the leaving 

node is the master of the cell. In this scenario, the node must hand over the master role to 

another node in the cell; however, if the master node is the only node in the cell, then the 

master node needs to stop its role by notifying all the neighbouring master nodes of its 

leaving. The second scenario is that the leaving node is a slave node. In this scenario, 

the slave node needs to un-register from the master node, so that the master node removes 

it from its slave list. 

There are also two scenarios in the entering step. When the entering cell is empty, 

the node will become the master node of this cell. In this scenario, the node needs to 

search for the neighbouring masters of the entering cell first, and then start the master 
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role by notifying the neighbouring master nodes of its joining. In the second scenario, 

the entering node will be the slave node. In this case, the node needs to register to the 

master node of the entering cell, so that the master node can add the node into its slave 

list. 

Figure 4 -3 presents the pseudo code that describes the switching cell procedure. 

1: switchCell(cell_id){ lithe celljd is the entering cell's celljd 

2: llstepl: leaving the current cell 

3: if(isMaster()){ llifthe node is the master node of the current cell 

4: if(slaves.size()>0){ llifthe master maintains more than one slaves 

5: assignMaster(slaves); 

6 stopMasterQ; 

7. 

8 

9 

10 

11 

12 

13 

14, 

15. 

16. 

17. 

18. 

19. 

20 

21 

22 

23 

24. 

25. 

26. 

27. 

28 

} 

else{ lithe master node is the only node in the cell 

//stop the master role 

stopMaster(); 

} 

} 

else{ //if the node is a slave node in the current cell 

stopSlaveQ; 

} 

//step 2: entering the next cell 

master = getNeiMaster(cellJd); //get the master node of the entering cell 

ij"(master !=null){//there exists a master node in the entering cell 

//register the slave to the master node 

startSlave(master); 

} 

else{ //there does not exist a master node in the entering cell 

//search for the neighbouring masters for the new cell 

neighbourMasters = searchNeighborMasters(mO, celljd); 

//start as a master in the new cell 

startMaster( neighborMasters ); 

} 

} 

Figure 4 - 3 Pseudo code for switching cell procedure 
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4.1.3 Leaving Procedure 

The leaving procedure is executed whenever a node leaves the game world 

gracefully. There are two scenarios: the leave master is either a master node or a slave 

node. 

1. If the leaving node is a master node, it assigns a new master selected from 

its slave list. If the node is the master, but the only node in the cell, it first 

notifies all the neighbouring masters of its leaving, and then un-registers 

itself from the home node of the cell. 

2. If the leaving node is a slave node, it simply sends an un-registration 

message to the master, so it will be removed from the slave list. 

The leaving node might also be the home node for some cells, so it might hold 

some master registration records for these cells. Fortunately, this problem is resolved 

automatically and transparently. The master registration records are always replicated on 

the "k" nearest nodes, and the next nearest node will be promoted to be the home node 

with all the complete information. This process is almost identical to the ungraceful 

leaving scenario, which we have discussed in the previous chapter. 

4.1.4 Protocols 

We also developed a set of protocols for supporting the M O P A R communications. 

They are described in Table 4-3. There are two types of communications; one is 

communication between the node and the home node, the other is direct communication 

between the nodes. 
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Message Parameters Response Purpose 
D H T messages 

join IP address IP address 
(master node) 

Join the game 

leave IP address None To remove the master 
registration 

elect IP address IP address 
(newly 
elected master 
node) 

To request the home node 
to elect a new master node, 
as the master node with the 
given IP address is detected 
death. 

queryMaster None IP address 
(master node) 

To get the master of a cell 

registerMaster IP address None To register a master node 
(this is used by an assigned 
master to force the home 
node to change the master 
registration record) 

unregisterMaster IP address None To remove the master 
registration record from the 
home node 

Direct Communications 

queryNeighbourMaster 
[celljd] [IP address] To query the neighbouring 

masters to a master node by 
giving the list of cell IDs 

assignMaster neighbourMasters 
slaves 

True/False To assign a slave node to be 
the new master by giving 
the neighbouring masters 
and slaves 

changeMaster IP address None Notify the slaves of the 
changes of the master 

changeNeighbourMaster IP address None Notify all the neighbouring 
masters of the change of the 
master 

unsubscrbeNeighbourMaster IP address None Notify the neighbouring 
masters of its leaving 

unsubscribeSlave IP address None Un-register from a master 
registerSlave IP address None Register a slave to the 

master 
updateSIavePosition Position None Update the master with the 

current position 
updateNeighbourMaster [IP address, position] None Exchange the positions of 

the nodes in the current cell 
with the neighbouring 
masters 

newNeighbours [IP address] None Notify the slaves of the new 
entering neighbours 

keepAlive [IP address] None Notify the slaves of the 
healthy of the master 

Table 4-3 Protocols for MOPAR 
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4.2 Neighbouring Masters Searching Algorithm 

Every time a node moves into an empty cell, the node will become the master node of 

this cell. The master node will need to search for the masters in the neighbouring cells. 

One simple algorithm is to query the home nodes of the neighbouring cells. However, 

home node queries are DHT queries, which are fairly costly, as the query message may 

take multiple hops to reach the home nodes. Therefore, minimizing the DHT query will 

be useful for reducing bandwidth consumption and communications delay. 

4.2.1 Blind Searching Algorithm 

The simple algorithm is straightforward. The entering master node sends a multi-

hops query message (DHT message) to all the home nodes of the neighbouring cells; we 

call it blind searching. The main disadvantage of blind searching is that messages are 

sent to all the home nodes of the neighbouring cells without considering that some of the 

cells might be empty, so the searching can generate many unnecessary messages. As 

shown in Figure 4-4, the master node sends DHT query messages to the home nodes of 

all the neighbouring cells, even if these cells are all empty. At maximum, there can be as 

many as six unnecessary DHT queries (every cell has six neighbouring cells). In 

addition, DHT messages as multi-hops messages suffer from potential latency and 

bandwidth inefficiency. However, blind searching is unavoidable when a node first joins 

the game world as a master of a cell. 
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Figure 4-4 Blind searching 

4.2.2 Intelligent Masters Searching Algorithm 

The intelligent masters searching (IMS) algorithm makes the best use of knowledge 

of the known neighbouring master nodes to minimize the number of multi-hop DHT 

queries and detect possible empty cells. 

As shown in Figure 4-5, we assume that node N6 is moving from cell 0 to cell 6 

and will become the master node in cell 6. We also assume that MO, M l , M2, M3, M4, 

M5, M6 represent the maser nodes in the cells CO, C I , C2, C3, C4, C5, C6, respectively. 

The algorithm is based on one invariant that, every master node is aware of the master 

node in each of its neighbouring cells, unless a particular cell is empty. The intelligent 

search algorithm is designed based on the following observations. 

1. M6 does not need to send a DHT query to obtain MO, since CO is its origin. M6 

knows the master node of CO, either because M6 was a slave node in CO or itself 

was a master of CO before leaving. 

2. As M l and M5 are the neighbouring masters of MO, M6 can obtain the 

information about them directly from MO, instead of via DHT searching. 
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3. If M l does not exist, then M6 can safely conclude that CI is empty, so DHT 

searching for M l can be pruned. The same idea applies to M5. 

4. If M l exists, then M6 can obtain M 2 from M l via a direct query; otherwise, a 

DHT query for M2 needs to be sent. The same idea applies to M4. 

5. By the same token, M6 can obtain the complete information about its 

neighbouring masters in CO, C I , C2, C3, C4, and C5. 

Figure 4-5 Cell numbering for describing searching algorithm 

Before we describe the intelligent masters searching algorithm, we define some 

notations in Table 4-4. 

Symbol Description 

m,. The masters of the neighbouring cells; "i" represents the number of 
the cell. 

cell _ idj 
The IDs of the neighbouring cells; "i" represents the number of the 
cell. 

queryNeiMasters(cell_ids) Query the neighbouring masters from a master node for the given 
list of celMds. 

DHTQuery(celLid) Query for the master node to the home node of a cell with the given 
celMd via the DHT. 

Table 4-4 Notations in intelligent masters searching algorithm 
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1: searchNeighborMasters (mO, cell_idO){ //mO: master of origin cell 

2: if (mO equals m6){ //local query 

4: [ml, m5] = getNeiMasters([cell_idl, cell_id5]); 

5: } 

6: else{ //direct query 

7: [ml, m5] = queryNeiMasters([cell_idl, cell_id5]); 

8: } 

9: if(ml!=null)[ 

10: //case 1: mO knows ml. m6 queries for m2from ml 

11: [m2] = ml.query NeiMasters([cell_id2]) 

12: } 

13: else[ 

14: //case 2: ml does not exist, m6 queries for m2 via DHT 

15: m2 = DHTQuery(cell_id2); 

16: } 

17: if(m2!=null){ 

18: //case 3: m2 exits. m6 queries for m3 via m2 

19: [m3] = m2.queryNeiMasters([cell_id3]); 

20: } 

21: if(m5!=null){ 

22: //case 4: m5 exists. m6 queries for m4 via m5 

23: [m4] = m5.queryNeiMasters([cell_id4]); 

24: } 

25: else[ 

26: //case 5: m5 does not exist. m6 queries for m4 via DHT 

27: m4 = DHTQuery(cell_id4); 

28: } 

29: if(m2--null && m4==null){ 

30: //case 6: neither m2 nor m4 exists. m6 queries for m3 via DHT 

31: m3 = DHTQuery(cell_id3); 

32: } 

33: else if(m4.'=null &&m2==null)[ 

34: //case 7: m4 exists, but m2 does not. m6 queries for m3 via m4 

35: [m3] = m4.queryNeiMasters(cell_id3); 

36: } 

37: } 

Figure 4-6 Intelligent master searching algorithm 
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There are a total of eight cases, including the initial case, involved in probing the 

complete set of neighbouring masters: 

1. Initial case: If MO and M6 is the same node, a local query is processed to 

obtain M l and M5; otherwise, a direct query message is sent to MO to 

obtain M l and M5. 

2. Case One: If M l exists, M6 sends a direct query message to M l to obtain 

M2. 

3. Case Two: If M l does not exist, M6 sends a DHT query message to the 

home node of C2 to obtain M2. 

4. Case Three: If M 2 exists, M6 sends a direct query message to M 2 to 

obtain M3. 

5. Case Four: If M5 exists, M6 sends a direct query message to M5 to obtain 

M4. 

6. Case Five: If M5 does not exist, M6 sends a DHT message to the home 

node of C4 to obtain M4. 

7. Case Six: If neither M 2 nor M4 exists, M6 sends a DHT query message to 

the home node of C3 to obtain M3. 

8. Case Seven: If M4 exists, but M 2 does not exist, M6 send a query message 

to M4 to obtain M3. 

Figure 4-6 presents the intelligent neighbouring masters searching algorithm. 

Compared to the blind searching algorithm, the costly DHT query is minimized, and 

unnecessary searching is pruned. In the worst case, there are three DHT queries at most 

happening at lines 15, 27, and 31. The best case is that all the neighbouring masters can 

be retrieved the direct queries from the existing masters, for example, each neighbouring 

cell has a master node. This best-case scenario is extremely beneficial to system 
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scalability, since this scenario often happens when the population of the game world is 

large. 

4.3 Overhead Costs 

In this section, we will analyze the overhead of our dynamic interest-management 

scheme. First, we want to define what we mean by "overhead" in our context. We 

regard the inter-master and master-slave communications for neighbour discovery as the 

regular cost of our scheme. The other costs, aside from the regular neighbour discovery 

costs, are considered to be overhead. Basically, the overhead costs are those incurred 

whenever a player switches from one cell to the other. In another words, overhead costs 

are the processing costs of maintaining the hierarchical master-slave structure 

dynamically. We divide overhead costs into two kinds: costs incurred when leaving a 

cell, and those incurred when entering a cell. 

Leaving Costs 

In the leaving process, there are two cost scenarios depending on the role of the 

leaving node. If the node is a slave node, then the cost incurred is un-registration from 

the master node. If the node is a master node, then the costs incurred can be different, 

depending on whether the master node has slaves or not. If the master node has more 

than one slave nodes, the following leaving costs incurred: ( 1 ) a new master is assigned 

by transferring the information about slaves and neighbouring master nodes; ( 2 ) the 

newly assigned master notifies the neighbouring masters of the change; ( 3 ) the newly 

assigned master notifies the slave nodes of the change; ( 4 ) the newly assigned master 

registers itself to the home node of the cell. In the other case, if the leaving master is the 

only node in the cell, then the costs are: ( 1 ) un-registering itself from the home node; ( 2 ) 

un-registering itself from the neighbouring masters. 
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Entering Costs 

In the entering process, there are also two scenarios, depending on the role of the 

entering node. One cost that is common to the two scenarios is that the entering node 

needs to query the master node (if it is not the master node itself there) of the origin cell 

to determine its role in the entering cell. If the entering cell does not have a master node, 

the entering node will be master node in that cell; otherwise, it will become a slave node 

(as shown in Figure 4-7). When the entering node is the master node, then the costs are: 

(1) searching the neighbouring master nodes of entering cells; (2) notifying the 

neighbouring masters of the newly joined master; and (3) registering itself to the home 

node. In the other scenario, the entering node will be the slave node. In this case, the 

overhead cost consists of registering itself to the master in the entering cell. 

(a) Entering a s master (b) Entering as a slave 

Figure 4-7 Entering as a master or a slave 
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4.4 System Analysis 

4.4.1 Advantages 

Message Aggregation 

In the flat-model approaches, every node is involved in maintaining the 

neighbourhood topology and discovering neighbours, either by periodically exchanging 

neighbourhood information with the current neighbours, or by looking ahead of the 

nearest neighbours. We combine these two ideas, and apply the result in a hierarchical 

fashion. In our scheme, only master nodes exchange neighbour lists with other master 

nodes in the neighbouring cells, and look ahead for their slave nodes for the incoming 

neighbours. Slave nodes are notified only if their neighbour sets have any changes, i.e., 

there are some new neighbours moving into the AOI. Moreover, a game player who first 

joins the game immediately gets the neighbour set through one aggregated message from 

the master node. The delay for the joining process is thus reduced, compared to the flat 

model, in which newly joining nodes need to probe for neighbourhood information by 

themselves. 

Continuous Viewing Area 

Compared to regular hexagonal zoning, in our scheme the view of each player in 

the virtual world is continuous instead of discrete. This is because the AOI of each player 

is smaller than the covering area of the master nodes. In the specific example shown in 

Figure 4-8, a master node's viewing area covers 7 cells, while a slave node's 

viewing area is within the 7 cells. Therefore, a master node can provide continuous 

neighbourhood information for the slave nodes in its governing cell. A master node's 

viewing area is extendible, in case a slave node's AOI is larger than its covering area. 
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Figure 4-8 Players have continuous viewing area 

A H y b r i d of D H T and Unstructured P2P 

Since a DHT has overhead for the O(logAf) hops from the source node to the 

destination node, our design goal is to minimize the use of the DHT for interest-

management communications. In our scheme, the DHT is used only for maintaining the 

hierarchical structure, or registering master nodes. If the master nodes rarely leave a cell, 

and every cell has a master node, the DHT will not be used. Slave nodes can obtain 

direct connections with the master nodes of the neighbouring cells through the current 

master node, when they want to move to neighbouring cells. Although it is an ideal case, 

players in M M O G tend to move slowly and tend to gather together. By minimizing the 

use of DHT and taking advantage of direct communication scheme, we provide a benefit 

of low latency to our scheme. 

On the other hand, it's very challenging for pure unstructured P2P architecture to 

maintain global connectivity. Global connectivity makes sure that any node or group of 

nodes can never be isolated. However, few of existing systems successfully maintain 

global connectivity, as discussed earlier. In our scheme, global connectivity can never 

fail, unless there is a massive network failure, which causes the network to be partitioned; 

otherwise, a node can always connect to another node, through the assistance of home 
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nodes, if necessary. Therefore, only the nodes that are close-by need to be grouped 

together, which is very efficient and low-overhead in maintaining the global connectivity. 

4.4.2 Comparison with other schemes 

We compare our scheme with other schemes in the following aspects: (1) 

scalability - the costs incurred for maintaining the topology should be low; (2) reliability 

- the system should not become broken due to node failure; 3) persistency - games states 

need to be stored persistently; and (4) consistency - the discovery of neighbours should 

be consistent. 

M O P A R tends to be more scalable in terms of low overhead costs for interest 

management. There are much fewer nodes involved in message exchanging, and only the 

master nodes exchange the neighbour lists, which is more efficient than the Neighbour 

List Exchange scheme. We also have fewer "watchmen" who need to look ahead for 

others. In both the Solipsis, and Voronoi schemes, each node always maintains extra 

connections to maintain global connectivity; they are even dispersed on the map. 

However, it's common for there to be clusters of players in MMOGs . Players who are 

doing different activities in different virtual locations do not need to be aware of each 

other. Our scheme allows them to be entirely separated without worrying about any node 

being isolated. 

Our scheme is also more reliable than pure unstructured P2P schemes through the 

use df the DHT. A node failure can be resolved automatically through the support of 

DHT. Other systems may require a server to support them (e.g., the Neighbour List 

Exchange scheme and Solipsis), or may fail under certain circumstances (e.g., the 

Voronoi scheme). 

It is hard for pure unstructured P2P schemes to address game states persistency and 

consistency issues. Although addressing these issues is not in the scope of this work, 
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they can be addressed easily through our hierarchical structure and the support of the 

storage persistence service from Pastry. 

Moreover, the consistency of the neighbour discovery should be fairly high, given 

that it is the main purpose of interest management. Our scheme guarantees neighbour 

discovery in theory. However, other schemes may fail neighbour discovery under certain 

circumstances. In the Voronoi scheme, there is a speed limit for the players. Moving too 

fast can potentially cause the un-discovery of a node. In the Neighbour List Exchange 

scheme, nodes can be isolated. In Solipsis, an incoming node may be undiscovered by 

the directly connected neighbours. 

Table 4-5 summarizes comparisons of the existing systems. 

Solipsis Neighbour List 
Exchange 

Voronoi MOPAR 

Scalability Median overhead High overhead Median overhead Low overhead 
Reliability Server support Server support Fully distributed 

(no guarantee) 
Fully distributed 
(guaranteed) 

Persistency N/A N/A N/A Available 
Consistency 
(discovery) 

No guarantee No guarantee No guarantee Guaranteed 

Table 4-5 Comparisons of existing systems 
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Chapter 5 

System Implementation 

In this chapter, we present the implementation details of the M O P A R prototype, and the 

game simulation and visualization built on top of it. In doing so, we demonstrate the 

effect of neighbour discovery and explore the roles of the different types of nodes, such 

as a master, slave and home node in the M O P A R infrastructure. 

5.1 System Design 

5.1.1 Architecture 

M O P A R is implemented in a layered architecture consisting of four layers, as 

described in Table 5-1. Layers are separated from each other, and replaceable. The 

infrastructure implementation therefore has flexibility the implementation flexibility. For 

example, in this implementation, we use FreePastry [3] for implementation at the DHT 

layer, but it can potentially be replaced by another implementation of Pastry. 
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Layer Description 

Application 
The application layer is where the specific game's implementation 
should be placed, including the game logic, U l . Game implementation 
can also access the network layer directly. 

MOPAR 

infrastructure core 

The M O P A R infrastructure core layer is responsible for the core 
implementation of M O P A R interest management and neighbour 
discovery, including implementation of the master, slave, and home 
nodes. This layer sits directly on top of the D H T layer, and can access 
the network layer as well. 

DHT (Pastry) 
This layer constructs a P2P network, and provides the distributed data 
placement and lookup service. This layer sits directly on top of the 
network layer. 

Network 
The network layer is the low-level network communication layer. It 
facilitates communications among peers via T C P or UDP. 

Table 5-1 MOPAR layer descriptions 

M O P A R Applications* games, simulation, or visualization 

M O P A R Infrastructure Core 

DHT (Pi-sim 

fl fl fl 
viwmk i rcp/UDP) 

Figure 5-1 MOPAR layered architecture 

Figure 5-1 displays the relationships of layers in the M O P A R infrastructure. 

M O P A R infrastructure defines a set of interfaces which a M O P A R infrastructure core 

must implement. The interface provides an abstraction between the game application 

layer and the M O P A R infrastructure's actual implementation. The game application layer 

uses this set of interfaces as the M O P A R API to integrate game applications into the 

M O P A R infrastructure. This set of interfaces is described in Table 5-2. 

49 



API Description 
join (doublet] pos) This method is called when a game player joins 

the game. The M O P A R infrastructure 
computes the hex_id based on the given 
position, and forwards the joining message to 
the home node of the associated hex cell. 

leave() This method is called when a player finishes a 
game and leaves the game world. The method 
allows for graceful leaving. 

move(double[] pos) This method is called whenever a player makes 
a movement in the game world. The given 
position is used to determine if the player is 
moving within the same cell, or is switching to 
another cell. 

getNeighbours() Gets the list of players that fall within the AOI 

Table 5-2 API of MOPAR infrastructure 

5.1.2 Major Components 

Table 5-3 describes the major components of the M O P A R infrastructure core layer. 

Package Description 
participant This package includes classes that implement the core API of the M O P A R 

infrastructure such as join, leave, and move. 
moparappl The classes in this package provide implementation of Pastry's application 

interface, including the methods forward, deliver, and update. This is how 
M O P A R hooks up with Pastry. 

homenode This package provides the service for initializing the home nodes, 
including transferring home node from the nearest Pastry nodes, as well as 
the implementation of the home node. 

master This package includes classes for implementation of the behaviours of the 
master node, including inter-master communications, neighbour discovery, 
neighbour notification, and so on. 

slave This package includes the classes for the implementations of the slave 
node. 

messaging This package defines message types for interest management services, and 
provides the message-passing service. 

util This package maintains the utility of the infrastructure, including 
constants, variables, and the hexagonal division utilities. 

properties This package contains the configuration files for. the M O P A R 
infrastructure. The configurable variables include AOI radius, game world 
dimension, etc. 

game This package implements a simple game simulation for demonstration 
purposes. 

visualization This package implements visualization of the game simulation, and the 
M O P A R infrastructure. 

Table 5-3 Major components of the MOPAR infrastructure core 
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5.2 Implementation Details 

5.2.1 Core Classes 

The following are the core classes that provide the important functionalities of the 

M O P A R infrastructure. The names on the right of each class denote the interface or 

super-class of the implemented class. 

Implements the behaviour of a slave node. A slave node periodically updates its current position 
with the master node. 

Implements the functionalities, including joining, moving, leaving, and the efficient neighboring 
master searching algorithm. 

homenode.HomeNodeFactory 

A class called to initialize a home node, and performing the action required to transfer the home 
nodes from the neighbouring Pastry nodes to the current node, if the current node becomes the 
more qualified home node(s). 

homenode. HomeNode 

Provides the service for master registration and responds to the query for master registration 
lookup. 

moparappl.MoparAppl 

Implements the Pastry's application interface, so that MOPAR becomes a Pastry application and 
be integrated into Pastry layer. 

messaging.MessageSender 

Provides the service for sending a Pastry message from current node to another Pastry node. 

master. Masterlmpl 

Provides neighbour discovery and neighbour notification services. 

master. IMaster 

slave.Slavelmpl slave. ISlave 

participant.MoparParticipant IMopa rPa rticipant 
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util. MapHelper 

Provides the service for converting players' positions to cell IDs. 

game.MoparGame 

Implements a simple game logic for demonstration purposes. 

participant.MoparParticipant 

game.MoparNeiworkSimulator 

Simulates the TCP/UDP network communications between game players. 

GUl.gamePanel 

Draws the game world map, as well as players and their interactions. 

ja vox. swing. J Panel 

GUI.gameViz 

The GUI of the MOPAR visualization. 

ja vox. swing. J Frame 

5.2.2 Collaboration Diagrams 

This section describes the flow of object interactions in the M O P A R infrastructure 

through the assistance of U M L sequence diagrams. We choose three major functionalities 

provided by M O P A R infrastructure: the joining, moving and leaving procedures. 

J o i n i n g Procedure 

Figure 5-2 illustrates class collaboration under the scenario of a game player 

initiating a new game. We assume that the player's avatar falls in an empty cell, so that 

the joining node will become a master node of the cell. In the diagram, we can see that 

the node will first be inserted into the Pastry overlay, and then the Pastry overlay will be 

used for registering the master node and searching the neighbouring masters. 
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MapHelper 

4 9: Join MOPAR 
Figure 5-2 Collaboration diagram for joining procedure 

Moving Procedure 

Figure 5-3 describes the operations performed in the M O P A R infrastructure layer 

when a game player makes a movement to the player's avatar. We assume that the node 

is a master node in the current cell, and will become a slave node in the entering cell. As 

we can see from the diagram, the Pastry overlay is used only when the assigned master 

node registers itself, and all other communications are performed directly via the network 

layer. 
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A 
Game Player 

Masterlmpl 

1; move 
<- 21: moved 

2: move 
<- 20: moved 

MOPARGame MOPARParticipant 

Leaving the current ( 
a master, and entering t 

Network 

Slavelmpl 

l l 
3 S 

MapHelper 

9: register master-^ 

.4° 
a? 

^ 7: assign master ^ 
^- 14: master assigned 

MessaqeSenderl 

Pastry 
Overlay 

Figure 5-3 Collaboration diagram for moving procedure 

Leav ing Procedure 

Figure 5-4 illustrates class collaboration under the scenario of a game player 

leaving the game. We assume that the node is a master node and the only node in a cell. 

Therefore, the master node simply un-registers itself from the home node via the Pastry 

overlay, and then notifies all the neighboring masters of its leaving. 
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2: leave MOPAR -> 
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4: unregister master -

Masterlmpl MessaqeSender 

41 

Figure 5-4 Collaboration diagram for leaving procedure 

5.3 Visualization 

In order to demonstrate the effect of neighbour discovery and explore the M O P A R 

hierarchical architecture, we have also implemented a simple game simulation and 

visualization tool. The game is simple; players move randomly on the map. There is one 

activated player at a time. The activated player sends message to others who fall in its 

AOI. The players who receive the message blink by continuously changing colour 

between black and red. In the visualization tool, the master nodes distinguish themselves 

by doubling their size relative to slave nodes. One can easily view how a node switches 

roles between being a slave and master node dynamically. The hexagonal zoning can also 

be shown as the background of the map. In addition, when the visualization tool is on 

home-node mode, clicking on a cell will trigger the node that is the home node for the 
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cell being popped up. In summary, the visualization tool aims to provide the following 

demonstration functions: 

1. Demonstrate the dynamical construction of the hierarchical structure. 

2. Show the effect of node moving, cell switching, and role switching between 

master and slave. 

3. Demonstrate the relationship between home nodes and cells. 

4. Show the relationship between the AOI radius and players, and the relationship 

between AOI radius and hexagonal cells. 

5. Demonstrate the effect of the neighbour discovery. 

6. View the hexagonal cell divisions. 

MOPAR Simulation and Visualization v1.0.0.4 

HexagonJAOljMaster)Home Node^DiscoverjPause] 

Figure 5 - 5 Hierarchical structure and neighbour discovery 

In Figure 5-5, the larger dots represent the master nodes, and the smaller dots 

represent the slave nodes. The red circle indicates the AOI of the player in the middle of 
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the circle. The player in the middle of the circle keeps sending messages to the players 

that fall in its AOI, and makes these nodes blink. We can see that each cell has at most 

one master node, but can have multiple slave nodes. 

In Figure 5-6, the largest blue dot represents the node that is the home node for the 

cell highlighted in blue. It can be seen that a home node is a virtual node, and is not 

necessarily located in the cell the node is home for. 

- MOPAN Simulation nnd Vjsii,ilJ7<ition wl.0.0.4 

HexagonJAQI MasterJHome NodejDIsco /er] Resume; 

Figure 5-6 Home node of a hexagonal cell 
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Chapter 6 

Evaluation 

In this chapter, we evaluate five aspects of the performance of MOPAR: system 

scalability, efficiency of the intelligent neighbouring masters searching algorithm, impact 

of varying the AOI radius, DHT performance, and topology consistency. Note that it is 

not meaningful to discuss scalability without taking the following three parameters into 

account: the virtual world's dimension, the number of players, and the AOI radius. For 

example, in a virtual world with dimension 1000x1000, a system containing 300 players 

with an AOI radius of 100 units, is considered to have the same scalability as a system 

containing 14,154 players and with an AOI radius of 15 units. This is because, in both 

systems, each player's AOI is on average covers the same number of neighbours (around 

10) within its AOI range. Since MOPAR, is a fully distributed system, it is not an issue 

to handle a large number of players, providing the cell size or AOI radius is set 

appropriately. In our experiments, if not specified otherwise, we set up the map 

dimension to be 1000x1000, the population to range from 25 to 325 players, and the AOI 

radius at 100 units. We also vary the AOI radius to expose the impact of varying the AOI 

radius on the systems performance. We run the simulation for 1200 simulated steps in 

each experiment. In each simulated step, a game player makes a movement, and also 
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performs the M O P A R actions according to its role as master or slave. In addition, we 

assume that our game model is a fast-paced first-shooter action game, where the game 

updates occur around 10 times per second. Therefore, the 1200 simulated steps are 

equivalent to 2 minutes of game play in the real world. 

6.1 System Scalability 

6.1.1 Master Workload 

Since the master nodes play a major role in neighbour discovery, their workload 

directly determines the scalability of the system. The master nodes are mainly 

responsible for four types of messages involved in maintaining neighbour discovery for 

each player, as follows: 

Sending: messages to the masters of the neighbouring cells 

Sending: messages to the slaves in the current cell (neighbour notification) 

Receiving: messages from the masters of the neighbouring cells 

Receiving: message from the slave nodes (position updating) 
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Number of Players 

Figure 6-2 Average number of neighbouring masters 

Figure 6-1 shows that the workload of a master node is fairly light, considering to 

the typical capacity of current broadband (between 512 kbps and 10 mbps). We also 

need to be aware that our game model is a fast-paced first-shooter action game, with 

frequent game updates. The workload can be a lot lighter, when the game model is 

M M O G (3-5 updates per second). Figure 6-2 shows that the average number of inter-

master connections is around 3.38, in a 50-node trial. Our 50-node trial is equivalent to 

the 5000-node trial in the Proximity [19] experiments (a P2P architecture for MMOGs 

proposed recently), based on the average number of neighbours for each player. 

However, Proximity claims it requires an average of seven inter-coordinator connections 

per coordinator. In addition, the maximum number of neighbouring masters of M O P A R 

is bounded to six, and the minimum is zero, based on the structure of the hexagonal 

division, while Proximity's maximum may grow unbounded by the number of players, 

and the minimum number of connections is four. 

In MOPAR, each slave player has only one extra connection with the master node 

other than the neighbours within AOI range. It is a marked improvement over other 

schemes, such as Solipsis and Voronoi. For example, based on Voronoi's experimental 

result, each node may require a maximum of around 20 extra connections with the 
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players outside of the actual AOI range in order to maintain the neighbourhood in a 250-

node trail. 

Another encouraging result regarding the scalability of M O P A R is that, as Figure 

6-1 shows, the cost of sending messages grows at a lower rate than the cost of receiving 

messages, and the gap between them tends to get wider, when the number of players 

grows. This is because, as opposed to collecting the position updates from the slave 

nodes periodically, the master nodes send the neighbour notifying messages to the slave 

nodes only when necessary (when there are incoming neighbours). This result is also 

desirable, because uploading capacity is usually less than downloading capacity. The 

larger the population (or higher density), the bigger the saving can be achieved in 

bandwidth consumption. 

6.1.2 Overall Bandwidth Consumption 

Another measurement is the growth of overall bandwidth consumption across the 

network as the number of players grows. In some P2P-based neighbour discovery 

schemes, such as Kawahara et al's approach, in which each node exchanges a neighbour 

list with its nearest neighbours, the messages generated for neighbour discovery can grow 

exponentially by the average number of neighbours across the network. 

Figure 6-3 shows that the growth in bandwidth consumption for M O P A R is linear 

as the number of players grows. Moreover, this growth has a tendency to curve 

downward, as a result of the aggregation of position updating through the inter-master 

communications. As the density increases, each master will have more slave nodes, 

therefore, each inter-master message will aggregate more position updates of the slave 

nodes. 
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6.1.3 Overall Overhead Cost 

The improvement that M O P A R provides over other P2P neighbour discovery 

schemes is certainly not without cost. As with any technological improvement, overhead 

cost should not outweigh the resulting improvement. We also investigate the overhead 

cost of M O P A R below. 

100 200 300 

Number of Players 

Figure 6 - 4 Growth of overhead cost 

400 
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As discussed in Chapter 4, overhead cost results from cell switching of players and 

from role switching (master or slave). Figure 6-4 shows that the overall overhead cost 

that M O P A R generates to the network grows at a decreasing rate. The cause of this 

phenomenon is that the cost for moving into the next cell as a master node introduces 

more overhead than moving into the next cell as a slave node; However, while the 

density of the virtual world increases, the number of empty cells decreases. As a result, 

there will be fewer occurrences of moving into the next cell as a master, and thus, the 

growth of overhead cost will drop. 

number of nodes 25 75 125 175 225 275 325 

discovery cost 230.17 819.78 1365.81 1834.58 2290.56 2750.26 3190.44 

overhead cost 9.36 16.48 19.41 23.82 28.18 30.98 31.95 

percentage 4.07% 2.01% 1.42% 1.30% 1.23% 1.13% 1.00% 

Table 6-1 Overhead cost vs. discovery cost 

Table 6-1 and Figure 6-5 show that overhead only accounts for a small percentage 

of neighbour discovery cost, and that this percentage tends to get even smaller, as the 

population grows. Overhead therefore will not explode the network, and meaning that 

the improvement that M O P A R provides will not be traded off by its overhead. Analysis 
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of other schemes such as Proximity, Solipsis, and Voronoi did not provide an evaluation 

of overhead costs. 

6.2 Intelligent Masters Searching Algorithm 

As we discussed in Chapter 4, the intelligent neighbouring masters searching 

algorithm is supposed to be more bandwidth efficient than the blind searching algorithm, 

as the former will intelligently prune unnecessary DHT searching, which is rather costly. 

0.14 

0.12 

| 0.1 

- 1 —•— Simple Algorithm \S 
Intelligent Algorithm,_ 

I -

) 
0 50 100 150 200 250 300 350 

Number of Players 

Figure 6-6 Intelligent neighbouring masters searching algorithm 

Figure 6-6 plots the costs for cell switching to an empty cell (becoming a master 

node in the cell), when the intelligent and blind neighbouring masters searching 

algorithms are employed. Figure 6-6 shows that the intelligent searching algorithm is on 

average three times more efficient than the blind searching algorithm, in terms of the 

bandwidth cost per master node across the full range of trail nodes. The saving yielded 

by the intelligent searching algorithm is therefore consistent and significant. 
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6.3 Impact of Varying AOI Radius 

How AOI radius can affect the performance of M O P A R is another important aspect that 

we need to investigate. In this section, we will investigate the impact on master workload, 

overall bandwidth consumption and overall overhead cost, when the AOI radius increases 

from 30 to 120, in increments of 10. The number of trail nodes is 200. 

6.3.1 Impact on Master Workload 

0 5 0 100 150 

AOI Radius 

Figure 6-7 AOI radius and master workload 

By intuition, the growth of the masters' workload is dependent on the number of 

players in the cells. When the AOI radius grows, each master node will need to 

coordinate more slave nodes in the cells, which grows by a factor of the square of the 

AOI radius, as shown in the following equation (see appendix A l for derivation of this 

equation): 

p = 3xV3xA^x(A(9/) 2 

^ E 2xD2 

PE: expected number of players in a hexagonal cell 

N : total number of players 

AOI: A O I radius 

D: virtual world's dimension 
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However, we can see from Figure 6-7 that the growth of the masters' workload 

grows almost linearly rather than exponentially. This is because the master nodes will 

aggregate more position updates when each of them covers a larger portion of the area. 

This helps to balance out the potentially fast growth of the workload. Meanwhile, we also 

observed that, the bandwidth consumption for sending tends to get less, compared to that 

for receiving, when the AOI radius increases. In general, the larger the AOI radius, the 

bigger the gap there will be between bandwidth consumption for sending and receiving. 

6.3.2 Impact on Overall Bandwidth Consumption 

o 

140 

AOI Radius 

Figure 6-8 AO I radius and overall bandwidth consumption 

66 



6 

4 

* 2 

_^p— « ' < " ' n f ~ 

—•— aveNumNeighborsJ 

—J.—™_——— 'ill. , 
0 20 40 60 80 100 120 140 

AOI Radius 

Figure 6-9 Average number of inter-master connections 

We can see from Figure 6-8 that bandwidth consumption across the network 

increases when the AOI radius is between 30 and 60, but then starts to decrease. The 

reason for the overall bandwidth consumption increase at the beginning is that, when AOI 

radius increases below 60, the number of inter-master connections increases relatively 

quickly (see Figure 6-9), which drives rapid growth of overall bandwidth consumption. 

However, once the inter-master connections stop growing, the benefit from message 

aggregation takes over, causing overall bandwidth consumption begin to drop. 

6.3.3 Impact on Overall Overhead Cost 
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Figure 6-10 AOI radius and overall overhead 
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Figure 6-10 shows that the overall overhead drops drastically when the AOI radius 

increases. The reason is that, the larger the AOI radius, the lower the frequency of cell 

switching, and therefore less overhead cost. In extreme case, when the AOI radius is as 

big as the virtual-world dimension, the M O P A R overhead would become zero. 

Based on our experimental results, we can conclude that, although increasing AOI 

radius will add more workload on each master node, the overall overhead of the network 

will decrease significantly; and at the same time, the overall bandwidth consumption 

across the network will also drop when the AOI radius is larger than 60. Therefore, as 

long as the workload does not exceed the capacity of the master nodes, better 

performance will be achieved globally with larger AOI radii. 

6.4 DHT Performance 

DHT performance is independent of AOI radius and the virtual world's dimension; it is 

determined by the nature of Pastry. In MOPAR, there are two types of DHT-specific 

costs. The first is incurred whenever a node sends a message to the home node of a cell, 

for example, for master-node registration. The second cost is incurred when a new node 

first joins the system, and inserted into the Pastry ring structure. This insertion causes the 

mapping between M O P A R cells and home nodes to potentially be adjusted. As a result, 

some home nodes may need to be switched from one Pastry node to the other. In this 

section, we investigate the impact of population growth on these two types of costs. 

6.4.1 Home Node Searching Cost 

As we discussed earlier, in Pastry a message is expected to take an average of 

log^ routing steps to reach its destination (where b is a configuration parameter and N is 

the number of nodes). To M O P A R , this expected number of routing hops is the cost of 

searching home nodes. 
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Figure 6-11 Average numbers of hops to reach the home nodes 

Figure 6-11 shows that the cost of searching home nodes is bounded, and the 

average number of hops is between 1.5 and 2.5, when the number of players ranges from 

100 to 1000, which is identical to the expected number of hops based on the theoretical 

calculation. As searching home nodes is the key to our scheme, and can happen fairly 

frequently, this result is a very positive sign regarding the scalability of the M O P A R 

system. 

When a player joins the virtual environment, M O P A R will add the new node into 

Pastry. As a result, the home nodes for some cells may be changed. We want to 

investigate how frequently the changes occur, when the population of the virtual 

environment is growing. The metric we use to evaluate this transition rate is the average 

number of switchings per node. 

6.4.2 Home Node Transition rate 
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Figure 6-12 Home nodes transition rate 

Figure 6-12 shows that the transition rate will drop drastically when the number of 

players grows. This result gives us the confidence that the M O P A R system will not be 

overloaded by home nodes transition for a virtual environment with a large population. 

6.5 Topological Consistency 

In this section, we investigate the topological consistency of the M O P A R scheme, that is, 

the ratio of observed neighbours versus actual neighbours of each player in the system. 

Theoretically, the M O P A R scheme itself does not cause any topological inconsistency, if 

zero network delay or message loss is assumed. However, in M O P A R , since master node 

initialization and node switching between cells require some extra network 

communication steps, these steps can be more sensitive to network delay or message loss, 

and potentially cause topological inconsistency. Therefore, we want to investigate the 

topology consistency of M O P A R when message delay or message loss is assumed under 

these scenarios. The metric we use to evaluate consistency is defined by Kawahara et al: 
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Consistency = jf^^r) 
1=1 

N : total number of players in the virtual world 

P(i): the number of neighbours observed by player i 

Q(i): the actual number of neighbours of player i 

Therefore, the metric describes the average consistency of all the players. 

6.5.1 Impact of Masters Initialization 

Whenever a node enters an empty cell, it will become the master node of the cell. 

However, this master node initialization requires some extra communication steps, such 

as searching neighboring master nodes and notifying the neighbouring masters. 

Therefore, any network delay will prevent the master node from instantly starting its role. 

As the master nodes are the backbone in exchanging the position updates, the delay will 

result in the topological inconsistency for all players in the affected cells. 
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Figure 6-13 Effect of the delay of master start-up on topological consistency 

In this experiment, we assume that due to network delay, master node start-up 

always gets delayed by one simulated step. Figure 6-13 shows that the topological 

consistency is fairly high, as it is over 99.90% when the AOI radius is 100 and over 

98.80% when the AOI radius is 15. Note that when the AOI radius is 100, consistency 
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tends to go up when the population grows. The reason is that there will be less master 

node initialization in the high-density environment, since there are fewer empty cells. 

For the same reason, when the AOI radius is 15, because there are significantly more 

cells in the same dimension of the virtual world compared to when the AOI radius is 100, 

consistency drops when at the same range of trial nodes. However, we can expect that 

consistency will go up again when the population reaches a certain size. 

We need to be aware that consistency here is based on simulation steps, and that 

every ten simulation steps account for one real-world second. Therefore, topological 

inconsistency of 0.1% or 0.2% of is hardly noticeable in the real game. 

6.5.2 Impact of Cell Switching 

When a node switches from one cell to another, it can be delayed due to the 

network delay. As a result, this node may not be detected as a new neighbour by others. 

To simplify the problem, we assume that the delay only affects updating of its own 

position (as we know, a master node can potentially affect more players). 
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Figure 6-14 Effect of cell switching on topological consistency 

We can see from Figure 6-14 that topological consistency is fairly high (over 

99.97%), when the A O I radius is 100. In comparison, the consistency is a little 
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lower when the A O I radius is small, for example, 15. The reason is that, when a 

world map is divided into more cells, the frequency of cell switching gets higher, 

resulting in lower topological consistency. In conclusion, M O P A R is very robust 

to network delay and message loss. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary 

While large-scale networked virtual environments and their applications such as 

massively multiplayer online games are emerging, their most popular current system 

architecture, the client-server model, significantly suffers from scalability. As the 

number of players in a M M O G system can grow virtually without limitation, servers can 

quickly become a bottleneck. The P2P model is the natural solution for addressing this 

scalability issue, due to its desirable properties such as resource growing and 
j 

decentralized resource consumption. However, the P2P model makes some things 

challenging that are rather simple in the client-server model. One of them is the interest-

management mechanism. Without such a mechanism, scalability is not achievable in the 

P2P model, since every peer has to broadcast a state update, for example, position update, 

to every other peer in the game world. This not only floods the whole network, but 

forces every peer to receive many irrelevant messages. 

We propose a novel hybrid infrastructure, MOPAR, for supporting scalable 

MMOGs , with a focus on providing a distributed interest-management mechanism. Our 
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scheme takes advantage of both the D H T overlay and unstructured P2P architecture, so 

that our infrastructure inherits the benefits of both to provide a system that is self-

organizing and fault-tolerant with low latency and low overhead. 

Our system divides the game map into hexagonal cells. Each cell has a 

corresponding home node through D H T mapping; the home node is used for building a 

hierarchical structure, in which the master node acts as coordinator for the cell. Our 

hierarchical design and direct communication scheme allow the system to exchange 

messages in an efficient way. Our design also supports a continuous view for nodes in 

the virtual world. 

We have also implemented a simple game simulation and visualization tool, by 

which players move randomly and communicate with their neighbours. The visualization 

tool allows users to interact with the infrastructure to explore and understand the design 

of hexagonal zoning, as well as the roles of master and slave nodes. 

7.2 Future Work 

There are four major directions for further research. First, if there are too many 

slave nodes appear in one cell, the master node may potentially become a bottleneck. To 

deal with this issue, our initial idea is to assign a secondary master node to offload some 

of the workload from the main master node. Dynamically splitting and merging cells 

may also be a possible solution. 

Second, we realized that the distributed interest-management scheme should not be 

limited to M M O G s . Any application in which each entity is location based and mobile 

can be potential users of our infrastructure, for example, mobile phones, laptops, or even 

vehicles supported by GPS system. The potential applications are as following: 

• Service discovery - Mobile devices dynamically locate the nearest resources or 

services (i.e. printers, mobile doctors). 
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• Mobile content discovery and sharing -.- Contents (personal digital asset) 

discovery and sharing can be more widespread, dynamic and efficient via more 

capable mobile devices or handsets. 

• User profile matching - People can locate other people or places through profile 

matching via their wireless devices, such as Bluetooth enabled cell phones (with 

GPS). Master nodes will watch not only location or movement of neighbours but 

also profile info (metadata or attributes) of neighbours. 

Third, we will extend our infrastructure to address other requirements of M M O G s , 

such as state persistency, event consistency, and security. Although state persistency is 

not a focus of this thesis, our infrastructure will readily support it with little additional 

work. Basically, as Pastry provides the facility for storage persistence and replication, we 

can use the home node to store a portion of the global game states. There are some 

existing proposals for event consistency, such as bucket synchronization [8]. Our 

infrastructure is flexible enough to bring in other components to meet more requirements. 

Finally, we will further develop our system and integrate it with a real M M O G , so 

that we can evaluate our infrastructure in a real and large-scale P2P network. Eventually, 

we want our infrastructure to be extensively used as a network framework for easily 

developing and deploying user-defined M M O G s in the community. 
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Appendix A 

Derivations 

A.l Expected Number of Players per Hexagon 

Virtual world's dimensions = D x D 

Number of players = N 

AOI radius = AOI 

Expected number of players per hexagon = PE 

Based on our design, a hexagon's side length is equal to AOI radius. Therefore, the area 

of a hexagon is as follows: 

Area of hexagon = 3 x ( A 0 ^ x ^ . 

Number of hexagons of a game world is the virtual world's dimensions divided by the 

area of a hexagon, or — d 2 *? r-
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The expected number of players per hexagon is then equal to the total number of players 

divided by the total number of hexagons of the virtual world, yielding the following 

equation: 

_ 3 x V 3 x / V x ( A O / ) 2 

E ~ 2xD2 
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