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Abstract 

Photometric stereo is a shape-from-shading method for recovering three-
dimensional surface orientation information from two-dimensional images with dif
fering illumination but the same viewing geometry. According to the former pho
tometric stereo methods, the inconvenience of calibration and the cost of searching 
for the gradient of the best match between reference images' brightness and target 
images' brightness remain as the major problems in this area. Lately, the increasing 
interest in geometry reconstruction by using photometric stereo has led to a new 
method for improving the original photometric stereo method. This approach is 
based on the assumption that two points with the same surface property should 
reflect the same light and show the same brightness. This new method largely sim
plifies the traditional calibration experiment by getting the reference object's and 
target object's information at the same time. Moreover, this new convenient method 
provides greater opportunity for photometric stereo to be applied to practical real
time robot vision. 

In this thesis, we extend the new photometric stereo method of Hertzmenn 
& Seitz that uses multiple images of an object together with a calibration object. 
For each point in the registered collection of images, we have a large number of 
brightness values. Photometric stereo finds a matching collection of brightness val
ues from the calibration object and overdetermines the surface normal. W i t h a large 
number of images in high dimensions, finding similar brightnesses becomes costly. 
To speed up the search, we apply locality sensitive high dimensional hashing (LSH) 
to compute the irregular target object's surface orientation. The experimental re
sults of a simplified photometric stereo experiment show consistent results in surface 
orientation. L S H can be implemented very efficiently; and it offers the possibility of 
practical photometric stereo computation with a large number of images. Finally, 
we present the idea that L S H should be applied in a variety of computer vision 
areas. 
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Chapter 1 

Introduction 

Vision is our most powerful but also most complicated sense. A person sees seamless 

images through the vision apparatus of the eyes and the brain, which is the amazing 

function we call vision. Human vision receives seamless images, including the details 

of shape, colour, position and motion, without any noticeable breaks while they are 

being updated. In other words, people perceive a coherent three-dimensional world 

with its invariant properties. These properties, in some way, are sensed by human 

directly. Basically, the changes of brightness and colour are the most important 

information for human eyes. Human vision can also immediately distinguish the 

difference among objects based upon previous experience. However, there also exist 

some limitations for human vision, such as change blindness, misconception and 

limited spectral sensitivity. Change blindness means that human vision adapts with 

difficulty large changes in a scene and misunderstand real objects. It often happens 

as the result of eye movements, image flips, movie cuts and other disturbances. 

Misconception means that human vision is influenced by the shape of an object. 

Limited spectral sensitivity refers to the human eye's limited wavelength range, which 

ranges only from 400nm to 700nm. 

As for computer vision, received information consists of mathematically char

acterized two-dimensional images. The explicit challenge of computer vision is how 
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to acquire a three-dimensional description from two-dimensional images. Moreover, 

how to robustly produce the result is another considerations. Compared to human 

vision, human judgment is difficult to quantify for computer vision. For example, 

what information about scenes can be extracted from an image using only basic 

assumptions about physics and optics? What kinds of computations are required 

to be performed? How are real-world models and knowledge represented and used? 

These are the key questions of computer vision. For photometric stereo, how to 

solve the above questions would help photometric stereo get the 3D information 

from the 2D images correctly and efficiently. 

The information we can get directly from 2D images are the brightness and 

its distribution. Brightness is determined by the light source's radiance, the ob

ject's geometry, the object's irradiance factor and also the camera's performance. 

Physical-based computer vision pays attention to the relationship between geomet

rical structures and radiometry. Recovering the three-dimensional object's shape 

from a two-dimensional image is an important problem — shape from shading — in 

computer vision. In terms of the computation of shape from shading, the method 

of using multiple 2D images, obtained from the same viewpoint but under different 

il lumination conditions, has been presented as an effective way to obtain additional 

local radiometric constraints. The basic principle of this method is to use multi

ple images to overdetermine the solution locally; further, this method strengthens 

robustness by permitting local validation of the radiometric models. 

1.1 Photometric Stereo 

The photometric stereo method is a shape-from-shading technique to recover the ori

entation of surface patches from a number of images taken under different lighting 

conditions [14], which has been implemented in different experimental environments 

and has also produced consistently satisfactory results. The traditional photometric 

stereo method is based on physical-based modelling, which follows the principles 
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of optics. It works well for a regular object's computation; however, when it en

counters complicated irregular objects, it fails to build up their physical models. 

The traditional photometric stereo technique is not enough in such cases. Visual 

scientists often use a system of units (photometric units) that scale the physical 

power (radiometric units) by matching the spectral sensitivity of the eye. Optics 

determines that the surface normal vector relates the object's geometry to its im

age's irradiance. In an orthographic projection, the viewing direction and hence the 

phase angle is constant for all the surface elements. Thus, for a fixed light source 

and geometry, the ratio of scene radiance to scene irradiance depends on the surface 

normal vector. Bu t the equation cannot be inverted locally because image bright

ness provide only one measurement, whereas surface normal vector has 2 degrees of 

freedom ( D O F ) . Under this circumstance, Woodham [27, 28] developed the photo

metric stereo method by using more than two local brightness measurement in order 

to overdetermine the 2 D O F of the surface orientation. 

In the image irradiance equation, the formulation assumes that each surface 

element receives il lumination only directly from the light source (s). This is correct 

when scenes consist of a single convex object. Actually, the surface radiance is from 

the light source, but it is impacted by other factors, such as shadows, inter-reflections 

and other non-local radiance effects. In our work, we ignore those factors and 

assume the object's surface is made of the same material. Surface shading provides 

information of the surface geometry. However, if i l lumination, camera geometry, 

or reflectance varies the appearance of the object would be different. As a result, 

without knowing the way to build the model — the relationship of the contribution 

of each factor — it is very difficult to compute the shape. To address this problem, 

we introduce the theory that two points with the same surface orientation reflect 

the same light toward the viewer. This is the basic idea of shape by example, in 

which we search the same appearance points and assume their surface normals are 

identical. 
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The motivation of this thesis is to overcome the limitation of high computa

tional demands in example-based photometric stereo when large numbers of images 

are used. Under the assumption that two points with the same surface property 

should have the same appearance in an image, we adapted the method of [11] by 

placing the reference object and target object in the same image, which means that 

calibration of the camera or lighting environment is unnecessary in this case. The 

reason for using this method is to deal with cases when the target object is hard 

to move. In that situation, instead of using the former calibration method [28], 

putting the reference object beside the target object would allow for flexibility for 

the photometric stereo. Following this setup, we acquired multiple images for both 

objects. Each pixel on the object has d brightness values from d images. Then the 

problem becomes finding the best match between the brightness vector of the refer

ence object and the brightness vector of the target object; this means searching in a 

high-dimensional space. Some techniques have already been applied for these pur

poses. The first method is the lookup table [28]; the total size of the lookup table is 

(2bd), which depends on the dimension d and the number of bits b into which bright

ness is quantized. This is prohibitively large when d — the number of the images 

— is large. Also the table is sparse, and time-consuming weighted interpolation is 

also needed to fill the empty entries in the table. Hertzmann & Seitz [11] used the 

A N N (approximate nearest neighbour) method to solve the problem of matching. 

It solves the problem well, but when the dimension exceeds 10 — 20 [10], it is also 

highly time consuming. However it depends on the degree of accuracy required. The 

prohibitive computation means the photometric stereo technique is not available for 

real-time applications. The practical benefits of real-time implementation are the 

ability to integrate photometric stereo and motion, and to replace the harmful laser 

range sensor for medical shape detection. Recently, a new method, locality sensitive 

hashing [10], has been introduced in database applications, usually in the context 

of high-dimensional similarity searching. It keeps the speed of hashing, and adds in 
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the property of clustering similar points together. 

We implemented a robust system analyzing high dimensional images. Our 

approach simplifies the traditional shape from shading experiment by avoiding cal

ibration as in [28]; moreover, it can rapidly and accurately estimate the surface 

orientation of irregular objects from a large database of example images via LSH. 

We applied the algorithm to several examples: Lambertian and non-Lambertian 

cases, multiple reference objects, different surface materials. We also compared the 

results wi th the exhaustive search method and the laser scanned images to show 

the accuracy of the method. Moreover, in this thesis, we analyzed computational 

complexity to illustrate the efficiency of this algorithm. 

In this thesis, we described the method in the following order. Chapter 

2 introduced related work in computer vision. Chapter 3 demonstrated the ex

periment's details, including the environmental setting, and explained the speedup 

technique used in this thesis. The final chapter provided the results of our method 

and conclusions. 
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Chapter 2 

Background 

Given a fixed viewpoint and a certain illumination, objects with various surface 

materials, following optic laws, wi l l each have a distinctive appearance. A l l of these 

constraints determine the colour and intensity of the image of an object. The local 

reflectance character depends not only on the irregular geometry of the object but 

also on the reflectance surface material of the objects. We also need to consider the 

inter-reflections and casting shadows. Moreover, the wavelength of the light must 

also be taken into consideration for the reflectance model building. How to model 

all those factors to build up a general reflectance model exactly is very complicated 

and difficult. However, research on reflectance models is sti l l ongoing. Book [26] 

collects quite a few introductions to physical modeling. 

After thinking about these physical constraints on reflectance, Horn [12] first 

made a great observation that image irradiance can be expressed as a function that 

only depends on surface orientation, which is suitable for many practical image 

applications. Horn's research introduces the idea of the reflectance map and points 

out a new formulation for the problem of shape from shading. The reflectance map 

makes explicit the relationship between surface orientation and image brightness. It 

is a representational tool used in developing methods for recovering surface shape 

from images. 
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2.1 Shape from Shading and Reflectance Map 

Shape from shading is a method for determining the shape of a surface from its 

image. Following standard geometry, the surface is represented as z = f(x, y) in a 

left-handed Euclidean coordinate system, when the viewer looks in the positive Z 

direction. The image projection is orthographic and in the X F - p l a n e . Thus, the 

surface gradient (p, q) is denoted as 

df(x,y) df(x,y) 
P = ^ x - ' q Z = ^ y — 

the surface normal vector of that point (x,y) is \p,q, — 1]. We could also simply use 

[p, q] to represent the surface orientation. The image irradiance equation is 

E(x,y) = R(p,q), 

where E{x,y) is the image irradiance and R(p,q) is the reflectance map [14, 16]. 

The reflectance map determines the image brightness as a function of the surface 

orientation. Then the shape-from-shading problem is defined as computing for a 

smooth surface z = f(x,y). For a single image, shape-from-shading problems are 

typically solved by exploitation of a priori constraints on the reflectance map R(p, q) 

[5, 15]. In the following we wi l l discuss the different reflectance map models. 

2.1.1 Diffuse Reflection 

When the surface is microscopically rough, the light rays wi l l reflect and diffuse in 

many different directions. Reflection from rough surfaces such as clothing, paper, 

and asphalt roadways leads to a type of reflection known as diffuse reflection. L a m -

bertian reflection is the ideal case of diffuse reflection. For the ideal Lambertian 

material surface, which is illuminated by a distant light source, appears equally 

bright from all viewing directions and reflects all incident light, absorbing none. 

In Lambertian reflection, the image irradiance is proportional to the cos(0j), 

where the Oi is the incident light angle. Consider a source of radiance E i l luminating 
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a Lambertian surface. The scene radiance is 

L = - £cos6> j , fo r 0* > 0, 
7T 

Taking dot products of the corresponding unit vectors, we obtain 

1 + psp + qsq 
cos Oi — . ._ A = 

This gives us a good idea of how brightness depends on surface orientation. This 

result is called the reflectance map, denoted by R(p,q) [14]. The reflectance map 

depends on the properties of the object's surface material and the distribution of 

light sources. The radiance cannot be negative, so we should, strictly speaking, 

impose the restriction 0 < Oi < n/2. The radiance wi l l be zero for values of Oi 

outside this range. 

p / N 1 + PsV + QsQ 
[ P , q ) Jl+p>+q'Wl+Pi+<l'i 

For other diffuse reflection cases, the radiance wi l l also depend on the Albedo 

— the material's bidirectional reflectance factor. It varies spatially, independent of 

the gradient. 

2.1.2 Specular Reflection 

Reflection off smooth surfaces such as mirrors or a calm body of water leads to 

a kind of reflection known as specular reflection. Each individual light ray of the 

bundle follows the law of reflection. If the bundle of light rays is incident upon a 

smooth surface, then the light rays reflect and remain concentrated in a bundle upon 

leaving the surface. Specular surface reflects all incident light in a direction that lies 

in the same plane as the incident ray and the surface normal. Specular reflection is 

also a function of the light incidence angle 0. If 0 = 0°, there is almost no specular 

reflectance. When 0 = 80°, specular reflectance is high. A full specular reflectance 

function is the Bi-directional Reflectance Distr ibution Function ( B R D F ) . For many 

materials the specular coefficient is approximately constant. Helmholtz Reciprocity 
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is one of B R D F ' s important properties: 

fr(&i,Qo) = fr(6o,6i) 

where #j is the incident angle and the 90 is the output angle. The equation illustrates 

that the reflectance of the material is not one-way street; its incoming to outgoing 

pathway is the same as its outgoing to income pathway. 

2.1.3 Phong Model 

The Phong reflection is another type of reflectance; it is a combination of the diffuse 

and specular illumination. This is an empirical model based not on physics but on 

physical observation. Its image irradiance is proportional to [13] 

. c o s 0 i [ ( l - a ) + a c o s n ( s / 2 ) 
R{Pt9) = ^oWm 

where Qi is the incident angle, (f> is the phase angle (the angle between the vector 

pointing to the light source and the vector pointing to the viewer), and s is the 

off-specular angle (the angle between the vector pointing to the viewer and the 

vector that defines, relative to the light-source direction and the surface normal, the 

direction of perfect specular reflection), a is a fraction, 0 < a < 1. The factor a 

adjusts how much of the incident light is reflected specularly, and n is a number 

that models how compact the specular patch is comparing with the perfect specular 

reflection, i.e., n would be very large, like n > 200, if the surface is specular. When n 

is small, the surface is duller. Parameters a and n vary with respect to the material's 

properties. 

2.2 P h o t o m e t r i c S t e r e o 

The photometric stereo method has been developed to recover the orientation of 

surface patches from a number of images taken under different lighting conditions 
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[24, 27, 17, 28]. Woodham [27, 28] presents the three image irradiance equations: 

Ei(x,y) = Ri(p,q), 

E2(x,y) = Rz(p,q), 

E3(x,y) = R3(p, q), 

The three image irradiance equations overdetermine the solution of p, q, at each 

point of (x,y), because the solution uses the three brightness measurements of E\, 

E2 and E3 to configure the two parameters p and q. The images can only describe 

the object's 2-D information, and the three image irradiance equations present the 

way to connect 3-D information with 2D images. B y measuring the [E\, E2, E3] 

under the three light source situation, we acquire the 3D p and q by computing the 

gradient of the object. The implementation method is simple. It keeps the three 

light source and camera sti l l , and takes images of the calibration object and the 

target object at the same position one by one. The calibration object of known 

shape is made of the same material as that of the target object's surface. It uses 

the triple of measured brightness values \E\, E2, E3} to search for the corresponding 

gradient (p, q) in a lookup table. The method is straightforward but st i l l has some 

limitations. Assume the image has 28=256 gray values, then the full size of the 

lookup table is 2 8 x 28 x 28 —• 2 2 4 entries. Besides that, we consider that the per 

entry is two double type size (for the gradient p and q) to store the gradient value. 

Then the full size is more than 1G. Moreover, the huge table is very sparse, which 

results in time-consuming interpolation to fill the table. However, the interpolation 

is no ganrantee that all the table entries are filled. To solve the large table search, 

Woodham's work [28] accelerates the search by using 2 6 gray value; the other 2 2 

value is separated as the three tables choose an index. Thus, by using the lookup 

table with 2 1 8 entries, the retrieving achieves a near-real-time throughput at 15 Hz . 

If the surface material's albedo also varies spatially, independent of the gradient, 
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then the image irradiance equation wi l l be [7, 17, 22, 23] 

Ei(x,y) = p(x,y)Ri(p,q), 

Ei{x,y) = p(x,y)R2(p,q), 

Ez{x,y) = p(x,y)R3(p,q), 

E4{x,y) = p{x,y)R4(p,q) 

where the p(x, y) is the albedo, a function of (x,y). Therefore, the former image irra

diance equation is a special case, where the albedo is the constant (and normalized 

to 1). For this situation, there are 3 D O F (degrees of freedom) in the equation, p, q, 

p(x,y). If the albedo parameter p is constant, then we can simplify the problem as 

the former; if the albedo varies along with the position of the surface, then we need 

one more light source of image irradiance equation to over-determine the 3 D O F . 

Thus, In addition to a fixed scale factor, the reflectance map gives the dependence 

of scene radiance on surface orientation. It is often convenient to plot the surface 

R(p,q) as a function of the gradient(p, q). The pg-plane is called gradient space, 

and every point in it corresponds to a particular surface orientation. The above ex

pression also assumes that any additive offsets, e.g., due to atmospheric scattering, 

have been removed. 

2.2.1 Surface Curvature 

We use the representation for surface curvature based on the gradient (p, q) [28]. 

There are 3 D O F to the curvature of a point of a smooth surface. One representation 

is the 2 x 2 matrix of the second partial derivatives of the surface z — f(x,y). 

_ d2f(x,y) _ d2f(x,y) _ d2f(x,y) _ d2f(x,y) 
P x ~ dx2 , P y ~ dxdy , Q x ~ dydx , < l y ~ Oy2 ' . 

The Hessian matrix of z = f(x, y) is 

H = = Vx Py 

Qx % • -
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Then the surface curvature matrix is 

q + 1 -pq 
H 

-pq p2 + 1 

The principal curvatures of the matrix C are k\ and k2, which are also the two 

eigenvalues of the matrix C. u\ and u>2 are eigenvectors of the C, which are also the 

direction of ki and k2. Thus k\, k2, u\, and u>2 together are the four independent 

parameters that describe the surface curvature of that the object. Also, Besl and 

Jain [4] introduced the idea that the sections of a smooth surface could be segmented 

into one of eight basic types based on the sign and the zeros of Gaussian and 

mean curvature. The Gaussian curvature K, also called the total curvature, is 

the product, K — k\k2, of the principal curvatures. The mean curvature H is 

the average, H — {k\ + k2)/2, of the principal curvatures. The surface curvature 

provides another description for the 3D shape information. 

2.3 Non-Lambertian Photometric Stereo Modeling 

Much research is devoted to the recovery of non-Lambertian reflectance parameters. 

Nayar [22] applied photometric stereo using a "hybrid reflectance model." Tagare 

and deGigueiredo [25] developed the theory of photometric stereo for the class of 

m — lobe reflectance maps. K a y & Caell i [20] continued their work by investigating 

the problem from a practical point of view. They applied nonlinear regression to a 

large number of input images. Those methods not only recover the surface orienta

tion but also compute reflectance parameters. The problem is that their methods 

requires quite a lot of images, and the algorithms are fairly complicated. Many 

non-Lambertian surfaces exhibit near-Lambertian behaviour outside their regions 

of specularity. B y segmenting these surface areas, it is a very attractive option to 

apply a linear algorithm, which was developed for Lambertian surfaces, to surfaces 

with non-Lambertian reflectance and treat highlights as deviations from Lambertian 

C = (l+p2+q

2)-l 
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Law. This technique was proposed by Coleman and Jain [7]. The above work deals 

mostly with gray-scale images. 

Some recent work uses colour images to get more redundant images by sep

arating an R G B colour image into 3 independent images. These methods are called 

Shape-from-Color. The surface should be illuminated by several light sources that 

are spectrally distinct and whose directions do not lie in the same plane, which 

means they are not linearly dependent on each other. This method was applied 

to the task of face recognition. Christensen [6] introduced the method of colour 

photometric stereo for surfaces with an arbitrary reflectance. The method is a gen

eralization of [28] and also uses look-up tables. The disadvantage of this method is 

that the surface should be either uniformly coloured or its colours should form dis

tinct separable clusters in the colour space, which significantly restricts the choice of 

acceptable surfaces. Another disadvantage is the need for a preliminary calibration. 

To overcome these limitations, most subsequent work on photometric stereo turned 

to using analytic models rather than the empirical models of surface reflectance [2]. 

Some of these methods yield good results, while real-world materials do not fit these 

traditional models. Therefore, researchers developed the approach of combining the 

developed empirical models and the analytic models to simulate the real-world's 

complicated surface material [21, 30, 1, 11, 29]. They introduced the method of 

using more than one calibration object, each of them has a weight, while at the 

same time segmenting the real target object wi th different reflectance properties. 

The disadvantage of this method is that it requires quite a lot of images and the 

matching algorithms are pretty inefficient. In this thesis, we show that these major 

difficulties are overcome with the new technique—high-dimension locality sensitive 

hashing, wi th which the photometric stereo method becomes a practical shape re

covery application. 
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Chapter 3 

Implementation and 

Experiments 

We use more than three images to overdetermine the mapping relationship between 

the geometry and the brightness and so overcome the limitations of the original 

photometric stereo method. Woodham [28] and Horn [14] used only three images 

(3DOF) to solve the problem of Photometric stereo — computing the 2 D O F s of the 

gradient p and q. This methodology works well when the reference object and the 

target object are easy to move to the same spot to simulate the same il lumination 

condition. Also it analyzes the reference object and target object separately, which 

is not convenient enough for real-time processing. O n the other hand, Hertzmann & 

Seitz's [11] work, uses multiple images to reconstruct the geometry of the target ob

ject by simply putting the calibration object and the target object in the same scene. 

This method is much more flexible than Woodham's [28] work. However, their ge

ometry is not really accurate as the method's major objective is to determine the 

geometry's reconstruction, and also the speed is 5 minutes, which is too long. Based 

on the definition of photometric stereo, and inspired by the novel idea of texture 

reconstruction, we would like to adapt the methods by putting the calibration ob

ject and the target objects in the scene together, using the locality high-dimension 
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hashing technique to accelerate the search for the mapping relationship between the 

gradient and the corresponding brightness of the objects. 

3.1 Experiment Setting 

The reference sphere and the target object have been juxtaposed wi th a certain 

distance on the same scene. Their surfaces have been painted wi th the same red 

tempera paints to get the Lambertian effect. We set a Canon Optu ra P i N T S C 

digital video camcorder stationary to facing the objects and moved the light source, 

a Ph i l ip 150W bulb, by hand, 4 meters from the objects. Then we recorded a series 

of video sequence, in which the reference object and target object were shot with 

same exposure under different light illuminations. We separated the 640 x 480 video 

into 640 x 480 image frames. Due to the hand-held light source's movement and the 

digital camera's focus is automatically adjusted, it is necessary to eliminate those 

blurred images. A n example of the frame is showed in Figure 3.1. After that, we 

separated the calibration object and the target object from the image and analyzed 

them. Figure 3.10 and Figure 3.12 present the reference object and the target object 

under the same light source. 

(a) image 1 (b) image2 

Figure 3.1: Video images with both the reference and target objects 
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3.2 Photometric Stereo from High-Dimension Images 

We captured many 2D images under different lighting, so that for a particular pixel 

position for all these images, we got an array of the correspondent brightness values. 

These brightness values could be treated as a very big number by concatenating 

them; however, this method would take out the independence of the data to each 

other. Considering this, we would handle the multiple brightness values as a high 

dimensional brightness vector. 

Determining the shape from the shading information of multiple images is 

the basic idea of photometric stereo. The radiometry of the object in the image 

depends on illumination, camera geometry, and the object's reflectance factor of 

the object. A change in one of them wi l l affect the appearance of the object in the 

image. Unless we know all the factors accurately, it is very hard to compute the 

shape. In this case, we propose a calibration method by addressing the orientation 

consistency cue [11]: 

C u e : Two points with the same material and the same surface orientation 

reflect identical brightness when they are under the same illumination situation. 

This cue holds under the following assumption: 

A s s u m p t i o n : Both points have the same B R D F property, the light sources 

are directional (i.e., distant), the camera is orthographic, and there are no shadows, 

interreflections and transparency effects, or other non-local effects that do not de

pend purely on the B R D F . Also, the surface orientation, incident illumination, and 

viewer direction are the same for both points. 

The above cue is clear about presenting the distribution of the object's ra

diometry of the object. If a point has a highlight on an object, the other point 

with the same surface geometry should have the same highlight too. Therefore, we 

can apply the cue since we know one point's brightness and its surface orientation, 

and since another point has the same brightness, we can say that the second point 

has the same surface orientation as the first point. In this way, we can extend this 
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knowledge to compute the other points' surface orientations. 

Now, we wi l l present our implementation algorithm for computing the sur

face orientation of an irregular shape object by using its known shape object as 

calibration. Also, we introduce an effective technique for accelerating the searching 

process in real-time. 

After isolating the reference object and the target object from the captured 

video frames, and following the basic theory, we present the following notation rep

resentation. We use / [ , . . . , Ir

d to denote the reference images and l\,...,Id to present 

the target images, where d is the dimension. Further, we make the assumption that 

the corresponding reference I\ and targets l\ are exposed under the same i l lumi

nation condition. For each pixel position p(x, y) in all reference images, let V p

r be 

the brightness vector, which is the set of brightnesses observed at that pixel over n 

images: 

For our case, we tried the 4, 8, 16, 32, 64 observation vectors to determine one 

gradient vector [p, q]. 

The idea comes from photometric stereo by multiple images [24]. It is very difficult 

to straightforwardly set up the relationship between the brightness appearance and 

the gradient object. Thus, the three image irradiance equations are presented as: 

•t jt ]T. 
1,<J> •••! 1d,qi i (3.2) 

(3-3) 

Ei(x,y) = q) 

E2(x,y) = R2(p,q) 

E3(x,y) = R3(p,q) 

(3.4) 
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which use 3 D 0 F brightness to overdetermine the 2 D O F gradient. If the surface 

material's bidirectional reflectance albedo factor also varies spatially, independent 

Then there are 3 D O F , including the albedo and the gradient, which need to be 

determined. Therefore, we may use 4 D O F brightness to overdetermine this situation 

by using 4-images irradiation equations. Moreover, although we make the above 

assumptions, in the our experiments, we could not get the illumination to be as 

accurate as the former calibration method [28]. This 's the reason why we would 

rather use more than 4-images irradiance equations to overdetermine the gradient 

and the albedo. 

Above all , given a pixel q on the target object, the surface normal at q is 

determined simply by retrieving a point p on the reference object wi th the best 

matching of the brightness vector, which minimizes \\V£ — V^' | | . A complete corre

spondence determines the surface normal for each pixel on the target object. 

It is very novel to realize that this formulation treats the photometric stereo 

methodology as 2-images stereo matching problem—figure out the pixel by pixel 

similarity between the image of the target object and the image of the reference 

object. Woodham[27] addresses the correspondence problem in binocular stereo 

should be fundamentally exclusive when solving the photometric stereo, however, 

under the assumption made in this paper, the camcorder captured both the reference 

and target objects at the same time. The light i l lumination is distant to the objects, 

so that the mapping relationship between the reference object and target object is 

of the gradient, then the image irradiance equations become 

E\{x,y) 

E2{x,y) 

E3(x,y) 

E4(x,y) 

p(x,y)Ri(p,q), 

p{x,y)R2(p,q), 

p{x,y)R3(p, q), 

p(x,y)R4(p,q), 

(3.5) 

(3.6) 
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acceptable. Compared to the model-fitting methods [2, 14, 22, 27, 11] done before, 

we present an efficient hashing mapping technique for our model. If the reflectance 

map's parametric form varies, the hashing method would be a good alternative 

choice. 

First , let us process the images of the reference object. As we mentioned in 

the experimental setting, the images with both reference object and target object 

are captured by a stationary camcorder. A t the same time, we move the light 

source by hand 3-4 meters away from the objects to simulate distant illumination. 

We select d frames from the captured video series. The method needs to make 

sure that the illumination situations are not linearly dependent on each other, and 

also that the images need to be very clear, for when the il lumination changes, the 

focus of the lens of the digital camcorder wi l l change as well, so that some of the 

images are not out of focus, which are not as suitable as good samples to serve 

as the references. The captured images are in R G B mode. Instead of processing 

all the three-color channels for further reference, it is reasonable to analyze only 

the most sensitive color channel. For our case, the reference object and the target 

object are both painted with red, flat tempera paint, so red is the most sensitive 

channel here. After that, we need to preprocess the d images. First , we separate the 

image with the reference objects and the target objects into two images. Second, 

we need to isolate the reference object from the background. Our method is to sum 

the d reference images, and compute the threshold of the summed image according 

to its histogram. The threshold should be the dividing value to separate the black 

background and the object on the histogram. Based on that, we can then figure out 

the equation of the reference sphere object for further computing the geometry of 

the reference sphere. Here we use the least square fit-ellipse algorithm to get the 

2D ellipse equation from the reference sphere's boundary data. Also, the threshold 

should be applied to the target images to separate them from its background. The 

purpose of computing the 2D equation is to get the 3D ellipse equation. Then we 
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can get each pixel of the ellipse's gradient. The robust algorithm of getting the 

fitting ellipse equation wi l l be introduced in the following section. 

3.2.1 Least Squares Fitting of Ellipse 

Here we adapted a new algorithm for fitting ellipses [8]. It is a direct ellipse specific 

fitting algorithm, which can also handle bad data very well. The ellipse equation 

can be presented as 

F(a, x) = a • x = ax2 + bxy + cy2 + dx + ey + f = 0 (3.7) 

where a = [a, b, c, d, e, /] and x = \x2, xy, y2, x, y, 1]. The aim here is to determine 

the parameter a. In general, the problem of parameter estimation is often cast as 

an optimization problem. One of the traditional methods for optimization uses the 

least squares fitting. The other two general techniques are Ka lman filtering and 

robust clustering. For the least squares fitting method, the focus is on computing 

the set of parameters that minimize the distance between the real-data points and 

the formulated curves and surfaces. Given finite input data set points D = (x,y)i, 

i 6 TV, which in this case is the coordination set of the reference object's boundary 

points, the problem is to fit the ellipse curve equation F(a, x) to D and minimize 

the distance measure: 

1 N 

— ^2 dist(F(a, .D)) —> minimum (3.8) 

i = l 

It is difficult to solve the optimization problem in general, and we do not guarantee 

there is a solution for it. In this case, we adapted the method by arbitrarily scaling 

the parameters to get the right equation of the ellipse equality constraint 4ac—b2 = 1 

[9] to solve the ellipse fitting problem. Then we can cast the problem into a quadratic 
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constraint, which also expresses it in the matrix form a Ca = 1: 

(3.9) 

0 0 2 0 0 0 

0 - 1 0 0 0 0 

2 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
J 

Then the problem reduces to minimize E = | | D a | | 2 , subject to the constraint 

aTCa = 1 where the matrix D is defined as D = [x\,X2, ...,xn]T. B y applied the 

Lagrange multiplier A and differentiation, the algorithm gets the following system 

of simultaneous equations 

2D1 Da - 2XCa = 0 

afCa = 1 

(3.10) 

(3.11) 

It is equivalent to the following: 

Sa = XCa 

dfCa = 1 

(3.12) 

(3.13) 

where S is the scatter matrix DTD. Then the problem is solved by considering the 

generalized eigenvectors Sa = XCa. If (Xi,Ui) solves this , where Aj is the eigenvalue 

and Ui is the eigenvector, then so does (A, fiUi) for any \x. According to aTCa = 1, 

we can figure out the parameter fi, and we can find the value of fi2u[Cui = 1 giving 

M i uj Cui ufSui 
(3.14) 

Finally, setting a, = /Zjtt j. Follow this algorithm, it yields six eigenvalue-eigenvector 

pairs (Xi, Ui). Each of them gives a local minimum if the term under the square root 

of the solution of mu is positive. S is positive, so the denominator ufSui is also 
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positive for al l itj. Therefore, the square root exists if Aj > 0, so any solutions for 

figuring a must have positive eigenvalues. 

The problem of minimizing E = \\Da\\ subject to 4ac — b2 = 1 generates 

exactly one solution for a, which has been proved in [8]. Now, we can transfer the 

ellipse equation F(a, x) into 

{x-cx)2+ \2(y-cy)2 = r2 (3.15) 

where (cx,cy) is the center of the ellipse. The object surface is give in the format of 

z = f{x,y) in a left-handed Euclidean coordinate system, in which the viewer looks 

in the direction of the positive Z-axes. The equation of the sphere can been written 

down as 

(x-cx)2+ \2(y-cy)2+ z2 = r2 (3.16) 

The gradient of a given point on the reference sphere can be expressed as 

P = ~ . 9 = - 7 (3-17) z z 

Then the surface normal of that point can be presented as [p, q, — 1]. 

3.3 Match From Reference Images for Target Images 

Above all , the least-squares ellipse-fitting algorithm helps to compute the gradient 

for each point on the reference object. Now we need to set up the mapping relation

ship between the gradient and the brightness. Given that the brightness data is more 

than 3 images, the next step is to think about how to store the high-dimensional 

data. Also, we should think about what kind of storage is convenient for the next 

step, that is, searching for the gradient of the irregular object. There are three fac

tors that should be taken into consideration: the table's size, the searching speed, 

and the hit accuracy. In general, the task of finding the reference object brightness 

vector closest to the target object's brightness vector is a nearest-neighbor search 

problem. Some techniques have already been applied for this purpose. The first 
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method is the lookup table [28]; it stores the gradient by using the brightness as the 

index; the total size of the lookup table depends on the dimension of the brightness. 

If the dimension of the brightness is 3, then the size of the table would be ( 2 d ) 3 . 

Also the table is sparse, and so time-consuming weighted interpolations are also 

required to fill the empty entries in the table. Although the lookup table's initial

ization is slow, this method is suitable for the search when the dimension is less than 

4. However, when the dimensions increase, this method can not do the job well. 

Hertzmann & Seitz's work, they used the A N N (approximate nearest neighbour) 

method to solve the problem. Basically, it uses the k — d trees [3] to solve the prob

lem. To some degree, it can solve the problem well, but when the dimension exceeds 

10 — 20 [10], it is also highly time consuming. Recently, a new method, locality 

sensitive hashing [19], has been introduced in database applications, usually in the 

context of high-dimensional similarity searching. It preserves the fast character of 

hashing, but also adds in the property of similar points that are clustered together. 

The following section wi l l describe in detail how to apply locality-sensitive hashing 

in the photometric stereo. 

3.4 H i g h - D i m e n s i o n L o c a l i t y S e n s i t i v e H a s h i n g 

3.4.1 No ta t ion 

To determine the geometry of the target sphere, we need to compute the target 

object's surface normal. In other words, we need to figure out the object's gra

dient. We already have the mapping relationship between the calibration object's 

brightness and its gradient. For the target object, the job is to figure out its gradi

ent distribution by using the mapping relationship according to its high dimensional 

brightness vector. The main goal is to find the target object's best brightness vector 

to match the reference object's brightness vector, and use the reference object's gra

dient as the target object's gradient. Then the problem can be posed as a N e a r e s t 
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N e i g h b o r S e a r c h ( N N S ) problem. The N N S problem is also defined as e - N N S : 

Given a set P of points in a normed space ld, preprocess P so as to efficiently 

return a point p G P for any given query point q, such that d(p, q) < (1 + e)d(q, P), 

where d(q, P) is the distance of q to the its closest point in P. 

For the purpose of devising a main memory algorithm for solving the e — 

NNS) problem, Indyk & Motwani [19] introduced the Locality Sensitive Hashing 

(LSH) technique for high-dimensional data. In our case, we adapted the original 

L S H algorithm [10] to search for matches in the high dimensional brightness vector 

spaces. 

The basic idea of L S H is to hash the high dimensional points so as to ensure 

that the probability of collision is much higher for points that are close to each 

other than for those that are far apart. A hash function is a function that converts 

input from a large domain into output in a smaller range. In our case, the input 

data are the image size brightness vectors p = [x\,..., Xd]; however, there are 2bd 

possible values of p while we may have on the order of 10 5 pixels in the image 

of the calibration object. Therefore, our input data is from a large domain, but 

the cardinality of the input data is small compared to its domain. Based on that, 

using hashing to solve the matching problem is reasonable. In the following, we wi l l 

present the algorithm in detail. 

Let if denote the Euclidean space Rd under the lr norm, where the point 

vector p is [x\,... Xd}- The length of the vector is ( | x i | p + •. • + \x(i\r)1^r • x$ is 

the brightness of a certain pixel in image d', where 1 < d' < d. Furthermore, 

dr{p,<l) — \\p — q\\ denotes the distance between the points p and q in if. Also Hd 

presents the d-dimensional Hamming metric space; it could be understood as the 

space of binary vectors of length d under the standard Hamming matrices. 
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3.4.2 The Algorithm 

First of all , we illustrate Indyk & Motwani 's [19] algorithm in terms of inputs repre

sented as binary vectors using the standard Hamming metric. Let C be the largest 

coordinate in the whole points set P. Then we can embed P into the Hamming cube 

Hd with d! = Cd, by transforming each point p = (xi, ...Xd) into a binary vector. 

v(p) = U n a r y c ( z 1 ) . . . U n a r y c ( a ; d ) (3.18) 

where Unary c . (x ) is the unary representation of x, i.e., is a sequence of x ones 

followed by C — x zeroes. For example, if x is 67, and C is 255, then 

67 255-67=188 

U n a r y c ( x ) = T^~l 0^~0 ., (3.19) 

For any pair of points p, q wi th coordinates in the set 1...C, 

di(p,q)=dH(v(p),v(q))). (3.20) 

Where d\ is the distance under norm l\ and djj is the Hamming distance function. 

That embedding equation preserves the Hamming distances between the two high-

dimensional points. The Hamming distance between points [78,45,30] and points 

[82, 56,89] with C — 255 is 4+11+59 — 74. B y doing this, we discover the connection 

that allows us to express the distance between a pair of high-dimensional points. 

The result also showed that the closest points have the minimum difference for all 

the dimensions of the points. Therefore, in the sequence we can concentrate on 

solving e - N N S in the Hamming space Hd'. The unary representation in Hamming 

space provides us with a straightforward framework for the algorithm. However, it is 

very expensive to convert the data into unary representation when C and dimension 

d is large. For this reason, we need to work out a modified algorithm and in time 

make it run independent of C . 

Then, we implemented an improved L S H algorithm without converting the 

high dimensional data to the Hamming space. The details of the algorithm are 
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as follows. I is the number of hash tables, and there are I subsets I\... Ii... I\. 

The dimension of the data is denoted as d. Let p\i denote the projection of vector 

v(p) = [x\,... ,Xd} on the coordinate set / , and let be the brightness of point 

p in image d!, where k < d. We compute p|/. by selecting the coordinate positions 

and applying the hashing function g%(p) to a certain bucket of the hash table Ti, 

i G I. Denote gi(jp) = p\jr Through that, we project the high-dimensional data 

v(p) to a certain hash number gt(jp). B y the preprocessing, we store each p G P in 

the bucket gi(p), for i = 1,..., I, and get I compact hash tables for the next step's 

nearest neighbour searching. B y computing the projection per Ii, we get the whole 

projection p\j. As the total number of buckets per hash table may be large, we 

compress the buckets by assigning them to a standard fixed chaining number of 

bucket hashing. Thus, there are two levels of the hashing technique for a certain 

pixel point p: 

• A p p l y the L S H function to map the high-dimensional brightness vector p to 

the bucket gi(p). 

• Use the standard hash function to map the contents of these buckets into a 

hash table of size M. 

The maximum bucket size of the latter hash table is denoted as B. In the algorithm 

the hash table is a chained hash table. When the number of points matching a certain 

hash number exceeds the size B of the bucket, a new bucket is dynamically allocated 

and linked to and from the old bucket. However, to process the large amount of 

data, dynamically allocating the space is not an advisable choice here, since the 

images' size are large, which means the table is large. In our implementation we use 

the simpler fixed size buckets method for each hash table item rather than chaining. 

The approach is as follows: if a bucket in a given hashing index is full, a new 

matching point cannot be added to it, since it wi l l be added to some other index 

with high probability. In our application, we put the point into the next bucket 
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available for hashing indexing. B y using the fixed bucket size policy, we reduce the 

link structure's overhead. The whole structure is clearer and also convenient for the 

next step's search. The structure of the hash table is presented in 3.2. 

B 

M < 

V I I t I I I I I 

Figure 3.2: The L S H hash tables structure 

Each bucket not only stores the high-dimension brightness vector but also 

keeps its correspondent gradient vector [p, q]. The brightness vector in our case 

is stored as unsigned char set and the 2D gradient vector is saved as two float 

number. After that, we must discuss how to determine the suitable parameters I, 

the number of the hash tables and M, the size of the hash tables. The number n 

of points from the reference object's surface, the size M of the hash table, and the 

maximum bucket size B are related in the following equation: 

n 
M = a - (3.21) 

where a is the memory utilization parameter. Basically, a > 1. It is the ratio of the 

memory allocated for the index to the size of the data set, and should be taken into 

consideration when the dimension is very large and the number of buckets per hash 

table index exceeds the memory. In our application, we set the whole table size to 

contain all the data set in the hash table as: 

M = L | j (3.22) 
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It is also very important to choose the I - the number of hash tables. In our 

experiments, we compared the results from using different choices of /. The more 

hash tables, the more accurate the search would be. However, beyond a certain 

number, the result does not improve significantly. Then there is no reason to waste 

space and time to do the search in those redundant hash tables. The main goal is to 

find the threshold for the choice of I, and to get the best matching results. Basically, 

from the definition of [10], let B(p,r) notate the set of point elements from P within 

the distance r from p. Also following is the definition of ( n , r2, P\, P2) - sensitive 

as: 

• if p E B(q,ri) then PrH\h(a) = h(p)] > pi 

• if p i B(q,r2) then P r#[/i(a) = h(p)} < p2 

where H is the hashing function family, pi > p2 and r\ <r2. Then the / is calculated 

as 

I = np (3.23) 

and 

log l / p 2 

For more detail see [18]. 

After setting the parameters for the hash table's size and its total number, 

the hash tables are constructed to store the reference object's brightness vectors, 

including their corresponding gradient vector. F i g 3.3 shows the initialization pro

cedure for filling the hash tables with the reference object's data. 

To process a query q, the brightness vector from the irregular target object, 

we search all indices hash tables g\(q),gi(q) unti l we encounter at least c • I (c > 1) 

points matching the current brightness vector. Clearly, the number of accesses is 

always upper bounded by the number of indices, which is equal to /. Let pi, ...,pt be 

the points encountered in the process of searching in the hash table Tj , by the hashing 

number index, and we get a fixed number of buckets linked by the index. The job 
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Algorithm Initialization for the hash table 
Prehash Points set P (the high-dimensional data vectors) and I (number 
of hash tables), 
for (i = 1 , . . . , I) 

Initialize hash table 7$ by generating a random hash function gi(-) 
for i = 1,... ,1 

for (j = 1,... ,n) 
Insert the point pj to the bucket gi{pj) of the hash table Ti 

Output Hash tables Tj, i = 1 , . . . , I 

Figure 3.3: Initialization of high-dimensional hash table by inserting the points of 
brightness vectors and their gradient vector. 

is to choose the best fit - the closest to q from those buckets. Then approximate 

K — NNS is applied to minimize the distance between the query point q and the hit 

bucket's point. The optimal value of K - the number of the buckets per hash index 

- is chosen to maximize the probability that a point p "close" to q wi l l fall into the 

same bucket as q, and also to minimize the probability that a point p' far away from 

q w i l l fall into the same bucket. In general, we may return one best match point 

from each hash table, and put those best fits from different hash tables together. 

Then the problem remains as a K — NNS problem for these points, and pick up 

the "closest" point p to q, and use p's gradient vector as query point g's gradient. 

The query strategy is presented in F i g 3.4. 

Algorithm Approximate Nearest Neighbor Query 
hashquery (A set of n query points q from the target object) 
for (i = 1,..., n) 
for (hash tables Tj, j — 1 , . . . , I) 
generated by the hash table initialization algorithm 
Output A set S of 1 (or fewer) approximate nearest neighbors according 
to q 
Return the nearest neighbours for each qi found in set S 

Figure 3.4: Approximate Nearest Neighbor query answering algorithm 

The L S H function we used takes advantage of a linear combination of high-
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dimensional data. B y doing this, we also get the distance between any two points. 

Those brightness vectors are presented as [x\,..., Xd], and we make the L S H map

ping strategy the hashing function in our implementation as 

h(xi, ...,xd) = (ai • xi H \-ad- i r f ) m o d M (3.25) 

The permutation hashing method is good for implementation; how to choose the pa

rameters and make this method random enough is very important at this stage. The 

hashing function should also satisfy the requirement that there be a low probability 

of collision. Here, we also denote the hash function as h(x) = (axT mod M). 

• M = 2C — m,m is a prime; 

• ai is a random number from interval [0, M — 1]. 

where C is a number to make the M < N—N is the pixel number from reference 

image, and <ij is sufficiently random to give low probability of collision. For our 

experiment, we choose C from 8 to 15. B y doing that, the I hash tables have 

different size of length and different bucket size for each hash index. The hashing 

should be doing well; otherwise the result wi l l not be satisfactory. B y tried some 

hashing number M and a, the results of our experiment are reasonably accurate. 

The results of our experiments are discussed in the next section. 

In general, through all the above steps, we first get the reference object's one-

to-one mapping relationship between the brightness vector and the gradient vector. 

Then we store the mapping into the high-dimensional hash tables to preserve the 

locality similarities between the near neighbour points. For the best fit for the 

irregular target object's gradient vector, we figure out the best fit from each hash 

table, then pick up the "closest" point among those best fits and calculate the 

query point's approximate gradient. As a result, the irregular target object's surface 

orientation has been figured out. 
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3.5 Experimental Results 

In this section we report the results of our experiments with the locality-sensitive 

hashing method. The surface orientation's estimations are evaluated in three for

mats as the figure shows: (i) the slope angle of the gradient t a n - 1 \J(p2 + q2); (ii) 

the aspect of the gradient t a n _ 1 ( j > / i j ) ; (iii) the needlemap for the surface orientation 

The first experiment's source image is provided by [28]. The reference sphere 

(260 x 310 pixels) (Figure 3.5) and the target doll face (260 x 380 pixels) (Figure 

3.7) were made with ceramic material, which approximates the perfect Lambertian 

situation. Figure 3.6 shows the reference sphere's contour estimation by the least-

square fitting algorithm and its gradient mapping. Bo th the reference object and the 

target object images were taken in a calibration manner; the light i l lumination for 

the reference object and the target object is identical. Because of the quality of the 

lighting, using only two hash tables already estimates the doll's surface orientation 

very well. Figure 3.8 shows the gradient estimation for the doll face by varying the 

number of hash tables. Figure 3.9 shows the doll face's orientation estimation from 

a different viewing point. 

The second experiment uses the example shown in Figure 3.1: one bill iard 

ball (208 x 185 pixels) (Figure 3.10) and one plastic elephant toy (371 x 271 pix

els) (Figure 3.12). After painting them with the same red tempera paint, we put 

them together, and shot a video with the Sony Camcorder. Figure 3.11 shows the 

reference ball's gradient estimation. We took the video sequence for the elephant 

toy from three viewing angles. Figures 3.13(t), 3.15(.i), and 3.17(i) shows the three 

examples' gradient estimation with varying the input image number and the number 

of the hash tables. Figures 3.14, 3.16, and 3.18 illustrated the gradient aspect and 

needlemap evaluation for the three examples. 

The third experiment's source data is derived from [11]. The reference object 

is also a bil l iard ball (328 x 322 pixels) 3.19(e), and the target object is a painted bot-
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(a) Light source (b) Light source (c) Light source 
1 2 3 

Figure 3.5: Three images of ball under different illustration: (a) light source 1; (b) 
light source 2; (c) light source 3. 

(a) (b) 

Figure 3.6: The boundary contour of the reference ball and the gradient of the 
reference ball. 

tie (398 x 1176) 3.19(a). In this case, the object is an example of a non-Lambertian 

surface with distinct specular highlights. Both the calibration object and the test 

object appear in the same image; there are 8 colour images. Figure 3.19 shows its 

gradient estimation. Also, we reconstructed the green bottle's depth map in figure 

3.20. 
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(a) (b) (c) 

Figure 3.7: Three images of doll face under different illustrations: (a) light source 
1; (b) light source 2; (c) light source 3. 

(a) 1 hash table (b) 3 hash tables (c) 6 hash tables 

Figure 3.8: The gradient estimation of the ceramic doll face by varying the number 
of hash tables. Since the input images are acquired from the original photometric 
stereo method, and they are quite accurate. Therefore,only three hash tables already 
give a very good estimation of the gradient. The estimation used 3 hash talbes is 
much smoother than the one only used 1 hash table. We could see the difference 
from the forehead part. 
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Figure 3.9: Gradient estimation of doll face from different angles, including the 
gradient slope angle and gradient aspect estimation 
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(a) Light source 1 (b) Light source 2 (c) Light source 3 (d) Light source 4 

(e) Light source 5 (f) Light source 6 (g) Light source 7 (h) Light source 8 

Figure 3.10: Eight images of a bill iard ball under a hand-held moving light source 

(a) (b) (c) (d) 

Figure 3.11: The boundary contour of the reference bil l iard ball and the gradient of 
the reference bil l iard ball 
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(a) Light 1 (b) Light 2 (c) Light 3 (d) Light 4 

(e) Light 5 (f) Light 6 (g) Light 7 (h) Light 8 

Figure 3.12: Eight input images of the target elephant under the same light source 
as the bill iard ball 
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Figure 3.13: The gradient estimation of the target red elephant according to different 
hash numbers and based on different number sample images. The images show the 
slope angle of the gradient. Row 1 to Row 5 uses 4, 8, 16, 32, 64 images separately. 
Column 1 to Column 4 uses 1, 2, 4, 6 hash tables separately. 
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(a) Gradient aspect of elephant's side 

(b) Needlemap of elephant's side 

Figure 3.14: Gradient Aspect and Needlemap estimation of elephant's side 
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(a) 2 hash tables and 16 (b) 4 hash tables and 16 (c) 6 hash tables and 16 
images images images 

(d) 2 hash tables and 32 
images 

(g) 2 hash tables and 64 
images 

H I 

(e) 4 hash tables and 32 
images 

(h) 4 hash tables and 64 
images 

(f) 6 hash tables and 32 
images 

(i) 6 hash tables and 64 
images 

Figure 3.15: Gradient slope map2: the gradient estimation of the target red elephant 
according to different hash number and based on different numbers sample images 
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(a) Aspect of front side of elephant 
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(b) Needlemap of front side of elephant 

Figure 3.16: Aspect and needlemap of front side of elephant estimation 
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(a) 2 hash tables and 16 
images 

(b) 4 hash tables and 16 
images 

(c) 6 hash tables and 16 
images 

(d) 2 hash tables and 32 (e) 4 hash tables and 32 (f) 6 hash tables and 32 
images images images 

(g) 2 hash tables and 64 
images 

(h) 4 hash tables and 64 
images 

(i) 6 hash tables and 64 
images 

Figure 3.17: Gradient slope map3: The gradient estimation of the target red ele
phant according to different hash numbers and based on different number sample 
images 
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(a) Aspect of back side of elephant 

(b) Needlemap of back side of elephant 

Figure 3.18: Back side of elephant's aspect and needlemap estimation 
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We also analyzed the results by varying the number of images d and the 

number of hashing I. Figure 3.21 — the plastic elephant experiment — shows that 

the more input images are used, the more accurate the results. The resolution of 

the 640 x 480 camcorder is not high, so we need more images to overdetermine 

the gradient. The results in Figure 3.22 present the change in the average angular 

difference when we increase the number of hash tables. The figure shows that the 

larger I is, the more accurate the gradient estimation. There is a threshold for the 

choice of I. In Figure 3.22, the threshold is 6. It means that using 6 hash tables 

already generate a good result for the gradient estimation. Adding more hash tables 

does not improve accuracy. 

For comparison purposes we computed the gradient for the bottle example 

by brute-force lookup; i.e., we built a table with all the approximately 10,000 pixels 

in the calibration object. Each entry has a key of 24 x 8 bits. Computing the 

gradient by direct lookup and finding the best-matching key by linear search in the 

table takes approximately 4 hours on a 2.4GHz Intel machine with 2 G B of memory. 

In contrast our L S H version took 5 minutes for the bottle example and 90 seconds 

for the elephant example with 80 x 8 bit keys. 

We also computed the point-by-point angular difference between the bottle's 

normal computed by L S H and the normals computed by brute-force lookup. Figure 

3.23 shows an image of the angle's cosine between the normals. 

In addition, we also compared our results to the laser-scanned results. Figure 

3.24 presents the difference between them. We selected several slices of the same 

position, both from the reconstructed bottle and the laser-scanned model. The 

reconstructed bottle shows that our result is very close to the laser-scanned model. 

Another significant performance improvement of our method is speed. The 

table size of the lookup-table of Woodham's method is 2bd, where d is the dimension 

of the images and b is the number of quantization levels. The size of the L S H hash 

table is I x Nr, where I is the number of the hash tables and 7V r is the reference 
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( a) (b) (c) (d) 

(e) 

Figure 3.19: The gradient estimation for a painted bottle, (a) shows one input 
image, (b) shows one reference image (c) shows the slope angle of the gradient, (d) 
shows the aspect of the gradient, (e) shows the needlemap of the surface orientation. 
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Figure 3.21: Convergence performance with varying image numbers. The vertical 
axis displays the average angle between the normal computed with the L S H method 
using the first n images and 6 hash tables, and the normal computed by brute force 
with 80 images, for the plastic elephant example. 
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1 2 3 4 5 6 7 8 9 
Number of hash tables 

Figure 3.22: Convergence performance with varying the number of hash tables. The 
vertical axis displays the average angle between the normal computed with the n 
hash tables and 64 input images, and the normal computed from brute force search 
from 80 input images for the plastic elephant example. 
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objects' image size exclusive of the background size. The search is O(N) problem. 

Here we assume the pixel numbers in reference image (Nr) and the target image 

(iV t)are similar size N. The table size for brute force search method is d x NT, where 

d is the input image numbers. The computational complexity is 0(N2). For A N N 

matching method, the table size is d x Nr, and the computational complexity is 

0(N)0(l/e)d [19], which is exponential in d. In our implementation, the table size 

is I x Nr the total number of operations is (d +1 x B) x N, where I is the number 

of hash tables and B is the bucket size of the hash items. Thus the computational 

complexity is 0(N); i.e., the L S H hashing is constant per pixel. Evaluating the 

hashing function is simple, and the tables can be limited in size, so the results can 

be computed rapidly. There is a cost involved in setting up the hash table, but we 

envision inspection applications where that cost can be absorbed at the beginning, 

and only inexpensive hashing operations are done per object. 
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Figure 3.23: The cosine of the angle between the gradient computed by L S H and 
the gradient computed by brute force lookup. The image shows values between 1.0 
in white and 0.985 (approximately the cosine of 10 degrees) in black. 
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Chapter 4 

Conclusion 

In this thesis, we present a new method that uses locality sensitive hashing to rapidly 

compute the high-dimensional data's best match for photometric stereo. The advan

tage of putting the reference object and target object in the same scene, following 

Hertzmann & Seitz, is that there is no need to move the reference object and target 

object one by one to get the same illumination, which largely simplifies the experi

mental process. Through this method, we can only move the easy handle refenrence 

object around the hard to move target object and get its surface orienation. Accord

ing to the robustness of the algorithm, we found that low-resolution video sequence 

input image frames (the toy elephant example) also generated a satisfactory gradi

ent estimation. The multiple results show that this method works very accurately 

for both Lambertian and non-Lambertian cases, and the computation time is much 

reduced. 

The simplified experiment and the robust searching algorithm broaden the 

practical applications for photometric stereo. The idea is simple but very useful. 

The practical benefit of the fast photometric stereo implementation is that it could 

be integrated with motion detection. It provides an efficient reconstruction for an 

object's geometry, which can be an appropriate alternative for laser range sensors. 

The data acquisition process—taking photos by cameras—is not harmful to the 
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patients, and also is cheaper than the laser range sensors and also easy to control. 

The fast speed L S H photometric stereo method would allow the viewer to observe 

the surface model immediately, and also enable the viewer to control the model for 

where he wants to look more in detail at the same time. B y doing so, it would save 

a lot of time for both the patients and the doctor to make other appointments for 

further examinations by slow photometric stereo method. 

Moreover, the efficient photometric stereo via L S H could also been embedded 

into a robot to get better path exploration by detecting the surrounding obstacles' 

shape. Also out of the efficient matching method, we could use more than one 

reference object to build up the search hash tables, which would not affect the 

performance of the searching speed. Based on that, we can further do photometric 

stereo on colourful objects. 

There are some interesting unanswered questions regarding for future work: 

how can we verify the accuracy of results? For the Laser Scanned result, we find 

that there are some holes on the model; and for brute force result, we find that the 

search is based on the accuracy of reference images. How can we bound the number 

of hash tables and the dimensions of the input images? For different objects and 

different lighting, do we always need a large number of images? How can we use 

photometric stereo via L S H to handle varied and colourful objects? Also when 

moving the camcorder, the auto focus may blur the images, therefore how do we 

select the subset of images that leads to a fast and accurate solution? Moreover, 

how do we speed up the algorithm to real time, and how do we derive depth data 

effectively from orientation data? 
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