
Query Answering Using Views for X M L
by

Zheng Zhao

BSc. Hon. , The University of Western Ontario, Canada, 2002

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
March 2005

© Zheng Zhao, 2005

Abstract

The problem of answering query using views is to find efficient methods of answering

a query using a set of previously materialized views over the database, rather than

accessing the database. As X M L becomes the standard of data representation and

exchange over the internet, the problem has recently drawn more attentions because

of its relevance to a wide varieties of X M L data management problems, there is a

pressing needs to develop more techniques to solve it for X M L data effectively and

efficiently.

We study a class of X P a t h queries and materialized views which may contain

child, descendant axis and predicates. We first describe an algorithm to find the

maximally-contained rewritings in the absence of database schema. We then present

an efficient algorithm to search the maximally-contained rewriting under choice-free

acyclic schema and prove the uniqueness of the maximally-contained rewriting. F i ­

nally we show its performance experimentally by extending our algorithm to answer

queries in XQuery expression.

i i

Contents

Abstract ii

Contents iii

List of Figures v

Acknowledgments vii

Dedication viii

1 Introduction 1

2 Background and Problem Studied 5

2.1 X P a t h and Tree Pattern Queries 5

2.2 Materialized X P a t h Views 7

2.3 Query Containment and Query Rewri t ing 7

2.4 Schema and D T D s 8

3 Query Answering Using Views without Schema 9

3.1 Sound Rewritings and Max ima l Rewritings 9

3.2 Algor i thm and Time Complexity 13

i i i

3.2.1 Algorithms 13

3.2.2 Time Complexity 18

4 Query Answering Using Views in the Presence of Schema 19

4.1 Constraints from Acycl ic choice-free D T D 20

4.2 Decidabili ty of Containment Under Acycl ic Schema 24

4.3 Query Answering Using Views Under D T D 33

4.4 Algorithms and Time Complexity 36

5 Experimental Results 40

5.1 Query Set 41

5.2 Savings and Overhead on Queries Answering using Views 45

5.2.1 Savings on useful views 45

5.2.2 Overheads on useless views 45

5.2.3 Various number of views 46

5.2.4 Varying query size 47

6 Related Work , 50

7 Conclusion 52

Bibliography 53

iv

List of Figures

3.1 Help Functions 14

3.2 Algor i thm to find rewriting of Q using V 15

3.3 Schemaless Case Example 16

4.1 Duplicate D T D Example 23

4.2 Theorem 4.1 Proof - Case a . 32

4.3 Theorem 4.1 Proof - Case b 34

4.4 Finding IC from D T D 36

4.5 F ind ing C C from D T D 37

4.6 A p p l y Chase on Q 38

5.1 Selection Queries and Views on auction.dtd 41

5.2 Jo in /Group B y Queries and Views on auction.dtd 42

5.3 G T P s built for Q3 44

5.4 Saving Rat io - Useful Views 46

5.5 Overhead Rat io - Useless Views 47

5.6 Overhead Rat io - Various Number of Useless Views 48

5.7 Saving Rat io - Various Number of Useless Views 48

5.8 Saving Rat io - Various Query Size 49

v

5.9 Overhead Ratio - Various Query Size

vi

Acknowledgments

I am deeply appreciate my supervisor Dr . Laks V . S . Lakshmanan who provided me
invaluable guidance and support. Without him, this would never have been com­
pleted.

I would like to thank all the members in database lab, especially Dr.George
Tsiknis and Wendy H u i Wang for their help in my work.

ZHENG ZHAO

The University of British Columbia

March 2005

v i i

my parents and husband, for their endless love and continuous encouragement.

v i i i

Chapter 1

Introduction

The problem of answering query using views is to find efficient methods of answering

a query using a set of previously materialized views over the database, rather than

accessing the database [7], This problem is relevant to many data management

problems. One of the major context where the problem of answering queries using

views is considered is data integration and data warehouse design where the efforts

focus on searching a maximally-contained rewriting, the best results possible.

Da ta integration systems combine data residing at a multitude of autonomous

data sources, and provide a uniform query interface, called global schema, which can

be queried by the user. In the design of a data integration system, we need to make a

basic decision which is related to the problem of how to specify the relation between

the sources and the global schema. There are basically two approaches for this

problem. The first approach, called global-as view (G A V) , requires that the global

schema is expressed in terms of the data sources. This means that every concept

of the global schema is associated wi th a view over the data sources, so that its

meaning is specified in terms of the data residing at the sources. In the second

1

approach, called local-as-view (L A V) , the global schema is specified independently

from the sources, and the relationships between the global schema and the sources

are established by defining every source as a view over the global schema. In the

area of data warehouse design we need to choose a set of materialized views in the

warehouse to improve the query performance. In this case, the most important step

is to select a set of views to materialize that answers all the queries of interest while

minimizing the total query evaluation and view maintenance cost. When a query is

posed, it is evaluated locally, using the materialized views. Accessing the original

data sources are avoided mainly because either the original sources are not accessible

any more or it costs too much. Bo th problems are translated into the problem of

query rewriting using views in which we often need to settle for a contained result

which is a subset of the original query result rather than an equivalent one because

the given materialized views may not cover the entire database.

The problem of rewriting queries using materialized views has been exten­

sively studied in the relational world. Many algorithms were developed for a specific

area of applications [3, 6, 13, 20, 7] such.as the bucket algorithm, the inverse-rules

algorithm, the M i n i C o n algorithm, etc. In contrast, this problem for X M L data

management has not been fully explored. Some of the existing work is outlined in

the Chapter 6 Related Work. X M L has become the standard for data representation

and exchange over Internet. W i t h W 3 C ' s recommendation, XQuery(17] emerges as

the standard query language for X M L and XPath[16] is a language for navigating

X M L documents which is embedded in XQuery. B o t h these languages are based on

a basic paradigm of finding bindings of variables by matching tree patterns against

a database. Similar to relational databases, the problem of finding a rewriting of

X Q u e r y / X P a t h queries using a set of X P a t h views is relevant to a wide varieties of

2

X M L data management problems. Besides those two major applications we men­

tioned above, this problem is also related to semantic web applications as illustrated

in [8] when the query is posed over the schema of source S and we wish to reformu­

late it over the schema of target T which is the schema neighbor of S. The problem

of refomulating Q is known as answering queries using views. Therefore there is a

pressing need to develop better techniques to solve the problem of rewriting queries

using materialized views effectively and efficiently.

In this thesis, we consider this problem for X P a t h expressions with/without

a database schema. Informally, we define the problem as following. Suppose we

are given a query Q, and a set of previously materialized view definitions V\,... ,Vn

all expressed in X P a t h . Is it possible to answer query Q using only the answers to

the views V\,..., Vn without accessing accessing the database? If so, how? When

the database schema is given, the query and views are over the same schema. Cur­

rently we concentrate on X P a t h expressions containing child, descendant axis and

predicates. The specific contributions of this thesis are the following:

• We propose an algorithm to check when a view is usable to answer a X P a t h

query and find maximally-contained rewritings in the absence of schema. We

show the lower bound of the time complexity is E X P T I M E .

• We show that containment for XP{/,//'[^ can be decided in P T I M E under

acyclic choice-free D T D s .

• We describe a P T I M E algorithm to find the maximally-contained query rewrit­

ing using views under acyclic choice-free D T D s .

• We introduce an approach to answer an XQuery query using X P a t h views by

extending our algorithm and present detailed experimental results to show the

3

performance.

The rest of the thesis is organized as follows. In Chapter 2 we describe the

class of X P a t h fragments and database schema we studied. We present our algo­

r i thm in the absence of schema in Chapter 3. In Chapter 4, we prove that for tree

pattern queries in XPVJM 1>, five types of necessary and sufficient constraints im­

plied by choice-free, acyclic D T D can be used to decide query containment problem

and extend to solve the problem of a query rewriting using views using a P T I M E

algorithm. We provide experimental results in Chapter 5 where we illustrate how to

use our algorithm to answer XQuery query using X P a t h views. Finally, we discuss

related work in Chapter 6 and conclude in Chapter 7.

4

Chapter 2

Background and Problem

Studied

2.1 XPath and Tree Pattern Queries

A n X M L database is a finite rooted ordered tree T — (N,£,r,\), where A / repre­

sents element nodes, £ represents parent-child relationship, A denotes the labelling

function to assign a tag wi th each node, and r is the root. Associated wi th each

node is a set of attribute-value pairs. In our work, we do not consider order any

further.

Tree pattern queries, introduced in [1], capture a useful fragment of X P a t h .

A tree pattern query (T P Q) is a triple Q — (N,E,F), where (N,E) is a rooted

tree, wi th nodes N labelled by variables, and wi th E = ECL) Ed consisting of two

kinds of edges, called pc- (Ec) and ad-edges (Ed), corresponding to the child and

descendant axes of X P a t h . A distinguished node in N (shown boxed in Figure 3.3)

corresponds to the answer element. The path from root node to the distinguished

5

node is the distinguished path. F is a conjunction of tag constraints (TCs) , value-

based constraints (V B C s) , and node identity constraints (NICs). T C s are of the form

$x.tag = t, where t is a tag name. V B C s include selection constraints $x.val relop c,

$x.attr relop c, and join constraints $x.attr relop $y.attr', and $x.val relop $y.val,

where relop G {=, ^ , >, <, >, <}, attr, a t t r ' are attributes, vai represents content,

and c is a constant. NICs are $x idop $y where idop G {=!7^}- Q is join-free if

it contains no join constraints and no NICs . We assume no disjunctions appear in

V B C s and queries are join-free throughout the thesis wi th a few clearly identified

exceptions.

We denote the nodes of a query Q by N(Q) and the nodes of a view V by

N(V) . The root nodes of Q and V w i l l be denoted by R(Q) and R(V) respectively.

We use dQ and dy to denote the distinguished nodes of query Q and view V. The

distinguished paths in Q and V are denoted by DQ and Dy (i.e. the paths in Q and

V from R(Q) to dQ and R{V) to dy respectively). For any node x in Q or V, the

tag name associated wi th that node wi l l be denoted by tag(x) and the value based

constraints associated wi th that node wi l l be denoted by VBC(x).

Answers for T P Q s are formalized using homomorphism. A homomorphism

is a function h : query Q —> a tree T wi th the following properties:

1. h(R(Q)) = h(R(T));

2. V x G Q,tag(x) = tag(h(x));

3. Var,y G Q, if (x,j/) is a pc edge in Q then (h(x),h(y)) must be a pc edge in T ;

4. Va;,y G Q, if (a;,y) is an ad edge in Q then (h(x),h(y)) must be a path in T .

6

2.2 Materialized XPath Views

We consider X P a t h views are in the class of copy semantics which implies that

views store copies of answer elements. This implies that X P a t h views can be used

to answer X P a t h queries wi th subsequence operations on the results of the view

without navigating to the parent or ancestors. Since we consider join-free X P a t h

query in our work, only a single view would be involved in rewriting if it is usable.

For the ease of readability, we denote an X P a t h query and a view by Q and V

respectively.

2.3 Query Containment and Query Rewriting

Query containment is a necessary condition for rewriting query using views. As

proven in [14], for any wildcard-free X P a t h queries Q and Q', Q' C Q iff there

is a containment mapping from Q —» Q'. A containment mapping is a function

h : Q -> Q' wi th the following properties: (1) h(R(Q)) = h(R(Q'))\ (2) Vx e

Q,tag(x) = tag(h(x)); (3) V:r ,y <E Q, if (x,y) is a pc a edge in Q then (h(x),h(y))

must be a pc edge in Q' ; (4) Va:,y 6 Q, if (x,y) is a ad edge in Q then (h(x),h(y))

must be a path in Q',which may include pc edges and/or ad edges.

In our context, the correctness of the rewriting is verified by using query

containment. We say that Q is rewritable using V if there exists an X P a t h expression

E such that for every X M L database D, E o V(D) C Q(D) then E is said to be

a sound rewrite of Q using V. In addition, our goal is to find maximal sound

rewriting(s). A sound rewriting E of Q is said to be maximal if there has no E'

such that for every X M L database D, Eo V(D) C E' o V(D).

7

2 .4 Schema and DTDs

We are especially interested in studying the problem of rewriting query using views

in the presence of schema. We abstract the schema of a database (in our work, we

only consider D T D s) as a graph wi th nodes corresponding to tags and edges labelled

by one of the quantifiers '?, 1, *, + ' wi th their standard meaning of 'optional' , 'one',

'zero or more', and 'one or more' respectively. A l l tags in D denotes set a. The

set of trees satisfying D T D D is denoted S A T (D) . A X P a t h query Q is satisfiable

if there is a tree T 6 SAT(D) such that Q(T) ^ 0 . Otherwise, Q is unsatisfiable.

The satisfiability of T P Q s with/without schema is recently studied in [12]. Wi thout

losing the generality, we assume that both query Q and view V are satisfiable wi th

regard to D T D .

D T D s provides constraints on the structure of X M L documents. Hence,

while Q\ may not rewritable using Q2 in general, it may be the case that given a

D T D D, Q is rewritable using V when both satisfy D, by applying a compensation

expression E on V. For ease of exposition, we init ial ly focus on acyclic choice-free

D T D s . If C is a set of constraints inferred by D T D , then SAT(C) denotes the set

of trees in Ts which satisfy each constraint in C.

Problem Statement: We formally define the problem of query answering using

views (QAV) for X P a t h fragment, denoted XPU'/'/'[^ in our context, as follows:

Given a query Q and a view V both expressed in X P a t h , check whether V is usable

for answering Q. If so, find all maximally-contained rewriting(s) of Q using V,

with/without choice-free acyclic D T D .

8

Chapter 3

Query Answering Using Views

without Schema

In this chapter, we illustrate an algorithm for computing maximally-contained rewrit­

ing^) in the absence of schema and prove the soundness of our algorithm. We

firstly give some useful definitions, provide a detailed proof and then present the

algorithms. A n example follows to show that time complexity can not be better

than E X P T I M E .

3.1 Sound Rewritings and Maximal Rewritings

D e f i n i t i o n 3.1 (E m b e d d i n g) An embedding / : Q ~» V is a partial function

from N(Q) to N(V) satisfying the following properties.

1. If the first character in the XPath expressions Q and V are / then, f(R(Q)) =

R(V).

2. \fx £ Q, f is defined on x implies (tag(x) = tag(f(x)) A (VBC(f(x)) —>

9

VBC{x)).

3. Vx,y G Q, f is defined on x and y, (x,y) is a pc edge in Q implies that

(fix), f(y)) i s a Pc edge in V.

4- Vx, y G Q, f is defined on x and y, (x, y) is an ad edge in Q implies that there

exists a path from f(x) to f(y) in V which may include pc or ad edges.

5. Vx G Q, then f is defined on every ancestor of x (upward closed).

Definition 3.2 (Useful Embedding) / : Q ~» V is a useful embedding, pro­

vided:

1. f is an embedding;

2. Vx e DQ, if f(x) is defined, f(x) 6 Dy;

3. Let P — { i > o , i > i , . . . ,Vk} be any path in Q.

(a) either f is defined on VQ, V \ , ..., v^; or

(b) Vi : f(v{) is defined, f(vi) G Dy and suppose vi = max{i\f(vi) is defined

}, then either f(v{) = dy or (yi,vi+i) is an ad edge in Q.

Definition 3.3 (C A T : Clipped Away Tree) Let the distinguished path in Q, Dy

{vo,vi,... ,Vk}. A Clipped Away Tree (CAT) is a subtree of Q rooted at v{, s.t. f

is not defined on Vi but is defined on

Definition 3.4 (Extension of Useful Embedding) A useful embedding g is an

extension of another useful embedding f if dom(f) C dom(g).

In this chapter, we denote different rewritings (Eg o V) and (Ef o V) as Rg

and Rf. B o t h are the sound rewritings derived from the useful embeddings g and /

respectively.

10

Theorem 3.1 Let Q,V G XPt/.//.[1} and Q is join-free. Q is rewritable using V

iff there exists a useful embedding f : N(Q) ~* N(V).

Proof (Only if) Let E o V be a sound rewrite of Q using V , i.e. VdatabaseT :

E o y (T) C Q(T). Let h : AT(Q) -> N(E o V) be containment mapping, s.t.

Vx G N(Q),h(x) G N(V) or /i(x) G N(E). We construct a useful embedding

/ : N(Q) ~> JV(V) as follows:

Vx G Q : fo(x) G AT(V), /(x) = /i(x). By the definition of containment mapping, f is

a valid embedding from N(Q) ~> AT(V). / also satisfies all path constraints defined

in useful embedding because:

1. Vx G N(DQ) and x is defined in / : /(x) C N(DV) since / (i 2 (Q)) = f(R(V))

and / (D Q) = / J E O V -

2. Mark nodes of Q top down as follows. If x G Q and h(x) G V, mark the node

as V, else mark it as E. The marks on all paths from R(Q) to any leaf node

are of the form V*E*. Let x be the last node in any path marked V and y be

the first node in the path marked E. Since E is a valid rewrite,

(a) either x is mapped to dv, OR

(b) (x,y) is an ad edge and x is mapped to a node in Dv

(If) Let / : N(Q) ~> N(V) be a useful embedding. We construct E and

extend f as follows:

Vx G N(Q) s.t. x G dom(f) and By s.t. edge(x,y) G Q a n d y ^ dom(f). Let

T y denote the subtree rooted at y. Do the following: add a copy T'y of Ty as a

child subtree of dv and define for every node z G Ty,f(z) — z' where z' is the

corresponding node in Ty. If (x, y) is a pc(ad) edge, then (dv,y') is a pc(ad) edge. E

11

contains al l such TyS. The extended / is the required containment mapping because

V z defined in the useful embedding is defined in / and Vx N O T defined in the useful

embedding, f(x) is its image in the corresponding Ty. f is a valid containment

mapping from Q ^> E oV. Therefore, E o V is a sound rewriting of Q using V. •

For efficiency concerns, we aim to generate only maximal rewrites. The

following lemma makes this goal possible to achieve. We w i l l describe the algorithm

in the next section.

Lemma 3.1 Let a useful embedding g is an extension of f. Rf C Rg iff dom(f) C

dom(g) and Vx 6 dom(g) — dom(f) \ 3y £ dom(g) and edge(x,y) £ Q: (x,y) is an

ad edge.

Proof (Only if) We know that g is an extension of / . Mark every node x of

Q top down as follows: if x £ dom(f), mark the node as F; if x £ dom(g) — dom(f),

mark the node as G\ else mark it as E. The marks on all paths from R(Q) to any

leaf node are of the form F*G*E*. Let u be the last node in any path marked F,

x be the first node in the path marked G, y be the last node in the path marked

G and z be the first node in the path marked E. From the way we construct Rf

and Rg, we know all subtree Tx w i l l be copied as T'x to attached to dv using pc(ad)

edge in Rf if (u, x) is a pc(ad) edge; al l subtree Tz w i l l be copied as T'z to attached

to dv in Rg using pc(ad) edge if (y, z) is a pc(ad) edge. Since Rf C Rg, there is a

containment mapping h : N(Rg) —> N(Rf). z', the image of z in Rg is mapped to

z", the image of z in Rf which is a node in T'x. Since pa th (d„ , z") in Rf through

node x' must contain at least two edges. Therefore, edge (dv,z') in Rg must be ad

edge. Thus the pre-image of u in Q, (y, z) must be an ad edge in Q.

(If) We show Rf C Rg by constructing a containment mapping h : N(Rg) —>

N(Rf) as follows:

12

1. Vx G N(V) of Rg, h is defined as its image in N(V) of Rf since Rf = Ef oV

and Rg = Eg oV,

2. Vu G Ty, a child subtree of Dy rooted at y in Rg, s.t. the pre-image of y in

Q has an edge to node x and a; G dom(f): 3Ty\ a child subtree of Dy m Ef,

Ty is isomorphic to Ty\ h(u) is defined as its image in T'y. Since we derive Rg

and Rf from 3 and / , we know Vy whose pre-image ^ dom(g) : 3 edge (£, y)in

<5 and t G dom(g) f l dom(f) : Ty is duplicated in i ? g and £Jf,

3. VTy, a child subtree of Dy in Rg: the pre-image of y in Q has an edge to node

x s.t. x G dom(g) — dom(f) : 3Ty, a subtree of Dy in i?y s.t. T y is isomorphic

to Ty. y can be mapped to y' since (Dy,y) is an ad edge and (Dy,y') is a

path m Rf. Vu £ T y , is defined as its image in Tv.

•

3.2 Algorithm and Time Complexity

3.2.1 Algorithms

We first introduce three help functions which are used to simplify the problem

solving. The first and second function are quite straight forward so we just give a

brief description rather than details. The third one is the most complicated so we

would show it step by step.

We next introduce the main procedure to find al l useful embedings from Q

to V.

We show the execution of the above algorithm using the example of F ig ­

ure 3.3. For readability, whenever the tag constraint $x.tag = t appear in Q and V,

13

1. F u n c t i o n : m a p - D P a t h

Input: The distinguished path of Q and V, Dv and DQ. Let JV(ZV) ={vo,v\,..., Vk} and N(DQ)
={?o, 91, • • •, 9m}-
Output: A set of valid (partial) path mappings H from N(DQ) ~» N(Dy)-

Each h £ H will preserve path and tag obligations and for every unmapped node qi such
that /i(<j;_i) is defined in h, if pc-edge(gi_i,qi) then h(</i_i)= f̂c(the distinguished node of V).It
will also generate a candidate list Cqi for node q; s.t. Vj 6 Cqi if there exist a h' such that h(qj) = vj.

2. F u n c t i o n : m a p - S u b t r e e

Input: One node qi in Q and the other node Vj in V.
Output: Return the total mapping if the tree rooted at qi in Q has a containment mapping to the
tree rooted at VJ in V. Otherwise, it will return NULL.

We implemented the PTIME containment mapping algorithm introduced in [1].

3. F u n c t i o n : m a p - T o - D v

Input: One node q[in Q and the other node Vj e Dy.
Output: Return a set of all valid (partial) tree mappings T from the tree rooted at q\ in Q to the
fragment of Dv starting from Vj. If no mapping exists, return NULL.

As a valid tree mapping t € T, it will preserve path and tag obligations and for every un­
mapped node q'j such that q'j_i is mapped, if pc-edge(g^_1 ,qj) then t(g^_1)= ut.(the distinguished
node of V).It will also generate a candidate list Cq[(root of the tree) for q'{ s.t. Vj S CgJ if there
exist a t such that t(q'{) = Vj.

Figure 3.1: Help Functions

14

Procedure: get-UsefulEmbeddings

Let the distinguished path Dv ={vo,v\,... ,i>fc} and DQ ={qo,<Ji, • • • ,<?[}• Node not lying on the
DQ and Dv denote q' and v' respectively.

Input: Q and V.
Output: All useful embeddings in set F.

Assign unique id to each node in Q and V;
H = map-Dpath(DQ, Dv);
If H is empty, return NULL;
For each node q, G D{Q) s.t. Cqi / 0

1. For each child node q' of qi which is not on DQ

(a) For each node v' in Cqi
i. If pc(cj', <7i),get all pc-child nodes Vj of v' s.t. tag(uj)= tag(q')

ii. If ad(<?', <j;),get all descendant node Vj of v' s.t. tag(i>j)= tag(q')
iii. Save all VJS in set V
iv. For each Vj in V

A. For Vj is not in Dv, map-Subtree(qi, VJ){
B. If success, record the mapping and add Vj to Cqi. Break;}
C. If VJ is in Dy, map-To-Dv(</;,i>j){
D. If success, record all mappings, and add Vj to Cq,.Break;
E. If fail and pc(g', qi), prune v' from Cqi.
F. If fail and ad(q', qi), add 0 to Cqi}

Use all pre-stored candidate list of query node's mapping, output all useful embeddings.

Figure 3.2: Algorithm to find rewriting of Q using V

15

we write t right next to $x in the figure.

Q: /a J

I
b j :

, $9 j $7

m " 1

• no

/a 5

Rl:

/ r d 1

R2:

/ d 1

- 1 \
n

R3:

/
d 1

R4:

<\X
\\

R5:

m

\

R6:

Figure 3.3: Schemaless Case Example

1. C a l l function map-Dpath(Dg, Dy)- H contains only one mapping which is h

= {1 -+ l ' , 2 -> 2', 3 - f 3'}. The candidate lists are C\ = l ' , C 2 = 2 ' , C 3 = 3'.

The C A T is the subtree rooted at node 4.

2. Node 1 in Q has no other children besides node 2, so 1 wi l l be skipped.

3. Node 2 has one child 6 which is not on DQ. h(2)=2' and ad(2,6) so 6 may

16

map to two nodes in V , 4' and 7' which are descendants of node 2'. We always

try to map the candidate which is not on Dy. B y doing that we may get the

total mapping of the subtree rooted at 6. So we test map-Subtree(6, 7'), it

fails. Then test map-To-Dv(6, 4'), we got three mappings: K2\ = {6 —> 4', 9 —>

5', 7 -> 6'}; h22 = {6 -> 4', 9 -> 5'}; h23 = { 0 } . h23 implies the whole subtree

rooted at 6 wi l l be attached to dv as part of rewrite.

4. Node 3 has one child 10 which is not on DQ. h(3)=3' and ad(3,10). Same as

the operation done on Node 2, we wi l l obtain two mappings hZ\ = {10 —> 6'};

hS2 = { 0 } .

5. We generate al l the embedding using combinations of C A T , h2 and h3 which

gives 6 different embeddings:

• /x = {1 —• 1', 2 —> 2', 3 -» 3', 6 4', 9 -> 5', 7 -» 6', 10 - • 6'}.

• f2 = {l _» l ' , 2 2',3 -> 3', 6 -+ 4', 9 -> 5', 10 6'}.

• / 3 = { 1 - > 1 ,

I 2 - ^ 2 , , 3 ^ 3 , , 1 0 ^ 6 ' } .

• / 4 = {1 - * 1', 2 —> 2', 3 -> 3', 6 4', 9 5', 7 ^ 6 ' } .

• / 5 = {1 -> 1', 2 -> 2', 3 -» 3', 6 4', 9 -» 5'}.

• / 6 = { l - > l / , 2 - > 2 ' , 3 - > 3 ' , 1 0 - 6 / } .

6. Finally, we generate six rewritings R l , R2, . . . , R6 corresponding to six distinct

useful embeddings fi, f2, fe in the following way: for each / j , mark those

nodes which is not defined in / j i n Q, copy the branches and subtrees connected

by those nodes and attach them to the distinguished node of V . Please refer

to the figure for final results where the root node of each rewriting Ri, is the

distinguished node of V.

17

As we mentioned before, our goal is to generate maximal rewrites for ef­

ficiency. To achieve this, we improve the above algorithm to be as "greedy" as

possible in searching the mappings based on the result of Lemma 3.1. In the func­

tion Map-To-Dv(q, v'), we add prune procedure in the end: ti w i l l be pruned

from T if there exist tj in T such that dom(tj) D dom(ti) and every unmapped node

m which has an edge connected wi th some node n e dom(tj) — dom(ti), (n, m) is

an ad edge. In the example, we wi l l prune h2z from the mappings of node 2 in Q

because dom{h2^) C dom(h22) and there is only one node 7 which has parent node

6 in dom(h22) —dom(h2^) and ad(6,7). However, we can prune neither ft.2i nor h22-

Although dorn(h22) C dom(h2\), 7 is in dom(h2\) — dom(h22) which has a pc child

which in unmapped. Similarly, we can not prune both mapping for node 10. In the

end, we now have four useful embeddings remaining: /2 , / 3 , /s , /6 which corresponds

to four maximal rewritings R2, R3, R5, i?6 in the figure.

3.2.2 Time Complexity

We discuss the time complexity of Q A V problem in the absence of schema using the

example in the Figure 3.3.

The example shows that the mappings of the two subtree rooted at node 6

and 10 have two choices each even after the pruning procedure is applied, which

results four distinct maximal rewrites. Therefore, the number of optimal output

in the worst case would be exponential which implies it is impossible to have an

algorithm to solve this problem better than E X P T I M E .

18

Chapter 4

Query Answering Using Views

in the Presence of Schema

In this chapter, we study the problem of answering queries using views under schema

for the same class of X P a t h fragments as in the schemaless case and currently

consider only acyclic choice-free D T D as database schema. Since D T D provides

constraints, we need to consider those wi th the given query and views in the problem.

As we show in previous chapter, our algorithm in schemaless case is based on

containment mapping. When the schema is available, we first solve the containment

mapping problem under D T D and then extend our algorithm to find the maximal

rewriting.

Wi thout losing the generality, we assume that both Q and V are satisfying

wi th regard to D T D A.

19

4.1 Constraints from Acyclic choice-free DTD

A t the beginning, we formally define five types of constraints implied by D T D s as

follows.

D e f i n i t i o n 4.1 (S i b l i n g C o n s t r a i n t s) Let t be a document tree satisfying DTD.

If whenever a node labelled a in t has children labelled with each b G B, it has a

child node labelled with c, t satisfies the Sibling Constraints(SC) a: B [c. When B

is 0, the SC is called child constraint/i<S/.

D e f i n i t i o n 4.2 (F u n c t i o n a l C o n s t r a i n t s) Let the a document tree satisfying DTD.

If no node labelled a int has two distinct children labelled with b, t satisfies the Func­

tional Constraints (FC) a [b[18].

D e f i n i t i o n 4.3 (C o u s i n C o n s t r a i n t s) Let t be a document tree satisfying DTD.

If whenever a node labelled with a in t has descendant labelled with each b G B, it

has a descendant node labelled with c, then t satisfies the Cousin Constraints(CC)

D e f i n i t i o n 4.4 (P C C o n s t r a i n t s) Let t be a document tree satisfying DTD. If

whenever there is a path from node labelled with a to a node labelled with b, the path

length from a to b is always 1, then t satisfies the P C Constraints(PC) a \ b .

D e f i n i t i o n 4.5 (I n t e r m e d i a t e N o d e C o n s t r a i n t s) Let tbe a document tree sat­

isfying DTD. If whenever there is a path from node labelled a in t to a descendant

labelled with c, b must present on this path between a and c. t satisfies the Interme­

diate Node Constraints(IC) a, c : | b.

20

Sibling Constraints and Functional Constraints were first introduced in [18]

where set B contains multiple elements. We prove in Lemma 4.1 and 4.2 that S C

and C C are both unary when D T D is choice-free.

Lemma 4.1 SCs are unary when DTD is choice-free.

Proof Let D T D be represented in grammar notation. Because S C only involves

parent and child relationship, each S C associates with one production. We presents

a production using a graph Gp such that the root node is the context node a, dummy

nodes Di are used to factor out nested occurrences if any, leaf nodes are child nodes

of a, and quantifies('*', '+ ' , '1 ' , '? ') are labels on the edges. We call it production

graph. Assume that a S C inferred by D T D be a : B j c, B is a set of child nodes of

a.

Cases (a) D T D is duplicate-free: Clearly, the resulting production graph is a tree

because each child element only appear once in a production graph because child

node of a appear at most once in the right side of the production. Also c must be

connect to G p wi th edge labelled wi th '1 ' or '+ ' . Otherwise c can not guarantee to

present in any case. Let node <p be the highest ancestor of c such that al l edges on

the path from <p to c are labelled wi th '1 ' or '+ ' . There are two possibilities:

• (a.l) ip — a: c is a guaranteed child node of a, therefore B = 0 in SC;

• (a.2) ip — Di (some dummy node): This means that if <p ^ 0 then c must

present as a's child. Hence any leaf node hi except c itself reachable from <p

can ensure it. So B = bj. SC a : hi J, c is unary.

Cases (b) D T D allows duplicates: since a child node may appear multiple

times in the right side of the production, the production graph may contain a D A G

21

such that leaf node may have in-degree greater than 1. Same as in Case (a), c must

be connect to Gp wi th edge labelled wi th '1 ' or '+ ' to make S C a : B j c hold. Let

node (p be the highest ancestor of c such that al l edges on the path from tp to c are

labelled wi th '1 ' or '+ ' . There are also two possibilities:

• (b.l)<p = a: same as in Case (&.1)B — 0 in SC;

• (b.2)(p = Di'. Since D T D is not duplicate free, a leaf node may be reachable

from multiple paths. Hence for every leaf node bi reachable from Df. SC

a : bi I c may not be true if there is a node £)/, unreachable from Di, but

reachable to 6,. So bfs presence can be independent from c's presence. Bu t

S t i l l bi itself is sufficient to guarantee c's presence without requiring that such

Di exists. SCs are unary.

•

The following is an example of choice-free D T D wi th duplications. In exam­

ple (1), there are multiple paths to b and c. SC a : b j c is not true.

Example: One production of a choice-free D T D wi th duplications and its

production graph: a —> ((&?, c)+, (b*, e, c?)?)*.

In the above example, we find that S C a : b j e is not true. Al though there

is one path from a to b through D I and D3 where the presence of b is related to the

presence of e, there is another path from node a to node b through D2 where the

presence of b is not relevant to e.

We denote D T D implies a specific constraint c as A N c.

22

a
*

Dl

D2 D3

Figure 4.1: Duplicate D T D Example

C l a i m 4.1 DTD A\=a:bii}.ciffV path Pj from a to hi in A : 3 a node di on Pj

such that there exists a guaranteed path from di to c.

Proof (If) Assume that every path from a to hi there is a node di such that the

path from di to c are all labelled wi th '+ ' or ' 1 ' . Obviously, for any valid instance

t of A , in any path from a to c in t, c must present as a's descendant. Therefore,

A N a : h JJ. c.

(Only if) Assume that A 1= a : hi JJ. c and there exists one path Pi in A from a to

c such that there is a node dj on Pi that has an optional path to c. Then we can

create a valid instance t of A in which Pj is selected from a to hi and c is not present

in the path starting at dj. This is a contradiction. •

C l a i m 4.2 If DTD A a : bt JJ. c and A a : bj JJ. c, tfien A a : {bt, bj} J | c.

Proof From C l a i m 1, we know if A ¥• a. : 6; JJ. c then there must exist a path P i

from a to 6; such that none of node on Pi has a guaranteed path to c. Similarly, if

A ¥ a : hj JJ. c then there must exist a path Pj from a to 6j such that none of node

23

on Pj has a guaranteed path to c. Assume that A ¥• a : 0 ij. c and J&fc, descendant

of a and A N a : 6^ -IJ- c. We can create a tree t by choosing P i and Pj and extend

other paths and nodes as A required to make t valid to A . In t, both bi and bj are

a's descendants, but c is not present as a's descendant under our assumption of A .

Therefore, A ¥ a : {bi, bj} J | c. •

L e m m a 4.2 C C s are unary when DTD A is choice-free and acyclic.

Proof Assume that A N o : bi, bj JJ. c. From Cla im 4.2, we know if A a : ^ JJ. c

and A a : 6j Jj- c, then A ¥ a : {bi, bj] JJ. c. Therefore, C C s are unary. •

4.2 Decidability of Containment Under Acyclic Schema

The correctness of rewritings need to be verified v ia containment mapping. There­

fore, it is necessary to study the containment mapping problem first before solving

the problem of answering query using views.

In order to test query containment under a set of constraints C of ICs, P C s ,

SCs, F C s and C C s for Q G XP^'H^- ^, we introduce a variation of the chase, a

procedure for applying constraints in C to V :

1. Change ad edge to pc edge using P C : Let p G PC of the form a \ b . For al l

ad(a,b) in V , change it to pc(a, b) in V .

2. A d d guaranteed pc children using SC: Let s e SC of the form a : b J. c, where

B — b\, ...,bn. Let a be a node in V wi th pc children b\, ...,bn, and a does not

have a pc child labelled c. Then add pc edge(a,c) in V where c is a new node.

24

3. Merge pc children using F C : Let / G FC of the form a j c. Let a be a node

in V wi th distinct children c\ and c-i labelled as c. Then merge c\ and c 2 in

V . (Note: we wi l l never need to merge ad children. If ad(a,b) is retained in

chase V , this means there exist multiple paths from a to b according to D .

4. A d d guaranteed intermediate nodes for ad-edges using IC: Let i G IC of the

form a,c :| b. For all ad(a,c) in (chased) V , insert b between (a, c) using ad

edges.

5. A d d guaranteed ad children using C C : Let c G CC of the form a : b JJ. c. Let a

be a node in V wi th al l ad children b G B and if a has no ad children labelled

wi th c present in V , add c as a's ad child in V where c is a new node.

We denote by Chasec(Q) the result of applying the set of constraints C to Q.

The set of trees satisfying D T D A is denoted S A T (A) . Let C be a set of ICs,

P C s , SCs, F C s and C C s implied by A , S A T (C) denotes the set of trees satisfying

each constraint in C . The following sequence of results present that C is sufficient and

necessary to show A — containment of queries in XPU'H^ ^ when A is choice-free

and acyclic.

Lemma 4.3 Let C be a set of ICs, PCs, SCs, FCs and CCs implied by A. Q

=SAT(C) Chasec{Q).

Proof Q = S A T (C) Chasec(Q) if for any document tree t satisfying C , Q(t) =

Chasec(Q{t)).

First we prove that a single application of each chase rule to an X P a t h

query in XPU'^^ ^ maintains equivalence w.r.t. C . The result then follows by an

induction on the length of a chasing procedure.

25

1. Chase rule one only applies to ad edges in (chased) Q. Let p be the P C

a [b and Q' be the result applying p to Q. Q' is same as Q except one

ad(x,y) w i l l be changed to pc(x,y) in Q'. Obviously Q' C Q because there is

a containment mapping from Q to Q'. So Q' Qc Q- Let T S SAT(C) and

(x,y) in Q(T). Since Q satisfies C, there exists a homomorphism / i from Q to

T . Since C implies p, T also satisfies p. If a node z labelled a has in T must

have a descendant w labelled b, then w must be z's pc child. Hence,h can be

extended to a homomorphism from Q' to T without any change. So Q Qc Q'•

2. Chase rule two is applied only to pc edges in (chased) Q. Let s be the S C

a : b I I and Q' be the result of applying s to Q. Q' is Q wi th one extra pc

child u labelled / for some node v labelled a in Q. Clearly Q' C Q because 3

a containment mapping g from Q to Q'. So Q' C c Q. Let T € SAT(C) and

(x,y) in Q (T) . Since Q satisfies C, there exists a homomorphism h from Q to

T . Since C implies s, T also satisfies s. Every node z labelled a in T must

. have a child w labelled I if z has a child labelled b. Hence, h can be extended

to a homomorphism from Q' to T by mapping it to w. So Q CQ Q'.

3. Chase rule three only applies to pc edges in (chased) Q. Let / be the F C

a :[I and Q' be the result of applying / to Q. Q' is Q wi th pc children

b\,...,bi labelled / merged to one node b labelled I for some node v labelled a

in Q. Clearly Q' C Q because 3 a containment mapping g from Q to Q'. So

Q' Qc Q- Let T G SAT(C) and (x,y) in Q(T). Since Q satisfies C , there

exists a homomorphism h from Q to T . Since C implies f, T also satisfies

/ . Every node z labelled a in T have only have a unique child w labelled

I. Hence, h can be extended to a homomorphism from Q' to T by replacing

26

h(h) = I,,h(bi) = I w i th h(b) = I. So Q CC Q'.

4. Chase rule four only applies to ad edges in (chased) Q. Let i be the IC a, c : J b

and Q' be the result of applying i to Q. Q' is Q wi th one extra node u

labelled b inserted between an ad edge (a, c). Clearly Q' C Q because there is

a containment mapping g from Q to Q'. So Q' CQ Q. Let T £ SAT(C) and

(x,y) in Q(T). Since Q satisfies C, there exists a homomorphism h from <5 to

T . Since C implies i, T also satisfies i. If every node z labelled a in T has

a path to w labelled c wi th length greater than 1, then one node / labelled b

must be present in this path. Hence, h can be extended to a homomorphism

from Q' to T by mapping u to /. So Q Qc Q'•

5. Chase rule five is applied only to ad edges in (chased) Q. Let c be the C C

a : b JJ. / and Q' be the result of applying c to Q. Q' is Q wi th one extra ad

child u labelled I for some node v labelled a in Q. Clearly Q' C Q because 3

a containment mapping g from Q to Q'. So Q ' Q. Let T £ SAT(C) and

(x,y) in Q(T). Since Q satisfies C , there exists a homomorphism /i from Q to

T . Since C implies c, T also satisfies c. Every node z labelled a in T must

have a descendant to labelled / if z has a descendant labelled wi th 6. Hence,

h can be extended to a homomorphism from Q ' to T by mapping u to w. So

Q c c Q'.

•

L e m m a 4.4 Ze£ A be a choiceless DTD. Q =SAT(A) Chasec{Q).

Proof Since S A T (C) contains S A T (A) , by Lemma 4.3 Lemma 4.4 holds. So we

prove the soundness of the chase. •

27

Lemma 4.5 Let A be a choiceless acyclic DTD, C be the set of ICs, PCs, SCs, FCs

and CCs implied by A, and Q be XPIA//-I 1> query satisfied with A. Chasec{Q) is

1-1 homomorphic to a subtree of a tree in SAT(A).

Proof Because Q is satisfiable wi th A and the chase is sound, Chasec(Q) is also sat­

isfiable wi th A ; hence there is a non-empty set of trees S G SAT(A) such that there

is a homomorphism from Chasec(Q) to each tree in S. Assume that ChaseciQ)

1-1 homomorphic to no subtree of a tree in S. This can only be the case if there is

always a pair of child nodes in Chasec(Q) which are mapped to a single node of a

tree in S. Let the child nodes be labelled b and have parent node labelled a. There

are three cases in Chasec(Q)'-

1. Node labelled a has two pc children labelled b: the F C constraint a I b must

not be implied by A . Otherwise, Chasec(Q) would have merged two b pc

children of a node. Then there must exist trees in S wi th unbounded number

of pc children labelled b of node a. Therefore there would be a subtree to

which Chasec(Q)is 1-1 homomorphic, a contradiction;

2. Node labelled a has one pc child labelled b and one ad child labelled b: the P C

a \ b must not be implied by A , otherwise ad(a,b) wi l l be chased to pc(a,b)

in Chasec(Q)- This means there are trees in S wi th an path from a-node to

b-node wi th path length greater than 1 and there would be a subtree to which

Chasec(Q) 1S 1"! homomorphic, a contradiction;

3. Node labelled a has two ad children labelled b: the only possible failure of

homomorphism is that in all trees in S, a node has an unique b node as its

descendant, which means there is a only one dtd path p from a to 6 and each

node in p has a unique child node in p, then chains of ICs and F C s would be

28

implied by this duplicate-free A . Thus by the end of chase procedure, the two

b nodes would have been merged by using ICs and F C s . Chasec{Q) is 1-1

homomorphic to some subtree of trees in S, a contradiction.

•

D e f i n i t i o n 4.6 (C o r e N o d e) Let Q be A-satisfiable, R C SAT (A), be the set

of trees with a subtree that Chasec{Q) is 1-1 homomorphic to. We call R the

satisfying set for Q. Each tree in R has a core subtree to which Chasec(Q) is 1-1

homomorphic, and each node in the core subtree is called a core node. Each node

which is not a core node is called a non — core node.

From the definition of Core Node, node in Chasec{Q) may be mapped to a

set of nodes X = x\, ...,Xi in t G R. A l l Xi G X are core nodes. In addition, every

node lying on the path from one core node x to another core node y is core node.

L e m m a 4.6 Let A be a choiceless acyclic DTD, C be the set of ICs, PCs, SCs,

FCs and CCs implied by A, and P and Q be XPf././/.[11 queries satisfied with A

and R C SAT(A) in which Chasec{Q) has 1-1 homomorphism to a subtree in each

tree in R. If P ^SAT(A) Q> for each node w in P, either w can be mapped to a core

node in every tree in R or w can be mapped to a non-core node in every tree in R.

Proof Since Q is satisfiable with A and chase is sound, Chasec(Q) is satisfiable

wi th A . Hence R ± 0 . Assume that P 5 S A T (A) Q but there are trees ti,t2 G R

such that node w in P can be mapped to only a core node in t\ and only to a

non-core node in t2. Let V — vi,...,vn be the set of core nodes to which w can

be mapped to in ti. B y the definition of core node and the property of R , each

node in V also appear in t2. According to our assumption, w can not map to any

29

subtree rooted at a node of V in t<i- Because A is context-free, we can replace each

Vi tree in t\ w i th the corresponding V{ tree in £2 and obtain tree t[which st i l l in set

R . However, w can not be mapped to any node in t[. Therefore P(t[) = 0 while

<5(£'1) 7^ 0 ; then P ^SAT(A) Q, is a contradiction. •

Lemma 4.7 Let C be the set of ICs, PCs, SCs, FCs and CCs implied by A , and P

and Q be X P l / . / A l II queries. P 2SAT(C) Q iff P 2 Chasec(Q).

Proof (If) Assume that P D Chasec{Q) , then P 2 S A T (C) Chasec(Q). From

Lemma 4.3, Q =SAT(C) Chasec{Q), hence P 2 S A T (C) Q-

(Only If) Assume that P 2sAT(C) Q, then for al l tree t G SAT(C), P{t) D

Q(t). Chasec(Q) is a quasi-instance which satisfies C and may contain ad edges.

We can extend Chasec(Q) to a tree instance t' as following: for each ad edge(x,

y), insert a node z in between, (label(z) never appear in A) ; and connect z wi th x

and y using pc edge. Obviously t' G SAT(C) because z does not involve in C and

the extended path x-z-y with' length 2 satisfies ad(x,y) obligation. So P(t') 2 Q{t').

From the chasing procedure defined in previous paragraph, there is a mapping from

Q to Chasec{Q). Hence there is a mapping from Q to t' and result(t') G Q{t').

Then result(t') G P(t') follows and there exists a mapping c from P to t'. Since z

nodes we added in t' never appear in Chasec(Q) and P, we can easily convert t'

back to Chasec(Q) by replacing every two pc edges connected by z node wi th an

ad edge, c is a mapping from P to node in Chasec(Q). Hence c is a containment

mapping from P to Chasec{Q), and therefore P D Chasec{Q). •

Theorem 4.1 Let A be choiceless acyclic DTD and C be the set of ICs, PCs, SCs,

FCs and CCs implied by A . For XPU>H'\ 1> queries P and Q, P ^SAT(A) Q iff

30

P ^SAT(C) Q-

Proof (If) Assume P 2SAT(C) Q, then P ^SAT(A) Q because SAT(C) D SAT (A).

(Only if) Assume P ^SAT(A) Q but P ~£SAT(C) Q- We wi l l derive a contra­

diction. B y Lemma 4.5, Chasec(Q) is 1-1 homomorphic to a subtree of a tree in

SAT(A). Let R C SAT (A) be the satisfying set for Q. Since P 2SAT(A) Q A N D

there is a homomorphism from Q to each T S R, there must be a homomorphism

from P to each T £ R.

If P ^>SAT(C) Q> by Lemma 4.7, there is no containment mapping from P to

C hasec (Q)- It must be the following two cases (See Figure 4.2) (a) single path

in P fail to map to any path in Chasec (Q) (b) each path in P can map but for some

node w which is common ancestor of node u and v, two mapped paths for u and v

in Chasec(Q) c a n n ° t be joint on w.

Case (a) There is a node x in P wi th parent y such that y is mapping to a node in

Chasec(Q) but no mapping from x to any node in C hasec (Q)- So in any T G R,x

can never be mapped to a core node while y can always be mapped to a core node u.

Because P ^SAT(A) QI by Lemma 4.6, x can always be mapped to a non-core node

v in every T G R. Since both P and Chasec(Q) may contain ad edges, there are

two possibilities: (1) y is a pc child of x in P. Since v is non-core node and x cannot

map to a core node, A cannot imply the S C label(u) : bi J, label(v), where bi is the

labels of a core child of u. So there must be a tree U £ SAT(A) which has node

w wi th label(u) and child labelled wi th bi but no child wi th label(v). Bu t we can

replace the non-core child subtrees of u by the non-core child subtrees of w and st i l l

have a tree T' e R. Node x cannot map to any non-core node in T ' , a contradiction.

(2) y is an ad child of x in P. Similar as case (1), v is non-core node and x cannot

31

map to a core node, A cannot imply neither the S C label(u) : bj J, label(v) where

bj is the label of core child of u, nor the C C label(u) : bk JJ- label(v) where bj is the

label of core descendant of u. So there must be a tree U G SAT(A) which has node

w wi th label(u) and descendant labelled wi th bj but no descendant wi th label(v).

Bu t we can replace the non-core child subtrees of u by the non-core child subtrees

of w and st i l l have a tree T" G R. Node x cannot map to any non-core node in T ' ,

a contradiction.

Case(b) Let wn be the common ancestor of u and v that is closest to the root

Figure 4.2: Theorem 4.1 Proof - Case a

in P such that the path from root to u v ia wn maps to a path in Chasec(Q) us­

ing embedding function f\ and the path from root to v v ia wn maps to a path in

Chasec(Q) using embedding function h but f\(w) ^ f2(w)(See Figure 4.3). Since

Chasec(Q) has a single root, node wn caii not be root itself. This means the parent

of wn is mapped to the same node WQ in Chasec(Q) by / i and fc and WQ has a pair

32

of children wi th the same label as wn. There are two possibilities:

1. wn is a pc child of wo. Hence A cannot imply the FC : label(wo) J, label(wn),

this means WQ can have unbounded number of pc children wi th label(wn).

Let T be the smallest tree in set R such that the node in T corresponding

to WQ in Chasec(Q) has only two child nodes wi th label(wn). So there is no

homomorphism from P to T , a contradiction.

2. wn is an ad child of WQ. Let the subpath P ' from wo to wn in P be wo, Wi, wn.

Hence A cannot imply y has an unique w descendant by the chain of ICs and

F C s from WQ to wn, i.e. IC : label(wi),label(wi+2) :\ label(wi+\) (0 ^ i 4,

n — 2) and FC : label(wi) J. label(wi+\) (0 < i ^ n — 1). Also A cannot

imply the PC : label(wo) \ label(wn) and the FC : label(wo) [label(wn).

These means WQ may have unbounded number of descendants wi th label wn.

Let T be the smallest tree in R such the node in T corresponding to u>o in

Chasec(Q) has two distinct paths to two nodes wi th label(wn).So there is no

homomorphism from P to T , a contradiction.

•

B y Lemma 4.7 and Theorem 4.1, we drive the following:

Let A be a choiceless acyclic D T D and C be the set of ICs, P C s , SCs, F C s and

C C s constraints implied by A . For XPEV'HA 1> queries P and Q, P 2SAT(A) Q iff

P 2 Chasec (Q).

4.3 Query Answering Using Views Under DTD

We first introduce several useful definitions.

33

/ w° \ / w 0 \
/ ' \

7 W0 \

/ W„ W„ \
/ ' » \ I I \ \ 1 / f\ • \ | / WD Wn \

/ u V \ 1 U V \ / U V \

ChasectQ) p T

Figure 4.3: Theorem 4.1 Proof - Case b

D e f i n i t i o n 4.7 (S o u n d R e w r i t e w . r . t . D T D) We say that Q is rewritable us­

ing V w.r.t. DTD Aif3E\Vt£ SAT(A) : E o V{t) C Q(t) and E is said to be a

sound rewrite of Q using V w.r.t. A . (Note E can not be a null expression which

means 3t e SAT(A) s.t. EoV(t) ^0).

D e f i n i t i o n 4.8 (U s e f u l E m b e d d i n g w . r . t . D T D) An embedding f : N{Q) ~>

N(V) is said to be a useful embedding w.r.t. D T D A if f is a Useful Embedding

and in addition f satisfies the following constraints: Vu ^ dom(f): 3 a path from

label(dv) to label(u) in A.

L e m m a 4.8 Q is rewritable using V w.r.t. DTD A iff Q is rewritable using ChaseciV).

Proof

It follows from Lemma 4.4, V =SAT(A) Chasec(V). Hence, E oV =SAT(A)

E o Chasec{V). Q 2 S A T (A) E O V iff Q ^SAT(A) E O Chasec(V). E is a sound

rewrite of Q using V w.r.t. A . •

T h e o r e m 4.2 Q is rewritable using V w.r.t. DTD A iff there exists a useful em­

bedding f : Q ~> ChaseciV) w.r.t. A.

34

Proof

(Only if) B y Lemma 4.8, Q is rewritable using V w.r.t. A iff Q is rewritable

using Chasec(V). Theorem 3.1 st i l l holds here. Hence, there must exist a useful

embedding from Q to Chasec(V).

(If): Let / : ChaseciV) be a useful embedding w.r.t. A . We construct

E and extend f as follows:

V x £ Q s.t. x G dom(f) and 3y s.t. edge(x,y) G Q and y £ dom(f). Let Ty denote

the subtree rooted at y. Do the following: add a copy T'y of Ty as a child subtree

of dv and define for every node z G Ty,f(z) = z' where z' is the corresponding

node in T'y. If (x,y) is a pc(ad) edge, then (dv,y') is a pc(ad) edge. E contains

all such Tys. The extended / is the required homomorphism because V x defined in

the useful embedding is defined in / and V x N O T defined in the useful embedding,

f(x) is its image in the corresponding Ty. f is a valid homomorphism function from

Q —> E o Chasec(V). E o ChaseciV) is satisfiable wi th A . Therefore it is a sound

rewrite of Q using V. •

W h e n acyclic dtd is present, there is an important property that there are no

two nodes on any path wi th a duplicated tag. Lemma 4.9 is based on this intuition.

Lemma 4.9 There exists at most one maximal sound rewrite of Q using V w.r.t.

acyclic DTD A.

Proof Assume that there are two distinct maximal rewrite E\ and E2 which derived

from two useful embedding f\ and f2, Then there must exist at least one node

qi G dom(fi) — dom(f2). Since in acyclic D T D there is no repeated tags on any

root to leaf path in Q and V . It is obvious that C A T is unique. Hence, qi lying

on the branching above C A T in Q. Let /(<&) is defined in f\ but not defined in f2.

35

Function: get-IC(src,des)

Input: DTD nodes src, des
Output: return a set of DTD nodes A such that Va G A (IC) src, des :J a.

Check whether IC between src and des has been computed already. If so, return pre-saved re­
sult;
For each node n {

1. block all paths connected A;

2. check whether there is a path from src to des;

3. If it is not, add n to the list A; }

Store the result and return A;

Figure 4.4: F inding IC from D T D

Then there are two cases: \)f(qi) £ Dv: f2 w i l l not be a sound embedding because

tag(qi) can not appear twice on Dv, a contradiction; 2) f(qi) ^ Dv: according to

the definition of useful embedding, the whole branching qi lying on must be defined

in f\, then f2 can not be a maximal rewrite, a contradiction. Therefore, neither of

these two cases can occurs. Hence, it is impossible to exist two distinct maximal

rewrites. •

4.4 Algorithms and Time Complexity

In order to chase on view, we need to find those five types of constraints from D T D .

Obviously inferring P C , F C , S C can be done in P T I M E because they only involves

parent-child relationship corresponding to one production in D T D . However, the

cost of inferring ICs and C C s are not t r ivial . To find these two constraints, we use

the P T I M E algorithms shown in Figure 4.4 and 4.5, which use depth-first search in

D T D graph.

Therefore, the time complexity to get each of five types of dtd constraints

36

Function: get-CC(src, des)

Input: DTD node src, des, and all the other DTD node
Output: return a set of DTD nodes A such that Va 6 A: (CC)src, des Q a.

Check whether CC between src and des has been computed already. If so, return pre-saved re­
sult;
For each node n, which src is its ancestor and des is its cousin{

1. Find all of n's guaranteed ancestors g and block all paths connected g;

2. Check whether there is a path from src to des;

3. If it is not, add n to the list; }

Store the result and return A.

Figure 4.5: F inding C C from D T D

are at most 0(N2) where N is the number of dtd elements in A because we use

graph depth first search. To improve the efficiency, we save the computation result

of each type of constraints so that we wi l l not repeat the computation of same

constraint in the chase procedure when the premise is the same. We next briefly

introduce an efficient implementation of the chase in Figure 4.6, which only scans

the (Chased) query tree three times. In each scan, we always start from the edges

on the distinguished path of the tree.

The Chase Procedure would take time 0((V + N)2 * N2), where V is the

number of nodes in query and N is the number of elements in A . This is because

finding each constraints from A takes 0(N2) at most; updating query tree each

time takes linear time and the number of query node would increase to (V+2N) in

the worst case when IC, C C , S C are involved.

F ina l ly we briefly introduce an algorithm to compute useful embedding. The

whole algorithm is very similar to the one we present in previous chapter when

schema is not present. However, we can further simplify it based on the result of

the uniqueness of the rewriting shown in Lemma 4.9. Here are several major modi-

37

Procedure: FastChase(Query Q , D T D A)

Input: Query Q and D T D A
Output: Chasec(Q)-

For each ad edge e in Q connected two nodes a and b{

1. If get-PC(a,b, A) is true, update e as pc edge;

2. Else If list L = get-IC(a,b, A) is not empty, insert each node c in L between a and b in order and
preserve pc, ad obligation as implied by A ;

3. Update Q; }

For each edge e in Q connected two nodes a and b{

1. If e is an ad edge and list B = get-CC(a,b, A) is not empty, add each node in B as a ad child of a;

2. If e is a pc edge and list C= get-PC(a,b, A) , get all other children of a which has same tag name as
a in list C {

(a) If C is not empty, merge all nodes in C with a;

(b) Update Q; }

}

For each pc edge e in Q connected two nodes a and b{

1. List D =get-SC(a,b, A);

2. If D is not empty {

(a) For each node c in D, add c as pc child of a if c is not already present in Q and also keep SC
chasing on c until saturation;

Update Q; } (b)

}
Return Q;

Figure 4.6: Apply Chase on Q

38

fications in the algorithm:

• V would be replaced by ChaseciV), we use D'v to present the distinguished

path of ChaseciV);

• In the function map-Dpath and map-To-Dv, we don't need to keep can­

didate list anymore. The mapping would be unique as shown in Lemma 4.9

which implies we intend to map some node n in Q, and if there is any node

m on D'v wi th the same tag, then m is the only candidate to be mapped;

otherwise the mapping fails.

• One extra step need to be done: for any node 1 in Q which is not mapped to

V , we need to check whether there is a path from tag(l) to tag(dy) in A. If it

is not, the mapping fails.

The time complexity of compute the useful embedding and rewrite in this

case would be P T I M E . We know map-Subtree takes P T I M E , and both map-Dpath

and map-To-Dv also take O (V) where V is the number of query nodes. Since the

useful embedding is unique, we only need one iteration to go through the query

tree.

39

Chapter 5

Experimental Results

To study the effectiveness of our work, we systematically ran a range of experiments

to measure the impact of various parameters. We focus on testing the schema aware

case. In addition to measure savings and overhead, we also measure the scalability

when executed over large collections of views and test the performance when the

query size varies.

We ran our experiments on the X M a r k benchmark dataset[19]. We con­

structed the document of size 100MB using the I B M XMLGenerator[9] . We used

Wutka DTDparser[10] to parse the D T D , which is needed for static analysis of

schema. For query evaluation, we use an XQuery engine X Q E n g i n e f l l] for conve­

nience and flexibility. Bo th tools are open sources developed in Java. We imple­

mented our tests in Java as well.

Setup: We ran our experiments on a spare workstation sunning SunOS version

5.9 wi th 8 processors each have a speed of 900MHz and 32GB of R A M . A l l values

reported are the average of 5 trials after dropping the maximum and minimum,

observed during different workloads.

40

• Simple Selection Query
QI: for $a in doc("auction.xml")/site[//person][//quantity]//itemref
where $a/@item >= "item20"
return <result> {$a} </result>

VI: < view> {doc(" auction.xml")/site[//profile] / / open-auction [privacy]//itemref} </view>

R l : <result> {for $a in doc("view.xml")/view/itemref[@item>= "item20"] return $a} <result>

VI': <view>{doc(" auction.xml")/site[//person/@id][//privacy]//itemref/@item}</view>

• Complex Selection Query
Q2: for $p in doc("auction.xml")//people/person[//profile[gender/text()="female"][interest]]//address
where $p/country/text()= "United States" and $p/province/text() = "Maryland"
return <result> {$p/city}</result>
V2:<view>{doc(" auction.xml")//person[[//profile/gender/text()= "fe-
male"][profile/interest][//country/text() = "United States"]] /address }</view>

R2: for $p' in doc("view.xml")/view/address where Sp'/province/text() = "Maryland"
return <result>$p'/city</result>

V2': doc(" auction. xml")//person[[//profile/gender/text()='female'] [//country/text ()= "United
Sates"]] / address

Figure 5.1: Selection Queries and Views on auction.dtd

5.1 Q u e r y S e t

We run the tests over the queries and views listed in Figure 5.1 and Figure 5.2.

XQueries are labelled wi th ini t ia l " Q " , useful X p a t h views are labelled wi th ini t ia l

" V " . These views are used to test saving ratio while their primed variants are useless

views which are used to test overhead ratio. A l l rewritings using given views are

equivalent to the original query result. We give the formal definition of saving and

overhead ratio in the next section.

Before we show the experimental results, we explain how to set up our ex­

periment to apply our technique of answering X P a t h queries using X P a t h views to

solve the problem of rewriting XQueries using X P a t h views by using Q3 and given

41

Simple Join Query
Q3: for $t in doc(" auction.xml")/site//closed_auctions/closed_auction[annotation] ,
$p in doc("auction.xml")//regions/europe[//description//text/bold]/item
where $t/itemref/@item=$p/@id and $t/price/text() >= "100"
return <result> $t/itemref</result>
V3a: <view>{doc("auction.xml")//closed-auction[price/text() >= " 100"]//itemref }</view>
V3b: <view> {doc("auction.xml")//europe[//description//bold]//item} </view>
R3: for $t' in doc("view3a.xml")/view/iternref,
$p' in doc("view3b.xml")/view/item
where St'/Oitem = $p'/@id
return <result>$t'</result>
V3': doc("auction.xml")/europe[//text]//item

Complex Join Query
Q4: for $p in doc("auction.xml")/site/people/person,
$t in doc("auction.xml")/site/closed_auctions[//annotation],
$t2 in doc("auction.xml")/site/regions/europe/item
where $p/@id = $t/closed.auction/buyer/@person and $t/closed.auction/happiness/text() >="0.6"
and $t/closed_auction/itemref/@item = $t2/@id
return <result> {$t2/name/text()} {$p/name/text()}
</result>
V4a: <view>{doc("auction.xml") //person[profile/gender/text() = "female"]}</view>
V4b: <view>{doc("auction.xml")//closed_auction}</view>
V4c: <view>{doc("auction.xml")/europe/item }</item>
R4: for $p in doc("view4a.xml")/view/person,
$t in doc("view4b.xml")/view/closed_auction,
$t2 in doc("view4c.xmP)/view/item
where $p/@id = $t/buyer/@person and $t/itemref/@item = $t2/@id and $t/happiness/text()
>="0.6"
return <result> {$t2/name/text()} {$p/name/text()} </result>
V4c': doc(" auction.xml")/regions[//text]/item

Group By Query
Q5: for $p in doc("auction.xml")/site/people/person[//age/text()>="40"]
let $1 :=
for $i in doc(" auction.xml")/site/open_auctions[//privacy]/open_auction where
$p/profile/@income > 5000 * $i/initial/text() return $i- return <items>{$l//itemref}</items>
<person> {$p/name} < / person>
V5a: <view>{doc("auction.xml") //person[//age/text() >= "40"]}</view>
V5b: <view>{doc("auction.xml")/site[//privacy]//open_auction}</view>
R5: for $p in doc("view5a.xml")//person
let $1 :=
for $i in doc("view5b.xml")//open_auction
where $p/profue/@income > 5000 * $i/initial/text()
return $i
return <items>{$l//itemref}</items>
<person > { $p/name} </person>
V5b': doc("auction.xml")/site//person[//age/text() <= "35"]

Figure 5.2: Join/Group By Queries and Views on auction.dtd

42

views in Figure 5.2.

Step 1: Given a query in XQuery expression and a set of views in X P a t h

expression, we build a generalized tree pa t te rn(GTP) [4] for each independent vari­

ables declared in F O R or L E T clauses in Q. A variable is "independent" when its

declaration is directly related wi th document. In Qz, both $t and $p are independent

variables. So we bui ld two separate trees, one for $t and the other for $p.

Step 2: Mark the interest nodes and return nodes in each tree. We capture

all nodes appearing in W H E R E and R E T U R N clauses associated wi th each inde­

pendent variable in its G T P . Return nodes and those involved in join predicate must

be reachable from the distinguished node of the useful view. Figure 5.3 shows two

trees Qt and Qp constructed for Q3.

Step 3: Each G T P can be represented as a T P Q which is equivalent to a

X P a t h expression Q ' . We test Q ' against a single view each time. If the view is

usable, we search the useful embedding and compute the rewriting. In the example,

V 3 a is usable for Qt and V3b is usable for Qp. The rewritings are the following:

• Rt: doc("view3a.xml")/view/itemref

• Rq: doc("view3b.xml") /view/i tem

Step 4: After we obtain rewriting, we wi l l replace the declarations for each

variable wi th the corresponding rewriting and reassemble the query based on the

structure in original query to give the final rewriting.

43

Qt /site

closed auctions

closed auction

Qp

annotation itemref

text()>= "100"

@item

//regions

curope

item

description @id

text

bold

JOIN

VBC

R E T U R N

Figure 5.3: G T P s built for Q3

Here is the final rewriting for Q3 using V3a and V3b:

for $t' in doc("view3a.xml")/view/itemref,

$p' in doc("view3b.xml")/view/item

where $t'/@item = $p'/@id

return <result>$t'</result>

44

5.2 Savings and Overhead on Queries Answering using

Views

Let eq be the time taken to evaluate the original query over the document. Let c c be

the time taken to determine whether a given view isuseful for rewriting the query

and let Cj. be the time to compute the rewrite using the useful views and let e r be

the time it takes to evaluate the rewrites over the materialized view documents. The

saving ratio SQ obtained by using the usability check procedure on useful views is

defined as SQ = c s + c r + e r _ The overhead ratio OQ obtained by using the usability

check procedure on useless views is defined as OQ = Cc+ei. Intuitively, the closer to

0 the saving ratio is the better and the closer to 1 the overhead ratio is the better.

5.2.1 Savings on useful views

Figure 5.4 shows the saving ratio wi th the same document size for the five queries

Q1-Q5 using their corresponding useful views. We expect the saving ratio to be close

to 0 because the computation time of rewriting is very small. If the document size

of each view is less than 1/3 of the size of the original database then the evaluation

of the query rewriting is much faster than original query evaluation. This is exactly

what happened in the experiments.

5.2.2 Overheads on useless views

Figure 5.5 shows the overhead ratio wi th same document size for the five queries

Q1-Q5 using their corresponding useless views. We expect the overhead ratio to

be very close to 1 because the computation time of checking embedding is very

small. The result shows the overhead is a negligible fraction compare to the query

45

Usable Views - auction.dtd

•0.1.2

0.10 -

1 0.08
CC.
ra 0.06 • c
1 0.04-

0.02 -

0.00-

m Saving

QAV1 QAV2 QAV3 QAV4 QAV5

Query & Views

Figure 5.4: Saving Rat io - Useful Views

evaluation time.

5.2.3 Various number of views

Now we test how the performance is when the number of views varies from 1 to 100

and none of view is useful. Figure 5.6 shows the overhead ratio of Q1-Q3 when the

number of useless views varies from 1 to 100.

Figure 5.7 shows the saving ratio of Q3-Q5 when the number of views varies

from 5 to 100. Each of Q3-Q5 needs multiple views to rewrite the query. We design

this test in such a way that there is only one useful view and the others are all

useless views. In the rewriting we access original database if no view can be used

to extract the required information.

46

1.008

0 1.006

| 1.004

| 1.002]

o 1.000
>

0 0.998

0.996

Unusable Views - auction.dtd

JUKI

Q-V'1 Q-V'2 Q-V'3 Q-V'4

Query Q and Views V

i Overhead

Q-V'5

Figure 5.5: Overhead Ratio - Useless Views

5.2.4 Varying query size

Figure 5.8 and Figure 5.9 show the saving ratio and the overhead ratio of a simple

join query Q when the query size varies from 5 to 50. We increase the query size

by adding more query nodes and value based constraints. When we test saving,

the exact number of useful views are provided. When we test overhead, the exact

number of useless views are given. We found both ratio did not vary much as the

query sizes changed. This may result from the fact that the more complex the

query is, the more query evaluation time is required in general although the rewrite

computation and evaluation time or the embedding checking time would take longer,

the ratio would remain at the same level.

47

Overhead Ratio vs. Various Number of Views

1.25 T

Figure 5.6: Overhead Rat io - Various Number of Useless Views

Saving Ratio vs. Various Number of Views

0.8 -,

0.7

I 0.3 -
in

0.2

0.1

0 5 10 20 40 60 80 100
Number of Views

Figure 5.7: Saving Rat io - Various Number of Useless Views

48

Saving Ratio vs. Various Query Size

0.16
0.14

o 0.12
% 0.1 oc
in 0.08
> 0.06
°> 0.04

0,02
0

10 20 30 40
Number of Query Predicates

I
50

Figure 5.8: Saving Ratio - Various Query Size

Overhead Ratio vs Various Query Size

1.008 i

1.007
1 1.006 -1
is 1.005
| 1.004
X 1.003
o

1.002 \
1.001

10 20 30 AO

Number of Query Predicates

i
t
t
/

i

\
50

Figure 5.9: Overhead Rat io - Various Query Size

49

Chapter 6

Related Work

X P a t h query containment is close related to the use of materialized views in an­

swering query. This relation provides a necessary condition for designing and test­

ing sound algorithm for query rewriting using views. There has been much work

on query containment and minimization of various X P a t h fragments [1, 5, 14, 15].

Containment checking of X P a t h queries, in the absence of constraints, containment

is in P T I M E for XPV<//A 1> as shown in [1], while it is proven to be CONP-complete

for XP{H'\-1'*} in [14]. Containment under constraints is shown to be undecidable in

[5], when X P ^ / ' l 1'*} is allowed along wi th disjunction, variable binding and equal­

i ty testing, and the bounded/unbounded simple X P a t h integrity constraints(SXICs)

implied by D T D . A comprehensive study of the complexity of containment of X P a t h

fragments under D T D constraints are given in [15]. The most relevant work is [18],

which shows that containment is decidable for XPVI'W'*} when the constraints

are D T D s . The same paper also identifies XP^ D for which containment under

duplicate-free D T D s can be decided in P T I M E . In our work, we consider a richer

subset of X P a t h queries, including descendant edges under choice-free acyclic D T D s

50

and provide P T I M E algorithm to decide the containment problem.

Query answering using materialized views for X M L is recently studied in [2],

where they propose a framework for using X P a t h views in X M L query processing in

the absence of schema. However, there are important differences in the contribution

of the two papers, as we explain in detail below.

The major contribution of [2] was presenting an X P a t h matching algorithm

to determine certain class of views which can be used to answer query containing

X P a t h expression and construct compensation expressions to be applied on views

to produce the query result without schema knowledge. They explored a class of

materialized X P a t h views, which may contain a combination of X M L fragments,

typed data values, full paths and node references. This means that the users may

access to the original database when necessary and the goal is to obtain equivalent

results between evaluating query and applying a compensation expression on views.

B y contrast, we target different applications where the original database is no longer

available to the users and it is replaced by as a set of materialized X P a t h views.

Therefore our effort is to produce maximally contained results instead of equivalent

results, depending on the given views. More importantly, we classify a class of

X P a t h fragment and D T D s for which we provide an efficient algorithm to decide

whether a view is useful for query rewriting and compute the rewrite when it is

possible under D T D constraints. In the experiment, we also illustrate the possible

use of our work to answer XQueries. To the best of our knowledge, the problem we

study here is not addressed in the literature.

51

Chapter 7

Conclusion

While there has been considerable work on query answering using views in relational

world, the same problem has not been extensively studied for X M L . We developed a

method for testing the usability of X P a t h view for answering X P a t h / X q u e r y queries.

We study this problem both wi th and without a schema and identify cases in which

it is E X P T I M E and when it is P T I M E . In the latter case, we developed efficient al­

gorithms based on a chase procedure and containment mapping. We complemented

our analytical results wi th an extensive set of experiments.

Our study in the presence of database schema is confined to schema without

cycles and choices. In the presence of either of them, the reasoning becomes consid­

erably more complex. It would be interesting to determine whether the techniques

proposed here can be extended to solve this problem efficiently when there are cy­

cles and/or choices in the database schema. The other direction is to consider more

complex X P a t h queries invloving join, wildcards, etc.

52

Bibliography

Sihem Amer-Yahia , SungRan Cho, Laks V . S. Lakshmanan, and Divesh Sri-
vastava. Minimiza t ion of tree pattern queries. In ACM SIGMOD Conference,
pages 497-508, 2001.

Andrey Ba lmin , Fatma Ozcan, K e v i n S. Beyer, Roberta Cochrane, and Hamid
Pirahesh. A framework for using materialized xpath views in x m l query process­
ing. In VLDB, pages 64-71, 2004.

Surajit Chaudhuri , Rav i Krishnamurthy, Spyros Potamianos, and Kyuseok
Shim. Opt imizing queries wi th materialized views. In ICDE, 1995.

Zhimin Chen, H . V . Jagadish, Laks V . S. Lakshmanan, and Stelios Papari-
zos. From tree patterns to generalized tree patterns: O n efficient evaluation of
xquery. In VLDB, 2003.

A l i n Deutsch and V a l Tannen. Containment and integrity constraints for xpath.
In KRDB, 2001.

Jonathan Goldstein and Per ke Larson. Opt imizing queries using materialized
views: A practical, scalable solution. In SIGMOD Conference, 2001.

A l o n Y . Halvy. Answering queries using views: A survey. In Journal VLDB J.
Volume 10 Number 4, pages 270-294, 2001.

A l o n Y . Halvy, Zachary Ives, Peter Mork , and Ignor Tatarinov. Piazza: Data
management infrastructure for sematic web applications. In WWW, pages 556-
567, 2003.

I B M . http: / / www. alphaworks.ibm.com/tech/xmlgenertor.

Wutka Consulting Inc. http:/ /www.wutka.com/dtdparser.html.

Howard Ka t z . http://xqengine.sourceforge.net.

53

http://www.wutka.com/dtdparser.html
http://xqengine.sourceforge.net

[12] Laks V . S. Lakshmanan, Ganesh Ramesh, H u i Wang, and Zheng Zhao. O n
testing satisfiability of tree pattern queries. In VLDB, pages 120-131, 2004.

[13] A l o n Y . Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. In PODS, 1995.

[14] Gerome M i k l a u and Dan Suciu. Containment and equivalence for an xpath
fragment. In PODS, pages 65-76, 2002.

[15] Frank Neven and Thomas Schwentick. X p a t h containment in the presence of
disjuction, dtds, and variables. In ICDT, pages 315-329, 2003.

[16] W 3 C . X M L Pa th Language: X P a t h Version 1.0.
h t tp : / /www.w3.o rg /TR/xpa th .

[17] W 3 C . Xquery 1.0: A n x m l query language. h t tp : / /www.w3.org /TR/xquery .

[18] Peter Wood . Containment for xpath fragments under dtd constraints. In ICDT,
pages 300-314, 2003.

[19] X M a r k . X m a r k an x m l benchmark project, h t tp : / /monetdb.cwi .nl /xml.

[20] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and
Monica Urata . Answering complex sql queries using automatic summary tables.
In SIGMOD Conference, 2000.

54

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery
http://monetdb.cwi.nl/xml

