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Abstract 

The problem of answering query using views is to find efficient methods of answering 

a query using a set of previously materialized views over the database, rather than 

accessing the database. As X M L becomes the standard of data representation and 

exchange over the internet, the problem has recently drawn more attentions because 

of its relevance to a wide varieties of X M L data management problems, there is a 

pressing needs to develop more techniques to solve it for X M L data effectively and 

efficiently. 

We study a class of X P a t h queries and materialized views which may contain 

child, descendant axis and predicates. We first describe an algorithm to find the 

maximally-contained rewritings in the absence of database schema. We then present 

an efficient algorithm to search the maximally-contained rewriting under choice-free 

acyclic schema and prove the uniqueness of the maximally-contained rewriting. F i 

nally we show its performance experimentally by extending our algorithm to answer 

queries in XQuery expression. 
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Chapter 1 

Introduction 

The problem of answering query using views is to find efficient methods of answering 

a query using a set of previously materialized views over the database, rather than 

accessing the database [7], This problem is relevant to many data management 

problems. One of the major context where the problem of answering queries using 

views is considered is data integration and data warehouse design where the efforts 

focus on searching a maximally-contained rewriting, the best results possible. 

Da ta integration systems combine data residing at a multitude of autonomous 

data sources, and provide a uniform query interface, called global schema, which can 

be queried by the user. In the design of a data integration system, we need to make a 

basic decision which is related to the problem of how to specify the relation between 

the sources and the global schema. There are basically two approaches for this 

problem. The first approach, called global-as view ( G A V ) , requires that the global 

schema is expressed in terms of the data sources. This means that every concept 

of the global schema is associated wi th a view over the data sources, so that its 

meaning is specified in terms of the data residing at the sources. In the second 

1 



approach, called local-as-view ( L A V ) , the global schema is specified independently 

from the sources, and the relationships between the global schema and the sources 

are established by defining every source as a view over the global schema. In the 

area of data warehouse design we need to choose a set of materialized views in the 

warehouse to improve the query performance. In this case, the most important step 

is to select a set of views to materialize that answers all the queries of interest while 

minimizing the total query evaluation and view maintenance cost. When a query is 

posed, it is evaluated locally, using the materialized views. Accessing the original 

data sources are avoided mainly because either the original sources are not accessible 

any more or it costs too much. Bo th problems are translated into the problem of 

query rewriting using views in which we often need to settle for a contained result 

which is a subset of the original query result rather than an equivalent one because 

the given materialized views may not cover the entire database. 

The problem of rewriting queries using materialized views has been exten

sively studied in the relational world. Many algorithms were developed for a specific 

area of applications [3, 6, 13, 20, 7] such.as the bucket algorithm, the inverse-rules 

algorithm, the M i n i C o n algorithm, etc. In contrast, this problem for X M L data 

management has not been fully explored. Some of the existing work is outlined in 

the Chapter 6 Related Work. X M L has become the standard for data representation 

and exchange over Internet. W i t h W 3 C ' s recommendation, XQuery(17] emerges as 

the standard query language for X M L and XPath[16] is a language for navigating 

X M L documents which is embedded in XQuery. B o t h these languages are based on 

a basic paradigm of finding bindings of variables by matching tree patterns against 

a database. Similar to relational databases, the problem of finding a rewriting of 

X Q u e r y / X P a t h queries using a set of X P a t h views is relevant to a wide varieties of 
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X M L data management problems. Besides those two major applications we men

tioned above, this problem is also related to semantic web applications as illustrated 

in [8] when the query is posed over the schema of source S and we wish to reformu

late it over the schema of target T which is the schema neighbor of S. The problem 

of refomulating Q is known as answering queries using views. Therefore there is a 

pressing need to develop better techniques to solve the problem of rewriting queries 

using materialized views effectively and efficiently. 

In this thesis, we consider this problem for X P a t h expressions with/without 

a database schema. Informally, we define the problem as following. Suppose we 

are given a query Q, and a set of previously materialized view definitions V\,... ,Vn 

all expressed in X P a t h . Is it possible to answer query Q using only the answers to 

the views V\,..., Vn without accessing accessing the database? If so, how? When 

the database schema is given, the query and views are over the same schema. Cur

rently we concentrate on X P a t h expressions containing child, descendant axis and 

predicates. The specific contributions of this thesis are the following: 

• We propose an algorithm to check when a view is usable to answer a X P a t h 

query and find maximally-contained rewritings in the absence of schema. We 

show the lower bound of the time complexity is E X P T I M E . 

• We show that containment for XP{/,//'[ ^ can be decided in P T I M E under 

acyclic choice-free D T D s . 

• We describe a P T I M E algorithm to find the maximally-contained query rewrit

ing using views under acyclic choice-free D T D s . 

• We introduce an approach to answer an XQuery query using X P a t h views by 

extending our algorithm and present detailed experimental results to show the 
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performance. 

The rest of the thesis is organized as follows. In Chapter 2 we describe the 

class of X P a t h fragments and database schema we studied. We present our algo

r i thm in the absence of schema in Chapter 3. In Chapter 4, we prove that for tree 

pattern queries in XPVJM 1>, five types of necessary and sufficient constraints im

plied by choice-free, acyclic D T D can be used to decide query containment problem 

and extend to solve the problem of a query rewriting using views using a P T I M E 

algorithm. We provide experimental results in Chapter 5 where we illustrate how to 

use our algorithm to answer XQuery query using X P a t h views. Finally, we discuss 

related work in Chapter 6 and conclude in Chapter 7. 
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Chapter 2 

Background and Problem 

Studied 

2.1 XPath and Tree Pattern Queries 

A n X M L database is a finite rooted ordered tree T — (N,£,r,\), where A / repre

sents element nodes, £ represents parent-child relationship, A denotes the labelling 

function to assign a tag wi th each node, and r is the root. Associated wi th each 

node is a set of attribute-value pairs. In our work, we do not consider order any 

further. 

Tree pattern queries, introduced in [1], capture a useful fragment of X P a t h . 

A tree pattern query ( T P Q ) is a triple Q — (N,E,F), where (N,E) is a rooted 

tree, wi th nodes N labelled by variables, and wi th E = ECL) Ed consisting of two 

kinds of edges, called pc- (Ec) and ad-edges (Ed), corresponding to the child and 

descendant axes of X P a t h . A distinguished node in N (shown boxed in Figure 3.3) 

corresponds to the answer element. The path from root node to the distinguished 
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node is the distinguished path. F is a conjunction of tag constraints (TCs) , value-

based constraints ( V B C s ) , and node identity constraints (NICs). T C s are of the form 

$x.tag = t, where t is a tag name. V B C s include selection constraints $x.val relop c, 

$x.attr relop c, and join constraints $x.attr relop $y.attr', and $x.val relop $y.val, 

where relop G {=, ^ , >, <, >, <}, attr, a t t r ' are attributes, vai represents content, 

and c is a constant. NICs are $x idop $y where idop G {=!7^}- Q is join-free if 

it contains no join constraints and no NICs . We assume no disjunctions appear in 

V B C s and queries are join-free throughout the thesis wi th a few clearly identified 

exceptions. 

We denote the nodes of a query Q by N(Q) and the nodes of a view V by 

N(V) . The root nodes of Q and V w i l l be denoted by R(Q) and R(V) respectively. 

We use dQ and dy to denote the distinguished nodes of query Q and view V. The 

distinguished paths in Q and V are denoted by DQ and Dy (i.e. the paths in Q and 

V from R(Q) to dQ and R{V) to dy respectively). For any node x in Q or V, the 

tag name associated wi th that node wi l l be denoted by tag(x) and the value based 

constraints associated wi th that node wi l l be denoted by VBC(x). 

Answers for T P Q s are formalized using homomorphism. A homomorphism 

is a function h : query Q —> a tree T wi th the following properties: 

1. h(R(Q)) = h(R(T)); 

2. V x G Q,tag(x) = tag(h(x)); 

3. Var,y G Q, if (x,j/) is a pc edge in Q then (h(x),h(y)) must be a pc edge in T ; 

4. Va;,y G Q, if (a;,y) is an ad edge in Q then (h(x),h(y)) must be a path in T . 
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2.2 Materialized XPath Views 

We consider X P a t h views are in the class of copy semantics which implies that 

views store copies of answer elements. This implies that X P a t h views can be used 

to answer X P a t h queries wi th subsequence operations on the results of the view 

without navigating to the parent or ancestors. Since we consider join-free X P a t h 

query in our work, only a single view would be involved in rewriting if it is usable. 

For the ease of readability, we denote an X P a t h query and a view by Q and V 

respectively. 

2.3 Query Containment and Query Rewriting 

Query containment is a necessary condition for rewriting query using views. As 

proven in [14], for any wildcard-free X P a t h queries Q and Q', Q' C Q iff there 

is a containment mapping from Q —» Q'. A containment mapping is a function 

h : Q -> Q' wi th the following properties: (1) h(R(Q)) = h(R(Q'))\ (2) Vx e 

Q,tag(x) = tag(h(x)); (3) V:r ,y <E Q, if (x,y) is a pc a edge in Q then (h(x),h(y)) 

must be a pc edge in Q' ; (4) Va:,y 6 Q, if (x,y) is a ad edge in Q then (h(x),h(y)) 

must be a path in Q',which may include pc edges and/or ad edges. 

In our context, the correctness of the rewriting is verified by using query 

containment. We say that Q is rewritable using V if there exists an X P a t h expression 

E such that for every X M L database D, E o V(D) C Q(D) then E is said to be 

a sound rewrite of Q using V. In addition, our goal is to find maximal sound 

rewriting(s). A sound rewriting E of Q is said to be maximal if there has no E' 

such that for every X M L database D, Eo V(D) C E' o V(D). 
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2 .4 Schema and DTDs 

We are especially interested in studying the problem of rewriting query using views 

in the presence of schema. We abstract the schema of a database (in our work, we 

only consider D T D s ) as a graph wi th nodes corresponding to tags and edges labelled 

by one of the quantifiers '?, 1, *, + ' wi th their standard meaning of 'optional' , 'one', 

'zero or more', and 'one or more' respectively. A l l tags in D denotes set a. The 

set of trees satisfying D T D D is denoted S A T ( D ) . A X P a t h query Q is satisfiable 

if there is a tree T 6 SAT(D) such that Q(T) ^ 0 . Otherwise, Q is unsatisfiable. 

The satisfiability of T P Q s with/without schema is recently studied in [12]. Wi thout 

losing the generality, we assume that both query Q and view V are satisfiable wi th 

regard to D T D . 

D T D s provides constraints on the structure of X M L documents. Hence, 

while Q\ may not rewritable using Q2 in general, it may be the case that given a 

D T D D, Q is rewritable using V when both satisfy D, by applying a compensation 

expression E on V. For ease of exposition, we init ial ly focus on acyclic choice-free 

D T D s . If C is a set of constraints inferred by D T D , then SAT(C) denotes the set 

of trees in Ts which satisfy each constraint in C. 

Problem Statement: We formally define the problem of query answering using 

views (QAV) for X P a t h fragment, denoted XPU'/'/'[ ^ in our context, as follows: 

Given a query Q and a view V both expressed in X P a t h , check whether V is usable 

for answering Q. If so, find all maximally-contained rewriting(s) of Q using V, 

with/without choice-free acyclic D T D . 
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Chapter 3 

Query Answering Using Views 

without Schema 

In this chapter, we illustrate an algorithm for computing maximally-contained rewrit

ing^) in the absence of schema and prove the soundness of our algorithm. We 

firstly give some useful definitions, provide a detailed proof and then present the 

algorithms. A n example follows to show that time complexity can not be better 

than E X P T I M E . 

3.1 Sound Rewritings and Maximal Rewritings 

D e f i n i t i o n 3.1 ( E m b e d d i n g ) An embedding / : Q ~» V is a partial function 

from N(Q) to N(V) satisfying the following properties. 

1. If the first character in the XPath expressions Q and V are / then, f(R(Q)) = 

R(V). 

2. \fx £ Q, f is defined on x implies (tag(x) = tag(f(x)) A (VBC(f(x)) —> 
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VBC{x)). 

3. Vx,y G Q, f is defined on x and y, (x,y) is a pc edge in Q implies that 

(fix), f(y)) i s a Pc edge in V. 

4- Vx, y G Q, f is defined on x and y, (x, y) is an ad edge in Q implies that there 

exists a path from f(x) to f(y) in V which may include pc or ad edges. 

5. Vx G Q, then f is defined on every ancestor of x (upward closed). 

Definition 3.2 (Useful Embedding) / : Q ~» V is a useful embedding, pro

vided: 

1. f is an embedding; 

2. Vx e DQ, if f(x) is defined, f(x) 6 Dy; 

3. Let P — { i > o , i > i , . . . ,Vk} be any path in Q. 

(a) either f is defined on VQ, V \ , ..., v^; or 

(b) Vi : f(v{) is defined, f(vi) G Dy and suppose vi = max{i\f(vi) is defined 

}, then either f(v{) = dy or (yi,vi+i) is an ad edge in Q. 

Definition 3.3 ( C A T : Clipped Away Tree) Let the distinguished path in Q, Dy 

{vo,vi,... ,Vk}. A Clipped Away Tree (CAT) is a subtree of Q rooted at v{, s.t. f 

is not defined on Vi but is defined on 

Definition 3.4 (Extension of Useful Embedding) A useful embedding g is an 

extension of another useful embedding f if dom(f) C dom(g). 

In this chapter, we denote different rewritings (Eg o V) and (Ef o V ) as Rg 

and Rf. B o t h are the sound rewritings derived from the useful embeddings g and / 

respectively. 
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Theorem 3.1 Let Q,V G XPt/.//.[ 1} and Q is join-free. Q is rewritable using V 

iff there exists a useful embedding f : N(Q) ~* N(V). 

Proof (Only if) Let E o V be a sound rewrite of Q using V , i.e. VdatabaseT : 

E o y (T) C Q(T). Let h : AT(Q) -> N(E o V) be containment mapping, s.t. 

Vx G N(Q),h(x) G N(V) or /i(x) G N(E). We construct a useful embedding 

/ : N(Q) ~> JV(V) as follows: 

Vx G Q : fo(x) G AT(V), /(x) = /i(x). By the definition of containment mapping, f is 

a valid embedding from N(Q) ~> AT(V). / also satisfies all path constraints defined 

in useful embedding because: 

1. Vx G N(DQ) and x is defined in / : /(x) C N(DV) since / ( i 2 ( Q ) ) = f(R(V)) 

and / ( D Q ) = / J E O V -

2. Mark nodes of Q top down as follows. If x G Q and h(x) G V, mark the node 

as V, else mark it as E. The marks on all paths from R(Q) to any leaf node 

are of the form V*E*. Let x be the last node in any path marked V and y be 

the first node in the path marked E. Since E is a valid rewrite, 

(a) either x is mapped to dv, OR 

(b) (x,y) is an ad edge and x is mapped to a node in Dv 

(If) Let / : N(Q) ~> N(V) be a useful embedding. We construct E and 

extend f as follows: 

Vx G N(Q) s.t. x G dom(f) and By s.t. edge(x,y) G Q a n d y ^ dom(f). Let 

T y denote the subtree rooted at y. Do the following: add a copy T'y of Ty as a 

child subtree of dv and define for every node z G Ty,f(z) — z' where z' is the 

corresponding node in Ty. If (x, y) is a pc(ad) edge, then (dv,y') is a pc(ad) edge. E 
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contains al l such TyS. The extended / is the required containment mapping because 

V z defined in the useful embedding is defined in / and Vx N O T defined in the useful 

embedding, f(x) is its image in the corresponding Ty. f is a valid containment 

mapping from Q ^> E oV. Therefore, E o V is a sound rewriting of Q using V. • 

For efficiency concerns, we aim to generate only maximal rewrites. The 

following lemma makes this goal possible to achieve. We w i l l describe the algorithm 

in the next section. 

Lemma 3.1 Let a useful embedding g is an extension of f. Rf C Rg iff dom(f) C 

dom(g) and Vx 6 dom(g) — dom(f) \ 3y £ dom(g) and edge(x,y) £ Q: (x,y) is an 

ad edge. 

Proof (Only if) We know that g is an extension of / . Mark every node x of 

Q top down as follows: if x £ dom(f), mark the node as F; if x £ dom(g) — dom(f), 

mark the node as G\ else mark it as E. The marks on all paths from R(Q) to any 

leaf node are of the form F*G*E*. Let u be the last node in any path marked F, 

x be the first node in the path marked G, y be the last node in the path marked 

G and z be the first node in the path marked E. From the way we construct Rf 

and Rg, we know all subtree Tx w i l l be copied as T'x to attached to dv using pc(ad) 

edge in Rf if (u, x) is a pc(ad) edge; al l subtree Tz w i l l be copied as T'z to attached 

to dv in Rg using pc(ad) edge if (y, z) is a pc(ad) edge. Since Rf C Rg, there is a 

containment mapping h : N(Rg) —> N(Rf). z', the image of z in Rg is mapped to 

z", the image of z in Rf which is a node in T'x. Since pa th (d„ , z") in Rf through 

node x' must contain at least two edges. Therefore, edge (dv,z') in Rg must be ad 

edge. Thus the pre-image of u in Q, (y, z) must be an ad edge in Q. 

(If) We show Rf C Rg by constructing a containment mapping h : N(Rg) —> 

N(Rf) as follows: 
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1. Vx G N(V) of Rg, h is defined as its image in N(V) of Rf since Rf = Ef oV 

and Rg = Eg oV, 

2. Vu G Ty, a child subtree of Dy rooted at y in Rg, s.t. the pre-image of y in 

Q has an edge to node x and a; G dom(f): 3Ty\ a child subtree of Dy m Ef, 

Ty is isomorphic to Ty\ h(u) is defined as its image in T'y. Since we derive Rg 

and Rf from 3 and / , we know Vy whose pre-image ^ dom(g) : 3 edge (£, y)in 

<5 and t G dom(g) f l dom(f) : Ty is duplicated in i ? g and £Jf, 

3. VTy, a child subtree of Dy in Rg: the pre-image of y in Q has an edge to node 

x s.t. x G dom(g) — dom(f) : 3Ty, a subtree of Dy in i?y s.t. T y is isomorphic 

to Ty. y can be mapped to y' since (Dy,y) is an ad edge and (Dy,y') is a 

path m Rf. Vu £ T y , is defined as its image in Tv. 

• 

3.2 Algorithm and Time Complexity 

3.2.1 Algorithms 

We first introduce three help functions which are used to simplify the problem 

solving. The first and second function are quite straight forward so we just give a 

brief description rather than details. The third one is the most complicated so we 

would show it step by step. 

We next introduce the main procedure to find al l useful embedings from Q 

to V. 

We show the execution of the above algorithm using the example of F ig 

ure 3.3. For readability, whenever the tag constraint $x.tag = t appear in Q and V, 
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1. F u n c t i o n : m a p - D P a t h 

Input: The distinguished path of Q and V, Dv and DQ. Let JV(ZV) ={vo,v\,..., Vk} and N(DQ) 
={?o, 91, • • •, 9m}-
Output: A set of valid (partial) path mappings H from N(DQ) ~» N(Dy)-

Each h £ H will preserve path and tag obligations and for every unmapped node qi such 
that /i(<j;_i) is defined in h, if pc-edge(gi_i,qi) then h(</i_i)= f̂c(the distinguished node of V).It 
will also generate a candidate list Cqi for node q; s.t. Vj 6 Cqi if there exist a h' such that h(qj) = vj. 

2. F u n c t i o n : m a p - S u b t r e e 

Input: One node qi in Q and the other node Vj in V. 
Output: Return the total mapping if the tree rooted at qi in Q has a containment mapping to the 
tree rooted at VJ in V. Otherwise, it will return NULL. 

We implemented the PTIME containment mapping algorithm introduced in [1]. 

3. F u n c t i o n : m a p - T o - D v 

Input: One node q[ in Q and the other node Vj e Dy. 
Output: Return a set of all valid (partial) tree mappings T from the tree rooted at q\ in Q to the 
fragment of Dv starting from Vj. If no mapping exists, return NULL. 

As a valid tree mapping t € T, it will preserve path and tag obligations and for every un
mapped node q'j such that q'j_i is mapped, if pc-edge(g^_1 ,qj) then t(g^_1)= ut.(the distinguished 
node of V).It will also generate a candidate list Cq[ (root of the tree) for q'{ s.t. Vj S CgJ if there 
exist a t such that t(q'{) = Vj. 

Figure 3.1: Help Functions 
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Procedure: get-UsefulEmbeddings 

Let the distinguished path Dv ={vo,v\,... ,i>fc} and DQ ={qo,<Ji, • • • ,<?[}• Node not lying on the 
DQ and Dv denote q' and v' respectively. 

Input: Q and V. 
Output: All useful embeddings in set F. 

Assign unique id to each node in Q and V; 
H = map-Dpath(DQ, Dv); 
If H is empty, return NULL; 
For each node q, G D{Q) s.t. Cqi / 0 

1. For each child node q' of qi which is not on DQ 

(a) For each node v' in Cqi 
i. If pc(cj', <7i),get all pc-child nodes Vj of v' s.t. tag(uj)= tag(q') 

ii. If ad(<?', <j;),get all descendant node Vj of v' s.t. tag(i>j)= tag(q') 
iii. Save all VJS in set V 
iv. For each Vj in V 

A. For Vj is not in Dv, map-Subtree(qi, VJ){ 
B. If success, record the mapping and add Vj to Cqi. Break;} 
C. If VJ is in Dy, map-To-Dv(</;,i>j){ 
D. If success, record all mappings, and add Vj to Cq,.Break; 
E. If fail and pc(g', qi), prune v' from Cqi. 
F. If fail and ad(q', qi), add 0 to Cqi} 

Use all pre-stored candidate list of query node's mapping, output all useful embeddings. 

Figure 3.2: Algorithm to find rewriting of Q using V 
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we write t right next to $x in the figure. 

Q: /a J 

I 
b j : 

, $9 j $7 

m " 1 

• no 

/a 5 

Rl: 

/ r d 1 

R2: 

/ d 1 

- 1 \ 
n 

R3: 

/ 
d 1 

R4: 

<\X 
\\ 

R5: 

m 

\ 

R6: 

Figure 3.3: Schemaless Case Example 

1. C a l l function map-Dpath(Dg, Dy)- H contains only one mapping which is h 

= {1 -+ l ' , 2 -> 2', 3 - f 3'}. The candidate lists are C\ = l ' , C 2 = 2 ' , C 3 = 3'. 

The C A T is the subtree rooted at node 4. 

2. Node 1 in Q has no other children besides node 2, so 1 wi l l be skipped. 

3. Node 2 has one child 6 which is not on DQ. h(2)=2' and ad(2,6) so 6 may 
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map to two nodes in V , 4' and 7' which are descendants of node 2'. We always 

try to map the candidate which is not on Dy. B y doing that we may get the 

total mapping of the subtree rooted at 6. So we test map-Subtree(6, 7'), it 

fails. Then test map-To-Dv(6, 4'), we got three mappings: K2\ = {6 —> 4', 9 —> 

5', 7 -> 6'}; h22 = {6 -> 4', 9 -> 5'}; h23 = { 0 } . h23 implies the whole subtree 

rooted at 6 wi l l be attached to dv as part of rewrite. 

4. Node 3 has one child 10 which is not on DQ. h(3)=3' and ad(3,10). Same as 

the operation done on Node 2, we wi l l obtain two mappings hZ\ = {10 —> 6'}; 

hS2 = { 0 } . 

5. We generate al l the embedding using combinations of C A T , h2 and h3 which 

gives 6 different embeddings: 

• /x = {1 —• 1', 2 —> 2', 3 -» 3', 6 4', 9 -> 5', 7 -» 6', 10 - • 6'}. 

• f2 = {l _» l ' , 2 2',3 -> 3', 6 -+ 4', 9 -> 5', 10 6'}. 

• / 3 = { 1 - > 1 ,

I 2 - ^ 2 , , 3 ^ 3 , , 1 0 ^ 6 ' } . 

• / 4 = {1 - * 1', 2 —> 2', 3 -> 3', 6 4', 9 5', 7 ^ 6 ' } . 

• / 5 = {1 -> 1', 2 -> 2', 3 -» 3', 6 4', 9 -» 5'}. 

• / 6 = { l - > l / , 2 - > 2 ' , 3 - > 3 ' , 1 0 - 6 / } . 

6. Finally, we generate six rewritings R l , R2, . . . , R6 corresponding to six distinct 

useful embeddings fi, f2, fe in the following way: for each / j , mark those 

nodes which is not defined in / j i n Q, copy the branches and subtrees connected 

by those nodes and attach them to the distinguished node of V . Please refer 

to the figure for final results where the root node of each rewriting Ri, is the 

distinguished node of V. 
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As we mentioned before, our goal is to generate maximal rewrites for ef

ficiency. To achieve this, we improve the above algorithm to be as "greedy" as 

possible in searching the mappings based on the result of Lemma 3.1. In the func

tion Map-To-Dv(q, v'), we add prune procedure in the end: ti w i l l be pruned 

from T if there exist tj in T such that dom(tj) D dom(ti) and every unmapped node 

m which has an edge connected wi th some node n e dom(tj) — dom(ti), (n, m) is 

an ad edge. In the example, we wi l l prune h2z from the mappings of node 2 in Q 

because dom{h2^) C dom(h22) and there is only one node 7 which has parent node 

6 in dom(h22) —dom(h2^) and ad(6,7). However, we can prune neither ft.2i nor h22-

Although dorn(h22) C dom(h2\), 7 is in dom(h2\) — dom(h22) which has a pc child 

which in unmapped. Similarly, we can not prune both mapping for node 10. In the 

end, we now have four useful embeddings remaining: /2 , / 3 , /s , /6 which corresponds 

to four maximal rewritings R2, R3, R5, i?6 in the figure. 

3.2.2 Time Complexity 

We discuss the time complexity of Q A V problem in the absence of schema using the 

example in the Figure 3.3. 

The example shows that the mappings of the two subtree rooted at node 6 

and 10 have two choices each even after the pruning procedure is applied, which 

results four distinct maximal rewrites. Therefore, the number of optimal output 

in the worst case would be exponential which implies it is impossible to have an 

algorithm to solve this problem better than E X P T I M E . 
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Chapter 4 

Query Answering Using Views 

in the Presence of Schema 

In this chapter, we study the problem of answering queries using views under schema 

for the same class of X P a t h fragments as in the schemaless case and currently 

consider only acyclic choice-free D T D as database schema. Since D T D provides 

constraints, we need to consider those wi th the given query and views in the problem. 

As we show in previous chapter, our algorithm in schemaless case is based on 

containment mapping. When the schema is available, we first solve the containment 

mapping problem under D T D and then extend our algorithm to find the maximal 

rewriting. 

Wi thout losing the generality, we assume that both Q and V are satisfying 

wi th regard to D T D A. 
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4.1 Constraints from Acyclic choice-free DTD 

A t the beginning, we formally define five types of constraints implied by D T D s as 

follows. 

D e f i n i t i o n 4.1 ( S i b l i n g C o n s t r a i n t s ) Let t be a document tree satisfying DTD. 

If whenever a node labelled a in t has children labelled with each b G B, it has a 

child node labelled with c, t satisfies the Sibling Constraints(SC) a: B [ c. When B 

is 0, the SC is called child constraint/i<S/. 

D e f i n i t i o n 4.2 ( F u n c t i o n a l C o n s t r a i n t s ) Let the a document tree satisfying DTD. 

If no node labelled a int has two distinct children labelled with b, t satisfies the Func

tional Constraints (FC) a [ b[18]. 

D e f i n i t i o n 4.3 ( C o u s i n C o n s t r a i n t s ) Let t be a document tree satisfying DTD. 

If whenever a node labelled with a in t has descendant labelled with each b G B, it 

has a descendant node labelled with c, then t satisfies the Cousin Constraints(CC) 

D e f i n i t i o n 4.4 ( P C C o n s t r a i n t s ) Let t be a document tree satisfying DTD. If 

whenever there is a path from node labelled with a to a node labelled with b, the path 

length from a to b is always 1, then t satisfies the P C Constraints(PC) a \ b . 

D e f i n i t i o n 4.5 ( I n t e r m e d i a t e N o d e C o n s t r a i n t s ) Let tbe a document tree sat

isfying DTD. If whenever there is a path from node labelled a in t to a descendant 

labelled with c, b must present on this path between a and c. t satisfies the Interme

diate Node Constraints(IC) a, c : | b. 
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Sibling Constraints and Functional Constraints were first introduced in [18] 

where set B contains multiple elements. We prove in Lemma 4.1 and 4.2 that S C 

and C C are both unary when D T D is choice-free. 

Lemma 4.1 SCs are unary when DTD is choice-free. 

Proof Let D T D be represented in grammar notation. Because S C only involves 

parent and child relationship, each S C associates with one production. We presents 

a production using a graph Gp such that the root node is the context node a, dummy 

nodes Di are used to factor out nested occurrences if any, leaf nodes are child nodes 

of a, and quantifies('*', '+ ' , '1 ' , '? ') are labels on the edges. We call it production 

graph. Assume that a S C inferred by D T D be a : B j c, B is a set of child nodes of 

a. 

Cases (a) D T D is duplicate-free: Clearly, the resulting production graph is a tree 

because each child element only appear once in a production graph because child 

node of a appear at most once in the right side of the production. Also c must be 

connect to G p wi th edge labelled wi th '1 ' or '+ ' . Otherwise c can not guarantee to 

present in any case. Let node <p be the highest ancestor of c such that al l edges on 

the path from <p to c are labelled wi th '1 ' or '+ ' . There are two possibilities: 

• (a.l) ip — a: c is a guaranteed child node of a, therefore B = 0 in SC; 

• (a.2) ip — Di (some dummy node): This means that if <p ^ 0 then c must 

present as a's child. Hence any leaf node hi except c itself reachable from <p 

can ensure it. So B = bj. SC a : hi J, c is unary. 

Cases (b) D T D allows duplicates: since a child node may appear multiple 

times in the right side of the production, the production graph may contain a D A G 
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such that leaf node may have in-degree greater than 1. Same as in Case (a), c must 

be connect to Gp wi th edge labelled wi th '1 ' or '+ ' to make S C a : B j c hold. Let 

node (p be the highest ancestor of c such that al l edges on the path from tp to c are 

labelled wi th '1 ' or '+ ' . There are also two possibilities: 

• (b.l)<p = a: same as in Case (&.1)B — 0 in SC; 

• (b.2)(p = Di'. Since D T D is not duplicate free, a leaf node may be reachable 

from multiple paths. Hence for every leaf node bi reachable from Df. SC 

a : bi I c may not be true if there is a node £)/, unreachable from Di, but 

reachable to 6,. So bfs presence can be independent from c's presence. Bu t 

S t i l l bi itself is sufficient to guarantee c's presence without requiring that such 

Di exists. SCs are unary. 

• 

The following is an example of choice-free D T D wi th duplications. In exam

ple (1), there are multiple paths to b and c. SC a : b j c is not true. 

Example: One production of a choice-free D T D wi th duplications and its 

production graph: a —> ((&?, c)+, (b*, e, c?)?)*. 

In the above example, we find that S C a : b j e is not true. Al though there 

is one path from a to b through D I and D3 where the presence of b is related to the 

presence of e, there is another path from node a to node b through D2 where the 

presence of b is not relevant to e. 

We denote D T D implies a specific constraint c as A N c. 
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a 
* 

Dl 

D2 D3 

Figure 4.1: Duplicate D T D Example 

C l a i m 4.1 DTD A\=a:bii}.ciffV path Pj from a to hi in A : 3 a node di on Pj 

such that there exists a guaranteed path from di to c. 

Proof (If) Assume that every path from a to hi there is a node di such that the 

path from di to c are all labelled wi th '+ ' or ' 1 ' . Obviously, for any valid instance 

t of A , in any path from a to c in t, c must present as a's descendant. Therefore, 

A N a : h JJ. c. 

(Only if) Assume that A 1= a : hi JJ. c and there exists one path Pi in A from a to 

c such that there is a node dj on Pi that has an optional path to c. Then we can 

create a valid instance t of A in which Pj is selected from a to hi and c is not present 

in the path starting at dj. This is a contradiction. • 

C l a i m 4.2 If DTD A a : bt JJ. c and A a : bj JJ. c, tfien A a : {bt, bj} J | c. 

Proof From C l a i m 1, we know if A ¥• a. : 6; JJ. c then there must exist a path P i 

from a to 6; such that none of node on Pi has a guaranteed path to c. Similarly, if 

A ¥ a : hj JJ. c then there must exist a path Pj from a to 6j such that none of node 
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on Pj has a guaranteed path to c. Assume that A ¥• a : 0 ij. c and J&fc, descendant 

of a and A N a : 6^ -IJ- c. We can create a tree t by choosing P i and Pj and extend 

other paths and nodes as A required to make t valid to A . In t, both bi and bj are 

a's descendants, but c is not present as a's descendant under our assumption of A . 

Therefore, A ¥ a : {bi, bj} J | c. • 

L e m m a 4.2 C C s are unary when DTD A is choice-free and acyclic. 

Proof Assume that A N o : bi, bj JJ. c. From Cla im 4.2, we know if A a : ^ JJ. c 

and A a : 6j Jj- c, then A ¥ a : {bi, bj] JJ. c. Therefore, C C s are unary. • 

4.2 Decidability of Containment Under Acyclic Schema 

The correctness of rewritings need to be verified v ia containment mapping. There

fore, it is necessary to study the containment mapping problem first before solving 

the problem of answering query using views. 

In order to test query containment under a set of constraints C of ICs, P C s , 

SCs, F C s and C C s for Q G XP^'H^- ^, we introduce a variation of the chase, a 

procedure for applying constraints in C to V : 

1. Change ad edge to pc edge using P C : Let p G PC of the form a \ b . For al l 

ad(a,b) in V , change it to pc(a, b) in V . 

2. A d d guaranteed pc children using SC: Let s e SC of the form a : b J. c, where 

B — b\, ...,bn. Let a be a node in V wi th pc children b\, ...,bn, and a does not 

have a pc child labelled c. Then add pc edge(a,c) in V where c is a new node. 
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3. Merge pc children using F C : Let / G FC of the form a j c. Let a be a node 

in V wi th distinct children c\ and c-i labelled as c. Then merge c\ and c 2 in 

V . (Note: we wi l l never need to merge ad children. If ad(a,b) is retained in 

chase V , this means there exist multiple paths from a to b according to D . 

4. A d d guaranteed intermediate nodes for ad-edges using IC: Let i G IC of the 

form a,c :| b. For all ad(a,c) in (chased) V , insert b between (a, c) using ad 

edges. 

5. A d d guaranteed ad children using C C : Let c G CC of the form a : b JJ. c. Let a 

be a node in V wi th al l ad children b G B and if a has no ad children labelled 

wi th c present in V , add c as a's ad child in V where c is a new node. 

We denote by Chasec(Q) the result of applying the set of constraints C to Q. 

The set of trees satisfying D T D A is denoted S A T ( A ) . Let C be a set of ICs, 

P C s , SCs, F C s and C C s implied by A , S A T ( C ) denotes the set of trees satisfying 

each constraint in C . The following sequence of results present that C is sufficient and 

necessary to show A — containment of queries in XPU'H^ ^ when A is choice-free 

and acyclic. 

Lemma 4.3 Let C be a set of ICs, PCs, SCs, FCs and CCs implied by A. Q 

=SAT(C) Chasec{Q). 

Proof Q = S A T ( C ) Chasec(Q) if for any document tree t satisfying C , Q(t) = 

Chasec(Q{t)). 

First we prove that a single application of each chase rule to an X P a t h 

query in XPU'^^ ^ maintains equivalence w.r.t. C . The result then follows by an 

induction on the length of a chasing procedure. 
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1. Chase rule one only applies to ad edges in (chased) Q. Let p be the P C 

a [ b and Q' be the result applying p to Q. Q' is same as Q except one 

ad(x,y) w i l l be changed to pc(x,y) in Q'. Obviously Q' C Q because there is 

a containment mapping from Q to Q'. So Q' Qc Q- Let T S SAT(C) and 

(x,y) in Q(T). Since Q satisfies C, there exists a homomorphism / i from Q to 

T . Since C implies p, T also satisfies p. If a node z labelled a has in T must 

have a descendant w labelled b, then w must be z's pc child. Hence,h can be 

extended to a homomorphism from Q' to T without any change. So Q Qc Q'• 

2. Chase rule two is applied only to pc edges in (chased) Q. Let s be the S C 

a : b I I and Q' be the result of applying s to Q. Q' is Q wi th one extra pc 

child u labelled / for some node v labelled a in Q. Clearly Q' C Q because 3 

a containment mapping g from Q to Q'. So Q' C c Q. Let T € SAT(C) and 

(x,y) in Q ( T ) . Since Q satisfies C, there exists a homomorphism h from Q to 

T . Since C implies s, T also satisfies s. Every node z labelled a in T must 

. have a child w labelled I if z has a child labelled b. Hence, h can be extended 

to a homomorphism from Q' to T by mapping it to w. So Q CQ Q'. 

3. Chase rule three only applies to pc edges in (chased) Q. Let / be the F C 

a :[ I and Q' be the result of applying / to Q. Q' is Q wi th pc children 

b\,...,bi labelled / merged to one node b labelled I for some node v labelled a 

in Q. Clearly Q' C Q because 3 a containment mapping g from Q to Q'. So 

Q' Qc Q- Let T G SAT(C) and (x,y) in Q(T). Since Q satisfies C , there 

exists a homomorphism h from Q to T . Since C implies f, T also satisfies 

/ . Every node z labelled a in T have only have a unique child w labelled 

I. Hence, h can be extended to a homomorphism from Q' to T by replacing 
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h(h) = I, ....,h(bi) = I w i th h(b) = I. So Q CC Q'. 

4. Chase rule four only applies to ad edges in (chased) Q. Let i be the IC a, c : J b 

and Q' be the result of applying i to Q. Q' is Q wi th one extra node u 

labelled b inserted between an ad edge (a, c). Clearly Q' C Q because there is 

a containment mapping g from Q to Q'. So Q' CQ Q. Let T £ SAT(C) and 

(x,y) in Q(T). Since Q satisfies C, there exists a homomorphism h from <5 to 

T . Since C implies i, T also satisfies i. If every node z labelled a in T has 

a path to w labelled c wi th length greater than 1, then one node / labelled b 

must be present in this path. Hence, h can be extended to a homomorphism 

from Q' to T by mapping u to /. So Q Qc Q'• 

5. Chase rule five is applied only to ad edges in (chased) Q. Let c be the C C 

a : b JJ. / and Q' be the result of applying c to Q. Q' is Q wi th one extra ad 

child u labelled I for some node v labelled a in Q. Clearly Q' C Q because 3 

a containment mapping g from Q to Q'. So Q ' Q. Let T £ SAT(C) and 

(x,y) in Q(T). Since Q satisfies C , there exists a homomorphism /i from Q to 

T . Since C implies c, T also satisfies c. Every node z labelled a in T must 

have a descendant to labelled / if z has a descendant labelled wi th 6. Hence, 

h can be extended to a homomorphism from Q ' to T by mapping u to w. So 

Q c c Q'. 

• 

L e m m a 4.4 Ze£ A be a choiceless DTD. Q =SAT(A) Chasec{Q). 

Proof Since S A T ( C ) contains S A T ( A ) , by Lemma 4.3 Lemma 4.4 holds. So we 

prove the soundness of the chase. • 
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Lemma 4.5 Let A be a choiceless acyclic DTD, C be the set of ICs, PCs, SCs, FCs 

and CCs implied by A, and Q be XPIA//-I 1> query satisfied with A. Chasec{Q) is 

1-1 homomorphic to a subtree of a tree in SAT(A). 

Proof Because Q is satisfiable wi th A and the chase is sound, Chasec(Q) is also sat

isfiable wi th A ; hence there is a non-empty set of trees S G SAT(A) such that there 

is a homomorphism from Chasec(Q) to each tree in S. Assume that ChaseciQ) 

1-1 homomorphic to no subtree of a tree in S. This can only be the case if there is 

always a pair of child nodes in Chasec(Q) which are mapped to a single node of a 

tree in S. Let the child nodes be labelled b and have parent node labelled a. There 

are three cases in Chasec(Q)'-

1. Node labelled a has two pc children labelled b: the F C constraint a I b must 

not be implied by A . Otherwise, Chasec(Q) would have merged two b pc 

children of a node. Then there must exist trees in S wi th unbounded number 

of pc children labelled b of node a. Therefore there would be a subtree to 

which Chasec(Q)is 1-1 homomorphic, a contradiction; 

2. Node labelled a has one pc child labelled b and one ad child labelled b: the P C 

a \ b must not be implied by A , otherwise ad(a,b) wi l l be chased to pc(a,b) 

in Chasec(Q)- This means there are trees in S wi th an path from a-node to 

b-node wi th path length greater than 1 and there would be a subtree to which 

Chasec(Q) 1S 1"! homomorphic, a contradiction; 

3. Node labelled a has two ad children labelled b: the only possible failure of 

homomorphism is that in all trees in S, a node has an unique b node as its 

descendant, which means there is a only one dtd path p from a to 6 and each 

node in p has a unique child node in p, then chains of ICs and F C s would be 
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implied by this duplicate-free A . Thus by the end of chase procedure, the two 

b nodes would have been merged by using ICs and F C s . Chasec{Q) is 1-1 

homomorphic to some subtree of trees in S, a contradiction. 

• 

D e f i n i t i o n 4.6 ( C o r e N o d e ) Let Q be A-satisfiable, R C SAT (A), be the set 

of trees with a subtree that Chasec{Q) is 1-1 homomorphic to. We call R the 

satisfying set for Q. Each tree in R has a core subtree to which Chasec(Q) is 1-1 

homomorphic, and each node in the core subtree is called a core node. Each node 

which is not a core node is called a non — core node. 

From the definition of Core Node, node in Chasec{Q) may be mapped to a 

set of nodes X = x\, ...,Xi in t G R. A l l Xi G X are core nodes. In addition, every 

node lying on the path from one core node x to another core node y is core node. 

L e m m a 4.6 Let A be a choiceless acyclic DTD, C be the set of ICs, PCs, SCs, 

FCs and CCs implied by A, and P and Q be XPf././/.[ 11 queries satisfied with A 

and R C SAT(A) in which Chasec{Q) has 1-1 homomorphism to a subtree in each 

tree in R. If P ^SAT(A) Q> for each node w in P, either w can be mapped to a core 

node in every tree in R or w can be mapped to a non-core node in every tree in R. 

Proof Since Q is satisfiable with A and chase is sound, Chasec(Q) is satisfiable 

wi th A . Hence R ± 0 . Assume that P 5 S A T ( A ) Q but there are trees ti,t2 G R 

such that node w in P can be mapped to only a core node in t\ and only to a 

non-core node in t2. Let V — vi,...,vn be the set of core nodes to which w can 

be mapped to in ti. B y the definition of core node and the property of R , each 

node in V also appear in t2. According to our assumption, w can not map to any 
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subtree rooted at a node of V in t<i- Because A is context-free, we can replace each 

Vi tree in t\ w i th the corresponding V{ tree in £2 and obtain tree t[ which st i l l in set 

R . However, w can not be mapped to any node in t[. Therefore P(t[) = 0 while 

<5(£'1) 7^ 0 ; then P ^SAT(A) Q, is a contradiction. • 

Lemma 4.7 Let C be the set of ICs, PCs, SCs, FCs and CCs implied by A , and P 

and Q be X P l / . / A l II queries. P 2SAT(C) Q iff P 2 Chasec(Q). 

Proof (If) Assume that P D Chasec{Q) , then P 2 S A T ( C ) Chasec(Q). From 

Lemma 4.3, Q =SAT(C) Chasec{Q), hence P 2 S A T ( C ) Q-

(Only If) Assume that P 2sAT(C) Q, then for al l tree t G SAT(C), P{t) D 

Q(t). Chasec(Q) is a quasi-instance which satisfies C and may contain ad edges. 

We can extend Chasec(Q) to a tree instance t' as following: for each ad edge(x, 

y), insert a node z in between, (label(z) never appear in A ) ; and connect z wi th x 

and y using pc edge. Obviously t' G SAT(C) because z does not involve in C and 

the extended path x-z-y with' length 2 satisfies ad(x,y) obligation. So P(t') 2 Q{t'). 

From the chasing procedure defined in previous paragraph, there is a mapping from 

Q to Chasec{Q). Hence there is a mapping from Q to t' and result(t') G Q{t'). 

Then result(t') G P(t') follows and there exists a mapping c from P to t'. Since z 

nodes we added in t' never appear in Chasec(Q) and P, we can easily convert t' 

back to Chasec(Q) by replacing every two pc edges connected by z node wi th an 

ad edge, c is a mapping from P to node in Chasec(Q). Hence c is a containment 

mapping from P to Chasec{Q), and therefore P D Chasec{Q). • 

Theorem 4.1 Let A be choiceless acyclic DTD and C be the set of ICs, PCs, SCs, 

FCs and CCs implied by A . For XPU>H'\ 1> queries P and Q, P ^SAT(A) Q iff 
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P ^SAT(C) Q-

Proof (If) Assume P 2SAT(C) Q, then P ^SAT(A) Q because SAT(C) D SAT (A). 

(Only if) Assume P ^SAT(A) Q but P ~£SAT(C) Q- We wi l l derive a contra

diction. B y Lemma 4.5, Chasec(Q) is 1-1 homomorphic to a subtree of a tree in 

SAT(A). Let R C SAT (A) be the satisfying set for Q. Since P 2SAT(A) Q A N D 

there is a homomorphism from Q to each T S R, there must be a homomorphism 

from P to each T £ R. 

If P ^>SAT(C) Q> by Lemma 4.7, there is no containment mapping from P to 

C hasec (Q)- It must be the following two cases (See Figure 4.2) (a) single path 

in P fail to map to any path in Chasec (Q) (b) each path in P can map but for some 

node w which is common ancestor of node u and v, two mapped paths for u and v 

in Chasec(Q) c a n n ° t be joint on w. 

Case (a) There is a node x in P wi th parent y such that y is mapping to a node in 

Chasec(Q) but no mapping from x to any node in C hasec (Q)- So in any T G R,x 

can never be mapped to a core node while y can always be mapped to a core node u. 

Because P ^SAT(A) QI by Lemma 4.6, x can always be mapped to a non-core node 

v in every T G R. Since both P and Chasec(Q) may contain ad edges, there are 

two possibilities: (1) y is a pc child of x in P. Since v is non-core node and x cannot 

map to a core node, A cannot imply the S C label(u) : bi J, label(v), where bi is the 

labels of a core child of u. So there must be a tree U £ SAT(A) which has node 

w wi th label(u) and child labelled wi th bi but no child wi th label(v). Bu t we can 

replace the non-core child subtrees of u by the non-core child subtrees of w and st i l l 

have a tree T' e R. Node x cannot map to any non-core node in T ' , a contradiction. 

(2) y is an ad child of x in P. Similar as case (1), v is non-core node and x cannot 
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map to a core node, A cannot imply neither the S C label(u) : bj J, label(v) where 

bj is the label of core child of u, nor the C C label(u) : bk JJ- label(v) where bj is the 

label of core descendant of u. So there must be a tree U G SAT(A) which has node 

w wi th label(u) and descendant labelled wi th bj but no descendant wi th label(v). 

Bu t we can replace the non-core child subtrees of u by the non-core child subtrees 

of w and st i l l have a tree T" G R. Node x cannot map to any non-core node in T ' , 

a contradiction. 

Case(b) Let wn be the common ancestor of u and v that is closest to the root 

Figure 4.2: Theorem 4.1 Proof - Case a 

in P such that the path from root to u v ia wn maps to a path in Chasec(Q) us

ing embedding function f\ and the path from root to v v ia wn maps to a path in 

Chasec(Q) using embedding function h but f\(w) ^ f2(w)(See Figure 4.3). Since 

Chasec(Q) has a single root, node wn caii not be root itself. This means the parent 

of wn is mapped to the same node WQ in Chasec(Q) by / i and fc and WQ has a pair 
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of children wi th the same label as wn. There are two possibilities: 

1. wn is a pc child of wo. Hence A cannot imply the FC : label(wo) J, label(wn), 

this means WQ can have unbounded number of pc children wi th label(wn). 

Let T be the smallest tree in set R such that the node in T corresponding 

to WQ in Chasec(Q) has only two child nodes wi th label(wn). So there is no 

homomorphism from P to T , a contradiction. 

2. wn is an ad child of WQ. Let the subpath P ' from wo to wn in P be wo, Wi, wn. 

Hence A cannot imply y has an unique w descendant by the chain of ICs and 

F C s from WQ to wn, i.e. IC : label(wi),label(wi+2) :\ label(wi+\) (0 ^ i 4, 

n — 2) and FC : label(wi) J. label(wi+\) (0 < i ^ n — 1). Also A cannot 

imply the PC : label(wo) \ label(wn) and the FC : label(wo) [ label(wn). 

These means WQ may have unbounded number of descendants wi th label wn. 

Let T be the smallest tree in R such the node in T corresponding to u>o in 

Chasec(Q) has two distinct paths to two nodes wi th label(wn).So there is no 

homomorphism from P to T , a contradiction. 

• 

B y Lemma 4.7 and Theorem 4.1, we drive the following: 

Let A be a choiceless acyclic D T D and C be the set of ICs, P C s , SCs, F C s and 

C C s constraints implied by A . For XPEV'HA 1> queries P and Q, P 2SAT(A) Q iff 

P 2 Chasec (Q). 

4.3 Query Answering Using Views Under DTD 

We first introduce several useful definitions. 
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Figure 4.3: Theorem 4.1 Proof - Case b 

D e f i n i t i o n 4.7 ( S o u n d R e w r i t e w . r . t . D T D ) We say that Q is rewritable us

ing V w.r.t. DTD Aif3E\Vt£ SAT(A) : E o V{t) C Q(t) and E is said to be a 

sound rewrite of Q using V w.r.t. A . (Note E can not be a null expression which 

means 3t e SAT(A) s.t. EoV(t) ^0). 

D e f i n i t i o n 4.8 ( U s e f u l E m b e d d i n g w . r . t . D T D ) An embedding f : N{Q) ~> 

N(V) is said to be a useful embedding w.r.t. D T D A if f is a Useful Embedding 

and in addition f satisfies the following constraints: Vu ^ dom(f): 3 a path from 

label(dv) to label(u) in A. 

L e m m a 4.8 Q is rewritable using V w.r.t. DTD A iff Q is rewritable using ChaseciV). 

Proof 

It follows from Lemma 4.4, V =SAT(A) Chasec(V). Hence, E oV =SAT(A) 

E o Chasec{V). Q 2 S A T ( A ) E O V iff Q ^SAT(A) E O Chasec(V). E is a sound 

rewrite of Q using V w.r.t. A . • 

T h e o r e m 4.2 Q is rewritable using V w.r.t. DTD A iff there exists a useful em

bedding f : Q ~> ChaseciV) w.r.t. A. 
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Proof 

(Only if) B y Lemma 4.8, Q is rewritable using V w.r.t. A iff Q is rewritable 

using Chasec(V). Theorem 3.1 st i l l holds here. Hence, there must exist a useful 

embedding from Q to Chasec(V). 

(If): Let / : ChaseciV) be a useful embedding w.r.t. A . We construct 

E and extend f as follows: 

V x £ Q s.t. x G dom(f) and 3y s.t. edge(x,y) G Q and y £ dom(f). Let Ty denote 

the subtree rooted at y. Do the following: add a copy T'y of Ty as a child subtree 

of dv and define for every node z G Ty,f(z) = z' where z' is the corresponding 

node in T'y. If (x,y) is a pc(ad) edge, then (dv,y') is a pc(ad) edge. E contains 

all such Tys. The extended / is the required homomorphism because V x defined in 

the useful embedding is defined in / and V x N O T defined in the useful embedding, 

f(x) is its image in the corresponding Ty. f is a valid homomorphism function from 

Q —> E o Chasec(V). E o ChaseciV) is satisfiable wi th A . Therefore it is a sound 

rewrite of Q using V. • 

W h e n acyclic dtd is present, there is an important property that there are no 

two nodes on any path wi th a duplicated tag. Lemma 4.9 is based on this intuition. 

Lemma 4.9 There exists at most one maximal sound rewrite of Q using V w.r.t. 

acyclic DTD A. 

Proof Assume that there are two distinct maximal rewrite E\ and E2 which derived 

from two useful embedding f\ and f2, Then there must exist at least one node 

qi G dom(fi) — dom(f2). Since in acyclic D T D there is no repeated tags on any 

root to leaf path in Q and V . It is obvious that C A T is unique. Hence, qi lying 

on the branching above C A T in Q. Let /(<&) is defined in f\ but not defined in f2. 
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Function: get-IC(src,des) 

Input: DTD nodes src, des 
Output: return a set of DTD nodes A such that Va G A (IC) src, des :J a. 

Check whether IC between src and des has been computed already. If so, return pre-saved re
sult; 
For each node n { 

1. block all paths connected A; 

2. check whether there is a path from src to des; 

3. If it is not, add n to the list A; } 

Store the result and return A; 

Figure 4.4: F inding IC from D T D 

Then there are two cases: \)f(qi) £ Dv: f2 w i l l not be a sound embedding because 

tag(qi) can not appear twice on Dv, a contradiction; 2) f(qi) ^ Dv: according to 

the definition of useful embedding, the whole branching qi lying on must be defined 

in f\, then f2 can not be a maximal rewrite, a contradiction. Therefore, neither of 

these two cases can occurs. Hence, it is impossible to exist two distinct maximal 

rewrites. • 

4.4 Algorithms and Time Complexity 

In order to chase on view, we need to find those five types of constraints from D T D . 

Obviously inferring P C , F C , S C can be done in P T I M E because they only involves 

parent-child relationship corresponding to one production in D T D . However, the 

cost of inferring ICs and C C s are not t r ivial . To find these two constraints, we use 

the P T I M E algorithms shown in Figure 4.4 and 4.5, which use depth-first search in 

D T D graph. 

Therefore, the time complexity to get each of five types of dtd constraints 
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Function: get-CC(src, des) 

Input: DTD node src, des, and all the other DTD node 
Output: return a set of DTD nodes A such that Va 6 A: (CC)src, des Q a. 

Check whether CC between src and des has been computed already. If so, return pre-saved re
sult; 
For each node n, which src is its ancestor and des is its cousin{ 

1. Find all of n's guaranteed ancestors g and block all paths connected g; 

2. Check whether there is a path from src to des; 

3. If it is not, add n to the list; } 

Store the result and return A. 

Figure 4.5: F inding C C from D T D 

are at most 0(N2) where N is the number of dtd elements in A because we use 

graph depth first search. To improve the efficiency, we save the computation result 

of each type of constraints so that we wi l l not repeat the computation of same 

constraint in the chase procedure when the premise is the same. We next briefly 

introduce an efficient implementation of the chase in Figure 4.6, which only scans 

the (Chased) query tree three times. In each scan, we always start from the edges 

on the distinguished path of the tree. 

The Chase Procedure would take time 0((V + N)2 * N2), where V is the 

number of nodes in query and N is the number of elements in A . This is because 

finding each constraints from A takes 0(N2) at most; updating query tree each 

time takes linear time and the number of query node would increase to (V+2N) in 

the worst case when IC, C C , S C are involved. 

F ina l ly we briefly introduce an algorithm to compute useful embedding. The 

whole algorithm is very similar to the one we present in previous chapter when 

schema is not present. However, we can further simplify it based on the result of 

the uniqueness of the rewriting shown in Lemma 4.9. Here are several major modi-
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Procedure: FastChase(Query Q , D T D A ) 

Input: Query Q and D T D A 
Output: Chasec(Q)-

For each ad edge e in Q connected two nodes a and b{ 

1. If get-PC(a,b, A) is true, update e as pc edge; 

2. Else If list L = get-IC(a,b, A) is not empty, insert each node c in L between a and b in order and 
preserve pc, ad obligation as implied by A ; 

3. Update Q; } 

For each edge e in Q connected two nodes a and b{ 

1. If e is an ad edge and list B = get-CC(a,b, A) is not empty, add each node in B as a ad child of a; 

2. If e is a pc edge and list C= get-PC(a,b, A) , get all other children of a which has same tag name as 
a in list C { 

(a) If C is not empty, merge all nodes in C with a; 

(b) Update Q; } 

} 

For each pc edge e in Q connected two nodes a and b{ 

1. List D =get-SC(a,b, A); 

2. If D is not empty { 

(a) For each node c in D, add c as pc child of a if c is not already present in Q and also keep SC 
chasing on c until saturation; 

Update Q; } (b) 

} 
Return Q; 

Figure 4.6: Apply Chase on Q 
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fications in the algorithm: 

• V would be replaced by ChaseciV), we use D'v to present the distinguished 

path of ChaseciV); 

• In the function map-Dpath and map-To-Dv, we don't need to keep can

didate list anymore. The mapping would be unique as shown in Lemma 4.9 

which implies we intend to map some node n in Q, and if there is any node 

m on D'v wi th the same tag, then m is the only candidate to be mapped; 

otherwise the mapping fails. 

• One extra step need to be done: for any node 1 in Q which is not mapped to 

V , we need to check whether there is a path from tag(l) to tag(dy) in A. If it 

is not, the mapping fails. 

The time complexity of compute the useful embedding and rewrite in this 

case would be P T I M E . We know map-Subtree takes P T I M E , and both map-Dpath 

and map-To-Dv also take O ( V ) where V is the number of query nodes. Since the 

useful embedding is unique, we only need one iteration to go through the query 

tree. 
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Chapter 5 

Experimental Results 

To study the effectiveness of our work, we systematically ran a range of experiments 

to measure the impact of various parameters. We focus on testing the schema aware 

case. In addition to measure savings and overhead, we also measure the scalability 

when executed over large collections of views and test the performance when the 

query size varies. 

We ran our experiments on the X M a r k benchmark dataset[19]. We con

structed the document of size 100MB using the I B M XMLGenerator[9] . We used 

Wutka DTDparser[10] to parse the D T D , which is needed for static analysis of 

schema. For query evaluation, we use an XQuery engine X Q E n g i n e f l l ] for conve

nience and flexibility. Bo th tools are open sources developed in Java. We imple

mented our tests in Java as well. 

Setup: We ran our experiments on a spare workstation sunning SunOS version 

5.9 wi th 8 processors each have a speed of 900MHz and 32GB of R A M . A l l values 

reported are the average of 5 trials after dropping the maximum and minimum, 

observed during different workloads. 
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• Simple Selection Query 
QI: for $a in doc("auction.xml")/site[//person][//quantity]//itemref 
where $a/@item >= "item20" 
return <result> {$a} </result> 

VI: < view> {doc(" auction.xml")/site[//profile] / / open-auction [privacy]//itemref} </view> 

R l : <result> {for $a in doc("view.xml")/view/itemref[@item>= "item20"] return $a} <result> 

VI': <view>{doc(" auction.xml" )/site[//person/@id][//privacy]//itemref/@item}</view> 

• Complex Selection Query 
Q2: for $p in doc("auction.xml" )//people/person[//profile[gender/text()="female"][interest]]//address 
where $p/country/text()= "United States" and $p/province/text() = "Maryland" 
return <result> {$p/city}</result> 
V2:<view>{doc(" auction.xml" )//person[[//profile/gender/text()= "fe-
male"][profile/interest][//country/text() = "United States"]] /address }</view> 

R2: for $p' in doc("view.xml")/view/address where Sp'/province/text() = "Maryland" 
return <result>$p'/city</result> 

V2': doc(" auction. xml")//person[[//profile/gender/text()='female'] [//country/text ()= "United 
Sates" ]] / address 

Figure 5.1: Selection Queries and Views on auction.dtd 

5.1 Q u e r y S e t 

We run the tests over the queries and views listed in Figure 5.1 and Figure 5.2. 

XQueries are labelled wi th ini t ia l " Q " , useful X p a t h views are labelled wi th ini t ia l 

" V " . These views are used to test saving ratio while their primed variants are useless 

views which are used to test overhead ratio. A l l rewritings using given views are 

equivalent to the original query result. We give the formal definition of saving and 

overhead ratio in the next section. 

Before we show the experimental results, we explain how to set up our ex

periment to apply our technique of answering X P a t h queries using X P a t h views to 

solve the problem of rewriting XQueries using X P a t h views by using Q3 and given 
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Simple Join Query 
Q3: for $t in doc(" auction.xml")/site//closed_auctions/closed_auction[annotation] , 
$p in doc("auction.xml")//regions/europe[//description//text/bold]/item 
where $t/itemref/@item=$p/@id and $t/price/text( ) >= "100" 
return <result> $t/itemref</result> 
V3a: <view>{doc("auction.xml")//closed-auction[price/text() >= " 100"]//itemref }</view> 
V3b: <view> {doc("auction.xml")//europe[//description//bold]//item} </view> 
R3: for $t' in doc("view3a.xml")/view/iternref, 
$p' in doc("view3b.xml")/view/item 
where St'/Oitem = $p'/@id 
return <result>$t'</result> 
V3': doc("auction.xml")/europe[//text]//item 

Complex Join Query 
Q4: for $p in doc("auction.xml")/site/people/person, 
$t in doc("auction.xml")/site/closed_auctions[//annotation], 
$t2 in doc("auction.xml")/site/regions/europe/item 
where $p/@id = $t/closed.auction/buyer/@person and $t/closed.auction/happiness/text() >="0.6" 
and $t/closed_auction/itemref/@item = $t2/@id 
return <result> {$t2/name/text()} {$p/name/text()} 
</result> 
V4a: <view>{doc("auction.xml") //person[profile/gender/text() = "female"]}</view> 
V4b: <view>{doc("auction.xml")//closed_auction}</view> 
V4c: <view>{doc("auction.xml")/europe/item }</item> 
R4: for $p in doc("view4a.xml")/view/person, 
$t in doc("view4b.xml")/view/closed_auction, 
$t2 in doc("view4c.xmP)/view/item 
where $p/@id = $t/buyer/@person and $t/itemref/@item = $t2/@id and $t/happiness/text() 
>="0.6" 
return <result> {$t2/name/text()} {$p/name/text()} </result> 
V4c': doc(" auction.xml")/regions[//text]/item 

Group By Query 
Q5: for $p in doc("auction.xml")/site/people/person[//age/text()>="40"] 
let $1 := 
for $i in doc(" auction.xml")/site/open_auctions[//privacy]/open_auction where 
$p/profile/@income > 5000 * $i/initial/text() return $i- return <items>{$l//itemref}</items> 
<person> {$p/name} < / person> 
V5a: <view>{doc("auction.xml") //person[//age/text() >= "40"]}</view> 
V5b: <view>{doc("auction.xml")/site[//privacy]//open_auction}</view> 
R5: for $p in doc("view5a.xml")//person 
let $1 := 
for $i in doc("view5b.xml")//open_auction 
where $p/profue/@income > 5000 * $i/initial/text() 
return $i 
return <items>{$l//itemref}</items> 
<person > { $p/name} </person> 
V5b': doc("auction.xml")/site//person[//age/text() <= "35"] 

Figure 5.2: Join/Group By Queries and Views on auction.dtd 
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views in Figure 5.2. 

Step 1: Given a query in XQuery expression and a set of views in X P a t h 

expression, we build a generalized tree pa t te rn(GTP) [4] for each independent vari

ables declared in F O R or L E T clauses in Q. A variable is "independent" when its 

declaration is directly related wi th document. In Qz, both $t and $p are independent 

variables. So we bui ld two separate trees, one for $t and the other for $p. 

Step 2: Mark the interest nodes and return nodes in each tree. We capture 

all nodes appearing in W H E R E and R E T U R N clauses associated wi th each inde

pendent variable in its G T P . Return nodes and those involved in join predicate must 

be reachable from the distinguished node of the useful view. Figure 5.3 shows two 

trees Qt and Qp constructed for Q3. 

Step 3: Each G T P can be represented as a T P Q which is equivalent to a 

X P a t h expression Q ' . We test Q ' against a single view each time. If the view is 

usable, we search the useful embedding and compute the rewriting. In the example, 

V 3 a is usable for Qt and V3b is usable for Qp. The rewritings are the following: 

• Rt: doc("view3a.xml")/view/itemref 

• Rq: doc("view3b.xml") /view/i tem 

Step 4: After we obtain rewriting, we wi l l replace the declarations for each 

variable wi th the corresponding rewriting and reassemble the query based on the 

structure in original query to give the final rewriting. 
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Qt /site 

closed auctions 

closed auction 

Qp 

annotation itemref 

text( )>= "100" 

@item 

//regions 

curope 

item 

description @id 

text 

bold 

JOIN 

VBC 

R E T U R N 

Figure 5.3: G T P s built for Q3 

Here is the final rewriting for Q3 using V3a and V3b: 

for $t' in doc("view3a.xml")/view/itemref, 

$p' in doc("view3b.xml")/view/item 

where $t'/@item = $p'/@id 

return <result>$t'</result> 
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5.2 Savings and Overhead on Queries Answering using 

Views 

Let eq be the time taken to evaluate the original query over the document. Let c c be 

the time taken to determine whether a given view isuseful for rewriting the query 

and let Cj. be the time to compute the rewrite using the useful views and let e r be 

the time it takes to evaluate the rewrites over the materialized view documents. The 

saving ratio SQ obtained by using the usability check procedure on useful views is 

defined as SQ = c s + c r + e r _ The overhead ratio OQ obtained by using the usability 

check procedure on useless views is defined as OQ = Cc+ei. Intuitively, the closer to 

0 the saving ratio is the better and the closer to 1 the overhead ratio is the better. 

5.2.1 Savings on useful views 

Figure 5.4 shows the saving ratio wi th the same document size for the five queries 

Q1-Q5 using their corresponding useful views. We expect the saving ratio to be close 

to 0 because the computation time of rewriting is very small. If the document size 

of each view is less than 1/3 of the size of the original database then the evaluation 

of the query rewriting is much faster than original query evaluation. This is exactly 

what happened in the experiments. 

5.2.2 Overheads on useless views 

Figure 5.5 shows the overhead ratio wi th same document size for the five queries 

Q1-Q5 using their corresponding useless views. We expect the overhead ratio to 

be very close to 1 because the computation time of checking embedding is very 

small. The result shows the overhead is a negligible fraction compare to the query 
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Figure 5.4: Saving Rat io - Useful Views 

evaluation time. 

5.2.3 Various number of views 

Now we test how the performance is when the number of views varies from 1 to 100 

and none of view is useful. Figure 5.6 shows the overhead ratio of Q1-Q3 when the 

number of useless views varies from 1 to 100. 

Figure 5.7 shows the saving ratio of Q3-Q5 when the number of views varies 

from 5 to 100. Each of Q3-Q5 needs multiple views to rewrite the query. We design 

this test in such a way that there is only one useful view and the others are all 

useless views. In the rewriting we access original database if no view can be used 

to extract the required information. 
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5.2.4 Varying query size 

Figure 5.8 and Figure 5.9 show the saving ratio and the overhead ratio of a simple 

join query Q when the query size varies from 5 to 50. We increase the query size 

by adding more query nodes and value based constraints. When we test saving, 

the exact number of useful views are provided. When we test overhead, the exact 

number of useless views are given. We found both ratio did not vary much as the 

query sizes changed. This may result from the fact that the more complex the 

query is, the more query evaluation time is required in general although the rewrite 

computation and evaluation time or the embedding checking time would take longer, 

the ratio would remain at the same level. 
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Chapter 6 

Related Work 

X P a t h query containment is close related to the use of materialized views in an

swering query. This relation provides a necessary condition for designing and test

ing sound algorithm for query rewriting using views. There has been much work 

on query containment and minimization of various X P a t h fragments [1, 5, 14, 15]. 

Containment checking of X P a t h queries, in the absence of constraints, containment 

is in P T I M E for XPV<//A 1> as shown in [1], while it is proven to be CONP-complete 

for XP{H'\-1'*} in [14]. Containment under constraints is shown to be undecidable in 

[5], when X P ^ / ' l 1'*} is allowed along wi th disjunction, variable binding and equal

i ty testing, and the bounded/unbounded simple X P a t h integrity constraints(SXICs) 

implied by D T D . A comprehensive study of the complexity of containment of X P a t h 

fragments under D T D constraints are given in [15]. The most relevant work is [18], 

which shows that containment is decidable for XPVI'W'*} when the constraints 

are D T D s . The same paper also identifies XP^ D for which containment under 

duplicate-free D T D s can be decided in P T I M E . In our work, we consider a richer 

subset of X P a t h queries, including descendant edges under choice-free acyclic D T D s 
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and provide P T I M E algorithm to decide the containment problem. 

Query answering using materialized views for X M L is recently studied in [2], 

where they propose a framework for using X P a t h views in X M L query processing in 

the absence of schema. However, there are important differences in the contribution 

of the two papers, as we explain in detail below. 

The major contribution of [2] was presenting an X P a t h matching algorithm 

to determine certain class of views which can be used to answer query containing 

X P a t h expression and construct compensation expressions to be applied on views 

to produce the query result without schema knowledge. They explored a class of 

materialized X P a t h views, which may contain a combination of X M L fragments, 

typed data values, full paths and node references. This means that the users may 

access to the original database when necessary and the goal is to obtain equivalent 

results between evaluating query and applying a compensation expression on views. 

B y contrast, we target different applications where the original database is no longer 

available to the users and it is replaced by as a set of materialized X P a t h views. 

Therefore our effort is to produce maximally contained results instead of equivalent 

results, depending on the given views. More importantly, we classify a class of 

X P a t h fragment and D T D s for which we provide an efficient algorithm to decide 

whether a view is useful for query rewriting and compute the rewrite when it is 

possible under D T D constraints. In the experiment, we also illustrate the possible 

use of our work to answer XQueries. To the best of our knowledge, the problem we 

study here is not addressed in the literature. 
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Chapter 7 

Conclusion 

While there has been considerable work on query answering using views in relational 

world, the same problem has not been extensively studied for X M L . We developed a 

method for testing the usability of X P a t h view for answering X P a t h / X q u e r y queries. 

We study this problem both wi th and without a schema and identify cases in which 

it is E X P T I M E and when it is P T I M E . In the latter case, we developed efficient al

gorithms based on a chase procedure and containment mapping. We complemented 

our analytical results wi th an extensive set of experiments. 

Our study in the presence of database schema is confined to schema without 

cycles and choices. In the presence of either of them, the reasoning becomes consid

erably more complex. It would be interesting to determine whether the techniques 

proposed here can be extended to solve this problem efficiently when there are cy

cles and/or choices in the database schema. The other direction is to consider more 

complex X P a t h queries invloving join, wildcards, etc. 
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