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Abstract 
Linear programming has a wide range of applications, optimization-related prob

lems being one of them. Important concerns in linear programming are efficiency, 
robustness, and accuracy. Linear programming is used in a reachability analysis 
tool called Coho [GM99] for dynamical systems. Previous experience has shown 
that linear programs in this tool lead to highly ill-conditioned linear systems which 
prevented successful reachability analysis. This thesis presents a robust linear pro
gram solver with provable error bounds that exploits the special structure of the 
linear programs that result in the reachability tool. This contribution is of interest 
for the particular application for which it was developed. Furthermore, it shows 
how duality and combinatorial aspects of linear programming can be exploited to 
achieve greater efficiency, robustness, and accuracy. 
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C h a p t e r 1 

Introduction 

1.1 Motivation 

The problem of verification is that of showing that a design satisfies its specification. 

The design may be of an electronic circuit, a computer program, a network or secu

rity protocol, a chemical plant, an airplane, etc. For our purposes, the specification 

describes the desired behaviors of the design: that the circuit implements a par

ticular finite state machine, that the security protocol does not disclose passwords, 

that the chemical plant does not explode, etc. The goal of formal verification is 

to produce a formal, mathematical proof that the design has the desired proper

ties. For this approach, both the design and the specification must be modeled in a 

mathematical framework where such a proof is mathematically meaningful. 

This thesis is concerned with verification where the design is modeled by 

a system of non-linear, ordinary differential equations (non-linear ODEs) and a 

description of the possible initial states of the system. The specification describes 

a "safe" region in which the trajectories for all solutions to the model must be 

contained. The verification task is to determine whether from a possible initial 

state the system can ever reach a forbidden state or not. This type of verification 

is termed reachability analysis. 

For non-trivial systems, reachability analysis tools must use approximation 
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techniques: closed-form solutions do not exist. Coho, the verification system de

scribed in this thesis, is one such tool. It computes over-approximations of the 

reachable space to provide a sound verification of safety properties: Coho may fail 

to verify a correct system, but it will not erroneously verify an incorrect system. As 

part of computing the evolution in time of the reachable state space of a system, 

Coho solves a large number of linear programs. The soundness of Coho relies on 

computing accurate error bounds for the solutions of these linear programs. To 

avoid false negatives, it is desirable that these solutions be as accurate as practical. 

Linear programming is a well-studied problem that has a classical solution, 

namely the Simplex algorithm. O n any real machine, errors are an inherent part 

of floating-point computations. In this thesis, we address the impact of numeri

cal errors from floating-point computations on the accuracy and robustness of the 

Simplex algorithm, as applied to our verification system. 

The effect of errors in the input and in the intermediate computations on the 

result of a problem is measured by its conditioning. The result of an ill-conditioned 

problem may be affected by large errors even though the errors in the input or in 

the intermediate computations are small. 

Many of the linear programs that arise in Coho are ill-conditioned problems. 

For such problems Simplex tends to yield solutions that contain large errors, com

promising the applicability of Coho. Moreover, no error bounds are available on 

the solutions, preventing the tool from producing a guarantee of correctness for the 

system being analyzed. 

A noteworthy property of Coho linear systems is that their structure is spe

cial. More precisely, the feasible region of a Coho linear program is the intersection 

of set of orthogonal back-projections into the full-dimensional space of 2D polygons. 

This means that any inequality in the definition of the feasible region contains only 

two variables. This thesis explores ways of exploiting this special structure in order 

to obtain greater accuracy and robustness while keeping efficiency reasonable. 
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1.2 Contribution 

The special structure of the linear programs arising from orthogonal projections al

lows the implementation of an efficient and numerically robust version of the Simplex 

algorithm. 

The main contributions of this research are the following: 

1. An implementation of Simplex where the combinatorial representation of bases 

remains explicit. 

• The key to practicality is an 0(n) linear system solver, where n is the 

number of variables in the system. 

2. Numerical robustness achieved by computing accurate error bounds. 

• The combinatorial approach above allows us to avoid numeric error prop

agation between steps, thus keeping the error bounds reasonably tight. 

• When the optimal basis is ill-conditioned, it is shown that a pivot can 

be made to another basis that has nearly the same cost and is well-

conditioned with respect to the cost function. 

3. An error bound for the optimal cost that is independent of the numerical value 

appearing in the constraints. 

4. Implementation 

1.3 Outline 

This thesis presents an efficient and numerically robust method of solving the linear 

programs that arise in the Coho verification tool. 
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• Chapter 2 presents the context in which linear programs with a particular 

structure arise. First, the reachability analysis class of problems and its ap

plicability to verification are introduced. Then a system that implements 

reachability analysis is described with emphasis on its use of linear programs. 

Finally, the special structure of these linear programs and their impact on the 

usability of the system are underlined. 

• Chapter 3 reviews the Simplex algorithm for solving linear programs. Both the 

geometric and the combinatorial aspects of the problem are presented. The 

concepts of basis, pivoting, duality, and cycling receive particular attention. 

The standard implementation of the Simplex algorithm is presented briefly, 

pointing out its problems in the case at hand. 

• Chapter 4 presents the main features of the proposed modified version of 

Simplex. These include the lazy computation of tableau columns and the 

linear-time algorithm that accomplishes the computation. The presentation 

of the method of computing error bounds on the results of the floating-point 

operations proposed to be used by the linear program solver concludes the 

chapter. 

• Chapter 5 reviews the numerical accuracy and stability of the new algorithm 

for solving the particular type of linear systems that arise in Coho. A n error 

bound on the solution to such linear system as computed by the new algorithm 

is established. 

The rest of the chapter focuses on ways of obtaining a good approximation of 

the optimal cost of a linear program. The geometrical meaning of an optimal 

ill-conditioned basis is analyzed and a method of approximating its cost is 

proposed and then analyzed. Then the application of this method to the 

Coho linear programs is studied. 

• Chapter 6 presents the implementation details that were found to be significant 
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during algorithm implementation. 

A chapter of conclusions and suggestions for further research completes the 

core of the thesis, followed by an appendix containing the definitions of the mathe

matical notations and definitions used in the thesis. 
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C h a p t e r 2 

B a c k g r o u n d 

2.1 Projectahedra 

A projectahedron is a high-dimensional polyhedron represented by its projections 

onto two-dimensional subspaces, where these projections are not required to be 

convex. The high-dimensional object is the largest set of points that satisfies each 

projection. A full-dimensional polyhedron can be obtained from its projections by 

back-projecting each into a prism in R d and computing the intersection of those 

prisms. Each (1-dimensional) edge of a projection polygon corresponds to a (d — 1-

dimensional) face of the projectahedron. 

The intersection computation for arbitrary polyhedra in high dimensions is 

computationally hard. Projectahedra are a restricted class of high-dimensional poly

hedra and the complexity of computing the intersection of projectahedra does not 

appear to have been studied. In the work described in this thesis, the intersections 

of projectahedra are never explicitly nor exactly computed. Instead, operations on 

projectahedra are performed projectionwise. Sometimes this leads to an overap-

proximation of the result projectahedron. We choose these operations in such a way 

as to preserve the soundness of Coho. Whereas the projectionwise computation of 

common projectahedra operations like union typically leads to overapproximation, 

the same method yields the exact result in the case of intersection. 
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2 . 2 Verification as Reachability 

Consider a system whose dimension (i.e. number of variables) is d. The continuous 

state space of the system is R d . Suppose the behavior of the system is described by 

the differential inclusion: 

x G F(x) 

where x G R d . The inclusion models uncertainty in the model, environment etc. 

Given two regions, AQ C B C R d , the reachability problem is to determine 

whether all trajectories that start m AQ aX t = Q remain in B, either during some 

time interval, [0,tenc[], or for all time. 

For example, we can find At C R d such that x(t) G At. The reachability 

problem is satisfied if At C B, Vt G [0, t e n (/]. 

A related problem is the following: given a time t\ and a region A\, show 

that at t = ti, all trajectories are inside Ai. This can be reduced to the first problem 

by including time in the state with i = l [AL94]. 
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Many verification problems can be formulated as reachability analysis prob

lems. Consider for example a system consisting of two aircraft [TPS98]. Given the 

possible initial positions of the aircraft and their equations of motion, the question 

is whether the distance between the two aircraft remains above a lower bound for 

all times of interest. Modeling each aircraft as a point in R 3 , the state of the system 

is a point in R 6 . The safety requirement partitions R 6 into safe and unsafe regions. 

Solving the verification problem boils down to determining whether At intersects 

the unsafe part of R 6 for any time t of interest. 

A n important problem in modern circuit design is determining whether a 

circuit correctly implements its high-level specification. Reachability analysis can be 

used for verifying that circuits, as modeled by non-linear O D E ' s , correctly implement 

discrete specifications. 

2.3 C o h o 

Coho is a verification system that performs reachability analysis [GM99]. 

Closed form solutions to reachability problems exist only for a few spe

cial cases. Consequently, approximation techniques are used to analyze real sys

tems. These techniques ensure that the approximations always lead to an over-

approximation of the reachable space. Every point that actually is reachable is 

included in the approximation computed by Coho. The approximation may also 

include points that cannot be reached by the real system. Thus, the verification 

performed is sound - an incorrect design will never pass verification, but a correct 

one might fail it because of the approximations. 

A general representation of high-dimensional objects is intractable. For this 

reason, Coho uses projectahedra to approximate high-dimensional objects, such as 

the initial region and the reachable regions at various times. 

The Coho reachability computation is an iterative, computation algorithm. 

A single time-step of this algorithm proceeds as follows [GM98]: 
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Figure 2.2: The creation of a bloated linear program for the convex hull of the 
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1. The time step begins by loading a polygon and its convex hull for each pro

jection of the system. The convex hulls are then bloated outward slightly 

to ensure that they contain all possible trajectories for the next time step. 

Each projection's bloated convex hull can be translated into a set of linear 

inequalities in the projection's two coordinates. The conjunction of all the 

projections' linear inequalities describes a convex region containing the pro

jectahedron. At this point, the movement of each edge of each projection's 

polygon can be computed independently. Each edge corresponds to a face of 

the projectahedron, and the objective is to compute the furthest outward that 

points on the face could move during a time step. For each face, the following 

computations occur: 

2. (a) Restriction: The convex region computed from the convex hulls is further 

restricted to a box around the edge in the coordinates of the edge as 

described by four more linear inequalities. In the full dimensional space 

this is equivalent to constructing a slab around the face being examined. 

The slab is a conservative estimate of the convex hull of the bloated face. 

(b) Linearize Model: The slab's description is available in terms of the collec

tion of linear inequalities computed in the previous step. The derivative 

function for the model is assumed to be autonomous (i.e. independent 

of time) and finitely piecewise continuous (therefore locally bounded). A 

linearization of the system derivatives that is valid in the slab is com

puted. This model includes linear and constant terms, and gives bounds 

on the error introduced by the linearization within the slab. Typically, 

this linearization is based on bounds for the variables in the model and 

bounds on linear combinations of these variables. These bounds are com

puted by solving the corresponding linear programming problem. More 

formally, let W be the slab represented as a set of inequalities. The 
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non-linear model is approximated with the differential inclusion: 

xeW=>ieAx + b + U (2.1) 

where A G R d x d is a matrix, b G R d is a vector and U G (R x R) d is a 

hypercube (i.e. a Cartesian product of intervals). 

(c) Advance Time: The linear model is used to move the slab forward in 

time according to the first two terms of equation (2.1). The U term 

is handled as an inhomogeneous stimulus to the system as described in 

step 2e. The forward time transformation is performed by exponentiating 

the A matrix. This new convex region contains any point reachable from 

the convex hull of the face at the end of the time step (ignoring U). 

Moving the slab model forward in time amounts to right multiplying the 

left-hand side of its inequalities by a matrix that transforms points at 

the end of the time step back to their location at the beginning of the 

step and also modifying their right-hand side. The application of matrix 

multiplication to the left-hand side would lead to the modification of its 

structure. For reasons of computational efficiency, the implementation 

transforms the cost function instead of the inequalities. This is described 

in detail in chapter 6. 

(d) Project Back: The slab's end-of-step shape is described by a collection 

of linear inequalities after time is advanced. Building a polygon from 

these inequalities requires projecting the region that they contain back 

onto the basis for the projection polygon corresponding to the face. This 

projection is computed by running a series of linear programs on the 

time-advanced set of inequalities. The cost functions used by the linear 

programs are directions contained in the plane of the polygon. 

(e) Add Errors: So far, the slab's movement is entirely controlled by the 

linearized model. To treat the error, we add a constant derivative offset 
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within the error bounds throughout the time step, in such a way as to 

bloat the slab's projection outward as much as possible. This involves the 

computation of bounds on | | a r | | 1 over the slab. A n over-approximation 

of is computed based on the extremes of each i j over the slab. 

Computing these extremes again involves solving linear programs. 

3. Each edge of each projection's polygon therefore produces an "edge polygon" 

at the end of the time step; this polygon contains the projection of all points 

that could be reached from the corresponding face within the time step. The 

outer boundary of the union of all such polygons is the projection of an over-

approximation of the projectahedron at the end of the time step. 

Clearly the use of linear programming by Coho is heavy. In fact, a major 

limitation to the applicability of this tool stems from the failure of the classical 

Simplex algorithm to compute sufficiently accurate solutions to the linear programs 

that arise in Coho. 

Each vertex of the feasible region of a linear program lies at the intersection 

of d hyperplanes, where d is the dimension of the space. If the normal to at least 

one of these hyperplanes is almost a linear combination of the normals to the other 

hyperplanes, the vertex is ill-conditioned: the use of a typical implementation of 

Simplex or other L P algorithm for the determination of the vertex position leads to 

a result likely to be affected by large errors. 

However, the feasible region of any Coho linear program is special. As any 

convex polyhedron, the feasible region can be described by the matrix inequality: 

Ax > b 

where A G R d x d and b G Rd. Each row of this inequality represents a halfspace that 

corresponds to at most one face of the polyhedron. As the feasible region represents 

the intersection of back-projections into R d of two-dimensional convex polygons, 

each row of matrix A contains at most two non-zero elements. 
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The above observations lead to the idea of exploiting the special structure of 

the feasible region of Coho linear programs in order to solve them more accurately, 

thus enhancing the usability of the system. 
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Chapter 3 

Linear Programs 

Linear programs play an important role in the Coho system. This thesis presents a 

method for computing better solutions to the particular category of linear programs 

that arise in Coho. 

This chapter introduces the mathematical description of linear programs and 

of an algorithm to solve them. Then, section 3.3 describes the particular linear 

programs that arise in Coho. 

3.1 Problem Definition 

Definition 1 Let m, n be positive integers, A G R m X T l an m x n matrix of reals, 

b G R m an m-vector of reals, c G R™ an n-vector of reals, M C { 1 , . . . , m) a set of 

indices of rows of matrix A, N C { 1 , . . . , n} a set of indices of columns of matrix 

A. Let M = { 1 , . . . , m} \ M and N = {!,...,n}\ N. Let s G {+1, -1} . 
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Then the following problem is an instance of a general linear program: 

min sc x 

subject to 

Ai,-,x = bi 

Ait-x > bi 

XJ > 0 JEN 

i e M 
i G M 

(3.1) 

Xj unconstrained j G N 

Such an instance of the general linear program is denoted by L~P(A, b, c, M, N, s). 

Column matrix c is called the cost vector or the optimization direction of 

the linear program. 

The value xopt for which the minimum is attained, if it exists, is called the 

optimal solution of the linear program. 

The value scTxopt is called the optimal cost of the linear program. 

The sign s specifies whether the problem is one of minimization (+1) or one 

of maximization (—1). 

The following trivial transformations enable the reduction of other forms of 

linear programs to the one above: 

• A maximization problem can be turned into one of minimization by negating 

the cost vector: 
T • T maxc x = — min— c x 

• An inequality of the form: 

aTx < b, a,x G R™, b G R 

is equivalent to: 

—aTx> —b 

16 



A point x G R n that satisfies all the constraints of the linear program is 

called a feasible point of the linear program. The set of all feasible points represents 

the feasible region of the linear program, denoted by feas(LP). A linear program is 

called feasible if its feasible region is non-empty. Otherwise it is called infeasible. 

As an intersection of convex sets (hyperplanes and closed halfspaces), the 

feasible region of an L P is a convex set. A n optimal solution lies on the boundary 

of the feasible region. 

In general, the optimal solution might not be unique. Consider the trivial 

case with c — 0: all feasible points are optimal. 

Let x o p t be an optimal solution to a linear program. If the affine subspace 

that is normal to the cost vector and contains x o p t contains other feasible points, 

they too are optimal. 

Recall that a general linear program was defined as a problem of minimiza

tion. This means that the optimal point is the feasible point that lies the farthest 

in the negative direction of the cost vector (see fig. 3.1). 

If a linear program consists of a minimization problem and its feasible region 

is unbounded in the negative direction of the cost vector, then the cost function can 

take arbitrarily large negative values and the linear program is said to be unbounded. 

If the feasible region of a linear program is non-empty and bounded in the negative 

direction of the cost vector, then the linear program has a finite optimum. 

A n important particular case of a general program is when M = {1 , . . . , m} 

and N — {1,. . . ,n}, i.e. when all constraints are equalities and all variables must 

be positive: 

min cTx 

Ax = b (3.2) 

x > 0 

Such a linear program is said to be in standard form and is denoted by S L P ( A , 6, c): 

S L P ( A , b, c) = LP(A, b, c, {1 , . . . , m}, {1 , . . . , n}, +1) 
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Figure 3.1: Types of maximization linear programs: a) bounded, non-empty feasi
ble region; b) unbounded feasible region bounded in the optimization direction; c) 
unbounded feasible region unbounded in the optimization direction; The arrow in
dicates the optimization direction, which for maximization problems coincides with 
that of the cost vector. The shading indicates the outer (infeasible) side of each line. 

Throughout the rest of the discussion about linear programs it is assumed that 

m < n and rank(A) = m. If rank(A) < m, then m — rank(A) rows of [A\b] can be 

deleted without changing the problem. 

A linear program in standard form is amenable to solution using the Simplex 

algorithm [PS82, p.26]. A linear program in general form can be reduced to standard 

form by using the following straightforward transformations: 

• A variable Xj that is unrestricted as to sign can be replaced with the difference 

of two non-negative variables: 

Xj = xj - xj, xj > 0, xj > 0 

• A n inequality constraint Y%=i ̂ -iixi — ^ c a n D e converted into the equation: 

n 
^ ] AijXj + S j = b j , S j > 0 

i = l 

The variable s, is called a surplus variable. The similar transformation for a 

"less-than" constraint introduces a slack variable. 
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A l l linear programs that arise in Coho are of the form: 

max c x 

Ax>b (3.3) 

x unconstrained 

Throughout this thesis this form of linear program is termed Coho form. A linear 

program in this form is called a Coho linear program, denoted by CLP(^4, b, c). The 

following equation relates a Coho linear program to a general linear program: 

A Coho L P can obviously be reduced to an L P in the standard form. Consider a 

Coho L P that has / inequalities and d variables. Each inequality and each variable 

in the original system requires the addition of an extra variable in the equivalent 

L P in standard form. The equivalent system would have d + / + d variables and / 

equations. Moreover, the special structure of the original L P would be destroyed by 

the transformation. 

However, the Coho L P can be solved without reducing it to the standard 

form by using a general characteristic of linear programs called duality. 

For an L P in general form, called the primal, the following construction 

defines another LP, called its dual: 

CLP(_4,6,c) = LP(_4,&,c, 0,0,-1) 

Primal Dual 

min scTx max sbTy 

Ait-x = bi i G M yi unconstrained 

Ai,:x >bi i G M Vi>0 
(3.4) 

Xj > 0 j G N A..tjTy < Cj 

Xj unconstrained j G N A:j y = Cj 

The dual can also be rewritten in the following way: 
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j e N 

(3.5) 

Vi > o i e M 

yi unconstrained i E M 

This is to say that: 

dual(LP(A, b, c, M, N, s)) = L P ( AT,-c, b,N,M,-s) 

The attributes "primal" and "dual" are interchangeable: the dual of the dual 

is the primal. 

Any primal-dual pair of linear programs has the following remarkable prop

erty: 

• If the dual has a finite optimum, then so does the primal and their optimal 

costs are equal. 

The optimal point of the dual can be easily computed from the optimal point 

of the primal and vice versa. 

• If the dual is infeasible, then the primal is either infeasible or unbounded. 

• If the dual is unbounded, then the primal is infeasible. 

This property means that the solving of an L P can be replaced with the 

computation of the solution to its dual, with almost no loss of information. The 

only case where a precise verdict cannot be given for the primal is when the dual is 

infeasible. However, in many cases, knowing that a linear program doesn't have a 

finite optimum suffices. In fact, in the systems we are examining, the linear programs 

that arise cannot be unbounded. 
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The dual of a Coho linear program is easily seen to be a linear program in 

standard form: 

dual(CLP(A,6,c)) = dua_(LP(_4,6, c, 0,0,-1)) 

= LP(-AT, - c , b, {1, . . . , /} \ 0, {1 , . . . , d} \ 0, +1) 

= LP(-AT,-c,b,{l,...,f},{l,...,d},+l) (3-6) 

= S L P ( - A T , - c , b ) 

= SLP{AT,c,b) 

Therefore the solution to CLP (A, b, c) can be obtained by solving S L P ( A T , c, b). 

It is clear that no variables are added and the structure of matrix A remains intact. 

3.2 Linear Programs in Standard Form 

3.2.1 Feasible Region 

Consider an instance of a linear program in standard form S L P ( J 4 , b, c) with / vari

ables and d equations. It will be seen later that this S L P corresponds to a poly

hedron with / faces in the d-dimensional space, hence the new choice of letters for 

the dimensions of the linear program. The feasible region of S L P is the portion of 

a ci-dimensional affine subspace of R^ that lies inside the non-negative orthant. If 

the feasible region is non-empty, then an optimal point exists at the intersection of 

this subspace with one of the positive semiaxes of Hd. 

3.2.2 Bases 

A set of d linearly independent columns of matrix A is called a basis. A basis 

is described either as a set of column indices, more precisely called the basic set 

corresponding to the basis: 

B = {JU---,Jd} 
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or through the restriction of the linear program's matrix A to the basic set of 

columns: 

B = A B 

The terms "basic set" and "basis" are used interchangeably when there is no chance 

of confusion. 

The columns that belong to a given basis are called basic columns, whereas 

the others are called non-basic. Each column of matrix A of an L P in standard form 

corresponds to a variable. The attribute "basic" extends to variables in the natural 

way. The values of the basic variables are: 

to = B~1b 

The basic solution corresponding to a basis B is a vector x G R / obtained by 

expanding the vector of basic variables in the natural way: 

Xi = < 

0 if j 0 B 

to,k ifj = Bk 

If an LP in standard form has an optimal solution, it also has a basic optimal 

solution. 

A basic solution that has no negative components represents a feasible point 

for the L P and is called feasible. Otherwise it is called infeasible. The attribute 

"feasible" extends to bases in the natural way. 

The situation in which a basic variable is equal to 0 is called degeneracy. 

The corresponding basis and the basic solution are said to be degenerate. More 

than one basis can correspond to the same degenerate solution, all such bases being 

degenerate. 

3.2.3 Pivot ing 

A well-known algorithm for solving linear programs is called Simplex. Simplex 

operates on linear programs in standard form. 
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In addition to the description of the linear program to be solved, Simplex 

must be supplied with a feasible basis for that program. Finding a feasible basis is 

non-trivial, but it will be dealt with later. 

Simplex is a greedy algorithm. During each step, it tries to replace one of 

current basic columns with a new column in order to obtain a new feasible basis of 

lower cost. 

The search ends at the optimal basis, which is the cheapest feasible basis. 

If a non-degenerate feasible basis is not optimal, then there exists at least 

one non-basic column whose introduction into the basis results in a decrease in the 

cost. Let tj be the column vector defined by: 

tj = B-% 

The quantity 
— T 
cj = Cj ~ cB^j 

is called the relative cost of column j with respect to basis B. The introduction of 

column j in basis B might be favorable (reduce the cost) if the relative cost of the 

column is negative. 

Once a column with negative relative cost is found, the algorithm must de

termine which column to evict from the basis. The decision is guided by the re

quirement that the new basis must be feasible and is accomplished by the following 

computation: 
, . * 0 , i k = arg mm —-

i tj,i 

where k is the index of the column to be evicted. In the presence of degeneracy k 

may not be uniquely defined. 

The action of moving from one feasible basis to another is called pivoting. 

The cost decrease achieved by pivoting as described by the computations 

above is 

to,k -
'•j,k 
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The following observations are in order regarding pivoting: 

• If tjj < 0, Vi = 1, . . . , d, the feasible region of the linear program is unbounded 

in the negative direction of the cost vector. Feasible points of arbitrary low 

cost exist. 

• In the presence of degeneracy, the quantity can be 0 and so can the 

decrease in cost: 

EH, j s.t. t0,i = 0 A CJ < 0 A tj:i > 0 => — = 0 => — C j = 0 

This is equivalent to a change of basis without a change in the basic solution. 

It is said that the new column enters the basis at zero level. 

In the absence of degeneracy, Simplex works because: 

• There exists a finite number of feasible bases. 

• At every step the cost decreases monotonically, ensuring that a basis is never 

visited again. 

• The optimal solution is among the basic feasible solutions. 

Simplex is by no means guaranteed to produce the shortest path from an 

initial feasible basis to the optimal basis, but it typically performs well in practice. 

3.2.4 Cycl ing 

In the presence of degeneracy, Simplex is no longer guaranteed to work with any 

choice of a favorable column. It is possible that, once arrived at a degenerate basis, 

the algorithm takes a sequence of favorable pivots to subsequent degenerate bases. 

These pivots do not decrease the cost and the algorithm can eventually return to 

the first degenerate basis. Obviously, the algorithm can loop indefinitely through a 

set of degenerate bases that all yield the same solution unless special precautions 

are taken. This phenomenon is called cycling. 
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Cycling occurs when the cost function is a positive combination of less that 

d columns of a basis. 

Cycling avoidance is achieved by Bland's anticycling algorithm [Bla77], [PS82, 

p.50] that chooses the lexically first pivot at first step: 

• The columns that enters the basis is the lowest numbered one. 

• In case of a tie in the computation of the column that leaves the basis, the 

lowest numbered column is selected. 

3.2.5 The Simplex Tableau 

At each step, the Simplex algorithm makes pivoting decisions based on the values 

in the matrix 

T = B~1[A\b] 

The matrix T is called the Simplex tableau. For simplicity, its last column is indexed 

by 0. Computing the Simplex tableau from the input data every time pivoting occurs 

would render Simplex prohibitively expensive: solving a d x d linear system with 

f — d right-hand sides takes 0(S(f — d)) in the general case. 

In practice, this expensive solution is replaced with the computation of each 

new tableau from the previous one at the lower cost of adding one row to each of 

the others (0(d(f - d))). The tableau corresponding to the initial basis still needs 

to be computed from the initial data. 

Let B' be the basis obtained by replacing column j = B(l) with column j' in 

basis B and T and T' the tableaus corresponding to bases B and B', respectively. 

Then T' can be obtained from T through the following operations: 

T ' ( . = Ti./Tiji 

T'i, = Ti.-Tij.T't, 

The use of a tableau presents the disadvantage that numerical errors accu

mulate as the algorithm proceeds. 
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Figure 3.2: Linear program with two optimal vertices 

3.3 Linear Programs in Coho Form 

The Coho form of a linear program can offer more insight, particularly as regards 

the geometric meaning of linear programs. 

Consider a primal linear program in Coho form with d variables and / in

equalities C L P ( A C , bc, cc) and its dual in standard form SLP(AS ,bs ,cs), where 

As = (AC)T, bs = cc, cs = bc. 

The feasible region of a Coho L P is a closed convex polyhedron: 

f e a s ( C L P ( A c , 6 c , c c ) ) = P H ( ^ C , 6 C ) 

The optimal point of a Coho L P is a vertex of the feasible region. As illustrated by 

fig. 3.2, the optimal vertex might not be unique. For example, all the points in a 

hyperplane normal to the cost vector have the same cost. If the vector of the cost 

function is normal to a face of the polyhedron and oriented towards its interior, all 

the vertices on that face are optimal. 

Each constraint in the primal defines a halfspace whose boundary is a hy

perplane. Each such hyperplane contains a face of the feasible region, unless it is 

redundant. Each row of the primal Ac (i.e. each column of the dual As) represents 

a normal to a face of the feasible region oriented towards the interior of the feasible 

region. Such a normal is called an inward face normal. 
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A basis in the standard-form dual represents a set of d halfspaces in the 

Coho primal. The intersection of their boundaries determines a point in R d , which 

is the primal solution associated with that basis. The basic primal (Coho) solution 

corresponding to a basic set B is: 

Basic primal solutions will be termed vertices by abuse of terminology, as in general 

they do not represent vertices of the feasible region of the Coho L P . Those of them 

that are actual vertices of the feasible region will be termed proper vertices. 

The intersection of the basic halfspaces of the Coho L P is a cone whose vertex 

is the basic primal solution. This cone represents the feasible region with respect to 

the constraints comprised in the basis and is called the basic feasible cone. 

A feasible basis of the standard dual represents a set of halfspaces of the Coho 

primal such that the primal cost vector is a positive combination of their inward face 

normals. In other words, the primal cost vector must lie inside the cone generated 

by the basic inward face normals. This cone is called the basic cost cone. It is 

natural to consider both the basic cost cone and the primal cost vector originated 

at the basic primal solution. 

The bases that Simplex visits along the way to an optimal solution (other 

than the optimal one) represent feasible suboptimal, solutions in the standard form. 

In the Coho form, they represent infeasible supraoptimal solutions (see fig. 3.3 b). 

Monotonicity is preserved, however: the cost decreases monotonically in the stan

dard form, whereas the infeasibility (expressed as the distance to the closest feasible 

vertex along the cost vector) decreases monotonically in the Coho form. 

The optimal vertex of an L P in Coho form is an intersection point of d 

halfspace boundaries that satisfies both of the following properties (see fig. 3.3 a): 

• The cost vector is a positive combination of the inward face normals. A l l 

non-optimal vertices lead to at least one negative component. 
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Figure 3.3: Types of vertices in a Coho LP: a) optimal; b) Coho-infeasible and 
standard-suboptimal, at least one constraint is violated; c) Coho-suboptimal and 
standard-infeasible, the cost vector does not lie within the cost cone 

• It satisfies all the constraints, i.e. it belongs to the feasible region. Any non-

vertex intersection point breaks at least one constraint. 
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Chapter 4 

Combinatorial Simplex for Coho 

A n important obstacle in the way of the verification of systems with moderately high 

dimensionality (5-20 variables) by Coho is the need to solve linear programs with 

sufficient accuracy. Coho allows that the solution to any L P be an overapproximation 

of the feasible region in the direction of the cost function, like in figure 3.3 b. 

Underapproximation (figure 3.3 c), however, is not allowed - otherwise Coho might 

incorrectly label faulty systems as correct. The amount of overapproximation must 

be kept low, or Coho might fail to verify correct systems. 

Coho has previously employed an implementation of the classical Simplex 

algorithm for its linear programming needs. Oftentimes, the optimal solution to 

a Coho L P represents the solution to a highly ill-conditioned linear system. In 

such cases the solutions computed by classical Simplex tend to contain substantial 

errors for which no bounds are provided, thus preventing Coho from functioning. In 

the previous implementation, these large errors often led to arithmetic exceptions 

preventing Coho from generating any results. 

From a purely mathematical point of view, Simplex works by taking favorable 

pivots until it reaches a basis from which no favorable pivot can be taken. This basis 

is optimal and the solution that corresponds to it is the optimal solution of the linear 

program. 
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The mathematical view of Simplex implies that the arithmetic operations 

with real numbers are performed with infinite precision. Computers, however, use 

floating-point arithmetic, which uses only limited precision. 

The favorability of a pivot is determined based on the values in the Simplex 

tableau. The errors that affect these values can lead to incorrect decisions about 

the favorability of a pivot. This in turn can result in incorrect determination of the 

optimal basis or in numerical cycling. 

Even if the optimal basis is determined correctly, the optimal solution, which 

is itself a tableau column, is affected by errors for which no bound is available. 

These problems are addressed as follows: The special structure of the bases 

that arise in Coho linear programs is exploited in order to make the computation 

of tableau columns directly from the input data feasible, thus reducing errors. Two 

methods for determining error bounds on tableau columns are presented, one relying 

on the use of running error analysis and the other analytical. The analytical method 

is presented in the next chapter, with the rest of the aforementioned material forming 

the topic of the current chapter. 

Even with improved accuracy in the computation of the tableau columns 

and availability of error bounds, it is still possible that all the pivots from a basis 

are neither clearly favorable nor clearly unfavorable, which renders the basis neither 

clearly optimal nor clearly suboptimal. In such a case, branching of the computation 

path is used in order to guarantee the visitation of the optimal basis. This is 

presented in detail in chapter 6. 

As discussed in chapter 3, it is advantageous to solve the dual of a Coho linear 

program instead of reducing the primal problem to standard form at the price of 

altering its structure. This better solution is assumed to be used throughout the 

rest of this chapter. At the same time, the fact that the matrices of the Coho linear 

program and of its standard form dual are identical up to a transposition enables 

us to refer to the original Coho L P when that is advantageous to understanding the 
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system. 

The remainder is structured as follows: The first section presents the idea of 

computing tableau columns only when access to them is required by the program. 

Then the linear-time computation of such a column is examined. The description 

of a technique called running error analysis, used in order to obtain error bounds 

on the solution, concludes the chapter. 

4.1 Lazy Tableau Generation 

Simplex arrives at the optimal solution by taking a series of favorable pivots. Taking 

a pivot amounts to identifying a non-basic column that replaces a column in the 

basis, thus producing a lower-cost feasible basis. Depending on how the selection 

of the column that enters the basis is made, the need to know some of the tableau 

columns might not arise during a particular pivoting operation. In particular, it is 

enough to discover the lowest-numbered favorable column: if this column is chosen 

to enter the basis, then knowledge of the higher-numbered columns of the tableau is 

unnecessary in the current step of Simplex and their computation can be omitted. 

This policy, called lazy tableau generation, is the one followed in the version of 

Simplex tailored for Coho. The computation of a part of the tableau is thus avoided. 

It must be emphasized that with incomplete tableau generation, the nec

essary tableau columns are computed from the input data rather than from the 

incomplete tableau of the previous pivot. The only data that is passed from one 

pivot to the next is the new basis. A basis is a collection of integers, so error 

propagation and accumulation across pivots is eliminated. 

As mentioned in subsection 3.2.5, the computation of tableau columns from 

the input data is in general undesirable because of the high computational cost. 

For Coho linear programs however, a more efficient algorithm is available: a tableau 

column can be computed in linear rather than cubic time. This makes the algorithm 

very practical. 
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4.2 Efficient Computation of Tableau Columns 

Each inequality in a Coho linear program C L P ( A C , bc, cc) represents the halfplane 

corresponding to the backprojection of a side of a two dimensional polygon back 

into the full-dimensional space. As a result, each row of matrix Ac contains either 

one or two non-zero elements. The one non-zero case occurs when the polygon side 

is parallel to one of the coordinate axes that determine the plane that contains it. 

Hence matrix As = {AC)T of the standard-form dual of a Coho L P contains either 

one or two non-zeros in each column. 

Let B be an arbitrary basis of the linear program in standard form. As B 

represents a subset of the columns of matrix As, B is a square matrix that, like As, 

has either one or two non-zero elements per column. 

A tableau column is described by the equation: 

B-lAs..tj, i f j V O 

B~lbs, if j = 0 

The task at hand is to solve a linear system whose left-hand side is B. Such 

a linear system is henceforth referred to as a Coho linear system. Its solution can 

be determined in two stages that are described in the subsections that follow. 

4.2.1 Reduction to a Cycle 

Whereas the columns of B are restricted to containing 1 or 2 non-zero elements, the 

rows of B are not under a similar constraint. However, if a row of matrix B contains 

no non-zero elements, B is trivially singular and a solution cannot be determined. 

If a row i of matrix B contains exactly one non-zero element, which lies in 

column j, the value of the variable Xj can be determined immediately. If column j 

contains another non-zero element in a row i', variable Xj can be eliminated from 

row i' by the appropriate substitution. Row i and column j of matrix B can then 
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be deleted, as the value of Xj has been determined and no other equation depends 

on this value. 

The rows of B momentarily containing one non-zero element each can thus 

be eliminated one by one. The key to keeping the running time of this computation 

linear is to check the number of non-zero elements left in row i' after deleting row i. 

If there are zero non-zero elements left in row i', matrix B is trivially singular and 

the algorithm terminates. If there is one non-zero left, the algorithm proceeds with 

the solving and deletion of row i'. 

In the end, no rows of B with less than 2 elements are left. It is possible that 

matrix B has become empty, in which case a solution to the problem has already 

been found. 

Now consider the case where B is non-empty. One row and one column have 

been deleted from matrix B during each step of the algorithm, so B must still be a 

square matrix. Let its dimension be n. 

• By the termination condition of this part of the algorithm, each row contains at 

least 2 non-zero elements. Consequently, B must contain at least 2n non-zero 

elements. 

• By hypothesis, each column of B contains at most 2 non-zero elements at 

the start of this part of the algorithm. As the algorithm proceeds, the num

ber of non-zero elements in columns that remain in the matrix is unchanged. 

Consequently, B must contain at most 2n non-zero elements. 

Clearly, both inequalities can be satisfied only if each column and each row of B 

contains exactly 2 non-zero elements. 

Consider a graph where the vertices correspond to the rows and there is an 

edge from vertex ii to vertex 12 if and only if there exists a column of matrix B 

whose non-zero elements are in rows i\ and Because every row has exactly 2 non

zero elements in it, every vertex in the corresponding graph has degree 2. Therefore 

the graph is a collection of disjoint simple cycles. 
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Figure 4.1: Non-zero structure of a cycle Figure 4.2: Cycles in a matrix 

Each simple cycle corresponds to a linear system that can be solved indepen

dently from the others. By a suitable permutation, matrix B can be rearranged such 

that all its non-zero elements are grouped in square blocks along the main diagonal. 

Blocks are henceforth termed cycles, as each block represents a simple cycle in the 

graph derived from the matrix. 

Each n x n block A can be permuted such that its non-zero elements are on 

the main diagonal, right above the main diagonal and in the lower left corner, as 

shown in Fig. 4.1: 

Ai>:j ^0 j =iv j = (i mod n) + 1 (4.1) 

The partitioning of matrix B into cycles is achieved by a greedy walk through 

the graph corresponding to B. This is easily doable in linear time. 

4.2.2 Solving a Cycle 

In order to complete the solving of a Coho linear system, solutions to its cycles must 

be found. 

Let A be a cycle with the structure described by (4.1) and let 

Ax = y 

be the corresponding linear subsystem to be solved. 

(4.2) 
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The rows of matrix A can be scaled to obtain its normalized form: 

A = 

1 -al 0 0 

0 1 -a2 0 .... 0 

0 . . . . 

' O n 0 

0 1 - a n - i 

. . 0 1 

which is equivalent to: 

Aitj — < 

Let 

Pk= { 

1 if j = i 

— a* if j — i mod n + 1 

0 otherwise 

Yli=iai iffc = l , . . . ,n 

1 if k = 0 

It is obvious that: 

Pk = otkPk-i, Vfc = l , . . . ,n 

The first row in equation (4.2) yields: 

- y i 
X2 

Oil 

More generally, rows 1,..., i yield: 

Xi+l = 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Finally, combining this with the last row of equation (4-2) gives the formula for x±: 

Xl 
l-Pn 

(4.9) 
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Thus, the solution for x\ is ill-conditioned if Pn is close to 1. Chapter 5 presents 

a more detailed error analysis. Clearly, equation (4.9) can be rewritten to obtain 

similar formulas for the other X j ' s , all with the same denominator. Rather then 

computing each x, separately, it is more efficient to compute x\ as per formula 

(4.9), and then use the recurrence: 

= ^Vi^ i e {!,... , n - l } (4.10) 

Clearly, the above algorithm runs in 0(n) time. Other algorithms that employ 

elimination, like L U decomposition, can be used in order to achieve the same running 

time. However, the one presented in this subsection has the advantage of yielding 

the result in a concise form that is appropriate for the analysis of the numerical 

stability of the system. 

4.3 Running Error Analysis 

An important problem with the Coho LPs is the need for an error bound on the 

computed solutions. In addition to the solution proper to the Coho LP, error bounds 

on the solution are necessary if the verification is to be sound. More precisely, it is 

important to never underapproximate the feasible region of the L P and the optimal 

cost. 

Pivoting decisions in the Simplex algorithm involve comparisons between 

tableau elements. In the presence of ill-conditioning, these comparisons might yield 

uncertain results. The availability of error bounds on tableau elements and other 

quantities enables the algorithm to recognize cases of uncertainty in the result of a 

comparison. 

The Simplex algorithm and the algorithm that computes tableau columns 

make use of elementary operations only. This leads to the approach of computing 

an error bound on the result of each elementary operation. The computation of an 

error bound along with the result proper of each operation leads to an error bound 
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on the final outcome. This approach to error analysis is called running error analysis 

[Hig96, p.72]. A slight modification of the method is called interval arithmetic. 

In many cases, interval arithmetic doesn't work because of the explosion of 

the interval as the computation proceeds through a long algorithm. The slightly 

better running error analysis does work for Simplex because, with the computation 

of tableau columns from input data proposed in section 4.1, there is no floating-point 

data propagated from one pivot of the algorithm to the next. Although running 

error analysis tends to lead to overly pessimistic error bounds when applied to a 

long algorithm, it can in some cases provide sharper, a posteriori bounds than an a 

priori analysis can provide [Hig96, p.73]. 

The arithmetic operations on floating-point numbers are generally subject to 

rounding errors when executed on digital computers. This is caused essentially by 

the fact that floating-point numbers are stored with only a fixed number of digits, 

whereas the result of an operation might require more digits than the particular 

numeric format has available. 

A l l the arithmetic operations executed on a computer follow the fundamental 

rule of the arithmetic of the computer: 

where &(x op y) is the result of x op y computed by that arithmetic and u is a constant 

for a particular arithmetic called the unit roundoff. For the I E E E double precision 

arithmetic, u = 2" 5 3 « 1.1 x I O - 1 6 . 

When the operands are themselves affected by errors, they can be regarded 

as intervals on the real axes. Consider the pair (x, e) to be the representation of the 

interval [x — e, x + e]. Let (x,e) = (x\, ei) op(x2, ef)- Then x = Q(x\ o p£2) and 

Division can be regarded as the inversion of denominator followed by the multipli-

fl(a;opy) = (xopy){l + 5), \5\<u, o p G { + , - , x , ^ } 

e\\x2\ + e2\xi\ + u\x\ + eie2 if op 6 {x} 

if op e { + , - } 
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cation of its result with the numerator. Let (x, e) = (xo, eo) 1 . Then x = 1/XQ 

and 

e = < 
if |x 0 | > eo 

ko|(|a;o|-eo) 

+00 otherwise 

Clearly, the computation of the error bounds is itself affected by rounding 

errors. Fortunately, the error bound does not need to be known with high precision: 

its order of magnitude will often suffice. Moreover, disastrous cancellation cannot 

occur in the computation of error bounds: all the numbers involved are positive and 

subtraction does not occur. 

There are some problems with the use of running error analysis. The first 

is that ideally one would like to have a simple formula to compute error bounds 

for the solutions of a linear system. The other issue is that the computation of 

error bounds on the result of each arithmetic operation along with the actual result 

increases the running time of the program. However, the penalty is a constant factor, 

not a deterioration of the asymptotic running time. As verification is executed as 

an off-line process, an increase of the running time by a constant factor can be seen 

as a reasonable price to pay if the algorithm would otherwise fail. 
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Chapter 5 

Analytical Attack on the Error 

As emphasized in previous chapters, the success of Coho verification depends strongly 

on the accuracy with which the linear programs that it produces are solved. The 

main floating-point (hence error-prone) computation that is performed as part of 

Simplex is the determination of the tableau columns corresponding to a basis. 

However, for bases other than the optimal one, only enough accuracy is 

needed to be able to determine the departing and the entering basic variables. This 

is the case because no floating-point values computed at a basis are subsequently 

reused in our version of Simplex. For most of the bases encountered during a run 

of Simplex, the computation of tableau columns using the linear-time algorithm 

presented in section 4.2 along with running error analysis produces satisfactory 

results. 

On the other hand, there can exist suboptimal bases at which the error 

bounds on the tableau columns are not tight enough to establish whether the ba

sis is optimal and, if it is not, which pivot leads closer to optimality. Whereas 

such a situation can be dealt with by branching the computation path, it is clear 

that obtaining sufficiently sharp error bounds to be able to decide with certainty is 

preferable. 

The combinatorial solution to a linear program consists of its optimal basis. 
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Once the optimal basis has been found, the optimal solution of the standard-form 

dual is determined as column 0 of the tableau. However, if the solution to the Coho 

primal is sought after, a slightly different linear system has to be solved. Whereas 

the solution to the standard dual is: 

ar5 = (As

:tB)-1 bs (5.1) 

the solution to the Coho primal is: 

xc = [AC

B,)-1 bc

B = ((Asfr 1 bCs (5.2) 

The left-hand sides of two linear systems differ only through a transposition. The 

conditioning of any matrix is the same as that of its transpose. Moreover, only 

trivial changes are needed to an algorithm that solves linear systems of the first 

type to make it work for the second type. Thus it is sufficient to analyze linear 

systems of the first type, under the implicit assumption that the results also apply 

to the extraction of the optimal solution to the primal. 

Whereas in some cases the optimal solution of a linear program is the result 

of interest, there are instances where the optimal cost is the sought-after answer to 

the problem. In such a case, the components of the error in the optimal solution that 

are orthogonal to the optimization direction are harmless. This opens the possibility 

of trading accuracy of the optimal solution in directions that are orthogonal to the 

optimization direction for accuracy in the optimization direction. 

Ideally, we would like to be able to characterize the accuracy of the com

puted optimal solution through a closed-form expression depending on the machine 

precision and on the matrix structure. 

In the case of the optimal cost, the comparative flexibility of the constraints 

suggests that an error bound can be established that depends only on the machine 

precision and on the dimension of the system. 

Whereas these problems have not been solved completely, some inroads have 

been made into them. These advances form the subject of this chapter. As the 
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reduction of an independent Coho linear subsystem to independent cycles has been 

described in the previous chapter, the focus here will be on the solving of the cycles. 

The first section presents a new algorithm for solving cycles as part of computing 

tableau columns and the error bound that is thus achieved. The second section is 

concerned with a way of obtaining a better estimate of the optimal cost in cases 

where the optimal basis is ill-conditioned. 

5.1 Error Bound on Cycle Solution 

Section 4.2 presents a linear-time algorithm for solving the cycles that appear in 

, Coho linear systems. The key to keeping the running time linear is the calculation 

of only one component of the solution by means of a direct formula that takes 

0(n) time. The other components are computed recursively starting from the first 

component at the cost of 0(1) each. Clearly, the recursive computation accumulates 

error. This can be avoided by the direct use of formulas similar to (4.9) in order 

to determine each component of the solution. Obviously this increases the running 

time of the algorithm to 0(n2). However, even with this modification, only running 

error bounds on the solution to the cycle are available. 

This section examines an alternative way of solving a cycle and of computing 

a bound on the error in the solution. 

5.1.1 Algor i thm for Solving Cycles 

Let the cycle to solve be described by the equation: 

Ax = y (5.3) 

where A G R " x " , y G R". Matrix A is supposed to be in normalized form as per 

equation (4.4). Then it is possible to express A as: 

A = SBS-1 (5.4) 
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where S is a diagonal matrix: 

S = diag(s) (5.5) 

and B is a particular case of a cyclic matrix in which all off-diagonal elements are 

equal: 
( 

1 i f j = i 

—fi if j = [i mod n) + 1 

0 otherwise 
From equation (5.4) it results immediately that: 

B = S~lAS 

Bi,j = < (5.6) 

(5.7) 

Simple computations show that: 

1 

(S^AS)hj = { 

iij=i 

— a , 5 ^ m o d n ) + l j£ • _ ^ m o c j n ) -j- 1 

0 otherwise 
v 

Equation (5.7) implies that: 

Bi,{i mod = (S 1AS)i(i m o d Vi = l , . . . , n 

which is equivalent to: 

^ = a , * ( imodn)+l y i = 1 

Si 

Memberwise multiplication of the equations above for i = 1,. . . ,n yield: 

(5.8) 

(5.9) 

(5.10) 

n n I l s ( i m o d n ) + l n 
p n = d „ ) + 1 ) = { T J a i y ^ _ } = JJa, ( 5 n ) 

i = l n 
i=l 

i=l 

Thus, 

(5.12) 
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The combination of equations (4.5) and (5.12) yields: 

P=yp~n (5-13) 

The values of s can be obtained from (5.10): 

if i t = 1 
(5.14) 

^ = 0^1 i f l < f c < n 

Matrix S is not unique: multiplication of S by any non-zero real number yields 

another matrix that satisfies (5.3). 

Matrix B with the structure as defined by (5.6) falls within the category of 

circulant matrices or, for short, circulants [Hig96, p.469]. As a circulant, matrix B 

has the property that it is diagonalized by the Fourier transform matrix Fn: 

FnBF-r = A = diag(A) (5.15) 

Also as a property of circulants, vector A contains the eigenvalues of matrix B and 

it satisfies: 

A = Fnb (5.16) 

where b is the first column of matrix B: 

b = B:tl = co l ( l ,0 , . . . , 0,-/3) (5.17) 

By definition: 

(Fn)i>} = e^1 2 * « - i ) C 7 - i ) / n (5.18) 

As b contains only two non-zero elements, a closed form of the eigenvalues of B is 

easy to obtain: 

A; = 1 - pe^1 Mi-V/n (5.19) 

Equation (5.15) implies that B can be expressed as: 

B = F~lKFn (5.20) 
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and 

B - 1 = F - l K - l F , n (5.21) 

From (5.4) and because S is diagonal it follows that: 

A'1 = S B ^ S ' 1 (5.22) 

Equations (5.21) and (5.22) combined yield: 

A ' 1 = S F ^ A ^ F n S 
—l (5.23) 

and, for the solution to the cycle: 

x = AS = SF-xtrxFnS~xy (5.24) 

The computations of s and A take linear time. Fast Fourier transform algorithms 

take 0(nlogn) time. Consequently (5.24) defines an 0(nlogn) time algorithm for 

solving a cycle. 

5.1.2 Estimation of Cycle Condit ion Number 

The direct and inverse Fourier transforms are known to be quite stable. The algo

rithm defined by (5.24) might offer higher accuracy than the linear-time one pre

sented earlier on. As it is more expensive, it will be used only when the linear-time 

algorithm fails to give satisfactory results. 

The expression of cycle matrix A as the product of matrices with simpler 

structure enables the determination of a closed-form expression for the error in the 

solution to the cycle. Error analysis is straightforward for diagonal matrices. 

Numerical stability properties are also known for circulant matrices. For one 

thing, the singular values of a circulant are the absolute values of its eigenvalues. 

Quantity Pn is a product of real numbers, so it is itself a real number. Quantity f3 

is the n t h root of P „ , so it can be expressed as: 

j3 = | /3 |e^((P+ 2 f c W"), where k £ {0, . . . , n- 1} (5.25) 
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and 

[o i f P „ > 0 
P = \ (5.26) 

[1 i f P n < 0 

The eigenvalues of matrix B are given by (5.19). B y combining it with (5.25) the 

following equation results for its singular values: 

d = y/l + \/3\2 - 2|/3|cos6> i = l,...,n (5.27) 

where 

e = (P + 2* + 2 ( » - I ) K ( 5 - 2 8 ) 

n 

A classical measure of the sensitivity of a linear system to numerical errors is the 

condition number of its left-hand side, which is the ratio of its largest to its smallest 

singular value: 

K(B) = ^ (5.29) 
Cmin 

where a m a x = max^ o-, and <rmin = min, CT, . 

It is easily seen that c r m ax a s a function of 6 is realized for the lowest value of cos 6, 

i.e the value of 6 that is closest to 7r (mod 2n): 

1 + 1/31 if (Pn > 0) = (n is even) 
(5.30) 

[^/(l + | /3 | ) 2 -2 | /3 | (1 -cos | ) if (Pn > 0) = (n is odd) 

Equation (5.30) can be expressed more simply as: 

crmax < 1 + |/3| (5.31) 

The value a m ; n , as a function of 9, is realized for the highest value of cosd, i.e the 

value of 9 that is closest to 0 (mod 2TT) : 

= < 
y i / 3 | 2 - 2 | /3|co S | + 1 i f P „ < 0 
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For the Pn < 0 case, the value of K(B) can be determined from equations (5.31) 

and (5.32): 

K{B) (5-33) 
^ | / 3 | 2 -2 | / 3 | co s - + l 

The minimum value of this expression for |/3| > 0 is: 

iY(B) = - V ( 5- 3 4) 
sin — 2n 

which shows that the system cannot be ill-conditioned when P „ < 0 for the values of 

n of interest in Coho (n < 20). This agrees with equation (4.9), which suggests that 

ill-conditioning is related to Pn being close to 1. Only the case Pn > 0 is considered 

henceforth. For this case, <7 m j n simplifies to: 

*„_.„ = | 1 - | 0 | | (5-35) 

From equations (5.31) and (5.35) it follows that: 

K(B) < jl + Jii (5.36) 

The condition number of a diagonal matrix is the ratio of its largest diagonal element 

in absolute value to its smallest: 

max \si\ 

K(S) = \ , , (5.37) 
min | S i | 

i 
As with any matrix, K(S) = K(S~1). 

This enables us to establish an upper bound on the condition number of A: 

K(A) < K{S)K{B)K{S-1) = K{B)K{S)2 (5.38) 

5.1.3 Error Bound on Solution to Cycle 

Formula (5.38), although it has the merit of establishing an upper bound on the 

error in the solution to a cycle, can be rather pessimistic. Known results on circulant 

systems will be combined with error computations for the scaling matrices to obtain 

a tighter error bound on the cycle solution. 
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Forward Error Bound for the Cycle Circulant 

In addition to the properties of circulant matrices presented in the previous section, 

more results about them can be found in [Lin92]. More specifically, a normwise 

forward error bound is established for circulant systems. The result, which holds if 

the input data is free from errors, the only source of errors being roundoff in the 

algorithm, is the following: 

m ^ ~ x l 1 < u(yFFT(n)(KF:2(B)+2)+cCo) = / * ( » , « ) (5.39) 

where fl(:r) denotes the floating-point approximation of x, u denotes the machine 

precision, ceo = V2~ + 4 is a small constant, Kp^B) is a pseudo-condition number 

defined as: 

J E W 

k 

and ^FFT(?I) is a function that characterizes the stability of the particular F F T 

algorithm employed to solve the circulant system. For example, the radix 2, Cooley-

Tukey algorithm has [Lin92]: 

*FFT(TI) < c<plog2n (5-41) 

where = 1.06 x 4 3 / 2 . From (5.19) it follows that: 

| A f c | 2 = l + ) 9 2 - 2 0 c o s 2 7 r ( f c ~ 1 ) (5.42) 
n 

so 

= n ( l + 0 2 ) - 2 ; 9 E L i C o s 2 7 r ( / ; ~ 1 ) 

(5.43) 

A well-known trigonometric result is that: 

^ c o s 2 ^ ^ (5.44) 

k=l 
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which, introduced in (5.43), yields: 

X>*|2
 = n( l+/? 2 ) (5.45) 

k=l 
Similarly to (5.35), we have that: 

min|A f c | > I1-I0H (5.46) 
k 

The substitution of (5.45) and (5.35) in (5.40) yields: 

KMB) < {5.47) 

The introduction of equation (5.41) and inequality (5.47) into inequality (5.39) yields 

the following forward error bound for matrix B: 

fa{n,u)<u l^c* log 2 n (^^_^ + 2j + cc<fj (5.48) 

Errors Affecting the Scaling M a t r i x 

As a cycle matrix A consists of matrix B pre- and postmultiplied with matrix 5 

and S 1 - 1 , respectively, the errors introduced by S and 5 _ 1 have to be considered as 

well. The coefficients a, result from row scaling, so they will be affected by error: 

I fl(aj) — ctA 
1 v , .—- < u (5.49) 

\Cti\ 
The application of the error composition rule for multiplication leads to: 

\3i^hlz31 < (2k - l)u < (2n - l)u \/k=l,...,n (5.50) 

The computation of the quantity: 

Pk = (Pn)™ (5-51) 

involves the power operation, which is not elementary. In general, the quantity xy, 

where x and y are real numbers, is computed as eylnx and, when the inputs are free 

from errors, is affected by the following error [Mul97, p.179]: 

|fl(a;») -x*\ 

\xy\ 
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or, to the first order: 

|fhV) x y\ 
uylnx (5.53) 

\xv\ 

In order to account for the error in the inputs to the power, we use its linearization: 

(x(l + Sx))^1+^ « xv(l + y(5x + lnx Sv)) (5.54) 

Both k and n are error-free integers, so the error that affects their computed ratio 
is: ^ 

| f l ( ^ ~ ^ < u (5.55) 
In I 

Based on the rules expressed by (5.53) and (5.54) and on the error bounds on the 

inputs given by (5.50) and (5.55), the following bound is obtained for f3k computed 

by formula (5.51): 

' ^ l ? ^ 1 ^ - ( ( 2 * - l ) u + | l n | P n | | « ) + - | l n | P „ | | u (5.56) 

\pK\ n n 
which, because ^ < 1, simplifies to: 

' 1 | j f c |

 P ' < (2n + 2 | ln |P n | l )u (5.57) 

Formula (5.14) of sk can be rewritten as: 

Sk = yk (5-58) 

When computed by the above formula, the error that affects sk is: 

\fL{8k)-sk\ \mk)-vk\, Wk)-pk\, 
< rzr, 1 rzz-, h u 

(5.59) 
\sk\ " \Pk\ ' \Pk\ 

< (2n + 2 | l n | P n | | ) u + ( 2 A : - l ) u + u 

< (4n + 2 | l n | P n | | ) « 

The introduction of (5.13) into (5.59) leads to: 

| f l ( sf }7 g f c |
 < (4n + 2n| In |/3||)u (5.60) 

I s * I 

It is easy to see that the same error bounds can be attained for the components 

of S~l. 
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Error Bound for Cycle Solution 

Let us now establish an error bound on the solution of the cycle. Consider that the 

linear system is solved in the following steps: 

t' = S~ly 
t" = B~H' (5.61) 

x = St" 

For all three steps of the algorithm we have to consider two types of error in the 

output. The first type is due to unavoidable roundoff, which is present even if the 

input is error-free. The second type is due to the propagation of input error into 

the output. The relative error in the input appears in the output magnified by the 

condition number of the system matrix: 

a; o u t = Mx-m =* < K(M)l^f (5.62) 
I Pout II ll-^inll 

The first step of the algorithm consists of elementwise multiplication: 

A = skVk (5-63) 

Quantity y is considered free from errors. A bound on the componentwise relative 

error affecting t' follows immediately: 

WU-lUMj-^+u (5.64) 
l*fcl 1**1 

The introduction of inequality (5.60) into the one above yields: 

|fl(**)~**1 < ((4n + l)+2n\ln\fJ\\)ud^ fs(n,u) (5.65) 

Both types of error can occur during multiplication by B~l: 

M M < / B ( „ , „ ) + K ( B ) m ^ i ( 5 , 6 ) 

Componentwise bounds translate directly into normwise bounds, so it is possible to 

introduce (5.65) in the inequality above: 

|lflf/"1 _ / " | | 

" y f | | " < fB(n,u)+K(B)fs(n,u) (5.67) 
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The error bound for the final result is obtained by considering the multiplication 

by S: 
" <fs(n,u)+K(Sy \> 11 (5.68) 

||x|| - \\t»,, 

By combining the equation above with (5.67) it results that: 

l|fl?,7X|1 < K(S)fB(n,u) + (K(S)K(B) + l ) / 5 ( n , « ) ^ g(B,S,n,u) (5.69) 

The introduction of (5.36), (5.37), (5.48), and (5.65) into (5.69) leads to the error 

bound for the cycle solution: 

max \ Si\ 

S^S,n,u) = ! ^ ( ^ l o g 2 n ( ^ % + p + 2 ) + c C o N 

/ i i N (5.70) 
/ max s j • - • x 

+ 
1 + 
11 - + 1 ((4n + l) + 2n|ln |0 | | )u 

From (5.70), we see that errors can be large if \/3\ w 1 or |*'| is large. As 

mentioned earlier, the characterization of the errors caused by solving the circulant 

matrix assumes that (3n is a positive number. When /3 n « 1, the denominator of 

(4.9) is close to zero, reflecting the near singularity of the system. When |^'| is 

large, the system is ill-conditioned due to extreme scaling that can lead to serious 

cancellation. 

This analysis has not considered the fact that matrix B is affected by errors 
d \\t"\\ 

in the calculated value of fi. This can be achieved by computing ^ " . A first 
d WBW 

step towards this can be the evaluation of ^ 1 1 . This remains a topic for future 

research. 

5.1.4 Summary 

This section has analyzed the errors that affect the solutions of Coho linear systems. 

The left-hand side of such a linear system is a cyclic matrix A. In this section we 

have made progress on getting a more detailed characterization of the conditioning 

of A 
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Cyclic matrices have been shown to be expressible as the product A — 

S^BS, where S is a diagonal matrix and B is a circulant matrix. Closed-form 

formulas for the eigenvalues, eigenvectors, singular values, and singular vectors of 

matrices B and S have been presented. 

The singular values of matrix B are proportional to the eigenvalues of the 

same matrix. Matrix B has at most one small eigenvalue and at most one small 

singular value. The eigenvalues and eigenvectors of matrix A coincide with those of 

matrix B. Therefore matrix A has at most one small eigenvalue. 

The conditioning of matrix A is determined by the conditioning of both B 

and S. Unlike B, matrix S can.have several small singular values. The precise 

characterization of the conditioning of matrix A requires knowledge of its singular 

values. Whereas a time-effective method for this computation has not been found, 

the condition number of A can be bounded by the product of the condition numbers 

of B and S, which we know exactly. 

An analysis of the forward error that affects the solution of a cycle has been 

presented. However, this analysis does not lead to a closed-form expression for the 

error bound, which means that further research is necessary in this direction. The 

most significant improvement can potentially result from the determination of the 

singular values of matrix A. This too remains a topic for further research. 

5.2 Estimation of Optimal Cost 

In this section we seek ways to compute the optimal cost of a Coho linear program 

as accurately as possible. The computation of the optimal cost continues naturally 

from that of the optimal solution. 

Consider a Coho linear program CLP(AC ,bc ,cc) whose optimal basis is B. 

The optimal cost can be computed as the dot product of the cost vector and the 
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optimal solution either in the Coho primal: 

(cc)T xc = (cc)T (ACB,-.~1 OCB) (5.71) 

or in the standard-form dual: 

(csf xs = (bc

Bf((Ac

B,T)^cc) (5.72) 

The second method will be considered as it builds directly on the results of the 

previous section. Moreover, it is not difficult to show that the same results apply to 

the first method. 

Of the two operands of the dot product in (5.71), the dual cost vector is free 

from errors. The dual optimal solution, however, is affected by an error that has 

been bounded in the previous section. 

The following forward error bound is known for the dot product of two vectors 

[Hig96, p.69]: 

\a{xTy)-xTy\ < n U \x\T\y\ where i , t / £ R" (5.73) 
1 — nu 

This shows that high accuracy is not guaranteed if \xTy\ <s£ |x | r | y | . O n the other 

hand, the accuracy of the computed dot product is high if all X j j / , terms have the 

same sign. 

A n optimal solution of a linear program in standard form is feasible, so all 

the components of xs must be non-negative. O n the other hand, the signs of bc can 

in general be arbitrary, holding the potential for disastrous cancellation in the dot 

product with the dual optimal solution. 

This problem can be circumvented by making a change of variables such that 

the origin lies inside every projection polygon. This will result in the origin lying 

inside the feasible region of the linear program. The feasible region of the Coho L P 

is defined by the inequality: 

Acxc > bc (5.74) 
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As the origin is inside the feasible region, the above inequality must hold for it: 

Ac0 > bc (5.75) 

i.e.: 

bc < 0 (5.76) 

Because cs = bc, this implies that: 

\{csfxs\ = \{csf\\xs\ (5.77) 

The application of rule (5.73) to equation (5.77) leads to the following formula for 

the relative error epp in the computed cost due to the dot product operation: 

The approximation | — N U
 = 1 introduces negligible errors for for the values of 

n < 20 typical of Coho. 

Formula (5.78) bounds the error that would affect the computed optimal 

cost if the box c and x were free from errors. As it has been seen, a: is a computed 

quantity affected by an error bounded by formula (5.69). The error in the optimal 

solution translates into the following absolute error in the optimal cost: 

Ex = \cTft{x) -cTx\ = \cT{H(x)-x)\ < ||c|| ||fl(a;) (5.79) 

As the magnitude of the cost vector is irrelevant, we can assume ||c|| = 1 and (5.79) 

becomes: 

Ex < ||fl(x) - x|| (5.80) 

The introduction of (5.69) into (5.80) yields: 

Ex < g(B,S,n,u)\\x\\ (5.81) 

The total absolute error E in the cost is obtained by adding errors eop and Ex: 

E = Ex + eDP cTx <Ex + nu cTx (5.82) 
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Equation (5.82) says that, assuming a unit cost vector, the error in the 

computed cost is bounded by the error in computing the optimal point plus nu 

times the exact cost. If the optimal basis is ill-conditioned, the error in calculating 

the optimal point may be large. This motivates considering nearby branches where 

the error can be reduced. 

5.2.1 Use of N o n o p t i m a l Bas is 

When the optimal basis of a linear program is highly ill-conditioned, the error bound 

on the optimal cost computed by the methods discussed so far might be unacceptably 

large. Therefore a better over approximation of the optimal cost may be obtainable 

by computing it for a slightly primal-infeasible well-conditioned basis. 

More concretely, consider a linear program with cost vector c and optimal 

vertex x. Let the optimal cost be approximated by the cost of the vertex x'. Let 

the computed costs of x and x' be &(cTx) and Q.(cTx'), respectively. The computed 

cost of x' differs from the true optimal cost by: 

If this quantity is less than the error H(cTx) — cTx that affects the computed cost 

of x, then x' offers a better approximation of the true optimal cost of the linear 

program. 

The error component fi(cTx') —cTx' depends on the conditioning of the basis 

associated with x'. The error component due to the difference between the true 

costs is: 

Therefore in order for a vertex x' to yield a good approximation of the optimal cost, 

x' must satisfy the following properties: 

• x1 is not far from the optimal vertex x 

&(cTx')-cTx\ = \{&{cTx')-cTx') + {cTx' -cTx)\ 

< I H(cTx') - cTx'\ + \cTx' - cTx\ 
(5.83) 

c x — c x\= x — x proj(. x'—x) C (5.84) 
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Figure 5.1: Types of optimal 2D vertices: a) highly obtuse optimal vertex and highly 
acute cost cone; b) highly acute optimal vertex and highly obtuse cost cone 

• x1 is on a near-normal to the cost vector through the optimal vertex 

• the basis corresponding to x' is well-conditioned 

A square matrix is ill conditioned if at least one of its rows is nearly equal to a 

linear combination of the other rows. The maximum number of rows that are nearly 

equal to linear combinations of other rows represents the degree of ill conditioning. 

Clearly the degree of ill conditioning depends on what is meant by "nearly equal". 

A matrix and its transpose share the same conditioning. This is reflected by 

the fact that the characterization of matrix ill-conditioning with respect to rows is 

also true of columns. 

In the case of Coho linear programs, basic columns in the dual represent 

inward halfspace normals in the primal. The feasibility of a basis means that the 

primal cost vector is a positive combination of basic columns. Therefore at any 

feasible basis the primal cost vector lies inside the cone generated by the basic 

inward halfspace normals, also called the basic cost cone. 

Let us now consider the simple case of a two-dimensional linear program 
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whose optimal basis is ill-conditioned. Ill conditioning has a simple geometric inter

pretation in this case: the two lines that determine the optimal vertex are nearly 

parallel. This means that the optimal vertex is either highly obtuse or highly acute. 

It is easily seen that the angle of the optimal vertex is the supplement of 

the angle of the optimal cost cone. Therefore when the optimal cost cone is highly 

acute the optimal vertex is highly obtuse and vice versa. 

The optimal basis is feasible, so the optimization direction lies inside the 

optimal cost cone. Consequently the angle between the optimization direction and 

either side of the optimal vertex cannot differ from 7 r / 2 by more than the angle of 

the optimal cost cone. Therefore, when the optimal cost cone is very acute, i.e. 

when the optimal vertex is very obtuse, the sides of the optimal vertex are nearly 

perpendicular to the optimization direction. 

This suggests that vertices that lie on the lines that determine the optimal 

vertex are good choices for approximating the optimal cost. Moreover, the more 

ill-conditioned the system is, the better the approximation offered by such points. 

A vertex on one of the lines that determine the optimal vertex is obtained by 

replacing the constraint corresponding to the other line with some other constraint. 

If the optimal vertex is highly acute, then the optimal cost cone is very wide, 

so the orientation of the optimization direction relative to the boundary lines cannot 

be characterized. However, highly acute vertices can be precluded by an appropriate 

scaling of the LP, not discussed further in this thesis. 

Let us now try to extend the approximation idea presented above to higher 

dimensions. Consider a Coho linear program of dimension d whose optimal basis is 

ill-conditioned. For simplicity, we assume its degree of ill-conditioning to be 1, but 

we expect the generalization to higher degrees to be straightforward. 

The i l l conditioning of the basis means that there exists a subset of its 

columns such that any column in the subset is almost a linear combination of the 

other columns in the subset. We term the columns in the aforesaid subset interde-
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pendent and the other columns independent. 

Let Gh be the linear subspace generated by all the basic columns except fc. 

This subspace has dimension d — 1, so it is, in fact, a hyperplane. Let k be one of 

the interdependent columns. The fact that column k is almost a linear combination 

of the columns that generate Gk means that the projection of column fc onto the 

normal to Gk is very small. This implies that, for any two interdependent columns 

fci and fc2, hyperplanes Gkl and G^ 2 are nearly parallel. 

Each of the d hyperplanes generated by a set of d — 1 inward face normals 

contains a face of the optimal cost cone. Hence the faces of the optimal cone 

corresponding to interdependent basic columns are nearly parallel to one another. 

Therefore the wedge formed by two such faces can be either very thin or very wide. 

The cost vector must lie inside the wedge formed by a pair of adjacent faces 

of the optimal cost cone. If the wedge is very wide, no inference can be made about 

the direction of the cost vector. This is the case for highly acute vertices, and can 

be excluded by scaling. 

For a highly obtuse vertex, the wedge is very thin, and the cost vector is 

nearly parallel to either face of the wedge. A normal to a face of the wedge will be 

almost perpendicular to the cost vector. Therefore the points on such a normal may 

suitably approximate the optimal cost. 

A vertex on the normal to the face of the optimal cost cone contained in 

hyperplane Gk can be obtained by replacing basic column k with another column. 

In the Coho LP, this amounts to replacing one of the constraints in the optimal 

basis. 

If an ill-conditioned optimal basis is characterized by the existence of a pair 

of faces of the optimal cost cone that form a very thin, wedge, then the optimal 

vertex is said to be highly obtuse and the optimal cost cone is termed highly acute. 

Otherwise, the vertex is said to be highly acute and the optimal cost cone is termed 

highly obtuse. 
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The error introduced by using a non-optimal basis is proportional to the 

distance of the approximating vertex to the optimal vertex and to the projection of 

the cost vector onto the line passing through the two vertices. In order to bound 

the approximation error, we have to bound these two quantities. 

5.2.2 Error Introduced by Dropping One Constraint 

This subsection considers the case of a (i-dimensional cone and a vector inside the 

cone. A bound on the projection of this vector onto the normal to an arbitrary 

face of the cone is established. Practically, we are interested in very flat and narrow 

cones as described in the proposed approximation solution. 

L e m m a 1 Let u and v be vectors in R " \ { 0 } . 

Let 

6 = -_(u,v) (5.85) 

Let w = w{9) be a function defined as: 

(5.86) 

Then 
u + v < w{6) (5.87) 

P roof It is simple to establish that: 

(5.88) 

Division by ||u|| turns equation (5.88) into: 

(5.89) 

Let: 
v (5.90) 
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Substitution of ( 5 . 9 0 ) into ( 5 . 8 9 ) yields: 

u + v 

u 
= yj 1 + jjfi + Ip, cos 9 ( 5 . 9 1 ) 

The value of n for which the expression of 1 S minimized is: 

M m i n = - C O S C ? ( 5 . 9 2 ) 

Because both | | u | | and | | v | | are positive, n is restricted to positive values. By bringing 

in this restriction the value of u for which ^ i " ^ ^ is minimized becomes: 

IMI 
/.min = m a x(/i[ n i n, 0 ) = m a x ( - cos 9,0) ( 5 . 9 3 ) 

( 5 . 9 4 ) Â min — \ 
0 if 9 < T T / 2 

-cose? if 6» > T T / 2 

If t9 < TT/2, then ^ " 1 , " * " , ^ is minimized with fi = 0 and: 

l |u| | 

If 9 > 7r/2, then ^"M^I^ 1 S minimized with JJ, = cos 9 and: 

( 5 . 9 5 ) 

u + v 

u 
= y/(-cos9)2 + 2 cos 9{-cos9) + 1 = y/l - cos 2 9 = sin9 ( 5 . 9 6 ) 

Equations ( 5 . 9 5 ) and ( 5 . 9 6 ) establish the result of the lemma. 

• 
The proposed approximation relies on the cost vector being nearly parallel 

to any face of the optimal cone. This nearness is measured by the projection of the 

cost function on the normal to a face of the optimal cone. The following theorem 

establishes a bound on this projection: 
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Theorem 1 Let {UJ : i = 1,.. . , n} be a set of n-dimensional unit vectors such that 

U i , . . . , u n _ i are linearly independent. 

Let dx be a unit vector such that 

d _ L - U i = 0 , Vi = l , . . . , n - 1 (5.97) 

Let 

and 

u „ • d ± > 0 (5.98) 

un± = u „ • dx (5.99) 

Un, , = u „ - un±d± (5.100) 

( " _ 1 \ 
<p = max L U„n , V b j u , (5.101) 

( 6 1 , . . . , & „ - 1 ) e R ; - 1 V fei / 

Let f e R n 6e a unit vector such that 
n 

f = J2<H"i (5.102) 

let 

i = l 

where 

ai>0, Vi = l , . . . , n - 1 (5.103) 

Let 

Then 

f± = p r o j d ± f (5.104) 

0 < f± < " " i _ = (5.105) 
y/i£±+W2{<p) (l-U 2J 
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Proof The combination of equations (5.102) and (5.104) yields: 

n n 

f± = f • dx = ( ^ a ; U j ) • dj_ = ^ a ; ( u , • dj_) 
i=i i=i 

The introduction of definition (5.97) into equation (5.106) yields: 

= a„(u„ • dx) 

By definition (5.99) equation (5.107) becomes: 

By definitions (5.98) and (5.99): 

(5.106) 

(5.107) 

(5.108) 

(5.109) unj_ > 0 

Thus, definition (5.103) and inequality (5.109) yield f±_ > 0, establishing the first 

inequality of the theorem. 

Let 

f|| = f - / ± d x (5.110) 

The introduction of (5.102) and (5.108) into (5.110) yields: 

n 7i—l n—1 
f l l = y i a i u ' ~ a n"nj,dx = ^ a j U j + anUn-anUn^dx = ^ OjU, + a„(u„ - U n ± dx) 

i=l i=l i=l 

(5.111) 

The combination of (5.100) and (5.111) leads to: 

n - l 
fj| = a „ u n | | + ^ ajU,- (5.112) 

i=l 

The application of lemma 1 to the vectors in equation (5.112) results in: 

/ / n - i \ \ 
fu > W (5.113) 

By (5.103) a„ must be positive, so: 

n - l 

t=l 

n - l 
(5.114) 

t=i i=i 
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By definition (5.101): 
n - 1 

^ U n | | , ^2 aiui ^ (5.115) 
i = i 

The function w is monotonically decreasing, so the inequality above can be turned 

into: 

w (z. (uni], ]T] a,i\ii\ \ > w (cp) (5.116) 
i = i 

Combined, inequalities (5.113) and (5.116) yield: 

f i i > Q"n^n\\ w (cp) 

In general, for any 2 vectors v and w , the Pythagorean theorem holds: 

For f and it becomes: 

if ir = i 
or: 

By combining inequality (5.117) with equation (5.120) we get: 

/ i _ < y 1 - (anw(ip) u n | | ) 

The introduction of (5.108) into (5.121) yields: 

anuni_ < \Jl- (anw(<f) u„(| ) 

By the Pythagorean theorem for u„ and dx: 

2 

U n , , = I | U „ | | 2 - ulL = 1 - U * x 

The introduction of (5.123) into (5.122) yields: 

anun± < xjl- alw2{<p) (1 - u. 
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(5.117) 

! | v | | 2 - | |projw v | | 2 + | | v - proj w v | | 2 (5.118) 

(5.119) 

(5.120) 

(5.121) 

(5.122) 

(5.123) 

(5.124) 



As the left side of inequality (5.124) has been shown to be positive, we can square 

it to get: 

n 2 n , 2 <T 1 - n 2n,?(,n\C\ _ 

This leads to the following bound on quantity an: 

a2

nu2

n±_ < l - a 2

n w 2 ( < p ) ( l - u 2 ) (5.125) 

an < 1 (5.126) 
^ u 2

± +w2{<p) {l-u2J 

According to (5.109), quantity unj_ is positive. The multiplication of inequality 

(5.126) with u n ± results in: 

a n u n x < U n ^ (5.127) 
• y j u 2

± +W2(<p) (1 ~ U 2 J 

The introduction of equation (5.108) into the left hand of inequality (5.127) leads 

to: 

fL < (5.128) 
y j u l ± +W2(if) (1 - U 2 J 

This establishes the second inequality of the proof. 

• 

The quantity u n ± measures how close to singularity, i.e. ill-conditioned, the 

system is, with lower values representing worse conditioning. The cases in which 

the proposed approximation works are the ones where /j_ is very low. The theorem 

shows that, if < 7r / 2 , then: 

f± < u n ± " (5.129) 

The condition <p < TT/2 represents an obtuseness requirement for the associated 

vertex. This requirement is not very restrictive. We assume this condition to hold 

during the rest of this discussion. 
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5.2.3 Use of the Bounding Box 

In order to bound the approximation error, a well-conditioned overapproximating 

basis within suitable distance of the true optimal basis is needed. Such a basis can 

be guaranteed to exist by adding bounding box constraints to the linear program. 

The fact that each time step of the Coho algorithm starts from a set of 

projection polygons makes the computation of a bounding box for the feasible region 

of the linear program trivial. 

The feasible region of a face undergoes bloating and intersection with other 

projectahedra, but these operations have obvious equivalents for the bounding box. 

Intersection operations might result in a slight overapproximation of the bounding 

box, but this is deemed acceptable. 

The optimal solution of the linear program lies inside the bounding box. 

Consider a line that is the intersection of ti — 1 of the hyperplanes that define the 

optimal vertex. The optimal point divides the line into two halflines. The points 

that belong to one of the halflines are characterized by higher-than-optimal cost, as 

needed for the type of approximation that we are seeking. 

This halfline intersects (at most) half of the bounding box hyperplanes. We 

shall establish that at least one bounding box hyperplane exists such that its inter

section with the halfline is well-conditioned and their intersection point is either on 

the bounding box or very close to it. 

In the arguments that follow, the conditioning of the intersection of the 

halfline with the hyperplane is measured by the projection of the direction of the 

halfline onto the normal to the hyperplane. Low values indicate that the hyperplane 

and the halfline are nearly parallel, so their intersection is ill-conditioned. 

Definition 2 A vector f G R d is e-perpendicular to another vector g G R d iff 
If . K | 

IILJ if1,! < e. We write f J_ e g. 
I|f|| l|g|| _ 

The above definition gives a quantitative measure for how close two vectors are to 

65 



being perpendicular. It is easy to see that f l o g O f 1 g. 

L e m m a 2 Let f be a vector in R d \ {0}. 

Let e be a non-negative real number such that 

1 
(5.130) 

Then f cannot be e-perpendicular to all the directions of an orthogonal basis. 

P r o o f Let E — { e i , . . . , ê } be an orthonormal basis of R d . Then: 

d 

f = ^ 2 ^ e i ' w h e r e fi = f ' ei ( 
i=l 

Because basis E is orthonormal: 

fi = f • ei (5.132) 

and 

(5.133) 

Suppose f _L £ ej, Vi = 1 ... ,d. By (5.132), this implies that: 

/ i<e | | f | | , Vt = l , . . . d (5.134) 

The introduction of (5.134) into (5.133) leads to: 

d 

(5.135) 

or 

1 < eVd (5.136) 

which contradicts hypothesis (5.130). 

• 
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L e m m a 3 Let f G R d be a unit vector such that fi>0, Vi = 1 , . . . , d. 

Let b G R + be a d-dimensional point. 

Let e G R + be a non-negative real such that e < -4=. 
vd 

Then 3k G {1, . . . , d} and 3X > 0 such that: 

Xfk = h (5.137) 

and 
fk > e (5-138) 

and 

A < M (5.139) 
Vl - (d - l ) e 2 

Proof A l l the numbers used in the proof are non-negative, either by definition 

or by being a sum, product, or quotient of non-negative numbers. Non-negativity 

will not be stated explicitly in the rest of the proof. 

Without loss of generality, the unit vectors of the basis can be renumbered such that 

h<bJ±L, V* = l,...,d (5.140) 
Ji Ji+1 

Let 

k= min i : - . ( / _L e e*) (5.141) 
\<i<d 

By lemma 2, such a k exists. 

Let 

By hypothesis: 

A = ^ (5.142) 
Jk 

By the definition of k: 

Vi = l , . . . , f c : / i ± e e i => <e (5.144) 
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The introduction of (5.144) in (5.143) yields: 

d 
£ / 2 > l - ( f c - l ) e 2 (5.145) 
i=k 

By the definition of the Euclidean norm: 

^ 6 2 < | | 6 | | 2 (5.146) 

i=k 
Combining (5.145) and (5.146): 

d 

i=k 
JLZ I - (fc - iw 
i=k 

By the definition of fc: b-f<hi Vi = fc,...,d (5.148) 
Ik Ji 

This can be rewritten as: 

^j- = where v± < 1, Vz = fc,... ,d (5.149) 
fk fi 

The square of the equation above is: 

§ = 4 ? ' v i = & , . . . , d ( 5 - i 5 ° ) 

Summing the numerators and the denominators of the right-hand side of the equa

tion above for i — fc,..., d yields: 

u2 

fk 2 - - d ~ ( 5- 1 5 1) 

i=k 
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The definition of by (5.149) as a subunitary number leads to: 

d d 
Vi = * : , . . . , d (5.152) 

i—k i=k 

By combining (5.151) and (5.152) it follows that: 

d 

33 &fc\2 ^ i=k 
fk 

From (5.147) and (5.153) we obtain: 

< (5.153) 

/ 2 

bk\\ \\b\\2 

JkJ l - ( f c - l ) e : 

The introduction of (5.142) in the inequality above yields 

A < , l l ? > 1 1 (5.155) 
y/1 - (k - l)e2 

The maximum of the right-hand side of the equation above is achieved for k = d: 

A < , "»» (5.156) 

V l - ( d - l ) e 2 

• 

A halfline H L that emanates from the origin in a direction whose components 

are all positive is contained in the positive orthant of the space. Each point b in R d 

can be seen as the corner of the box whose diagonally opposite corner is at the origin. 

Each face of the box is included in a hyperplane that is normal to a coordinate axis. 

If point b is situated in the positive orthant, then halfline H L must intersect at 

least one of the box hyperplanes that pass through b. Lemma 3 shows that such 

a hyperplane exists such that its intersection with H L is both well-conditioned and 

situated not much farther from the origin than the diameter of the box. 
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Figure 5.2: Halfline emanating from inside a box: first intersection with a box line 
is P I , which is ill-conditioned; second intersection is P2, which is well-conditioned 
and close to the bounding box. 

Theorem 2 Let H C be a d-dimensional hypercube of diameter D. 

Let H L be a halfline emanating from a point XQ inside the hypercube in direction f: 

H L = {x G R d : x = x0 + A / , A > 0} (5.157) 

Let e G R+ be a non-negative real such that e < -4=. 
vd 

Then an intersection point xe of H L with a hyperplane H P of the hypercube H C 

exists such that: 

- .( / _L e n H P ) (5.158) 

where T I H P is the normal to hyperplane H P , and: 
l ! s e - s 0 | | < — _ D (5.159) 

V l - (fl - l)e 

Proof Trivial transformations that do not modify distances (translations and 

reflections) can move XQ to the origin and / into the positive orthant. Let b the 

corner of the hypercube now situated in the positive orthant. Lemma 3 can be 

applied to the current values of / and b to obtain a real number A with the properties 

stated by the lemma. 

Let: 

xe = A / (5.160) 
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Because xo — 0 and A > 0, x e G H L by the definition of H L . 

Let: 

H P = {x G Rd : xk = bk} (5.161) 

By the definition of xe: 

(xe)k = A / f c (5.162) 

By the definition of A (lemma 3, (5.137)), (5.162) can be rewritten as: 

(xe)k = bk (5.163) 

which means that xe G H P . The point xe belongs to both H P and H L , so it is an 

intersection point of these two sets. 

One normal to H P is nnp = ek. The angle between nup and / is characterized by 

the quantity: 

| / - n H P | _ \fk\ = h ( J U 6 4 ) 

11/11 I K P I I i • i 

The introduction of (5.138) into (5.164) leads to: 

1/ • ™ H P | ^ / , , a r \ 

11/11 I I I H P I I 

from which (5.158) immediately follows. 

As the point xo is now at the origin, the distance between XQ and xe is: 

| | a ; e - ^ | | = ||x e|| = | | A / | | = A | | / | | = A (5.166) 

By requirement (5.139) of lemma 3: 

A < , 1 1 6 1 1 (5.167) 
^ l - ( d - l ) e 2 

The distance from a point inside a hypercube to a corner of the hypercube cannot 

be larger than the diagonal of the hypercube. As the origin is contained inside H C 

and H&ll is in fact the distance from the origin to corner b of H C , it follows that: 

H&ll < D (5.168) 

The combination of equation (5.166) and inequalities (5.167) and (5.168) establishes 

inequality (5.159). 
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• 

The theorem shows that any halfline emanating from a point inside a bound

ing box has an intersection with a bounding box hyperplane that is well-conditioned 

and situated not far from the point (fig. 5.2). 

Formula (5.159) expresses the tradeoff that exists between the conditioning 

of the intersection point xe of the halfline with the bounding box, measured by e, 

and the distance from the origin XQ of the halfline to xe. Characteristic values of d 

do not exceed 20. Consider that e is required to be at least 0.1, which guarantees 

the good conditioning of the intersection. Then theorem 2 guarantees that: 

\\xe - z 0 | | < lD (5.169) 

where: 

^ ^ - l l , ! , . " - " 1 ( 5 ' 1 7 0 ) 

The value of e could be set to a much lower value and still represent a well-

conditioned intersection while driving 7 very close to 1. That, however, wouldn't 

introduce a qualitative change to the argument. 

In the case of Coho LPs, well-conditioned bases that approximate the optimal 

solution more closely than any basis that contains a bounding box hyperplane may 

exist. However, it is the use of the bounding box that provides an upper bound on 

the distance from the true optimal vertex. 

5.2.4 Error Bound for Coho Cycles 

Having described a way to approximate the cost function for a particular class of ill-

conditioned optimal bases, we shall now examine the application of this idea to Coho 

linear programs. A basis represents a matrix that may contain several independent 

cycles, each of which can be considered separately. 

In order to bound the approximation error, a bound on the projection of an 

arbitrary basic column onto the normal to all the other basic columns is needed. 
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best approximating vertex 
when using 
the bounding box 

best approximating vertex 
when the bounding box 
is not used 

optimal vertex \ 

^ \ c o s t vector! f^ 

" cost = const. 

Figure 5.3: The best approximating vertex, with and without the bounding box 

First the direction of a normal to face of the basic cost cone is determined: 

Lemma 4 Let A be a matrix representing a cycle in normalized form as described 

by (4.4). 

Let d be a vector defined as d = col(Po,..., P „ _ i ) , i.e.: 

dk=Pk-U Vfc = l , . . . , n (5.171) 

Then d is orthogonal to columns 2 , . . . , n of matrix A: 

d±A:d, Vj = 2 , . . . , n (5.172) 

Proof By the definition of the dot product: 

n 
dTA:d = J2diAid (5.173) 

i = l 

The introduction of the definition of A-j results in: 

j-2 n 
dTA:j = ^2di0 + dj-i(-aj-1) + djl+ ^ d i ° = di'• ~ aj-idj-i (5.174) 

i = l i=j+l 
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From the definition of d it follows that: 

dTA:d = P,-_! - ctj-iPj-2 (5.175) 

The use of (4.6) leads to the final result: 

dTA:d = 0 (5.176) 

• 

The next step is to determine the projection of a basic column onto the normal to 

the others: 

Theorem 3 In the conditions of lemma 4: 

\Pn - II 
UprojrfdirAi 

V 1
 + an* 

n-l 

(5.177) 

Proof The columns A:>j,j = 2 , . . . , n are linearly independent. Together with d, 

which is normal to each A j , they form a basis for R". Consequently it is possible 

to express A-^\ as: 
n 

A:tl = ^2cjA.mtj + 6d (5.178) 
3=2 

where Cj e R, Vj £ {2 , . . . , n} and iJeR. 

The first row of equation (5.178) yields: 

1 = c 2 ( - a i ) + 5P0 (5.179) 

Considering that a\ = P\ and PQ = 1 = PQ , this can be rewritten as: 

1 = - c 2 P i + (5P0

2 (5.180) 

From rows 2 . . . n — 1 of equation (5.178) it follows that: 

0 = a + ci+i(-ai)+6Pi-1, i = l , . . . , n - 2 (5.181) 
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Multiplication of the above with P j _ i and the equality a jPj_ i — Pi lead to: 

0 = 0 ^ - 1 - ci+1Pi + 5P?_l: i = l , . . . , n - 2 (5.182) 

The memberwise summation of all of the above equations yields: 

n-1 
0 = E ( c * P i - l - + 6Pi-l) 

t=2 
n—1 n—1 n—1 

= 5>**-i) - E ( ^ + i p * ) + 5 E ^ - i 
t=2 i=2 i=2 
n—1 n n—2 

= E ( ^ - i ) - E ^ p - i ) + ^ E ^ 2 

i=2 t=3 i = l 
n-2 

= c 2 P i - c „ P „ _ i + c 5 E ^ 2 

(5.183) 

t = i 

The last row of equation (5.178) can be expressed as: 

-a-. = c„ + SPn-i (5.184) 

Multiplication with Pn-i and the equality a n P n - \ = P „ enable us to rewrite the 

above : 

- P „ = CnPn-X + &Pl_x (5.185) 

The memberwise summation of (5.180), (5.183), and (5.185) is: 

l + 0 - P n = ( - c 2 P i + c5P0

2) 

n-2 
( c s P x - c ^ - i + c S E ^ 2 ) ( 5 - 1 8 6 ) 

i = l 

This simplifies to: 

or, equivalently: 

+ ( c J l P „ _ 1 + M ^ ) 

n - 1 

1 - P „ = 5 E ^ 2 (5-187) 
i = 0 

8 = L-—^ (5.188) 
n—1 v ' 

P 2  

i=0 
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The orthogonality of d onto Cj S R, Vj = 2, . . . , n implies that: 

and for the direction of A: ±: 

proj ddir A j X = p ro j d A i 5d 

U,i\\ \\A:il\ 

The substitution of the norms of d and A- \ yields: 

(5.189) 

(5.190) 

|projddir A: 

\Pn - I I 

i=0 

n - l 
\Pn - I I 

* p 2 \ »=0 ' + "n 

1 

n - l 

E^ 2 

i=0 

(5.191) 

• 

A low value of quantity ||projddir A : ) i | | means that a bounding-box approximation 

of the cost achieved by dropping column 1 of matrix A will be accurate. 

Equation (5.4) associates a circulant matrix B to matrix A. Equation (5.191) 

shows that the ill conditioning of matrix B, which is reflected in a low value of 

\Pn — 1|, implies that a pivot to the bounding box will yield a satisfactory ap

proximation of the cost. The following theorem establishes a bound on the error 

introduced by pivoting to the bounding box in a Coho LP: 

Theorem 4 Let CLP(A C , bc, cc) be a Coho linear program with n variables and m 

constraints, where the cost vector, cc, is a unit vector. 

Let B be an optimal basis of CLP and x be the optimal vertex of CLP corresponding 

to B. 

Let 

A = {AC

B,)T (5.192) 

Suppose that A is a cycle in normalized form as per equation (4.4). Moreover, sup

pose that the maximum angle between A:>\ and any positive combination ofA-,t2, • • •, A->n 

does not exceed | . 
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Let D be the diameter of the bounding box of the feasible region of the LP. The 

inequalities representing the bounding box are supposed to be among the constraints 

that define the feasible region of the linear program. 

Let a Coho boundary hyperplane be defined as: 

CHP(fc) = {x e R" : Ac

k. x = bc

k} (5.193) 

Let d\ be the intersection of boundary hyperplanes B{2),..., B(n): 
n 

dx = p| CHP(B(*)) (5.194) 
k=2 

Let e be a positive number such that 

e < 4= (5-195) 

Then there exists a basis B' with corresponding basic solution x' such that: 

B'{k)=B(k) Vfc = 2 , . . . , n (5.196) 

and 

-.(di - L £ A s , ( 1 ) . ) (5.197) 

and 

(cc)Tx'-(ccfx\< 1 | P n _ 1 1 

y/l-{n-l)e2 

(5.198) 
n -1 

where Pi is defined in equation (4.5). 

P roof From the definition of CHP, it follows immediately that: 

Ac

k>. _L CHP(A;) Vfc = l , . . . , m (5.199) 

The definition of A implies that A:<k — A C

B ^ ) . , which, introduced into (5.199), 

yields: 

A f e _L CHP(B(fc)) VJfc = 2 , . . . , n (5.200) 
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Definition (5.194) can be restated as: 

di C C H P ( £ ( f c ) ) Vfc = 2 , . . . , n (5.201) 

The combination of (5.200) and (5.201) yields: 

d1±A..jk V/c = 2 , . . . , n (5.202) 

Feasibility requires that the cost vector c c be a positive combination of the columns 

of matrix A. Each column of matrix A can be turned into a unit vector by scaling it 

by a positive factor. Therefore c c is also a positive combination of the unit vectors 

of the columns of matrix A. Along with (5.202) and with the obtuseness hypothesis, 

this enables the application of theorem 1 to bound the projection of vector c c onto 

the normal d\ to the hyperplane generated by dir A:>2, • • • , dir A;>n by the projection 

of vector dir A-^\ onto the same direction: 

| | p r o j d l c c | | < | | p r o j d l d i r A : i i | | (5.203) 

The right-hand side of the above inequality is determined by theorem 3. The intro

duction of its result into (5.203) leads to: 

| |proj d l cc|| < | P " ~ ^ (5.204) 

V l + a 2 

n - l 

\ i=0 

Let H L be one of the two halflines that point x determines on line d\. The fact that 

the optimal vertex must lie inside the bounding box of the feasible region, along 

with (5.195), means that the conditions of theorem 2 are met. B y hypothesis, the 

bounding box inequalities are part of the linear program. Let the hyperplane in 

theorem 2 be: 

a normal to which is: 

H P = CHP(r ) (5.205) 

n H p = A c

r - (5.206) 
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Let the intersection point of H P and H L be x'. Then: 

--(di - L £ A c

r , ) (5.207) 

and 

\\x' — aril < . D = (5.208) 
" " - V l - (n - l )e 2 

A vertex of a Coho L P represents the intersection of the n boundary hyperplanes 

that correspond to its basis. Line d\ represents the intersection of n — 1 bound

ary hyperplanes. A vertex of the L P is to be found at the intersection of d\ with 

any other boundary hyperplane, the corresponding basis being formed by the hy

perplanes that contain d\ and the hyperplane that d\ intersects. Vertex x is to be 

found the intersection of di with CHP(23(1)). Vertex x' represents the intersection 

of di and C H P ( r ) . This is to say that x' is the vertex that corresponds to the basis 

obtained by replacing 23(1) with r: 

B'(k) = { 
r if k = 1 

(5.209) 

B{k) iffc = 2 , . . . , n 

This definition satisfies (5.196) and, introduced in (5.207), yields (5.197). 

The difference in cost between vertices x' and x is: 

\(cc)Tx' - (ccfx\ = \\x'-x\\ | | p r o j x , _ x c c | | (5.210) 

The fact that x' £ d\ and x 6 d\ implies that (x' — x) || d\, so equation (5.210) can 

be rewritten as: 

\(ccfx' - (ccfx\ = \\x' - x\\ | | proj d l c c | | (5.211) 

The introduction of inequalities (5.208) and (5.204) into (5.211) establish result (5.198) 

of the theorem. 

• 
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Theorem 4 establishes an upper bound on the error introduced into the cost 

by pivoting to the bounding box of the feasible region. In general, the solution to 

an n-dimensional linear system can be seen as the intersection of n hyperplanes. If 

the linear system is non-degenerate, the intersection of n — 1 of these hyperplanes 

represents a line. The solution of the system is the intersection of this line with 

the other hyperplane. Theorem 4 establishes a lower bound on the angle between 

the intersection line of n — 1 hyperplanes and the normal to the n t h hyperplane 

as a measure of the conditioning of the system. Good conditioning and a fairly 

low distance between the optimal and the approximating vertex can be obtained 

simultaneously. The theorem also shows that the approximation error decreases as 

the conditioning of the circulant matrix corresponding to the optimal basis worsens, 

i.e. as \Pn — 1| approaches 0. The approximating solution was required to be a basic 

solution of the L P in order to enable its discovery by the Simplex algorithm. 

Ill-conditioning due to the scaling matrix S does not appear to be curable by 

pivoting to the bounding box. However, we suspect that obtuse ill-conditioning of 

the optimal basis should always be nearly orthogonal to the cost vector. This gives 

us hope for the discovery of better methods resulted from the exploitation of this 

property. 

Theorem 4 refers to the case of a matrix with one cycle and so do the results 

presented earlier in this chapter. A n n-dimensional square matrix can have at 

most n/2 non-trivial cycles. By the triangle inequality, the total error affecting the 

computed cost is bounded by the sum of the errors for the cycles. This observation, 

along with the error bounds established for cycles, leads immediately to an error 

bound for the computed cost of a general, multicycle matrix. 

5.2.5 Summary 

In this section we have studied the approximation of the optimal cost through a pivot 

to the bounding box. A class of optimal vertices for which such an approximation 
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introduces small errors has been identified. Then a bound on the component of the 

cost vector which is proportional to the approximation error has been determined. 

The approximation technique relies on the existence of a well-conditioned 

basis formed by replacing an optimal constraint with a bounding box constraint. The 

existence of such a basis has been proven. The approximation error is proportional 

to the distance from the true optimal vertex to the approximating vertex. A bound 

on this distance has been established when a bounding box for the feasible region is 

used. 

The case of Coho linear systems has been examined in the final part of 

the section, with the computation of a bound on the quantity that measures the 

error introduced in the cost by pivoting to the bounding box. The formula for this 

quantity has shown that the bounding box approximation method works for one 

type of ill conditioning, whereas the other type remains an open problem. 
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Chapter 6 

Implementation 

The previous chapters described how the special structure of the linear programs 

arising in Coho can be exploited to produce an efficient and robust version of Sim

plex. This chapter addresses three remaining issues for a practical implementation. 

First, the problem of finding an initial feasible basis is addressed. Second, the way 

the algorithm deals with uncertainty in the results of intermediate computations 

is presented. Third , the solution of linear programs whose feasible region is an 

arbitrary linear transformation of an actual projectahedron is described. 

6.1 Finding an Initial Invertible Basis 

Let SLP(yls , bs, cs) be an instance of a linear program in standard form whose 

matrix As exhibits the Coho-specific structure (either one or two non-zero elements 

in each column). Let d be the number of rows and / be the number of columns 

of matrix As, where d < f. The Simplex algorithm needs a feasible basis Bo from 

which to start pivoting. In order for a selection of columns of As to represent a 

feasible basis, it must first represent a non-singular matrix. Due to the sparsity of 

the matrix As of a Coho L P , finding an structurally non-singular column selection 

is not trivial. 

The structure of matrix As can be seen as a graph G: each row corresponds 
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Figure 6.1: Subgraph that corresponds to an structurally singular matrix. 

to a vertex, whereas each column turns into an edge. The number of non-zero 

elements in any column must be either 1 or 2. A column whose non-zeros are in 

rows i\ and i2 represents an edge between vertices i\ and i2. A column whose only 

non-zero element is in row i represents an edge between vertex i and itself. Graph 

G has d vertices and / edges. Clearly, more that one edge can exist between a pair 

of vertices. 

Let GB0 be the subgraph of G that corresponds to the submatrix (As).Bo-

Matrix {As), g contains all the d rows and d of the / columns of As, so GB0 contains 

all the d vertices and d of the / edges of graph G. 

Consider the linear system LS defined by the equation {As). BQX = y. Each 

connected component of GB0 corresponds to an independent subsystem of LS. The 

structural non-singularity of matrix {As).Bo means that LS must be neither under-

nor overdetermined. In turn, this implies that any independent subsystem of LS 

must have a square left-hand side: one with more rows that columns is overdeter

mined, whereas one with more columns than rows is underdetermined. Therefore, 

any connected component GP of GB0 must represent a square matrix. By the con

struction rules for G and GB0, this means that the graph has equal numbers (dp) of 

edges and vertices. The connectedness of GP requires the use of dp — 1 edges to link 

the dp vertices together in a tree structure. The dp-th edge can join two arbitrary 
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Figure 6.2: Subgraph that corresponds to an invertible matrix. 

vertices, thus creating a cycle with some overhanging trees. 

This suggests the following way of finding an invertible column selection: a 

set of trees is constructed by depth-first search such that every vertex is assigned to 

a tree; then a cycle is introduced in every tree. 

Any edge between two different vertices represents a column of matrix As-

In turn, each column of As corresponds to a side of a projection polygon. Moreover, 

all sides of a projection polygon represent edges between the same pair of vertices 

of G. So for each edge there will exist at least two more edges between the same 

vertices. Therefore it is always possible to create a 2 x 2 cycle in any existing tree 

by adding one more edge between two vertices that are already connected to one 

another. 

In addition to satisfying the condition described above, each cycle must give 

rise to a well-conditioned linear system. We assume that all projection polygons 

are of a low enough degree that it cannot be the case that all vertices of one of 

them are highly obtuse. This assumption does not exclude any polygons that other 

components of Coho would handle conveniently: in order for all its vertices to be 

highly obtuse, a polygon must be at least of degree 109, which would render the 

computational cost of its manipulation prohibitive. 

84 



As shown in chapter 5, the cycles embedded in the linear systems that arise in 

Coho can be affected by two types of ill-conditioning: one is caused by the quantity 

Pn being close to 1; the other is the result of the bad scaling of the coefficients a, of 

the cycle. The following method of picking the initial basis guarantees the avoidance 

of ill conditioning of the first type: Suppose that the cycle is to be created between 

vertices i\ and 12 between which an edge is known to exist. Vertices i\ and 12 

define a projection plane and the edges between i\ and %2 represent the edges of the 

corresponding projection polygon. The projection polygons are assumed to have no 

highly acute vertices. Therefore, no projection polygon encountered in Coho can 

have the property that every two of its sides are nearly parallel to one another. It 

follows that it must be possible to pick a pair of edges of the projection polygon 

corresponding to the pair ( i i , 1̂ 2) such that the angle between them is not close to 

either 0 or TT. Then the cycle formed by this pair of edges will of necessity be free 

from ill conditioning of the first type. 

It is also possible to create a cycle in a tree by adding an edge from a node 

to itself, if one such edge, i.e. a constraint with only one variable, is present. The 

conditioning is guaranteed to be good in this case. 

The method of finding an initial feasible basis described above does not guar

antee the absence of ill conditioning caused by the bad scaling of the a, coefficients 

of the cycle. Instead, this problem is handled by the branching method described 

in section 6.3. 

6.2 Finding an Initial Feasible Basis 

The basis B identified in the previous section might not have all the properties 

required by the Simplex algorithm: some components of T-.fi = B~1b might be 

negative, i.e. B might be infeasible. This calls for another computational step 

towards a feasible basis. 

Classical solutions to the problem do exist, but they involve the introduction 
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of auxiliary variables that increase the overall computational cost and, worse, destroy 

the special structure of the LP's matrix As- These disadvantages render a solution 

tailored specifically for the case at hand more desirable. This new solution employs 

a helper linear program SLPH (Ag , bg , Cg ) constructed as follows: 

The columns of Ag corresponding to the negative components of T:fi ap

pear negated in Ag, thus ensuring that B is a feasible basis for SLP 7 *. The same 

construction ensures that the distribution of the non-zero elements stays the same 

in Ag as in As- S L P f f being completely similar to SLP, the same computational 

techniques developed for SLP can be applied to S L P f f . 

A variable that appears negated in the helper L P is called undesirable. Our 

objective is to obtain a feasible basis that contains no undesirable variable. 

The cost function of the helper LP makes the undesirable variables expensive, 

whereas all the other variables have 0 cost. In order for a pivot to be favorable, it 

must drive one of the undesirable variables out of the basis. 

Given a linear program and a feasible basis for it, the basis remains feasible 

if arbitrary changes are made to the non-basic columns and to the cost function. 

This enables us to flip the sign of the undesirable variable that has left the basis 

while keeping the basis feasible. A variable ceases to be undesirable when its sign is 

flipped. The cost of the variable is made 0, as the variable doesn't need to be kept 

out of the basis anymore. 

Eventually all the undesirable variables are driven out of the basis or the 

original L P was infeasible. The optimal basis BH that we end up with contains only 

-{As):d if B{i) = j and Tifi < 0 

{As).j otherwise 

1 if B(i) = j and Tifl < 0 
< 

0 otherwise 
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variables that appear with the same sign in the original linear program SLP. As the 

right-hand sides 65 and bg are also identical, BH must be a feasible basis for SLP 

as well. The problem of finding an initial feasible basis for SLP(Ag, bs, cs) is thus 

solved. 

6.3 Dealing with Uncertainty and Avoidance of Cycling 

Earlier on in this thesis as well as in most textbook presentations, the description 

of the Simplex algorithm assumes that the numeric operations executed on various 

floating-point numbers are free of errors. Unfortunately, on real machines, this is 

not the case. Unavoidable rounding errors introduce an uncertainty with which any 

floating-point number is known. Floating-point numbers in computations can be 

thought of more accurately as real intervals: x ± e. 

Errors in the result of a computation can diminish the usefulness of the result, 

occasionally rendering it worthless. The problem can be even more complicated 

when a decision in the program has to be made based on the computed value of 

some floating-point number. Any comparison between floating-point numbers can 

be reduced to the comparison between their difference and 0: 

I O J « ( I - ! , ) O 0 , V o £ { < , <, >, >, =, 

so the case of comparisons of computed floating-point numbers with 0 will be con

sidered henceforth. The result of the comparison a;±e ° 0 is undetermined if e > |a:|. 

This is tantamount to saying that the sign of x is uncertain. 

Comparisons between computed floating-point numbers are used in Simplex 

in order to decide whether a column shall enter the basis and which column shall 

leave the basis. In the presence of ill-conditioning, computed quantities occasionally 

have uncertain signs. Clearly, deciding to take the wrong branch can make the 

algorithm fail: 

87 



• If the wrong column is evicted from the basis, an infeasible basis is reached. 

Upon checking the sign of the new basic variables, the algorithm signals failure. 

• If the wrong column enters the basis, a (slightly) more costly basis is reached. 

The algorithm may end up caught in a cycle of bases: at some of them a 

correct pivot is taken, at at least one other base the pivot is wrong, the overall 

outcome being cycling of a type different that the one treated by Bland's 

anticycling algorithm. 

Bland's anticycling algorithm essentially provides ways of dealing with the 

fact that two or more computed quantities are equal. W i t h floating-point 

computer arithmetic, two computed quantities are very seldom equal, even in 

cases where error-free computation would have lead to equal results. 

A n obvious solution to the problems raised by uncertainty in the results 

of comparisons is to try both possible paths of the computation. The arrival at an 

infeasible basis or an increase in the cost mean that the current path of computation 

is in fact wrong and must be abandoned. Clearly this could potentially lead to an 

explosion in the running time of the algorithm, as each of the n comparisons that 

the algorithm would effect on an error-free machine can in principle turn into a node 

of a computation tree with 2 " nodes. 

In practice, however, the number of uncertain comparisons is expected to be 

low. When selecting a column to enter the basis, a clearly favorable column shall 

always be chosen even if possibly but unclearly favorable columns do exist. Similarly, 

if a clearly favorable column is found but the identity of the column that must leave 

the basis is uncertain, another clearly favorable column can be given preference if 

the column to be evicted is clear in its case. Overall, exploring multiple branches is 

likely to be necessary only in the neighborhood of an ill-conditioned optimal basis. 

A record of the visited bases is maintained such that various paths of the 

computations are not explored more than once. Clearly, this also solves the problem 

of cycling. 
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When the optimal basis of an L P is ill-conditioned, it might not be possible 

to label it as "clearly optimal", but only as "possibly optimal" instead. If the ill-

conditioning of the optimal basis is particularly strong, the optimal basis may seem 

to be numerically singular: the error bound on some of the basic variables simply 

becomes infinite. Moreover, bases whose cost is close to but different from the 

optimal one, may not appear to be suboptimal or infeasible, but "possibly optimal" 

instead. 

The algorithm terminates the search for an optimal basis when a clearly opti

mal basis is detected or when the exploration of the paths arising from comparisons 

with unclear result is finished. In order to compute a good estimate of the optimal 

cost, the algorithm must visit the optimal basis or, if this one is ill-conditioned, a 

standard-suboptimal well-conditioned basis whose cost is very close to the optimum. 

The algorithm guarantees that, for any visited feasible basis, a neighboring 

basis of lower cost will be visited if one exists. This holds true even if the true sign 

of the cost difference between the bases is not clear from the computation. Applied 

recursively, this invariant leads to the fact that the algorithm is guaranteed to visit 

the optimal basis, which has no feasible and less costly neighbor. 

Each type of basis provides the following information about the primal L P 

in standard form: 

• A feasible, clearly standard-suboptimal basis provides an upper bound on the 

cost. 

• A n infeasible basis that yields a feasible solution to the dual provides a lower 

bound on the cost. 

• A clearly optimal basis provides both an upper and a lower bound on the cost. 

• A maximal set of potentially optimal bases provides an upper and a lower 

bound on the cost. The cost of each basis in the set can be computed as an 
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interval. The ends of the union of all these intervals represent bounds on the 

true optimal cost. 

• A numerically singular basis B that has been reached by taking a clearly 

favorable pivot from another basis S p r e d must have a lower cost than the basis 

that preceded it (23pred)-

A n upper (and sometimes also a lower) bound on the optimal cost can be 

computed by examining the record of visited bases. The upper bound and the 

corresponding solution is the information that Coho expects. The accuracy of the 

bound depends directly on the closeness to optimality of the visited bases and on 

the error bounds on the solutions that correspond to these bases. 

Clearly a truly optimal basis is the best result of the linear program as 

regards cost. When the optimal basis is ill-conditioned and consequently produces 

a solution with large (possibly infinite) error bounds, it is necessary to replace it 

with the feasible suboptimal well-conditioned basis that has the lowest cost. This 

slightly suboptimal solution to the standard L P under consideration represents a 

slightly infeasible solution to its Coho dual. So the true feasible region of the Coho 

L P is over approximated as required. 

Ill conditioning can affect the optimal basis of the helper L P used for deter

mining an initial feasible basis for the actual L P . In this case the optimal basis rather 

than the optimal cost is of interest. Ill conditioning translates into the discovery 

of more than one possibly optimal basis rather than one clearly optimal one. The 

solution to this type of uncertainty is to try out all the possibly optimal bases of 

the helper L P as initial feasible bases of the actual L P . 
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6.4 Conserving Structure after Moving Forward in Time 

Consider a Coho projectahedron described by the following equation at the begin

ning of the time step: 

Ax0 > b (6.1) 

where A £ R d x d , b £ R r f and xo represents a feasible point at the beginning of the 

time step. 

The linearized model for the time step has the form: 

x = Mx + q (6.2) 

where M £ R d x d , q £ R d . The duration of the time step is A t . Let xe be 

the position position at the end of the time step of a point whose position at the 

beginning of the time step was XQ. By integrating (6.2) for the time step we obtain: 

xe = eMAtx0 + (eMAt - I)M~lq (6.3) 

The combination of (6.1) and (6.3) yields the equation of the region resulted from 

moving the projectahedron forward in time: 

AExe > be (6.4) 

where E = e ~ M A t and be = b + A(I - e~MAt)M~lq. Matrix E results from matrix 

exponentiation and is therefore non-singular. 

At the end of the time step, the region described by AExe > be needs to 

be projected back onto various projection planes. This amounts to solving several 

Coho linear programs of the form 

CLP{AE,be,c) (6.5) 

where c is some cost function. 

In general, the postmultiplication of A by E yields a matrix that no longer 

presents the two non-zeros per row structure that describes a projectahedron. Clearly, 
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the machinery developed for linear programs whose feasible regions are projectahe

dra cannot be applied directly to linear programs of the type described by (6.5). 

However, the following transformation enables the reduction of the latter type to 

the former: in the original problem: 

min cTx (6.6) 
A E x > b 

the following change of variable is effected: 

y = Ex&x = E~ly (6.7) 

which yields: 

min dTy (6.8) 

Ay>b 

where d = E~lc is the transformed cost function. As matrix A is the left-hand side 

of the inequality that describes a projectahedron, this transformed problem can be 

solved using the techniques presented earlier. 

Let y o p t be the optimal solution to the transformed problem. The optimal 

solution to the original problem is: 

xopt = E~lyopt (6-9) 

The multiplication of the cost vector and of the optimal solution by the 

quantity E~l — eMAt are the only operations that need to be added to the Coho 

L P solver in order to enable it to deal with the kind of LPs described by (6.5). 
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Chapter 7 

Conclusions 

7.1 What has been Accomplished 

The verification performed by Coho makes heavy use of linear programming. The 

applicability of the tool depends critically on the accuracy of the solutions to the 

linear programs that it has to solve. 

Linear programming has a well-known mathematical solution that is the Sim

plex algorithm. However, numerical errors that are inherent to floating point com

putation sometimes make this algorithm produce unacceptably imprecise results. 

This thesis studied ways of exploiting the special structure of the linear programs 

that arise in Coho in order to compute better solutions to them. 

A Coho linear program cannot be solved by Simplex directly. The standard 

solution of introducing additional variables in order to bring it to standard form 

would have destroyed its special structure. This has been circumvented by observing 

that the dual of a Coho linear program is a linear program in standard form that 

exhibits the same special structure and to which Simplex can be applied directly. 

Moreover, the solution of the Coho L P is straightforward to compute from that of 

its dual. 

As part of solving Coho linear programs, it is necessary to compute Simplex 

tableau columns. The computation of a tableau column implies solving a linear 
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system. The structure of such linear systems is closely related to that of the linear 

programs from which they arise. Because of their structure it was possible to devise 

a linear-time algorithm for solving Coho linear systems. Based on the linear-time 

solver, Simplex was modified such as to prevent the propagation of numerical errors 

between steps. 

The main numerical problem that affects the Simplex algorithm as modified 

for Coho is the errors that affect the solutions to linear systems. Therefore research 

effort has been directed towards computing more accurate solutions to these systems. 

A characterization of the numerical stability of the Coho linear systems has 

been obtained. Whereas in quantitative terms it is not complete, it does shed light 

on the possible sources of ill-conditioning. A possible way of determining a forward 

error bound on the solution to a Coho linear system has been presented. 

In the case of most of the LPs encountered in Coho, their optimal cost, 

rather than their optimal solution, is of interest. The research has identified a class 

of linear programs for which the computation of the optimal cost can be achieved 

with a small error, although the optimal vertex is replaced with the vertex obtained 

by pivoting from the optimal basis to the bounding box of the feasible region. This 

class has been shown to contain a part of the Coho linear programs. 

The error bounds that are computed on the results of floating-point oper

ations permit the linear program solver to identify the situations where the use 

of a computed value could potentially lead to an incorrect computation path. In 

such situations, the solver tries out both possible computation paths if the first one 

fails. This strategy prevents the solver from failing by reaching an infeasible basis 

and guarantees that the optimal basis of the linear program to solve is eventually 

visited. 

A n implementation of Simplex that incorporates the modifications proposed 

in the thesis was written in Java and integrated within the Coho verification tool. 

The implementation raises several non-trivial issues that have been presented in 
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detail in the body of the thesis. 

In conclusion, this research has resulted in progress towards better solutions 

to Coho linear systems and, by way of consequence, to Coho linear programs. Conse

quently, this is expected to increase the usability of Coho. However, some important 

questions have remained open. 

7.2 Suggestions for Further Research 

The study of the Coho linear programs is not finished yet. As mentioned in the 

body of the thesis, some further explorations are necessary. 

The fact that the optimal cost is computed in two ways which yield errors 

that vary in opposite directions with the conditioning of the optimal basis suggests 

that it should be possible to determine an error bound on the optimal cost of a Coho 

linear program that depends only on the unit roundoff and on the dimension of the 

space. 

In order to get a tighter bound on the error in the optimal solution, a better 

estimate of the condition number of cyclic matrices is needed. Experimental evidence 

suggests that the available estimate overapproximates the true condition number by 

several orders of magnitude when the i l l conditioning is high. 

Moreover, there are linear systems for which the condition number is an 

overly conservative error predictor [CF88]. The identification of such a situation re

quires knowledge of the singular value decomposition (SVD) of the system's matrix. 

General methods for SVD computation are not linear time. A linear-time or nearly 

linear-time SVD method tailored for Coho cyclic matrices is a desirable first step 

towards more precise error prediction. 

If highly acute ill-conditioned vertices can be shown to occur, a method 

for dealing with them is certainly needed. Rescaling the system appears to be a 

promising approach. This is a topic for future research. 

When the optimal basis B of a linear program represents a highly obtuse and 
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ill-conditioned vertex, a slightly suboptimal basis B' is guaranteed to exist if the 

bounding box of the feasible region is made part of the linear program. Unfortu

nately, a theoretic proof that B' is reached during the search for optimality is yet to 

be found. The experimental evidence currently available is inconclusive. 

Alternatively, the algorithm could be modified to ensure the visitation of 

basis B'. The slightly suboptimal basis B' becomes the optimal basis if the cost 

vector is tilted slightly in an appropriate way. Such a slight modification to the cost 

function would guarantee that basis B' is discovered as the optimal basis. 

Running error analysis is presently used for all the Simplex operations that 

involve real numbers. In the absence of ill-conditioning, this is wasteful. A conser

vative estimate of the condition number of a left-hand side of a Coho linear system 

can be computed in linear time. The ability to recognize cases where error analysis 

is unnecessary based on the condition number estimate can improve the running 

time of a program by a constant factor. 

The use of Givens rotations [Hig96, p.371] for the solving of the Coho linear 

systems has been suggested by scientific computations experts [HabOl]. The problem 

seems to be that Givens rotations work best when various rotations are independent, 

which is not true in our case. 

Another suggestion was the replacement of Simplex with the interior point 

method as the algorithm used for solving linear programs. This avenue is entirely 

unexplored. 
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Appendix A 

Definitions and Notations 

A . l Notations 

The notation for matrix element selection follows the Matlab style, with the selector 

appearing as a subscript rather than as an argument. 

matrix element 

Aij : the element of matrix A at the intersection of column i and row j 

matrix row 

Ait: : row i of matrix A 

matrix column 

A-j : column j of matrix A 

set of matrix columns 

A:j, where J — ( j i , . . . ,jc} is a set of indices of columns of A : a matrix S 

with C columns such that S-iC = A:jc, Vc = 1 , . . . , C 

element of row or column 

bk : element k of the row or column b 

set of column elements 
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bj, where J — {ji,..., jc} is a set of indices of elements of b : a column matrix 

S with C elements such that Sc = bjc, Vc — 1,..., C 

vertical matrix join 

[A\B] : a matrix obtained by appending each row of matrix B to the same-

index row of A; A and B must have the same number of rows 

identity matrix 

In : the n x n identity matrix; n is omitted when it results from the context 

A.2 Definitions 

linear subspace 

A linear subspace S of R d is a subset of R d closed under vector addition and 

scalar multiplication. 

afRne subspace 

A n affine subspace A of R d is a linear subspace S translated by a vector u: 

A = {u + x:x G S} 

orthogonal complement of a subspace 

The orthogonal complement of a subspace S C R™ is defined by: 

5 X = {y G R" : yTx = 0 for all x G S} 

orthogonality of a vector to a subspace 

A vector v is orthogonal to a linear subspace W if v is orthogonal to every 

vector in W. 

projection of a vector onto a subspace 

Let W be a subspace of R d . Let {u\,... ,Uh} be an orthonormal basis for W. 
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If v is a vector in R d , the projection of v onto W is denoted p r o j ^ u and is 

defined by 

h 

pro)w v = ^2{v • ujui 
i = l 

distance from a point to a subspace 

The distance from a point x to a subspace W is defined as: 

d(x, W) = vaind(x,y) 
y € W 

A n important property is that: 

d(x, W) = \\x - projiy x\\ 

positive combination 

Given p vectors x\,... ,xp G R d , a positive combination of them is a vector 

x G R d of the form: 
P 

X 

x = l 

cone 

The cone generated by a set of vectors xi,...,xp G R r f is the set of all their 

positive combinations. 

hyperplane 

A hyperplane in R d is a set of points defined by: 

HP(a, b) = {x G R d : aTx = b} a G Rd \ {0}, b G R 

A hyperplane is an affine subspace of Hd of dimension d — 1. 

hyperplane normal 

Any vector Aa, where A G R \ {0}, is a normal to the hyperplane HP(a , b). 
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halfspace 

A hyperplane H P (a, b) in R d represents the common boundary of two closed 

halfspaces, which are defined as: 

HS>(a,6) = {x G R d : aTx > b} 

RS<{a,b) = {x G R d : aTx < b} 

halfspace normal 

A halfspace normal is a normal to the boundary of a halfspace. 

inward halfspace normal 

A inward halfspace normal n of a halfspace HS is a halfspace normal such that 

Vx G HS, VA G [0, oo) x + An G HS 

Intuitively, a inward normal points from the boundary of the halfspace towards 

its interior. 

The vector a is a inward normal for the halfplane HS>(a, b). 

The vector —a is a inward normal for the halfplane HS<(a, b). 

closed convex polyhedron 

A closed convex polyhedron is the intersection of a finite number of halfspaces: 

/ 

P H = P| HS>(ai, bi), where at G R d \ {0} and bt G R 
t = i 

In matrix form: 

P H ( A , b) = {x e Rd : Ax > b} 

where A G Rfxd and b G R d . 

Each hyperplane may correspond to a face of the polyhedron, although some 

of them might be redundant. 

The polyhedron may be empty or unbounded in some directions. 
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hypercube 

A hypercube in R d is the Cartesian product of d closed real intervals. 

standard basis 

The standard basis of the R d vector space is the basis 

{e; : i = 

where 

I 0, otherwise 

vector norm 

The norm of a vector v in R d is denned as: 

d 

i=l 

unit vector 

A unit vector is a vector whose norm is 1. 

The unit vector, i.e. the direction, of a vector v is defined by: 

dh"u = 77—TT 

ll'"ll 

projection of a vector onto another vector 

The projection of a vector v onto another vector u is defined by: 

proi,, v — u = (v • divu) d i r u 
F J" u-u v ' 

vector angle 

The angle between two vectors u and v is defined by: 

A. (u, v) = arccos " ..̂  = arccosfdir u • dir v) \\u\\ \\v\\ 
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distance between points 

The distance between two points x and y in R d is: 

d{x,y) = \\x - y\\ 
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