A Robust Linear Program Solver for Projectahedra
by
Marius Laza

M.Sc., Polytechnic Institute of Bucharest, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

December 2001

(© Marius Laza, 2001

In presenting this thesis in partial fulfilment of the requirements
for an advanced degree at the University of British Columbia, I
agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of
this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that
copying or publication of this thesis for financial gain shall not
be allowed without my written permission. '

Department of Co M ‘P L)TEK %C/) E/\/CE

The University of British Columbia
Vancouver, Canada

see DEC 1 200

Abstract

Linear programming has a wide range of applications, optirhization—related prob-
lems being one of them. Important concerns in linear programming are efficiency,
robustness, and accuracy. Linear programming is used in a reachability analysis
tool called Coho [GM99] for dynamical systems. Previous experience has shown
that linear programs in this tool lead to highly ill-conditioned linear systems which
prevented successful reachability analysis. This thesis presents a robust linear pro-
gram solver with provable error bounds that exploits the special structure of the
linear programs that result in the reachability tool. This contribution is of interest
for the particular application for which it was developed. Furthermore, it shows
how duality and combinatorial aspects of linear programming can be exploited to

achieve greater efficiency, robustness, and accuracy.

Contents

Abstract ii
Contents iii
List of Figures vi
Acknowledgements vii
Dedication viii
1 Introduction 1
1.1 Motivation L 1
1.2 Contribution 3
1.3 Outline e e 3
2 Background 6
2.1 Projectahedra 6
2.2 Verification as Reachability 7
23 Coho......... e 8
3 Linear Programs 15
3.1 Problem Definition oo oo 15
3.2 Linear Programs in Standard Form 21

3.2.1 Feasible Region 21

6.3 Dealing with Uncertainty and Avoidance of Cycling 87

3.22 Bases 21
3.23 Pivoting L 22 |
324 Cycling, 24
3.2.5 The Simplex Tableau 25
3.3 Linear Programs in Coho Form 26
4 Combinatorial Simplex for Coho 29
4.1 Lagy Tableau Generation 31
4.2 Efficient Computation of Tableau Columns 32
421 ReductiontoaCycle. 32
4.2.2 Solvinga Cycle 34
4.3 Running Error Analysis 36
5 Analytical Attack on the Error 39
5.1 Error Bound on Cycle Solution 41 ‘
5.1.1 Algorithm for Solving Cycles 41
5.1.2 Estimation of Cycle Condition Number 44
5.1.3 Error Bound on Solutibn toCycle 46
5.1.4 Summary e 51
5.2 Estimation of Optimal Cost 52
5.2.1 Useof Nonoptimal Basis 55
5.2.2 Error Introduced by Dropping One Constraint 59
5.2.3 Useof the Bounding Box 65
5.2.4 Error Bound for Coho Cycles 72 ;
5.25 Summary e e e e e 80 1
6 Implementation 82
6.1 Finding an Initial Invertible Basis. 82 '
6.2 Finding an Initial Feasible Basis 85

6.4 Conserving Structure after Moving Forward in Time 91

7 Conclusions 93
7.1 What has been Accomplished, 93
7.2 Suggestions for Further Research 95

Bibliography 97
Appendix A Definitions and Notations 99
Al Notations o v v vt e e e e e e 99
A2 Definitions. e e e 100

21
2.2

2.3

3.1
3.2
3.3

4.1
4.2

5.1
5.2
8.3

6.1
6.2

List of Figures

A three dimensional “projectahedron” 7

The creation of a bloated linear program for the convex hull of the

projectahedron o oo 9
AtimestepofCoho o 10
Cases of LP feasible region andcost 18
Linear program with two optimal vertices 26
Types of verticesina CohoLP 28
Non-zero structureofacycle 34
Cyclesina matrix v v v ittt e 34
Types of optimal 2D vertices 96
Halfline emanating from insideabox 70
The best approximating vertex e e e e 73
Subgraph that corresponds to an structurally singular matrix. ... 83
Subgraph that corresponds to an invertible matrix. 84

vi

Acknowledgements

This thesis would not have been possible without substantial help from several
individuals.

It is difficult to overstate my gratitude to my supervisor, Mark Greenstreet,
for his extensive support and encouragement.

I wish to thank David Kirkpatrick, James Varah, and Eldad Haber for their
contribution of time and ideas to my thesis.

I am grateful to Alan Hu for the encouragement and advice that he provided
to me when I needed them the most.

I would like to thank my wife, Mira, for constantly supporting me and for
believing in my eventual success even when I despaired.

MARIUS LazA

The University of British Columbia
December 2001

To my parents, who wanted it more than anybody else.

viii

Chapter 1

Introduction

1.1 Motivation

The problem of verification is that of showing that a design satisfies its specification.
The design may be of an electronic circuit, a computer program, a network or secu-
rity protocol, a chemical plant, an airplane, etc. For our purposes, the specification
describes the desired behaviors of the design: that the circuit implements a par-
ticular ﬁnite state machine, that the security protocol does not disclose passwords,
that the chemical plant does not e);plode, etc. The goal of formal verification is
to produce a formal, mathematical proof that the design has the desired proper-
ties. For this approach, both the design and the specification must be modeled in a
mathematical framework where such a proof is mathematically meaningful.

This thesis is concerned with verification where the design is modeled by
a system of non-linear, ordinary differential equations (non-linear ODEs) and a
description of the possible initial states of the system. The specification describes
a “safe” region in which the trajectories for all solutions to the model must be
contained. The verification task is to determine whether from a possible initial
state the system can ever reach a forbidden state or not. This type of verification
is termed reachability analysis.

For non-trivial systems, reachability analysis tools must use approximation

techniques: closed-form solutions do not exist. Coho, the verification system de-
scribed in this thesis, is one such tool. It computes over-approximations of the
reachable space to provide a sound verification of safety properties: Coho may fail
to verify a correct system, but it will not erroneously verify an incorrect system. As
part of computing the evolution in time of the reachable state space of a system,
Coho solves a large number of linear programs. The soundness of Coho relies on
computing accurate error bounds for the solutions of these linear programs. To
avoid false negatives, it is desirable that these solutions be as accurate as practical.

Linear programming is a well-studied problem that has a classical solution,
namely the Simplex algorithm. On any real machine, errors are an inherent part
of floating-point computations. In this thesis, we address the impact of numeri-
cal errors from floating-point computations on the accuracy and robustness of the
Simplex algorithm, as applied to our verification system.

The effect of errors in the input and in the intermediate computations on the
result of a problem is measured by its conditioning. The result of an ill-conditioned
problem may be affected by large errors even though the errors in the input or in
the intermediate computations are small.

Many of the linear programs that arise in Coho are ill-conditioned problems.
For such problems Simplex tends to yield solutions that contain large errors, com-
prbmising the applicability of Coho. Moreover, no error bounds are available on
the solutions, preventing the tool from producing a guarantee of correctness for the
system being analyzed.

A noteworthy property of Coho linear systems is that their structure is spe-
cial. More precisely, the feasible region of a Coho linear program is the intersection
of set of orthogonal back-projections into the full-dimensional space of 2D polygons.
This means that any inequality in the definition of the feasible region contains only

two variables. This thesis explores ways of exploiting this special structure in order

to obtain greater accuracy and robustness while keeping efficiency reasonable.

1.2 Contribution

The special structure of the linear programs arising from orthogonal projections al-
lows the implementation of an efficient and numerically robust version of the Simplex
algorithm.

The main contributions of this research are the following:

1. An implementation of Simplex where the combinatorial representation of bases

remains explicit.

e The key to practicality is an O(n) linear system solver, where n is the

number of variables in the system.
2. Numerical robustness achieved by computing accurate error bounds.

e The combinatorial approach above allows us to avoid numeric error prop-

agation between steps, thus keeping the error bounds reasonably tight.

e When the optimal basis is ill-conditioned, it is shown that a pivot can
be made to another basis that has nearly the same cost and is well-

conditioned with respect to the cost function.

3. An error bound for the optimal cost that is independent of the numerical value

appearing in the constraints.

4. Tmplementation

1.3 Outline

This thesis presents an efficient and numerically robust method of solving the linear

programs that arise in the Coho verification tool.

o Chapter 2 presents the context in which linear programs with a particular

structure arise. First, the reachability analysis class of problems and its ap-
plicability to verification are introduced. Then a system that implements
reachability analysis is described with emphasis on its use of linear programs.
Finally, the special structure of these linear programs and their impact on the

usability of the system are underlined.

e Chapter 3 reviews the Simplex algorithm for solving linear programs. Both the

geometric and the combinatorial aspects of the problem are presented. The
concepts of basis, pivoting, duality, and cycling receive particular attention.
The standard implementation of the Simplex algorithm is presented briefly,

pointing out its problems in the case at hand.

e Chapter 4 presents the main features of the proposed modified version of

Simplex. These include the lazy computation of tableau columns and the
linear-time algorithm that accomplishes the computation. The presentation
of the method of computing error bounds on the results of the floating-point
operations proposed to be used by the linear program solver concludes the

chapter.

e Chapter 5 reviews the numerical accuracy and stability of the new algorithm
for solving the particular type of linear systems that arise in Coho. An error
bound on the solution to such linear system as computed by the new algorithm

is established.

The rest of the chapter focuses on ways of obtaining a good approximation of
the optimal cost of a linear program. The geometrical meaning of an optimal
ill-conditioned basis is analyzed and a method of approximating its cost is
proposed and then analyzed. Then the application of this method to the

Coho linear programs is studied.

o Chapter 6 presents the implementation details that were found to be significant

during algorithm implementation.

A chapter of conclusions and suggestions for further research completes the

core of the thesis, followed by an appendix containing the definitions of the mathe-

matical notations and definitions used in the thesis.

Chapter 2

Background

2.1 Projectahedra

A projectahedron is a high-dimensional polyhedron represented by its projections
onto two-dimensional subspaces, where these projections are not required to be
convex. The high-dimensional object is the largest set of points that satisfies each
projection. A full-dimensional polyhedron can be obtained from its projections by
back-projecting each into a prism in R% and computing the intersection of those
prisms. Each (1-dimensional) edge of a projection polygon corresponds to a (d — 1-
dimensional) face of the projectahedron.

The intersection computation for arbitrary polyhedra in high dimensions is
computationally hard. Projectahedra are a restricted class of high-dimensional poly-
hedra and the complexity of computing the intersection of projectahedra does not
appear to have been studied. In the work described in this thesis, the intersections
of projectahedra are never explicitly nor exactly computed. Instead, operations on
projectahedra are performed projectionwise. Sometimes this leads to an overap-
proximation of the result projectahedron. We choose these operations in such a way
as to preserve the soundness of Coho. Whereas the projectionwise computation of

common projectahedra operations like union typically leads to overapproximation,

the same method yields the exact result in the case of intersection.

y z z ; ; Projections

Maximal
Reachable
Space

Figure 2.1: A three dimensional “projectahedron”

2.2 Verification as Reachability

Consider a system whose dimension (i.e. number of variables) is d. The continuous
state space of the system is R¢. Suppose the behavior of the system is described by
the differential inclusion:

z € F(z)

where z € R%. The inclusion models uncertainty in the model, environment etc.

Given two regions, A9 C B C R¢Y, the reachability problem is to determine
whether all trajectories that start in Ag at ¢ = 0 remain in B, either during some
time interval, [0, tenq], or for all time.

For example, we can find A; C R® such that z(t) € A;. The reachability
problem is satisfied if A; C B, Vt € [0, teng)-

A related problem is the following: given a time t; and a region A;, show

that at ¢t = t1, all trajectories are inside A;. This can be reduced to the first problem

by including time in the state with £ = 1 [AL94].

Many verification problems can be formulated as reachability analysis prob-
lems. Consider for example a system consisting of two aircraft [TPS98]. Given the
possible initial positions of the aircraft and their equations of motion, the question
is whether the distance between the two aircraft remains above a lower bound for
all times of interest. Modeling each aircraft as a point in R3, the state of the system
is a point in R®. The safety requirement partitions R® into safe and unsafe regions.
Solving the verification problem boils down to determining whether A; intersects
the unsafe part of RS for any time ¢ of interest.

An important problem in modern circuit design is determining whether a
circuit correctly implements its high-level specification. Reachability analysis can be
used for verifying that circuits, as modeled by non-linear ODE’s, correctly implement

discrete specifications.

2.3 Coho

Coho is a verification system that performs reachability analysis [GM99].

Closed form solutions to reachability problems exist only for a few spe-
cial cases. Consequently, approximation techniques are used to analyze real sys-
tems. These techniques ensure that the approximations always lead to an over-
approximation of the reachable space. Every point that actually is reachable is
included in the approximation computed by Coho. The approximation may also
include points that cannot be reached by the real system. Thus, the verification
performed is sound - an incorrect design will never pass verification, but a correct
one might fail it because of the approximations.

A general representation of high-dimensional objects is intractable. For this
reason, Coho uses projectahedra to approximate high-dimensional objects, such as
the initial region and the reachable regions at various times.

The Coho reachability computation is an iterative, computation algorithm.

A single time-step of this algorithm proceeds as follows [GM98]:

Projections

b2
e
0 -1 0], 0 0.1
0 1 0 3 0.1
LPbloat,zy “ =1 0 0 [yl < 0 + 0.1
1 0 ofl? 2 0.1

0.1
0.1
0.1
0.1

N O Wwo

Maximal
Reachable
Space

LPploat = LPbloat,a:y N
LPbloat,a:z N
I41:)bloat,yz

Figure 2.2: The creation of a bloated linear program for the convex hull of the
projectahedron

-10 -1,) 0.1
1 0 1 9 0.1
BdgelPhow =1 1 o 1 H <lo|+V2|o1
10 1|V y 0.1

advance time

for each face

add error%

assemble edge projection

=

contour

i € F(z) | z € LPedgeyoa:
Flz)C{u|weUst. u=Az+b+v}
F(z) = A,bu

Figure 2.3: A time step of Coho

10

1. The time step begins by loading a polygon and its convex hull for each pro-

2.

jection of the system. The convex hulls are then bloated outward slightly

to ensure that they contain all possible trajectories for the next time step.

Each projection’s bloated convex hull can be translated into a set of linear

inequalities in the projection’s two coordinates. The conjunction of all the

projections’ linear inequalities describes a convex region containing the pro-

jectahedron. At this point, the movement of each edge of each projection’s

polygon can be computed independently. Each edge corresponds to a face of

the projectahedron, and the objective is to compute the furthest outward that

points on the face could move during a time step. For each face, the following

computations occur:

(a)

Restriction: The convex region computed from the convex hulls is further
restricted to a box around the edge in the coordinates of the edge as
described by four more linear inequalities. In the full dimensional space
this is equivalent to constructing a slab around the face being examined.

The slab is a conservative estimate of the convex hull of the bloated face.

Linearize Model: The slab’s description is available in terms of the collec-
tion of linear inequalities computed in the previous step. The derivative
function for the model is assumed to be autonomous (i.e. independent
of time) and finitely piecewise continuous (therefore locally bounded). A
linearization of the system derivatives that is valid in the slab is com-
puted. This model includes linear and constant terms, and gives bounds
on the error introduced by the linearization within the slab. Typically,
this linearization is based on bounds for the variables in the model and
bounds on linear combinations of these variables. These bounds are com-
puted by solving the corresponding linear programming problem. More

formally, let W be the slab represented as a set of inequalities. The

11

non-linear model is approximated with the differential inclusion:
zeEW=>2€Az+b4+U (2.1)

where A € R%*? is a matrix, b € R% is a vector and U € (R x R)% is a

hypercube (i.e. a Cartesian product of intervals).

Advance Time: The linear model is used to move the slab forward in
time according to the first two terms of equation (2.1). The U term
is handled as an inhomogeneous stimulus to the system as described in
step 2e. The forward time transformation is performed by exponentiating
the A matrix. This new convex region contains any point reachable from
the convex hull of the face at the end of the time step (ignoring U).
Moving the slab model forward in time amounts to right multiplying the
left-hand side of its inequalities by a matrix that transforms points at
the end of the time step back to their location at the beginning of the
step and also modifying their right-hand side. The application of matrix
multiplication to the left-hand side would lead to the modification of its
structure. For reasons of computational efficiency, the implementation
transforms the cost function instead of the inequalities. This is described

in detail in chapter 6.

Project Back: The slab’s end-of-step shape is described by a collection
of linear inequalities after time is advanced. Building a polygon from
these inequalities requires projecting the region that they contain back
onto the basis for the projection polygon corresponding to the face. This
projection is computed by running a series of linear programs on the
time-advanced set of inequalities. The cost functions used by the linear

programs are directions contained in the plane of the polygon.

Add Errors: So far, the slab’s movement is entirely controlled by the

linearized model. To treat the error, we add a constant derivative offset

12

within the error bounds throughout the time step, in such a way as to
bloat the slab’s projection outward as much as possible. This involves the
computation of bounds on ||Z||, over the slab. An over-approximation
of ||z||; is computed based on the extremes of each Z; over the slab.

Computing these extremes again involves solving linear programs.

3. Each edge of each projection’s polygon therefore produces an “edge polygon”
at the end of the time step; this polygon contains the projection of all points
that could be reached from the corresponding face within the time step. The
outer boundary of the union of all such polygons is the projection of an over-

approximation of the projectahedron at the end of the time step.

Clearly the use of linear prégramming by Coho is heavy. In fact, a major
limitation to the applicability of this tool stems from the failure of the classical
Simplex algorithm to compute sufficiently accurate solutions to the linear programs
that arise in Coho.

Each vertex of the feasible region of a linear program lies at the intersection
of d hyperplanes, where d is the dimension of the space. If the normal to at ledst
one of these hyperplanes is almost a linear combination of the normals to the other
hyperplanes, the vertex is ill-conditioned: the use of a typical implementation of
Simplex or other LP algorithm for the determination of the vertex position leads to
a result likely to be affected by large errors.

However, the feasible region of any Coho linear program is spécial. As any

convex polyhedron, the feasible region can be described by the matrix inequality:
Az > b

where A € R%*¢ and b € R¢%. Each row of this inequality represents a halfspace that
corresponds to at most one face of the polyhedron. As the feasible region represents
the intersection of back-projections into R% of two-dimensional convex polygons,

each row of matrix A contains at most two non-zero elements.

13

The above observations lead to the idea of exploiting the special structure of
the feasible region of Coho linear programs in order to solve them more accurately,

thus enhancing the usability of the system.

14

Chapter 3

Linear Programs

Linear programs play an important role in the Coho system. This thesis presents a
method for computing better solutions to the particular category of linear programs
that arise in Coho.

This chapter introduces the mathematical description of linear programs and
of an algorithm to solve them. Then, section 3.3 describes the particular linear

programs that arise in Coho.

3.1 Problem Definition

Definition 1 Let m, n be positive integers, A € R™*™ an m X n matriz of reals,
b€ R™ an m-vector of reals, c € R™ an n-vector of reals, M C {1,...,m} a set of

indices of rows of matriz A, N C {1,...,n} a set of indices of columns of matriz

A Let M ={1,...,m}\M and N ={1,...,n} \ N. Let s € {+1,-1}.

15

Then the following problem is an instance of a general linear program:

min sc’

zER™
subject to:

Az =b; teM
Ajz>b; ieM
z; >0 j€N
zj unconstrained j € N

Such an instance of the general linear program is denoted by LP(A,b,c, M, N,s).
Column matriz ¢ is called the cost vector or the optimization direction of

the linear program.

The value Topy for which the minimum is attained, if it exists, is called the

optimal solution of the linear program.

The value scT:vopt 1s called the optimal cost of the linear program.

The sign s specifies whether the problem is one of minimization (+1) or one
of maximization(—1).
The following trivial transformations enable the reduction of other forms of

linear programs to the one above:

e A maximization problem can be turned into one of minimization by negating

the cost vector:

maxclz = —_min—ch

e An inequality of the form:
o’z <b, a,zcR™ beR

is equivalent to:

-z >-b

16

A point £ € R" that satisfies all the constraints of the linear program is
called a feasible point of the linear program. The set of all feasible points represents
the feasible region of the linear program, denoted by feas(LP). A linear program is
called feasible if its feasible region is non-empty. Otherwise it is called infeasible.

As an intersection of convex sets (hyperplanes and closed halfépaces), the
feasible region of an LP is a convex set. An optimal solution lies on the boundary
of the feasible region.

In general, the optimal solution might not be unique. Consider the trivial
case with ¢ = 0: all feasible points are optimal.

Let zop; be an optimal solution to a linear program. If the affine subspace
that is normal to the cost vector and contains zp; contains other feasible points,
they too are optimal.

Recall that a general linear program was defined as a problem of minimiza-
tion. This means that the optimal point is the feasible point that lies the farthest
in the negative direction of the cost vector (see fig. 3.1).

If a linear program consists of a minimization problem and its feasible region
is unbounded in the negative direction of the cost vector, then the cost function can
take arbitrarily large negative values and the linear program is said to be unbounded.
If the feasible region of a linear program is non-empty and bounded in the negative
direction of the cost vector, then the linear program has a finite optimum.

An important particular case of a general program is when M = {1,...,m}
and N = {1,...,n}, i.e. when all constraints are equalities and all variables must
be positive:

mincl z

Az =b (3.2)
z2>0

Such a linear program is said to be in standard form and is denoted by SLP(A, b, ¢):

SLP(A,b,c) =LP(4,b,¢,{1,...,m}{1,...,n},+1)

17

a) b) | c)

Figure 3.1: Types of maximization linear programs: a) bounded, non-empty feasi-
ble region; b) unbounded feasible region bounded in the optimization direction; ¢)
unbounded feasible region unbounded in the optimization direction; The arrow in-
dicates the optimization direction, which for maximization problems coincides with
that of the cost vector. The shading indicates the outer (infeasible) side of each line.

Throughout the rest of the discussion about linear programs it is assumed that
m < n and rank(A) = m. If rank(A) < m, then m — rank(A) rows of [A|b] can be
deleted without changing the problem.

A linear program in standard form is amenable to solution using the Simplex
algorithm [PS82, p.26]. A linear program in general form can be reduced to standard

form by using the following straightforward transformations:

e A variable z; that is unrestricted as to sign can be replaced with the difference

of two non-negative variables:

ot +
T =] —T;, ijO,x

e An inequality constraint E?:l A;jz; > b; can be converted into the equation:

n
ZAijmj +s8;,=b; 8 >0

1=1
The variable s; is called a surplus variable. The similar transformation for a

“less-than” constraint introduces a slack variable.

18

All linear programs that arise in Coho are of the form:

max CT.’L‘

Az >b (3.3)

z unconstrained

Throughout this thesis this form of linear program is termed Coho form. A linear
program in this form is called a Coho linear program, denoted by CLP(A, b,c). The

following equation relates a Coho linear program to a general linear program:
CLP(A,b,c) = LP(A4,b,c,0,0,-1)

A Coho LP can obviously be reduced to an LP in the standard form. Consider a
Coho LP that has f inequalities and d variables. Each inequality and each variable
in the original system requires the addition of an extra variable in the equivalent
LP in standard form. The equivalent system would have d + f + d variables and f
equations. Moreover, the special structure of the original LP would be destroyed by
the transformation.

However, the Coho LP can be solved without reducing it to the standard
form by using a general characteristic of linear programs called duality.

For an LP in general form, called the primal, the following construction

defines another LP, called its dual:

Primal Dual
min s’z max sbTy
Az =1b i€ g 1; unconstrained (3.4
Az > b ieEM yi >0
z; >0 JEN ATy < ¢
z; unconstrained jEN A;,jTy =cj

The dual can also be rewritten in the following way:

19

—smin—sb’y
(-AT); y>—¢; JjeN
(-4"), y=—-¢; jeN (3.5)
y; >0 1 €M
y; unconstrained i€ M

This is to say that:
dual(LP(A,b,¢c, M,N,s)) = LP(-AY, —¢,b, N, M, —s)

The attributes “primal” and “dual” are interchangeable: the dual of the dual
is the primal.
Any primal-dual pair of linear programs has the following remarkable prop-

erty:

o If the dual has a finite optimum, then so does the primal and their optimal

costs are equal.

The optimal point of the dual can be easily computed from the optimal point

of the primal and vice versa.
e If the dual is infeasible, then the primal is either infeasible or unbounded.
o If the dual is unbounded, then the primal is infeasible.

This property means that the solving of an LP can be replaced with the
computation of the solution to its dual, with almost no loss of information. The
only case where a precise verdict cannot be given for the primal is when the dual is
infeasible. However, in many cases, knowing that a linear program doesn’t have a
finite optimum suffices. In fact, in the systems we are examining, the linear programs

that arise cannot be unbounded.

20

The dual of a Coho linear program is easily seen to be a linear program in

standard form:

dual(CLP(A,b,c)) = dual(LP(4,b,c,?,0,-1))
= LP(—AT,—c,b,{1,...,f}\8,{1,...,d} \ 8, +1)
= LP(-A%,—-¢,b,{1,..., f},{1,...,d},+1) (3.6)
= SLP(-AT,—c,b)
= SLP(AT,c,b)

Therefore the solution to CLP(A, b, ¢) can be obtained by solving SLP(A7, ¢, b).

It is clear that no variables are added and the structure of matrix A remains intact.

3.2 Linear Programs in Standard Form

3.2.1 Feasible Region

Consider an instance of a linear program in standard form SLP(A4, b, ¢) with f vari-
ables and d equations. It will be seen later that this SLP corresponds to a poly-
hedron with f faces in the d-dimensional space, hence the new choice of letters for
the dimensions of the linear program. The feasible region of SLP is the portion of
a d-dimensional affine subspace of R/ that lies inside the non-negative orthant. If
the feasible region is non-empty, then an optimal point exists at the intersection of

this subspace with one of the positive semiaxes of R

3.2.2 Bases

A set of d linearly independent columns of matrix A is called ‘a basis. A basis
is described either as a set of column indices, more precisely called the basic set

corresponding to the basis:

B= {jla"'vjd}

21

or through the restriction of the linear program’s matrix A to the basic set of

columns: l

B=Apg

The terms “basic set” and “basis” are used interchangeably when there is no chance
of confusion.

The columns that belong to a given basis are called basic columns, whereas

the others are called non-basic. Each column of matrix A of an LP in standard form

corresponds to a variable. The attribute “basic” extends to variables in the natural

way. The values of the basic variables are:
to = B

The basic solution corresponding to a basis B is a vector z € RS obtained by
expanding the vector of basic variables in the natural way:
0 ifj¢B
z; =
tog ifj =B

If an LP in standard form has an optimal solution, it also has a basic optimal
solution.

A basic solution that has no negative components represents a feasible point
for the LP and is called feasible. Otherwise it is called infeasible. The attribute
“feasible” extends to bases in the natural way.

The situation in which a basic variable is equal to 0 is called degeneracy.
The corresponding basis and the basic solution are said to be degenerate. More
than one basis can correspond to the same degenerate solution, all such bases being

degenerate.

3.2.3 Pivoting

A well-known algorithm for solving linear programs is called Simplex. Simplex

operates on linear programs in standard form.

22

In addition to the description of the linear program to be solved, Simplex
must be supplied with a feasible basis for that program. Finding a feasible basis is
non-trivial, but it will be dealt with later.

Simplex is a greedy algorithm. During each step, it tries to replace one of
current basic columns with a new column in order to obtain a new feasible basis of
lower cost.

The search ends at the optimal basis, which is the cheapest feasible basis.

If a non-degenerate feasible basis is not optimal, then there exists at least
one non-basic column whose introduction into the basis results in a decrease in the

cost. Let ¢; be the column vector defined by:
t; = B_IA]'

The quantity

Cj=¢j— cgtj
is called the relative cost of column j with respect to basis B. The introduction of
column j in basis B might be favorable (reduce the cost) if the relative cost of the
column is negative.

Once a column with negative relative cost is found, the algorithm must de-
termine which column to evict from the basis. The decision is guided by the re-
quirement that the new basis must be feasible and is accomplished by the following
computation:

t .
k= argminﬂ

¢ j)i
where k is the index of the column to be evicted. In the presence of degeneracy k
may not be uniquely defined.
The action of moving from one feasible basis to another is called pivoting.

The cost decrease achieved by pivoting as described by the computations

above is

The following observations are in order regarding pivoting:

o Ift;; <0,Vi=1,...,d, the feasible region of the linear program is unbounded

in the negative direction of the cost vector. Feasible points of arbitrary low

cost exist.
' Lt
e In the presence of degeneracy, the quantity to_’: can be 0 and so can the

s

decrease in cost:

. P ok tok_
Hz,js.t.to’i—O/\Cj<0/\tj’i>0 = =0 = —=¢;=0

Gk tik

This is equivalent to a change of basis without a change in the basic solution.

It is said that the new column enters the basis at zero level.
In the absence of degeneracy, Simplex works because:

e There exists a finite number of feasible bases.

e At every step the cost decreases monotonically, ensuring that a basis is never

visited again.
o The optimal solution is among the basic feasible solutions.

Simplex is by no means guaranteed to produce the shortest path from an

initial feasible basis to the optimal basis, but it typically performs well in practice.

3.2.4 Cycling

In the presence of degeneracy, Simplex is no longer guaranteed to work with any
choice of a favorable column. It is possible that, once arrived at a degenerate basis,
the algorithm takes a sequence of favorable pivots to subsequent degenerate bases.
These pivots do not decrease the cost and the algorithm can eventually return to
the first degenerate basis. Obviously, the algorithm can loop indefinitely through a
set of degenerate bases that all yield the same solution unless special precautions

are taken. This phenomenon is called cycling.

24

Cycling occurs when the cost function is a positive combination of less that
d columns of a basis.

Cycling avoidance is achieved by Bland’s anticycling algorithm [Bla77], [PS82,
p.50] that chooses the lexically first pivot at first step:

e The columns that enters the basis is the lowest numbered one.

¢ In case of a tie in the computation of the column that leaves the basis, the

lowest numbered column is selected.

3.2.5 The Simplex Tableau

At each step, the Simplex algorithm makes pivoting decisions based on the values
in the matrix

T = B~[A]p]

The matrix T is called the Simplex tableau. For simplicity, its last column is indexed
by 0. Computing the Simplex tableau from the input data every time pivoting occurs
would render Simplex prohibitively expensive: solving a d x d linear system with
f — d right-hand sides takes O(d?(f — d)) in the general case.

In practice, this expensive solution is replaced with the computation of each
new tableau from the previous one at the lower cost of adding one row to each of
the others (O(d(f — d))). The tableau corresponding to the initial basis still needs
to be computed from the initial data.

Let B’ be the basis obtained by replacing column j = B(l) with column j' in
basis B and T and 7" the tableaus corresponding to bases B and B, respectively.

Then 7" can be obtained from 7' through the following operations:

T, = T./T;

(3.7)
Tli,: = T; _T'i,j’Tll,:

The use of a tableau presents the disadvantage that numerical errors accu-

mulate as the algorithm proceeds.

25

Figure 3.2: Linear program with two optimal vertices
3.3 Linear Programs in Coho Form

The Coho form of a linear program can offer more insight, particularly as regards
the geometric meaning of linear programs.

Consider a primal linear program in Coho form with d variables and f in-
equalities CLP(A¢,4°,€) and its dual in standard form SLP(AS,b5,c5), where
AS = (AC)T, bS = £, ¢S = If.

The feasible region of a Coho LP is a closed convex polyhedron:
feas(CLP (A%, 4¢, €)) = PH(AS, ¥°)

The optimal point of a Coho LP is a vertex of the feasible region. As illustrated by
fig. 3.2, the optimal vertex might not be unique. For example, all the points in a
hyperplane normal to the cost vector have the same cost. If the vector of the cost
function is normal to a face of the polyhedron and oriented towards its interior, all
the vertices on that face are optimal.

Each constraint in the primal defines a halfspace whose boundary is a hy-
perplane. Each such hyperplane contains a face of the feasible region, unless it is
redundant. Each row of the primal A€ (i.e. each column of the dual AS) represents
a normal to a face of the feasible region oriented towé,rds the interior of the feasible

region. Such a normal is called an inward face normal.

26

A basis in the standard-form dual represents a set of d halfspaces in.the
Coho primal. The intersection of their boundaries determines a point in R¢, which
is the primal solution associated with that basis. The basic primal (Coho) solution

corresponding to a basic set B is:
wC — (ACB,;)-l bCB

Basic primal solutions will be termed vertices by abuse of terminology, as in general
they do not represent vertices of the feasible region of the Coho LP. Those of them
that are actual vertices of the feasible region will be termed proper vertices.

The intersection of the basic halfspaces of the Coho LP is a cone whose vertex
is the basic primal solution. This cone represents the feasible region with respect to
the constraints comprised in the basis and is called the basic feasible cone.

A feasible basis of the standard dual represents a set of halfspaces of the Coho
primal such that the primal cost vector is a positive combination of their inward face
normals. In other words, the primal cost vector must lie inside the cone generated
by the basic inward face normals. This cone is called the basic cost cone. It is
natural to consider both the basic cost cone and the primal cost vector originated
at the basic primal solution.

The bases that Simplex visits along the way to an optimal solution (other
than the optimal one) represent feasible suboptimal, solutions in the standard form.
In the Coho form, they represent infeasible supraoptimal solutions (see fig. 3.3 b).
Monotonicity is preserved, however: the cost decreases monotonically in the stan-
dard form, whereas the infeasibility (expressed as the distance to the closest feasible
vertex along the cost vector) decreases monotonically in the Coho form.

The optimal vertex of an LP in Coho form is an intersection point of d

halfspace boundaries that satisfies both of the following properties (see fig. 3.3 a):

e The cost vector is a positive combination of the inward face normals. All

non-optimal vertices lead to at least one negative component.

27

‘cost vector

cost'véector

Figure 3.3: Types of vertices in a Coho LP: a) optimal; b) Coho-infeasible and
standard-suboptimal, at least one constraint is viclated; ¢) Coho-suboptimal and
standard-infeasible, the cost vector does not lie within the cost cone

e It satisfies all the constraints, i.e. it belongs to the feasible region. Any non-

vertex intersection point breaks at least one constraint.

28

Chapter 4

Combinatorial Simplex for Coho

An important obstacle in the way of the verification of systems with moderately high
dimensionality (5-20 variables) by Coho is the need to solve linear programs with
sufficient accuracy. Coho allows that the solution to any LP be an overapproximation
of the feasible region in the direction of the cost function, like in figure 3.3 b.
Underapproximation (figure 3.3 c¢), however, is not allowed - otherwise Coho might
incorrectly label faulty systems as correct. The amount of overapproximation must
be kept low, or Coho might fail to verify correct systems.

Coho has previously employed an implementation of the classical Simplex
algorithm for its linear programming needs. Oftentimes, the optimal solution to
a Coho LP represents the solution to a highly ill-conditioned linear system. In
such cases the solutions computed by classical Simplex tend to contain substantial
errors for which no bounds are provided, thus preventing Coho from functioning. In
the previous implementation, these large errors often led to arithmetic exceptions
preventing Coho from generating any results.

From a purely mathematical point of view, Simplex works by taking favorable
pivots until it reaches a basis from which no favorable pivot can be taken. This basis
is optimal and the solution that corresponds to it is the optimal solution of the linear

program.

29

The mathematical view of Simplex implies that the arithmetic operations
with real numbers are performed with infinite precision. Computers, however, use
floating-point arithmetic, which uses only limited precision.

The favorability of a pivot is determined based on the values in the Simplex
tableau. The errors that affect these values can lead to incorrect decisions about
the favorability of a pivot. This in turn can result in incorrect determination of the
optimal basis or in numerical cycling,.

Even if the optimal basis is determined correctly, the optimal solution, which
is itself a tableau column, is affected by errors for which no bound is available.

These problems are addressed as follows: The special structure of the bases
that arise in Coho linear prografns is exploited in order to make the computation
of tableau columns directly from the input data feasible, thus reducing errors. Two
methods for determining error bounds on tableau columns are presented, one relying
on the use of running error analysis and the other analytical. The analytical method
is presented in the next chapter, with the rest of the aforementioned material forming
the topic of the current chapter.

Even with improved accuracy in the computation of the tableau columns
and availability of error bounds, it is still possible that all the pivots from a basis
are neither clearly favorable nor clearly unfavorable, which renders the basis neither
clearly optimal nor clearly suboptimal. In such a case, branching of the computation
path is used in order to guarantee the visitation of the optimal basis. This is
presented in detail in chapter 6.

As discussed in chapter 3, it is advantageous to solve the dual of a Coho linear
program instead of reducing the primal problem to standard form at the price of
altering its structure. This better solution is assumed to be used throughout the
rest of this chapter. At the same time, the fact that the matrices of the Coho linear
program and of its standard form dual are identical up to a transposition enables

us to refer to the original Coho LP when that is advantageous to understanding the

30

system.

The remainder is structured as follows: The first section presents the idea of
computing tableau columns only when access to them is required by the program.
Then the linear-time computation of such a column is examined. The description
of a technique called running error analysis, used in order to obtain error bounds

on the solution, concludes the chapter.

4.1 Lazy Tableau Generation

Simplex arrives at the optimal solution by taking a series of favorable pivots. Taking
a pivot amounts to identifying a non-basic column that replaces a column in the
basis, thus producing a lower-cost feasible basis. Depending on how the selection
of the column that enters the basis is made, the need to know some of the tableau
columns might not arise during a particular pivoting operation. In particular, it is
enough to discover the lowest-numbered favorable column: if this column is chosen
to enter the basis, then knowledge of the higher-numbered columns of the tableau is
unnecessary in the current step of Simplex and their computation can be omitted.
This policy, called lazy tableau generation, is the one followed in the version of
Simplex tailored for Coho. The computation of a part of the tableau is thus avoided.

It must be emphasized that with incomplete tableau generation, the nec-
essary tableau columns are computed from the input data rather than from the
incomplete tableau of the previous pivot. The only data that is passed from one
pivot to the next is the new basis. A basis is a collection of integers, so error
propagation and accumulation across pivots is eliminated.

As mentioned in subsection 3.2.5, the computation of tableau columns from
the input data is in general undesirable because of the high computational cost.
For Coho linear programs however, a more efficient algorithm is available: a tableau
column can be computed in linear rather than cubic time. This makes the algorithm

very practical.

31

4.2 Efficient Computation of Tableau Columns

Each inequality in a Coho linear program CLP(AC, ¢, c€) represents the halfplane
corresponding to the backprojection of a side of a two dimensional polygon back
into the full-dimensional space. As a result, each row of matrix A€ contains either
one or two non-zero elements. The one non-zero case occurs when the polygon side
is parallel to one of the coordinate axes that determine the plane that contains it.
Hence matrix AS = (A€)T of the standard-form dual of a Coho LP contains either
one or two non-zeros in each column.

Let B be an arbitrary basis of the linear program in standard form. As B
represents a subset of the columns of matrix AS, B is a square matrix that, like AS,
has either one or two non-zero elements per column.

A tableau column is described by the equation:

B71AS ;, ifj#0
T.;=
B, ifj=0

The task at hand is to solve a linear system whose left-hand side is B. Such

a linear system is henceforth referred to as a Coho linear system. Its solution can

be determined in two stages that are described in the subsections that follow.

4.2.1 Reduction to a Cycle

Whereas the columns of B are restricted to containing 1 or 2 non-zero elements, the
rows of B are not under a similar constraint. However, if a row of matrix B contains
no non-zero elements, B is trivially singular and a solution cannot be determined.
If a row 7 of matrix B contains exactly one non-zero element, which lies in
column j, the value of the variable z; can be determined immediately. If column j
contains another non-zero element in a row 4/, variable z; can be eliminated from

row i’ by the appropriate substitution. Row 4 and column j of matrix B can then

32

be deleted, as the value of z; has been determined and no other equation depends
on this value.

The rows of B momentarily containing one non-zero element each can thus
be eliminated one by one. The key to keeping the running time of this computation
linear is to check the number of non-zero elements left in row ¢’ after deleting row i.
If there are zero non-zero elements left in row ¢/, matrix B is trivially singular-and
the algorithm terminates. If there is one non-zero left, the algorithm proceeds with
the solving and deletion of row 7',

In the end, no rows of B with less than 2 elements are left. It is possible that
matrix B has become empty, in which case a solution to the problem has already
been found.

Now consider the case where B is non-empty. One row and one column have
been deleted from matrix B during each step of the algorithm, so B must still be a

square matrix. Let its dimension be n.

o By the termination condition of this part of the algorithm, each row contains at
least 2 non-zero elements. Consequently, B must contain at least 2n non-zero

elements.

s By hypothesis, each column of B contains at most 2 non-zero elements at
the start of this part of the algorithm. As the algorithm proceeds, the num-
ber of non-zero elements in columns that remain in the matrix is unchanged.

Consequently, B must contain at most 2n non-zero elements.

Clearly, both inequalities can be satisfied only if each column and each row of B
contains exactly 2 non-zero elements.

Consider a graph where the vertices correspond to the rows and there is an
edge from vertex i; to vertex i, if and only if there exists a column of matrix B
whose non-zero elements are in rows i; and i». Because every row has exactly 2 non-
zero elements in it, every vertex in the corresponding graph has degree 2. Therefore

the graph is a collection of disjoint simple cycles.

33

0O o o
oNe) o
00 IR
O O O o i
@ AAAAAAAAA
O O
Figure 4.1: Non-zero structure of a cycle Figure 4.2: Cycles in a matrix

Each simple cycle corresponds to a linear system that can be solved indepen-
dently from the others. By a suitable permutation, matrix B can be rearranged such
that all its non-zero elements are grouped in square blocks along the main diagonal.
Blocks are henceforth termed cycles, as each block represents a simple cycle in the
graph derived from the matrix.

Each n x n block A can be permuted such that its non-zero elements are on
the main diagonal, right above the main diagonal and in the lower left corner, as
shown in Fig. 4.1:

Aj#0& j=iVj=(imodn)+1 (4.1)

The partitioning of matrix B into cycles is achieved by a greedy walk through

the graph corresponding to B. This is easily doable in linear time.

4.2.2 Solving a Cycle

In order to complete the solving of a Coho linear system, solutions to its cycles must

be found.
Let A be a cycle with the structure described by (4.1) and let

Az =y (4.2)

be the corresponding linear subsystem to be solved.

The rows of matrix A can be scaled to obtain its normalized form:

1 -al 0 0
0 1 —ag O 0
A= (4.3)
0 . 0 1 —ap_1
|- 0 0 1]
which is equivalent to:
1 ifj=1
Aij =1 —0; ifj=imodn+1 (4.4)
0 otherwise
Let
k .
: C o ifk=1...,n
P, = iy (4.5)
1 ifk=20
It is obvious that: »
Pk = Oszk._l, Vk = 1,...,TL (46)

The first row in equation (4.2) yields:

gp = LT YL (4.7)
al
More generally, rows.l, ..., yleld:
i
z - Y (yiPi-1)
—
Ti+l =] P (48)
(2

Finally, combining this with the last row of equation (4.2) gives the formula for z;:

n

Z (yPj-1)
o= (4.9)

35

Thus, the solution for z; is ill-conditioned if P, is close to 1. Chapter 5 presents
a more detailed error analysis. Clearly, equation (4.9) can be rewritten to obtain
similar formulas for the other z;’s, all with the same denominator. Rather then
computing each x; separately, it is more efficient to compute z; as per formula

(4.9), and then use the recurrence:

xm:zi;yi, ief{l,...,n—1) (4.10)

%

Clearly, the above algorithm runs in O(n) time. Other algorithms that employ
elimination, like LU decomposition, can be used in order to achieve the same running
time. However, the one presented in this subsection has the advantage of yielding
the result in a concise form that is appropriate for the analysis of the numerical

stability of the system.

4.3 Running Error Analysis

An important problem with the Coho LPs is the need for an error bound on the
computed solutions. In addition to the solution proper to the Coho LP, error bounds
on the solution are necessary if the verification is to be sound. More precisely, it is
important to never underapproximate the feasible region of the LP and the optimal
cost.

Pivoting decisions in the Simplex algorithm involve comparisons between
tableau elements. In the presence of ill-conditioning, these comparisons might yield
uncertain results. The availability of error bounds on tableau elements and other
quantities enables the algorithm to recognize cases of uncertainty in the result of a
cormparison.

The Simplex algorithm and the algorithm that computes tableau columns
make use of elementary operations only. This leads to the approach of computing
an error bound on the result of each elementary operation. The computation of an

error bound along with the result proper of each operation leads to an error bound

36

on the final outcome. This approach to error analysis is called running error analysis
[Hig96, p.72]. A slight modification of the method is called interval arithmetic.

In many cases, interval arithmetic doesn’t work because of the explosion of
the interval as the computation proceeds through a long algorithm. The slightly
better running error analysis does work for Simplex because, with the computation
of tableau columns from input data proposed in section 4.1, there is no floating-point
data propagated from one pivot of the algorithm to the next. Although running
error analysis tends to lead to overly pessimistic error bounds when applied to a
long algorithm, it can in some cases provide sharper, a posteriori bounds than an a
priori analysis can provide [Hig96, p.73].

The arithmetic operations on floating-point numbers are generally subject to
rounding errors when executed on digital computers. This is caused essentially by
the fact that floating-point numbers are stored with only a fixed number of digits,
whereas the result of an operation might require more digits than the particular
numeric format has available.

A1l the arithmetic operations executed on a computer follow the fundamental

rule of the arithmetic of the computer:
fi(zopy) = (zopy)(1 +46), || <u, opé€{+ —,%,+}

where fi(z op y) is the result of z op y computed by that arithmetic and u is a constant
for a particular arithmetic called the unit roundoff. For the IEEE double precision
arithmetic, u = 27%% ~ 1.1 x 10716,

When the operands are themselves affected by errors, they can be regarded
as intervals on the real axes. Consider the pair (z,e) to be the representation of the
interval [z — e,z + e]. Let (z,e) = (z1,e1) op(z2,e2). Then z = fi(z; op z2) and

e1 + ez + u|z| if op € {+,-}
e =

ei|z2| + e2|@1| + ulz| + erep if op € {x}

Division can be regarded as the inversion of denominator followed by the multipli-

37

cation of its result with the numerator. Let (z,e) = (zg,e9)”!. Then z = 1/z

and
— € 3
o _ | momore if lwol > €0
+00 otherwise

Clearly, the computation of the error bounds is itself affected by rounding
errors. Fortunately, the error bound does not need to be known with high precision:
its order of magnitude will often suffice. Moreover, disastrous cancellation cannot
occur in the computation of error bounds: all the numbers involved are positive and
subtraction does not occur.

There are some problems with the use of running error analysis. The first
is that ideally one would like to have a simple formula to compute error bounds
for the solutions of a linear system. The other issue is that the computation of
error bounds on the result of each arithmetic operation along with the actual result
increases the running time of the program. However, the penalty is a constant factor,
not a deterioration of the asymptotic running time. As verification is executed as
an off-line process, an increase of the running time by a constant factor can be seen

as a reasonable price to pay if the algorithm would otherwise fail.

38

Chapter 5

Analytical Attack on the Error

As emphasized in previous chapters, the success of Coho verification depends strongly
on the accuracy with which the linear programs that it produces are solved. The
main floating-point (hence error-prone) computation that is performed as part of
Simplex is the determination of the tableau columns corresponding to a basis.

However, for bases other than the optimal one, only enough accuracy is
needed to be able to determine the departing and the entering basic variables. This
is the case because no floating-point values computed at a basis are subsequently
reused in our version of Simplex. For most of the bases encountered during a run
of Simplex, the computation of tableau columns using the linear-time algorithm
presented in section 4.2 along with running error analysis produces satisfactory
results.

On the other hand, there can exist suboptimal bases at which the error
bounds on the tableau columns are not tight enough to establish whether the ba-
sis is optimal and, if it is not, which pivot leads closer to optimality. Whereas
such a situation can be dealt with by branching the computation path, it is clear
that obtaining sufficiently sharp error bounds to be able to decide with certainty is
preferable.

The combinatorial solution to a linear program consists of its optimal basis.

39

Once the optimal basis has been found, the optimal solution of the standard-form
dual is determined as column 0 of the tableau. However, if the solution to the Coho
primal is sought after, a slightly different linear system has to be solved. Whereas

the solution to the standard dual is:
x5 = (A5.5) 71 b8 (5.1)
the solution to the Coho primal is:
2 = (A°,) 7 1 = (A%, 0)") 1 s (5.2)

The left-hand sides of two linear systems differ only through a transposition. The
conditioning of any matrix is the same as that of its transpose. Moreover, only
trivial changes are needed to an algorithm that solves linear systems of the first
type to make it work for the second type. Thus it is sufficient to analyZe linear
systems of the first type, under the implicit assumption that the results also apply
to the extraction of the optimal solution to the primal.

Whereas in some cases the optimal solution of a linear program is the result
of interest, there are instances where the optimal cost is the sought-after answer to
the problem. In such a case, the components of the error in the optimal solution that
are orthogonal to the optimization direction are harmless. This opens the possibility
of trading accuracy of the optimal solution in directions that are orthogonal to the
optimization direction for accuracy in the optimization direction.

Ideally, we would like to be able to characterize the accuracy of the com-
puted optimal solution through a closed-form expression depending on the machine
precision and on the matrix structure.

In the case of the optimal cost, the comparative flexibility of the constraints
suggests that an error bound can be established that depends only on the machine
precision and on the dimension of the system.

Whereas these problems have not been solved completely, some inroads have

been made into them. These advances form the subject of this chapter. As the

40

reduction of an independent Coho linear subsystem to independent cycles has been
described in the previous chapter, the focus here will be on the solving of the cycles.
The first section presents a new algorithm for solving cycles as part of computing
tableau columns and the error bound that is thus achieved. The second section is
concerned with a way of obtaining a better estimate of the optimal cost in cases

where the optimal basis is ill-conditioned.

5.1 Error Bound on Cycle Solution

Section 4.2 presents a linear-time algorithm for solving the cycles that appear in
. Coho linear systems. The key to keeping the running time linear is the calculation
of only one component of the solution by means of a direct formula that takes
O(n) time. The other components are computed recursively starting from the first
component at the cost of O(1) each. Clearly, the recursive computation accumulates
error. This can be avoided by the direct use of formulas similar to (4.9) in order
to determine each component of the solution. Obviously this increases the running
time of the algorithm to O(n?). However, even with this modification, only running
error bounds on the solution to the cycle are available.

This section examines an alternative way of solving a cycle and of computing

a bound on the error in the solution.
.5.1.1 Algorithm for Solving Cycles
Let the cycle to solve be described by the equation:
Az =y (5.3)

where A € R™", y ¢ R™. Matrix A is supposed to be in normalized form as per

equation (4.4). Then it is possible to express A as:

A=8BS! ; (5.4)

41

where S is a diagonal matrix:

S = diag(s) (5.5)
and B is a particular case of a cyclic matrix in which all off-diagonal elements are
equal:

1 ifj=1
Bij={-B ifj=(imodn)+1 ' (5.6)
0 otherwise

From equation (5.4) it results immediately that:

B=S8"1AS8 (5.7)
Simple computations show that:
1 ifj=1
(S‘lAS)i,j = —aiﬂim‘;‘:& ifj=(imodn)+1 (5.8)
0 otherwise
Equation (5.7) implies that:
Biimodm+1 = (ST AS)i modmy+1 Vi=1,-..,m (5.9)
which is equivalent to:
ﬁ:ais("““;#)“ Vi=1,....n ‘ (5.10)
i
Memberwise multiplication of the equations above for i = 1,...,n yield:

n

n s n 3(i mod n)+1 n
g = [[(=t2dmHy - (T) =) = [(5.11)
=1 . Hs'i =1

8;.

The combination of equations (4.5) and (5.12) yields:

B=1%P, (5.13)

The values of s can be obtained from (5.10):

1 ifk=1

Sk = ,8 (5.14)
Sk— k— .
_aEE_l_lz 1—11'0% fl<k<n

Matrix S is not unique: multiplication of S by any non-zero real number yields
another matrix that satisfies (5.3).

Matrix B with the structure as defined by (5.6) falls within the category of
circulant matrices or, for short, circulants [Hig96, p.469]. As a circulant, matrix B

has the property that it is diagonalized by the Fourier transform matrix F,:
F,BFE' = A = diag(\) (5.15)

Also as a property of circulants, vector A contains the eigenvalues of matrix B and
it satisfies:

A=F.b (5.16)
where b is the first column of matrix B:
b= B., =col(1,0,...,0,-5) (5.17)

By definition:
(Fp)y; = e/t 2r=nG=0/n (5.18)

As b contains only two non-zero elements, a closed form of the eigenvalues of B is

easy to obtain:

A =1— BeY~T 2m(i-1)/n (5.19)
Equation (5.15) implies that B can be expressed as:

B =F,'AF, (5.20)

43

and

Bl =F;'A"'F, | (5.21)
From (5.4) and because S is diagonal it follows that:
At =8B71s! (5.22)
Equations (5.21) and (5.22) combined yield:
A"l = SF AR, ST (5.23)
and, for the solution to the cycle:
t=A1y=8F'A'F,8y (5.24)

The computations of s and A take linear time. Fast Fourier transform algorithms
take O(nlogn) time. Consequently (5.24) defines an O(nlogn) time algorithm for

solving a cycle.

5.1.2 Estimation of Cycle Condition Number

The direct and inverse Fourier transforms are known to be quite stable. The algo-
rithm defined by (5.24) might offer higher accuracy than the linear-time one pre-
sented earlier on. As it is more expensive, it will be used only when the linear-time
algorithm fails to give satisfactory results.

The expression of cycle matrix A as the product of matrices with simpler
structure enables the determination of a closed-form expression for the error in the
solution to the cycle. Error analysis is straightforward for diagonal matrices.

Numerical stability properties are also known for circulant matrices. For one
thing, the singular values of a circulant are the absolute values of its eigenvalues.
Quantity P, is a product of real numbers, so it is itself a real number. Quantity g

is the n'® root of P, so it can be expressed as:
B = |BleV"+2k)7/n) where k € {0,...,n — 1} (5.25)

44

and

0 if B, >0
p= (5.26)

1 ifP, <0
The eigenvalues of matrix B are given by (5.19). By combining it with (5.25) the

following equation results for its singular values:

o;=+/1+|6]2 - 2|Blcos® i=1,...,n (5.27)

where
(p+2k+2(i—1)w
n

g =

(5.28)

A classical measure of the sensitivity of a linear system to numerical errors is the
condition number of its left-hand side, which is the ratio of its largest to its smallest

singular value:

K(B) = Omax (5.29)

Omin
where oy = max; o; and oy, = min; o;.
It is easily seen that omay as a function of 6 is realized for the lowest value of cos 0,
i.e the value of 6 that is closest to # (mod 27):

: 1+ |8 : if (P, > 0) = (n is even) .
L s | (P> 0) = e

\/(1 +181)2 — 2IB8|(1 — cos E) if (P, > 0) = (n is odd)

Equation (5.30) can be expressed more simply as:
Omax <1+ IIBI (531)

The value omin, as a function of 8, is realized for the highest value of cos 8, i.e the
value of # that is closest to 0 (mod 27):

1-|8 it P, >0
Omin = I l ” " (532)

\/|ﬂ|2 —2|BJcosE +1 if B, <0

45

For the P, < 0 case, the value of K(B) can be determined from equations (5.31)
and (5.32):

2
2 1
K(B) = 1BI" + 218 i (5.33)
182 — 2|8] cos - +1
The minimum value of this expression for |5] > 0 is:
1 .
K(B) = 7 (5.34)
sin —
2n

which shows that the system cannot be ill-conditioned when P, < 0 for the values of
n of interest in Coho (n < 20). This agrees with equation (4.9), which suggests that
ill-conditioning is related to P, being close to 1. Only the case P, > 0 is considered

henceforth. For this case, oy, simplifies to:
Omin = |1 - |,8|| (535)
From equations (5.31) and (5.35) it follows that:
1+48]
K(B) <
11— 181l

The condition number of a diagonal matrix is the ratio of its largest diagonal element

(5.36)

in absolute value to its smallest:

max |s;|
1

(8) = (5.37)

min [s;|
K3
As with any matrix, K(S) = K(S™1).

This enables us to establish an upper bound on the condition number of A:

K(A) < K(S)K(B)K(S™') = K(B)K(S)? (5.38)

5.1.3 Error Bound on Solution to Cycle

Formula (5.38), although it has the merit of establishing an upper bound on the
error in the solution to a cycle, can be rather pessimistic. Known results on circulant
systems will be combined with error computations for the scaling matrices to obtain

a tighter error bound on the cycle solution.

46

Forward Error Bound for the Cycle Circulant

In addition to the properties of circulant matrices presented in the previous section,
more results about them can be found in [Lin92]. More specifically, a normwise
forward error bound is established for circulant systems. The result, which holds if
the input data is free from errors, the only source of errors being roundoff in the
algorithm, is the following:

|| fi(z) — =
]

where fl(z) denotes the floating-point approximation of z, u denotes the machine

< w(Uppr(n) (Kr2(B) + 2) + cco) & fa(n,) (5.39)

precision, cco = V2 + 4 is a small constant, Kro(B) is a pseudo-condition number

defined as:
N > Al
k
Kra(B) = 4—— (5.40)

min |\
L Akl
and Yppr(n) is a function that characterizes the stability of the particular FFT

algorithm employed to solve the circulant system. For example, the radix 2, Cooley-

Tukey algorithm has [Lin92]:
Uppr(n) < cylogyn (5.41)

where ¢y = 1.06 x 4%/2. From (5.19) it follows that:

2n(k — 1)

Ml =14p%—-2Bcos (5.42)
80
ZZ:I |AI€|2 = ZZ:I (1 + 'BZ - 2’8 Cos 27T(k’n,— 1) (5 43)
= w1+ 42— 28 Ty cos ZEZL)
A well-known trigonometric result is that:
n
2r(k — 1
Z cos 2mk 1) =0 (5.44)
n
k=1

47

which, introduced in (5.43), yields:

n

> IlP =n(1+ 8 (5.45)

k=1
Similarly to (5.35), we have that:

min [Ag] 2 [1'—|B]] : (5.46)

The substitution of (5.45) and (5.35) in (5.40) yields:
n(1+6)
Kia(B) < Y22 (5.47)
1118l
The introduction of equation (5.41) and inequality (5.47) into inequality (5.39) yields

the following forward error bound for matrix B:

fe(n,u) <wu <C\p log, n (Hﬂ + 2) + Cco) (5.48)

Errors Affecting the Scaling Matrix

As a cycle matrix A consists of matrix B pre- and postmultiplied with matrix S
and S™!, respectively, the errors introduced by S and S~! have to be considered as

well. The coefficients «; result from row scaling, so they will be affected by error:

Aa.) —
||
The application of the error composition rule for multiplication leads to:
(P,) — P,
I(llc;—lklg(2k—1)u§(2n—l)u VE=1,...,n (5.50)
k
The computation of the quantity:
% k
Bk = (P (5.51)

involves the power operation, which is not elementary. In general, the quantity z¥,
where z and y are real numbers, is computed as e¥'"% and, when the inputs are free
from errors, is affected by the following error [Mul97, p.179]:

| fi(¥) — 2Y]

. lewwine _ 1| (5.52)

48

or, to the first order:

~uylnz (5.53)

In order to account for the error in the inputs to the power, we use its linearization:
(z(1 + 6,))Y0+%) m 2Y(1 + y(6; + Inz 8,)) (5.54)

Both k£ and n are error-free integers, so the error that affects their computed ratio

is:

<u (5.55)

Based on the rules expressed by (5.53) and (5.54) and on the error bounds on the

inputs given by (5.50) and (5.55), the following bound is obtained for 8* computed
by formula (5.51):

fi(6%) — BF| &k k
u%ﬂ—lSE((2k~1)u+f1n|Pn||u)+Elln|Pn|[u (5.56)
which, because % < 1, simplifies to:
fi kY _ pk
Lﬂ]ﬁ)zl—ﬂl < (2n+ 2| In|Py|)u (5.57)
Formula (5.14) of s; can be rewritten as:
_ B
S = P (5.58)
When computed by the above formula, the error that affects s, is:
_ kY _ pk _
| 1(s) — sl < | (8)k A 1A — Bl
|5kl |18%| | Pl
< (@n+2/In|P)u + (2k — Du +u (5.59)
< (dn+2|In|P|))u
The introduction of (5.13) into (5.59) leads to:
f _
L%L“ < (4n + 2n|In|B||)u (5.60)
k

It is easy to see that the same error bounds can be attained for the components

of 51,

49

Error Bound for Cycle Solution

Let us now establish an error bound on the solution of the cycle. Consider that the

linear system is solved in the following steps:

t' — S—ly
" = B~ (5.61)
z = St'

For all three steps of the algorithm we have to consider two types of error in the
output. The first type is due to unavoidable roundoff, which is present even if the
input is error-free. The second type is due to the propagation of input error into
the output. The relative error in the input appears in the output magnified by the

condition number of the system matrix:

A Az;
Tout = Mzin = [Az0u | < K(M) |1Ain] (5.62)
”xout” || zia |
The first step of the algorithm consists of elementwise multiplication:
t = SkUk (5.63)

Quantity y is considered free from errors. A bound on the componentwise relative
error affecting ¢’ follows immediately:

|fl(t}) — t,] < | fl(sx) — skl

< +u (5.64)
[t}] |kl

The introduction of inequality (5.60) into the one above yields:

(¢) - ¢
P =8l < (@an 1) + 2 1D 2 fs(n, (5.65)
k
Both types of error can occur during multiplication by B~!:
(") — " i) — ¢l

(5.66)

Componentwise bounds translate directly into normwise bounds, so it is possible to

introduce (5.65) in the inequality above:

IAG") — |

] < fe(n,u) + K(B)fs(n, u) (5.67)

50

The error bound for the final result is obtained by considering the multiplication

by S:
| f1(e") — "]
(12"

By combining the equation above with (5.67) it results that:

< fs(n,u) + K(S) (5.68)

|| fl(z) — |l

Tzl < K(8)fa(n,u) + (K()K(B) + 1)fs(n,u) € g(B,S,n,u) (5.69)

The introduction of (5.36), (5.37), (5.48), and (5.65) into (5.69) leads to the error
bound for the cycle solution:
max|s;| —
g(B,S,n,u) = Ell—rﬂs_,l (C\I/ loan(?(—%ﬂ) +2> +Cco) u

1

(5.70)

max |s;| 1
i + 18]

o 41 dn + 1) + 2n|In U
(Hlilnlsﬂ = («) |In|B][)
From (5.70), we see that errors can be large if |3] ~ 1 or %:f:l‘f—ﬁl is large. As
mentioned earlier, the characterization of the errors caused by solving the circulant
matrix assumes that " is a positive number. When " = 1, the denominator of

max; [s;] -
T 1S
min; |$;

(4.9) is close to zero, reflecting the near singularity of the system. When
large, the system is ill-conditioned due to extreme scaling that can lead to serious
cancellation.

This analysis has not considered the fact that matrix B is affected by errors

"

in the calculated value of 8. This can be achieved by computing d dF A first
a|B|
d

step towards this can be the evaluation of . This remains a topic for future

research.

5.1.4 Summary

This section has analyzed the errors that affect the solutions of Coho linear systems.
The left-hand side of such a linear system is a cyclic matrix A. In this section we

have made progress on getting a more detailed characterization of the conditioning

of A.

51

Cyclic matrices have been shown to be expressible as the product A =
S~!BS, where S is a diagonal matrix and B is a circulant matrix. Closed-form
formulas for the eigenvalues, eigenvectors, singular values, and singular vectors of
matrices B and S have been presented.

The singular values of matrix B are proportional to the eigenvalues of the
same matrix. Matrix B has at most one small eigenvalue and at most one small
singular value. The eigenvalues and eigenvectors of matrix A coincide with those of
matrix B. Therefore matrix A has at most one small eigenvalue.

The conditioning of matrix A is determined by the conditioning of both B
and S. Unlike B, matrix S can have several small singular values. The precise
characterization of the conditioning of matrix A requires knowledge of its singular
values. Whereas a time-effective method for this computation has not been found,
the condition number of A can be bounded by the product of the condition numbers
of B and S, which we know exactly.

An analysis of the forward error that affects the solution of a cycle has been
presented. However, this analysis does not lead to a closed-form expression for the
error bound, which means that further research is necessary in this direction. The
most significant improvement can potentially result from the determination of the

singular values of matrix A. This too remains a topic for further research.

5.2 Estimation of Optimal Cost

In this section we seek ways to compute the optimal cost of a Coho linear program
as accurately as possible. The computation of the optimal cost continues naturally
from that of the optimal solution.

Consider a Coho linear program CLP(A¢, 5%, ‘) whose optimal basis is B.

The optimal cost can be computed as the dot product of the cost vector and the

optimal solution either in the Coho primal:
()T 2 = ()T (A%, 6°p) (5.71)
or in the standard-form dual:
()T 2 = (1°8)" ((4%,7) 71 &) (5.72)

The second method will be considered as it builds directly on the results of the
previous section. Moreover, it is not difficult to show that the same results apply to
the first method.

Of the two operands of the dot product in (5.71), the dual cost vector is free
from errors. The dual optimal solution, however, is affected by an error that has
been bounded in the previous section.

The following forward error bound is known for the dot product of two vectors

[Hig96, p.69]:

nu

|(zTy) — 2Ty| < |z|T|y| where z,y € R" (5.73)

1 —-nu
This shows that high accuracy is not guaranteed if |z7y| < |z|*|y|. On the other
hand, the accuracy of the computed dot product is high if all z;y; terms have the
same sign. .

An optimal solution of a linear program in standard form is feasible, so all
the components of 5 must be non-negative. On the other hand, the signs of b can
in general be arbitrary, holding the potential for disastrous cancellation in the dot
product with the dual optimal solution.

This problem can be circumvented by making a change of variables such that
the origin lies inside every projection polygon. This will result in the origin lying
inside the feasible region of the linear program. The feasible region of the Coho LP

is defined by the inequality:

ACzC > 8¢ (5.74)

As the origin is inside the feasible region, the above inequality must hold for it:

A€o > ¢ (5.75)
le.
B <0 | . (5.76)
Because ¢® = b°, this implies that:
|(¢%)72) = |(¢%)T|2°| (5.77)

The application of rule (5.73) to equation (5.77) leads to the following formula for

the relative error epp in the computed cost due to the dot product operation:

_A((¢5)T25) — (c5)TzS|
epp = () T25]

< nu (5.78)

The approximation 1—1—nu = 1 introduces negligible errors for for the values of
n < 20 typical of Coho. -

Formula (5.78) bounds the error that would affect the computed optimal
cost if the box ¢ and z were free from errors. As it has been seen, z is a computed
quantity affected by an error bounded by formula (5.69). The error in the optimal

solution translates into the following absolute error in the optimal cost:
Ey = |¢" fi(z) — c"z| = | (i(z) — 2)| < |le]l Ifi(z) — =] (5.79)

As the magnitude of the cost vector is irrelevant, we can assume ||cf| = 1 and (5.79)
becomes:

Ey < ||fi(z) — = (5.80)

The introduction of (5.69) into (5.80) yields:
E; < g(B,S,n,u) ||| (5.81)
The total absolute error E in the cost is obtained by adding errors epp and E,:
E=E,+eppclz < E;+nuclz (5.82)

54

Equation (5.82) says that, assuming a unit cost vector, the error in the
computed cost is bounded by the error in computing the optimal point plus nu
times the exact cost. If the optimal basis is ill-conditioned, the error in calculating
the optimal point may be large. This motivates considering nearby branches where

the error can be reduced.

5.2.1 Use of Nonoptimal Basis

When the optimal basis of a linear program is highly ill-conditioned, the error bound
on the optimal cost computed by the methods discussed so far might be unacceptably
large. Therefore a better overapproximation of the optimal cost may be obtainable
by computing it for a slightly primal-infeasible well-conditioned basis.

More concretely, consider a linear program with cost vector ¢ and optimal
vertex z. Let the optimal cost