
A Robust Linear Program Solver for Projectahedra
by

Marius Laza

M.Sc, Polytechnic Institute of Bucharest, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Mas te r of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
December 2001

© Marius Laza, 2001

In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements
f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I f u r t h e r agree that permission f o r extensive copying of
t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. I t i s understood that
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not
be allowed without my w r i t t e n permission.

Department of
The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Abstract
Linear programming has a wide range of applications, optimization-related prob

lems being one of them. Important concerns in linear programming are efficiency,
robustness, and accuracy. Linear programming is used in a reachability analysis
tool called Coho [GM99] for dynamical systems. Previous experience has shown
that linear programs in this tool lead to highly ill-conditioned linear systems which
prevented successful reachability analysis. This thesis presents a robust linear pro
gram solver with provable error bounds that exploits the special structure of the
linear programs that result in the reachability tool. This contribution is of interest
for the particular application for which it was developed. Furthermore, it shows
how duality and combinatorial aspects of linear programming can be exploited to
achieve greater efficiency, robustness, and accuracy.

u

Contents
Abstract 1 1

Contents "i

List of Figures vi

Acknowledgements vii

Dedication viii

1 Introduction 1

1.1 Motivation 1

1.2 Contribution 3

1.3 Outline 3

2 Background 6

2.1 Projectahedra 6

2.2 Verification as Reachability 7

2.3 Coho 8

3 Linear Programs 15

3.1 Problem Definition 15

3.2 Linear Programs in Standard Form 21

3.2.1 Feasible Region 21

ii i

3.2.2 Bases 21

3.2.3 Pivoting 22

3.2.4 Cycling 24

3.2.5 The Simplex Tableau 25

3.3 Linear Programs in Coho Form 26

4 Combinatorial Simplex for Coho 29

4.1 Lazy Tableau Generation 31

4.2 Efficient Computation of Tableau Columns 32

4.2.1 Reduction to a Cycle 32

4.2.2 Solving a Cycle 34

4.3 Running Error Analysis 36

5 Analytical Attack on the Error 39

5.1 Error Bound on Cycle Solution 41

5.1.1 Algorithm for Solving Cycles 41

5.1.2 Estimation of Cycle Condition Number 44

5.1.3 Error Bound on Solution to Cycle 46

5.1.4 Summary 51

5.2 Estimation of Optimal Cost 52

5.2.1 Use of Nonoptimal Basis 55

5.2.2 Error Introduced by Dropping One Constraint 59

5.2.3 Use of the Bounding Box 65

5.2.4 Error Bound for Coho Cycles 72

5.2.5 Summary 80

6 Implementation 82

6.1 Finding an Initial Invertible Basis 82

6.2 Finding an Initial Feasible Basis 85

6.3 Dealing with Uncertainty and Avoidance of Cycling 87

iv

6.4 Conserving Structure after Moving Forward in Time 91

7 Conclusions 93

7.1 What has been Accomplished 93

7.2 Suggestions for Further Research 95

Bibliography 97

Appendix A Definitions and Notations 99

A . l Notations 99

A.2 Definitions 100

v

List of Figures

2.1 A three dimensional "projectahedron" 7

2.2 The creation of a bloated linear program for the convex hull of the

projectahedron 9

2.3 A time step of Coho 10

3.1 Cases of L P feasible region and cost 18

3.2 Linear program with two optimal vertices 26

3.3 Types of vertices in a Coho L P 28

4.1 Non-zero structure of a cycle 34

4.2 Cycles in a matrix 34

5.1 Types of optimal 2D vertices 56

5.2 Halfline emanating from inside a box 70

5.3 The best approximating vertex 73

6.1 Subgraph that corresponds to an structurally singular matrix. . . . 83

6.2 Subgraph that corresponds to an invertible matrix 84

vi

Acknowledgements

This thesis would not have been possible without substantial help from several

individuals.

It is difficult to overstate my gratitude to my supervisor, Mark Greenstreet,

for his extensive support and encouragement.

I wish to thank David Kirkpatrick, James Varah, and Eldad Haber for their

contribution of time and ideas to my thesis.

I am grateful to Alan H u for the encouragement and advice that he provided

to me when I needed them the most.

I would like to thank my wife, Mira, for constantly supporting me and for

believing in my eventual success even when I despaired.

M A R I U S L A Z A

The University of British Columbia
December 2001

vii

To my parents, who wanted it more than anybody else.

viii

C h a p t e r 1

Introduction

1.1 Motivation

The problem of verification is that of showing that a design satisfies its specification.

The design may be of an electronic circuit, a computer program, a network or secu

rity protocol, a chemical plant, an airplane, etc. For our purposes, the specification

describes the desired behaviors of the design: that the circuit implements a par

ticular finite state machine, that the security protocol does not disclose passwords,

that the chemical plant does not explode, etc. The goal of formal verification is

to produce a formal, mathematical proof that the design has the desired proper

ties. For this approach, both the design and the specification must be modeled in a

mathematical framework where such a proof is mathematically meaningful.

This thesis is concerned with verification where the design is modeled by

a system of non-linear, ordinary differential equations (non-linear ODEs) and a

description of the possible initial states of the system. The specification describes

a "safe" region in which the trajectories for all solutions to the model must be

contained. The verification task is to determine whether from a possible initial

state the system can ever reach a forbidden state or not. This type of verification

is termed reachability analysis.

For non-trivial systems, reachability analysis tools must use approximation

1

techniques: closed-form solutions do not exist. Coho, the verification system de

scribed in this thesis, is one such tool. It computes over-approximations of the

reachable space to provide a sound verification of safety properties: Coho may fail

to verify a correct system, but it will not erroneously verify an incorrect system. As

part of computing the evolution in time of the reachable state space of a system,

Coho solves a large number of linear programs. The soundness of Coho relies on

computing accurate error bounds for the solutions of these linear programs. To

avoid false negatives, it is desirable that these solutions be as accurate as practical.

Linear programming is a well-studied problem that has a classical solution,

namely the Simplex algorithm. O n any real machine, errors are an inherent part

of floating-point computations. In this thesis, we address the impact of numeri

cal errors from floating-point computations on the accuracy and robustness of the

Simplex algorithm, as applied to our verification system.

The effect of errors in the input and in the intermediate computations on the

result of a problem is measured by its conditioning. The result of an ill-conditioned

problem may be affected by large errors even though the errors in the input or in

the intermediate computations are small.

Many of the linear programs that arise in Coho are ill-conditioned problems.

For such problems Simplex tends to yield solutions that contain large errors, com

promising the applicability of Coho. Moreover, no error bounds are available on

the solutions, preventing the tool from producing a guarantee of correctness for the

system being analyzed.

A noteworthy property of Coho linear systems is that their structure is spe

cial. More precisely, the feasible region of a Coho linear program is the intersection

of set of orthogonal back-projections into the full-dimensional space of 2D polygons.

This means that any inequality in the definition of the feasible region contains only

two variables. This thesis explores ways of exploiting this special structure in order

to obtain greater accuracy and robustness while keeping efficiency reasonable.

2

1.2 Contribution

The special structure of the linear programs arising from orthogonal projections al

lows the implementation of an efficient and numerically robust version of the Simplex

algorithm.

The main contributions of this research are the following:

1. An implementation of Simplex where the combinatorial representation of bases

remains explicit.

• The key to practicality is an 0(n) linear system solver, where n is the

number of variables in the system.

2. Numerical robustness achieved by computing accurate error bounds.

• The combinatorial approach above allows us to avoid numeric error prop

agation between steps, thus keeping the error bounds reasonably tight.

• When the optimal basis is ill-conditioned, it is shown that a pivot can

be made to another basis that has nearly the same cost and is well-

conditioned with respect to the cost function.

3. An error bound for the optimal cost that is independent of the numerical value

appearing in the constraints.

4. Implementation

1.3 Outline

This thesis presents an efficient and numerically robust method of solving the linear

programs that arise in the Coho verification tool.

3

• Chapter 2 presents the context in which linear programs with a particular

structure arise. First, the reachability analysis class of problems and its ap

plicability to verification are introduced. Then a system that implements

reachability analysis is described with emphasis on its use of linear programs.

Finally, the special structure of these linear programs and their impact on the

usability of the system are underlined.

• Chapter 3 reviews the Simplex algorithm for solving linear programs. Both the

geometric and the combinatorial aspects of the problem are presented. The

concepts of basis, pivoting, duality, and cycling receive particular attention.

The standard implementation of the Simplex algorithm is presented briefly,

pointing out its problems in the case at hand.

• Chapter 4 presents the main features of the proposed modified version of

Simplex. These include the lazy computation of tableau columns and the

linear-time algorithm that accomplishes the computation. The presentation

of the method of computing error bounds on the results of the floating-point

operations proposed to be used by the linear program solver concludes the

chapter.

• Chapter 5 reviews the numerical accuracy and stability of the new algorithm

for solving the particular type of linear systems that arise in Coho. A n error

bound on the solution to such linear system as computed by the new algorithm

is established.

The rest of the chapter focuses on ways of obtaining a good approximation of

the optimal cost of a linear program. The geometrical meaning of an optimal

ill-conditioned basis is analyzed and a method of approximating its cost is

proposed and then analyzed. Then the application of this method to the

Coho linear programs is studied.

• Chapter 6 presents the implementation details that were found to be significant

4

during algorithm implementation.

A chapter of conclusions and suggestions for further research completes the

core of the thesis, followed by an appendix containing the definitions of the mathe

matical notations and definitions used in the thesis.

5

C h a p t e r 2

B a c k g r o u n d

2.1 Projectahedra

A projectahedron is a high-dimensional polyhedron represented by its projections

onto two-dimensional subspaces, where these projections are not required to be

convex. The high-dimensional object is the largest set of points that satisfies each

projection. A full-dimensional polyhedron can be obtained from its projections by

back-projecting each into a prism in R d and computing the intersection of those

prisms. Each (1-dimensional) edge of a projection polygon corresponds to a (d — 1-

dimensional) face of the projectahedron.

The intersection computation for arbitrary polyhedra in high dimensions is

computationally hard. Projectahedra are a restricted class of high-dimensional poly

hedra and the complexity of computing the intersection of projectahedra does not

appear to have been studied. In the work described in this thesis, the intersections

of projectahedra are never explicitly nor exactly computed. Instead, operations on

projectahedra are performed projectionwise. Sometimes this leads to an overap-

proximation of the result projectahedron. We choose these operations in such a way

as to preserve the soundness of Coho. Whereas the projectionwise computation of

common projectahedra operations like union typically leads to overapproximation,

the same method yields the exact result in the case of intersection.

6

2 . 2 Verification as Reachability

Consider a system whose dimension (i.e. number of variables) is d. The continuous

state space of the system is R d . Suppose the behavior of the system is described by

the differential inclusion:

x G F(x)

where x G R d . The inclusion models uncertainty in the model, environment etc.

Given two regions, AQ C B C R d , the reachability problem is to determine

whether all trajectories that start m AQ aX t = Q remain in B, either during some

time interval, [0,tenc[], or for all time.

For example, we can find At C R d such that x(t) G At. The reachability

problem is satisfied if At C B, Vt G [0, t e n (/].

A related problem is the following: given a time t\ and a region A\, show

that at t = ti, all trajectories are inside Ai. This can be reduced to the first problem

by including time in the state with i = l [AL94].

7

Many verification problems can be formulated as reachability analysis prob

lems. Consider for example a system consisting of two aircraft [TPS98]. Given the

possible initial positions of the aircraft and their equations of motion, the question

is whether the distance between the two aircraft remains above a lower bound for

all times of interest. Modeling each aircraft as a point in R 3 , the state of the system

is a point in R 6 . The safety requirement partitions R 6 into safe and unsafe regions.

Solving the verification problem boils down to determining whether At intersects

the unsafe part of R 6 for any time t of interest.

A n important problem in modern circuit design is determining whether a

circuit correctly implements its high-level specification. Reachability analysis can be

used for verifying that circuits, as modeled by non-linear O D E ' s , correctly implement

discrete specifications.

2.3 C o h o

Coho is a verification system that performs reachability analysis [GM99].

Closed form solutions to reachability problems exist only for a few spe

cial cases. Consequently, approximation techniques are used to analyze real sys

tems. These techniques ensure that the approximations always lead to an over-

approximation of the reachable space. Every point that actually is reachable is

included in the approximation computed by Coho. The approximation may also

include points that cannot be reached by the real system. Thus, the verification

performed is sound - an incorrect design will never pass verification, but a correct

one might fail it because of the approximations.

A general representation of high-dimensional objects is intractable. For this

reason, Coho uses projectahedra to approximate high-dimensional objects, such as

the initial region and the reachable regions at various times.

The Coho reachability computation is an iterative, computation algorithm.

A single time-step of this algorithm proceeds as follows [GM98]:

8

Projections

ft

0 -1 01 r , roi ro.i

LPbloat,j/^

Figure 2.2: The creation of a bloated linear program for the convex hull of the
projectahedron

9

EdgeLP b l o a t =

"-1 0 -1"
X

V

"-2" "0.1"
1 0
1 0

1
-1

X

V < 2
0

0.1
0.1

-1 0 1 z 2 0.1

project

assemble edge projections

x G F(x) | x e L P e d g e b l o a t

F(x) C {p | 3u G U s.t. ii = Ax + b + u}

F(x) A,b,u

Figure 2.3: A time step of Coho

10

1. The time step begins by loading a polygon and its convex hull for each pro

jection of the system. The convex hulls are then bloated outward slightly

to ensure that they contain all possible trajectories for the next time step.

Each projection's bloated convex hull can be translated into a set of linear

inequalities in the projection's two coordinates. The conjunction of all the

projections' linear inequalities describes a convex region containing the pro

jectahedron. At this point, the movement of each edge of each projection's

polygon can be computed independently. Each edge corresponds to a face of

the projectahedron, and the objective is to compute the furthest outward that

points on the face could move during a time step. For each face, the following

computations occur:

2. (a) Restriction: The convex region computed from the convex hulls is further

restricted to a box around the edge in the coordinates of the edge as

described by four more linear inequalities. In the full dimensional space

this is equivalent to constructing a slab around the face being examined.

The slab is a conservative estimate of the convex hull of the bloated face.

(b) Linearize Model: The slab's description is available in terms of the collec

tion of linear inequalities computed in the previous step. The derivative

function for the model is assumed to be autonomous (i.e. independent

of time) and finitely piecewise continuous (therefore locally bounded). A

linearization of the system derivatives that is valid in the slab is com

puted. This model includes linear and constant terms, and gives bounds

on the error introduced by the linearization within the slab. Typically,

this linearization is based on bounds for the variables in the model and

bounds on linear combinations of these variables. These bounds are com

puted by solving the corresponding linear programming problem. More

formally, let W be the slab represented as a set of inequalities. The

11

non-linear model is approximated with the differential inclusion:

xeW=>ieAx + b + U (2.1)

where A G R d x d is a matrix, b G R d is a vector and U G (R x R) d is a

hypercube (i.e. a Cartesian product of intervals).

(c) Advance Time: The linear model is used to move the slab forward in

time according to the first two terms of equation (2.1). The U term

is handled as an inhomogeneous stimulus to the system as described in

step 2e. The forward time transformation is performed by exponentiating

the A matrix. This new convex region contains any point reachable from

the convex hull of the face at the end of the time step (ignoring U).

Moving the slab model forward in time amounts to right multiplying the

left-hand side of its inequalities by a matrix that transforms points at

the end of the time step back to their location at the beginning of the

step and also modifying their right-hand side. The application of matrix

multiplication to the left-hand side would lead to the modification of its

structure. For reasons of computational efficiency, the implementation

transforms the cost function instead of the inequalities. This is described

in detail in chapter 6.

(d) Project Back: The slab's end-of-step shape is described by a collection

of linear inequalities after time is advanced. Building a polygon from

these inequalities requires projecting the region that they contain back

onto the basis for the projection polygon corresponding to the face. This

projection is computed by running a series of linear programs on the

time-advanced set of inequalities. The cost functions used by the linear

programs are directions contained in the plane of the polygon.

(e) Add Errors: So far, the slab's movement is entirely controlled by the

linearized model. To treat the error, we add a constant derivative offset

12

within the error bounds throughout the time step, in such a way as to

bloat the slab's projection outward as much as possible. This involves the

computation of bounds on | | a r | | 1 over the slab. A n over-approximation

of is computed based on the extremes of each i j over the slab.

Computing these extremes again involves solving linear programs.

3. Each edge of each projection's polygon therefore produces an "edge polygon"

at the end of the time step; this polygon contains the projection of all points

that could be reached from the corresponding face within the time step. The

outer boundary of the union of all such polygons is the projection of an over-

approximation of the projectahedron at the end of the time step.

Clearly the use of linear programming by Coho is heavy. In fact, a major

limitation to the applicability of this tool stems from the failure of the classical

Simplex algorithm to compute sufficiently accurate solutions to the linear programs

that arise in Coho.

Each vertex of the feasible region of a linear program lies at the intersection

of d hyperplanes, where d is the dimension of the space. If the normal to at least

one of these hyperplanes is almost a linear combination of the normals to the other

hyperplanes, the vertex is ill-conditioned: the use of a typical implementation of

Simplex or other L P algorithm for the determination of the vertex position leads to

a result likely to be affected by large errors.

However, the feasible region of any Coho linear program is special. As any

convex polyhedron, the feasible region can be described by the matrix inequality:

Ax > b

where A G R d x d and b G Rd. Each row of this inequality represents a halfspace that

corresponds to at most one face of the polyhedron. As the feasible region represents

the intersection of back-projections into R d of two-dimensional convex polygons,

each row of matrix A contains at most two non-zero elements.

13

The above observations lead to the idea of exploiting the special structure of

the feasible region of Coho linear programs in order to solve them more accurately,

thus enhancing the usability of the system.

14

Chapter 3

Linear Programs

Linear programs play an important role in the Coho system. This thesis presents a

method for computing better solutions to the particular category of linear programs

that arise in Coho.

This chapter introduces the mathematical description of linear programs and

of an algorithm to solve them. Then, section 3.3 describes the particular linear

programs that arise in Coho.

3.1 Problem Definition

Definition 1 Let m, n be positive integers, A G R m X T l an m x n matrix of reals,

b G R m an m-vector of reals, c G R™ an n-vector of reals, M C { 1 , . . . , m) a set of

indices of rows of matrix A, N C { 1 , . . . , n} a set of indices of columns of matrix

A. Let M = { 1 , . . . , m} \ M and N = {!,...,n}\ N. Let s G {+1, -1} .

15

Then the following problem is an instance of a general linear program:

min sc x

subject to

Ai,-,x = bi

Ait-x > bi

XJ > 0 JEN

i e M
i G M

(3.1)

Xj unconstrained j G N

Such an instance of the general linear program is denoted by L~P(A, b, c, M, N, s).

Column matrix c is called the cost vector or the optimization direction of

the linear program.

The value xopt for which the minimum is attained, if it exists, is called the

optimal solution of the linear program.

The value scTxopt is called the optimal cost of the linear program.

The sign s specifies whether the problem is one of minimization (+1) or one

of maximization (—1).

The following trivial transformations enable the reduction of other forms of

linear programs to the one above:

• A maximization problem can be turned into one of minimization by negating

the cost vector:
T • T maxc x = — min— c x

• An inequality of the form:

aTx < b, a,x G R™, b G R

is equivalent to:

—aTx> —b

16

A point x G R n that satisfies all the constraints of the linear program is

called a feasible point of the linear program. The set of all feasible points represents

the feasible region of the linear program, denoted by feas(LP). A linear program is

called feasible if its feasible region is non-empty. Otherwise it is called infeasible.

As an intersection of convex sets (hyperplanes and closed halfspaces), the

feasible region of an L P is a convex set. A n optimal solution lies on the boundary

of the feasible region.

In general, the optimal solution might not be unique. Consider the trivial

case with c — 0: all feasible points are optimal.

Let x o p t be an optimal solution to a linear program. If the affine subspace

that is normal to the cost vector and contains x o p t contains other feasible points,

they too are optimal.

Recall that a general linear program was defined as a problem of minimiza

tion. This means that the optimal point is the feasible point that lies the farthest

in the negative direction of the cost vector (see fig. 3.1).

If a linear program consists of a minimization problem and its feasible region

is unbounded in the negative direction of the cost vector, then the cost function can

take arbitrarily large negative values and the linear program is said to be unbounded.

If the feasible region of a linear program is non-empty and bounded in the negative

direction of the cost vector, then the linear program has a finite optimum.

A n important particular case of a general program is when M = {1 , . . . , m}

and N — {1,. . . ,n}, i.e. when all constraints are equalities and all variables must

be positive:

min cTx

Ax = b (3.2)

x > 0

Such a linear program is said to be in standard form and is denoted by S L P (A , 6, c):

S L P (A , b, c) = LP(A, b, c, {1 , . . . , m}, {1 , . . . , n}, +1)

17

Figure 3.1: Types of maximization linear programs: a) bounded, non-empty feasi
ble region; b) unbounded feasible region bounded in the optimization direction; c)
unbounded feasible region unbounded in the optimization direction; The arrow in
dicates the optimization direction, which for maximization problems coincides with
that of the cost vector. The shading indicates the outer (infeasible) side of each line.

Throughout the rest of the discussion about linear programs it is assumed that

m < n and rank(A) = m. If rank(A) < m, then m — rank(A) rows of [A\b] can be

deleted without changing the problem.

A linear program in standard form is amenable to solution using the Simplex

algorithm [PS82, p.26]. A linear program in general form can be reduced to standard

form by using the following straightforward transformations:

• A variable Xj that is unrestricted as to sign can be replaced with the difference

of two non-negative variables:

Xj = xj - xj, xj > 0, xj > 0

• A n inequality constraint Y%=i ̂ -iixi — ^ c a n D e converted into the equation:

n
^] AijXj + S j = b j , S j > 0

i = l

The variable s, is called a surplus variable. The similar transformation for a

"less-than" constraint introduces a slack variable.

18

A l l linear programs that arise in Coho are of the form:

max c x

Ax>b (3.3)

x unconstrained

Throughout this thesis this form of linear program is termed Coho form. A linear

program in this form is called a Coho linear program, denoted by CLP(^4, b, c). The

following equation relates a Coho linear program to a general linear program:

A Coho L P can obviously be reduced to an L P in the standard form. Consider a

Coho L P that has / inequalities and d variables. Each inequality and each variable

in the original system requires the addition of an extra variable in the equivalent

L P in standard form. The equivalent system would have d + / + d variables and /

equations. Moreover, the special structure of the original L P would be destroyed by

the transformation.

However, the Coho L P can be solved without reducing it to the standard

form by using a general characteristic of linear programs called duality.

For an L P in general form, called the primal, the following construction

defines another LP, called its dual:

CLP(_4,6,c) = LP(_4,&,c, 0,0,-1)

Primal Dual

min scTx max sbTy

Ait-x = bi i G M yi unconstrained

Ai,:x >bi i G M Vi>0
(3.4)

Xj > 0 j G N A..tjTy < Cj

Xj unconstrained j G N A:j y = Cj

The dual can also be rewritten in the following way:

19

j e N

(3.5)

Vi > o i e M

yi unconstrained i E M

This is to say that:

dual(LP(A, b, c, M, N, s)) = L P (AT,-c, b,N,M,-s)

The attributes "primal" and "dual" are interchangeable: the dual of the dual

is the primal.

Any primal-dual pair of linear programs has the following remarkable prop

erty:

• If the dual has a finite optimum, then so does the primal and their optimal

costs are equal.

The optimal point of the dual can be easily computed from the optimal point

of the primal and vice versa.

• If the dual is infeasible, then the primal is either infeasible or unbounded.

• If the dual is unbounded, then the primal is infeasible.

This property means that the solving of an L P can be replaced with the

computation of the solution to its dual, with almost no loss of information. The

only case where a precise verdict cannot be given for the primal is when the dual is

infeasible. However, in many cases, knowing that a linear program doesn't have a

finite optimum suffices. In fact, in the systems we are examining, the linear programs

that arise cannot be unbounded.

20

The dual of a Coho linear program is easily seen to be a linear program in

standard form:

dual(CLP(A,6,c)) = dua_(LP(_4,6, c, 0,0,-1))

= LP(-AT, - c , b, {1, . . . , /} \ 0, {1 , . . . , d} \ 0, +1)

= LP(-AT,-c,b,{l,...,f},{l,...,d},+l) (3-6)

= S L P (- A T , - c , b)

= SLP{AT,c,b)

Therefore the solution to CLP (A, b, c) can be obtained by solving S L P (A T , c, b).

It is clear that no variables are added and the structure of matrix A remains intact.

3.2 Linear Programs in Standard Form

3.2.1 Feasible Region

Consider an instance of a linear program in standard form S L P (J 4 , b, c) with / vari

ables and d equations. It will be seen later that this S L P corresponds to a poly

hedron with / faces in the d-dimensional space, hence the new choice of letters for

the dimensions of the linear program. The feasible region of S L P is the portion of

a ci-dimensional affine subspace of R^ that lies inside the non-negative orthant. If

the feasible region is non-empty, then an optimal point exists at the intersection of

this subspace with one of the positive semiaxes of Hd.

3.2.2 Bases

A set of d linearly independent columns of matrix A is called a basis. A basis

is described either as a set of column indices, more precisely called the basic set

corresponding to the basis:

B = {JU---,Jd}

21

or through the restriction of the linear program's matrix A to the basic set of

columns:

B = A B

The terms "basic set" and "basis" are used interchangeably when there is no chance

of confusion.

The columns that belong to a given basis are called basic columns, whereas

the others are called non-basic. Each column of matrix A of an L P in standard form

corresponds to a variable. The attribute "basic" extends to variables in the natural

way. The values of the basic variables are:

to = B~1b

The basic solution corresponding to a basis B is a vector x G R / obtained by

expanding the vector of basic variables in the natural way:

Xi = <

0 if j 0 B

to,k ifj = Bk

If an LP in standard form has an optimal solution, it also has a basic optimal

solution.

A basic solution that has no negative components represents a feasible point

for the L P and is called feasible. Otherwise it is called infeasible. The attribute

"feasible" extends to bases in the natural way.

The situation in which a basic variable is equal to 0 is called degeneracy.

The corresponding basis and the basic solution are said to be degenerate. More

than one basis can correspond to the same degenerate solution, all such bases being

degenerate.

3.2.3 Pivot ing

A well-known algorithm for solving linear programs is called Simplex. Simplex

operates on linear programs in standard form.

22

In addition to the description of the linear program to be solved, Simplex

must be supplied with a feasible basis for that program. Finding a feasible basis is

non-trivial, but it will be dealt with later.

Simplex is a greedy algorithm. During each step, it tries to replace one of

current basic columns with a new column in order to obtain a new feasible basis of

lower cost.

The search ends at the optimal basis, which is the cheapest feasible basis.

If a non-degenerate feasible basis is not optimal, then there exists at least

one non-basic column whose introduction into the basis results in a decrease in the

cost. Let tj be the column vector defined by:

tj = B-%

The quantity
— T
cj = Cj ~ cB^j

is called the relative cost of column j with respect to basis B. The introduction of

column j in basis B might be favorable (reduce the cost) if the relative cost of the

column is negative.

Once a column with negative relative cost is found, the algorithm must de

termine which column to evict from the basis. The decision is guided by the re

quirement that the new basis must be feasible and is accomplished by the following

computation:
, . * 0 , i k = arg mm —-

i tj,i

where k is the index of the column to be evicted. In the presence of degeneracy k

may not be uniquely defined.

The action of moving from one feasible basis to another is called pivoting.

The cost decrease achieved by pivoting as described by the computations

above is

to,k -
'•j,k

23

The following observations are in order regarding pivoting:

• If tjj < 0, Vi = 1, . . . , d, the feasible region of the linear program is unbounded

in the negative direction of the cost vector. Feasible points of arbitrary low

cost exist.

• In the presence of degeneracy, the quantity can be 0 and so can the

decrease in cost:

EH, j s.t. t0,i = 0 A CJ < 0 A tj:i > 0 => — = 0 => — C j = 0

This is equivalent to a change of basis without a change in the basic solution.

It is said that the new column enters the basis at zero level.

In the absence of degeneracy, Simplex works because:

• There exists a finite number of feasible bases.

• At every step the cost decreases monotonically, ensuring that a basis is never

visited again.

• The optimal solution is among the basic feasible solutions.

Simplex is by no means guaranteed to produce the shortest path from an

initial feasible basis to the optimal basis, but it typically performs well in practice.

3.2.4 Cycl ing

In the presence of degeneracy, Simplex is no longer guaranteed to work with any

choice of a favorable column. It is possible that, once arrived at a degenerate basis,

the algorithm takes a sequence of favorable pivots to subsequent degenerate bases.

These pivots do not decrease the cost and the algorithm can eventually return to

the first degenerate basis. Obviously, the algorithm can loop indefinitely through a

set of degenerate bases that all yield the same solution unless special precautions

are taken. This phenomenon is called cycling.

24

Cycling occurs when the cost function is a positive combination of less that

d columns of a basis.

Cycling avoidance is achieved by Bland's anticycling algorithm [Bla77], [PS82,

p.50] that chooses the lexically first pivot at first step:

• The columns that enters the basis is the lowest numbered one.

• In case of a tie in the computation of the column that leaves the basis, the

lowest numbered column is selected.

3.2.5 The Simplex Tableau

At each step, the Simplex algorithm makes pivoting decisions based on the values

in the matrix

T = B~1[A\b]

The matrix T is called the Simplex tableau. For simplicity, its last column is indexed

by 0. Computing the Simplex tableau from the input data every time pivoting occurs

would render Simplex prohibitively expensive: solving a d x d linear system with

f — d right-hand sides takes 0(S(f — d)) in the general case.

In practice, this expensive solution is replaced with the computation of each

new tableau from the previous one at the lower cost of adding one row to each of

the others (0(d(f - d))). The tableau corresponding to the initial basis still needs

to be computed from the initial data.

Let B' be the basis obtained by replacing column j = B(l) with column j' in

basis B and T and T' the tableaus corresponding to bases B and B', respectively.

Then T' can be obtained from T through the following operations:

T ' (. = Ti./Tiji

T'i, = Ti.-Tij.T't,

The use of a tableau presents the disadvantage that numerical errors accu

mulate as the algorithm proceeds.

25

Figure 3.2: Linear program with two optimal vertices

3.3 Linear Programs in Coho Form

The Coho form of a linear program can offer more insight, particularly as regards

the geometric meaning of linear programs.

Consider a primal linear program in Coho form with d variables and / in

equalities C L P (A C , bc, cc) and its dual in standard form SLP(AS ,bs ,cs), where

As = (AC)T, bs = cc, cs = bc.

The feasible region of a Coho L P is a closed convex polyhedron:

f e a s (C L P (A c , 6 c , c c)) = P H (^ C , 6 C)

The optimal point of a Coho L P is a vertex of the feasible region. As illustrated by

fig. 3.2, the optimal vertex might not be unique. For example, all the points in a

hyperplane normal to the cost vector have the same cost. If the vector of the cost

function is normal to a face of the polyhedron and oriented towards its interior, all

the vertices on that face are optimal.

Each constraint in the primal defines a halfspace whose boundary is a hy

perplane. Each such hyperplane contains a face of the feasible region, unless it is

redundant. Each row of the primal Ac (i.e. each column of the dual As) represents

a normal to a face of the feasible region oriented towards the interior of the feasible

region. Such a normal is called an inward face normal.

26

A basis in the standard-form dual represents a set of d halfspaces in the

Coho primal. The intersection of their boundaries determines a point in R d , which

is the primal solution associated with that basis. The basic primal (Coho) solution

corresponding to a basic set B is:

Basic primal solutions will be termed vertices by abuse of terminology, as in general

they do not represent vertices of the feasible region of the Coho L P . Those of them

that are actual vertices of the feasible region will be termed proper vertices.

The intersection of the basic halfspaces of the Coho L P is a cone whose vertex

is the basic primal solution. This cone represents the feasible region with respect to

the constraints comprised in the basis and is called the basic feasible cone.

A feasible basis of the standard dual represents a set of halfspaces of the Coho

primal such that the primal cost vector is a positive combination of their inward face

normals. In other words, the primal cost vector must lie inside the cone generated

by the basic inward face normals. This cone is called the basic cost cone. It is

natural to consider both the basic cost cone and the primal cost vector originated

at the basic primal solution.

The bases that Simplex visits along the way to an optimal solution (other

than the optimal one) represent feasible suboptimal, solutions in the standard form.

In the Coho form, they represent infeasible supraoptimal solutions (see fig. 3.3 b).

Monotonicity is preserved, however: the cost decreases monotonically in the stan

dard form, whereas the infeasibility (expressed as the distance to the closest feasible

vertex along the cost vector) decreases monotonically in the Coho form.

The optimal vertex of an L P in Coho form is an intersection point of d

halfspace boundaries that satisfies both of the following properties (see fig. 3.3 a):

• The cost vector is a positive combination of the inward face normals. A l l

non-optimal vertices lead to at least one negative component.

27

Figure 3.3: Types of vertices in a Coho LP: a) optimal; b) Coho-infeasible and
standard-suboptimal, at least one constraint is violated; c) Coho-suboptimal and
standard-infeasible, the cost vector does not lie within the cost cone

• It satisfies all the constraints, i.e. it belongs to the feasible region. Any non-

vertex intersection point breaks at least one constraint.

28

Chapter 4

Combinatorial Simplex for Coho

A n important obstacle in the way of the verification of systems with moderately high

dimensionality (5-20 variables) by Coho is the need to solve linear programs with

sufficient accuracy. Coho allows that the solution to any L P be an overapproximation

of the feasible region in the direction of the cost function, like in figure 3.3 b.

Underapproximation (figure 3.3 c), however, is not allowed - otherwise Coho might

incorrectly label faulty systems as correct. The amount of overapproximation must

be kept low, or Coho might fail to verify correct systems.

Coho has previously employed an implementation of the classical Simplex

algorithm for its linear programming needs. Oftentimes, the optimal solution to

a Coho L P represents the solution to a highly ill-conditioned linear system. In

such cases the solutions computed by classical Simplex tend to contain substantial

errors for which no bounds are provided, thus preventing Coho from functioning. In

the previous implementation, these large errors often led to arithmetic exceptions

preventing Coho from generating any results.

From a purely mathematical point of view, Simplex works by taking favorable

pivots until it reaches a basis from which no favorable pivot can be taken. This basis

is optimal and the solution that corresponds to it is the optimal solution of the linear

program.

29

The mathematical view of Simplex implies that the arithmetic operations

with real numbers are performed with infinite precision. Computers, however, use

floating-point arithmetic, which uses only limited precision.

The favorability of a pivot is determined based on the values in the Simplex

tableau. The errors that affect these values can lead to incorrect decisions about

the favorability of a pivot. This in turn can result in incorrect determination of the

optimal basis or in numerical cycling.

Even if the optimal basis is determined correctly, the optimal solution, which

is itself a tableau column, is affected by errors for which no bound is available.

These problems are addressed as follows: The special structure of the bases

that arise in Coho linear programs is exploited in order to make the computation

of tableau columns directly from the input data feasible, thus reducing errors. Two

methods for determining error bounds on tableau columns are presented, one relying

on the use of running error analysis and the other analytical. The analytical method

is presented in the next chapter, with the rest of the aforementioned material forming

the topic of the current chapter.

Even with improved accuracy in the computation of the tableau columns

and availability of error bounds, it is still possible that all the pivots from a basis

are neither clearly favorable nor clearly unfavorable, which renders the basis neither

clearly optimal nor clearly suboptimal. In such a case, branching of the computation

path is used in order to guarantee the visitation of the optimal basis. This is

presented in detail in chapter 6.

As discussed in chapter 3, it is advantageous to solve the dual of a Coho linear

program instead of reducing the primal problem to standard form at the price of

altering its structure. This better solution is assumed to be used throughout the

rest of this chapter. At the same time, the fact that the matrices of the Coho linear

program and of its standard form dual are identical up to a transposition enables

us to refer to the original Coho L P when that is advantageous to understanding the

30

system.

The remainder is structured as follows: The first section presents the idea of

computing tableau columns only when access to them is required by the program.

Then the linear-time computation of such a column is examined. The description

of a technique called running error analysis, used in order to obtain error bounds

on the solution, concludes the chapter.

4.1 Lazy Tableau Generation

Simplex arrives at the optimal solution by taking a series of favorable pivots. Taking

a pivot amounts to identifying a non-basic column that replaces a column in the

basis, thus producing a lower-cost feasible basis. Depending on how the selection

of the column that enters the basis is made, the need to know some of the tableau

columns might not arise during a particular pivoting operation. In particular, it is

enough to discover the lowest-numbered favorable column: if this column is chosen

to enter the basis, then knowledge of the higher-numbered columns of the tableau is

unnecessary in the current step of Simplex and their computation can be omitted.

This policy, called lazy tableau generation, is the one followed in the version of

Simplex tailored for Coho. The computation of a part of the tableau is thus avoided.

It must be emphasized that with incomplete tableau generation, the nec

essary tableau columns are computed from the input data rather than from the

incomplete tableau of the previous pivot. The only data that is passed from one

pivot to the next is the new basis. A basis is a collection of integers, so error

propagation and accumulation across pivots is eliminated.

As mentioned in subsection 3.2.5, the computation of tableau columns from

the input data is in general undesirable because of the high computational cost.

For Coho linear programs however, a more efficient algorithm is available: a tableau

column can be computed in linear rather than cubic time. This makes the algorithm

very practical.

31

4.2 Efficient Computation of Tableau Columns

Each inequality in a Coho linear program C L P (A C , bc, cc) represents the halfplane

corresponding to the backprojection of a side of a two dimensional polygon back

into the full-dimensional space. As a result, each row of matrix Ac contains either

one or two non-zero elements. The one non-zero case occurs when the polygon side

is parallel to one of the coordinate axes that determine the plane that contains it.

Hence matrix As = {AC)T of the standard-form dual of a Coho L P contains either

one or two non-zeros in each column.

Let B be an arbitrary basis of the linear program in standard form. As B

represents a subset of the columns of matrix As, B is a square matrix that, like As,

has either one or two non-zero elements per column.

A tableau column is described by the equation:

B-lAs..tj, i f j V O

B~lbs, if j = 0

The task at hand is to solve a linear system whose left-hand side is B. Such

a linear system is henceforth referred to as a Coho linear system. Its solution can

be determined in two stages that are described in the subsections that follow.

4.2.1 Reduction to a Cycle

Whereas the columns of B are restricted to containing 1 or 2 non-zero elements, the

rows of B are not under a similar constraint. However, if a row of matrix B contains

no non-zero elements, B is trivially singular and a solution cannot be determined.

If a row i of matrix B contains exactly one non-zero element, which lies in

column j, the value of the variable Xj can be determined immediately. If column j

contains another non-zero element in a row i', variable Xj can be eliminated from

row i' by the appropriate substitution. Row i and column j of matrix B can then

32

be deleted, as the value of Xj has been determined and no other equation depends

on this value.

The rows of B momentarily containing one non-zero element each can thus

be eliminated one by one. The key to keeping the running time of this computation

linear is to check the number of non-zero elements left in row i' after deleting row i.

If there are zero non-zero elements left in row i', matrix B is trivially singular and

the algorithm terminates. If there is one non-zero left, the algorithm proceeds with

the solving and deletion of row i'.

In the end, no rows of B with less than 2 elements are left. It is possible that

matrix B has become empty, in which case a solution to the problem has already

been found.

Now consider the case where B is non-empty. One row and one column have

been deleted from matrix B during each step of the algorithm, so B must still be a

square matrix. Let its dimension be n.

• By the termination condition of this part of the algorithm, each row contains at

least 2 non-zero elements. Consequently, B must contain at least 2n non-zero

elements.

• By hypothesis, each column of B contains at most 2 non-zero elements at

the start of this part of the algorithm. As the algorithm proceeds, the num

ber of non-zero elements in columns that remain in the matrix is unchanged.

Consequently, B must contain at most 2n non-zero elements.

Clearly, both inequalities can be satisfied only if each column and each row of B

contains exactly 2 non-zero elements.

Consider a graph where the vertices correspond to the rows and there is an

edge from vertex ii to vertex 12 if and only if there exists a column of matrix B

whose non-zero elements are in rows i\ and Because every row has exactly 2 non

zero elements in it, every vertex in the corresponding graph has degree 2. Therefore

the graph is a collection of disjoint simple cycles.

33

o o
o o

o o
o o

o o

Figure 4.1: Non-zero structure of a cycle Figure 4.2: Cycles in a matrix

Each simple cycle corresponds to a linear system that can be solved indepen

dently from the others. By a suitable permutation, matrix B can be rearranged such

that all its non-zero elements are grouped in square blocks along the main diagonal.

Blocks are henceforth termed cycles, as each block represents a simple cycle in the

graph derived from the matrix.

Each n x n block A can be permuted such that its non-zero elements are on

the main diagonal, right above the main diagonal and in the lower left corner, as

shown in Fig. 4.1:

Ai>:j ^0 j =iv j = (i mod n) + 1 (4.1)

The partitioning of matrix B into cycles is achieved by a greedy walk through

the graph corresponding to B. This is easily doable in linear time.

4.2.2 Solving a Cycle

In order to complete the solving of a Coho linear system, solutions to its cycles must

be found.

Let A be a cycle with the structure described by (4.1) and let

Ax = y

be the corresponding linear subsystem to be solved.

(4.2)

34

The rows of matrix A can be scaled to obtain its normalized form:

A =

1 -al 0 0

0 1 -a2 0 0

0

' O n 0

0 1 - a n - i

. . 0 1

which is equivalent to:

Aitj — <

Let

Pk= {

1 if j = i

— a* if j — i mod n + 1

0 otherwise

Yli=iai iffc = l , . . . ,n

1 if k = 0

It is obvious that:

Pk = otkPk-i, Vfc = l , . . . ,n

The first row in equation (4.2) yields:

- y i
X2

Oil

More generally, rows 1,..., i yield:

Xi+l =

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Finally, combining this with the last row of equation (4-2) gives the formula for x±:

Xl
l-Pn

(4.9)

35

Thus, the solution for x\ is ill-conditioned if Pn is close to 1. Chapter 5 presents

a more detailed error analysis. Clearly, equation (4.9) can be rewritten to obtain

similar formulas for the other X j ' s , all with the same denominator. Rather then

computing each x, separately, it is more efficient to compute x\ as per formula

(4.9), and then use the recurrence:

= ^Vi^ i e {!,... , n - l } (4.10)

Clearly, the above algorithm runs in 0(n) time. Other algorithms that employ

elimination, like L U decomposition, can be used in order to achieve the same running

time. However, the one presented in this subsection has the advantage of yielding

the result in a concise form that is appropriate for the analysis of the numerical

stability of the system.

4.3 Running Error Analysis

An important problem with the Coho LPs is the need for an error bound on the

computed solutions. In addition to the solution proper to the Coho LP, error bounds

on the solution are necessary if the verification is to be sound. More precisely, it is

important to never underapproximate the feasible region of the L P and the optimal

cost.

Pivoting decisions in the Simplex algorithm involve comparisons between

tableau elements. In the presence of ill-conditioning, these comparisons might yield

uncertain results. The availability of error bounds on tableau elements and other

quantities enables the algorithm to recognize cases of uncertainty in the result of a

comparison.

The Simplex algorithm and the algorithm that computes tableau columns

make use of elementary operations only. This leads to the approach of computing

an error bound on the result of each elementary operation. The computation of an

error bound along with the result proper of each operation leads to an error bound

36

on the final outcome. This approach to error analysis is called running error analysis

[Hig96, p.72]. A slight modification of the method is called interval arithmetic.

In many cases, interval arithmetic doesn't work because of the explosion of

the interval as the computation proceeds through a long algorithm. The slightly

better running error analysis does work for Simplex because, with the computation

of tableau columns from input data proposed in section 4.1, there is no floating-point

data propagated from one pivot of the algorithm to the next. Although running

error analysis tends to lead to overly pessimistic error bounds when applied to a

long algorithm, it can in some cases provide sharper, a posteriori bounds than an a

priori analysis can provide [Hig96, p.73].

The arithmetic operations on floating-point numbers are generally subject to

rounding errors when executed on digital computers. This is caused essentially by

the fact that floating-point numbers are stored with only a fixed number of digits,

whereas the result of an operation might require more digits than the particular

numeric format has available.

A l l the arithmetic operations executed on a computer follow the fundamental

rule of the arithmetic of the computer:

where &(x op y) is the result of x op y computed by that arithmetic and u is a constant

for a particular arithmetic called the unit roundoff. For the I E E E double precision

arithmetic, u = 2" 5 3 « 1.1 x I O - 1 6 .

When the operands are themselves affected by errors, they can be regarded

as intervals on the real axes. Consider the pair (x, e) to be the representation of the

interval [x — e, x + e]. Let (x,e) = (x\, ei) op(x2, ef)- Then x = Q(x\ o p£2) and

Division can be regarded as the inversion of denominator followed by the multipli-

fl(a;opy) = (xopy){l + 5), \5\<u, o p G { + , - , x , ^ }

e\\x2\ + e2\xi\ + u\x\ + eie2 if op 6 {x}

if op e { + , - }

37

cation of its result with the numerator. Let (x, e) = (xo, eo) 1 . Then x = 1/XQ

and

e = <
if |x 0 | > eo

ko|(|a;o|-eo)

+00 otherwise

Clearly, the computation of the error bounds is itself affected by rounding

errors. Fortunately, the error bound does not need to be known with high precision:

its order of magnitude will often suffice. Moreover, disastrous cancellation cannot

occur in the computation of error bounds: all the numbers involved are positive and

subtraction does not occur.

There are some problems with the use of running error analysis. The first

is that ideally one would like to have a simple formula to compute error bounds

for the solutions of a linear system. The other issue is that the computation of

error bounds on the result of each arithmetic operation along with the actual result

increases the running time of the program. However, the penalty is a constant factor,

not a deterioration of the asymptotic running time. As verification is executed as

an off-line process, an increase of the running time by a constant factor can be seen

as a reasonable price to pay if the algorithm would otherwise fail.

38

Chapter 5

Analytical Attack on the Error

As emphasized in previous chapters, the success of Coho verification depends strongly

on the accuracy with which the linear programs that it produces are solved. The

main floating-point (hence error-prone) computation that is performed as part of

Simplex is the determination of the tableau columns corresponding to a basis.

However, for bases other than the optimal one, only enough accuracy is

needed to be able to determine the departing and the entering basic variables. This

is the case because no floating-point values computed at a basis are subsequently

reused in our version of Simplex. For most of the bases encountered during a run

of Simplex, the computation of tableau columns using the linear-time algorithm

presented in section 4.2 along with running error analysis produces satisfactory

results.

On the other hand, there can exist suboptimal bases at which the error

bounds on the tableau columns are not tight enough to establish whether the ba

sis is optimal and, if it is not, which pivot leads closer to optimality. Whereas

such a situation can be dealt with by branching the computation path, it is clear

that obtaining sufficiently sharp error bounds to be able to decide with certainty is

preferable.

The combinatorial solution to a linear program consists of its optimal basis.

39

Once the optimal basis has been found, the optimal solution of the standard-form

dual is determined as column 0 of the tableau. However, if the solution to the Coho

primal is sought after, a slightly different linear system has to be solved. Whereas

the solution to the standard dual is:

ar5 = (As

:tB)-1 bs (5.1)

the solution to the Coho primal is:

xc = [AC

B,)-1 bc

B = ((Asfr 1 bCs (5.2)

The left-hand sides of two linear systems differ only through a transposition. The

conditioning of any matrix is the same as that of its transpose. Moreover, only

trivial changes are needed to an algorithm that solves linear systems of the first

type to make it work for the second type. Thus it is sufficient to analyze linear

systems of the first type, under the implicit assumption that the results also apply

to the extraction of the optimal solution to the primal.

Whereas in some cases the optimal solution of a linear program is the result

of interest, there are instances where the optimal cost is the sought-after answer to

the problem. In such a case, the components of the error in the optimal solution that

are orthogonal to the optimization direction are harmless. This opens the possibility

of trading accuracy of the optimal solution in directions that are orthogonal to the

optimization direction for accuracy in the optimization direction.

Ideally, we would like to be able to characterize the accuracy of the com

puted optimal solution through a closed-form expression depending on the machine

precision and on the matrix structure.

In the case of the optimal cost, the comparative flexibility of the constraints

suggests that an error bound can be established that depends only on the machine

precision and on the dimension of the system.

Whereas these problems have not been solved completely, some inroads have

been made into them. These advances form the subject of this chapter. As the

40

reduction of an independent Coho linear subsystem to independent cycles has been

described in the previous chapter, the focus here will be on the solving of the cycles.

The first section presents a new algorithm for solving cycles as part of computing

tableau columns and the error bound that is thus achieved. The second section is

concerned with a way of obtaining a better estimate of the optimal cost in cases

where the optimal basis is ill-conditioned.

5.1 Error Bound on Cycle Solution

Section 4.2 presents a linear-time algorithm for solving the cycles that appear in

, Coho linear systems. The key to keeping the running time linear is the calculation

of only one component of the solution by means of a direct formula that takes

0(n) time. The other components are computed recursively starting from the first

component at the cost of 0(1) each. Clearly, the recursive computation accumulates

error. This can be avoided by the direct use of formulas similar to (4.9) in order

to determine each component of the solution. Obviously this increases the running

time of the algorithm to 0(n2). However, even with this modification, only running

error bounds on the solution to the cycle are available.

This section examines an alternative way of solving a cycle and of computing

a bound on the error in the solution.

5.1.1 Algor i thm for Solving Cycles

Let the cycle to solve be described by the equation:

Ax = y (5.3)

where A G R " x " , y G R". Matrix A is supposed to be in normalized form as per

equation (4.4). Then it is possible to express A as:

A = SBS-1 (5.4)

41

where S is a diagonal matrix:

S = diag(s) (5.5)

and B is a particular case of a cyclic matrix in which all off-diagonal elements are

equal:
(

1 i f j = i

—fi if j = [i mod n) + 1

0 otherwise
From equation (5.4) it results immediately that:

B = S~lAS

Bi,j = < (5.6)

(5.7)

Simple computations show that:

1

(S^AS)hj = {

iij=i

— a , 5 ^ m o d n) + l j£ • _ ^ m o c j n) -j- 1

0 otherwise
v

Equation (5.7) implies that:

Bi,{i mod = (S 1AS)i(i m o d Vi = l , . . . , n

which is equivalent to:

^ = a , * (imodn)+l y i = 1

Si

Memberwise multiplication of the equations above for i = 1,. . . ,n yield:

(5.8)

(5.9)

(5.10)

n n I l s (i m o d n) + l n
p n = d „) + 1) = { T J a i y ^ _ } = JJa, (5 n)

i = l n
i=l

i=l

Thus,

(5.12)

42

The combination of equations (4.5) and (5.12) yields:

P=yp~n (5-13)

The values of s can be obtained from (5.10):

if i t = 1
(5.14)

^ = 0^1 i f l < f c < n

Matrix S is not unique: multiplication of S by any non-zero real number yields

another matrix that satisfies (5.3).

Matrix B with the structure as defined by (5.6) falls within the category of

circulant matrices or, for short, circulants [Hig96, p.469]. As a circulant, matrix B

has the property that it is diagonalized by the Fourier transform matrix Fn:

FnBF-r = A = diag(A) (5.15)

Also as a property of circulants, vector A contains the eigenvalues of matrix B and

it satisfies:

A = Fnb (5.16)

where b is the first column of matrix B:

b = B:tl = co l (l ,0 , . . . , 0,-/3) (5.17)

By definition:

(Fn)i>} = e^1 2 * « - i) C 7 - i) / n (5.18)

As b contains only two non-zero elements, a closed form of the eigenvalues of B is

easy to obtain:

A; = 1 - pe^1 Mi-V/n (5.19)

Equation (5.15) implies that B can be expressed as:

B = F~lKFn (5.20)

43

and

B - 1 = F - l K - l F , n (5.21)

From (5.4) and because S is diagonal it follows that:

A'1 = S B ^ S ' 1 (5.22)

Equations (5.21) and (5.22) combined yield:

A ' 1 = S F ^ A ^ F n S
—l (5.23)

and, for the solution to the cycle:

x = AS = SF-xtrxFnS~xy (5.24)

The computations of s and A take linear time. Fast Fourier transform algorithms

take 0(nlogn) time. Consequently (5.24) defines an 0(nlogn) time algorithm for

solving a cycle.

5.1.2 Estimation of Cycle Condit ion Number

The direct and inverse Fourier transforms are known to be quite stable. The algo

rithm defined by (5.24) might offer higher accuracy than the linear-time one pre

sented earlier on. As it is more expensive, it will be used only when the linear-time

algorithm fails to give satisfactory results.

The expression of cycle matrix A as the product of matrices with simpler

structure enables the determination of a closed-form expression for the error in the

solution to the cycle. Error analysis is straightforward for diagonal matrices.

Numerical stability properties are also known for circulant matrices. For one

thing, the singular values of a circulant are the absolute values of its eigenvalues.

Quantity Pn is a product of real numbers, so it is itself a real number. Quantity f3

is the n t h root of P „ , so it can be expressed as:

j3 = | /3 |e^((P+ 2 f c W"), where k £ {0, . . . , n- 1} (5.25)

44

and

[o i f P „ > 0
P = \ (5.26)

[1 i f P n < 0

The eigenvalues of matrix B are given by (5.19). B y combining it with (5.25) the

following equation results for its singular values:

d = y/l + \/3\2 - 2|/3|cos6> i = l,...,n (5.27)

where

e = (P + 2* + 2 (» - I) K (5 - 2 8)

n

A classical measure of the sensitivity of a linear system to numerical errors is the

condition number of its left-hand side, which is the ratio of its largest to its smallest

singular value:

K(B) = ^ (5.29)
Cmin

where a m a x = max^ o-, and <rmin = min, CT, .

It is easily seen that c r m ax a s a function of 6 is realized for the lowest value of cos 6,

i.e the value of 6 that is closest to 7r (mod 2n):

1 + 1/31 if (Pn > 0) = (n is even)
(5.30)

[^/(l + | /3 |) 2 -2 | /3 | (1 -cos |) if (Pn > 0) = (n is odd)

Equation (5.30) can be expressed more simply as:

crmax < 1 + |/3| (5.31)

The value a m ; n , as a function of 9, is realized for the highest value of cosd, i.e the

value of 9 that is closest to 0 (mod 2TT) :

= <
y i / 3 | 2 - 2 | /3|co S | + 1 i f P „ < 0

45

For the Pn < 0 case, the value of K(B) can be determined from equations (5.31)

and (5.32):

K{B) (5-33)
^ | / 3 | 2 -2 | / 3 | co s - + l

The minimum value of this expression for |/3| > 0 is:

iY(B) = - V (5- 3 4)
sin — 2n

which shows that the system cannot be ill-conditioned when P „ < 0 for the values of

n of interest in Coho (n < 20). This agrees with equation (4.9), which suggests that

ill-conditioning is related to Pn being close to 1. Only the case Pn > 0 is considered

henceforth. For this case, <7 m j n simplifies to:

*„_.„ = | 1 - | 0 | | (5-35)

From equations (5.31) and (5.35) it follows that:

K(B) < jl + Jii (5.36)

The condition number of a diagonal matrix is the ratio of its largest diagonal element

in absolute value to its smallest:

max \si\

K(S) = \ , , (5.37)
min | S i |

i
As with any matrix, K(S) = K(S~1).

This enables us to establish an upper bound on the condition number of A:

K(A) < K{S)K{B)K{S-1) = K{B)K{S)2 (5.38)

5.1.3 Error Bound on Solution to Cycle

Formula (5.38), although it has the merit of establishing an upper bound on the

error in the solution to a cycle, can be rather pessimistic. Known results on circulant

systems will be combined with error computations for the scaling matrices to obtain

a tighter error bound on the cycle solution.

46

Forward Error Bound for the Cycle Circulant

In addition to the properties of circulant matrices presented in the previous section,

more results about them can be found in [Lin92]. More specifically, a normwise

forward error bound is established for circulant systems. The result, which holds if

the input data is free from errors, the only source of errors being roundoff in the

algorithm, is the following:

m ^ ~ x l 1 < u(yFFT(n)(KF:2(B)+2)+cCo) = / * (» , «) (5.39)

where fl(:r) denotes the floating-point approximation of x, u denotes the machine

precision, ceo = V2~ + 4 is a small constant, Kp^B) is a pseudo-condition number

defined as:

J E W

k

and ^FFT(?I) is a function that characterizes the stability of the particular F F T

algorithm employed to solve the circulant system. For example, the radix 2, Cooley-

Tukey algorithm has [Lin92]:

*FFT(TI) < c<plog2n (5-41)

where = 1.06 x 4 3 / 2 . From (5.19) it follows that:

| A f c | 2 = l +) 9 2 - 2 0 c o s 2 7 r (f c ~ 1) (5.42)
n

so

= n (l + 0 2) - 2 ; 9 E L i C o s 2 7 r (/ ; ~ 1)

(5.43)

A well-known trigonometric result is that:

^ c o s 2 ^ ^ (5.44)

k=l

47

which, introduced in (5.43), yields:

X>*|2
 = n(l+/? 2) (5.45)

k=l
Similarly to (5.35), we have that:

min|A f c | > I1-I0H (5.46)
k

The substitution of (5.45) and (5.35) in (5.40) yields:

KMB) < {5.47)

The introduction of equation (5.41) and inequality (5.47) into inequality (5.39) yields

the following forward error bound for matrix B:

fa{n,u)<u l^c* log 2 n (^^_^ + 2j + cc<fj (5.48)

Errors Affecting the Scaling M a t r i x

As a cycle matrix A consists of matrix B pre- and postmultiplied with matrix 5

and S 1 - 1 , respectively, the errors introduced by S and 5 _ 1 have to be considered as

well. The coefficients a, result from row scaling, so they will be affected by error:

I fl(aj) — ctA
1 v , .—- < u (5.49)

\Cti\
The application of the error composition rule for multiplication leads to:

\3i^hlz31 < (2k - l)u < (2n - l)u \/k=l,...,n (5.50)

The computation of the quantity:

Pk = (Pn)™ (5-51)

involves the power operation, which is not elementary. In general, the quantity xy,

where x and y are real numbers, is computed as eylnx and, when the inputs are free

from errors, is affected by the following error [Mul97, p.179]:

|fl(a;») -x*\

\xy\

48

= | e « » l n * _ l | (5.52)

or, to the first order:

|fhV) x y\
uylnx (5.53)

\xv\

In order to account for the error in the inputs to the power, we use its linearization:

(x(l + Sx))^1+^ « xv(l + y(5x + lnx Sv)) (5.54)

Both k and n are error-free integers, so the error that affects their computed ratio
is: ^

| f l (^ ~ ^ < u (5.55)
In I

Based on the rules expressed by (5.53) and (5.54) and on the error bounds on the

inputs given by (5.50) and (5.55), the following bound is obtained for f3k computed

by formula (5.51):

' ^ l ? ^ 1 ^ - ((2 * - l) u + | l n | P n | | «) + - | l n | P „ | | u (5.56)

\pK\ n n
which, because ^ < 1, simplifies to:

' 1 | j f c |

 P ' < (2n + 2 | ln |P n | l)u (5.57)

Formula (5.14) of sk can be rewritten as:

Sk = yk (5-58)

When computed by the above formula, the error that affects sk is:

\fL{8k)-sk\ \mk)-vk\, Wk)-pk\,
< rzr, 1 rzz-, h u

(5.59)
\sk\ " \Pk\ ' \Pk\

< (2n + 2 | l n | P n | |) u + (2 A : - l) u + u

< (4n + 2 | l n | P n | |) «

The introduction of (5.13) into (5.59) leads to:

| f l (sf }7 g f c |
 < (4n + 2n| In |/3||)u (5.60)

I s * I

It is easy to see that the same error bounds can be attained for the components

of S~l.

49

Error Bound for Cycle Solution

Let us now establish an error bound on the solution of the cycle. Consider that the

linear system is solved in the following steps:

t' = S~ly
t" = B~H' (5.61)

x = St"

For all three steps of the algorithm we have to consider two types of error in the

output. The first type is due to unavoidable roundoff, which is present even if the

input is error-free. The second type is due to the propagation of input error into

the output. The relative error in the input appears in the output magnified by the

condition number of the system matrix:

a; o u t = Mx-m =* < K(M)l^f (5.62)
I Pout II ll-^inll

The first step of the algorithm consists of elementwise multiplication:

A = skVk (5-63)

Quantity y is considered free from errors. A bound on the componentwise relative

error affecting t' follows immediately:

WU-lUMj-^+u (5.64)
l*fcl 1**1

The introduction of inequality (5.60) into the one above yields:

|fl(**)~**1 < ((4n + l)+2n\ln\fJ\\)ud^ fs(n,u) (5.65)

Both types of error can occur during multiplication by B~l:

M M < / B („ , „) + K (B) m ^ i (5 , 6)

Componentwise bounds translate directly into normwise bounds, so it is possible to

introduce (5.65) in the inequality above:

|lflf/"1 _ / " | |

" y f | | " < fB(n,u)+K(B)fs(n,u) (5.67)

50

The error bound for the final result is obtained by considering the multiplication

by S:
" <fs(n,u)+K(Sy \> 11 (5.68)

||x|| - \\t»,,

By combining the equation above with (5.67) it results that:

l|fl?,7X|1 < K(S)fB(n,u) + (K(S)K(B) + l) / 5 (n , «) ^ g(B,S,n,u) (5.69)

The introduction of (5.36), (5.37), (5.48), and (5.65) into (5.69) leads to the error

bound for the cycle solution:

max \ Si\

S^S,n,u) = ! ^ (^ l o g 2 n (^ % + p + 2) + c C o N

/ i i N (5.70)
/ max s j • - • x

+
1 +
11 - + 1 ((4n + l) + 2n|ln |0 | |)u

From (5.70), we see that errors can be large if \/3\ w 1 or |*'| is large. As

mentioned earlier, the characterization of the errors caused by solving the circulant

matrix assumes that (3n is a positive number. When /3 n « 1, the denominator of

(4.9) is close to zero, reflecting the near singularity of the system. When |^'| is

large, the system is ill-conditioned due to extreme scaling that can lead to serious

cancellation.

This analysis has not considered the fact that matrix B is affected by errors
d \\t"\\

in the calculated value of fi. This can be achieved by computing ^ " . A first
d WBW

step towards this can be the evaluation of ^ 1 1 . This remains a topic for future

research.

5.1.4 Summary

This section has analyzed the errors that affect the solutions of Coho linear systems.

The left-hand side of such a linear system is a cyclic matrix A. In this section we

have made progress on getting a more detailed characterization of the conditioning

of A

51

Cyclic matrices have been shown to be expressible as the product A —

S^BS, where S is a diagonal matrix and B is a circulant matrix. Closed-form

formulas for the eigenvalues, eigenvectors, singular values, and singular vectors of

matrices B and S have been presented.

The singular values of matrix B are proportional to the eigenvalues of the

same matrix. Matrix B has at most one small eigenvalue and at most one small

singular value. The eigenvalues and eigenvectors of matrix A coincide with those of

matrix B. Therefore matrix A has at most one small eigenvalue.

The conditioning of matrix A is determined by the conditioning of both B

and S. Unlike B, matrix S can.have several small singular values. The precise

characterization of the conditioning of matrix A requires knowledge of its singular

values. Whereas a time-effective method for this computation has not been found,

the condition number of A can be bounded by the product of the condition numbers

of B and S, which we know exactly.

An analysis of the forward error that affects the solution of a cycle has been

presented. However, this analysis does not lead to a closed-form expression for the

error bound, which means that further research is necessary in this direction. The

most significant improvement can potentially result from the determination of the

singular values of matrix A. This too remains a topic for further research.

5.2 Estimation of Optimal Cost

In this section we seek ways to compute the optimal cost of a Coho linear program

as accurately as possible. The computation of the optimal cost continues naturally

from that of the optimal solution.

Consider a Coho linear program CLP(AC ,bc ,cc) whose optimal basis is B.

The optimal cost can be computed as the dot product of the cost vector and the

52

optimal solution either in the Coho primal:

(cc)T xc = (cc)T (ACB,-.~1 OCB) (5.71)

or in the standard-form dual:

(csf xs = (bc

Bf((Ac

B,T)^cc) (5.72)

The second method will be considered as it builds directly on the results of the

previous section. Moreover, it is not difficult to show that the same results apply to

the first method.

Of the two operands of the dot product in (5.71), the dual cost vector is free

from errors. The dual optimal solution, however, is affected by an error that has

been bounded in the previous section.

The following forward error bound is known for the dot product of two vectors

[Hig96, p.69]:

\a{xTy)-xTy\ < n U \x\T\y\ where i , t / £ R" (5.73)
1 — nu

This shows that high accuracy is not guaranteed if \xTy\ <s£ |x | r | y | . O n the other

hand, the accuracy of the computed dot product is high if all X j j / , terms have the

same sign.

A n optimal solution of a linear program in standard form is feasible, so all

the components of xs must be non-negative. O n the other hand, the signs of bc can

in general be arbitrary, holding the potential for disastrous cancellation in the dot

product with the dual optimal solution.

This problem can be circumvented by making a change of variables such that

the origin lies inside every projection polygon. This will result in the origin lying

inside the feasible region of the linear program. The feasible region of the Coho L P

is defined by the inequality:

Acxc > bc (5.74)

53

As the origin is inside the feasible region, the above inequality must hold for it:

Ac0 > bc (5.75)

i.e.:

bc < 0 (5.76)

Because cs = bc, this implies that:

\{csfxs\ = \{csf\\xs\ (5.77)

The application of rule (5.73) to equation (5.77) leads to the following formula for

the relative error epp in the computed cost due to the dot product operation:

The approximation | — N U
 = 1 introduces negligible errors for for the values of

n < 20 typical of Coho.

Formula (5.78) bounds the error that would affect the computed optimal

cost if the box c and x were free from errors. As it has been seen, a: is a computed

quantity affected by an error bounded by formula (5.69). The error in the optimal

solution translates into the following absolute error in the optimal cost:

Ex = \cTft{x) -cTx\ = \cT{H(x)-x)\ < ||c|| ||fl(a;) (5.79)

As the magnitude of the cost vector is irrelevant, we can assume ||c|| = 1 and (5.79)

becomes:

Ex < ||fl(x) - x|| (5.80)

The introduction of (5.69) into (5.80) yields:

Ex < g(B,S,n,u)\\x\\ (5.81)

The total absolute error E in the cost is obtained by adding errors eop and Ex:

E = Ex + eDP cTx <Ex + nu cTx (5.82)

54

Equation (5.82) says that, assuming a unit cost vector, the error in the

computed cost is bounded by the error in computing the optimal point plus nu

times the exact cost. If the optimal basis is ill-conditioned, the error in calculating

the optimal point may be large. This motivates considering nearby branches where

the error can be reduced.

5.2.1 Use of N o n o p t i m a l Bas is

When the optimal basis of a linear program is highly ill-conditioned, the error bound

on the optimal cost computed by the methods discussed so far might be unacceptably

large. Therefore a better over approximation of the optimal cost may be obtainable

by computing it for a slightly primal-infeasible well-conditioned basis.

More concretely, consider a linear program with cost vector c and optimal

vertex x. Let the optimal cost be approximated by the cost of the vertex x'. Let

the computed costs of x and x' be &(cTx) and Q.(cTx'), respectively. The computed

cost of x' differs from the true optimal cost by:

If this quantity is less than the error H(cTx) — cTx that affects the computed cost

of x, then x' offers a better approximation of the true optimal cost of the linear

program.

The error component fi(cTx') —cTx' depends on the conditioning of the basis

associated with x'. The error component due to the difference between the true

costs is:

Therefore in order for a vertex x' to yield a good approximation of the optimal cost,

x' must satisfy the following properties:

• x1 is not far from the optimal vertex x

&(cTx')-cTx\ = \{&{cTx')-cTx') + {cTx' -cTx)\

< I H(cTx') - cTx'\ + \cTx' - cTx\
(5.83)

c x — c x\= x — x proj(. x'—x) C (5.84)

55

Figure 5.1: Types of optimal 2D vertices: a) highly obtuse optimal vertex and highly
acute cost cone; b) highly acute optimal vertex and highly obtuse cost cone

• x1 is on a near-normal to the cost vector through the optimal vertex

• the basis corresponding to x' is well-conditioned

A square matrix is ill conditioned if at least one of its rows is nearly equal to a

linear combination of the other rows. The maximum number of rows that are nearly

equal to linear combinations of other rows represents the degree of ill conditioning.

Clearly the degree of ill conditioning depends on what is meant by "nearly equal".

A matrix and its transpose share the same conditioning. This is reflected by

the fact that the characterization of matrix ill-conditioning with respect to rows is

also true of columns.

In the case of Coho linear programs, basic columns in the dual represent

inward halfspace normals in the primal. The feasibility of a basis means that the

primal cost vector is a positive combination of basic columns. Therefore at any

feasible basis the primal cost vector lies inside the cone generated by the basic

inward halfspace normals, also called the basic cost cone.

Let us now consider the simple case of a two-dimensional linear program

56

whose optimal basis is ill-conditioned. Ill conditioning has a simple geometric inter

pretation in this case: the two lines that determine the optimal vertex are nearly

parallel. This means that the optimal vertex is either highly obtuse or highly acute.

It is easily seen that the angle of the optimal vertex is the supplement of

the angle of the optimal cost cone. Therefore when the optimal cost cone is highly

acute the optimal vertex is highly obtuse and vice versa.

The optimal basis is feasible, so the optimization direction lies inside the

optimal cost cone. Consequently the angle between the optimization direction and

either side of the optimal vertex cannot differ from 7 r / 2 by more than the angle of

the optimal cost cone. Therefore, when the optimal cost cone is very acute, i.e.

when the optimal vertex is very obtuse, the sides of the optimal vertex are nearly

perpendicular to the optimization direction.

This suggests that vertices that lie on the lines that determine the optimal

vertex are good choices for approximating the optimal cost. Moreover, the more

ill-conditioned the system is, the better the approximation offered by such points.

A vertex on one of the lines that determine the optimal vertex is obtained by

replacing the constraint corresponding to the other line with some other constraint.

If the optimal vertex is highly acute, then the optimal cost cone is very wide,

so the orientation of the optimization direction relative to the boundary lines cannot

be characterized. However, highly acute vertices can be precluded by an appropriate

scaling of the LP, not discussed further in this thesis.

Let us now try to extend the approximation idea presented above to higher

dimensions. Consider a Coho linear program of dimension d whose optimal basis is

ill-conditioned. For simplicity, we assume its degree of ill-conditioning to be 1, but

we expect the generalization to higher degrees to be straightforward.

The i l l conditioning of the basis means that there exists a subset of its

columns such that any column in the subset is almost a linear combination of the

other columns in the subset. We term the columns in the aforesaid subset interde-

57

pendent and the other columns independent.

Let Gh be the linear subspace generated by all the basic columns except fc.

This subspace has dimension d — 1, so it is, in fact, a hyperplane. Let k be one of

the interdependent columns. The fact that column k is almost a linear combination

of the columns that generate Gk means that the projection of column fc onto the

normal to Gk is very small. This implies that, for any two interdependent columns

fci and fc2, hyperplanes Gkl and G^ 2 are nearly parallel.

Each of the d hyperplanes generated by a set of d — 1 inward face normals

contains a face of the optimal cost cone. Hence the faces of the optimal cone

corresponding to interdependent basic columns are nearly parallel to one another.

Therefore the wedge formed by two such faces can be either very thin or very wide.

The cost vector must lie inside the wedge formed by a pair of adjacent faces

of the optimal cost cone. If the wedge is very wide, no inference can be made about

the direction of the cost vector. This is the case for highly acute vertices, and can

be excluded by scaling.

For a highly obtuse vertex, the wedge is very thin, and the cost vector is

nearly parallel to either face of the wedge. A normal to a face of the wedge will be

almost perpendicular to the cost vector. Therefore the points on such a normal may

suitably approximate the optimal cost.

A vertex on the normal to the face of the optimal cost cone contained in

hyperplane Gk can be obtained by replacing basic column k with another column.

In the Coho LP, this amounts to replacing one of the constraints in the optimal

basis.

If an ill-conditioned optimal basis is characterized by the existence of a pair

of faces of the optimal cost cone that form a very thin, wedge, then the optimal

vertex is said to be highly obtuse and the optimal cost cone is termed highly acute.

Otherwise, the vertex is said to be highly acute and the optimal cost cone is termed

highly obtuse.

58

The error introduced by using a non-optimal basis is proportional to the

distance of the approximating vertex to the optimal vertex and to the projection of

the cost vector onto the line passing through the two vertices. In order to bound

the approximation error, we have to bound these two quantities.

5.2.2 Error Introduced by Dropping One Constraint

This subsection considers the case of a (i-dimensional cone and a vector inside the

cone. A bound on the projection of this vector onto the normal to an arbitrary

face of the cone is established. Practically, we are interested in very flat and narrow

cones as described in the proposed approximation solution.

L e m m a 1 Let u and v be vectors in R " \ { 0 } .

Let

6 = -_(u,v) (5.85)

Let w = w{9) be a function defined as:

(5.86)

Then
u + v < w{6) (5.87)

P roof It is simple to establish that:

(5.88)

Division by ||u|| turns equation (5.88) into:

(5.89)

Let:
v (5.90)

59

Substitution of (5 . 9 0) into (5 . 8 9) yields:

u + v

u
= yj 1 + jjfi + Ip, cos 9 (5 . 9 1)

The value of n for which the expression of 1 S minimized is:

M m i n = - C O S C ? (5 . 9 2)

Because both | | u | | and | | v | | are positive, n is restricted to positive values. By bringing

in this restriction the value of u for which ^ i " ^ ^ is minimized becomes:

IMI
/.min = m a x(/i[n i n, 0) = m a x (- cos 9,0) (5 . 9 3)

(5 . 9 4) Â min — \
0 if 9 < T T / 2

-cose? if 6» > T T / 2

If t9 < TT/2, then ^ " 1 , " * " , ^ is minimized with fi = 0 and:

l |u| |

If 9 > 7r/2, then ^"M^I^ 1 S minimized with JJ, = cos 9 and:

(5 . 9 5)

u + v

u
= y/(-cos9)2 + 2 cos 9{-cos9) + 1 = y/l - cos 2 9 = sin9 (5 . 9 6)

Equations (5 . 9 5) and (5 . 9 6) establish the result of the lemma.

•
The proposed approximation relies on the cost vector being nearly parallel

to any face of the optimal cone. This nearness is measured by the projection of the

cost function on the normal to a face of the optimal cone. The following theorem

establishes a bound on this projection:

6 0

Theorem 1 Let {UJ : i = 1,.. . , n} be a set of n-dimensional unit vectors such that

U i , . . . , u n _ i are linearly independent.

Let dx be a unit vector such that

d _ L - U i = 0 , Vi = l , . . . , n - 1 (5.97)

Let

and

u „ • d ± > 0 (5.98)

un± = u „ • dx (5.99)

Un, , = u „ - un±d± (5.100)

(" _ 1 \
<p = max L U„n , V b j u , (5.101)

(6 1 , . . . , & „ - 1) e R ; - 1 V fei /

Let f e R n 6e a unit vector such that
n

f = J2<H"i (5.102)

let

i = l

where

ai>0, Vi = l , . . . , n - 1 (5.103)

Let

Then

f± = p r o j d ± f (5.104)

0 < f± < " " i _ = (5.105)
y/i£±+W2{<p) (l-U 2J

61

Proof The combination of equations (5.102) and (5.104) yields:

n n

f± = f • dx = (^ a ; U j) • dj_ = ^ a ; (u , • dj_)
i=i i=i

The introduction of definition (5.97) into equation (5.106) yields:

= a„(u„ • dx)

By definition (5.99) equation (5.107) becomes:

By definitions (5.98) and (5.99):

(5.106)

(5.107)

(5.108)

(5.109) unj_ > 0

Thus, definition (5.103) and inequality (5.109) yield f±_ > 0, establishing the first

inequality of the theorem.

Let

f|| = f - / ± d x (5.110)

The introduction of (5.102) and (5.108) into (5.110) yields:

n 7i—l n—1
f l l = y i a i u ' ~ a n"nj,dx = ^ a j U j + anUn-anUn^dx = ^ OjU, + a„(u„ - U n ± dx)

i=l i=l i=l

(5.111)

The combination of (5.100) and (5.111) leads to:

n - l
fj| = a „ u n | | + ^ ajU,- (5.112)

i=l

The application of lemma 1 to the vectors in equation (5.112) results in:

/ / n - i \ \
fu > W (5.113)

By (5.103) a„ must be positive, so:

n - l

t=l

n - l
(5.114)

t=i i=i

62

By definition (5.101):
n - 1

^ U n | | , ^2 aiui ^ (5.115)
i = i

The function w is monotonically decreasing, so the inequality above can be turned

into:

w (z. (uni],]T] a,i\ii\ \ > w (cp) (5.116)
i = i

Combined, inequalities (5.113) and (5.116) yield:

f i i > Q"n^n\\ w (cp)

In general, for any 2 vectors v and w , the Pythagorean theorem holds:

For f and it becomes:

if ir = i
or:

By combining inequality (5.117) with equation (5.120) we get:

/ i _ < y 1 - (anw(ip) u n | |)

The introduction of (5.108) into (5.121) yields:

anuni_ < \Jl- (anw(<f) u„(|)

By the Pythagorean theorem for u„ and dx:

2

U n , , = I | U „ | | 2 - ulL = 1 - U * x

The introduction of (5.123) into (5.122) yields:

anun± < xjl- alw2{<p) (1 - u.

63

2)

(5.117)

! | v | | 2 - | |projw v | | 2 + | | v - proj w v | | 2 (5.118)

(5.119)

(5.120)

(5.121)

(5.122)

(5.123)

(5.124)

As the left side of inequality (5.124) has been shown to be positive, we can square

it to get:

n 2 n , 2 <T 1 - n 2n,?(,n\C\ _

This leads to the following bound on quantity an:

a2

nu2

n±_ < l - a 2

n w 2 (< p) (l - u 2) (5.125)

an < 1 (5.126)
^ u 2

± +w2{<p) {l-u2J

According to (5.109), quantity unj_ is positive. The multiplication of inequality

(5.126) with u n ± results in:

a n u n x < U n ^ (5.127)
• y j u 2

± +W2(<p) (1 ~ U 2 J

The introduction of equation (5.108) into the left hand of inequality (5.127) leads

to:

fL < (5.128)
y j u l ± +W2(if) (1 - U 2 J

This establishes the second inequality of the proof.

•

The quantity u n ± measures how close to singularity, i.e. ill-conditioned, the

system is, with lower values representing worse conditioning. The cases in which

the proposed approximation works are the ones where /j_ is very low. The theorem

shows that, if < 7r / 2 , then:

f± < u n ± " (5.129)

The condition <p < TT/2 represents an obtuseness requirement for the associated

vertex. This requirement is not very restrictive. We assume this condition to hold

during the rest of this discussion.

64

5.2.3 Use of the Bounding Box

In order to bound the approximation error, a well-conditioned overapproximating

basis within suitable distance of the true optimal basis is needed. Such a basis can

be guaranteed to exist by adding bounding box constraints to the linear program.

The fact that each time step of the Coho algorithm starts from a set of

projection polygons makes the computation of a bounding box for the feasible region

of the linear program trivial.

The feasible region of a face undergoes bloating and intersection with other

projectahedra, but these operations have obvious equivalents for the bounding box.

Intersection operations might result in a slight overapproximation of the bounding

box, but this is deemed acceptable.

The optimal solution of the linear program lies inside the bounding box.

Consider a line that is the intersection of ti — 1 of the hyperplanes that define the

optimal vertex. The optimal point divides the line into two halflines. The points

that belong to one of the halflines are characterized by higher-than-optimal cost, as

needed for the type of approximation that we are seeking.

This halfline intersects (at most) half of the bounding box hyperplanes. We

shall establish that at least one bounding box hyperplane exists such that its inter

section with the halfline is well-conditioned and their intersection point is either on

the bounding box or very close to it.

In the arguments that follow, the conditioning of the intersection of the

halfline with the hyperplane is measured by the projection of the direction of the

halfline onto the normal to the hyperplane. Low values indicate that the hyperplane

and the halfline are nearly parallel, so their intersection is ill-conditioned.

Definition 2 A vector f G R d is e-perpendicular to another vector g G R d iff
If . K |

IILJ if1,! < e. We write f J_ e g.
I|f|| l|g|| _

The above definition gives a quantitative measure for how close two vectors are to

65

being perpendicular. It is easy to see that f l o g O f 1 g.

L e m m a 2 Let f be a vector in R d \ {0}.

Let e be a non-negative real number such that

1
(5.130)

Then f cannot be e-perpendicular to all the directions of an orthogonal basis.

P r o o f Let E — { e i , . . . , ê } be an orthonormal basis of R d . Then:

d

f = ^ 2 ^ e i ' w h e r e fi = f ' ei (
i=l

Because basis E is orthonormal:

fi = f • ei (5.132)

and

(5.133)

Suppose f _L £ ej, Vi = 1 ... ,d. By (5.132), this implies that:

/ i<e | | f | | , Vt = l , . . . d (5.134)

The introduction of (5.134) into (5.133) leads to:

d

(5.135)

or

1 < eVd (5.136)

which contradicts hypothesis (5.130).

•

66

L e m m a 3 Let f G R d be a unit vector such that fi>0, Vi = 1 , . . . , d.

Let b G R + be a d-dimensional point.

Let e G R + be a non-negative real such that e < -4=.
vd

Then 3k G {1, . . . , d} and 3X > 0 such that:

Xfk = h (5.137)

and
fk > e (5-138)

and

A < M (5.139)
Vl - (d - l) e 2

Proof A l l the numbers used in the proof are non-negative, either by definition

or by being a sum, product, or quotient of non-negative numbers. Non-negativity

will not be stated explicitly in the rest of the proof.

Without loss of generality, the unit vectors of the basis can be renumbered such that

h<bJ±L, V* = l,...,d (5.140)
Ji Ji+1

Let

k= min i : - . (/ _L e e*) (5.141)
\<i<d

By lemma 2, such a k exists.

Let

By hypothesis:

A = ^ (5.142)
Jk

By the definition of k:

Vi = l , . . . , f c : / i ± e e i => <e (5.144)

67

The introduction of (5.144) in (5.143) yields:

d
£ / 2 > l - (f c - l) e 2 (5.145)
i=k

By the definition of the Euclidean norm:

^ 6 2 < | | 6 | | 2 (5.146)

i=k
Combining (5.145) and (5.146):

d

i=k
JLZ I - (fc - iw
i=k

By the definition of fc: b-f<hi Vi = fc,...,d (5.148)
Ik Ji

This can be rewritten as:

^j- = where v± < 1, Vz = fc,... ,d (5.149)
fk fi

The square of the equation above is:

§ = 4 ? ' v i = & , . . . , d (5 - i 5 °)

Summing the numerators and the denominators of the right-hand side of the equa

tion above for i — fc,..., d yields:

u2

fk 2 - - d ~ (5- 1 5 1)

i=k

68

The definition of by (5.149) as a subunitary number leads to:

d d
Vi = * : , . . . , d (5.152)

i—k i=k

By combining (5.151) and (5.152) it follows that:

d

33 &fc\2 ^ i=k
fk

From (5.147) and (5.153) we obtain:

< (5.153)

/ 2

bk\\ \\b\\2

JkJ l - (f c - l) e :

The introduction of (5.142) in the inequality above yields

A < , l l ? > 1 1 (5.155)
y/1 - (k - l)e2

The maximum of the right-hand side of the equation above is achieved for k = d:

A < , "»» (5.156)

V l - (d - l) e 2

•

A halfline H L that emanates from the origin in a direction whose components

are all positive is contained in the positive orthant of the space. Each point b in R d

can be seen as the corner of the box whose diagonally opposite corner is at the origin.

Each face of the box is included in a hyperplane that is normal to a coordinate axis.

If point b is situated in the positive orthant, then halfline H L must intersect at

least one of the box hyperplanes that pass through b. Lemma 3 shows that such

a hyperplane exists such that its intersection with H L is both well-conditioned and

situated not much farther from the origin than the diameter of the box.

69

Figure 5.2: Halfline emanating from inside a box: first intersection with a box line
is P I , which is ill-conditioned; second intersection is P2, which is well-conditioned
and close to the bounding box.

Theorem 2 Let H C be a d-dimensional hypercube of diameter D.

Let H L be a halfline emanating from a point XQ inside the hypercube in direction f:

H L = {x G R d : x = x0 + A / , A > 0} (5.157)

Let e G R+ be a non-negative real such that e < -4=.
vd

Then an intersection point xe of H L with a hyperplane H P of the hypercube H C

exists such that:

- .(/ _L e n H P) (5.158)

where T I H P is the normal to hyperplane H P , and:
l ! s e - s 0 | | < — _ D (5.159)

V l - (fl - l)e

Proof Trivial transformations that do not modify distances (translations and

reflections) can move XQ to the origin and / into the positive orthant. Let b the

corner of the hypercube now situated in the positive orthant. Lemma 3 can be

applied to the current values of / and b to obtain a real number A with the properties

stated by the lemma.

Let:

xe = A / (5.160)

70

Because xo — 0 and A > 0, x e G H L by the definition of H L .

Let:

H P = {x G Rd : xk = bk} (5.161)

By the definition of xe:

(xe)k = A / f c (5.162)

By the definition of A (lemma 3, (5.137)), (5.162) can be rewritten as:

(xe)k = bk (5.163)

which means that xe G H P . The point xe belongs to both H P and H L , so it is an

intersection point of these two sets.

One normal to H P is nnp = ek. The angle between nup and / is characterized by

the quantity:

| / - n H P | _ \fk\ = h (J U 6 4)

11/11 I K P I I i • i

The introduction of (5.138) into (5.164) leads to:

1/ • ™ H P | ^ / , , a r \

11/11 I I I H P I I

from which (5.158) immediately follows.

As the point xo is now at the origin, the distance between XQ and xe is:

| | a ; e - ^ | | = ||x e|| = | | A / | | = A | | / | | = A (5.166)

By requirement (5.139) of lemma 3:

A < , 1 1 6 1 1 (5.167)
^ l - (d - l) e 2

The distance from a point inside a hypercube to a corner of the hypercube cannot

be larger than the diagonal of the hypercube. As the origin is contained inside H C

and H&ll is in fact the distance from the origin to corner b of H C , it follows that:

H&ll < D (5.168)

The combination of equation (5.166) and inequalities (5.167) and (5.168) establishes

inequality (5.159).

71

•

The theorem shows that any halfline emanating from a point inside a bound

ing box has an intersection with a bounding box hyperplane that is well-conditioned

and situated not far from the point (fig. 5.2).

Formula (5.159) expresses the tradeoff that exists between the conditioning

of the intersection point xe of the halfline with the bounding box, measured by e,

and the distance from the origin XQ of the halfline to xe. Characteristic values of d

do not exceed 20. Consider that e is required to be at least 0.1, which guarantees

the good conditioning of the intersection. Then theorem 2 guarantees that:

\\xe - z 0 | | < lD (5.169)

where:

^ ^ - l l , ! , . " - " 1 (5 ' 1 7 0)

The value of e could be set to a much lower value and still represent a well-

conditioned intersection while driving 7 very close to 1. That, however, wouldn't

introduce a qualitative change to the argument.

In the case of Coho LPs, well-conditioned bases that approximate the optimal

solution more closely than any basis that contains a bounding box hyperplane may

exist. However, it is the use of the bounding box that provides an upper bound on

the distance from the true optimal vertex.

5.2.4 Error Bound for Coho Cycles

Having described a way to approximate the cost function for a particular class of ill-

conditioned optimal bases, we shall now examine the application of this idea to Coho

linear programs. A basis represents a matrix that may contain several independent

cycles, each of which can be considered separately.

In order to bound the approximation error, a bound on the projection of an

arbitrary basic column onto the normal to all the other basic columns is needed.

72

best approximating vertex
when using
the bounding box

best approximating vertex
when the bounding box
is not used

optimal vertex \

^ \ c o s t vector! f^

" cost = const.

Figure 5.3: The best approximating vertex, with and without the bounding box

First the direction of a normal to face of the basic cost cone is determined:

Lemma 4 Let A be a matrix representing a cycle in normalized form as described

by (4.4).

Let d be a vector defined as d = col(Po,..., P „ _ i) , i.e.:

dk=Pk-U Vfc = l , . . . , n (5.171)

Then d is orthogonal to columns 2 , . . . , n of matrix A:

d±A:d, Vj = 2 , . . . , n (5.172)

Proof By the definition of the dot product:

n
dTA:d = J2diAid (5.173)

i = l

The introduction of the definition of A-j results in:

j-2 n
dTA:j = ^2di0 + dj-i(-aj-1) + djl+ ^ d i ° = di'• ~ aj-idj-i (5.174)

i = l i=j+l

73

From the definition of d it follows that:

dTA:d = P,-_! - ctj-iPj-2 (5.175)

The use of (4.6) leads to the final result:

dTA:d = 0 (5.176)

•

The next step is to determine the projection of a basic column onto the normal to

the others:

Theorem 3 In the conditions of lemma 4:

\Pn - II
UprojrfdirAi

V 1
 + an*

n-l

(5.177)

Proof The columns A:>j,j = 2 , . . . , n are linearly independent. Together with d,

which is normal to each A j , they form a basis for R". Consequently it is possible

to express A-^\ as:
n

A:tl = ^2cjA.mtj + 6d (5.178)
3=2

where Cj e R, Vj £ {2 , . . . , n} and iJeR.

The first row of equation (5.178) yields:

1 = c 2 (- a i) + 5P0 (5.179)

Considering that a\ = P\ and PQ = 1 = PQ , this can be rewritten as:

1 = - c 2 P i + (5P0

2 (5.180)

From rows 2 . . . n — 1 of equation (5.178) it follows that:

0 = a + ci+i(-ai)+6Pi-1, i = l , . . . , n - 2 (5.181)

74

Multiplication of the above with P j _ i and the equality a jPj_ i — Pi lead to:

0 = 0 ^ - 1 - ci+1Pi + 5P?_l: i = l , . . . , n - 2 (5.182)

The memberwise summation of all of the above equations yields:

n-1
0 = E (c * P i - l - + 6Pi-l)

t=2
n—1 n—1 n—1

= 5>**-i) - E (^ + i p *) + 5 E ^ - i
t=2 i=2 i=2
n—1 n n—2

= E (^ - i) - E ^ p - i) + ^ E ^ 2

i=2 t=3 i = l
n-2

= c 2 P i - c „ P „ _ i + c 5 E ^ 2

(5.183)

t = i

The last row of equation (5.178) can be expressed as:

-a-. = c„ + SPn-i (5.184)

Multiplication with Pn-i and the equality a n P n - \ = P „ enable us to rewrite the

above :

- P „ = CnPn-X + &Pl_x (5.185)

The memberwise summation of (5.180), (5.183), and (5.185) is:

l + 0 - P n = (- c 2 P i + c5P0

2)

n-2
(c s P x - c ^ - i + c S E ^ 2) (5 - 1 8 6)

i = l

This simplifies to:

or, equivalently:

+ (c J l P „ _ 1 + M ^)

n - 1

1 - P „ = 5 E ^ 2 (5-187)
i = 0

8 = L-—^ (5.188)
n—1 v '

P 2

i=0

75

The orthogonality of d onto Cj S R, Vj = 2, . . . , n implies that:

and for the direction of A: ±:

proj ddir A j X = p ro j d A i 5d

U,i\\ \\A:il\

The substitution of the norms of d and A- \ yields:

(5.189)

(5.190)

|projddir A:

\Pn - I I

i=0

n - l
\Pn - I I

* p 2 \ »=0 ' + "n

1

n - l

E^ 2

i=0

(5.191)

•

A low value of quantity ||projddir A :) i | | means that a bounding-box approximation

of the cost achieved by dropping column 1 of matrix A will be accurate.

Equation (5.4) associates a circulant matrix B to matrix A. Equation (5.191)

shows that the ill conditioning of matrix B, which is reflected in a low value of

\Pn — 1|, implies that a pivot to the bounding box will yield a satisfactory ap

proximation of the cost. The following theorem establishes a bound on the error

introduced by pivoting to the bounding box in a Coho LP:

Theorem 4 Let CLP(A C , bc, cc) be a Coho linear program with n variables and m

constraints, where the cost vector, cc, is a unit vector.

Let B be an optimal basis of CLP and x be the optimal vertex of CLP corresponding

to B.

Let

A = {AC

B,)T (5.192)

Suppose that A is a cycle in normalized form as per equation (4.4). Moreover, sup

pose that the maximum angle between A:>\ and any positive combination ofA-,t2, • • •, A->n

does not exceed | .

76

Let D be the diameter of the bounding box of the feasible region of the LP. The

inequalities representing the bounding box are supposed to be among the constraints

that define the feasible region of the linear program.

Let a Coho boundary hyperplane be defined as:

CHP(fc) = {x e R" : Ac

k. x = bc

k} (5.193)

Let d\ be the intersection of boundary hyperplanes B{2),..., B(n):
n

dx = p| CHP(B(*)) (5.194)
k=2

Let e be a positive number such that

e < 4= (5-195)

Then there exists a basis B' with corresponding basic solution x' such that:

B'{k)=B(k) Vfc = 2 , . . . , n (5.196)

and

-.(di - L £ A s , (1) .) (5.197)

and

(cc)Tx'-(ccfx\< 1 | P n _ 1 1

y/l-{n-l)e2

(5.198)
n -1

where Pi is defined in equation (4.5).

P roof From the definition of CHP, it follows immediately that:

Ac

k>. _L CHP(A;) Vfc = l , . . . , m (5.199)

The definition of A implies that A:<k — A C

B ^) . , which, introduced into (5.199),

yields:

A f e _L CHP(B(fc)) VJfc = 2 , . . . , n (5.200)

77

Definition (5.194) can be restated as:

di C C H P (£ (f c)) Vfc = 2 , . . . , n (5.201)

The combination of (5.200) and (5.201) yields:

d1±A..jk V/c = 2 , . . . , n (5.202)

Feasibility requires that the cost vector c c be a positive combination of the columns

of matrix A. Each column of matrix A can be turned into a unit vector by scaling it

by a positive factor. Therefore c c is also a positive combination of the unit vectors

of the columns of matrix A. Along with (5.202) and with the obtuseness hypothesis,

this enables the application of theorem 1 to bound the projection of vector c c onto

the normal d\ to the hyperplane generated by dir A:>2, • • • , dir A;>n by the projection

of vector dir A-^\ onto the same direction:

| | p r o j d l c c | | < | | p r o j d l d i r A : i i | | (5.203)

The right-hand side of the above inequality is determined by theorem 3. The intro

duction of its result into (5.203) leads to:

| |proj d l cc|| < | P " ~ ^ (5.204)

V l + a 2

n - l

\ i=0

Let H L be one of the two halflines that point x determines on line d\. The fact that

the optimal vertex must lie inside the bounding box of the feasible region, along

with (5.195), means that the conditions of theorem 2 are met. B y hypothesis, the

bounding box inequalities are part of the linear program. Let the hyperplane in

theorem 2 be:

a normal to which is:

H P = CHP(r) (5.205)

n H p = A c

r - (5.206)

78

Let the intersection point of H P and H L be x'. Then:

--(di - L £ A c

r ,) (5.207)

and

\\x' — aril < . D = (5.208)
" " - V l - (n - l)e 2

A vertex of a Coho L P represents the intersection of the n boundary hyperplanes

that correspond to its basis. Line d\ represents the intersection of n — 1 bound

ary hyperplanes. A vertex of the L P is to be found at the intersection of d\ with

any other boundary hyperplane, the corresponding basis being formed by the hy

perplanes that contain d\ and the hyperplane that d\ intersects. Vertex x is to be

found the intersection of di with CHP(23(1)). Vertex x' represents the intersection

of di and C H P (r) . This is to say that x' is the vertex that corresponds to the basis

obtained by replacing 23(1) with r:

B'(k) = {
r if k = 1

(5.209)

B{k) iffc = 2 , . . . , n

This definition satisfies (5.196) and, introduced in (5.207), yields (5.197).

The difference in cost between vertices x' and x is:

\(cc)Tx' - (ccfx\ = \\x'-x\\ | | p r o j x , _ x c c | | (5.210)

The fact that x' £ d\ and x 6 d\ implies that (x' — x) || d\, so equation (5.210) can

be rewritten as:

\(ccfx' - (ccfx\ = \\x' - x\\ | | proj d l c c | | (5.211)

The introduction of inequalities (5.208) and (5.204) into (5.211) establish result (5.198)

of the theorem.

•

79

Theorem 4 establishes an upper bound on the error introduced into the cost

by pivoting to the bounding box of the feasible region. In general, the solution to

an n-dimensional linear system can be seen as the intersection of n hyperplanes. If

the linear system is non-degenerate, the intersection of n — 1 of these hyperplanes

represents a line. The solution of the system is the intersection of this line with

the other hyperplane. Theorem 4 establishes a lower bound on the angle between

the intersection line of n — 1 hyperplanes and the normal to the n t h hyperplane

as a measure of the conditioning of the system. Good conditioning and a fairly

low distance between the optimal and the approximating vertex can be obtained

simultaneously. The theorem also shows that the approximation error decreases as

the conditioning of the circulant matrix corresponding to the optimal basis worsens,

i.e. as \Pn — 1| approaches 0. The approximating solution was required to be a basic

solution of the L P in order to enable its discovery by the Simplex algorithm.

Ill-conditioning due to the scaling matrix S does not appear to be curable by

pivoting to the bounding box. However, we suspect that obtuse ill-conditioning of

the optimal basis should always be nearly orthogonal to the cost vector. This gives

us hope for the discovery of better methods resulted from the exploitation of this

property.

Theorem 4 refers to the case of a matrix with one cycle and so do the results

presented earlier in this chapter. A n n-dimensional square matrix can have at

most n/2 non-trivial cycles. By the triangle inequality, the total error affecting the

computed cost is bounded by the sum of the errors for the cycles. This observation,

along with the error bounds established for cycles, leads immediately to an error

bound for the computed cost of a general, multicycle matrix.

5.2.5 Summary

In this section we have studied the approximation of the optimal cost through a pivot

to the bounding box. A class of optimal vertices for which such an approximation

80

introduces small errors has been identified. Then a bound on the component of the

cost vector which is proportional to the approximation error has been determined.

The approximation technique relies on the existence of a well-conditioned

basis formed by replacing an optimal constraint with a bounding box constraint. The

existence of such a basis has been proven. The approximation error is proportional

to the distance from the true optimal vertex to the approximating vertex. A bound

on this distance has been established when a bounding box for the feasible region is

used.

The case of Coho linear systems has been examined in the final part of

the section, with the computation of a bound on the quantity that measures the

error introduced in the cost by pivoting to the bounding box. The formula for this

quantity has shown that the bounding box approximation method works for one

type of ill conditioning, whereas the other type remains an open problem.

81

Chapter 6

Implementation

The previous chapters described how the special structure of the linear programs

arising in Coho can be exploited to produce an efficient and robust version of Sim

plex. This chapter addresses three remaining issues for a practical implementation.

First, the problem of finding an initial feasible basis is addressed. Second, the way

the algorithm deals with uncertainty in the results of intermediate computations

is presented. Third , the solution of linear programs whose feasible region is an

arbitrary linear transformation of an actual projectahedron is described.

6.1 Finding an Initial Invertible Basis

Let SLP(yls , bs, cs) be an instance of a linear program in standard form whose

matrix As exhibits the Coho-specific structure (either one or two non-zero elements

in each column). Let d be the number of rows and / be the number of columns

of matrix As, where d < f. The Simplex algorithm needs a feasible basis Bo from

which to start pivoting. In order for a selection of columns of As to represent a

feasible basis, it must first represent a non-singular matrix. Due to the sparsity of

the matrix As of a Coho L P , finding an structurally non-singular column selection

is not trivial.

The structure of matrix As can be seen as a graph G: each row corresponds

82

1 2 3 4 5

X X X
X X X 2

1

X X
X

X
4

3

5

Figure 6.1: Subgraph that corresponds to an structurally singular matrix.

to a vertex, whereas each column turns into an edge. The number of non-zero

elements in any column must be either 1 or 2. A column whose non-zeros are in

rows i\ and i2 represents an edge between vertices i\ and i2. A column whose only

non-zero element is in row i represents an edge between vertex i and itself. Graph

G has d vertices and / edges. Clearly, more that one edge can exist between a pair

of vertices.

Let GB0 be the subgraph of G that corresponds to the submatrix (As).Bo-

Matrix {As), g contains all the d rows and d of the / columns of As, so GB0 contains

all the d vertices and d of the / edges of graph G.

Consider the linear system LS defined by the equation {As). BQX = y. Each

connected component of GB0 corresponds to an independent subsystem of LS. The

structural non-singularity of matrix {As).Bo means that LS must be neither under-

nor overdetermined. In turn, this implies that any independent subsystem of LS

must have a square left-hand side: one with more rows that columns is overdeter

mined, whereas one with more columns than rows is underdetermined. Therefore,

any connected component GP of GB0 must represent a square matrix. By the con

struction rules for G and GB0, this means that the graph has equal numbers (dp) of

edges and vertices. The connectedness of GP requires the use of dp — 1 edges to link

the dp vertices together in a tree structure. The dp-th edge can join two arbitrary

83

Figure 6.2: Subgraph that corresponds to an invertible matrix.

vertices, thus creating a cycle with some overhanging trees.

This suggests the following way of finding an invertible column selection: a

set of trees is constructed by depth-first search such that every vertex is assigned to

a tree; then a cycle is introduced in every tree.

Any edge between two different vertices represents a column of matrix As-

In turn, each column of As corresponds to a side of a projection polygon. Moreover,

all sides of a projection polygon represent edges between the same pair of vertices

of G. So for each edge there will exist at least two more edges between the same

vertices. Therefore it is always possible to create a 2 x 2 cycle in any existing tree

by adding one more edge between two vertices that are already connected to one

another.

In addition to satisfying the condition described above, each cycle must give

rise to a well-conditioned linear system. We assume that all projection polygons

are of a low enough degree that it cannot be the case that all vertices of one of

them are highly obtuse. This assumption does not exclude any polygons that other

components of Coho would handle conveniently: in order for all its vertices to be

highly obtuse, a polygon must be at least of degree 109, which would render the

computational cost of its manipulation prohibitive.

84

As shown in chapter 5, the cycles embedded in the linear systems that arise in

Coho can be affected by two types of ill-conditioning: one is caused by the quantity

Pn being close to 1; the other is the result of the bad scaling of the coefficients a, of

the cycle. The following method of picking the initial basis guarantees the avoidance

of ill conditioning of the first type: Suppose that the cycle is to be created between

vertices i\ and 12 between which an edge is known to exist. Vertices i\ and 12

define a projection plane and the edges between i\ and %2 represent the edges of the

corresponding projection polygon. The projection polygons are assumed to have no

highly acute vertices. Therefore, no projection polygon encountered in Coho can

have the property that every two of its sides are nearly parallel to one another. It

follows that it must be possible to pick a pair of edges of the projection polygon

corresponding to the pair (i i , 1̂ 2) such that the angle between them is not close to

either 0 or TT. Then the cycle formed by this pair of edges will of necessity be free

from ill conditioning of the first type.

It is also possible to create a cycle in a tree by adding an edge from a node

to itself, if one such edge, i.e. a constraint with only one variable, is present. The

conditioning is guaranteed to be good in this case.

The method of finding an initial feasible basis described above does not guar

antee the absence of ill conditioning caused by the bad scaling of the a, coefficients

of the cycle. Instead, this problem is handled by the branching method described

in section 6.3.

6.2 Finding an Initial Feasible Basis

The basis B identified in the previous section might not have all the properties

required by the Simplex algorithm: some components of T-.fi = B~1b might be

negative, i.e. B might be infeasible. This calls for another computational step

towards a feasible basis.

Classical solutions to the problem do exist, but they involve the introduction

85

http://T-.fi

of auxiliary variables that increase the overall computational cost and, worse, destroy

the special structure of the LP's matrix As- These disadvantages render a solution

tailored specifically for the case at hand more desirable. This new solution employs

a helper linear program SLPH (Ag , bg , Cg) constructed as follows:

The columns of Ag corresponding to the negative components of T:fi ap

pear negated in Ag, thus ensuring that B is a feasible basis for SLP 7 *. The same

construction ensures that the distribution of the non-zero elements stays the same

in Ag as in As- S L P f f being completely similar to SLP, the same computational

techniques developed for SLP can be applied to S L P f f .

A variable that appears negated in the helper L P is called undesirable. Our

objective is to obtain a feasible basis that contains no undesirable variable.

The cost function of the helper LP makes the undesirable variables expensive,

whereas all the other variables have 0 cost. In order for a pivot to be favorable, it

must drive one of the undesirable variables out of the basis.

Given a linear program and a feasible basis for it, the basis remains feasible

if arbitrary changes are made to the non-basic columns and to the cost function.

This enables us to flip the sign of the undesirable variable that has left the basis

while keeping the basis feasible. A variable ceases to be undesirable when its sign is

flipped. The cost of the variable is made 0, as the variable doesn't need to be kept

out of the basis anymore.

Eventually all the undesirable variables are driven out of the basis or the

original L P was infeasible. The optimal basis BH that we end up with contains only

-{As):d if B{i) = j and Tifi < 0

{As).j otherwise

1 if B(i) = j and Tifl < 0
<

0 otherwise

86

variables that appear with the same sign in the original linear program SLP. As the

right-hand sides 65 and bg are also identical, BH must be a feasible basis for SLP

as well. The problem of finding an initial feasible basis for SLP(Ag, bs, cs) is thus

solved.

6.3 Dealing with Uncertainty and Avoidance of Cycling

Earlier on in this thesis as well as in most textbook presentations, the description

of the Simplex algorithm assumes that the numeric operations executed on various

floating-point numbers are free of errors. Unfortunately, on real machines, this is

not the case. Unavoidable rounding errors introduce an uncertainty with which any

floating-point number is known. Floating-point numbers in computations can be

thought of more accurately as real intervals: x ± e.

Errors in the result of a computation can diminish the usefulness of the result,

occasionally rendering it worthless. The problem can be even more complicated

when a decision in the program has to be made based on the computed value of

some floating-point number. Any comparison between floating-point numbers can

be reduced to the comparison between their difference and 0:

I O J « (I - ! ,) O 0 , V o £ { < , <, >, >, =,

so the case of comparisons of computed floating-point numbers with 0 will be con

sidered henceforth. The result of the comparison a;±e ° 0 is undetermined if e > |a:|.

This is tantamount to saying that the sign of x is uncertain.

Comparisons between computed floating-point numbers are used in Simplex

in order to decide whether a column shall enter the basis and which column shall

leave the basis. In the presence of ill-conditioning, computed quantities occasionally

have uncertain signs. Clearly, deciding to take the wrong branch can make the

algorithm fail:

87

• If the wrong column is evicted from the basis, an infeasible basis is reached.

Upon checking the sign of the new basic variables, the algorithm signals failure.

• If the wrong column enters the basis, a (slightly) more costly basis is reached.

The algorithm may end up caught in a cycle of bases: at some of them a

correct pivot is taken, at at least one other base the pivot is wrong, the overall

outcome being cycling of a type different that the one treated by Bland's

anticycling algorithm.

Bland's anticycling algorithm essentially provides ways of dealing with the

fact that two or more computed quantities are equal. W i t h floating-point

computer arithmetic, two computed quantities are very seldom equal, even in

cases where error-free computation would have lead to equal results.

A n obvious solution to the problems raised by uncertainty in the results

of comparisons is to try both possible paths of the computation. The arrival at an

infeasible basis or an increase in the cost mean that the current path of computation

is in fact wrong and must be abandoned. Clearly this could potentially lead to an

explosion in the running time of the algorithm, as each of the n comparisons that

the algorithm would effect on an error-free machine can in principle turn into a node

of a computation tree with 2 " nodes.

In practice, however, the number of uncertain comparisons is expected to be

low. When selecting a column to enter the basis, a clearly favorable column shall

always be chosen even if possibly but unclearly favorable columns do exist. Similarly,

if a clearly favorable column is found but the identity of the column that must leave

the basis is uncertain, another clearly favorable column can be given preference if

the column to be evicted is clear in its case. Overall, exploring multiple branches is

likely to be necessary only in the neighborhood of an ill-conditioned optimal basis.

A record of the visited bases is maintained such that various paths of the

computations are not explored more than once. Clearly, this also solves the problem

of cycling.

88

When the optimal basis of an L P is ill-conditioned, it might not be possible

to label it as "clearly optimal", but only as "possibly optimal" instead. If the ill-

conditioning of the optimal basis is particularly strong, the optimal basis may seem

to be numerically singular: the error bound on some of the basic variables simply

becomes infinite. Moreover, bases whose cost is close to but different from the

optimal one, may not appear to be suboptimal or infeasible, but "possibly optimal"

instead.

The algorithm terminates the search for an optimal basis when a clearly opti

mal basis is detected or when the exploration of the paths arising from comparisons

with unclear result is finished. In order to compute a good estimate of the optimal

cost, the algorithm must visit the optimal basis or, if this one is ill-conditioned, a

standard-suboptimal well-conditioned basis whose cost is very close to the optimum.

The algorithm guarantees that, for any visited feasible basis, a neighboring

basis of lower cost will be visited if one exists. This holds true even if the true sign

of the cost difference between the bases is not clear from the computation. Applied

recursively, this invariant leads to the fact that the algorithm is guaranteed to visit

the optimal basis, which has no feasible and less costly neighbor.

Each type of basis provides the following information about the primal L P

in standard form:

• A feasible, clearly standard-suboptimal basis provides an upper bound on the

cost.

• A n infeasible basis that yields a feasible solution to the dual provides a lower

bound on the cost.

• A clearly optimal basis provides both an upper and a lower bound on the cost.

• A maximal set of potentially optimal bases provides an upper and a lower

bound on the cost. The cost of each basis in the set can be computed as an

89

interval. The ends of the union of all these intervals represent bounds on the

true optimal cost.

• A numerically singular basis B that has been reached by taking a clearly

favorable pivot from another basis S p r e d must have a lower cost than the basis

that preceded it (23pred)-

A n upper (and sometimes also a lower) bound on the optimal cost can be

computed by examining the record of visited bases. The upper bound and the

corresponding solution is the information that Coho expects. The accuracy of the

bound depends directly on the closeness to optimality of the visited bases and on

the error bounds on the solutions that correspond to these bases.

Clearly a truly optimal basis is the best result of the linear program as

regards cost. When the optimal basis is ill-conditioned and consequently produces

a solution with large (possibly infinite) error bounds, it is necessary to replace it

with the feasible suboptimal well-conditioned basis that has the lowest cost. This

slightly suboptimal solution to the standard L P under consideration represents a

slightly infeasible solution to its Coho dual. So the true feasible region of the Coho

L P is over approximated as required.

Ill conditioning can affect the optimal basis of the helper L P used for deter

mining an initial feasible basis for the actual L P . In this case the optimal basis rather

than the optimal cost is of interest. Ill conditioning translates into the discovery

of more than one possibly optimal basis rather than one clearly optimal one. The

solution to this type of uncertainty is to try out all the possibly optimal bases of

the helper L P as initial feasible bases of the actual L P .

90

6.4 Conserving Structure after Moving Forward in Time

Consider a Coho projectahedron described by the following equation at the begin

ning of the time step:

Ax0 > b (6.1)

where A £ R d x d , b £ R r f and xo represents a feasible point at the beginning of the

time step.

The linearized model for the time step has the form:

x = Mx + q (6.2)

where M £ R d x d , q £ R d . The duration of the time step is A t . Let xe be

the position position at the end of the time step of a point whose position at the

beginning of the time step was XQ. By integrating (6.2) for the time step we obtain:

xe = eMAtx0 + (eMAt - I)M~lq (6.3)

The combination of (6.1) and (6.3) yields the equation of the region resulted from

moving the projectahedron forward in time:

AExe > be (6.4)

where E = e ~ M A t and be = b + A(I - e~MAt)M~lq. Matrix E results from matrix

exponentiation and is therefore non-singular.

At the end of the time step, the region described by AExe > be needs to

be projected back onto various projection planes. This amounts to solving several

Coho linear programs of the form

CLP{AE,be,c) (6.5)

where c is some cost function.

In general, the postmultiplication of A by E yields a matrix that no longer

presents the two non-zeros per row structure that describes a projectahedron. Clearly,

91

the machinery developed for linear programs whose feasible regions are projectahe

dra cannot be applied directly to linear programs of the type described by (6.5).

However, the following transformation enables the reduction of the latter type to

the former: in the original problem:

min cTx (6.6)
A E x > b

the following change of variable is effected:

y = Ex&x = E~ly (6.7)

which yields:

min dTy (6.8)

Ay>b

where d = E~lc is the transformed cost function. As matrix A is the left-hand side

of the inequality that describes a projectahedron, this transformed problem can be

solved using the techniques presented earlier.

Let y o p t be the optimal solution to the transformed problem. The optimal

solution to the original problem is:

xopt = E~lyopt (6-9)

The multiplication of the cost vector and of the optimal solution by the

quantity E~l — eMAt are the only operations that need to be added to the Coho

L P solver in order to enable it to deal with the kind of LPs described by (6.5).

92

Chapter 7

Conclusions

7.1 What has been Accomplished

The verification performed by Coho makes heavy use of linear programming. The

applicability of the tool depends critically on the accuracy of the solutions to the

linear programs that it has to solve.

Linear programming has a well-known mathematical solution that is the Sim

plex algorithm. However, numerical errors that are inherent to floating point com

putation sometimes make this algorithm produce unacceptably imprecise results.

This thesis studied ways of exploiting the special structure of the linear programs

that arise in Coho in order to compute better solutions to them.

A Coho linear program cannot be solved by Simplex directly. The standard

solution of introducing additional variables in order to bring it to standard form

would have destroyed its special structure. This has been circumvented by observing

that the dual of a Coho linear program is a linear program in standard form that

exhibits the same special structure and to which Simplex can be applied directly.

Moreover, the solution of the Coho L P is straightforward to compute from that of

its dual.

As part of solving Coho linear programs, it is necessary to compute Simplex

tableau columns. The computation of a tableau column implies solving a linear

93

system. The structure of such linear systems is closely related to that of the linear

programs from which they arise. Because of their structure it was possible to devise

a linear-time algorithm for solving Coho linear systems. Based on the linear-time

solver, Simplex was modified such as to prevent the propagation of numerical errors

between steps.

The main numerical problem that affects the Simplex algorithm as modified

for Coho is the errors that affect the solutions to linear systems. Therefore research

effort has been directed towards computing more accurate solutions to these systems.

A characterization of the numerical stability of the Coho linear systems has

been obtained. Whereas in quantitative terms it is not complete, it does shed light

on the possible sources of ill-conditioning. A possible way of determining a forward

error bound on the solution to a Coho linear system has been presented.

In the case of most of the LPs encountered in Coho, their optimal cost,

rather than their optimal solution, is of interest. The research has identified a class

of linear programs for which the computation of the optimal cost can be achieved

with a small error, although the optimal vertex is replaced with the vertex obtained

by pivoting from the optimal basis to the bounding box of the feasible region. This

class has been shown to contain a part of the Coho linear programs.

The error bounds that are computed on the results of floating-point oper

ations permit the linear program solver to identify the situations where the use

of a computed value could potentially lead to an incorrect computation path. In

such situations, the solver tries out both possible computation paths if the first one

fails. This strategy prevents the solver from failing by reaching an infeasible basis

and guarantees that the optimal basis of the linear program to solve is eventually

visited.

A n implementation of Simplex that incorporates the modifications proposed

in the thesis was written in Java and integrated within the Coho verification tool.

The implementation raises several non-trivial issues that have been presented in

94

detail in the body of the thesis.

In conclusion, this research has resulted in progress towards better solutions

to Coho linear systems and, by way of consequence, to Coho linear programs. Conse

quently, this is expected to increase the usability of Coho. However, some important

questions have remained open.

7.2 Suggestions for Further Research

The study of the Coho linear programs is not finished yet. As mentioned in the

body of the thesis, some further explorations are necessary.

The fact that the optimal cost is computed in two ways which yield errors

that vary in opposite directions with the conditioning of the optimal basis suggests

that it should be possible to determine an error bound on the optimal cost of a Coho

linear program that depends only on the unit roundoff and on the dimension of the

space.

In order to get a tighter bound on the error in the optimal solution, a better

estimate of the condition number of cyclic matrices is needed. Experimental evidence

suggests that the available estimate overapproximates the true condition number by

several orders of magnitude when the i l l conditioning is high.

Moreover, there are linear systems for which the condition number is an

overly conservative error predictor [CF88]. The identification of such a situation re

quires knowledge of the singular value decomposition (SVD) of the system's matrix.

General methods for SVD computation are not linear time. A linear-time or nearly

linear-time SVD method tailored for Coho cyclic matrices is a desirable first step

towards more precise error prediction.

If highly acute ill-conditioned vertices can be shown to occur, a method

for dealing with them is certainly needed. Rescaling the system appears to be a

promising approach. This is a topic for future research.

When the optimal basis B of a linear program represents a highly obtuse and

95

ill-conditioned vertex, a slightly suboptimal basis B' is guaranteed to exist if the

bounding box of the feasible region is made part of the linear program. Unfortu

nately, a theoretic proof that B' is reached during the search for optimality is yet to

be found. The experimental evidence currently available is inconclusive.

Alternatively, the algorithm could be modified to ensure the visitation of

basis B'. The slightly suboptimal basis B' becomes the optimal basis if the cost

vector is tilted slightly in an appropriate way. Such a slight modification to the cost

function would guarantee that basis B' is discovered as the optimal basis.

Running error analysis is presently used for all the Simplex operations that

involve real numbers. In the absence of ill-conditioning, this is wasteful. A conser

vative estimate of the condition number of a left-hand side of a Coho linear system

can be computed in linear time. The ability to recognize cases where error analysis

is unnecessary based on the condition number estimate can improve the running

time of a program by a constant factor.

The use of Givens rotations [Hig96, p.371] for the solving of the Coho linear

systems has been suggested by scientific computations experts [HabOl]. The problem

seems to be that Givens rotations work best when various rotations are independent,

which is not true in our case.

Another suggestion was the replacement of Simplex with the interior point

method as the algorithm used for solving linear programs. This avenue is entirely

unexplored.

96

Bibliography

[AL94] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543-
1571, September 1994.

[Bla77] R. Bland. New finite pivoting rules for the simplex method. Mathematics
of Operations Research, 2:103-107, 1977.

[CF88] Tony F. Chan and David E. Foulser. Effectively well-conditioned linear sys
tems. SI AM Journal on Scientific and Statistical Computations, 9(6):963-
969, November 1988.

[GM98] Mark R. Greenstreet and Ian Mitchell. Integrating projections. In
Thomas A. Henzinger and Shankar Sastry, editors, Proceedings of the First
International Workshop on Hybrid Systems: Computation and Control,
pages 159-174, Berkeley, California, April 1998.

[GM99] Mark R. Greenstreet and Ian Mitchell. Reachability analysis using polyg
onal projections. In Proceedings of the Second International Workshop on

Hybrid Systems: Computation and Control, pages 103-116, Berg en Dal,
The Netherlands, March 1999. Springer. LNCS 1569.

[HabOl] Eldad Haber. Personal communication, 2001.

[Hig96] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.

SIAM, Philadelphia, 1996.

[Lin92] Elliot Linzer. On the stability of transform-based circular deconvolution.
SIAM Journal on Numerical Analysis, 29(5):1482-1492, October 1992.

[Mul97] Jean-Michel Muller. Elementary Functions: Algorithms and Implementa

tion. Birkhauser, Boston, Basel, Berlin, 1997.

[PS82] Christos H. Papadimitriou and Keneth Steiglitz. Combinatorial Optimiza

tion. Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1982.

97

[TPS98] Claire Tomlin, George Pappas, and Shankar Sastry. Conflict resolution
in air traffic management: A study in multi-agent hybrid systems. IEEE
Transactions on Automatic Control, 43(4):509-521, April 1998.

98

Appendix A

Definitions and Notations

A . l Notations

The notation for matrix element selection follows the Matlab style, with the selector

appearing as a subscript rather than as an argument.

matrix element

Aij : the element of matrix A at the intersection of column i and row j

matrix row

Ait: : row i of matrix A

matrix column

A-j : column j of matrix A

set of matrix columns

A:j, where J — (j i , . . . ,jc} is a set of indices of columns of A : a matrix S

with C columns such that S-iC = A:jc, Vc = 1 , . . . , C

element of row or column

bk : element k of the row or column b

set of column elements

99

bj, where J — {ji,..., jc} is a set of indices of elements of b : a column matrix

S with C elements such that Sc = bjc, Vc — 1,..., C

vertical matrix join

[A\B] : a matrix obtained by appending each row of matrix B to the same-

index row of A; A and B must have the same number of rows

identity matrix

In : the n x n identity matrix; n is omitted when it results from the context

A.2 Definitions

linear subspace

A linear subspace S of R d is a subset of R d closed under vector addition and

scalar multiplication.

afRne subspace

A n affine subspace A of R d is a linear subspace S translated by a vector u:

A = {u + x:x G S}

orthogonal complement of a subspace

The orthogonal complement of a subspace S C R™ is defined by:

5 X = {y G R" : yTx = 0 for all x G S}

orthogonality of a vector to a subspace

A vector v is orthogonal to a linear subspace W if v is orthogonal to every

vector in W.

projection of a vector onto a subspace

Let W be a subspace of R d . Let {u\,... ,Uh} be an orthonormal basis for W.

100

If v is a vector in R d , the projection of v onto W is denoted p r o j ^ u and is

defined by

h

pro)w v = ^2{v • ujui
i = l

distance from a point to a subspace

The distance from a point x to a subspace W is defined as:

d(x, W) = vaind(x,y)
y € W

A n important property is that:

d(x, W) = \\x - projiy x\\

positive combination

Given p vectors x\,... ,xp G R d , a positive combination of them is a vector

x G R d of the form:
P

X

x = l

cone

The cone generated by a set of vectors xi,...,xp G R r f is the set of all their

positive combinations.

hyperplane

A hyperplane in R d is a set of points defined by:

HP(a, b) = {x G R d : aTx = b} a G Rd \ {0}, b G R

A hyperplane is an affine subspace of Hd of dimension d — 1.

hyperplane normal

Any vector Aa, where A G R \ {0}, is a normal to the hyperplane HP(a , b).

101

halfspace

A hyperplane H P (a, b) in R d represents the common boundary of two closed

halfspaces, which are defined as:

HS>(a,6) = {x G R d : aTx > b}

RS<{a,b) = {x G R d : aTx < b}

halfspace normal

A halfspace normal is a normal to the boundary of a halfspace.

inward halfspace normal

A inward halfspace normal n of a halfspace HS is a halfspace normal such that

Vx G HS, VA G [0, oo) x + An G HS

Intuitively, a inward normal points from the boundary of the halfspace towards

its interior.

The vector a is a inward normal for the halfplane HS>(a, b).

The vector —a is a inward normal for the halfplane HS<(a, b).

closed convex polyhedron

A closed convex polyhedron is the intersection of a finite number of halfspaces:

/

P H = P| HS>(ai, bi), where at G R d \ {0} and bt G R
t = i

In matrix form:

P H (A , b) = {x e Rd : Ax > b}

where A G Rfxd and b G R d .

Each hyperplane may correspond to a face of the polyhedron, although some

of them might be redundant.

The polyhedron may be empty or unbounded in some directions.

102

hypercube

A hypercube in R d is the Cartesian product of d closed real intervals.

standard basis

The standard basis of the R d vector space is the basis

{e; : i =

where

I 0, otherwise

vector norm

The norm of a vector v in R d is denned as:

d

i=l

unit vector

A unit vector is a vector whose norm is 1.

The unit vector, i.e. the direction, of a vector v is defined by:

dh"u = 77—TT

ll'"ll

projection of a vector onto another vector

The projection of a vector v onto another vector u is defined by:

proi,, v — u = (v • divu) d i r u
F J" u-u v '

vector angle

The angle between two vectors u and v is defined by:

A. (u, v) = arccos " ..̂ = arccosfdir u • dir v) \\u\\ \\v\\

103

distance between points

The distance between two points x and y in R d is:

d{x,y) = \\x - y\\

104

